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This thesis is concerned with the problem of acoustic echo cancellation in mobile
handsets. The acoustic echo path in a mobile handset is due to the acoustic coupling
between the loudspeaker and microphone, which changes depending on the particular
handset design and on the handset orientation. To cancel this echo effectively, the nature
of this acoustic echo path in normal use must be fully understood. This thesis identifies
the possible echo sources on a mobile handset and reports on echo path measurements
taken from a typical handset design in various handset orientations. It has been found
that resonant acoustic echo path responses are obtained in normal handset use.

The resonant nature of the echo path response motivates an investigation of IIR
filter models, as well as more traditional FIR models of the echo path. From the
reported results of offline modelling experiments it is clear that, not only do IIR filter
models give benefits in terms of complexity and performance over FIR models, but that
the IIR filter model also needs to be adaptive.

The modelling performances of adaptive FIR and both Equation Error and Output
Error adaptive IIR algorithms have been investigated in this thesis. The steady state
performance of certain Output Error adaptive IIR algorithms has been shown to be
superior to equivalent adaptive FIR algorithms, both in the presence and the absence of
microphone disturbance noise. The tracking performance of these Output Error adaptive
IR algorithms for different time variations in the echo path response, also show that
these algorithms can also have better tracking performance than equivalent adaptive FIR
algorithms.

In the handset acoustic echo cancellation application robust operation for input
speech signals is necessary at low echo to microphone noise levels. A modified form of
the NLMS Newton Simplified Gradient Output Error adaptive IIR algorithm is

developed in this thesis to satisfy these requirements.
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Chapter 1

1. An Introduction to Echo Cancellation

An echo of a transmitted signal can be a disturbing phenomenon for virtually all types of
communication. The greater the amplitude of the echo signal and time delay between a signal being
transmitted and the echo component being received the greater the disturbing effect will be on the quality
and reliability of communication. Echo cancellation simply mimics the echo path function in a
communication system to cancel any echo components [1.1]. The principle of echo cancellation is

illustrated below in Figure 1.1,
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Figure 1.1 : General configuration of an Echo Canceller

In Figure 1.1 an echo path, A(7), exists between the received signal path and the transmit signal
path of a particular communications system. As a result the signal information $(#) to be transmitted is
corrupted by an echo signal y(#) . In order to cancel the echo signal y(#), an adaptive filter model is
normally used to model the echo path /(#), as the echo path normally varies with time. The output of the
adaptive filter y(n)is a replica of the echo signal y(n) and can then be subtracted form corrupted

signal d(n) to ideally leave no echo signal and only the signal information s(#) to be transmitted [1.1].

The type of echo cancellation used depends on the echo generating mechanism that creates the
echo path /(7). In general there are 3 different types of echo cancellation - Acoustic Echo Cancellation,
Line Echo Cancellation and Digital Echo Cancellation.

The echo path generating mechanism that must be modelled in the case of Line Echo Cancellation
is the result of impedance mismatches in 2 to 4 wire hybrids on the PSTN. During telephone calls on the
PSTN electrical echo signals are generated on the receiver of the caller due to these impedance
mismatches, which if not attenuated can be disruptive for long echo delays [1.1],[1.2].

In 4 wire subscriber loops which are used for digital data transmission over the PSTN via modems,
the echo generating mechanism is the result of impedance mismatches in the local hybrid of the modem

set on access to the 2 wire loop, and from impedance mismatches in the modem hybrid at the group



switching centre. Digital Echo Cancellation is required to increase the signal to echo ratio for reliable
modem data transmission [1.3].

The echo path generating mechanism for the Acoustic Echo Cancellation (AEC) application is a
result of the acoustic coupling path between the loudspeaker and microphone arrangement as part of the
communications system [1.4],[1.5] .For hands free applications the acoustic echo path may be the result of
acoustic coupling between a loudspeaker and microphone enclosure in a room, office or car
[1.5],[1.6],[1.7]. For Acoustic Echo Cancellation (AEC) on a mobile handset the echo path generating
mechanism to be modelled is the acoustic path between handset loudspeaker and microphone within the
operating environment of the user.

This thesis is concerned with the cancellation of acoustic echo signals on mobile handsets using
adaptive IIR filtering techniques. To the authors knowledge no results currently exist for acoustic echo

cancellation on mobile handsets, which makes this area exciting and attractive to research.

1.1. Acoustic Echo Cancellation on Mobile Handsets

Consider the problem of acoustic echo on a mobile handset as illustrated in Figure 1.2.
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Figure 1.2: Acoustic Echo Cancellation on a mobile handset

The acoustic echo path of the mobile handset is a result of acoustic coupling between the
loudspeaker and microphone on the handset. When a call is made with the mobile handset, speech signals
sent by a user at the other end of the call to the mobile handset loudspeaker will result in an acoustic echo
signal being returned to the handset microphone. This echo signal is due to the presence of an acoustic
echo path, which produces this acoustic coupling between the loudspeaker and microphone on the
handset.

This acoustic echo signal will then be returned to the user at the other end of the call, delayed by
the round trip network delay (which for GSM can be up to 200ms [1.6]). Depending on the level of these
echo signals returned, significant degradation of the speech call can occur. The effects of time delay and
echo for PSTN telephone connections has been studied in [1.8],[1.9]. In order to prevent any degradation

in speech quality during a call, the terminal coupling loss of the handset must remain below a certain level.
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For GSM and third generation mobile handsets, to deal with calls that may have delays up to 300ms, this
terminal coupling loss level is specified as 46dB [1.10],{1.11].

The terminal coupling loss (TCL) of a mobile handset is defined as the overall attenuation of echo
signals on the handset picked up by the handset microphone, and transmitted over the network. The echo
return loss (ERL) of the mobile handset is the physical echo loss of the handset design due to the casing,
etc. This echo return loss is due to the acoustic echo path of the mobile handset. Where the echo return
loss of the mobile handset is insufficient to give the required terminal coupling loss level of -46dB,
additional echo return loss enhancement (ERLE) in form of an acoustic echo canceller is required.

To effectively cancel the acoustic echo signals on a mobile handset the acoustic echo cancellation
device within a mobile handset must model the acoustic echo path of the mobile handset. As the acoustic
echo path of a mobile handset may vary quickly depending on the handset position in normal use, the echo
cancellation device must be capable of track these changes in order to provide sufficient terminal coupling
loss at all times [1.11]. Adaptive filtering techniques would normally be applied within the acoustic echo
cancellation device in order to track any echo path changes in normal handset use. This thesis is

concerned with the application of adaptive IIR filtering techniques to this problem.

1.2. Overview of Thesis

The work described in this thesis was carried out between October 1996 and October 2002 on a

part time basis. The aims of this work can be summarised as follows: -

e To develop adaptive IR filtering techniques suitable for acoustic echo cancellation on mobile
handsets and to investigate their benefits in terms of performance over more traditional

adaptive FIR filtering techniques.
From the work carried out in this thesis the main contributions are: -

e  The nature of the acoustic echo path of a typical mobile handset design in normal handset use has
been recorded and analysed (chapter2). The variations of both echo path response and resulting
terminal coupling loss that an echo canceller must deal with in normal handset use have been
identified. A proposal is made for a more robust set of standard test conditions than are used in
[1.10] and [1.11], to ensure the handset terminal coupling loss remains below 46dB during
normal handset use.

o  Modelling experiments have been carried out (chapter 4) showing the benefit of fixed IIR filter
models over more traditional FIR filter models for the cancellation of acoustic echoes on mobile
handsets under stationary conditions. It is shown that an adaptive model is needed to ensure the
terminal coupling loss of a mobile handset remains below 46dB during normal handset use.

e  Adaptive Filtering simulations have been used (chapter 5) to show that adaptive 1IR filtering
techniques can give the performance advantages predicted for fixed IR filter models under
stationary conditions. The effects of adaptive algorithm parameters on the steady state modelling

performance of adaptive 1IR algorithms have been analysed. The modelling performance of
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adaptive IIR algorithms in the presence of echo path output noise for this application has been
established. It 1s clear from the results presented an output error adaptive 1IR algorithm is
required for the handset acoustic echo application, and that LMS Newton based adaption
schemes are required. A proposal is made on the most suitable adaptive IR algorithm for
modelling the acoustic echo path of a mobile handset under stationary conditions.

o The effects of time variations in the echo path response and non-stationary speech input signals
on the tracking performance of output error adaptive 1IR algorithms suitable for this application
area are investigated (chapter 6). The effect of input SNR and output ENR on modelling
performance when using speech signals is also investigated. It is shown that an output error
adaptive IR algorithm has benefits in tracking performance over more traditional FIR adaptive
filtering algorithms. A robust output error adaptive 1IR algorithm is proposed suitable for the

handset acoustic echo cancellation application.

Chapter 2, which follows this introductory chapter, deals with measuring and analysing the acoustic
echo path response of a mobile handset for different handset positions and configurations. The handset
configurations used represent the extreme positions possible in normal handset use and as such should
also contain the likely possible variation in handset response in normal handset use The main purpose of
this chapter is to determine the echo path response and terminal coupling loss behaviour of a mobile
handset in normal use. The possible echo path sources of a typical mobile handset design are firstly
identified based on the typical construction of a modern mobile handset design. Next the measurement
process is outlined.

From the measurements recorded in chapter 2 the echo path sources (or echo path generating
mechanisms) responsible for the variation of terminal coupling loss and echo path response of a handset in
normal use are identified. The echo path response of a mobile handset is identified to be linear in nature.
It is clear that echo cancellation is required in normal handset use for the mobile handset designs tested,
and that a linear echo canceller should be used for this application. It can also be observed that resonant
echo path responses can be produced for the handset designs and configurations tested, indicating that an
IR filter structure may be beneficial for use in an echo canceller for this application.

Finally in chapter 2 the effects of echo reflections from the user, and the external environment on
the acoustic echo path response of a mobile handset are considered. Non-anechoic environments are used
with different user handset positions. From the echo path measurements recorded throughout chapter 2 it
is clear the single test condition of [1.10] used to establish the handset terminal coupling loss does not
deal with the possible echo path variations in normal handset use observed from the measurements in this
chapter. Using the non-anechoic echo path measures presented in the final sections of chapter 2 as a
reference of how the mobile handset echo response can actually vary in normal use, a more robust set of
fixed handset orientations are proposed for use in [1.10] and [1.11] to ensure a handset design will have
sufficient terminal coupling loss in normal handset use. Adaptive algorithms developed in later chapters
must remain stable and provide sufficient ERLE performance for the echo path responses of these fixed
handset orientations, thus ensuring they will remain stable and provide sufficient terminal coupling loss in

actual normal handset use.



Chapter 3 deals with adaptive filter theory for FIR and IIR filter models. The theory presented will
be applied later the thesis to the handset acoustic echo cancellation problem when the performance of FIR
and [IR filter models and adaptive filtering algorithms will be studied. Chapter 3 is split into three main
parts. The first part begins with introducing FIR least squares optimal filtering concepts, which leads to
the well-known normal equations [1.12]. Steepest descent and Newton iterative solutions to the normal
equations are then presented from which the most commonly used gradient-based adaptive FIR filtering
algorithms are derived. The second part is an extension of FIR least squares optimal filtering concepts to
cover Output Error IIR least squares optimal filtering and the most commonly used gradient based
adaptive Output Error lIR filtering algorithms. The final part of the chapter is used to cover Equation
Error IIR least squares optimal filtering and the most commonly used gradient based adaptive Equation
Error IR filtering algorithms. At the end of this chapter a useful summary is given of all adaptive
algorithms presented in this chapter in tabulated form.

The choice of whether an FIR or IIR filter model should be used for acoustic echo cancellation is
commonly based on modelling experiments carried out for the acoustic echo path responses from hands-
free telephony and teleconferencing applications [1.13], [1.14]. This basis is incorrect as the suitability of
IR filter models depends largely on the nature of the acoustic echo path of the particular application area.
chapter 4 presents the results of offline modelling experiments using FIR and IIR filter models to model
the echo path responses measured in chapter 2. From the results presented it can be seen there is a clear
benefit in the use of IR filter models for acoustic echo cancellation on a mobile handset, particularly for
those handsets which employ wideband speech codecs for higher speech quality. Further, an analysis of
the zero and pole vectors of the IR filter models, and the ERLE gain achievable from fixed IR filter
models and fixed pole models, illustrates clearly the need of a fully adaptive IIR filter model for this
application.

Chapter 5 follows on from the work carried out in chapter 4 by examining the steady state
modelling performance of the adaptive FIR and IIR filtering algorithms when modelling the echo path
response of a mobile handset. To the author’s knowledge no literature exists on the modelling
performance of adaptive algorithms for the handset acoustic echo cancellation application. The first part
of chapter 5 examines the achievable steady state ensemble averaged echo return loss enhancement and
convergence performance of adaptive FIR and IR algorithms under stationary conditions, over a range of
model orders. A system identification configuration is used with no output noise, stationary input signals
and a non-time varying echo path response. The handset echo path responses used in the offline
modelling experiments of chapter 4 are re-used here. The adaptive FIR and IR algorithms employed are a
subset of those presented in chapter 3.

From the results presented in the first part of chapter 5 it is clear the same gains in steady state
modelling performance as presented in chapter 4 can be achieved for adaptive 1IR algorithms. However
from the results presented it is clear that faster LMS Newton based adaption schemes of chapter 3 are
necessary for adaptive IR algorithms in order to achieve these gains, and to get closer to the convergence
performance achieved by adaptive FIR algorithms. The most suitable model order for adaptive FIR

algorithms, Equation Error adaptive IIR algorithms and Output Error adaptive IIR algorithms can be



identified from the results presented to meet the required echo return loss enhancement of each echo path
modelled.

As the handset acoustic echo cancellation may have to operate in noisy environments it is
necessary that any adaptive IR algorithms used in the echo canceller must be robust to echo path output
noise. The second part of chapter 5 thus looks at the modelling performance of equation and output error
adaptive IIR filtering algorithms when modelling the echo paths presented in chapter 4 in the presence of
echo path output noise. Using the model orders identified in the first part of chapter 5 the modelling
performance of the LMS Newton adaptive algorithms presented in chapter 3 is established. At low echo to
noise ratios it is clear an output error adaptive IIR algorithm is required to maintain modelling
performance gains over equivalent adaptive FIR algorithms in the presence of echo path output noise.
From the LMS Newton based adaptive IIR algorithms presented in chapter 3, only the Output Error
Simplified Gradient LMS and NLMS Newton adaptive IIR algorithms provides sufficient modelling
performance in the presence of echo path output noise.

So far in the thesis only stationary input signals and non-time varying acoustic echo path responses
have been modelled. In the real handset acoustic echo cancellation application time variations will exist
both in the handset acoustic echo path to be modelled and the input signals present. Chapter 6 addresses
some of the more real world issues for acoustic echo cancellation on a mobile handset using adaptive 1IR
algorithms. The adaptive 1IR algorithms used are Output Error Simplified Gradient LMS and NLMS
Newton adaptive 1IR algorithms of chapter 5. Chapter 6 is split into 3 parts. The first part of chapter 6
deals with the tracking performance of adaptive 1IR algorithms for a time varying acoustic echo path
response. As the handset will not have a fixed orientation during a call, time variations in the acoustic path
to be modelled will arise. The effect of both linear and non-linear time variations on the tracking
performance of adaptive IIR algorithms is analysed. From the results presented it is clear that adaptive 1IR
algorithms have similar tracking performance to adaptive FIR algorithms with the same number of
coefficients.

In the final part of chapter 6 the effect of time varying inputs signals on the modelling performance
of adaptive IIR algorithms is addressed. As non-stationary speech signals will be present in the actual
handset echo cancellation application, it is important to establish the performance of adaptive IIR
algorithms with real speech signals. Additionally the effects of low input SNR and output ENR on the
performance of adaptive IIR algorithms is studied. A modified Simplified Gradient NLMS Newton
adaptive 1IR algorithm is proposed for robust acoustic echo cancellation on a mobile handset.

Finally, chapter 7 summarises the main results presented in this thesis, and draws overall
conclusions. Some directions for future research into acoustic echo cancellation on mobile handsets are

also suggested.



Chapter 2

2. The Acoustic Echo Path of a Mobile Handset

2.1. Introduction

The main objective of this thesis is to develop adaptive IR filtering techniques for acoustic echo
cancellation on mobile handsets. In order to accomplish this it is necessary to understand the behaviour of
the echo path response of a typical mobile handset design in normal use. In addition it is necessary to
determine the level of Echo Return Loss Enhancement (ERLE) typically needed by an acoustic echo
canceller for this application to ensure the terminal coupling loss requirements of can be satisfied at all
times. To do this the echo path response of a typical mobile handset design must be measured and
analysed. The main focus of this Chapter is to measure and characterise the echo path response, and
terminal coupling loss of a typical mobile handset design. To the authors knowledge no results to date
have been published on the nature of the acoustic echo path of a mobile handset in normal use.

Chapter 2 is divided into 5 main sections. Section 2.2 begins by firstly discussing the possible
sources of echo on a mobile handset. A discussion 1s presented on how these sources may influence the
overall echo path response and terminal coupling loss of a mobile handset, depending on the handset
orientation. It is thus important to identify which of these echo path sources will dominate in normal
handset use as this will greatly influence the design of the most suitable echo canceller. Section 2.3 then
outlines the measurement process and equipment configuration used to record acoustic echo path impulse
response data from a typical mobile handset design. The calculation of echo path impulse and frequency
response information from this recorded data is explained. Finally definitions for the Terminal Coupling
Loss (TCL) of a mobile handset and the Echo Return Loss Enhancement (ERLE) are presented. The
calculation of the Terminal Coupling Loss (TCL) level from echo path frequency response information is
explained.

In normal handset use the handset position with respect to the user’s head will not remain fixed.
Different handset orientations are also possible for future mobile applications other than speech, such as
video telephony. A large number of handset orientations are hence possible and complete measurement of
the echo path response of a handset in normal use is a difficult one. As a solution to this problem a set of
fixed handset configurations are proposed. This novel set of test configurations not only represent extreme
handset orientations in normal use, but also allows the dominating echo sources of a mobile handset to be
clearly identified. Later in the chapter it will be shown that when actual echo path responses from
reverberant environments are considered these fixed handset orientations do represent the likely variation
possible in normal handset use.

The results of anechoic echo path measurements from these fixed handset positions are presented
in Section 2.5. From the results the dominant echo path sources are identified. It is clear that acoustic echo
cancellation is needed in normal handset use, despite providing sufficient echo loss during the single fixed
handset orientation described in the relevant standard [2.1]. It is also clear that the acoustic echo path of a
mobile handset is largely linear in nature. From the results presented it can be observed that resonant echo

path responses are possible from a mobile handset depending on the handset orientation and whether any



obstructions or seals exist on the handset transducers. This motivates the study of IIR filter structures and
adaptive IIR algorithms for this application in later chapters. At the end of this section a characterisation
of the acoustic echo path response of a mobile handset response is made. The results presented in this
section of course only directly apply to handsets of similar construction to the handset design measured
for this thesis. It is, however, expected the conclusions drawn from these echo path results will apply to
most mobile handset designs.

Finally Section 2.6 addresses the impact of echo reflections from the user and the external
environment on the acoustic echo path response required to be modelled by an echo canceller. Here the
issue of the single test position of [2.1] to represent the handset terminal coupling loss in normal handset
use is raised. It is clear from the results presented that a set of handset test positions is needed to capture
the likely variation of handset echo response during normal use. The handset test positions discussed
earlier in the chapter are proposed as a more robust set of test configurations for [2.1] and [2.2] to test

whether the terminal coupling loss of a mobile handset remains below 46dB.
2.2. Echo Path Sources on a Mobile Handset

Before considering actual echo path measurements let us look at the design of a typical mobile
handset. The normal construction of a mobile handset consists of a removable front plastic casing, which

is secured to a base unit housing all handset electronics as illustrated in Figure 2.1.

Mic L/S

I_U Removeable Front Case V

KEYPAD LCD
| I

Base Unit

BATTERY |25

Figure 2.1: Mobile handset constuction

The handset loudspeaker is normally permanently attached to the front casing. The handset
microphone can either be permanently attached to the front casing as illustrated in Figure 2.1, or
permanently attached to the base unit, where a sealing contact with the front unit is made only when the
front case is firmly attached to the base unit. The trend for modern mobile handsets is for the overall
mobile size/volume to reduce, which normally reduces the relative distance between microphone and
loudspeaker in the front case. As new multimedia applications arise such as mobile internet and video
telephony the increased functionality of the mobile and increased LCD area needed will fundamentally
restrict the size of a typical mobile handset in the future.

In addition to mobile handsets, cordless telephony in the home is also becoming popular, where
newer cordless handset designs are designed to look more like the size of older mobile handset designs. It
is expected this trend will continue in the future, and these cordless handset designs will face similar echo

problems to modern GSM handsets.



The mobile handset design used for the measurement and analysis of handset acoustic impulse
responses in this document is the NEC G9 mobile handset. The NEC G9 has approximate dimensions
13cm x 5 cm x 2.5cm (length x breadth x height/width). At the time that the echo path measurements were
taken this handset design was considered typical of the handset designs available in the market place. At
the time of writing this Ph.D. thesis, however, this handset may be considered to be an older handset
design. Indeed by current GSM handset designs this handset may be considered large by comparison,
however it is still typical of the size of DECT cordless handsets currently available for the use in the home
or office. This size is also comparable to newer third generation designs beginning to emerge in the
marketplace.

From a consideration of the construction of a mobile handset design the most probable echo path

sources on a mobile handset are defined in Figure 2.2.
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Figure 2.2: Echo path sources on a mobile handset

These three possible echo sources are defined as the external acoustic echo path /4, (n), the

internal acoustic echo path /. (7) , and the casing and structural mechanical echo path 4, , (1) .

int

The external acoustic echo path, /4, ,(n), is due to acoustic coupling from the loudspeaker in the

handset earpiece to the microphone in the handset mouthpiece through the external environment. An
external echo path is inevitable when a direct air gap exists between handset loudspeaker and microphone
for sound to propagate. No external echo path components would be expected to arrive at the handset
microphone until sound propagates across the distance from the loudspeaker to microphone in the air gap
in this condition. For a distance of 10cm this would be approximately 0.34ms. An alternative source of
external echo may also be due to propagation of sound in other transmission mediums. For example, if the
handset is placed face down on a rigid surface while the handset loudspeaker is in operation, no direct air
gap may exist, but sound may still propagate from the loudspeaker to the microphone through the rigid
surface, creating an external echo path.

It is assumed at this stage that the impact of echo reflections from the external environment may be
neglected. The impact of echo reflections from the external environment will be considered later, when the

echo path impulse responses in non-anechoic environments are analyzed. The external acoustic echo path
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on a mobile handset will be the main echo source for mobile applications such as hands free video
telephony.

The internal acoustic path, /1, (n) . is due to the internal air cavity, which may exist in a handset

design between the removable front casing and the base unit. Pressure fluctuations from the handset
loudspeaker into the internal air cavity, may be picked up by the handset microphone, resulting in an
internal echo path being created. Depending on the size and construction of the air cavity, and propagation
characteristics within the cavity, resonant modes may appear in the echo path response due to the
existence of sealed enclosure. This may only occur when a loudspeaker or microphone obstruction or seal
is in place on the handset to form a sealed enclosure. For example, for an internal echo path enclosure that
has a dominant length dimension of 10cm, the dominant fundamental frequency would approximately
1.7kHz.

The mechanical echo path, hmm,h (n), is a result of the propagation of vibrations from the handset

loudspeaker when in operation to the handset microphone through the handset front casing or base unit.
This mechanical coupling may be non-linear in nature [2.3]. It is expected both the internal and external
echo path sources would be linear in nature.

(n),h, (n)and A _,,(n)for a particular mobile

The combination of echo path sources / it

ext

handset will determine the overall acoustic impulse response /(71) as illustrated in Figure 2.3.
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Figure 2.3: Functional view of the aceustic echo path on a mebile handset

The overall acoustic echo path response may be written as,

h(n)=h,_(n)+h_(n)+h . (1), @.1)

ext

To illustrate how these echo path sources described above may influence the overall Terminal

Coupling Loss (TCL) level of the mobile handset in normal use, let us consider some examples.
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Consider a handset placed firmly to the user's head and ear as shown in Figure 2.4a. This situation
is typical during a normal speech call if perhaps the user's environment is noisy. Due the handset earpiece
being effectively sealed or obstructed by the user's ear, external echo path contributions would be
expected to be low. The overall Terminal Coupling Loss (TCL) level for the handset in this position
would as a result be mainly a function of the internal echo path and mechanical echo path components. If
mechanical echo path contributions can be neglected, internal echo path contributions would dominate the
echo path response and hence overall Terminal Coupling Loss (TCL) level for the handset. If a strong

internal echo path exists in the handset design, linear acoustic echo cancellation may be required.

. h (}’l) small as external path
(a) Handset placed firmly to oxt attenuated

user's ear and head h (I’l) unattenuated perhaps
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h (}’l) large as clear external path
(c) Handset placed in front of ext present
user's head , far away from h. , (n)  unattenuated
user's ear. n

hmech (n) unattenuated

Figure 2.4: Illustration of how echo path sources may influence Terminal Coupling Loss of a
handset in normal use

Now consider the placement of the handset away from the user's head and ear as shown in Figure
2.4b. This situation may occur depending on the preference of the user not to place the handset firmly to
their head and ear. A direct air gap may exist in this handset configuration resulting in a larger
contribution from the external echo path components to the overall Terminal Coupling Loss (TCL) level
for the handset in this position. Echo path contributions from the internal and mechanical echo path
sources would remain unchanged. Assuming a weak internal echo path in this handset configuration, and
that mechanical echo path contributions can be neglected in the handset design, external echo path
contributions would dominate the echo path response and hence overall Terminal Coupling Loss (TCL)
level for the handset. The presence of external echo path contributions in this handset configuration may

require the use of linear acoustic echo cancellation to increase the overall echo loss of the handset.

Finally consider the placement of the handset away from the user's head and ear as shown in Figure
2.4c. This situation may exist for mobile PDA's or future mobile handsets where video telephony is used.
A direct air gap will exist in this handset configuration resulting in a large contribution from the external
echo path components to the overall Terminal Coupling Loss (TCL) level for the handset in this position.
Echo path contributions from the internal and mechanical echo path sources would remain unchanged.

Again assuming a weak internal echo path in this handset configuration, and that non-linear mechanical
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echo path contributions can be neglected in the handset design, external echo path contributions would
dominate the echo path response and hence overall Terminal Coupling Loss (TCL) level for the handset.
The presence of strong external echo path contributions in this handset configuration will require the use

of linear acoustic echo cancellation to increase the overall echo loss of the handset.

In the next sections of this Chapter we will look at how the acoustic echo path response of a typical
mobile handset design is measured. We will also look at how the resulting Terminal Coupling Terminal

Loss is calculated.

2.3. Echo Path Impulse Response Measurement Process

Many different methods exist for the measurement of the frequency response in a loudspeaker
microphone arrangement [2.4]. One of the most common methods that is widely available in most
commercial FFT based analysers, is based on random signal excitation input signal to a linear system and
the calculation of auto and cross spectral densities[2.5][2.6]. This technique forms the basis of echo path
Many different methods exist for the measurement of the frequency response in a loudspeaker microphone
arrangement [2.4]. One of the most common methods that is widely available in most commercial FFT
based analysers, is based on random signal excitation input signal to a linear system and the calculation of
auto and cross spectral densities[2.5][2.6]. This technique forms the basis of echo path response

measurements in this Chapter.
2.3.1. Estimation of system response using random signal excitation

system response

system excitation output signal
input signal h(n)
\/\'\/\/\
/\/\/\/\/ Unknown Linear
x(n) >  Time Invariant »  y(n)
System

Figure 2.5: Estimation of impulse response a(n) using a random signal excitation

Consider the basic input-output relationship of Figure 2.5, described in terms of a convolution sum
in the time domain as,
y(n) =Y h(m)x(n—m), (2.2)
m=0

Where the input signal x(#)is a random stationary process, the measurement of the system
response /1(71) requires use of statistical parameters such as the auto-correlation of the input x(7) and the

auto-correlation of the system output y(7) defined as[2.5],

oo

r (k) = Elx(mx(n+ )] = > x(n)x(n+ k), 2.3)

bl
<>

s

r, (k)= Ely(m)y(n+5)]= Y y(m)y(n+k), (2.4)
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Using equation (2.1) the cross-correlation may be defined as{2.5],

r, (k) =Y h(myr, (k—m), (2.5)
m=0
Taking the Fast Fourier Transform (FFT) of both sides of (2.5) gives the Cross Spectral Density,
S (@) =Hw)S  (0), (2.6)
where S (®)is the Auto Spectral Density. Re-arranging (2.6) gives the complex frequency response

H(®w) of the unknown system as,

_3, @)
H(w)= 5 @)

Equation (2.7) defines the unknown complex frequency response (@) of the system in terms of

2.7)

the complex cross-power spectrum S (®) and the auto spectrum of the input excitation signal S (®).

The unknown impulse response of the system /(7) may then be computed using the Inverse Fast Fourier
Transform (IFFT) of (2.7) as,
h(n) = IFFT[H(®)], 2.8)
In practice estimates of the auto and cross spectrums are computed from finite sampled data

records X(7)and y(7)[2.6]. Denoting the estimates of auto and cross spectrums as Sx—y () and

S” () we get the transfer function estimate,
S, (@)
S, (o)

where H, (e’ )is an estimate of the complex frequency response H (e/®) . A common technique used to

(2.9)

Hl(w):

estimate Sry (®) and 3‘_4\, (®) is the Welch method of spectrum estimation{2.7]. The unknown impulse

response estimate of the system may then be computed using an Inverse Fast Fourier Transform (IFFT)

from(2.9) as follows,
h(n)=IFFT[H,(®)], (2.10)
Equations (2.9) and (2.10) provide an unbiased estimate of the complex frequency response and
impulse response of an unknown system.

Consider now the problem of estimating the unknown acoustic echo path impulse response A(n)

from the data signals x(7) and d(n) of Figure 2.6. Due to measurement noise and ambient noise picked
up by the microphone in the handset, the output of the echo path d(7) can be regarded as the true output
of the echo path y(n), superimposed on which would be some uncorrelated output noise V(#) as shown

in Figure 2.6.



uncorrelated
measurement noise

v(n)

measured
random excitation echo path
. . output
input signal Unk Ech + signal
» nKnown e=cho
x(n
(n) Path h(n) o d(n)
Figure 2.6: Echo path impulse estimation in presence of output noise
The measured echo path output (#) of Figure 2.6 recorded may be expressed as,
d(n) = y(n)+v(n), (2.11)
Assuming the measurement noise V(#) is uncorrelated with the input signal x(1n),
Elv(im)x(n+m)]=0, (2.12)
EV (®)X(®)]=0, (2.13)

The cross spectral density between input signal input x(n) and measured output d(n) becomes [2.5],

§,4(®) = E[X (@)Y (@) +V(®)] = ELX (@)Y (@)] = S, (@) = H(e")S, (). (214

From (2.14) the same relationship exists between the cross spectrum of input x(#) and measured

output d(n) as exists in equation (2.6). Equation (2.9) and (2.10) thus provide an unbiased estimate of

the complex frequency response and impulse response of an unknown system with respect to any output

noise in the system. As the amount of averaging used in the computation of cross and auto power
spectrum estimates S, (@) and S_(®)in (2.9) is increased [2.7] the impulse response estimate /(1)

of (2.10) should converge to the actual impulse response of the unknown system A(n) [2.5].
2.3.2. Estimation of the coherence function

When the output of a linear system is corrupted with un-corrected measurement noise as shown in

Figure 2.6 the power spectrum of the output signal becomes,

Su(@)=S§ (@) +S§,,(w), (2.15)
From the FFT of both sides of equation (2.3) the auto spectrum of the actual output y(7) can be shown to
be,
2
S, (@)= H@)][ S, (@), (2.16)
Using equation (2.9), relation (2.14) and equation (2.15) the auto-spectrum of the output y(#) becomes,
2
S (®)
2 X
S, (@) =|H®)| S\,\,(m):——-‘ (@) : (2.17)
' : S (@)
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The ratio of power output of the system relating to the input, to the total output power at frequency ® is
defined as,
2
Syy ((i)) _ fS.\'t/ (O‘))!
de (0‘)) S,\:\' ((D)Sdtl (0‘))

Equation (2.18) is termed the coherence function relating actual system output V() linearly

(2.18)

Yiu()=

derived from input x(72) and the measured system output (7). The coherence function is often used as
a quality indicator when performing transfer function estimates, and has a range of 0 to 1. A level of |
indicates all of the output power at frequency ® is due to the input excitation signal only, with negligible
measurement noise present.

The noise process V() thus far has been interpreted as the system output measurement noise, but
can be more widely interpreted as any non-coherent contributions to the output of the system such as non-
linearities in the system response. The coherence in equation (2.18) may hence be defined as the ratio of

output power linearly derived from the excitation signal x(7), to the total output power measured. A

high level of coherence across all frequencies is a good indication of system linearity.

2.3.3. Echo Path Response Measurements using MATLAB and SIGLAB

2.3.3.1. Equipment Set-up

To record the acoustic impulse response of a mobile handset the measurement set-up Figure 2.7
was used. All handset impulse response measurements recorded in this document were recorded in the

University of Southampton anechoic chamber (which has a cut-off frequency of about 100Hz).

2.3.3.2. Audio Bandwidth and Sample Rate

At the time of writing this thesis most mobile handsets incorporate narrowband (telephone
bandwidth) codecs, which employ an audio sample rate of 8000Hz, and a bandwidth around 300-3400Hz.
This is still true for most GSM handsets in the marketplace today and for fixed telephone lines. To see
clearly the characteristics of the acoustic echo path response a sample rate of 12.8kHz is used. The echo
path responses presented in this chapter are converted to the 8000Hz sample rate later in the thesis in
chapter 4 for FIR and IR modeling experiments, since the main focus during this thesis is acoustic echo
cancellation on mobile handsets with narrowband.

Due to the increasing market penetration of ISDN, Broadband Internet, audio and video
conferencing, and newly emerging third generation mobile applications, wideband speech codecs have
been developed to provide higher fidelity speech [2.12]. These wideband codecs operate at a 16kHz
sample rate with a bandwidth of 50-7000Hz. The higher sample rate of 12.8kHz used for echo path
measurements presented in this chapter will be close to the actual responses required to be modelled by an

echo canceller in future mobile handset designs (of similar construction) which use these wideband codec
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devices. To show the application of results presented in thesis also apply to wideband codec systems the
echo path responses presented in this chapter are converted to a 16000Hz sample rate in chapter 4 for FIR

and IIR modeling experiments.

External to chamber
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Sample -
8 x(n))

40dB Anti-
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X s " d(n)
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Microphone Pre-amplifier

Figure 2.7: Handset echo path measurement layout

2.3.3.3. Measurement Procedure

The first step in generating echo path impulse responses was to inject a band limited Gaussian

white noise signal into the handset loudspeaker, and record simultaneously both this original noise signal
x(n) (before loudspeaker) , and the signal d(#) returning through the handset microphone after
amplification. Both signals x(n) and d(n) are recorded at a sampling frequency of 12.8kHz, for a

duration of 25secs (320,000 samples at 12.8kHz sample rate) using the Siglab 20-22A unit [2.8],[2.9].
The Siglab unit uses a fixed sampling rate of 51.2kHz and a 4™ order analogue anti-aliasing filter to band
limit recorded data to 12.8kHz. The AD 2105 is then used to perform multi-stage digital decimation
filtering to get the relevant sample rate. In our case this is a 12.8kHz sample rate for echo loss

measurements.

Using the MATLAB signal processing toolbox functions[2.10], the echo path impulse response
estimate }; (n), of equation (2.10) is computed as shown below in Figure 2.8. The auto and cross power
spectrum estimates S'xx (w) and Sxd () were computed from the input and output data sets x(#) and

d(n) using the Welch's method with a Hanning window type used. A Hanning window size of 1024
samples and overlap of 512 samples were used in the calculation of the complex frequency response

estimator /1, (e‘iw) using equation (2.9). Approximately 600 averages were used in the computation of
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auto- and cross-spectrum estimates for /1 I(e"m) to get accurate results for the echo path frequency

response.
x(n)
Loudspeaker
Input Signal
psd (; Input Auto Spectrum
S_\Z\' (w)
csd()
Echo
Path
h(n) Impulse Response
ifft() h{n)
Cross Spectrum Complex Frequency Response
S (i ) S (®
S, (jo) ::> H, (") = A.\zl( )
S ()
Noise an%
v(n) csd() Phase Response
6, ()
d(n)
Microphone
Output Signal

Figure 2.8: Estimation of unknown echo impulse response using MATLAB and the SIGAB 20-22A
unit

The echo path phase response is calculated from the complex frequency response estimate /1, (ejm) and

the acoustic echo path impulse response estimate /’Al (n) is calculated from (2.10).

The coherence function Y 2 (@) of (2.18) for an echo path impulse response measurement is
computed from input and output data sets x(n) and d(n), using estimates for the auto and cross power
spectrums S (®), S, (®) and S ,(®). The estimates S (®), S (@) and S (o) are
calculated from x(n) and d(n) using the Welch's method as discussed earlier using a Hanning window size
of 1024 and overlap of 512 samples [2.5],[2.7]. Approximately 600 averages were used in the
computation of auto and cross spectrums for an accurate coherence function measurement. The coherence
function is a particularly useful indication as to whether any non-linear components exist in the echo path

response measured.
2.3.4. Calculation of the Terminal Coupling Loss (TCL) and Echo Return Loss

Enhancement (ERLE)

The Terminal Coupling Loss (TCL) level of a mobile handset is currently defined as the integral of

the power transfer characteristic A(f) weighted by a —3dB/octave slope starting at 300Hz and extending to

3400Hz [2.1],[2.11] - where a —~3dB/octave slope corresponds to a %f dependence of the input power
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spectral density, 1.e. the input is assumed to be band limited pink noise. This definition is based on
narrowband codec systems with an audio bandwidth of 300-3400Hz.

For the measured handset acoustic echo path responses, the function A(f) becomes the echo path

. - 12
frequency response {Hl (e_,zn/ )‘ giving the Terminal Coupling Loss (TCL) equation,

3400 ‘H(eﬁnf)’z
TCL,, =3.85-10log,,| [ ——4
f , (2.19)

300

Equation (2.19) is simply the ratio of input and output powers of the echo path for a band hmited

pink noise input signal in the range 300 to 3400Hz [2.11] .The input signal characteristics are defined as,

X(f)=c;*2‘, 300 < £ <3400

(2.20)

>

0 £ <300, /> 3400

5

The signal characteristics of (2.20) approximate the long-term average spectrum characteristics of a
speech signal. The actual test signal of [2.1] used in TCL measurements is an artificial speech signal,
whose long-term spectrum approximates the characteristics of (2.20). For the purposes of echo loss
measurement and preliminary modelling results contained in this thesis, an implementation of the band

limited pink noise signal of (2.20) in MATLAB is used.

To compute the Terminal Coupling Loss (TCL) level of (2.19) in practice using N+1 discrete

12
samples of I[‘[1 (e’”)|" uniformly spaced in the range 300 to 3400Hz, the following approximation is

used {2.11],

i

TCLW(dB):3.24—1010gm[‘ QH(,-)lz +]H(z‘_1)‘2)(1ogm £(i)—log,, f(z‘—l))] 221)

s

2 2
where IHI (O)l is the echo path power response at frequency 300 Hz, and [Hl (N)l is the echo path
power response at frequency 3400 Hz.

In the same way the Terminal Coupling Loss (TCL) level can be defined as a ratio of ratio of input
and output powers, the Echo Return Loss Enhancement (ERLE) may also defined as ratio of powers. It is
common practice to calculate this Echo Return Loss Enhancement (ERLE) using time averages across the

data records as follows,
M1
> d’(m)

} =~ 10 log ,, | 4=

3
i
=}

E[d’(n)]

E[e’(n)]

ERLE =10 lo
dB g 10 [ ’ 2.22)

where M represents the length of input and output recorded sequences x(») and d(n).
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For wideband codec systems the Terminal Coupling Loss definition in [2.1] may be modified to

account for the higher audio bandwidth of 50- 7000Hz.

2.3.5. Calculation of the Effective Impulse Response Duration

10 logyq[ In(n)[?]
A

hpeak |

-30dB

<+

Effective Duration

Figure 2.9 : Effective Duration of an echo path impulse response

From Figure 2.9 it can be clearly seen the effective duration 7, of an echo path response is defined is the

time taken for the echo path impulse response to decay to 30dB below the main peak energy of the

response.

The effective duration 7, determines the effective impulse duration required to be modelled by an

echo canceller. This of course can be related to the number of feedforward filter model coefficients

required to model the echo path response effectively.
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2.4. Handset Test Configurations

The actual echo path impulse response of a mobile handset will depend on the handset orientation,
In normal handset use, the handset orientation is dependent on the user and the mobile application being
used. For example in normal speech conversation the user may place the handset in a 45° position close to
the user's head and ear, whereas in new multimedia applications such as mobile video telephony the
handset will most likely be placed vertically (or horizontally) in front of the user's head. A large number of
possible handset orientations are hence possible. The task of determining the echo loss performance of a

mobile handset in normal use is a difficult one.

The main aim of this section is to define fixed test hahdset orientations that are repeatable, and
representative of the possible handset variations in normal handset use, to allow the dominating echo path
sources on a mobile handset to be identified. With this aim in mind the following set of handset
orientations are defined. These handset orientations are designed to take into account all possible handset
transducer sealing or obstruction possibilities, for all mobile applications {not just speech services) so that

the full variation of the handset echo path response in normal use will be observed.

1. The artificial ear sealed test configuration of [2.1]and [2.2].
2. The face up handset configuration, with no transducer seals.
3. The face up handset configuration, with adhesive tape sealing the loudspeaker port

4. The face up handset configuration, with adhesive tape sealing both the loudspeaker and

microphone ports
5. The face up handset configuration, with adhesive tape sealing the microphone port

6. The face down handset configuration as defined in stability tests of [2.1]and [2.2] to give worst-

case acoustic conditions.

We shall see later in the Chapter that this set of handset orientations allows the handset echo path loss in
normal handset use to be more robustly estimated in normal handset use. Currently only the single test

condition specified in [2.1]and [2.2] is used.
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2.41. The Artificial Ear Sealed Handset Configuration.

Currently the echo loss performance for GSM mobile handsets is determined by using the test
configuration specified in [2.1]. This test configuration is used to represent the typical handset placement
for a speech only service, where the handset is placed firmly against the user's ear during a call, normally
in a slanted 45° position. The test configuration used is shown in Figure 2.10. The mobile handset

loudspeaker is sealed to an artificial ear, which approximates the acoustic impedance of the inner ear.

Cross-sectional view of mobile handset

Base Unit

\\\\\ hext(n) - -~

- o

Figure 2.10: The artificial ear sealed echo loss test configuration of [2.1].

This handset configuration is used to represent the firm placement of a mobile handset to a user's ear. The internal and mechanical
echo path echo path sources are likely to be the main sources of echo in this handset configuration due to heavy attenuation of

external path components.

During a speech call or different mobile application the actual handset orientation may not remain
firmly against the user's head and ear. No account of this can be made during the echo loss test of [2.1],
thus the single test condition is not a very robust method to ensure the echo loss performance for the

handset remains below the required levels in normal handset use.

In this handset configuration the external echo path will be heavily attenuated and the internal echo

path or mechanical echo path sources may dominate the echo response of the handset.
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2.4.2. Face Up No Seals Handset Configuration

In this handset configuration all echo path sources will be present. This configuration covers the
condition where a partial or full direct path exists between the handset loudspeaker and microphone ports.
This may occur during a speech call due to a loose placement of handset to the user's head and ear. In
different mobile applications such as a mobile video telephony, this condition is very likely since the

handset is likely to be placed in directly front of the user as illustrated in Figure 2.11.
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Figure 2.11: No obstruction or sealed handset configuration.

This handset configuration represents the condition where a direct air gap exists between the handset loudspeaker and microphone
for sound to travel. The external echo path contributions will be a significant contribution to the overall echo path response in this
handset configuration.

Identification of the external echo path contributions will be possible in this handset configuration
by comparing the echo path response with the artificial ear sealed handset configuration response of 2.4.1
where the external echo path contributions are expected to be low. The presence of case echo path
components can be also established by analysing the coherence of the measurement and the absence of

any components during the time taken for sound to propagate from handset loudspeaker to microphone.
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2.4.3. Face Up Handset Configuration with the Handset Loudspeaker Sealed with Tape

This configuration covers the condition where an imperfect seal or obstruction exists on the
handset loudspeaker, which can occur in normal use, in assembly, or as a result misalignment of front
casing with base unit during front casing replacement by user. To represent this condition of an imperfect

seal or obstruction adhesive tape is placed over the handset loudspeaker as illustrated in Figure 2.12.

Attenuated External
Acoustic Echo

Source
Loudspeaker
Seal or Obtruction

FLAT

SURFACE |/ e

T hext(n) ~~~~~~~ e
Adhesie b ’ \‘\‘
Tape Seal ¢ h (n)
i"\\/[\v P S 2 VAVE v
\ 7 Case ( )
h,n) ~
(S Base Unit

Figure 2.12: Loudspeaker sealed handset configuration.

This handset configuration represents the condition where an imperfect seal exists on the handset loudspeaker. The case and
external echo path contributions will be significantly reduced due to the presence of the tape seal. However the internal echo path
may become augmented due to pressure fluctuations from loudspeaker propagating in air cavity of handset.

Identification of the external and internal echo path contributions will be possible in this handset
configuration by comparing the echo path response with the artificial ear sealed handset and face up no

sealed configuration responses of 2.4.1 and 2.4.2.

The presence of a loudspeaker seal or obstruction will result in the external (and case) echo path
source being attenuated. It is possible that the internal echo path may become augmented if the presence
of a loudspeaker seal creates an enclosure where pressure fluctuations from loudspeaker propagate in air
cavity of handset resulting in resonant modes in the echo path response. Comparison with handset

configuration of 2.4.1 and 2.4.2 should show augmentation of internal echo path components.
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2.4.4. Face Up Handset Configuration with the Handset Microphone Sealed with Tape

This configuration covers the condition where a seal or obstruction exists on the handset
microphone, which can occur in normal use, in assembly, or as a result misalignment of front casing with
base unit during front casing replacement by user. To represent this condition adhesive tape is placed over

the handset microphone as illustrated in Figure 2.13.
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Figure 2.13: Microphone obstruction or sealed handset configuration.

This handset configuration represents the condition in which a microphone obstruction or seal exists on the handset during a call.
Adhesive tape seals on the handset microphone shall be used to represent this condition. The internal echo path is expected to form
a large part of the echo path response in this handset configuration, assuming negligible case echo path components.

This handset configuration represents the condition where only a microphone obstruction or seal
exists on the handset during a call. An adhesive tape seal on the handset microphone is used to represent
this condition.

The presence of a microphone seal or obstruction will result in the external echo path source
being attenuated. It is possible that the internal echo path may become augmented if the presence of a
microphone seal creates an enclosure resulting in resonant modes in the echo path response. Comparison

with handset configurations of 2.4.1 to 2.4.3 should show augmentation of internal echo path components.
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2.4.5. Face Up Handset Configuration with the Handset Microphone and Loudspeaker
Sealed with Tape

This configuration covers the condition where a seal or obstruction exists on both the handset
loudspeaker and microphone, which can occur in normal use, in assembly, or as a result misalignment of
front casing with base unit during front casing replacement by user. To represent this condition adhesive

tape is placed over both the handset microphone and loudspeaker as illustrated in Figure 2.14.
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Figure 2.14: Microphone and loudspeaker obstruction or sealed handset configuration.

This handset configuration represents the condition in which both a microphone and loudspeaker obstruction or seal exists on the
handset during a call. Adhesive tape seals on the handset microphone and loudspeaker shall be used to represent this condition. The
internal echo path is expected to form a large part of the echo path response in this handset configuration, assuming negligible case

echo path components.

The presence of a both a microphone and loudspeaker seal or obstruction will result in the
external echo path source being heavily attenuated. This allows the internal echo path components to be
identified. It is possible the presence of both a microphone and loudspeaker seal will create an internal
enclosure within the handset, resulting in resonant modes being set-up as sound re-radiated from the
loudspeaker propagates in the internal air cavity. The handset echo path response may become resonant in

nature when placed in this handset configuration.
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2.4.6. Face Down Handset Configuration

In this handset configuration the handset is placed face down on a rigid surface as illustrated in
Figure 2.15. This configuration represents the condition where the user may place the handset face down
during a normal conversation. This handset configuration also represents the stability tests of [2.1] and

[2.2]. It is expected that this handset condition will be representative of the worst-case acoustic condition

during a call [2.2].

] Base Unit

Rigid Surface

Figure 2.15: Face Down handset configuration.

This handset configuration represents the condition a partial or no air gap may exist between handset loudspeaker and microphone.
The external echo path may be augmented due to existence of a propagation path through the rigid surface from loudspeaker to
microphone.

The echo path response of this handset configuration will depend both on the handset shape or
design, and the properties of the rigid surface on which the handset is placed. For handset designs like the

one tested in this thesis a number of possibilities could exist for which echo path source dominates the

overall echo path response for this handset configuration.

One likely possibility is that the external echo path source will dominate, which consist mainly of
the propagation through the rigid surface used, and/or across any direct air gap that may exist depending
on the shape of the handset. Another possibility depending on the handset design and the rigid surface
used is that a microphone and loudspeaker seal or obstruction may result when placed on the rigid surface.
This could result in the external echo path source being heavily attenuated, allowing the internal echo path

components to be identified.

The presence of any non-linear contributions from propagation through the rigid surface or across
the handset casing in this handset configuration can be established by analyzing the coherence of the

measurement.
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2.5. Results of Anechoic Acoustic Echo Path Impulse Response
Measurements

This section of the report presents the echo path responses of the NEC G9 mobile handset in the
test configurations described in the last section. Five mobile handsets of the same type were used. No
significant differences in responses were noticed from these handsets. It is expected the results presented

in this section will be the same for other handset designs of similar construction.

The Terminal Coupling Loss (TCL) levels calculated for each echo path response measured in this
chapter are displayed in Table 1 below. The required Echo Return Loss enhancement levels for each echo

path response, to ensure that the requirements of [2.1] and [2.2] are satisfied, are also shown in Table 1.

Handset Configuration TCL(dB) Required ERLE
(dB)
(9 artificial ear loudspeaker sealed test configuration 46.18 0
(9 face up configuration with no transducer seals 32.95 13.05 (13)
G9 face up configuration with a loudspeaker seal 41.73 4.27(4)
(9 face up configuration with a microphone seal 40.2 5.8(6)
G9 face up configuration with a microphone and loudspeaker 37.38 8.62 (9)
seal
(9 face down on a flat rigid surface 30.31 15.69 (16)

Table 1: Terminal Coupling Loess(TCL) and required Echo Return Loss Enhancement(ERLE)
levels calculated for NEC G9 echo path responses.

To simplify the ERLE requirements for future Chapters the required ERLE levels from Table 1 are
rounded up to the nearest integer level (shown in brackets). From Table | it can be clearly see that
additional Echo Return Loss Enhancement (ERLE) up to 16dB will be required for normal handset use to

ensure that the 46dB Terminal Coupling loss requirement of [2.1] for the handset design tested.

The echo loss results in Table 1 for the mobile handset tested show that no additional ERLE is
needed for the artificial ear sealed test configuration of [2.1] and [2.2]. However for the other echo paths
tested additional ERLE is needed. Only when we consider the full range of echo path responses possible
in normal handset use for this handset, do we see the full range of ERLE levels needed for this
application. An echo canceller must be designed to meet the ERLE requirements of all echo paths tested in

Table 1, not just the artificial ear sealed test configuration of [2.1].

The results of Table 1 demonstrate that using the set of handset configurations described in the last

section to establish the echo loss performance of a mobile handset is a more robust method than the single
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test configuration of [2.1]. Indeed we can say that, when only the artificial ear sealed test configuration of
[2.1] is used to establish the echo loss performance of a mobile handset, in normal handset use the levels
of echo loss for the handset cannot be guaranteed to remain below the required levels of [2.1].

Let us now look at the actual echo path response results. Let us first look at the artificial ear sealed
response of [2.1] discussed in Section 2.4.1. Figure 2.16 shows the coherence function, frequency
response, and echo path impulse response measured for this handset test configuration. A high level of
coherence across all frequencies can be observed. Areas of low coherence can be attributed to the echo
path response being low, where the resulting output SNR for the measurement may be low. The frequency
response in Figure 2.16(a) shows the echo path loss across the frequency range of 0 to 6400Hz and as a
result shows negative y-axis values, unlike the Terminal Coupling Loss value which is defined to be
positive in [2.1]. This is the same form used for all results presented in this chapter. For narrowband
codecs the main region of concern is the audio range of 0 to 4kHz. Above 3.6kHz, the frequency response
will be heavily filtered by the narrowband codec ADC filter response. As most of the energy of the
frequency response resides above 3 kHz, the resulting Terminal Coupling Loss measured in the region 300
to 3400Hz for this echo path response is large (indicating high echo path loss). Looking more closely at
the frequency response in Figure 2.16, low level peaks can be observed around 400, 1400 and 1900Hz in
this handset configuration.

From the echo path impulse response in Figure 2.16(c) there exists a delay period with little
impulse response activity of approximately 0.4ms, which corresponds to the time taken for sound to travel
the loudspeaker to microphone distance in air. A high level of coherence can also be observed across most
frequencies in Figure 2.16(a) (except those due to low signal to noise levels due to the lower level echo
path response). Since any mechanical vibrations travelling along the handset case would most likely

arrive during this observed delay period, and would be non-linear in nature, it can be concluded that no
case (4, (1)) echo path source terms exist in this handset configuration. This is also the case for the

other handset orientations tested in this chapter. Only the internal and external acoustic path sources are
significant for the handset design tested.
At this point an important conclusion can be drawn, given that no non-linear mechanical

component /1, (1) exists in the handset responses measured, and that the coherence measures are close

to unity for all measurements. Based on the handset design tested it can be concluded that the handset
echo path impulse response to be modelled by an echo canceller is linear in nature. A linear acoustic echo
canceller is required for the mobile handset acoustic echo cancellation application.

Consider next the face up no seals handset response of Section 2.4.2. Figure 2.17 shows the echo
path measurements for this handset test configuration. A high level of coherence across all frequencies can
be observed in Figure 2.17(a). The echo path frequency response of Figure 2.17(b) has a general high pass
characteristic with most energy in the response above 2200Hz, with a low-level peak can be observed

around 1600Hz.
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Figure 2.16: Echo path results for the artificial ear sealed handset configuration, showing a) the
coherence function, (b) frequency response characteristic, and (c) the echo path impulse response.
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The impulse response of Figure 2.17(c) contains significant energy from 0 to 0.8ms (responsible
for the general high pass characteristic) and decays relatively quickly after this. A delay period of around
0.4ms exists before any response activity as in the artificial ear sealed response.

In Figure 2.18 the echo path frequency responses, phase responses, and impulse responses of the
artificial ear sealed and face up no seals handset configurations are superimposed on the same axes for
comparison purposes. Both phase responses in Figure 2.18(b) are clearly not linear, and the artificial ear
sealed handset configuration introduces more phase delay. The largest phase transition is around the
frequency response peak at 1900Hz. From the frequency responses of both handset configurations in
Figure 2.18(a) it is clear to see the higher acoustic coupling and lower terminal coupling loss level of the

face up no seals handset configuration.

The impulse responses of the artificial ear sealed and face up handset echo path responses are
superimposed in Figure 2.18(c). The main contribution of external echo path source component ( hw (n))

to the calculated terminal coupling loss level can be easily identified. This is the region of significant
impulse response activity in the face up no seals echo path response up to 0.8ms in duration and is
responsible for the general high pass nature of the frequency response. As expected this component is
heavily attenuated when the handset is placed in the artificial ear sealed handset configuration resulting in
a much lower terminal coupling loss level. Without the main external echo path source contribution (and

with case and structural components neglected) the low terminal coupling loss of the artificial ear sealed

configuration can be attributed to the internal echo path component (him (1) ). At this point it is unclear

as to nature of the internal echo path /1, (71) depending on the type of transducer seal or obstruction. The

total effective duration of these echo path responses are approximately 3ms for the face up no seals
handset response and 5.4ms for the artificial ear sealed handset configuration. As we will see in the next
Chapter the effective impulse response duration required to be modelled for satisfactory ERLE, will
depend on both the effective impulse response duration and the terminal coupling loss level calculated.
Consider next the measurement results for the loudspeaker adhesive tape sealed handset
configuration of Section 2.4.3. These results are presented in Figure 2.19. It is clear from these results
when an adhesive seal is placed on the handset loudspeaker a resonant echo path response is produced.
From Figure 2.19(b) several distinct resonant peaks exist in the terminal coupling loss measurement band,
at around 1900 and 4100Hz in this handset configuration. For the terminal coupling loss level calculated
for this echo path response the higher energy peak around 4100Hz will not be taken into account resulting
in a lower level. In practice, as we shall see in later Chapters, when handset ADC codec filters are applied

all frequency response information above 3.6kHz will be heavily filtered out.

The resulting echo path response in Figure 2.19(c) consists of a small delay period of
approximately 0.4ms followed by exponentially decaying resonant response. This response directly
reflects the two main resonant peaks in the echo path frequency response in Figure 2.19(b). In particular

the 4100Hz peak, which is 10dB stronger, would have major impact on the echo path to be modelled if
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Echo path results for the face up no seals handset configuration, showing a) the coherence

function, (b) frequency response characteristic, and (c) the echo path impulse response.
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Figure 2.18: Echo path results for the artificial ear sealed and face up no seals handset
configurations superimposed, showing (a) the frequency response characteristics, (b) the phase responses, and (c) the echo
path impulse responses.
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Figure 2.19: Echo path results for the loudspeaker adhesive tape sealed handset configuration,
showing a) the coherence function, (b) frequency response characteristic, and (c) the echo path impulse response.
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the echo path was sampled above 8.2 kHz as in wideband codec systems. As can be observed in Figure
2.19(c), the decaying oscillations have a strong 4100Hz component. The total effective duration of this
echo path response is as a result slightly longer, at approximately 6.3ms.

In order to explain which echo sources are most active in this handset configuration, the echo path
results for the loudspeaker adhesive tape sealed handset configuration in Figure 2.20, along with the
artificial ear sealed and face up no seals handset responses for comparison purposes. From Figure 2.20(a)
it can be seen that when a loudspeaker adhesive tape seal is applied as opposed to an artificial ear seal on
the handset loudspeaker, the resonant peak around 1900Hz becomes augmented. To a lesser extent the
peak around 400Hz also becomes augmented. This results in a lower terminal coupling loss for the
loudspeaker adhesive tape sealed handset configuration of approximately 42dB. Apart from the main
resonant peaks in the loudspeaker adhesive tape sealed echo path frequency response, the frequency
response of the face up no seals handset response can be clearly observed to be much higher overall across
the measurement band 300 to 3400Hz. This results in a higher terminal coupling loss for the face up no
seals handset configuration of approximately 33dB. From Figure 2.20(b) a similar phase response for both
the loudspeaker adhesive tape sealed response and the face up no seal response is obtained.

When an adhesive tape seal (or artificial ear seal) is applied to a handset, from Figure 2.20(b) it can

be seen the main external echo path component ( /1, , (7)) identified earlier is heavily attenuated. With the

absence of case and structural echo path components, the main resonant peaks at around 1900Hz and

4100Hz in the frequency response, when adhesive tape seal is applied, can be concluded to be due to the

internal echo path component (hint (n)). When the seal is applied pressure fluctuations in the internal air

cavity of the handset increase give rise these dominate resonant peaks in the frequency response discussed
earlier. An internal echo path component term giving rise to peaks around 400Hz and 1900Hz is clearly
visible in both the loudspeaker artificial ear seal and adhesive tape sealed responses. The strength of these

peaks and the impact on the overall echo path response and terminal coupling loss clearly depends on the

type of seal applied. The impact of the internal echo path component (A, (7)) clearly depends on the

type of loudspeaker seal used.

When both a loudspeaker and microphone adhesive tape seal are applied to the handset, resonant
peaks in the frequency response at 500, 2000, 3500 and 4200 Hz are produced as shown in Figure 2.21(a).
Like the loudspeaker sealed handset configuration, the terminal coupling loss level of approximately 40dB
calculated using (2.21) does not take into account the higher energy peak around 4200Hz (which will be
filtered out by the narrowband ADC codec). In the resulting echo path impulse response of Figure 2.21(c),
the 4200Hz peak, which is 15dB above the other peaks, has a strong effect on the form of the impulse
response. For wideband codec mobiles this would have a strong impact on the echo path to be modelied.
The total effective duration of this echo path response is as a result slightly longer, at approximately Sms.
Due to the absence of external echo path components, and similar resonant peaks in the frequency
response as in the artificial ear sealed and loudspeaker tape sealed responses, the internal echo path

component term can be concluded to dominate this echo path response.

34



(a) Echo Path Frequency Response |H(ejW )]2

I I T
: : —— Face Up No Seals
! —— Attificial Ear Seal
—— L/S Adhesive Tape Seal

90 1 { i i I i E |
0 800 1600 2400 3200 4000 4800 5600 6400
Frequency(Hz)
(b) Echo Path Phase Response arctan(lH((-:»iW )))
f===g—ry :

T I I
—— Face Up No Seals
' —— Artificial Ear Seal
—— LS Adhesive Tape Seal | |

rads

60 i 1 i i 1 i i
0 800 1600 2400 3200 4000 4800 5600 6400
Frequency(Hz)
(c) Impulse Response h(n)
20 . T ————— T

: f —— Face Up No Seals
: i | — Artificial Ear Seal
------- i----| == L/S Adhesive Tape Seal

ETo) SN S S e el ‘

-
\ ‘
'
'

Amplitude (mV/V)

S| EE—
o]

w

ES

(&)

o, ERES SRR SIS SR
~

[o o TR A

©--

8

Time(ms)

Figure 2.20: Echo path results for the artificial ear sealed, face up no seals and loudspeaker

adhesive tape sealed handset configurations superimposed, showing (a) the frequency response characteristics,
(b) the phase responses, and (c) the echo path impulse responses.
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Figure 2.21 : Echo path results for the loudspeaker and microphone adhesive tape sealed handset
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response.
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When a microphone adhesive tape seal is applied to the handset, similar resonant peaks in the
frequency response at 500, 1800, and between 4400 to 5200 Hz are produced as shown in Figure 2.22(a).
The higher frequency response peaks have a large impact on the echo path response to be modelled as
shown in Figure 2.22(c). The total effective duration of this echo path response is as a result slightly
longer, at approximately 6.3ms. Again the internal echo path component term can be concluded to
dominate this echo path response, resulting in a lower Terminal Coupling Loss of approximately 37dB.

In Figure 2.23 the frequency, phase and impulse responses of all the handset responses that have
either a microphone or loudspeaker seal, or both, are superimposed on the same axes. From the frequency
responses of Figure 2.23(a) the similar trend in the echo path response behaviour discussed earlier can be
seen more clearly. The peaks around the frequencies of 500, 1800 and 4200Hz become augmented when
either the handset loudspeaker or microphone (or both) contain an adhesive tape seal. With no casing or

structural echo path components, and negligible external echo path components, this echo path behaviour
can be concluded to be due to the internal echo path component (4, (71) ). Depending on which seal is

used, pressure fluctuations in the internal air cavity of the handset increase give rise these dominate
resonant peaks in the frequency response. The adhesive tape sealed handset configurations of Section
2.4.3 to 2.4.5 are used to represent obstructions or imperfect seals that may occur in normal handset use.
From the measurements in Figure 2.23 it can be seen that the internal echo path component is very
significant when modelling the echo path of a mobile handset in normal use. The resonant impulse
responses and low terminal coupling loss that arise from these handset configurations motivate the study
of adaptive 1IR algorithms for this application.

Finally consider the face down handset echo path response of Section 2.4.6. Figure 2.24 shows the
coherence function, frequency response and echo path impulse responses measured for this handset
configuration. It can be clearly seen the echo path response when placed down on a flat rigid surface is
resonant in nature. The total effective duration of this echo path response is the longest, at approximately
7.3ms. From the frequency response of Figure 2.24(b) peaks around the frequencies of 700, 1200, 2000,
2600, 3000, 3900 and 4500Hz can be observed. As a result a lower Terminal Coupling Loss of 30dB was
calculated for this handset configuration. Like other handset responses this value only takes account of the
narrowband codec ADC bandwidth range, and does not account for the strong high frequency information
above 3400HZ in this echo path response. For wideband codec mobiles the echo path frequency
information above 3400Hz would also have to be modelled. Due to the high effective impulse response
duration and lowest Terminal Coupling loss, this is clearly the worst case acoustic condition required to be
modelled in normal handset use. The strong frequency response peaks around 500Hz, 2000Hz and
4000Hz like the adhesive tape sealed responses indicates a strong internal echo path component. The
absence of any strong external echo path components as in the face up no seals responses suggests no
direct air gap exists for sound to propagate in this handset configuration. High coherence levels across all
frequencies also suggest that no strong non-linear terms have been introduced in this handset
configuration. Additional resonances at 1200, 2600 and 3000Hz, and echo delay terms after 7.5ms in the

impulse response may be attributed to additional external echo path components.
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Figure 2.23: Echo path results for the artificial ear sealed, loudspeaker tape sealed, loudspeaker

and microphone tape sealed microphone tape sealed handset configurations superimposed, showing
(a) the frequency response characteristics, (b) the phase responses, and (c) the echo path impulse responses.
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Figure 2.24: Echo path results for the face down on a rigid surface handset configuration [2.1],
showing a) the coherence function, (b) frequency response characteristic, and (c) the echo path impulse response.
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These additional components are likely to be due to the propagation of sound through the rigid

surface used, and across any indirect air gap between the handset and rigid surface (echo reflections).

2.5.1. Summary of Anechoic Acoustic Echo Path Impulse Response Measurements

In summary the acoustic echo path response of a mobile handset in normal handset use may be

characterised as shown in Table 2 below.

Effective
Handset Orientation Dominant Echo Echo Path Impulse ERLE
Echo Path
in Normal Use Path Sources Response Characteristics needed
Duration
No loudspeaker or
microphone seals or
) Large period of impulse
obstructions.
External echo response  activity  after
Direct air gap between " . Up to
pat initial  delay  period, | Up to3ms
handset loudspeaker 16dB
h,,(n) followed by exponentially
and microphone.
decaying tail
Loose placement of
handset to user's ear
Firm placement of
handset to user's ear | Internal echo path | Small amplitude decaying Up to
h (n) oscillatory impulse Up to 6dB
int
response after initial delay 5.2ms
Loudspeaker seal or
. period
obstruction
Microphone o .
ecayin oscillato:
obstruction and/or Internal echo path : 2 B Up to Up to
impulse response after
Loudspeaker seal or h,, (n) i A 6.3ms 12dB
: initial delay period
obstruction

Table 2: General characteristics of the acoustic echo path of a mobile handset

It is expected the handset echo path behaviour summarised in Table 2 below may be applicable to all
mobile handsets of similar construction. In the next section it will be shown that the fixed set of handset

orientations discussed in this section are needed to represent the full echo path variation in normal handset

use.
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2.6. Results of Actual Acoustic Echo Path Impulse Response Measurements
in a Reverberant Environment

So far we have looked at the nature of how the acoustic echo path response of a mobile handset
changes in normal use depending on the handset orientation. To do this we have used a fixed set of
handset configurations to represent the full variation in handset echo path response possible in normal
handset use. What has not yet been established is that the fixed handset configurations used in this section
are actually representative of the maximum variation in echo path possible in actual normal use. In a
simple attempt to establish this, the anechoic echo path responses from the fixed sets of handset
configurations (discussed in the last section) will be compared with actual handset echo path responses as

follows.

Actual echo path responses were recorded in an office against the head and ear of 3 different user's
with the same type of mobile handset in an attempt to capture the actual variation in the echo path
response between different users in normal use during a call. To reduce the number of measurements to be
performed only the handset orientations against each user's ear are used. Each handset position represents
the typical comfortable position used/preferred by each user during a call at different locations in a quiet
office environment. The echo path response results for each user are shown in Figure 2.25 for one
location. From the acoustic echo path impulse results presented, the Terminal Coupling Loss levels

calculated are shown in Table 3 below.

Handset Configuration TCL(dB) 2| Required ERLE
2o

> Vo] “

Echo Path Response Measurements User 1 32.83 -22.2dB 13.17 (13)
Echo Path Response Measurements User 2 37.28 -19.8dB 8.72 (9)
Echo Path Response Measurements User 3 37.76 -18.8dB 8.24 (8)

Table 3: Terminal Coupling Loss(TCL) and required Echo Return Loss Enhancement(ERLE)
levels calculated for NEC G9 echo path responses in an office environment.

From Table 3 it can be seen the echo path response varies between different users in normal use
when placed in a typical handset position for a regular speech call. For all users additional ERLE is
required to maintain the 46dB requirement of [2.1]. These results also neglect the possible variation in a
handset echo path response from specific applications such as hands free video telephony. As for the
adhesive tape sealed anechoic handset echo path responses of the last section a notable resonant peak
around 1800Hz exists in all measurements. For these measurements the internal echo path component
appears to dominate the overall echo path response and terminal coupling loss. The impulse responses
obtained all show similar trends, a small delay period of 0.4ms, following by exponentially decaying

oscillatory impulse response.
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The impact of the head and body of the mobile handset user, and the non-anechoic environment in
which a mobile handset is used can be seen in the echo path impulse responses of Figure 2.26. Here the
time scale has been extended from those results of Figure 2.25. The main source of echo reflections occurs
in the echo path responses after a time of 10ms. This would correspond to reflections due to the
environment in which the handset is used such as walls, ceilings and furniture greater than 3-4m away.
These reflections are very small in comparison to the anechoic region of the responses up to 10ms. In

Table 3 the ratio of echo path impulse response energy from 10 to 50ms (echo reflections) to anechoic

ZIhIO—SOIZ

echo path impulse response energy from 0 to 10 ms (—i’———lz—) is computed in decibels. It is clear that
Doy

the level of echo reflections after 10ms is small in comparison to the anechoic region up to 10ms. The
acoustic echo cancellation device employed within the handset device is normally designed to cancel out
only the anechoic echo path response of the handset, which is only the period up to approximately 7ms in
duration due to the handset itself. The echo reflections after 10ms due to the environment can hence
effectively be ignored, as they will have no impact on the design of the acoustic echo canceller.

Echo reflections due to the head and body of the mobile handset user would occur before a
period of 7ms as the user's body would normally be within 1m of the mobile even for hands free
applications. However, from Figure 2.26 it can be seen for the speech application that the echo reflections
within the anechoic response region up to 7ms are small or negligible, and will have little impact on the
design of an acoustic echo canceller. Even for hands free video telephony applications echo reflections
will be also be small within the anechoic response region due to the relatively low power handset
loudspeaker output and the higher attenuation of echo paths due to the larger potential travelling distance
of the echo reflections. Echo reflections can hence also be ignored for this application.

The set of anechoic handset responses discussed in the last section and the non-anechoic echo
path responses of this section are plotted on the same axes in. From Figure 2.27 it can be clearly seen how
the fixed set of handset configurations proposed in section 2.4 can more adequately deal with the variation
in echo path response in normal use during a speech call for the three user positions measured. This is in
sharp contrast to the incapability of the single test configuration of [2.1] to accurately reflect the actual

variation of a handset response in normal use.
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Figure 2.25

In (a) to (c) above show the echo path response measurements of 3 different users in a reverberant environment. Each handset is

placed against the head and ear of the user. A non-anechoic environment is used to record these responses.
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Figure 2.27: Comparison of anechoic echo path results and actual echo path measurements.
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2.7. Overall Summary of Handset Acoustic Echo Path Results

The following points can be summarised from the results presented in this Chapter,

1. It has been clearly demonstrated that acoustic echo cancellation is needed for both handset designs
tested to ensure the 46dB requirement of [2.1] is satisfied in normal handset use. It is expected this
important result would also be true for other handset designs of similar construction.

2. It is clear that in normal handset use the single test condition of [2.1] is not sufficient to ensure the
echo loss requirements of {2.1] are satisfied in normal handset use. The fixed set of anechoic handset
configurations proposed in the section 2.4 to establish the echo loss performance of a mobile handset
in normal use have been demonstrated to be a more robust method than the single test configuration
of [2.1]. This is especially true for future mobile applications as the role of the mobile moves away
from the more traditional speech services to offer new data services such as hands free video
telephony [2.2]

3. The echo path response of the mobile handset design tested has been shown to be linear in nature and
the echo path sources responsible for the acoustic echo path have been identified. It is expected this
important result would also be true for other handset designs of similar construction.

4. The effect of echo reflections from the environment, and the user’s head and body, has beer: analysed
using echo path measurements in a reverberant environment. Echo reflections have been concluded to

have negligible impact on the echo path modelled by an acoustic echo canceller.

In Chapter 4 we follow on from the results of this Chapter and will look at how to affectively

of the mobile handset codec device filtering and sampling rate on the echo path response to be modelled

will also be taken into consideration.
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Chapter 3

3. Adaptive Filter Theory

In this chapter we will review some of the theory and techniques commonly used for adaptive FIR
and IIR filtering. We shall firstly look at adaptive FIR filtering theory. Extensions are then made to
adaptive IIR filtering theory and algorithms. No attempt is made in this chapter to discuss the advantages
and disadvantages of each, since there are a large number of algorithms. Also their performance will
depend on the conditions under which they are used. The conditions of interest here are those described n

chapter 5, where simulations of their performance can be found.

3.1. Adaptive FIR Filtering

Figure 3.1 shows a typical system identification configuration for a FIR adaptive filter modelling

an echo path impulse response.

Acoustic Echo Path v(n)

y(n) |

» H(z)

/ din)

, y(n) ;
x(n) B(z) {3 ——# e(n)
Adaptive
Algorithm
Adaptive FIR model

Figure 3.1 : System Identification of echo path using an FIR adaptive filter.

The FIR adaptive filter will attempt to adjust the FIR filter coefficient values to minimise the error

signal e(n). In system identification theory the criterion normally used to select the FIR model

coefficient values would be minimisation of the mean square error.

In this section we will present the optimal FIR filter design that minimises the mean square error
(MSE) for the system identification configuration of Figure 3.1. We will see how this optimal FIR filter
design is specified in terms of the solution to the well-known normal equations in [3.1]and [3.2], often
termed the "Wiener filter" solution. Iterative solutions to the normal equations are then presented which
are used to adapt the coefficients of the FIR filter to track changes in the optimal solution as new data

arrives. From these iterative solutions we will derive the most commonly used gradient based adaptive

FIR filtering algorithms.
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3.1.1. The Optimal FIR Filter

Consider the output of the echo path, d(n), which contains both the echo signal to be cancelled
y(n)and a disturbance source V(1) as follows,

d(n) = y(n)+v(n), (3.1.1)
where the disturbance source V(72) may be interpretated to include not only an additive disturbance

source picked up by the handset microphone at the output of the echo path, but also undermodelling noise
caused by the FIR filter model being of lower order than that of the echo path to be modelled {3.3].
Rewriting (3.1.2) we get
L]
d(n)= y(n)+v(n) =h"x, (n)+v(n) = D h(D)x(n —i)+v(n), (3.1.2)
i=0
where h is a vector of L echo path response samples given by,
h =[/(0),h(1),.....A(L-D]", (3.1.3)
and where X (#) s a vector of L past input samples given by,
X, (n)=[x(n),x(n=1),....x(n—L+1)]", (3.1.4)

and T denotes matrix transposition.

To cancel this echo signal d(7), a replica of the echo signal, P(7), must be created by the FIR
filter which models the echo path transfer function, and subtracted from (7). For a fixed time invariant

FIR filter of order M the output of the FIR model filter (1) at time index n becomes,

M-
$(m)y=b"x(n) =D bx(n-i), (3.1.5)
i=0
where X(7) is a vector of M past input samples defined similarly to (3.1.4) and b is a vector of FIR filter

model coefficients given by,
b(n) =[bys by byy 11 (3.1.6)

Consider the error signal e(#),
M1
e(n)=d(n)—- 5(n)=d(n)— Y bx(n—i), (3.1.7)
i=0
Using (3.1.2), the error signal of (3.1.7) can be re-written as,
M- L1
e(n) = Y (h(D)=b)x(n—i)+ Y h(j)x(n— j)+v(n), (3.1.8)
=0 j=M

For appropriate selection of FIR model coefficient values, the greater the number of coefficients M

in the FIR model to match the activity of the impulse response samples /(7) , the smaller the error or

mismatch signal e(7)would be. For a minimum error signal, the coefficients of the FIR model simply

become the impulse response samples. In practise however the model order M will be smaller than L. In
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system identification theory the cost function normally used to select the FIR model coefficient values

would be minimisation of the mean square error [3.4].

Consider the design of a FIR model of order M to minimise the mean square error. The cost
function F' to be minimised is denoted as,
2
F=Ele (n)], (3.1.9)
where £ denotes an average over ensembles of the random error sequence e(n) at time 7. Rewriting

(3.1.9) using (3.1.8) we get,

2

F=E Mi(h(i) —b)x(n—1i) +L§h(j)x(n — v | |, (3.1.10)

=M
Since the filter coefficients of hare assumed to be time invariant, and assuming the disturbance signal

v(n)is an additive white noise signal independent of the input process x(#), we then may write,
, M1 M-1 M-I , ]
F=E[y*(n)]- 2E[y(n)§b,x(n - z)} + E[Z; b.x(n— z);b, (n)x(n— z)} + E[v (n) G

Equation (3.1.11) is termed the mean square error surface. Re-writing (3.1.11) in more compact form we

get,
F=Ey*(m)]-2b"r, +b'R _b+E[V(n)], (3.1.12)

where R is an M x M autocorrelation matrix of the input signal x(72) defined as,

R, = E[x(n)x" (n)], (3.1.13)
and where I'; is a cross correlation vector between input signal x(n) and the output of the echo path

model y(7) as defined as,

r, = E[y(m)x(n)], (3.1.14)
We can see from (3.1.12), the mean square error surface is a quadratic function of the FIR filter

coefficients b,. Since the cost function F is a quadratic function of the coefficients there will exist a
single global minimum solution with no local minima (provided R is non-singular and x(n) is
persistently exciting) corresponding to the optimum weight vector bvpt , at which the gradient of " will be

zero. Therefore to find b”p, which minimises this cost function F, the gradient F can be calculated with

respect to the filter coefficients, and equated to zero. The gradient is calculated by differentiating F with
respect to the filter coefficients b;. Differentiating F in (3.1.12) with respect to each coefficient b, of the
FIR model, and equating to zero yields [3.1],

oF

=-r +R _b=0, 3.1.15
ab X XX ( )

giving,

R b=r_, (3.1.16)



Equation (3.1.16) represents a set of equations known as the mormal equations or discrete time
Wiener-Hopf equations [3.1]. The term normal equations comes from the orthogonality of the input
signal and the output error which results when the derivative of F' in (3.1.12) with respect to the filter

coefficients is equated to zero as follows,

OF _QELE0D] o de()

b, b, ob,

i i

1=0 ,i=0..M, (3.1.17)

Using (3.1.7) we get,
OF _ OE[e’(m)]

ob.  ob,
Equation (3.1.18) is the orthogonality principle [3.2], and requires the input to the FIR filter and

= 2E[e(n)x(n—1)]=0 ,i=0.M, (3.1.18)

estimation error to be orthogonal over the length of the filter.
The solution to (3.1.16) represents the optimal least squares filter coefficients. The optimal least

squares filter coefficients selected to minimise the mean square error (MSE are found by solving (3.1.18)

for b as follows,

-1

b”p, =R, r. (3.1.19)
Equation (3.1.19) is the solution to the problem of designing a linear time invariant FIR filter to
minimise the mean square error (MSE) for wide-sense stationary input signals. From Equation (3.1.19)

we can see the selection of FIR model coefficients bvpr to minimise the mean square error (MSE)

involves a direct matrix inversion. From (3.1.12) and (3.1.19) we can see the disturbance signal v(77) only
adds a constant offset term to the mean square error surface, and will no effect the selection of optimum

filter coefficients to minimise F .

At this point it is worth noting that a special case of (3.1.19) exists where X(#) is unit variance

white noise. This results in R =1, and b, from (3.1.14) and (3.1.19) simply becomes the first M

opt

coefficients of the impulse response h to be modelled.

3.1.2. Adaptive FIR Filtering

We have seen so far how the optimal FIR filter coefficients may be designed to minimise the mean
square error for stationary input signals using a direct solution of the normal equations in (3.1.17).
However in most applications the input signals that arise will be statistically non-stationary. Although the
normal equations of (3.1.16) can be formulated for non-stationary inputs, the calculation of non-stationary
correlation coefficients presents difficulties when replacing ensemble averages with time averages [3.2].
For non-stationary input signals such as speech in many Acoustic Echo Cancellation applications a "local
stationarity” may be assumed over which the speech signals properties change slowly with time. In this
way the input signals may be segmented into smaller intervals or windows, where the optimum FIR
coefficients are updated using the direct solution of (3.1.19) in each time interval segment or window.

However since this involves calculation and construction of an autocorrelation matrix, and a matrix
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inversion in each time window for the direct solution of (3.1.19), computational complexity would be very
high, and hence would be unsuitable for real time Acoustic Echo Cancellation applications. A more
complete solution to the problem of minimising the mean square error for time varying input signals
would be to provide a continuously adaptive filter which tracks changes in the optimal solution, as each

new data sample becomes available. This leads us to look at iterative solutions to the normal equations of

(3.1.16).

3.1.2.1. lterative Solutions to the Normal Equations

To recap, our objective is to choose the filter coefficients b~ at each iteration n, to minimise the

mean squared error cost function cost function of (3.1.9),

F=E[e*(n)], (3.1.9)
We have already seen that the cost function F is a quadratic function of the coefficients b, and
can be thought of as an M dimensional parabolic surface. The purpose of an iterative solution is from an

initial filter weight vector estimate b, to search the function F by successively updating this filter

weight vector estimate to force the filter to the optimal solution at the minimum point /. on the M

dimensional parabolic surface.

A general iterative formula that can be used to find the solution to the normal equations of (3.1.16)

to minimise the mean square error cost function of (3.1.9) is given by [3.21,[3 4],

b,,=b,-1p, (3.1.20)
where b, denotes the n™ update of the FIR filter coefficient vector bat iteration n, L, is a step size

parameter to control the size of change in b 4 from bn ,and P, is a vector which controls the search

n

direction on the mean squared error surface of (3.1.12).

Since the mean square error surface of (3.1.12) has a unique global minimum solution a widely
used general class of algorithms are those that iterate on the gradient of the mean squared error [3.2].
Adaptive algorithms derived from gradient search methods have found widespread use in the area of
Acoustic Echo Cancellation [3.5]. Throughout the thesis we will concentrate on adaptive algorithms

derived from gradient search iterative solutions to the normal equations. These gradient search methods

are characterised by search directions P, of the form,

p,=D,VF,, (3.1.21)
where D is an (M x M) weighting matrix, and VF, is the gradient of the mean squared error cost
function F with respect to the filter coefficient vector b at each iteration(or time index) n. VF, can

be represented as,

VE - oF, ( oF,  OF, oF,
" 9b 0b(0), “ob(1), ~ob(M 1),

n

(3.1.22)

s
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A large number of adaptive algorithms can be derived from different choices of D, and O . Let

us now consider the most common gradient search methods. The first gradient search method to be
considered is the well-known method of Steepest Descent, from which we will derive the LMS (Least
Mean Squares) adaptive filtering algorithm [3.1],[3.2]. The LMS adaptive FIR filter and its variants are
most widely used adaptive FIR filtering algorithms in Acoustic Echo Cancellation due to their simplicity
and low complexity{3.5],[3.6]. The second iterative method that we will consider is the Newton method

from which we will derive LMS-Newton adaptive filtering algorithms [3.2],[3.7],[3.81,[3.9].

F = E[e*(n)] Surface

3D

paraboloid VE

Steepest
Descent

AW/ Iterations

E[e” (n)] min point

Figure 3.2 : Illustration of Steepest Descent Method

The mean squared error surface canbe viewed as (M+1) — dimensional paraboloid, where M is the number of FIR filter coefficients.

The optimum set of coefficients corresponds to the bottom of the bowl. Note the gradient VF points in opposite direction to the

bottom, thus the steepest descent method goes in a direction opposite to the gradient of the mean square error surface.

3.1.2.2. The method of Steepest Descent and the LMS adaptive algorithm

The steepest descent method produces an iterative estimate of optimal FIR coefficients, where
every iteration n the filter coefficient vector b, is changed by a small amount in a direction opposite to the

gradient of the cost function F, and by a distance proportional to the magnitude of the gradient. This is

illustrated in Figure 3.2. Mathematically the weight vector is altered as follows,

b, =b, -—L2L—VFH, (3.1.23)

In comparison to the general equations of (3.1.20) and (3.1.21) for the steepest descent method of

(3.1.23) we have D, =1, p, =VF and U, = %, where I is the identity matrix and [L is a constant
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of proportion. The 2 is introduced into (3.1.23) for convenience. The term steepest descent arises from
the fact that in the neighbourhood of bn the gradient is normal to lines of equal cost, thus the gradient
direction 1s the line of steepest ascent (in cost terms). The gradient of the mean square error surface

VF; using (3.1.17) and re-writing using vector notation we get,

VF =2E[e(n)Ve(n)]=-2E[e(n)x(n)], (3.1.24)
Using (3.1.24) and (3.1.12) in (3.1.23) we get [3.2],
b,.. =b, +nEle(mx(m]=b, +u(r, ~R.b,), (3.1.25)
Provided that the stepsize [l is not too large equation (3.1.25) will eventually converge to the

optimal solution. However in the region of the local minimum where the gradient will be low the method
may converge slowly. For zero-mean and jointly stationary input signals convergence will occur provided

that,

O<pu< (3.1.26)

}\’max
where Xmax is the maximum eigenvalue of R [3.2]. The issue of convergence rate will be studied in

more detail later in the thesis for both adaptive FIR and HR filters derived from this steepest descent

method of (3.1.25).

Equation (3.1.25) gives an iterative solution for the stationary (fixed) normal equations. However
to design an filter based on the steepest descent method which is responsive to changes on the input signal
environment some dependence on the input data is needed in the iteration of (3.1.25). Re-writing (3.1.25)

to replace the fixed auto and cross-correlation matrices by time estimates we get,

b, =b, +ulf, () -R, (b, ) (3.1.27)
where time estimates lixx (n) and T, (n)are computed using a finite time window on sequences
x(n)and d(n)[3.2]. Equation (3.1.27) despite having time dependency will still be very
computationally expensive and unsatisfactory for real time implementation as estimates lin, (n) and
I, (1) must be calculated every data sample. To overcome this we can replace the gradient VF by an

estimate. One such estimate of VF, is to replace E[e(n)x(n)] in (3.1.24), which is generally unknown,

with an estimate such as the sample mean as follows,

_ 1 L-]
Ele(m)x(n)]= —L—Ze(n -Dx(n-1), (3.1.28)
I=0
Incorporating this estimate into (3.1.25) gives,
n &
b, =b, +;Ze(n—p)x(n—p}, (3.1.29)
p=0

A special case of (3.1.29) occurs if we consider the one-point sample mean (P=1), which involves

replacing the gradient estimate VFn in (3.1.24) by an instantaneous value,
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o
Vﬁ’” =a—gén—)=—2x(n)e(n), (3.1.30)

1

giving the filter update equation,

bn+]
Equation (3.1.31) is known as the LMS algorithm [3.1],[3.2],[3.3]. From (3.1.31) we can see that

=b, +ux(n)e(n), (3.1.31)

the LMS algorithm is very computationally simple requiring only M multiplications and M additions per
time update. Intuitively the LMS algorithm updates the filter weight vector bn at each time step n, to keep
the filter as close as possible to the instantaneous solution of the normal equations. The weight vector is
altered only by a small amount |L in order to ensure that the new weight vector is influenced by all
previous error values and not just e(#). This ensures the weight vector will converge to the optimal

weight vector solution without excessive random wandering.

Consider the convergence of the LMS algorithm in the mean. Let us re-write the LMS solution of

(3.1.31) using (3.1.5) and (3.1.7) giving,

b,,=b, + MX(H)[d(n) ~b’x(n). (3.1.32)
Taking expectations of both sides this gives,
Eb,. |= E[bn + HX(ﬂ)[d(n) ~ be(n)”. (3.1.33)
Using (3.1.13), (3.1.14) and (3.1.16) this becomes,
Eb,,]=Eb,]-uR b, —b,,,,,J- (3.1.34)

An error vector En which represents the expectation of the difference between each element of the filter

coefficient vector b, and the optimal solution b, of (3.1.19), can now be defined as [3.1],

opt

g :Elbnﬂ _boprJ: (I_HR.\:\- )E[bn —boprJZ (I _“R.r,r )En . (3'1'35)

n+l

A unitary similarity transform can be used to factorise the correlation matrix R as follows [3.1],[3.2],

R_=QAQ", (3.1.36)
where QQ is a matrix whose columns are the eigenvectors of R, and Ais a diagonal matrix whose

elements consist of the eigenvalues of R, corresponding to each eigenvector of Q3.11,[3.2]1. Als

also referred to as the spectral matrix. Substituting (3.1.35) into (3.1.36) this gives

g, = (I -uQAQ’ )5 . (3.1.37)

If we now define a rotated error vector as,
—0O’F
g, =Q'g, (3.1.38)
we can compose a decoupled difference equation for each element € (j) of the rotated error vector &, as

follows,

e,()=1-prA)'e,(j) ,j=0l.M, (3.1.39)
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where A is the Jj" eigenvalue of R . Consequently cach coefficient j of vectorb  , denoted b,(j) , will

converge “in the mean”, to the corresponding coefficient of optimal solution b, (j) provided that,

(- ph ) <1, (3.1.40)

For a positive definite matrix R the LMS algorithm will “converge in the mean” provided that [3.11],

2
O<p<—. (3.1.41)

The result of (3.1.41)mirrors the result for the steepest descent algorithm in (3.1.26). However in

most applications the knowledge of the maximum eigenvalue ?\max of R is not known. One way to

overcome this problem is to use the trace of positive definite matrix R as a conservative estimate of

Ay giving [3.11],

O<;,L<——-2——~, (3.1.42)
R, ]
where
M
r[R, =37, (3.1.43)

i=1

From (3.1.43) we can sce the trace of R is greater than the maximum eigenvalue A ,, of R, since
A, >0 for positive definite matrix R . Using the fact R has a Toeplitz form all the elements on the
main diagonal are equal to ¥ (0). Since r_(0)is itself equal to the mean square power of the input

signal x(71) at each of the M taps of the FIR filter then,

R ]= i A, = Mr. (0) = ME[x*(n)]. (3.1.44)

i=1

Equation (3.1.42) then becomes [3.11],

O<pu< (3.1.45)

M.E[x*(n)]
We can see that from (3.1.45) the stability condition for convergence of the LMS algorithm “in the
mean”, has a dependence on the adaptive filter length M, and the input power of signal x(n). If we

consider the convergence time of the LMS algorithm we can see from (3.1.39) the rate of decay of each
coefficient error term € (7) will depend on the magnitude of term {(1 ~uA, )I . The larger the stepsize
W within the limits of (3.1.45) the faster convergence will be. From (3.1.39) we can see the LMS
algorithm generally converges in the mean to the optimum solution in a non-uniform manner, as some
coefficients will converge quicker then others if the eigenvalues of R are distinct. The overall

convergence time 1s limited by the slowest mode of convergence, which is determined by the smallest
eigenvalue. This non-uniform convergence is known as the eigenvalue disparity problem. For signals with

a large eigenvalue spread such as coloured noise signals or speech convergence time for the LMS
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algorithm can be slow. This is one of the main problems with the application of LMS based algorithms for

Acoustic Echo Cancellation. The eigenvalue spread of the correlation matrix R | is defined as [3.11].

A
x(R,) =—}:— (3.1.46)

are the maximum and minimum values of the correlation matrix R . Equation

min

where A and A

max

(3.1.46) is also termed the condition number of the correlation matrix R . If the condition number is

large the correlation matrix is ill conditioned and solving equations in R ™", may not be possible. For an
ill conditioned correlation matrix in (3.1.19) it may not be possible to find the optimal filter weight
solution or even to find an iterative estimate using an adaptive filter. For large condition numbers the
LMS algorithm would be expected to converge slowly as the eigenvalue spread would be large. The
eigenvalue spread would be greater than unity for correlated signals such as speech. For condition
numbers close to unity the LMS algorithm would be expected to converge quickly as the error terms in
(3.1.39) for each coefficient would converge with a similar time constant. The eigenvalue spread would be
close to unity for uncorrelated signals such as white noise.

Another important point to consider is the misadjustment M of the LMS algorithm from the
minimum mean squared error F . obtained by the optimal solution of (3.1.19), which can be

approximately written as {3.11],

M= F];; = %M.M.E[x2 (n)]= ——l:a-— (3.1.47)

where F_is the steady state excess mean square error. We can see from (3.1.47) that the steady state mean
squared error performance of the LMS adaptive filter is also dependent on the adaptive filter length M
(and the input power of signal x(#)), in addition to the stepsize |L. In general a trade off is necessary
between filter length M and stepsize Ll in the LMS adaptive algorithm to get the desired convergence

time and steady state error.

3.1.2.3. The Normalised LMS (NLMS) adaptive algorithm

For Acoustic Echo Cancellation applications another limitation of the LMS algorithm is that the
input signals of interest often are speech signals which can vary in power over a wide range. The update

term in the LMS equation of (3.1.30) as a result will then vary with signal power of x{(7) and presents a

problem for choosing a fixed step size [ (which from (3.1.45) is dependent on input signal power and
adaptive filter length), generally resulting in poor convergence performance. By normalising the update of
(3.1.31) to compensate for the dependency on the length of the adaptive filter and the input signal power

of x(n)we get,

~

=b +-——&—-X(n)e(rz). (3.1.48)

an n 2 B
M.E[x* (n)]
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Equation (3.1.48) is termed the Normalised LMS (NLMS) algorithm and [l is now termed the

normalised stepsize such that [3.2],[3.11],
0 = uM.E[x*(n)]. (3.1.49)
The term M.E[x?(n)] is normally calculated by using an unbiased time average of the measured data.

A convenient estimate is given by [3.2],

M.E[x*(n)]= Afxz (n—j)=x"(n)x(n). (3.1.50)

Incorporating this in (3.1.48) we get the NLMS algorithm filter update,

~

0
b,,=b, + ———— , 5
n+l n + 6 P XT(}’I)X(}’I) X(n)e(n) (3 1 51)

where O is a small positive constant to prevent division by zero when the input signal is zero or low in

power. The convergence range of the NLMS algorithm in the mean square now becomes [3.2],

b<fi<2, (3.1.52)

Despite a small increase in complexity in the NLMS algorithm over the LMS algorithm, and the
eigenvalue disparity problem, the NLMS algorithm is still computationally simple, as is often used in

many Acoustic Echo Cancellation applications[3.6].

3.1.3. Newton's Method and the LMS-Newton (LMSN) algorithm

Consider Newton's method that provides an iterative technique for finding the solution to quadratic

function f'(x) = O as illustrated in Figure 3.3.

f(x)
? f(x)
Tangent
f‘(xo) =—f(XO)
Xo =%

S(x)

S(x)

Figure 3.3 : Newton’s Gradient Search Method
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This method consists of starting with an initial guess X,and then using the first derivative / (x)to

compute the new estimate X,. The next point X, is then computed using X, as the initial guess and so on,

giving the general formula [3.4],

ACH I J(x,)

X =X, 6 - =X .
n+l n f‘(x”) n af(x’y (3‘153)

X

n

Recall from (3.1.12) the mean square error surface F’ can be written as a quadratic function of the filter

coefficients as,

- 2 T T 2 ,
F=E[y"(m]-2b'r, +b R _b+E[v:(n)]. (3.1.11)
In earlier sections the minimum of the mean square error surface £ with respect to the filter coefficients

. oF, . .
b can be written as VFH =—="=(). To apply the Newton iteration to the problem of optimal filter

db

n

P F
gb" _—.O’ we can use f(bn) :VF‘H = gb: in (3.1.53) and

n

design to find the solution to VF, =

iterate over b, instead of X, giving the formula,

oF,
ab, i
o =B, =5 —=b, ~HT (b, VE,. (3.154)
ab_ob’

where H(b, ) is the Hessian matrix of the mean square error surface F , which is defined as the second

derivative of /7 with respect to the filter coefficients as follows,

J°F
Hb )=—"2—. 3.1.55
)= 5o, (133
From (3.1.12) the Hessian matrix H(b ) can be computed to be,
d
H(b,)= _—_ab [2Rnbn - 2rxd]= 2R . (3.1.56)

n

Substituting (3.1.56) into (3.1.54) we get an iterative solution to the normal equations using Newton's

method as follows,

b,.=b, ——%R;‘VF”. (3.1.57)

Comparing (3.1.57) to (3.1.20) and (3.1.21) we have D, = R;, p, = VF and |1, =1. By weighting

the gradient search direction in Newton's method by the inverse of the estimated Hessian of the cost
function £ in (3.1.55), the search direction always points to the minimum of the cost function /. This
search direction is in sharp contrast to the steepest descent method of (3.1.23), which points to the
maximum direction of change, and will result in an accelerated search. The search direction of Newton's
method in (3.1.57), and the steepest descent method of (3.1.23) will only coincide when the eigenvalue

spread of the correlation matrix is unity. Where the eigenvalue spread of the correlation matrix increases
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above unity the search directions will differ. Newton's method of (3.1.57) can be expected to converge
much quicker due to weighting by R:‘] , which essentially not only modifies the search direction, but also

equalises the eigenvalues of the correlation matrix in each direction.

Equation (3.1.57) despite having possibility of improved convergence is still idealised in that the
update requires both the calculation of the correlation matrix R . and VF , and the inversion of R .

As we have already discussed for the optimal solution in (3.1.19) and the steepest descent method in
(3.1.27) earlier in the chapter this can be computationally very expensive and is unsuitable for real time

implementation. In practice as seen already in the LMS algorithm in (3.1.31) it is necessary to use an
instantaneous estimate for the gradient VFH defined in (3.1.30) and introducing a time estimates as in
(3.1.27) gives,

b,.. =b, +uR ! (m)x(n)e(n), (3.1.58)
where li: (n) is an estimate of the inverse of the correlation matrix R . Equation (3.1.58) is termed
the LMS-Newton (LMSN) algorithm{3.2],[3.4],[3.7],[3.8]. As the introduction of instantaneous estimate
of VFn defined in (3.1.30) will introduce noise into the coefficient vector update, so an update constant
H is introduced in (3.1.58) to allow a greater control of the algorithm update. Using the same procedure
as in the LMS algorithm in it can be shown that the LMS-Newton (LMSN) method will converge in the
mean provided that [3.2],

—p|<t. (3.1.59)
that is,

O<u<2. (3.1.60)
Additionally the convergence rate in the mean of each coefficient is identical, and from (3.1.59) depends

on ll - [,L!. As a result the convergence of the LMS-Newton (LMSN) algorithm is independent of the

eigenvalue spread of the correlation matrix R _ . This is the key advantage of the LMS-Newton (LMSN)

method and as we have already pointed contrasts sharply to the LMS algorithm, where the convergence of

each coefficient in the mean from (3.1.40) is dependent on the eigenvalue spread of correlation matrix

R The Misadjustment M of the LMS-Newton (LMSN) algorithm, for a small |1, can be

xx -’

approximately written as,

F
M= F,: E%u.M.E[x?‘(n)] = u:x . (3.1.61)

From (3.1.61)we can see that the Misadjustment of the LMS-Newton (LMSN) algorithm is identical to the
Misadjustment of the LMS algorithm. Thus for the same adaption rate W the LMS-Newton (LMSN)

algorithm will suffer no eigenvalue disparity, and at the same time achieve comparable steady state

Misadjustment to the LMS algorithm.
Despite the advantages of the LMS-Newton (LMSN) algorithm from (3.1.58) we can see an

estimate of the inverse of the correlation matrix R;: (n)is required every update period. Using the
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Robbins-Monro procedure an estimate of the correlation matrix every update period li»\__\_ (n) is given by
[3.8],

R, (m) =R, (- +amxmx’ (m-R  (n-1), (3.1.62)
where 0L(7)is a convergence factor. This will result in a good estimate for R, which is positive
definite provided the input signal x(7) is persistently exciting of order [3.8]. To obtain an estimate of the

inverse of the correlation matrix ﬁ?\l(n) the matrix inversion lemma can be used yielding [3.2],[3.11],

R, T R-l¢,_
R (n)z——--——1 ! MUE B lR—of? ) Dx(mx_ (MR (n —1) , (3.1.63)
o) 2O L R (- 1x()
a(n) -
If ol(n) = for all n, such that,
o(n)=o0=1-A=2u, (3.1.64)
equation (3.1.63) becomes,
-l _ T o-l¢,
R (n) =-}1: R (n-1)- R“}f" Dx(mx’ (MR, (=) | (3.1.65)
~+x" (MR (n=1x(n)
o

It can be shown that with the settings of (3.1.64) the LMS-Newton (LMSN) algorithm minimises a

weighted sum of posteriori errors & (1), defined by,

E(n)= ik"“" [d(i) —WT(n)x(i)]z, (3.1.66)

where A is termed the forgetting factor which weights the most recent errors. This is useful to exclude old
data that is less appropriate in non-stationary environments. Equation (3.1.66) is the objective function of
the well-known exponentially weighted Recursive Least Squares (RLS) algorithm, which can be obtained,
after some manipulation, by substituting (3.1.66) into (3.1.58) [3.2]. The LMSN algorithm can hence be

regarded as either a gradient descent method, which uses noisy estimates for the input correlation matrix

R, and the gradient vector VF' , or a deterministic least squares algorithm when (3.1.64) is satisfied.
Like the LMS algorithm however the use of a fixed stepsize control lL in the LMSN algorithm of

(3.1.57) presents difficulties for using the algorithm in a non-stationary environment whose characteristics

are unknown. The normalisation of R;\' (n)in (3.1.57) alone is ineffective for faster time variations in
the input signal x(#) . Instead an additional variable stepsize control LL(7) can be used that is adjusted
each iteration according to a certain optimality criterion. A variable stepsize [L(7) that can be chosen to

yield zero a posteriori error regardless of how ﬁ:j (n) is estimated is given by [3.9],

1

T e ; (3.1.67)
x' (MR, (mx(n)

win) =
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Incorporating (3.1.67) into (3.1.57) and including an additional factor |1 to control misadjustment at the

expense of convergence speed gives [3.9],
R (mx(n)e(n)

x" (MR (m)x(n)
Equation (3.1.68) shall be termed the Normalised LMS-Newton method (NLMSN) and is almost identical

b,.,=b,+U (3.1.68)

in form and complexity to the exponentially weighted Recursive Least Squares (RLS) algorithm [3.2].

3.1.4. Adaptive FIR Algorithm Summary

A complete summary of the FIR adaptive algorithms detailed in the thesis can be formulated in general

form as shown in the table below,

Initialisation: b, =0, Vn<0

P(n)=b,x(n)
e(n) =d(n) - y(n)

Algorithm Hn u(n)
FIR LMS I K
FIR NLMS I 1
x" (m)x(n)
FIR LMSN R (n) H
FIR NLMSN R () i
' x” (MR (mx(n)

b, =b, +u(mH, x(n)e(n)

Table 3-1: FIR adaptive algorithm summary

In addition to the algorithms detailed in this section many other variants may be derived form using

different formulations and implementations of [L(n)and H [3.4],[3.91,[3.10],[3.11].
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3.2. Output Error Adaptive IIR Filtering

There are two error signal formulations normally used for adaptive 1IR filtering - Equation Error

and Output Error. This section describes the most common adaptive 1IR filtering algorithms based on the

output error formulation {3.3],[3.12],[3.13],[3.15].

3.2.1. The Optimal Output Error lIR Filter

Consider an adaptive IR filter model based on the output error formulation as shown below.

Acoustic Echo Path

v(n)
+
v, d(n)
x(n) HR Output Error model
————p
= o A
o + y(n) /
> B(g) z > T
+ / -
Alg™)
MA part
AR part Output
Error

Adaptive Algorithm

— ¢, (n)

J

g~ = Unit delay operator

B(g Y =by+bg” +bg7 ... +b,, g
A(C/_‘)=alq“ +a2q_2 B IO +ayqg”

Figure 3.4 : System Identification of echo path using output error adaptive IIR filter

The same echo path model described by equation (3.1.1) and (3.1.2) is used for the unknown echo

path to be modelled. Like the FIR filter to cancel the echo signal d(#), a replica of the echo path output,

y(n), must be created by the IIR output error filter which models the echo path transfer function and
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subtracted from d(n) . For a fixed time invariant output error IIR filter model of order (M, N), the output

y(n) becomes,

M- N
¥(n) =B(g " )x(m) + Alg)y(n) = Y bx(n—i)+ > a,(n-j). (2.1)
i=0 J=1
Re-writing (3.2.1) more compactly using vector notation we get,
y(n)=0"¢,. (3.2.2)

where 0 is a (M+N) x 1 coefficient vector defined as:

0 :[bo,bl,...,b,w“},a],az,...,aN]T, (3.2.3)

with ¢ _beinga (M+N) x 1 information regression vector defined as:

~ - - T
@, =[x(n),...x(n= M +1),p(n—-1),..,y(n-=N)]" =[x(n)",y(n-D"]", (3.2.4)
where X(71)is a Mx1 vector of echo path input samples defined as:
x(n)=[x(n),x(n=1),....,x(n—M+1)]", (3.2.5)
and Y(7 —1) is a Nx1 vector of IIR filter model output samples defined as:
yn-D=[y(n-1,..,y(n-N)]", (3.2.6)
Equation (3.2.2) has the form of linear regression. However since previous filter outputs in y(# —1) of
the regression vector @, depend on previous model coefficient values, equation (3.2.2) is not a linear
regression. The filter output 1(7) is a non-linear function of 0, and equation (3.2.2) is often termed a
pseudo-linear regression [3.12]. Consider the output error signal e, (n),
e,(n)=d(n)-yn)=dn)-0"g,, (3.2.7)
For a minimum output error signal the fixed output error IR filter coefficients must be chosen to
minimise some cost function. Like we have already seen for the optimal FIR filter model the cost function

normally used in system identification theory is the minimisation of the mean square error.

Consider now the design of an output error IR filter model of order (M,N) to minimise the mean

square error. The cost function # to be minimised is denoted as,

F =E[el(n)], (3.2.8)
Rewriting (3.2.8) using (3.2.2) and (3.2.7) we get an equation for the cost function F in terms of
the filter coefficient vector 0, which is termed the Mean Square Output Error (MSOE) Surface, as

follows [3.2],[3.12],

F=E[e (n)]= E[(d(n) ~0"g, ) j (3.2.9)

Re-writing (3.2.9) and assuming that v(#)is an additive white noise disturbance signal independent of

input process x(7) and hence information regression vector @, we get,
F = E[y* (]-20"Ely(me, ]+ 0" Elo, "0, + BV ()], (210
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Simplifying (3.2.10) we get,

F=E[y*(n)]-20"r, +6'R, , 0+E[v’(n)], (3.2.11)

where R(p o, is a (M+N) x (M+N) covariance matrix defined as [3.13}:

R R..
R =F o, 3.2.12
0,0, [(P()q)() ] [RT R}-};:l ( )

and r, is a cross correlation vector defined as:

Fe, = E[y(m)e,(n)], (3.2.13)
with:
R =M x M autocorrelation matrix E[x(n)x" (»n)], (3.2.14)
ij) =M x N cross correlation matrix E[X(n)yT(n -1, (3.2.15)
R ;; = N x N autocorrelation matrix E[y(n—1)y "(n=1), (3.2.16)

R, and Rj;depend on

From equation (3.2.11) to (3.2.16) we can clearly see that r, . Rg
y(n—1), which in turn are functions of the filter coefficient vector 0 . The Mean Square Output Error
surface for the Output Error IR filter model, unlike the FIR filter model, is hence a non-quadratic
function of the filter coefficients b, and a;. As aresult a single unique solution “may not” exist in F with
respect to 0, and may correspond to local minima on the cost function rather than a global solution with

respect to the filter coefficients. However to minimise this cost function F with respect to the filter

coefficient vector we can differentiate F in (3.2.9) with respect to 0, and equate to zero. This yields,

2
?EZM:QE[ ( )aeo(”)] (3.2.17)
a0 20
But,
de,(n) _ () , (3.2.18)
00 00
Combining (3.2.9), (3.2.17) and (3.2.18), and equating to zero we get,
OF _9E[e, (n)] [ By( )
or _ 0 - -0, 3.2.19
00 00 D30 ( )

Unlike the FIR model a direct derivative of y(n) from (3.2.2) with respect to the model
coefficients @ cannot be applied, as regression vector @, is also dependent on 0. Using (3.2.1) and

separating derivatives of }(7) with respect to the coefficients b, and a , we get [3.14],

N vn —
aggn) —x(n— le 9!%”1)_@ 0<i<M-1. (3.2.20)
N
ag(n) - )+ Ya, a«V(” M g<i<N. (3.221)
j m=1
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Combining equation (3.2.19), (3.2.20) and (3.2.21) we get,

N I —
E e”(n)l:x(n—z')+2am—a—)%—ﬁ)-} =0 0<i<M-1. (3.2.22)
m=1 i
N = .
Ede, (n) y(n~j)+2ama—y—(aﬁ;@ =0 I</j<N. (3.2.23)
m=1 j

Equation (3.2.22) and (3.2.23) are the recursive form of the normal equations of (3.1.15). Direct

solution of (3.2.21) would yield the optimum output error IR model filter coefficients. However as this
equation is non-linear with respect to the filter coefficients b,. and a ; local minima may exist. A direct
solution of (3.2.21) may be very difficult to solve directly in this fashion. The computation involved in
such an attempt would also be extremely high. As a result the direct solution of (3.2.21) is generally not

used. Instead the use of iterative solutions to the recursive normal equations of (3.2.21) is normally

employed. In the next section adaptive IIR solutions are presented to the recursive normal equations.

Note that the disturbance term E[v?(#)] in (3.2.11) makes no contribution to these systems of

equations in (3.2.22) and (3.2.23) that determine the optimal R filter coefficients. This can be seen more

clearly by re-writing the cost function F using Parseval's theorem [3.13],

FeL j S, ()| [H (™) -

N .
m M ® +‘%t“ 2J’Sw(eﬂ”)dw- (3.2.24)

1~ 4™ m o,

1 2
This disturbance term — j S, (e’ )dw in (3.2.24) only adds a constant term to the mean

-2

square error surface and does not effect the locations of the minimum points. Minimisation of the mean

square output error surface with respect to filter coefficients bl. and a J shall not vary with the disturbance

signal v(n).

3.2.2. The method of Steepest Descent and the Simplified Gradient LMS Output Error
adaptive lIR algorithm

Earlier in the Chapter we have seen the steepest descent update to the normal equations of (3.1.16)
was given by (3.1.23) for a FIR adaptive filter. For an Output Error adaptive IIR filter the steepest

descent update for the iterative solution to the recursive normal equations of (3.2.21) is similarly given by,

6, =0, - %VF,, , (3.2.25)
where L is a step size parameter to control the size of change in 0., from 6, . The gradient of the mean
square output error surface VFn using (3.2.16) and (3.2.17) can be written as,

VF, =-2E[e,(n)Vy(n)], (3.2.26)

giving the iteration,
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0, =0, +uEle, (MVy(n)]. (3.2.27)
Since E[e(n)Vy(n)]is generally unknown an estimate can be used. In line with the FIR LMS

philosophy used earlier in the chapter the gradient VFH is replaced by an instantaneous estimate,

VE, ==2e,(n)Vy(n), (3.2.28)
where,
)
Vy(n )——M (3.2.29)
giving the coefficient update,
8, =0, +M€0(n) y( ) (3.2.30)

}’I

Consider the gradient estimate of (3.2.28). As the output V() itself depends on previous outputs,
ay(n)
20

¥

which in turn depends on previous coefficient values, the derivative of the output, , In (3.2.30), is

itself recursive. Expanding the derivative of the output using (3.2.20) and (3.2.21), and introducing time

dependency we get,

aa]};((n))—x(n z)+iam( )aya(g( ’)”) 0<i<M-1, (3231
d N 9,
———aci((];)) =y(n- J)+; (1) )E;(n( ’;7) IS <N, (3.2.32)

Equation (3.2.31), (3.2.32) and equation (3.2.30) represent the 1IR LMS algorithm. This algorithm,
as the name suggests, is the recursive output error form of the FIR LMS algorithm of (3.1.31)

[3.2],{3.12],13.14],[3.15]. From (3.2.31) and (3.2.32) we can see that the derivatives on the right hand
side of these equations use current values, at time n, for coefficients b; and thus cannot be simplified to
the form of a filter using delay operator notation. In to simplify the IIR LMS algorithm the stepsize 00 in
(3.2.30) can be chosen to be sufficiently small to allow the following assumption can be made[3.12],
0,=0_,=..=0_,.,. (3.2.33)
This allows the derivatives in equation (3.2.31) and (3.2.32) to be reformulated to become recursive in

form giving [3.2],[3.12],[3.14],

ay(n) dy(1n —m) :
- 0<is<M-1. .
3, () =x(n—1)-+ 2 a, (n)y—————=— 2b,(n—m) ;0<1 (3.2.34)
ay(n) 5 y(n—m) )
— 7} + —_— ;1 SJSEN. L.
2, b) Za (m)=> =) J (3.2.35)
Rewriting (3.2.34) and (3.2.35) gives[3.12],
;li((};)) =xf(z',n):x(n—i)+%am(n)xf(i,n—m) 0<i<M-1. (3.2.36)
opm .. N & .~ ,
=3,(m)=3(n= )+ a,mp,Gn=m I<j<N. (3237
aaj (n) m=l
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Writing (3.2.36) and (3.2.37) in more compact form gives,

y(n) _ 1 o .
ob, (n) _[1—A(n,q‘l)}x(n ) sis ML (3.2.38)
dy(n) 1 f .
= (17— 1< i< - 5
aaj (n) [1 “A(ﬂ,qu) }(I’l]) 1< 7SN (3.2.39)

Combining (3.2.38) and (3.2.39) and substituting into (3.2.30) gives the modified filter update,
0,,=90,+Ue, (M. (n), (3.2.40)

where @ ; (1) is defined as,

1
Q (1) “[m}va(m. (3.2.41)

Equation (3.2.40) represents the Full Gradient IIR LMS algorithm [3.12][3.14][3.15]. The structure of the
Full Gradient IIR LMS algorithm is illustrated in Figure 3.5. From (3.2.40) and Figure 3.5 it can be seen

the all pole filter operates on each element of information vector @ (7). The simplification of the

gradient in (3.2.34) and (3.2.35) and the slowly varying filter weights assumption of (3.2.33) required for

the devopment of the Full Gradient IR LMS algorithm is reasonable in many applications. Where the

assumption of (3.2.33) doesn't hold, only a small degradation in performance is observed in practice
Despite simplifications used in the Full Gradient IIR LMS algorithm, the gradient of (3.2.38) and

(3.2.39) still requires a significant amount computation and storage, since N+M parallel shift variant AR
filters are required of order N for each element in the adaptive filter information vector @, (n). If we
again use the slowly varying filter weights assumption in (3.2.33) such that stepsize Ll is sufficiently

small so that coefficients A(#,g ") in (3.2.38) and (3.2.39) do not vary significantly over intervals of N,

each parallel AR filter in (3.2.34) and (3.2.35) can be assumed to be shift invariant. This results in

oy(n) 1 . .
- 4 0<isM-1, 2.
2b,(n) [I—A(n—i,q“’)}(n ) i (3.2.42)
dy(n) ] . .
= - 1< 7SN 2.
% () [I-A(n—j,q‘l)}y(nﬂ I<jSN, (3.243)

The gradient of the output from (3.2.42) and (3.2.43)may then be estimated by filtering only the input

x(n)and output y(n —1) and using shifted versions of these signals. This gives,

aab;((’:z))zxf(n-i) 0<i<sM-1. (3.2.44)
and ‘
ay(n) . .
aj((n)) =y,(n—-j) I1<j<N, (3.2.45)
J
where
}\7
x,(my=x(n)+ > a,(n)x,(n-m), (3.2.46)
m=1
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P =3n-D)+Ya, (), (n—m). (3.2.47)

m=]

Re-writing the simplified gradient of (3.2.44)and (3.2.45) in more compact form gives,

-
gén) =¢,(n), (3.2.48)

where, ’
o, =[x,m"y, 07, (3.2.49)

and X, (7) is a Mx1 vector of filtered echo path input samples defined as:

X (m)=[x, (), x,(n— M+ Dy, (3.2.50)

and y ,(n)is a Nx1 vector of filtered IIR filter model output samples defined as:

g’f(n)=[5’f(n), ----- a)ﬁ"f(n_N'i‘l)]T, (3.2.51)
Substituting (3.2.48) into (3.2.30) gives the simplified filter update,

0,,=0,+pe,(mo, (n), (3.2.52)

Equation (3.2.52) represents the Simplified Gradient adaptive 1IR LMS algorithm {3.12]. This
simplification in (3.2.37) introduces essentially no degradation in performance over the Full Gradient IIR
LMS filter update of (3.2.40), and is normally used in practice. The structure of the Simplified Gradient
adaptive [IR LMS algorithm is illustrated in Figure 3.6.

In terms of the stability of the Simplified Gradient IIR LMS algorithm of (3.2.52) it can be shown
that with a sufficiently small stepsize |l the adaption algorithm can be modelled using the Ordinary
Differential Equation (ODE) method [3.12]. Using this method together with the direct or indirect method
of Lyapunov it can be demonstrated the differential equation derived from the adaption algorithm of
(3.2.41) will converge to a minimum (local or global) of the cost function £ . However this method does
not clearly reveal the range of stepsize L for convergence. To obtain approximate bounds for the
stepsize L local linearisation assumptions can be made about a minimum point on the cost function £ as
follows. In doing this we will also see that the Simplified Gradient IR LMS algorithm, like the FIR LMS
algorithm, has dependence on the eigenvalue spread of the correlation matrix of the information
regression vector.,

Suppose parameter vector 0. corresponds to a local minimum on the cost function to £'. If
parameter vector lies in the local neighbourhood of we may use a Taylor series expansion of the filter
output about the minimum point 8 =0, as [3.13],

+A870(A9), (3.2.53)

0=0.

y(n|0)=3(n]0.+A0) = y(n )9*)+A97@%ﬁ

Performing a first order linearisation on (3.2.53) we neglect higher order terms A8’ O(A®) giving,

5(n0)=5(n]0. +A0) = 7(n |0.) + 40" XD 5254)

6=0.

Consider then the output error, which can be assumed to be quadratic locally,
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e(n)=y(n) = (n|0) =e.(n) +(8, ~0.)@ (3255
where e.(7) denotes minimum output error obtained at minimum point on F when 0, is used. Inserting

(3.2.55) into (3.2.52) we get,
0,,=0,+u9, (e, M®,-0.)+e.(Me (n), (3.2.56)
Offsetting both sides of (3.2.56) by 0. and taking expectations we get,
E[6.-0,,]=(-uR, , (n))E0.-0,], (3.2.57)
where the term E[e.(71)@ ;(n)] vanishes near any local minimum and R, ., (n)is the correlation

matrix of the filtered information regression vector defined as,

Rx_,.\', (n) R_rfjf, (n)

R, ,, (M =Elo (e, (n)]= : (3.258)
®9; 7 7 R.{,j, (n) R}/}f (n)
with:
Rxf»*/ (n)=M x M autocorrelation matrix E[X (n)xfT (n)], (3.2.59)
«,3, = MxN cross correlation matrix Elx, (n)yfT (n)], (3.2.60)
R 5 = NxN autocorrelation matrix E[yf(n)yfT (n)], (3.2.61)

If we now define an error vector £, which represents the difference between the expected value of
each element in filter coefficient vector @, and the solution 0.,

e =E0,-0,] (3.2.62)

Equation (3.2.57) now becomes,

g, =~ HR, o () k.. (3.2.63)
Equation (3.2.63) takes the form of a discrete time homogenous system, which is stable, provided the

eigenvalues of the correlation matrix R(pf(p/ (n) all have a magnitude, less than unity. For convergence

the stepsize must [L then satisfy,

2
O<pu< r (3.2.64)

where Xmax is the maximum eigenvalue of the correlation matrix R(pf(p/ (n). For a positive definite

matrix R(p[(p[ (n) the upper bound of (3.2.64) can be reduced to,

O<mu< (3.2.65)

2
o, 0

where ”(pf(n)i{z is the 1, norm of filtered information vector (pf(n) defined in (3.2.49). This

normalisation factor “(p P (n)”z is time varying and can alternatively be written as,
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lo, @ =0" (w0, (m) = Zx, (n=i)+ 3 2= ). (3.2.66)

Note that the bounds for convergence in the mean in (3.2.65) are overly generous due to our
linearisation assumption in (3.2.54). In practice decreasing the upper bound by a factor of 10 or so is
advised. Often a stable bound for stepsize is chosen for the particular application area on a trial and error

(instability) basis.

From (3.2.63) we can see the convergence in the mean for each coefficient error term for the

Simplified Gradient adaptive [IR LMS algorithm will be dependent on the eigenvalue spread of the

correlation matrix R(p/(p/(n). The eigenvalue spread for a correlation matrix is defined earlier in

(3.1.46). This coupled with the fact the stepsize must be sufficiently small to be very much less than the
limits of (3.2.65) for stability in practice, is the main reason why adaptive IIR output error algorithms

converge much slower than their FIR counterparts.

Equation (3.2.40) and equation (3.2.52) are specified in a group adaption form where the same
stepsize |L is used to control the adaption of all coefficients in the IR filter coefficient vector §, . We
shall see later in the Chapter 5 that homogenous adaption forms will be used due to echo path attenuation
[3.16]. A homogenous adaption form uses separate stepsize factors, \L,,, and W ,,, to control adaption of

the feedforward and feedback parts of the coefficient vector.

3.2.3. The Simplified Gradient NLMS Output Error adaptive lIR algorithm

In the same way the LMS algorithm of (3.1.31) will vary with the power of the input signal

x(n) the simplified gradient adaptive IIR LMS algorithm will vary with the power of the information
regression vector @ , (n), which comprises both input and output samples. This, like the FIR LMS,
presents a problem for choosing a fixed step size Ll . By incorporating normalisation into the filter update,
proportional to the power of the information vector @ s (n), the filter update can be made independent of
input and output signal powers [3.17],{3.18]. For the [IR LMS algorithm of (3.2.52) normalisation by the

1, norm of filtered information vector @ ’ (n) gives the filter update,

u
0,,=0,+ e, (n)p (n), 3.2.67
! 5 +¢L(m, (1) ! (3-2.67)

where O is a small positive constant to prevent division by zero when information vector power is zero.
Equation (3.2.67) is called the simplified gradient adaptive IIR Normalised LMS (NLMS) algorithm.

As for the FIR NLMS algorithm, the stepsize normalisation in (3.2.67) effectively gives increased
convergence rate performance over the LMS based algorithm of (3.2.52) for the same stepsize parameter

UL without affecting the convergence properties [3.17]. However like the LMS counterpart of (3.2.52) the

NLMS adaption form of (3.2.67) will still suffer from the same dependency on the eigenvalue spread of

the correlation matrix R )
LA
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The same normalised stepsize [ is used to control the adaption of all coefficients in the [IR filter

coefficient vector @, in equation (3.2.67). In Chapter 5, because of differences in the magnitude of the

input and output of the echo path, separate stepsizes will be used for feedforward and feedback

coefficients.

3.2.4. Newton's method and the Simplified Gradient LMS Newton adaptive lIR algorithm

Mathematically the iterative solution to the recursive normal equations of (3.2.21) using Newton's

Method is given by [3.12],
6,.,=0 -H'0,)VF, (3.2.68)
where H(O,)is the Hessian matrix of the mean squared error cost function F of (3.2.11) and is

H' (8, )its inverse. The Hessian matrix is defined in (3.1.55) as the second derivative of the cost

function with respect to the filter coefficients. Using (3.2.26) and the simplification of (3.2.48) the

Hessian matrix can be computed as follows,

_9°F _ 9 R IO
H(B”)___—aenaen aen[ 2E[e, (m)Vi(n)]]=| -2 %

0, |, (3.2.69)

giving
H(®,)=2R, . (3.2.70)
Substituting (3.2.70) into (3.2.68) we get an equation for the solution to the recursive normal

equations using Newton's method as

0. =0, —-%R;/@/VF,,. (3.271)

Comparing (3.2.71) to (3.2.25) we can see that Newton's method can be expected to converge

quicker due to the weighting by R;;(p/ which essentially modifies the search direction to point to a

minimum (local or global) point on the cost function F [3.19]. In addition this weighting will equalise the

eigenvalues of the correlation matrix each direction so each coefficient error term will converge
uniformly. Incorporating time dependency into (3.2.71) and using an instantaneous estimate for VF as

similarly done for the Simplified Gradient LMS algorithm in (3.2.28) gives,
o -l
0,.,=0,+uR_ (mo, (ne(n). (3.2.72)
where ﬁ(;;p/ (n) is an estimate of the inverse of the correlation matrix R(;If@/ . Equation (3.2.72) is

named the Simplified Gradient LMS Newton adaptive IIR algorithm. It is also termed the Recursive
Prediction Error algorithm {3.12]. Like the FIR LMS Newton algorithm of (3.1.58) an update constant

L has been introduced to allow a greater degree of control of the algorithm since a noisy instantaneous

gradient estimate is used.
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Using local stationarity assumptions, as done for the Simplified Gradient LMS algorithm earlier
in the chapter, bounds on the stepsize can be derived for convergence in the mean of the Simplified

Gradient LMS Newton algorithm of (3.2.72). Convergence in the mean about a local minimum point on
the cost function F will occur provided,

-p|<1. (3.2.73)
or,

O<u<?2. (3.2.74)

Like the Simplified Gradient LMS algorithm the bounds of (3.2.74) will be optimistic due to the

linearisation assumptions used and in practice the stepsize L may have to be much less than the upper
limit of (3.2.74) for convergence. We shall see in chapters 5 and 6 the stable range for stepsize W for
robust Acoustic Echo Cancellation on a mobile handset.

From (3.2.72) we can see the weighting by ﬁ;f(p[ (n) essentially will ideally make the Simplified

Gradient LMS Newton algorithm independent of the eigenvalue spread of the covariance matrix

ﬁ(pfq)/ (n). This is a major advantage of the Simplified Gradient LMS Newton algorithm over the

Simplified Gradient LMS and Normalised LMS (NLMS) algorithms of (3.2.52) and (3.2.67) because of

their dependence of convergence speed on the eigenvalue spread of the covariance matrix Rq),q,, (n).

Since the stepsize [l has to be sufficiently small for stability, a slower convergence speed may result for

the Simplified Gradient LMS and NLMS algorithms for coloured input signals when the eigenvalue

spread is greater than unity. However due to the requirement of the computation of an estimate of the

inverse covariance matrix R; lftp/ (n) every iteration n, the Simplified Gradient LMS Newton algorithm of

(3.2.72) has a far higher computational requirement. To reduce complexity of the inverse covariance

matrix calculation the same techniques employed for the FIR LMS Newton algorithm can be used. Using

i . . . . o1
the matrix inversion lemma, the inverse covariance estimate chf(p, (1) may be computed as follows

[3.19],

A _ R, (n=Do,(me, (MR, (n-1)
R, (”):'1" R, (n—1)-—% L) o8/ : (3.2.75)

A ~
& g, OR], (119, ()

where A is termed the forgetting factor which weights the most recent output errors. This is useful to
exclude old data that is less appropriate in non-stationary environments. Ol is a convergence factor.

Like the FIR LMS Newton algorithm the choice of fixed stepsize LL in (3.2.72) can be difficult for
non-stationary environments and signals where fast time variations can be encountered. Normalisation by

R(;]/(p/ (n)in (3.2.72) is ineffective for faster time variations in the input signal. Instead a variable

convergence factor p,(n) can be chosen to minimise a posteriori error as follows [3.8],
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1

w(n) = — : 3.2.76
0, (MR, , (Mo, () (3:2.76)
Introducing (3.2.76)into (3.2.72) we get,
R, ()0, (ne(n)
0 =0 +u—2 "7/ (3.2.77)

n+l n T | .
(P/ (n)Rq)f(p/ (n)"P/ (n)
Equation (3.2.77) is termed the Simplified Gradient Normalised IJR LMS Newton adaptive IIR

algorithm and incorporates an additional reduction factor, Ll , like the FIR Normalised LMS Newton

algorithm to control convergence speed at the expense of steady state error.

3.2,5. The method of Steepest Descent and the Pseudo Linear Regression (PLR) LMS
Output Error adaptive HIR algorithm

Consider the equation of the cost function of (3.2.11),

F=E[y*(n]-20"r, +8'R,, 0+E[(n)], (3.2.11)

P

Feintuch proposed a further simplification of (3.2.52) by assuming the statistics Yo > ny and

R W in (3.2.11) are constants with respect to 0, and that previous output samples do not depend on 9.

The resulting gradient of the cost function [ with respect to the coefficients b,' and a; may then be

written as,

oF ==-2r +2R__0=0, (3.2.78)

00 - e, 9,9,

This gives the modified optimal solution for a recursive output error filter,

_ -l

0, =R 1, (3.2.79)

Earlier assumptions and equation (3.2.54) implies that the following orthogonality principle holds [3.20],
oF

=5 = 2Ele, (00, (1]=0. (3.2.80)

In finding the steepest descent iterative solution to (3.2.79) we use the general iterative solution as follows
[3.2],
0. =0 —Lvr 3.2.81
ntl = Yan 2 no ( e )
where the gradient of the mean square output error surface VFn from (3.2.80) can be written as,
VF, =-2FE[e, (n)p,(n)], (3.2.82)

Since E[e(n)@,(n)]is generally unknown an estimate can be used. In line with the FIR LMS

philosophy the gradient VFn is replaced by an instantaneous estimate,
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VE, ==2e,(n)9,, (3.2.83)

giving the coefficient update,

0., =0, +ue (ne, (n). (3.2.84)
Equation (3.2.84) is known as Feintuch's Recursive LMS algorithm or more commonly in system
identification and control literature as the Pseudo Linear Regression (PLR) LMS algorithm [3.12],[3.20].
The general structure of the Pseudo Linear Regression algorithm is shown in Figure 3.7.
Despite the mathematically invalidity of the assumptions made by Feintuch [3.21],[3.22], the above
algorithm is the most computationally simple output error adaptive 1IR algorithm, and does have the

tendency to produce a stable IR adaptive filter. In addition, by comparing (3.2.84) with (3.2.52) we can

see the Pseudo Linear Regression algorithm has no AR filtering of the information vector @, (7). For

N
echo path models with low amounts of feedback, where Zam (n) is small, then Feintuch's
m=1

approximation of (3.2.84) may be valid.
It has been shown that for equation (3.2.84) to convergence (to global or local minimum on error

mean square surface) the following strict positive real condition should in general be satisfied [3.12],
[3.23],[3.24],
1
Re| —————|>0,|z|=1, (3.2.85)
1-A.(z7)
where Re(u) denotes the real part of uand 1— A, (z™") denotes the poles of the system to be modelled.

Equation (3.2.85) is derived from Popov's hyperstability theorem [3.23], and implies the poles of
the unknown echo path to be modelled must satisfy this hyperstability region to ensure convergence. This
hyperstability region is always subset of the stability region within the unit circle of the complex Z
domain. Equation (3.2.85) provides a guideline for ensuring convergence of (3.2.59) with a sufficiently

small choice of step-size lL . However the algorithm may converge in some cases despite violation of this
condition if the adaptive model has sufficient degrees of freedom to approximate the echo path being

modelled [3.20],[3.22]. For a stationary input sequence x(#), convergence and stability will be achieved

if the stepsize [l is chosen to be [3.25],

1
HWs———— ,Vn, 3.2.86
o () -

where “(po (n)“2 is the 1, norm of information vector @, (7), and the echo path to be modelled satisfies

[3.25],

z|=1, (3.2.87)

0<Re "———L—j— <2,
1-A(z7)

As the echo path to be modelled is generally unknown equation (3.2.87) represents the main
drawback of the Pseudo Linear Regression LMS algorithm. Similar to the Simplified Gradient LMS
algorithm of (3.2.52), the convergence speed of the Psudo Linear Regression LMS algorithm will be

77



dependent on eigenvalue spread of the information vector correlation matrix R(p 0, " The stepsize {L of

(3.2.87) is in practice is normally selected to be very much less than the upper bound of (3.2.86) for

stability. Equation (3.2.84) is in a group adaption form, where the same stepsize UL is used to control the
adaption of all coefficients in the 1IR filter coefficient vector @, . A homogenous form will be used in

later chapters to echo path attenuation [3.16].

3.2.6. The Pseudo Linear Regression (PLR) NLMS Output Error adaptive IIR algorithm

As already mentioned for the LMS adaptive FIR and Simplified Graident LMS adaptive [IR

algorithms, choosing a fixed step size O is a problem when non-stationary signals are used, as the power

of the input signal will vary. To overcome this power variation in the input signal x(7) (and the output
signal y(n) in the case of output error adaptive IR algorithms), a normalisation proportional to the power
of the information vector @, (71), can be incorporated into the Pseudo Linear Regression LMS algorithm

as follows,

88
6 + = 9)1 + (73 o 2 b 8
" 5 +ol (g, o P (289

where Q is a small positive constant to prevent division by zero when information vector power is zero.

Equation (3.2.88) is termed Pseudo Linear Regression Normalised LM S (NLMS) adaptive 1IR algorithm.

From (3.2.88) it can be seen that the stepsize [ is normalised by the I, norm of the information
vector @, (7). Despite becoming invariant to input signal power variations the same dependency on the

eigenvalue spread of the correlation matrix Rq) 0 will still exist as for the Pseudo Linear Regression

LMS algorithm. As for the Simplified Gradient NLMS algorithm, equation (3.2.88) is in a group adaption
form. We will see in later chapters that homogenous adaption forms need to be used for output error LMS

based algorithms due to echo path attenatuation.
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3.2.7. Newton's method and the Pseudo Linear Regression LMS Newton (PLR LMSN)
Output Error adaptive IIR algorithm

Mathematically the iterative solution to the recursive normal equations of (3.2.21) using Newton's

Method is given by [3.12],
0,.=0-H"@®O,)VF, (3.2.89)
where H(0,)is the Hessian matrix of the mean squared error cost function F of (3.2.11) and is

H™'(0,)its inverse. The Hessian matrix is defined in (3.1.55) as the second derivative of the cost

function with respect to the filter coefficients. Using Feintuch’s simplifications of (3.2.78) the Hessian

matrix can be computed as follows,

_ 9*F 0
H'® )=——=—1|-2r, +2R__ 6/, 3.2.90
( n ) aenaen aen [ dg, 9,9, ] ( )
giving
H(®,)=2R,, , (3.2.91)

Substituting (3.2.91) into (3.2.89) we get an equation for the solution to the recursive normal

equations using Newton's method as ,

1
0,,=9, _ER“’““’" VE,. (3.2.92)
Comparing (3.2.92) to (3.2.84) we can see that Newton's method can be expected to converge

quicker due to the weighting by R o, , Which essentially modifies the search direction to point to a
minimum (local or global) point on the cost function # [3.19]. In addition this weighting will equalise the
eigenvalues of the correlation matrix each direction so each coefficient error term will converge
uniformly. Incorporating time dependency into (3.2.92) and using an instantaneous estimate for VF as

similarly done for the Pseudo Linear Regression LMS algorithm in (3.2.83) gives,
5 -1
0, =0,+uR__ (Mo, (ne(n), (3.2.93)
where ﬁ(;l(p (n) is an estimate of the inverse of the correlation matrix R o .o, - Equation (3.2.93) is

named the Pseudo Linear Regression LMS Newton (LMSN) adaptive 1IR algorithm. Like the Simplified

Gradient LMS Newton algorithm an update constant [ has been introduced to allow a greater degree of

control of the algorithm since a noisy instantaneous gradient estimate is used.

Using similar assumptions to that of the Simplified Gradient LMS Newton algorithm bounds on the
stepsize can be derived for convergence in the mean of the Pseudo Linear Regression LMS Newton
algorithm of (3.2.93). Convergence in the mean about a local minimum point on the cost function £ will

occur provided,

O<pu<2, (3.2.94)
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and the echo path to be modelled in general, satisfies the SPR condition of (3.2.87). Like the Pseudo
Linear Regression LMS algorithm the upper bounds of (3.2.94) may be too large and in practice the

stepsize L may have to be much less than for convergence. We shall see in Chapter 5 the stable range for
stepsize L for Acoustic Echo Cancellation on a mobile handset.

As for the Simplified Gradient LMS Newton algorithm the weighting by ﬁ;fmo (n) will ideally
make the Pseudo Linear Regression LMS Newton independent of the eigenvalue spread of the covariance
matrix ﬁ(p“% (n) . Using the matrix inversion lemma the inverse covariance estimate li;i(p" (n) may be

computed as follows,
R T ~
R(P,,(P,, (n - l)q)o (n)(‘po (n)R‘pi(P(, (n - 1)
) — :
Z+0, (MR, (110, (1)

where A is termed the forgetting factor which weights the most recent output errors. This is useful to

(3.2.95)

. 1| A
Rq):% (n)=i— R(p‘ (n-1-

@

exclude old data that is less appropriate in non-stationary environments. , is a convergence factor.

Like the Simplified Gradient LMS Newton algorithm the choice of fixed stepsize L in (3.2.93)
can be difficult for non-stationary environments and signals. Instead a variable convergence factor

W () is chosen as follows to minimise a posteriori error,

1

wn) = — : 3.2.96
9, (RS, (10, () (:250
Introducing (3.2.96) into (3.2.93) we get,
R (n n)e(n
0,,=6, 0.0, (10, (W)el?) (3.2.97)

T - 1 ’
9, (MR, , (M9, (n)

Equation (3.2.83) is termed the Pseudo Linear Regression Normalised LMS Newton adaptive 1IR

algorithm, and incorporates an additional reduction factor W , like the Simplified Gradient NLMS Newton

algorithm, to control convergence speed at the expense of steady state error.

3.2.8. The Simplified Hyperstable Adaptive Recursive (SHARF) LMS Output Error
Algorithm
In order overcome the convergence problem associated with the SPR conditions of (3.2.85) and (3.2.87)

the output error can be filtered by a moving average filter C(g™") giving the filter update,

0,. =8, +Le,(M1+Cg ™, (), (3.2.98)
Equation (3.2.98) is known as the Filtered Error Pseudo Linear Regression algorithm or more

commonly as the SHARF (Simplified Hyperstable Adaptive Recursive Filtering) algorithm
[3.12],[3.131,[3.23]. The coefficients C(g~") are normally fixed throughout adaptation of the filter. The
convergence limits of the Pseudo Linear Regression LMS algorithm in (3.2.86) also apply to the SHARF
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algorithm of (3.2.98). The structure of the SHARF algorithm is illustrated in Figure 3.8. In
Figure 3.8 C(g ') is defined as a length N+1 MA filter with element one equal to unity ( c, =1).

The SHARF algorithm by filtering the output error signal essentially expands the SPR region

within the unit circle of the z domain to include more echo path coefficient values. However as the

coefficients C(g™')are fixed, like the Pseudo Linear Regression algorithm some knowledge of
1—A.(z")is required. As a rule a placement of a zero in the vicinity of each echo path model pole
provides a reasonable set of coefficients for C(g ') to ensure the following SPR (Strict Positive Real)
condition is satisfied for the SHARF,

1+C(z)
Re| 1ECE D 1 S0 =1, 32,99
e[l—A*(z"):] ¥>0.[4 (3299

where 7 is a scalar constant equal to 1/2 [3.12], [3.23].

We shall see later in Chapter 5 from the SPR (Strict Positive Real) nature of the measured acoustic

echo paths for a mobile handset, how the SHARF C(g™") coefficients are selected.

3.2.9. SHARF Normalised LMS Output Error adaptive lIR algorithm

In the same way the Pseudo Linear Regression algorithm is normalised to cope with the variation in
input signal powers, the same normalisation can be used on the SHARF LMS algorithm of (3.2.98) giving,

n _
O =0, 8 +¢! (mo,(n) K (n)[l +Cl l)h’ () (3.2.100)

where O is a small positive constant to prevent division by zero when information vector power is zero.

Equation (3.2.100) is termed SHARF Normalised LMS (NLMS) adaptive IIR algorithm.

From (3.2.88) it can be seen that the stepsize Ll is normalised by the 1, norm of the information
vector @, (n) . Despite becoming invariant to input signal power variations the same dependency on the
eigenvalue spread of the correlation matrix R(p 0 will still exist as for the both the SHARF and Pseudo

Linear Regression LMS algorithms.
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Figure 3.8 : The SHARF Adaptive IIR LMS algorithm structure
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3.2.9.1. The SHARF LMS Newton Output Error adaptive IIR algorithm

Mathematically the iterative solution to the recursive normal equations of (3.2.21) using Newton's

Method is given by [3.12],

0, =0 -H'0,)VF, (3.2.101)
where H(0,)is the Hessian matrix of the mean squared error cost function F of (3.2.11) and is
H' (0, )its inverse. Using Feintuch’s simplifications of (3.2.78) the Hessian matrix for the SHARf

algorithm can be computed as follows,

0*F 0
H'® )=——=—|-2r, +2R__ 0], 3.2.102
©.) 30,00, aen[ w7 2R, 0) (2102
giving
H®,)=2R,, , (3.2.103)

Substituting (3.2.103) into (3.2.101) we get an equation for the solution to the recursive normal

equations using Newton's method as ,

0, =0, —%R" VF,. (3.2.104)

0.9,

Incorporating time dependency into (3.2.104) and using an instantaneous estimate for VF' gives,

0,,=0,+UR; (ne, +C@ ™, x). (3.2.105)

where R;l(p (m) is an estimate of the inverse of the correlation matrix R . Equation (3.2.105)

shall be termed the SHARF LMS Newton adaptive IIR algorithm. The coefficients C(g~")like the
SHARF LMS algorithm of (3.2.98) are normally fixed throughout adaptation of the filter. The
convergence limits of (3.2.94) and SPR condition of (3.2.99) also apply to the SHARF LMS Newton
algorithm. Like the PLR LMS Newton algorithm, the choice of fixed stepsize W in (3.2.105) can be
difficult for non-stationary environments and signals. Instead a variable convergence factor [L(7) as can
be chosen to minimise a posteriori error giving,
o -1 -1
¢+ o 000, 1+ ek, ()

n T > —|
9, (MR, (Mo, (n)
Equation (3.2.106) is termed the SHARF Normalised LMS Newton algorithm, and incorporates an

0, =0 (3.2.106)

1+

additional reduction factor, L, like the PLR Normalised LMS Newton algorithm to control convergence

speed at the expense of steady state error.
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3.3. Equation Error Adaptive IIR Filtering

This section describes the most common adaptive IIR filtering algorithms based on the equation
error formulation [3.4][3.12].

3.3.1. The Optimal Equation Error lIR Filter

Acoustic Echo Path

v(n)

O, d(n)
b h h)

x(n) IIR Equation Error model

Za

+ »n) -
»  B(g™) > B Z}»ee(n)
+ /

Alg™) =

MA part AR part
par Equation

Error

Adaptive Algorithm

A

g~ = Unit delay operator
B(g")=by+bg ™ +b,g7 +. by g
AgYy=aq" +a,g7 +.ctayg

Figure 3.9 : System Identification of echo path using an equation error adaptive IIR filter

The same echo path model described by equation (3.1.1) and (3.1.2) is used for the unknown echo

path to be modelled. Like the output error IIR filter to cancel the echo signal d(71), a replica of the echo
path output y(n), denoted y(71), must be created by the IIR equation error filter which models the echo
path transfer function and subtracted from ¢/(#). For a fixed time invariant equation error IIR filter

model of order (M, N), the output ¥(#) becomes,

M- N
y(n)=B(g " )x(n)+A(g)d(n)= Y bx(n—i)+ Y a,d(n-j), (3.3.1)
=0 =1
Re-writing (3.3.1) in more compact notation using vector notation we get,

y(n)=0"g,, (33.2)
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where @ is the (M+N) x 1 coefficient vector as defined in (3.2.3) and @, isa (MtN) x | information
regression vector defined as:

0, =[x(n),....x(n—M +1),d(n—-1),....,d(n— N)) =[x(n)",d(n-1)"7", (3.3.3)
where X(#) is a Mx1 vector of echo path input samples defined in (3.2.5) and d(n —1) is a Nx1 vector
echo path output samples defined as:

din-1)=[d(n-1),.... ,d(n—N)]T, (3.3.4)
From equation (3.3.2) we can see the filter output is a linear function of the coefficients 0 as it
depends on signals x(7) and d(n) only, which do not depend on previous coefficient values. Equation

(3.3.2) is often termed a linear regression [3.12]. Consider the equation error signal e, (7),

N

M-l
e,(n)=d(n)-y(n)=d(n)-8"9,=d(n)— Y a,d(n-j)=3 bx(n-i), (3.3.5)
Re-writing (3.3.5) we get [3.12], a -
e, (m) =1~ A k() ~BG™ )x(n). (33.6)
From (3.3.6) we can see the reason for terming the [IR model of (3.3.2) an equation error IIR filter
model, as the error signal, e, (n) , 1s generated by subtracting two difference equations:
[1 -A(g™! )]d(n) and B(g™")x(n). Since the coefficients a, of the equation error model are adjusted
in response to delayed samples of the desired response d(7), which does not depend on the filter output
¥(n), the error signal of (3.3.6) is a linear function of the filter coefficients b, and d,. In the case of no
output noise V(7) we get an true I1IR filter structure, otherwise the equation error IIR adaptive filter can

be interpreted as two FIR filters B(g™') and A(g™') . As long as FIR filter A(g™") remains minimum

phase the filter output of (3.3.2) will remain stable [3.13]. Comparing equation (3.3.6) to (3.2.7) we can

define a relationship between the equation error and output error as [3.12],[3.26],

e, () =1-Ag")k,x). (33.7)

For a minimum equation error signal the fixed equation error IIR filter coefficients must be chosen
to minimise some cost function. Like we have already seen for the optimal FIR and output error IR filter
models the cost function normally used in system identification theory is the minimisation of the mean
square error. Consider now the design of an equation error IIR filter model of order (M,N) to minimise

the mean square equation error. The cost function F’ to be minimised is denoted as,

F =E[e(n)]. (3.3.8)
Rewriting (3.3.8) using (3.3.6) and (3.3.2) we get an equation for the cost function F' in terms of the filter
coefficient vector O, which is termed the Mean Square Equation Error (MSEE) surface, as follows

[3.4],[3.131,[3.26],
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F=Ele}(n)]= E[(d(n) —07g, )ZJ. (3.3.9)

Re-writing (3.3.10) we get,
F=E[d*(n)]-20"r, +0'R, 6. (3.3.10)

Where R(p 0, 15 (M+N) x (M+N) covariance matrix defined as [21]:

R,, =Elo.. 1= vy o (3.3.11)
o o RT Rdd . -

xd

And r o is a cross correlation vector defined as:

r, = Eld(n)e,(n)], (3.3.12)

with:
R, =M x N cross correlation matrix E[x(n)d” (n)], (3.3.13)
R_,= N x N autocorrelation matrix E[d(n)d” (n)], (3.3.14)

From (3.3.10) we can clearly see that the Mean Square Equation Error (MSEE) surface for the

equation error IR filter model, like the FIR filter model, is a quadratic function of the filter coefficients
b, and. As a result a single global minimum will exist in 7 with respect to @, with no local minima. The

same techniques used for the selection of optimal coefficients for the FIR filter model described earlier
applies here. To minimise this cost function F of (3.3.8) with respect to the filter coefficient vector 0,

differentiate F in (3.3.9) with respect to 0 and equate to zero. This yields,

oF

Framn) +R,, 0=0, (3.3.15)

giving,
R0, 0=y, (3.3.16)
Equation (3.3.16) represents the equation error recursive form of the normal equations of (3.1.15).
Like the FIR model equation (3.3.16) requires the orthogonality of the input regression vector and the
equation error signal. Using (3.3.2), (3.3.8) and (3.3.15) this gives,

OF _9E[eX(m)] _ de, (n)
00 0 00

The optimal least squares filter coefficients selected to minimise the mean square equation error

~2E[e, (n) 1=-2E[e (n)p,]. (3.3.17)

(MSEE) are found by solving (3.3.16) for 8 as follows,

0, =R,, T, (3.3.18)

opt
Equation (3.3.18) is the solution to the problem of designing a linear time invariant equation error

[IR model to minimise the mean square equation error (MSEE) for wide sense stationary input signals.
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From equation (3.3.18) we can see the selection of equation error IR model coefficients Gw to minimise

the mean square estimation error (MSE) involves a direct matrix inversion.

3.3.2. Bias in the Equation Error Adaptive IIR Formulation

Despite the advantages of the quadratic Equation Error cost function in (3.3.10), the equation error
formulation of an IIR filter model suffers from a bias problem. Re-writing (3.3.9) using (3.3.6) and
Parseval's theorem to be in the same form as the output error lIR filter model in (3.2.24), we get [3.13],

F=_L fS ()1 A(e™)[H (™) - B(e™ )]lzdm L fS (eI Ae” )lzdco

2n 4 " 2n 4" (3.3.19)

Comparing the equation error cost fur.lction to minimised in (3.3.19) to the output error cost
function of (3.2.24) we can see unlike the output error model the minimisation of (3.3.19) due to the
second term on the RHS of (3.3.19) will give a bias in the estimated pole vector. To see the effects of this
bias more clearly from the optimal solution consider the sufficient order system identification case where

the output y(») for an unknown IIR system of order (M,N) is to be modelled by an equation error IIR

model of order (M,N) as shown in Figure 3.10 below.

1R unknown system +
e | 00, d(n)
L _1 Z
D(g™)

x(n) IIR Equation Error model

/
(n) §
Nl

Alg™)

e(n)

» B(g™) Z

+
v
Q‘

a

MA part AR part

Equation
Error

Adaptive Algorithm

|

g~' = Unit delay operator
B(qg)=b,+bq™ +b,g7 +..cc..+ by g
A(g™) = a]C/'l +a2q_2 Forrenn +a,q

Figure 3.10 : System Identification of IIR system using an equation error adaptive IIR filter
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The output of system d () input to the equation error model is corrupted by a disturbance signal

v(n) that is independent of the input signal x(n) giving,

d(n)=y(n)+v(n), (3.3.20)
where y(#) is the true system output to be modelled by the equation error 1R filter model. Rewriting the

cost function of (3.3.10) using (3.3.20) to show more clearly the effects of the noise bias we get

[3.261,[3.27],
2 (|0 T 0 0 2
F=E[y(n)]-20 -1, |[+0°|R,, +E 0 R 0+ E[v(n)], (3.3.21)
rVV ’ Vv
where V(#)is a Nx1 vector of noise samples defined as:

v(n)=[v(n=1,...,v(n—-MN)]", (3.3.22)

and (@, is the information vector of the 1IR system to be modelled defined as:

Q. =[x(n),...,x(n—M+1),y(n—-1),...,y(n—N)]", (3.3.23)

with:
r,, = N x N cross correlation vector E[v(n)v(n)], (3.3.24)
R, =N x N autocorrelation matrix E[v(n)v' (n)], (3.3.25)

Comparing (3.3.21) with (3.3.10) and (3.3.11), we see that the disturbance signal v(n)
introduces additional bias to the cross correlation vector T and matrix R 4 - This is a consequence of

using the desired signal d(#) in the feedback path of the equation error filter model which my corrupted

by additive noise. To see the effects of this bias in the equation error cost function consider firstly the case

where there is no disturbance noise at the output of the echo path to be identified. In this case
d(n) = y(n) and the cost function of (3.3.21) becomes,
_ 2 _ a7 T
F=E[y"(n)]-26 T +0 R(M‘O. (3.3.26)
For the noiseless case the optimum filter coefficients, 901” , may then be found by differentiating (3.3.26)
with respect to 0 and equating to zero, which gives,
-1
0, =R, T,. (3.3.27)

Considering now the case where the disturbance term v(#) is not zero, the optimum solution

0  found by differentiating (3.3.21)with respect to 0 and setting the result to zero giving,

opt
-1
0 0 0
Gopr = Rq),(p‘ + 0 R ry(p_ - r . (3328)
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Comparing (3.3.27) and (3.3.28) we can see that the optimum Wiener solution in the presence of

a disturbance signal v(7) at the output of the echo path, would attempt to select the a ; coefficients in

O(W to both minimise the noise variance of v(#) and to identify the poles of the echo path. This results

in a bias in feedback coefficients a; of the optimum coefficient vector solution 9”/), . For a special case

where the noise process V(71) is white, with variance G 7, we get [3.26],

0 0 "‘[ ]
0, =|R,, * 0 ool Ml (3.3.29)

From (3.3.29) it can be seen that when V(#) is white, a constant offset term is produced for the each AR
coefficient, allowing any bias to be more simply compensated for. However as v(7)in general is coloured

a constant offset term will not be present since R, will no longer be identity in form. The disturbance

noise signal V(7) may be more widely interpreted to include, not only any disturbances picked up on the

handset microphone at the output of the echo path, but also undermodelling noise. This undermodelling

would be caused by the equation error IR model order being lower than the order of the echo path to be

modelled [3.29].

Like the optimal FIR solution of (3.1.18) a direct solution of the optimal equation error solution in
equation (3.3.18) is impractical due to the difficulty and high computational complexity involved in

constructing and inverting the auto covariance matrix R(p A more practical solution is the

Tr
development of iterative solutions to the normal equations of (3.3.16), which will continuously track

changes in the optimal solution of (3.3.18) as each new data samples becomes available.

3.3.3. The Equation Error LMS (EELMS) adaptive algorithm

As was similarly done for the FIR LMS algorithm earlier in the chapter the steepest descent update

for the iterative solution to the recursive normal equations of (3.3.16) is given by,

6, =0 - %—VF” , (3.3.30)
where [L is a step size parameter to control the size of change in 0, from O, . The gradient of the mean
square equation error surface VF,7 using (3.3.16) and (3.3.17) can be written as,
VE, ==2E[e,(n)p. ()], (3331)
giving the iteration,
0,,=0,+uEle, (o, (n). (3332)

Since E[ee (n)(pe(n)] is generally unknown an estimate can be used. In line with the FIR LMS

philosophy used earlier in the chapter the gradient VFn is replaced by an instantaneous estimate,
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_ de’ (n)

VFE 3.3.33
"7 00, (3:3.33)
where,
de’ (n)
— = 2¢0,(n)e,(n), 3.3.34
S0 =20 00e.(0) 6334
giving the coefficient update,
enﬂ = 9)7 + u(pe (n)eg (n) 5 (3335)

Equation (3.3.35) is known as the Equation Eror LMS (EELMS) adaptive IIR

algorithm[3.4],[3.13],[3.26]. The weight vector 0 is altered only by a small amount Ll in order to ensure

that the new weight vector is influenced by all previous error values and not just e, (7). This ensures the

weight vector will converge to the optimal weight vector solution without excessive random wandering.
The structure of the Equation Error Adaptive IIR algorithm is shown in Figure 3.11.
Consider the convergence of the EELMS algorithm in the mean. As done for the FIR LMS

algorithm if we define a coefficient error vector &, which represents the difference between each element

of the filter coefficient vector @, and the optimal solution 90/” of (3.3.16) we get [3.26],

g, =(- UR, o k., (3.3.36)

Consequently each coefficient error term j of €, will decay to zero provided that,

](1 — A, )[ <1, (3.3.37)
where 7\,j is the /" eigenvalue of covariance matrix R(p 0, From (3.3.37) the Equation Error LMS

algorithm will converge in the mean provided that input is persistently exciting and the eigenvalues of

covariance matrix Rwl(p)have a magnitude less than unity. For a positive definite matrix R(p’(p)the

Equation Error LMS algorithm will converge in the mean provided that,

2
O<p<——m, (3.3.38)
}\’max
where A is the maximum eigenvalue of covariance matrix R, ,, - For a positive semidefinite matrix
R(p o that has Toeplitz form, the trace of the covariance matrix R(M) can be used for the upper bound

of (3.3.38) in a similar fashion to what was done for the FIR algorithm. Due to the Teoplitz form of

checpe the upper bound of (3.3.38) can be reduced further to,

O<p< (3.3.39)

2
fo. ()],

where “(pe (n)“2 is the 1, norm of information vector (0, (71) which can be written as,

fo. (), = X3 (n=i)+ Y (1= . (3.3.40)

91



From (3.3.37) we can see the convergence in the mean for each coefficient error term for the
Equation Error LMS algorithm will be dependent on the eigenvalue spread of the covariance matrix
me . The eigenvalue spread was defined earlier in (3.1.47).

Equation (3.3.35) is specified in a group adaption form where the same stepsize Ll is used to
control the adaption of all coefficients in the 1IR filter coefficient vector ﬂn. We shall see later in the
Chapter 5 that homogenous adaption forms will be used due to echo path attenuation [3.16]. A

homogenous adaption form uses separate stepsize factors, |1, and [l , to control adaption of the MA and

AR parts of the coefficient vector.

3.3.4. Normalised LMS Equation Error adaptive lIR algorithms

In the same way the output error LMS algorithms will vary with the power of the information

regression vector @ (1) or @ f(n) , the Equation Error adaptive IIR LMS algorithm will vary with the

power of the information regression vector @, (7). This presents a problem for choosing a fixed step size

WL for the Equation Error LMS algorithm. By incorporating normalisation into the filter update,

proportional to the power of the information vector @, (n), the filter update can be made independent of
input and output signal powers [3.30]{3.31]. For the Equation Error LMS algorithm, normalisation by the

I, norm of information vector @, (7) gives the filter update,

Gn-i-l = 9n + Tu
o+, (Mo, (n)

where O is a small positive constant to prevent division by zero when information vector power is zero.

e, (Mo, (n), (3.3.41)

Equation (3.3.41) is called the Equation Error Normalised LMS (NLMS) algorithm. Like the other

NLMS algorithms seen so far, the Equation Error NLMS algorithm will still suffer from the same

dependency on the eigenvalue spread of the correlation matrix, R(p o, Equation (3.3.41) is in group

adaption form.
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Figure 3.11 : The structure of the Equation Error LMS adaptive IIR algorithm.
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3.3.5. Newton’s method and the Equation Error LMS Newton adaptive IIR algorithm

Using the iterative solution to the recursive normal equations of (3.3.16) using Newton's Method

gives,
0,,=0,-uH"(0,)VF,, (3.3.42)
where H(0, )is the Hessian matrix of the mean squared error cost function £ of (3.3.10), and

H™'(0,) is its inverse. As we have discussed already the Hessain matrix defined in (3.1.55) is the second

derivative of the cost function with respect to the filter coefficients. Using (3.3.10) the Hessain matrix for

the equation error formulation can be computed as follows,

’F 9
HO) =350 =50 220w TRy, 01 3343
©.) 36,00, 06, [0, + Ry, 0] (33.43)
giving,
H®,)= 2R, , G340

Substituting (3.3.44) into (3.3.42) we get an equation for the solution to the normal equations using
Newton's method as folows,
-1
0,,=0,-R,_VF, (3.3.45)
Comparing (3.3.45) to (3.3.25) we can see that Newton's method can be expected to converge quicker due
to the weighting by R;](p, which essentially modifies the search direction to point to a minimum (local or

global) point on the cost function F . Like the other LMS Newton algorithms discussed so far this
weighting will equalise the eigenvalues of the correlation matrix each direction so each coefficient error
term will converge uniformly. Incorporating time dependency into (3.3.45) and using an instantaneous
estimate for V. as in the Equation Error LMS philosophy of (3.2.28) gives,

0,., =0, +uR;, (Mo, (ne,(n), (3.3.46)
Equation (3.3.46) is termed the Equation Error LMS Newton adaptive IR algorithm. Like the FIR LMS

Newton algorithm of (3.1.58) an update constant [ has been introduced to allow a greater degree of

control of the algorithm since a noisy instantaneous gradient estimate is used. Convergence in the mean

about a local minimum point on the cost function F will occur provided,

-ul<t, (3.3.47)
or,

O<pu<?2, (3.3.48)
Like the Simplified Gradient LMS Newton algorithm in practice the stepsize [l may have to be much
lower than the upper bound of (3.3.48) for convergence. From (3.3.46) we can see the weighting by

R;’@ (n) essentially will ideally make the Equation Error LMS Newton algorithm independent of the
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eigenvalue spread of the covariance matrix R;l% (n). This is a major advantage of the Equation Error
LMS Newton algorithm over Equation Error LMS and NLMS algorithms because of the dependence of
convergence speed on the eigenvalue spread of the covariance matrix R(;:(pe(n). Since the stepsize
U has to be sufficiently small for stability, a potentially slow convergence speed may result for coloured
signals where the eigenvalue spread is greater than unity. However due to the requirement of the
computation of an estimate of the inverse covariance matrix R;@e (n) every iteration n, the Equation

Error LMS Newton algorithm has a far higher computational requirement. To reduce complexity of the

inverse covariance matrix calculation the same techniques employed for the FIR LMS Newton algorithm

. L . . . . -1
can be used. Using the matrix inversion lemma the inverse covariance estimate R(p o (n)may be
ere

computed as follows [3.19],

(3.3.49)

D -l T e —1
1 R;, (1=Do,(me,” (MR}, (n=1)
- pr(, (n-1)— y - ,
5 -1
v o O (MR, (1 =10, (1)
where Y =1—0lis termed the forgetting factor which weights the most recent output errors. This is

5 -1
R, (1)=

useful to exclude old data that is less appropriate in non-stationary environments. Ol is a convergence

factor.

Like the other LMS Newton algorithms discussed so far the choice of fixed stepsize L in (3.3.46)
can be difficult for non-stationary environments and signals. Instead a variable convergence factor

L (7) can be chosen to minimise a posteriori error as follows,

1

wn) = — . 3.3.50
0, (MRS, (), (n) (3330
Introducing (3.3.50) into (3.3.46) we get,
R (n e (n
0 =9 oup, (9. (m)e. (7) (3.3.51)

n+l n “‘ T gy} >
(pe (n)R(pg(p? (n)(Pe (n)
Equation (3.3.51) is termed the Equation Error Normalised LMS Newton algorithm and

incorporates an additional reduction factor, L, like the other Normalised LMS Newton algorithms

discussed so far, to control convergence speed at the expense of steady state error.

3.3.6. Bias Removal in the Equation Error LMS algorithm and the Bias Remedy Equation
Error LMS adaptive algorithm

The Equation Error LMS algorithm of (3.3.35) will still suffer the same bias in the AR coefficients

once converged as illustrated in equation (3.3.29). This bias in the Equation Error LMS solution once

converged is due to the fact the information vector @,(#)in (3.3.3) includes not only the echo path

output information y(#), but also contributions disturbance signal v(#) as follows,
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9,(n)=9.(n) +[(‘;(n);}, (3.3.52)

where V(#)and @.(#) are defined in (3.3.22) and (3.3.23) respectively.

This additive disturbance signal v(#)is however normally not directly available to allow a simple
subtraction from the information vector to order to eliminate the bias. An alternative solution developed in
[3.26],[3.28] is to use the output error signal e, (7), since this signal is a good estimate for the
perturbation noise once the adaptive algorithm converges. Using this technique the adjusted information

vector @, (7) can be expressed as,

9, (n)=9,(n)-te,(n-1), (3.3.53)

where €, (7 ~1) is a N+M x1 vector defined as:

e,(n—1)=[0,.....0,e,(n—1),.....,e,(n—N)]", (3.3.54)
and the remedy parameter T (0 <7 <1) is a parameter used to control the amount of bias that is
eliminated from the information vector @, (7). Using this adjusted information vector in (3.3.53) gives
the coefficient update,

0, =0,+u0, (ne, (n), (3.3.55)
Equation (3.3.55) is known as the Bias Remedy Equation Error LMS algorithm [3.4],{3.26],{3.28].

In comparison to the Equation Eroor LMS update of equation (3.3.35) the only additional complexity is

the remedy parameter T , and an FIR filter who's zeros are the same as the poles of the 1IR model to
generate the equation error signal e,(#) from the output error signal e, (#) . The structure of the Bias

Remedy Equation Error LMS Adaptive IIR algorithm is shown in Figure 3.12.
In terms of the stability of the Bias Remedy Equation Error LMS algorithm of (3.3.59) the smaller
T is the closer the Bias Remedy Equation Error LMS algorithm is to the Equation Error LMS algorithm of

(3.3.32) since from (3.3.53) @, (77) will be similar to @_(7). As aresult for a smaller T a larger the bias

will exist in the AR coefficients when echo path output noise is present. However with a smaller T the
more stable the Bias Remedy Equation Error LMS algorithm becomes [3.4],[3.26],]3.28].
For the BR EELMS algorithm to be globally stable T must satisfy [3.26],]3.28],

0<t <min kM,l , (3.3.56)
Je. ()],

where k is a non-zero scalar constant which must be determined practically, and L must satisfy,

0<y <min O |, (3.3.57)

PpPpr

where A is the largest eigenvalue of covariance matrix R ony * and O is a sufficiently small positive

max

real constant [3.26],[3.28]. The covariance matrix R | is defined as,

Do Py
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R, .. =E0, (00, ()], (3.3.58)

For a positive definite matrix R , which is Toeplitz in form, the upper bound of equation (3.3.61)

Dy Py

becomes,
O<u<min——2——6 (3.3.59)
o, (], ™ ) B

where “(p b (n)“ , is the 1 norm of adjusted information vector @,, (7). In practice some experimentation
is needed to define the constant G in the upper limit of (3.3.59) for convergence, as L may have to be

2

much lower than ————— to remain stable.

[ (n)“z

Like the Equation Error LMS algorithm of (3.3.35) the Bias Remedy Equation Error LMS
algorithm of (3.3.55) is specified in a group adaption form. We will see in Chapter 5 that like all LMS
based adaptive 1IR algorithms presented so far, a homogenous adaption forms may be required to echo

path attenuation.

3.3.7. The Normalised LMS Bias Remedy Equation Error adaptive lIR algorithm

In the same way the Equation Error adaptive IIR LMS algorithm will vary with the power of the

information regression vector @,(7) the Bias Remedy Equation Error adaptive IR LMS algorithm will

vary with the power of information vector @,, (n) . This presents a problem for choosing a fixed step size
W for the Bias Remedy Equation Error LMS algorithm. By incorporating normalisation into the filter
update [3.30], proportional to the power of the information vector @,, (#) , the filter update can be made
independent this power variation. For the Bias Remedy Equation Error LMS algorithm, normalisation by

the I, norm of information vector @,, () gives the filter update,

9n+l = Bn + T u
3 +0,, (M9, (n)

where O is a small positive constant to prevent division by zero when information vector power is zero.

e, (e, (n), (3.3.60)

Equation (3.3.60) is called the Normalised LMS (NLMS) Bias Remedy Equation Error algorithm. Like
the other NLMS algorithms seen so far, the Bias Remedy Equation Error NLMS algorithm will still suffer

from the same dependency on the eigenvalue spread of the correlation matrix, R% bp
¥ br
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Figure 3.12 : The structure of the Bias Remedy Equation Error LMS adaptive IIR algorithm.
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3.3.8. The Newton's method and Bias Remedy Equation Error LMS Newton adaptive liR
algorithm

Using the iterative solution to the recursive normal equations of (3.3.16) using Newton's Method gives,

0, =0 —uH"'(®, )VF, (3.3.61)

n+l]

where H(0, )is the Hessian matrix of the mean squared error cost function F of (3.3.10), and

H“I(On) is its inverse. As we have discussed already the Hessain muatrix defined in (3.1.55) is the
second derivative of the cost function with respect to the filter coefficients. Using (3.3.10) and the

modified information vector @, (#)the Hessain matrix for the bias remedy equation error formulation

can be computed as follows,

o*F p)
H'0,)=—F—=—)2r, +2R,, 6] 3.3.62
( n) aenaen aBn [ CI‘P[,, 9Py, ] ( )
giving,
H®,)=2R, , . (3363

Substituting (3.3.44) into (3.3.42) we get an equation for the solution to the normal equations using

Newton's method as folows,

_ -1
0,,=0,-R, VF, (3.3.64)
Comparing (3.3.45) to (3.3.25) we can see that Newton's method can be expected to converge quicker due
to the weighting by R_I(p e Which essentially modifies the search direction to point to a minimum (local

or global) point on the cost function F . Like the other LMS Newton algorithms discussed so far this
weighting will equalise the eigenvalues of the correlation matrix each direction so each coefficient error

term will converge uniformly. Incorporating time dependency into (3.3.64) and using an instantaneous

estimate for VI as in the Equation Error LMS philosophy of (3.2.28) gives,

0,,=0, +uR; (n)p, (ne,(n), (3.3.65)

QirPor
Equation (3.3.65) is termed the Bias Remedy Equation Error LMS Newton adaptive IIR algorithm. Like

the FIR LMS Newton algorithm of (3.1.58) an update constant L has been introduced to allow a greater

degree of control of the algorithm since a noisy instantaneous gradient estimate is used. Convergence in

the mean about a local minimum point on the cost function £ will occur provided,

Il-p|<1, (3.3.66)
or,

O<p<2, (3.3.67)
Like the Equation Error LMS Newton algorithm in practice the stepsize |1 may have to be much lower

than the upper bound of (3.3.67) for convergence. From (3.3.65) we can see the weighting by
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(_pi W(n) essentially will ideally make the Bias Remedy Equation Error LMS Newton algorithm

independent of the eigenvalue spread of the covariance matrix R%v@’ . This is a major advantage of the
Equation Error LMS Newton algorithm over Equation Error LMS and NLMS algorithms because of the
dependence of convergence speed on the eigenvalue spread of the covariance matrix R(p, 0, ° Since the

stepsize [l has to be sufficiently small for stability, a potentially slow convergence speed may result for
coloured signals where the eigenvalue spread is greater than unity. However due to the requirement of the
computation of an estimate of the inverse covariance matrix R(;:(pv (n) every iteration n, the Equation
Error LMS Newton algorithm has a far higher computational requirement. To reduce complexity of the
inverse covariance matrix calculation the same techniques employed for the FIR LMS Newton algorithm

. . . . . . -1
can be used. Using the matrix inversion lemma the inverse covariance estimate sz o, (1) may be
5@ e

computed as follows [3.19],

R, (n—1 "R, (n-1
R—l (}’l) — __l_ R—l (}’l _ 1) R A (}’I )(P’V (n)(pb’ (n) PoPor (i’l ) , (3.3.68)
v

D5 Phr Dy Py »Y r 4
Z40, DR, (1=1)0,, ()

where Y =1—0is termed the forgetting factor which weights the most recent output errors. This is

useful to exclude old data that is less appropriate in non-stationary environments. . is a convergence

factor.

Like the other LMS Newton algorithms discussed so far the choice of fixed stepsize W in (3.3.65)
can be difficult for non-stationary environments and signals. Instead a variable convergence factor
LL(7) can be chosen to minimise a posteriori error as follows,

1

) R- ’ 3.3.69
(p,,rT (n)Rmi,xoh, (me,, (n) ( )
Introducing (3.3.69) into (3.3.65)we get,
R (n)o . (n)e,(n)
0. =0 : = ( : ) (3.3.70)

n+l n T ~ —1 ’
P (n)R(phr(pbr (n)(pb" (}’l)
Equation (3.3.70) is termed the Bias Remedy Equation Error Normalised LMS Newton algorithm

and incorporates an additional reduction factor, M, like the other Normalised LMS Newton algorithms

discussed so far, to control convergence speed at the expense of steady state error.

3.3.9. Bias Removal Using the Steiglitz McBride Equation Error Method

The Steiglitz McBride method of system identification essentially overcomes the bias problem of
the standard Equation Error model of Figure 3.9 by pre-filtering the input signals by the poles of the
adaptive model. As we shall see this essentially distorts the Equation Error surface in (3.3.19) to be
minimised, to appear more like the Output Error cost function of (3.3.24), while still remaining a linear

function of the adaptive filter coefficients. Consider the pre-filtered input signals [3.12], [3.19],
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x(n)

x (n)=—>1" 3.3.7
and,
d(n)
d = 33.7
TG o

where k is an iteration index, and A(g ', k) are poles of the adaptive model for iteration k. Using the

relationship of (3.3.7) we can formulate a filtered equation error signal as follows,

e _lI-ag .k, )
-Aq LR I-Ag K

: (3.3.73)

ey (n)=
fe h
Rewriting this gives,

fi-ag.n)] B(g",n)x(n)
e, (n)= [l—A(q‘l,k)Jd(n)_ R (3.3.74)

By running a series of iterations k on time series data x(n) and d(#), where each iteration the

pre-filiers A(g ™' ,k) are fixed during adaption of the filters coefficients, it is clear from (3.3.73) that
e, (n)is a fiitered equation error, such that F' = E[e;ie (n)] would be a quadratic with respect to the
filter coefficients. Thus the Steiglitz McBride method consists of a series of quadratic optimisation
problems at each iteration k [3.12]. From (3.3.74) if the pre-filters A(g B ,k) were time varying such that
k =n—1then e, (n) becomes similar in form to an Output Error signal e, (1) of (3.2.7).

Consider the modified equation error model output as a result of the pre-filtering processes of

(3.3.71) and (3.3.72),
ym)=0"g,. (3.3.75)
where 0 is as defined in (3.2.3) and @ £ is the (M+N) x 1 filtered information vector defined as:
0 =[x, (Moo (1= M +1),d (1= Do (i~ N =[x, (), d,(n=1"T . (33.76)

and where X ,(#) and d ,(n —1) are a Nx1 vectors defined as:

X, (n=D=[x,(n-1),... ,xf(n—M+l)]T, (3.3.77)
T
d,(n=1)=[d,(n=1)sccod , (n=N)]", (3.3.78)
The error signal for the Steiglitz M“Bride scheme then becomes,
T

e,(n)=d,(n)-0"9,, (3.3.79)

Comparing this error signal to the standard equation error signal of (3.3.6) we get the relationship [32],

e\n
e,(n)= ‘fﬂ ) , (3.3.80)
[-a@ " n-1)]

The cost function F' for the Steiglitz McBride Equation Error model to be minimised is defined as,

F =Ele;,(m]=E[(d, (n)-0"¢ )], (3.3.81)

Rewriting (3.3.38) this gives,

101



F=E[d?(n)]- 20Tr(,m +6'R, 0 (3.3.82)

QPP p
where R‘P/>‘~P/ 1s a (M+N) x (M+N) covariance matrix defined as [41]:
R _ E Ty _ Xpxg xpd,
oo, =100, 1= pr : (3.3.83)
X,d ded;

where rd/(p/ is a cross correlation vector defined as:

r,., =Eld (n)e,(n)]. (3.3.84)

with:
R, ;, =MxN cross correlation matrix Elx, (n)d§ (n)], (3.3.85)
Rd,d/ =N x N autocorrelation matrix E[df(n)d/T‘. (n)]. (3.3.86)

Since at each iteration k the Steiglitz McBride model is inherently an equation error model and the cost
function of (3.3.44) is linear with respect to the filter coefficients of the adaptive model. The same
methods used for the equation error model to derive an optimum set of filter coefficients to minimise
(3.3.39) can hence be used.

To minimise this cost function F of (3.3.81) with respect to the filter coefficient vector 0,

differentiate F in (3.3.82) with respect to 0 and equate to zero. This yields,
oF

—83 = —rd/q)/g -+ R(,O,E&Oﬁ,ﬂ = 0 s (3387)

giving,

(3.3.88)

M‘P/ﬁ =Yie,
Equation (3.3.46) represents the recursive form of the normal equations of (3.1.16) for the pre-
filtered equation error filter model. Like the FIR model equation (3.3.16) requires the orthogonality of the

input regression vector and the equation error signal of (3.3.36). Using (3.3.36) and (3.3.38) this gives,

%% _ aE[ng(n)] —2E[e,(n) aeg,;n)] = 2E[e, (n)p . (m)]. (3.3.89)

The optimal least squares filter coefficients selected to minimise the cost function F of (3.3.81) are

found by solving (3.3.46) for 0 as follows,

0 =R _'r (3.3.90)

opt [LyX d,q)/e .
From equation (3.3.90) we can see the selection of equation error IIR model coefficients 9()[), to minimise

the the cost function F of (3.3.81) involves a direct matrix inversion.

3.3.10. The method of Steepest Descent and the Steiglitz M°Bride Equation Error LMS
adaptive lIR algorithm

The development of the adaptive form of the Steiglitz M°Bride method requires some

simplifications must be made to the pre-filters A(g ', k)[3.13],[3.27]. Instead of a sequence of
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quadratic optimisation problems with stationary pre-filters A(g ™, k) for each iteration, time varying pre-

filters A(q_1 ,n —1)are used on the input signals giving [3.13],[3.27],

x,(n)= - A();(“;??n D =x(n)— ;aj (mx,(n~j), (3.3.91)
d a
d, ()= A(q(_’f’)n = d(n)— ; a,(md, (n—j). (3.3.92)

From (3.3.91) and (3.3.92) it can be seen at time index # the input signals x(#)and d(n)are pre-

filtered by the poles of the adaptive model at previous time index # — 1. The resulting error signal then

becomes [3.13],

e (m=d;(m) =50 =T () 1-aG"wk, ) (3.3.93)

-Alq 1] T-Aq -1

From (3.3.93) it can be seen that the filtered error signal e, (1) to be minimised is similar in form
to an instantaneous output error signal. However for a “suffiently small” stepsize W, the filter coefficients
vary “sufficiently slowly” such that prefilters A(g B ,—1) are close to those preoduced by a stationary

pre-filter at each step of adaption #[3.13]. Thus x, (n)and d P (#) can be assumed to be independent

of the filter coeffients @, at each iteration n, such that minimisation of £ :E[ej}e(n)] will be a

quadratic optimisation problem [3.13],[3.27].
Let us now continue with development of steepest descent adaptive LMS form of the Steiglitz

M°®Bride equation error method. For this adaptive method our objective is to choose the filter coefficients

On at each iteration n, to minimise the mean squared error cost function cost function of (3.3.81) [3.32],
[3.33],

2
F=E[e,(n)]. (3.3.94)
Using the steepest descent iterative method to provide an iterative solution to the recursive normal

equations of (3.3.88) we get the update,

0, =0 - %VFn : (3.3.95)
where [L is a step size parameter to control the size of change in 6, from 0, . The gradient of the mean
square equation error surface VFn using (3.3.88) and (3.3.89) can be written as,

VE, =-2Ele, () ,(n)), (3.3.96)
giving the iteration,
0, =0, +uEle (no,(n). (3.3.97)
Since E[eﬁ) (mo, (n)J is generally unknown an estimate can be used. In line with the FIR LMS

philosophy used earlier in the chapter the gradient VFn is replaced by an instantaneous estimate,
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- de7, (n)

VF, = (3.3.98)
90

where,

de> (n)

fe —

——a_é‘:‘ = “2(!)»/8 (n)eje (n), (3.3.99)
giving the coefficient update,

0,,=0,+10,(ne,(n), (3.3.100)

Equation (3.3.100) is known as the Steiglitz McBride Equation Error LMS adaptive IR algorithm
[3.131,[3.27],[3.32],[3.33]. The structure of the Steiglitz McBride Equation Error Adaptive 1IR algorithm

is shown in Figure 3.13.
Consider the convergence of the Steiglitz McBride Equation Error LMS algorithm in the mean for

a “sufficiently small” step size and for a sufficient order model [3.13]. As done for the FIR LMS

algorithm if we define a coefficient error vector &, which represents the difference between each element

of the filter coefficient vector @, and the optimal solution 00 . 0f (3.3.89) we get,

L =(I-HR@,W,)S,,, (3.3.101)

Consequently each coefficient error term j of €, will decay to zero provided that,

f(l - u%)] <1, (3.3.102)

where A __is the maximum eigenvalue of covariance matrix R@( 0 For a positive semidefinite matrix
ey fe

R that has Toeplitz form, the trace of the covariance matrix R

0405 _ can be used for the upper

PP re

bound of (3.3.102) in a similar fashion to what was done for the FIR algorithm. Due to the Teoplitz form

of R

09 the upper bound of (3.3.102) can be reduced further to,

O<pu< __:_2___
“‘Pfe (”)“ ’ (3.3.103)

where “&p % (}’1)“2 is the 1, norm of information vector @ (#) which can be written as,

lo. ()], Zx (n— 1)+2d (n=1), (3.3.104)

From (3.3.102) we can see the convergence in the mean for each coefficient error term for the

Equation Error LMS algorithm will be dependent on the eigenvalue spread of the covariance matrix

Rq)/% . The eigenvalue spread was defined earlier in (3.1.47).

Equation (3.3.100) is specified in a group adaption form where the same stepsize LL is used to
control the adaption of all coefficients in the IIR filter coefficient vector 9,). We shall see later in the
Chapter 5 that homogenous adaption forms will be used due to echo path attenuation [3.16]. A
homogenous adaption form uses separate stepsize factors, W, and U, to control adaption of the MA and

AR parts of the coefficient vector.
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Figure 3.13 : The structure of the Steiglitz McBride Equation Error LMS adaptive IIR algorithm.
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3.3.11. Normalised LMS Steiglitz McBride Equation Error adaptive lIR algorithm

In the same way the Equation Error LMS algorithm will vary with the power of the information
regression vector @, (1), the adaptive 1IR Steiglitz McBride Equation Error LMS algorithm will vary
with the power of the information regression vector @ , (n) . This presents a problem for choosing a
fixed step size [l for the adaptive HR Steiglitz McBride Equation Error LMS algorithm. By incorporating
normalisation into the filter update, proportional to the power of the information vector @ ,(n), the

Steiglitz McBride Equation Error LMS filter update can be made independent of input and output signal

powers [3.17],[3.30]. For the Steiglitz McBride Equation Error LMS algorithm normalisation by the 1,

norm of the filtered information vector @ (#) gives the filter update,

n
6, =0+ e, (no , (n), 3.3.105
! 50, (np,(n) < (3:3:105)

Equation (3.3.105) is called the Steiglitz McBride Equation Error Normalised LMS adaptive [IR
algorithm. Like the other NLMS algorithms seen so far, the Steiglitz McBride Equation Error NLMS

algorithm will still suffer from the same dependency on the eigenvalue spread of the correlation matrix,

QpPr "

3.3.12. Newton's method and the Steiglitz M°Bride Equation Error LMS Newton adaptive
IR algorithm

Using the iterative solution to the recursive normal equations of (3.3.88) using Newton's Method

gives,
0,,=0,—uH"(0,)VF,, (3.3.106)
where H(O, )is the Hessian matrix of the mean squared error cost function F' of (3.3.82), and

H™'(0,) is its inverse. As we have discussed already the Hessain matrix defined in (3.1.55) is the second

derivative of the cost function with respect to the filter coefficients. Using (3.3.82) the Hessain matrix for

the Steiglitz McBride equation error formulation can be computed as follows,

F 9
H@®,)=———=—-2£-r, +R,, 0], 3.3.107
( n) 8()"89" 00 [ ry“’ﬁ’ 9P ] ( )

giving,
H(0,) = 2R (3.3.108)

Substituting (3.3.108) into (3.3.106) we get an equation for the solution to the normal equations of

PP, ?

(3.3.88) using Newton's method as folows,
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6. =0-R' VF

op0, Vo (3.3.109)

Comparing (3.3.109) to (3.3.100) we can see that Newton's method can be expected to converge quicker
due to the weighting by R;/)(p/é which essentially modifies the search direction to point to a minimum
(local or global) point on the cost function /. Like the other LMS Newton algorithms discussed so far

this weighting will equalise the eigenvalues of the correlation matrix each direction so each coefficient

error term will converge uniformly. Incorporating time dependency into (3.3.109) and using an
instantaneous estimate for VF as in the Steiglitz McBride Equation Error LMS philosophy of (3.3.98)
gives,

0, =6, +UR; (M0, (n)e,(n), (33.110)
Equation (3.3.110) is termed the Steiglitz McBride Equation Error LMS Newton adaptive IR algorithm.
Like the FIR LMS Newton algorithm of (3.1.58) an update constant [L has been introduced to allow a

greater degree of control of the algorithm since a noisy instantaneous gradient estimate is used.

Convergence in the mean about a local minimum point on the cost function & will occur provided,
-p|<1, (.3.111)
or,
O<u<?2, (3.3.112)
Like the Equation Error LMS Newton algorithm, in practice the stepsize L may have to be much lower
than the upper bound of (3.3.112) for convergence. From (3.3.110) we can see the weighting by

R;Ip‘p/ (1) essentially will ideally make the Steiglitz McBride Equation Error LMS Newton algorithm

independent of the eigenvalue spread of the covariance matrix RSo 0 This is a major advantage of the

Steiglitz McBride Equation Error LMS Newton algorithm over Steiglitz McBride Equation Error LMS

and NLMS algorithms because of the dependence of convergence speed on the eigenvalue spread of the

covariance matrix ch,wf . Since the stepsize M has to be sufficiently small for stability, a potentially

slow convergence speed may result for coloured signals where the eigenvalue spread is greater than unity.

However due to the requirement of the computation of an estimate of the inverse covariance matrix

(;1/@/ (1) every iteration n, the Steiglitz McBride Equation Error LMS Newton algorithm has a far

higher computational requirement. To reduce complexity of the inverse covariance matrix calculation the

same techniques employed for the FIR LMS Newton algorithm can be used. Using the matrix inversion

lemma the inverse covariance estimate R(;lf‘(p/ (n) may be computed as follows [3.19],

; - R, (1=D0 (e, (MR, (n=1)
R, (m=—|R;, (n-1)-—2% 069 s . (33.113)

1
. PP s _
Y Lo TR, (0 =109 (n)
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where Y =1~—0lis termed the forgetting factor which weights the most recent output errors. This is
useful to exclude old data that is less appropriate in non-stationary environments. O, i a convergence

factor.

Like the other LMS Newton algorithms discussed so far the choice of fixed stepsize U in (3.3.110)
can be difficult for non-stationary environments and signals. Instead a variable convergence factor
L (71) can be chosen to minimise a posteriori error as follows,

1
0. (MR, (M0, ()
Introducing (3.3.114) into (3.3.110) we get,

R, ()0 (e, (n)
0 =0 —p—oee TR (3.3.115)

n+l n T S | >
?r (n)Rgoﬁ)(Qﬁ, (”)(Pfe (n)
Equation (3.3.115) is termed the Steiglitz McBride Equation Error Normalised LMS Newton

w(n) = (3.3.114)

algorithm and incorporates an additional reduction factor, i, like the other Normalised LMS Newton

algorithms discussed so far, to control convergence speed at the expense of steady state error.
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3.4. Adaptive lIR Algorithm Summary

A complete summary of the IIR adaptive algorithms detailed in the thesis can be formulated from

(4.4.1) as shown in the table below,

Initialisation: 0, =0, @ (n)=0,Vn<0
Algorithm y(n) e, (n) ¢, (n)
Simplified Gradient Output Error 0’0 (n) e (n) ¢, (n)
Pseudo Linear Regression Output Error 07¢, (n) e (1) ®,(n)
SHARF Output Error 07¢, (n) e, (n) 0, (n)
Equation Error 07¢, (n) e,(n) 0,(n)
Bias Remedy Equation Error BZ(PO (n) e, (n) 0} br(n)
Steiglitz McBride Equation Error 070, (n) e, (n) (1)
e,(n) =d(n)- y(n)
Algorithm Adaption Method H, w(n)
LMS | B
NLMS I u
0," (g, (n)

LMS Newton R, (n) u

NLMS Netwon R;j% (n) _ _1H
o, (MR, (me, ()

0,.,=0,+u(mH, 0 (n)e(n)

Table 3-2 : IR adaptive algorithm summary

where e, (7) is the output error signal, e,(7)is the equation error signal, }(#)is the output of the

adaptive filter model and d(#) is the output of the echo path to be modelled.
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Chapter 4

4. Modelling the acoustic echo path of a mobile handset

4.1. Introduction

In chapter 2, acoustic echo path responses were presented for typical mobile handset designs. It
was established that, for the handset designs tested that acoustic echo cancellation was required. It was
also seen that the variation of echo path response during normal handset use can be very large and in some

configurations tested a resonant handset response is measured.

In chapter 3 we have introduced the fundamentals of optimal filtering using FIR (Finite Impulse
Response) and IR (Infinite Impulse Response) filter models. A longstanding question of the acoustic
echo cancellation field is whether the use of an IIR model gives any significant performance advantages
over the much simpler and more widely used FIR model. Modelling results in the acoustic echo
cancellation literature concerning the relative performance of FIR and IR filter models have tended to be
based on room acoustic echo path impulse responses [4.1],[4.2],[4.3]. As correctly pointed out in [4.1]
these modelling results are specific only to these particular application areas, and general conclusions on
the modelling of an acoustic echo path using an 1IR model should be avoided. To the author's knowledge
no previous publications have documented the modelling of an acoustic echo path of a mobile handset
using FIR or 1IR models. The main aim of this chapter is to determine whether an FIR or lIR filter model
is more suitable for modelling the echo path response of a mobile handset based on the echo path

responses recorded in chapter 2.

In chapter 2 a sampling frequency of 12.8kHz was used to see clearly the characteristics of the
acoustic echo path response. The topic of narrowband and wideband codec ADC systems was discussed.
The main aim of this chapter is towards narrowband codec systems, as found in current GSM handset
designs and fixed line telephony. To model the total echo path response, the echo path as seen by an
acoustic echo cancellation device within the handset DSP (not only the acoustic response) must be
considered. Sections 4.2 and 4.3 of this chapter deal with the complete echo path to be modelled
(including the effect of codec filters). The issue of the sample rate conversion to the codec sample rate is
discussed. Converted Echo path response results a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>