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This thesis is concerned with the problem of acoustic echo cancellation in mobile 

handsets. The acoustic echo path in a mobile handset is due to the acoustic coupling 

between the loudspeaker and microphone, which changes depending on the particular 

handset design and on the handset orientation. To cancel this echo effectively, the nature 

of this acoustic echo path in normal use must be fully understood. This thesis identifies 

the possible echo sources on a mobile handset and reports on echo path measurements 

taken 6om a typical handset design in various handset orientations. It has been found 

that resonant acoustic echo path responses are obtained in normal handset use. 

The resonant nature of the echo path response motivates an investigation of IIR 

filter models, as well as more traditional FIR models of the echo path. From the 

reported results of offline modelling experiments it is clear that, not only do IIR. filter 

models give benefits in terms of complexity and performance over FIR models, but that 

the IIR filter model also needs to be adaptive. 

The modelling performances of adaptive FIR and both Equation Error and Output 

Error adaptive IIR algorithms have been investigated in this thesis. The steady state 

performance of certain Output Error adaptive IIR algorithms has been shown to be 

superior to equivalent adaptive FIR algorithms, both in the presence and the absence of 

microphone disturbance noise. The tracking performance of these Output Error adaptive 

IIR algorithms for different time variations in the echo path response, also show that 

these algorithms can also have better tracking performance than equivalent adaptive FIR. 

algorithms. 

In the handset acoustic echo cancellation application robust operation for input 

speech signals is necessary at low echo to microphone noise levels. A modified form of 

the NLMS Newton Simplified Gradient Output Error adaptive IIR algorithm is 

developed in this thesis to satisfy these requirements. 
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Chapter 1 
1. An Introduction to Echo Cancellation 

An echo of a transmitted signal can be a disturbing phenomenon for virtually all types of 

communication. The greater the amplitude of the echo signal and time delay between a signal being 

transmitted and the echo component being received the greater the disturbing effect will be on the quality 

and reliability of communication. Echo cancellation simply mimics the echo path function in a 

communication system to cancel any echo components [1.1]. The principle of echo cancellation is 

illustrated below in Figure 1.1, 
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Figure 1.1 : General configuration of an Echo Canceller 

In Figure 1.1 an echo path, h{ri), exists between the received signal path and the transmit signal 

path of a particular communications system. As a result the signal information 5(77) to be transmitted is 

corrupted by an echo signal y ( j l ) . In order to cancel the echo signal y{n) , an adaptive filter model is 

normally used to model the echo path hin), as the echo path normally varies with time. The output of the 

adaptive filter yiji) is a replica of the echo signal y{n) and can then be subtracted form corrupted 

signal d{n) to ideally leave no echo signal and only the signal information s{ri) to be transmitted [I . l ] . 

The type of echo cancellation used depends on the echo generating mechanism that creates the 

echo path h{ri) . In general there are 3 different types of echo cancellation - Acoustic Echo Cancellation, 

Line Echo Cancellation and Digital Echo Cancellation. 

The echo path generating mechanism that must be modelled in the case of Line Echo Cancellation 

is the result of impedance mismatches in 2 to 4 wire hybrids on the PSTN. During telephone calls on the 

PSTN electrical echo signals are generated on the receiver of the caller due to these impedance 

mismatches, which if not attenuated can be disruptive for long echo delays [1.1],[1.2]. 

In 4 wire subscriber loops which are used for digital data transmission over the PSTN via modems, 

the echo generating mechanism is the result of impedance mismatches in the local hybrid of the modem 

set on access to the 2 wire loop, and from impedance mismatches in the modem hybrid at the group 



switching centre. Digital Echo Cancellation is required to increase the signal to echo ratio for reliable 

modem data transmission [1.3]. 

The echo path generating mechanism for the Acoustic Echo Cancellation (AEC) application is a 

result of the acoustic coupling path between the loudspeaker and microphone arrangement as part of the 

communications system [1.4],[1.5] .For hands free applications the acoustic echo path may be the result of 

acoustic coupling between a loudspeaker and microphone enclosure in a room, office or car 

[1.5],[1.6],[1.7]. For Acoustic Echo Cancellation (AEC) on a mobile handset the echo path generating 

mechanism to be modelled is the acoustic path between handset loudspeaker and microphone within the 

operating environment of the user. 

This thesis is concerned with the cancellation of acoustic echo signals on mobile handsets using 

adaptive IIR filtering techniques. To the authors knowledge no results currently exist for acoustic echo 

cancellation on mobile handsets, which makes this area exciting and attractive to research. 

1.1. Acoustic Echo Cancellation on Mobile Handsets 

Consider the problem of acoustic echo on a mobile handset as illustrated in Figure 1.2. 
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Figure 1.2: Acoustic Echo Cancellation on a mobile handset 

The acoustic echo path of the mobile handset is a result of acoustic coupling between the 

loudspeaker and microphone on the handset. When a call is made with the mobile handset, speech signals 

sent by a user at the other end of the call to the mobile handset loudspeaker will result in an acoustic echo 

signal being returned to the handset microphone. This echo signal is due to the presence of an acoustic 

echo path, which produces this acoustic coupling between the loudspeaker and microphone on the 

handset. 

This acoustic echo signal will then be returned to the user at the other end of the call, delayed by 

the round trip network delay (which for GSM can be up to 200ms [1.6]). Depending on the level of these 

echo signals returned, significant degradation of the speech call can occur. The effects of time delay and 

echo for PSTN telephone connections has been studied in [1.8],[1.9]. In order to prevent any degradation 

in speech quality during a call, the terminal coupling loss of the handset must remain below a certain level. 



For GSM and third generation mobile handsets, to deal with calls that may have delays up to 300ms, this 

terminal coupling loss level is specified as 46dB [].10],[1.11]. 

The terminal coupling loss (TCL) of a mobile handset is defined as the overall attenuation of echo 

signals on the handset picked up by the handset microphone, and transmitted over the network. The echo 

return loss (ERL) of the mobile handset is the physical echo loss of the handset design due to the casing, 

etc. This echo return loss is due to the acoustic echo path of the mobile handset. Where the echo return 

loss of the mobile handset is insufficient to give the required terminal coupling loss level of -46dB, 

additional echo return loss enhancement (ERLE) in form of an acoustic echo canceller is required. 

To effectively cancel the acoustic echo signals on a mobile handset the acoustic echo cancellation 

device within a mobile handset must model the acoustic echo path of the mobile handset. As the acoustic 

echo path of a mobile handset may vary quickly depending on the handset position in normal use, the echo 

cancellation device must be capable of track these changes in order to provide sufficient terminal coupling 

loss at all times [1.11]. Adaptive filtering techniques would normally be applied within the acoustic echo 

cancellation device in order to track any echo path changes in normal handset use. This thesis is 

concerned with the application of adaptive IIR filtering techniques to this problem. 

1.2. Overview of Thesis 

The work described in this thesis was carried out between October 1996 and October 2002 on a 

part time basis. The aims of this work can be summarised as follows: -

» To develop adaptive IIR filtering techniques suitable for acoustic echo cancellation on mobile 

handsets and to investigate their benefits in terms of performance over more traditional 

adaptive FIR filtering techniques. 

From the work carried out in this thesis the main contributions are: -

« The nature of the acoustic echo path of a typical mobile handset design in normal handset use has 

been recorded and analysed (chapter2). The variations of both echo path response and resulting 

terminal coupling loss that an echo canceller must deal with in normal handset use have been 

identified. A proposal is made for a more robust set of standard test conditions than are used in 

[1.10] and [1.11], to ensure the handset terminal coupling loss remains below 46dB during 

normal handset use. 

» Modelling experiments have been carried out (chapter 4) showing the benefit of fixed IIR filter 

models over more traditional FIR filter models for the cancellation of acoustic echoes on mobile 

handsets under stationary conditions. It is shown that an adaptive model is needed to ensure the 

terminal coupling loss of a mobile handset remains below 46dB during normal handset use. 

e Adaptive Filtering simulations have been used (chapter 5) to show that adaptive IIR filtering 

techniques can give the performance advantages predicted for fixed IIR filter models under 

stationary conditions. The effects of adaptive algorithm parameters on the steady state modelling 

performance of adaptive IIR algorithms have been analysed. The modelling performance of 
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adaptive IIR algorithms in the presence of echo path output noise for this application has been 

established. It is clear from the results presented an output error adaptive IIR algorithm is 

required for the handset acoustic echo application, and that LMS Newton based adaption 

schemes are required. A proposal is made on the most suitable adaptive IIR algorithm for 

modelling the acoustic echo path of a mobile handset under stationary conditions. 

* The effects of time variations in the echo path response and non-stationary speech input signals 

on the tracking performance of output error adaptive IIR algorithms suitable for this application 

area are investigated (chapter 6). The effect of input SNR and output ENR on modelling 

performance when using speech signals is also investigated. It is shown that an output error 

adaptive IIR algorithm has benefits in tracking performance over more traditional FIR adaptive 

filtering algorithms. A robust output error adaptive IIR algorithm is proposed suitable for the 

handset acoustic echo cancellation application. 

Chapter 2, which follows this introductory chapter, deals with measuring and analysing the acoustic 

echo path response of a mobile handset for different handset positions and configurations. The handset 

configurations used represent the extreme positions possible in normal handset use and as such should 

also contain the likely possible variation in handset response in normal handset use The main purpose of 

this chapter is to determine the echo path response and terminal coupling loss behaviour of a mobile 

handset in normal use. The possible echo path sources of a typical mobile handset design are firstly 

identified based on the typical construction of a modem mobile handset design. Next the measurement 

process is outlined. 

From the measurements recorded in chapter 2 the echo path sources (or echo path generating 

mechanisms) responsible for the variation of terminal coupling loss and echo path response of a handset in 

normal use are identified. The echo path response of a mobile handset is identified to be linear in nature. 

It is clear that echo cancellation is required in normal handset use for the mobile handset designs tested, 

and that a linear echo canceller should be used for this application. It can also be observed that resonant 

echo path responses can be produced for the handset designs and configurations tested, indicating that an 

IIR filter structure may be beneficial for use in an echo canceller for this application. 

Finally in chapter 2 the effects of echo reflections from the user, and the external environment on 

the acoustic echo path response of a mobile handset are considered. Non-anechoic environments are used 

with different user handset positions. From the echo path measurements recorded throughout chapter 2 it 

is clear the single test condition of [1.10] used to establish the handset terminal coupling loss does not 

deal with the possible echo path variations in normal handset use observed from the measurements in this 

chapter. Using the non-anechoic echo path measures presented in the final sections of chapter 2 as a 

reference of how the mobile handset echo response can actually vary in normal use, a more robust set of 

fixed handset orientations are proposed for use in [1.10] and [1.11] to ensure a handset design will have 

sufficient terminal coupling loss in normal handset use. Adaptive algorithms developed in later chapters 

must remain stable and provide sufficient ERLE performance for the echo path responses of these fixed 

handset orientations, thus ensuring they will remain stable and provide sufficient terminal coupling loss in 

actual normal handset use. 



Chapter 3 deals with adaptive filter theory for FIR and HR filter models. The theory presented will 

be applied later the thesis to the handset acoustic echo cancellation problem when the performance of FIR 

and IIR filter models and adaptive filtering algorithms will be studied. Chapter 3 is split into three main 

parts. The first part begins with introducing FIR least squares optimal filtering concepts, which leads to 

the well-known normal equations [1.12]. Steepest descent and Newton iterative solutions to the normal 

equations are then presented from which the most commonly used gradient-based adaptive FIR filtering 

algorithms are derived. The second part is an extension of FIR least squares optimal filtering concepts to 

cover Output Error IIR least squares optimal filtering and the most commonly used gradient based 

adaptive Output Error IIR filtering algorithms. The final part of the chapter is used to cover Equation 

Error IIR least squares optimal filtering and the most commonly used gradient based adaptive Equation 

Error IIR filtering algorithms. At the end of this chapter a useful summary is given of all adaptive 

algorithms presented in this chapter in tabulated form. 

The choice of whether an FIR or IIR filter model should be used for acoustic echo cancellation is 

commonly based on modelling experiments carried out for the acoustic echo path responses from hands-

free telephony and teleconferencing applications [1.13], [1.14]. This basis is incorrect as the suitability of 

IIR filter models depends largely on the nature of the acoustic echo path of the particular application area, 

chapter 4 presents the results of offline modelling experiments using FIR and IIR filter models to model 

the echo path responses measured in chapter 2. From the results presented it can be seen there is a clear 

benefit in the use of IIR filter models for acoustic echo cancellation on a mobile handset, particularly for 

those handsets which employ wideband speech codecs for higher speech quality. Further, an analysis of 

the zero and pole vectors of the IIR filter models, and the ERLE gain achievable from fixed IIR filter 

models and fixed pole models, illustrates clearly the need of a fully adaptive IIR filter model for this 

application. 

Chapter 5 follows on from the work carried out in chapter 4 by examining the steady state 

modelling performance of the adaptive FIR and IIR filtering algorithms when modelling the echo path 

response of a mobile handset. To the author's knowledge no literature exists on the modelling 

performance of adaptive algorithms for the handset acoustic echo cancellation application. The first part 

of chapter 5 examines the achievable steady state ensemble averaged echo return loss enhancement and 

convergence performance of adaptive FIR and IIR algorithms under stationary conditions, over a range of 

model orders. A system identification configuration is used with no output noise, stationary input signals 

and a non-time varying echo path response. The handset echo path responses used in the offline 

modelling experiments of chapter 4 are re-used here. The adaptive FIR and IIR algorithms employed are a 

subset of those presented in chapter 3. 

From the results presented in the first part of chapter 5 it is clear the same gains in steady state 

modelling performance as presented in chapter 4 can be achieved for adaptive IIR algorithms. However 

from the results presented it is clear that faster LMS Newton based adaption schemes of chapter 3 are 

necessary for adaptive IIR algorithms in order to achieve these gains, and to get closer to the convergence 

performance achieved by adaptive FIR algorithms. The most suitable model order for adaptive FIR 

algorithms. Equation Error adaptive IIR algorithms and Output Error adaptive IIR algorithms can be 



identified from the results presented to meet the required echo return loss enhancement of each echo path 

modelled. 

As the handset acoustic echo cancellation may have to operate in noisy environments it is 

necessary that any adaptive HR algorithms used in the echo canceller must be robust to echo path output 

noise. The second part of chapter 5 thus looks at the modelling performance of equation and output error 

adaptive IIR filtering algorithms when modelling the echo paths presented in chapter 4 in the presence of 

echo path output noise. Using the model orders identified in the first part of chapter 5 the modelling 

peribrmance of the LMS Newton adaptive algorithms presented in chapter 3 is established. At low echo to 

noise ratios it is clear an output error adaptive IIR algorithm is required to maintain modelling 

performance gains over equivalent adaptive FIR algorithms in the presence of echo path output noise. 

From the LMS Newton based adaptive IIR algorithms presented in chapter 3, only the Output Error 

Simplified Gradient LMS and NLMS Newton adaptive IIR algorithms provides sufficient modelling 

performance in the presence of echo path output noise. 

So far in the thesis only stationary input signals and non-time varying acoustic echo path responses 

have been modelled. In the real handset acoustic echo cancellation application time variations will exist 

both in the handset acoustic echo path to be modelled and the input signals present. Chapter 6 addresses 

some of the more real world issues for acoustic echo cancellation on a mobile handset using adaptive IIR 

algorithms. The adaptive IIR algorithms used are Output Error Simplified Gradient LMS and NLMS 

Newton adaptive IIR algorithms of chapter 5. Chapter 6 is split into 3 parts. The first part of chapter 6 

deals with the tracking performance of adaptive IIR algorithms for a time varying acoustic echo path 

response. As the handset will not have a fixed orientation during a call, time variations in the acoustic path 

to be modelled will arise. The effect of both linear and non-linear time variations on the tracking 

performance of adaptive IIR algorithms is analysed. From the results presented it is clear that adaptive IIR 

algorithms have similar tracking performance to adaptive FIR algorithms with the same number of 

coefficients. 

In the final part of chapter 6 the effect of time varying inputs signals on the modelling performance 

of adaptive IIR algorithms is addressed. As non-stationary speech signals will be present in the actual 

handset echo cancellation application, it is important to establish the performance of adaptive IIR 

algorithms with real speech signals. Additionally the effects of low input SNR and output ENR on the 

performance of adaptive IIR algorithms is studied. A modified Simplified Gradient NLMS Newton 

adaptive IIR algorithm is proposed for robust acoustic echo cancellation on a mobile handset. 

Finally, chapter 7 summarises the main results presented in this thesis, and draws overall 

conclusions. Some directions for future research into acoustic echo cancellation on mobile handsets are 

also suggested. 



Chapter 2 

2. The Acoustic Echo Path of a Mobile Handset 

2.1. Introduction 

The main objective of this thesis is to develop adaptive IIR filtering techniques for acoustic echo 

cancellation on mobile handsets. In order to accomplish this it is necessary to understand the behaviour of 

the echo path response of a typical mobile handset design in normal use. In addition it is necessary to 

determine the level of Echo Return Loss Enhancement (ERLE) typically needed by an acoustic echo 

canceller for this application to ensure the terminal coupling loss requirements of can be satisfied at all 

times. To do this the echo path response of a typical mobile handset design must be measured and 

analysed. The main focus of this Chapter is to measure and characterise the echo path response, and 

terminal coupling loss of a typical mobile handset design. To the authors knowledge no results to date 

have been published on the nature of the acoustic echo path of a mobile handset in normal use. 

Chapter 2 is divided into 5 main sections. Section 2.2 begins by firstly discussing the possible 

sources of echo on a mobile handset. A discussion is presented on how these sources may influence the 

overall echo path response and terminal coupling loss of a mobile handset, depending on the handset 

orientation. It is thus important to identify which of these echo path sources will dominate in normal 

handset use as this will greatly influence the design of the most suitable echo canceller. Section 2.3 then 

outlines the measurement process and equipment configuration used to record acoustic echo path impulse 

response data from a typical mobile handset design. The calculation of echo path impulse and frequency 

response information from this recorded data is explained. Finally definitions for the Terminal Coupling 

Loss (TCL) of a mobile handset and the Echo Return Loss Enhancement (ERLE) are presented. The 

calculation of the Terminal Coupling Loss (TCL) level from echo path frequency response information is 

explained. 

In normal handset use the handset position with respect to the user's head will not remain fixed. 

Different handset orientations are also possible for future mobile applications other than speech, such as 

video telephony. A large number of handset orientations are hence possible and complete measurement of 

the echo path response of a handset in normal use is a difficult one. As a solution to this problem a set of 

fixed handset configurations are proposed. This novel set of test configurations not only represent extreme 

handset orientations in normal use, but also allows the dominating echo sources of a mobile handset to be 

clearly identified. Later in the chapter it will be shown that when actual echo path responses from 

reverberant environments are considered these fixed handset orientations do represent the likely variation 

possible in normal handset use. 

The results of anechoic echo path measurements from these fixed handset positions are presented 

in Section 2.5. From the results the dominant echo path sources are identified. It is clear that acoustic echo 

cancellation is needed in normal handset use, despite providing sufficient echo loss during the single fixed 

handset orientation described in the relevant standard [2.1]. It is also clear that the acoustic echo path of a 

mobile handset is largely linear in nature. From the results presented it can be observed that resonant echo 

path responses are possible from a mobile handset depending on the handset orientation and whether any 
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obstructions or seals exist on tire handset transducers. This motivates the study of IIR filter structures and 

adaptive IIR algorithms for this application in later chapters. At the end of this section a characterisation 

of the acoustic echo path response of a mobile handset response is made. The results presented in this 

section of course only directly apply to handsets of similar construction to the handset design measured 

for this thesis. It is, however, expected the conclusions drawn from these echo path results will apply to 

most mobile handset designs. 

Finally Section 2.6 addresses the impact of echo reflections from the user and the external 

environment on the acoustic echo path response required to be modelled by an echo canceller. Here the 

issue of the single test position of [2.1] to represent the handset terminal coupling loss in normal handset 

use is raised. It is clear from the results presented that a set of handset test positions is needed to capture 

the likely variation of handset echo response during normal use. The handset test positions discussed 

earlier in the chapter are proposed as a more robust set of test configurations for [2.1] and [2.2] to test 

whether the terminal coupling loss of a mobile handset remains below 46dB. 

2.2. Echo Path Sources on a Mobile Handset 

Before considering actual echo path measurements let us look at the design of a typical mobile 

handset. The normal construction of a mobile handset consists of a removable front plastic casing, which 

is secured to a base unit housing all handset electronics as illustrated in Figure 2.1. 

Mic L/S 

^ Removeable Front Case 

KEYPAD LCD 

Base Unit 

BATTERY 

Figure 2.1: Mobile handset constuction 

The handset loudspeaker is normally permanently attached to the front casing. The handset 

microphone can either be permanently attached to the front casing as illustrated in Figure 2.1, or 

permanently attached to the base unit, where a sealing contact with the front unit is made only when the 

front case is firmly attached to the base unit. The trend for modem mobile handsets is for the overall 

mobile size/volume to reduce, which normally reduces the relative distance between microphone and 

loudspeaker in the front case. As new multimedia applications arise such as mobile internet and video 

telephony the increased functionality of the mobile and increased LCD area needed will fundamentally 

restrict the size of a typical mobile handset in the future. 

In addition to mobile handsets, cordless telephony in the home is also becoming popular, where 

newer cordless handset designs are designed to look more like the size of older mobile handset designs. It 

is expected this trend will continue in the future, and these cordless handset designs will face similar echo 

problems to modem GSM handsets. 



The mobile handset design used for the measurement and analysis of handset acoustic impulse 

responses in this document is the NEC G9 mobile handset. The NEC G9 has approximate dimensions 

13cm X 5 cm X 2.5cm (length x breadth x height/width). At the time that the echo path measurements were 

taken this handset design was considered typical of the handset designs available in the market place. At 

the time of writing this Ph.D. thesis, however, this handset may be considered to be an older handset 

design. Indeed by current GSM handset designs this handset may be considered large by comparison, 

however it is still typical of the size of DECT cordless handsets currently available for the use in the home 

or office. This size is also comparable to newer third generation designs beginning to emerge in the 

marketplace. 

From a consideration of the construction of a mobile handset design the most probable echo path 

sources on a mobile handset are defined in Figure 2.2. 

hm,(n) 

hexll") 

hmech(n) 

Base unit 
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Cross-sectional view of mobile handset 

Top view of handset 

Figure 2.2: Echo path sources on a mobile handset 

These three possible echo sources are defined as the external acoustic echo path the 

internal acoustic echo path ( » ) , and the casing and structural mechanical echo path (n) . 

The external acoustic echo path, {n), is due to acoustic coupling from the loudspeaker in the 

handset earpiece to the microphone in the handset mouthpiece through the external environment. An 

external echo path is inevitable when a direct air gap exists between handset loudspeaker and microphone 

for sound to propagate. No external echo path components would be expected to arrive at the handset 

microphone until sound propagates across the distance from the loudspeaker to microphone in the air gap 

in this condition. For a distance of 10cm this would be approximately 0.34ms. An alternative source of 

external echo may also be due to propagation of sound in other transmission mediums. For example, if the 

handset is placed face down on a rigid surface while the handset loudspeaker is in operation, no direct air 

gap may exist, but sound may still propagate from the loudspeaker to the microphone through the rigid 

surface, creating an external echo path. 

It is assumed at this stage that the impact of echo reflections from the external environment may be 

neglected. The impact of echo reflections from the external environment will be considered later, when the 

echo path impulse responses in non-anechoic environments are analyzed. The external acoustic echo path 



on a mobile handset will be the main echo source for mobile applications such as hands free video 

telephony. 

The internal acoustic path, (n) , is due to the internal air cavity, which may exist in a handset 

design between the removable front casing and the base unit. Pressure fluctuations from the handset 

loudspeaker into the internal air cavity, may be picked up by the handset microphone, resulting in an 

internal echo path being created. Depending on the size and construction of the air cavity, and propagation 

characteristics within the cavity, resonant modes may appear in the echo path response due to the 

existence of sealed enclosure. This may only occur when a loudspeaker or microphone obstruction or seal 

is in place on the handset to form a sealed enclosure. For example, for an internal echo path enclosure that 

has a dominant length dimension of 10cm, the dominant fundamental frequency would approximately 

].7kHz. 

The mechanical echo path, (n) , is a result of the propagation of vibrations from the handset 

loudspeaker when in operation to the handset microphone through the handset front casing or base unit. 

This mechanical coupling may be non-linear in nature [2.3]. It is expected both the internal and external 

echo path sources would be linear in nature. 

The combination of echo path sources ( » ) , ( » ) and (» ) for a particular mobile 

handset will determine the overall acoustic impulse response h{n) as illustrated in Figure 2.3. 

Original Signal 

h(n) 

Echo Signal 

functional view of mobile handset 

Figure 2.3: Functional view of the acoustic echo path on a mobile handset 

The overall acoustic echo path response may be written as, 

( " ) + /'mt (M) + AmecA ( " ) ' (2.1) 

To illustrate how these echo path sources described above may influence the overall Terminal 

Coupling Loss (TCL) level of the mobile handset in normal use, let us consider some examples. 
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Consider a handset placed firmly to the user's head and ear as shown in Figure 2.4a. This situation 

is typical during a normal speech call if perhaps the user's environment is noisy. Due the handset earpiece 

being effectively sealed or obstructed by the user's ear, external echo path contributions would b e 

expected to be low. The overall Terminal Coupling Loss (TCL) level for the handset in this position 

would as a result be mainly a function of the internal echo path and mechanical echo path components. If 

mechanical echo path contributions can be neglected, internal echo path contributions would dominate the 

echo path response and hence overall Terminal Coupling Loss (TCL) level for the handset. If a strong 

internal echo path exists in the handset design, linear acoustic echo cancellation may be required. 

(a) Handset placed f irmly to 
user's ear and head 

(b) Handset placed away from 
user's ear and head 

(c) Handset placed in front of 
user's head , far away from 
user's ear. 

h ( y i \ s m a l l a s e x t e r n a l p a t h 
cxt V ) attenuated 

L (y . \ u n a t t e n u a t e d p e r h a p s 
int V / augmented 

attenuated 

J / \ l a r g e r a s e x t e r n a l p a t h 
ext V / unattenuated 

^int ( ^ ) unattenuated 

unaHenuated 

l a r g e as c l ea r ex te rna l p a t h 
"ext present 

i f i ) unattenuated 

^mech^P) unattenuated 

Figure 2.4: Illustration of how echo path sources may influence Terminal Coupling Loss of a 
handset in normal use 

Now consider the placement of the handset away from the user's head and ear as shown in Figure 

2.4b. This situation may occur depending on the preference of the user not to place the handset firmly to 

their head and ear. A direct air gap may exist in this handset configuration resulting in a larger 

contribution from the external echo path components to the overall Terminal Coupling Loss (TCL) level 

for the handset in this position. Echo path contributions from the internal and mechanical echo path 

sources would remain unchanged. Assuming a weak internal echo path in this handset configuration, and 

that mechanical echo path contributions can be neglected in the handset design, external echo path 

contributions would dominate the echo path response and hence overall Terminal Coupling Loss (TCL) 

level for the handset. The presence of external echo path contributions in this handset configuration may 

require the use of linear acoustic echo cancellation to increase the overall echo loss of the handset. 

Finally consider the placement of the handset away from the user's head and ear as shown in Figure 

2.4c. This situation may exist for mobile PDA's or future mobile handsets where video telephony is used. 

A direct air gap will exist in this handset configuration resulting in a large contribution from the external 

echo path components to the overall Terminal Coupling Loss (TCL) level for the handset in this position. 

Echo path contributions from the internal and mechanical echo path sources would remain unchanged. 

Again assuming a weak internal echo path in this handset configuration, and that non-linear mechanical 



echo path contributions can be neglected in the handset design, external echo path contributions would 

dominate the echo path response and hence overall Terminal Coupling Loss (TCL) level for the handset. 

The presence of strong external echo path contributions in this handset configuration will require the use 

of linear acoustic echo cancellation to increase the overall echo loss of the handset. 

In the next sections of this Chapter we will look at how the acoustic echo path response of a typical 

mobile handset design is measured. We will also look at how the resulting Terminal Coupling Terminal 

Loss is calculated. 

2.3. Echo Path Impulse Response Measurement Process 

Many different methods exist for the measurement of the frequency response in a loudspeaker 

microphone arrangement [2.4]. One of the most common methods that is widely available in most 

commercial FFT based analysers, is based on random signal excitation input signal to a linear system and 

the calculation of auto and cross spectral densities[2.5][2.6]. This technique forms the basis of echo path 

Many different methods exist for the measurement of the frequency response in a loudspeaker microphone 

arrangement [2.4]. One of the most common methods that is widely available in most commercial FFT 

based analysers, is based on random signal excitation input signal to a linear system and the calculation of 

auto and cross spectral densities[2.5][2.6]. This technique forms the basis of echo path response 

measurements in this Chapter. 

2.3.1. Estimation of system response using random signal excitation 

system excitation 
input signal h(n) 

x(n) 

system response 
output signal 

Unknown Linear 
Time Invariant 

System 

x y - — ^ 
Unknown Linear 
Time Invariant 

System 

-> y(n) 

Figure 2.5; Estimation of impulse response h(n) using a random signal excitation 

Consider the basic input-output relationship of Figure 2.5, described in terms of a convolution sum 

in the time domain as, 

}"(«) = ^ - /«) , (2.2) 
m=0 

Where the input signal x(n) is a random stationary process, the measurement of the system 

response h{n) requires use of statistical parameters such as the auto-correlation of the input x{n) and the 

auto-correlation of the system output y(n) defined as[2.5], 

+ A:)] = + A:) , 
t=o 

(A:) = -|- A:)] = ^ ^ 

(2.3) 

(2.4) 
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Using equation (2.1) the cross-correlation may be defined as[2.5], 

( ^ - / » ) , (2.5) 
/?;=0 

Taking the Fast Fourier Transform (FFT) of both sides of (2.5) gives the Cross Spectral Density, 

= (2 6) 

where 5'^.^((0)is the Auto Spectral Density. Re-arranging (2.6) gives the complex frequency response 

//(CO) of the unknown system as, 

Equation (2.7) defines the unknown complex frequency response / /(CO)of the system in terms of 

the complex cross-power spectrum 6"̂  (CO) and the auto spectrum of the input excitation signal (CO) . 

The unknown impulse response of the system /%(») may then be computed using the Inverse Fast Fourier 

Transform (IFFT) of (2.7) as, 

A(M) = 7 F F r [ 7 f ( m ) ] , (2.8) 

In practice estimates of the auto and cross spectrums are computed from finite sampled data 

records x(M)and y(M)[2.6]. Denoting the estimates of auto and cross spectrums as 5" (co) and 

5^,^(0)) we get the transfer function estimate, 

= (2.9) 

where ( e ) is an estimate of the complex frequency response H { e '"^) . A common technique used to 

estimate 5" (CO) and S^^{Qd) is the Welch method of spectrum estimation[2.7]. The unknown impulse 

response estimate of the system may then be computed using an Inverse Fast Fourier Transform (IFFT) 

from(2.9) as follows, 

A(M) = 7 F F r [ n , ( m ) ] , (2.10) 

Equations (2.9) and (2.10) provide an unbiased estimate of the complex frequency response and 

impulse response of an unknown system. 

Consider now the problem of estimating the unknown acoustic echo path impulse response hfn) 

from the data signals x(n) and d(n) of Figure 2.6. Due to measurement noise and ambient noise picked 

up by the microphone in the handset, the output of the echo path d(n) can be regarded as the true output 

of the echo path y{n), superimposed on which would be some uncorrelated output noise v(n) as shown 

in Figure 2.6. 
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Figure 2.6: Echo path impulse estimation in presence of output noise 

The measured echo path output of Figure 2.6 recorded may be expressed as, 

(» ) = y(M) + v(M), (2.11) 

Assuming the measurement noise v(n) is uncorrelated with the input signal x{n), 

+ /»)] = 0, (2.12) 

E[F'((D);^(()))] = 0 , (2.13) 

The cross spectral density between input signal input x(n) and measured output d(n) becomes [2.5], 

= ^ [ j r ' ( ( D ) y ( m ) ] = ^ ^ ( c o ) = , (2.M) 

From (2.14) the same relationship exists between the cross spectrum of input x{n) and measured 

output d{n) as exists in equation (2.6). Equation (2.9) and (2.10) thus provide an unbiased estimate of 

the complex frequency response and impulse response of an unknown system with respect to any output 

noise in the system. As the amount of averaging used in the computation of cross and auto power 

spectrum estimates and in (2.9) is increased [2.7] the impulse response estimate h{n) 

of (2.10) should converge to the actual impulse response of the unknown system h(n) [2.5]. 

2.3.2. Estimation of the coherence function 

When the output of a linear system is corrupted with un-corrected measurement noise as shown in 

Figure 2.6 the power spectrum of the output signal becomes, 

5"̂ ^ ( m ) = ( m ) + ( m ) , (2.15) 

From the FFT of both sides of equation (2.3) the auto spectrum of the actual output y{n) can be shown to 

be, 

= (2.16) 

Using equation (2.9), relation (2.14) and equation (2.15) the auto-spectrum of the output _y(«) becomes, 

= jtfCoDl's .Cra) = (2.17) 
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The ratio of power output of the system relating to the input, to the total output power at frequency m is 

defined as, 

Equation (2.18) is termed the coherence function relating actual system output J^(«) linearly 

derived from input x{n) and the measured system output d(n) . The coherence function is often used as 

a quality indicator when performing transfer function estimates, and has a range of 0 to 1. A level of 1 

indicates all of the output power at frequency CO is due to the input excitation signal only, with negligible 

measurement noise present. 

The noise process v (« ) thus far has been interpreted as the system output measurement noise, but 

can be more widely interpreted as any non-coherent contributions to the output of the system such as non-

linearities in the system response. The coherence in equation (2.18) may hence be defined as the ratio of 

output power linearly derived from the excitation signal x{n) , to the total output power measured. A 

high level of coherence across all frequencies is a good indication of system linearity. 

2.3.3. Echo Path Response Measurements using MATLAB and SIGLAB 

2.3.3.1. Equipment Set-up 

To record the acoustic impulse response of a mobile handset the measurement set-up Figure 2.7 

was used. All handset impulse response measurements recorded in this document were recorded in the 

University of Southampton anechoic chamber (which has a cut-off frequency of about lOOHz). 

2.3.3.2. Audio Bandwidth and Sample Rate 

At the time of writing this thesis most mobile handsets incorporate narrowband (telephone 

bandwidth) codecs, which employ an audio sample rate of 8000Hz, and a bandwidth around 300-3400Hz. 

This is still true for most GSM handsets in the marketplace today and for fixed telephone lines. To see 

clearly the characteristics of the acoustic echo path response a sample rate of 12.8kHz is used. The echo 

path responses presented in this chapter are converted to the 8000Hz sample rate later in the thesis in 

chapter 4 for FIR and IIR modeling experiments, since the main focus during this thesis is acoustic echo 

cancellation on mobile handsets with narrowband. 

Due to the increasing market penetration of ISDN, Broadband Internet, audio and video 

conferencing, and newly emerging third generation mobile applications, wideband speech codecs have 

been developed to provide higher fidelity speech [2.12]. These wideband codecs operate at a 16kHz 

sample rate with a bandwidth of 50-7000Hz. The higher sample rate of 12.8kHz used for echo path 

measurements presented in this chapter will be close to the actual responses required to be modelled by an 

echo canceller in future mobile handset designs (of similar construction) which use these wideband codec 
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devices. To show the application of results presented in thesis also apply to wideband codec systems the 

echo path responses presented in this chapter are converted to a 16000Hz sample rate in chapter 4 for FIR 

and IIR modeling experiments. 

v(n) 

External to chamber 

Siglab 20-22A 

Microphone Pre-amplifier 

Figure 2.7: Handset echo path measurement layout 
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2.3.3.3. Measurement Procedure 

The first step in generating echo path impulse responses was to inject a band limited Gaussian 

white noise signal into the handset loudspeaker, and record simultaneously both this original noise signal 

x{n) (before loudspeaker) , and the signal d{n) returning through the handset microphone after 

amplification. Both signals x{n) and d{n) are recorded at a sampling frequency of 12.8kHz, for a 

duration of 25secs (320,000 samples at 12.8kHz sample rate) using the Siglab 20-22A unit [2.8],[2.9]. 

The Siglab unit uses a fixed sampling rate of 51.2kHz and a 4* order analogue anti-aliasing filter to band 

limit recorded data to 12.8kHz. The AD 2105 is then used to perform multi-stage digital decimation 

filtering to get the relevant sample rate. In our case this is a 12.8kHz sample rate for echo loss 

measurements. 

Using the MATLAB signal processing toolbox functions[2.10], the echo path impulse response 

estimate A ( n ) , of equation (2.10) is computed as shown below in Figure 2.8. The auto and cross power 

spectrum estimates <^^((0) and 5'^(co) were computed from the input and output data sets x{n) and 

cl(n) using the Welch's method with a Hanning window type used. A Hanning window size of 1024 

samples and overlap of 512 samples were used in the calculation of the complex frequency response 

estimator (e ' " ) using equation (2.9). Approximately 600 averages were used in the computation of 
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auto- and cross-spectrum estimates for (e""") to get accurate results for the echo path frequency 

response. 

x(n) 
Loudspeaker 
input Signal 

Noise 
v(n) 

Input Aulo Spectrum 

Cn#sSpM#um 

aL.(vo') [ 

Complex Frequency Response 

ImpUse Response 

angle{. 
Ph^e Response 

d(n) 
Microphone 

Output Signal 

Figure 2.8: Estimation of unknown echo impulse response using MATLAB and the SIGAB 20-22A 
unit 

The echo path phase response is calculated from the complex frequency response estimate ) and 

the acoustic echo path impulse response estimate h{n) is calculated f rom (2.10). 

The coherence function y ^.w(Ci)) of (2.18) for an echo path impulse response measurement is 

computed from input and output data sets x(n) and d(n), using estimates for the auto and cross power 

spectauTB .$^^(0)) and TThe estrnKdes ard are 

calculated from x(n) and d(n) using the Welch's method as discussed earlier using a Manning window size 

of 1024 and overlap of 512 samples [2.5],[2.7], Approximately 600 averages were used in the 

computation of auto and cross spectrums for an accurate coherence function measurement. The coherence 

function is a particularly useful indication as to whether any non-linear components exist in the echo path 

response measured. 

2.3.4. Calculation of the Terminal Coupling Loss (TCL) and Echo Return Loss 
Enhancement (ERLE) 

The Terminal Coupling Loss (TCL) level of a mobile handset is currently defined as the integral of 

the power transfer characteristic A(f) weighted by a -3dB/octave slope starting at 300Hz and extending to 

3400Hz [2.1],[2.11] - where a -3dB/octave slope corresponds to a dependence of the input power 
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spectral density, i.e. the input is assumed to be band limited pink noise. This definition is based on 

narrowband codec systems with an audio bandwidth of 300-3400Hz. 

For the measured handset acoustic echo path responses, the function becomes the echo path 

frequency response Iff, )| giving the Terminal Coupling Loss (TCL) equation, 

= 3.85 - 10 log 
10 J f 

300 V 

-df 
(2.19) 

Equation (2.19) is simply the ratio of input and output powers of the echo path for a band limited 

pink noise input signal in the range 300 to 3400Hz [2.11] .The input signal characteristics are defined as, 

„ 2 

W ) 300 < / < 3400 
/ ' , (2.20) 

0 , / < 3 0 0 , / > 3 4 0 0 

The signal characteristics of (2.20) approximate the long-term average spectrum characteristics of a 

speech signal. The actual test signal of [2.1] used in TCL measurements is an artificial speech signal, 

whose long-term spectrum approximates the characteristics of (2.20). For the purposes of echo loss 

measurement and preliminary modelling results contained in this thesis, an implementation of the band 

limited pink noise signal of (2.20) in MATLAB is used. 

To compute the Terminal Coupling Loss (TCL) level of (2.19) in practice using N+1 discrete 

samples of uniformly spaced in the range 300 to 3400Hz, the following approximation is 

used [2.11], 

r C Z ^ ( 6 ^ ) = 3 . 2 4 - 1 0 1 o g , 
(2.21) 

where j/f, (0)| is the echo path power response at frequency 300 Hz, and , (iV)| is the echo path 

power response at frequency 3400 Hz. 

In the same way the Terminal Coupling Loss (TCL) level can be defined as a ratio of ratio of input 

and output powers, the Echo Return Loss Enhancement (ERLE) may also defined as ratio of powers. It is 

common practice to calculate this Echo Return Loss Enhancement (ERLE) using time averages across the 

data records as follows. 

10 log 
(»)] 

10 log 

M - I 

M - I 

m = 0 

(2.22) 

where M represents the length of input and output recorded sequences and 
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For wideband codec systems the Terminal Coupling Loss definition in [2.1] may be modified to 

account for the higher audio bandwidth of 50- 7000Hz. 

2.3.5. Calculation of the Effective Impulse Response Duration 

10log^o[|h(n)|2] 

A 

-30dB 

• t 
peak 

Effective Duration 

Figure 2.9 : Effective Duration of an echo path impulse response 

From Figure 2.9 it can be clearly seen the effective duration of an echo path response is defined is the 

time taken for the echo path impulse response to decay to 30dB below the main peak energy of the 

response. 

The effective duration determines the effective impulse duration required to be modelled by an 

echo canceller. This of course can be related to the number of feedforward filter model coefficients 

required to model the echo path response effectively. 
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2.4. Handset Test Configurations 

The actual echo path impulse response of a mobile handset will depend on the handset orientation. 

In normal handset use, the handset orientation is dependent on the user and the mobile application being 

used. For example in normal speech conversation the user may place the handset in a 45° position close to 

the user's head and ear, whereas in new multimedia applications such as mobile video telephony the 

handset will most likely be placed vertically (or horizontally) in front of the user's head. A large number of 

possible handset orientations are hence possible. The task of determining the echo loss performance of a 

mobile handset in normal use is a difficult one. 

The main aim of this section is to define fixed test handset orientations that are repeatable, and 

representative of the possible handset variations in normal handset use, to allow the dominating echo path 

sources on a mobile handset to be identified. With this aim in mind the following set of handset 

orientations are defined. These handset orientations are designed to take into account all possible handset 

transducer sealing or obstruction possibilities, for all mobile applications (not just speech services) so that 

the full variation of the handset echo path response in normal use will be observed. 

1. The artificial ear sealed test configuration of [2.1 ]and [2.2]. 

2. The face up handset configuration, with no transducer seals. 

3. The face up handset configuration, with adhesive tape sealing the loudspeaker port 

4. The face up handset configuration, with adhesive tape sealing both the loudspeaker and 

microphone ports 

5. The face up handset configuration, with adhesive tape sealing the microphone port 

6. The face down handset configuration as defined in stability tests of [2.1]and [2.2] to give worst-

case acoustic conditions. 

We shall see later in the Chapter that this set of handset orientations allows the handset echo path loss in 

normal handset use to be more robustly estimated in normal handset use. Currently only the single test 

condition specified in [2.]]and [2.2] is used. 
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2.4.1. The Artificial Ear Sealed Handset Configuration. 

Currently the echo loss performance for GSM mobile handsets is determined by using the test 

configuration specified in [2.1]. This test configuration is used to represent the typical handset placement 

for a speech only service, where the handset is placed firmly against the user's ear during a call, normally 

in a slanted 45° position. The test configuration used is shown in Figure 2.10. The mobile handset 

loudspeaker is sealed to an artificial ear, which approximates the acoustic impedance of the inner ear. 

Cross-sectional view of mobile handset 

BaseUhit 

Artificial Ear Seal 

Figure 2.10: The artificial ear sealed echo loss test configuration of [2.1]. 

This handset configuration is used to represent the firm placement of a mobile handset to a user's ear. The internal and mechanical 

echo path echo path sources are likely to be the main sources of echo in this handset configuration due to heavy attenuation of 

external path components. 

During a speech call or different mobile application the actual handset orientation may not remain 

firmly against the user's head and ear. No account of this can be made during the echo loss test of [2.1], 

thus the single test condition is not a very robust method to ensure the echo loss performance for the 

handset remains below the required levels in normal handset use. 

In this handset configuration the external echo path will be heavily attenuated and the internal echo 

path or mechanical echo path sources may dominate the echo response of the handset. 
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2.4.2. Face Up No Seals Handset Configuration 

In this handset configuration all echo path sources will be present. This configuration covers the 

condition where a partial or full direct path exists between the handset loudspeaker and microphone ports. 

This may occur during a speech call due to a loose placement of handset to the user's head and ear. In 

different mobile applications such as a mobile video telephony, this condition is very likely since the 

handset is likely to be placed in directly front of the user as illustrated in Figure 2.11. 

Direct Path Direct 
Path 

Case 
cho Path 

Base Unit 
FLAT 

SURFACE 

External 
Acoustic 

Echo Source 

Figure 2.11: No obstruction or sealed handset configuration. 

This handset configuration represents the condition where a direct air gap exists between the handset loudspeaker and microphone 
for sound to travel. The external echo path contributions will be a significant contribution to the overall echo path response in this 
handset configuration. 

Identification of the external echo path contributions will be possible in this handset configuration 

by comparing the echo path response with the artificial ear sealed handset configuration response of 2.4.1 

where the external echo path contributions are expected to be low. The presence of case echo path 

components can be also established by analysing the coherence of the measurement and the absence of 

any components during the time taken for sound to propagate from handset loudspeaker to microphone. 
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2.4.3. Face Up Handset Configuration with the Handset Loudspeaker Sealed with Tape 

This configuration covers the condition where an imperfect seal or obstruction exists on the 

handset loudspeaker, which can occur in normal use, in assembly, or as a result misalignment of front 

casing with base unit during front casing replacement by user. To represent this condition of an imperfect 

seal or obstruction adhesive tape is placed over the handset loudspeaker as illustrated in Figure 2.12. 

Attenuated External 
Acoustic Echo 

Source | 
Adhes 

Tape Sea 

Case 
cho Path Loudspeaker 

Seal or Obtruction 

FLAT 
SURFACE 

Adhesie 
Tape Seal 

Base Unit 

Figure 2.12: Loudspeaker sealed handset configuration. 

This handset configuration represents the condition where an imperfect seal exists on the handset loudspeaker. The case and 
external echo path contributions will be significantly reduced due to the presence of the tape seal. However the internal echo path 
may become augmented due to pressure fluctuations from loudspeaker propagating in air cavity of handset. 

Identification of the external and internal echo path contributions will be possible in this handset 

configuration by comparing the echo path response with the artificial ear sealed handset and face up no 

sealed configuration responses of 2.4.1 and 2.4.2. 

The presence of a loudspeaker seal or obstruction will result in the external (and case) echo path 

source being attenuated. It is possible that the internal echo path may become augmented if the presence 

of a loudspeaker seal creates an enclosure where pressure fluctuations from loudspeaker propagate in air 

cavity of handset resulting in resonant modes in the echo path response. Comparison with handset 

configuration of 2.4.1 and 2.4.2 should show augmentation of internal echo path components. 
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2.4.4. Face Up Handset Configuration with tlie Handset IVIicrophone Sealed with Tape 

This configuration covers the condition where a seal or obstruction exists on the handset 

microphone, which can occur in normal use, in assembly, or as a result misalignment of front casing with 

base unit during front casing replacement by user. To represent this condition adhesive tape is placed over 

the handset microphone as illustrated in Figure 2.13. 
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Figure 2.13: Microphone obstruction or sealed handset configuration. 

This handset configuration represents the condition in which a microphone obstraction or seal exists on the handset during a call. 
Adhesive tape seals on the handset microphone shall be used to represent this condition. The internal echo path is expected to form 
a large part of the echo path response in this handset configuration, assuming negligible case echo path components. 

This handset configuration represents the condition where only a microphone obstruction or seal 

exists on the handset during a call. An adhesive tape seal on the handset microphone is used to represent 

this condition. 

The presence of a microphone seal or obstruction will result in the external echo path source 

being attenuated. It is possible that the internal echo path may become augmented if the presence of a 

microphone seal creates an enclosure resulting in resonant modes in the echo path response. Comparison 

with handset configurations of 2.4.1 to 2.4.3 should show augmentation of internal echo path components. 
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2.4.5. Face Up Handset Configuration with the Handset Microphone and Loudspeaker 
Sealed with Tape 

This configuration covers the condition where a seal or obstruction exists on both the handset 

loudspeaker and microphone, which can occur in normal use, in assembly, or as a result misalignment of 

front casing with base unit during front casing replacement by user. To represent this condition adhesive 

tape is placed over both the handset microphone and loudspeaker as illustrated in Figure 2.14. 
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Figure 2.14: Microphone and loudspeaker obstruction or sealed handset configuration. 

This handset configuration represents the condition in which both a microphone and loudspeaker obstruction or seal exists on the 
handset during a call. Adhesive tape seals on the handset microphone and loudspeaker shall be used to represent this condition. The 
internal echo path is expected to form a large part of the echo path response in this handset configuration, assuming negligible case 
echo path components. 

The presence of a both a microphone and loudspeaker seal or obstruction will result in the 

external echo path source being heavily attenuated. This allows the internal echo path components to be 

identified. It is possible the presence of both a microphone and loudspeaker seal will create an internal 

enclosure within the handset, resulting in resonant modes being set-up as sound re-radiated from the 

loudspeaker propagates in the internal air cavity. The handset echo path response may become resonant in 

nature when placed in this handset configuration. 
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2.4.6. Face Down Handset Configuration 

In this handset configuration the handset is placed face down on a rigid surface as illustrated in 

Figure 2.15. This configuration represents the condition where the user may place the handset face down 

during a normal conversation. This handset configuration also represents the stability tests of [2.1] and 

[2.2]. It is expected that this handset condition will be representative of the worst-case acoustic condition 

during a call [2.2]. 

Base Unit 

Rigid Surface 

Figure 2.15: Face Down handset configuration. 

This handset configuration represents the condition a partial or no air gap may exist between handset loudspeaker and microphone. 
The external echo path may be augmented due to existence of a propagation path through the rigid surface from loudspeaker to 
microphone. 

The echo path response of this handset configuration will depend both on the handset shape or 

design, and the properties of the rigid surface on which the handset is placed. For handset designs like the 

one tested in this thesis a number of possibilities could exist for which echo path source dominates the 

overall echo path response for this handset configuration. 

One likely possibility is that the external echo path source will dominate, which consist mainly of 

the propagation through the rigid surface used, and/or across any direct air gap that may exist depending 

on the shape of the handset. Another possibility depending on the handset design and the rigid surface 

used is that a microphone and loudspeaker seal or obstruction may result when placed on the rigid surface. 

This could result in the external echo path source being heavily attenuated, allowing the internal echo path 

components to be identified. 

The presence of any non-linear contributions from propagation through the rigid surface or across 

the handset casing in this handset configuration can be established by analyzing the coherence of the 

measurement. 
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2.5. Results of Anechoic Acoustic Echo Path Impulse Response 
Measurements 

This section of the report presents the echo path responses of the NEC G9 mobile handset in the 

test configurations described in the last section. Five mobile handsets of the same type were used. No 

significant differences in responses were noticed from these handsets. It is expected the results presented 

in this section will be the same for other handset designs of similar construction. 

The Terminal Coupling Loss (TCL) levels calculated for each echo path response measured in this 

chapter are displayed in Table 1 below. The required Echo Return Loss enhancement levels for each echo 

path response, to ensure that the requirements of [2.1] and [2.2] are satisfied, are also shown in Table 1. 

Handset Configuration TCL(dB) Required ERLE 

(dB) 

G9 artificial ear loudspeaker sealed test configuration 46.18 0 

G9 face up configuration with no transducer seals 32.95 13.05(13) 

G9 face up configuration with a loudspeaker seal 4L73 4.27 (4) 

G9 face up configuration with a microphone seal 40.2 5.8 (6) 

G9 face up configuration with a microphone and loudspeaker 

seal 

37.38 8.62 (9) 

G9 face down on a flat rigid surface 30.31 15.69(16) 

Table 1; Terminal Coupling Loss(TCL) and required Echo Return Loss Enhancement(ERLE) 
levels calculated for NEC G9 echo path responses. 

To simplify the ERLE requirements for future Chapters the required ERLE levels from Table 1 are 

rounded up to the nearest integer level (shown in brackets). From Table 1 it can be clearly see that 

additional Echo Return Loss Enhancement (ERLE) up to 16dB will be required for normal handset use to 

ensure that the 46dB Terminal Coupling loss requirement of [2.1] for the handset design tested. 

The echo loss results in Table 1 for the mobile handset tested show that no additional ERLE is 

needed for the artificial ear sealed test configuration of [2.1] and [2.2]. However for the other echo paths 

tested additional ERLE is needed. Only when we consider the full range of echo path responses possible 

in normal handset use for this handset, do we see the full range of ERLE levels needed for this 

application. An echo canceller must be designed to meet the ERLE requirements of all echo paths tested in 

Table 1, not just the artificial ear sealed test configuration of [2.1]. 

The results of Table 1 demonstrate that using the set of handset configurations described in the last 

section to establish the echo loss performance of a mobile handset is a more robust method than the single 
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test configuration of [2.1]. Indeed we can say that, when only the artificial ear sealed test configuration of 

[2.1] is used to establish the echo loss performance of a mobile handset, in normal handset use the levels 

of echo loss for the handset cannot be guaranteed to remain below the required levels of [2.1]. 

Let us now look at the actual echo path response results. Let us first look at the artificial ear sealed 

response of [2.1] discussed in Section 2.4.1. Figure 2.16 shows the coherence function, fi-equency 

response, and echo path impulse response measured for this handset test configuration. A high level of 

coherence across all frequencies can be observed. Areas of low coherence can be attributed to the echo 

path response being low, where the resulting output SNR for the measurement may be low. The frequency 

response in Figure 2.16(a) shows the echo path loss across the frequency range of 0 to 6400Hz and as a 

result shows negative y-axis values, unlike the Terminal Coupling Loss value which is defined to be 

positive in [2.1]. This is the same form used for all results presented in this chapter. For narrowband 

codecs the main region of concern is the audio range of 0 to 4kHz. Above 3.6kHz, the frequency response 

will be heavily filtered by the narrowband codec ADC filter response. As most of the energy of the 

frequency response resides above 3 kHz, the resulting Terminal Coupling Loss measured in the region 300 

to 3400Hz for this echo path response is large (indicating high echo path loss). Looking more closely at 

the frequency response in Figure 2.16, low level peaks can be observed around 400, 1400 and 1900Hz in 

this handset configuration. 

From the echo path impulse response in Figure 2.16(c) there exists a delay period with little 

impulse response activity of approximately 0.4ms, which corresponds to the time taken fbr sound to travel 

the loudspeaker to microphone distance in air. A high level of coherence can also be observed across most 

frequencies in Figure 2.16(a) (except those due to low signal to noise levels due to the lower level echo 

path response). Since any mechanical vibrations travelling along the handset case would most likely 

arrive during this observed delay period, and would be non-linear in nature, it can be concluded that no 

case (^„ee / j (^) ) Gcho path source terms exist in this handset configuration. This is also the case for the 

other handset orientations tested in this chapter. Only the internal and external acoustic path sources are 

significant for the handset design tested. 

At this point an important conclusion can be drawn, given that no non-linear mechanical 

component (ri) exists in the handset responses measured, and that the coherence measures are close 

to unity for all measurements. Based on the handset design tested it can be concluded that the handset 

echo path impulse response to be modelled by an echo canceller is linear in nature. A linear acoustic echo 

canceller is required for the mobile handset acoustic echo cancellation application. 

Consider next the face up no seals handset response of Section 2.4.2. Figure 2.17 shows the echo 

path measurements for this handset test configuration. A high level of coherence across all frequencies can 

be observed in Figure 2.17(a). The echo path frequency response of Figure 2.17(b) has a general high pass 

characteristic with most energy in the response above 2200Hz, with a low-level peak can be observed 

around 1600Hz. 
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Figure 2.16: Echo path results for the artificial ear sealed handset configuration, showing a) the 

coherence function, (b) frequency response characteristic, and (c) the echo path impulse response. 
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The impulse response of Figure 2.17(c) contains significant energy from 0 to 0.8ms (responsible 

for the general high pass characteristic) and decays relatively quickly after this. A delay period of around 

0.4ms exists before any response activity as in the artificial ear sealed response. 

In Figure 2.18 the echo path frequency responses, phase responses, and impulse responses of the 

artificial ear sealed and face up no seals handset configurations are superimposed on the same axes for 

comparison purposes. Both phase responses in Figure 2.18(b) are clearly not linear, and the artificial ear 

sealed handset configuration introduces more phase delay. The largest phase transition is around the 

frequency response peak at 1900Hz. From the frequency responses of both handset configurations in 

Figure 2.18(a) it is clear to see the higher acoustic coupling and lower terminal coupling loss level of the 

face up no seals handset configuration. 

The impulse responses of the artificial ear sealed and face up handset echo path responses are 

superimposed in Figure 2.18(c), The main contribution of external echo path source component ( ( n ) ) 

to the calculated terminal coupling loss level can be easily identified. This is the region of significant 

impulse response activity in the face up no seals echo path response up to 0.8ms in duration and is 

responsible for the general high pass nature of the frequency response. As expected this component is 

heavily attenuated when the handset is placed in the artificial ear sealed handset configuration resulting in 

a much lower terminal coupling loss level. Without the main external echo path source contribution (and 

with case and structural components neglected) the low terminal coupling loss of the artificial ear sealed 

configuration can be attributed to the internal echo path component ( { n ) ). At this point it is unclear 

as to nature of the internal echo path (n) depending on the type of transducer seal or obstruction. The 

total effective duration of these echo path responses are approximately 3ms for the face up no seals 

handset response and 5.4ms for the artificial ear sealed handset configuration. As we will see in the next 

Chapter the effective impulse response duration required to be modelled for satisfactory ERLE, will 

depend on both the effective impulse response duration and the terminal coupling loss level calculated. 

Consider next the measurement results for the loudspeaker adhesive tape sealed handset 

configuration of Section 2.4.3. These results are presented in Figure 2.19. It is clear from these results 

when an adhesive seal is placed on the handset loudspeaker a resonant echo path response is produced. 

From Figure 2.19(b) several distinct resonant peaks exist in the terminal coupling loss measurement band, 

at around 1900 and 41 OOHz in this handset configuration. For the terminal coupling loss level calculated 

for this echo path response the higher energy peak around 4100Hz will not be taken into account resulting 

in a lower level. In practice, as we shall see in later Chapters, when handset ADC codec filters are applied 

all frequency response information above 3.6kHz will be heavily filtered out. 

The resulting echo path response in Figure 2.19(c) consists of a small delay period of 

approximately 0.4ms followed by exponentially decaying resonant response. This response directly 

reflects the two main resonant peaks in the echo path frequency response in Figure 2.19(b). In particular 

the 4100Hz peak, which is lOdB stronger, would have major impact on the echo path to be modelled if 
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Figure 2.17: Echo path results for the face up no seals handset configuration, showing a) the coherence 

function, (b) frequency response characteristic, and (c) the echo path impulse response. 
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Figure 2.18; Echo path results for the artificial ear sealed and face up no seals handset 
configurations superimposed, showing (a) the frequency response characteristics, (b) the phase responses, and (c) the echo 

path impulse responses. 
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Figure 2.19: Echo path results for the loudspeaker adhesive tape sealed handset configuration, 
showing a) the coherence function, (b) frequency response characteristic, and (c) the echo pa th impulse response. 
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the echo path was sampled above 8.2 kHz as in wideband codec systems. As can be observed in Figure 

2.19(c), the decaying oscillations have a strong 4100Hz component. The total effective duration of this 

echo path response is as a result slightly longer, at approximately 6.3ms. 

In order to explain which echo sources are most active in this handset configuration, the echo path 

results ibr the loudspeaker adhesive tape sealed handset configuration in Figure 2.20, along with the 

artificial ear sealed and face up no seals handset responses for comparison purposes. From Figure 2.20(a) 

it can be seen that when a loudspeaker adhesive tape seal is applied as opposed to an artificial ear seal on 

the handset loudspeaker, the resonant peak around 1900Hz becomes augmented. To a lesser extent the 

peak around 400Hz also becomes augmented. This results in a lower terminal coupling loss for the 

loudspeaker adhesive tape sealed handset configuration of approximately 42dB. Apart from the main 

resonant peaks in the loudspeaker adhesive tape sealed echo path frequency response, the frequency 

response of the face up no seals handset response can be clearly observed to be much higher overall across 

the measurement band 300 to 3400Hz. This results in a higher terminal coupling loss for the face up no 

seals handset configuration of approximately 33dB. From Figure 2.20(b) a similar phase response for both 

the loudspeaker adhesive tape sealed response and the face up no seal response is obtained. 

When an adhesive tape seal (or artificial ear seal) is applied to a handset, from Figure 2.20(b) it can 

be seen the main external echo path component ( ( j l ) ) identified earlier is heavily attenuated. With the 

absence of case and structural echo path components, the main resonant peaks at around 1900Hz and 

4100Hz in the frequency response, when adhesive tape seal is applied, can be concluded to be due to the 

internal echo path component ( ( / ? ) ). When the seal is applied pressure fluctuations in the internal air 

cavity of the handset increase give rise these dominate resonant peaks in the frequency response discussed 

earlier. An internal echo path component term giving rise to peaks around 400Hz and 1900Hz is clearly 

visible in both the loudspeaker artificial ear seal and adhesive tape sealed responses. The strength of these 

peaks and the impact on the overall echo path response and terminal coupling loss clearly depends on the 

type of seal applied. The impact of the internal echo path component ( ( n ) ) clearly depends on the 

type of loudspeaker seal used. 

When both a loudspeaker and microphone adhesive tape seal are applied to the handset, resonant 

peaks in the frequency response at 500, 2000, 3500 and 4200 Hz are produced as shown in Figure 2.21(a). 

Like the loudspeaker sealed handset configuration, the terminal coupling loss level of approximately 40dB 

calculated using (2.21) does not take into account the higher energy peak around 4200Hz (which will be 

filtered out by the narrowband ADC codec). In the resulting echo path impulse response of Figure 2.21(c), 

the 4200Hz peak, which is 15dB above the other peaks, has a strong effect on the form of the impulse 

response. For wideband codec mobiles this would have a strong impact on the echo path to be modelled. 

The total effective duration of this echo path response is as a result slightly longer, at approximately 5ms. 

Due to the absence of external echo path components, and similar resonant peaks in the frequency 

response as in the artificial ear sealed and loudspeaker tape sealed responses, the internal echo path 

component term can be concluded to dominate this echo path response. 
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Figure 2.20: Echo path results for the artificial ear sealed, face up no seals and loudspeaker 
adhesive tape sealed handset configurations superimposed, showing (a) the frequency response characteristics, 

(b) the phase responses, and (c) the echo path impulse responses. 
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Figure 2.22: Echo path results for the microphone adhesive tape sealed handset configuration, 
showing a) the coherence function, (b) frequency response characteristic, and (c) the echo path impulse response. 
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When a microphone adhesive tape seal is applied to the handset, similar resonant peaks in the 

frequency response at 500, 1800, and between 4400 to 5200 Hz are produced as shown in Figure 2.22(a). 

The higher frequency response peaks have a large impact on the echo path response to be modelled as 

shown in Figure 2.22(c). The total effective duration of this echo path response is as a result slightly 

longer, at approximately 6.3ms. Again the internal echo path component term can be concluded to 

dominate this echo path response, resulting in a lower Terminal Coupling Loss of approximately 37dB. 

In Figure 2.23 the frequency, phase and impulse responses of all the handset responses that have 

either a microphone or loudspeaker seal, or both, are superimposed on the same axes. From the frequency 

responses of Figure 2.23(a) the similar trend in the echo path response behaviour discussed earlier can be 

seen more clearly. The peaks around the frequencies of 500, 1800 and 4200Hz become augmented when 

either the handset loudspeaker or microphone (or both) contain an adhesive tape seal. With no casing or 

structural echo path components, and negligible external echo path components, this echo path behaviour 

can be concluded to be due to the internal echo path component ( { n ) ). Depending on which seal is 

used, pressure fluctuations in the internal air cavity of the handset increase give rise these dominate 

resonant peaks in the frequency response. The adhesive tape sealed handset configurations of Section 

2.4.3 to 2.4.5 are used to represent obstructions or imperfect seals that may occur in normal handset use. 

From the measurements in Figure 2.23 it can be seen that the internal echo path component is very 

significant when modelling the echo path of a mobile handset in normal use. The resonant impulse 

responses and low terminal coupling loss that arise from these handset configurations motivate the study 

of adaptive IIR algorithms for this application. 

Finally consider the face down handset echo path response of Section 2.4.6. Figure 2.24 shows the 

coherence function, frequency response and echo path impulse responses measured for this handset 

configuration. It can be clearly seen the echo path response when placed down on a flat rigid surface is 

resonant in nature. The total effective duration of this echo path response is the longest, at approximately 

7.3ms. From the frequency response of Figure 2.24(b) peaks around the frequencies of 700, 1200, 2000, 

2600, 3000, 3900 and 4500Hz can be observed. As a result a lower Terminal Coupling Loss of 30dB was 

calculated for this handset configuration. Like other handset responses this value only takes account of the 

narrowband codec ADC bandwidth range, and does not account for the strong high frequency information 

above 3400HZ in this echo path response. For wideband codec mobiles the echo path frequency 

information above 3400Hz would also have to be modelled. Due to the high effective impulse response 

duration and lowest Terminal Coupling loss, this is clearly the worst case acoustic condition required to be 

modelled in normal handset use. The strong frequency response peaks around 500Hz, 2000Hz and 

4000Hz like the adhesive tape sealed responses indicates a strong internal echo path component. The 

absence of any strong external echo path components as in the face up no seals responses suggests no 

direct air gap exists for sound to propagate in this handset configuration. High coherence levels across all 

frequencies also suggest that no strong non-linear terms have been introduced in this handset 

configuration. Additional resonances at 1200, 2600 and 3000Hz, and echo delay terms after 7.5ms in the 

impulse response may be attributed to additional external echo path components. 
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Figure 2.24: Echo path results for the face down on a rigid surface handset configuration [2.1], 
showing a) the coherence function, (b) frequency response characteristic, and (c) the echo p a t h impulse response. 
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These additional components are likely to be due to the propagation of sound through the rigid 

surface used, and across any indirect air gap between the handset and rigid surface (echo reflections). 

2.5.1. Summary of Anechoic Acoustic Echo Path Impulse Response Measurements 

In summary the acoustic echo path response of a mobile handset in normal handset use may be 

characterised as shown in Table 2 below. 

Handset Orientation 

in Normal Use 

Dominant Echo 

Path Sources 

Echo Path Impulse 

Response Characteristics 

Effective 

Echo Path 

Duration 

ERLE 

needed 

No loudspeaker or 

microphone seals or 

obstructions. 
External echo 

path 

Large period of impulse 

response activity after 

initial delay period, 

followed by exponentially 

decaying tail 

Up to 3ms 
Up to 

16dB 

Direct air gap between 

handset loudspeaker 

and microphone. 

External echo 

path 

Large period of impulse 

response activity after 

initial delay period, 

followed by exponentially 

decaying tail 

Up to 3ms 
Up to 

16dB 

Loose placement of 

handset to user's ear 

External echo 

path 

Large period of impulse 

response activity after 

initial delay period, 

followed by exponentially 

decaying tail 

Up to 3ms 
Up to 

16dB 

Firm placement of 

handset to user's ear Internal echo path 

/ZintW 

Small amplitude decaying 

oscillatory impulse 

response after initial delay 

period 

Up to 

5.2ms 

Up to 

6dB 

Loudspeaker seal or 

obstruction 

Internal echo path 

/ZintW 

Small amplitude decaying 

oscillatory impulse 

response after initial delay 

period 

Up to 

5.2ms 

Up to 

6dB 

Microphone 

obstruction and/or 

Loudspeaker seal or 

obstruction 

Internal echo path 

K x i n ) 

Decaying oscillatory 

impulse response after 

initial delay period 

Up to 

6.3ms 

Up to 

12dB 

Handset placed face 

down 

Internal echo path 

Kx ( « ) and 

External echo 

path 

Decaying oscillatory 

impulse response after 

initial delay period 

Up to 

7.3ms 

Up to 

16dB 

Table 2: General characteristics of the acoustic echo path of a mobile handset 

It is expected the handset echo path behaviour summarised in Table 2 below may be applicable to all 

mobile handsets of similar construction. In the next section it will be shown that the fixed set of handset 

orientations discussed in this section are needed to represent the full echo path variation in normal handset 

use. 
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2.6. Results of Actual Acoustic Echo Path Impulse Response Measurements 
in a Reverberant Environment 

So we have looked at the nature of how the acoustic echo path response of a mobile handset 

changes in normal use depending on the handset orientation. To do this we have used a fixed set of 

handset configurations to represent the full variation in handset echo path response possible in normal 

handset use. What has not yet been established is that the fixed handset configurations used in this section 

are actually representative of the maximum variation in echo path possible in actual normal use. In a 

simple attempt to establish this, the anechoic echo path responses from the fixed sets of handset 

configurations (discussed in the last section) will be compared with actual handset echo path responses as 

follows. 

Actual echo path responses were recorded in an office against the head and ear of 3 different user's 

with the same type of mobile handset in an attempt to capture the actual variation in the echo path 

response between different users in normal use during a call. To reduce the number of measurements to be 

performed only the handset orientations against each user's ear are used. Each handset position represents 

the typical comfortable position used/preferred by each user during a call at different locations in a quiet 

office environment. The echo path response results for each user are shown in Figure 2.25 for one 

location. From the acoustic echo path impulse results presented, the Terminal Coupling Loss levels 

calculated are shown in Table 3 below. 

Handset Configuration TCL(dB) 
^ 1^10-501 

Required ERLE 

(dB) 

Handset Configuration TCL(dB) 

z K - i o r 

Required ERLE 

(dB) 

Echo Path Response Measurements User 1 32.83 -22.2dB 13.17(13) 

Echo Path Response Measurements User 2 37.28 -19.8dB 8.72 (9) 

Echo Path Response Measurements User 3 37.76 -]8.8dB 8.24 (8) 

Table 3: Terminal Coupling Loss(TCL) and required Echo Return Loss Enhancement(ERLE) 
levels calculated for NEC G9 echo path responses in an office environment. 

From Table 3 it can be seen the echo path response varies between different users in normal use 

when placed in a typical handset position for a regular speech call. For all users additional ERLE is 

required to maintain the 46dB requirement of [2.1]. These results also neglect the possible variation in a 

handset echo path response from specific applications such as hands free video telephony. As for the 

adhesive tape sealed anechoic handset echo path responses of the last section a notable resonant peak 

around 1800Hz exists in all measurements. For these measurements the internal echo path component 

appears to dominate the overall echo path response and terminal coupling loss. The impulse responses 

obtained all show similar trends, a small delay period of 0.4ms, following by exponentially decaying 

oscillatory impulse response. 
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The impact of the head and body of the mobile handset user, and the non-anechoic environment in 

which a mobile handset is used can be seen in the echo path impulse responses of Figure 2.26. Here the 

time scale has been extended from those results of Figure 2.25. The main source of echo reflections occurs 

in the echo path responses after a time of 10ms. This would correspond to reflections due to the 

environment in which the handset is used such as walls, ceilings and furniture greater than 3-4m away. 

These reflections are very small in comparison to the anechoic region of the responses up to 10ms. In 

Table 3 the ratio of echo path impulse response energy from 10 to 50ms (echo reflections) to anechoic 

y \h r 
echo path impulse response energy from 0 to 10 ms ( ^ ) is computed in decibels. It is clear that 

EK-.ol 

the level of echo reflections after 10ms is small in comparison to the anechoic region up to 10ms. The 

acoustic echo cancellation device employed within the handset device is normally designed to cancel out 

only the anechoic echo path response of the handset, which is only the period up to approximately 7ms in 

duration due to the handset itself. The echo reflections after 10ms due to the environment can hence 

effectively be ignored, as they will have no impact on the design of the acoustic echo canceller. 

Echo reflections due to the head and body of the mobile handset user would occur before a 

period of 7ms as the user's body would normally be within Im of the mobile even for hands free 

applications. However, from Figure 2.26 it can be seen for the speech application that the echo reflections 

within the anechoic response region up to 7ms are small or negligible, and will have little impact on the 

design of an acoustic echo canceller. Even for hands free video telephony applications echo reflections 

will be also be small within the anechoic response region due to the relatively low power handset 

loudspeaker output and the higher attenuation of echo paths due to the larger potential travelling distance 

of the echo reflections. Echo reflections can hence also be ignored for this application. 

The set of anechoic handset responses discussed in the last section and the non-anechoic echo 

path responses of this section are plotted on the same axes in. From Figure 2.27 it can be clearly seen how 

the fixed set of handset configurations proposed in section 2.4 can more adequately deal with the variation 

in echo path response in normal use during a speech call for the three user positions measured. This is in 

sharp contrast to the incapability of the single test configuration of [2.1] to accurately reflect the actual 

variation of a handset response in normal use. 
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Figure 2.25: Eclio path loss characteristics and impulse responses in a reverberant environment 

In (a) to (c) above show the echo path response measurements of 3 different users in a reverberant environment. Each handset is 
placed against the head and ear of the user. A non-anechoic environment is used to record these responses. 
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Figure 2.26: Echo path impulse responses in a reverberant environment for different users. 
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Figure 2.27: Comparison of anechoic echo path results and actual echo path measurements. 
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2.7. Overall Summary of Handset Acoustic Echo Path Results 

The following points can be summarised from the results presented in this Chapter, 

1. It has been clearly demonstrated that acoustic echo cancellation is needed for both handset designs 

tested to ensure the 46dB requirement of [2.1] is satisfied in norma] handset use. It is expected this 

important result would also be true for other handset designs of similar construction. 

2. It is clear that in normal handset use the single test condition of [2.1] is not sufficient to ensure the 

echo loss requirements of [2.1] are satisfied in normal handset use. The fixed set of anechoic handset 

configurations proposed in the section 2.4 to establish the echo loss performance of a mobile handset 

in normal use have been demonstrated to be a more robust method than the single test configuration 

of [2.1]. This is especially true for future mobile applications as the role of the mobile moves away 

from the more traditional speech services to offer new data services such as hands free video 

telephony [2.2] 

3. The echo path response of the mobile handset design tested has been shown to be linear in nature and 

the echo path sources responsible for the acoustic echo path have been identified. It is expected this 

important result would also be true for other handset designs of similar construction. 

4. The effect of echo reflections from the environment, and the user's head and body, has been analysed 

using echo path measurements in a reverberant environment. Echo reflections have been concluded to 

have negligible impact on the echo path modelled by an acoustic echo canceller. 

In Chapter 4 we follow on from the results of this Chapter and will look at how t(, effectively 

model the acoustic echo path of a mobile handset, using the echo path results of this Chapter The effects 

of the mobile handset codec device filtering and sampling rate on the echo path response to be modelled 

will also be taken into consideration. 
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Chapter 3 
3. Adaptive Filter Theory 

In this chapter we will review some of the theory and techniques commonly used for adaptive FIR 

and IIR filtering. We shall firstly look at adaptive FIR filtering theory. Extensions are then made to 

adaptive IIR filtering theory and algorithms. No attempt is made in this chapter to discuss the advantages 

and disadvantages of each, since there are a large number of algorithms. Also their performance will 

depend on the conditions under which they are used. The conditions of interest here are those described n 

chapter 5, where simulations of their performance can be found. 

3.1. Adaptive FIR Filtering 

Figure 3.1 shows a typical system identification configuration for a FIR adaptive filter modelling 

an echo path impulse response. 

Acoustic Echo Path 

Adaptive FIR model 

Adaptive 
Algorithm 

Adaptive FIR model 

Figure 3.1 : System Identification of echo path using an FIR adaptive filter. 

The FIR adaptive filter will attempt to adjust the FIR filter coefficient values to minimise the error 

signal e{n). In system identification theory the criterion normally used to select the FIR model 

coefficient values would be minimisation of the mean square error. 

In this section we will present the optimal FIR filter design that minimises the mean square error 

(MSB) for the system identification configuration of Figure 3.1. We will see how this optimal FIR filter 

design is specified in terms of the solution to the well-known normal equations in [B.ljand [3.2], often 

termed the "Wiener filter" solution. Iterative solutions to the normal equations are then presented which 

are used to adapt the coefficients of the FIR filter to track changes in the optimal solution as new data 

arrives. From these iterative solutions we will derive the most commonly used gradient based adaptive 

FIR filtering algorithms. 
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3.1.1. The Optimal FIR Filter 

Consider the output of the echo path, d(n), which contains both the echo signal to be cancelled 

and a disturbance source v(M) as follows, 

( / (» ) = }'(«) +v(M), (3-11) 

where the disturbance source v(M) may be interpretated to include not only an additive disturbance 

source picked up by the handset microphone at the output of the echo path, but also undermodelling noise 

caused by the FIR filter model being of lower order than that of the echo path to be modelled [3.3]. 

Rewriting (3.1.2) we get 

L-\ 

( / (» ) = };(«) +v(M) = h^%^(M) +v(M) = ^ /;(/)%(» — /) + v(M), (3.1.2) 
/=0 

where h is a vector of L echo path response samples given by, 

h = (3.1.3) 

and where ( « ) is a vector of L past input samples given by, 

( " ) = - 1 ) , , - ^ + 1 ) ] ^ , (3 1 4) 

and T denotes matrix transposition. 

To cancel this echo signal d{n), a replica of the echo signal, y{n), must be created by the FIR 

filter which models the echo path transfer function, and subtracted from d{n) . For a fixed time invariant 

FIR filter of order M the output of the FIR model filter y{n) at time index n becomes, 

M-l 
_y(M) = b^%(M) = - 0 , (3.1.5) 

i={) 

where %(») is a vector of M past input samples defined similarly to (3.1.4) and b is a vector of FIR filter 

model coefficients given by, 

= (3.1.6) 

Consider the error signal e{n), 

M-l 
&(») = ( / ( » ) - y(M) = - ; ) , (3.1.7) 

; = 0 

Using (3.1.2), the error signal of (3.1.7) can be re-written as, 

M~\ L-\ 

= % (A(0 - 6,)%(» - 0 + 2 A(_/)x(M - ; ) + v(M), (3.1.8) 
/=0 y=M 

For appropriate selection of FIR model coefficient values, the greater the number of coefficients M 

in the FIR model to match the activity of the impulse response samples h{n) , the smaller the error or 

mismatch signal e{n) would be. For a minimum error signal, the coefficients of the FIR model simply 

become the impulse response samples. In practise however the model order M will be smaller than L. In 
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system identification theory the cost function normally used to select the FIR model coefficient values 

would be minimisation of the mean square error [3.4]. 

Consider the design of a FIR model of order M to minimise the mean square error. The cost 

function F to be minimised is denoted as, 

= (3.1.9) 

where .5̂  denotes an average over ensembles of the random error sequence e(M) at time Rewriting 

(3.1.9) using (3.1.8) we get, 

/ M-l A-l 
F = . e % ( / ? ( / ) - - / ) + - y ) + V(M) 

/=0 
(3.1.10) 

Since the filter coefficients of h are assumed to be time invariant, and assuming the disturbance signal 

v{n) is an additive white noise signal independent of the input process x{n), we then may write, 

(3.1.11) 

Equation (3.1.11) is termed the mean square error surface. Re-writing (3.1.11) in more compact form we 

get, 

F = («)] - 2b (M)], (3.1.12) 

where is an M x M autocorrelation matrix of the input signal x{n) defined as, 

(3.1.13) 

and where is a cross correlation vector between input signal x(M) and the output of the echo path 

model y{n) as defined as, 

(3.1.M) 

We can see from (3.1.12), the mean square error surface is a quadratic function of the FIR filter 

coefficients h-. Since the cost function F is a quadratic function of the coefficients there will exist a 

single global minimum solution with no local minima (provided R is non-singular and x{n) is 

persistently exciting) corresponding to the optimum weight vector b , , at which the gradient of F will be 

zero. Therefore to find b , which minimises this cost function F, the gradient F can be calculated with 

respect to the filter coefficients, and equated to zero. The gradient is calculated by differentiating F with 

respect to the filter coefficients 6, . Differentiating F in (3,1.12) with respect to each coefficient 6̂  of the 

FIR model, and equating to zero yields [3.1], 

^ = = (3.1.15) 

giving, 

R , ^ b = r^ ,̂, (3.1.16) 
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Equation (3.1.16) represents a set of equations known as the Morma/ or discrete time 

Wiener-Hopf equations [3.1]. The term normal equations comes from the orthogonality of the input 

signal and the output error which results when the derivative of F in (3.1.12) with respect to the filter 

coefficients is equated to zero as follows, 

^ = = = 0 = (3.1.17) 
do, 86. 

Using (3.1.7) we get, 

T— = T = -2.E'[e(M)%^(M-()] = 0 , / = 0 . . . M , (3.1.18) 

Equation (3.1.18) is the orthogonality principle [3.2], and requires the input to the FIR filter and 

estimation error to be orthogonal over the length of the filter. 

The solution to (3.1.16) represents the optimal least squares filter coefficients. The optimal least 

squares filter coefficients selected to minimise the mean square error (MSE are found by solving (3.1.18) 

for 6 as follows, 

(3.1.19) 

Equation (3.1.19) is the solution to the problem of designing a linear time invariant FIR filter to 

minimise the mean square error (MSE) for wide-sense stationary input signals. From Equation (3.1.19) 

we can see the selection of FIR model coefficients b to minimise the mean square error (MSE) 

involves a direct matrix inversion. From (3.1.12) and (3.1.19) we can see the disturbance signal v{n) only 

adds a constant offset term to the mean square error surface, and will no effect the selection of optimum 

filter coefficients to minimise F . 

At this point it is worth noting that a special case of (3.1.19) exists where x{n) is unit variance 

white noise. This results in = I , and b from (3.1.14) and (3.1.19) simply becomes the first M 

coefficients of the impulse response h to be modelled. 

3.1.2. Adaptive FIR Filtering 

We have seen so far how the optimal FIR filter coefficients may be designed to minimise the mean 

square error for stationary input signals using a direct solution of the normal equations in (3.1.17). 

However in most applications the input signals that arise will be statistically non-stationary. Although the 

normal equations of (3.1.16) can be formulated for non-stationary inputs, the calculation of non-stationary 

correlation coefficients presents difficulties when replacing ensemble averages with time averages [3.2]. 

For non-stationary input signals such as speech in many Acoustic Echo Cancellation applications a "local 

stationarity" may be assumed over which the speech signals properties change slowly with time. In this 

way the input signals may be segmented into smaller intervals or windows, where the optimum FIR 

coefficients are updated using the direct solution of (3.1.19) in each time interval segment or window. 

However since this involves calculation and construction of an autocorrelation matrix, and a matrix 
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inversion in each time window for the direct solution of (3.1.19), computational complexity would be very 

high, and hence would be unsuitable for real time Acoustic Echo Cancellation applications. A more 

complete solution to the problem of minimising the mean square error for time varying input signals 

would be to provide a continuously adaptive filter which tracks changes in the optimal solution, as each 

new data sample becomes available. This leads us to look at iterative solutions to the normal equations of 

(3.1.16). 

3.1.2.1. Iterative Solutions to the Normal Equations 

To recap, our objective is to choose the filter coefficients at each iteration n, to minimise the 

mean squared error cost function cost function of (3.1.9), 

= (3 1.9) 

We have already seen that the cost function F is a quadratic function of the coefficients b , and 

can be thought of as an M dimensional parabolic surface. The purpose of an iterative solution is from an 

initial filter weight vector estimate bp to search the function 7^ by successively updating this filter 

weight vector estimate to force the filter to the optimal solution at the minimum point on the M 

dimensional parabolic surface. 

A general iterative formula that can be used to find the solution to the normal equations of (3.1.16) 

to minimise the mean square error cost function of (3.1.9) is given by [3.2],[3.4], 

(3.1.20) 

where b^ denotes the n* update of the FIR filter coefficient vector b a t iteration n, is a step size 

parameter to control the size of change in b^^, from b^ , and is a vector which controls the search 

direction on the mean squared error surface of (3.1.12). 

Since the mean square error surface of (3.1.12) has a unique global minimum solution a widely 

used general class of algorithms are those that iterate on the gradient of the mean squared error [3.2]. 

Adaptive algorithms derived from gradient search methods have found widespread use in the area of 

Acoustic Echo Cancellation [3.5]. Throughout the thesis we will concentrate on adaptive algorithms 

derived from gradient search iterative solutions to the normal equations. These gradient search methods 

are characterised by search directions p of the form, 

P . (3.1.21) 

where is an (M x M) weighting matrix, and is the gradient of the mean squared error cost 

function F with respect to the filter coefficient vector b^ at each iteration(or time index) n. can 

be represented as. 

= (3.1.22) 
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A large number of adaptive algorithms can be derived from different choices of and . Let 

us now consider the most common gradient search methods. The first gradient search method to be 

considered is the well-known method of Steepest Descent, from which we will derive the LMS (Least 

Mean Squares) adaptive filtering algorithm [3.1],[3.2]. The LMS adaptive FIR filter and its variants are 

most widely used adaptive FIR filtering algorithms in Acoustic Echo Cancellation due to their simplicity 

and low complexity[3.5],[3.6]. The second iterative method that we will consider is the Newton method 

from which we will derive LMS-Newton adaptive filtering algorithms [3.2],[3.7],[3.8],[3.9]. 

F = E[e^(n)] Surface 

3D 
paraboloid 

Steepest 
Descent 
Iterations 

E[e'(n)] min point 

Figure 3.2 : Illustration of Steepest Descent Method 

The mean squared error surface canbe viewed as (M+1) - dimensional paraboloid, where M is the number of FIR Alter coefRcients. 

The optimum set of coefficients corresponds to the bottom of the bowl. Note the gradient points in opposite direction to the 

bottom, thus the steepest descent method goes in a direction opposite to the gradient of the mean square error surface. 

3.1.2.2. The method of Steepest Descent and the LMS adaptive algorithm 

The steepest descent method produces an iterative estimate of optimal FIR coefficients, where 

every iteration n the filter coefficient vector is changed by a small amount in a direction opposite to the 

gradient of the cost function F, and by a distance proportional to the magnitude of the gradient. This is 

illustrated in Figure 3.2. Mathematically the weight vector is altered as follows. 

b„+i - b „ -VF (3.1.23) 

In comparison to the general equations of (3.1.20) and (3.1.21) for the steepest descent method of 

(3.1.23) we have = I , and ^ where I is the identity matrix and p. is a constant 
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of proportion. The 2 is introduced into (3.1.23) for convenience. The term steepest descent arises from 

the fact that in the neighbourhood of b^the gradient is normal to lines of equal cost, thus the gradient 

direction is the line of steepest ascent (in cost terms). The gradient of the mean square error surface 

using (3.1.17) and re-writing using vector notation we get, 

V 7 \ =2.E'[e(M)Ve(M)] = - 2 ^ [ e ( M ) i ( M ) ] , (3.1.24) 

Using (3.1.24) and (3.1.12) in (3.1.23) we get [3.2], 

= b , = (3.1.25) 

Provided that the stepsize jll is not too large equation (3.1.25) will eventually converge to the 

optimal solution. However in the region of the local minimum where the gradient will be low the method 

may converge slowly. For zero-mean and jointly stationary input signals convergence will occur provided 

that, 

2 
, (3.1.26) 

max 

where is the maximum eigenvalue of R [3.2]. The issue of convergence rate will be studied in 

more detail later in the thesis for both adaptive FIR and IIR filters derived from this steepest descent 

method of (3.1.25). 

Equation (3.1.25) gives an iterative solution for the stationary (fixed) normal equations. However 

to design an filter based on the steepest descent method which is responsive to changes on the input signal 

environment some dependence on the input data is needed in the iteration of (3.1.25). Re-writing (3.1.25) 

to replace the fixed auto and cross-correlation matrices by time estimates we get, 

= b , ( 3 . 1 . 2 7 ) 

where time estimates R ( » ) and ( « ) are computed using a finite time window on sequences 

x{n)and [3.2]. Equation (3.1.27) despite having time dependency will still be very 

computationally expensive and unsatisfactory for real time implementation as estimates R (n) and 

(n) must be calculated every data sample. To overcome this we can replace the gradient by an 

estimate. One such estimate of is to replace E\e{n)\{n)\ in (3.1.24), which is generally unknown, 

with an estimate such as the sample mean as follows, 

- / ) , (3.1.28) 
L /=o 

Incorporating this estimate into (3.1.25) gives, 

= b , + — ( 3 . 1 . 2 9 ) 
^ / ;=0 

A special case of (3.1.29) occurs if we consider the one-point sample mean (P=l), which involves 

replacing the gradient estimate in (3.1.24) by an instantaneous value, 
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~ f/?) 
= - 2 x ( M ) e ( / 7 ) , (3.L30) 

giving the filter update equation, 

= b , + H x ( M ) g ( M ) , (3.1.3]) 

Equation (3.1.31) is known as the LMS algorithm [3.1],[3.2],[3.3]. From (3.L3]) we can see that 

the LMS algorithm is very computationally simple requiring only M multiplications and M additions per 

time update. Intuitively the LMS algorithm updates the filter weight vector at each time step n, to keep 

the filter as close as possible to the instantaneous solution of the normal equations. The weight vector is 

altered only by a small amount in order to ensure that the new weight vector is influenced by all 

previous error values and not just e(n) . This ensures the weight vector will converge to the optimal 

weight vector solution without excessive random wandering. 

Consider the convergence of the LMS algorithm in the mean. Let us re-write the LMS solution of 

(3.1.31) using (3.1.5) and (3.1.7) giving, 

= b ^ + | l x ( M ) [ 6 ^ ( M ) - b [ l ( M ) j . (3.1.32) 

Taking expectations of both sides this gives, 

(3.1.33) 

Using (3.1.13), (3.1.14) and (3.1.16) this becomes, 

^ [ b . + , ] = M b J - | i R ^ [ b , - b „ ^ J . (3.1.34) 

An error vector 8^ which represents the expectation of the difference between each element of the filter 

coefficient vector and the optimal solution b ^ of (3.1.19), can now be defined as [3.1], 

= 'G[b^+, - b^^J = ( l - )^[b^ - b^^J = ( l - p , R ^ % - (3.1.35) 

A unitary similarity transform can be used to factorise the correlation matrix as follows [3.1],[3.2], 

R _ ^ = Q . A . Q ^ , (3.1.36) 

where Q is a matrix whose columns are the eigenvectors of R , and A is a diagonal matrix whose 

elements consist of the eigenvalues of R , corresponding to each eigenvector of Q [3.1],[3.2]. A is 

also referred to as the spectral matrix. Substituting (3.1.35) into (3.1.36) this gives 

= ( l - ^ Q j V . Q ^ X . (3.1.37) 

If we now define a rotated error vector as, 

e , = Q ^ ^ , (3.1.38) 

we can compose a decoupled difference equation for each element &„(]) of the rotated error vector as 

follows, 

e X ; ) = (1 - , (3.1.39) 
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where is the y"' eigenvalue of . Consequently each coefficienty of vector , denoted , will 

converge "in the mean", to the corresponding coefficient of optimal solution 6 provided that, 

| ( l - | l X y ) | < l , (3.1.40) 

For a positive definite matrix R the LMS algorithm will "converge in the mean" provided that [3.11], 

2 
0 < ; : — . (3.1.41) 

max 

The result of (3.1.41)mirrors the result for the steepest descent algorithm in (3.1.26). However in 

most applications the knowledge of the maximum eigenvalue of R^^ is not known. One way to 

overcome this problem is to use the trace of positive definite matrix R as a conservative estimate of 

giving [3.11], 

0 < H < ^ , ,3.1.42) 

where 

M 

(3.1.43) 
i=\ 

From (3.1.43) we can see the trace of R is greater than the maximum eigenvalue of R .̂̂ ., since 

A,,. > 0 for positive definite matrix R ^ . Using the fact R^.^ has a Toeplitz form all the elements on the 

main diagonal are equal to (0) . Since (0) is itself equal to the mean square power of the input 

signal x{n) at each of the M taps of the FIR filter then, 

(()) = ( » ) ] . (3.1.44) 

Equation (3.1.42) then becomes [3.11], 

We can see that from (3.1.45) the stability condition for convergence of the LMS algorithm "in the 

mean", has a dependence on the adaptive filter length M, and the input power of signal x{n). If we 

consider the convergence time of the LMS algorithm we can see from (3.1.39) the rate of decay of each 

coefficient error term e„(/^ will depend on the magnitude of term j(l — )j . The larger the stepsize 

| I within the limits of (3.1.45) the faster convergence will be. From (3.1.39) we can see the LMS 

algorithm generally converges in the mean to the optimum solution in a non-uniform manner, as some 

coefficients will converge quicker then others if the eigenvalues of R ^ are distinct. The overall 

convergence time is limited by the slowest mode of convergence, which is determined by the smallest 

eigenvalue. This non-uniform convergence is known as the eigenvalue disparity problem. For signals with 

a large eigenvalue spread such as coloured noise signals or speech convergence time for the LMS 
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algorithm can be slow. This is one of the main problems with the application of LMS based algorithms for 

Acoustic Echo Cancellation. The eigenvalue spread of the correlation matrix R is defined as [3.11 ]. 

(3.1.46) 

where and are the maximum and minimum values of the correlation matrix R . Equation 

(3.1.46) is also termed the condition number of the correlation matrix R . If the condition number is 

large the correlation matrix is ill conditioned and solving equations in R~'xr may not be possible. For an 

ill conditioned correlation matrix in (3.1.19) it may not be possible to find the optimal filter weight 

solution or even to find an iterative estimate using an adaptive filter. For large condition numbers the 

LMS algorithm would be expected to converge slowly as the eigenvalue spread would be large. The 

eigenvalue spread would be greater than unity for correlated signals such as speech. For condition 

numbers close to unity the LMS algorithm would be expected to converge quickly as the error terms in 

(3.1.39) for each coefficient would converge with a similar time constant. The eigenvalue spread would be 

close to unity for uncorrelated signals such as white noise. 

Another important point to consider is the misadjustment of the LMS algorithm from the 

minimum mean squared error 7^^ obtained by the optimal solution of (3.1.19), which can be 

approximately written as [3.11 ], 

F 1 LI 
:W = — ^ = — ( » ) ] = — ^ . (3.1.47) 

" ^ n i i n ^ P" max 

where is the steady state excess mean square error. We can see from (3.1.47) that the steady state mean 

squared error performance of the LMS adaptive filter is also dependent on the adaptive filter length M 

(and the input power of signal x{n)), in addition to the stepsize )i . In general a trade off is necessary 

between filter length M and stepsize in the LMS adaptive algorithm to get the desired convergence 

time and steady state error. 

3.1.2.3. The Normalised LMS (NLMS) adaptive algorithm 

For Acoustic Echo Cancellation applications another limitation of the LMS algorithm is that the 

input signals of interest often are speech signals which can vary in power over a wide range. The update 

term in the LMS equation of (3.1.30) as a result will then vary with signal power of x{n) and presents a 

problem for choosing a fixed step size f l (which from (3.1.45) is dependent on input signal power and 

adaptive filter length), generally resulting in poor convergence performance. By normalising the update of 

(3.1.31) to compensate for the dependency on the length of the adaptive filter and the input signal power 

of %(«) we get, 

bn+l = b , + _ x(M)e(M). (3.1.48) 
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Equation (3.1,48) is termed the Normalised LMS (NLMS) algorithm and j l i s now termed the 

normalised stepsize such that [3.2],[3.11], 

^ = )XM.E{x^{n)'\. (3.1.49) 

The term M . E \ x ^ (« ) ] is normally calculated by using an unbiased time average of the measured data. 

A convenient estimate is given by [3.2], 

M-l 
M.E[x^{n)]=^x^{n-j) = x^{n)\{n). 

j=o 

Incorporating this in (3.1.48) we get the NLMS algorithm filter update. 

b«+i - b - + " 

(3.1.50) 

(3.1.51) 
6 + 1 ^ (»)%(/%) 

where 5 is a small positive constant to prevent division by zero when the input signal is zero or low in 

power. The convergence range of the NLMS algorithm in the mean square now becomes [3.2], 

0 < | I < 2 . (3.1.52) 

Despite a small increase in complexity in the NLMS algorithm over the LMS algorithm, and the 

eigenvalue disparity problem, the NLMS algorithm is still computationally simple, as is often used in 

many Acoustic Echo Cancellation applications[3.6]. 

3.1.3. Newton's Method and the LMS-Newton (LMSN) algorithm 

Consider Newton's method that provides an iterative technique for finding the solution to quadratic 

function f ( x ) — Oas illustrated in Figure 3.3. 

Tangent 

X 

Figure 3.3 : Newton's Gradient Search Method 
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This method consists of starting with an initial guess XQ and then using the first derivative f ( x ) to 

compute the new estimate X,, The next point Xj is then computed using x, as the initial guess and so on, 

giving the general formula [3.4], 

^ 
f U . ) " V M / ^ 

/&. 
Recall from (3.1.12) the mean square error surface F can be written as a quadratic function of the filter 

coefficients as, 

F = W ] - 2 b ' + b ' R ^ b + ( « ) ] . (3.1.11) 

In earlier sections the minimum of the mean square error surface F with respect to the filter coefficients 

b can be written as = — = 0 . To apply the Newton iteration to the problem of optimal filter 
o b , 

design to find the solution to = — — — 0 , we can use / ( b „ ) = V F = —— in (3.1.53) and 
3bn " a b , 

iterate over b„ instead of X„ giving the formula, 

= b , — = b , - H - ' ( b J V F ^ . (3.1.54) 

a b . a b i 

where H {h^.) is the Hessian matrix of the mean square error surface F , which is defined as the second 

derivative of F with respect to the filter coefficients as follows, 

9 b n 9 b ^ « 

From (3.1.12) the Hessian matrix H ( b , ) can be computed to be, 

J t r ( b * ) = .VV . (3 1.55) 

] = 2 R . , • (3J.56) 

Substituting (3.1.56) into (3.1.54) we get an iterative solution to the normal equations using Newton's 

method as follows, 

b.+, ==1). -- (3.1.57) 

Comparing (3.1.57) to (3.1.20) and (3.1.21) we have D — R j — VF^ and = 1 . By weighting 

the gradient search direction in Newton's method by the inverse of the estimated Hessian of the cost 

function F in (3.1.55), the search direction always points to the minimum of the cost function F . This 

search direction is in sharp contrast to the steepest descent method of (3.1.23), which points to the 

maximum direction of change, and will result in an accelerated search. The search direction of Newton's 

method in (3.1.57), and the steepest descent method of (3.1.23) will only coincide when the eigenvalue 

spread of the correlation matrix is unity. Where the eigenvalue spread of the correlation matrix increases 
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above unity the search directions will differ. Newton's method of (3.1.57) can be expected to converge 

much quicker due to weighting by R , ' , which essentially not only modifies the search direction, but also 

equalises the eigenvalues of the correlation matrix in each direction. 

Equation (3.1.57) despite having possibility of improved convergence is still idealised in that the 

update requires both the calculation of the correlation matrix R and VF^ , and the inversion of R . 

As we have already discussed for the optimal solution in (3.1.19) and the steepest descent method in 

(3.1.27) earlier in the chapter this can be computationally very expensive and is unsuitable for real time 

implementation. In practice as seen already in the LMS algorithm in (3.1.31) it is necessary to use an 

instantaneous estimate for the gradient defined in (3.1.30) and introducing a time estimates as in 

(3.1.27) gives, 

= b , ( 3 . 1 . 5 8 ) 

where R J ( « ) is an estimate of the inverse of the correlation matrix R ' . Equation (3.1.58) is termed 

the LMS-Newton (LMSN) algorithm[3.2],[3.4],[3.7],[3.8]. As the introduction of instantaneous estimate 

of defined in (3.1.30) will introduce noise into the coefficient vector update, so an update constant 

)Ll is introduced in (3.1.58) to allow a greater control of the algorithm update. Using the same procedure 

as in the LMS algorithm in it can be shown that the LMS-Newton (LMSN) method will converge in the 

mean provided that [3.2], 

(3.L59) 

that is, 

0<p.<2 . (3.L60) 

Additionally the convergence rate in the mean of each coefficient is identical, and from (3.1.59) depends 

on |l — fx|. As a result the convergence of the LMS-Newton (LMSN) algorithm is independent of the 

eigenvalue spread of the correlation matrix R ^ . This is the key advantage of the LMS-Newton (LMSN) 

method and as we have already pointed contrasts sharply to the LMS algorithm, where the convergence of 

each coefficient in the mean from (3.1.40) is dependent on the eigenvalue spread of correlation matrix 

R ^ ^ . The Misadjustment of the LMS-Newton (LMSN) algorithm, for a small | i . , can be 

approximately written as, 

F 1 M 
= — ^ = (/%)] = — ^ . (3.1.61) 

"̂ min ^ K max 

From (3.1.61)we can see that the Misadjustment of the LMS-Newton (LMSN) algorithm is identical to the 

Misadjustment of the LMS algorithm. Thus for the same adaption rate |1 the LMS-Newton (LMSN) 

algorithm will suffer no eigenvalue disparity, and at the same time achieve comparable steady state 

Misadjustment to the LMS algorithm. 

Despite the advantages of the LMS-Newton (LMSN) algorithm from (3.1.58) we can see an 

estimate of the inverse of the correlation matrix R J {n) is required every update period. Using the 
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Robbins-Monro procedure an estimate of the correlation matrix every update period R ^ ^ ( n ) is given by 

[3.8], 

W = ( » - 1 ) + a ^ ( » ) - R (M - 1 ) j , (3.1.62) 

where a ( « ) i s a convergence factor. This will result in a good estimate for R ^, which is positive 

definite provided the input signal x(n) is persistently exciting of order [3.8]. To obtain an estimate of the 

inverse of the correlation matrix R ( » ) the matrix inversion lemma can be used yielding [3.2],[3.11], 

/ \ 

1 

l-a(n) 

If a (n) = OL for all n, such that. 

R ^ f n - l ) . 
R ; ! ( M - l ) x ( M ) x " ( M ) R ; ^ ( M - l ) 

l - a ( M ) r 

a(n) = a = 1 - A, = 2 p , , 

+ I ( M ) R ^ ( M - ! ) % ( » ) 

(3.1.63) 

(3.1.64) 

equation (3.1.63) becomes, 

1 % 
a 

+ l ' ^ ( M ) R _ ; | ( M - l ) x ( M ) 

(3.1.65) 

It can be shown that with the settings of (3.1.64) the LMS-Newton (LMSN) algorithm minimises a 

weighted sum of posteriori errors , defined by. 

(3.1.66) 

where X is termed the forgetting factor which weights the most recent errors. This is useful to exclude old 

data that is less appropriate in non-stationary environments. Equation (3.1.66) is the objective function of 

the well-known exponentially weighted Recursive Least Squares (RLS) algorithm, which can be obtained, 

after some manipulation, by substituting (3.1.66) into (3.1.58) [3.2]. The LMSN algorithm can hence be 

regarded as either a gradient descent method, which uses noisy estimates for the input correlation matrix 

and the gradient vector , or a deterministic least squares algorithm when (3.1.64) is satisfied. 

Like the LMS algorithm however the use of a fixed stepsize control jJ, in the LMSN algorithm of 

(3.1.57) presents difficulties for using the algorithm in a non-stationary environment whose characteristics 

are unknown. The normalisation of R '̂ (n) in (3.1.57) alone is ineffective for faster time variations in 

the input signal x(n} . Instead an additional variable stepsize control | l (M) can be used that is adjusted 

each iteration according to a certain optimality criterion. A variable stepsize \i{n) that can be chosen to 

yield zero a posteriori error regardless of how R^^ (n) is estimated is given by [3.9], 

1 
PL(M) (3.1.67) 

61 



Incorporating (3.1.67) into (3.1.57) and including an additional factor j l to control misadjustment at the 

expense of convergence speed gives [3.9], 

= b . + | L i (3.1.68) 

Equation (3.1.68) shall be termed the Normalised LMS-Newton method (NLMSN) and is almost identical 

in form and complexity to the exponentially weighted Recursive Least Squares (RLS) algorithm [3.2]. 

3.1.4. Adaptive FIR Algorithm Summary 

A complete summary of the FIR adaptive algorithms detailed in the thesis can be formulated in general 

form as shown in the table below. 

Initialisation: = 0 , V « < 0 

j)(M) = 

e(M) = 6^(M)- j ) (M) 

Algorithm p.(M) 

FIR LMS I 

FIRNLMS I 

FIRLMSN 

FIR NLMSN 

Table 3-1: FIR adaptive algorithm summary 

In addition to the algorithms detailed in this section many other variants may be derived form using 

different formulations and implementations of )J,(«) and H [3.4],[3.9],[3.10],[3.11]. 
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3.2. Output Error Adaptive IIR Filtering 

There are two error signal formulations normally used for adaptive IIR filtering - Equation Error 

and Output Error. This section describes the most common adaptive IIR filtering algorithms based on the 

output error formulation [3.3],[3.12],[3.13],[3.15], 

3.2.1. The Optimal Output Error IIR Filter 

Consider an adaptive IIR filter model based on the output error formulation as shown below. 

Acoustic Echo Path 

+u 

IIR Output Error model 

ii+ 

MA part AR p a r t 
Output 
Error 

q = Unit delay operator 

g ( g - ' ) = 6, + 

= + + 

Adaptive Algorithm 

Figure 3.4 : System Identification of echo path using output error adaptive IIR filter 

The same echo path model described by equation (3.1.1) and (3.1.2) is used for the unknown echo 

path to be modelled. Like the FIR filter to cancel the echo signal d { n ) , a replica of the echo path output, 

y{n), must be created by the IIR output error filter which models the echo path transfer function and 
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subtracted from d(n) . For a fixed time invariant output error IIR filter model of order (M, N), the output 

becomes, 

})(») = )%(«) + A ( ^ " ' ) } ; ( » ) = ^ - 0 + % - ) ) - (3.2.1) 

i~o y=i 

Re-writing (3.2.1) more compactly using vector notation we get, 

. (3.2.2) 

where 0 is a (M+N) x 1 coefficient vector defined as: 

0 [ ^ 0 ? ? • • • ? 1 ' ' ^ 2 J ' (3.2.3) 

with (Pg being a (M+N) x 1 information regression vector defined as: 

9 . + (3.2.4) 

where x ( n ) is a Mxl vector of echo path input samples defined as: 

1(77) = [%(«), x(M - 1 ) , , i:(M - M + 1 ) ] ^ , (3.2.5) 

and y(n — 1) is a Nxl vector of IIR filter model output samples defined as: 

y(M - 1 ) = [^(M - 1 ) , , ) / ( » - , (3.2.6) 

Equation (3.2.2) has the form of linear regression. However since previous filter outputs in y(n — 1) of 

the regression vector (p^ depend on previous model coefficient values, equation (3.2.2) is not a linear 

regression. The filter output y { n } is a non-linear function of G , and equation (3.2.2) is often termed a 

pseudo-linear regression [3.12]. Consider the output error signal (n) , 

g X » ) = <^(M) - , (3.2.7) 

For a minimum output error signal the fixed output error IIR filter coefficients must be chosen to 

minimise some cost function. Like we have already seen for the optimal FIR filter model the cost function 

normally used in system identification theory is the minimisation of the mean square error. 

Consider now the design of an output error IIR filter model of order (M,N) to minimise the mean 

square error. The cost function F to be minimised is denoted as, 

F = E [e^ (M) ] , (3.2.8) 

Rewriting (3.2.8) using (3.2.2) and (3.2.7) we get an equation for the cost function F in terms of 

the filter coefficient vector 0 , which is termed the Mean Square Output Error (MSOE) Surface, as 

follows [3.2],[3.12], 

7^ = (M)] = j, (3.2.9) 

Re-writing (3.2.9) and assuming that v ( n ) i s an additive white noise disturbance signal independent of 

input process %(») and hence information regression vector we get, 

F = M y ' ( " ) ] - 2 e ' ' E [ ) , ( M ) 9 js ( » ) ] , (3.2.10) 
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Simplifying (3.2.10) we get, 

7^ = ( « ) ] - + G ^ R , 8 + ( » ) ] , (3.2.11) 

where is a (M+N) x (M+N) covariance matrix defined as [3.13]; 

R R 

and is a cross correlation vector defined as: 

with: 

R ^̂  = .VI X M autocorrelation matrix E \ \ { r i ) \ ^ ( « ) ] , 

R ^ = M X N cross correlation matrix E{x{ri)y^ (n — 1)], 

R y = N x N autocorrelation matrix E[y(n — l ) y ^ ( « — 1)] , 

(3.2.12) 

(3.2.13) 

(3.2.14) 

(3.2.15) 

(3.2.16) 

From equation (3.2.11) to (3.2.16) we can clearly see that , R - and R - depend on 

y{n — 1) , which in turn are functions of the filter coefficient vector 0 . The Mean Square Output Error 

surface for the Output Error IIR filter model, unlike the FIR filter model, is hence a non-quadratic 

function of the filter coefficients b- and a •. As a result a single unique solution "may not" exist in F with 

respect to 6 , and may correspond to local minima on the cost function rather than a global solution with 

respect to the filter coefficients. However to minimise this cost function F with respect to the filter 

coefficient vector we can differentiate F in (3.2.9) with respect to 6 , and equate to zero. This yields. 

= 2 E 

But, 

98 98 98 

98 98 ' 
Combining (3.2.9), (3.2.17) and (3.2.18), and equating to zero we get, 

9^- 9 ^ [ e / ( M ) ] 

98 90 
- 2 ^ 

98 
0 . 

(3.2.17) 

(3.2.18) 

(3.2.19) 

Unlike the FIR model a direct derivative of y{ri) from (3.2.2) with respect to the model 

coefficients 0 cannot be applied, as regression vector (p„is also dependent on 0 . Using (3.2.1) and 

separating derivatives of y{n) with respect to the coefficients 6. and a we get [3.14], 

96, 

9 a . /M=l 

96, 

9j;(M - m ) 

9 o , 
; ! < ; < # . 

(3.2.20) 

(3.2.21) 
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Combining equation (3.2.19), (3.2.20) and (3.2.21) we get, 

/ » = ! 96. 

E 

0 ; 0 < Z < M - 1 . 

= 0 

(3.2.22) 

(3.2.23) 

Equation (3.2.22) and (3.2.23) are the recursive form of the normal equations of (3.1.15). Direct 

solution of (3.2.21) would yield the optimum output error IIR model filter coefficients. However as this 

equation is non-linear with respect to the filter coeRicients 6, and a . local minima may exist. A direct 

solution of (3.2.21) may be very difficult to solve directly in this fashion. The computation involved in 

such an attempt would also be extremely high. As a result the direct solution of (3.2.21) is generally not 

used. Instead the use of iterative solutions to the recursive normal equations of (3.2.21) is normally 

employed. In the next section adaptive IIR solutions are presented to the recursive normal equations. 

Note that the disturbance term E[y'{ny\ in (3.2.11) makes no contribution to these systems of 

equations in (3.2.22) and (3.2.23) that determine the optimal IIR filter coefficients. This can be seen more 

clearly by re-writing the cost function F using Parseval's theorem [3.13], 

|2 

F- J _ 
I n 

2n 

-27[ 
- -

1 
+ — I" 5"^ )6/a). (3.2.24) 
2K ^ 

-2% 

1 27[ 

This disturbance term \ in (3.2.24) only adds a constant term to the mean 

square error surface and does not effect the locations of the minimum points. Minimisation of the mean 

square output error surface with respect to filter coefficients 6. and a . shall not vary with the disturbance 

signal viji). 

3.2.2. The method of Steepest Descent and the Simplified Gradient LMS Output Error 
adaptive IIR algorithm 

Earlier in the Chapter we have seen the steepest descent update to the normal equations of (3.1.16) 

was given by (3.1.23) for a FIR adaptive filter. For an Output Error adaptive IIR filter the steepest 

descent update for the iterative solution to the recursive normal equations of (3.2.21) is similarly given by, 

e „ , = 9 . - | v f . (3.2.25) 

where jJ, is a step size parameter to control the size of change in from 9^ . The gradient of the mean 

square output error surface using (3.2.16) and (3.2.17) can be written as, 

(3.2.26) 

giving the iteration. 
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6«+] = 8 . + ^^[^0 ( » ) ^ 7 ( M ) ] . (3.2.27) 

Since i ? [ e ( « ) V j ( n ) ] is generally unknown an estimate can be used. In line with the FIR L M S 

philosophy used earlier in the chapter the gradient is replaced by an instantaneous estimate, 

V f ; , = - 2 e X » ) ^ y ( M ) , (3.2.28) 

where. 

= (3.2.29) 
d o . 

giving the coefficient update. 

8.+I (3.2.30) 

Consider the gradient estimate of (3.2.28). As the output v ( « ) itself depends on previous outputs, 

^(«) 
which in turn depends on previous coefficient values, the derivative o f the output, , in (3.2.30), is 

itself recursive. Expanding the derivative of the output using (3.2.20) and (3.2.21), and introducing time 

dependency we get, 

= + ; ! < ; < # , (3.2.32) 

Equation (3.2.31), (3.2.32) and equation (3.2.30) represent the IIR LMS algorithm. This algorithm, 

as the name suggests, is the recursive output error form of the FIR LMS algorithm of (3.1.31) 

[3.2],[3.12],[3.14],[3.15]. From (3.2.31) and (3.2.32) we can see that the derivatives on the right hand 

side of these equations use current values, at time n, for coefficients 6 . and thus cannot be simplified to 

the form of a filter using delay operator notation. In to simplify the IIR L M S algorithm the stepsize OC in 

(3.2,30) can be chosen to be sufficiently small to allow the following assumption can be made[3.12], 

. (3.2.33) 

This allows the derivatives in equation (3.2.31) and (3.2.32) to be reformulated to become recursive in 

form giving [3.2],[3.12],[3.14], 

= + <3.2.34, 

(3.2.35, 
o a X " ) 9a^. ( » - / » ) 

.Rewriting (3.2.34) and (3.2.35) gives[3.12], 

= + ; 0 < y < M - l . (3.2.36) 

= + ; ! < ) < # . (3.2.37) 
9 a ( » ) 
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Writing (3.2.36) and (3.2.37) in more compact form gives, 

1 \ 

9 a ( n ) 

1 

1 

;0 < f < A f - 1 . 

\ 

;1 < y < j V . 

Combining (3.2.38) and (3.2.39) and substituting into (3.2.30) gives the modified filter update, 

e M+l 

where (Pyrg (M) is defined as, 

1 

(3.2.38) 

(3.2.39) 

(3.2.40) 

(3.2.41) 
\-A{n,q ) 

Equation (3.2.40) represents the Full Gradient IIR LMS algorithm [3.]2][3.14][3.15]. The structure of the 

Full Gradient IIR LMS algorithm is illustrated in Figure 3.5. From (3.2.40) and Figure 3.5 it can be seen 

the all pole filter operates on each element of information vector ( » ) . The simplificafion of the 

gradient in (3.2.34) and (3.2.35) and the slowly varying filter weights assumption of (3.2.33) required for 

the devopment of the Full Gradient IIR LMS algorithm is reasonable in many applications. Where the 

assumption of (3.2.33) doesn't hold, only a small degradation in performance is observed in practice 

Despite simplifications used in the Full Gradient IIR LMS algorithm, the gradient of (3.2.38) and 

(3.2.39) still requires a significant amount computation and storage, since N+M parallel shift variant AR 

filters are required of order N for each element in the adaptive filter information vector <p^{ri). If we 

again use the slowly varying filter weights assumption in (3.2.33) such that stepsize )Ll is sufficiently 

small so that coefficients h.{n,q ' ) in (3.2.38) and (3.2.39) do not vary significantly over intervals of N, 

each parallel AR filter in (3.2.34) and (3.2.35) can be assumed to be shift invariant. This results in 

9 a ( » ) 

1 

1 - A ( / 2 -i,q ) 

1 

;0 < f < A f - 1 , (3.2.42) 

(3.2.43) 

The gradient of the output from (3.2.42) and (3.2.43)may then be estimated by filtering only the input 

x{ri) and output y(n — 1) and using shifted versions of these signals. This gives. 

and 

where 

aA/M) 

(») 

AT 
Xy (n) = %(») + 

/ » = ! 

(3.2.44) 

(3.2.45) 

(3.2.46) 
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7 / ( » ) = ? ( " - 1 ) + ( « ) 7 / (M - /M) . (3.2.47) 

Re-writing the simplified gradient of (3.2.44)and (3.2.45) in more compact ibrm gives, 

3 9 . 

where, 

9 / ( M ) , ( 3^48 ) 

9 / = [ ^ / ( » ) , y / ( M ) ] , (3.2.49) 

and Xy ( « ) is a Mxl vector of filtered echo path input samples defined as; 

Xy ( « ) = [%^ (» ) , , JTy (M - M + 1)]^ , (3.2.50) 

and y f i n ) is a Nxl vector of filtered IIR filter model output samples defined as: 

= + (3.2.51) 

Substituting (3.2.48) into (3.2.30) gives the simplified filter update, 

( » ) 9 / (" ) . (3.2.52) 

Equation (3.2.52) represents the Simplified Gradient adaptive IIR LMS algorithm [3.12]. This 

simplification in (3.2.37) introduces essentially no degradation in performance over the Full Gradient IIR 

LMS filter update of (3.2.40), and is normally used in practice. The structure of the Simplified Gradient 

adaptive IIR LMS algorithm is illustrated in Figure 3.6. 

In terms of the stability of the Simplified Gradient IIR LMS algorithm of (3.2.52) it can be shown 

that with a sufficiently small stepsize fX the adaption algorithm can be modelled using the Ordinary 

Differential Equation (ODE) method [3.12], Using this method together with the direct or indirect method 

of Lyapunov it can be demonstrated the differential equation derived from the adaption algorithm of 

(3.2.41) will converge to a minimum (local or global) of the cost function F . However this method does 

not clearly reveal the range of stepsize jii for convergence. To obtain approximate bounds for the 

stepsize fX local linearisation assumptions can be made about a minimum point on the cost function F as 

follows. In doing this we will also see that the Simplified Gradient IIR LMS algorithm, like the FIR LMS 

algorithm, has dependence on the eigenvalue spread of the correlation matrix of the information 

regression vector. 

Suppose parameter vector 6» corresponds to a local minimum on the cost function to F . If 

parameter vector lies in the local neighbourhood of we may use a Taylor series expansion of the filter 

output about the minimum point 8 — 8 . as [3.13], 

y{n 18) = y(n 18. + AG) = y(n 18 . ) + A6 
r 16) 

+ A 8 ^ ( 9 ( A 6 ) , (3.2.53) 

Performing a first order linearisation on (3.2.53) we neglect higher order terms A8^(9(A8) giving, 

y{n 18) = y{n 18. + AG) - y{n |G . ) + A G 
r 16) 

cfG 

Consider then the output error, which can be assumed to be quadratic locally, 
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e(M) = X M ) - = + (3.2.55) 

where £ , ( « ) denotes minimum output error obtained at minimum point on F when 9» is used. Inserting 

(3.2.55) into (3.2.52) we get, 

+ (3.2.56) 

Offsetting both sides of (3.2.56) by 0» and taking expectations we get, 

^ [ 6 . - e „ , 1 = (i - ( n ) ) £ [ 6 . - e J . (3.2.57) 

where the termii ' [e ,(n)(py (/?)] vanishes near any local minimum and R^^|p^(«)is the correlation 

matrix of the filtered information regression vector defined as, 

with: 

R ^ ( « ) = M X M autocorrelation matrix i l [ x , ( « ) x 7 ( » ) ] , 

R = M X N cross correlation matrix i i [x ^ ( « ) y f (n)] , 

~ N X N autocorrelation matrix E[y j^{n)y («)], 

(3.2.58) 

(3.2.59) 

(3.2.60) 

(3.2.61) 

If we now define an error vector £„ which represents the difference between the expected value of 

each element in filter coefficient vector 0^ and the solution 0 , , 

8 . = £ [ e . - e j ^ (3.2.62) 

Equation (3.2.57) now becomes, 

'(p̂ (p̂  V - • (3.2.63) 

Equation (3.2.63) takes the form of a discrete time homogenous system, which is stable, provided the 

eigenvalues of the correlation matrix R q , ^ ( » ) all have a magnitude, less than unity. For convergence 

the stepsize must fX then satisfy. 

0< |i < (3.2.64) 

where is the maximum eigenvalue of the correlation matrix For a positive definite 

matrix R ^ ,p {n) the upper bound of (3.2.64) can be reduced to. 

0 < | i < 

ik /W| 
(3.2.65) 

where | | ( P y ( M ) | | is the I2 norm of filtered information vector ( p y ( n ) defined in (3.2.49). This 

normalisation factor ||(p ̂  (M)|| is time varying and can alternatively be written as, 
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. •2 M - ] .. . 
| | ( P / ( » % = + (3.2.66) 

Note that the bounds for convergence in the mean in (3.2.65) are overly generous due to our 

linearisation assumption in (3.2.54). In practice decreasing the upper bound by a factor of 10 or so is 

advised. OAen a stable bound for stepsize is chosen for the particular application area on a trial and error 

(instability) basis. 

From (3.2.63) we can see the convergence in the mean for each coefficient error term for the 

Simplified Gradient adaptive IIR LMS algorithm will be dependent on the eigenvalue spread of the 

correlation matrix R , (p ( / l ) . The eigenvalue spread for a correlation matrix is defined earlier in 

(3.1.46). This coupled with the fact the stepsize must be sufficiently small to be very much less than the 

limits of (3.2.65) for stability in practice, is the main reason why adaptive IIR output error algorithms 

converge much slower than their FIR counterparts. 

Equation (3.2.40) and equation (3,2.52) are specified in a group adaption form where the same 

stepsize |1 is used to control the adaption of all coefficients in the IIR filter coefficient vector 0^ . We 

shall see later in the Chapter 5 that homogenous adaption forms will be used due to echo path attenuation 

[3.16]. A homogenous adaption form uses separate stepsize factors, and , to control adaption of 

the feedforward and feedback parts of the coefficient vector. 

3.2.3. The Simplified Gradient NLMS Output Error adaptive IIR algorithm 

In the same way the LMS algorithm of (3.1.31) will vary with the power of the input signal 

%(») the simplified gradient adaptive IIR LMS algorithm will vary with the power of the information 

regression vector which comprises both input and output samples. This, like the FIR LMS, 

presents a problem for choosing a fixed step size |LI . By incorporating normalisation into the filter update, 

proportional to the power of the information vector 9 ^ (?t) , the filter update can be made independent of 

input and output signal powers [3.17],[3.18]. For the IIR LMS algorithm of (3.2.52) normalisation by the 

I2 norm of filtered information vector f { n ) gives the filter update, 

where 6 is a small positive constant to prevent division by zero when information vector power is zero. 

Equation (3.2.67) is called the simplified gradient adaptive IIR Normalised LMS (NLMS) algorithm. 

As for the FIR NLMS algorithm, the stepsize normalisation in (3.2.67) effectively gives increased 

convergence rate performance over the LMS based algorithm of (3.2.52) for the same stepsize parameter 

without affecting the convergence properties [3.17]. However like the LMS counterpart of (3.2.52) the 

NLMS adaption form of (3.2.67) will still suffer from the same dependency on the eigenvalue spread of 

the correlation matrix R,„ . 
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Figure 3.5 ; The Full Gradient Adaptive IIR LMS algorithm structure 
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Figure 3.6 : The Simplified Gradient Adaptive IIR LMS algorithm structure 
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The same normalised stepsize |1 is used to control the adaption of all coefficients in the IIR filter 

coefficient vector 0^ in equation (3.2,67). In Chapter 5, because of differences in the magnitude of the 

input and output of the echo path, separate stepsizes will be used for feedforward and feedback 

coefficients. 

3.2.4. Newton's method and the Simplified Gradient LMS Newton adaptive IIR algorithm 

Mathematically the iterative solution to the recursive normal equations of (3.2.21) using Newton's 

Method is given by [3.12], 

8^,, (3.2.68) 

where H ( 0 , . ) is the Hessian matrix of the mean squared error cost function F of (3.2.11) and is 

H ' ( 6 ^ ) i t s inverse. The Hessian matrix is defined in (3.1.55) as the second derivative of the cost 

function with respect to the filter coefficients. Using (3.2.26) and the simplification of (3.2.48) the 

Hessian matrix can be computed as follows, 

, r - ^ 
(3.2.69) 

giving 

= (3.2.70) 

Substituting (3.2.70) into (3.2.68) we get an equation for the solution to the recursive normal 

equations using Newton's method as , 

8 . . , (3 2.71) 

Comparing (3.2.71) to (3.2.25) we can see that Newton's method can be expected to converge 

quicker due to the weighting by which essentially modifies the search direction to point to a 

minimum (local or global) point on the cost function F [3.19]. In addition this weighting will equalise the 

eigenvalues of the correlation matrix each direction so each coefficient error term will converge 

uniformly. Incorporating time dependency into (3.2.71) and using an instantaneous estimate for V F as 

similarly done for the Simplified Gradient LMS algorithm in (3.2.28) gives, 

(M)(p/ (»)^(M) - (3.2.72) 

where (n) is an estimate of the inverse of the correlation matrix R ^ ^ ^ . Equation (3.2.72) is 

named the Simplified Gradient LMS Newton adaptive IIR algorithm. It is also termed the Recursive 

Prediction Error algorithm [3.12]. Like the FIR LMS Newton algorithm of (3.1.58) an update constant 

has been introduced to allow a greater degree of control of the algorithm since a noisy instantaneous 

gradient estimate is used. 
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Using local stationarity assumptions, as done for the Simplified Gradient LMS algorithm earlier 

in the chapter, bounds on the stepsize can be derived for convergence in the mean of the Simplified 

Gradient LMS Newton algorithm of (3.2.72). Convergence in the mean about a local minimum point on 

the cost function F will occur provided, 

|l - ^l| < 1. (3.2.73) 

or, 

0 < ^ < 2 . 

Like the Simplified Gradient LMS algorithm the bounds of (3.2.74) will be optimistic due to the 

linearisation assumptions used and in practice the stepsize | I may have to be much less than the upper 

limit of (3.2.74) for convergence. We shall see in chapters 5 and 6 the stable range for stepsize for 

robust Acoustic Echo Cancellation on a mobile handset. 

From (3.2.72) we can see the weighting by {n) essentially will ideally make the Simplified 

Gradient LMS Newton algorithm independent of the eigenvalue spread of the covariance matrix 

This is a major advantage of the Simplified Gradient LMS Newton algorithm over the 

Simplified Gradient LMS and Normalised LMS (NLMS) algorithms of (3.2.52) and (3,2,67) because of 

their dependence of convergence speed on the eigenvalue spread of the covariance matrix ( » ) . 

Since the stepsize p. has to be sufficiently small for stability, a slower convergence speed may result for 

the Simplified Gradient LMS and NLMS algorithms for coloured input signals when the eigenvalue 

spread is greater than unity. However due to the requirement of the computation of an estimate of the 

inverse covariance matrix R ^ ^ {n) every iteration n, the Simplified Gradient LMS Newton algorithm of 

(3.2.72) has a far higher computational requirement. To reduce complexity of the inverse covariance 

matrix calculation the same techniques employed for the FIR LMS Newton algorithm can be used. Using 

the matrix inversion lemma, the inverse covariance estimate R,^^ ( / l ) may be computed as follows 

[3.19], 

f 

1 
Rqi/Py ( " ) - 1*9/9/ 

— + (Py ( M ) R ^ ^ ^ ( M - l ) ( P y ( M ) 

(3.2.75) 

where X is termed the forgetting factor which weights the most recent output errors. This is useful to 

exclude old data that is less appropriate in non-stationary environments. (X is a convergence factor. 

Like the FIR LMS Newton algorithm the choice of fixed stepsize )Ll in (3.2.72) can be difficult for 

non-stationary environments and signals where fast time variations can be encountered. Normalisation by 

( » ) in (3.2.72) is ineffective for faster time variations in the input signal. Instead a variable 

convergence factor \i{n) can be chosen to minimise a posteriori error as follows [3.8], 
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Introducing (3.2.76)into (3.2.72) we get, 

( M ) ( P / ( » ) < " ) 
().+, 8„ . (12.77) 

Equation (3.2.77) is termed the Simplified Gradient Normalised IIR LMS Newton adaptive IIR 

algorithm and incorporates an additional reduction factor, jLl , like the FIR Normalised LMS Newton 

algorithm to control convergence speed at the expense of steady state error. 

3.2.5. The method of Steepest Descent and the Pseudo Linear Regression (PLR) LMS 
Output Error adaptive IIR algorithm 

Consider the equation of the cost function of (3.2.11), 

F = + 8 " R , , e + (3.2.11) 

Feintuch proposed a further simplification of (3.2.52) by assuming the statistics and 

R in (3.2.11) are constants with respect to 0 , and that previous output samples do not depend on 0 . 

The resulting gradient of the cost function F with respect to the coefficients b- and a may then be 

vnitkmas, 

= = 0, (3.2 78) 

This gives the modified optimal solution for a recursive output error filter, 

(3.2.79) 

Earlier assumptions and equation (3.2.54) implies that the following orthogonality principle holds [3.20], 

— =-2E[g, (M)(p /M) ] = 0. (3.2.80) 
dt/ n 

In finding the steepest descent iterative solution to (3.2.79) we use the general iterative solution as follows 

[3.2], 

8.+, = 8 . , (3.2.81) 

where the gradient of the mean square output error surface from (3.2.80) can be written as, 

V 7 \ = - 2 E K ( M ) ( P . ( " ) ] , (3.2.82) 

Since £'[e(/7){p^^ («}] is generally unknown an estimate can be used. In line with the FIR LMS 

philosophy the gradient is replaced by an instantaneous estimate. 
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= - 2 e ^ (M)(p^, (3.2.83) 

giving the coefficient update, 

8«4., =8«+^lg«(M)(Po(M). (3.2.84) 

Equation (3.2.84) is known as Feintuch's Recursive LMS algorithm or more commonly in system 

identification and control literature as the Pseudo Linear Regression (PLR) LMS algorithm [3.12],[3.20]. 

The general structure of the Pseudo Linear Regression algorithm is shown in Figure 3.7. 

Despite the mathematically invalidity of the assumptions made by Feintuch [3.21],[3.22], the above 

algorithm is the most computationally simple output error adaptive IIR algorithm, and does have the 

tendency to produce a stable IIR adaptive filter. In addition, by comparing (3.2.84) with (3.2.52) we can 

see the Pseudo Linear Regression algorithm has no AR filtering of the information vector (p^ (« ) . For 

.¥ 

echo path models with low amounts of feedback, where ( n ) is small, then Feintuch's 

m = l 

approximation of (3.2.84) may be valid. 

It has been shown that for equation (3.2.84) to convergence (to global or local minimum on error 

mean square surface) the following strict positive real condition should in general be satisfied [3.12], 

[3.23],[3.24], 

1 

where Re(u) denotes the real part of u and 1 — A , ( z " ' ) denotes the poles of the system to be modelled. 

Equation (3.2.85) is derived from Popov's hyperstability theorem [3.23], and implies the poles of 

the unknown echo path to be modelled must satisfy this hyperstability region to ensure convergence. This 

hyperstability region is always subset of the stability region within the unit circle of the complex Z 

domain. Equation (3.2.85) provides a guideline for ensuring convergence of (3.2.59) with a sufficiently 

small choice of step-size jl . However the algorithm may converge in some cases despite violation of this 

condition if the adaptive model has sufficient degrees of freedom to approximate the echo path being 

modelled [3.20],[3.22]. For a stationary input sequence x(n) , convergence and stability will be achieved 

if the stepsize )Ll is chosen to be [3.25], 

LI - j j — ' OV?, (3 2.86) 

where ||(Pg (M)|| is the I2 norm of information vector (p^ (n) , and the echo path to be modelled satisfies 

[3.25], 

1 

Re > 0 , z = l , (3.2.85) 

0<Re < 2 , Z = 1 , (3.2.87) 
1-A.(z") 

As the echo path to be modelled is generally unknown equation (3.2.87) represents the main 

drawback of the Pseudo Linear Regression LMS algorithm. Similar to the Simplified Gradient LMS 

algorithm of (3.2.52), the convergence speed of the Psudo Linear Regression LMS algorithm will be 
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dependent on eigenvalue spread of the inibrmation vector correlation matrix R ^ . The stepsize |1 o f 

(3.2.87) is in practice is normally selected to be very much less than the upper bound of (3.2.86) for 

stability. Equation (3.2.84) is in a group adaption form, where the same stepsize |J. is used to control the 

adaption of all coeOicients in the IIR filter coefficient vector 8^. A homogenous form will be used in 

later chapters to echo path attenuation [3.16]. 

3.2.6. The Pseudo Linear Regression (PLR) NLMS Output Error adaptive IIR algorithm 

As already mentioned for the LMS adaptive FIR and Simplified Graident LMS adaptive IIR 

algorithms, choosing a fixed step size OC is a problem when non-stationary signals are used, as the power 

of the input signal will vary. To overcome this power variation in the input signal x{n) (and the output 

signal y{n) in the case of output error adaptive IIR algorithms), a normalisation proportional to the power 

of the information vector (p„(w), can be incorporated into the Pseudo Linear Regression LMS algorithm 

as follows, 

8.+I = + 7 W ' (3.2.88) 

where 6 is a small positive constant to prevent division by zero when information vector power is zero. 

Equation (3.2.88) is termed Pseudo Linear Regression Normalised LMS (NLMS) adaptive IIR algorithm. 

From (3.2.88) it can be seen that the stepsize fX is normalised by the I2 norm of the information 

vector 9 ^ ( n ) . Despite becoming invariant to input signal power variations the same dependency on the 

eigenvalue spread of the correlation matrix ^ will still exist as for the Pseudo Linear Regression 

LMS algorithm. As for the Simplified Gradient NLMS algorithm, equation (3.2.88) is in a group adaption 

form. We will see in later chapters that homogenous adaption forms need to be used for output error LMS 

based algorithms due to echo path attenatuation. 
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Figure 3.7 : The Pseudo Linear Regression (PLR) Adaptive IIR L M S algorithm structure 
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3.2.7. Newton's method and the Pseudo Linear Regression LMS Newton (PLR LMSN) 
Output Error adaptive IIR algorithm 

Mathematically the iterative solution to the recursive normal equations of (3.2.21) using Newton's 

Method is given by [3.12], 

== 8 . - - H - ' ( e . i r y j ? . . (12.89) 

where 11(0,.) is the Hessian matrix of the mean squared error cost function F of (3.2.11) and is 

H ' (6^) its inverse. The Hessian matrix is defined in (3.1.55) as the second derivative of the cost 

function with respect to the filter coefficients. Using Feintuch's simplifications of (3.2.78) the Hessian 

matrix can be computed as follows, 

H ( e j = 2 R , , . (3.2.91) 

Substituting (3.2.91) into (3.2.89) we get an equation for the solution to the recursive normal 

equations using Newton's method as , 

= 6 . (3-2 9:2) 

Comparing (3.2.92) to (3.2.84) we can see that Newton's method can be expected to converge 

quicker due to the weighting by R ^ ^ which essentially modifies the search direction to point to a 

minimum (local or global) point on the cost function [3.19]. In addition this weighting will equalise the 

eigenvalues of the correlation matrix each direction so each coefficient error term will converge 

uniformly. Incorporating time dependency into (3.2.92) and using an instantaneous estimate for VF as 

similarly done for the Pseudo Linear Regression LMS algorithm in (3.2.83) gives, 

8„+i = ( » ) < « ) , (3.2.93) 

where (n) is an estimate of the inverse of the correlation matrix R ^ ^ . Equation (3.2.93) is 

named the Pseudo Linear Regression LMS Newton (LMSN) adaptive IIR algorithm. Like the Simplified 

Gradient LMS Newton algorithm an update constant }J, has been introduced to allow a greater degree of 

control of the algorithm since a noisy instantaneous gradient estimate is used. 

Using similar assumptions to that of the Simplified Gradient LMS Newton algorithm bounds on the 

stepsize can be derived for convergence in the mean of the Pseudo Linear Regression LMS Newton 

algorithm of (3.2.93). Convergence in the mean about a local minimum point on the cost function F will 

occur provided, 

0 < n < 2 , (3.2.94) 
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and the echo path to be modelled in general, satisfies the SPR condition of (3.2.87). Like the Pseudo 

Linear Regression LMS algorithm the upper bounds of (3.2.94) m a y be too large and in practice the 

stepsize may have to be much less than for convergence. We shall see in Chapter 5 the stable range for 

stepsize f l for Acoustic Echo Cancellation on a mobile handset. 

As for the Simplified Gradient LMS Newton algorithm the weighting by ( « ) will ideally 

make the Pseudo Linear Regression LMS Newton independent of the eigenvalue spread of the covariance 

matrix in) . Using the matrix inversion lemma the inverse covariance estimate R ' ( » ) may be 

computed as follows, 

f 

R , [ , ^ (» - 1)(P, (M - 1 ) 

^ + ( p / ( » - w . ( » ) 

(3.2.95) 

where % is termed the forgetting factor which weights the most recent output errors. This is useful to 

exclude old data that is less appropriate in non-stationary environments. OC is a convergence factor. 

Like the Simplified Gradient LMS Newton algorithm the choice of fixed stepsize jJ, in (3.2.93) 

can be difficult for non-stationary environments and signals. Instead a variable convergence factor 

|J,(n) is chosen as follows to minimise a posteriori error, 

(»)<?„(«)• 

Introducing (3.2.96) into (3.2.93) we get , 

Equation (3.2.83) is termed the Pseudo Linear Regression Normalised LMS Newton adaptive IIR 

algorithm, and incorporates an additional reduction factor j l , like the Simplified Gradient NLMS Newton 

algorithm, to control convergence speed at the expense of steady state error. 

3.2.8. The Simplified Hyperstable Adaptive Recursive (SHARP) LMS Output Error 
Algorithm 

In order overcome the convergence problem associated with the SPR conditions of (3.2.85) and (3.2.87) 

the output error can be filtered by a moving average filter C ( g ' ) giving the filter update, 

+ (3.2.98) 

Equation (3.2.98) is known as the Filtered Error Pseudo Linear Regression algorithm or more 

commonly as the SHARP (Simplified Hyperstable Adaptive Recursive Filtering) algorithm 

[3.12],[3.13],[3.23]. The coefficients C ( g ' ) are normally fixed throughout adaptation of the filter. The 

convergence limits of the Pseudo Linear Regression LMS algorithm in (3.2.86) also apply to the SHARP 
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algorithm of (3.2.98). The structure of the SHARP algorithm is illustrated in Figure 3.8. In 

Figure 3.8 C(g' ') is defined as a length N+1 MA filter with element one equal to unity (c,, = 1). 

The SHARP algorithm by filtering the output error signal essentially expands the SPR region 

within the unit circle of the z domain to include more echo path coefficient values. However as the 

coefficients C{q ' ) are fixed, like the Pseudo Linear Regression algorithm some knowledge of 

1 — A , ( z ' ) i s required. As a rule a placement of a zero in the vicinity of each echo path model pole 

provides a reasonable set of coefficients for C ( g ' ) to ensure the following SPR (Strict Positive Real) 

condition is satisfied for the SHARP, 

1 + C ( z - ' ) 
Re - Y > 0 , z = l , (3.2.99) 

where y is a scalar constant equal to 1/2 [3.12], [3.23]. 

We shall see later in Chapter 5 from the SPR (Strict Positive Real) nature of the measured acoustic 

echo paths for a mobile handset, how the SHARP C ( ^ ' ) coefficients are selected. 

3.2.9. SHARP Normalised LMS Output Error adapt ive IIR algorithm 

In the same way the Pseudo Linear Regression algorithm is normalised to cope with the variation in 

input signal powers, the same normalisation can be used on the SHARP LMS algorithm of (3.2.98) giving, 

+ (3.2.100) 

where 6 is a small positive constant to prevent division by zero when information vector power is zero. 

Equation (3.2.100) is termed SHARP Normalised LMS (NLMS) adaptive IIR algorithm. 

From (3.2.88) it can be seen that the stepsize jl is normalised by the 1; norm of the information 

vector (Pg(«) . Despite becoming invariant to input signal power variations the same dependency on the 

eigenvalue spread of the correlation matrix ^ will still exist as for the both the SHARP and Pseudo 

Linear Regression LMS algorithms. 

82 



Acoust ic Echo Path 

S H A R P Adapt ive IIR L M S 

Algori thm 

Output 
Error 

e„(«) 

MA part AR part 

% = + =1 
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3.2.9.1. The SHARP LMS Newton Output Error adapt ive MR algorithm 

Mathematically the iterative solution to the recursive normal equations of (3.2.21) using Newton's 

Method is given by [3.12], 

(3.2.101) 

where H ( 6 ^ ) i s the Hessian matrix of the mean squared error cost function F of (3.2.11) and is 

H ' ( 6 „ ) i t s inverse. Using Feintuch's simplifications of (3.2.78) the Hessian matrix for the SHARf 

algorithm can be computed as follows, 

giving 

H ( e j = 2 R , , , (3.2.103) 

Substituting (3.2.103) into (3.2.101) we get an equation for the solution to the recursive normal 

equations using Newton's method as , 

Incorporating time dependency into (3.2.104) and using an instantaneous estimate for V F gives, 

8.+. = 8 , + (MX(M) | l + C ( g - ' ) k , ( M ) , (3.2.105) 

where (n) is an estimate of the inverse of the correlation matrix R ^ ^ . Equation (3.2.105) 

shall be termed the SHARF LMS Newton adaptive IIR algorithm. The coefficients C{q ' ) like the 

SHARF LMS algorithm of (3.2.98) are normally fixed throughout adaptation of the filter. The 

convergence limits of (3.2.94) and SPR condition of (3.2.99) also apply to the SHARF LMS Newton 

algorithm. Like the PLR LMS Newton algorithm, the choice of fixed stepsize |1 in (3.2.105) can be 

difficult for non-stationary environments and signals. Instead a variable convergence factor )! (n) as can 

be chosen to minimise a posteriori error giving. 

Equation (3.2.106) is termed the SHARF Normalised LMS Newton algorithm, and incorporates an 

additional reduction factor, |J,, like the PLR Normalised LMS Newton algorithm to control convergence 

speed at the expense of steady state error. 
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3.3. Equation Error Adaptive IIR Filtering 

This section describes the most common adaptive IIR filtering algorithms based on the equation 
error formulation [3.4][3.12]. 

3.3.1. T h e Optimal Equation Error IIR Filter 

Acoustic Echo Path 

+ir 

IIR Equation Error model 

w + 

ik+ 

MA part AR part 
Equation 

Error 

q ' = Unit delay operator 

^ ( 9 ' +^2? ^ + + 

= + + 

Adaptive Algorithm 

Figure 3.9 : System Identification of echo path using an equation error adaptive IIR filter 

The same echo path model described by equation (3.1.1) and (3.1.2) is used for the unknown echo 

path to be modelled. Like the output error IIR filter to cancel the echo signal d{n) , a replica of the echo 

path output y{n), denoted y{n) , must be created by the IIR equation error filter which models the echo 

path transfer function and subtracted from d{n). For a fixed time invariant equation error IIR filter 

model of order (M, N), the output y{n) becomes, 

M-1 M 
y(M) = B ( 9 " ' ) % ( » ) + A ( g ' ) ( / ( » ) = ^ - 0 + ^ a X ( » - ) ) , 

/—0 j~\ 

Re-writing (3.3.1) in more compact notation using vector notation we get. 

(3.3.1) 

(3.3.2) 
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where 8 is the (M+N) x 1 coefficient vector as defined in (3.2.3) and (p is a (M+N) x 1 information 

regression vector defined as; 

+ (3.3.3) 

where x ( « ) is a Mxl vector of echo path input samples defined in (3.2.5) and d (n — 1) is a Nxl vector 

echo path output samples defined as: 

d ( n - \ ) = [d{n-1), ,d{n - N y f , (3.3.4) 

From equation (3.3.2) we can see the filter output is a linear function of the coefficients 6 as it 

depends on signals x{n) and d{n) only, which do not depend on previous coefficient values. Equation 

(3.3.2) is often termed a linear regression [3.12]. Consider the equation error signal e^{n) , 

e / w ) = 6/(M) - = ( / ( » ) - - y ) - ; ) , (3.3.5) 
y=l /=0 

Re-writing (3.3.5) we get [3.] 2], 

(" ) = |l - . (3.3.6) 

From (3.3.6) we can see the reason for terming the IIR model of (3.3.2) an equation error IIR filter 

model, as the error signal, e^(n), is generated by subtracting two difference equations; 

[l — A ( ^ ' ) ] ( / ( » ) and B ( g ' ) x ( n ) . Since the coefficients a of the equation error model are adjusted 

in response to delayed samples of the desired response d{n) , which does not depend on the filter output 

y(n), the error signal of (3.3.6) is a linear function of the filter coefficients b- and a . In the case of no 

output noise v(n) we get an true IIR filter structure, otherwise the equation error IIR adaptive filter can 

be interpreted as two FIR filters B ( ^ ~ ' ) and A ( g ^ ' ) . As long as FIR filter A{q ' ) remains minimum 

phase the filter output of (3.3.2) will remain stable [3.13]. Comparing equation (3.3.6) to (3.2.7) we can 

define a relationship between the equation error and output error as [3.12],[3.26], 

= (3.3.7) 

For a minimum equation error signal the fixed equation error IIR filter coefficients must be chosen 

to minimise some cost function. Like we have already seen for the optimal FIR and output error IIR filter 

models the cost function normally used in system identification theory is the minimisation of the mean 

square error. Consider now the design of an equation error IIR filter model of order (M,N) to minimise 

the mean square equation error. The cost function F to be minimised is denoted as, 

= (3.3.8) 

Rewriting (3.3.8) using (3.3.6) and (3.3.2) we get an equation for the cost function F i n terms of the filter 

coefficient vector 6 , which is termed the Mean Square Equation Error (MSEE) surface, as follows 

[3.4],[3.]3],[3.26], 
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(3.3.9) 

Re-writing (3.3.10) we get, 

7^ = ^ [ ^ ' ( M ) ] - 2 8 % + 8 ' R , , 8 . 

Where ^ i s a (M+N) x (M+N) covariance matrix defined as [21]: 

R R 
^ , , 9 , = ^ [ 9 . 9 , ] = 

R L R . , . 

And is a cross correlation vector defined as: 

with: 

R - M X N cross correlation matrix E \ ^ { n ) 6 ^ ( » ) ] , 

(3.3.10) 

(3.3.11) 

(3.3.12) 

(3.3.13) 

R ^ ^ - N X N autocorrelation matrix £ ' [ d ( « ) d ^ ( n ) ] , (3.3.14) 

From (3.3.10) we can clearly see that the Mean Square Equation Error (MSEE) surface for the 

equation error IIR filter model, like the FIR filter model, is a quadratic function of the filter coefficients 

bj and. As a result a single global minimum will exist in F with respect to 6 , with no local minima. The 

same techniques used for the selection of optimal coefficients for the FIR filter model described earlier 

applies here. To minimise this cost function F of (3.3.8) with respect to the filter coefficient vector 0 , 

differentiate F in (3.3.9) with respect to 9 and equate to zero. This yields, 

a F 
(3.3.15) 

g iv ing . 

R , , , , 8 = rd, , (3.3.16) 

Equation (3.3.16) represents the equation error recursive form of the normal equations of (3.1.15). 

Like the FIR model equation (3.3.16) requires the orthogonality of the input regression vector and the 

equation error signal. Using (3.3.2), (3.3.8) and (3.3.15) this gives, 

(3.3.17) 

The optimal least squares filter coefficients selected to minimise the mean square equation error 

(MSEE) are found by solving (3.3.16) for 0 as follows. 

0 R. 'op! "'ip,<pe (3.3.18) 

Equation (3.3.18) is the solution to the problem of designing a linear time invariant equation error 

IIR model to minimise the mean square equation error (MSEE) for wide sense stationary input signals. 
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From equation (3.3.18) we can see the selection of equation error IIR model coefficients 8 to minimise 

the mean square estimation error (MSB) involves a direct matrix inversion. 

3.3.2. Bias in the Equation Error Adaptive IIR Formulation 

Despite the advantages of the quadratic Equation Error cost function in (3.3.10), the equation error 

formulation of an IIR filter model sufkrs from a bias problem. Re-writing (3.3.9) using (3.3.6) and 

Parseval's theorem to be in the same form as the output error IIR filter model in (3.2.24), we get [3.13], 

1 ? 1 ^ 

2n L ' ' 2% I ' (3.3.19) 

Comparing the equation error cost function to minimised in (3.3.19) to the output error cost 

function of (3.2.24) we can see unlike the output error model the minimisation of (3.3.19) due to the 

second term on the RHS of (3.3.19) will give a bias in the estimated pole vector. To see the effects of this 

bias more clearly from the optimal solution consider the sufficient order system identification case where 

the output y{n) for an unknown IIR system of order (M,N) is to be modelled by an equation error IIR 

model of order (M,N) as shown in Figure 3.10 below. 

D(q ) = d^q " + 

IIR unknown system 

C(? ') 

IIR Equation Error model 

MA part AR part 
Equation 

Error 
Adaptive Algorithm 

q = Unit delay operator 

^ (9 ') =^0 ' +^2? ' + + " 

A{q ^) = a^q ^ + a^q ^ + + <2,v9 

Figure 3.10 : System Identification of IIR system using an equation error adaptive IIR filter 
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The output of system d{n) input to the equation error model is corrupted by a disturbance signal 

v(M) that is independent of the input signal %(») giving, 

( / ( « ) = };(M) + v(M), (3.3.20) 

where yin) is the true system output to be modelled by the equation error IIR filter model. Rewriting the 

cost function of (3.3.10) using (3.3.20) to show more clearly the effects of the noise bias we get 

[3.26],[3.27], 

F = E{y^ {n)]-2Q^ 
0 

-r,„ + 8 ' 
0 0 

0 R _ 
8 + (3.3.21) 

where v ( n ) is a Nxl vector of noise samples defined as; 

V(M) = [V(M - 1), , V(M - , 

and (p» is the information vector of the IIR system to be modelled defined as: 

(p, = [xW,..., x(M - M + 1 ) , - 1 ) , X " - , 

with; 

= N X N cross correlation vector E\y{n)\{ny\ , 

(3.3.22) 

(3.3.23) 

(3.3.24) 

(3.3.25) Ryy = N X N autocorrelation matrix E[\{n)\^ {ny\, 

Comparing (3.3.21) with (3.3.10) and (3.3.11), we see that the disturbance signal v{n) 

introduces additional bias to the cross correlation vector and matrix . This is a consequence of 

using the desired signal d{n) in the feedback path of the equation error filter model which my corrupted 

by additive noise. To see the effects of this bias in the equation error cost function consider firstly the case 

where there is no disturbance noise at the output of the echo path to be identified. In this case 

din) = yiji) and the cost function of (3.3.21) becomes, 

F = + 8 " R , . , _ 8 . (3.3.26) 

For the noiseless case the optimum filter coefficients, 8 , may then be found by differentiating (3.3.26) 

with respect to 6 and equating to zero, which gives, 

(3.3.27) 

Considering now the case where the disturbance term v{n) is not zero, the optimum solution 

8 , found by differentiating (3.3.21)with respect to 0 and setting the result to zero giving. 

op/ 

0 0 
- I 

0 
R + r _ — 

9*9* 0 
/ v v _ 

(3.3.28) 
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Comparing (3.3.27) and (3.3.28) we can see that the optimum Wiener solution in the presence of 

a disturbance signal v(M) at the output of the echo path, would attempt to select the coefHcients in 

8 to both minimise the noise variance of v{n) and to identify the poles of the echo path. This results 

in a bias in feedback coefficients a • of the optimum coefficient vector solution 8 ^. For a special case 

where the noise process v{n) is white, with variance , we get [3.26], 

-] 

0 0 

0 0 
L . ] . (3 3.29) 

From (3.3.29) it can be seen that when v{n) is white, a constant offset term is produced for the each AR 

coefficient, allowing any bias to be more simply compensated for. However as v{n) in general is coloured 

a constant offset term will not be present since will no longer be identity in form. The disturbance 

noise signal v{n) may be more widely interpreted to include, not only any disturbances picked up on the 

handset microphone at the output of the echo path, but also undermodelling noise. This undermodelling 

would be caused by the equation error IIR model order being lower than the order of the echo path to be 

modelled [3.29]. 

Like the optimal FIR solution of (3.1.18) a direct solution of the optimal equation error solution in 

equation (3.3.18) is impractical due to the difficulty and high computational complexity involved in 

constructing and inverting the auto covariance matrix . A more practical solution is the 

development of iterative solutions to the normal equations of (3.3.16), which will continuously track 

changes in the optimal solution of (3.3.18) as each new data samples becomes available. 

3.3.3. The Equation Error LMS (EELMS) adaptive algorithm 

As was similarly done for the FIR LMS algorithm earlier in the chapter the steepest descent update 

for the iterative solution to the recursive normal equations of (3.3.16) is given by, 

8.+, ==8. (3 3 30) 

where jl is a step size parameter to control the size of change in 8^+, from . The gradient of the mean 

square equation error surface using (3.3.16) and (3.3.17) can be written as, 

V f ; = - 2 ^ [ e X M ) ( p X M ) ] , (3.3.31) 

giving the iteration, 

8,+, = 8 , + | lEk(M)(pXM)] . (3.3.32) 

Since is generally unknown an estimate can be used. In line with the FIR LMS 

philosophy used earlier in the chapter the gradient V 7 \ is replaced by an instantaneous estimate. 
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where, 

giving the coefficient update, 

(n) 
= - 2 ( p X M X ( M ) , (3.3.34) 

(3.3.35) 

Equation (3.3.35) is known as the Equation Error LMS (EELMS) adaptive IIR 

algorithm[3.4],[3.]3],[3.26]. The weight vector 0^ is altered only by a small amount )I in order to ensure 

that the new weight vector is influenced by all previous error values and not just e^{n) . This ensures the 

weight vector will converge to the optimal weight vector solution without excessive random wandering. 

The structure of the Equation Error Adaptive IIR algorithm is shown in Figure 3.11. 

Consider the convergence of the EELMS algorithm in the mean. As done for the FIR LMS 

algorithm if we define a coefficient error vector which represents the difference between each element 

of the filter coefficient vector 0^ and the optimal solution 8 of (3.3.16) we get [3.26], 

(3.3.36) 

Consequently each coefficient error term j of will decay to zero provided that, 

(3.3.37) 

where Xy is the eigenvalue of covariance matrix ^ . From (3.3.37) the Equation Error LMS 

algorithm will converge in the mean provided that input is persistently exciting and the eigenvalues of 

covariance matrix R ^ have a magnitude less than unity. For a positive definite matrix the 

Equation Error LMS algorithm will converge in the mean provided that, 

2 
0 < ^ < - , (3.3.38) 

max 

where is the maximum eigenvalue of covariance matrix . For a positive semidefinite matrix 

R ^ ^ that has Toeplitz form, the trace of the covariance matrix R can be used for the upper bound 

of (3.3.38) in a similar fashion to what was done for the FIR algorithm. Due to the Teoplitz form of 

R ^ ^ the upper bound of (3.3.38) can be reduced further to, 

where ||(p^ (M)|| is the I2 norm of information vector (p^ (n) which can be written as, 

M-l AT 

k e W l L + (3.3.40) 
/=0 y=l 
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From (3.3.37) we can see the convergence in the mean for each coeKcient error term for the 

Equation Error LMS algorithm will be dependent on the eigenvalue spread of the covariance matrix 

^ . The eigenvalue spread was defined earlier in (3.1.47). 

Equation (3.3.35) is specified in a group adaption form where the same stepsize is used to 

control the adaption of all coefficients in the IIR filter coefficient vector 0^ . We shall see later in the 

Chapter 5 that homogenous adaption forms will be used due to echo path attenuation [3.16]. A 

homogenous adaption form uses separate stepsize factors, and |1^ , to control adaption of the MA and 

AR parts of the coefficient vector. 

3.3.4. Normalised LMS Equation Error adaptive IIR a lgor i thms 

In the same way the output error LMS algorithms will vary with the power of the information 

regression vector <p„(/7) or (Py(«) , the Equation Error adaptive IIR LMS algorithm will vary with the 

power of the information regression vector (Pg(«) . This presents a problem for choosing a fixed step size 

for the Equation Error LMS algorithm. By incorporating normalisation into the filter update, 

proportional to the power of the information vector {n), the filter update can be made independent of 

input and output signal powers [3.30][3.31]. For the Equation Error LMS algorithm, normalisation by the 

I2 norm of information vector (p^ (n) gives the filter update, 

iL 
8 + ( p j (M)(pXM) 

+ ^ ^ ^ (3.3.41) 

where 6 is a small positive constant to prevent division by zero when information vector power is zero. 

Equation (3.3.41) is called the Equation Error Normalised LMS (NLMS) algorithm. Like the other 

NLMS algorithms seen so far, the Equation Error NLMS algorithm will still suffer from the same 

dependency on the eigenvalue spread of the correlation matrix, R ^ . Equation (3.3.41) is in group 

adaption form. 
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Figure 3.11 ; The structure of the Equation Error LMS adaptive IIR algorithm. 
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3.3.5. Newton's method and the Equation Error LMS Newton adaptive IIR algorithm 

Using the iterative solution to the recursive normal equations of (3.3.16) using Newton's Method 

gives, 

(3.3.42) 

where H(() , ) is the Hessian matrix of the mean squared error cost function F of (3.3.10), and 

H ' ( 0 „ ) is its inverse. As we have discussed already the Hessain matrix defined in (3.1.55) is the second 

derivative of the cost function with respect to the filter coefficients. Using (3.3.10) the Hessain matrix for 

the equation error formulation can be computed as follows, 

giving, 

H ( 8 J = 2 R ^ ^ , (3.3.44) 

Substituting (3.3.44) into (3.3.42) we get an equation for the solution to the normal equations using 

Newton's method as folows. 

Comparing (3.3.45) to (3.3.25) we can see that Newton's method can be expected to converge quicker due 

to the weighting by Rjp'^ which essentially modifies the search direction to point to a minimum (local or 

global) point on the cost function F . Like the other LMS Newton algorithms discussed so far this 

weighting will equalise the eigenvalues of the correlation matrix each direction so each coefficient error 

term will converge uniformly. Incorporating time dependency into (3.3.45) and using an instantaneous 

estimate for V F as in the Equation Error LMS philosophy of (3.2.28) gives, 

= 8 . + ( » ) , (3.3.46) 

Equation (3.3.46) is termed the Equation Error LMS Newton adaptive IIR algorithm. Like the FIR LMS 

Newton algorithm of (3.1.58) an update constant )Ll has been introduced to allow a greater degree of 

control of the algorithm since a noisy instantaneous gradient estimate is used. Convergence in the mean 

about a local minimum point on the cost function F will occur provided, 

P . 3 4 7 ) 

or, 

0 < p L < 2 , ( 1 3 4 ^ 

Like the Simplified Gradient LMS Newton algorithm in practice the stepsize jl may have to be much 

lower than the upper bound of (3.3.48) for convergence. From (3.3.46) we can see the weighting by 

( n ) essentially will ideally make the Equation Error LMS Newton algorithm independent of the 
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eigenvalue spread of the covariance matrix R(p'(p ( » ) . This is a major advantage of the Equation Error 

LMS Newton algorithm over Equation Error LMS and NLMS algorithms because of the dependence of 

convergence speed on the eigenvalue spread of the covariance matrix ( » ) . Since the stepsize 

jl has to be sufficiently small for stability, a potentially slow convergence speed may result for coloured 

signals where the eigenvalue spread is greater than unity. However due to the requirement of the 

computation of an estimate of the inverse covariance matrix R ' ( « ) every iteration n, the Equation 

Error LMS Newton algorithm has a far higher computational requirement. To reduce complexity of the 

inverse covariance matrix calculation the same techniques employed for the FIR LMS Newton algorithm 

can be used. Using the matrix inversion lemma the inverse covariance estimate R ' ( » ) may be 

computed as follows [3.19], 

r;!. ("-1) 

\ (% 

(3.3.49) 

8.+, = + K (3.3.51) 

where y =1—OCis termed the forgetting factor which weights the most recent output errors. This is 

useful to exclude old data that is less appropriate in non-stationary environments. OC is a convergence 

factor. 

Like the other LMS Newton algorithms discussed so far the choice of fixed stepsize jl in (3.3.46) 

can be difficult for non-stationary environments and signals. Instead a variable convergence factor 

\i{n) can be chosen to minimise a posteriori error as follows. 

Introducing (3.3.50) into (3.3.46) we get, 

Equation (3.3.51) is termed the Equation Error Normalised LMS Newton algorithm and 

incorporates an additional reduction factor, , like the other Normalised LMS Newton algorithms 

discussed so far, to control convergence speed at the expense of steady state error. 

3.3.6. Bias Removal in the Equation Error LMS algorithm and the Bias Remedy Equation 
Error LMS adaptive algorithm 

The Equation Error LMS algorithm of (3.3.35) will still suffer the same bias in the AR coefficients 

once converged as illustrated in equation (3.3.29). This bias in the Equation Error LMS solution once 

converged is due to the fact the information vector (p^(«)in (3.3.3) includes not only the echo path 

output information y{n) , but also contributions disturbance signal v{n) as follows, 
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9 X » ) = (P.(M) + 
V(M) 

0 
(3.3.52) 

where v ( « ) a n d (p«(rt)are defined in (3.3.22) and (3.3.23) respectively. 

This additive disturbance signal v{n) is however normally not directly available to allow a simple 

subtraction from the information vector to order to eliminate the bias. An alternative solution developed in 

[3.26],[3.28] is to use the output error signal ( » ) , since this signal is a good estimate for the 

perturbation noise once the adaptive algorithm converges. Using this technique the adjusted information 

vector <P/„.(^) can be expressed as, 

where e „ ( ^ — 1) is a N+M xl vector defined as: 

Go ( " - ! ) = [0, 0, ( » - 1 ) , . . . . , ( n - , 

(3.3.53) 

(3.3.54) 

and the remedy parameter X ( 0 < X < 1 ) is a parameter used to control the amount of bias that is 

eliminated from the information vector . Using this adjusted information vector in (3.3.53) gives 

the coefficient update, 

(3.3.55) 

Equation (3.3.55) is known as the Bias Remedy Equation Error LMS algorithm [3.4],[3.26],[3.28]. 

In comparison to the Equation Eroor LMS update of equation (3.3.35) the only additional complexity is 

the remedy parameter X , and an FIR filter who's zeros are the same as the poles of the IIR model to 

generate the equation error signal (n) from the output error signal (n) . The structure of the Bias 

Remedy Equation Error LMS Adaptive IIR algorithm is shown in Figure 3.12. 

In terms of the stability of the Bias Remedy Equation Error LMS algorithm of (3.3.59) the smaller 

X is the closer the Bias Remedy Equation Error LMS algorithm is to the Equation Error LMS algorithm of 

(3.3.32) since from (3.3.53) will be similar to (|)g(«) - As a result for a smaller X a larger the bias 

will exist in the AR coefficients when echo path output noise is present. However with a smaller X the 

more stable the Bias Remedy Equation Error LMS algorithm becomes [3.4],[3.26],[3.28]. 

For the BR EELMS algorithm to be globally stable X must satisfy [3.26],[3.28], 

k X " ) ! 0 <x < min 
k ( » ) 

,1 (3.3.56) 

where ^ is a non-zero scalar constant which must be determined practically, and jLl must satisfy. 

0 < u < mm ,a 
R 

where is the largest eigenvalue of covariance matrix R 

real constant [3.26],[3.28]. The covariance matr ixR 

<PVPh 

is defined as 

(3.3.57) 

and G is a sufficiently small positive 
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(3.3.58) 

For a positive definite matrix ^ , which is Toeplitz in form, the upper bound of equation (3.3.61) 

becornes, 

0 < |1 < min 
' 2 

a (3.3.59) 

y J|(PtrW|| 

where is the I2 norm of adjusted information vector . In practice some experimentation 

is needed to define the constant O in the upper limit of (3.3.59) for convergence, as may have to be 

2 
much lower than % r— to remain stable. 

P / r N L 

Like the Equation Error LMS algorithm of (3.3.35) the Bias Remedy Equation Error LMS 

algorithm of (3.3.55) is specified in a group adaption form. We will see in Chapter 5 that like all LMS 

based adaptive IIR algorithms presented so far, a homogenous adaption forms may be required to echo 

path attenuation. 

3.3.7. The Normalised LMS Bias Remedy Equation Error adapt ive IIR algorithm 

In the same way the Equation Error adaptive IIR LMS algorithm will vary with the power of the 

information regression vector the Bias Remedy Equation Error adaptive IIR LMS algorithm will 

vary with the power of information vector (f>^^ (n) . This presents a problem for choosing a fixed step size 

| I for the Bias Remedy Equation Error LMS algorithm. By incorporating normalisation into the filter 

update [3.30], proportional to the power of the information vector (n) , the filter update can be made 

independent this power variation. For the Bias Remedy Equation Error LMS algorithm, normalisation by 

the I2 norm of information vector (p (n) gives the filter update, 

^''+' ^ (3.3.60) 
5+(P6.(M)(pAr(») 

where 5 is a small positive constant to prevent division by zero when information vector power is zero. 

Equation (3.3.60) is called the Normalised LMS (NLMS) Bias Remedy Equation Error algorithm. Like 

the other NLMS algorithms seen so far, the Bias Remedy Equation Error NLMS algorithm will still suffer 

from the same dependency on the eigenvalue spread of the correlation matrix, ^ ^ . 
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Figure 3.12 : The structure of the Bias Remedy Equation Error LMS adaptive IIR algorithm. 
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3.3.8. The Newton's method and Bias Remedy Equation Error LMS Newton adaptive IIR 
algorithm 

Using the iterative solution to the recursive normal equations of (3.3.16) using Newton's Method gives, 

= e . - n H - ' ( 9 J V / ; , , ( 3 J . 6 I ) 

where H ( 0 ^ ) i s the Hessian matrix of the mean squared error cost function F of (3.3.10), and 

II ' ( 0 „ ) is its inverse. As we have discussed already the Hessain matrix defined in (3.1.55) is the 

second derivative of the cost function with respect to the filter coefficients. Using (3.3.10) and the 

modified information vector (p^^(«)the Hessain matrix for the bias remedy equation error formulation 

can be computed as follows, 

giving, 

1 1 ( 8 . ) = ' (3 3-63) 

Substituting (3.3.44) into (3.3.42) we get an equation for the solution to the normal equations using 

Newton's method as folows, 

(3.3-64) 

Comparing (3.3.45) to (3.3.25) we can see that Newton's method can be expected to converge quicker due 

to the weighting by R which essentially modifies the search direction to point to a minimum (local 

or global) point on the cost function F . Like the other LMS Newton algorithms discussed so far this 

weighting will equalise the eigenvalues of the correlation matrix each direction so each coefficient error 

term will converge uniformly. Incorporating time dependency into (3.3.64) and using an instantaneous 

estimate for V F as in the Equation Error LMS philosophy of (3.2.28) gives, 

(» ) . (3.3.65) 

Equation (3.3.65) is termed the Bias Remedy Equation Error LMS Newton adaptive IIR algorithm. Like 

the FIR LMS Newton algorithm of (3.1.58) an update constant has been introduced to allow a greater 

degree of control of the algorithm since a noisy instantaneous gradient estimate is used. Convergence in 

the mean about a local minimum point on the cost function F will occur provided, 

|l — jj.| < 1, (3.3.66) 

or, 

0 <:|1 < : » , (3.3.67) 

Like the Equation Error LMS Newton algorithm in practice the stepsize jl may have to be much lower 

than the upper bound of (3.3.67) for convergence. From (3.3.65) we can see the weighting by 
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R j (p ( » ) essentially will ideally make the Bias Remedy Equation Error LMS Newton algorithm 

independent of the eigenvalue spread of the covariance matrix q, . This is a m^or advantage of the 

Equation Error LMS Newton algorithm over Equation Error LMS and NLMS algorithms because of the 

dependence of convergence speed on the eigenvalue spread of the covariance matrix R^, . Since the 

stepsize |Ll has to be sufficiently small for stability, a potentially slow convergence speed may result for 

coloured signals where the eigenvalue spread is greater than unity. However due to the requirement of the 

computation of an estimate of the inverse covariance matrix R (w) every iteration n, the Equation 

Error LMS Newton algorithm has a far higher computational requirement. To reduce complexity of the 

inverse covariance matrix calculation the same techniques employed for the FIR LMS Newton algorithm 

can be used. Using the matrix inversion lemma the inverse covariance estimate R" ' ,„ («)may be 

computed as follows [3.19], 

V 

(3.3.68) 

where y = 1 — OC is termed the forgetting factor which weights the most recent output errors. This is 

useful to exclude old data that is less appropriate in non-stationary environments. (X is a convergence 

factor. 

Like the other LMS Newton algorithms discussed so far the choice of fixed stepsize in (3.3.65) 

can be difficult for non-stationary environments and signals. Instead a variable convergence factor 

jj,(n) can be chosen to minimise a posteriori error as follows. 

Introducing (3.3.69) into (3.3.65)we get, 

Equation (3.3.70) is termed the Bias Remedy Equation Error Normalised LMS Newton algorithm 

and incorporates an additional reduction factor, fj , , like the other Normalised LMS Newton algorithms 

discussed so far, to control convergence speed at the expense of steady state error. 

3.3.9. Bias Removal Using the Steiglitz McBride Equation Error Method 

The Steiglitz McBride method of system identification essentially overcomes the bias problem of 

the standard Equation Error model of Figure 3.9 by pre-filtering the input signals by the poles of the 

adaptive model. As we shall see this essentially distorts the Equation Error surface in (3.3.19) to be 

minimised, to appear more like the Output Error cost function of (3.3.24), while still remaining a linear 

function of the adaptive filter coefficients. Consider the pre-filtered input signals [3.12], [3.19], 
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/ \ 

and, 

, / \ ^ 0 ^ 

where k is an iteration index, and A(q \ k ) are poles of the adaptive model for iteration k. Using the 

relationship of (3.3.7) we can formulate a filtered equation error signal as follows, 

Rewriting this gives. 

By running a series of iterations k on time series data x(n) and d(n) , where each iteration the 

pre-filters A(q ^ ,k) are fixed during adaption of the filters coefficients, it is clear from (3.3.73) that 

(n) is a filtered equation error, such that F = ( « ) ] would be a quadratic with respect to the 

filter coefficients. Thus the Steiglitz McBride method consists of a series of quadratic optimisation 

problems at each iteration k [3.12]. From (3.3.74) if the pre-filters X ( q ^ \ k ) were time varying such that 

k = n — \ then (n ) becomes similar in form to an Output Error signal ( n ) of (3.2.7). 

Consider the modified equation error model output as a result of the pre-filtering processes of 

(3.3.71) and (3.3.72), 

= (3.3.75) 

where 0 is as defined in (3.2.3) and is the (M+N) x 1 filtered information vector defined as: 

= + , (3.3.76) 

and wherely ( » ) and d ^(n — 1) are a Nxl vectors defined as: 

( h — 1) = [x^(/7 — 1), ,xj (n — M -f 1)]^ , (3.3.77) 

d y ( « - 1) = [(ify ( « - 1), , ( / / ( « - , (3.3.78) 

The error signal for the Steiglitz M%ride scheme then becomes, 

= ( / / ( » ) ( 3 . 3 . 7 9 ) 

Comparing this error signal to the standard equation error signal of (3.3.6) we get the relationship [32], 

The cost function F for the Steiglitz McBride Equation Error model to be minimised is defined as, 

^ ( « ) ] = / ( « ) - )^ ] ' (3.3.81) 

Rewriting (3.3.38) this gives, 
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where R is a (M+N) X (M+N) covariance matrix defined as [41]: 

where r . „ is a cross correlation vector defined as: 

R . 

R 

R , 
R 

with: 

R - M X N cross correlation matrix i?[x , (M)dC (n)] 

^d fd f = N X N autocorrelation matrix i i [ d ^ ( « ) d y ( n ) ] . 

(3.3.82) 

(3.3.83) 

(3.3.84) 

(3.3.85) 

(3.3.86) 

Since at each iteration k the Steiglitz McBride model is inherently an equation error model and the cost 

function of (3.3.44) is linear with respect to the filter coefficients of the adaptive model. The same 

methods used for the equation error model to derive an optimum set of filter coefficients to minimise 

(3.3.39) can hence be used. 

To minimise this cost function F of (3.3.81) with respect to the filter coefficient vector 0 , 

differentiate F in (3.3.82) with respect to 6 and equate to zero. This yields, 

giving, 

D 0 = r 

(3.3.87) 

(3.3.* 

Equation (3.3.46) represents the recursive form of the normal equations of (3.1.16) for the pre-

filtered equation error filter model. Like the FIR model equation (3.3.16) requires the orthogonality of the 

input regression vector and the equation error signal of (3.3.36). Using (3.3.36) and (3.3.38) this gives, 

= -2 .E[g*(M)- ] = - 2 # [ e , ( M ) ( p &(%)], (3.3.89) 
a e a e ' a e ' 

The optimal least squares filter coefficients selected to minimise the cost function F o f (3.3.81) are 

found by solving (3.3.46) for 9 as follows, 

= R. (3.3.90) 'of ^ ' 

From equation (3.3.90) we can see the selection of equation error IIR model coefficients 8 , to minimise 

the the cost function F of (3.3.81) involves a direct matrix inversion. 

3.3.10. The method of S t eepes t Descent and the Steiglitz M'^Bride Equation Error LMS 
adaptive IIR algorithm 

The development of the adaptive form of the Steiglitz M%ride method requires some 

simplifications must be made to the pre-filters [3.13],[3.27]. Instead of a sequence of 
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quadratic optimisation problems with stationary pre-filters A(q \ k) for each iteration, time varying pre-

filters — l^are used on the input signals giving [3.13],[3.27], 

1 77 = - Z - ) ) , (3 3.91) 
1 - A ( ^ , M - 1 ) 

^ 1 = ^(M) - Z / ( » - ) ) , (3.3.92) 
l -A(g ,M-l) 

From (3.3.91) and (3.3.92) it can be seen at time index n the input signals x ( « ) and d{n)aK pre-

filtered by the poles of the adaptive model at previous time index n — l . The resulting error signal then 

becomes [3.13], 

From (3.3.93) it can be seen that the filtered error signal ( » ) to be minimised is similar in form 

to an instantaneous output error signal. However for a "suffiently small" stepsize j l , the filter coefficients 

vary "sufficiently slowly" such that prefilters A.(q~^ ,n — \) are close to those preoduced by a stationary 

pre-filter at each step of adaption n [3.13]. Thus Xy ( « ) and dj{n) can be assumed to be independent 

of the filter coeffients 0^ at each iteration n, such that minimisation of f [g^(M)] will be a 

quadratic optimisation problem [3.13],[3.27]. 

Let us now continue with development of steepest descent adaptive LMS form of the Steiglitz 

M'Bride equation error method. For this adaptive method our objective is to choose the filter coefficients 

0^ at each iteration n, to minimise the mean squared error cost function cost function of (3.3.81) [3.32], 

[3.33], 

^ = (3.3.94) 

Using the steepest descent iterative method to provide an iterative solution to the recursive normal 

equations of (3.3.88) we get the update, 

e . « = 8 . - | V F . . (3J .95) 

where |Ll is a step size parameter to control the size of change in f rom 6„ . The gradient of the mean 

square equation error surface using (3.3.88) and (3.3.89) can be written as, 

V 7 \ = (M)(p ̂  (» ) ] , (3.3.96) 

giving the iteration, 

8,+, = 8 , + | l E k ( M ) ( p X M ) ] . (3.3.97) 

Since i i («){py^ (n)J is generally unknown an estimate can be used. In line with the FIR LMS 

philosophy used earlier in the chapter the gradient is replaced by an instantaneous estimate. 

.V 
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T/jc: = , (3.3.98) 
0 8 _ 

where, 

3e^ (M) 
2 ( p , ( M ) e , ( M ) , (3.3.99) 

88^ 

giving the coefficient update, 

= 8 « +l^(p;k(»kyk(M), (3.3.100) 

Equation (3.3.100) is known as the Steiglitz McBride Equation Error LMS adaptive IIR algorithm 

[3.13],[3.27],[3.32],[3.33]. The structure of the Steiglitz McBride Equation Error Adaptive IIR algorithm 

is shown in Figure 3.13. 

Consider the convergence of the Steiglitz McBride Equation Error LMS algorithm in the mean for 

a "sufficiently small" step size and for a sufficient order model [3.13]. As done for the FIR LMS 

algorithm if we define a coefficient error vector which represents the difference between each element 

of the filter coefficient vector 8^ and the optimal solution 8 of (3.3.89) we get, 

(3.3.101) 

Consequently each coefficient error term j of £„ will decay to zero provided that, 

(3.3.102) 

where is the maximum eigenvalue of covariance matrix . For a positive semidefmite matrix 

R_ that has Toeplitz form, the trace of the covariance matrix R can be used for the upper 
r ' ipyi,ipyf 

bound of (3.3.102) in a similar fashion to what was done for the FIR algorithm. Due to the Teoplitz form 

of R(p the upper bound of (3.3.102) can be reduced further to, 

where jjcp(M)|| is the h norm of information vector (p^ (n) which can be written as, 

A/—1 

IkNL (3.3.104) 
/=0 

From (3.3.102) we can see the convergence in the mean for each coefficient error term for the 

Equation Error LMS algorithm will be dependent on the eigenvalue spread of the covariance matrix 

Rq, . The eigenvalue spread was defined earlier in (3.1.47). 

Equation (3.3.100) is specified in a group adaption form where the same stepsize ]Ll is used to 

control the adaption of all coefficients in the IIR filter coefficient vector 0^ . We shall see later in the 

Chapter 5 that homogenous adaption forms will be used due to echo path attenuation [3.16]. A 

homogenous adaption form uses separate stepsize factors, and , to control adaption of the MA and 

AR parts of the coefficient vector. 

104 



Acoustic Echo Path 

Steiglitz McBride Equation Error 
Adaptive IIR LMS Algorithm 

Filtered 
Equation 

Error 
ef,{n) 

IMA part 

Figure 3.13 : The structure of the Steiglitz McBride Equation Error LMS adaptive IIR algorithm. 
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3.3.11. Normalised LMS Steiglitz McBride Equation Error adapt ive IIR algorithm 

In the same way the Equation Error LMS algorithm will vary with the power of the information 

regression vector q)^(«) , the adaptive IIR Steiglitz McBride Equation Error LMS algorithm will vary 

with the power of the information regression vector (p^^(n) . This presents a problem for choosing a 

fixed step size |Ll for the adaptive IIR Steiglitz McBride Equation Error LMS algorithm. By incorporating 

normalisation into the filter update, proportional to the power of the information vector (p^^(«), the 

Steiglitz McBride Equation Error LMS filter update can be made independent of input and output signal 

powers [3.17],[3.30]. For the Steiglitz McBride Equation Error LMS algorithm normalisation by the L 

norm of the filtered information vector ( » ) gives the filter update, 

(3.3-.05) 

Equation (3.3.105) is called the Steiglitz McBride Equation Error Normalised LMS adaptive IIR 

algorithm. Like the other NLMS algorithms seen so far, the Steiglitz McBride Equation Error NLMS 

algorithm will still suffer from the same dependency on the eigenvalue spread of the correlation matrix, 

3.3.12. Newton's method and the Steiglitz M'^Bride Equation Error LMS Newton adaptive 
IIR algorithm 

Using the iterative solution to the recursive normal equations of (3.3.88) using Newton's Method 

gives, 

8 _ , (3.3.106) 

where H ( 0 ^ ) i s the Hessian matrix of the mean squared error cost function F of (3.3.82), and 

H ' (0^ ) is its inverse. As we have discussed already the Hessain matrix defined in (3.1.55) is the second 

derivative of the cost function with respect to the filter coefficients. Using (3.3.82) the Hessain matrix for 

the Steiglitz McBride equation error formulation can be computed as follows, 

giving, 

H ( 8 J = 2 R ^ , p , (3.3.108) 

Substituting (3.3.108) into (3.3.106) we get an equation for the solution to the normal equations of 

(3.3.88) using Newton's method as folows, 
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e„ 'n+i "« f„<s> f!' (3.3.109) 

Comparing (3.3.109) to (3.3.100) we can see that Newton's method can be expected to converge quicker 

due to the weighting by which essentially modifies the search direction to point to a minimum 

(local or global) point on the cost function F . Like the other LMS Newton algorithms discussed so far 

this weighting will equalise the eigenvalues of the correlation matrix each direction so each coefficient 

error term will converge uniformly. Incorporating time dependency into (3.3.109) and using an 

instantaneous estimate for VF as in the Steiglitz McBride Equation Error LMS philosophy of (3.3.98) 

gives, 

8«+l (3.3.110) 

Equation (3.3.110) is termed the Steiglitz McBride Equation Error L M S Newton adaptive IIR algorithm. 

Like the FIR LMS Newton algorithm of (3.1.58) an update constant )Ll has been introduced to allow a 

greater degree of control of the algorithm since a noisy instantaneous gradient estimate is used. 

Convergence in the mean about a local minimum point on the cost function F will occur provided, 

l - H < 1 , (3.3.111) 

or, 

Like the Equation Error LMS Newton algorithm, in practice the stepsize jl may have to be much lower 

than the upper bound of (3.3.112) for convergence. From (3.3.110) we can see the weighting by 

R -1 (n) essentially will ideally make the Steiglitz McBride Equation Error LMS Newton algorithm 

independent of the eigenvalue spread of the covariance matrix . This is a major advantage of the 

Steiglitz McBride Equation Error LMS Newton algorithm over Steiglitz McBride Equation Error LMS 

and NLMS algorithms because of the dependence of convergence speed on the eigenvalue spread of the 

covariance matrix R . Since the stepsize [X has to be sufficiently small for stability, a potentially 

slow convergence speed may result for coloured signals where the eigenvalue spread is greater than unity. 

However due to the requirement of the computation of an estimate of the inverse covariance matrix 

R -1 (n) every iteration n, the Steiglitz McBride Equation Error LMS Newton algorithm has a far 

higher computational requirement. To reduce complexity of the inverse covariance matrix calculation the 

same techniques employed for the FIR LMS Newton algorithm can be used. Using the matrix inversion 

lemma the inverse covariance estimate R^^^^ (n) may be computed as follows [3.19], 

R ' (» ) : 
y 

R 
'P.A'Pyf 

1 
a 

+(pyk 

(3.3.113) 
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where y =1—OCis termed the forgetting factor which weights the most recent output errors. This is 

useful to exclude old data that is less appropriate in non-stationary environments. (X is a convergence 

factor. 

Like the other LMS Newton algorithms discussed so far the choice of fixed stepsize )J, in (3.3.110) 

can be difficult for non-stationary environments and signals. Instead a variable convergence factor 

\l{n) can be chosen to minimise a posteriori error as follows, 

Introducing (3.3.114) into (3.3.110) we get. 

Equation (3.3.115) is termed the Steiglitz McBride Equation Error Normalised LMS Newton 

algorithm and incorporates an additional reduction factor, p , , like the other Normalised LMS Newton 

algorithms discussed so far, to control convergence speed at the expense of steady state error. 
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3.4. Adaptive IIR Algorithm Summary 

A complete summary of the IIR adaptive algorithms detailed in the thesis can be formulated from 

(4.4.1) as shown in the table below, 

Initialisation: 0 ^ — 0 , (p ( j l ) — 0 , V / 7 < 0 

A l g o r i t h m 

Simplified Gradient Output Error 9 / ( M ) 

Pseudo Linear Regression Output Error e / M ) 

SHARP Output Error 

Equation Error e / f z ) 

Bias Remedy Equation Error (p&X") 

Steiglitz McBride Equation Error 

Algorithm Adaption Method 

LMS I 

NLMS I 

LMS Newton 

NLMS Netwon 

= 8 * 

Table 3-2 ; IIR adaptive algorithm summary 

where ( » ) is the output error signal, e^{n ) \ s the equation error signal, j ) ( « ) i s the output of the 

adaptive filter model and d{ri) is the output of the echo path to be modelled. 
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Chapter 4 

4. Modelling the acoustic echo path of a mobile handset 

4.1. Introduction 

In chapter 2, acoustic echo path responses were presented for typical mobile handset designs. It 

was established that, for the handset designs tested that acoustic echo cancellation was required. It was 

also seen that the variation of echo path response during normal handset use can be very large and in some 

configurations tested a resonant handset response is measured. 

In chapter 3 we have introduced the fundamentals of optimal filtering using FIR (Finite Impulse 

Response) and IIR (Infinite Impulse Response) filter models. A longstanding question of the acoustic 

echo cancellation field is whether the use of an IIR model gives any significant performance advantages 

over the much simpler and more widely used FIR model. Modelling results in the acoustic echo 

cancellation literature concerning the relative performance of FIR and IIR filter models have tended to be 

based on room acoustic echo path impulse responses [4.1],[4.2],[4.3]. As correctly pointed out in [4.1] 

these modelling results are specific only to these particular application areas, and general conclusions on 

the modelling of an acoustic echo path using an IIR model should be avoided. To the author's knowledge 

no previous publications have documented the modelling of an acoustic echo path of a mobile handset 

using FIR or IIR models. The main aim of this chapter is to determine whether an FIR or IIR filter model 

is more suitable for modelling the echo path response of a mobile handset based on the echo path 

responses recorded in chapter 2. 

In chapter 2 a sampling frequency of 12.8kHz was used to see clearly the characteristics of the 

acoustic echo path response. The topic of narrowband and wideband codec ADC systems was discussed. 

The main aim of this chapter is towards narrowband codec systems, as found in current GSM handset 

designs and fixed line telephony. To model the total echo path response, the echo path as seen by an 

acoustic echo cancellation device within the handset DSP (not only the acoustic response) must be 

considered. Sections 4.2 and 4.3 of this chapter deal with the complete echo path to be modelled 

(including the effect of codec filters). The issue of the sample rate conversion to the codec sample rate is 

discussed. Converted Echo path response results and Terminal Coupling Loss levels are presented for the 

handset test configurations of chapter 2 at actual the codec sample rate, including the effects of codec 

filtering. 

In Section 4.4 a procedure for comparing the relative performance of FIR and IIR filter models is 

established. In Sections 4.5 and 4.6 modelling results are then presented using the converted echo path 

responses of Section 4.3. These results show there is a clear benefit of using an IIR filter model for 

modelling the acoustic echo path of a mobile handset. 



Finally in Section 4.7 the need for an adaptive IIR model is established. The achievable 

performance of adaptive IIR filters over adaptive FIR filters using the adaptive algorithm techniques of 

chapter 3 are presented in detail in chapter 5. 

4.2. The actual echo path of a mobile handset 

In chapter 2 we looked only at the acoustic echo path of a mobile handset and how this response 

changes with the handset orientation in normal use. Consider now the actual echo path of a mobile a 

handset which an echo canceller must model, including all filtering as shown in Figure 4.1. 

Equivalent discrete echo path h(n) 
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ERLE 

Figure 4.1: The actual echo path response of a handset to be modelled 

As shown in Figure 4.1 above, the echo path response to be modelled by an echo canceller will 

contain filtering contributions from the ADC and DAC of the codec, and the handset loudspeaker and 

microphone amplifiers. The echo canceller would be implemented in digital form within the DSP of the 

handset, where the input and output samples x ( « ) , d(n) and e(n) would be at the sample rate of the 

handset codec device. For a narrowband codec this would be 8kHz. For a wideband codec this would be 

16kHz. To relate a FIR or IIR discrete filter model to the filter model required by an echo canceller, the 

discrete echo path responses recorded in the chapter 2 at a sampling frequency of 12.8kHz must be 

converted. For a mobile handset with a narrowband codec the echo path response must be converted to 

8kHz. To simulate a wideband codec system the actual echo path response sampled at 12.8kHz is used. 

The equivalent discrete filter responses for the ADC and D A C of the handset codec device, 

^adc ( ^ ) ( ^ ) . and loudspeaker and microphone amplifiers, hj^ (n) and (ji) , must also be 

included in the echo path response to be modelled by the echo canceller discrete filter model. The overall 

echo path to be modelled, h{n) , by the echo canceller can be written as follows, 

( » ) * (M) * ( » ) * ( » ) * ( » ) (4.1) 

« I I I 



where (j i) is the equivalent discrete functions of the re-sampled acoustic echo path. 

The contributions from the handset microphone and the microphone amplifier are already included 

in the acoustic echo path responses recorded in chapter 2. The converted echo path response, ( » ) , 

will as a result contain all contributions, and these terms in (4.1) can be neglected. As we shall 

see shortly it is difficult to measure separate responses for (« ) and (n). A combined codec 

filter response can only be measured which will include all ( « ) , ( » ) and hj^^.{n) 

terms. The resulting echo path response h{n) can be re-written as follows, 

/%(») = (/ :) * ( » ) , (4.2) 

The diagrams of Figure 4.1 may be re-dawn in Figure 4.2 to show the measurable echo path 

components to be modelled by the echo canceller. 
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Figure 4.2: Representation of the echo path to be modelled by an echo canceller containing 

measurable components (n) and ( » ) . 

4.2.1. Measuring the filter response of conversion devices in a mobile handset 

The transfer function estimation procedure of chapter 2 is used to measure the combined filter 

response of the conversion devices within the mobile handset as illustrated in Figure 4.3. A band-limited 

white noise input excitation signal is used. Both the original excitation sequence x{n) and the output 

din) of the echo path are recorded simultaneously. All data signals were recorded in an anechoic 

environment give a low ambient noise level for all experiments. The components and 

( 0 represent the analogue responses of the ADC device, and anti-aliasing filters of [4.3]. The 
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components and A, ( f ) represent the analogue responses of the DAC device, and codec 

loudspeaker amplifier of [4.3]. 

Digital 

ADC 

DIgMal LoopBack 

DAC 

w ) h_(l) 

Codec microphone input path 

Codec loudspeal^er output path 

W ) 

Analogue 

Random Noise 
Amcffbn 

d(t) 

Sample 
& 

Alias 

x(n) 

d(n) 

MATLAB 

h o s t P C 

S i g l a b 2 0 - 2 2 A 

Mobile Handset 

Figure 4.3: Measurement set-up of handset codec filter responses 

In order to measure the codec filter response, the handset device is placed in a digital loop back 

mode. In this mode all data digitised by the handset ADC device is fed directly to the DAC filter path for 

reconstruction and output on the actual handset loudspeaker amplifier. Data record lengths of 320000 

samples were recorded for both %(») and . A Manning window size of 4096 was used allowing 

approximately 500 averages to be used in the computation of auto- and cross-spectrum estimates for 

(7C0) andy^^ (co) to get accurate results. The codec filter magnitude, phase and impulse responses are 

shown in Figure 4.4. For a narrowband codec a sampling frequency of 12.8kHz is used. For a wideband 

codec a sampling frequency of 25.6kHz would be used. During the thesis only measurement results for a 

narrowband GSM codec were performed. These results are described next. The wideband codec response 

is not considered in the modelling experiments of this chapter. Only the original echo path signal response 

with bandwidth 0 to 6400Hz is used. 

Figure 4.4 shows the measurement results for a narrowband GSM codec. The magnitude response 

has a distinct band pass response with sharp roll-off at the lower frequency of 240Hz and the higher 

frequency of 3600Hz. The stopband attenuation of the complete codec filter response is approximately 

80dB. The passband gain is approximately IdB. The complete echo path to be modelled, as shown in 

Figure 4.2, would result in all frequency information below 240Hz and above 3600Hz, effectively being 

eliminated, due to steep roll-off of the filter response and high stopband attenuation. 

The impulse response of the codec filters as shown Figure 4.4(c) contains a delay period of 

approximately 0.6ms before any significant activity. This delay period can be attributed to the group 

delays of the filters in the codec ADC/DAC combined path. Following this delay period, a region of high 

activity is observed from 0.3ms to 4ms, which can be attributed mainly to the high frequency activity 

(upper cut off frequency) in the magnitude response. Impulse response activity after 4ms has a slowly 

decaying tail, which can mainly be attributed to the low frequency activity (lower cut off frequency) in the 

magnitude response. The complete echo path to be modelled, as shown in Figure 4.2, would hence contain 
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an additional delay period of approximately 0.6ms in additional to any delay in the acoustic echo path 

response. 

From Figure 4.4(b) we can see the phase response of the codec filter is non-linear. The overall 

echo path phase response would as a result contain a non-linear phase response. This would also imply the 

impulse response would not be symmetrical. 
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Figure 4.4: The measured ADC/DAC combined codec filter response for a GSM narrowband codec. 

T h e f i l t e r f r e q u e n c y r e s p o n s e i s s h o w n i n ( a ) . T h e p h a s e r e s p o n s e i s s h o w n i n ( b ) a n d t h e i m p u l s e r e s p o n s e i s s h o w n i n ( c ) . 
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4.3. The actual echo path response to be modelled 

In order to create an overall echo path function for a narrowband codec sampled at 8kHz the 

conversion process of Figure 4.5 is used. 
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Figure 4.5: Echo path conversion process 

As shown in Figure 4.5 above, both original input and output sequences and are re-

sampled to 8Khz. The same transfer function estimation process in section 2.3 is then re-used to create an 

8kHz sampled echo path transfer function. The re-sampled acoustic echo path function is then combined 

with the re-sampled codec filter response to create the overall 8kHz sampled echo path transfer function to 

be modelled by an echo canceller. 

The interpolation/decimation filter design used is a linear phase FIR filter design, produced using 

the MATLAB firl() design with a Kaiser window. The filter magnitude response of Fig 4.5(a) is unity 

across the terminal coupling loss measurement region of 300Hz to 3400Hz so as not to effect the echo loss 

of the converted echo path response. Re-sampling both input and output sequences to 8kHz before 

measuring the echo path transfer function will take into account all scaling involved in the interpolation 

and decimation processes. The MATLAB function resamp]e() is used to perform the interpolation and 

decimation process. 

For a wideband codec system the sampling rate is 16kHz, with an audio bandwidth 50-7000Hz. To 

investigate the effect of this higher audio bandwidth on FIR and IIR modelling performance, the actual 

12.8kHz echo path responses of chapter 2 are used with no additional conversions or filtering. 
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4.4. Narrowband 8kHz Echo Path Results 

All the echo path responses in chapter 2 are converted using the process described in the last 

section. The converted echo path responses are shown in Figure 4.6 to Figure 4.7. The Terminal Coupling 

Loss (TCL) and required Echo Return Loss Enhancement (ERLE) levels of these converted echo path 

responses are summarised in Table 4-1 below:-

Handset Configuration TCL(dB) Effective 

Duration 

(ms) 

ERLE (dB) 

Artificial ear loudspeaker sealed test configuration of 

[1] 

46.13 9.62 0 

Face up configuration with no transducer seals 32.84 4.63 13 

Face up configuration with adhesive tape 

loudspeaker seal 

41.86 7.88 4 

Face up configuration with adhesive tape microphone 

and loudspeaker seal 

39.43 8.88 6 

Face up configuration with adhesive tape microphone 

seal 

36.42 9.13 9 

Face down handset configuration 29.91 10.25 16 

Table 4-1: Terminal Coupling Loss (TCL) levels and required Echo Return Loss Enhancement 
(ERLE) levels calculated for NEC G9 converted (8kHz narrowband) echo path responses. 

From Table 4-1 above we can see the terminal coupling loss and echo return loss enhancement 

levels calculated in chapter 2 remain largely unaffected when the complete echo path response is 

considered. This is not surprising since the codec response is flat in rolls off at frequencies less than 

240Hz and greater than 3600Hz, outside the echo loss measurement bandwidth of 300Hz to 3400Hz .The 

requirement for additional ERLE in normal handset use as discussed in chapter 2 clearly still exits. 

From these echo path results the same resonant behaviour still exists in these combined echo path 

responses in the range 240 to 3600Hz. All frequency information in the echo path responses presented in 

chapter 2 have been filtered out by the conversion process and the codec response above 3.6kHz and 

below 240Hz. Additionally the delay period before significant impulse response activity has now 

increased to 0.8ms due to additional delay in codec filter response. The overall effective duration of the 

impulse response to be modelled has also increased. 
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(c) Complete echo path response to be modelled for the loudspeaker tape adhesive sealed handset configuration 

Figure 4,6; The narrowband echo path responses for the artificial ear sealed, face up no seals and 
loudspeaker adhesive tape sealed handset configurations. 
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Figure 4.7: The narrowband echo path responses for the artificial ear sealed, face up no seals and 
loudspeaker adhesive tape sealed handset configurations. 
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4.5. Modell ing the Acoustic Echo Path of a mobile handset using FIR and IIR 
filter models 

In chapter 3 we have introduced the 3 main types of filter model used in most adaptive filtering 

applications - the FIR (Finite Impulse Response) filter model, the OE (Output Error) IIR (Infinite Impulse 

Response) filter model and the EE (Equation Error) IIR (Infinite Impulse Response) filter model. As a 

reminder of the general structure of these filter models Figure 4.8 shows each of these models connected 

in a system identification configuration. 
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Figure 4.8 : System Identification of echo path using FIR, OE IIR and EE IIR filter models 

In this section the aim is to assess the relative performance of FIR and IIR filter models for 

modelling the complete acoustic echo path responses of Section 4.3. In the next section we will review the 

criteria used to verify the performance of both types of model, and the parameter estimation methods used 

to select the optimum filter coefficients of each model. In Section 4.5 we will present the actual modelling 

results. Finally the issue of whether an adaptive model is needed will be addressed in Section 4.6. 
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4.5.1. Performance Comparison of FIR and IIR filter models 

The primary measure of echo canceller performance is normally the level of ERLE (Echo Return 

Loss Enhancement) that is obtained while modelling an echo path in a system. The actual performance of 

each filter model will be established by using ERLE performance curves, where the ERLE level for both 

FIR and IIR models are plotted on the same axis against the number of coefficients used in both the 

models as illustrated in Figure 4.9. 

IIR model 

10dB 
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ERLE required 
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coefficients 

Figure 4.9 : ERLE performance curve example 

When the required ERLE level is calculated for each handset acoustic echo path being modelled 

and superimposed on each curve as shown in Figure 4.9 the minimum filter orders for each model can be 

established to meet this required ERLE level. It is then straightforward to determine which model type is 

most suitable for this application, and the CRF (Coefficient Reduction Factor) possible by using this 

model type. It will be shown later in Section 4.5 that an IIR filter model is most suitable for acoustic echo 

cancellation on a mobile handset. 

The system identification configuration of Figure 4.8 shall be used. The offline parameter 

estimation algorithms presented in Chapter 3 were used to calculate the filter model coefficients for each 

model order and each echo path to be modelled to maximise the ERLE (Echo Return Loss Enhancement 

or equivalently to minimising the mean squared error of each model type. 

4.5.1.1. FIR model offline parameter estimation 

The optimal FIR least squares filter coefficients selected to minimise the mean square estimation 

error was established in (3.1.19) in Chapter 3 to be, 

(3.1.19) 

Consider the definition of ERLE from (2.21), where ERLE is defined as, 
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= 10. log, 

The mean square error (MSE) output is defined in (3. ] .8) as, 

M S ' E , , = 1 0 . 1 o g , , k g ' ( M ) ] , 

(2.21) 

(3.18) 

From (3.18) and (2.21) we can see, for a stationary echo path system we have constant echo path 

output term E[^d^ {n)\, that the ERLE is inversely proportional to the MSE. Minimising the MSE with 

respect to the model coefficients for the FIR model is equivalent to maximising the ERLE with respect to 

the filter model coefficients. The techniques used in Chapter 3 to minimise the MSE for an FIR filter 

model can be applied here directly. 

From Equation (3.1.18) we can see the selection of FIR model coefficients of order M to 

minimise the mean square estimation error (MSE) involves a direct matrix inversion. However for the 

offline modelling results of this section, the computational burden of direct matrix inversion is 

satisfactory. 

In this section of the report the FIR model coefficients of order M are fbund using a MATLAB 

implementation of equation (3.1.18). As the correlation matrix R structure is of Toeplitz form 

computational simplifications can be used to compute its inverse. By computing the autocorrelation vector 

of the input signal over M lags using the MATLAB function xcorr(), the autocorrelation matrix can 

be easily constructed using the function teoplitz(). The matrix inverse may then be computed using 

Cholesky factorisation, implemented by the function chol(). The optimum filter coefficient vector may 

then be found using equation (3.1.18) in MATLAB. 

4.5.1.2. Output Error IIR model offline parameter estimation 

The optimal Output Error IIR least squares filter coefficients are selected to minimise the mean 

square output estimation error (MSOE) create the recursive equations o f (3.2.22) in Chapter 3, 

E 

m=l CF"/ 

— / » ) 

m=l 9 a , 

0 ; 0 < y < M - l , 

' = 0 ; l < y < # . 

(3.2.21) 

From (3.2.22) we can see this equation is non-linear with respect to the filter coefficients 6.and 

a J . Local minima may exist, and hence it is difficult to solve directly as done n the FIR normal equations. 

Instead a recursive estimate is normally employed. 

For the OE IIR offline modelling results the MATLAB system identification toolbox function oe() 

is used to compute optimum coefficients for the Output Error IIR model of order (M,N) , where M is the 
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number of feedforward coefficients and N is the number of feedback coefficients in the IIR model. This 

function uses the recursive prediction error method to minimise the MSOE [4.5]. 

Like the FIR filter model, minimising the MSOE with respect to the model coefficients is 

equivalent to maximising the ERLE for the Output Error MR filter model with respect to the model 

coefficients. 

4.5.1.3. Equation Error IIR model offline parameter estimation 

In chapter 3 we have seen in (3.3.28) and (3.2.29) that the standard Equation Error IIR model 

despite having a linear mean square equation error (MSEE) surface with respect to the model coefficients 

is subject to parameter bias in the a . coefficients when noise term v(M) in Figure 4.8 is non-zero. This is 

also the case as discussed in chapter 3 for system identification when under modelling noise exists. To 

overcome this an extension to basic Equation Error model can be used based on the Steiglitz McBride 

system identification method. As we have shown in Chapter 3 Section 3.3.3 this gives a modified MSEE 

surface which is still linear with respect to the filter coefficients in the IIR model, allowing the similar 

techniques as the FIR model to be used. 

Like the FIR filter model, minimising the MSEE with respect to the model coefficients is 

equivalent to maximising the ERLE for the Equation Error IIR filter model with respect to the model 

coefficients. Using the Steiglitz McBride scheme the IIR optimal least squares filter coefficients selected 

to minimise the mean square equation error (MSEE) with respect to the model coefficients is as follows, 

0 , (3-3-88) 

From equation (3.3.48) we can see the selection of equation error IIR model coefficients 8^^, to 

minimise the mean square estimation equation error (MSEE) involves a direct matrix inversion. For the 

offline modelling results of this section, the computational burden of direct covariance matrix inversion is 

satisfactory. 

For the EE IIR offline modelling results the signal processing toolbox function stmbcQ is used to 

compute optimum coefficients for the Equation Error IIR model of order (M,N) , where M is the number 

of feedforward coefficients and N is the number of feedback coefficients in the IIR model. This function 

employs a MATLAB implementation of equation (3.3.48). Initial pole vector pre-filtering is done using a 

pronyO initialisation. A direct inversion of pre-filtered covariance matrix is then used over a number of 

iterations to compute optimum coefficients for the Steiglitz McBride Equation Error IIR model of order 

(M,N). 
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4,5.1.4. Model Order Distribution 

Having established the process for selecting coefficients to maximise ERLE in each model it is 

necessary to establish what respective filter orders need to be used for each of these models. An IIR model 

of order (M,N) coefficients is equivalent to an FIR model of M+N coefficients as follows, 

For the modelling results presented in this Chapter the model coefficient range of 18,22,26 to 62 

coefficients is used. For FIR filter models the total number of coefficients is simply equal to the 

total number of coefficients in each experiment, so varies from 18,22,26 to 62. 

For IIR filter models different numbers of feedforward and feedback coefficients are used. The 

total model coefficient order ranges varies from 18 to 62 as with the FIR model. Different numbers of 

feedback coefficients are used of 7 to 27 coefficients are used. The feedforward coefficients 

in the IIR model are adjusted so (4.3) holds for each experiment. For the coefficient range of 18,22,26 to 

62 coefficients a feedforward coefficient vector of =7 coefficients, gives the IIR filter model orders 

(l],7),(15,7),(19,7)to(35,7). 

4.5.1.5. Coefficient Reduction Factor 

A coefficient reduction factor can then be computed for both models, for the number of coefficients 

to meet the required ERLE level, defined as, 

Number of FIR coeflcients to meet ERLE_ 
, (4.4) 

Number of IIR coefficients to meet ERLE^^^ 

A simple inspection of both the ERLE curve and the CRF value indicates the most suitable filter 

model for modelling the echo path impulse response. The higher the CRF value, the lower the number of 

coefficients required in the IIR model to meet the ERLE requirements in comparison to the FIR model. A 

CRF greater than unity is needed to offset any increase in complexity or degradation in performance when 

using adaptive IIR models instead of adaptive FIR models for a particular application. From the simple 

example of Figure 4.9, for a required ERLE of lOdB, a CRF of 2 is calculated from (4.4). In this example 

the IIR model clearly is the most suitable filter model for modelling the echo path. 
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4.6. Narrowband 8kHz Echo Path Modelling Results 

In this section FIR and IIR modelling results are presented for the narrowband echo path impulse 

responses of section 4.4. The modelling results showing the performance of FIR and IIR models (both 

Equation and Output Error) for each echo path response are shown in Figure 4.10 to Figure 4.15. These 

modelling results are summarised in Table 4-2 and Table 4-3. 

Echo Path Response ERLE 

Required (dB) 

Required Model Order CRF Echo Path Response ERLE 

Required (dB) 

FIR 
Equation 

Error 

Output 

Error 

Artificial Ear Sealed 

response 
0 - - - -

Face Up No Seals 

response 
13 22 (15,11) (15.7) 1 

Loudspeaker Adhesive 

Tape Sealed Response 
4 18 (11,7) ( I I J ) 1 

Loudspeaker and 

Microphone Adhesive 

Tape Sealed Response 

6 22 (15,7) (11,11) 1 

Microphone Adhesive 

Tape Sealed Response 
9 34 (19,7) (19,7) 1.55 

Face Down response 16 54 (31,11) (27,15) 1.29 

Table 4-2: Required model orders for FIR and IIR filter models to meet the required ERLE of each 
echo path. The Coefficient Reduction (CRF) is calculated for each echo path 

From Table 4-2 it can be seen the face down echo path response represents the worst acoustic 

conditions in terms of the number of modelling coefficients required. A maximum model order of 42 

coefficients is required for an IIR filter model to meet the required ERLE of each echo path. For an output 

error IIR filter model the model order required is (27,15) - 27 feedforward coefficients and 15 feedback 

coefficients. For an equation error IIR filter model the model order required is (31,11) - 31 feedforward 

coefficients and 11 feedback coefficients. For an FIR filter model 54 coefficients are required giving a 

Coefficient Reduction Factor of up to 1.29. 
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Figure 4.10: Offline Modelling results for the narrowband artificial ear sealed echo path response 
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Figure 4.11: Offline Modelling results for the narrowband artificial ear sealed echo path response 
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Figure 4.12 : Offline Modelling results for the narrowband loudspeaker adhesive tape sealed echo 
path response 
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Figure 4.13 : Offline Modelling results for the narrowband loudspeaker and microphone adhesive 
tape sealed echo path response 
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Figure 4.14 : Offline Modelling results for the narrowband microphone adhesive tape sealed echo 
path response 
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Figure 4.15: Offline Modelling results for the narrowband face down tape sealed echo path 
response 
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Echo Path Response ERLE gain over FIR model for 

total model order of 42 

coefficients 

Echo Path Response 

Equation Error Output Error 

Artificial Ear Sealed response 1.8 2 

Face Up No Seals response 0.6 0.7 

Loudspeaker Adhesive Tape Sealed Response 3.1 5.2 

Loudspeaker and Microphone Adhesive Tape Sealed 

Response 
4.5 2.8 

Microphone Adhesive Tape Sealed Response 6.5 7.4 

Face Down response 2 2.5 

Table 4-3: ERLE gain of IIR filter models over FIR filter models for a total model order of 42 
coefficients. 

From Table 4-3 it can be seen for an output error IIR filter model of order (27,15) an ERLE gain of 

up to 7.4dB is possible over an FIR filter model with the same number of coefficients. For an equation 

error IIR filter model of order (31,11) an ERLE gain of up to 6.5dB is possible over an FIR filter model 

with the same number of coefficients. 

It should also be noted at this point that incorporating a tap delay line in both the FIR and IIR 

models can be used to account for the small activity of 1ms (8 coefficients) in echo path responses 

presented in section 4.4. Incorporating this delay line makes no differences to the relative ERLE 

performance of both FIR and IIR models, and will only serve to shift the ERLE curves to the left (by 

approximately 8 coefficients on the x-axis). This will be considered at a later stage in the thesis when 

complexity issues are discussed. 

In summary it can be concluded that from the offline modelling results presented there is a clear 

benefit in using an IIR filter over an FIR filter to model the narrowband acoustic echo path of a mobile 

handset. Fewer filter coefficients are required (CRF upto 1.29) and a gain in ERLE performance can be 

obtained (upto 7.4dB). 
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4.7. Wideband Echo Path Modell ing Results 

In this section FIR and IIR modelling results are presented for the wideband echo path impulse 

responses of chapter 2. The modelling results showing the performance of FIR and IIR models (both 

Equation and Output Error) for each echo path response are shown in Figure 4.16 to Figure 4.21. 

Using the knowledge that the face down echo path response represents the worst acoustic 

conditions in terms of the number of modelling coefficients required. The number of model coefficients 

needed to obtain the required ERLE of this echo path response will determine the required model order 

for this application. A maximum model order of 50 coefficients is required for an IIR filter model to meet 

the required ERLE of each echo path. For an output error IIR filter model the model order required is 

(31,19) - 31 feedforward coefficients and 19 feedback coefficients. For an equation error IIR filter model 

the model order required is (27,23) - 27 feedforward coefficients and 13 feedback coefficients. For an 

FIR filter model 74 coefficients are required giving a Coefficient Reduction Factor of up to 1.48. 

From Table 4-3 it can be seen for an output error IIR filter model of order (31,19) an ERLE gain of 

up to 9.4dB is possible over an FIR filter model with the same number of coefficients. For an equation 

error IIR filter model of order (27,23) an ERLE gain of up to 9.]dB is possible over an FIR filter model 

with the same number of coefficients. 

Echo Path Response ERLE gain over FIR model for total 

model order of 50 coefficients 

Echo Path Response 

Equation Error Output Error 

Artificial Ear Sealed response 1.6 2.1 

Face Up No Seals response 7.1 4.7 

Loudspeaker Adhesive Tape Sealed Response 4.9 2.8 

Loudspeaker and Microphone Adhesive Tape Sealed 

Response 
6.1 6.5 

Microphone Adhesive Tape Sealed Response 9.4 9.1 

Face Down response 4 4 

Table 4-4: ERLE gain of IIR filter models over FIR filter models for a total model order of 42 
coefficients. 

In summary it can be concluded that from the offline modelling results presented there is a clear 

benefit in using an IIR filter over an FIR filter to model the narrowband acoustic echo path of a mobile 

handset. Fewer filter coefficients are required (CRF upto 1.48) and a gain in ERLE performance can be 

obtained (upto 9.4dB). 
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Figure 4.16: Offline Modelling results for the wideband artificial ear sealed echo path response 
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Figure 4.17: Offline Modelling results for the wideband face up no seals echo path response 
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Figure 4.18: Offline Modelling results for the wideband loudspeaker adhesive tape sealed echo path 
response 
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Figure 4.19: Offline Modelling results for the wideband loudspeaker and microphone adhesive tape 
sealed echo path response 
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Figure 4.20: Offline Modelling results for the wideband microphone adhesive tape sealed echo path 
response 
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Figure 4.21: Offline Modelling results for the wideband face down echo path response 
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4.8. The need for an adaptive IIR f i l ter model 

An important point often neglected in most filter model analysis literature [4.2],[4.3] is whether the 

filter model type used is required to be adaptive. In chapter 2 we have seen how the echo path variation 

can be large depending on the handset configuration/orientation. We have seen in sections 4.6 and 4.7 

how an IIR filter model is best suited to model the full range of echo path variation possible in normal 

handset use. What is not clear so far however is whether the IIR filter model is required to be adaptive to 

model the full echo path variation in normal use. If an adaptive IIR model is needed, do the feedforward 

and feedback sections of the IIR filter model are required to be adaptive? 

To determine whether the IIR filter model for echo cancellation on a mobile handset is required to 

be adaptive an output error IIR filter model used of order (25,17). Only the variation in the narrowband 

echo path responses of section 4.5 are considered. 

To determine whether an adaptive IIR model is needed, the feedforward and feedback coefficient 

vectors produced by this output error model when modelling the narrowband echo path models of section 

4.4 are analysed. From the results presented is a strong indication a fixed IIR filter model will not be able 

to model the full echo path variation that may exist in normal handset use. The impact of using an IIR 

filter model a single set of feedforward and feedback coefficients is then investigated using an output error 

IIR filter model. It is clear from the modelling results presented that an adaptive IIR model is required. 

To determine whether both feedforward and feedback section are required to be adaptive the 

impact on modelling performance of using only an adaptive feedforward section is investigated (fixed 

pole adaptive IIR filter). From the modelling results presented it is clear the adaptive IIR filter model must 

have adaptive feedforward and feedback sections when modelling the possible echo path variation in 

normal handset use. 

4.8.1. The Coefficient vectors of an IIR model for narrowband echo path modelling 

In previous sections we have seen modelling results for different echo path models sowing the 

benefit of IIR filer models for the handset echo cancellation application. What has not been established is 

how close the filter model coefficient values are for each of these echo path responses. That is, can an IIR 

model with fixed feedforward and feedback coefficient values be used to meet the ERLE requirement of 

each echo path? 

Figure 4.22 shows the offline feedforward and feedback coefficient values calculated for an output 

error IIR filter model of order (27,15) for each narrowband echo path response. It can be seen clearly 

from this figure when modelling the possible variation of the echo path response of a mobile handset, a 

significant variation in the feedforward and feedback coefficient values can occur in the IIR filter model. 

This is a strong indication that an IIR filter model with fixed feedforward and feedback coefficients is 

unsuitable. An IIR filter model with adaptive coefficient values is required for this application. 
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Figure 4.22: Feedforward and Feedback Coefficient values for Output Error (27,15) IIR model 
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4.8.2. ERLE possible using an IIR filter model with fixed feedforward and feedback 
coefficients 

Table 4-5 shows the impact of using fixed feedforward and feedback coefficients used to model 

the variation in the narrowband echo path response. An HR model of order (27,15) is used. The fixed HR 

model coefficient used are the final calculated coefficient values resulting from the output error offline 

modelling results for each echo path in section 4.6 

Echo Path Modelled 
ERLE 

Required 

ERLE achievable in (27,15) fixed IIR model 

Echo Path Modelled 
ERLE 

Required 

Face Up 

IIR 

model 

Artificial 

E a r IIR 

model 

L/S 

Tape 

Seal IIR 

model 

L / S & 

Mic 

Tape 

Seal IIR 

model 

Mic 

Tape 

Seal IIR 

model 

Face 

Down 

IIR 

model 

Face Up No Seals 13 25.1 -0.2 -I -0.4 -2.7 -4.6 

Artificial Ear Seal 
- -13.6 16 -5.7 -6.7 -9.4 -16.3 

Loudspeaker Adhesive 

Tape Seal 
4 -10.4 -L8 20 -6.4 -8.2 -11.8 

Loudspeaker and 

Microphone Adhesive 

Tape Seal 

6 -7.5 -0.5 -4.1 18.1 -2.2 -10.6 

Microphone Adhesive 

Tape Seal 
9 -6.5 0.1 -2.6 1.1 21.1 -6.6 

Face Down 16 -1.9 -0.25 0.3 -0.7 -0.1 16.6 

Table 4-5 : ERLE achievable using a fixed IIR mode! for each echo path for NEC G9 handset 

From Table 4-5 the IIR model coefficients calculated for each echo path response modelled are 

used to model the echo path variations of all other echo paths. It is clear from the poor ERLE levels of 

Table 4-5 that a single fixed IIR filter model cannot be used to model all possible echo path variations in 

normal handset use. An adaptive IIR filter model is required. 
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4.8.3. ERLE possible using an IIR filter model with fixed feedback coefficients 

In the last section it was established that an adaptive IIR model is required to model the handset 

variation in normal handset use. However it is not clear whether the IIR model has to be fully adaptive, 

that is, do both the feedforward and feedback coefficients need to be adapted to satisfy the required ERLE 

of each echo path modelled. 

Figure 4.23 shows the structure of a fixed feedback section adaptive IIR model. This is also 

referred to as a fixed pole adaptive IIR model [4.6][4.7]. Table 4-6 shows the ERLE modelling 

performance using the structure of Figure 4.23 in order to determine whether both feedforward and 

feedback coefficients need to be adaptive to model the possible echo path variation in normal handset use. 

An IIR model order of (27,15) is used. The fixed pole/coefficient vectors used are the final calculated 

coefficients resulting from the output error offline modelling results for each echo path in section 4.6. 

Only the narrowband echo path variations in normal handset use are modelled. 

Echo Path to be modelled 

Fixed Pole Adaptive IIR Filter 

Figure 4.23: Fixed Pole Adaptive IIR filter model 

From Table 4-6 it is clear that an adaptive IIR model with fixed feedback coefficients cannot 

sufficiently model the possible echo path variation in normal handset use. An adaptive IIR filter model is 

required with adaptive feedforward and feedback coefficients. 

4.9. Summary 

In this chapter converted echo path responses were presented showing the variation in the complete 

echo path response to be modelled by an echo canceller in normal handset use. Using these echo path 

responses modelling results were presented showing the benefits of using an IIR filter model over the 

more traditional FIR filter model for acoustic echo cancellation on a mobile handset. 
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Echo Path Modelled 
ERLE 

Required 

ERLE achievable in (27,15) fixed pole 

Adaptive IIR model 

Echo Path Modelled 
ERLE 

Required Face Up 

IIR 

model 

Artificial 

Ear I IR 

model 

L/S 

T a p e 

Seal i m 

model 

L / S & 

Mic 

Tape 

Seal IIR 

model 

Mic 

Tape 

Seal I IR 

model 

Face 

Down 

IIR 

model 

Face Up No Seals 13 25.1 -16.3 13.9 11.7 16.2 11.7 

Artificial Ear Seal 
- -1 1 16 5.6 5.6 6.8 6.3 

Loudspeaker Tape Seal 4 11 4 20 8.5 12.4 8.7 

Loudspeaker and 

Microphone Tape Seal 
6 -4.8 6.5 7.7 18.1 12.3 6.7 

Microphone Tape Seal 9 7.9 6.7 8.4 5.4 21.1 5.2 

Face Down 16 6.2 -16.8 3.9 5.7 4.3 16.6 

Table 4-6 : ERLE achievable using a fixed pole IIR model for each echo path for NEC G9 handset 

During the thesis the main objective was the narrowband echo path response with a bandwidth of 

300 to 3400Hz, as found in most GSM handsets today. Modelling results presented in this chapter show 

that a Coefficient Reduction Factor of up to 1.29 is possible using an IIR filter to model the variation 

possible in the narrowband echo path response of a mobile handset in normal use. An Output Error IIR 

model of (27,15) was identified to achieve this Coefficient Reduction Factor. For this model order an 

ERLE gain of up to 7.4dB is possible over an FIR filter model with the same total number of coefficients. 

An Equation Error IIR model of (31,11) was also identified to achieve this Coefficient Reduction Factor. 

For this model order an ERLE gain of up to 6.5dB is possible over an FIR filter model with the same total 

number of coefficients. 

At the time of writing this thesis, due to new audio and video applications, wideband speech codecs 

have been developed with an audio bandwidth of 50-7000Hz. Modelling results are presented showing 

that with an IIR filter model a Coefficient Reduction Factor of up to 1.48 can be obtained with an ERLE 

gain of up to 9.4dB over an FIR filter model with the same total number of coefficients. These results 

show for future mobile handsets with wideband codecs, an IIR filter model is more suited to handset 

acoustic echo cancellation than a more traditional FIR filter model. 

In the final part of this chapter modelling results are presented to show that an adaptive IIR model 

must be used to model the possible variation in the handset echo path response in normal handset use. 

Having established in this chapter that an IIR model is more suited to model the echo path response of a 

mobile handset, and that the IIR model needs to be adaptive, the next chapter looks at the modelling 

performance of adaptive IIR algorithms over adaptive FIR algorithms. 
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Chapter 5 

5. System Identification of the Acoustic Echo Path of a Mobile Handset 
using Adaptive IIR Filtering 

5.1. Introduction 

In chapter 4 complete acoustic echo path responses were presented which represent the full range 

of echo path variation likely in normal handset use. Modelling results were presented for narrowband and 

wideband echo path models using non-adaptive FIR and IIR filter models over a range of model orders. 

The coefficient values for each model were computed offline. A clear benefit in modelling performance 

was observed by using an IIR filter model to model the echo path of a mobile handset. 

The main goal of this chapter is to assess whether adaptive IIR filters models have benefits in 

modelling performance over adaptive FIR filters when modelling the narrowband acoustic echo path of a 

mobile handset. In order to achieve this chapter 5 is split into 2 main parts. 

The first part is section 5.2. Section 5.2 is a direct extension of chapter 4, where adaptive FIR and 

IIR filter models are now used to model the narrowband echo path of a mobile handset in normal use. No 

echo path output noise is used. Using the adaptive algorithms presented in chapter 3, the steady state 

modelling performance of adaptive FIR and IIR algorithms is established using stationary input signals. It 

is clear from the results presented that adaptive IIR algorithms do offer benefits in modelling performance 

over adaptive FIR algorithms, and that the gains in performance reported in chapter 4 are still valid for 

adaptive IIR filter models. It is also clear that LMS Newton based adaptive IIR filters are required to 

model the handset echo path effectively. 

The second part is section 5.3. Since in the handset echo cancellation application environment 

noise will also be present on the handset microphone in addition to acoustic echo, it is important to also 

assess the steady state modelling performance of adaptive algorithms in the presence of echo path output 

noise. Section 5.3 repeats all the modelling experiments of Section 5.2 for the LMS Newton based 

adaptive algorithms presented in chapter 3 over a range of Echo to Noise Ratios (ENR). From the results 

presented it is clear an Output Error adaptive IIR filtering algorithm is required for this application. The 

low ENR levels possible in the handset acoustic echo path application make Equation Error adaptive IIR 

algorithms unsuitable for this application. In particular only the Simplified Gradient LMS Newton based 

algorithms of chapter 3 can maintain the gains in performance reported in chapter 4 when modelling the 

acoustic echo path of a mobile handset in the presence of output noise. The Simplified Gradient LMS 

Newton based algorithms of chapter 3 will be used for further algorithm development in later chapters. 
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5.2. System Identification of the Echo Path Response of a Mobile Handset in 
the Absence of Output Noise 

5.2.1. Assessment Criteria 

In order to determine the modelling performance benefits of adaptive IIR algorithms over their FIR 

counterparts when modelling the acoustic echo path of a mobile handset, it is first of necessary to establish 

what criteria will be used to compare the modelling performance of both types of adaptive algorithms. 

In Chapter 3 the misadjustment of an adaptive FIR algorithm was introduced. In a stationary 

context, this Misadjustment level can be related to accuracy of convergence to the optimal solution in the 

steady state [5.1]. The misadjustment of an adaptive filter can be defined as [5.1], 

E[(e(n)-e,tn)h 
= - (5.1) 

which is the ratio of excess steady state mean square error of the adaptive model, to the minimum 

mean square error 7^^ . For adaptive FIR algorithms is the minimum mean square error as a result 

of the optimal solution of (3.1.19). At first thought the misadjustment would seem a good method for 

assessing tracking performance for an adaptive IIR algorithm, since the smaller !M is the more accurate 

the adaptive filtering solution is for the echo path being modelled. The main problem of using the 

misadjustment for adaptive IIR algorithms arises in the calculation of the minimum mean square error 

( f ] ^ ) for an Output Error adaptive HR algorithm, as we have already seen in Chapter 3. The other 

problem is that the misadjustment measure alone contains no information about the convergence of the 

adaptive algorithm, only the steady state accuracy after convergence. 

As an alternative to misadjustment, a measure more suited for adaptive IIR algorithms is the 

ensemble averaged ERLE level. This measure also serves as a more direct way of comparing the steady 

state modelling capabilities of adaptive algorithms to the offline results of Chapter 4. For convenience the 

ERLE is firstly redefined as follows. 

ERLE Jg = 10 log 10 
E 

E 
= 101og, n=0 

«=o 

(5.2) 

From (5.2) we can see the ERLE is defined as the ratio of echo path output power ^ (« ) ] to 

the modelling error signal poweri i (« ) ] in decibels, calculated as a time average, where M represents 

the length of recorded sequences d(n) and e{ri) . The ensemble averaged ERLE level is then defined as 

follows. 
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(5.3) 

; = o 

where P is the number of repeated trials for each modelling experiment required for ensemble average 

estimate E R L E . Eac\\ERLE^^^{m)\s calculated in 32ms frames {L=256 @ 8kHz) from 

sequences (« ) and e (» ) in each t r i a lp = \---P . The steady state ensemble averaged ERLE value 

is finaHy defined as 

=I01og 
10 

" I (5.4) 

From (5.4), due to practicalities of simulation time, the steady state ERLE value, ihcERLEsSjg level is 

calculated from the last K=288ms of the ensemble averaged ERLE level, ERLE^^ («) . For slower 

converging algorithms or inappropriate choice of parameters, this will result in a final state, but not steady 

state ERLE level, during the allowed 10s adaption period. 

In assessing the steady state modelling performance it is important to calculate the final converged 

steady state ERLE level for comparison with the reported levels in Chapter 4. However for the acoustic 

echo cancellation application the time taken to reach this steady state level, and the required ERLE level 

of each echo path modelled is also important. As a result, two additional measures of convergence speed 

are used. The first is measure of the time taken for the adaptive model to reach the required ERLE level 

for the echo path being modelled. This measure is termed 77C7 and is defined as, 

for ( / » ) = (5.5) 

where ERLE .̂̂ ^^ is the required ERLE level of the echo path response being modelled . The second 

convergence speed measure is the time taken for the adaptive model to reach its steady state ERLE level 

for the echo path being modelled. This measure is termed TYĈ ,̂ , and is defined as, 

7YQ, = m * 32/M^ for (w,) = . (5.6) 

where ERLEss^/^ is the steady state ERLE level for the adaptive algorithm for the echo path response 

being modelled. 

5.2.2. Adaptive Algorithms used for Modelling Experiments 

A large number of possible adaptive IIR algorithms were presented in Chapter 3. To simplify the 

presentation of results and to reduce the number of experiments required in this section it is desirable to 

choose only a subset of the algorithms of Chapter 3 to answer the two main points of this section. The first 

point is what the most suitable model order is for Equation Error and Output Error adaptive IIR 
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algorithms, and what Coefincient Reduction Factor is possible? The second point is of the possible LMS 

and LMS Newton based adaptive IIR algorithm forms presented in Chapter 3, which are most suitable in 

terms of steady state ensemble averaged ERLE level and convergence time when modelling the acoustic 

echo path of a mobile handset. 

In this section only four of the adaptive algorithms of Chapter 3 are used to establish the steady 

state modelling properties of adaptive IIR algorithms over adaptive FIR algorithms for the handset 

acoustic echo cancellation application in the absence of output noise. For stationary input signals and a 

suitable choice of stepsize, similar performance is obtained for LMS and Normalised LMS algorithms, 

and LMS Newton and Normalised LMS Newton algorithms, so only Normalised LMS and LMS Newton 

forms are simulated. 

To assess modelling capabilities of Output Error adaptive IIR LMS based algorithms, the 

Normalised LMS Simplified Gradient algorithm is used. To assess modelling capabilities of Output Error 

Adaptive IIR LMS Newton based algorithms, the LMS Newton Simplified Gradient algorithm is used. 

To assess modelling capabilities of Equation Error adaptive IIR LMS based algorithms, the 

Normalised LMS Equation Error algorithm is used. To assess modelling capabilities of Equation Error 

Adaptive IIR LMS Newton based algorithms, the LMS Newton Equation Error algorithm is used. 

5.2.3. System Identification Experiment Configuration 

In order to answer the question of what input signals will be used, and what echo path responses 

will be modelled, the system identification configuration used in each modelling experiment will now be 

discussed. 

Figure 5.1 shows the system identification configuration used to perform the required modelling 

experiments of this section [5.1]. It can be seen no echo path output noise is present, and the echo paths to 

be modelled are fixed for the duration of each system identification experiment. To begin with only the 

face up no seals echo path response of Chapter 4 is used to determine the effect of algorithm parameters 

on modelling performance. Once the most suitable parameters have been chosen for each adaptive 

algorithm modelling results for all the echo path responses of Chapter 4 will be presented. 

From Figure 5.1 each modelling experiment consists of a single adaptive algorithm operating on 

echo path input signal x ( « ) and output signal data d(n) from a single echo path response h . The echo 

path response h is defined as a vector of L echo path response samples given by, 

h = (5.7) 

For each system identification experiment an input signal of duration 10s and sample rate 8 kHz 

(N=80000 samples) is used. A band-limited pink noise signal input x ( n ) as used in Chapter 4 to 

represent the long-term average spectrum characteristics of a speech signal is re-used in this Chapter to 

allow the convergence behaviour of adaptive algorithms to be investigated. Note for a FIR adaptive 

filter ) — 0 • 
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Figure 5.1 : System Identification Configuration 

A model order range of 30 to 58 coefficients is simulated for each adaptive algorithm and echo 

path to be modelled, with different feedforward to feedback coefficient ratios. The echo path responses 

presented in Chapter 4 are used here to represent the variation in handset response to be modelled by an 

echo canceller in normal use. Each modelling experiment is repeated P=20 times, where different 

random noise seeds are used for the band-limited pink noise signal input x(n) in each repeated trial, in 

order to compute ensemble average estimate ERLE^^ ( » ) . Once the ensemble averaged level 

ERLE^^ (j l) is computed the steady state ERLE value, ERLEss^g , and convergence times TYC,, and 

77C are recorded. Once is computed for each echo path to be modelled over a range of 

model orders for each adaptive algorithm a Coefficient Reduction Factor as defined in Chapter 4 can be 

computed to see whether the performance benefits presented in Chapter 4 are still valid. 

The adaptive algorithm parameters chosen for each modelling experiment are selected as a trade 

off between steady state ensemble averaged ERLE level, and convergence time. The effect of adaptive 

algorithm parameters on ERLEss^g and convergence time is discussed in the following sections. 
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5.2.4. The effect of NLMS Adaptive Algorithm design parameters on Steady State 
modelling performance 

To establish the effect of NLMS algorithm parameters on steady state modelling performance the 

FIR NLMS algorithm, the Simplified Gradient Output Error NLMS adaptive IIR algorithm, and the 

Equation Error NLMS adaptive IIR algorithms will be used. Consider the original forms of these 

algorithms as follows, 

= b , + - — - i ( M ) g ( M ) , (3.1.51) 
0 + 1 (M)x(M) 

= 6 . ( 3 . 2 . 6 6 ) 

A 
6 +(PI(M)(PXM) 

+ ^ . rx (3.3.41) 

From the discussion on FIR adaptive algorithms presented in Chapter 3 it was seen that algorithm 

stability and Misadjustment for NLMS algorithms depends on the filter order, input signal characteristics 

and the stepsize jl . From (5.1) and (5.2) it can be seen that the Misadjustment is approximately inversely 

proportional to the ERLE level. In order see the effect of NLMS adaptive algorithm parameters on the 

modelling performance, the relationships between convergence time, steady state ERLEss^jg level, 

stepsize )i , filter order, and the input signal characteristics need to be investigated for both adaptive FIR 

and adaptive IIR algorithms. To explore the relationship between model order, stepsize, convergence time 

and ERLEss^ig three different model orders are used. A lowest model order range for all modelling 

experiments of 30 coefficients is used, in addition to a middle range model order of 42 coefficients, and a 

maximum model order of 58 coefficients. 

5.2.4.1. The FIR NLMS adaptive algorithm 

Figure 5.2 to Figure 5.5 shows the and convergence times achievable for these model 

orders for a FIR NLMS algorithm for both a white noise and band limited pink noise signal input. This is 

the outcome of modelling the face up handset echo path response with no transducer seals of Chapter 4. 

The achievable ERLEss^gVS. stepsize )Ll has a well-defined behaviour for the FIR NLMS 

algorithm. By looking at the resulting convergence times in Figure 5.4 and Figure 5.5 it can be seen at 

low stepsize values below 10"'* for white noise input, and 10'̂  for a band-limited pink noise input the 

convergence of the FIR NLMS algorithm is much slower. This will result in a roll-off of 

ERLEsS jg achievable within the 1 Os adaption period used. The achievable E R L E s s ^ g level levels off 
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between stepsize levels of 10^ and 10"' to for white noise input, and 10"̂  and 10'̂  for band-limited pink 

noise input. Above these ranges the ERLEss^g level rolls off due to the dependency of the 

Misac^ustment of (3. ] .47) for the FIR NLMS on the stepsize value |1 as discussed in Chapter 3. Beyond 

stepsize levels of approximately 0.025, instability rapidly occurs. The level for white noise 

input is clearly higher than that obtained when bandlimited pink noise input is used. At the lowest model 

order a larger stepsize can be tolerated, due to the dependency of the stability limit of (3.1.45) on the 

model order of the filter. 

From Figure 5.4 and Figure 5.5 it can be seen that slower algorithm convergence occurs with 

bandlimited pink noise signals for the same input signal powers and stepsize value. This is expected, as 

discussed in Chapter 3, due to the of the FIR NLMS algorithm on the eigenvalue spread of the covariance 

matrixR {ri)x{n)\. Convergence times only become similar at higher stepsize values before 

instability occurs where the Misadjustment becomes larger. Also for lower filter orders convergence to the 

steady state can be seen to occur quicker. This is due to the fact the eigenvalue spread of is a 

monotonically non-decreasing function of the filter length M for a coloured input signal x{n) , for smaller 

orders the eigenvalue spread may be less [5.2]. 

5.2.4.2. Homogenous Adaption Coefficients for adaptive IIR NLMS algorithms 

Before looking at these relationships of the stepsize parameter jl for the Simplified Gradient 

NLMS and Equation Error NLMS adaptive IIR algorithms, consider the performance of these algorithms 

using a single stepsize jl to control the adaption of both feedforward and feedback coefficients. This is 

termed Group Adaption [5.3]. The ensemble averaged ERLE curves of Figure 5.6 show the relative 

performance of these algorithms with respect to an adaptive FIR algorithm for a bandlimited noise input 

signal. A stepsize =0.005 is used for all algorithms. This is the outcome of modelling the face up 

handset echo path response with no transducer seals of Chapter 4. 

From Figure 5.6 it can seen that both adaptive IIR NLMS algorithms of order (27,15) have similar 

ensemble averaged steady state ERLE level performance to that of an adaptive FIR algorithm of 27 

coefficients. This can be explained by considering the effect of the attenuation of the echo path being 

modelled. In Chapter 3 the equation error information vector (p^(M) was introduced as 

(") = - M +1) , ( / (» - ! ) , . . . , ( / ( » - , (5.8) 

From Figure 5.1 and (5.8) we can see that the information vector cp^(«) contains both echo path 

input and output signal terms. As the echo path attenuation loss of a typical mobile handset in normal use 

can vary between -30dB and -46dB, the echo loss of h will result in the echo path output signal d{n) 

being much lower in level than the echo path input signal x{n) . The normalisation of both feedforward 
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and feedback coefficients by the term (pj(n)<p^,(«) occurs in (3.3.41). If we write the inner product 

(/z) in fiill we get the following 

M-] Af 
(pi («)(|). ( " ) ( 5 . 9 ) 

M-
Since — — J ) , due to the attenuation of the echo path being modelled, the 

/=0 J=\ 

normalisation of by 6 +(pJ^(M)(p^(M)in (3.3.41) will lead to an inappropnately small step size value 

selected for the update of feedback coefficients inO^ . This in turn will lead to virtually no AR coefficient 

adaption in (3.3.41), resulting in the ERLE performance of the Equation Error NLMS algorithm of order 

(M,N) being similar to that of an FIR NLMS algorithm of M coefficients. A similar problem also occurs 

with the Simplified Gradient NLMS algorithm of (3.2.66). 

In order to overcome this problem it is necessary to separate the step size normalisation process 

for both feedforward and feedback coefficients within the vector 8 ^ , so as to account for the gain 

difference between x(n) and d(n) or Xj in) and y ^(n) . This is termed Homogenous Adaption 

[5.3]. The Equation Error NLMS algorithm of (3.3.41) and the Simplified Gradient Output Error NLMS 

algorithm of (3.2.66) can be re-written in the Homogenous Adaption forms below, 

, (3.2.66a) 

+ r T T T l ' (3.2.66b) 

5 + y / ( M ) y / ( M ) and 

= b , + - (3.3.41a) 

where x(«) , d ( / ? ) . X , (/?) and y f i n ) are defined in Chapter 3. The improved performance of these 

Homogenous Adaption forms is shown in Figure 5.7. 

The Homogenous Adaption Normalised LMS forms in (3.2.66) and (3.3.41) will be used all 

modelling experiments presented in this chapter. For simplicity the stepsizes jl^ = are used in all 

modelling experiments. 
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Figure 5.2 : Steady State ERLE for the FIR NLMS vs. stepsize, for different filter orders, for white 
noise input 
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Figure 5.3 : Steady State ERLE for the FIR NLMS vs. stepsize, for different filter orders, for band 
limited pink noise input 
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Convergence Time to Required ERLE level vs. stepsize 
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Figure 5.4 : Convergence time to required ERLE for FIR NLMS vs. stepsize, for different filter 
orders 
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Figure 5.5 : Convergence time to Steady State ERLE level for FIR N L M S vs. stepsize, for different 
filter orders 
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Ensemble Averaged ERLE level vs. time 
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Figure 5.6 : Adaptive IIR NLMS adaption using single stepsize for feedback and feedforward 
coefficients 
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Figure 5.7 : Adaptive IIR NLMS adaption using separate stepsizes f o r feedback and feedforward 
coefficients 
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5.2.4.3. The Equation Error NLMS adaptive IIR algorithm 

Figure 5.8 to Figure 5.11 shows theERLEss^g and convergence times achievable for these 

model orders for the Equation Error Adaptive IIR NLMS algorithm for both a white noise and band 

limited pink noise signal input. This is the outcome of modelling the face up handset echo path response 

with no transducer seals of Chapter 4. 

From Figure 5.8 and Figure 5.9 the achievable level levels ofF between a narrow 

range of stepsizes, between values of 0.00075 and 0.0025 fbr a white noise input, and 10"̂  and 0.0025 for 

a band-limited pink noise input. Above these ranges the ERLEss^g level rolls off due to the dependency 

of the Misadjustment of the Equation Error NLMS algorithm on the stepsize value fj. . Below a 

stepsize of 10"̂  there is a noticeably sharper roll-ofF fbr the white noise case. For the pink noise case there 

is a more gradual roll-ofF in the achievable level below 10"̂ . 

From Figure 5.10 the Equation Error NLMS algorithm exhibits a similar relationship with stepsize 

and convergence time 77C , as we have already seen for the FIR NLMS algorithm. Slower 

convergence occurs below stepsize level of 10"' for a bandlimited pink noise signal input, for the echo 

path being modelled. Above stepsize levels of 10"' the 77C values are similar for both white and 

bandlimited pink noise signals for this echo path being modelled. The behaviour of the Equation 

Error NLMS algorithm in Figure 5.10 and Figure 5.11 with the stepsize value is however different to that 

of the FIR NLMS seen earlier, and does not follow the same form as the curve. 

To explain the different behaviour the Equation Error NLMS algorithm with the respect to the 

stepsize value in terms of the TIC^^ and ERLEss^^ levels, consider the form of covariance matrix 

^ which applies to the Equation Error NLMS algorithm of (3.3.41) as follows, 

R_ R. 

whereR^, R ^ j and R^^ are defined as, 

x̂d 

RL Rdd 
(5.10) 

R_=E[x(M)%^(M)] , (5.11) 

R^d = E [ i ( M ) d ^ (/;)], (5.12) 

R ^ = E | d ( M ) d ^ ( M ) ] . (5.13) 

and x ( n ) and (!(») are as defined in Chapter 3. Consider firstly a white noise signal %(») . The 

R j j component in R ^ ^ is dependent only on the white noise signal input x{n) and hence will be 

almost an identify matrix in form. However the R^^ of R ^ ^ will contain significant off diagonal 

components, primarily due to the colouration of the echo path output signal d ( » ) by the echo path h 
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being modelled. The components of R,,,, will also be much lower than the component due to the 

echo path loss o f h . The cross correlation matrix term in R ^ is negligible in practice for this 

system identification experiment compared to R ^ or and may effectively be treated as a null 

matrix. The resulting R ^ ^ for a white noise input can then be written as, 

0 

. 0 ' Rdd 
(5.14) 

where Ois a N x M matrix of zeros and G^is the variance of white noise input x(M) . Equation (5.14) 

effectively means that the eigenvalue spread of R ^ is dependent mainly on R^^ . The mean coefficient 

error terms of the feedforward coefficients of the Equation Error NLMS algorithm will decay at a similar 

rate, whereas the mean coefficient error terms of the feedback coefRcients will converge at different rates 

even for a white noise signal input %(») . 

Equation (5.14) is the main contributory factor to the convergence behaviour of the Equation 

Error NLMS adaptive IIR algorithm of order (M,N) with the stepsize value | I . From (5.14) for Equation 

Error adaptive IIR algorithms the upper stability limit will be dependant on both filter model order, input 

signal type and the echo path being modelled. At lower stepsizes below 10"^ will result in mainly only the 

feedforward coefficients of the Equation EiTor NLMS converging, resulting in the sharp roll-off in 

both the ERLEss^jg levels and 7YC values achievable with stepsize in Figure 5.8 and Figure 5.10. As 

mainly only feedforward coefficients of the Equation Error NLMS algorithm adapt, similar 

ERLEsSjg behaviour to that of an FIR NLMS of M coefficients will occur at these lower stepsize values. 

As a result E R L E s s f o r both (35,23) and (31,11) orders at these lower stepsize values are 

similar. At larger stepsizes above 10"̂  the feedback coefficients of the Equation Error NLMS will begin to 

converge resulting in the gradual increase of ERLEss^/j^ level achievable with these large stepsizes. The 

ERLEsSjg levels for both (35,23) and (31,11) orders begin to show a difference. For the lower model 

order (23,7) in Figure 5.8 the ERLEsSjg curve with respect to stepsize shows a more peaked response in 

comparison to the other model orders used. With fewer feedback coefficients the eigenvalue spread R ^ j 

can be assumed to be smaller resulting in increased convergence with stepsize levels exceeding 10"'*. 

The general ERLE convergence profile behaviour for the Equation Error NLMS algorithm with 

stepsize value, and the TYC,, value behaviour with stepsize can be explained using Figure 5.13 for an 

order of (23,7). One may initially expect a similar relationship of TIC^^ with stepsize for an Equation 

Error algorithm, as obtained for a FIR NLMS algorithm in Figure 5.5 for a white noise input. However 

from Figure 5.13 we can see the ERLE convergence profile behaviour of both adaptive FIR and Equation 

Error NLMS algorithms are different. For the Equation Error NLMS algorithm a rapid initial convergence 

period is obtained due to convergence of the feedforward coefficients similar to an FIR NLMS algorithm, 

followed by a slower convergence period dominated by convergence of any feedback coefficient error 
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terms. This is the reason an increase in values exists for stepsizes above 0.0005, as the steady state 

level is not effectively reached within the 10s adaption period since not all feedback coefficients will 

converge within the 10s adaption period due to the eigenvalue spread of . For a FIR NLMS 

algorithm the steady state ERLE level would be reached after the initial convergence period. 

Consider next the behaviour for a band limited pink noise input%(») . The resulting ^ can 

now be written as, 

R » 0 R 
9,9, 0 ' Rdd 

(5.15) 

where both R ^ and R^^ have now off diagonal components due to the a band limited pink noise input 

x{n) . The resulting eigenvalue spread of R ^ is now a combination of the spreads of R a n d R ^ j . 

Both the mean feedforward and feedback coefficient error terms will decay at different rates due to the 

eigenvalue spreads of R ^ and R^^ . Like the white noise case the eigenvalue spread of R^^ is likely to 

be larger than that of R ^ due to the additional colouration of input signal x{n) by echo path vector h . 

For the bandlimited pink noise case the colouration of R ^ causes a more gradual roll off in the 

achievable ERLEss^/g levels below a stepsize of 10"̂ . The ERLE convergence behaviour of the Equation 

Error NLMS algorithm with the stepsize value is similar to that already discussed for the white noise case, 

except that now ERLEss^jg and convergence are much lower within the 1 Os adaption period as shown in 

Figure 5.14. Like the FIR NLMS for the bandlimited pink noise signal, due to the larger eigenvalue spread 

of both R ^ and R^^ some feedforward and feedback coefficient error terms will not decay sufficiently 

within the 1 Os adaption period, resulting in a lower achievable ERLEsslevel compared to the white 

noise case. We shall see later how the Equation Error LMS Newton algorithm can result in much 

improved modelling performance for coloured input signals where the eigenvalue spread of R ^ ^ will be 

larger. 

It is expected in general all other Equation Error NLMS based algorithms presented in Chapter 3 

will exhibit similar behaviour in terms of steady state modelling performance and convergence with 

regards to the stepsize value jl , as discussed here for the Equation Error NLMS algorithm. A stepsize of 

-0.00075 is chosen for the Equation Error NLMS algorithm for satisfactory steady state modelling 

performance for all echo paths to be modelled. Using different feedforward and feedback coefficients has 

negligible impact on modelling performance. 

157 



steady State ERLE level vs. stepsize 

CD 

LU 
_l 
cn 
LU 

s 
CD 

CO 
>* 
"O 

I 

- B - (31,11) 
(35,23) 

stepsize 

Figure 5.8 : Steady State ERLE level for Equation Error NLMS vs. stepsize, for different filter 
orders, for white noise input 
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Figure 5.9 : Steady State ERLE level for Equation Error NLMS vs. stepsize, for different filter 
orders, for bandlimited pink noise input 
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Convergence Time to Required ERLE level vs. stepsize 
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Figure 5.10 : Convergence time to required ERLE level for Equation Error NLMS vs. stepsize, for 
different filter orders 
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Figure 5.11 : Convergence time to Steady State ERLE level for Equation Error NLMS vs. stepsize, 
for different filter orders for white noise input 
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Convergence Time to Steady State ERLE level vs. stepsize 

CD 
E 

8 § 

g 
c 
o 
O 

TICss (23,7) bl pink 
TICss (31,11) bl pink 
TICss (35,23) bl pink 

Figure 5.12 : Convergence time to the Steady State ERLE level for Equation Error NLMS vs. 
stepsize, for different filter orders for bandlimited pink noise input 
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Figure 5.13 : EE NLMS ensemble averaged ERLE level vs. time, for (23,7) order for white noise 
input, for different stepsizes 
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Ensemble Averaged ERLE level vs. time 
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Figure 5.14 : EE NLMS ensemble averaged ERLE vs. time, for (23,7) order for bandlimited pink 
noise input, for different stepsizes 

5.2.4.4. The Simplified Gradient NLMS Output Error Adaptive IIR Algorithm 

Consider now the performance of the Simplified Gradient N L M S Output Error adaptive IIR 

algorithm of (3.2.66). Figure 5.15 to Figure 5.19 shows theERLEssand convergence times achievable 

for these model orders for the Simplified Gradient Adaptive IIR NLMS algorithm for both a white noise 

and band limited pink noise signal input. This is the outcome of modelling the face up handset echo path 

response with no transducer seals of Chapter 4. 

From Figure 5.15 and Figure 5.16 the achievable E R L E s s ^ ^ level levels are similar in form to 

those of the FIR NLMS algorithm. Consider the white noise case of Figure 5.15 , below a stepsize of 10 '' 

and above a stepsize of 10"̂  the E R L E s s ^ g level rolls off The roll off above 10'^ is due to the 

dependency of the misadjustment of the Simplified Gradient NLMS algorithm on the stepsize value )J,, 

and above a stepsize of 0.05 instability occurs. 

In Figure 5.19 the Simplified Gradient NLMS algorithm exhibits a similar relationship for the 

convergence time with stepsize, as we have already seen for the FIR NLMS algorithm. Slower 

convergence occurs below stepsize level of 10"̂  for a bandlimited pink noise signal input for the echo path 

161 



being modelled. Above stepsize levels of 10" the 77C values are similar for both white and 

bandlimited pink noise signals for this echo path being modelled. 

To explain the different behaviour the Simplified Gradient NLMS algorithm with the respect to the 

stepsize value in terms of the 77(7,, and ERLEss^ig levels, consider the form of covariance matrix 

l i p p which applies to the Simplified Gradient NLMS algorithm of (3.2.66) as follows 

R x f ' / I t , 

R l R 
y/Y/ 

(5.16) 

where R,^ , R , _ and R are defined as, 

(5.18) 

R y ^ = ^ | y / W y X " ) ] ' (5.] 9) 

and l y (» ) and (» ) are as defined in Chapter 3 in (3.2.46) and (3.2.47). The input signal, %(») , and 

output of the adaptive model, for the Simplified Gradient NLMS algorithm are filtered by the 

feedback coefficients of the adaptive filter, which is time varying in nature. 

If we simplistically neglect the long term cross components R^ ^ in R^^^ to make the 

eigenvalue spread of R ^ simply dependent on R and R ^ we get, 

R(|)̂ (|)̂  
0^ R 

(5.20) 

, 

Consider firstly a white noise signal x{n) . In the longer term as the adaptive algorithm converges 

R will be coloured, due to filtering with the feedback coefficients of the adaptive filter, even for a 

white noise input signal. The adaptive filter output signal y{n) will be coloured by the filtering of input 

signal x{n) by the feedforward and feedback coefficients of the adaptive filter. The filtered signal 

y f{n ) from which R ^ is formed will hence be strongly coloured as the algorithm converges, resulting 

in Ry being strongly coloured. The resulting eigenvalue spread of R ^ depend on both 

R ^ ^ and ^ , but is expected to be dominated by the larger spread of R y (neglecting the 

influence of R ^ terms) 

Equation (5.16) is the main contributory factor to the convergence behaviour of the Simplified 

Gradient NLMS adaptive IIR algorithm of order (M,N) with the stepsize value jj, . From the 

simplification of (5.16) in (5.20) for Output Error adaptive IIR algorithms the upper stability limit will be 

dependant on the filter model order, input signal type and the echo path being modelled (since this will 
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influence the colouration of y{n)). Like the Equation Error NLMS algorithm, lower stepsizes below 10"^ 

will result in mainly only the feedforward coefOcients converging. At these lower stepsizes due to small 

adaption in the feedback coefRcients even for a white noise input signal, the input signal %(») will not be 

strongly coloured by the feedback coefficients of the adaptive model resulting in a component 

being strongly identity like in form. Due to converging feedforward coefficients the component 

R^, will still be coloured in form. The mean feedforward coefficient eiTor terms will hence decay at 

similar rates, whereas the mean feedback coefficient error terms will decay at different rates. 

The resulting achievable ERLEss^/^ below stepsize levels of 10^ for the Simplified Gradient 

NLMS of order (M,N) will hence be similar to an FIR NLMS of M coefficients. At larger stepsizes above 

10"* the feedback coefficients of the Simplified Gradient NLMS algorithm will begin to converge resulting 

in the gradual increase of ERLEsslevel achievable. For the lower model order (23,7) in Figure 5.15 

the ERLEss^jg curve with respect to stepsize shows a more peaked response in comparison to the other 

model orders used. With fewer feedback coefficients the eigenvalue spread of R ^ will be less, 

resulting in increased convergence with stepsize levels exceeding 10"̂ . 

The general ERLE convergence profile behaviour for the Simplified Gradient NLMS algorithm 

with stepsize value, and the TIC^^ value behaviour with stepsize can be explained using Figure 5.20 for 

an order of (23,7). A similar relationship of TIC^^ with stepsize exists as for the Equation Error NLMS 

algorithm. The ERLE convergence profiles of the FIR NLMS algorithm and the Simplified Gradient 

NLMS algorithm are different. Like the Equation Error NLMS algorithm the Simplified Gradient NLMS 

algorithm profile contains a rapid initial convergence period, to convergence of the feedforward 

coefficients similar to an FIR NLMS algorithm, followed by a slower convergence period dominated by 

convergence of any feedback coefficient error terms. This is the reason an increase in TYC,, values exists 

for stepsizes above 10'^, as the steady state level is not effectively reached within the 1 Os adaption period. 

For a FIR NLMS algorithm the steady state ERLE level would be reached after the initial convergence 

period. Even at the largest stepsizes prior to instability the steady state level is clearly not still reached 

within the 10s adaption period due mainly to the eigenvalue spread of both R ^ and Ry^y^ • We shall 

see later how the Simplified Gradient EMS Newton algorithm can be used to improve the modelling 

performance of the Simplified Gradient algorithm, due to the resulting eigenvalue spread of R ^ even 

for a white noise input signal. 

For a band limited pink noise signal %(») , a larger eigenvalue spread will result in R ^ and 

Ry^y^. This creates slowly converging feedback filter coefficients and lower achievable 

ERLEss^ig within the 10s adaption period as shown in Figure 5.16. The mean feedforward and feedback 

coefficient error terms will now both decay at different rates due to the larger eigenvalue spread of both 
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R , , and R These in turn lead to slower convergence performance with stepsize as seen for the 

white noise input case as shown in Figure 5.17 and Figure 5.19. The lower ERLEss^g levels achievable 

is a result of coefficient error terms not decaying sufficiently within the 10s adaption period due to the 

eigenvalue spread o f R ^ . We shall see later how the Simplified Gradient LMS Newton algorithm can 

result in much improved modelling performance over the Simplified Gradient NLMS algorithm for 

coloured input signals where the eigenvalue spread of R^^^^ will be larger. 

A stepsize of )I =0.00075 is chosen for the Simplified Gradient NLMS algorithm for satisfactory 

steady state modelling performance for all echo paths to be modelled. Using different feedforward and 

feedback coefficients has negligible impact on modelling performance. 

Steady State ERLE vs. stepsize 
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Figure 5.15 : Steady State ERLE level for Simplified Gradient N L M S vs. stepsize, for different 
filter orders, for white noise input 
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steady State ERLE vs. stepsize 
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Figure 5.16 : Steady State ERLE level for Simplified Gradient N L M S vs. stepsize, for different 
filter orders, for bandlimited pink noise input 
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Figure 5.17 : Convergence time to the required ERLE level for Simplified Gradient NLMS vs. 
stepsize, for different filter orders 
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Convergence Time to Steady State ERLE level vs. stepsize 
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Figure 5.18 : Convergence time to the Steady State ERLE level for Simplified Gradient NLMS vs. 
stepsize, for different filter orders for white noise 
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Figure 5.19 : Convergence time to the Steady State ERLE level for Simplified Gradient NLMS vs. 
stepsize, for different filter orders for band limited pink noise 
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Ensemble Averaged ERLE level vs. time 
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Figure 5.20 : Ensemble averaged ERLE for Simplified Gradient NLMS vs. time for different 
stepsizes for white noise with filter order (23,7) 
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Figure 5.21 : FIR LMS Newton ERLE performance with different forgetting factors A, 
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5.2.5. The effect of LMS Newton adaptive algorithm design parameters on steady state 
modelling performance 

(»), 

To establish the effect of LMS Newton algorithm parameters on steady state modelling 

performance the FIR LMS Newton algorithm, the Simplified Gradient Output Error LMS Newton 

adaptive IIR algorithm, and the Equation Error LMS Newton adaptive IIR algorithms will be used. 

Consider the original forms of these algorithms as follows, 

(3.1.58) 

(M)(P/(M)eW (3.2.71) 

(3.3.46) 

From the above algorithms, like the NLMS algorithms, the stepsize parameter |Ll is one of the most 

important parameters of LMS Newton based algorithms. However there are also additional important 

algorithm parameters for LMS Newton based algorithms used in the computation of the inverse 

covariance matrix estimates ( » ) , and R^'^ ( » ) . As discussed in Chapter 3 estimates 

of the covariance matrices may be computed as follows [5.1],[5.2],[5.4]-[5.6]. 

R ^ ( M ) = A,R^ ( » - ! ) + ( 5 . 2 1 ) 

(5.22) R 
<p/p/ 

(M) = A.R,^^ (M - 1 ) + a ( p ^ (M)(p ̂  ( « ) 

(5.23) 

where A, is a forgetting factor to weight previous estimates depending on the stationarity of input data, and 

(X is a convergence factor . Normally X — 1 — OC so the covariance matrix estimates of (5.21), (5.22) and 

(5.23) are an exponentially weighted average of the outer product x ( n ) x ^ ( n ) , (Py(«)(p^^(«) 

and{p^(«)(p^/(«) . However the general forms of (5.21), (5.22) and (5.23) allow the convergence factor 

CL to be altered independently of the forgetting factor A, to slow the update rate of these covariance matrix 

estimates in the presence of any disturbances[5.6]. Using the matrix inversion lemma on (5.21), (5.22) 

and (5.23) the following covariance matrix estimates R^] (» ) , R ^ L ( ^ ) , R^l,, ( « ) are formed. 

R : ( M - i ) . 

— + (M)R%! ( " - 1 ) ^ ( » ) 

(5.24) 

R 
<p/p/ ( » - 1)(P/ (M)(P f X " - 1) <P/P/ 

^ ( » - w / ( « ) 

(5.25) 
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R - , . . . 

- + ( p / ( " ) % ; ! „ , ( » - i ) ( p , ( M ) 

(5.26) 

where the following initialisations are used, 

R ; ; ( 0 ) = R ; ; , , ( 0 ) = R ; ' , _ ( 0 ) = 8 I . (5.27) 

and 6 is a large scalar c o n s t a n t » ] . 

From equations (5.21) to (5.27), in addition to the stepsize parameter jLl, the parameters X , OL , 

and 6 are also important in determining the convergence and steady state level performance 

behaviour of the LMS Newton algorithms of (3.1.58), (3.2.71) and (3.3.46). In order to see the effects of 

LMS Newton algorithm parameters on the steady state modelling performance of adaptive FIR and IIR 

algorithms, the relationships between filter order, convergence time, steady state ERLEss^g level, 

stepsize ( I , covariance matrix estimation parameters X , d , and 5 , and input signal characteristics 

need to be investigated 

To explore these relationships with filter order three different model orders are used again. A 

lowest model order range for all modelling experiments of 30 coefficients is used, in addition to a middle 

range model order of 42 coefficients, and a maximum model order of 58 coefficients. 

5.2.5.1. FIR LMS Newton Adaptive Algorithm 

The effect of the forgetting factor % on the convergence and steady state ERLEss^g level 

achievable by the FIR LMS Newton algorithm is firstly established. Figure 5.21 shows the ensemble 

averaged ERLE level results achieved for a model order of 42 coefficients for modelling experiments with 

different forgetting factors for the face up no seals handset echo path response of Chapter 4. The same 

stepsize | 1 , convergence factor Ot and initialisation factor 5 are used for all these experiments. A 

stationary band limited pink noise signal x{n) is used. From the results presented it can be clearly seen 

fro stationary signals the higher the forgetting factor X results in much slower convergence to both the 

required ERLE level (TIC^^^) and the steady state ERLE level {TIC^^) for the FIR LMS Newton 

algorithm. A larger forgetting factor gives more weight to previous estimates (» — 1) , and thus 

slower convergence for the inverse covariance matrix estimate R (n) due to the larger weighting 

by . Only at the high factors of X =0.9999 and above does the steady state ERLEss^g level become 

affected during the 10s adaption period. At low forgetting factors X below 0.99 the steady state 

ERLEss^g level achievable becomes lower, and below k =0.975 instability occurs. The same trends in 

modelling performance with the forgetting factor X can be observed for different model orders and other 

stationary input signal types for the FIR LMS Newton algorithm. 
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A value of A, -0.999 can be selected for the FIR LMS Newton algorithm from the assessment of 

ERLE performance with the forgetting factor X with other stationary signal input types, model orders and 

echo paths modelled. 

Consider now the effect of the initialisation factor 5 on the convergence and steady state 

ERLEsSjg\tvQ\ achievable by the FIR LMS Newton algorithm. The same stepsizefJ., convergence 

factor (X and two different forgetting factors A. =0.999 and X =0.9999 are used for all these experiments. 

A stationary band limited pink noise signal x{n) is used. From the results presented it can be clearly seen 

for stationary signals the higher the initialisation factor 5 results in much slower convergence to both the 

required ERLE level ( ) and the steady state ERLE level (TIC^^) for the FIR LMS Newton 

algorithm. This is because the inverse covariance matrix estimate (w) will take longer to converge 

from its initial state for lower initialisation factors. The impact of the initialisation factor 6 is also more 

pronounced for higher forgetting factors. It can be seen from Figure 5.22 for lower forgetting factors 

(below X =0.99975) the initialisation factor will only effect the convergence times and 

TYCy,and not the achievable steady state ERLEss^ig\eve:\ within the 10s adaption period. The same 

trends in modelling performance with the initialisation factor 5 can be observed for different model 

orders and other stationary input signal types for the FIR LMS Newton algorithm. A choice of 

approximately 6 < 1 OO/g ^ is recommended for stationary signals, where G ^ is the input signal 

variance. A value around 5 =100 can be selected for the FIR LMS Newton algorithm from the assessment 

of ERLE performance with the initialisation factor 5 with other stationary signal input types of similar 

input power, model orders and echo paths modelled. 

The effect of the convergence factor OC on the convergence and steady state ERLEss^/^ level 

achievable by the FIR LMS Newton algorithm is shown in Figure 5.23. Figure 5.23 shows the ensemble 

averaged ERLE level results achieved for a model order of 42 coefficients for modelling experiments with 

different forgetting factors for the face up no seals handset echo path response of Chapter 4. The same 

stepsize )J,, initialisation factor 5 and two different forgetting factors X =0.999 and X =0.9999 are used 

for all these experiments. A stationary band limited pink noise signal x(n) is used. From the results 

presented it can be clearly seen for stationary signals the higher the convergence factor OC results in much 

slower convergence to both the required ERLE level ( 7 7 C ) and the steady state ERLE level (TYC,,) 

for the FIR LMS Newton algorithm. The impact of the convergence factor can be clearly seen to be much 

more pronounced in Figure 5.23 for larger forgetting factors (X =0.9999 and above), and effects both the 

convergence times 7YC andTIC^^, and the steady state ERLEss^g level. Where a larger forgetting 

factor is needed in an application the convergence factor Ot can be reduced to improve the convergence 

performance of the FIR LMS Newton algorithm. Like wise where required a larger convergence factor 

OC is used the convergence of the FIR LMS Newton can effectively be slowed down or halted. At lower 
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forgetting factors (below A. -0.99975) the convergence factor a effects only convergence performance 

( 7 7 C and ) and not the achievable steady state level. The same trends in modelling 

performance with the convergence factor 0( can be observed for different model orders and other 

stationary input signal types for the FIR LMS Newton algorithm. A value between (X =0.001 and 

(X =0.005 can be selected for the FIR LMS Newton algorithm from the assessment of ERLE performance 

with the initialisation factor OL with other stationary signal input types, model orders and echo paths 

modelled. 

Now the impact of inverse covariance matrix parameters, A,, 0( and 8 on the steady state 

modelling performance of the FIR LMS Newton algorithm has been analysed and a suitable range for 

these parameters has been established, consider the effect of the stepsize value jl on the convergence and 

steady state ERLEss^^ level achievable by the FIR LMS Newton algorithm. Figure 5.24 to Figure 5.27 

show the impact on steady state modelling performance and convergence of the FIR LMS Newton 

algorithm fbr different stepsize levels fbr both a white noise and bandlimited pink noise signal input. 

From Figure 5.24 and Figure 5.25 for stepsize levels in the range 0.0005 to 10"̂  the maximum 

ERLEsSjg is achievable within the 10s adaption period for the FIR LMS Newton algorithm. Comparing 

to Figure 5.2 and Figure 5.3 for the FIR NLMS algorithm, it is clear that for a suitably chosen stepsize 

level the FIR Normalised LMS and LMS Newton algorithms have the same Misadjustment and achieve 

the same ERLEss^ig\evt\ within the 10s adaption period [5.2]. Unlike the FIR NLMS algorithm in 

Figure 5.4 and Figure 5.5, it can be seen in Figure 5.26 and Figure 5.27 that LMS Newton based adaption 

overcomes the larger eigenvalue spread associated with a band limited pink noise signal input. The 

convergence rate behaviour to both the required and steady state ERLE levels are very similar for both a 

white noise input and a bandlimited pink noise signal input with stepsize. This is due to the component 

R J (« ) in the LMS Newton algorithm update of (3.1.51) which will essentially equalise the eigenvalues 

of the correlation matrix of the input signal in each direction. 
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Ensemble Averaged ERLE level vs. time for different Initialisation Factors 
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Figure 5.22 : FIR LMS Newton ERLE performance with different Initialisation Factors 5 
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Figure 5.23 : FIR LMS Newton ERLE performance with different Convergence Factors (X 
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steady State ERLE vs. stepsize 

30 coeffs 
-E3- 42 coeffs 
—0- 58 coeffs 

stepsize 

Figure 5.24 : Steady State ERLE level for FIR LMS Newton vs. stepsize, for different filter orders, 
for white noise input 
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Figure 5.25 : Steady State ERLE level for FIR LMS Newton vs. stepsize, for different filter orders, 
for band limited pink noise input 
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Convergence Time to Required ERLE level vs. stepsize 
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Figure 5.26 : Convergence time to required ERLE level for FIR L M S Newton vs. stepsize, for 
different filter orders 
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Figure 5.27 : Convergence time to the Steady State ERLE level for FIR LMS Newton vs. stepsize, 
for different filter orders 
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5.2.5.2. The Equation Error LMS Newton Adaptive IIR Algorithm 

Consider now the effect of the forgetting factor X on the convergence and steady state 

ERLEss^ig level achievable by the Equation Error LMS Newton algorithm. Figure 5.21 shows the 

ensemble averaged ERLE level results achieved for a model order of (31,11) for modelling experiments 

with different forgetting factors for the face up handset echo path response of Chapter 4. The same 

stepsize ^ , convergence factor (X and initialisation factor 6 are used for all these experiments. A 

stationary band limited pink noise signal x(n) is used. From the results presented in Fig Figure 5.28 it 

can be clearly seen similar modelling performance is obtained as for the FIR LMS Newton algorithm 

discussed earlier with respect to the forgetting factor X, . Much slower convergence can be observed with 

higher forgetting factors % to both the required ERLE level (7YC ) and the steady state ERLE level 

(TIC^^ ) . A larger forgetting factor gives more weight to previous estimates R ^ (n — l ) , and thus 

slower convergence for the inverse covariance matrix estimate (n) due to the larger weighting 

b y y ^ . At =0.9999 and above the steady state level become affected during the 10s 

adaption period. At low forgetting factors X below 0.99 the steady state ERLEss^j^ level achievable 

becomes lower, and below X =0.975 instability occurs. 

A value of X =0.999 can be selected for the Equation Error LMS Newton algorithm from the 

assessment of ERLE performance with the forgetting factor X with other stationary signal input types, 

model orders and echo paths modelled. 

Consider now the effect of the initialisation factor 8 on the convergence and steady state 

ERLEss^g level achievable by the Equation Error LMS Newton algorithm. Figure 5.29 shows the 

ensemble averaged ERLE level results achieved for a model order of (31,11) for modelling experiments 

with different forgetting factors for the face up no seals handset echo path response of Chapter 4. The 

same stepsize jj,, convergence factor (X and two different forgetting factors X =0.999 and X =0.9999 are 

used for all these experiments. A stationary band limited pink noise signal x{n) is again used. From the 

results presented it can be seen that the higher the initialisation factor 5 results in much slower 

convergence for the Equation Error LMS Newton algorithm. This due to the fact the inverse covariance 

matrix estimate R^' ( » ) will take longer to converge from its initial state for lower initialisation factors. 

A choice of approximately 5 < 1 O O / o j i s recommended for stationary signals, where (7 ^ is the input 

signal variance. Like the FIR LMS Newton algorithm a value around 5 =100 can be selected for the 

Equation Error LMS Newton algorithm from the assessment of ERLE performance with the initialisation 

factor 5 with other stationary signal input types of similar input power, model orders and echo paths 

modelled. 
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Consider lastly the effect of the convergettce factor (X on the convergence and steady state 

level achievable by the Equation Error LMS Newton algorithm is shown in Figure 5.30. 

Figure 5.30 shows the ensemble averaged ERLE level results achieved for a model order of (31,11) for 

modelling experiments with difkrent forgetting factors for the face up no seals handset echo path response 

of Chapter 4. The same stepsize p,, initialisation factor 6 and two different forgetting factors A. =0.999 

and X =0.9999 are used for all these experiments. A stationary band limited pink noise signal x ( « ) is 

again used. The convergence to both the required ERLE level ( 7 7 C ) and the steady state ERLE level 

( ) is impacted by the value of (X , the higher the convergence factor OC the slower convergence is to 

both the required ERLE level ( ) and the steady state ERLE level (TYC,,) for the Equation Error 

LMS Newton algorithm. A value between (% =0.001 and (X =0.005 can be selected for the Equation Error 

LMS Newton algorithm from the assessment of ERLE performance with the convergence factor CX for 

different stationary signal input types, model orders and echo paths modelled. 

Now the impact of inverse covariance matrix parameters, \ ,(X and 5 on the steady state 

modelling performance of the Equation LMS Newton algorithm has been analysed and a suitable range for 

these parameters has been established, consider the effect of the stepsize value )1 on the convergence and 

steady state ERLEss^,g level achievable by the Equation Error LMS Newton algorithm. Figure 5.24 to 

Figure 5.27 show the impact on steady state modelling performance and convergence of the FIR LMS 

Newton algorithm for different stepsize levels for both a white noise and bandlimited pink noise signal 

input. 

From Figure 5.31 and Figure 5.32 for stepsize levels in the range 0.00075 to 10"̂  the maximum 

ERLEsSjg is achievable within the 10s adaption period for the Equation Error LMS Newton algorithm. 

Comparing to Figure 5.8 and Figure 5.9 for the Equation Error NLMS algorithm, it is clear that for the 

10s adaption period higher E R L E s s ^ g i s achievable using the Equation Error LMS Newton based 

adaption, particularly at higher model orders. From Figure 5.33 and Figure 5.34, unlike the Equation 

Error NLMS algorithm, the convergence rate behaviour to both the required and steady state ERLE levels 

are very similar for both a white noise input and a bandlimited pink noise signal input with stepsize for all 

model orders. Improved convergence to the steady state ERLE level is clearly obtained by using the 

Equation Error LMS Newton algorithm. This is due to the component {n) in the LMS Newton 

algorithm update of (3.3.46) which will essentially equalise the eigenvalues of the correlation matrix 

( » ) in each direction, improving the decay rate of any coefficient error modes. 
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Figure 5.28 : Equation Error LMS Newton ERLE performance with different forgetting factors A, 

Ensemble Averaged ERLE level vs. time for different Initialisation Factors 
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Figure 5.29 : Equation Error LMS Newton ERLE performance with the initialisation factor 5 
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Ensemble Averaged ERLE level vs. time for different Convergence Factors 
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Figure 5.30 : Equation Error LMS Newton ERLE performance with the convergence factor a 

Steady State ERLE level vs. stepsize 
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Figure 5.31 : Steady State ERLE level for Equation Error LMS Newton vs. stepsize, for different 

filter orders, for white noise input 
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steady State ERLE level vs. stepsize 
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Figure 5.32 : Steady State ERLE level for Equation Error LMS Newton vs. stepsize, for different 
filter orders, for band limited pink noise input 
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Figure 5.33 : Convergence time to the required ERLE level for Equation Error LMS Newton vs. 
stepsize, for different filter orders 
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Convergence Time to Steady State ERLE level vs. stepsize 
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Figure 5.34 : Convergence time to the Steady State ERLE level for Equation Error LMS Newton 
vs. stepsize, for different filter orders 

5.2.5.3. The Simplified Gradient LIVIS Newton Adaptive IIR Algorithm 

Consider now the effect of the forgetting factor X on the convergence and steady state 

E R L E s s ^ g level achievable by the Simplified Gradient LMS Newton algorithm. Figure 5.35 shows the 

ensemble averaged ERLE level results achieved for a model order of (27,15) for modelling experiments 

with different forgetting factors for the face up no seals handset echo path response of Chapter 4. The 

same stepsize | 1 , convergence factor OC and initialisation factor 5 are used for all these experiments. A 

stationary band limited pink noise signal xiri) is used. From the results presented in Figure 5.35 it can be 

clearly seen similar modelling performance is obtained as for the other L M S Newton algorithms discussed 

earlier with respect to the forgetting factor A,. Much slower convergence can be observed with higher 

forgetting factors X to both the required ERLE level ( ) and the steady state ERLE level (TIC^^) 

A larger forgetting factor gives more weight to previous estimatesR^p ( « —1), and thus slower 

convergence for the inverse covariance matrix estimate R ' ( « ) due to the larger weighting by j / . A t 
9/9/ 'X' 

above X =0.99975 the steady state E R L E s S j o levels become affected during the 1 Os adaption period. At 
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low forgetting factors A, below 0.9975 the steady state level achievable becomes lower, and 

below X =0.995 instability occurs. 

A value of X =0.999 can be selected for the Simplified Gradient LMS Newton algorithm from the 

assessment of ERLE pedbrmance with the Ibrgetting factor 1 with other stationary signal input types, 

model orders and echo paths modelled. 

Consider now the effect of the initialisation factor 5 on the convergence and steady state 

ERLEsSjg level achievable by the Simplified Gradient LMS Newton algorithm. Figure 5.36 shows the 

ensemble averaged ERLE level results achieved for a model order of (27,15) for modelling experiments 

with different forgetting factors for the face up no seals handset echo path response of Chapter 4. The 

same stepsize p. , convergence factor OC and two different forgetting factors A, =0.999 and A. =0.9999 are 

used for all these experiments. A stationary band limited pink noise signal %(») is again used. From the 

results presented it can be seen that the higher the initialisation factor 5 results in much slower 

convergence for the Equation Error LMS Newton algorithm. This due to the fact the inverse covariance 

matrix estimate (« ) will take longer to converge from its initial state for lower initialisation factors. 

A choice of approximately 6 < 1 0 0 / g ^ is recommended for stationary signals, where <7^ is the input 

signal variance. Like other LMS Newton algorithms discussed a value around 6 =100 can be selected for 

the Simplified Gradient LMS Newton algorithm from the assessment of ERLE performance with the 

initialisation factor 6 with other stationary signal input types of similar input power, model orders and 

echo paths modelled. 

Consider lastly the effect of the convergence factor OC on the convergence and steady state 

ERLEss^g level achievable by the Equation Error LMS Newton algorithm is shown in Figure 5.37. 

Figure 5.37 shows the ensemble averaged ERLE level results achieved for a model order of (27,15) for 

modelling experiments with different forgetting factors for the face up no seals handset echo path response 

of Chapter 4. The same stepsize )1, initialisation factor 5 and two different forgetting factors X =0.999 

and A, =0.9999 are used for all these experiments. A stationary band limited pink noise signal x{n) is 

again used. The convergence to both the required ERLE level ( 7 7 C ) and the steady state ERLE level 

(TIC^^) is impacted by the value of OC , the higher the convergence factor OC the slower convergence is 

to both the required ERLE level (7YC ) and the steady state ERLE level ( ) for the Equation 

Error LMS Newton algorithm. Like the other LMS Newton based algorithms discussed a value between 

OC =0.001 and OC =0.005 can be selected for the Simplified Gradient LMS Newton algorithm from the 

assessment of ERLE performance with the convergence factor OC for different stationary signal input 

types, model orders and echo paths modelled. 

Now the impact of inverse covariance matrix parameters, X , OC and 5 on the steady state 

modelling performance of the Simplified Gradient LMS Newton algorithm has been analysed and a 

suitable range for these parameters has been established, consider the effect of the stepsize value j l on the 
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convergence and steady state E R L E s s ^ g level achievable by the Equation Error LMS Newton algorithm. 

Figure 5.38 to Figure 5.41 show the impact on steady state modelling performance and convergence of the 

Simplified Gradient LMS Newton algorithm for different stepsize levels for both a white noise and 

bandlimited pink noise signal input. 

From Figure 5.38 and Figure 5.39 for stepsize levels in the range 10"̂  to 0.0075 the maximum 

ERLEsSjg is achievable within the 10s adaption period for the Simplified Gradient LMS Newton 

algorithm. Comparing to Figure 5.15 and Figure 5.16 for the Simplified Gradient NLMS algorithm, it is 

clear that for the 10s adaption period higher E R L E s s ^ ^ is achievable using the Simplified Gradient LMS 

Newton based adaption. From Figure 5.40, unlike the Simplified gradient NLMS algorithm, the 

convergence rate behaviour to both the required and steady state ERLE levels are very similar for both a 

white noise input and a bandlimited pink noise signal input with stepsize for all model orders. From 

Figure 5.41 the same general trend on decreasing convergence rate to the steady state ERLE level is 

observable for all model orders and both input signal types. These different convergence time values are 

due to the component ( « ) in the LMS Newton algorithm update of (3.2.71) which will essentially 

equalise the eigenvalues of the correlation matrix (M)in each direction, improving the decay rate 

of any coefficient error modes. 

Ensemble Averaged ERLE level vs. time for different Forgetting Factors 
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Figure 5.35: Simplified Gradient LMS Newton ERLE performance vs. forgetting factors X 
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Ensemble Averaged ERLE level vs. time for different Initialisation Factors 
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Figure 5.36: Simplified Gradient LMS Newton ERLE performance vs. initialisation factor 5 

Ensemble Averaged ERLE level vs. time for different Convergence Factors 
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Figure 5.37 : Simplified Gradient LMS Newton ERLE performance vs. convergence factors OC 
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steady State ERLE level vs. stepsize 
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Figure 5.38 : Steady State ERLE level for Simplified Gradient L M S Newton vs. stepsize, for 
different filter orders, for white noise input 
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Figure 5.39 : Steady State ERLE level for Simplified Gradient LMS Newton vs. stepsize, for 
different filter orders, for band limited pink noise input 
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Convergence Time to Required ERLE level vs. stepsize 
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Figure 5.40 : Convergence time to the required ERLE level for Simplified Gradient LMS Newton 
vs. stepsize, for different filter orders 

10 

a 
0) 

8 
C 
0) 

> c 
o 
O 

Convergence Time to Steady State ERLE level vs. stepsize 

TICss (23,7) white 
TICss (27,15) white 
TICss (35,23) white 
TICss (23,7) bl pinl< 
TICss (27,15) bl pink 
TICss (35,23) bl pink 

10" 10 
-4 

10 

stepsize 

10 
- 2 

10 

Figure 5.41 : Convergence time to the Steady State ERLE level for Simplified Gradient LMS 
Newton vs. stepsize, for different filter orders 
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5.2.6. Steady State Modelling results of Adaptive FIR and Equation Error Adaptive IIR 
algorithms 

Having established the choice of algorithm design parameters on the modelling performance of 

both adaptive FIR and Equation Error adaptive algorithms used in this Chapter, modelling results for all 

the echo paths of Chapter 4 over a range of model orders can be presented. A single set of algorithm 

parameters are used for all experiments, using the recommendations discussed earlier. 

The steady state ensemble averaged modelling results are shown in Figure 5.42 to Figure 5.53 for a 

range of different model orders for each echo path of Chapter 4. For Equation Error adaptive IIR 

algorithms different distributions of feedforward and feedback coefficients are used. The number of 

feedback coefficients used is fixed at 7,11,15,19 and 23 in these modelling experiments, where the 

number of feedforward coefficients is adjusted to keep the same total number of filter coefficients the 

same for both FIR and IIR adaptive algorithms. The total number of coefficients used is varied between 

30 and 58 coefficients. To improve clarity on these figures only the most important points (up to a 

maximum of 4 points) are plotted at each different (M,N) model distribution for Equation Error adaptive 

IIR algorithms. Results for both Normalised LMS and LMS Newton adaptive FIR and IIR algorithms are 

presented using the same axis for easy comparison. 

From the results presented in Figure 5.42 to Figure 5.53 it is clear the face down echo path 

configuration determines the minimum order for both adaptive FIR and Equation Error adaptive IIR 

algorithms needed to meet the required ERLE of each handset (shown as a horizontal red line in Figure 

5.42 to Figure 5.53). A minimum model order of 42 coefficients, with 31 feedforward and 11 feedback 

coefficients, (31,11), is required by both the Equation Error Normalised LMS adaptive IIR algorithm and 

the Equation Error LMS Newton adaptive IIR algorithm. For the adaptive FIR algorithms a minimum 

order of 54 coefficients is required. A maximum Coefficient Reduction Factor (CRF) of up to 1.29 is 

possible with Equation Error adaptive IIR algorithms. At the model order of (31,11) the ensemble 

averaged ERLE levels and convergence times are summarised in Table 5-1 below. 

Echo Path 

FIR LMSN Equation Error NLMS Equation Error LMSN 

Echo Path 7 7 Q 

(ms) (ms) (dB) 

7 7 Q 

(ms) (ms) 

ERLE 
(dB) 

T Y Q 

(ms) 

77C,, 

(ms) (dB) 

Face Up No Seals 96 608 23.1 64 5376 26.2 96 1824 29.6 

Artificial Ear Seal 32 384 16.2 32 8032 13.4 32 1824 15 

Loudspeaker Seal 32 832 15.4 32 7136 16.1 32 1686 17.5 

Loudspeaker and 

Microphone Seal 
64 160 13.9 64 5440 19.8 256 1824 21.3 

Microphone Seal 64 160 12.6 64 1984 15.9 64 1440 16.7 

Face Down - 256 13.6 3424 3424 16 1120 1376 16.9 

Table 5-1 : Summary of steady state ERLE and convergence results of FIR and Equation Error 
Algorithms for model order (31,11), total order 42 coefficients. 
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From the ERLE levels presented in Table 5-2 it is clear both Equation Error Normalised LMS and 

LMS Newton algorithms cannot exceed the modelling performance of an equivalent FIR adaptive 

algorithm for all echo paths. However an ERLE gain of up to 5.7dB for the Equation Error Normalised 

LMS algorithms over an equivalent FIR adaptive algorithm is still possible. For Equation Error LMS 

Newton algorithms an ERLE gain of up to 7.2 dB is possible. 

From Table 5-2 it can be seen that the convergence times to the required ERLE of each echo path 

( 7 7 C ) for all adaptive algorithms is similar. For the convergence times to the steady state ensemble 

averaged ERLE ]eve](7YC,,) it is clear to see that the convergence o f both Normalised LMS and LMS 

Newton Equation Error adaptive IIR algorithms is longer than that of an equivalent adaptive FIR 

algorithm. For Equation Error NLMS algorithms much slower convergence occurs to the steady state 

ensemble averaged ERLE than Equation Error LMS Newton based algorithms due to the dependency on 

the eigenvalue spread of ^ , which has off-diagonal components even fbr a white noise input signal 

due to the colouration of the echo path output signal. As a result the eigenvalue spread of ^ depends 

on the echo path to be modelled, the slowest convergence occurring for the artificial ear sealed handset 

configuration. Faster convergence of Equation Error LMS Newton based algorithms for a bandlimited 

pink noise input also results in an improvement of the achievable steady state ensemble averaged ERLE 

level of up to 3.2dB during the lOs adaption period. 
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steady State ERLE vs. Coefficients 
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Figure 5.42 : FIR vs. Equation Error Normalised LMS modelling results for the face up handset 
configuration with no transducer seals 
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Figure 5.43 : FIR vs. Equation Error LMS Newton modelling results for the face up handset 
configuration with no transducer seals 



steady State ERLE vs. Coefficients 
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Figure 5.44 : FIR vs. Equation Error Normalised LMS modelling results for the artificial ear sealed 
handset configuration 
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Figure 5.45 : FIR vs. Equation Error LMS Newton modelling results for the artificial ear sealed 
handset configuration 
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steady State E R I E vs. Coefficients 
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Figure 5.46 : FIR vs. Equation Error Normalised LMS modelling results for the loudspeaker 
adhesive tape sealed handset configuration 
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Figure 5.47 : FIR vs. Equation Error LMS Newton modelling results for the loudspeaker adhesive 
tape sealed handset configuration 
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Figure 5.48 : FIR vs. Equation Error Normalised LMS modelling results for the loudspeaker and 
microphone adhesive tape sealed handset configuration. 
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Figure 5.49 : FIR vs. Equation Error LMS Newton modelling results for the loudspeaker and 
microphone adhesive tape sealed handset configuration. 
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steady State ERLE vs. Coefficients 
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Figure 5.50 : FIR vs. Equation Error Normalised LMS modelling results for the microphone 
adhesive tape sealed handset configuration. 
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Figure 5.51: FIR vs. Equation Error LMS Newton modelling results for the microphone adhesive 
tape sealed handset configuration. 

192 



35 

30 

Steady State ERLE vs. Coefficients 

CO 

LU 
_J 
cr: 
LU 

B 
I 
"O 

I 

ilR 7 poles 
IIR 11 poles 
IIR 15 poles 
IIR 19 poles 
IIR 23 poles 
FIR 

40 45 

Total No of Coefficients 

Figure 5.52 : FIR vs. Equation Error Normalised LMS modelling results for the face down handset 
configuration 
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Figure 5.53 : FIR vs. Equation Error LMS Newton modelling results for the face down handset 
configuration 
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5.2.7. Steady State Modelling results of Adaptive FIR and Output Error Adaptive IIR 
algorithms 

Earlier in Chapter the choice of algorithm design parameters on the modelling performance of 

Output Error adaptive algorithms was discussed using the Simplified Gradient algorithm. A single set of 

algorithm parameters is used for all experiments presented in this section. 

The steady state ensemble averaged modelling results are shown in Figure 5.54 to Figure 5.65 for 

a range of different model orders for each echo path of Chapter 4. For Output Error adaptive IIR 

algorithms different distributions of feedforward and feedback coefficients are used. The number of 

feedback coefficients used is fixed at 7,11,15,19 and 23 in these modelling experiments, where the 

number of feedforward coefficients is adjusted to keep the same total number of filter coefficients the 

same for both FIR and IIR adaptive algorithms. The total number of coefficients used is varied between 

30 and 58 coefficients, where again only the most important points (up to a maximum of 4 points) are 

plotted at each different (M,N) model distribution. Results for both Normalised LMS and LMS Newton 

adaptive FIR and IIR algorithms are presented using the same axis scaling for easy comparison. 

From the results presented in Figure 5.54 to Figure 5.65 it is clear the face down echo path 

configuration determines the minimum order for both adaptive FIR and Simplified Gradient adaptive IIR 

algorithms needed to meet the required ERLE of each handset. A minimum model order of 42 

coefficients, with 27 feedforward and 15 feedback coefficients, (27,15), is required by the Simplified 

Gradient Output Error LMS Newton adaptive IIR algorithm. For the Simplified Gradient Output Error 

NLMS adaptive IIR algorithm a minimum order of 54 coefficients is required, with 39 feedforward and 15 

feedback coefficients, (39,15). The ERLE levels and convergence times are summarised in Table 5-2 

below for a total model order of 42 coefficients. 

Echo Path 

FIR LMSN 
Simplified Gradient 

NLMS 

Simplified Gradient 

LMSN 
Echo Path 

(ms) (ms) (dB) (ms) (ms) 

ERLE 
(dB) 

H Q 

(ms) (ms) (dB) 

Face Up No Seals 96 608 23.1 96 4416 23 96 3232 26.2 

Artificial Ear Seal 32 384 16.2 32 2624 9.8 32 3008 17 

Loudspeaker Seal 0 832 15.4 0 3680 14.2 0 1856 19.4 

Loudspeaker and 

Microphone Seal 
64 160 13.9 128 8128 16.7 576 2016 20.9 

Microphone Seal 64 160 12.6 64 3200 14.6 64 1504 17.5 

Face Down - 256 13.6 - 2272 13.3 1344 2112 16.5 

Table 5-2 : Summary of steady state ERLE and convergence results of FIR and Simplified 
Gradient Output Error Algorithms for model order (27,15), total order 42 coefficients. 
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From the ERLE levels presented in Table 5-2 using the Simplified Gradient adaptive IIR 

algorithm a maximum Coefficient Reduction Factor (CRF) of up to 1.29 is possible with Output Error 

LMS Newton based adaptive IIR algorithms. A Coefficient Reduction Factor (CRF) of unity is only 

possible for Output Error Normalised LMS adaptive IIR algorithms. However an ERLE gain of up to 

2.8dB for the Output Error Normalised LMS algorithms over an equivalent FIR adaptive algorithm is still 

possible. For Output Error LMS Newton algorithms an ERLE gain of up to 7 dB is possible over an 

equivalent FIR adaptive algorithm. 

From Table 5-2 it can be seen that the convergence times to the required ERLE of each echo path 

( 7 7 C ) for all adaptive algorithms again similar. For the convergence times to the steady state ensemble 

averaged ERLE level( TYC,,) it is clear to see that the convergence of both Normalised LMS and LMS 

Newton Output Error adaptive IIR algorithms is longer than that of an equivalent adaptive FIR algorithm. 

For Output Error NLMS algorithms much slower convergence occurs to the steady state ensemble 

averaged ERLE than Output Error LMS Newton based algorithms due to the dependency on the 

eigenvalue spread of , limiting the achievable steady state ERLE during the 10s adaption period. 

Faster convergence of Output Error LMS Newton based algorithms for a bandlimited pink noise input 

results in an improvement of the achievable steady state ensemble averaged ERLE level of up to 7.2dB 

over Output Error NLMS algorithms. 

5.2.8. Summary of Sect ion 5.2 modelling results 

From the modelling results presented in Section 5.2 it is clear that the steady state ERLE gains and 

Coefficient Reduction Factor possible presented in Chapter 4 for offline (non-adaptive) IIR models are 

also achievable with adaptive IIR algorithms. These results are for no echo path output noise. 

Due to much slower convergence performance it was concluded that Equation Error NLMS are 

unsuitable for modelling the echo path of a mobile handset for the handset acoustic echo cancellation 

application. Only Equation Error LMS Newton based algorithms are suitable for handset acoustic echo 

cancellation application. It was found that a model order of (31,11) is needed for an Equation Error LMS 

Newton algorithm to meet the required ERLE of each echo path. With this model order an ERLE gain of 

up to 7.2 dB is possible over an equivalent FIR adaptive algorithm, with a CRF of up to 1.29 achievable. 

For Output Error NLMS algorithms it was found that in due to the dependency of convergence on the 

eigenvalue spread of the achievable steady state ERLE during the 10s adaption period with model 

order is unsatisfactory. Only LMS Newton based Output Error adaptive IIR algorithms are suitable for this 

application area. It was found that a model order of (27,15) is needed for an Output Error LMS Newton 

algorithm to meet the required ERLE of each echo path. With this model order an ERLE gain of up to 7 

dB is possible over an equivalent FIR adaptive algorithm, with a CRF of up to 1.29 achievable. 
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Figure 5.54 : FIR vs. Output Error Normalised LMS Modelling results for the face up handset 
configuration with no transducer seals 
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Figure 5.55 : FIR vs. Output Error LMS Newton Modelling results for the face up handset 
configuration with no transducer seals 
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Figure 5.56 : FIR vs. Output Error Normalised LMS Modelling results for the artificial ear sealed 
handset configuration 
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Figure 5.57 : FIR vs. Output Error LMS Newton Modelling results for the artificial ear sealed 
handset configuration 
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Figure 5.58 : FIR vs. Output Error Normalised LMS Modelling results for the loudspeaker 
adhesive tape sealed handset configuration 
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Figure 5.59 : FIR vs. Output Error LMS Newton Modelling results for the loudspeaker adhesive 
tape sealed handset configuration 
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Figure 5.60 : FIR vs. Output Error Normalised LMS Modelling results for the loudspeaker and 
microphone adhesive tape sealed handset configuration. 
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Figure 5.61 : FIR vs. Output Error LMS Newton Modelling results for the loudspeaker and 
microphone adhesive tape sealed handset configuration. 
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Figure 5.62 : FIR vs. Output Error Normalised LMS Modelling results for the microphone adhesive 
tape sealed handset configuration. 
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Figure 5.63: FIR vs. Output Error LMS Newton Modelling results f or the microphone adhesive 
tape sealed handset configuration. 
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Figure 5.64 : FIR vs. Output Error Normalised LMS Modelling results for the face down handset 
configuration 
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Figure 5.65 : FIR vs. Output Error LMS Newton Modelling results for the face down handset 
configuration 
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5.3. System Identification of the Echo Path Response of a Mobile Handset in 
the Presence of Echo Path Output Noise 

In section 5.2 of this chapter it was shown that only a subset of all the adaptive IIR algorithms of 

chapter 3 were suitable for modelling the echo path of a mobile handset. These conclusions were based on 

steady state modelling performance and the achievable Coefficient Reduction Factor of a subset of 

adaptive algorithms. No echo path output noise was present. 

In the application of adaptive IIR filtering algorithms to acoustic echo cancellation on a mobile 

handset, an echo path disturbance noise source will almost always exist. This noise source is due to 

pressure fluctuations from the operating environment being picked up on the handset microphone. In order 

to establish whether the gains in modelling performance presented in section 5.2 can be obtained in noisy 

environments more modelling experiments are needed with echo path output noise present. 

This section of the chapter establishes the modelling performance of the subset of LMS Newton 

adaptive IIR algorithms in the presence of echo path output noise in order both establish these gains in 

modelling performance are still possible, and to make a selection of the most suitable adaptive IIR 

filtering algorithms for acoustic echo cancellation on a mobile handset. 

5.3.1. Adaptive Algorithms used for Modelling Experiments in presence of output noise 

In section 5.2 it was established that LMS Newton based adaptive IIR algorithms are required for 

modelling the acoustic echo path of a mobile handset. In this section only the LMS Newton based 

adaptive algorithms of Chapter 3 are used to establish the modelling performance of adaptive algorithms 

in the presence of output noise. For stationary input signals and a suitable choice of stepsize, similar 

performance is obtained for LMS Newton and Normalised LMS Newton algorithms, so only LMS 

Newton forms are simulated. 

To assess modelling capabilities of Output Error LMS Newton based algorithms in the presence of 

echo path output noise, the Simplified Gradient, Pseudo Linear Regression and SHARF LMS Newton 

adaptive IIR algorithms are used. To assess modelling capabilities of Equation Error LMS Newton based 

algorithms in the presence of echo path output noise, the Equation Error, Steiglitz McBride and Bias 

Remedy Equation Error LMS Newton adaptive IIR algorithms are used. 

5.3.2. Sys tem Identification Experiment Configuration and A s s e s s m e n t Criteria 

A standard system identification configuration is used as illustrated in Figure 5.66 to perform the 

required system identification experiments of this section in the presence of each path output noise. It can 

be seen an additive echo path output noise signal v{n) is present throughout each system identification 

experiment. The echo path response h is as defined in (5.7). The echo paths to be modelled are fixed for 

the duration of each system identification experiment. The same format as used in section 5.2 is repeated 

for this section. To start with only the face up no seals echo path response will be used to determine the 
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effect of LMS Newton algorithm parameters on modelling performance when echo path output noise is 

present. Once the most suitable parameters have been chosen for each adaptive algorithm, modelling 

results for all the echo path responses of chapter 4 will be presented. 

Echo Path 
Disturbance Signal 

I Echo Path Output + Noise 

Echo Path 
Input 

%(M) 

- j'(M) 
Echo Path Output 

Error Signal 

g(M) 

Adaptive Filter 

7 

Adaptive Algorithm 

Equation 
Error 

Output 
Error 

Adaptive Filter Output 

Figure 5.66 : System Identification Configuration for echo path output noise 

A system identification experiment is defined as an adaptive algorithm of fixed order operating on 

input signal x{n) and noisy echo path output d{n) .For each system identification experiment an input 

signal of duration 1 Os and sample rate 8 kHz (N=80000 samples) is used. A band-limited pink noise 

signal input x{n) is employed here. 

To investigate the steady state modelling performance of each adaptive algorithm in the presence 

of echo path output noise two different noise signals are used for signal v{ri) . Due to codec ADC filtering 

of the noise source recorded on the handset microphone the spectrum of the additive noise source will be 

strongly band limited in form. Both band limited white noise signal and band limited pink noise signal 

v{n) are used, uncorrelated with signal input x{n) , to allow the performance of adaptive algorithms to 

be tested in the presence of echo path output noise. 

For each experiment the fixed model orders detailed in the last section will be used — (27,15) for 

the Output Error LMS Newton algorithms and (31,11) for the Equation Error LMS Newton algorithms. 

The noise signal v{n) will be scaled in each experiment to give a certain Echo to Noise Ratio (ENR) 

levels. The Echo to Noise Ratio is defined as follows. 

203 



M-1 

lOlog, lOlogjo /7=0 
M-l (5.28) 

S v = ( „ ) 

n=0 

From (5.28) we can see the ENR is defined as the ratio of echo path output power in the absence of noise, 

E{y^ ( » ) ] , to the echo path output disturbance noise power, E \ y ^ ( /?)] , in decibels, calculated as a time 

average. M represents the length of recorded sequences yiji) and v ( « ) . The ENR level for each 

experiment is held constant over the simulation duration. For quiet indoor environments the ENR level is 

typically around 5 to lOdB. For noisy indoor environments and outdoor environments the ENR level will 

be less than 5dB. In this Chapter an ENR range of OdB to 20dB is used for each echo path modelled is 

simulated. 

In terms of assessment criteria used to establish steady state modelling performance in the presence 

of echo path output noise, the same measures used in last section are employed - the steady state ERLE 

va\\it,ERLEss^g, and convergence times and 77C^ ,̂̂  defined in (5.4) to (5.6). The only 

difference is that in the presence of echo path output noise a slight modification to the ERLE level 

calculated is recorded. The Echo Return Loss Enhancement must be established from the true echo path 

output y{n) and not the total output including the disturbance signal d(n) as in the previous Section of 

the Chapter. The ERLE recorded in this section is defined as follows. 

10 
M=0 
yV-1 

^e^{m-n) 
M=0 

(5.29) 

where N is the sample duration corresponding to 32ms window duration at a 8kHz sample rate (256 

samples). The index m denotes 32ms time sample instants in the recorded sequences y{n) and e(n) . 

The ensemble averaged ERLE level, the steady state ensemble averaged ERLE value, ERLEss^g , and 

convergence times 77C,, and 7YC defined in (5.3) to (5.6) are calculated from the ERLE definition of 

(5.29) in each modelling experiment. 

Each modelling experiment is repeated P - 2 0 times, where different random noise seeds are used 

for the band-limited pink noise signal input x{n) and noise signal v{n) in each repeated trial, in order to 

compute ensemble average estimate ERLE^^ (n) . Once the ensemble averaged level ERLE^^ (n) is 

computed the steady state ERLE value, E R L E s s ^ g , and convergence times and are 

recorded. Once ERLEss^g is computed for each echo path to be modelled over a range of Echo to Noise 

Ratios for each adaptive algorithm of fixed order. A minimum Coefficient Reduction Factor as defined in 

Chapter 4 can be computed to see whether the performance benefits presented in Chapter 4 are still valid 

in the presence of echo path output noise. 

204 



5.3.3. The effect of Echo Path output no ise on the cho ice o f LMS Newton adaptive 
algorithm des ign parameters 

In section 5.2 of this chapter the convergence and steady state ERLEsSjg level performance 

behaviour of only the LMS Newton algorithms of (3.1.58), (3.2.71) and (3.3.46) was discussed with 

respect to adaptive algorithm parameters |1 , A,, (X , and 6 . These observations were jbr the case where 

no echo path output noise is present. 

In this section of the Chapter we wish to establish convergence and steady state level 

performance behaviour fbr all LMS Newton algorithms presented in Chapter 3 with respect to main 

adaptive algorithm parameters, in the presence of echo path output noise. The lowest considered ENR 

level of OdB will be used. This ensures the most suitable set of adaptive algorithm parameters are used for 

the modelling results of section 5.3. A bandlimited pink noise source will be used be used for both input 

signal x{n) and disturbance signal v{n) . A single filter model order of 42 coefficients (identified as the 

most suitable order in Section 5.2) will be used for all algorithms. 

5.3.3.1. The FIR LMS Newton adaptive FIR algorithm 

Consider firstly the choice of design parameters for the FIR L M S Newton algorithm when echo 

path noise is present. As the input signal characteristics have not changed, the parameter value 

recommended for8 in Section 5.2, which determines the initial covariance matrix estimate 51 will 

remain unchanged. This is the case for all algorithms. For the FIR LMS Newton algorithm the stepsize 

= 0 .0025 recommended in Section 5.2 will be adopted, only the values of forgetting factor X and 

convergence factor d will be changed to give robust performance at low ENR levels. 

Consider now the effect of the forgetting factor X on the convergence and steady state 

ERLEsSjg level achievable by the FIR LMS Newton in the presence of echo path output noise, for a 

convergence factor ofOC = 0 . 0 0 7 5 . Figure 5.67 shows the ensemble averaged ERLE level results 

achieved for a model order of 42 coefficients for modelling experiments with different forgetting factors 

for the face up no seals handset echo path response of Chapter 4. As in the no noise case of Figure 5.21 

the same general trends in performance occur with the forgetting factor X where higher values slow 

convergence and improve the steady state ERLEsSjg level, and lower values improve convergence and 

lower the steady state ERLEss^g level. However when echo path noise is present at such low levels a 

minimum forgetting factor value of X =0.999 is needed for stability. It can also be observed that for 

higher forgetting factor values at low ENR levels, the convergence rate is improved over the no noise 

case. The improvement in achievable steady state ERLEss^g level over that achieved with lower 

forgetting factors at low ENR levels is more pronounced than in the no noise case, due to less filter weight 

perturbation as they converge with higher forgetting factors at low ENR levels. In comparison to the no 

noise case of Figure 5.21 only a small degradation in achievable steady state ERLEss^g level results for 
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lower ENR levels, when noise source v(M) is present. A value of X, =0.9995 is recommended for stability 

and performance over a range of different ENR levels and echo paths. 

Consider next the effect of the convergence factor (X on the convergence and steady state 

ERLEsSjg level achievable by the FIR LMS Newton in the presence of echo path output noise, for a 

fixed stepsize of jl = 0 . 0 0 2 5 and forgetting f a c t o r = 0 . 9 9 9 5 . Figure 5.68 shows the ensemble 

averaged ERLE level results achieved for a model order of 42 coefficients for modelling experiments with 

different convergence factors fbr the face up no seals handset echo path response of Chapter 4. As in the 

no noise case of Figure 5.23 the same performance trends occur with the value of(X . However at larger 

values of OC the slower convergence results in less filter weight perturbation at lower ENR levels and as a 

result the achievable steady state ERLEss^g level increases for values up to d =0.025. A value of 

(X =0.01 is recommended for stability and performance over a range of different ENR levels and echo 

paths. 

5.3.3.2. The Simplified Gradient LMS Newton adapt ive IIR algorithm 

Like the FIR LMS Newton algorithm a fixed stepsize value will be used. However due to stability 

problems below an ENR level of lOdB, a lower fixed stepsize value o f f l = 0 . 0 0 1 2 5 from the 

recommended value chosen in Section 5.2 will be used. Only the values of forgetting factor X and 

convergence factor OC will be investigated for robust operation at low ENR levels. 

Figure 5.69 shows the ensemble averaged ERLE level results achieved for a model order of 42 

coefficients (27,15) for modelling experiments with different forgetting factors, for the face up no seals 

handset echo path response of Chapter 4. As in the no noise case of Figure 5.35 the same general trends 

in performance occur with the forgetting factor X . However when echo path noise is present at such low 

levels as in Figure 5.69, a very narrow range of forgetting factors exists for algorithm stability and 

performance. A value of X. =0.9998 is recommended for stability and performance over a range of 

different ENR levels and echo paths. 

Figure 5.68 shows the ensemble averaged ERLE level results achieved for a model order of 42 

coefficients for modelling experiments with different convergence factors for the face up no seals handset 

echo path response of Chapter 4. As in the no noise case of Figure 5.37 the same performance trends 

occur with the value ofOC . A value of OC =0.0075 is recommended for stability and performance over a 

range of different ENR levels and echo paths. Below this value at low ENR levels of 0 or below algorithm 

instability will occur. As we shall see in later Chapters, the convergence factor OC can be varied 

depending on the ENR level to maintain fast convergence and robust operation in noisy environments. 
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Figure 5.67 : FIR LMS Newton ERLE performance with different forgetting factors X for ENR 
level of OdB 
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Figure 5.68 : FIR LMS Newton ERLE performance with different convergence factors 0( for ENR 
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Figure 5.69 : Simplified Gradient LMS Newton ERLE performance with different forgetting 
factors X for ENR level of OdB (OC =0.0075) 

Ensemble Averaged ERLE level vs. time for different Convergence Factors 

25 

LU 10 

CF = 0.0075, ENR = OdB 
CF = 0.01, ENR= OdB 
CF = 0.015, ENR = OdB 
CF = 0.0175, ENR = OdB 
CF = 0.025. ENR = OdB 

Time(s) 

Figure 5.70 : Simplified Gradient LMS Newton ERLE performance with different convergence 
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5.3.3.3. The P s e u d o Linear Regress ion LMS Newton adaptive IIR algorithm 

From the results presented in Section 5.2 we have seen in a general sense how the performance of 

adaptive IIR output error LMS Newton algorithms vary with algorithm parameters | i , A,, (X , and 8 , 

for no echo path output noise. Now we will see how these parameters specifically affect the Pseudo Linear 

Regression LMS Newton algorithm when echo path output noise is present. 

The Pseudo Linear Regression LMS Newton algorithm is re-written for convenience below, 

(«), (3.2.92) 

where 

a 

(3.2.93) 

and the following initialisations is used. 

(5.30) 

Re > 0 , z = 1, (3.2.84) 

In Chapter 3 the term Strict Positive Real (SPR) was introduced for the Pseudo Linear Regression 

algorithm as, 

1 

where Re(u) denotes the real part of u and 1 — A , ( z ' ) denotes the poles of the system to be modelled. It 

was discussed how that this condition should in general be satisfied to ensure convergence. In some cases 

however, despite violation of (3.2.84) the algorithm will still converge if it has sufficient degrees of 

freedom to approximate the echo path being modelled. Figure 5.71 shows the SPR condition for the echo 

paths of Chapter 4 (which approximates the handset variation in normal handset use). The poles 

At{q ' ) here, are the poles estimated for each echo path using the Simplified Gradient LMS Newton with 

no echo path output noise and a model order of (27,15). From Figure 5.71 it can be seen that there is a 

'mild' violation of the SPR condition of most of the echo path responses to be modelled. As we shall see 

shortly for all of these echo paths when modelling results for the Pseudo Linear Regression LMS Newton 

algorithm are discussed, that convergence and stability for a suitable choice of algorithm parameters is 

obtained despite the violation of (3.2.84). The condition of (3.2.84) is clearly overly restrictive for this 

application, and can be termed as 'sufficient' but 'not necessary' for algorithm convergence. It is assumed 

the model order of (27,15) seems to give this algorithm sufficient degrees of freedom to model the echo 

path response of a mobile handset to achieve convergence. 

As an example of the convergence performance of this algorithm Figure 5.72 shows the ensemble 

averaged ERLE level results achieved for a model order of 42 coefficients (27,15) when modelling the 

face up no seals handset echo path response of Chapter 4. Different forgetting factors A. are used. As 

expected the same general trends in performance occur with the forgetting factor A, as did for the FIR 
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LMS Newton and Simplified Gradient LMS Newton algorithms. Unlike the Simplified Gradient LMS 

Newton algorithm the Pseudo Linear Regression LMS Newton algorithm does not have such a restrictive 

range with respect to the forgetting factor A. in order to achieve stability at lower ENR levels. 

A value of X =0.9995 is recommended for stability and performance over a range of different ENR 

levels and echo paths. A fixed value of stepsize is employed based on recommendations from Section 5.2. 

A value )1 = 0 . 0 0 1 2 5 is recommended for robust operation at low ENR levels for all echo paths. 

From Figure 5.73 it can be seen that the same general trends also exist for the convergence factor 

OC for the Pseudo Linear Regression LMS Newton algorithms, as did for both the FIR LMS Newton and 

Simplified Gradient LMS Newton algorithms. A value of OC =0.005 is recommended for stability and 

performance over a range of different ENR levels and echo paths. 

5.3.3.4. The SHARP LMS Newton adaptive IIR algorithm 

As discussed in Chapter 3 an additional fixed FIR error filter C ( ^ ~ ' ) can be used in the Pseudo Linear 

Regression algorithm structure, giving the filter update, 

8.+I + (3.2.104) 

Equations (3.2.93) and (5.30) of Pseudo Linear Regression LMS Newton algorithm also apply to 

the SHARP LMS Newton algorithm. The coefficients C ( ^ ~ ' ) a r e normally fixed throughout adaptation 

of the filter and are chosen to meet the following SPR condition, 

1 + C(z-') 
Re > 0 , z = l , (3.2.98) 

By using this fixed filter C ( ^ ~ ' ) the SPR region within the unit circle of the z domain is 

expanded to include more echo path coefficient values, thus allowing the SPR condition of (3.2.98) to be 

satisfied even for those echo paths whose poles ' ) fail to satisfy the SPR condition of (3.2.84). 

Since the Pseudo Linear Regression LMS Newton algorithm converges satisfactorily for all echo 

paths of Chapter 4 to be modelled despite the violation of most echo paths of the SPR condition of 

(3.2.84) it can be concluded that this additional fixed filter is not actually required for stability and 

convergence reasons for this application. Additionally the problem of choosing a fixed filter 

C(q ' ) when the echo path response is unknown, and can change during a call due to handset movements 

is both difficult and impractical. To investigate whether the application of SHARP algorithm with this 

fixed filter C(g ' ) may hold any performance or convergence benefits over the standard Pseudo Linear 

Regression LMS Newton Figure 5.74shows ensemble averaged ERLE level results achieved for a model 

order of 42 coefficients (27,15) when modelling the face up no seals handset echo path response of 

Chapter 4. Different forgetting factors X are used and an ENR level of OdB is present. The coefficients 

C(q ' ) are chosen to place a zero in the vicinity of each pole At(q ' ) , where A,{q ' ) are the 

estimated poles for the face up no seals echo path modelled using the Pseudo Linear Regression LMS 

Newton algorithm with an order of (27,15) with no echo path noise present. 
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In comparison to the results of the Pseudo Linear Regression LMS Newton in Figure 5.72 it can be 

clearly seen there are no performance or convergence benefits using the SHARP LMS Newton algorithm 

structure. This is also the case for other echo paths modelled over a range of ENR levels. The SHARP 

algorithm will not be considered further in this thesis for the handset echo cancellation application. 
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Figure 5.71 : SPR condition of the poles of each handset echo path 
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Ensemble Averaged ERLE level vs. time for different Forgetting Factors 
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Figure 5.72 : Pseudo Linear Regression LMS Newton ERLE performance with different forgetting 

factors X for ENR level of OdB (OC =0.0075). 
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Figure 5.73 : Pseudo Linear Regression LMS Newton ERLE performance with different 

convergence factors OC for ENR level of OdB (X =0.9995). 
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Ensemble Averaged ERLE level vs. time for different Forgetting Factors 
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Figure 5.74 : SHARP LMS Newton ERLE performance with different forgetting factors X for 
ENR level of OdB ( a =0.0075). 

5.3.3.5. The Equation Error LMS Newton adaptive IIR algorithm 

Consider next the choice of design parameters for the Equation Error LMS Newton adaptive IIR 

algorithm when echo path noise is present. For the Equation Error L M S Newton algorithm the stepsize 

| I = 0.0025 recommended in Section 5.2 will be adopted, only the values of forgetting factor X and 

convergence factor OC will be changed to give robust performance at low ENR levels. 

Consider the effect of the forgetting factor A, on the convergence and steady state 

E R L E s s ^ g level achievable by the Equation LMS Newton algorithm. Figure 5.75 shows the ensemble 

averaged ERLE level results achieved for a model order of 42 coefficients (31,11) when modelling the 

face up no seals handset echo path response of Chapter 4. Different forgetting factors are used with a 

fixed convergence factor of OC = 0.0075. It is clear to see the bias effect at lower ENR levels from 

Figure 5.75 . As the feedforward coefficients begin to converge the ensemble averaged ERLE level 

increases. However once the feedback coefficients begin to adapt the bias caused by the high disturbance 

noise signal levels in the estimation of the optimum feedback coefficients causes the ensemble averaged 

ERLE level to significantly reduce. As a result from these initial results is not difficult to determine that 

the Equation LMS Newton algorithm is unsuitable for the handset echo cancellation application due to the 

low ENR levels possible. The Equation Error LMS Newton algorithm will still be considered in further 
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modelling experiments to serve a reference to compare other bias removal Equation Error methods 

against. 

For the Equation LMS Newton algorithm despite the bias problem the same general trends still 

exits with respect to the forgetting f a c t o r a n d convergence factor OC as with the other LMS Newton 

algorithms considered so far. A forgetting factor of X =0.9995 and convergence factor (X -0.0075 are 

recommended for the Equation LMS Newton algorithm for robust performance in the presence of echo 

path noise, and to obtain optimal performance at higher ENR levels where the bias effect will be less. 

Where the Equation LMS Newton algorithm is used in environments where the ENR level can 

occasionally be low, the values of X and (X should be increased to slow adaption and reduce bias during 

low ENR periods. 

5.3.3.6. The Steiglitz McBride Equation Error LMS N e w t o n adaptive IIR algorithm 

The results presented in Section 5.2 demonstrated how the performance of adaptive IIR equation 

error LMS Newton algorithms vary with algorithm parameters j l , X , CX. , and 5 , for no echo path output 

noise. In this section we will see how these parameters specifically affect the Steiglitz McBride LMS 

Newton algorithm when echo path output noise is present. 

The Steiglitz McBride LMS Newton algorithm is re-written for convenience below. 

M+I (3.3.94) 

where, 

Y 

R ye 

1 
a 

+ (pyk 

and the following initialisations is used. 

(3.3.96) 

(5.31) 

For the Steiglitz McBride LMS Newton algorithm a fixed stepsize |1 — 0 . 0 0 1 2 5 is used and only 

the values of forgetting factor X and convergence factor OC will be investigated for robust operation at 

low ENR levels. 

Figure 5.77 shows the ensemble averaged ERLE level results achieved for a model order of 42 

coefficients (31,11) for modelling experiments with different forgetting factors, for the face up no seals 

handset echo path response of Chapter 4. The Equation Error LMS Newton algorithm is also drawn on 

the same axes to show the bias remedy capabilities of the Steiglitz McBride LMS Newton over the 

standard equation error approach. 

Despite removing much of the bias due to the equation error formulation the Steiglitz McBride 

method does produce a slower convergence rate as a higher forgetting factor of X =0.9998 is needed for 
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robust convergence at low ENR levels for all echo paths. Below a forgetting factor of X =0.9996 

instability occurs at low ENR levels. Like other algorithms presented so far with a higher forgetting factor 

algorithm convergence time to the steady state ensemble averaged ERLE level increases. 

Figure 5.78 shows the effect on ensemble averaged ERLE level for different values of convergence 

factor06 . The same trends of increasing algorithm convergence time to the steady state ensemble 

averaged ERLE level can be observed for higher values ofOC . Below OC =0.0075 instability occurs. A 

value of CL =0.0075 is recommended for stability and performance over a range of different ENR levels 

and echo paths. 

5.3.3.7. The Bias Remedy Equation Error LIVIS Newton adaptive IIR algorithm 

Consider now the choice of design parameters for the Bias Remedy Equation Error LMS Newton 

adaptive IIR algorithm when echo path noise is present. The Bias Remedy Equation Error LMS Newton 

algorithm is re-written for convenience below, 

8«+i = (M)(P6r ( « ) , (3 3.65) 

where 

f 

; — (3.3.68) 

and the following initialisations is used, 

From (3.3.94) and (3.3.96) the same algorithm design parameters |Ll ,?i,OC , and 6 as for the 

Steiglitz McBride LMS Newton algorithm exist for this algorithm also. However an additional parameter 

k is also used in the Bias Remedy Equation Error LMS Newton in order to alter level of bias in 

information vector ( » ) in (3.3.53) and (3.3.56). For the Bias Remedy Equation Error LMS Newton 

algorithm a fixed stepsize = 0 . 0 0 1 2 5 is used and only the values of forgetting factor A, , convergence 

factor CL and bias constant k will be investigated for robust operation at low ENR levels. 

Figure 5.79 shows the ensemble averaged ERLE level results achieved for a model order of 42 

coefficients (31,11) for modelling experiments with different forgetting factors, for the face up no seals 

handset echo path response of Chapter 4. Two different bias constants are shown also. From Figure 5.79 

it can be seen that a bias constant of k =0 gives the same performance as the standard Equation Error 

LMS Newton algorithm. A value of A: =0.5 gives the best trade off between algorithm stability across all 

echo paths and the level of bias reduction. 

From Figure 5.79 it can be seen that as for other algorithms discussed so far increasing the 

forgetting factor increases the convergence time. Below a forgetting factor of X =0.9996 instability occurs 

at low ENR levels. A value of X =0.9996 is recommended. 
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The same trends of increasing algorithm convergence time to the steady state ensemble averaged 

ERLE level exist as in all other algorithms discussed so far. A value of CL =0.0075 is recommended for 

stability and performance over a range of different ENR levels and echo paths. 
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Figure 5.75 : Equation Error LMS Newton ERLE performance with different forgetting factors X 
for ENR level of OdB (CX =0.0075). 
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Figure 5.76 : Equation Error LMS Newton ERLE performance with different convergence factors 

a for ENR level of OdB (X =0.9995) 
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Ensemble Averaged ERLE level vs. time for different Forgetting Factors 
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Figure 5.77 : Steiglitz McBride Equation Error LMS Newton ERLE performance with different 
forgetting factors X for ENR level of OdB ( a =0.0075). 
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Figure 5.78 : Steiglitz McBride Equation Error LMS Newton ERLE performance with different 
convergence factors OC for ENR level of OdB (A, =0.9998) 
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Ensemble Averaged ERLE level vs. time for different Forgetting Factors 
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Figure 5.79 : Bias Remedy Equation Error LMS Newton ERLE performance with different 

forgetting factors X. for ENR level of OdB ( a =0.0075). 
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5.3.4. LWIS Newton Modelling Resul ts in the Presence of E c h o Path Output Noise 

The adaptive algorithm parameters chosen for each modelling experiment is a single set of 

parameters, selected as a trade off between steady state ensemble averaged ERLE level and convergence 

time, using the recommendations discussed in the last section. 

The steady state ensemble averaged modelling results are shown in Figure 5.80 to Figure 5.85 for a 

range of ENR levels for each narrowband echo path of chapter 4. A filter model order of 42 coefficients is 

used for all LMS Newton algorithms. The main results in Table 5-3 are summarised in below for an ENR 

level of 3dB. 

Adaptive Algorithms 

Echo Path FIR LMS 

Newton 

Simplified 

Gradient 

LMS 

Newton 

Pseudo 

Linear 

Regression 

LMS 

Newton 

Equation 

Error LMS 

Newton 

Bias 

Remedy 

Equation 

Error LMS 

Newton 

Steiglitz 

McBride 

LMS 

Newton 

Face Up No Seals 21.5 23.3 215 6.8 228 2 0 2 

Artificial Ear Seal 15.5 14.9 12 5.7 10.8 11.4 

Loudspeaker Seal 14^ 19 1&9 6.2 129 13 

Loudspeaker and 

Microphone Seal 
13.4 20.1 17.1 5.8 183 14 

Microphone Seal IZ8 17.6 16 5.9 14.4 1Z2 

Face Down 14 16.2 114 5 14^ 1Z8 

Table 5-3 : Summary of steady state ERLE results for LMS Newton adaptive algorithms for a total 
order of 42 coefficients. The ENR level is 3dB 

From the results presented in Table 5-3 it is clear that the Simplified Gradient LMS Newton 

algorithm is the only algorithm capable of meeting the required ERLE level for each echo path down to an 

ENR level of 3dB. An ERLE gain of up to 6.7dB is achievable over an equivalent FIR algorithm even at 

ENR levels as low as 3dB. Similar ERLE gains as those presented in chapter 4 (for offline IIR models in 

the absence of echo path output noise) are clearly achievable using output error adaptive IIR algorithms in 

the presence of echo path output noise. Only the Simplified Gradient LMS Newton based algorithms will 

be considered in future chapters. 

From Figure 5.80 to Figure 5.85 the bias effect of the Equation Error LMS Newton algorithm is 

clear. Only at ENR levels above 25dB(not shown) is the Equation Error LMS Newton algorithm capable 

of meeting the required ERLE of each echo path response. Despite both the Bias Remedy Equation Error 

LMS Newton algorithm and the Steiglitz McBride LMS Newton algorithm overcoming this bias, their 

performance does not match that of the output error Simplified Gradient LMS Newton algorithm. 
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steady State ERLE level vs. ENR 
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Figure 5.80 : LMS Newton modelling results for the Face Up No Seals Echo Path Response. 
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Figure 5.81 : LMS Newton modelling results for the Artificial Ear Sealed Echo Path Response 
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steady State ERLE level vs. ENR 
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Figure 5.82 : LMS Newton modelling results for the Loudspeaker Adhesive Tape Sealed Echo Path 
Response. 
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Figure 5.83 : LMS Newton modelling results for the Loudspeaker and Microphone Adhesive Tape 
Sealed Echo Path Response. 
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Steady State ERLE level vs. ENR 
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Figure 5.84 : LMS Newton modelling results for the Microphone Adhesive Tape Sealed Echo Path 
Response. 

m 

W 
CO 

LU 
_J 
cr 
UJ 

18 

16i 

14 

12 

10 

8 

6 

4 

2 
0 

FIR vs IIR ERLEss vs ENR results, csp g9stm8k 

_L _L 
6 9 

ENR [dB] 

- e - FIR 
- B - SG 

PLR 
- V - EE 

BR EE 
SMM EE 

12 15 

Figure 5.85 : LMS Newton modelling results for the Face Down Echo Path Response. 
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5.3.5. Summary of Chapter 

The main goal of this chapter was to assess whether adaptive IIR filters have any benefits in terms 

of modelling performance over more traditional FIR adaptive models when modelling the narrowband 

echo path responses of chapter 4. A secondary aim of this chapter is to discuss the advantages and 

disadvantages of the adaptive algorithms presented in chapter 3, when modelling the echo path of a 

mobile handset is also addressed, and their performance with respect to algorithm design parameters. 

The main goal of this chapter was undertaken in two stages. The first stage was section 5.2, which 

was a direct extension of chapter 4 with adaptive FIR and IIR modelling experiments. No echo path output 

noise is present in these modelling experiments. As part of this section adaptive IIR algorithm 

performance with respect to algorithm design parameters is also analysed. From the modelling results 

presented in section 5.2 it is clear that the steady state ERLE gains and Coefficient Reduction Factor 

possible presented in chapter 4 for offline (non-adaptive) IIR models are also achievable with adaptive IIR 

LMS Newton based algorithms. Even for a white noise signal input the eigenvalue spread is too large to 

enable adaptive IIR LMS and Normalised LMS algorithm forms to converge. 

In section 5.3 it was found that a model order of (31,11) is needed for an equation error LMS 

Newton algorithm to meet the required ERLE of each echo path. With this model order an ERLE gain of 

up to 7.2 dB is possible over an equivalent FIR adaptive algorithm, with a CRF of up to 1.29 achievable. 

For an output error LMS Newton algorithm it was found that a model order of (27,15) is needed to meet 

the required ERLE of each echo path. With this model order an ERLE gain of up to 7 dB is possible over 

an equivalent FIR adaptive algorithm, with a CRF of up to 1.29 achievable 

The second stage was section 5.3. The main aim of this section is to assess the steady state 

modelling performance of adaptive FIR and IIR algorithms in the presence of echo path output noise. The 

modelling results of section 5.2 are repeated using different LMS Newton adaptive algorithms at specific 

model orders in the presence of echo path output noise. The modelling performance over a range of 

different ENR levels is presented. Due to the low ENR levels possible in the handset echo cancellation 

application it was found that only output error LMS Newton adaptive IIR algorithms are suitable. For the 

Simplified Gradient output error LMS Newton algorithm of order (27,15) it was found an ERLE gain of 

up to 6.7dB is achievable over an equivalent FIR algorithm even at ENR levels as low as 3dB. 

For acoustic echo cancellation on a mobile handset the Simplified Gradient output error LMS 

Newton algorithms of chapter 3 will be used in the next chapter to assess the tracking performance of 

adaptive IIR algorithms for input and echo path time variations at different input SNR and output ENR 

levels. 
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6. Tracking Time Variations using Adaptive IIR Filtering Algorithms 

6.1. Introduction 

In the thesis so far only the steady state or asymptotic modelling performance of the adaptive 

algorithms has been discussed. In chapter 3 the most commonly used adaptive IIR algorithms were 

presented. In chapter 5 it was found that only Simplified Gradient Output Error LMS and NLMS Newton 

algorithms from the many algorithms considered were suitable for modelling the echo path of a mobile 

handset in line with the main aim of this thesis. However during handset acoustic echo cancellation time 

variations will exist in both the echo path to be modelled, and the input signals to the echo canceller. 

The main aim of this chapter is to discuss the effects of time variations algorithms in both the 

handset echo path response and the input signals used, on the modelling performance of adaptive IIR 

algorithms, since convergence (as studied in chapter 5) does not guarantee tracking [6.2]. This chapter is 

split into two main parts. Section 6.2 continues from the modelling work presented in chapter 5. Results 

are presented showing the capability of adaptive IIR algorithms to track time variations in the handset 

echo path response in normal use. Linear gain variations are simulated in section 6.2.2. In section 6.2.3 

step variation from one echo path response to another are simulated. 

Section 6.3 assesses the capability of adaptive IIR algorithms to provide sufficient ERLE 

performance for speech signal inputs. The influence of input noise (noisy speech) on adaptive IIR 

algorithm performance over a range of SNR levels is also established. The effects of output noise on the 

estimated filter coefficients during silent periods of speech are also discussed. A new adaptive IIR 

algorithm, the Correlation Simplified Gradient NLMS Newton algorithm is presented to provide robust 

modelling performance at low ENR conditions satisfying the main aim of this thesis. 

6.2. System Identification of a Time Varying Echo Path Response 

As already presented in chapter 2 the acoustic echo path response of a mobile handset will vary 

dependent on the handset orientation. In normal use during a call it is vital the adaptive filtering algorithm 

of the echo canceller within the mobile handset can track these echo path changes in order maintain the 

required levels of ERLE during a call. To the author's knowledge no literature has been presented to date 

on the ability of adaptive IIR algorithms for tracking the acoustic echo path of a mobile handset. The 

purpose of this section is to analyse the performance of adaptive IIR algorithms for tracking the time 

varying acoustic echo path of a mobile handset. 

Using the modelling results of chapter 5 two adaptive algorithms - the Simplified LMS and NLMS 

Newton algorithms - will be used to assess the tracking ability of adaptive IIR algorithms. The choice of 

algorithm parameters influencing tracking performance will be discussed. The FIR LMS Newton 
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algorithm will also be used to allow a performance comparison to be made between the tracking 

performance of adaptive FIR and liR algorithms to be made for a time varying echo path. 

During the thesis only echo path measurements were made in fixed handset orientations, and no 

measurements were made recording time variations in the handset response due to changing handset 

positions. As a result echo path time variations must be simulated in this chapter. Two different time 

variations are simulated to assess tracking ability - persistent linear time variations in the acoustic echo 

path response and non-linear transitional time variations in the acoustic echo path response. Results and 

conclusions on echo path tracking performance are presented. 

6.2.1. Criteria for Assessing Tracking Performance 

Different criteria for tracking assessment of adaptive FIR algorithms have been proposed in 

[6.1]-[6.3]. In chapter 3 the Misadjustment of an adaptive FIR algorithm was introduced. In a stationary 

context this Misadjustment level can be related to accuracy of convergence to the optimal solution in the 

steady state [6.1],[6.2]. At first thought the Misadjustment would seem a good method for assessing 

tracking performance for an adaptive IIR algorithm. However as we have already seen in chapter 5 due to 

the difficulty in the calculation of the optimal steady state solution for an output error formulation, the 

Misadjustment is deemed unsuitable. It previously demonstrated in chapter 5 the ERLE definition is 

closely related to the Misadjustment level, and is of far more importance in the selection of adaptive 

algorithms for the acoustic echo cancellation application. The criteria for tracking assessment used in this 

chapter shall be the ensemble averaged ERLE level as follows, 

V 

1 
1 

P 

7=0 

L~\ 
(6.1) 

where P is the number of repeated trials for each modelling experiment required for ensemble average 

estimate ERLE^^ (m). As in Chapter 5 each ensemble averaged estimate, ERLE^^ {m), is computed in 

m=32ms frames (L=256 @ 8kHz) across the recorded sequences and for each 

trial p — \---P. In analogy with the Mean Square Deviation level of [6.1] the ERLE definition of (6.1) 

may be decomposed into two terms as follows, 

( » ) = ( " ) - ( » ) , (6 2) 

where ERLE^^ (n) is the asymptotic ERLE level reached during a normal convergence period as 

presented in chapters, and may be termed the estimation ERLE level and is always present. The term 

ERLEj^^^ (n) is the reduction in ERLE level due to adaptive filter coefficient vector lag resulting from a 

time varying echo path. The tracking results presented in the following section will contain ensemble 

averaged ERLE curves and tabulated asymptotic and lag ERLE levels from which tracking performance 

comparisons and selection of parameters involving adaptive IIR algorithms can be made. 

225 



6.2.2. Tracking Linear Time Variations in the Acoustic Echo Path response 

In a call where the handset position does not remain fixed, time variations echo path response will 

exist. In addition to handset movement, the handset volume control (which is after the echo canceller 

input and part of the echo path to be modelled) can introduce linear gain changes in the handset echo path 

response. This section of the chapter is used to assess tracking performance for slow time variations in the 

echo path response as illustrated in Figure 6.1. 
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Figure 6.1 : Echo path sequences during normal call 

From Figure 6.1 it is clear that both increasing and decreasing variations in the echo path response 

to be modelled can occur. 
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6.2.2.1. Experimental Design 

In chapter! it was established that the acoustic echo path response of a mobile handset was linear 

in nature, but the echo path response varies dependent on the handset orientation. Only the acoustic echo 

path responses of different fixed handset positions were measured. In a call where the handset position 

does not remain fixed a time varying acoustic echo path response results. A reasonable approximation to 

simulate this time variation is to use linear echo path gain changes at the output of the echo path responses 

measured during chapter 2. By varying the rate of these linear gain changes tracking performance 

behaviour for slow and fast echo path variations can be assessed. 

The system identification configuration illustrated in Figure 6.2 is used to perform the system 

identification experiments with a time varying echo path response. From Figure 6.2 a variable gain block 

is added to the output of the echo path h being modelled, which contains the input g(ji) to control the 

gain of the block with respect to time. From Figure 6.2 it can be seen the gain profile of input 

g(M) provides duration T1 to allow the adaptive algorithm to initially converge to its steady state level 

ERLE^^ (n), or to settle to its steady state ERLE level after any output gain changes. Duration T2 is 

used to linearly ramp up or down the gain at the output of h between gains Gl to G2 to allow the 

component ERLE,^^^ (n) to be calculated. 

T i m e -Var iable Disturbance Signal 

E c h o Path Gain I Echo Path Output + Noise 

Echo Path Output 
Echo Path 

Adaptive Filter 

Adaptive Algorithm 

Error Signal 

Equation 
Erroi 

Output 
Error 

Adaptive Filter Output 

\-A{q ') 

Figure 6.2 : System identification experiment configuration for linear echo path time variations. 
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The values of Tl , T2, G1 and G2 can be altered to simulate fast and slow linear echo path 

variations. For the tests in this section Gl is unity and Tl is lOsecs as in chapter 5 modelling results. 

Duration T2 is 5 seconds and gain level G2 is chosen depending on h to represent the minimum and 

maximum gain changes likely in normal handset use. 

Stationary input signals are used to allow the effects of time variation in the echo path response on 

the tracking performance of adaptive algorithms to be analysed in isolation. Later in this Chapter the 

effects of time varying signals on algorithm performance is considered. A band-limited pink noise signal 

is used for both input signal x(n) and disturbance signal v{n) . The additive noise signal v(n) is scaled 

o allow algorithm echo path tracking performance to be assessed over a range of Echo to Noise Ratio 

(ENR) levels. Both x(n) and v («) are uncorrelated. The choice of adaptive filtering parameters is 

discussed in the next section. 

6.2.2.2. The effect of adaptive filter design parameters on the tracking 
performance of adaptive IIR algorithms 

The Simplified Gradient LMS and NLMS Newton algorithms are summarised in Table 6-1. From 

Table 6-1 both adaptive IIR algorithms have the following design parameters - )J, , (X and5 . In the 

modelling experiments of chapter 5 these parameters were chosen for maximum steady state ERLE level 

ERLE^^ (n) and minimum convergence time across all echo paths h modelled. No consideration was 

given to tracking time variation at that stage and the effect of these parameters on the levels of 

ERLEj^^^ {n) when the echo path being modelled exhibits time variations. Tracking and convergence to 

the steady state ERLE level are two different entities [6.2]. 

The variable 5 is used for the initialisation of autocorrelation estimate R ' ( 0 ) in Table 6-1 for 

both algorithms to a multiple of the identity matrix [6.5]. The choice of 5 is straightforward - a smaller 

value leads to slower convergence and vice versa. The choice of 5 depends mostly on the input signal 

statistics [6.5]. For stationary signals the optimised setting as used in chapter 5 is employed and no 

variation of 5 is considered. Additionally the choice of stepsize (X in both algorithms is also 

straightforward and the parameter selected for optimising ERLE convergence and ERLE^^ (n) levels of 

Chapter 5 is re-used in these experiments. Only the effect of parameters X and OC on algorithm tracking 

performance is considered. 

For both the LMS Newton and NLMS Newton algorithms of Table 6-1 the choice of the 

forgetting factor A, is the most crucial and influences the stability, convergence and tracking performance 

of the algorithm. The smaller the value of A., the faster the convergence and the better the tracking 

performance will be [6.4],[6.5]. However the lower the value of X the more unstable both algorithm 

becomes. The influence of different forgetting factors X on tracking linear time variations in the echo 
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path response is illustrated in Figure 6.3 for stationary inputs and the artificial ear sealed echo path 

response for an ENR level of 20dB. 

Initialisation: ( 0 ) = 8 l , 8 ^ — 0 . < 0 

(P(M) = [ X ( M ) - M + 1 ) , - 1 ) , . . . y ( M -

?(M) = 8l(p(M) 

= % ( « ) + 2 8 , , (M + 

A' 

7 /̂  («) = y (" - ^ ( ^ + 7 )y / (M - ) ) 
y= i 

(P/ (») = [%/(%),. 

LMS Newton | l ( M ) = ^ 

NLMS Newton 

8* =8^^ 1 + ( " - i)(P/ («)<») 

f \ 

(" - i)(Py (M)(Py' (»)R;% (" -1) 
f 

—+9/^ (" - W / (») 
a y 

Table 6-1: Simplified Gradient LMS Newton and NLMS Newton Adaptive IIR Algorithms 

From Figure 6.3 the gain profile used to create linear time variations at the echo path output is 

displayed. A normal convergence period (Tl) occurs at times 0 to 10s, 15 to 25s and 30 to 40s during 

which the adaptive algorithm will settle to its asymptotic ERLE level, and during which no time variation 

exists. At times 10 to 15s and 25 to 30s (T2) the linear echo path gain increments are applied to the output 

of the echo path response. During times 10 to 15s the echo path gain is increased from G1 to G2, and 

during times 25 to 30s the echo path gain is reduced from G2 back down to G l . Here G1 and G2 are 

chosen to give a gain difference of 9dB in the power of the modelled echo path as illustrated in Figure 6.3. 

Most tracking experiments in the literature often consider only the first part of the gain profile when the 

echo path gain is increased [6.4],[6.5]. However in the handset acoustic echo cancellation area, echo path 

time variations could occur due to the placement and removal of a handset to the user's head, thus 

resulting in both decreasing and increasing echo path loss respectively. Also the handset volume control 

can also create increasing and decreasing gain changes in the echo path response. It is thus important to 

look at the tracking response of adaptive algorithms to both linear increasing and decreasing gain steps at 

the echo path output. 
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From Figure 6.3 it can be observed that a lower A. increases convergence speed to the asymptotic 

ERLE level during a normal convergence periods (Tl), and results in a lower ERLE^^g level during non-

stationary periods (T2) when linear echo path time variations are applied. 

At this point it is worth noting the profile of ERLE levels during non-stationary periods (T2) when 

linear time variations are applied. From Figure 6.3 it can be seen that for positive linear gain increments, 

the delay in adaptive filter response to this time variations results in a drop in ERLE level, which remains 

around this level until the adaptive filter begins to track these time variations. The delay or lag in tracking 

response is proportional to the length of the adaptive filter [6.2],[6.3],[6.4]. For a larger number of 

coefficients the E R L E ^ ^ level is more pronounced [6.3]. For the IIR filter order size (27,15), consisting 

of 27 feedforward and 15 feedback coefficients the delay in adaptive filter response is small enabling 

linear echo path time variations to be quickly tacked during the non-stationary period and results in 

convergence towards the asymptotic ERLE level during this period. For the application of longer adaptive 

FIR filter to give similar asymptotic ERLE level performance, as discussed in chapter 5, would result in a 

longer lag delay and inferior tracking performance. This maximum drop in ERLE level during the non-

stationary periods (T2) is termed the ERLElevel. The value of this ERLEj^,^ level depends on the 

echo path gain rate change and the adaptive filter parameters used. 

For the periods when decreasing echo path gain increments are applied (T2) the ERLE tracking 

profiles are very different to those when positive gain increments were applied. The most notable 

difference is the larger maximum ERLEj^^^ level. The second different is that this maximum level occurs 

at the end and not the start of the decreasing gain period from 25 to 30s. Convergence towards the 

asymptotic ERLE level only occurs at the end of the non-stationary period, and not during this period, as 

we have seen already during the positive gain increment period. This is due to the fact during the positive 

gain increment period the adaptive filter output power level rises towards the desired response level that is 

increasing, resulting in a positive ERLE level. When decreasing gain increments are applied the opposite 

happens. Extensive simulations have shown that to guarantee stability of adaptive IIR algorithms during 

handset echo path tracking experiments with linear time variations it is the deceasing gain increment 

period from 25 to 30s that is the most crucial. This is most likely the case for other adaptive algorithms 

that employ some form of normalisation in the filter coefficient update, when decreasing echo signal 

levels are produced. In the case of the Simplified Gradient LMS Newton algorithm this normalisation is 

the estimate of the inverse of the covariance matrix. For the adaptive IIR NLMS Newton algorithm this is 

both the stepsize normalisation and the estimate of the inverse of the covariance matrix. 

Consider the effect of forgetting factor X on tracking performance of Simplified Gradient LMS 

Newton based algorithms. From Figure 6.3 a larger X can result in a much larger ERLEj^^ level, 

particularly during time period 25 to 30s when decreasing linear gain variations are applied. A value of 

X larger between 1 and 1 is required for stationary inputs for 
50*(M+#) 100*(M+7V) 

stability and reasonable tracking performance for the Simplified Gradient LMS Newton algorithm, where 

M is the number of feedforward coefficients and N is the number of feedback coefficients. For the 
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Simplified Gradient NLMS Newton algorithm a value ofX between 1-
1 

25*(M + # ) 
and 

1 — 
1 

• is required. We shall see in later sections considerations for the choice of X with 
1 0 0 * ( M + A r ) 

respect to non-stationary input signals. 

Consider now the effect of variable OC on tracking performance. The variable a is a convergence 

control parameter in both algorithms. The influence of convergence parameter (X on tracking linear time 

variations in the echo path response is illustrated in Figure 6.4 for stationary inputs and the artificial ear 

sealed echo path response for an ENR level of 20dB. The tracking performance of the Simplified Gradient 

LMS Newton algorithm is shown in Figure 6.4. Like the forgetting factor X the smaller the value ofOC , 

the faster the convergence and the better the tracking performance. The values of (X displayed in Figure 

6.4 has a small effect on convergence and asymptotic ERLE performance during normal periods (Tl), has 

a large effect on tracking performance during non-stationary periods (T2) when linear echo path time 

variations are present. A value for convergence parameter OC between )Ll and 2)1 is recommended for 

reasonable tracking performance and algorithm stability. 

For the Simplified Gradient NLMS Newton algorithm in Figure 6.4 the tracking performance 

behaves differently with respect to parameter OC due to the effective normalisation of the stepsize |1 in 

Table 6-1. A larger value, closer to unity, is most suitable to increase the convergence time to the 

asymptotic ERLE level during the initial convergence period. During non-stationary periods (Tl) the 

influence of OC on tracking performance is small. 

From numerous simulations at different ENR levels for all echo paths of chapter 4 the following 

design parameters are chosen for both algorithms, as a trade off between convergence speed and ERLE 

performance during both normal convergence periods (Tl) and non-stationary periods (T2). 

Parameters 
Simplified Gradient LMS 

Newton 

Simplified Gradient NLMS 

Newton 

Stepsize |1 0.005 0.0125 

Forgetting Factor X 0.9995 0.999 

Convergence parameter (X 0.0075 1 

Initialisation Parameter 6 100 100 

Table 6-2 : Adaptive IIR algorithm design parameters for echo path tracking tests 
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Figure 6.3: Tracking performance for different forgetting factors A, 

232 



(a) Simplified Gradient LMS Newton 

T 1 r 

e 14 

conv factor = 0.0075 
conv factor = 0.0125 

15 20 

Time(s) 

(b) Simplified Gradient Normalised LIWS Newton 

ra 8 

l e 

I ^ 
^ 2 

0 

- 2 

s 
D-

I 
f 
O-
o 

\ 

/ 
t \ / 

/ 
i J / 

/ 
•, 

r conv factor = 0.0125 
conv factor = 0.25 

i 

10 15 20 25 30 

Tlme(s) 

(c) Echo Path Gain Profile vs.Tlme 

10 15 20 25 

Time(s) 

35 40 

T 1 T2 T 1 T2 •1 

\ 
\ 

J 
\ 
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6.2.2.3. Tracking Performance Results 

In this section the comparative tracking performance of adaptive FIR and IIR algorithms for non-

linear echo path time variations is established. As in the last section the Simplified Gradient LMS Newton 

and NLMS Newton algorithms of Table 6-1 are used to establish adaptive IIR algorithm performance. The 

FIR LMS Newton is used to establish adaptive FIR algorithm performance during these tests. For the 

tracking experiments of this section the following echo paths are used, 

1) The artificial ear sealed handset echo path response, 

2) The loudspeaker adhesive tape sealed handset echo path response 

3) The face up handset response with no transducer seals. 

From Figure 6.1 it can be seen that by applying linear gain variations at the output of these three 

echo paths the gradual change in the handset echo path response during normal use can be simulated. 

From Figure 6.1 it can be clearly seen that both increasing and decreasing gain changes are needed to 

simulate echo path behaviour in normal handset use. The gain changes used in this section are 

representative of the maximum increasing or decrease in gain envisaged for that echo path response in 

normal handset use as illustrated in Figure 6.1. For example, the artificial ear sealed response will have a 

linear output gain profile which will increase the terminal coupling loss from the 46dB level calculated in 

chapter 2, to match the terminal coupling loss levels of both the face up no seals handset response and the 

adhesive tape sealed response. To establish the ability of both adaptive FIR and IIR algorithms to track 

linear time variations in the presence of microphone disturbance noise, an additive band limited noise 

signal is used to create different ENR levels. The ENR levels of 5 and lOdB are used to show how 

tracking performance varies with low and medium noise environments. 

Consider firstly the tracking results for the artificial ear sealed handset echo path response. The 

gain profile as used in Figure 6.3 is re-used here to give an echo path loss gain-time variation of around 

9dB possible over 5 seconds (~1.8dB/second). The tracking performance of both adaptive FIR and IIR 

algorithms are shown in Figure 6.5. The results are summarised in Table 6-3. It can be seen that both 

Simplified Gradient LMS Newton based algorithms have similar tracking performance to an equivalent 

adaptive FIR algorithm, albeit slightly inferior during the first period up to 10s. The levels are 

similar for all algorithms. The asymptotic ERLE levels for both adaptive IIR algorithms are slightly larger 

than the adaptive FIR LMS Newton algorithm. It is also worth mentioning that the Simplified Gradient 

IIR LMS Newton algorithm shows faster tracking performance over the Simplified Gradient IIR NLMS 

Newton algorithm during the periods when linear gain increments at the echo path output exist, but 

inferior convergence in the first convergence period up to 1 Os. 

The effect of output noise component v(n) at the echo path output has negligible effect on 

tracking performance of all algorithms at ENR levels of 5 and lOdB. Only the asymptotic ERLE level 

is reduced as a result of this additive component. This remains the case for all echo path responses tested 

so from this point forward only results for an ENR of lOdB are presented to simplify presentation of 

results in the remainder of this section. 
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Asymptotic Lag ERLE (dB) 

Algorithm 
ERLE(dB) Positive Gain Inc Negative Gain Inc 

Algorithm 
ENR ENR ENR ENR ENR ENR 

lOdB 5dB lOdB 5dB lOdB 5dB 

FIR LMS Newton 16.3 16 10.2 10.2 2.6 2.6 

Simplified Gradient LMS Newton 16.7 16.3 9.8 9.8 1.9 1.9 

Simplified Gradient NLMS Newton 16.7 16.3 9.5 9.5 1.7 1.7 

Table 6-3 : Summary of ERLE results for artificial ear sealed echo path tracking experiments 

Consider next the tracking results for the loudspeaker adhesive tape sealed handset echo path 

response. The tracking performance of both adaptive FIR and IIR algorithms are shown in Figure 6.6. 

These results are summarised in Table 6-4. It can be clearly seen that both Simplified Gradient LMS 

Newton based algorithms have superior asymptotic ERLE levels to the adaptive FIR LMS Newton 

algorithm during non-time varying/non-stationary periods. The E R L E ^ ^ level for all algorithms is 

similar. 

Finally consider the face up no seals handset echo path response. The tracking performance of both 

adaptive FIR and IIR algorithms are shown in Figure 6.6. The results are summarised in Table 6-5. 

Both Simplified Gradient LMS Newton based algorithms have superior asymptotic ERLE levels to the 

adaptive FIR LMS Newton algorithm during non-time varying/non-stationary periods. The 

ERLE,^^ levels and tracking performance of both adaptive IIR algorithms differ largely for this 

experiment. The Simplified Gradient NLMS Newton algorithm has clearly superior tracking performance, 

whereas the Simplified Gradient LMS Newton algorithm has superior asymptotic ERLE level. The 

tracking performance different between adaptive IIR algorithms is most noticeable when decreasing gain 

increments are applied. Again the Simplified Gradient NLMS Newton algorithm achieves the best 

performance overall. 

Using the adaptive FIR LMS Newton and Simplified Gradient Simplified Gradient LMS and 

NLMS Newton algorithms the tracking performance of adaptive IIR and FIR algorithms has been 

compared for linear echo path time variations. From the results presented it has been show that for linear 

time variations in the handset echo path response the tracking performance of both adaptive FIR and 

output error LMS Newton based algorithms is similar, but depends largely on the echo path response 

being modelled. 
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Figure 6.5 : Tracking performance for artificial ear sealed handset echo response 
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Figure 6.6 : Tracking performance for loudspeaker adhesive tape sealed handset echo response 

Algorithm 
Asymptotic 

ERLE(dB) 

Lag ERLE (dB) 

Algorithm 
Asymptotic 

ERLE(dB) 
Positive Gain 

Inc 
Negative Gain Inc 

FIR LMS Newton 14.6 10.7 5.5 

Simplified Gradient LMS Newton 19.2 12.7 6.7 

Simplified Gradient NLMS Newton 1&2 11.6 5.8 

Table 6-4 : Summary of ERLE results for loudspeaker adhesive tape sealed echo path tracking 
experiments 
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Figure 6.7 : Tracking performance of adaptive FIR and IIR algorithms. 

Algorithm 
Asymptotic 

ERLE(dB) 

Max Lag ERLE (dB) 

Algorithm 
Asymptotic 

ERLE(dB) 
Positive Gain 

Inc 
Negative Gain Inc 

FIR LMS Newton 2225 16.3 12.7 

Simplified Gradient LMS Newton 2 4 2 14.7 13 

Simplified Gradient NLMS Newton 2 1 5 16 8.3 

Table 6-5 : Summary of ERLE results for face up no seals echo path tracking experiments 
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6.2.3. Tracking Non-linear Transitional Time Variations in the Acoustic Echo Path 
response 

6.2.3.1. Experiment Design 

The system identification configuration illustrated in Figure 6.8 below is used to perform the 

system identification experiments with a time varying echo path response. 

Time Varying Echo Path 

Disturbance Signal 

v(n)\ Echo Path Output + Noise 

Echo Path 
Input Error Signal 

/ 

Adaptive Filter 

Adaptive Filter Output 

Output 
Error 

1 - A ( g - ' ) 

Adaptive Algorithm 

Figure 6.8 : System identification experiment configuration for non-linear echo path time 
variations. 

From Figure 6.8 we can see that time variation is incorporated into the modelling experiments of 

this section by using a time switch, where every T seconds a different echo path response may be switched 

to contribute the echo output y{n). The rate of change of echo path change is made equal to 1 Os to allow 

convergence behaviour of adaptive algorithms to be analysed. The echo path responses h , and h ; are 

vectors of echo path response samples as defined in (5.1), and could be any of the 6 measured echo path 

responses of Chapter 4. As we shall discuss shortly, the echo response vectors h, and h j are arranged to 

simulate the most likely sequence of fast or extreme echo path changes during normal handset use. 
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Stationary input signals are again used to allow the effects of time variations in the echo path 

response to be analysed. As in the previous section of tracking experiments a band-limited pink noise 

signal is used for both input signal x(n) and disturbance signal with both x{n) and v{n) being 

uncorrelated. Again the signal v(M) is scaled to allow the tracking performance to be assessed in the 

presence of different echo path output noise levels. 

In the last section the effect of design parameters on the tracking performance of the adaptive 1IR 

Simplified Gradient LMS and NLMS Newton algorithms were discussed. The same tracking performance 

variations that existed for linear echo path time variations with respect to the forgetting factor X and 

convergence factor (X also exist for non-linear echo path time variations simulated in this section. The 

design parameters of Table 6-2 are re-used in this section. 

6.2.3.2. Tracking Results 

In this section the comparative tracking performance of adaptive FIR and IIR algorithms for non-

linear/step echo path time variations is established. As in the previous section the Simplified Gradient 

LMS Newton and NLMS Newton algorithms of Table 6-1 are used to establish adaptive IIR algorithm 

performance. The FIR LMS Newton is used to establish adaptive FIR algorithm performance during these 

tests. 

In section 6.2.2 it was illustrated how linear echo path time variations can simulate the most likely 

sequence of gradual echo path variations during a normal call using 3 handset orientations. In this section 

step transitions in time are used rather than linear gain increments over a period of time, to simulate the 

most likely sequence of fast or extreme echo path variations that may occur during a call. To accomplish 

this, the following echo paths are used as illustrated in, 

1. The artificial ear sealed handset echo path response 

2. The loudspeaker adhesive tape sealed handset echo path response 

3. The face up handset response with no transducer seals. 

4. The face down handset response. 

From Figure 6.9 it can be seen how the above 4 handset orientations can approximate the most 

likely sequence of fast or extreme echo path variations during a normal call. 

Consider firstly the tracking results for the artificial ear sealed to loudspeaker tape sealed echo path 

response transitions as shown in Figure 6.10. From Figure 6.10 what is immediately clear is that when 

transitional echo path variations occur in normal use the ERLE profile produced will appear like two(or 

more) normal convergence periods. On the step transition, the ERLE level falls to zero or less (if echo 

path h, has lower echo loss than h , ) . The tracking performance reduces to the algorithm stability on the 

step boundary and the time taken to subsequently converge to the new echo path response from the 

previously converged condition. The ERLEj^^ levels for this section are not used since the time variation 
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is instant. Only asymptotic ERLE levels and convergence times are important for very fast or transitional 

type echo path non-stationary periods in normal handset use. 
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Figure 6.9 : Echo path fast transitional sequences during normal call 

From Figure 6.10 as expected (from the results in Chapter 5), the FIR LMSN algorithm has the 

fastest convergence to the asymptotic ERLE level. However for the artificial ear sealed to loudspeaker 

tape sealed echo path response transition experiment the convergence time to the required ERLE of each 
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echo path is similar for the adaptive FIR and IIR LMS Newton based algorithms tested. It is clear both 

Simplified Gradient LMS Newton algorithms have superior asymptotic ERLE level performance for this 

experiment. What is also clear is that like section 6.2.2 the effect of output noise component v{n) at the 

echo path output has negligible effect on tracking performance of all algorithms at ENR levels of 5 and 

lOdB. Only the asymptotic ERLE level is reduced as a result of this additive component. Only results for 

an ENR of lOdB are presented to simplify presentation of results in the remainder of this section. As we 

have seen so far in the thesis for all experiments convergence time to the asymptotic ERLE level for 

adaptive IIR algorithms is slower than equivalent adaptive FIR algorithms. Overall the Simplified 

Gradient NLMS Newton algorithm has the fastest convergence of both the adaptive IIR algorithms tested. 

Consider next the tracking results for the loudspeaker tape to artificial ear sealed echo path 

response transitions, and the artificial ear sealed to face up no seals echo path response transitions of 

Figure 6.11 and Figure 6.12. From both these figures it is clear that again the Simplified Gradient LMS 

Newton base algorithms have superior asymptotic ERLE level performance over and equivalent adaptive 

FIR algorithm and similar convergence times to the required ERLE level of each echo path. Again the 

convergence time to the asymptotic ERLE level is fastest for the adaptive LMS Newton algorithm and 

overall the Simplified Gradient NLMS Newton algorithm has the fastest convergence of both the adaptive 

IIR algorithms tested. It is worth noting that for all algorithms in Figure 6.11 as the step transition occurs 

between echo path response such that h , has lower echo loss than h 2 then briefly after the step transition 

the ERLE level is negative until the adaptive algorithm begins to track and model the new echo path 

response switched in. 

Finally consider the tracking results for the artificial ear sealed to face down echo path response 

transitions of Figure 6.13. The face down echo path response as discussed in previous Chapters represents 

the worst-case acoustic conditions, and is also the most problematic response to model for both adaptive 

FIR and IIR algorithms. From Figure 6.13 a fast transition to this echo path is the worst case possible 

transitional sequence likely to occur in normal handset use (and the maximum instantaneous shift in echo 

loss level most likely). The convergence time to the asymptotic ERLE level is fastest for the adaptive 

LMS Newton algorithm, and overall the Simplified Gradient NLMS Newton algorithm has the fastest 

convergence of both the adaptive IIR algorithms tested. It is clear only the Simplified Gradient LMS 

Newton based algorithms have sufficient asymptotic ERLE levels to meet the required ERLE levels for 

the face down echo path (as we have seen already in chapter 5). 
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Figure 6.10 : Tracking performance for the artificial ear sealed response to the loudspeaker 
adhesive tape sealed response transitions. 
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Figure 6.13 : Tracking performance for the artificial ear sealed response to the face down response 
transitions. 

6.2.3.3. Summary of Tracking Results 

The tracking performance for adaptive FIR and output error IIR LMS Newton algorithms has been 

analysed for both linear time variations and step variations in the echo path response to be modelled in the 

handset echo cancellation application. The effects of echo path output noise on tracking performance have 

also been examined. 

For linear time variations the tracking performance during transitional periods when the time 

variations are applied depends on the echo path being modelled. Overall the Simplified Gradient NLMS 

Newton algorithm has superior tracking performance over the un-normalised version of the algorithm. The 

tracking performance of this algorithm is similar to the FIR LMS Newton algorithm. 

From the results of the step variation experiments the adaptive FIR LMS Newton has faster 

convergence to its steady state ERLE level after each echo path transition. Whereas the adaptive IIR LMS 

Newton algorithms normally have higher steady state ERLE level once they have reach their steady state 

levels. Echo path output noise has negligible impact on tracking step variations of all algorithms. To meet 

the required ERLE of each echo path after the step transitions for a model order of 42 coefficients requires 

an adaptive IIR algorithm to be used. 
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6.3. System Identification of an Echo Path response with Time Varying Input 
Signals 

In previous sections of this Chapter we have looked at tracking time variations in the echo path 

response to be modelled. In the handset acoustic echo cancellation application in addition to a time 

varying echo path, the input signals most commonplace are speech signals, which are also time varying or 

non-stationary in nature. In this section of the Chapter the modelling performance of adaptive IIR 

algorithms with input speech signals over a range of input SNR and output ENR levels is established. The 

results presented show that the performance benefits we have seen in previous Chapters for stationary 

input signals are still valid for speech signal inputs. 

6.3.1. Experimental Configuration and ERLE measures for time varying speech signals 

The system identification configuration of Figure 6.14 below is used. 

Input Disturbance Signal Output Disturbance Signal 

Echo Path 

Input 

Echo Path 

h, h 
/ ^ 

h 
m 

Echo Path Output + Noise 

Error Signal 

e(M) 

Echo Path Output 

Equation 
Error 

Adaptive Filter 

Adaptive Filter Output 

y(M) 

1+ 
Output 
Error 

Adaptive Algorithm 

Figure 6.14 : System Identification configuration for speech input signals 

The input signal x{n) consists of both a male and female speech recordings up to approximately 

40 seconds in duration. These recordings are in English and contain approximately 35 utterances that are a 
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mixture of natural conversational speech and energetic speech utterances. Different pause durations are 

present between utterances in part of these recordings as we shall see later, to allow the robustness of 

adaptive algorithms to be tested during silent speech periods when input and output noise sources 

w{ri) and v{n) are present. As in previous sections of this chapter a band-limited pink noise signal is 

used for additive output noise signal v{n) to represent the typical coloured spectrum of a noisy 

environment. Similarly for the additive input noise source w{n) a band-limited pink noise signal is also 

used. Both w{n) and v{n) are uncorrelated. The power of output noise signal v{n) is scaled to allow 

adaptive algorithm performance to be assessed over a range of output Echo to Noise Ratio (ENR) levels. 

The power of input noise signal w{n) is scaled to allow adaptive algorithm performance to be assessed 

over a range of input Signal to Noise Ratio (ENR) levels. 

Before discussing these modelling results it is first necessary to construct some definitions of 

ERLE performance for speech signals. So far the input signal %(») has been stationary, where the input 

power level is relatively constant over time, allowing the definitions of (5.3) and (6.1) to be used to 

measure ERLE performance after an initial convergence period. With speech input signals, although the 

input signal is relatively stationary over the 32ms frame calculation used in (6.1), the ERLE measure of 

(6.1) will fluctuate considerably over time due to the power fluctuations of input signal x{n) . This makes 

performance comparisons between different adaptive algorithms difficult using (6.1) alone. In addition to 

(6.1) some statistical measures of ERLE performance are needed to summarise the ERLE variation over 

the input test sequences to make algorithm comparison easier. The following parameters in Table 6-6 will 

be used [6.6]. 

Measure Definition 

Ensemble averaged ERLE level as measured in (6.1) in dB. Calculated in 32ms frames 

Average value of ERLE^^ in dB over entire input signal duration 

Standard deviation of ERLE^^ in dB about 

Maximum value of ERLE^^ in dB obtained across entire input signal duration 

The time in ms for ERLE^^ to attain ERLE^̂ ^̂ ^̂ ^ 

The time in ms for ERLE^^ to attain the required ERLE for echo path modelled. 

Table 6-6 : Evaluation Criteria for input speech signals 
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6.3.2. Modelling results 

In this section the comparative performance of adaptive FIR and IIR algorithms for speech input 

signals are discussed. As in the previous sections the Simplified Gradient LMS Newton and NLMS 

Newton algorithms of Table 6-1 are used to establish adaptive IIR algorithm performance. The FIR LMS 

Newton is used to establish adaptive FIR algorithm performance. 

This section will consist of three main parts. Firstly the ERLE performance in idealistic input 

SNR and output ENR conditions will be established for both adaptive FIR and adaptive IIR algorithms. 

Next the ERLE performance of adaptive IIR algorithms for different input SNR levels (noisy speech) is 

discussed. Finally the ERLE performance at different output ENR levels is presented. 

6.3.2.1. Modelling results for high input SNR and output ENR conditions 

Consider firstly the ERLE performance at an input SNR and output ENR level of 40dB. These 

conditions are representative of the echo loss test conditions of [6.1]. Only the single talk case is 

considered where there is no microphone speech signal present only low-level background noise. In the 

actual echo loss test of [6.1] a 20 s male artificial voice recording is used as an input signal. The first 10s 

is used to allow any echo cancellation devices to converge then during the second 10s the terminal 

coupling loss is evaluated as discussed in Chapter 2. This test is repeated for a female artificial voice 

recording and the terminal coupling loss re-calculated. The overall terminal coupling loss value for the 

handset is the average of the terminal coupling levels obtained from the male and female speech 

experiments. In this section the ERLE performance of adaptive IIR algorithms for the anechoic handset 

echo path responses of Chapter 4 will be established in a similar way to the echo loss tests of [6.1]. A 20 

second actual male speech recording for input signal is firstly used and the ERLE evaluation parameters of 

Table 6.4 calculated. A 20 second actual female speech recording for input signal is then used and the 

ERLE evaluation parameters of Table 6.4 re-calculated. The overall ERLE performance of an adaptive 

algorithm is simply the average of the results from these two experiments. 

Consider firstly the modelling performance of adaptive FIR and IIR algorithms for the face up no 

seals handset configuration as shown in Figure 6.15. A summary of the ERLE performance is given in 

Table 6-7. It is clear even from Figure 6.15 the Simplified Gradient NLMS Newton algorithm has superior 

ERLE performance for this echo path response. From Figure 6.15 it can be seen without the additional 

ERLE parameter summary in Table 6-7 it is difficult to compare the relative performance of adaptive IIR 

and FIR algorithms, particularly between FIR LMS Newton and Simplified Gradient LMS Newton 

algorithms. From the summary in Table 6-7 it can be seen that for input speech signals the Simplified 

Gradient NLMS Newton adaptive IIR algorithm can achieve approximately 4dB more 

performance and less ERLE variation about this mean level, over an equivalent adaptive FIR 

algorithm. The convergence time to the required ERLE level of this echo path, TIC , is also smaller. 
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Figure 6.15 : Modelling performance of adaptive FIR and IIR algorithms for the face up no seals 
handset configuration. 

This ERLE performance superiority of the Simplified Gradient NLMS Newton algorithm over the 

other LMS Newton based algorithms tested also occurs for most of the remainder of the echo path 

responses modelled as summarised in Table 6-8 to Table 6-12. 

Algorithm TIC mean 

FIR LMS Newton 18.16dB 34.16dB 8.37dB 1.9ms 1.79ms 

IIR LMS Newton 18.22dB 35.03dB 7.7dB 2.99ms 2.72ms 

IIR NLMS Newton 22.04dB 35.88dB 6.1dB 2.61ms 1.3ms 

Table 6-7 : Summary of ERLE results for the face up no seals echo path experiments 
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Algorithm ERLE^^^ TIC 

FIR LMS Newton l ] .63dB 26.53dB 5.75dB 1.3ms 1.76ms 

IIR LMS Newton 10.92dB 24.94dB 2.83ms 4.26ms 

IIR NLMS Newton 15.07dB 26.48dB 4.4dB 1.68ms 2.67ms 

Table 6-8 : Summary of ERLE results for the face down echo path experiments 

Algorithm TIC 

FIR LMS Newton 11.96dB 33.18dB 7.53dB 1.73ms 1.68ms 

IIR LMS Newton 11.65dB 31.13dB 6.56dB 2.67ms 1.71ms 

IIR NLMS Newton 16.2dB 33.82dB 5.51dB 2.56ms 0.244ms 

Table 6-9 : Summary of ERLE results for the loudspeaker tape sealed echo path experiments 

Algorithm ERLE^jj 

FIR LMS Newton 10.1 IdB 2&22dB 6.82dB 1.7ms 1.68ms 

IIR LMS Newton 10.84dB 26.5 IdB 5.8 IdB 2.7ms 1.74ms 

IIR NLMS Newton 14.89dB 26.98dB 9.75dB 1.7ms 0.53ms 

Table 6-10 : Summary of ERLE results for the loudspeaker and microphone tape sealed echo path 
experiments 

Algorithm TIC 
/MAM 

FIR LMS Newton 11.27dB 22.75dB 4.98dB 1.73ms Oms 

IIR LMS Newton 5.15dB 18.22dB 4.2 IdB 1.82ms 0ms 

IIR NLMS Newton 10.33dB 20.68dB 4.32dB 3.77ms Oms 

Table 6-11 : Summary of ERLE results for the artificial ear sealed echo path experiments 

Algorithm ^^^mean ERLE^^J 

FIR LMS Newton I IdB 32.]9dB 7.32dB 1.7ms 1.71ms 

IIR LMS Newton 11.56dB 30.05dB 7.15dB 1.79ms 1.78ms 

IIR NLMS Newton 16.52dB 32.36dB 5.97dB 1.3ms 0.88ms 

Table 6-12 : Summary of ERLE results for the microphone tape sealed echo path experiments 

From these tables a performance improvement of up to approximately 5.5dB over the 

FIR LMS Newton algorithm and 5dB over the Simplified Gradient L M S Newton algorithm is achieved. 

This higher , lower can be attributed to the stepsize normalisation in the NLMS Newton 

algorithm update in Table 6-1 [6.7]. Unlike the NLMS Newton algorithm normalised stepsize which will 
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adapt with time depending on the short term energy variations of the input speech signal, LMS Newton 

based algorithms have a irxed convergence factor resulting poorer convergence and higher sensitivity to 

short term input signal variations. 

In conclusion from the results presented the most appropriate adaptive IIR algorithm has been 

shown to be the Simplified Gradient NLMS Newton algorithm for the handset acoustic echo cancellation 

application. The Simplified Gradient LMS Newton algorithm will be considered no further in this thesis. 

The adaptive FIR NLMS Newton algorithm will be used from this point forward in order to compare 

performance to an equivalent adaptive FIR algorithm in line with the main aims of this thesis. 

6.3.2.2. The effect of input SNR on modelling performance 

In the handset echo cancellation application we have already identified that speech signals are 

most likely to be input to the Acoustic Echo Canceller. However as shown in Figure 6.16, depending on 

the local environment of the other handset in the call the input speech signal may be degraded with some 

form of disturbance noise. For example the other caller may be using a hands free unit in a car where the 

environment noise level w{n) would be high in comparison to the microphone signal x{ri) . This input 

disturbance signal w{n) results in a Signal to Noise Ratio (SNR) at the input of the echo canceller. 

Mic 
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Figure 6.16 : Noisy Loudspeaker Signal input to handset with Acoustic Echo Canceller 

The Signal to Noise Ratio (SNR) is defined as follows, 
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From (6.3) we can see the SNR is defined as the ratio of echo path output power in the absence of noise 

EYx^ir i ) ] , to the echo path output disturbance noise power £'[>v^(;7)] in decibels, calculated as a time 

average, where M represents the length of sequences x{n) and w{ri). Both x{n) and w{n) are 

uncorrelated. The power of input noise signal w{n) is scaled to allow adaptive algorithm performance to 

be assessed over a range of input Signal to Noise Ratio (SNR) levels f rom 0 to 40dB. A typical level of 

SNR for input speech signals is between 10 and 20dB. The SNR level for each experiment is held constant 

over the simulation duration. As already discussed the input noise disturbance used is band limited pink 

noise to approximate the spectral characteristics of typical environment noise. 

The results for different input SNR levels is shown in Figure 6.17 for the face up artificial ear 

sealed handset configuration using the Simplified Gradient NLMS Newton adaptive IIR algorithm. A 

summary of these results for different input SNR levels is shown in Table 6-13. 

From Figure 6.17(a) to Figure 6.17 (c) it can be clearly seen at lower input SNR levels the power 

variation of the echo signal to be cancelled (and the input to the adaptive filter) is less, as these input 

signals now become more noise like in nature. As a result of this improved ERLE performance is obtained 

as seen in Figure 6.17 at lower input SNR levels. From Table 6-13 the main improvements are slightly 

higher ERLE^^^^\e.ve\ performance and less ERLE variation. These results for the artificial ear sealed 

echo path response are also valid for all other echo path responses of chapter 4. 

In conclusion from the results presented it can be seen that the Simplified Gradient NLMS 

Newton adaptive IIR algorithm gives robust ERLE performance for low input SNR conditions. 

SNR TIC mean 

40dB 11.23dB 22jWdB 4.89dB 7.3ms 0ms 

20dB 11.64dB 22.91dB 4.65dB 7.74ms 0ms 

OdB 12.33dB 21.11dB 4.22dB 7.74ms 0ms 

Table 6-13 : Summary of ERLE results for the artificial ear sealed handset configuration for 
different input SNR levels using the Simplified Gradient NLMS Newton adaptive IIR algorithm 
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Figure 6.17 : Modelling performance for the artificial ear sealed handset configuration for different 
input SNR levels using the Simplified Gradient NLMS Newton adaptive IIR algorithm 

(a) to (c) show the echo and residual echo signals at an input SNR of 40, 20 and OdB. The Ensemble averaged ERLE curves for 

different input SNR levels is shown in (d). The simplified Gradient NLMS Newton algorithm is used for all curves in this figure. 

6.3.2.3. The effect of output ENR on modelling performance 

So far only modelling performance for speech signals at a high output Echo to Noise Ratio (ENR) 

has been considered. In the real handset echo cancellation however, the input speech signal x(n) will 

contain silent periods of low energy during normal conversational speech. It is during these silent periods 

the effects of a microphone noise source will be most severe and may cause the adaptive algorithm 

coefficients to move away from their previously converged values [6.4]. An adaptive algorithm for this 

application must provide robust modelling performance for input speech signals at ENR levels as low as 

5dB as we have discussed already in Chapter 5. 

Consider the speech segment whose average power in 32ms frames is shown in Figure 6.18. From 

Figure 6.18 it can be seen there exists a significant silent period between two groups of speech utterances 

around 5s and, about a Is silent period between each individual speech utterance. The input SNR used is 

15dB. The modelling performance using the Simplified Gradient NLMS Newton algorithm for the face up 
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no seals handset configuration echo path response is shown in Figure 6.18 for different ENR levels. The 

ERLE modelling results are summarised in Table 6-14. 

From Figure 6.18 it can be clearly seen that during the large silent period (between 7 to 12s) the 

ERLE level drops significantly, particularly at lower ENR levels. At the lowest ENR level of lOdB 

displayed the ERLE performance drops significantly even between each individual speech utterance, as 

the adaptive algorithm filter coefficients move away from their previously converged values during active 

speech periods. At ENR levels below lOdB stability is a problem for the Simplified Gradient NLMS 

Newton algorithm. The same modelling performance arises when modelling the other echo path responses 

of Chapter 4. 

The reason for this stability problem and poor performance at low ENR levels becomes clear from 

Figure 6.19. In Figure 6.19 the speech utterance is displayed together with the time varying 

The stepsize normalisation factor 

(p^(M)Rq,^ (M — l)(Py^(») is proportional to the input signal power. During the silent speech periods 

the factor (» —l)(Py^(M)is small resulting in a large stepsize, and during active speech 

periods this factor is larger resulting in a smaller stepsize. However during these silent speech periods the 

microphone disturbance noise has the greatest effect, and a large stepsize causes the poor ERLE 

performance, as the filter coefficients will move away quickly from their previously converged values 

during the active speech period. At low ENR levels below lOdB this large stepsize results in stability 

problems for the Simplified Gradient NLMS Newton algorithm. 

In conclusion for lower noise environments where the ENR level remains above 15dB the 

Simplified Gradient NLMS Newton algorithm provides good ERLE performance. However as this cannot 

be guaranteed in practical handset use the Simplified Gradient NLMS Newton algorithm must be modified 

for robust operation at lower ENR levels. The next section introduces a modified form of the Simplified 

Gradient NLMS Newton algorithm. 

ENR TIC 

20dB 22.45dB 36.24dB 5.56dB 2.02ms 1.06ms 

]5dB 20.39dB 34.38dB 5.5dB L89ms 1.09ms 

lOdB 17.15dB 32.ldB 6dB 1.63ms 1.12ms 

Table 6-14 : Summary of ERLE results for the face up no seals handset configuration for different 
output ENR levels using the Simplified Gradient NLMS Newton adaptive IIR algorithm 
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Figure 6.18 : Modelling performance for the face up no seals handset configuration for different 
output ENR levels using the Simplified Gradient NLMS Newton adaptive IIR algorithm. 
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Figure 6.19 : Example of time varying stepsize for an input speech signal. 
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6.4. A modified Simplified Gradient Adaptive IIR NLMS Newton algorithm for 
Robust Acoustic Echo Cancellation on a mobile handset 

It is clear from the previous section that the adaption rate of the Simplified Gradient NLMS 

Newton algorithm must be modified to slow the update rate when the algorithm has sufficiently converged 

to the echo path response being modelled, or when the input activity is low in order to make the algorithm 

robust in low ENR environments. 

One method of achieving these aims is to use a method similar to that proposed in [6.8]and [6.9]. 

Let us first quickly recap how the Simplified Gradient NLMS algorithm was arrived at. In Chapter 3 the 

solution for an output error filter model to the recursive normal equations of (3.2.70) using Newton's 

Method was presented, as follows, 

= e . - R , - ; , VF.. (6.4) 

where is the resulting gradient of the cost function F (mean square output error) with respect to the 

coefficients b- and Qj at time index n. The gradient of the mean square output error surface from 

(4.2.56) can be written as, 

, (6.5) 

Using the slowly varying filter coefficients assumption we get, 

Vf; , = (M)(|)y ( » ) ] , (6.6) 

For the Simplified Gradient NLMS Newton algorithm an instantaneous estimate of is used giving, 

= - 2 e ^ y ( « ) , (6.7) 

Incorporating time dependency into the coefficient update of (3.2.70), and using (6.7) in conjunction with 

stepsize parameter j l for greater update control, and incorporating the normalisation of (3.2.75) to deal 

with non-stationary signals we arrive at the Simplified Gradient NLMS Newton algorithm of Table 6-1. 

Consider now the gradient of the mean square output error surface from (6.6). From (6.6) 

we can see that is simply the cross correlation of the filtered information vector (j)^ (77) with the 

output error ( j i) . By incorporating a more accurate estimate of this cross correlation into the Simplified 

Gradient NLMS Newton update of (3.2.76) it becomes apparent that we can slow the update rate when the 

algorithm has sufficiently converged to the echo path response being modelled, or when the input activity 

is low in order to make the algorithm robust in lower ENR environments for independent microphone 

disturbance signals. For non-stationary input signals such as speech this also solves the problem of high 

adaption gain during silent periods of speech at lower ENR levels.. 

Consider now how a correlation factor estimate proportional to p — ^ ( » ) ] can be 

incorporated into the Simplified Gradient NLMS Newton algorithm of Table 6-1 to provide robust 
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adaption at low ENR levels. One of the simplest estimates of p = {n)^f (»)] to use the 

following recursive estimate, 

P ( » ) = 0 - \ )P(M - 1 ) + (M)g^(»), (6.8) 

where (|)/̂  ( » ) is defined as, 

1 
(6.9) 

M + N ,-=1 

and (j)^ • (n) is the i"" element of filtered information vector (j)y (n) and is a smoothing parameter to 

deal with the non-stationarities of the adaption process. Now to slow the adaption rate of the Simplified 

Gradient NLMS Newton algorithm a modification is made to both the convergence of the inverse 

covariance matrix estimate, and the stepsize. Consider the estimate of covariance matrix estimate 

(n) every update period as follows [6.10], 

(") = ( " - ! ) - # / (M) , (6.10) 

where X is the forgetting factor and (X is a convergence parameter as discussed earlier in the Chapter. 

Using a modified update to slow the rate of adaption once the algorithm has converged we get 

R^/P/ (") = (M - 1 ) - / ( " ) < ) ( M ) , (6.11) 

where g(M) is defined as, 

g ( M ) = a p(M) (6.12) 

The inverse covariance matrix estimate using the Matrix Inversion Lemma becomes, 

/ A 

R „ „ ( « - 1 ) < P / ( « ) < P / W R , ; , , ! " - ! ) 

^ +<|>/(n)R;' («-1)<P_,(b) 
g(«) 

Consider now the time-varying stepsize estimate \i{n) from Table 6-1, 

(6.13) 

!!(») = (6.14) 
V V/P/ ^ 

In addition to slowing the covariance matrix update, the stepsize must also be altered to stop the variation 

of filter coefficients once the algorithm has converged or during silent periods in the input speech signal. 

The stepsize |l(/7) is modified as follows. 

| i w = (6.15) 
% ( » ) + ( » - i)(P/ 

The stepsize of (6.13) now becomes more like an RLS type update [6.8]. From (6.11) to (6.15) as the 

adaptive algorithm converges to the echo path modelled gin) tends towards zero. This slows the rate at 

which the covariance matrix and its inverse is updated and also reduces the effective stepsize \i{n) • This 

effectively slows the response of the adaptive algorithm to any independent microphone disturbances. 
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Equations (6.11) to (6.13) constitute a modified Simplified Gradient NLMS Newton algorithm for 

robust acoustic echo cancellation on a mobile handset. From this point forward this shall be referred to as 

the Correlation Simplified Gradient NLMS Newton algorithm. The full Correlation Simplified Gradient 

NLMS Newton algorithm process is shown in Table 6-15. 

Initialisation: ( 0 ) = , 6 ^ = 0 . j 5 ( 0 ) = 0 , V w < 0 

(p (» ) = [%(»),..., - M +1) , - 1 ) , . . .y ( n -

j=[ 

N 
= + y ) y / ( M - y ) 

Correlation Estimate 1 

/= ! 

p ( » ) = (1 - X J p (» - 1 ) + X,(|) y (M)e, ( « ) 

g(M) = a | p ( M ) | 

|Li(M) = 
Stepsize &(») + ( P r ( » ) R ; } < p / » - l ) 9 / ( » ) 

= 8 « - , 

r ; : . , < " - ! ) • 
A, T 

&(») 
+(pf 

Table 6-15 : Correlation Simplified Gradient NLMS Newton Adaptive IIR Algorithm 

The robust nature of the Correlation Simplified Gradient NLMS Newton algorithm is illustrated 

in Figure 6.20 for the face up no seals handset configuration at different low ENR levels using the same 

input speech signal as was used in Figure 6.19. From Figure 6.20 it can be clearly seen unlike the original 

Simplified Gradient NLMS Newton algorithm of Figure 6.2 as we have seen earlier, little ERLE variation 

occurs during the during the large silent period (between 7 to 12s) even at very low ENR levels. This is 

because during the silent speech periods of speech, both the covariance matrix update is slowed and the 

stepsize reduced, putting the adaptive filter into an effective sleep state. This produces little or no filter 

coefficient variation even at low ENR levels maintaining ERLE levels. 
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In line with the main aims of the thesis Figure 6.20 to Figure 6.20 shows the tabulated ERLE level 

results comparing the ERLE performance of the new the Correlation Simplified Gradient NLMS Newton 

algorithm presented in this section and the standard FIR NLMS Newton algorithm for different ENR 

levels. For these tabulated results both a male and female speech recording is used of up to approximately 

40 seconds in duration. These recordings are in English and contain approximately 35 utterances, which 

are a mixture of natural conversational speech, and energetic speech utterances. Different pause durations 

are present between utterances in part of these recordings. An ENR level OdB is used to demonstrate 

robust AEC operation. Due to the small acoustic echo signal coupled into the handset microphone in 

relation to the background noise level of a typical operating environment an ENR level of OdB or lower is 

quite likely. 

From the results presented it is clear the Correlation Simplified Gradient NLMS Newton algorithm 

performs significantly better than a standard FIR NLMS Newton algorithm with the same number of 

coefficients, satisfying the main aim of the thesis. 

6.5. Summary of Chapter 

The main aim of this chapter was to study the effects of time variations algorithms in both the 

handset echo path response and the input signal to the adaptive filter on the modelling performance of 

adaptive IIR algorithms. 

In section 6.2 results were presented on the tracking performance of equivalent adaptive FIR and 

IIR algorithms for a time varying echo path response. Both linear and non-linear time variations were 

considered. From the results presented it is clear that output error adaptive IIR algorithms can 

satisfactorily track time variations in the echo path response during normal handset use, even in the 

presence of echo path output noise. The tracking performance with respect to an equivalent FIR adaptive 

algorithm for NLMS Newton based adaptive IIR algorithms is similar. 

In section 6.3 results were presented on the modelling performance of equivalent adaptive FIR and 

IIR algorithms for speech input signals. Both male and female speech recordings have been used over a 

range of input SNR and output ENR levels. From the results presented it is clear adaptive IIR algorithms 

can have superior modelling performance over adaptive FIR algorithms for the mobile handset acoustic 

echo cancellation application. A new algorithm, the Correlation Simplified Gradient NLMS Newton 

adaptive IIR algorithm is presented for robust acoustic echo cancellation on a mobile handset where ENR 

levels can typically be less than or equal to OdB in practice. 
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(a) input signal, echo signal, and the residual echo signals at an output ENR of 0, 5 and 10dB 
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Figure 6.20 : Robust handset acoustic echo cancellation using the Correlation Simplified Gradient 
NLMS Newton adaptive IIR algorithm. 
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Algorithm 77r mean 

FIR NLMS Newton ]L93dB 2517dB 4.2 IdB IJ^ms 1.76ms 

Correlation SG NLMS Newton l 5 j d B 3&78dB 5.64dB 3.81ms 3J3mg 

Table 6-16 : Summary of ERLE results for the face up echo path response. 

Algorithm TIC 

FIR NLMS Newton 9.06dB 2&48dB 5J43dB 1.248ms 1.248ms 

Correlation SG NLMS Newton lL6dB 3&29dB 5.09dB 1.6ms 1.664ms 

Table 6-17 : Summary of ERLE results for the loudspeaker sealed echo path experiments. 

Algorithm TIC 

FIR NLMS Newton SJWdB 26.53dB 5 3 2 d B ] .248ms 1.248ms 

Correlation SG NLMS Newton ]L35dB 2936dB 5^7dB 1.632ms 1.376ms 

Table 6-18 : Summary of ERLE results for the microphone sealed echo path experiments. 

Algorithm TIC 

FIR NLMS Newton &85dB 23j4dB 4.4 IdB 1.248ms 1.312ms 

Correlation SG NLMS Newton IOJ4dB 2 5 j d B 4.91dB lJi76mG 3.776ms 

Table 6-19 : Summary of ERLE results for the face down echo path experiments. 
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Chapter 7 
7. Summaty and Conclusions 

The aim of the research documented in this thesis was to develop adaptive IIR filtering techniques 

suitable for acoustic echo cancellation on a mobile handset, and investigate their benefits in terms of 

complexity and performance over more traditional adaptive FIR filtering techniques. 

The motivation behind this research is explained in chapter 1. In order to prevent disruption to 

speech communication, most telecommunication systems, such as GSM, impose restrictions on the 

maximum level of acoustic echo allowable on a handset. At the time of writing this thesis trends in mobile 

handset over the last five years have been to have increasingly smaller handset designs, with flip phone 

type designs becoming increasingly more popular. The need for acoustic echo control of some kind on a 

mobile handset has thus become more widespread, as the level of acoustic coupling between a handset 

loudspeaker and microphone will have increased significantly on newer handset designs over the last few 

years. Due to large amount of handset model variants produced by each manufacturer, and the concept 

removable front casings, the most favoured method of acoustic echo control is in the form of acoustic 

echo cancellation within the handset electronics. From the handset echo path measurements and modelling 

results reported in this thesis, the purpose of researching the benefits of Adaptive IIR filtering techniques 

for acoustic echo cancellation on a mobile handset is clear. 

7.1. The Acoustic Echo Path of a IVIobile Handset 

The nature of the acoustic echo path has been discussed in chapter 2. Although the GSM handset 

design tested at the earlier stages of this thesis has larger dimensions than current GSM handset designs 

available today, it is still expected that the same general behaviour in the echo path response will exist for 

modem handset designs constructed in a similar way. Indeed the measured Terminal Coupling Loss levels 

of modem designs may require higher levels of Echo Return Loss Enhancement than those reported in this 

thesis, as the relative distance between handset loudspeaker and microphone will be less, resulting in a 

much smaller Terminal Coupling Loss. The conclusions drawn from the handset design tested are however 

still valid for cordless handset designs of similar construction found today in the home and office, as these 

cordless handsets have similar dimensions to the GSM mobile handset design tested during this thesis. 

The handset orientations used in chapter 2 are fixed orientations that are measured in an anechoic 

environment. The responses measured from these orientations represent the likely variation of the acoustic 

echo path response of a mobile handset in normal handset use. It is clear from the results presented that 

the single artificial ear sealed handset test condition, used in GSM standards to measure the Terminal 

Coupling Loss of a mobile handset in normal use, does not reflect the actual variation of Terminal 

Coupling Loss in a mobile handset possible in normal use. When compared to actual echo path responses 

recorded in reverberant environments these fixed handset orientations can be seen to provide a more 
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robust method of ensuring the Terminal Coupling Loss of a mobile handset remains below the required 

level in normal use. 

The handset responses recorded in chapter 2 show that the main source of echo reflections due to 

the environment occurs after 10ms, corresponding to reflections from surfaces 3-4m away. As these 

reflections occur after the main anechoic region of the response and are significantly lower in level, the 

acoustic echo canceller within the mobile handset electronics can ignore these echo reflections. 

Reflections due to the user's head and body are likely to occur within a 1 m range and within the anechoic 

region of the echo path response up to 7ms. From an observation of the measured echo path responses, it 

is concluded that the reflections due to the user's head and body can be concluded are negligible and can 

be ignored. 

From the most likely echo path sources identified in chapter 2, only the internal and external echo 

path components have influence on the overall acoustic echo path response. If no loudspeaker or 

microphone seal or obstruction exists, or the effect of these is small on a mobile handset during normal 

use, the external echo path will dominate the overall acoustic echo path response. The resulting Terminal 

Coupling Loss may be as low as 33dB with an effective duration of up to 4ms. If a loudspeaker seal or 

obstruction exists and the seal is very good, such as with the firm placement to a user's ear and head in 

normal use, the internal echo path will dominate the overall acoustic echo path response. The resulting 

Terminal Coupling Loss may be as high as 46dB with an effective duration of up to 4ms. For a poorer 

loudspeaker seal the resulting Terminal Coupling Loss may be as low as 42dB. If a microphone seal or 

obstruction exists the internal echo path will dominate the overall acoustic echo path response. The 

resulting Terminal Coupling Loss may be as low as 37dB with an effective duration of up to 7ms. The 

echo path response is clearly resonant in nature. When placed face down on a rigid surface the worst case 

acoustic condition is produced where the echo path response is clearly resonant in nature with an effective 

duration of up to 10ms and a Terminal Coupling Loss as low as 29dB. 

7.2. Can MR Filter Models Offer Better Modell ing Capabi l i t ies than FIR Filter 
Models? 

The echo path responses reported in chapter 2 did not include the effects of the handset codec 

filtering and the actual audio sample rate used in the mobile handset. To determine whether IIR filter 

models have better modelling capabilities than FIR filter models in normal handset use these effects must 

be included in the echo path responses to be modelled. In chapter 4 the measurements of the fixed handset 

orientations of chapter2, used to represent the possible handset response variation in normal use are 

converted to represent the handset variation modelled by an acoustic echo canceller within the handset 

electronics. Since the Terminal Coupling Loss level being calculated in the range 300 to 3400 Hz, within 

the passband of the codec filters, the Terminal Coupling Loss levels of the modified echo path responses 

are relatively unchanged. Information in the echo path measurements reported in chapter 2 above 3600Hz 

will be eliminated in these modified responses, due to heavy attenuation by the codec filter response. 

Additionally a larger delay period and longer decaying tail will exist in the modified echo path responses 

to be modelled. 
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Using a system identification configuration various offline FIR filter models are investigated, 

using the optimal Wiener solution, an Output Error filter model using a recursive prediction error adaptive 

model, and an Equation Error IIR Filter model using an offline Steiglitz McBride method. These are used 

to determine the modelling capabilities of FIR and IIR filters, for modelling the variation in handset 

response in normal use. By calculating the ERLE level for each filter model, over a range of different 

filter model coefficients for each echo path response, a Coefficient Reduction Factor can be calculated 

which allows the benefits in terms of ERLE performance and complexity of each model to be directly 

compared. From the modelling results presented and the required ERLE levels needed for each echo path 

it is clear that the face down echo path response is the worst-case echo path response to be modelled. 

For the Equation Error offline JIR filter model a coefficient reduction factor of up to 1.13 can be 

obtained. A model order of at least 46 coefficients is required for the Equation Error IIR Filter model with 

11 AR coefficients, (35,11). For this model order an ERLE gain of up to 6dB is possible for the Equation 

Error IIR filter model over an FIR filter model. For the Output Error offline IIR filter model a coefficient 

reduction factor of up to 1.29 can be obtained with at least 42 coefficients with 15 AR coefficients, 

(27,15). For this model order an ERLE gain of up 7dB is possible for the Output Error IIR filter model 

over an FIR filter model. The larger model order required for the Equation Error model is attributed to 

bias in the form of under modelling noise. It is clear from the ERLE gains calculated and the Coefficient 

Reduction Factors greater than unity that IIR Filter models have benefits in terms of performance and 

complexity over more traditional FIR filter models. 

7.3. Is an Adaptive IIR Model Needed? 

The offline modelling results of chapter 4 show the clear benefits of using an IIR filter model. 

From these modelling results the Z domain representation of a (27,15) output error IIR filter model for 

some of the echo path modelled are analysed. Despite these echo path responses modelled having the 

same fixed codec filter contributions to its frequency and impulse response, it is clear from the pole and 

zero positions of the (27,15) IIR models can be significantly different. This indicates that to model the 

handset echo path response in normal use with an IIR filter model, both feedforward and feedback 

sections must be adapted in the IIR filter model. 

To show the impacts on modelling performance of using the same feedforward and feedback 

section or only just the same feedback section, the offline IIR models are re-computed for each echo path 

response to be modelled. Poor ERLE performance was obtained using the same the same feedforward and 

feedback section or only the same feedback section for each IIR model. This clearly shows that these 

cannot be used in the IIR filter model within the echo canceller to model the variation of the handset 

response in normal use. The IIR filter model within the echo canceller must be adaptive. 
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7.4. Can Adaptive IIR Filters offer better modelling capabil i t ies than Adaptive FIR 
Filters? 

In order to determine the modelling performance benefits of adaptive IIR algorithms over their FIR 

counterparts when modelling the acoustic echo path of a mobile handset a number of questions must be 

addressed. Firstly, what criteria will be used for comparing the steady state modelling performance of both 

adaptive FIR and IIR algorithms? Secondly, what adaptive algorithms will be used to assess modelling 

performance of adaptive FIR and IIR algorithms? Thirdly, for the adaptive algorithms chosen what 

parameters values were chosen and how do these parameters impact modelling performance? Next, is 

whether only the steady state performance is to be modelled for comparison purposes? Lastly, what input 

signals will be used, what echo path responses will be modelled, and will modelling performance in the 

presence of echo path output noise be considered? 

As part of chapter 5 the results of many system identification experiments are presented in order to 

assess the modelling performance of adaptive IIR filters. In order to establish whether the same 

performance benefits are obtained as for the offline IIR filter models of chapter 4, only the steady state 

modelling performance will be considered. Additionally, no echo path output noise is present. As the 

steady state modelling performance is to be established the input signal used for each experiment is 

stationary. A long experiment run of 80000 samples or 10 seconds is used for each experiment to allow 

sufficient convergence time for each algorithm to reach its steady state solution for this application. 

In comparing algorithm performance two factors are important. The criteria selected must first of 

all allow a direct comparison with the offline modelling results of chapter 4 to be made. Secondly the 

criteria selected must represent not only the steady state converged solution of each adaptive algorithm in 

a consistent way but must represent the time taken to converge to this solution, and the effects of adaptive 

algorithm parameters. In chapter 5 the ensemble averaged steady state ERLE level is used as a method of 

comparing the steady state modelling performance of adaptive FIR and IIR algorithms in this thesis. In 

addition the convergence time to both the steady state solution and the required ERLE level of acoustic 

each path modelled is reported. 

In chapter 5 the Normalised LMS and LMS Newton forms of all adaptive algorithms presented in 

chapter 3 are used to both address whether adaptive IIR algorithms have any benefits over adaptive FIR 

algorithms for this application. However in order to reduce the number of experiments needed, initially 

the required model order for Output Error and Equation Error adaptive IIR algorithms is determined using 

only the Equation Error NLMS and LMS Newton algorithms, and the Simplified Gradient NLMS and 

LMS Newton Output Error adaptive IIR algorithms. The effect of algorithm design parameters for these 

NLMS and LMS Newton adaptive IIR algorithms on the convergence rate and the steady state ensemble 

averaged ERLE levels are also established in chapter 5. The initial modelling results reported in chapter 5, 

over a range of model orders, show that for Output Error adaptive IIR algorithms a model order of (27,15) 

is the most suitable. A gain in the steady state ensemble averaged ERLE level of 6.6dB over a FIR 

adaptive algorithm is possible, with a coefficient reduction factor of up to 1.29 achievable. The 

convergence rate to the required ERLE level for each echo path is similar to adaptive FIR algorithms, but 
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generally slower convergence is achieved to steady state ERLE level for Output Error adaptive 1]R 

algorithms. In order to achieve these gains with adaptive IIR Output Error algorithms it is necessary to use 

LMS Newton based algorithms. Since the mean feedforward and feedback coefficient error terms will 

decay at different rates due to eigenvalue spread of a slow convergence rate exists, particularly for 

the feedback coefficients in the NLMS based algorithms. This is not the case for LMS Newton algorithms 

where the term equalises the rate of decay of each coefficient error term, resulting is faster 

convergence and higher steady state ERLE level within the 1 Os experiment duration. 

For the Equation Error adaptive IIR algorithms a model order of (31,11) is the most suitable. A 

gain in the steady state ensemble averaged ERLE level of 7.2dB over a FIR adaptive algorithm is possible, 

with a coefficient reduction factor of up to 1.29 again achievable. Although Equation Error NLMS 

algorithms may achieve a sufficient gain in the steady sate ensemble averaged ERLE level in comparison 

to an equivalent FIR adaptive algorithm for some echo paths modelled, this does not occur for all echo 

paths. Additionally the convergence time to the required ERLE level and steady state ERLE level is too 

slow in comparison to an adaptive FIR algorithm. This is due to the eigenvalue spread of R ^ ^ that 

causes the mean feedforward and feedback coefficient error terms to decay at different rates, resulting in 

slow convergence. A LMS Newton based Equation Error adaptive IIR algorithm overcomes this slow 

convergence rate due to the term R ^ , achieving higher steady state ensemble averaged ERLE levels. In 

conclusion from these initial results presented in chapter 5, adaptive IIR algorithms offer clear benefits in 

modelling performance over adaptive FIR algorithms. The benefits reported in chapter 4 of IIR filter 

models over FIR filter models are still valid for adaptive filters, provided LMS Newton based algorithms 

are employed. 

For the handset acoustic echo cancellation environment, noise will be present on the handset 

microphone in addition to acoustic echo. To fully answer the question of "Can Adaptive IIR Filters offer 

better modelling capabilities than Adaptive FIR Filters?" the steady state modelling performance of 

adaptive IIR algorithms in the presence of echo path output noise is also established in chapter 5. Since 

the steady state modelling performance is to be measured, only stationary input signals are used with no 

time variation in the response to be modelled. A band-limited pink noise source is re-used as the adaptive 

filter input. Both band-limited white and pink noise echo path output noise sources, uncorrected with the 

adaptive filter input source, are used. Only the LMS Newton based adaptive algorithms of chapter 3 are 

used, with a total model order of 42 coefficients - (27,15) for the output error algorithms, (31,11) for the 

equation error algorithms. The same assessment criterions used in modelling experiments earlier in 

chapter 5 are used again. 

Using the Simplified Gradient LMS Newton Output Error adaptive IIR algorithm and the Equation 

Error LMS Newton adaptive IIR algorithm the effect of echo output path noise level on the steady state 

modelling performance and choice of algorithm design parameters is analysed. For the Simplified 

Gradient LMS Newton algorithm it is clear that a much lower stepsize is required to maintain stability and 

reasonable steady state ERLE level performance at lower ENR levels. This is also the case for the 

Equation Error LMS Newton algorithm, but it is clear that a significantly lower steady state ERLE level is 
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produced, compared with that measured earlier in the chapter with no echo path output noise due to bias 

introduced into the estimation of the feedback coefficients. At the lowest levels of Echo to Noise Ratio, 

the performance of a (31,11) Equation Error LMS Newton algorithm is similar to the performance of a 31-

coefficient FIR LMSN algorithm. The algorithm design parameters for all other LMS Newton adaptive 

algorithms are then chosen in a similar fashion. 

In order to maintain the required ERLE for each echo path when modelling the acoustic echo path 

of a mobile handset in the presence of echo path output noise, it is clear from the modelling results 

reported in chapter 5 that an Output Error adaptive IIR algorithm is required. Despite the improved 

performance of the Steiglitz McBride LMS Newton and Bias Remedy LMS Newton adaptive IIR 

algorithms over the Equation Error LMS Newton algorithm, at the lower ENR levels bias is still 

significant, particularly for a coloured echo path output noise source. Of the adaptive IIR algorithms 

considered, only the Simplified Gradient LMS Newton Output Error algorithm can achieve the required 

ERLE for each echo path down to ENR levels of 5dB, while maintaining an ERLE gain of up to 5.9dB. 

In conclusion it can be said that Output Error LMS Newton based adaptive IIR filtering algorithms 

do offer benefits in terms of modelling performance over an equivalent adaptive FIR algorithm even in the 

presence of echo path output noise. 

7.5. Acoustic Echo Cancellation using Adaptive IIR Filters 

In the mobile handset acoustic echo cancellation application a number of real world factors need to 

be considered when using an adaptive IIR algorithm. The first factor is that in real handset use, the 

handset position will change and will not remain in a fixed position. Also the volume control on the 

handset normally controls the gain of the handset loudspeaker after the acoustic echo canceller in the 

handset electronics, and so forms part of the echo path system to be modelled. As a results gain changes in 

the echo path response can occur during a call if the volume control is adjusted. The resulting echo path to 

be modelled will contain time variations during a call that must be tracked by the adaptive IIR algorithm 

in the acoustic echo canceller 

The second real world factor is the nature of actual input signals encountered in the acoustic echo 

cancellation application. For this application speech signals will form the input signal to the echo 

canceller, which are non-stationary in nature. An adaptive IIR algorithm for use in the handset acoustic 

echo cancellation application must give sufficient performance for speech signal inputs. 

The third factor is the impact of the environment on performance. If the user of a handset receives 

a call from a person who is in a noisy environment the input speech signal to the echo canceller will be 

contaminated with noise. Additionally when the user is in a noisy environment during silent speech 

periods the Echo to Noise Ratio will be much lower than that during active speech periods. An adaptive 

IIR algorithm for use in the handset acoustic echo cancellation application must have robust performance 

with low input SNR and low output ENR when speech signals are used. 

Chapter 6 of this thesis follows on from the modelling experiments reported in chapter 5. The 

capability of adaptive IIR algorithms for tracking time variations in the echo path response to be modelled 

is established in comparison to an equivalent adaptive FIR algorithm. Many possible adaptive IIR 
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algorithms exist for use in this application. Using the results of chapter 5, only the Simplified Gradient 

Output Error adaptive IIR algorithms have been shown to be suitable for modelling the acoustic echo path 

of a mobile handset from all the algorithms presented in chapter 3. These algorithms will be used to 

establish the tracking performance of adaptive IIR filters. 

Two different types of time variations in the handset echo path response to be modelled by an echo 

canceller are simulated in chapter 6 to establish tracking performance of adaptive IIR algorithms. Linear 

gain time variations in each echo path response modelled simulate both slow variations in the handset 

response, and gain increments due to changing volume control during a call. Non-linear (or step) 

variations in each echo path response modelled simulate rapid changes in the handset echo path response 

to be modelled during a call. The effects of both these linear and non-linear time variations in the echo 

path response are simulated in chapter 6 using different system identification experiments with stationary 

input signals. The effects of algorithm design parameters on tracking performance are firstly assessed, 

since those parameters chosen for optimal steady state performance will differ from those selected for fast 

echo path tracking performance. Tracking results presented in chapter 6 clearly show that Output error 

adaptive IIR algorithms can exhibit similar tracking performance to adaptive FIR algorithms. 

Using slightly modified ERLE definitions to account for the non-stationary nature of speech signals 

the performance of adaptive FIR and Output Error IIR algorithms is investigated in chapter 6 of the thesis. 

From the results reported, it is clear that Normalised LMS Newton based adaption in the Simplified 

Gradient Output Error adaptive IIR algorithm gives superior ERLE performance due to the time varying 

normalisation factor in the filter update equation, which can take into account the shorter term energy 

fluctuation in the input speech signal which does not occur with the fixed convergence factor of LMS 

Newton based algorithms. An improved convergence rate and a gain in the mean ERLE performance of up 

to 5dB is achieved over a FIR LMS Newton algorithm and up to 5.5dB over a Simplified Gradient LMS 

Newton Output Error adaptive IIR algorithm, is achieved using the Simplified Gradient Normalised LMS 

Newton Output Error adaptive IIR algorithm. 

The effect on adaptive IIR performance for different input SNR and output ENR levels with speech 

signal inputs are established in chapter 6 of this thesis. Using input speech signals contaminated with band 

limited pink noise the performance at low input SNR levels of adaptive 1IR algorithms is established. With 

increasing levels of noise at lower SNR levels, the input signal becomes more noise like or stationary in 

nature, resulting in improved convergence rate and less variation in the ERLE level. Using speech signals 

with an input SNR of 15dB (typical for a lower noise office type environment) the ERLE performance of 

adaptive IIR algorithms is investigated in chapter 6, using the Simplified Gradient Normalised LMS 

Newton Output Error adaptive IIR algorithm. At low ENR levels during silent periods of speech large 

deviations in the ERLE level can occur, resulting in poor ERLE performance and instability for ENR 

levels below lOdB. This behaviour is due to the time varying convergence factor of the Normalised LMS 

Newton filter update which during silent speech periods gives a large stepsize, resulting in the filter 

coefficients moving from their previously converged values in active speech periods causing instability in 

some cases. To overcome this problem a modification to the Simplified Gradient Normalised LMS 

Newton Output Error adaptive IIR algorithm is presented to slow filter adaption during silent speech 
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periods. The Correlation Simplified Gradient Normalised LMS Newton adaptive IIR algorithm is 

presented in chapter 6 for robust Acoustic Echo Cancellation on a mobile handset. 

7.6. Future Work and Research Directions 

The performance benefits of Output Error adaptive IIR filtering algorithms for acoustic echo 

cancellation on a mobile handset have been successfully demonstrated in this thesis. With some further 

development an adaptive IIR algorithm could be successfully implemented within a handset DSP and 

tested in the field. 

The echo path measurements used to establish the performance benefits of adaptive IIR algorithms 

have been largely based on measurements carried out on a particular type of handset construction. In 

today's market, flip-phone type designs are becoming increasingly popular due to their small and compact 

size. An interesting area of future work would be to investigate the acoustic echo path response of these 

flip-phone handsets. The construction of these handsets is different to the construction of the handset used 

for echo path measurements in this thesis. For flip-phones the handset loudspeaker and microphone are 

normally in two separate sections separated by some sort of hinging mechanism. It would be interesting to 

establish the benefits of adaptive IIR filtering for handsets of this type of construction, as well as more 

modem and smaller handsets of the same construction type as reported in this thesis, as this would 

indicate the widespread use of adaptive IIR filters for this application is beneficial. 

During this thesis it was not possible to study complexity issues of adaptive IIR filtering. Due to 

the speech frame structure arrive in blocks every 20ms it is possible that block adaptive IIR filtering 

schemes would be very suitable for this application. Transform Domain adaptive IIR filtering techniques 

such as Frequency Domain adaptive IIR filtering, based on an output error criterion, could lead to 

additional savings in complexity and improved convergence. 

Genetic algorithms have been successfully applied to the area of output error adaptive IIR filtering 

in recent years. An interesting area of future research would be to study the performance and complexity 

of different genetic adaptive IIR algorithm solutions for this application area, with the hope of enhanced 

modelling and tracking performance over more conventional Output Error adaptive IIR filtering schemes 

reported in this thesis. 
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8. Glossary 

8.1. Abbreviations 

ADC Analogue to Digital Converter 

AEC Acoustic Echo Cancellation 

CRF Coefficient Reduction Factor 

DAC Digital to Analogue Converter 

DECT Digital European Cordless Telephone 

DSP Digital Signal Processor 

EE Equation Error 

ERLE Echo Return Loss Enhancement 

ENR Echo to Noise Ratio 

FIR Finite Impulse Response 

FFT Fast Frequency Transform 

GSM Gobal System for Mobile commmunications 

IFFT Inverse Fast Frequency Transform 

IIR Infinite impulse Response 

ISDN Integrated Services Development Network 

LCD Liquid Crystal Display 

LMS Least Mean Squares 

LMSN LMS Newton 

MSE Mean Square Error 

MSEE Mean Square Equation Error 

MSOE Mean Square Output Error 

NLMS Normalised LMS 

NLMSN Normalised LMS Newton 

OE Output Error 

PDA Personal Digital Assistant 

PSTN Public Switched Telephone Network 

PLR Pseudo Linear Regression 

RLS Recursive Least Squares 
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SG Simplified Gradient 

SHARP Simplified Hypers table Adaptive Recursive Filter 

SPR Strict Positive Real 

SNR Signal to Noise Ratio 

TCL Terminal Coupling Loss 

8.2. Symbols 

V 

n 
%(») 

} < " ) 

V(M) 

/ ; (») 

Y^d(co) 

r . ( t ) 

} < » ) 

e(M) 

h 

Ensemble averged ERLE level. Calculated in 32ms frames 

Steady state ensmeble averaged ERLE level 

Average value of ERLE^^ in dB over entire input signal duration 

Standard deviation of ERLE^^ in dB about ERLE^^^^ 

Maximum value of ERLE^^ in dB over entire input signal duration 

Convergence time to the required ERLE level 

Convergence time to the steady state ERLE level 

Effective echo path impulse response duration 

Discrete time index 

Adaptive filter input signal 

Adaptive filter desired signal input 

Echo path output signal 

Echo path output disturbance signal 

Auto power spectrum of the input excitation signal x(ri) 

Complex cross-power spectrum between echo path input x{n) and output y{n) 

Complex frequency response 

Echo path impulse response 

Coherence function 

auto-correlation of echo path input x{n) at lag k 

cross-correlation between echo path input x{n) and output yi/i) at lag k 

Echo path replica at output of adaptive filter model 

Estimation error signal 

vector of L echo path impulse response samples 
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]\^ Feedforward coefficient order 

j y Feedback coefficient order 

b FIR filter model coefficient vector 

F Mean square error cost function 

R M X M autocorrelation matrix of the input signal X(N) 

Vn 

I 

E„ 

A 

%(R) 

M X 1 cross correlation vector between input signal %(» ) and output of the echo 

path din) 

^opi Optimum weight vector solution to the normal equations 

FIR adaptive filter information vector of M past input samples 

Stepsize parameter in adaptive algorithms 

Vector which controls the search direction on the mean squared error surface of 
steepest descent algorithm 

Minimum solution to cost function F 

Gradient of the mean squared error cost function F 

Identity matrix 

max Maximum eigenvalue of correlation matrix R 

min Minimum eigenvalue of correlation matrix R 

Expectation of the error in the adaptive filter coefficient vector estimate at time 
index n and the optimal solution 

rotated error vector 

Q Matrix whose columns are the eigenvectors of correlation matrix R 

Diagonal matrix whose elements consist of the eigenvalues of correlation matrix R 

Trace of correlation matrix R 

Eigenvalue spread of correlation matrix R 

^ Misdajustment 

Output error IIR filter information vector 

y{n — 1) Vector of N past output samples of adaptive filter model 

® IIR filter coefficient vector of M feedforward and N feedback coefficients 

( ^ ) Output error signal 

9 Unit delay operator 

) Feedforward coefficient vector 

) Feedback coefficient vector 

(M+N) X (M+N) autocorrelation matrix of the information vector (p^ 
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r 

6, 

(M+N) X 1 cross correlation vector between the output of IIR filter signal y ( n ) 

and the information vector 

M X N cross correlation matrix between input vector x{n) and IIR filter output 

vector y(n — 1) 

N X N cross correlation matrix of IIR filter output vector y{n — 1) 

Feedforward coefficient i 

Feedback coefficient j 

(PfG ( ^ ) Full gradient output error AR filtered information vector 

( ^ ) Vector of M past AR filtered input samples 

y f ( ^ ) Vector of N past AR filtered IIR filter output samples 

9 / ( ^ ) Simplified gradient output error AR filtered information vector 

0* IIR filter coefficient vector at minimum point on mean square error surface 

(M+N) X (M+N) autocorrelation matrix of the information vector (Py ( » ) 

J ( ^ ) M X M auto correlation matrix of filtered IIR filter output vector Xy ( « ) 

M X N auto correlation matrix between the filtered input vector ( « ) and filtered 

IIR filter output vector {n) 

N X N auto correlation matrix of filtered IIR filter output vector y j { n ) 

R(p (̂p^ Inverse of correlation matrix 

) Hessian matrix for filter coefficients 0 

H ( 0 „ ) Inverse of Hessian matrix 

R(j)̂ (p^ Estimate of the inverse of correlation matrix using matrix inversion lemma 

Stepsize control factor for use in Normalised LMS Newton algorithms 

Convergence factor 

(M+N) X (M+N) autocorrelation matrix of the information vector cp^ ( j i ) 

Inverse of correlation matrix R ^ 

(Pofo Estimate of the inverse of correlation matrix R ^ using matrix inversion lemma 

) Error filter coefficient vector 

d ( n — 1) Vector of N past desired signal samples 

( ^ ) Equation error signal 

Equation error IIR filter information vector 
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(M+N) X (M+N) autocorrelation matrix of the information vector 

(M+N) X 1 cross correlation vector between the desired signal d{n) and the 
^<4 

information vector (p^(M) 

M X N cross correlation matrix between the input vector x (« ) and desired signal 

vector d ( « — 1) 

^det M x M auto correlation matrix of desired signal vector d{n — 1) 

Vector of N past echo path output disturbance signal samples 

(N) X 1 cross correlation vector between the noise signal v{n) and the noise vector 

V(M) 

Ryv N X N auto correlation matrix of noise signal vector y { n ) 

Inverse of correlation matrix 

R(p .<p , Estimate of the inverse of correlation matrix ^ using matrix inversion lemma 

( ^ ) Bias remedied equation error IIR filter information vector 

T Bias remedy parameter 

(M+N) x (M+N) autocorrelation matrix of the information vector ( » ) 

R \i,rthr Inverse of correlation matrix R „ 
9*̂ 9 Ar 

- 1 

R" Estimate of the inverse of correlation matrix R <». using matrix inversion 

lemma 

( ^ ) Filtered equation error signal 

Filtered desired response signal 

Vector of N past AR filtered desired signal samples 

Filtered equation error IIR filter information vector 

(M+N) X (M+N) autocorrelation matrix of the information vector (p^ (n) 

P M X N cross correlation matrix between the filtered input vector Xy (n) and filtered 
•'7"'/" 

desired signal vector d ^ — 1) 

^ d f d f M X M auto correlation matrix of desired signal vector A{n — 1) 

Inverse of correlation matrix R ^ 

Estimate of the inverse of correlation matrix R ^ using matrix inversion lemma 
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