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This research deals with repair strategies which maximise the time until a 

catastrophic event - There is a vital need for the equipment, and it is unable to respond. 

We examine the case where the need for the equipment varies over time according to a 

Markov chain. This means that the environment can be in different states, each with their 

own probability of the initiating event occurring. We describe the form of the optimal 

policy under this uncertain environment by Markov Decision Process. 

We also look at conflict situations where the environment is controlled by an 

opponent. In this case the opponent's actions force the need for the equipment, and this 

situation is modelled as a stochastic game. For this research, we develop stochastic game 

models with global and local constraints on effort. In the model with global constraints 

on effort, we introduce the idea of a constraint on the average effort undertaken by the 

opponent over the total history of the game so far. We naively describe this as a sleep 

index in that the opponent needs to sleep for a certain percentage of the time. We also 

expand these results to the situation where the advantage of a rest or quiescent period is 

discounted the further in the past it is, but always has a positive effect. In the model with 

local constraints on effort we look at games where the benefit to the opponent of being ' 

able to sleep' only lasts for a finite period and is then lost completely. 

As extension of the first research, we also consider training. Because training is very 

important to increase the operator's responding ability against an initiating event, this 

new model is more realistic. However, a problem with training is that it increases wear 

and tear of stand-by units. We develop discrete time Markov decision process 

formulations for this problem in order to investigate the form of the optimal action 

policy. 
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CHAPTER 1 

Introduction 

Our modern systems are composed of several types of equipment. If part of 

the equipment in the system fails, severe damage may occur. In order to avoid 

this situation, we install cold stand-by equipment which will improve the system's 

reliability. The stand-by units can be defined as an equipment which is only 

brought into operation when there is a vital need for it. For example, in hospital 

we may have a catastrophic situation if the main electric supply from the electric 

power company is not available for medical equipment. In order to overcome this 

severe situation all hospitals have their own emergency power supply system. This 

is a typical example of a stand-by unit. Mihtary equipment including weapons is 

another example. Normally mihtary hardware is reserved to respond to a situation 

which has real security dangers like enemy attack or war. If such a mihtary stand-

by unit fails to respond when it is required, the damage could be catastrophic. We 

call the times when there is a vital need for the stand-by unit as initiating events. 

Even though there are many standby units in the civihan sector, we wiH con-

centrate mainly on the military standby units and circumstance in this research. 

If the environment around a stand-by unit changes, we may need to have differ-

ent replacement and maintenance strategies for the stand-by unit. The military 

security environment is very uncertain, very Aexible, easily changeable, especially 



during war time while the civihan environment is more stable, more certain, and 

less changeable. There haa been a great deal of research in the maintenance and 

replacement pohcies for equipment, but, most of it has assumed a fbced, stable 

environment. This is not appropriate in the rapidly changing circumstances of 

a military environment. Hence it is useful to undertake research on the repair 

strategies for standby units under a changing environment. 

This research is concerned with developing repair strategies which maximise 

the time until a catastrophic event for the standby unit in an uncertain environ-

ment. For this, we develop discrete time Markov decision process formulations 

of the standby unit maintenance problem. This allows us to calculate numeri-

cally the best policy in particular cases and to investigate the general form of the 

optimal maintenance pohcies which maximise the expected survival time until a 

catastrophic event. Although other approaches are possible, the Markov approach 

gives rise to models which are solvable, and in most cases the Markov apphcation 

is a realistic one. The reason for focusing on the expected survival time rather 

than on cost is because we assume that the cost is immeasurable or very large if 

the system failed. In some senses, we are considering the operational policy sepa-

rated from the purchase policy which is where the main costs are. So in operation 

in a military context the cost of failure is enormous either because of the conse-

quences or because more units have to be purchased to overcome the possibility of 

one failing. In some ways, this criterion is hke a discounted availabUity criterion. 

It balances the unavailability due to repair with the unavailability due to failure. 



However unlike availability which is a steady state long term average, this criteria 

puts most emphasis on non-availabihty in the immediate future. 

Markov decision processes are versatile and powerful tool for analyzing proba^ 

bilistic sequential decision processes with a infinite planning horizon. They are an 

outgrowth of the Markov model and dynamic programming. Dynamic program-

ming , developed by Bellman[1957], is a computational approach for analyzing 

sequential decision processes with a finite planing horizon. Part of our research is 

also about a game model in which the enemy controls the environment situation. 

In such cases, the state of readiness of troops or emergency services does fluctuate 

Eiccording to actions by the enemy country or the enemy terrorists. In such cases 

the opponent's actions affect the need for the stand-by equipment and hence its 

maintenance and repair schedule. We model such situations as a stochastic game. 

Our last problem for this research is about repair strategies where the failure of 

the system can be due both to its deterioration and to insufficient training of the 

operators on it. 

In this thesis, we are ultimately concerned with the problem of repair strategies 

for a standby unit in changing environment. In order to study and solve the 

maintenance problem for standby units in a changing environment, first of all, we 

review the general research background literature in chapter 2, and develop the 

Markov decision process model with 1 repair action and with 2 repair actions under 

multiple environments in chapter 3. For the Markov decision process with 2 repair 

action model, we use two different repair which have different repair characteristics. 



In chapter 4, uging the stochaatic game method, we look at the problem when there 

is conflict. For this game, we develop a basic model, and then we extend this basic 

model to more complicated models in order to overcome its limitation. Finally, 

in chapter 5, we consider another state space factor for our model, namely the 

training of the operator. Conclusions are presented in chapter 6. 



CHAPTER 2 

Literature Review 

2.1 Introduction 

Over the last few decades, many papers have appeared on hterature which 

deal with the problem of finding optimal repair/replacement pohcies for systems 

which are subject to failures. One major inHuence in this Aeld is traced back 

to Bellman's introduction of dynamic programming in 1957. Dynamic program-

ming is a computational approach for analyzing sequential decision processes and 

is very useful when the stochastic elements are introduced in replacement prob-

lems. Also, in 1960 Howard developed a policy iteration method to solve multi-

stage decision problems whose dynamics wag a Markov process. Markov decision 

process combines the Markov models and dynamic programming. After Derman 

developed the original model of a single deteriorating unit in 1963 using Markov 

decision process, there has been a great deal of research in maintenance and re-

placement held. This maintenance and replacement phenomenon is indicated in 

various surveys by McCall[1965], Pierskalla[1976], Sherif and Smith[1982], Monar 

han[1982], Thoma8[1986], Valdes-Flores and Feldman[1989], Cho and Parlar[1991], 

Dekker[1996] and Wang[2002] etc. However most of research concentrates on cost 

criterion in order to find the maintenance and replacement policy which minimises 

the cost per unit time. Few papers have considered expected survival time. In one 

such paper, Thomaa et al[1987] developed a discrete time Markov decision process 
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model for a standby system maximising the expected time until a catastrophic 

event. The maintenance and repair models considering random environment have 

been studied by Qinlar[1984], Qinlar and Ozekici[1987], Qinlar et al[1989], Shaked 

and Shanthikumar[1989], Lefevre and Milhaud[1990], Ozekici[1995][1996], Wart-

man and Klutke[1994], Klutke et al[1996], Yang et al[2000a][2000b] and Kissler et 

al[2002]. Alao, there have been several papers looking at rehability models under 

random environment by Dhillon et al[1982]etc, Goel et al[1985], Cao et al[1988] 

etc. Yeh[1995] studied an optimal maintenance model for a standby system but 

focusing on availabihty and rehability as the criteria to optimise. 

The need to model the maintenance process as a game because an opponent 

is able to set the environment conditions hag not been discussed before. In fact 

the apphcation of game theory in the maintenance problem is restricted to the 

work of Murthy and Yeung[1995] and Murthy and Asgharizadeh[1999] in the case 

of warranty contracts. There has been no maintenance / replacement model using 

stochastic games. Here we will use the ideas of stochastic games to model our 

situation. Stochastic games were first introduced by Shapley[1953] who described 

the discounted game case almost precisely,while Gillette[1957], Blackwell and Fer-

guson[1968], Mertens and Neyman[1981] etc have looked at average cost game. In 

this chapter, the relevant hterature on the above topics including Markov deci-

sion process, maintenance and replacement models, maintenance and replacement 

models for standby units, maintenance and replacement models under changing 

environment and stochastic games is reviewed. 
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2.2 Markov Decision Process 

2.2.1 History The appearance of the Markov decision process is well docu-

mented by Putterman[1994], Heyman and Sobel[1984]. Bellman[1957] and Howard 

[1960] popularized the study of sequential decision processes. However we can go 

back to the calculus of variations problems of the 17th century for an early ap-

proa<:h to such problems. Cayley's paper[1875] proposed a problem which contains 

many of the key ingredients of a stochastic sequential decision problem. The 

modern study of stochastic sequential decision problems began with the Wald's 

work[1947] on sequential statistical problems during the Second World War. He 

presented the essence of the Markov decision process theory in his research. Pierre 

Masse [1946], director of French electric companies and minister in charge of french 

electrical planning, introduced many of the basic Markov decision process concepts 

in his extensive analysis of water resource management model. A description of 

Masse's research is given in Gessford and Karlm[1958]. The modem foundations 

of Markov decision process were developed between 1949 and 1953 by people at 

RAND corporation, USA, for example, Bellman and Blackwell[1949];Bellman and 

LaSalle[1949];Shapley[1953] in games. Arrow et al[1951]; Dvoretsky et al[1952] in 

stochastic inventory models, Issacs[1955] in pursuit problems, Arrow et al[1949]; 

Robbins[1952]; Kiefer[1953] in sequential statistical problems. Among them BeU-

man was the first major player in the Markov decision process area. He identified 

common factors to these problems such as the functional equations of dynamic 

programming, and the principle of optimaihty. Karlin[1955] also recognized and 



began studying the rich mathematical foundations of Markov decision process. 

Howard[1960] contributed to the progress in this field with his book on 'Dynamic 

Programming and Markov Processes' where he also introduced the so-caHed pohcy 

iteration method to solve multi-stage decision problems in connection with Markov 

processes. 

2.2.2 Description of Markov Decision Process Markov decision process models 

consists of five elements: decision epochs, states, actions, transition probabilities, 

and rewards. When a system is being controlled over a period of time, a pohcy or 

strategy is required to determine what action to take in the hght of what is known 

about the system at the time of choice, in terms of its s tate i. Decisions are made 

at points of time referred to as decision epochs. The state of the system describes 

the situation at a decision epoch. It may include information about past actions 

and events ;but it is called the state of the system at the time of the decision. 

In Markov decision process, if the decisions are made at uniform time intervals 

then, if the state is z at some decision epoch and if action a is taken, the system 

goes to state j at the next decision epoch with probability Pij{a)- This is called 

the transition probabihty. In other words, let g(A;) be a Markov chain at time 

A; = 1, 2, , having dynamics described by the conditional probabilities 

Pij{a) = P\s{k + 1) == J I s{k) = i, a{k) = a] 

where o(A;) is the action taken at the decision epoch A;, a G A, E 5". Let v4 

be the finite action space, and 5' be the finite state space. Let M be the length 

of the time horizon. More generally, the action space can be dependent on the 
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current state, a(A;) E A[g(A;)]. The number of ^(t), actions in state i need not be 

equal to the number of v4(j). We can know that the transition probabihty from the 

current state of the process to the state of the process at the next decision epoch 

depends on the state i, j , and action a. The qualifier 'Markov' is used because the 

transition probabihty and reward functions depends on the past only through the 

current state of the system and the action selected by the decision maker in that 

state. The real valued reward is accrued at decision epoch A; < n, if % 

and = o. If the reward depends on the current state and action and the state 

at the next decision epoch, then we consider to be the expected reward to be 

accrued until the next decision epoch, given the current state is % and the current 

action is a: 

^ ^ (o,)Pij (<%) 

For the general problem with rewards r,(a) and transition probabihties 

the principle of optimality implies that the optimal total expected reward over n 

periods starting in state written M — 1,2, ,% 6 5' wiH satis^ the 

optimahty equations: 

This says that the optimal policy over n periods must after the first action 

be the optimal pohcy over the remaining vi — 1 periods. A rule is a contingency 

plan that selects actions and is described as a mapping <$ : 5" —̂  v4. A policy is 

a sequence of rules vr = {<̂ i, where is the rule to apply at decision 
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epoch A;. A policy or strategy specifies the decision rule to be used at all decision 

epoch. It provides the decision maker with a prescription for action selection under 

ajiy possible future system state or history. 

We do not have any problem to maximise or minimise the total expected 

rewards over a finite number of periods. However the trouble with infinite time 

horizon problems is that the total expected reward is infinite. In order to overcome 

this difficulty, we can use the following ways: 

(1) discount all future rewards 

(2) take average reward per period 

If a reward in the first period is the same reward in ?T, th period is 

discounted as where 0 < /) < 1 is the discount factor. Wis can explain 

this by saying that future rewards are not worth as much as present rewards due to 

inSation. The optimahty equation for maximising the total expected discounted 

rewards over an infinite horizon is 

= max{ri(a) % G 6" 
aeyl(i) —' 

Hence, we say that the discounted reward over an infinite horizon is the re-

ward over the first period plus the discounted reward from the second period 

onwards. Markov decision process is concerned with finding pohcies to produce 

optimal performance of the system to maximise the expected discounted reward 

; or to maximise the reward per unit time or the expected total reward. Other 

objective may be appropriate to minimise the total expected cost or the long-run 

average cost per unit time. In our research, we have probabihty of an initiating 
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event 6^,0 < 6^ < 1, according to each environment situation, m, 1 < m < Af 

where environment situation 1 is most peaceful situation and M is most dangerous 

situation. When the stand-by unit is in a non-operative state which occurs either 

in the down state or if it is being repaired, the stand-by unit will fail with certainty 

to respond an initiating event. The probability 6^ of the initial event occurring 

depends on the state, of the environment. This means that in this case the 

stand-by unit can survive to the next time period with probability of (1 — 6^)-

Since the value of (1 — 6^) is located in the range o f O < ( l — this value 

acts like a discounted factor, for our models. 

In the average rewards case, if we let vr) be the total reward over M periods 

starting in state t, z E 5" under pohcy 7r, vr E 11, we define the average reward under 

policy TT as (̂7r) where 

giix) = lim inr 
n—too TL 

In most caaes, the total expected reward over Ti periods starting in state t, 

% E 6" under pohcy vr, vr), converges to the form 

7r) % 4- w(%, vr) 

where a;(2.7r) is a biased value. Wis need to note that w(%,7r) — vr) 

'u'̂ (%,7r) — 7r) for 7% large, so that w(%,7r) — w(j, vr) measures the difference in 

total expected costs when starting in state % rather than in state j , given that pohcy 

TT is followed. If we assume that the optimal rewazd converges to % 72p-t-w(2) 

then ^ is the optimal average reward. If we substitute this into the finite horizon 
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optimality equation, we can get 

= max {r.(a) + ^ P,,{a)v"-^ (j)} 
„M(.) ^ 

= max{r,(a) + y ' P „ ( a ) [ ( n - l ) 9 + iijy)J}, i€S,n=l,2, 

Assuming = 1, we have the optimality equation 

p + = max{r,(a) + y^f^Xa)w(j)} , z 6 6" 

2.2.3 Solution of Markov Decision Process In general we have an optimal 

policy and the criterion value generated by this pohcy for each state in 5" as a 

solution to the standard Markov decision process. Procedures for determining a 

solution have been based on dynamic programing. Let be the value of the 

criterion generated by an optimal policy assuming that s( l ) = i and that the 

horizon haa length Then, the array = {?;"(%) : z E 6"} can be determined 

from the recursion 

= max{r;(a) : a G A} 
J 

where M = 1,2, and = f , . It is cleaj; that 6% is an optimal rule 

at decision epoch k if and only if it causes the maximum in above equation to be 

attained for all 2 E 6". This imphes that when g(A;) = a(A;) should be selected 

to equal The sequence of such rules, vr* = {<$*, , constitutes an 

optimal pohcy. 
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In order to And the optimal pohcy and value, there exist several methods ia-

cluding value iteration method, policy iteration method, hybrid (modified policy) 

iteration methods, hnear programming, and approximating the problem, using 

the structure. Among them we will concentrate on the value iteration method 

and pohcy iteration method. Computational comparison of value iteration and 

pohcy iteration algorithm for discounted Markov decision processes was well re-

searched by Thomas et al[1983][1986]. Pohcy iteration method was introduced by 

Howard[1960]. The policy iteration algorithm works as follows: 

Step 1. (initiahzation). Choose a pohcy vr 

Step 2. (policy evaluation step). For the current rule tt, compute the unique 

solution to the optimaility equation, 'û (7r) 

Step 3. (pohcy improvement). Try to Imd a pohcy 7r' satisfying ^"(Tr') > f"(7r) 

( i ) If no such policy exists, tt is optimal then STOP 

( ii ) If a tt' can be found , put tt = vr' and go to step 2. 

The pohcy iteration algorithm is empirically found to be a remarkably robust 

algorithm that converges very fast in speciGc problems. The number of iteration 

is practically independent of the number of states. But the pohcy iteration al-

gorithm requires that in each iteration a system of linear equations of the same 

size as the state space is solved. In general, this wiU be computationally burden-

some for a large state space and this algorithm is computationally unattractive for 

large-scale Markov decision problems. So we need an alternative algorithm which 

avoids solving systems of linear equations but uses instead the recursive solution 
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approach from dynamic programming. This method is the value-iteration algo-

rithm which computes recursively a sequence of value functions approximating the 

optimal value. The value functions provide lower and upper bounds on the optimal 

value. In general value iteration algorithm endowed with these lower and upper 

bounds is the best computational method for solving large-scale Markov decision 

problems. It turns out that in value iteration the number of iterations is typically 

problem dependent. Another important advantage of value iteration is that it is 

usually easy to write an own code for specific applications. The value iteration 

algorithm computes recursively for n = 1, 2, the value function v^{i) from 

= max{ri(a) + ^ : a G A}, z 6 6" 
3 

starting with arbitrarily chosen function i E S. The quantity v'^(i) can be 

interpreted aa the maximal total expected rewards with n, periods left to the time 

horizon when the current state is 2 and a terminal cost of 11° (i) is Incurred when 

the system ends up at state j. This interpretation suggests that the stationary 

policy whose actions maximise the right side of the above equation for all i will be 

very close to the minimal average reward8( see Tijms[1994]). Wis do not want to 

solve the optimality equation exactly, but we require 6-optimal solution v* where 

||f* —fll < 6 and 6-optimal policies vr* where — njl < 6 and ||w|| = sup^ |'u;(%)|. 

For the optimal stopping of we use McQueen's bound. McQueen's bound 

for the above value function is 

- /?) < '̂ (2) < 
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where Z,(z) = miHigg z(%) and [/(z) = max,gg (see Thomaa et ai[1983]). 

The value iteration algorithm works as follows ( see Tijms[1994]); 

Step 1. Choose with 0 < < minari(o) for ail z E 6". Let Ti := 1 

Step 2. Compute the value function E 6",from 

= niax{r,(a) 

3 

and determine 7r(M) as a stationary policy whose actions maximise the right 

hand side of this equation for all z 6 5". 

Step 3. Compute the bounds 

= min(̂ ;''+^ - z;") and - i;"") = majc(?;"+^ -
lEg 

The algorithm is stopped with pohcy 7r(M) when 0 < — 

< (1 — /?)6 where g is a prespecified tolerance number. Otherwise go to step 4. 

Step 4. 72 := n + 1 and go to step 1. 

The value iteration algorithm has in general not the robustness of the policy-

iteration algorithm. The number of iterations required by the value-iteration algo-

rithm is typically problem dependent and will usually increase when the number 

of states becomes larger. Also, the tolerance number g in the stopping criterion 

will affect the number of iterations required. 

McQueen's bound can also be used to eliminate non-optimal actions as well as 

to stop the iteration. McQueen[1967] showed that if 

V o) + - /)) < 
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then the action a in A(%) cannot be part of the optimal pohcy and hence 

can be removed from all future calculations. But Hastings and van Nunen[1977] 

noticed that we could modi^ the tests to check at the M th iteration whether action 

a G A{i) can be the maximising action for the n + 1 th iteration. If it cannot, 

there is no point in calculating so the action is removed temporarily 

from the calculations but then has to be tested again to see whether it can be the 

maximising action at the M + 2 th iteration. 

This action ehmination method is very efficient to find an optimal solution 

for the cases which have many actions. In our Meirkov decision process model, we 

don't have to use the action elimination method since we do not have many actions 

to be considered. We have two actions, which are do nothing and repair, for the 

first Markov decision process model, and three actions, which are do nothing, quick 

repair and slow repair, for the second Markov decision model. In order to choose 

optimal action for each stage, we must know the expected survival time under 

each action. However, since the expected survival time under the repair action is 

independent of the previous quality state, we don't need to calculate this value 

at quality state. This means that once we have the expected survival time under 

repair for items in the new state, we can use this value in all the other states. 

Therefore we don't have to calculate the values under repair at each quality state. 

This means that we need to do only one calculation or at most two calculations. 

Hence, we do not have to use the action elimination method for this research. 
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2.3 Maintenance and Replacement Model 

2.3.1 Original Model of a Single Deteriorating Unit by Derman In order to 

understand the maintenance and replacement models, it is worth to review the first 

the original model of a single deteriorating unit described by Derman[1963]. A unit 

is inspected every period and the state of the unit is ascertained. It is assumed 

that if nothing is done then the unit deteriorates according to a Markov chain on a 

finite set of states {0,1,2, , Z,}, where 0 denotes a new unit and state Z, means 

the unit has failed completely. At each period, once the state is known, a decision 

has to be made whether to replace the unit, perform a preventive maintenance 

overhaul, or do nothing. The diGFerence between replacement and repair is often a 

difference in which state the unit returns to after the performance of that action. 

In most variants of this model, economic criteria are used, in which one tries to 

minimise the sum of the maintenance cost, the cost of repair and replacement 

due to failure, and the cost of preventive repair and replacement. In this model, 

Derman showed that if the probability of deterioration next period increases with 

the present state then a "control hmit" rule is optimal, so that one should repair 

or replace when the observed state 2 is greater than some hmit z*. 

2.3.2 Extended Maintenance and Replacement Models There have been a 

large number of extensions of this above original model, many of which are re-

ferred to in the excellent surveys of many authors. There are many possible ways 

to classi^ the works in maintenance and replacement models. 
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McCall[1965] surveyed scheduling policies for a stochaaticaily failing equip-

ment. In this survey, he says that maintenance models may be divided into two 

distinct categories. The first is the class of preparedness models in which the equip-

ment fails stochastically and for at least some of its parts, its actual state is not 

known with certainty. Alternative maintenance actions for such equipment include 

inspection and replacement. Preventive maintenance models constitute the second 

class of maintenance models. In these models the equipment is subject to stochas-

tic failure and the state of the equipment is always known with certainty. If the 

equipment exhibit an increasing failure rate and furthermore a failure in operation 

is more costly than replacement before failure, then, it may be advantageous to 

replace the equipment before failure. The problem is to determine a suitable re-

placement schedule. The basic division is between maintenance pohcies for which 

the equipment's failure distribution is known and maintenance policies for which 

the failure distribution is not known with certainty. 

PierskaUa and Vbelker[1976] suggest seven categories for maintenance and 

replacement model classifications. They say that one could establish a multi-

dimengional grid whose coordinates would be (i) states of system, such as deteri-

oration level, age, number of spares, number of units in service , number of state 

variables, etc., (ii) actions available, such as repair, replacement, opportunistic re-

placement, replacement of spares, continuous monitoring, discrete inspections, de-

structive inspections, etc., (iii) the time horizon involved, such as Anite or infinite 

and discrete or continuous, (iv) knowledge of the system, such as complete knowl-
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edge or partial knowledge involving such things aa noisy observation of the states, 

unknown costs, unknown failure distributions, etc., (v) stochastic or deterministic 

models, (vi) objectives of the system, such aa minimise long run expected average 

costs-per-unit time, minimise expected total discounted costs, minimise total costs, 

etc., and (vii) methods of solution, such aa hner prograirLming, dynamic program-

ming, generalized Lagrange multipliers, etc. In each cell of the grid, one could 

conceivably place every paper written on maintenance and replacement. However 

the work in this thesis would not fit within such a classification. 

In Sherif and Smith's survey[1981] they suggest three claasificationg, ie., (i) 

general classification (ii) classification of maintenance models by type (iii) classifi-

cation by type of apphcable optimization technique. The general claaaiScation 

divides the maintenance and replacement models by whether they are inspec-

tion, maintenance, reliability, optimization techniques, or decision theory. For 

the second classification they divide optimal maintenance and repair models into 

deterministic models and stochastic models. Stochastic models can be divided 

into stochaatic modela under risk and stochaatic models under uncertainty. Then 

these stochaatic models under risk and stochaatic modela under uncertainty are di-

vided into four different categories by whether they are simple or complex system, 

and use preventive maintenance or preparedness maintenance. In the laat claasi-

fication the optimization techniques employed for obtaining maintenance policies 

include the following: hnear programming, nonlinear programming, dynamic pro-

gramming, Pontryagin maximum principle, mixed-integer programming, decision 
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theory, search technique, heuristic approaches. 

Osaki and Nakagawa[1976] made a bibliography of reliability and availability of 

stochastic systems. This bibhography is directed towards methods using stochas-

tic processes. In the bibhography, a brief review of stochastic models on system-

reliabihty lists selected references on system rehability models using stochastic 

processes such as Markov chains, Markov processes, and semi-MaTkov(Markov re-

newal) processes. These stochastic process models provide decision criteria which 

aid in establishing optimum maintenance pohcies. 

Thomas[1986] suggests next three types of maintenance and replacement mod-

els for multi-unit systems: (i) economic (ii) structural (iii) probabilistic. In eco-

nomic type, the cost structure of replacement and maintenance has interdepen-

dencies between units. The simplest such case is when the replacement or repair 

cost of several components is less than the sum of their individual replacement or 

repair cost. In the structural type, it may be useful to replace working units at the 

same time as failed ones. Structural dependencies mean that one has to replace or 

at least dismantle some working units in order to replace or repair failed one. In 

probabihstic type, the state of one unit can affect the state of the other units or 

their failure rate. 

Valdez-Flores and Feldman[1989] review preventive maintenance models where 

an optimal pohcy for a single-unit system( or a system that can be modeled as 

a single entry) is being determined. Although a system may consist of several 

components, it is sometimes practical to consider the system as a single unit that 
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behaves in such a way that individual components do not directly affect the reli-

ability of the system. Another important reason to consider single unit system is 

because in practice there are many instances in which it is difficult to obtain relia-

bility data for smaller components; whereas data for the stochastic behavior of the 

entire system is available or easier to obtain. Maintenance models for single unit 

systems are also useful for modeling the maintenance of individual components 

that are part of more complex systems. In this survey the authors divide main-

tenance and replacement models into four categories: inspection models, minimal 

repair models, shock models, and miscellaiieous replacement models. Inspection 

models are concerned with preparedness maintenance policies in which the current 

state of a system is not known but is available through inspection. Minimal repair 

models say there is a cost advantage from repairing a failed unit rather than from 

replacing it. They usually combine a periodic replacement policy with a minimal 

repair activity upon a unit failure. Shock models are concerned with single-unit 

systems where the unit is subject to exterior shocks which occur randomly. 

Cho and Parlar[1991] survey the papers related to optimal maintenance and 

replacement models for multi-unit systems. In this survey, the papers are divided 

into Ave topical categories: machine interference/repair models, group/ block/ can-

nibalization/ opportunistic models, inventory/maintenance models, other mainte-

nance/replacement models, and inspection/maintenance models. In machine inter-

ference/repair models, if ajiy of the machines in a system interacts with one another 

a maintenance decision on one machine must be made in conjunction with what 
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happens to the other machines in the system. Group/ block/ cannibalization/ 

opportunistic maintenance and replacement models are examined for the systems 

with identical unit. These models are mainly based on the concept of economies 

of scale. Inventory/maintenance models hnk the maintenance problems with the 

stockage problems. 

Dekker[1996] reviewed apphcations yielding advice to management concerning 

maintenance on existing systems. Also he investigated what was needed for suc-

cessful application of maintenance optimization models and what constituted the 

main bottlenecks. In his review, a literature search has been made on applications 

of maintenance optimization models and on tools developed to assist in mainte-

nance optimization. Furthermore, discussions had been held with various people 

concerning the value of maintenance optimization models. 

The maintenance of a deteriorating system is often imperfect. This means 

that the system after maintenance will not be as good as new, but younger than 

it was. Pham and Wang[1996] discussed and summarized various treatment meth-

ods and optimal policies of single and multi-component systems, and the rapidly 

growing literature on imperfect maintenance in order to give an overview of the 

recent maintenance models and pohcies, methodologies and techniques, tools, and 

apphcations. Also Wang[2002] surveyed more updated maintenance pohcies of 

deteriorating systems. This survey summarized, classified, and compared various 

existing maintenance pohcies for both single-unit and multi-unit systems. He also 

addressed relationships among different maintenance pohcies. 



23 

Chrigter[1982] addressed the idea of a "delay time" for a fault with the context 

of building maintenance. The main idea of the delay time concept is that defects 

do not just appear as failures, but are present for a while before becoming sufh-

ciently obvious to be noticed and declared as failures. The time lapse from when 

a defect could first be reasonably expected to be identified at an inspection to the 

consequential failure repair if no corrective action is taken has been termed the de-

lay time /z, of the default. The main key in delay time modelling is how to estimate 

the delay time distribution parameters. Since 1982, there have been a considerable 

numbers of papers published on inspection and maintenance modelling utilizing 

and developing the apphcation of the delay time modelling, for example, Chriater 

et:al[2001], Pillay ekal[2001], Wang[1997], Christer and W^g[1995], Baker and 

Chri8ter[1994], Baker and Wang[1992][1993], Christer and Redmond[1990], Chris-

ter and Waller [1984a] [1984b], etc 

2.3.3 Maintenance and Replacement Models for Standby Unit System relia-

bility can be improved by providing standby units. Even a single standby unit 

plays an important role in a case that failure of an operating unit is costly and/or 

dangerous. As we mention before, a typical example of standby unit is a case of 

standby electric generators in hospitals and other public facilities. It is extremely 

serious if a standby generator fails when the electric power supply fails. Similar ex-

amples can be found in army defence systems, in which all weapons are standing by. 

Several works have been pubhshed on the problem of maintenance and replacement 

of standby units. Almost all previous work on standby units use a cost criterion. 
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Barlow and Proschan[1965] summarized schedules of inspections which minimise 

the two expected costs until detection of failure and per unit time assuming re-

newal of a standby unit. Luss and Kandar[1974] allowed for non-zero inspection 

times. Wattanpanom and Shaw[1979] studied the problem when the inspection is 

hazardous so that it is possible for the inspection to cause the unit to fail. Nak-

agawa[1980] looked at the probabihty that when there is a need for the standby 

units, the standby system will work. Butler[1979] maximised the expected lifetime 

of a standby unit, but did not allow for repairs. His model allowed the standby unit 

to be in more than one "up" state, which are distinguishable only upon inspection. 

This has a link with the problem of optimal inspection and repair of a deteri-

orating process with imperfect information introduced by Ross[1983] and gener-

alized by White[1979], Ro8enfield[1976], Luss[1976], Sengupta[1980], SuzuM[1979] 

and Wang[1977]. In these papers a system can be in more than one state, but 

which one is known only imperfectly or only upon inspection. The idea of using a 

cataatrophic event criterion to overcome the problem that failure of stand-by units 

will result in unqualtifiably large cost was suggested first by Gaver, Jacobs and 

Thomas[1987]. In this model, discrete time Markov decision process models are 

formulated and policies for periodic inspection and maintenance of such units are 

derived to maximise the expected time until the standby unit can't respond on a 

need for it. First, they introduced a basic discrete time model where the unit can 

only be "up" or "down". The time between when there is a need for a standby 

unit are assumed to be independent random variables having common geometric 
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distribution. In this baaic model, they derive the form of the optimal policy which 

maximises the expected time untU the standby unit can't respond on a need for it 

and study its behavior as a function of the parameters of the model. This yields 

information concerning the times to inspection after a repair and after a success-

ful inspection. From this basic model the paper also consider a generalization of 

which allows the unit to be in one of two "up" states, which are indistinguishable 

on inspection, but which have different failure rates. This modification incorpo-

rates the idea that the repair might deal with the superficial cause of the unit's 

failure, but miss the underlying problem which recur. In certain cases, the optimal 

inspection pohcy for this model has quite short inspection periods immediately 

after a repair which then lengthen as further inspections suggest that the unit is in 

better "up" state. Yeh[1995] studied an optimal maintenance model for standby 

system focusing availability and reliability as the criteria to optimise. In his paper, 

an inspection-repair-replacement policy is employed. He assumes that the state of 

the system can only be determined through an inspection which may incorrectly 

identify the system state. After each inspection, if the system is identified as in 

the down state, a repair action wiU be taken. It will be replaced some time later 

by a new and identical one. So he can developed an optimal policy so that the 

availabihty of the system is high enough at any time and the long-run expected 

cost per unit time is minimised. 

2.3.4 Maintenance and Replace Models under changing Environment The 

maintenance and replace models considering random enviroimaent have been con-
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sidered by several people. It is natural to assume that the level of environmental 

exposure changes randomly over time, and hence that the deterioration rate can 

be modeled as a stochastic processes. The presence of a random environment adds 

considerable complexity to these models. Qinlar[1984], Qinlar and Ozekici[1987], 

Ozekici[1995][1996] studied several models of Markovian and semi-Markovian dete-

rioration in the context of determining a single device lifetime. The essential idea 

used in their analysis is the correspondence between 'real time( in actual use un-

der field conditions)' and an 'intrinsic age process' which measures time in units of 

deterioration. In Qinlar et al[1989] and, independently, Lef6vre and Milhaud[1990] 

they consider the lifelengths Ti, ,Tk of k components subjected to a random 

varying environment. They are dependent on each other because of their common 

dependence of the environment. The parameters of the model are the distribution 

of the random process which describes the environment and a set of rate functions 

which determine the probability law of Ti, , as a function of the distri-

bution of the environment. They find conditions on the parameters of the model 

which imply that 7i, are associated. Shaked and Shanthikumar[l989] 

provide more precise models from Qinlar and Ozekici[1987] and Qinlar et al[1989]. 

Because the hazard rate of a component may be given directly aa a function of 

the environmental state, the present time, and the previous failure time not by 

differential equation, they describe such a replacement model which gives rise to 

dependence of the lifetimes of the different components among themselves through 

their dependence on the common environment. They also describe the monotonic-
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ity of various probabilistic quantities of interest as functionals of the distribution 

law of the environmental process. But in all these cases the unit (system) is always 

in use so the changes in the environment age the equipment at different rates, but 

do not aifect when it is needed. 

Many protective systems, such as circuit breakers, alarms, and protective re-

lays, as well as spare or standby systems have non-self-announcing failures where 

the rate of deterioration is governed by a random environment. These systems 

have been studied by Wartman and Klutke[1994], Klutke et al[1996], Yang et 

al[2000a] [2000b] and Kissler et al[2002] while in our research we consider the fixed 

rate of deterioration with different probability of need for the standby equipment 

along the environment. There are some papers on rehabihty under changing envi-

ronment. 

Dhillon et al[1982] studied the behaviour of a single unit system under two 

different weather condition - normal and stormy. In this paper, they presented two 

mathematical Markov models to predict human rehability of continuous operating 

tasks. Dhillon et al[1985][1986] showed multi mathematical Markov models to 

predict electric power systems reliability in changing environment ( normal and 

stormy weather). 

Goel et al[1985-l] pointed out difficulties in the models of Dhillon et al[1982] 

and proposed a revised version of their models with two modes, i.e. normal and 

total failure. In Goel et al [1985-2] they consider three modes, i.e. normal, partial 

failure and total failure under two weather condition (normal, stormy). Then the 
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cost analysis of a system having these three modes are considered. The paper by 

Goel et al[1985-3] deals with the cost analysis of a two unit cold standby system 

different weather conditions (normal and abnormal). 

In other papers which have analyzed repairable systems in different weather 

conditions, the rates of change of weather conditions are assumed to be constant. 

The paper by Cao[1988-l] considers a repairable system in a changing environment 

subject to a general alternating renewal process. He obtains the system availabihty, 

failure frequency and rehabihty function. The paper by Cao[1988-2] discusses a 

man-machine system operating under changing environment where the change of 

the environment is subject to a Markov process with two state. Using Markov 

renewal process Cao obtains the system availabihty, future frequency and rehabihty 

function. 

Guo and Cao[1992] consider a one-unit repairable system operating under 

changing environment and assmne that the system has m types of failure under 

one environment and n types under another. The rates of change of environment 

and failure are constant while the repair rates are general. By using Markov re-

newal theory, they obtain the system availabihty, failure frequency and rehabihty 

function. 

Lien[1992] considers a repairable system which operates in a random environ-

ment. The changes of environmental levels are described by a semi-Markov process 

with finite states. He assume that both this system's life time and repair times 

have exponential distribution but that their parameters change with environmen-
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tal levels. The distribution of the first up and down time of the system and the 

system availability are obtained. By an alternating renewal process, he also get 

the bounds of the system first failure mean time. 

Song and Deng[1993-1] consider a parallel redundant repairable system con-

sisting of three identical rmits and one repair facility, which operates in a changing 

environment subject to a Markov process with two states. Using Markov renewal 

process, they get the system availability, failure frequency and reliability function. 

Song and Deng[1993-2] consider a system which operates in randomly changing en-

vironment. The changes of environmental levels are described by a Markov process 

with finite states. The system consists of m identical units and one repair facility. 

When the system operates in environment level % and has ^ failed units, the work-

ing units of the system has a failure rate The repair time of a failed imit haa 

an arbitrary distribution. Song and Deng obtain the system reliability functions, 

availabilities and failure frequencies. 

2.4 Stochastic Game 

2.4.1 History Game theory was created by von Neumann in his two papers[1928, 

1937]. However, it came to life in the book, 'Theory of Games and Economic Be-

haviour' written by von Neumann and Morgenstern[1944]. In their book, von 

Nemnann and Morgenstern investigated two distinct possible approaches to the 

game theory. The first of these is the noncooperative approach. This requires 

specifying in close detail what the players can and cannot do during the game. 
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and then searching for a strategy for each player that is optimal. What is best for 

one player depends on what the other players are planning to do, and this in turn 

depends on what they think the first player will do. von Neumann and Morgen-

stern solved this problem for the particular case of two-player games in which the 

players' interests are diametically opposed. Such a game is called zero-sum game 

because any gain by one player is always exactly balajiced by a corresponding 

loss by the other. In the second part of the book, von Neumann and Morgen-

stern developed cooperative approach, in which they sought to describe optimal 

behavior in games with many players. Due to the difEculty of the problem, they 

did not attempt to specij^ optimal strategies for individual players. Instead they 

look to classify the patterns of coahtion formation. In a sequence of remarkable 

papers in the fifties, the mathematician John Nash found two important discov-

eries breaking the restriction that von Neuman and Morgenstem had erected for 

themselves. In noncooperative game, they felt that the idea of an equilibrium in 

strategies was not an proper notion and hence their restriction to zero-sum games. 

However Nash's general formulation of the equilibrium idea made it clear that no 

such restriction is necessary. Nash also contributed to von Neumann and Morgen-

stern's cooperative approach. He disagreed with the view that game theorist must 

regard two-person bargaining problems as indeterminate, and proceeded to offer 

arguments for determining them[Binmore, 1992]. 

A stochastic game is one in which the outcome can be a real payoff and a 

requirement to play the same or another game again. The historic background 
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of stochastic game is well explained in the book of 'Games, Theory and Appli-

cations' by Thomas[1986]. The concept of a stochastic game was introduced by 

Shapley[1953] in 1953 even though the idea of a dynamic game was used as a proof 

technique by von Neuman and Morgenstern[1947]. He introduced discounted sto-

chastic games and gave a proof of the existence of a value for such game. Since 

Shapley's paper there have been new solution algorithms suggested, hke the vari-

ation on value iteration given by van der Wal[1977], or ones called policy iteration 

which try to improve the strategies used at each iteration in Rao et al[1973]. For 

many years it was an open question whether or not the average reward per stage 

stochastic games had a value or not. Gillette[1957] proved the existence of the 

value in two cases: first when aU games have perfect information and also in the 

so called cyclic case. Blackwell and Ferguson[1968] found in a particular example( 

"Big match" ) two strategies that would prove to be basic for further generaliza-

tions. Bewley and Kohlberg[1976] made a large step on the road to solving the 

problem of existence of a value. Metens and Neyman[1981] proved the existence 

of a value for average reward stochastic games. 

2.4.2 Description of Stochastic Game A stochastic game is one in which the 

outcome can be a real payo^ and a requirement to play the same or another game 

again. Such a game may be regarded as a sequence of two-person zero-sum games 

played consequently, with the outcome of eaxzh game determining, stochastically, 

the matrix of the next. A two-person zero-sum stochastic game , F, is a set of 

TV subgames, Fi, F2, , F;/. The normal form of subgame F^ is an x 
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payoff matrix whose entries are of the form; 

N 

II. 

4 = 4 and ^ p « r , 
/=1 

where is the payoff if player I plays I, strategy and player 11 plays 

strategy. It consists of a numerical reward where we assume 

I ^ â nd a probability of playing T/ for Z = 1,2, , where > 0 and 

< 1. Each time we play one of the subgames it constitutes a stage of the 

game F. If < 1, then there is a positive probability 1— that the 

game ends at this stage. The di&culty with such general stochastic game is that (1) 

they could lead to unbounded payoffs, and (2) we cannot compare two strategies 

that both have such payof&. To overcome this difBculty, we can consider two ways 

of thinking about the rewards from the game: (1) Discounting the payoGs, and (2) 

Taking the average reward per stage. In discounting the payofk, the payoff from 

game played at r th stage is discounted by where < 1. This is the same 

idea as inflation. Therefore a reward of 1 next stage is equal to a reward of now. 

And a reward of 1 next two stages is equal to a reward of now. In taking the 

average reward per stage, if is the reward from the first g stage of the game for 

a strategy, we look at hma_»oo as the average reward for that strategy. There 

is no good solution algorithm for stochastic game so far. However, Shapley[1953] 

and Avi-Itzhak[1969] found that discounted stochastic games always have solutions 

while Blackwell and Ferguson[1968] found that by taking average cost we cannot 

always solve stochastic games. 

In discounted stochastic games a typical strategy for a player is very compli-
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cated. For the player I this strategy consists of a collection of strategies, 

/ii,/i2, k = 1,2, ,N, t = 1,2, } 

where is a (possibly mixed) strategy in the subgame F^ and depends on stage 

t, he is playing, and on the history /ii, /12, , of what happened in the first 

( — 1 stages. And tell us information including which game waa played at the zth 

stage and which strategy each player played in it. If /12, , 

for all A;, and all possible histories /ii, A2, , this is called a stationary 

Markov strategy. Even though each subgame F^ of the stochastic game F hag 

a finite number of pure strategies, the overall game F has an infinite number of 

such strategies since one chooses an action for each subgame at each of an infinite 

number of stage. Hence the von Neumann minimax theorem(for a finite number 

of pure strategies) does not guarantee that the stochastic game F haa a solution. 

To prove that the stochastic game F has a solution, we need to use some trick. 

If the game has a value, it will depend on which subgame we started playing at the 

hrst stage. The value ?;*of F(if it exists) is vector v* = where 

= val(r [starting in F^ at stage one). If we substitute the value of F starting 

in F( instead of F;, new payoS entries for this new game is ^ 

start F in Ft, then if we go to F/ at the second stage, the value of the game from 

there from there on is not v* but /3vi. We are not playing F starting at F; at the 

first stage but playing F with Ff at the second stage and so all the payoffs wiU be 

one stage later than under F starting in F;. Hence, we can change payoff entri^ to 

discounted one: 
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N 

1=1 

where = val(rt(i')), A; = 1,2, and rk('u) is an x game 

with payoff matrix. In general, we write rt(w) for an x game with payoE 

matrix[Thoma8, 1986]: 

N 

1=1 

In our stochastic game model, we use a discretization technique for a continuous 

state space. For the decayed capacity limit model of this stochastic game models, 

we have to do approximation method in order to get sleep. Using this method we 

can make the continuous value of the sleep index into a set of discrete one. 



CHAPTER 3 

Repair Strategies in an Uncertain Environment: 

Markov Decision Process Approach 

3.1 Introduction 

This research is concerned with developing repair strategies which maximise 

the time until a catastrophic event for the standby unit in an uncertain environ-

ment. These environments can be thought of aa the states DEFCON 1 to 5 or 

black, amber, red used by the US and UK military. For this, we develop discrete 

time Markov decision process formulations of the standby unit repair problem in 

order to investigate the form of the optimal repair policies which maximise the 

expected survival time until a catastrophic event. The reason for focusing on the 

expected survival time rather than on cost is because we assume that the cost is im-

measurable if the system failed. We develop a Mafkov decision process model with 

one repair action under changing environment in section 3.2 and two repair actions 

under changing environment in section 3.4. For the Markov decision process with 

two repair action model, we use two different repair actions which have different 

repair characteristics. For each model we show a numerical example. Conclusions 

are presented in section 3.6. 
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3.2 Model for 1 Repair Action under Multiple Environment 

3.2.1 Introduction In this model, there are several environment situations 

which are graded from very dangerous to completely peaceful. Each environment 

situation has its own probability of the initiating event occurrence. There is only 

one repair maintenance action for this model which means that the operator can 

choose his best maintenance action between doing nothing and repairing. 

3.2.2 Terminology 

Possible Standby Unit Quality State, i Regular inspection of the standby unit 

gives information on the operation quality state of the units. We assume the 

standby unit has different unit quality states, ie. 1,2, , where state 1 

means that the standby unit is like new. The state iV — 1 means that it is in a poor 

but still operable state, while in state it is in a "down" condition which means 

that it will not work. In the military context, there is often such a classification 

used into, new/excellent, operating, or failed, for example. 

The Quality State Transition Probability Matrix(QSTPM), P„ When the standby 

unit is in quality state % at the current stage, there is a probability, that it wiU 

be in state j at the next period where = 1,2,- - and 

N 

Pij = 1, where z = 1, 2, • • — 1, A/" 

Wis assume that the QSTPM satisfies a first order stochastic ordering condition 

so that ^ Bssumc = 1 so once the standby unit 
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reaches the "down" state N, it remains "down" until either it is repaired, or a 

catastrophic event occurs. The value can be observed in practice from data 

collected in previous use of the equipment. 

Possible Environmental Situation, m We assume that there are M different en-

vironmental states, 1,2,- - , M — 1,M. Environmental state 1 reflects the most 

peaceful environment in which there is the smallest probability, bi of an initiat-

ing event occurring. On the other hand, the environmental state M is the most 

dangerous state with the highest probabihty, of initiating event occurring. 

We assume 6^ is non-decreaaing in the index of the enviromnental state m and 

0 < 6^ < 1. 

Environment Situation Transition Probability Matrix(ESTPM), The dy-

namics of the environmental situation is also described by a Markov chain with 

Environment Situation Transition Probability Matrix(ESTPM), . If the envi-

romnental situation is m, 1 < m < M in the current stage, this changes to another 

environmental situation 1 < m' < M with probability the next stage, 

where 

M 

= 1, with m and m' = 1,2, • • •, M — 1, M 
m'=l 

We aasume the ESTPM also satisfies a first order stochaatic ordering property 

80 for any m = 1,2,. . M - 1. A can be 

collected using historical experience on the changes in alertness levels. 
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The Possible Repair Actions There are two possible actions at each period, (1) 

do nothing and (2) repair. The "do nothing" action means that the operator does 

not repair the standby units. It is assumed the "repair" action takes 1 unit time 

period. Thus the time of the repair, including collecting and dehvering, defines 

the unit of time generally used in those models. The repair action is not perfect 

in that there is a probability Rr the unit will be in quality state r after the repair 

where ^ = 1. If an initiating event occurs during repair period, the standby 

unit cannot respond to it, and so a catastrophic event occurs automatically. 

3.2.3 Model 

Model State Space The state space of this model 5̂  has two factors which are 

unit quality state and environment state, so 

5' = {(%, E 6", z = 1,2, - — 1, # and m = 1,2, - - -, M — 1, M} 

where i and m mean the unit quality state and the environment situation 

respectively. 

Maximum Expected Period, V(i,m) When the unit is in quality state i and 

the environment situation is in state m, y (z, m) is the maximum expected number 

of periods until a catastrophic event occurs. 

Model Description In order to calculate the maximum expected period before a 

catastrophic event, we need to consider all cases making this model. For doing 

that, we need to think of each model from environment situation 1 (most peaceful 
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situation) to environment situation M(niost dangerous situation). Then, for the 

each environment situation, we can consider each case of the "do nothing" main-

tenance action and "repair" maintenance action. When an initiating event occurs, 

the "do nothing" action can be divided by two sub-cases, (1) a case in which the 

standby unit quality state is in working condition(z ^ A/"), and (2) a case in which 

the standby unit quahty state is in A/̂ (failure state). 

Coge 1. Do Nothing 

(1) When the standby unit is working, i ^ N 

(2) When the standby unit is down, % = TV 

Co5e 2. Repair 

Hence, we need to develop in total three models for each environment situation, 

(1) a model for the maximum expected period for the "do nothing" case when the 

unit quahty state is in working condition ^ # ) , M/i(2,m), (2) a model for the 

maximum expected period for the "do nothing" case when the unit quahty state is 

in failure condition(z — TV), m), and (3) a model for the maximum expected 

period for the "repair" case in which we do not need to consider the standby unit 

quality state, Then, we can write an optimality equation to decide which 

expected period between M/iand 1̂ 2 by each action is longer than the other's. We 

can then decide the best maintenance action according to time, unit quality state 

and environment situation. 

Expected Survival Period by Do Nothing under Environment Situation m, W^ (i, m) 

In this case, the probabihty of an initiating event is 6^- We can consider the 
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following two cages. 

(1) W h e n the standby unit is in working condit ion( i ^ N ) 

In thig case, since the standby unit quality state is in various working condition8(% ^ 

# ), the unit does not have any failure to respond to an initiating event. The ex-

pected period of this case is not effected by occurrence of an initiating event during 

the next 1 time period between t and 1. Hence, the state % moves on to the state 

j in the next stage with probability where = 1. Also the environment 

situation goes from situation to situation m' with a probabihty of where 

S^M q 
2-^m'=1 n 

1. Hence, the expected survival period by do nothing action when 

i ^ A/" and m) is 

S mm'' 
Environ. Situ. =rn " -r V(j, m') 

1 P i j j 
Quality State: 

1 P i j j W Quality State: • 

i (working) 

t t+l 

Figure 3-1. When the standby unit is in working condition 

AT M 
(%, TTl) = 1 + ^ ^ (j, m') 

m'=1 

(2) W h e n the standby unit is in failure condition(z = N) 

In this case the standby unit is in a vulnerable quality state because the unit 

is in the "down" state. Thus, if an initiating event occurs during the next 1 unit 

time period between t and t +1 , a catastrophic event arrives automatically. When 

there is no occurrence of initiating event during the next 1 unit time period, the 
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quality state of the unit still remains in the state of another vulnerable state 

at the next stage, ( + 1. 

Environ Situ — m 

Quality State-
i 

N (D own) 

Catasti'ophic Event 

t 
A 

t+1 

initiating event v/ith b m 

Figure 3-2. When the standby unit is in failure condition with an initiating event 

Environ Situ =rn 

Quality State' 

N (D own) 

N 

m 

> 

t t+i 

no initiating event with (1-b m) 

Figure 3-3. When the standby unit is in failure condition without an initiating event 

Hence, the expected survival period by do nothing action when t and 

m) is 

Wi(N,m) = (1 -
m'=l 

Expected Survival Periods by Repair under Environment Situation m, W2{m) If 

the standby unit is in "repair" period which takes 1 time unit period, this is also 

another vulnerable period. If there is the occurrence of an initiating event, the 
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system has a catastrophic event automatically. Current quality state of the unit 

does not affect the occurrence of a catastrophic event since the unit is in repairing 

condition regardless of current quality state. We can consider this repair situation 

in two possible sub-cases, (1) when an initiating event occurs during the repair 

period, (2) when no initiating event occurs during the repair period. 

Environ Situ = m 

State Catastrophic Event p. 

on Repair 1 

1 1 
J 

t t+1 

initiating event with b m 

Figure 3-4. When the standby unit is in repair with an initiating event 

C-* f 
O tXVtXi 

Ihh Environ Situ =rn 
R j 1 Rh 

Quality State 
R j 1 

Quality State w 

on Repair 

t 
A 
1 t+1 

no initiating event v/ith (1-b lu) 

Figure 3-5. When the standby unit is in repair without an initiating event 

Hence, the expected survival period by repairing when the environment situa-

tion is m, 1^2(m) is 

M AT 
W,{m) = (1 - + J ] 

m =1 '"=1 
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Optimaiity Equation Because we are looking for the best repair policy, the 

optimality equation selects the better of the two actions. 

m) = niax{Wi(i, m), W2(m)} (3.1) 

,where Wi(%, 771) is the expected period until a catastrophic event if nothing is 

done now and W2(m,) is the expected period until a catastrophic event if a repair 

is performed now. Hence the m), can be expressed by 

Wi(i,m) = (1-6.«U[1 + E ^ v E (3.2) 
J—1 771̂ =1 

where 

= 1 if % = TV 

= 0 otherwise 

M AT 
W^{m) = ( 1 - 6 „ ) [ 1 + ^ Y . m)] ( 3 , 3 ) 

m'~1 r~l 

(3.1), (3.2), (3.3) can be solved by value iteration where the yith iterate satis^es 

% i ( z , m ) = m a x { M / ^ ( 2 , m ) , M ^ ( m ) } ( 3 . 4 ) 

where 

# M 
= ( 1 - S-A-!-™)!! + E • S ' w K - i ( j . m ' ) ] ( 3 . 6 ) 

j = 1 ui'~i 
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= (1 - ^ (3.6) 
m'=l '"=1 

If we define the terminal value, m) = 0, the m) is a bounded increas-

ing sequence of function and so converges to the hmit Standard results 

from Markov decision proce88es[Putteran,1994] show that the limit function satis-

fies the optimality equation (3.1) — (3.3). 

Lemma 3.2.1 1/(2, m) is a non-increasing function of i, V(i,m) > V(i+l,m) where 

% is the quality state, 1 < % < TV, and m is the arbitrary environment situation 

state, 1 < m < M. 

(Proof) 

The proof uses an induction hypothesis on n in 14(?, m). Trivially the property 

holds for V^(z,m). Wis can assume %t_i(%,m) is non-increasing function in i This 

means %i_i(z, m) > l4-i(^ +1 , m). Also, from the stochaatic ordering condition of 

QSTPM, we know E j < t ^ t ^«+i)r And so, for (3.5) 

M M 

771̂ =1 771̂  = 1 

Hence, we can conclude that M/^(2,m) > W^(2 -t- l ,m) . Since 14^(2,m,) = 

M^(%-t-l,m), it follows %i(z,m) > l/^(i + l ,m). Hence the result holds for V (̂%,m) 

and by convergence the results hold in the hmit for y(2, m). 

Lemma 3.2.2 V{i, I) > V(i, l') for all i, where I < l' 

(Proof) 
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The proof is similar to that of lemma 3.2.1 proving the result by induction in 

n on Z). The induction step follows from the stochastic order of ESTPM, 

Hence, we can prove y(2, Z ) for all Z < 

Theorem 3.2.1 In quality state 7V(down), one should always repair. 

(Proof) 

If is given by = miii[% : < W2(m)] defhied by (3.5) and 

(3.6), this theorem means z*(l), %*(2), - - , ^(M) < jV. We can let Z be an arbitrary 

situation from the states 1,2, - , M. In state the optimality equation is 

y(7V, Z) = max{Wi(A/^, Z),M (̂A ,̂ Z)},where 

M 

W,{N,l) = (l-k)[l+Y,S,^'V(N,m)\ 
m'=:l 

M AT 

m' = l ''=1 

If 1^2(0 > Wi(#, Z), then f (Z) < AT. 

l^(Z)-M/i(Ar,Z) 

M Af M 

= (1 - ^) | l + E - (1 - (")[! + E 
m'= 1 ''=1 m'=l 

M JV 
= (1 - 6() ^ & y ( r , m') - y(7V, m')] 

m'= 1 r=l 
M TV 7/ 

= (1 - ^0 ^ E 
m'=l =̂1 r=l 

M ;v-i 
= (1 - ^ - y(W,m')]} 

m'=l r=l 
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Since (1 - 6̂ ) > 0, ajid m) > 0, r < TV, then M (̂Z) — Wi(#, Z) > 

0. This means that , at quality state JV, we should always repair : %*(() < JV. 

Theorem 3.2.2 The optimal policy is 

1) repair in (z, m) if % > 

2) do nothing if i 

(Proof) 

The optimality equation is given by 

y(2,z) 

.fV M M JV 
= max{l + Y . P „ Y 1 S,^-n3.m'), (1 - (.,)[! + ^ 5,„. ^ B . V ( r , m ' ) ] } 

m'—1 rn =1 r=l 

From the above optimality equation, we can say that, it is optimal to repair 

the equipment in % if 

M AT jV M 
(1 - ft;)!! + E E ">')]> 1 + E -Py E 4^' "=') 

r=l j=\ 

From the previous lemmas, we know that V{i, I) is a non-increasing function of 

2 which means that is also a non-increaaing function 

of 2 while (1 - 6z)[l + is independent of z. Therefore, 

we can say that once we have a where the inequality holds so that it is worth 

repairing, it will be worth repairing for z > %*. Hence the optimal pohcy is repair 

if % > do nothing if % < 

Theorem 3.2.3 i*{M) = N. 
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(Proof) 

This theorem holds if we can show 

Wi(A^- 1,M) > M^(M) 

Since 5"^ '̂ is stochastically ordered and V(%, m) is monotonically non-increasing 

in if Z < M, 

M AT M # 
E E S„^.Y:RrV(r.m') 

m'=1 r=l ^ r—1 

In (3.6), for Z < M, since (1 — 6;) > (1 — 6^), 

M 
W,Al} = ( 1 - W [ 1 + E 

m'=l ''=1 

M 
> (1 - V) | l + 5 ] 5„„' E RrV(r, m)] = W^{M) 

771̂ =1 r—1 

Hence, 

W2(Q > W2(M) 

Now, we can derive the following relation since y ( j , m ) > W2(m'), 

TV M 
M/i(7V - 1,M) = 1 + - 1,771 ) 

m'=l 
AT M 

> 1 + ^ ^ W/2(M) = 1 + W2(M) > W2(M) 
J—1 m' —1 

Therefore, M (̂7V — 1, M) > M/2(M) which means that %*(M) = jV in the most 

dangerous situation. 
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Lemma 3.2.3 i*{l) < i'{M) for all I. 

(Proof) 

Prom theorem 3.2.1, we have already proved that < AA for any arbitrary 

environmental situation state Z. Also, we have already proved %*(M) = Â . Hence, 

it is true that %'(/) < i*(M) for all L 

Corollary 3.2.1 When bi = b2 = • • • = bM , %*(!) = i*{2) = • • • = = N 

(Proof) 

If 6i = 62 = " = then by lemma 3.2.3 all environment states are equivalent 

to the M th state. By theorem 3.2.3, i*(M) = TV and so hence by lemma 3.2.3, 

%"(1) = r(2) = . . . = r ( M ) = AT . 

3.3 Numerical Example 

Description This numerical example has five different environment situations, 

l(most peaceful environment), 2, 3, 4, 5 (most dangerous environment). We aasume 

that there are total 10 unit quality states, l(new), 2, - - , 9, 10 (down) with the 

Quality State Transition Probability Matrix(QSTPM) given by Table 3-1. We also 

assume that repair is not perfect but given by hi Table 3-3 which describes the 

probabihty that the quality state after the repair action is in state r. We show three 

numerical cases for this one repair action maintenance model. The probability of 

initiating event, 6^, where 1 < m < 5 is for example 1 (0.1,0.2,0.4,0.6,0.7) (i.e. 

gradual escalation), for example 2 (0.1,0.11,0.4,0.7,0.9) (i.e. two good states and 

a gradual escalation), and for example 3 (0.1,0.11,0.12,0.15,0.9) (i.e. four good 
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states and one very dangerous state). 

The results for example 1 and 2 are shown in Table 3-4 and Table 3-5. In 

example 1 since the probability of an initiating event in environment 2 is twice 

as big as that in environment 1, more repair actions occur in environment 1. In 

example 2, since the probability of initiating event in environment 3 is much higher 

than that of environment 1 and 2 which have a small difference between each other, 

it is best to do more repairs just before environment 3 is likely to occur. We can 

also End that the expected survival periods in example 2 are longer than those 

in example 1 for all states. This is because in example 2 there is more chance of 

surviving in environment 1 and 2 than in example 1. 

The result for example 3 is shown in Table 3-6. In this caae the probabilities of 

an initiating event in environmental situations 1 to 4 are very small and increase 

very slightly. However in situation 5 the probability of an initiating event increases 

dramatically from 0.15 to 0.9. The optimaility policy suggests repairing in more 

quality states when in environmental situation 4 than in the other situations in-

cluding less dangerous situations. We can explain this because we are more likely 

to wish to repair before entering situation 5 where the probabihty of an initiating 

event increase so much. 

Figures 3-9 and 3-10 show the overall trend of expected survival periods along 

the environment situation and quality state in each case. In these figures, only 

the integer points on the surface really exist. In state 10, one hag to repair in 

both examples. In example 1, r ( l ) = 7,%*(2) = %*(3) = %*(4) — %*(5) — 10 and 
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in example 2, %*(!) = 8,%*(2) = 8,%*(3) = 7*(4) = z*(5) = 10. For both examples, 

when the environmental situation is in 5, we repair the equipment only when it 

has failed. 

Table 3-1. Quality State TPM 

» \ ; 1 2 3 4 5 6 7 8 9 10 

1 0.2 0.2 0.2 0.1 0.08 0.05 0.05 0.05 0.05 0.02 

2 0 0.2 0.2 0.2 0.1 0.1 0.08 0.05 0.04 0.03 

3 0 0 0.2 0.2 0.2 0.1 0.1 0.1 0.05 0.05 

4 0 0 0 0.2 0.2 0.2 0.15 0.1 0.1 0.05 

5 0 0 0 0 0.2 0.3 0.2 0.1 0.1 0.1 

6 0 0 0 0 0 0.2 0.3 0.2 0.2 0.1 

7 0 0 0 0 0 0 0.2 0.3 0.3 0.2 

8 0 0 0 0 0 0 0 0.3 0.4 0.3 

9 0 0 0 0 0 0 0 0 0.4 0.6 

10 0 0 0 0 0 0 0 0 0 1 

Table 3-2. Environment Situation TPM 

771 \ m' 1 2 3 4 5 

1 0.4 0.3 0.2 0.05 0.05 

2 0.2 0.4 0.23 0.1 0.07 

3 0.1 0.2 0.4 0.2 0.1 

4 0.05 0.15 0.2 0.3 0.3 

5 0.05 0.1 0.15 0.2 0.5 
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Table 3-3. Repair TPM 

r 1 2 3 4 5 6 7 8 9 10 

Rr 0.2 0.2 0.1 0.1 0.1 0.1 0.08 0.05 0.05 &02 

Table 3-4. Expected survival time under different actions and choice of optimal 

action for example 1 

caae bm\ % 1 2 3 4 5 6 7 8 9 10 

14.2 1&9 1&6 13.4 l&l 12.9 126 12.4 12.1 1&7 

1 0.1 Wz 128 128 128 128 12.8 12.8 128 12.8 12.8 128 

^Ict. D N D N D N D N D N D N M R E M 

14.0 L18 13.4 13.2 12.9 12.6 12.2 1L9 11.4 8.9 

2 0.2 1L3 11.3 1L3 11.3 1L3 1L3 11.3 11.3 11.3 11.3 

Act D N D N D N D N D N D N D N D N D N R 

1 Wi 13.8 13.5 13.1 12.8 12.4 121 11.5 11.1 10.4 &19 

3 0.4 8.61 8.61 8.61 8.61 8.61 8.61 8.61 8.61 8.61 8.61 

Act D N D N D N D N D N D N D N D N D N E 

115 13^ 127 124 120 1L5 1&8 10.3 9.3 3.9 

4 0.6 Wz 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 

Act D N D N D N D N D N D N D N D N D N R 

13^ 13.1 126 122 1L8 1L4 10L6 10.0 8.8 3.0 

5 0.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 

Act D N D N D N D N D N D N D N D N D N R 
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Table 3-5. Expected survival time under different actions and choice of optimal 

action for example 2 

cage bm\ i 1 2 3 4 5 6 7 8 9 10 

17.1 16.8 16.5 16.3 16.0 15.8 15.4 15.2 14.7 12.9 

1 0.1 15.4 15.4 15.4 15.4 15.4 15.4 15.3 15.4 15.4 15.4 

Act . D N D N D N D N D N D N D N R R R 

17.0 16.7 16.4 16.2 15.9 15.6 15.3 15.0 14.5 12.5 

2 0.11 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 

Act D N D N D N D N D N D N D N R E R 

2 16.9 16.7 16.3 16.1 15.8 15.5 15.1 14.8 14.2 8.5 

3 0.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 

Act D N D N D N D N D N D N D N D N D N R 

16.0 15.6 15.1 14.6 14.1 13.5 12.5 11.7 10.2 3.3 

4 0.7 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 

Act D N D N D N D N D N D N D N D N D N R 

15.7 15.3 14.7 14.2 13.6 13.0 11.8 11.0 9.1 1.61 

5 0.9 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Act D N D N D N D N D N D N D N D N D N R 
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TTaJole 3^6. Ezxipectxsd siurirr/ai tiroe uiickar cUfFereait Ewcticwis laiKi cdioice of c%)tiniai 

action for example 3 

cage 771 bm\ i 1 2 3 4 5 6 7 8 9 10 

1&7 1&5 19.2 19.0 18.8 18.5 18.3 l&l 17.9 15.9 

1 0.1 Wz 17^ rA8 rA8 rA8 rA8 17.8 rA8 17.8 rA8 17.8 

Act . D N D N D N D N D N D N D N D N D N R 

1&6 19.3 19.1 18.8 18.6 18.3 18.0 17.8 17.5 15.4 

2 a i l 17.4 17.4 17.4 17.4 17.4 17\4 17.4 17.4 17.4 17.4 

Act D N D N D N D N D N D N D N D N D N R 

3 Wi 19.4 19.1 18.8 18.5 18.3 18.0 17.6 17.3 17.0 14.7 

3 a i 2 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 

Act D N D N D N D N D N D N D N D N E R 

PKi l&O 1&6 1&2 17^ 17.4 17\0 1&4 1&8 14^ 1L7 

4 a i 5 IV2 1&2 1&2 1&2 1&2 1&2 16.2 1&2 1&2 1&2 1&2 

Act D N D N D N D N D N D N D N E R R 

1&7 1&3 rA8 17^ 1&8 1GL4 15^ 14^ 128 2.0 

5 0.9 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 

Act D N D N D N D N D N D N D N D N D N R 
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1 

2 D o 

3 N o t h i n g R 

4 

5 

Figure 3-6 Result of example 1 (simple form) 

?7l\2 1 2 3 4 5 6 7 8 9 10 

1 

2 D o 

3 N o t h i n g 

4 

5 

Figure 3-7 Result of example 2 (simple form) 

1 2 3 4 5 6 7 8 9 10 
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3 N o t h i n g R 

4 

Figure 3-8 Result of example 3 (simple form) 
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expected 

survival period 

environment 
quality state 

a 0-2 m|2-4 [ ]4-6 []6-8 g8-10 [ ] 10-12 g 12-14 [ ] 14-16 

Figure 3-9. Expected Survival Period of example 1 

expected 

survival period 

environment 
quality state 

• 0-2 • 2 - 4 • 4 - 6 Q6-8 # 8 - 1 0 • 10-12 # 1 2 - 1 4 014 -16 • 16-18 

Figure 3-10. Expected Survival Period of example 2 
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3.4 Model for 2 Repair Actions under Multiple Environment 

3.4.1 Introduction In this section we consider two repair actions. One is the 

quick repair action and reflects repair in-situ whUe the other is a slow repair and 

reflects repair back at a central depot. The two repair actions differ both in time 

to repair and in the quality of the stand-by unit after the repair axztions. Apart 

from the two different repair actions, ail the other conditions are the same as those 

of the previous model. 

3.4.2 Terminology 

Possible Actions In this model, there are three possible maintenance actions by 

the operator at each time period. 

(1) do nothing, (2) quick repair(low quality repair), (3) slow repair(high quality 

repair) 

Repair The quick repair takes 1 unit time period until the completion of the repair. 

The slow repair takes 2 unit time periods until the completion of the repair. After 

repair, the standby unit has a different probability distribution i?®(for quick repair) 

and (for slow repair) where 

.fV AT t t 
-R® = 1, ^ = 1, ^ Rl < ^ (stochastic ordering) for all k 

r=l r=l r=l r=l 

3.4.3 Model 

Model Description As in the 1 repair action model, we can consider several actions 

-do nothing and the two repair actions- for the each environment situation. The 
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do nothing action can be divided into two sub-cages, (1) when the unit quality 

state is not in #(failure state), and (2) When the unit quality state is in N. 

Cage 1 Do Nothing 

( i ) i ^ A/" 

(2 ) i = N 

Case 2 QuickRepair 

Cage 3 Slow Repair 

Hence, we need to develop four calculations for each environment situation, 

(1) a model for the maximum expected period with do nothing now(z ^ A )̂, 

m), (2) a model for the maximum expected period with do nothing now(% = 

TV), m), and (3) a model for the maximum expected period with quick repair 

now, (4) a model for the maximum expected period with slow repair now, 

Then, we can derive the optimality equation to decide which expected 

period among 14 ,̂ 14̂  and is best. 

Expected Survival Periods by Do Nothing under Environment Situation m, Wi(i, m) 

The expected period by do nothing under the environment situation m is exactly 

the same as that of the 1 repair model. 

(1) When the standby unit is in working condition (i ^ N) 

N M 
(%, = 1 + ^ (j, m') 

J —^ m'=1 

(2) When the standby unit is in failure condition (i = N) 

W,{N,m) = (1 - ( , „ ) [ ! + ^ 
m =1 



58 

Expected Survival Periods by Quick Repair under Epvironmeiit Situation m, Wafm) 

The quick repair action in this model is also the same aa the repair action in the 

previous model. 

N 

M4(m) = (1 - k . ) | l + E ^ 
m =1 r=l 

Expected Survival Periods by Slow Repair under Environment Situation m, W?,{m) 

If the standby unit is in slow repairing which takes 2 time unit periods, the vulner-

able period is different. If there is an occurrence of an initiating event, the system 

hag a catastrophic event automatically. For this case we can consider the follow-

ing three possible situations: (1) an initiating event occurring in the Erst repair 

period, (2) no initiating event in the first repair period, but an initiating event 

occurring in the second repair period, (3) no initiating event occurring during the 

repair period. We show these possible cases from the Figure 3-11, 3-12, and 3-13. 

Environ. Situ. =rn 
Catastrophic Event 

Qti Slow Repair 

p. 

t+1 

Initiating Event witli b m 

t+2 

Figure 3-11. An initiating event occuring in the &rst repair period 



59 

Environ Situ = m Catastrophi c Event ^ 

On Slow Repair 

Ho Initiating Event 
ŵ ith 1 - b m 

t+1^ 

Initiating Event 
v/ith b m' 

t+2 

Figure 3-12. An initiating event occuring in the second repair period 

Environ Situ = m 
^ S in' k 

On Slow Repair 

Quality state 

V(r,k) 

f > 
tH-1' t+S 

No Initiating E vent No Initiating Event Initi ati ng Ev ent or n ot 
with 1 - b witli 1 - b 

Figure 3-13. No initiating event occuring during repair period 

Hence, the expected survival period by slow repair vrhen the environment sit-

uation is m, W3(m) is 

M M 
W,{m) = (1 - 6 „ ) [ 2 - ^ ^ - i>„0 E E 

m =1 m =1 k=l r=l 

Optimality Equation We derive the optimality equation to select the best 

repair action in each state. In order to do this, we compare the expected periods 
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until a catastrophic event if we do nothing, enact a quick repair or a slow repair 

at this period. The optimality equation is: 

=max{M/i(%,m),M^(m), W3(m)} (3.7) 

, where 

7/ M 
W,(i,m) = + ( 3 . 8 ) 

J—1 m' = l 

where 

^tN = 1 if i = N 

6,;̂  = 0 otherwise 

W,{m) = (1 - 4„)11 + Y , S^^'Y.RlV(r,m)\ (3.9) 

m!=1 r=l 

M M M TV 

W,(m) = (1 - (>„)|2 - ^ ^ ^ ^ . ( l - b^,)Y,Sra',YKV{r.k)] 
m'~l =X /c=l r=l 

(3.10) 

(3.7), (3.8), (3.9), (3.10) can be solved using value iteration. The results of the 

previous section extend to this model and the proofs follow by induction on value 

iteration. The value iteration scheme satisfies equation (3.7), (3.8), (3.9), (3.10) 

with Wn on the L.H.S. and on the R.H.S. 

Lemma 3.4.1 V{i, m) is a non-increasing function of i, where i is the quality state, 

1 < % < jV, and is the arbitrary environmental situation state, 1 < m < M. 
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(Proof) 

The proof is given by induction on M in ) where ) is the zith iterate 

of value iteration. Using the induction hypothesis, the stochastic ordering of 

in i and m) being a non-increasing function of we get the followuig result 

for (3.8): 

M^(z, W > ^ ( % + 1, W 

M/̂ (n2) and M^(m) for % and % + 1 are equal. Therefore, we can conclude that 

%;(%, m) > %i(% + 1, m) which means that %i(̂ , m) is a non-increasing function of 

i. Hence in the limit as n ^ oo, V(i,m) is a non-increasing function of i. 

Lemma 3.4.2 y(2, )̂ > y(i , ZQ for all t, where Z < Z' 

(Proof) 

The proof follows as in Lemma 3.4.1 

Theorem 3.4.1 In state A^(down), one should always repair. 

(Proof) 

From Theorem 3.2.1, we know if there was only a quick repair action one would 

use the quick repair in state # . Adding a slow repair cannot decrease the state 

where repair occurs and here the result holds. 

Theorem 3.4.2 2*(M) = jV. 

(Proof) 
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From the previous theorem, we proved that at state 7V(dowii) we always need 

to repair. This theorem requires one to prove 

Wi(7V - 1, M) > max[M^(M), M / g M ] 

The proof that Wi{N — 1,M) > W2{M) follows exactly as in Theorem 3.2.3. 

Now we need to prove Wi(Ar — 1, M) > W3(M), 

M M M AT 
w,{i) = (I - ».)|2 - E + Z 4 ^ ' (I - ) Z E 

m!=X m! =1 1 r=l 

M M M ^ 
W,{M) = (l-bM)[2-Y.S„^,b^.+ Y,S„^.(l-b^.)Y,S„,,Y.KV(T,k)] 

m'=1 m'=l k=l r=l 

Using the result of Theorem 3.2.1, we get 

M 

W,[N - l .Af) > 1 + ^ S„„.,W3{m') 
171=1 

Since 6/ < < E5=i'5'MT7i'V (stochastic ordering), ( 1 -

V ) > - L ' ) (stochaatic ordering), we can say 

M M M N 
= (1 - h)[2 - ^ S,„,(l - 6,„0 ^ '=)! 

m'=1 m! k=l 1 

M M M W 
> (1 - ()M)[2 - ^ ^ ^ ^ ^)] 

m'=l 7Ti'=l fe=l r=l 

= M^(Af) 

Hence, we can conhrm that 
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M M 
> l + E ' 5 ' M „ ' » ' 3 ( ™ ' ) > l + E ' S A . w H ' 3 ( A f ) 

m = 1 m! =1 

— 1 + PPg (-&f) > 

Thus > max[W2(M),W3(M)] which means we always have 

= W. 

Lemma 3.4.3 i*{l) < i*{M) for all I. 

(Proof) 

From theorem 3.4.1, we proved that z*(Z) < TV for an arbitrary environmental 

situation L Also, from theorem 3.4.2, we know that i*(M) N . Hence, it is true 

that 2*(Z) < %*(M) for all i 

Corollary 3.4.1 When = 62 = = bM = b, ?*(1) = i*{2) = = 

r (M) = TV 

(Proof) 

If 61 = 6; = 6m, by lemma 3.4.3 all environmental state are equivalent to state 

M. By theorem 3.4.2, f (M) = TV. And so by lemma 3.4.3, %*(1) — 'i*(2) — = 

%*(TW) = TV . 

3.5 Numerical Example 

Description In this example, there are also 5 different environment situation 

states andlO different unit quality states. The probability of an initiating event. 
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6m, where 1 < m < 5 is (0.1,0.2,0.4,0.6,0.7). The transition matrices for both 

quality state and environment situation are the same aa in example 3. The effect 

of the repairs has the following distributions. These are different from the repair 

distribution in example 1 to 3 in that the quick repair tends to return the item to 

a worse state and the slow repair tends to return the item to a better state than 

the repair action in those examples. 

Table 3-7. Repair TPM for example 4 

State 1 2 3 4 5 6 7 8 9 10 

Quick Repair, 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.4 

Slow Repair, 0.8 0.1 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

The results in Table 3-8 show the results are similar to those in the previous 

numerical examples. This model recommends repairing the stand-by unit before 

environment 2 because the initiating event probability, 62 = 0.2 is twice as big 

as 61 — 0.1. However the repair is not the quick repair but the slow repair. In 

environmental situations 2 and 3 , we also need to do the slow repair action at 

quality state 10. The reason is that the probability of an initiating event in this 

situation is much lower than that in situations 4 and 5. Hence we prefer a slow 

repair because of the better repair quahty despite the fact that it takes twice as 

long as the quick repair action. In situation 4 and 5 we need to do a quick repair 

because the initiating event probability is so much higher. 

In example 5, the probability of an initiating event, 6^, where 1 < m < 5 

is (0.1,0.11,0.12,0.15,0.9). The quality after repair foUows the distributions in 
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Table 3-8. The Table 3-9 shows the environment situation transition probabihties 

for each environment situation. 

Table 3-8. Repair TPM for example 5 

State 1 2 3 4 5 6 7 8 9 10 

Quick Repair, 0.0 0.0 0.0 0.0 0.2 0.3 0.2 0.1 0.1 0.1 

Slow Repair, 0.8 0.1 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Table 3-9. Environment Situation TPM for example 5 

m \ m' 1 2 3 4 5 

1 0.9 0.05 0.03 0.01 0.01 

2 0.6 0.2 0.1 0.06 0.04 

3 0.38 0.28 0.18 0.07 0.09 

4 0.04 0.06 0.1 0.2 0.6 

5 0.01 0.01 0.03 0.05 0.9 

As in the result of example 5, we have an example where quick repair is used 

and even one where quick repair can occur for an up state in one environmental 

situation, but one does nothing in better and worse environmental situations. 
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Table 3-10. Expected survival time under different actions and choice of optimal 

action for example 4 

m bm\ ^ 1 2 3 4 5 6 7 8 9 10 

1 0.1 

l&O 9.8 9.5 9.2 9.0 8.7 8.3 8.1 7.7 6.7 

1 0.1 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 1 0.1 

Ws 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 

1 0.1 

Act. D N D N D N DAT DA^ DA^ DAT §R §R 

m bm\ ^ 1 2 3 4 5 6 7 8 9 10 

2 0.2 

PKi 9.9 9.7 9.3 9.1 8.8 8.4 8.0 7.7 7.2 5.4 

2 0.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 2 0.2 

W3 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 

2 0.2 

Act. D7V D N DA/̂  DAT DAT DA^ DAT DA^ 

bm\ ^ 1 2 3 4 5 6 7 8 9 10 

3 

9.8 9.5 9.1 8.8 8.5 8.1 7.5 7.1 6.4 3.4 

3 0.4 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 3 

W3 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 

3 

^Lct. DAT DAT DA/̂  DAA DAT DA^ DA/̂  DAT 
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bm\ i 1 2 3 4 5 6 7 8 9 10 

9.6 9.3 8.9 8.5 8.1 7.7 7.1 6.6 5.6 1.9 

4 0.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 

2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 

Act. DAT DAT DAT DAT DAT DAT DjV D N DAT QR 

m bm\ i 1 2 3 4 5 6 7 8 9 10 

IVi 9.5 9.2 8.7 8.4 8.0 7.6 6.8 6.3 5.3 1.3 

5 0.7 w/g 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 

Ws 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 

Act. DAT DAT DA^ DAT DAT DAT DAT DAT Q R 

1 2 3 4 5 6 7 8 9 10 

1 

2 D o 

3 N o t h i n g 

4 Q R 

5 

Figure 3-14 Result of example 4(simple form) 
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expected 

survival time 

environment 
quality state 

a o - 1 a 1-2 a 2 - 3 0 3 - 4 # 4 - 5 a 5 - 6 # 6 - 7 0 7 - 8 g s - g g s - i o 

Figure 3-15. Expected Survival Period in example 4 

Table 3-11. Expected survival time under different actions and choice of optimal 

action for example 5 

m bm\ i 1 2 3 4 5 6 7 8 9 10 

22.1 21.9 21.6 21.4 21.2 21.0 20.7 20.5 20.0 17.7 

1 0.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 

Ws 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 

Act. D7V D7V D7V D7V DW QR 
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bm\ i 1 2 3 4 5 6 7 8 9 10 

20.8 20.5 20.3 2&1 19.8 19.6 19.2 19.0 18.6 16.2 

2 0.2 M/g 17.6 17.6 17.6 17.6 17.6 17.6 17\6 17.6 17.6 17.6 

Ws 17.3 rA3 17.3 17.3 17.3 17.3 17\3 17.3 173 r r 3 

Act. DAT DAT D N DAA DAA DAT DA^ D N DA^ QR 

^m\ i 1 2 3 4 5 6 7 8 9 10 

1&7 1&5 19.2 1&9 1&7 1&4 18.0 17.7 17^ 14.8 

3 0.4 ^ 2 1&4 1&4 1&4 1&4 1&4 1&4 16.4 1&4 1&4 16.4 

M/3 l&O l&O l&O l&O l&O l&O 16.0 l&O l&O l&O 

Act. DA" DAT DAT DAT DAT Z)A^ DAT DAT QR 

bm\ i 1 2 3 4 5 6 7 8 9 10 

12.1 11.7 11.2 10.7 10.3 9.7 9.0 8.5 7.6 5.6 

4 0.6 Wz 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 

W3 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 

Act. DAA DA" DAT DAT DA" DAT QR QR Q R 

m bm\ i 1 2 3 4 5 6 7 8 9 10 

10.0 9.6 8.9 8.4 7.8 7.2 6.3 5.6 4.2 0.3 

5 0.7 W2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

W3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Act. DAT DAT DAT DA" DAT DA^ DA/̂  DAT DAT QR 
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1 2 3 4 5 6 7 8 9 10 

1 

2 D o 

3 N o t h i n g 

4 QR 

5 

Figure 3-16 Result of example 5 (simple form) 

3.6 Conclusions 

The models presented in this paper show that there is a strong interaction 

between the quality state of the stand-by unit, the general environment state, and 

the repair action. In the one repair action case,one always repairs when the unit 

is down and the most hostile environment only repairs when the unit is down. In 

other environments one can make repairs when the unit is still functioning. We 

have produced a counter example to the assumption tha t the states at which one 

repairs increase as the environment becomes more benign. 

With quick and slow repairs, the repair or do nothing decision continue to have 

the same proportions as in the one action case. The choice between quick or slow 

repair depends critically on the relative outcomes of the two repair processes. The 

numerical example suggests one is more likely to move from slow to quick repairs 

as the environment becomes more hostile, but this need not always be the case. We 

have examples where quick repair (or slow repair) is used and even one where quick 
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repair can occur for an up state in one environmental 8ituation(8ee Figure 3-16 of 

example 5), but one does nothing in better and worse environmental situations. 



CHAPTER 4 

Repair Strategies in an Uncertain Environment: Stochastic Game Approach 

4.1 Introduction 

In chapter 3, we have developed discrete time Markov decision process for-

mulations of the standby unit repair problem in order to investigate the form 

of the optimal repair policies which maximise the expected survival time until a 

cataatrophic event. In chapter 4, we look at conHict situations where the environ-

ment is controlled by an opponent. In this caae the opponent's actions force the 

need for the equipment, and this situation is modelled as a stochastic game. 

For this, we develop stochastic game models in global and local constraints on 

effort. In the models with global constraints on eSbrt, we consider ail time periods 

and give a capacity limit to the player II. For the local case we only need to consider 

the opponent's action over a short previous time horizon. In our stochastic game 

model, we discretize the state space. For the decayed capacity limit model of this 

stochastic game model, we use approximation methods in order to get a sleep 

index. Using this method we can make the continuous value of the sleep index 

to the discrete one. Also, for the pure capacity limit model, in which there is 

no discounted factor, we use boundary condition because the sleep index goes to 

infinity. For we do this by assuming that if the sleep index is bigger than a certain 

number N, we assume that the index is equal to N. The outline of this chapter is 
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ag follows. 

In section 4.2, we look at the problem where there ajre no constraints on the 

enemy in terms of the actions they can perform. This leads to a complete but 

unrealistic solution to the problem because in reality, an opponent- be it rogue 

country or terrorist - cannot be continually on the attack. Thus in section 4.3 we 

introduce the idea of a constraint on the average effort undertaken by the opponent 

over the total history of the game so far. We naively describe this as a sleep index 

in that the opponent needs to sleep for a certain percentage of the time. This 

reflects the need to be able to regroup, resupply and replan between times of high 

levels of actions. In section 4.3 we further expand these results to the situation 

where the advantage of a rest or quiescent period is discounted the further in the 

past it is, but always has a positive effect. In section 4.5 we look at games where 

the benefit to the opponent of being " able to sleep" only lasts for a 6nite period 

and is then lost completely. In each cage we are able to derive properties of the 

form of the optimal maintenance pohcy and also to find the form of the optimal 

policy in specific numerical examples. In the concluding section we consider the 

implication of these results. 

4.2 Basic Stochastic Game Model 

4.2.1 Introduction Consider the basic game where player I has to decide when 

to undertake preventive maintenance or repair on his stand-by equipment and 

player II has to decide what level of threat should be in the environment. In the 
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military context, player I is the friendly forces and player 11 the enemy forces. 

The game is played repeatedly and at each period, player I has to decide whether 

to perform maintenance/repair on the equipment or to do nothing. We assume 

the environment can be in one of two states, - state 1, which is a "peaceful" 

environment and state 2 , which is a more "dangerous" environment- and player II 

chooses at each period what the environment state will be. These are akin to the 

DEFCON states defined by U.S. and other military authorities for assessing the 

environment. The chance of an initiating event, which requires the stand-by system 

to respond is 6^ if the environment in state m, with 6% <62. The stand-by unit 

is inspected regularly each period and this gives information on the operational 

state of the equipment. These states can represent either operational states, such 

as yl, 5 , C, D used by same mihtary or could be functions of age and operational 

history. Assume the equipment can be in one of states, ranging from 1, as good 

as new, via 2, - TV — 1 which are still conditions where it is still operable to 

state N which means the equipment is down and will not work. If no action is 

performed on the equipment it wiH move from state t at one period to state j at 

the next with probability where = 1 and f / / / / = 1. The "ordering" of 

the intermediate equipment states reflects increasing pessimism about their future 

operability and this is expressed by assuming satisfies a first order stochastic 

ordering condition namely 

for all % = 1, - , TV - 1, A; = 1, - N, 

If the preventive maintenance/repair action is performed (the former if equip-
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ment state is% = l,- -,7V—1, the latter if the state is A )̂, this talces one time 

period, during which the equipment carmot be used, if required, and returns the 

equipment to the statel - the good as new state. The subsequent results also hold 

if the maintenance action is not perfect, and returns the equipment to state 2 with 

probability 72,, but we will not complicate notation by describing this caae. 

4.2.2 Game Model Player Ts aim is to maximise the time until a catastrophic 

event occurs- an initiating event is triggered and the stand-by system is unable 

to respond. Player 11 on the other hand wants to minimise the time until the 

catastrophic event occurs and knows the state of I's equipment. Thus this situation 

where the two players are completely at odds with one another can be modelled 

as a two players zero sum stochastic game as follows. 

Let the game P have # subgames Pi, - - ,P;v̂  where P, corresponds to the 

equipment being in state i Player I then decides whether to perform a maintenance 

action or do nothing for the next period while at the same time player II decides 

whether to act so the environment is peaceful(statel) or dangerous(state 2). This 

defines the probability that an initiating event will occur during the period, and 

hence if the equipment is down or being repaired, whether there is a catastrophic 

event. If the equipment is in state z(P,) and no maintenance is carried out, it will 

move to state j ( and the game to subgame P )̂ for the next period with probabihty 

Pjj. Thus the payoff matrix when the game is in subgame P, is given by 
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II 

TV Making Peaceful Situation Making Dangerous Situation 

I Do Nothing 1 + 1 + E j l i 

Repair ( i - 6 i ) ( i + r i ) (1 — 62) (1 + Fi) 

(4.1) 

II 

Fjv Making Peaceful Situation Making Dangerous Situation 

I Do Nothing ( l - 6 l ) ( l + r;v) (1 — 62) (1 + Fjv) 

Repair (1 — 6i)(l + Fi) ( 1 - 6 2 ) ( 1 + Fi) 

(4.2) 

In (4.1), the numbers represent the reward in this stage of the game and the 

imphes that with probability the next play of the game wiU be subgame 

Fj. For discounted stochastic games, which these are because of the (1 — term 

which guarantees the value of the game is bounded above by x the value 

of the game, f,, starting in subgame i, for % = 1, - satisfies the equation 

f t 
1 + E ; . , P.,V{J) 1 + E r . i P.MJ) 

(1 - 6i)(l + f ( l ) ) (1 ~ b2)(l + v( l ) ) 

, i / N (4.3) 

or 
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f (A/") = faZ (4.4) 
( l - 6 i ) ( l + ;̂(7V)) ( l - 6 2 ) ( l + ?;(jV)) 

( l - 6 i ) ( l + ?;(l)) ( 1 - 6 2 ) ( 1 + ?;(!)) 

Moreover the solution of this game with an infinite number of periods can be 

solved using a value iteration approach where the iterate (which corre-

sponds to value if only n, periods allowed) satishes 

1 (j) 1 + (.7) N 

(1 — 6i)(l + %;n-l(l)) (1 — 62)(1 + fn._i(l)) 

(4.5) 

with a similar equation based on (4.4) for Vn(N). vo(i) — 0 by definition. This 

allows us to solve the game with help of the following lemmas. 

Lemma 4.2.1 ^^(z) is non-deceaaing in M and non-increasing in % and converges to 

Proof The non-decreasing result in M foUows since i'i(%) > i'o(%) = 0 and then by 

induction. Since fn_i(z) > fn_2(^) for ail / the four terms in the payoff matrix for 

f;t(2) are greater than or equal to the four terms in the matrix for fn-i(^)- Hence 

fn(%) > ^71-1(2) and the induction step is proved. 

Similarly 0 = fo(« + 1) < vo(i) = 0 for all i, so the hypothesis holds for 

71 = 0. Assume true for i;;i_i(%) then the stochastic ordering plus the monotonicity 

of ?;T.-i(̂ ) imphes Hence again each of the 

four entries in (4.5) of i'n(̂ ) is as large if not larger than the corresponding terms 

for ?;n(2 + 1), so 'Un(* + 1) < t'n(̂ ) for % = 1, - TV — 1. The same result holds for 



78 

— 1) since for it is clear that repair dominates do nothing 

because (TV) Hence = m i n { ( l - 6 i ) ( l + ' u ^ _ i ( l ) ) , ( l - 6 2 ) ( l + 

— 1) and the induction step holds. 

"Trivially since (̂ ) < ^n+i f n ( ) converges to ?; ( ) because f^ (%) is a bounded 

increasing function, bounded by T/6i where T is expected number of periods 

from state 1 to state N under the do nothing transition matrices. Similarly since 

i'n(t) > 4-1) and 'Un() converges to 'u(), we get the following corollary. 

Corollary 4.2.1 v{i) is non-increasing in i. 

Theorem 4.2.1 The optimal strategy in the unconstrained game is : for player II 

always to choose the dangerous environment, for player I to do nothing in states 

% < 2*, where z* < and perform maintenance/repair in state to 

Proof Since 62 > , trivially the dangerous strategy for player II always dominates 

the peaceful strategy. Since by the corollary 'u(l) > 'u(A )̂, the repair strategy(for 

the dangerous environment) is as good if not better than do nothing strategy for 

state AT. The monotonicity of f (j) together with the stochastic ordering of 

implies ^ is non-increasing in z and so once it goes below (1 — 62)(1 + ^'(1)) 

(: the deSnition of %*) it will remain below it for all higher states 

The solution of this game is unrealistic because the assumption that player II 

can always ensure the environment is dangerous is unrealistic. In the next section 

we remove this assumption. 
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4.3 Model with Global Constraints on Effort 

4.3.1 Introduction One reason an enemy cannot continuously create a dangerous 

environment, is that it needs time to regroup, plan and rest its forces- which we 

facetiously describe as "sleep". One possible assumption is that at any stage 72 of 

the game, the enemy can only have created a daagerous environment in at most a 

proportion c of the previous stages. Thus if it hag created a dangerous situation in 

d stages, d < c?% and s = c?i — d is a measure of the "sleep index", how much effort 

the enemy still has available to create dangerous situations. If the sleep index is 

5 and at the next period player II chooses a peaceful environment, the index wUl 

move to g + c, while if he chooses a dangerous environment, the index will move 

to 5 — (1 — c) = g + c— 1. In this model the effect of the rest induced by a peaceful 

environment will endure undiminished throughout all the future. An alternative 

view is that the c value that the restful period adds to the "sleep" index should 

diminish to ac next period the period thereafter and so on. This is equivalent 

to saying that if the current sleeping index is g, and this period player II keeps the 

environment peaceful, the index will move to as + c, while if player II chooses to 

make the environment dangerous the index will move to ag — (1 — c). 

4.3.2 Game Model We will prove results for the two cases a = 1 (undiscounted) 

and a < 1 (discounting of the index) in the same model though in the former case 

the sleep index could be infinite, while in the latter case it is bounded above by 

c/(1 — o:). In order always to have a hnite set of subgames, we wiU always assume 

in the undiscounted case that the index cannot exceed M. So the stochastic 
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game T model of this situation consists of a series of subgame where % = 

1, - - and 0 < g < niin{M, c/( l — a)}. Although the sleep index set appears 

continuous, it is in fact countable infinite, and in fact finite if only r stages are 

allowed. If the index starts with gg then after r stages, the value can only be 

CK̂'go + c(l — — a:) — ZiCk''"* where Z, — 1 or 0 depending on where 

player II played dangerous or peaceful at the stage. 

Let ?;(%, g) be the value of the game starting in then the values satis:^ the 

equations 

0,11, dig 
g) = W 

(221, <̂ 22 

where 

(1 — 6j^{i)bi){l + P%]V{j, as + c) 
N 

an = 

ai2 = 

2̂1 = 

<̂ 2 = 

J = 1 

N 

(1 — S]sf{i)b2){l + P^jv{j, as + c — 1)) 
j=i 

(1 — 6i) (l + f (1, GS + c)) 

(1 - 62)(1 +1^(1, ag + c — 1)) 

and 

= 1 if % = TV, 0 otherwise 

The value iteration algorithm defines by 

'Un(z, g) = 
n „n 

(̂ 11; (̂ 12 

"211 "'22 

(4.6) 
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ni 

where 

(1 — CK5 + c) 
N 

3=1 
N 

1̂2 — (1 — 6j\f(i)b2)(l + P^jVn-i{j, as + c — 1)) 
j=i 

2̂1 — (1 — ()l)(l+1'n-l (1,0:5+ c)) 

(̂ 22 ~ (1 ^ ^2)(1 + ^7i-i(l,as + C — 1)) 

where again if a s + c > M, it will be deEned aa M. Again define 'Uo(̂ , 5) = 0 for 

all 2 and g. As in section two, in order to prove results about the optimal pohcies 

for the game, T, one proves results about g) and hence i;(2, a). 

Lemma 4.3.1 s) is non-deceasing in n, and non-increasing in i and g. 

Proof All the results follow from induction and the fact that if 
di bi 

Ci (fi 

and 1̂ 2 = "uoZ 
02 ()2 

then if ai > 02,61 > 62, Ci > C2, > ^2, Since 

C2 (̂ 2 

5) = 0, fi(%, g) > 0, g) — %(*, 5) > 0. Assume that for 5) > 5) 

v4i 
for all 2,g and note that from (4.6) g) = W and 'Un(̂ ,5) 

A2 ^2 
where v4i > A2, > Bg, Q > C2, > 2)2 from the hypothe-

C2 2̂ 2 

sis. Then fm+i(^, 5) > fn.(%, s) and induction step goes through. 

Again trivially 'Uo(% + 1,^) ^ '(̂ o(%,5) and %;o(%,g') < 1)0( ,̂5) if g' > g since 

all the times are zero. Assume true for 5) for all i and g then comparing 
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+ 1, s) and 5), stochastic ordering imphes 0:5 + c) < 

aa+c) and a a + c - 1 ) < a s + c - l ) and 

hence that s) < fn+i(^, a). So the induction step goes through. The same 

argument shows that if a) if g < / , then if 

5 < 5 ' . 

Corollary 4.3.1 v{i,s) is non-increasing in i and s. 

Proof Since g) is non-deceaaing in M and bounded above by T/61 where T 

is the expected number of periods to move from state 1 to state iV under the do 

nothing strategy, then a) is a monotonic bounded sequence and so converges 

to i'(%, g). Hence the properties, + 1, &), s ) < 'Un(%, a) if 5 < / 

hold for the limit function i;(%, g). 

With these results, it is possible to describe several features of the optimal 

strategies. Firstly we show that if the item is "down(in state TV)" then player I 

will want to repair it, while player II wiH want to make the environment dangerous 

if they can. This abihty to make the situation dangerous can only occur if aa — 

(1 — c) > 0 or 5 > (1 — c)/a. Since if player II starts with a sleep index of 0, 

the maximum the index can b e i s s < c / ( l — a), player II can play the dangerous 

strategy if c / ( l — o:) > (1 — c)/a, i.e. a : 4 - c > 1, 8 o i f a : 4 - c < 1, the resultant 

game becomes trivial with player II only able to play the peaceful strategy and the 

results of the 1-pIayer situation in Chapter 3, holding. 

Theorem 4.3.1 Provided a + c> 1, then in state N 
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i) if 5 satisfies g > (1 — c)/a!, the optimal strategies are "Repair vs Dangerous" 

ii) if 5 satisAes a < (1 — c)/a:, the optimal strategies are "Repair vs Peaceful" 

Proof The payoff matrix in the subgame Fjv.s is 

PjV.a Making Peaceful Situation Making Dangerous Situation 

Do Nothing (1 — 6i)(l + f (jV, as + c)) (1 — 62)(1 + aa + c - 1)) 

Repair (1 - 6i)(l + aa + c)) (1 - 62)(1 + ;̂(1, aa + c - 1)) 

Since by Corollary 4.3.1, s) < f ( l ,g ) , it is trivial that repair strategy 

dominates the do nothing strategy for player I. I f 8 < (1 — c)/o;, then player 11 

can only play the peaceful strategy and so "Repair vs Peaceful" is optimal. If 

(1 — c)/a!, we need to show that it is better for player II to play dangerous 

than peaceful at the first occasion the system is in state TV. Let vr* be the policy 

that chooses to play "peaceful" at the current situation % = TV, and plays optimally 

thereafter so (JV, g) = (1 — 6i)(l + as + c)). Let %% be the policy that plays 

peaceful at the current z — TV, and the same as vr* except that at the next down 

situation chooses the dangerous environment ( even if this pohcy may really be 

nonfeasible since the index value may subsequently go negative). Since playing 

dangerous rather than peaceful cannot increase the time until a catastrophic event 

s) < g). Let 7r2 be the pohcy that plays dangerous now and peaceful 

at the next down event, but otherwise chooses the strategies suggested by vri and 

TT*. Let be the expected time between now when % = TV and next time % = AT 

under vr* and T is expected time until a catastrophic event from next time % = 

under tt* conditional on reaching the second i = N event. Then 
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a) = (1 - 6 1 ) + (1 - 62)^) > (1 - 6 2 ) + (1 - 6i)T) = g) 

If TT̂  is the optimal policy for player II against the optimal policy of player 

I following a choice of dangerous euviroument now, then g) < g) < 

(AT, g) < (AT, g) and it is best for player 11 to choose "dangerous" environment 

as the best response. 

If the stand-by system is working then one can have any of the four combi-

nations of pure strategies being chosen or even mixed strategies. What one can 

show though is that if the sleep index is so low, that player 11 cannot provoke 

a dangerous environment either this period or next period then player I wiU do 

nothing if the system is working. 

Theorem 4.3.2 If g < (1 — ac — c)/a!^, then player I will do nothing in state (z, g) 

when % is a working state (2 < # ) . 

Proof The condition on g means that player II can only invoke a peaceful environ-

ment for the next two periods. Consider the possible strategies for player I over 

these next two periods. 

strategy 1 : repair in both periods 

strategy 2 : repair in period 1 and do nothing in period 2 

strategy 3 ; do nothing in period 1 and repair in period 2 
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Let W3 be the respective expected times until a catastrophic event if 

the optimal policy is used after the first two periods. Then 

= ( l - 6 i ) ( l + ( l - 6 i ) + ( l -6i ) i ; ( l ,a!^a + a!c + c)) 

N 

= (1 - 6i)(l + 1 4- + CKC + c)) 
j=i 

— 1 + (1 —6i) + (l —6i)'u(l,0!^5 + a!c + c) 

and trivially W3 > and W3 > since 'u(l,5) > g) for all j and g. 

Hence the do nothing now policy dominates the policies that repair now and the 

result holds. 

It need not be the case that do nothing is optimal even if one is in the new 

state i = 1 because an opponent has to play peacefully if the sleep index is s 

where 0:5 + c — 1 < 0. Repairing keeps the item in state 1, while it could degrade 

under the do nothing strategy. This phenomenon is exhibited in a subsequent 

example (a = 0.6 in table 4-1). Before doing that, we will show that if in the a = 1 

the system is working, and s is large enough, then either players choose do nothing 

vs peaceful or they play mixed strategies where player I almost always plays do 

nothing. To do that we need the following limit result. 

Lemma 4.3.2 In the case a = 1, as g —̂  00, s) and a) converge respectively 

to and 11(2) where 

N 

i{i) = m a x { l + Pt]Vn-iU), (1 ~ 62)(1 + fn - i ( l ) ) } 
J=1 
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and 

N 

j=i 

These equations correspond to the situation where player 11 is choosing the dan-

gerous environment all the time. 

Proof If T is the expected number of periods for the system to go from state 1 to 

state under the transition matrix then g) must be bounded above by 

^ since the time until a catastrophic event under any policy must be less than a 

policy where the only possible times for catastrophic events are when the system is 

in state AA in a peaceful environment( and repair is immediately undertaken). From 

Lemma 4.3.1 and CoroUazy 4.3.1, 5) and are non-increasing sequence 

in 5, bounded above and so must converge. In the limit since 61 < 62 , player II's 

dangerous strategy dominates its peaceful one, since the payofk against do nothing 

are the same, and against repair (1 — 62)(1 + ^;n-i(l)) < (1 — 6i)(l + fn-i(l))-

We are now in a position to describe what happens in the game when the sleep 

index gets very large. 

Theorem 4.3.3 In the game with a = 1, if we are in a working state i, then for any 

e > 0, 3 6" so that for s > 5", the optimal strategies are either a) Do Nothing vs 

Peaceful, or b) mixed strategies where player I plays Do Nothing with a probability 

at least 1 — 6. 
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Proof Consider the payoff matrix in the subgame r"g of the game with n periods 

to go, 

Making Peaceful Situation MaJdng Dangerous Situation 

Do Nothing 1 s + c) : 1 3 + c — 1) : Bn 

Repair (1 — 6i)(l + a + c)) : (1 — 62) (1 + S + c — 1)) : Dn 

and let A, C, D be the comparable values in when is replaced by 

V. From Lemma 4.3.1 and the stochastic ordering property it follows that B > 

though as g —> oo,the difference becomes very smaU). We now wiU 

prove 5 > D. By convergence we can choose a TV and a 6" so that g) — 

^0, 5)1 < 6 for aU s if M > / / and 5) — < 6 for all j where is 

deAned in Lemma 4.3.2 provided 5 > S. Then, 

N 

l + 5) 
]=k 
AT W 

> 1 + ^ 2 PkjVn+l{j, s) — £ > 1 + PkjVn+l{j) — 26 
j=k 

N 

j=k 

> 1 + — &2)(1 + fn(l)) — 26 

= 1 + (1 - 62) + (1 - 62)7;»(1) - 26 

> 1 + (1 - 62) + (1 - 62)?;n(l, g) - 36 

> 1 + (1 — 62) + (1 — b2)v(l, s) — 46 

> (1 — 62) 4- (1 — b2)f (1, s) provided 6 < 

Hence B > Z). 



If A > C, then the fact B > D, means Do Nothing dominates Repair for 

player I and A < B means that Peaceful dominates dangerous for player 11. Thus 

Do Nothing vs Peaceful is optimal. If the caae A < G, note also that if 62 > 

for g large enough C > D since 

(1 - 6i)(l + 'u(l, 5 + c)) > (1 - 6i)(l +1,(1)) - 6 

> (1 - 62)(1 + 'u(l)) + E > (1 - 62)(1 + 5 + C - 1)) 

Hence with C > A,C > D,B > A,B > D, the optimal strategy is a mixed 

one with player I playing 6 > 0 choose e' so 

e' < (62 — 6i)g and then choose 6"* so for g > 5'* so that s) — 'u(j, g')| < 6 

for 5,s' > S* and e' < (62 — 6i)mina>g'u(l,s). Then player I plays repair with 

probability 

C + B — A — D 62 — 61 — s' + (62 — ()i)^(l, 5 + c — 1) 62 — 61 

where 

N 

g - A = s + c - l ) - i ; ( ; , 5 + c)] 
j=k 
N 

C + B - A - D = a + c - 1) - f g + c)] + 62 - 61 + 
]=k 

['u(l, g + c) —"(/(l, g + c—1) + 62'(;(1, g + c—1) — g + c) 

and the result holds. 



4.4 Numerical Example 

The actual policies in specific case can be obtained by using value iteration 

to do the calculations. All the following examples have three equipment states-

1 (new),2(used),3(failed)- and doing nothing gives the following transition proba^ 

bihties, 

P = 

* \ ; 1 2 3 

1 0.3 0.4 0.3 

2 0 0.4 0.6 

3 0 0 1 

Assume the constraint is that c = 0.3 so player 11 can only create a dangerous 

environment 30% of the time. The first example is unconstrained where a = 1. 

Tables 4^1 and 4^2 give the results in the new state(% = 1) firstly when := 0.1 

and 62 = 0.5(Table 4-1) and then when 6% = 0.4 and 62 = 0.5(Table 4-2). Notice 

that until the sleep index s is at least 0.7, player II can only choose the peaceful 

environment. For s < 0.4, player I does nothing (Theorem 4.3.2) but notice in 

Table 4-1 at g = 0.6, player I will repair, even though(perhap8 because) player 

II can only ensure a peaceful environment. When the 61, 6% are quite diSerent, 

the optimal strategies are mixed as g increases, though player Ps probabihty tends 

to 1. When 5 is large enough, as Theorem 4.3.3 applies, in case 1 an s—mixed 

strategy is optimal and in case 2 Do Nothing vs Peaceful is optimal. 



Table 4-1. The Result for i = l(new), &p = 0.1, hp = 0.5 
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Entry GV I II 

s DN vs P DN vs D R vs P R vs D V DAT R P D 

0.0 8.545694 0 ?\901159 0 8.545694 D N — P — 

0.1 7.991002 0 7.244038 0 7\991002 DAT — P — 

0.2 7.846352 0 7.063115 0 7.846352 — P — 

0.3 7.779409 0 7.001468 0 7.779409 DAT — P — 

0.4 7.049254 0 6.966484 0 7.049254 DAT — P — 

0.5 6.848216 0 6.845989 0 6.848216 DAT — P — 

0.6 6.771734 0 6.779698 0 6.779698 — R P — 

0.7 6.734876 9.258600 6.745477 4.772648 6.740826 &44 0.56 1 — 6 6 

0.8 6.549694 8.756620 6.663171 4.495315 6.606939 0.5 0.5 &97 0.03 

0.9 6.468176 8.610763 6.599401 4.422995 6.533275 0.5 0.5 &97 0.03 

1.0 6.429325 8.545694 6.562935 4.389533 6.495242 0.51 0.49 0.97 0.03 

2.0 5.980036 6.429325 (^257458 3.646075 6.020760 0.85 0T5 0.91 0.09 

3.0 5.845124 5.980036 6T52195 3.476366 5.859863 0.95 0.05 0.89 OTl 

4.0 5.794211 5.845124 (1111484 3.417886 5.800096 0.98 0.02 0.88 0T2 

5.0 5.774245 5.794211 6.095469 3.395269 5.776603 0.99 0.01 0.88 0T2 

15.0 5.761531 5.761532 6.085306 3.380726 5.761531 1 — e £ 0.88 0T2 

27.0 5.761531 5.761531 6.085306 3.380726 5.761531 1 — 6 e 0.88 012 

35.0 5.761531 5.761531 6.085306 3^80726 5.761531 1 - 6 e 0.88 &12 
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Table 4-2. The Result for i = l(new), 6p = 0.4, hp = 0.5 

Entry GV I II 

s DN vs P DN vs D R vs P A f a D V DW R P D 

0.0 6.231987 0 4.212781 0 6.231987 DAT — P — 

0.1 6.079537 0 4.128808 0 6.079537 — P — 

0.2 6.036238 0 4.100696 0 6.036238 D7V — P — 

0.3 6.021390 0 4.090763 0 6.021390 D7V — P — 

0.4 5.881433 0 4.087023 0 5.881433 DW — P — 

0.5 5^34579 0 4.073457 0 5.834579 DAT — P — 

0.6 5.818203 0 4.066845 0 5.818203 DAT — P — 

0.7 5.811789 6.394473 4.064020 3.615947 5.811789 — P — 

0.8 5.789178 6.278914 4.062832 3.539723 5.789178 DAT — P — 

0.9 5.778158 6.244166 4.060517 3.518074 5.778158 DAT — P — 

1.0 5.773448 6.231987 4.059103 3.510651 5.773448 DAT — P — 

2.0 5.761807 5.773448 4.056922 3.382586 5.761807 DAT — P — 

3.0 5.761536 5.761807 4.056872 3.380768 5.761807 DAT — P — 

4.0 5.761531 5.761535 4.056871 3.380727 5.761531 DAT — P — 

5.0 5.761531 5.761531 4.056871 3.380726 5.761531 DAT — P — 

15.0 5.761531 5.761531 4.056871 :i380726 5.761531 — P — 

27^ 5.761531 5.761531 4.056871 3.380726 5.761531 DA/̂  — P — 

35.0 5.761531 5.761531 4.056871 3.380726 5.761531 DA/̂  — P — 

Tables 4-3 and 4-4 are the policies for the used and failed states in the case 
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when = 0.1 and 62 = 0.5. In state 2, one has Do Nothing vs Peaceful for 

g < 0.4( no dangerous environments for at least two periods), then one has Repair 

vs Peaceful, at 0.4 < g < 0.7. The mixed strategies are optimal as 5 increases and 

as g —» 00, player I tends to do nothing with probability 1 — e while player II tends 

to (0.62,0.38). Table 4^4 confirms the results of Theorem 4.3.1 that when the imit 

is down it must be repaired and the enemy will seek to make the environment 

dangerous if he can. Looking at the same problem 61 = 0.1, 62 = 0.5 but in the 

discounted case with CK = 0.8 and c = 0.4(not 0.3) leads to Tables 4-5 and 4^6. 



Table 4-3. The Result for i = 2(not new, but working), bp = 0.1, bn = 0.5 
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Entry GV I II 

s DN vs P DN vs D R vs P V DAT R P D 

0.0 8.312322 — ?\901159 — 8.312322 D7V — P — 

0.1 7.966175 — 7.244038 — 7.966175 DAT — P — 

0.2 7.845686 — 7\063115 — 7.845686 DAT — P — 

0.3 7.779409 — 7.001468 — 7.779409 D N — P — 

0.4 6.458816 — 6.966484 — 6.966484 — R P — 

0.5 60214748 — 6.845989 — 6.845989 — R P — 

0.6 (1138669 — 6.779698 — 6.779698 — R P — 

0.7 6.103182 7.065249 6.745477 4.772648 6.488706 a40 0.60 0.87 0.13 

0.8 5.835919 8.532539 6.663171 4.495315 6.294506 &45 0.55 0.83 &17 

0.9 5.745506 8.375801 6.599401 4.42995 6.212769 0.45 0.55 0.82 a i 8 

1.0 5.708 8.312322 6.562935 4.389533 6.174224 0.45 0.55 0.82 0T8 

2.0 5.265155 5.708540 (X257458 3.646075 5.409183 0.85 0T5 0.68 0.32 

3.0 5.130156 5.265155 6T52195 3.476366 5.179242 0.95 0.05 0.64 0.36 

4.0 5.079677 5.130156 &111484 3.417886 5.098657 0.98 0.02 0.62 0.38 

5.0 5.059901 5.079677 6.095469 3.395269 5.067430 0.99 0.01 0.62 0.38 

15.0 5.047299 5.047299 6.085306 3.380726 5.047299 1 — e £ 0.62 0.38 

27.0 5.047299 5.047299 6.085306 3.380726 5.047299 1 — £ £ 0.62 0.38 

35.0 5.047299 5.047299 6.085306 &380726 5.047299 1 — 6 £ 0.62 0.38 



Table 4-4. The Result for i = 3(down), bp = 0.1, bp = 0.5 
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Entry GV I II 

s DN vs P DN vs D R vs P R vs D v D N R P D 

0.0 7.201043 — T\901159 — 7\901159 — R P — 

0.1 7^69558 — 7.244038 — 7.244038 — R P — 

0.2 "7.061118 — 7'.063115 — 7.063115 — R P — 

0.3 7.001468 — 7.001468 — 7.001468 — R P — 

0.4 fxl95171 — 6.966484 — 6.966484 — R P — 

0.5 4.945585 — 6.845989 — 6.845989 — R P — 

0.6 4^80504 — 6.779698 — 6.779698 — R P — 

0.7 4.850395 4.450395 6.745477 4.772648 4.772648 — R — D 

0.8 4.521847 4.121847 6.663171 4.495315 4.495315 — R — D 

0.9 4.431391 <L031391 6.599401 4.442995 4.422995 — R — D 

1.0 4.400580 4.000580 6.562935 4.389533 4.389533 — R — D 

2.0 4.112814 2.444766 6.257458 3.646075 3.646075 — R — D 

3.0 4.007289 2.284897 (1152195 3.476366 3.476366 — R — D 

4.0 3.967883 2.226272 (1111484 3.417886 3.417886 — R — D 

5.0 3.952436 2.204379 6.095469 3.395269 3.395269 — R — D 

15.0 3.942610 2.190339 6.085306 3.380726 3.380726 — R — D 

27^ 3.942610 2.190339 6.085306 3.380726 3.380726 — R — D 

35.0 3.942610 2.190339 6.085306 3.380726 3.380726 — R — D 
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Table 4-5. The Result for i = l(new), c = 0.4, a = 0.8 

s 

Entry Game Value I II 

s DAT D RvsP V R P D 

0.0 9.119139 0 8.433221 0 9.119139 DAT — P — 

0.1 8.499747 0 7.655538 0 8.499747 DAT — P — 

0.2 8.480989 0 7.632890 0 8.480989 D N — P — 

0.3 8.436260 0 7.592634 0 8.436260 DAA — P — 

0.4 8.390626 0 7.551563 0 8.390626 DAT — P — 

0.5 7.517332 0 7.513618 0 7\517332 DAT — P — 

0.6 7^90844 0 7.492803 0 7.492803 — R P — 

0.7 7.332755 0 7.409354 0 7.409354 — R P — 

0.8 7.327393 9.760024 7.403906 5.030051 7.366117 0.49 0.51 0.98 0.02 

0.9 7.296601 9.222378 7.371813 4.738161 7.328369 0.58 0.42 0.98 0.02 

1.0 7'.214618 9.206344 7.289975 4.730074 7.247593 0.56 0.44 0.98 0.02 

1.1 7.196503 9.206344 7.263204 4J19848 7.225783 0.56 0.44 0.99 0.01 

1.2 7\021900 9.120808 7.231623 4.685983 7.116675 0.55 0.45 0.95 0.05 

1.3 6.990664 8.940034 1^190841 4.598464 7.076582 0.57 0.43 0.96 0.04 

1.4 6.966562 8.490526 7^59423 4.245263 7.032787 0.66 0.34 0.96 0.04 

1.5 6.928468 8.474689 7J.22899 4.237344 6.996304 0.65 0.35 0.96 &04 

1.6 6.872290 8.392972 ?\038725 4.196486 6.930300 0.65 0.35 0.96 a04 

1.7 6.743334 7.525998 6.983073 4.175824 6.7956.1 &78 0.22 0.93 &07 

1.8 6.713779 7.396593 6.963334 4.167040 6.762757 0.80 0.20 0.93 0.07 

1.9 6.682847 7.351381 6.944154 4.130449 6.733013 0.81 a i 9 0.92 0.08 

2.0 6.680185 7.330340 6.942264 4.115207 6.729240 (181 0T9 0.92 0.08 
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Table 4-6. The Result for i = 3(down), c = 0.4, a = 0.8 

Entry GajneValue I II 

s DN vs D R vs P R vs D V R P D 

0.0 7.679899 0 8.433221 0 8.433221 — R P — 

0.1 7.647301 0 7.655538 0 7.655538 — R P — 

0.2 7.632890 0 7.632890 0 7.632890 — R P — 

0.3 7.592634 0 7.592634 0 7.592634 — R P — 

0.4 7.551563 0 7.551563 0 7.551563 — R P — 

0.5 5.415381 0 7\513618 0 7\513618 — R P — 

0.6 5.154424 0 7.492803 0 7.492803 — R P — 

0.7 5.148572 0 7.409353 0 7.409353 — R P — 

0.8 5.144705 4.690239 7.403906 5.030051 5.030051 — R — D 

0.9 5.128855 4L315922 7.371813 4.738161 4.738161 — R — D 

1.0 5.106849 4.307067 7.289975 4.730074 4.730074 — R — D 

1.1 5.105788 4.297863 7.263204 4.719848 4.719848 — R — D 

1.2 4.717435 4.267385 7.231623 4.685983 4.685983 — R — D 

1.3 4.707608 4.262756 7J90841 4.598464 4.598464 — R — D 

1.4 4.700986 4.245263 7T59423 4.245263 4.245263 — R — D 

1.5 4.667655 4.237344 7T22899 <L237344 4.237344 — R — D 

1.6 6.872290 4.196486 7.038725 4L196486 4.196486 — R — D 

1.7 6.743334 3.017556 6.983073 4.175824 4.175824 — R — D 

1.8 6.713779 2.863917 6.963334 4.167040 4.167040 — R — D 

1.9 6.682847 2.862228 6.944154 4.130449 4.130449 — R — D 

2.0 6.680185 2.859057 6.942564 4.115207 <L115207 — R — D 
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2\S 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 5.0 35.0 

1 DN V P RvP M i X e d 

2 DN V P RvP M i X e d 

3 R V P R V D 

Figure 4-1. Simple form of Table 4-1, 4-3, 4-4. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 5.0 35.0 

1 DN V P RvP M i X e d 

3 R V P R V D 

Figure 4-2. Simple form of Table 4r5, 4-6. 

Again Table 4-6 confirms the results of Theorem 4.3.1, since player II can only 

play dangerous if a > 0.75, while Table 4-5 shows the changes as the sleep index 

increase from Do Nothing vs Peaceful to Repair vs Peaceful to mixed strategies. 

Note that 2 is the greatest value the sleep index can be when c = 0.4 and 

a — 0.8), and in this case both players are playing genuinely mixed strategies. 

4.5 Model with Local Constraints on Effort 

4.5.1 Introduction In the two models of section three a rest period by the enemy 

continued to have a positive effect on their performance as far into the future as 

one wanted to consider, even if in the discounted case, the effect diminished over 

time. An alternative is to say that there is a definite time horizon T on the effect 
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a peaceful period(8leep period) can have. Thus the obvious local analogy to the 

constraints in section three is to say that out of T consecutive periods, player 11 

can only choose a dangerous environment in at most C of them. 

4.5.2 Game Model In the game that models this problem, the subgames 

are indexed by the current state of the equipment and the description of the 

environment in the last T periods and the value of the game starting in such a 

subgame is i;(2, a;). The state space for % consists of the 2^ possible sequences of 

f and D(peaceful and Dangerous), % = and in ^ if player 11 choose 

Peaceful, the game moves to the state while if he chooses danger-

ous, the game moves to state = %2- so the payoff matrix in the subgame 

r, X is 

Making Peaceful Situation Making Dangerous Situation 

DN (1 - W i ) ( i + ;^2...%TP)) (1 - s,„h)(i + Y.UPv<i<x.i-XTD)) 

R ( l - 6 l ) ( l + ^ ( l , X 2 . . . % T P ) ) (l-b^){l+v(l,X2-XTD)) 
(4.7) 

where = 1 if % = TV, 0 otherwise. 

The peaceful strategy for player 11 is always allowed but the dangerous strategy 

is only possible if the number of -D's in X2---XtD is less than or equal to C. For 

example if T = 2 and C = 2 there are four states P P , PD, DP and DD and 

one can choose peaceful or dangerous in any of them. However if 1 < C < 2, 

then there are only three states allowed P f , P D and D P and one can only choose 
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dangerous in f f or D f . In the case T' = 3 i f l < C < 2 , then there are 4 

states PPP, DPP^ PDP and PPD and the dangerous strategy can be played in 

the first two states, but not in the second two. For the general T and C, where 

C = [CJ, there are ^^=0 environmental states and in of these one 

cannot choose the dangerous option(where there are C dangerous states in the last 

T — 1 periods). As C increases the game approaches the unconstrained game as 

the following lemma formally indicated. 

Lemma 4.5.1 If C = T, then = i'(2)(de6ned by (4.1) and (4.2)) and the 

optimal strategy is given by Theorem 4.2.1. 

Proof Since C = T, there are no restriction on when player II can play dangerous 

and the payoff matrix (4.7) reduces to that of (4.1), (4.2). 

Another obvioug observation is that the values f (%, %i%2...%2 )̂ are independent 

of Xi, since it drops out of the history at the next period. There are other fairly 

obvious relationships between the values %;(%, %) for different %. 

Theorem 4.5.1 Define a partial ordering on ^ by 

a) y % if for some A; — -D, Z A; 

b) y X if for some Z > A; = Yt = f , = ^ = -D, ^ A:, Z, 

then if y X %, (7, y ) > ?; (%, X). 

Proof Consider the games 'Un(*,'^) which laat only for M periods and which con-

verge to f(2,%) as M 00 by same approach as Lemma 4.2.1. Trivially if 
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% = 0 < y ) = 0, so aasimie the inequalities hold for 

For r;+\%A: = = y;, then %' = (%2...XTf) X = y , 

Z" = (%2...%rD) X = y" or if A; = 1, %' = y ' , %" = y". In all cage 

(%,%') < fn(^,y'), < 'Un(^,y ) 80 each entry on the payoff matrix for 

Vn+i{i, X) in equation (4.7) is smaller than the corresponding entry for Vn+i{i, Y) 

and hence y)- Thus induction step is proved and result holds. 

A similar proof holds if % x y using b) because the , y ' at the next stage 

will either have %' -< y ' because of b) if A; > 1 or a) if A; = 1. 

Thus Theorem 4.4.1 and the observation that the first time period value does 

not affect the value, shows that if T — 2 and C = 1, then f f ) = DP) < 

f D). In the case when T = 3 and C = 2, one haa 

f f ) 

= D P f ) = ?;(%, D D f ) 

< v{i, DPD) = v{i, PPD) < v{i, PDD) 

As the state of the stand-by system worsens, the time until a catastrophic 

event decreases as the following theorem in depth. 

Theorem 4.5.2 For any feasible X, v{i,X) is a non-increasing function in i. 

Proof The proof is analogues to that in Lemma 4.2.1 using induction on n in the 

games 
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If the standby unit is down(2 = # ) , then player I will always wish to repair it 

while player II will want to make the situation dangerous if he has the resources 

to do so. 

Theorem 4.5.3 For any C, T and state {N, X) player I will play repair while player 

II win play dangerous if ( % 2 i s feasible. 

Proof In state TV, the do nothing action in equation (4.7) for t;(̂ , gives 

values 

(1 - 6i)(l + and (1 - 62)(1 + 

while the repair action gives values 

(1 - 6i)(l + ?;(1,%2...XTP)) and (1 - 62)(1 + i;(l,%2...;^TD)) 

, so Theorem 4.5.2 implies repair dominates do nothing. To show that player 

II will want to play dangerous rather than peaceful if that is possible we need to 

prove 

(1 - 62)(1 + ?;(1, X2...XTD)) < (1 - 6i)(l + 'U(l, %2...;CTf)) 

Let TT* be the optimal policy for player II from state (1, %2'- ) i-e. 

playing f at the next period and let vri and 7r2 identical pohcies except that vri 

plays f at the next time % = while 7r2 plays D at this occasion. So (jV, %) = 

mm{v'^^(N,X),v'^^{N,X)}. Compare these policies with a third policy which is 

the same as vri and 7r2 except it plays Dangerous at this current period when it is 

in (jV, %) and wiU play f at the next time t = W. Then 
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— (1 — b2){T + (1 — bi)v{l, y)) 

Similarly 

= ( l - 6 2 ) ( r + ( l - 6 i X l , y ) ) 

Hence if 7r*(D) is optimal policy for player II starting in (N, X) and paying D 

first we have 

(1 — 62) (1 + ^(1, X2---XTD)) 

= < min{?;''XAA,%), 7;''^(//,%)} 

= = (1 - 6i)(l +'[;(1,%2...XTP)) 

and the result holds. 

Finally we can show that for a working state (%, %) there is a limit state 

so that if % < %*(%) one does nothing and otherwise one repairs. 
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Theorem 4.5.4 For any C, T and state(z, %) % < # there exists %*(%), 22(%) so that 

for % < %*(%) player I does nothing and t > 22(-^)) pl&yGr I does maintenance/repair 

whereas from %*(%) to Z2(-̂ ) — 1 it plays a mixed strategy. 

Proof From equation (4.7) one can see that payoff of the maintenance/repair 

action is independent of i against peaceful and repair. Theorem 4.5.2 and sto-

chastic ordering property means that the do nothing action in state (%,%) are 

non-increasing in both against peaceful and dangerous. Hence for any % define 

N 

f = min{7|(l - 6i)(l + ?;(!, > 1 + 
j=i 

and 

N 

f (D,%) - min{%|(l - 62)(1 +'u(l,%2 .^^2))) > 1 + 
j=i 

Then if % < = m i n { 2 * ( f , t h e do nothing action domi-

nates the repair action in both peaceful and dangerous environment, and hence is 

optimal. 

If % > %2(-̂ ) = m a x { f ( f , the repair/maintenance action dom-

inates the do nothing action in both peaceful and dangerous situations and so is 

optimal. 

If %*(%) < % < %2(-̂ )i then there is no domination between player I's actions 

and so a mixed strategy is optimal. 
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4.6 Numerical Example 

To show these results in action consider the following numerical example where 

T = 2 ,C = 1, so the possible states are f f , D f and f D , where player II cein-

not play dangerous in the last state. The transition matrices of the state of the 

equipment when nothing is done is 

A ; 1 2 3 4 5 6 7 8 9 10 

1 0.2 0.2 0.2 0.1 0.08 0.05 0.05 0.05 0.05 0.02 

2 0 0.2 0.2 0.2 0.1 0.1 0.08 0.05 0.04 0.03 

3 0 0 0.2 0.2 0.2 0.1 0.1 0.1 0.05 0.05 

4 0 0 0 0.2 0.2 0.2 0.15 0.1 0.1 0.05 

5 0 0 0 0 0.2 0.3 0.2 0.1 0.1 0.1 

6 0 0 0 0 0 0.2 0.3 0.2 0.2 0.1 

7 0 0 0 0 0 0 0.2 0.3 0.3 0.2 

8 0 0 0 0 0 0 0 0.3 0.4 0.3 

9 0 0 0 0 0 0 0 0 0.4 0.6 

10 0 0 0 0 0 0 0 0 0 1 

P — 

In our first example bi = 0.1,62 — 0.5, recall that v{-,PP) — v{-,DP) < 

v(-,PD). 



Table 4-7. PP and DP cases, bi = 0.1, 62 = 0.5 
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Entry GV I II 

i DAT P DN vs D R vs P V DAT R P D 

1 15.6105 16.0975 14.9129 8.2849 15.6105 D7V — P — 

2 15.3212 15.9583 14.9129 8.2849 15.3212 DAT — P — 

3 14.92^1 15.8768 14.9129 8.2849 14.9274 DAT — P — 

4 14.6736 15.8738 14.9129 {i2849 14.7103 0.85 0.15 0.97 0.03 

5 14.2448 15.8738 14.9129 8.2849 14.3766 0.80 0.20 0.92 0.08 

6 13.9207 15.8738 14.9129 8.2849 14J^65 0.77 0.23 0.88 &12 

7 13J^37 15.8738 14.9129 8.2849 13.6656 &71 0.29 0.81 &19 

8 12.5169 15.8738 14.9129 8.2849 13.3224 0.66 0.34 0J6 0.24 

9 11.0095 15.8738 14.9129 8.2849 12.6617 0.58 &42 0.66 0.34 

10 8.3369 7.9369 14.9129 8.2849 8.2849 — R — D 
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Table 4-8. PD case, 6i — 0.1, &2 = 0.5 

Entry GV I II 

i fa f DN vs D R vs P R vs D V R P D 

1 15.6105 — 14.9129 — 15.6105 DAT — P — 

2 15.3212 — 14.9129 — 15.3212 — P — 

3 14.9274 — 14.9129 — 14.9274 — P — 

4 14.6736 — 14.9129 — 14.9129 — R P — 

5 14.2448 — 14.9129 — 14.9129 — R P — 

6 13.9207 — 14.9129 — 14.9129 — R P — 

7 13.1537 — 14.9129 — 14.9129 — R P — 

8 12.5169 — 14.9129 — 14.9129 — R P — 

9 11.0095 — 14.9129 — 14.9129 — R P — 

10 8.3369 — 14.9129 — 14.9129 — R P — 

1 2 3 4 5 6 7 8 9 10 

DNvP Mix RvD 

DNvP RvP 

Figure 4-3. Simple form of Table 4-7, 4-8 

In the f f state, if the equipment is in a good state, one plays do nothing 

against peaceful, while in less good states one plays mixed strategies with in-

creasing emphasis on repair and dangerous until in the down state, one jumps to 

repair vs dangerous. In state f D , the expected time until catastrophic event is 
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higher(t;(z, f f ) < f (t, f D ) ) and = Zg in that ag the state worsens one goes 

directly from do nothing vs peaceful to repair vs peaceful( dangerous not being 

allowed). If = 0.1 and 62 = 0.9, so there is very high possibility of an "at-

tack(initiating event)" in the dangerous state, one starts the mixed actions earlier 

as Table 4-9 shows. 

Table 4-9. PP and DP cases, 61 = 0.1, 62 = 0.9 

Entry GV I II 

i DN vs P DN vs D R vs P R vs D V DAT R P D 

1 9.8655 10.7890 9.7751 1.0861 9.8655 — P — 

2 9.5668 10.7709 9.7751 1.0861 9.5922 0.88 0.12 0.98 0.02 

3 9.1302 10.7709 9.7751 1.0861 9.2326 0.84 0.16 0.94 0.06 

4 8.8479 10.7709 9.7751 1.0861 9.0159 0.82 0.18 0.91 0.09 

5 8.3314 10.7709 9.7751 1.0861 8.6479 0.78 0.22 0.87 0.13 

6 7.9540 10.7709 9.7751 1.0861 8.3999 0.76 0.24 0.84 0.16 

7 7.0064 10.7709 9.7751 1.0861 7.8433 0.70 0.30 0.78 0.22 

8 6.2106 10.7709 9.7751 1.0861 7.4375 0.66 0.34 0.73 0.27 

9 4.3059 10.7709 9.7751 1.0861 6.6392 0.57 0.43 0.64 0.36 

10 1.8770 1.0770 9.7751 1.0861 1.0861 — R — D 
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Table 4-10. PD case, 6i = 0.1, 62 = 0 9 

Entry GV I II 

i DN vs P R vs P V DW R P D 

1 9.8655 — 9.7751 — 9.8655 DAT — P — 

2 9.5668 — 9.7751 — 9.7751 — R P — 

3 9.1302 — 9.7751 — 9.7751 — R P — 

4 8.8479 — 9.7751 — 9.7751 — R P — 

5 8.3314 — 9.7751 — 9.7751 — R P — 

6 7.9540 — 9.7751 — 9.7751 — R P — 

7 7.0064 — 9.7751 — 9.7751 — R P — 

8 6.2106 — 9.7751 — 9.7751 — R P — 

9 4.3059 — 9.7751 — 9.7751 — R P — 

10 1.8770 — 9.7751 — 9.7751 — R P — 

%\2 1 2 3 4 5 6 7 8 9 10 

DNvP Mix RvD 

DNvP RvP 

Figure 4-4. Simple form of Table 4-9, 4-10 

4.7 Conclusion 

These models have sought to investigate the maintenance and repair pohcy 

for a stand-by system where the environment of when it is needed is controlled 

by an opponent. The most obvious context for this problem is the military one 
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either in conventional or peace keeping roles. It would also apply to emergency 

services needed to respond to terrorist threats, but it could also be useful for more 

routinely used equipment in that context such as airport passenger and luggage 

screening devices. We have shown that if there is no hmit on resources available to 

the "enemy", then the problem reduces to a single decision making in a constant 

high risk environment. If more realistically the enemy cannot always be ready to 

act, but needs time to recuperate, resupply and plan, the situation is much more 

complex, both in the situation where the restful periods have a long term effect or 

only a short term effect. 

One interesting feature is that the optimal policies may well be mixed so each 

period there is a certain probability one should perform maintenance, and a certain 

probability one does nothing. Clearly if there are a number of such stand-by units, 

the mixed policy can translate into what proportion should be given preventive 

maintenance at that time. If the difference between the benign and the dangerous 

environment {bi, 62) is small, one tends only to perform maintenance when system 

is close to failure, but in other situations one will maintain the system in a good 

state because one feels the environment is likely soon to be dangerous(e8pecially 

if the sleep index is high). One always repairs a failed unit, no matter what the 

environment, but you can be sure that the enemy will seek to take advantage of 

the failure by increasing the danger in the environment in this case. The models 

introduced in this paper are the first to address the question of maintenance in an 

environment where failure can be catastrophic and where there is an enemy seeking 
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such catastrophes. Clearly more sophisticated models can be developed but we 

believe this paper haa indicated that one can get useful insights by addressing the 

problem aa a stochagtic game. 



CHAPTER 5 

Repair Strategies in an Uncertain Environment: Markov Decision Process 

Approach considering Training Factor 

5.1 Introduction 

In laat two chapters, we have developed repair strategies of the stand-by unit 

which maximise the time until a catastrophic event. In the chapter 3, we examined 

the case where the need for the equipment varies overtime according to a Markov 

chain. This means that the environment can be in different states, each with their 

own probability of the initiating event occurring. We described the form of the 

optimal policy under this uncertain environment by Markov Decision Process. In 

the chapter 4, we look at conflict situations where the environment is controlled by 

an opponent. In this case the opponent's actions force the need for the equipment, 

and this situation is modelled as a stochastic game. 

In this chapter our research is also concerned with developing repair and train-

ing strategies which maximise the time until a catastrophic event for standby units 

in an uncertain environment. This is extension of previous Markov decision process 

model. Equipment can only be used if it is in an operable state and if its users have 

had sufficient recent training with it. Thus as well as repairing and maintaining the 

equipment, it is necessary to train users. This is particularly clear in the mihtary 

context where soldiers are constantly trained to operate the equipment satisfacto-
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rily under all conditions. However, a problem with training is that it increases the 

weajT and tear of the staiid-by unit even though it enhances the operator's abihty 

to respond weU to am initiating event. Another problem in the mHitaiy context is 

that the training may be done away &om where the equipment may be needed and 

so there is not time to move it between the training area and the front line say. 

In this chapter we look at the interaction between the need for training and the 

need to service the equipment. We develop discrete time Markov decision process 

formulations of the problem in order to investigate the form of the optimal ac-

tion policies which maximise the expected survival time until a catastrophic event. 

Apart from some general discussion that training improves the skill level of the op-

erators and so could reduce failures, none of the previous research in maintenance 

addresses the issue of how does the training of the operators affect the readiness 

of the unit. This chapter considers this issue. 

We develop a Markov decision process model with random loss of learning in 

the training level in section 5.2. Numerical examples of these results are presented 

in section 5.3. In section 5.4 we examine a modified model where the effect of 

training does wear off, and look at when one should train, and when one should 

repair as a function of the environmental situation, the training level and the state 

of the equipment. 
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5.2 Training Model with Random Loss of Expertise 

5.2.1 Introduction In this model, there are several environmental situations 

which are graded from very dangerous to completely peaceful. Each enviromnental 

situation hag its own probabihty of an initiating event occurring which increases 

aa the situation gets more dangerous. There are three actions for this model which 

means that the operator chooses among doing nothing, repairing, and training. At 

the end of this section we look at the special case in which we only consider do 

nothing and training. This corresponds to equipment which cannot be repaired 

though we do not consider the problem of when to replace such equipment. 

5.2.2 Terminology 

Possible Standby Unit Quality State, i Regular inspection of the standby unit 

gives information on the operation quality state of the units. We assume the 

standby unit has N different unit quality states, i.e. 1,2,- • TV where state 1 

means that the standby unit is like new. The state — 1 means that it is in a 

poor but still operable state, while in state it is in a "down" condition which 

means that it will not work. 

The Quality State Transition Probability Matrix(QSTPM), P„ When the standby 

unit is in quality state i at the current stage, there is a probability, Ptj that it will 

be in state at the next period where = 1,2,- - and 

N 

= 1, where % = 1, 2, - - -, AT — 1, TV 
j=i 
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We assume that the QSTPM satisfies a first order stochastic ordering condi-

tion so that ^ assume = 1 so once the standby 

unit reaches the "down" state W, it remains "down" until either it is repaired, 

or a catastrophic event occurs. There are several situations where equipment is 

classified as new, excellent condition, operable, failed and regular inspection of the 

equipment allows one to coUect data to estimate the transition probabihties, . 

Possible Environmental Situation, m We assume that there are M different en-

vironmental states, 1,2,- - — 1,M. Environmental state 1 reflects the most 

peaceful environment in which there is the smallest probability, bi of an initiating 

event occurring. On the other hand, environmental state M is the most dangerous 

state with the highest probabihty, 6^ of an initiating event occurring. Wis assume 

is non-decreasing in the index of the environmental state m and 0 < 6^ ^ 1-

These correspond to mihtary states of readiness, such as the US DEFCON, or the 

UK, black/red/amber. 

Environment Situation Transition Probability Matrix(ESTPM), The dy-

namics of the environmental situation is also described by a Markov chain with 

Environment Situation Transition Probability Matrix(ESTPM), . If the envi-

ronmental situation is m, 1 < m < M in the current stage, this changes to another 

environmental situation m' ,1 < m < M with probability at the next stage, 

where 

M 

= 1, with m and m' = 1, 2, • • M - 1, M 
m'=l 
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We agsume the ESTPM also satisfies a first order stochastic ordering property 

80 E l ' = i > E l ' = i for any m = 1,2,. - M - 1. The data for this 

can be obtained by historical analysis. 

The Possible Actions There are three possible actions at each period, (1) do 

nothing, (2) repair and (3) training. The "do nothing" action means neither re-

pair /maintenance nor training is undertaken. It is assumed the "repair" action 

which can be maintenance action, if the unit is still operable, but is a true re-

pair in state takes 1 unit time period. This action is not perfect in that there 

is a probabUity the miit wiU be in quality state r after the "repair" where 

IZjLi ^ = 1. If an initiating event occurs during repair period, the standby unit 

cannot respond to it, and so a catastrophic event occurs automatically. 

Training Level, k The operator of the stand-by unit has L different training levels, 

i.e. 1,2, - Z, where training level 1 is the best training level and training level Z, 

is the worst training level. If there is no training at the moment, the training level 

& goes to A;' at the next time stage with probabUity of 3̂ ;̂ / which is called training 

level transition probability matrix(TLTPM). We assume there is no spontaneous 

improvement in training i.e. = 0 if A;' < A;, and our model would allow the 

deterministic decrease in operator performance = 1. Training may not be 

ideal and could be counter productive in that after a training exercise ( which we 

also assume to take one period) the quality of training is p with probability Wp 

where p = 1,2,- • •,L — 1,L. The repair times and hence unit times in the model 
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are often quite small and in this case 7^ ̂  would be close to 1. lYaining causes wear 

and tear on the equipment to a different extent than when it is not being used. 

Hence there is a transition probability matrix for the standby unit quality state 

variation caused by the training which is called wear and tear transition probability 

matrix(WTTPM), E j = 0. We assume that the WTTPM also satisfies 

a first order stochastic ordering condition so that ^ 

assume the wear and tear caused by training is more than the wear and tear caused 

by natural conditions and so require where / is arbitrajy 

quality state. If the unit is being repaired, no training is possible. 

Catastrophic Event If an initiating event occurs either when the standby unit is 

down(in state TV) or being repaired, a catastrophic event comes. To allow for the 

possibility that training could be aborted when an initiating event occurs, but only 

if the equipment is close to where it is needed, we say that if training is occurring 

there is a probability (1 — )̂, the equipment can respond to the initiating event. 

Finally at an initiating event it is not enough for the equipment to be operating, 

but the training must be of a suScient quality if there is not to be a catastrophic 

outcome. We assume that with training level A;, one cannot successfully respond 

to an initiating event with probability where Kk increases with k and Ki = 0 

and = 1. 

5.2.3 Model 
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Model State Space The state space of this model 5" has three factors which are 

the unit quality state, training level, and environmental state, so 

S = {(%, k, m) £ S, i = 1,2, • • •, N, k — 1,2, • • •, L and m = 1,2, • • •,, M} 

where 2, A: and mean the unit quality state, training level and the environ-

mental situation respectively. 

Maximum Expected Period, Vji, k, m) When the unit is in quality state i, training 

level A; and the environmental situation is in state y ( i , A;, m) is the maximum 

expected number of periods until a cataatrophic event occurs. 

Qptimality Equation Because we are looking for the best action policy, the opti-

mality equation selects the best of the three actions. 

y(z,A;,m) = max{lVi(2,A;,m),W^(A:,m),<5;jv^W3(%,A:,m)} (5.1) 

where 

^iN = 0 if i = N 

= 1 otherwise 

where A;, is the expected period until a catastrophic event if nothing 

is done now, M (̂A;, m) is the expected period until a catastrophic event if a repair 

is performed now and ^3(2, A;, m) is the expected period until a catastrophic event 

if training is selected now. Hence 14 (̂2, A;, m), M (̂A:, m), ^3(2, A;, m) satis^ 
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AT Z, M 

J=1 k'=1 m =1 

where 

= 1 if 2 = TV ''ijV 

TV Z, M 
H'2(t.m) = ( l - U ( l + E ^ E ^ " ' E S^^'nr.k' .rn')) (5.3) 

r=l t '= l m' = l 

(5.4) 

;v f, M 
= (1 - 6^ X [̂  + (1 - ^)^t]}(l + ^ 

j=i p=i m,'=i 

(5.2), (5.3), (5.4) can be solved by value iteration where the nth iterate satishes 

V;,(^,A;,m) ^ max:{M^(%,A;,m),M^(A:,m),<5;ArM^(2,/:,W} (5-5) 

where 

61;/ = 0 if % = 

= 1 otherwise, and 

AT I, M 
Wiii.k,m) = (1 - + E E E t ' ,m')X5 G) 

j=l k'=1 m'=1 

where 
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6̂;̂^ = if % TV 

= 1 if » = 

AT jD M 
H'„^ftm) = ( l - U ( l + E ^ E ^ K ' E - S w K . - i ( i - , / : ' . m ' ) ) (5,7) 

''=1 k'= 1 m!=1 

M^(2,A:,m) (5.8) 

TV Z, M 

= {1 ^ 6„ X [i + (1 - ( )%]}( ! + 2 2 S„„.K.-iO-.P.m')) 
J=1 p=l ra =\ 

E we define the terminal value, W = 0, is a bounded In-

creasing sequence of function and so converges to the limit y(i , Standard 

results from Markov decision processes[Putterman,1994] show that the limit func-

tion satisfies the optimality equation (5.1) - - - (5.4). 

Lemma 5.2.1 T/(i,A:,m)is 

a) non-increaaing function of % 

b) non-increaaing function of A; 

c) non-increasing function of m 

where % is the quality state, and A; and m are the arbitrary training level and 

environment situation state. 

Proof The proo6 use induction hypothesis on n, in %i('i, A:,??!) and then the re-

sult[Putterman,1994] that y(%,A;,m) is the hmit of the value iteration functions 
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m). Consider a) and deSning 1^(2, A;, m) = 0, then the property holds triv-

ially for M = 0. So aasume A, m) is non-increaging in i This together with 

the stochastic ordering condition of QSTPM and W T T P M implies 

# Z, M jV Z, M 

J=1 k' =1 m' =1 J—^ k' ~1 m' = 1 

2/ M AT Z, M 

jzzrl p=l 777,'—X J —1 p~X Tn,̂ =:l 

Hence, we can conclude that 14^(2, A;, m) > + 1, A;, m) and A;, m) > 

A;, 77%). Since A;, vTi) = W^(z+1, A:, m) from (5.7), it follows A;, m) 

> + l,A;,m). Hence the result holds for %i(z,A;, 777,) and by convergence the 

results hold in the limit for y(%, A;, 771). The proofs of b) and c) foUow in a similar 

way. 

Theorem 5.2.1 a) If the unit is down (in state W), it must be repaired immediately, 

b) In state (%, A;, Z), the standby unit is repaired provided i > 2* (A;, Z) 

Proof In state i = N, the only allowed options are do nothing Wi{N, k, I) or repair 

W2(A/̂ , A;, Z) = M/2(A:, Z) since it does not depend on state TV. 

M/2(A:,Z)-I^i(#,A;,Z) 

TV M 

(1 -(,,)(! + E E E 
fc' = l m'= 1 

Z, M 
-(l~b,){l + J^T,,, E S,„,V{N,k',m)) 

kf =1 m =1 
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= (1 - b,} T,,- E 4^' [ E «'''('•• * ' • « : % ™')J 
A : ' = l m ' = l ' ' = 1 

^ M TV AT 

= E E % ^ ( ' ' . - E 
k' = 1 TTi'=1 r—1 r=l 

Z, M AT-l 
= ( 1 - 6 , ) E V E 

k'=1 m'= 1 r=l 

Since (1 — 6/) > 0, and y(r, A;', m ) — y(W, A;',m') > 0, r < TV, then Z) — 

A;, Z) > 0. This means that , at quality state TV, we should always repair. 

The proof of b) follows because V(i,k,l) is non-increasing function in i and 

using again stochastic dominance of ensures non-increasing property carries 

through to ^ A;, Z). Hence &, Z) and W3(i, A;, Z) are non-increasing in i 

Since M (̂2, Ac, Z) is independent of z, once I42(z, A;, Z) > ^3(2, A:, Z) and 142(», A:, Z) > 

l4^(z,A;,Z), then the same inequalities must hold for larger So one repairs if 
% > 

Whereas when the equipment is in its worst state, Theorem 5.2.1 says one 

needs to repair it immediately, if the training levels are at their worst, it is not 

always the case that one should train. One needs to add same extra condition as 

Theorem 5.2.2 implies. 

Theorem 5.2.2 If Kl = I, i = 1, Pi j = Pzj, alii, j and P i . stochastically dominants 

then one always trains in state / = 1, A; = 

Proof If training level is Z, with = 1 and z = 1, (5.2), (5.3), (5.4) can be 

rewritten by 
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AT M 
= (1 — 6m) (1 + ^ 0 , "T' )) 

•? = ! 77l'=l 
JV Af 

^=1 m' = l 
AT Z, M 

j = \ p=l TTi^ =1 

Comparing do nothing and training gives 

W^(l,Z,,m) - W^(l,Z,,m) 

i, M 
= (1 - 6m)(1 + ^ A ; ^ Wp ^ m')) 

j=l p=l 
AT M 

- ( 1 - (.„)(! + E Srara-VtJ.L.m)) 
m'=l 

# ^ M N Z, M 

= (1 ^ ^ 'S'̂ m' ^ ' ) - ^ ^ 
j='i p=l m' = 1 j"l p=l m' —1 
M i, TV N 

= (1 - ^ ^ w p E ^ ^ ' ) ] 
m'=l P=1 J=1 J=1 

M Z, TV 

= (1 - 6m) ^ 5'^m' E E P, )7i') - n^')] 
m'=l P=1 J=1 

Since (1—6m) > 0 and y(2, &, m) is a non-increasing function in A;, ̂ 3(1, Ẑ , m) > 

M^(l, Z,, m). 

^3(1, iL, m) - M^(Z, 77%) 

AT z; M 
(1 - 6m)(1 + ^ A j ^ Wp ^ m')) 

^ —̂  P—1 771̂  = 1 
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// M 
- ( 1 - 6m)(l + ^ Z/,m,)) 

m'=1 
;v Z, M TV I, M 

= (1 - 6:71) A j ^ ^ P, ^ ^ 2 Z E 
J—1 p=l 7"=! p=l rn —1 
Z, M AT TV 

= (1 - ('m) ^ Wp ^ 5"^^ , A ; ^ U , P , )7l') - Y Z ' ^ ' ) ] 
P=1 m'=l ;=1 r=l 

Since (1 — 6^) > 0, y( / , A;, 771) is a non-increaging function in A: and f i j > 

^(stochastic ordering) where Z is an arbitrary quality state, 1^3(1,2/, m) > 

W2(L,m). Therefore if the training level L has Kl = 1 where P^J = Fjj for all 

J, ^ lZ!-=i ^ then training is always optimal. 

With shghtly weaker condition we can show we also repair or train in the worst 

training state. 

Theorem 5.2.3 U Ki = 1, and V,̂ , then in s ta te (i,L,m) one trains if 

z < %*(m) and repairs if i 

Proof It is enough to show m) < max{M^(%, Z,,m),W3(%,Z/,m)} since 

then the non-increasingness in z of ^3(2, m) and the fact W2(2, m) is inde-

pendent of z gives the rest of the result. Since and m ) > 

y(j,^,m')bynon-increa8ingpropertyofy(j,A:,m')inA:, W3(%,Z,,m) > 

for all % and m. 

If one considers equipment which is not repairable and so maintenance has no 

eEect, then the only actions possible are training or doing nothing. 

The optimality equation for y(2, A;, m) in this case satisfies 
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= max{iyi(%, (5.9) 

where 

^iN = 0 if 2 = TV 

= 1 otherwise 

and and are still defined by (5.2) and (5.4). In this 

case one can show that if one decides to train in state (%, A;', m) one should train 

all states (%, A;', m), A;' > A;. 

Theorem 5.2.4 In the non-repairable equipment special case, if one trains in state 

(%, A;, m), one should train in all states (2, A;', m), A;' > A:. 

Proof 

y(%, A:, m) 

= max{M^(%, A;,m),M/3(2,A:,m)} 

AT .L M 

= max{{l - b^KMl + E E Tkt' E VO, t ' , m) ) , 
•7=1 k'=1 m'=1 

TV Z/ M 
|1 - 6„. X (i + (1 - t)K,)](l + E m'))} 

j=l p=l m'=l 

If training is optimal at training level A;, 

M̂ (%, A;,m) 

jV z, M 
[1 - 6^ X (̂  + (1 - ^ ) ^ t ) ] ( l + ^ )) 

j = \ ^=1 rn =1 
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3—^ k'=1 rn ~1 
— A:, m) 

If we let l-6„x(f+(l-t)if,) = A(k), l+Ef . , R, ™pE".i S^,,,V(],p, m) = 

B, 1 - b^K, = C(k), 1 + E ; . , p., E L i n * ' E " . i t ' . m ' ) = C{S-), the 

above relation can be rewritten by 

A(A;)g > C(A;)D(A;) 

If we think of A(t): 

A{k) 1 — 6jji X ( t + (1 — t ) K k ) 

If hm,t > 0, is a decreasing function of k f rom at /c = 1 (perfect 

training level : ii'jt = 0) to 1 at A; = Z,(worst training level ^7^ = 1). 

Because of this and D{k) being a decreasing function in k, hence 

Hence, 

A(A; + 1)B > C(A: + 1)D(A: + 1) 

This means that W3(%, A; + 1, m) > Wi(%, &, m) and so if training is optimal at 

(z, A;, m), it is also optimal for (%, m), A;' > A;. 
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5.3 Numerical Example 

Consider a problem with five environment situations, l(most peaceful environment), 

2, 3, 4, 5 (most dangerous environment), two training levels 1,2, 10 unit quality 

states, l(new), 2, - - , 9, 10 (down) and with the Quality State Transition Probabil-

ity Matrix(QSTPM) and Wear and Tear Transition Probabihty Matrix(WTTPM) 

given by Table 5-3 and 5-4. We also assume that repair is not perfect but given by 

^ in Table 5-1. The probability of an initiating event, 6^ is {0.1,0.2,0.4,0.6,0.7} 

from environmental situation 1 to 5. The value of Kk,Wp is = (0,1), Wp = (1,0) 

for training level 1,2. The probability that training can not respond to an initiating 

event, ^ is 0.7. We outline variants of this problem with diSerent training transi-

tions. For example 1 = 
0.6 0.4 

0 

for example 2, 
0.01 0.99 

0 1 

so training has a positive eEect for ^ = 2.5 periods in example 1 and ^ = 1 

period in example 2. 

The results for example 1 and 2 are shown in Table 5-6, 5-7 and Figure 5-1, 5-2, 

5-3, 5-4. We can know that the expected survival period is non-increasing function 

in quality state %, training level A: and environment situation m. Because the 

transition probabihty from training level 1 to training level 2 in for example 2 

is bigger than in 2̂ ;̂ / for example 1, the expected survival period for the example 1 

is longer than that for the example 2. Since training is more important for survival 

in example 2, more training states are selected in training level 1 as we can see in 

Table 5-7 and Figure 5-3. In Table 5-6 and Figure 5-2, it looks that training is 
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always optimal when A; = i.e. level 2 in example 1) and z ^ W. However, this is 

not true. We can confirm in example 2. From Table 5-7 and Figure 5-4, repair is 

optimal even though training level is A; = 2 (worst training level) and quality state 

is in working condition(z = 9). 

Example 3 is the case of In reality this means that training does 

not cause any more wear and tear than in doing nothing case. In QSTPM of this 

example, = A,:+i = 1 where z = 1, - - 5.Otherwise, = 1 where 

2 = 6, , Wis use the used in example 2. The other conditions are the 

same as in previous examples. The result for example 3 is shown in Table 5-8 and 

Figure 5-5, 5-6. Training is always optimal when A: = 2(worst training level) and 

i — 1 and we confirm that optimal policy is training, then repair along quality 

state i when k = 2(worst training level, L), K2 = 1 and P^j — Ptj. 

Example 4 looks only at the do nothing or training problem where repair 

is not possible. We assume 5 training levels for this example and the TLTPM 

is in Table 5-2. The values of and tUy are = (0.0,0.2,0.5,0.7,1.0), lUp = 

(0.6,0.2,0.1,0.05,0.05) for training level A; = 1,2,3,4,5 respectively. The QSTPM, 

WTTPM, and ( are the same as in example 1 and 2. Table 5-9 and Figure 5-7, 5-8 

show the result of the example 4. Hence once training is optimal at training level 

k, training always optimal for all k' > k. 

Table 5-1. Repair TPM, Rr 

r 1 2 3 4 5 6 7 8 9 10 

0.2 0.2 0.1 0.1 0.1 0.1 0.08 0.05 0.05 0.02 
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Table 5-2. Training Level TPM for example 4, 7̂ .̂/ 

1 2 3 4 5 

1 0.3 0.3 0.2 0.1 0.1 

2 0 0.3 0.3 0.2 0.2 

3 0 0 0.4 0.3 0.3 

4 0 0 0 0.4 0.6 

5 0 0 0 0 1 

Table 5-3. Quality State TPM, Pj IX 

^ \ ; 1 2 3 4 5 6 7 8 9 10 

1 0.2 0.2 0.2 0.1 0.08 0.05 0.05 0.05 0.05 0.02 

2 0 0.2 0.2 0.2 0.1 0.1 0.08 0.05 0.04 0.03 

3 0 0 0.2 0.2 0.2 0.1 0.1 0.1 0.05 0.05 

4 0 0 0 0.2 0.2 0.2 0T5 0.1 0.1 0.05 

5 0 0 0 0 0.2 0.3 0.2 0.1 0.1 0.1 

6 0 0 0 0 0 0.2 0.3 0.2 0.2 0.1 

7 0 0 0 0 0 0 0.2 0.3 0.3 0.2 

8 0 0 0 0 0 0 0 0.3 0.4 0.3 

9 0 0 0 0 0 0 0 0 0.4 0.6 

10 0 0 0 0 0 0 0 0 0 1 
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m \ 1 2 3 4 5 

1 0.4 0.3 0.2 0.05 0.05 

2 0.2 0.4 0.23 0.1 0.07 

3 0.1 0.2 0.4 0.2 0.1 

4 0.05 0.15 0.2 0.3 0.3 

5 0.05 0.1 0.15 0.2 0.5 

Table 5-5. Wear and Tear TPM, P„ 

^ \ j 1 2 3 4 5 6 7 8 9 10 

1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.05 0.05 

2 0 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

3 0 0 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 

4 0 0 0 0.1 0.1 0.2 0.2 0.2 0.1 0.1 

5 0 0 0 0 0.1 0.1 0.2 0.2 0.2 0.2 

6 0 0 0 0 0 0.1 0.2 0.3 0.2 0.2 

7 0 0 0 0 0 0 0.1 0.3 0.3 0.3 

8 0 0 0 0 0 0 0 0.2 0.4 0.4 

9 0 0 0 0 0 0 0 0 0.3 0.7 

10 0 0 0 0 0 0 0 0 0 1 
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Table 5-6. Expected survival time under different actions and choice of optimal 

action for example 1 

m 1 2 3 4 5 6 7 8 9 10 

&16 &08 &99 5^1 5.83 5.73 5^0 5.51 5.36 4^9 

1 W2(B) 5.51 5.51 5^1 5.51 5.51 5.51 5.51 5.51 5.51 5^1 

5^9 &88 &83 5^6 5.61 5.58 &47 5.38 5.21 — 

1 act D N D N D N D N D N D N D N E R M 

4.98 4^2 4.85 4.78 4.72 4.65 4.56 4.50 4.42 4.38 

2 4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95 

WaM 5.80 5.69 5.65 &57 5.43 5.40 5.29 5.21 5.04 — 

act T T T T T T T T T 

A:\ 2 1 2 3 4 5 6 7 8 9 10 

(DAT) 5.92 5.84 &74 5.66 5.57 5.47 5.31 5.20 5.00 3.85 

1 M/'2M 4.71 4^1 4^1 4.71 4.71 4.71 4.71 4.71 4.71 4^1 

5.41 5.29 5.25 5J^ 5.01 4.98 4.85 4.74 4.52 — 

2 act D N D N D N D N D N D N D N D N D N R 

Wi(D7V) 4.11 4.06 4.00 3.94 3.89 3.82 3.74 3.68 3.61 3.57 

2 W2(^) 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 

M/'sM 51^ 4.92 4.88 4.82 4.66 4.63 4.51 4.41 4.21 — 

act T T T T T T T T T M 
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A:\ / 1 2 3 4 5 6 7 8 9 10 

Wi(D7V) 5.51 5^3 5.33 5.24 &13 5^2 4.83 4.69 4.41 Z47 

1 3.29 3.29 &29 3.29 3.29 &29 3^9 3.29 3.29 &29 

W3(r) 4^5 4^3 4J^ 4J^ &95 3.92 3.77 &64 3.37 — 

3 act D N D N D N D N D N D N D N D N D N M 

Wi(DAr) Z67 2.64 2.59 2.55 2.51 2.47 240 236 2.30 227 

2 2^6 266 2.66 2.66 266 2^6 2.66 Z66 2.66 266 

WaM 3.63 3.52 3.49 3.44 3.29 3.26 &14 3.03 2.81 — 

Opt. Act T T T T T T T T T R 

A;\ 2 1 2 3 4 5 6 7 8 9 10 

14̂ 1 (DVV) 5J^ 5.02 4.91 4.82 4.70 4.58 <L37 4.20 3.84 1.39 

1 M/2(^) 2.03 2.03 2.03 2I# 2.03 2^3 2.03 2.03 2.03 2.03 

W3(T) 3.36 3.24 3.21 3Jf 2.98 2^5 2.80 2.68 2.39 — 

4 act D N D N D N D N D N D N D N D N D N R 

W î(DAr) 1.51 1.49 1.46 1.44 1.42 L39 1.35 1.32 1.28 1.26 

2 1̂ 2 (^) 1.50 1.50 1.50 1.50 1.50 L50 1.50 1.50 1.50 1.50 

2.31 2.24 2.21 &18 21^ 2^4 1.93 1.84 1.64 — 

act T T T T T T T T T R 
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A;\ % 1 2 3 4 5 6 7 8 9 10 

4.91 4.83 4.72 4.63 4.50 4.38 4J^ 3.97 3.58 0.95 

1 1.46 1.46 1.46 L46 1.46 1.46 L46 1.46 1.46 1.46 

W3(T) 2.89 2.79 2.76 2.71 2.54 2.52 2.37 2.25 L97 — 

5 act D N D N D N D N D N D N D N D N D N E 

1.04 L02 1.01 0.99 0.97 0.95 0.92 0.90 0.87 0.86 

2 1.03 1.03 L03 1.03 1.03 L03 1.03 1.03 L03 1.03 

W3(n L70 1.64 1.62 1.59 1.49 1.48 1.39 1.32 1.15 — 

act T T T T T T T T T R 

1 2 3 4 5 6 7 8 9 10 

1 

2 D o 

3 N o t h i n g 

4 

5 

Figure 5-1. Result of example 1, training level 1 (simple form) 
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10 

Figure 5-2. Result of example 1, training level 2 (simple form) 

Table 5-7. Expected survival time under different actions and choice of optimal 

action for example 2 

A;\ % 1 2 3 4 5 6 7 8 9 10 

(DW) 4.43 4.40 4.36 4.32 4.28 4.23 4.17 4.14 4.11 3.69 

1 3.98 3.98 3.98 3.98 3.98 3.98 3.98 3.98 3.98 3.98 

M/3(T) 4.53 4.46 4.44 4.41 4.31 4.30 4.22 4.15 3.98 -

1 act T T T T T T T T D N M 

3.98 3.95 3.92 3.88 3.85 3.80 3.75 3.72 3.70 3.69 

2 3.97 3.97 3.97 3.97 3.97 3.97 3.97 3.97 3.97 3.97 

W3(T) 4.38 4.32 4.30 4.26 4.17 4.16 4.08 4.02 3.85 -

act T T T T T T T T M E 
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772 A;\ % 1 2 3 4 5 6 7 8 9 10 

4J^ 4^9 4^5 4^1 197 3.92 3.86 &82 178 &02 

1 1̂ 2 (72) 128 &28 &28 &28 &28 3.28 128 &28 3.28 128 

W3(n 4.03 197 195 192 3.82 3.81 172 3.65 3.45 -

2 act D N D N D N D N D N D N D N D N D N E 

Wi(DAr) 3.29 3.27 123 &20 &17 3.13 108 3.05 &03 102 

2 ^2(72) 128 &28 128 3.28 3.28 3.28 3.28 &28 3.28 3.28 

;^3(T) 3.75 169 3.67 3.65 3 56 3.54 3.46 3.39 3.21 -

act T T T T T T T T R R 

A;\ % 1 2 3 4 5 6 7 8 9 10 

IVi(DjV) 3.59 3.56 3.52 &49 3.45 3.40 3.34 3.29 3.24 1.94 

1 M/'2(72) 2J^ 215 215 215 2J^ 2.15 2.15 2.15 215 215 

M/3(r) 3J7 111 3J0 &07 2.97 2.96 2.87 2.78 2.55 -

3 act D N D N D N D N D N D N D N D N D N R 

M/i(DAr) 2.15 213 211 208 2.06 2.03 L99 L97 1.95 1.94 

2 M (̂72) 2J4 2J4 214 2J4 214 2.14 2 1 4 214 214 2J4 

M/3(n 2.64 2.59 2.58 2.56 247 2 4 6 2.39 2.32 213 

Opt. Act T T T T T T T T M R 
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A;\ % 1 2 3 4 5 6 7 8 9 10 

Wi(DjV) &08 105 102 298 295 2.90 284 280 2.75 L09 

1 L22 L22 L22 L22 1.22 L22 L22 1.22 1.22 L22 

239 2.34 233 2.31 221 2 2 0 2.11 203 L81 -

4 act D N D N D N D N D N D N D N D N D N R 

123 L21 L20 L19 L17 L15 113 111 1.10 L09 

2 L22 122 L22 L22 L22 L22 L22 L22 L22 122 

M/sM 1.65 L61 1.60 159 152 1.52 L46 140 L25 -

act T T T T T T T T T 

A:\ % 1 2 3 4 5 6 7 8 9 10 

14̂ 1 (DAT) 2.84 2.82 2.78 275 272 2 6 8 2.62 2.58 2.53 0.75 

1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

W s M 204 1.99 198 1.96 1.87 L86 L78 L70 L49 -

5 act D N D N D N D N D N D N D N D N D N R 

M î(DAr) 0.85 0.84 0.83 0.82 0.81 0.80 0.78 0.77 0.76 a75 

2 0.84 0.84 &84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 

W s M 1.20 1.17 116 L15 LIO 109 1.05 LOO 0.87 -

act T T T T T T T T T 
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Figure 5-3. Result of example 2, training level 1 (simple form) 

7 10 

Figure 5-4. Result of example 2, training level 2 (simple form) 
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Table 5-8. Expected survival time under different actions and choice of optimal 

action for example 3 

A;\ 2 1 2 3 4 5 6 7 8 9 10 

4^4 4.57 4^9 <L23 4.22 4.22 4.22 4.22 &80 

1 4.13 4J^ 4J^ 4J3 <L13 413 413 413 413 

4^8 4.86 U G 4.56 4^5 3.93 &93 &93 3.93 -

1 act T T T T T D N D N D N D N R 

Wi(D7V) 4.33 4.27 4J1 4.04 3.80 3.80 3.80 3.80 3.80 3.80 

2 4J^ 4.13 4J^ 4J^ 4.13 4.13 4.13 413 4.13 4.13 

4.82 4.70 4.60 4.41 4.30 3.81 3.81 3.81 3.81 -

act T T T T T R R E R R 

m 1 2 3 4 5 6 7 8 9 10 

(DAT) 4.48 4^2 4.25 419 3.89 3.88 3.88 3.88 3.88 310 

1 ^2(^) 3.41 3.41 &41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 

4.45 4.32 4.26 4.04 3.97 3.34 :134 3.34 3.34 -

2 act D N D N T D N T D N D N D N D N R 

Wi(D7V) 3.57 3.53 3.39 3.34 3.10 3.10 310 310 310 310 

2 W2(^) 3.41 3.41 &41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 

W s M 4J4 4.02 3.96 &76 3.69 3.11 311 311 311 -

act T T T T T R E R R R 
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A\ % 1 2 3 4 5 6 7 8 9 10 

&90 &86 3.70 3.66 3 33 3.32 3 32 3.32 3.32 L99 

1 &22 Z22 222 222 222 2 2 2 222 2.22 2.22 222 

w/3(n 3.51 &41 &36 &16 &12 2 3 9 239 239 239 -

3 act D N D N D N D N D N D N D N D N D N R 

Wi(D7V) 2.33 231 221 2.19 L99 L99 L99 1.99 L99 199 

2 W2(^) 2.21 Z21 221 2.21 2.21 2.21 221 2.21 2.21 221 

2.93 2.84 2.80 2.63 2.60 2.00 2.00 2.00 2.00 -

Opt. Act T T T T T R E E M E 

A;\ 2 1 2 3 4 5 6 7 8 9 10 

3.34 3.31 &17 &14 281 2 7 9 2.79 279 279 1.11 

1 ;y2(^) 1.26 1.26 1.26 1.26 1.26 L26 L26 1.26 L26 1.26 

w/ sM 2.66 2.58 255 237 235 162 L62 L62 1.62 -

4 act D N D N D N D N D N D N D N D N D N R 

W/i(D7V) 1.33 1.31 1.26 1.25 L l l 1.11 L l l 1.11 L l l 1.11 

2 1.25 1.25 1.25 1.25 1.25 L25 1.2Ei 1.25 1.25 1.25 

W s M 1.83 L77 176 1.64 1.62 112 L12 L12 1.12 -

1 act T T T T T R R M M E 
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/ c \ z 1 2 3 4 5 6 7 8 9 10 

3.08 3.05 2.93 2.90 &57 2.56 2.56 2.56 2.56 0.76 

1 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 

2.27 2.20 2.18 2.02 2.00 1 . 3 1 1.31 1.31 1.31 -

5 act D N D N D N D N D N D N D N D N D N R 

I V i ( D 7 V ) 0.92 0.91 0.87 0.86 0.76 0.76 0.76 &76 0.76 &76 

2 0.86 0.86 &86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

WsM 1.33 1.29 1.28 L19 L18 0.77 0.77 0.77 (177 -

act T T T T T E R M R 
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Figure 5-5. Result of example 3, training level 1 (simple form) 

7 10 

Figure 5-6. Result of example 3, training level 2(simple form) 
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Table 5-9. Expected survival time under diEerent actions and choice of optinial 

action for example 4 

A:\ z 1 2 3 4 5 6 7 8 9 10 

4.72 4.65 4.54 4.44 4.34 4.22 4.04 3.90 3.62 3.02 

1 WaM 4.45 4.30 4.26 4.18 3.97 3.93 3.77 3.63 3.35 -

act D N D N D N D N D N D N D N D N D N D N 

4.38 4.31 4.21 4.13 4.04 3.94 3.79 3.67 3.47 3.02 

2 M/sM 4.42 4.28 4.23 4.15 3.95 3.91 3.74 3.60 3.32 -

act T D N T T D N D N D N D N D N D N 

1 4.13 4.07 3.97 3.89 3.81 3.71 3.58 3.48 3.32 3.02 

3 W s M 4.38 4.24 4.19 4.11 3.91 3.87 3.70 3.57 3.29 -

act T T T T T T T T D N D N 

3.98 3.92 3.83 3.75 3.66 3.57 3.44 3.35 3.21 3.02 

4 4.35 4.21 4.16 4.08 3.88 3.85 3.68 3.54 3.27 -

act T T T T T T T T T D N 

1̂ 1 (D7V) 3.82 3.76 3.67 3.59 3.52 3.43 3.30 3.22 3.09 3.02 

5 M/sM 4.30 4.17 4.12 4.04 3.84 3.81 3.64 3.51 3.24 -

act T T T T T T T T T D N 
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771 A;\ % 1 2 3 4 5 6 7 8 9 10 

PKi(DAr) &85 3J8 3.68 3.60 &48 3.38 &16 298 2.58 0.64 

1 W s M Z09 2.00 L97 L93 L79 1.77 1.65 L54 L30 -

Opt. Act D N D N D N D N D N D N D N D N D N D N 

^i(DAr) 2.87 282 2.76 2.70 2.63 2.57 2.43 2.33 2A0 0.64 

2 1.91 L83 1.81 1.77 1.64 L62 1.51 1.41 1.19 -

act D N D N D N D N D N D N D N D N D N D N 

5 1.98 1.95 1.90 1.87 1.82 1.78 1.70 1.64 1.52 0.64 

3 1.65 1.58 1.57 1.53 1.42 1.40 1.31 1.22 1.03 -

act D N D N D N D N D N D N D N D N D N D N 

1.45 143 1.39 1.37 1.33 1.30 L25 1.21 I J ^ 0.64 

4 W,(T) L48 1.42 L40 1.37 1.27 L26 L17 1.09 0.92 -

act T D N T T D N D N D N D N D N D N 

IVi(DAr) 0.83 0.81 0.79 0.78 0.76 0.74 0.71 0.69 0.66 0.64 

5 1.22 1.17 I J ^ I J ^ 1.05 L04 (197 0.90 0.76 -

act T T T T T T T T T D N 
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Figure 5-7. Result of example 4, environment 1 (simple form) 

1 2 3 4 5 6 7 8 9 10 

1 

2 D o 

3 N o t h i n g 

4 

5 T 

Figure 5-8. Result of example 4, enviromnent 5(simple form) 

5.4 Training Model with Continuous Loss of Expertise 

5.4.1 Introduction In this section we consider the problem where the expertise 

obtained by training on the equipment is gradually lost over time rather than 

subject to random changes as in section 2. To do this we define an expertise 

index which shows how well trained the operator of the stand-by unit hag been. 

An operator with higher values in this index is likely to perform better. Apart 
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from the modification of an expertise index instead of a training level, the other 

conditions are the same ag in section 5.2. 

5.4.2 Terminology-

Expertise Index, T To define the expertise index, we assume that if it is at level 

T, T > 0, then 

a) when no training occurs at the next period, it moves to alT 

b) when training occurs at the next period, it moves to alT + 1 

So in a sense, expertise obtained through training dissipates geometrically( 

the equivalent of exponentially in discrete time) and each period of training adds 

1 unit to the expertise level whatever it is. Thus training all the time gives us a 

level of 1 + a + + - - == (1 — while no training gives an expertise 

of 0. In order to make the index easy to understand, we multiply the above index 

by (1 — a) to arrive at one where all values are between 0 and 1, and if we let 

(1 — CK)T,T', training changes T into aT" 4- (1 — a), while no training changes T 

into aT. If the expertise index is T, the probability the operator can not respond 

to satisfactorily to an initiating event is where 

5.4.3 Model 

Model State Space The state space of this model S has three factors which are 

the unit quality state, training level, and environmental state, so 

^ = 2 = 1,2, , 0 < r < 1 and m = 1,2, , , M } 
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where ZiT and m mean the unit quality state, expertise index and the envi-

rormiental situation respectively. 

Maximum Expected Period, V(i,T,m) When the unit is in quality state i, ex-

pertise index T and the environmental situation is in state m,, y(%,T, m) is the 

maximum expected number of periods untU a catastrophic event occurs. 

Optimality Equation 

(5.10) 

where 

^iN = 0 if % = # 

= 1 otherwise 

where 

AT M 

m'=l 

where 

= / r if ^ 7̂  

= 1 if ^ = AT 

N M 
W2(r,m) = { l - U ( l + E ^ ' E S ^ ^ , V { r , a T , m ) ) (5.12) 

r=l yn' 771 =1 
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W3(2,r,m) (5.13) 

M 

= {1 - X + (1 - ^)/T]}(l + E Z + (1 - «), m')) 
3—^ m'—1 

(5.9), (5.10), (5.11), (5.12) can be solved using value iteration. The results of the 

previous section extend to this model ajid the proofs follow by induction on value 

iteration. The value iteration scheme satisfies equation (5.9), (5.10), (5.11), (5.12) 

with on the L.H.S. and on the R.H.S. 

Lemma 5.4.1 y(%, T, m) is 

a) non-increasing function of % 

b) non-increaging function of T 

c) non-increaaing function of m 

where % is the quality state, T and m are the arbitrary expertise index and 

environment state. 

Proof As with lemma 5.2.1, the proofs use induction hypothesis on n in T, m) 

and then the result that V{i, T, m) is limit of the value iteration functions %i(z, T, m). 

If we consider a) and defining l/o(%, T, m) = 0, then the property holds trivially for 

n, = 0. So assume l^_i(%,T, m) is non-increasing in z. This together with the 

stochastic ordering condition of and imphes 

W^(2,T ,m)> W^(2 + 1,T,772) 
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Since T,m) = + 1,T,m,) from (11), it follows W ^ + 

1, T, m). By convergence the results hold in the limit for y(2, T, m). The proo6 of 

b) and c) follow in a similar way. 

Theorem 5.4.1 In state A^(down), one should always repair. 

Proof Similarly with theorem 5.2.1, in state i = N, the only allowed options are 

do nothing Wi(W, T, Z) or repair T, Z) = #^(7^, Z) since it does not depend 

on state 

W2(T,Z)-l4^i(Ar,T,Z) 

TV M 
Y , S,^'V(r,aT,m)) 

•r=l Tn'=l 

M 

M TV 
(1 - 6,) J ] St^.(YR,V{r,aT,m) - V(N,aT,m] 

m'=1 ''—1 
M AT AT 

= (1 - 6,) J ] RrV(r, aT, m')-J2 ^rViN, aT, m)] 
m'=l r=l 

M N-l 

= (1 - h) S , „ . { 5 ^ f l . l V ( r , a T , m ' ) - V(iV, aT . m')]} 
m'=1 ^=1 

Since (1 — 6/) > 0, and y(r, aT, m,') — y(A^, aT, m ) > 0, r < AT, then M (̂T', Z) 

Wi{N,T, I) > 0. This means that , at quality state N, we should always repair. 
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5.5 Numerical Example 

In this example, there are also 5 dlEerent environmental situation states and 

10 diEerent unit quality states. The probability of an initiating event, 6^, where 

1 < m < 5 is (0.1,0.2,0.4,0.6,0.7). The transition matrices for quality state, 

environment situation are the same aa in previous examples. The probability which 

training can not respond an initiating event, ^ is 0.7. The discount factor for the 

expertness index, a is 0.6.The effect of the repairs has the following distributions 

in Table 5-9. 

Table 5-10. Repair TPM, Rr 

r 1 2 3 4 5 6 7 8 9 10 

Rr 0.1 0.1 0.2 0.2 0.1 0.1 0.08 0.05 0.05 0.02 

The results in Table 5-10 and Figure 5-9 show that the expected survival period 

is also non-increasing function in quality state and environment situation and non-

decreasing in expertness index. The results in general show a pattern in that as 

the quality state increage8(gets worse) one initially trains, then does nothing, and 

then repair. However this pattern is violated in the case of T = 0.7. On the other 

hand, if the unit is operating then aa the expertise index increaaes, it shows a trend 

in which one moves from training to doing nothing but this need not always be 

the case. The results in Table 5-11 and Figure 5-10 under different initiating event 

probabihties, QSTPM, TLTPM show a movement from training directly to repair. 
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Table 5-11. The result of example when bi = 0.1, 62 = 0-2, 63 = 0.4, 64 = 0 6,65 = 0.7, 

t = 0.7, a = 0.6 

m r \ ^ 1 2 3 4 5 6 7 8 9 10 

3 0.0 

1.88 L87 185 1.84 1.83 1.81 179 177 176 1.75 

3 0.0 W2(A) 1.87 L87 L87 L87 L87 1.87 1.87 L87 1.87 L87 3 0.0 

219 &16 2J^ 213 207 2.06 202 L99 L91 -

3 0.0 

act T T T T T T T T T M 

772 

3 

r \ 2 1 2 3 4 5 6 7 8 9 10 772 

3 0.2 

2.24 2.23 2.20 2.18 2.16 2.14 211 2.09 2.05 1.78 

772 

3 0.2 1.97 1.97' 1.97' 1.97 L97 1.97 1.97 1.97 1.97 1.97 

772 

3 0.2 

W s M 2.50 245 2.43 241 234 2 3 3 2.28 2.23 213 -

772 

3 0.2 

act T T T T T T T T T R 

m 1 2 3 4 5 6 7 8 9 10 

3 

Wi(DAr) 2.85 2.82 279 2.76 2.73 2.70 2.64 260 2.52 1.83 

3 0.5 Z12 &12 2T2 212 2J^ 2 1 2 212 212 212 212 3 

W s M 3.01 2.94 2.92 2.89 2.80 2.78 270 2.63 2.48 -

3 

act T T T T T T T T D N 
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r \ 2 1 2 3 4 5 6 7 8 9 10 

Wi(D7V) &07 &04 101 297 294 2.90 2.83 278 2.68 L84 

3 0.6 218 218 218 218 218 2.18 218 218 2J8 :L18 

W3(n 3.20 &13 111 &07 296 2.95 2.86 278 260 -

act T T T T T T T D N D N M 

r \ % 1 2 3 4 5 6 7 8 9 10 

IVi(DAr) 3.3 3.27 3.23 &19 &15 3.11 &03 297 2.85 L86 

3 0.7 223 223 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23 

3.4 3.32 3.3 3.26 3.14 3.12 3.02 2.93 2.72 -

act T T T T D N T D N D N D N M 

T \ % 1 2 3 4 5 6 7 8 9 10 

3.54 3.51 3.46 3.42 3.37 3.33 3.24 3.17 3.03 1.88 

3 0.8 2.29 2.29 2.29 2.29 2.29 2 2 9 229 2.29 2.29 2.29 

;V3(T) 3.60 3.52 3.49 3.45 3.32 3.30 3Ja 3.08 2.85 -

Opt. Act T T T T D N D N D N D N D N M 

T\ % 1 2 3 4 5 6 7 8 9 10 

Wi(DAr) 3.80 3.76 3.71 3.67 3.61 3.56 3.46 3.38 3.22 190 

3 0.9 2.36 2.36 236 2.36 236 2.36 2.36 2.36 2.36 236 

w/3(r) 3.82 3.73 3.70 3.66 3.51 3.49 3.36 3.24 2.99 -

act T D N D N D N D N D N D N D N D N R 



1 5 1 

r \ 2 1 2 3 4 5 6 7 8 9 10 

4.07 4.02 3.97 3.92 3.86 3.80 3.69 3.60 3.41 1.92 

3 1.0 &42 &42 2.42 142 2.42 2.42 2.42 2.42 2.42 2.42 

4.05 3.95 3.92 3.87 3.70 3.68 3.53 3.41 &12 -

act D N D N D N D N D N D N D N D N D N R 

1 2 3 4 5 6 7 8 9 10 

0.0 

0.2 

0.5 T 

0.6 E 

0.7 

0.8 

0.9 D o 

1.0 N o t h i n g 

Figure 5-9. Simple form of Table 5-11 
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Table 5-12. The result of example when bi = 10"^^, 62 = 0.1,63 = 0.2,64 = 0.3,65 = 0.4, 

t = 0.4, a = 0.6 

m T \ z 1 2 3 4 5 6 7 8 9 10 

1 0.0 

7^2 7^1 7^1 7^1 7^1 T\01 7^1 7^1 6.92 6.92 

1 0.0 7^6 71^ 7^6 7^6 7^6 7.06 7^6 7^6 7^6 7.06 1 0.0 

7.39 7.34 7T5 7T5 715 ?\15 7T5 7T5 r i 5 -

1 0.0 

act T T T T T T T T T R 

1 

r \ z 1 2 3 4 5 6 7 8 9 10 

1 0.2 

vyi(Dw) 7.34 7.10 7T0 7T0 7.10 7.10 7J^ 7.10 6.98 6.98 

1 0.2 7T6 7T6 7T6 7.16 7J^ 7.16 7J^ 7T6 7T6 7T6 1 0.2 

W s M 7.53 745 7.24 7.24 7.24 7.24 7.24 7.24 7.24 -

1 0.2 

act T T T T T T T T T M 

T \ % 1 2 3 4 5 6 7 8 9 10 

1 

Wi(D7V) 7.53 7.28 7.28 7.28 7.28 1\28 7.28 7.25 7.08 7^8 

1 0.5 7.34 7.34 7.34 7.34 7.34 7.34 7.34 7^4 7.34 7.34 1 

7^6 7^3 7.38 7.38 7.38 1^38 7^8 7^8 7^8 -

1 

act T T T T T T T T T 



153 

r \ 2 1 2 3 4 5 6 7 8 9 10 

7.59 7^6 7^6 7.36 7.36 T\35 7^4 7^0 713 7J3 

1 0.6 7^1 7^1 7^1 7^1 7.41 7.41 741 741 741 7\41 

7^5 7J0 7^3 7^3 7^3 7.43 743 743 743 -

act T T T T T T T T T R 

m T \ 2 1 2 3 4 5 6 7 8 9 10 

7^6 7^3 7.43 7.43 7.43 7.43 7.41 7.36 747 7.17 

3 0.7 7.49 7^9 7.49 7^9 7.49 7.49 749 7.49 7.49 7.49 

7.93 7.77 7.48 7.48 7.48 7.48 7.48 7.48 7.48 -

act T T R R M M R R R R 

r \ 2 1 2 3 4 5 6 7 8 9 10 

Wi(DAr) 7^3 7.52 7.52 7.52 7.52 ^51 748 741 7.21 7.21 

1 0.8 7.56 7.56 7.56 7.56 7.56 7.56 1^56 7.56 7.56 7^6 

W a M 8.02 7.84 7.54 7.54 7.54 A54 1^54 7.54 7.54 7.54 

Opt. Act T T R R R R R R R R 

T\ i 1 2 3 4 5 6 7 8 9 10 

7^0 7^0 7.60 7^0 7^0 7\59 7^6 747 7^5 7.25 

1 0.9 7.64 7.64 7.64 7.64 7.64 7.64 1^64 7.64 7.64 7^4 

M/sM &11 7.91 7.59 7.59 7.59 7\59 7.59 7.59 7.59 7.59 

act T T R M R R R R R R 
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m r \ % 1 2 3 4 5 6 7 8 9 10 

7.87 7.69 7.69 7.69 7.69 7.68 7.63 7.53 7.30 7.30 

1 1.0 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 

8.20 7.99 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 

act T T R E R R R R R R 

r \ 2 10 

0.0 

0.2 

0.5 

0.6 

0.7 

0.8 

0.9 

1 .0 

Figure 5-10. Simple form of Table 5-12 

5.6 Conclusions 

The models presented in this paper show that there can be, depending on 

parameters, a strong interaction between the quality state of the stand-by unit, 

the general environment state, the training level of the operator and the decision on 

whether to repair or train. In the training model with random loss of expertise, the 
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expected survival time until a catastrophic situation decreases as the unit quality 

states, the training levels and environment situations worsen. One always repairs 

when the unit is down. Also, once repair is optimal at certain quality state, repair 

is always optimal for worse quality states. When the unit quality state is new, the 

training level is at its lowest which means that it can not respond to an initiating 

event and there is no difference between QSTPM and WTTPM, one always trains 

or repairs. One trains if the quality state is good and there is same quality level 

below which one repairs. If one adds the extra condition ^ Z]r<z ̂  

the above condition, one can show one always trains when the quality state is new. 

If the repair action is not available and the quality s tate is in working condition, 

once training is optimal at a certain training level, one always trains at worse 

training levels. In the training model with continuous loss of expertise, we find 

that one always repairs when the unit is down. If the unit is operating then as 

the expertise index increases, it shows a trend in which one moves from training 

to doing nothing but this need not always be the case. 



CHAPTER 6 

Conclusion 

This concluding chapter summarises the main results of the research and pro-

poses future developments. In this thesis, we have dealt with repair strategies of 

stand-by equipment which maximise the expected survival time until a catastrophic 

event. A stand-by unit is equipment which is only brought into operation when 

there is a vital need for it like military equipment, hospital power supply, etc. We 

have seen that there are many maintenance, repair and replacement models for 

deteriorating equipment in the literature review of the chapter 2. Almost all the 

hterature in those concentrate on pohcies which minimise the average discounted 

cost criterion. Some authors researched the idea of using a catastrophic event 

criterion to overcome the problem that failure result in unquantifiably large cost. 

Our research focused on the expected survival time instead because the failure of 

the standby equipment causes immeasurable cost, i.e. national security, human 

hves etc. Other authors have looked at maintenance in a random environment but 

in that case the unit is always in use so the changes in the environment age the 

equipment at different rates, but do not affect when it is needed. Some papers 

considered protective systems with non-self-announcing failures where the rate of 

deterioration is governed by random environment. Our study allowed the deterio-

ration of the equipment to be independent of the environment, but the environment 

affects the need for the equipment. We also looked at conflict situation where the 
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environment is controlled by an opponent. Finally we developed Markov decision 

process models which consider training. Equipment can only be used if it is in 

an operable state and if its users have had sufficient recent training with it. Thus 

as well as repairing and maintaining the equipment, it is necessary to train users. 

For this thesis, we developed above three models of repair strategies for stand-by 

equipment under changing environment. The result of this research is as follows. 

6.1 Markov Decision Process approach 

In chapter 3, we described the form of optimal repair policy by Markov decision 

process. Here we considered one repair action and two repair actions cases. The 

models presented in chapter 3 show that there is a strong interaction between the 

quality state of the stand-by unit, the general environment situation, and the repair 

action. In the one repair action case, one always repairs when the unit is down. 

This is quite obvious because any other actions can not be better than repair when 

the unit is broken down. Another important finding here is that in the most hostile 

environment one repairs the equipment only when the unit is down. This means 

that one needa to do nothing when the unit is working because the probabihty of 

the initiating event in this case is the highest. In other environments one can make 

repairs when the unit is still functioning. This is the cage when the repair action 

for the unit that is in working condition may give longer expected survival time 

than doing nothing. Generally the states at which one repairs increase, the more 

benign the environment becomes, but this need not always be the case. We have 

counter examples. 



158 

With quick and slow repairs in two repair action model, the repair or do nothing 

decision continue to have the same proportions as in the one repair action model. 

The choice between quick or slow repair depends critically on the relative outcomes 

of the two repair processes. However, the numerical example suggests one is more 

likely to move from slow to quick repairs as the environment becomes more hostile 

but this need not always be the case. 

6.2 Stochastic Game approach 

In chapter 4, We looked at conflict situations where the environment is con-

trolled by an opponent. In this case the opponent's actions force the need for the 

equipment, and this situation is modelled aa a stochastic game. For these stochas-

tic game models, we developed models with global and local constraints on eEort. 

These models have sought to investigate the maintenance and repair pohcy for a 

stand-by system where the enviromnent of when it is needed is controlled by an 

opponent. The most obvious context for this problem is the military one either 

in conventional or peace keeping rol^. In this research, we looked at the prob-

lem where there are no constraints on the enemy in terms of the actions they can 

perform. This leads to a complete but unrealistic solution to the problem because 

in reality, an opponent- be it rogue country or terrorist - cannot be continually 

on the attack. Thus we introduced the idea of a constraint on the average eSort 

undertaken by the opponent over the total history of the game so far. We naively 

described this as a sleep index that the opponent needs to sleep for a certain per-
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centage of the time. We also expanded these results to the situation where the 

advantage of a rest or quiescent period is discounted the further in the past it is, 

but always has a positive effect. In addition we looked at games where the benefit 

to the opponent of being " able to sleep" only laats for a finite period and is then 

lost completely. In each case we derived properties of the form of the optimal 

maintenance pohcy which hold on aU occasions and also found the form of the 

optimal policy in specific numerical examples. 

One interesting feature is that the optimal policies may well be mixed so at 

each period there is a certain probabihty one should perform maintenance, and 

a certain probability one does nothing. Clearly if there are a number of such 

stand-by units, the mixed policy can translate into what proportion should be 

given preventive maintenance at that time. If the difference of initiating event 

probabihties between the benign and the dangerous environment (61,62) is small, 

one tends only to perform maintenance when system is close to failure, but in other 

situations one will maintain a very good system because one feels the environment 

is hkely soon to be dangerous (high sleep index). As with the case in chapter 3, 

one always repairs a failed unit, no matter what the environment, since you can 

be sure that the enemy wiU seek to take advantage of the failure by increasing the 

danger in the environment if they can. The models introduced in chapter 4 are 

the first to address the question of maintenance in an environment where failure 

can be catastrophic and where there is an enemy seeking such catastrophes. 
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6.3 Training Model 

Finally, as an extension of the models in chapter 3 we added training factor to 

the stand-by unit operator for deciding the optimal action and developed discrete 

time Markov decision process formulations for this problem. Equipment can only 

be used if it is in aji operable state cind if its users have had suHicient recent training 

with it. Thus as well as repairing and maintaining the equipment, it is necessary 

to train users. However, a problem with training is that it increases the wear and 

tear of the stand-by unit even though it enhances the operator's ability to respond 

well to an initiating event. We looked at the interaction between the need for 

training and the need to service the equipment. In order to do this, we developed 

a Markov decision process model without no loss of learning in the training level 

and a modified model where the effect of training does wear off. For training model 

with continuous loss of expertise, we developed an "expertise index" and looked at 

when one should train, when one should repair as a function of the environmental 

situation, the training level and the state of the equipment. 

The results show that there is also a strong interaction between the quality 

state of the stand-by unit, the general environment state, the training level of the 

operator and the decision on whether to repair or train. In the training model with 

random loss of expertise, the expected survival time until a catastrophic situation 

decreases as the unit quality states, the training levels and environment situations 

worsen. One always repairs when the unit is down. Also, once repair is optimal 

at certain quality state, repair is always optimal for worse quality states. When 
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the unit quality state is new, the training level is at its lowest which means that it 

can not respond to an initiating event and there is no difference between between 

deteriorations caused by natural factors and training, one always trains or repairs. 

One trains if the quality state is good and there is same quality level below which 

one repairs. If one adds the extra condition ^ above 

condition, one can show one always trains when the quality state is new if the 

training level is at its lowest. If the repair action is not available and the quality 

state is in working condition, once training is optimal at a certain training level, 

one always trains at worse training levels. In the training model with continuous 

loss of expertise, we find that one always repairs when the unit is down. If the 

unit is operating then as the expertise index increases, one moves from training to 

doing nothing, but this need not always be the case. 

6.4 Future Development 

We have studied repair strategies of stand-by units under changing environment 

in this thesis. For this we have used Markov decision process and stochastic game 

approaches. The models proposed in this thesis are a kind of prototype models. 

So we can expand and develop these prototype models to more comphcated and 

sophisticated ones for future research. The followings are some suggestions for 

doing this. 

Firstly we can consider more realistic quality s ta te transition probabilities 

which vary according to the environment. In this thesis we have considered the 
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fixed quality state transition probabilities for our Markov decision process and sto-

chastic game models. This means that the variation of the quality state to the 

next decision epoch is not affected by the current environment situation. How-

ever, we could consider a generalisation where the transition matrix has different 

probabihties based on different environments. 

Secondly we can think of more sophisticated dynamics of the changes in quality 

state and environment situation. For our models, we assumed that the variation 

of the quality state and environment situation are made only at fixed epochs t = 

0,1,2,- - -. However in many real repair and maintenance problems the times 

between consecutive variation epochs are not identical but random. Thus, we 

can consider semi-Markov decision models. These semi-Markov decision models 

describe dynamic systems which are observed and change at random points in 

time. 

Wis could also expand our models to more realistic ones by giving more general 

repair and training times. In our models we have assumed repairing the equipment 

takes only 1 unit time period and 2 unit time periods for slow repair model. How-

ever if we consider more general times for the repair action, it is certain that we 

can have more realistic models. This can be apphed to training as weU. In all the 

above cases, it would be sensible to use real data from the held to check whether 

the assumptions and extensions suggested are vahd in reality. 

In the stochastic game models, we have developed the game models as 'Full 
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Gcime' models in which the players can know the other player's readiness perfectly. 

But in reality it is hard for one player to know the other's readiness one hundred 

percent. The players may have only partial information about each other. So we 

can develop more complicated game models which give only partial knowledge of 

the state of equipment to the players. We could also consider models where both 

players need to make repair decisions which affect the readiness. 
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