UNIVERSITY OF SOUTHAMPTON

Oxidative Approaches to the Synthesis of bis-Tetrahydrofuran Annonaceous Acetogenins

Geoffrey Douglas Head

A Thesis Submitted for the Degree of Doctor of Philosophy

Department of Chemistry

January 2004

UNIVERSITY OF SOUTHAMPTON

ABSTRACT
FACULTY OF SCIENCE

CHEMISTRY

Doctor of Philosophy

OXIDATIVE APPROACHES TO THE SYNTHESIS OF BIS-TETRAHYDROFURAN ANNONACEOUS ACETOGENINS
 by Geoffrey Douglas Head

Two bis-THF Annonaceous Acetogenin structures were synthesised, one of which corresponded to the cytotoxic antitumour compound membranacin 3.19. Both derived from key epoxide intermediate 6.7 , which was synthesized via the chiral auxiliary directed oxidative cyclisation of $1,5,9$-trienedioate 4.44 by potassium permanganate. The second THF ring was installed using a Sharpless asymmetric epoxidation and epoxide opening strategy. A number of intermediates were designed with the potential for future library synthesis of natural product analogues.

The combination of the permanganate oxidation and Kennedy's perrhenate cyclisation of bis-homoallylic alcohols was used to synthesise simple bis-THF model 7.2. This combined strategy allows access to the acetogenin bis-THF core.

Table of Contents

Chapter 1 Annonaceous Acetogenins: Structure, Biological Activity and 1 Synthesis
1.1 Introduction 1
1.2 Structural Classification 2
1.3 Biosynthesis 3
1.4 Biological Activity 6
1.5 Synthesis of Adjacent bis-Tetrahydrofuran Annonaceous Acetogenins 8
1.5.1 Thomas R. Hoye et al. 8
1.5.1.1 Cascade Synthesis of bis-THF Core Fragments 8
1.5.1.2 Total Synthesis of (+)-hexepi-Uvaricin 10
1.5.1.3 Total Synthesis of (-)-Bullatacin 11
1.5.1.4 Total Synthesis of (+)-Acimicin 12
1.5.1.5 Total Synthesis of (+)-Parviflorin 14
1.5.2 Hans-Dieter Scharf et al. 16
1.5.2.1 Epoxide Opening Approach to the THF Core 16
1.5.2.2 Synthesis of 15-epi-Annonin-I 17
1.5.3 Shigeki Sasaki et al; Synthesis of (+)-Bullatacin 20
1.5.4 Ulrich Koert et al. 22
1.5.4.1 General Oligo-THF Synthesis 22
1.5.4.2 Synthesis of $(+)$-Rolliniastatin I 23
1.5.4.3 Use of the Williamson Etherification Reaction 25
1.5.5 Barry M. Trost et al. 26
1.5.6 James A. Marshall et al. 28
1.5.6.1 General Introduction to Marshall's Stannane Chemistry 28
1.5.6.2 Application of the Stannane Chemistry to bis-THF 30 Synthesis
1.5.6.3 Total Synthesis of (+)-Asimicin 32
1.5.7 Subhash C. Sinha and Ehud Keinan et al. 35
1.5.7.1 Initial Studies Using the Sharpless / Kennedy Approach 35
1.5.7.2 Library Synthesis of bis-THF Fragments 36
1.5.7.3 Total Synthesis of Uvaricin 40
1.5.7.4 Total Synthesis of Asimicin and Bullatacin 42
1.5.7.5 Rules of Stereoselectivity in the Rhenium (VII) Oxide 43
Tandem Oxidative Polycyclisation Reaction
1.5.8 Giovanni Casiraghi and Franca Zanardi 47
1.5.9 Bruno Figadere et al. 48
1.5.10 David R. Mootoo et al. 50
1.5.10.1 A Monosaccharide-Based Approach to cis-2,5- 50Disubstituted THF's
1.5.10.2 Acetal Templates for the Synthesis of trans-2,5- 53 Disubstituted THF's
1.6 Conclusions 54
Chapter 2 Oxidative Cyclisation of 1,5-Dienes and bis-Homoallylic Alcohols by 56 Transition Metal Oxidants
2.1 Permanganate Promoted Oxidative Cyclisation of 1,5-Dienes 56
2.2 Osmium Tetraoxide Catalysed Oxidation of 1,5-dienes 60
2.3 Oxidation of 1,5 -Dienes by Ruthenium Tetraoxide 61
2.4 Chromium-Based Oxidants 62
2.5 Oxidation of bis-Homoallylic Alcohols by $\mathrm{VO}(\mathrm{acac})_{2}$ and t - BuOOH 62
2.6 Oxidation of bis-Homoallylic Alcohols by Rhenium Oxide 63
2.7 Conclusions 64
Chapter 3 Southampton Approach to the Annonaceous Acetogenins 65
3.1 The Oxidation of 1,5,9-Trienes by Potassium Permanganate 65
3.2 Synthesis of cis-Solamin, a mono-THF Acetogenin 66
3.3 Synthesis of a bis-THF Acetogenin Analogue With Permanganate 66 and Rhenium
3.4 Proposed Work 67
3.5 Conclusions 69
Chapter 4 Synthesis and Asymmetric Oxidation of 1,5-Dienes and 1,5,9-Trienes 70
4.1 Synthesis and Oxidative Cyclisation of a Simple 1,5-Diene 70
4.2 Corey's Hydroxysulfone 71
4.3 Oppolzer's Sultam 73
4.4 Synthesis and Oxidation of a 1,5,9-Triene Substrate 75
4.5 Conclusions 81
Chapter 5 Removal of the Sultam Chiral Auxiliary 82
5.1 The Initial Reductive Approach 82
5.2 Displacement Using a Sulfur-Based Nucleophile 83
5.3 Conclusions 85
Chapter 6 Synthesis of Acetogenin Analogues Using Oxidative Cyclisation 86 Products
6.1 Conversion of Diol 5.1 to a Key Epoxide Intermediate 86
6.2 Elaboration of the Key Epoxide 87
6.3 An Attempt at the Kennedy Cyclisation 88
6.4 A Sharpless Asymmetric Epoxidation Approach to the Second 88 Cyclisation
6.5 Installation of the Butenolide and Completion of the Acetogenin 91 Analogues
6.6 Conclusions 94
Chapter 7 Other Approaches to THF Fragments 95
7.1 A Kennedy Cyclisation Experiment 95
7.2 An Alternative Approach to THF Analogues 96
7.3 Conclusions 97
Chapter 8 Concluding Remarks 99
8.1 Our Approach Summarised 99
8.2 Further Work 101
Chapter 9 Experimental Section 102
9.1 General Experimental 102
9.2 Experimental Details 103
Chapter 10 References 185
Appendices 196

Acknowledgements

I would like to thank the following people for their help, support, and friendship throughout the course of my PhD .

Firstly, Richard Brown for his help and advice over the last three years.

Members of the Brown group, both past and present, especially JD, John 'just one quick pint' Keily, Nige, Rob, Alex and Steve. We had some good times!. Also my other friends from the department, especially Rupert, Heather, Jon, Pete, Stuart, Katie and Mell.

Special mention has to go to my housemates. In the first two years, Bren, Dave and John were good friends, although it was sometimes a struggle to get them to leave the house! In the third year, Ro, Dicko and Monty were a great bunch and living with them was good fun.

Also my friends at Highcrown Mews. Claire, Lynnsey and Nadia have been excellent friends and good company.

Richard Symes, Landlord of The Drummond Arms, and all of the other staff. I hope that wherever I eventually live, there will be a pub like this!

Joan Street and Neil Wells for the NMR service, and John Langley and Julie Herniman for mass spectrometry.

Syngenta for funding, and especially my industrial supervisor Dr. Bill Whittingham. He provided good ideas throughout.

My parents, Caroline, Nan and Grandad, and Grandma and Grandpops, who have always been there for me.

Finally, thanks to Claire. You have provided a lot of love and support for me, especially in the last few months when it was needed the most.

Abbreviations

Ac	acetyl
acac	acetylacetonate
AD	asymmetric dihydroxylation
AIBN	2,2'-azobis-iso-butyronitrile
app.	apparent
aq	aqueous
Ar	aryl
ATP	adenosine triphosphate
BINAL-H	binaphthylaluminium hydride
Bn	benzyl
Boc	tert-butoxycarbonyl
br	broad (spectral)
Bu	butyl
Bz	benzoyl
Calc.	calculated
CAN	cerium ammonium nitrate
CI	chemical ionisation
CSA	camphor sulfonic acid
d	doublet (spectral)
DBU	1,8-diazabicyclo[5,4,0]undec-7-ene
DCC	$N ; N$-dicyclohexylcarbodiimide
$d e$	diastereomeric excess
DEAD	diethylazodicarboxylate
DET	diethyl tartrate
DIBAL-H	di-iso-butylaluminium hydride
DIPEA	di-iso-propylethylamine
DIPT	di-iso-propyl tartrate
DMAP	4-(dimethylamino)pyridine
DME	1,2-dimethoxyethane
DMF	N, N-dimethylformamide

DMP	Dess-Martin periodinane
DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone
DMS	dimethyl sulfide
DMSO	dimethyl sulfoxide
ED_{50}	effective dose for 50% of assay
$e e^{\text {e }}$	enantiomeric excess
EI	electron impact
ES	electrospray
Et	ethyl
eq.	equivalent(s)
FT	Fourier Transform
hr	hour(s)
HMPA	hexamethylphosphoramide
HRMS	high-resolution mass spectrometry
IDCP	iodonium dicollidine perchlorate
IR	infrared
KAPA	potassium-3-aminopropylamide
LD_{50}	lethal dose for 50% of assay
LDA	lithium di-iso-propylamide
LRMS	low-resolution mass spectrometry
m	multiplet (spectral)
m-CPBA	m-chloroperoxybenzoic acid
Me	methyl
Mes	2,4,6-trimethylbenzyl (mesityl)
MEM	(2-methoxyethoxy)methyl
min	minute(s)
MMPP	magnesium monoperoxyphthalate hexahydrate
MOM	methoxymethyl
m.p	melting point
Ms	methanesulfonyl (mesyl)
NADH	reduced nicotinamide adenine dinucleotide
NaHMDS	sodium hexamethyldisilazane
NMO	4-methylmorpholine N -oxide

NMP	N-methyl-2-pyrrolidinone
NMR	nuclear magnetic resonance
PCC	pyridinium chlorochromate
Ph	phenyl
PNB	p-nitrobenzoyl
ppm	parts per million
PPTS	pyridinium p-toluene sulfonic acid
Pr	propyl
py	pyridine
q	quartet (spectral)
quin.	quintet (spectral)
S	singlet (spectral)
SAR	structure activity relationship
SEM	2-trimethylsilylethoxymethoxy
t	triplet (spectral)
TBAB	tetrabutylammonium bromide
TBAF	tetrabutylammonium fluoride
TBDPS	tert-butyldiphenylsilyl
TBHP	tert-butylhydroperoxide
TBS	tert-butyldimethylsilyl
TBSOF	2-(tert-butyldimethylsiloxy)furan
TBSOP	N-(tert-butoxycarbonyl)-2-(tert-butyldimethylsiloxy)pyrrole
TBSOT	2-(tert-butyldimethylsiloxy)thiophene
Tf	trifluoromethanesulfony (triflyl)
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
THF	tetrahydrofuran
THP	tetrahydropyran
TLC	thin layer chromatography
TMEDA	tetramethylethylenediamine
TMS	trimethylsilyl
ultra violet	

Chapter 1

Annonaceous Acetogenins: Structure, Biological Activity and Synthesis

The following chapter summarises the structural and biological properties of the Annonaceous acetogenin natural products, and provides a summary of previous synthetic approaches.

1.1 Introduction

The Annonaceous acetogenins are a class of natural products found only in a number of members of the plant family Annonaceae. Consisting of over 130 genera and 2300 species, this large group of tropical and subtropical plants and trees was until recently one of the least studied of the tropical plant families. ${ }^{1}$ The first of the Annonaceous acetogenins, uvaricin 1.1, was isolated as recently as 1982 and demonstrated potent in vivo antitumour properties against P-388 lymphocytic leukemia in mice. ${ }^{2}$ The broad range of biological activity exhibited by these compounds has generated intensive interest in recent years, and they are now one of the most rapidly growing classes of natural products. ${ }^{3-7}$

Structurally, the Annonaceous acetogenins are a series of C-35 / C-37 compounds derived from C-32 / C-34 long chain fatty acids, combined with a propan-2-ol moiety. They generally contain a long alkyl chain bearing a terminal, methyl-substituted α, β-unsaturated γ-lactone (butenolide), which in some cases may be replaced by a ketolactone. The carbon skeleton usually contains one, two or three tetrahydrofuran (THF) rings, and may also contain hydroxyl groups, ketones, acetates, epoxides, and unsaturation (Figure 1.1). ${ }^{3}$ A number of acyclic or tetrahydropyran (THP) based examples have also been isolated and characterised.

(2,4-cis)-Murisolinone 1.2

Asiminenin 1.3

Figure 1.1 Some examples of Annnonaceous acetogenins

1.2 Structural Classification

The Annonaceous acetogenins may be classified in a number of ways, either by primarily considering the relative stereochemistry about the THF rings, or the number and arrangement of these subunits within the molecule. The former provides exact stereochemical detail, however requires the creation of many subclasses and therefore for the purposes of general discussion the latter method is more commonly employed. Thus, the structures may be divided into the following general classes; mono-THF 1.5 , adjacent bis-THF 1.6, non adjacent bis-THF 1.7, tris-THF 1.8, non-THF ring 1.9, and non-classical THP-based acetogenins $\mathbf{1 . 1 0}$. Within these major classes exist many epimers and diastereoisomers, and also structures in which the lactone fragment is hydroxylated, reduced or rearranged (Figure 1.2). ${ }^{3,4}$

Major subclasses

Mono-THF 1.5 $\mathrm{R}=\mathrm{H}, \mathrm{OH}$

Adjacent bis-THF 1.6
$\mathrm{R}=\mathrm{H}, \mathrm{OH}$

Non-adjacent bis-THF 1.7

Tris-THF 1.8

Non-THF ring 1.9
$\mathrm{X}=\mathrm{C}=\mathrm{O}, \mathrm{CHOH}$,
CH_{2}, epoxide

R $=\mathrm{H}, \mathrm{OH}$

Terminal lactone (butenolide) subtypes

Hydroxylated 1.11
$\mathrm{R}^{1}=\mathrm{H}, \mathrm{OH}$
$\mathrm{R}^{2}=\mathrm{H}, \mathrm{OH}$

Ring hydroxlated and reduced 1.12

cis or trans ketolactone 1.13

Figure 1.2 Major acetogenin structural classes

1.3 Biosynthesis

The degree and location of oxygenation of the Annonaceous acetogenins suggests that they are biosynthesised via a polyketide pathway, beginning with C-32 and C-34 unsaturated molecules containing 1,5 -dienes, $1,5,9$-trienes and 1,5,9,13-tetraenes. These precursors themselves may be built up using acetyl-CoA, malonyl-CoA and propanyl-CoA as for fatty acid biosynthesis. These polyenes are epoxidised and undergo cascade cyclisation initiated by nucleophilic attack from internal hydroxyl or external hydroxide to form the mono-THF, adjacent bis-THF and tris-THF acetogenins, with the cascade initiated at one end of the polyene.

In the case of mono-THF examples with two flanking hydroxyl groups, epoxidation of ciscis or cis-trans dienes and attack by hydroxide gives access to a number of stereochemical
outcomes, such as threo-trans-threo annonacin type 1.14, threo-cis-threo cis-annonacin type 1.15 and erythro-trans-threo annonacin-A type 1.16 (Scheme 1.1).

1.15

1.16

Scheme 1.1 Route to mono-THF's with two flanking hydroxyls

Mono-THF examples with a single flanking hydroxyl group are thought to derive from keto-cis- and keto-trans-alkenes via epoxidation, ketone reduction and nucleophilic attack by the internal hydroxy group. This route gives rise to threo-trans gigantetrocin-A type 1.17, threo-cis muricatetrocin-A type 1.18 , erythro-trans muricatalin type 1.19 and erythro-cis type $\mathbf{1 . 2 0}$ (Scheme 1.2).

Adjacent bis-THF acetogenins $\mathbf{1 . 2 1}$ derive from epoxidation of 1,5,9-trienes, followed by tandem cyclisation initiated by the attack of hydroxide. Non-adjacent bis-THF examples $\mathbf{1 . 2 2}$ may be formed by simultaneous attack at both ends of a polyene (Scheme 1.3). In all cases the original double bond stereochemistries, as well as face of epoxidation, are responsible for the relative stereochemistry of the products. ${ }^{4}$

1.17

\downarrow

1.18

1.19

1.20

Scheme 1.2 Route to mono-THF's with one flanking hydroxyl

1.21

1.22

Scheme 1.3 Route to adjacent and non-adjacent bis-THF's

Hydroxy-tris-THF examples $\mathbf{1 . 2 3}$ derive from 13-hydroxy-1,5,9-trienes, via epoxidation and cascade cyclisation (Scheme 1.4).

1.23

Scheme 1.4 Route to tris-THF's

1.4 Biological Activity

A variety of biological activities have been attributed to the Annonaceous acetogenins, including pesticidal, ${ }^{8-10}$ insecticidal, ${ }^{11-13}$ antiprotozoal and antimicrobial activity, ${ }^{14}$ as well as antiparasitic and antifeedant properties. ${ }^{15}$ Most notably, a number of examples exhibit highly selective cytotoxicity towards particular tumour cell lines. ${ }^{16-19}$ This cytotoxicity generally increases from mono- to bis-THF compounds. For example, longicin 1.24 and longicoricin 1.25, both mono-THF acetogenins, exhibit ED_{50} of $1.25 \times 10^{-9} \mathrm{~g} . \mathrm{mL}^{-1}$ against human pancreatic carcinoma and $1 \times 10^{-7} \mathrm{~g} \cdot \mathrm{~mL}^{-1}$ against human prostate adenocarcinoma respectively. ${ }^{20,21}$ Adjacent bis-THF examples are commonly at least three orders of magnitude more potent. Trilobacin 1.26 exhibits $\mathrm{LD}_{50}<1 \times 10^{-12} \mathrm{~g} . \mathrm{mL}^{-1}$ in human colon carcinoma, ${ }^{9}$ and (+)-parviflorin 1.27 exhibits LD_{50} of $1.3 \times 10^{-15} \mathrm{~g} . \mathrm{mL}^{-1}$ for A-549 human lung carcinoma (Figure 1.3). ${ }^{22,23}$ A number of bis-THF's are reported to be highly cytotoxic toward multidrug resistant mammalian cancers. ${ }^{24-27}$

Longicin 1.24

Longicoricin 1.25

Trilobacin 1.26

(+)-Parviflorin 1.27
Figure 1.3 Cytotoxic antitumour acetogenins

The site of action of the Annonaceous acetogenins is within the mitochondria of cells. The major mechanism of action is inhibition of the reduced nicotinamide adenine dinucleotide, or NADH:ubiquinone oxidoreductase, also known as Complex I. ${ }^{28-35}$ This large enzyme complex is involved in the transfer of electrons from NADH to O_{2}, and links electron transfer to the translocation of protons out of the mitochondrion. This process generates a transmembraneous electrochemical force which drives the production of adenosine triphosphate (ATP). ${ }^{30}$ Inhibition of this process leads to depleted cellular ATP concentration and subsequent apoptosis, and this mechanism of action is particularly effective against cancerous cells, which have a higher demand for ATP than healthy cells. ${ }^{36}$ A smaller number of acetogenins act at the ubiquinone-linked NADH oxidase found in the cytoplasmic membrane (lipid bilayer) of hepatocycles, which is involved in cellular growth and signal recognition. ${ }^{25,28,37}$

Inhibition studies have shown adjacent bis-THF compounds, particularly bullatacin, to be the most potent inhibitors of Complex-I yet described. ${ }^{38}$ Structure-activity studies have
indicated that the potency depends approximately on the structure of the THF core such that adjacent bis $>$ non-adjacent bis $>$ mono. ${ }^{38,39}$ Many examples are comparable to or more potent than well known Complex-I inhibitors such as rotenone and amytal. ${ }^{40-44}$

An alternative mechanism of action is as a poison of DNA topoisomerase I. This enzyme allows modification of the topological state of DNA by introduction of a transient proteinbridged break in a single strand, through which another strand may pass, and is an integral part of replication and transcription. This transient breakage of the DNA backbone is accompanied by the formation of a covalent enzyme-DNA complex. ${ }^{45}$ Topoisomerase-I poisons act by stabilisation of the cleavable complex, and these drug stabilised complexes induce irreversible DNA strand breakage and cellular destruction. ${ }^{46-48}$ An assay of an adjacent bis- and a mono-THF gave IC_{50} values of 8.25 and $9.84 \mu \mathrm{M}$ respectively compared to $6.1 \mu \mathrm{M}$ for etoposide, an antineoplastic agent and positive control. ${ }^{28}$

Such variety of biological activity and mechanism of action is the driving force for the intense interest in the discovery and synthesis of these natural products.

1.5 Synthesis of Adjacent bis-Tetrahydrofuran Annonaceous Acetogenins

The following section summarises existing methodologies employed in the preparation of adjacent bis-tetrahydrofuran Annonaceous acetogenins. A number of review articles on this subject are available. ${ }^{49-55}$

1.5.1 Thomas R. Hoye et al.

1.5.1.1 Cascade Synthesis of bis-THF Core Fragments

The first reported synthetic approach to the core tetrahydrofuran structures of Annonaceous acetogenins was carried out by Hoye and Suhadolnik from 1985. ${ }^{56}$ The approach was biomimetic, based upon an epoxide opening cascade strategy. Thus, double HornerEmmons homologation of (Z)-oct-4-enedial 1.28 and reduction of the resulting diester afforded bis-allylic alcohol 1.29. Sharpless asymmetric epoxidation and treatment with acetic anhydride gave bis-epoxide $1.31 .{ }^{57}$ Epoxidation with m-CPBA and basic treatment
of the tris-epoxide resulted in deacylation and a rapid epoxide opening cascade initiated at one end of the molecule. The resulting terminal epoxides were hydrolysed under the reaction conditions, and the crude mixture acetylated affording bis-THF's $\mathbf{1 . 3 3}$ and $\mathbf{1 . 3 4}$ in a $1: 1$ ratio. The apparent racemisation is explained by the ability of the cascade to occur in a top-down or bottom-up fashion (Scheme 1.5).

Reagents and Conditions: (i) (i-PrO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{NaH}, \mathrm{Et}_{2} \mathrm{O}$; (ii) DIBAL- $\mathrm{H}, \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$; (iii) $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}$, (+)-DIPT, t - $\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-20^{\circ} \mathrm{C}$; (iv) $\mathrm{Ac}_{2} \mathrm{O}$, py; (v) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vi) $1 \mathrm{~N} \mathrm{NaOH}\left(\right.$ (aq), $50^{\circ} \mathrm{C}$; (vii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{py}$.

Scheme 1.5 Hoye's initial approach

The problem of racemisation was eliminated by the use of an inside-out epoxide opening route. ${ }^{58}$ This began with 1,4 -diiodide $\mathbf{1 . 3 5}$, synthesised from L-(+)-diethyl tartrate. Treatment with the dianion of ethyl acetoacetate afforded bis- β-keto ester $\mathbf{1 . 3 6}$. Borohydride reduction of the ketone, mesylation and elimination by base, followed by reduction of the resulting bis-ester afforded bis-allylic alcohol 1.37. Asymmetric epoxidation gave bis-epoxide 1.38, and subsequent treatment with protic acid resulted in acetonide removal and immediate, inside-out epoxide opening. Acylation of the crude residue afforded bis-THF tetraacetate $\mathbf{1 . 3 9}$ as a single diastereoisomer (Scheme 1.6)

Reagents and Conditions: (i) $\mathrm{H}_{3} \mathrm{CCOCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}, n$ - BuLi , THF; (ii) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$; (iii) MsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$; (v) DIBAL- $\mathrm{HI}, \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$; (vi) $\mathrm{Ti}(\mathrm{Oi} \text {-Pr) })_{4}$, L-(+)-DIPT, t - BuOOH , $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$; (vii) Amberlite-H, THF; (viii) $\mathrm{Ac}_{2} \mathrm{O}$, py.

Scheme 1.6 Hoye's inside-out epoxide opening approach

1.5.1.2 Total Synthesis of (+)-(15,16,19,20,23,24)-hexepi-Uvaricin 1.47

This initial investigation established methodology which led to the first total synthesis of $(+)-(15,16,19,20,23,24)$-hexepi-uvaricin 1.47, confirming the proposed regiochemistry and relative stereochemistry of the natural product uvaricin 1.1. ${ }^{2}$ Asymmetric epoxidation of bis-allylic alcohol 1.40 using D-(-)-diisopropyl tartrate afforded bis-epoxide 1.41. Desymmetrisation by mono-tosylation and acidic deprotection resulted in inside-out epoxide opening bis-THF product 1.42. Coupling of the tosylate with excess lithium dinonylcuprate, acetonide formation of the vicinal diol, acetylation and acetonide removal installed the C24 acetate and C26-C34 sidechain of $\mathbf{1 . 4 3}$.

Conversion to epoxide 1.44 was carried out with an inversion of configuration at C 15 , and epoxide opening by TMS protected lithium acetylide, followed by desilylation afforded alkyne 1.45. The remainder of the carbon skeleton was added using chiral vinyl iodide 1.48, via a palladium catalysed coupling reaction. ${ }^{59}$ Enyne hydrogenation using Wilkinson's catalyst, oxidation of sulfide to sulfoxide and thermal elimination afforded the final product (Scheme 1.7). ${ }^{60}$ Vinyl iodide 1.48 was prepared in three steps from 1-noyn-1-ol, ${ }^{61}$ using a 4-methyl-2-phenylsulfenyl- γ-butyrolactone described by Iwai et al. ${ }^{62}$

Reagents and Conditions: (i) $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}, \mathrm{D}-(-)-\mathrm{DIPT}, t-\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$; (ii) $\mathrm{TsCl}, \mathrm{Et} \mathrm{I}_{3} \mathrm{~N}, \mathrm{DMAP}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; (iii) Amberlyst-15, MeOH; (iv) $\left(n-\mathrm{C}_{9} \mathrm{H}_{19}\right)_{2} \mathrm{CuLi}$, THF, $-10^{\circ} \mathrm{C}$; (v) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{CSA}, \mathrm{Me}_{2} \mathrm{CO}$; (vi) $\mathrm{Ac}_{2} \mathrm{O}$, py; (vii) TsOH, MeOH; (viii) TBDPSCl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ix) TsCl , py, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (x) TBAF, THF; (xi) $\mathrm{LiC} \equiv \mathrm{CTMS}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF},-78^{\circ} \mathrm{C}$; (xii) TBAF; (xiii) Iodide 1.48, $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CuI}^{2} \mathrm{Et}_{3} \mathrm{~N}$; (xiv) $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}, \mathrm{H}_{2}$; (xv) Oxone ${ }^{\circledR}$, MeOH, $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (xvi) PhMe, Δ.

Scheme 1.7 Hoye's total synthesis of $(+)-(15,16,19,20,23,24)$-hexepi-uvaricin

1.5.1.3 Total Synthesis of (-)-Bullatacin 1.54

At this point Hoye et al. studied the butenolide portion of 4-hydroxylated acetogenins, ${ }^{63,64}$ culminating in the synthesis of (-)-bullatacin 1.54, a 4-hydroxy-24-deacetyl analogue of $(+)-(15,16,19,20,23,24)$-hexepi-uvaricin. This was carried out by the coupling of deacetylated, previously described alkyne 1.45 with a new butenolide-bearing iodoalkyne fragment. ${ }^{65}$ The synthesis of this fragment began by the conversion of iodide $1.49,{ }^{66}$ over
seven steps, to epoxide $1.50 .{ }^{67}$ Reaction with dilithiated phenylthioacetic acid followed by silylation of the resulting hydroxyl group gave acid $\mathbf{1 . 5 1}$. Dilithiation and treatment with (R)-propylene oxide followed by acid catalysed lactonisation and the replacement of the TMS group by iodide afforded coupling partner 1.52. Palladium catalysed coupling to deacetyl-1.45, ${ }^{68}$ diyne hydrogenation, sufide oxidation and thermal elimination were carried out as described previously. Final desilylation afforded enantiopure (-)-bullatacin $\mathbf{1 . 5 4}$ (Scheme 1.8).

Reagents and Conditions: (i) n - $\mathrm{PrC} \equiv \mathrm{CLi}$; (ii) $\mathrm{CSA}, \mathrm{MeOH}$; (iii) $\mathrm{KAPA}, \mathrm{DAP}$; (iv) $\mathrm{EtMgBr}, \mathrm{TMSCl}$; (v) 10% HCl ; (vi) TsCl, py, $-10^{\circ} \mathrm{C}$; (vii) NaH , THF; (viii) $\mathrm{PhSCH}=\mathrm{CO}_{2} \mathrm{Li}_{2}$; (ix) 10% citric acid; (x) TBSCl , imidazole; (xi) MeOH ; (xii) LDA, 2 eq ; (xiii) (R)-propylene oxide; (xiv) 10% citric acid; (xv) CSA, PhH, Δ; (xvi) $\mathrm{MeOH}, \mathrm{K}_{2} \mathrm{CO}_{3}$; (xvii) I_{2}, morpholine; (xviii) Alkyne deacetyl-1.45, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{CuI}, i-\mathrm{Pr}_{2} \mathrm{NH}, \mathrm{THF}$; (xix) $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}, \mathrm{H}_{2}$; (xx) Oxone ${ }^{\circledR}$, $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (xxi) PhMe, Δ; (xxii) $5 \% \mathrm{HF}$, MeCN, THF.

Sceme 1.8 Hoye's synthesis of (-)-bullatacin

1.5.1.4 Total Synthesis of (+)-Acimicin 1.70

Hoye next turned his attention to the synthesis of (+)-asimicin 1.70, using a new method of synthesis of the chiral butenolide fragment. ${ }^{69}$ Thus, selective mono-hydroboration of 1,7octadiene $\mathbf{1 . 5 5}$ followed by asymmetric dihydroxylation afforded triol $\mathbf{1 . 5 6}$ in high optical purity after recrystallisation. ${ }^{70}$ This triol was processed in a five step, one pot sequence in high yield to epoxyacetal 1.57 , which was opened with optically pure lithium acetylide $\mathbf{1 . 6 2}{ }^{63}$ affording homopropargylic alcohol 1.58. Conversion to the TBDPS ether and removal of the TBS group afforded propargylic alcohol 1.59. Red-Al reduction and treatment with iodine, ${ }^{71}$ followed by carbonylation under Stille conditions gave butenolide
1.60. ${ }^{72}$ Acetal hydrolysis and generation of the terminal vinyl iodide (4:1 E:Z) completed the butenolide subunit 1.61 in good yield (Scheme 1.9). ${ }^{73}$

Reagents and Conditions: (i) $9-\mathrm{BBN}$; (ii) AD-mix- β; (iii) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, PPTS ; (iv) TMSCl; (v) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}$; (vi) TsOH, MeOH ; (vii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (viii) 1.62, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; (ix) PPTS, MeOH ; (x) TBDPSCl; (xi) PPTS, MeOH; (xii) RED-Al; (xiii) I_{2}; (xiv) $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}, \mathrm{H}_{2} \mathrm{NNH}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{THF}, \mathrm{CO}, 45 \mathrm{psi}$; (xv) TFA, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CHCl}_{3}$; (xvi) $\mathrm{CrCl}_{2}, \mathrm{CHI}_{3}$, dioxane, THF.

Scheme 1.9 An alternative butenolide fragment

The synthesis of the bis-THF fragment of $(+)$-asimicin initially followed the strategy used by Keinan et al. in the synthesis of mono-THF acetogenins. ${ }^{74}$ Double asymmetric dihydroxylation of E, E-diene $\mathbf{1 . 6 3}$ and protection of the product as an acetonide gave lactone 1.64. Tosylation and methanolysis gave an epoxide which underwent Lewis acid catalysed opening on hydrolytic workup, affording lactone 1.65. Silylation, lactone reduction and homologation, followed by DIBAL reduction of the resulting ester gave allylic alcohol 1.66. This substrate was subjected to Sharpless asymmetric epoxidation, the product of which was spontaneously opened forming the second THF ring. The primary hydroxy group was protected as the TBDPS ether and the secondary hydroxy group was converted to the tosylate 1.67. Desilylation afforded epoxide 1.68, and treatment with TMS protected lithium acetylide followed by deprotection gave terminal alkyne 1.69. This fragment was coupled to vinyl iodide $\mathbf{1 . 6 1}$, and subsequent enyne hydrogenation and desilylation afforded (+)-asimicin 1.70 (Scheme 1.10).

Reagents and Conditions: (i) AD-mix- β; (ii) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{TsOH}, \mathrm{Me}_{2} \mathrm{CO}$; (iii) TsCl ; (iv) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (v) $20 \mathrm{~mol} \% \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; (vi) TBSCl; (vii) DIBAL-H; (viii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$; (ix) DIBAL-H; (x) Ti(Oi -Pr$)_{4}, \mathrm{~L}-(+)-$ DIPT, t - $\mathrm{BuOOH},-20^{\circ} \mathrm{C}$; (xi) TBDPSCl; (xii) TsCl ; (xiii) TBAF; (xiv) LiC $\equiv \mathrm{CTMS}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; (xv) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH ; (xvi) 1.61, $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}$; (xvii) $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}, \mathrm{H}_{2}$; (xviii) $\mathrm{AcCl}, \mathrm{MeOH}, \mathrm{Et}_{2} \mathrm{O}$.

Scheme $\mathbf{1 . 1 0}$ Hoye's total synthesis of (+)-asimicin

1.5.1.5 Total Synthesis of (+)-Parviflorin 1.27

Using a revised approach to both the synthesis of the butenolide fragment and to desymmetrisation of the bis-THF core, Hoye et al. described a fourteen step synthesis of (+)parviflorin 1.27 which vastly improved upon their previous work. ${ }^{22}$

An improved route to the butenolide fragment began by the double asymmetric dihydroxylation of 1,4-bis(hexenyloxy)benzene 1.71, affording tetraol 1.72 which, after recrystallisation, was enantiomerically pure. A one-pot reaction sequence gave bis-epoxide $1.73,{ }^{75}$ which was opened with TBS protected lithium acetylide $\mathbf{1 . 6 2}$. Silylation of the homopropargylic alcohol followed by selective removal of the TBS group gave propargylic
alcohol 1.74. Red-Al reduction and treatment with iodine, ${ }^{71}$ followed by carbonylation under Stille conditions afforded butenolide 1.75. ${ }^{72}$ Oxidative release using CAN, Swern oxidation and conversion to the terminal vinyl iodide ($5: 1 \mathrm{E}: Z$) completed the butenolide subunit 1.76 (Scheme 1.11).

Reagents and Conditions: (i) AD -mix- β; (ii) $\mathrm{CH}(\mathrm{OMe})_{3}$, PPTS ; (iii) AcBr ; (iv) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (v) 1.62, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; (vi) TBDPSCl; (vii) PPTS, EtOH; (viii) RED-Al; (ix) I_{2}; (x) $\left(\mathrm{Ph}_{3} \mathrm{P}_{2}\right)_{2 d C l}^{2}, \mathrm{H}_{2} \mathrm{NNH}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, THF, $\mathrm{CO}, 45 \mathrm{psi}$; (xi) CAN; (xii) (COCl) $2, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}$; (xiii) $\mathrm{CrCl}_{2}, \mathrm{CHI}_{3}$, dioxane, THF.

Scheme 1.11 Improved butenolide fragment synthesis

Construction of the bis-THF fragment began by the oxidation of two double bonds in trans, trans, trans-1,5,9-cyclododecatriene 1.77, followed by oxidative cleavage to the bisaldehyde, double Wittig homologation and reduction of the resulting ester to bis-allylic alcohol 1.78. This intermediate was manipulated by the method of Taber et al. ${ }^{76}$ Thus, asymmetric epoxidation gave bis-epoxide 1.79 in greater than 99% diastereomeric excess and 87% yield after recrystallisation. ${ }^{77}$ Silylation, asymmetric dihydroxylation and treatment with trifluoroacetic acid afforded bis-THF 1.80 . Conversion to epoxide 1.81 with inversion of the carbinol centres was achieved by tosylation followed by desilyation. Careful treatment with lithium (trimethylsilyl)acetylide in the presence of boron trifluoride
etherate allowed de-symmetrisation. Treatment of the resulting mono-epoxide with excess 1-lithio-1-nonyne and removal of the TMS group afforded alkyne 1.82. Palladium catalysed coupling of this alkyne with butenolide fragment $1.76,{ }^{68}$ followed by hydrogenation and deprotection, completed the synthesis of $(+)$-parviflorin 1.27 (Scheme 1.12).

1.82
1.83
1.27

Reagents and Conditions: (i) $\mathrm{OsO}_{4}, \mathrm{NMO}$; (ii) KIO_{4}; (iii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$; (iv) DIBAL-H; (v) $\mathrm{Ti}(\mathrm{Oi} \text { - } \mathrm{Pr})_{4}$, L-(+)-DET, t-BuOOH, $-20^{\circ} \mathrm{C}$; (vi) TBDPSCl, DMAP; (vii) AD-mix- β; (viii) TFA; (ix) TsCl; (x) TBAF; (xi) $\mathrm{LiC} \equiv \mathrm{CTMS}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; (xii) $n-\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{C} \equiv \mathrm{CLi}^{2} \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; (xiii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (xiv) 1.76, $\mathrm{Pd}\left(\mathrm{Ph}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{CuI}$, $\mathrm{Et}_{3} \mathrm{~N}$; (xv) $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}, \mathrm{H}_{2}$; (xvi) $\mathrm{AcCl}, \mathrm{MeOH}, \mathrm{Et}_{2} \mathrm{O}$.

Scheme 1.12 Total synthesis of (+)-parviflorin

1.5.2 Hans-Dieter Scharf et al.

1.5.2.1 Epoxide Opening Approach to the THF Core

In order to facilitate the biological testing of acetogenin analogues, Scharf adopted an epoxide opening approach to the THF core in which each stereocentre could be varied to provide maximum diversity. ${ }^{78}$ Thus, acetal protected 1 -bromopropionaldehyde 1.84 was alkylated using lithiated, methoxyethoxymethyl protected propargylic alcohol. Removal of
the acetal, Horner-Emmons reaction of the aldehyde with triethyl phosphonoacetate and reduction of the resulting ester afforded allylic alcohol 1.86. Sharpless asymmetric epoxidation installed the first two stereocentres with high selectivity, and epoxy alcohol 1.87 was converted to cyclic carbonate $1.88 .{ }^{79}$ Removal of the MEM protecting group and Lindlar reduction gave cis-allylic alcohol 1.89. Asymmetric epoxidation and acidic workup gave fragment 1.90 in 19% overall yield. As is generally the case with the epoxidation of cis-allylic alcohols, the diastereoselectivity of this second epoxidation was in the region of 85:15 in favour of the illustrated product (Scheme 1.13).

Reagents and Conditions: (i) $\mathrm{LiC} \equiv \mathrm{CCH}_{2} \mathrm{OMEM}, \mathrm{THF}, \mathrm{DMPU},-60^{\circ} \mathrm{C}$; (ii) $\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$; (iii) $\mathrm{LiBr}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$, $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$; (iv) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-10{ }^{\circ} \mathrm{C}$; (v) $\mathrm{Ti}(\mathrm{Oi} \text {-Pr) })_{4}$, D-(-)-DIPT, t - $\mathrm{BuOOH},-15{ }^{\circ} \mathrm{C}$; (vi) PhNCO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vii) $\mathrm{SnCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-2{ }^{\circ} \mathrm{C}$; (viii) $\mathrm{H}^{+}, \mathrm{MeOH}, 40^{\circ} \mathrm{C}$; (ix) $\mathrm{H}_{2} / \mathrm{Pd}, \mathrm{CaCO}_{3}, \mathrm{PbO}$; (x) $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}, \mathrm{D}-(-)-\mathrm{DIPT}, t-\mathrm{BuOOH},-15^{\circ} \mathrm{C}$; (xi) tartaric acid, $\mathrm{H}_{2} \mathrm{O}$.

Scheme 1.13 Scharf's synthesis of the THF core fragment

1.5.2.2 Synthesis of 15 -epi-Annonin I, 1.101

Scharf then used THF intermediate 1.90 in the total synthesis of 15 -epi-annonin I 1.101. ${ }^{80}$ Tosylation via dibutyltin stannylation afforded tosylate $\mathbf{1 . 9 1} .^{81}$ Conversion to the epoxide, carbonate hydrolysis and acetal formation gave 1.92. Opening of the epoxide with propargyl magnesium bromide, protection of the resulting alcohol as the TBS ether and hydroxymethylation with t - BuLi and paraformaldehyde afforded propargylic alcohol 1.93 . A trans-allylic alcohol was installed by Red-Al reduction, and asymmetric epoxidation and tosylation gave epoxide 1.94. Desilylation and epoxide cascade was induced by treatment
with hexafluorosilicic acid. Protection of the resulting triol as the acetonide and treatment with base gave bis-THF epoxide 1.96 in excellent yield. Boron trifluoride mediated epoxide opening by lithiated alkyne 1.102 gave homopropargylic alcohol 1.97. Hydrogenation, acetonide removal and primary tosylation afforded 1.98 which on treatment with TBAF underwent desilylation and epoxide formation. Both hydroxy groups were protected as TBS ethers affording epoxide 1.99. Lactone-bearing lithiated alkyne 1.103 was then used in a second Boron trifluoride mediated epoxide opening. Hydrogenation, sulfide oxidation, thermal elimination and desilylation afforded 15-epi-annonin 1.101 (Scheme 1.14).

Reagents and Conditions: (i) $\mathrm{SnBu}_{2}(\mathrm{OMe})_{2}, \mathrm{TsCl}, \mathrm{PhH}$; (ii) $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) $\mathrm{NaOMe}, \mathrm{MeOH}$; (iv) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, $\mathrm{PPTS}, \mathrm{Me}_{2} \mathrm{CO}$; (v) Propargylmagnesium bromide, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (vi) TBSOTf, py; (vii) t - BuLi , $\left(\mathrm{CH}_{2} \mathrm{O}\right)^{\mathrm{n}}, \mathrm{THF},-78^{\circ} \mathrm{C}$; (viii) Red-Al, Et 2 O ; (ix) $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}, \mathrm{~L}-\left(+\right.$)-DIPT, $t-\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-15^{\circ} \mathrm{C}$; (x) TsCl , $\mathrm{Et}_{3} \mathrm{~N}$; (xi) $\mathrm{H}_{2} \mathrm{SiF}_{6}, \mathrm{MeCN}$; (xii) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{PPTS}, \mathrm{Me}_{2} \mathrm{CO}$; (xiii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (xiv) 1.102, t - BuLi , $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}$; (xv) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOAc}$; (xvi) $80 \% \mathrm{AcOH}$; (xvii) $\mathrm{SnBu}_{2}(\mathrm{OMe})_{2}, \mathrm{TsCl}, \mathrm{PhMe}$; (xviii) TBAF, THF; (xix) TBSCl, AgNO_{3}, py, THF; (xx) 1.103, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, THF, $-78{ }^{\circ} \mathrm{C}$; (xxi) $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}, \mathrm{H}_{2}, \mathrm{PhH}$; (xxii) MMPP, $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \mathrm{CHCl}_{3}$; (xxiii) PhH, Δ; (xxiv) Lewatit-S100, MeOH.

Scheme 1.14 Scharf's total synthesis of 15-epi-annonin

Scharf also carried out synthetic, nuclear magnetic resonance and circular dichroism studies of butenolide fragments as a method of elucidation of the butenolide stereochemistry in natural products. ${ }^{82}$

1.5.3 Shigeki Sasaki et al; Synthesis of (+)-Bullatacin 1.110

Using a method of bis-THF generation which paralleled that used by Hoye et al. in the synthesis of $(+)-(15,16,19,20,23,24)$-hexepi-uvaricin, Sasaki undertook the total synthesis of $(+)$-bullatacin. Thus, diethyl-2,3-O-isopropylidene-D-tartrate 1.104 underwent DIBAL-H reduction, Horner-Emmons olefination and hydrogenation. A second round of reduction and olefination afforded bis-ester 1.105. Reduction of the esters, asymmetric epoxidation, p-nitrobenzoylation and treatment with acid afforded bis-THF 1.106. Mono-mesylation and removal of the benzoyl esters resulted in the formation of epoxide 1.107, which was opened by the lithium anion of sulfone $\mathbf{1 . 1 1 1}$. Desulfonation of the product with sodium amalgam and treatment with toluenesulfonyl chloride followed by base gave epoxide 1.108.

A Cu^{1}-mediated epoxide opening using n-nonylmagnesiumbromide and protection of the hydroxy groups was followed by desilylation, Jones oxidation and esterification with diazomethane, affording ester 1.109. Aldol condensation with aldehyde $\mathbf{1 . 1 1 2}$ and removal of the THP protecting group resulted in lactonisation. Benzoylation and treatment with methanolic ammonia was required to cause elimination, thus constructing the butenolide portion. Removal of the MOM groups afforded (+)-bullatacin 1.110 (Scheme 1.15).

Reagents and Conditions: (i) DIBAL-H, $\mathrm{PhCH}_{3},-78{ }^{\circ} \mathrm{C}$; (ii) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}, \mathrm{DME},-78{ }^{\circ} \mathrm{C}$; (iii) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, EtOH; (iv) DIBAL-H, $\mathrm{PhCH}_{3},-78^{\circ} \mathrm{C}$; (v) (EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}, \mathrm{DME},-78{ }^{\circ} \mathrm{C}$; (vi) DIBAL$\mathrm{H}, \mathrm{PhCH}_{3},-78{ }^{\circ} \mathrm{C}$; (vii) $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}, \mathrm{~L}-(+)$-DIPT, t - $\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}$; (viii) $\mathrm{PNBCl}, \mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}$; (ix) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (x) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; (xi) n - $\mathrm{Bu}_{4} \mathrm{NOH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; (xii) $\mathbf{1 . 1 1 1}, n$ - BuLi , DME; (xiii) $\mathrm{Na}-\mathrm{Hg}, \mathrm{EtOH}$; (xiv) TsCl, py, $-20^{\circ} \mathrm{C}$; (xv) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}$; (xvi) $n-\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{MgBr}, \mathrm{CuBr}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$; (xvii) MOMCl, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (xviii) TBAF, THF, $0^{\circ} \mathrm{C}$; (xix) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Me}_{2} \mathrm{CO},-20^{\circ} \mathrm{C}$; (xx) $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{EtOAc}$; (xxi) LDA; (xxii) 1.112, THF, $-78^{\circ} \mathrm{C}$; (xxiii) CSA, $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$; (xxiv) $\mathrm{BzCl}, \mathrm{py}, 0^{\circ} \mathrm{C}$; (xxv) $\mathrm{NH}_{3}, \mathrm{MeOH}$; (xxvi) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, DMS.

Scheme 1.15 Sasaki's synthesis of (+)-bullatacin

1.5.4 Ulrich Koert et al.

As part of an investigation of polyether helices with ion channel activity, ${ }^{83}$ Koert et al. investigated the linear synthesis of 2,5-trans-linked oligo tetrahydrofurans based on the successive elaboration of a THF ring to a pre-existing chain of THF units. ${ }^{84}$

1.5.4.1 General Oligo-THF Synthesis

Their first approach was an iterative method of oligo THF extension. Thus, enantiomerically pure lactone $\mathbf{1 . 1 1 3}$, obtained from glutamic acid, ${ }^{85}$ was converted to separable epimeric nitriles $\mathbf{1 . 1 1 4}$ and $\mathbf{1 . 1 1 5}$ in a 5:2 ratio. The trans-nitrile was converted to the corresponding methyl ester, and DIBAL reduction gave aldehyde 1.116. Reaction with Grignard 1.121 in the presence of Cu^{1} afforded alcohol $1.117 .{ }^{86}$ This was converted to bisTHF fragment 1.118 in four steps. Swern oxidation of the resulting primary alcohol and a further round of reactions gave tris-THF 1.120, which could be further extended in an iterative process (Scheme 1.16). The preferred formation of 1.117 and 1.119 was as predicted by the Cram chelate model. ${ }^{87}$

Reagents and Conditions: (i) DIBAL-H, $\mathrm{PhCH}_{3},-78{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$; (iii) $\mathrm{TMSCN}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{MeCN}$, $-20^{\circ} \mathrm{C}$, collect 1.114; (iv) $\mathrm{NaOMe}, \mathrm{MeOH}$; (v) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vi) $1.121, \mathrm{CuBr} \cdot \mathrm{SMe}_{2}, \mathrm{Et}_{2} \mathrm{O},-40^{\circ} \mathrm{C}$; (vii) $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}, 9: 2: 1$; (viii) $\mathrm{MesSO}_{2} \mathrm{Cl}, \mathrm{py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ix) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$ then AcOH ; (x) (COCl$)_{2}, \mathrm{DMSO}$, $\mathrm{Et}_{3} \mathrm{~N}$.

Scheme 1.16 Koert's iterative oligo-THF synthesis

1.5.4.2 Synthesis of (+)-Rolliniastatin I, 1.127

This methodology was then applied to the total synthesis of $(+)$-rolliniastatin I 1.127. ${ }^{88,89}$ Nitrile $\mathbf{1 . 1 1 5}$ was converted to the corresponding methyl ester, which was then reduced and benzylated. Desilyation gave alcohol 1.122, which underwent Swern oxidation and Cu^{I} mediated Grignard reaction with ent-1.121 affording acetonide 1.123. ${ }^{86}$ Removal of the acetonide and conversion to the epoxide, followed by acid-catalysed ring closure gave bisTHF moiety 1.124. Swern oxidation, reaction with n-decylmagnesium bromide, a second Swern oxidation of the product and stereoselective reduction (82:18) was carried out, followed by silylation and debenzylation, affording alcohol 1.125.

Installation of the butenolide-bearing sidechain was then addressed. Oxidation of 1.125 and treatment with Grignard reagent $\mathbf{1 . 1 2 8}$ afforded predominantly the threo product (95:5). Desilylation, reprotection as the tris-TBDMS ether and debenzylation was followed by
oxidation of the primary alcohol to acid $\mathbf{1 . 1 2 6}$. Treatment of the dianion of this acid consecutively with diphenyl disulfide, (S)-propylene oxide and acid installed a phenyl sulfide substituted lactone as for Hoye et al. Oxidation, thermal elimination and desilylation afforded (+)-rolliniastatin I 1.127 (Scheme 1.17).

Reagents and Conditions: (i) $\mathrm{NaOMe}, \mathrm{MeOH}$; (ii) $\mathrm{LiAlH}_{4}, \mathrm{THF}$; (iii) $\mathrm{BnBr}, \mathrm{NaH}$; (iv) TBAF, THF; (v) Swern; (vi) ent-1.121, $\mathrm{CuBr}^{-} \mathrm{SMe}_{2}, \mathrm{Et}_{2} \mathrm{O},-7{ }^{\circ} \mathrm{C}$; (vii) AcOH , THF, $\mathrm{H}_{2} \mathrm{O}$; (viii) $\mathrm{MesSO}_{2} \mathrm{Cl}, \mathrm{py}, 0{ }^{\circ} \mathrm{C}$; (ix) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (x) AcOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (xi) Swern; (xii) $n-\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{MgBr}$; (xiii) Swern; (xiv) $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}, \mathrm{EtO}_{2},-78$ ${ }^{\circ} \mathrm{C}$; (xv) TBDPSCl; (xvi) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, THF; (xvii) Swern; (xviii) $1.128, \mathrm{CuBr}^{-} \mathrm{SMe}_{2}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$; (xix) TBAF; (xx) TBSCl; (xxi) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{THF}$; (xxii) Swern; (xxiii) $\mathrm{KMnO}_{4}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$; (xxiv) LDA, $\mathrm{PhSSPh}, 0{ }^{\circ} \mathrm{C}$; (xxv) LDA, (S)-propylene oxide; (xxvi) TsOH; (xxvii) MMPP, THF, MeOH; (xxviii) $\mathrm{PhCH}_{3}, \Delta$; (xxix) $\mathrm{HF}, \mathrm{MeCN}$, THF.

Scheme 1.17 Koert's total synthesis of (+)-rolliniastatin I

1.5.4.3 Use of the Williamson Etherification Reaction

The second approach of Koert et al. ${ }^{90}$ was the five membered ring selective Williamson annulation reaction of 4,5 -dihydroxy tosylates. ${ }^{91}$ Alkylation of lithium diacetylide using chiral bromide 1.129 and (E)-selective reduction of the alkyne afforded alkene $\mathbf{1 . 1 3 0}$. Asymmetric dihydroxylation using AD-mix- α or AD-mix- β and treatment with excess toluenesulfonyl chloride gave ditosylates $\mathbf{1 . 1 3 1}$ and $\mathbf{1 . 1 3 2}$. Deprotection of the diols and treatment with base resulted in double Williamson cyclisation of each, affording bis-THF diols 1.133 and 1.134 (Scheme 1.18).

Reagents and Conditions: (i) LiC $\equiv \mathrm{CLi}, \mathrm{TMEDA}$; (ii) $\mathrm{Na}, \mathrm{NH}_{3} / \mathrm{THF} 1: 1,-30^{\circ} \mathrm{C}$; (iii) $\mathrm{AD}-$ mix- α, t - BuOH , $\mathrm{H}_{2} \mathrm{O}, 0-20^{\circ} \mathrm{C}$; (iv) TsCl , py; (v) AD-mix- β, t - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 0-20^{\circ} \mathrm{C}$; (vi) $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}$; (vii) NaH , THF.

Scheme 1.18

In related research, Koert used both epoxide opening and multiple Williamson etherification reactions to construct molecules containing up to five adjacent 2,5 -linked THF rings. ${ }^{92,93}$

1.5.5 Barry M. Trost et al.

Using a strategy based on asymmetric dihydroxylation chemistry, and which utilised the Williamson etherification protocol to install the bis-THF core, Trost carried out the total synthesis of (+)-parviflorin 1.27. ${ }^{94}$ The carbon skeleton was synthesised by the joining together of two almost identical building blocks by Julia olefination. ${ }^{95}$ These were synthesised from dienol $1.135,{ }^{96}$ which underwent asymmetric dihydroxylation and protection as the acetonide affording alcohol $1.136(94 \% \mathrm{ee})$. The sulfone olefination partner 1.137 was obtained by conversion to the corresponding iodide followed by displacement by the sodium salt of benzenesulfinic acid. ${ }^{97,98}$ Aldehyde partner 1.139 was obtained by hydrogenation of $\mathbf{1 . 1 3 6}$ followed by Dess-Martin oxidation. ${ }^{99}$

The aldehyde was then added to a cooled solution of the lithiated sulfone, and the reaction was quenched by the addition of benzoyl chloride. Treatment with sodium amalgam in the presence of a borate buffer gave alkyne $\mathbf{1 . 1 4 0}$ in an $E: Z$ ratio of 3:1. Asymmetric dihydroxylation of the E isomer and treatment with methanesulfonyl chloride afforded bismesylate 1.141. Acetonide removal and treatment of the crude product with base induced Williamson cyclisation, affording bis-THF 1.142 (Scheme 1.19).

Reagents and Conditions: (i) $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{OsO}_{4},(\mathrm{DHQD})_{2} \mathrm{PHAL}$, t - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$; (ii) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{TsOH}, \mathrm{PhH}$; (iii) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{I}_{2}$, imidazole, THF; (iv) $\mathrm{PhSO}_{2} \mathrm{Na}$, DMF; (v) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}$; (vi) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vii) n-BuLi, THF, $-78^{\circ} \mathrm{C}$; (viii) PhCOCl ; (ix) $\mathrm{Na} / \mathrm{Hg}, \mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{EtOH}$; (x) $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}$, OsO_{4}, (DHQD) ${ }_{2} \mathrm{PHAL}, t$ - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$; (xi) MsCl , py; (xii) Amberlyst- $\mathrm{H}, \mathrm{MeOH}, 40^{\circ} \mathrm{C}$; (xiii) t - BuOK , THF.

Scheme 1.19

Alkene $\mathbf{1 . 1 4 2}$ underwent Trost's ruthenium catalysed Alder-ene reaction with alkyne $\mathbf{1 . 1 4 6}$ and catalyst $\mathbf{1 . 1 4 7},{ }^{100}$ affording the unsaturated butenolide product $\mathbf{1 . 1 4 3}$ as a single epimer in good to excellent yield. The isolated double bond was dihydroxylated stereoselectively giving tetraol 1.144. Chemoselective deoxygenation of the C-5 hydroxyl group was achieved upon treatment with acetyl bromide, by regioselective opening of the intermediate acetoxonium ion, affording bromoacetate $\mathbf{1 . 1 4 5}{ }^{101}$ These conditions resulted in the acetylation of the other two hydroxy groups. Radical debromination and acidic hydrolysis completed the synthesis of (+)-parviflorin (Scheme 1.20).

Reagents and Conditions: (i) $1.146,1.147, \mathrm{MeOH}, 60{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{K} 3 \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{OsO}_{4}$, (DHQD) ${ }_{2} \mathrm{PHAL}, t$ - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$; (iii) $\mathrm{CH}_{3} \mathrm{COBr}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) n - $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, \mathrm{PhCH}_{3}$; (v) $\mathrm{CH}_{3} \mathrm{COCl}, \mathrm{MeOH}$.

Scheme 1.20

1.5.6 James A. Marshall et al.

1.5.6.1 General Introduction to Marshall's Stannane Chemistry

Marshall's interest in the synthesis of Annonaceous acetogenins began as a divergence from an existing project directed towards carbohydrate-based natural products. This project involved the development of a route to highly enantioenriched α - and γ-alkoxy allylic stannanes, ${ }^{102}$ which were prepared by the reduction of an acylstannane $\mathbf{1 . 1 4 8}$ by a chiral
hydride source, followed by the etherification of the resulting (S) - or (R)-hydroxy stannane $\mathbf{1 . 1 4 9}$ or $\mathbf{1 . 1 5 0}$ with a reactive halide or triflate (Scheme 1.21).

Reagents and Conditions: (i) (R)-(+)-BINAL-H, THF, $-78{ }^{\circ} \mathrm{C}$; (ii) (S)-(-)-BINAL-H, THF, $-78{ }^{\circ} \mathrm{C}$; (iii) MOMCl, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (iv) TMSOTf, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.

Scheme 1.21 Synthesis of α-alkoxy chiral stannanes

Upon treatment with a range of Lewis acids, α-alkoxy stannane 1.151 underwent stereospecific isomerisation to the γ-isomer $\mathbf{1 . 1 5 3}$ with inversion. Addition to aldehydes in the presence of Lewis acid afforded mono-protected syn-1,2-diols $\mathbf{1 . 1 5 5}$, via an acyclic transition state $\mathbf{1 . 1 5 4} .^{103}$ By contrast, pre-treatment of the stannane with indium trichloride and addition of aldehydes gave mono-protected anti- adducts 1.158 , via cyclic transition state 1.157 (Scheme 1.22). ${ }^{104}$

This methodology was applied to the synthesis of simple natural products (-)- and (+)muricatacin, 1.161 and $1.164 .^{105}$ Thus, reaction of two stannanes $\mathbf{1 . 1 5 9}$ and $\mathbf{1 . 1 6 2}$ with unsaturated aldehyde $\mathbf{1 . 1 6 5}$, in the presence of boron trifluoride, gave adducts $\mathbf{1 . 1 6 0}$ and 1.163 in good yield and with high syn-selectivity. Hydrogenation and lactonisation of these intermediates afforded (-)- and (+)-muricatacin (Scheme 1.23).

Reagents and Conditions: (i) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; (ii) $\mathrm{InCl}_{3},-78^{\circ} \mathrm{C}$; (iii) $\mathrm{R}^{2} \mathrm{CHO}$.
Scheme 1.22 Isomerisation of α-alkoxy chiral stannanes and reaction with aldehydes

Reagents and Conditions: (i) trans- $\mathrm{OHCCH}=\mathrm{CHCO}_{2} \mathrm{Et}$ (1.165), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; (ii) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$; (iii) HF , $\mathrm{H}_{2} \mathrm{O}$, THF.

Scheme 1.23 Synthesis of simple THF compounds using stannanes

1.5.6.2 Application of the Stannane Chemistry to bis-THF Synthesis

Marshall next applied his stannane chemistry to the synthesis of bis-THF containing molecules. Preparation of aldehyde 1.166 and reaction with stannane 1.167 gave alcohol 1.168. Hydrogenation, selective removal of the allylic silyl ether and conversion to bis-
mesylate $\mathbf{1 . 1 6 9}$ provided a substrate which on desilylation underwent double Williamson cyclisation affording bis-THF $\mathbf{1 . 1 7 0}$ (Scheme 1.24). ${ }^{53}$

Reagents and Conditions: (i) $1.167, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; (ii) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$; (iii) PPTS, MeOH ; (iv) MsCl , py; (v) TBAF.
Scheme 1.24 Synthesis of a simple bis-THF fragment

A model study was also carried out using a bidirectional approach to synthesise bis-THF fragments with C_{2} symmetry, a common feature of natural acetogenins. Stannane $\mathbf{1 . 1 7 1}$ was treated with either InCl_{3} or Boron trifluoride etherate prior to treatment with bis-aldehyde 1.178, affording predominantly the bis-anti and bis-syn alcohols 1.172 and 1.175 respectively in good yield. Tosylation of each and treatment with TBAF resulted in desilylation and double Williamson cyclisation affording bis THF's (R, R, R, R, R, R)-1.174 and (S, R, R, R, R, S)-1.177 respectively. ${ }^{106}$

Subjection of stannane 1.179 to identical reaction conditions resulted in the synthesis of (S, S, R, R, S, S)-1.180 and (R, S, R, R, S, R)-1.181 via the InCl_{3} and Boron trifluoride etherate routes respectively (Scheme 1.25).

1.171
ii, 90%

1.174

$\begin{aligned} \text { iv }-1.175 \mathrm{R} & =\mathrm{H} \\ 90 \% \square 1.176 \mathrm{R} & =\mathrm{Ts}\end{aligned}$

1.177

Reagents and Conditions: (i) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; (ii) $\mathrm{InCl}_{3}, 1.178$, $\mathrm{EtOAc}^{\text {; (iii) }} \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, 1.178, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) TsCl ; (v) TBAF, THF.

Scheme 1.25 A bidirectional approach to the C_{2}-symmetric bis-THF acetogenin core

1.5.6.3 Total Synthesis of (+)-Asimicin 1.70

Using the methodology described above for C_{2} symmetric bis-THF's, Marshall undertook the total synthesis of $(+)$-asimicin $1.70 .{ }^{107}$ The indium mediated reaction between previously described aldehyde $\mathbf{1 . 1 7 8}$ and stannane $\mathbf{1 . 1 8 2}$ proceeded with high yield and selectivity affording diol 1.183. Tosylation and desilylation resulted in double Williamson cyclisation affording bis-THF 1.185 , which was desymmetrised by the method of McDougal giving mono-tosylate $\mathbf{1 . 1 8 6} .^{108}$ Reduction of the tosylate, ruthenium catalysed hydrogenation of the alkenes and treatment with iodine in the presence of triphenylphosphine afforded iodide 1.188 (Scheme 1.26).

Reagents and Conditions: (i) $1.178, \operatorname{InCl}_{3}$, EtOAc ; (ii) TsCl , py; (iii) TBAF, THF; (iv) n - BuLi , THF then TsCl ; (v) $\mathrm{LiBEt}_{3} \mathrm{H}$, THF; (vi) $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{H}_{2}$, EtOAc; (vii) $\mathrm{I}_{2}, \mathrm{Ph} \mathrm{P}_{3} \mathrm{P}$, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 1.26 Synthesis of the THF core of $(+)$-asimicin

Coupling of iodide 1.188 with a higher order vinyl cuprate afforded olefin 1.189 , which was subjected to asymmetric dihydroxylation and conversion to epoxide 1.190 . Treatment with lithio- (R)-2-OTBS-3-butyne, protection of the resulting alcohol, desilylation and treatment with trifluoroacetic anhydride gave alkyne 1.191. Addition of tetrakis-triphenylphosphine palladium under an atmosphere of carbon monoxide, followed by addition of silver nitrate supported on silica gel, resulted in formation of the butenolide headgroup. Removal of the protecting groups afforded $(+)$-asimicin 1.70 (Scheme 1.27).

Marshall has also published the total syntheses of a number of acetogenins based on the rearrangement of chiral α-alkoxy stannanes and their subsequent $\mathrm{S}_{\mathrm{E}} 2^{\prime}$ addition to aldehydes, with some variation in the method of addition of the butenolide moiety. This took place by coupling of either butenolide-bearing terminal alkyne 1.192 with a terminal vinyl iodide, ${ }^{109,110}$ or of butenolide-bearing vinyl iodide 1.193 with a terminal alkyne, followed by hydrogenation. ${ }^{111}$ An alternative method was the aldol condensation of a terminal ethyl ester with the TBS ether of (S)-lactic acid. Desilylation gave γ-lactone adduct 1.194 , which on treatment with trifluoroacetic anhydride and base afforded the butenolide (Scheme 1.28). ${ }^{112,113}$

$1.188 \xrightarrow[91 \%]{\mathrm{i}}$

1.189

Reagents and Conditions: (i) $(\mathrm{HC}=\mathrm{CH})_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$, THF; (ii) $(\mathrm{DHQD})_{2} \mathrm{AQN}, \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, t-\mathrm{BuOH}$; (iii) $2,4,6-$ tri-iso-propyl benzenesulfonyl chloride, py; (iv) NaH , THF; (v) (R)- $\mathrm{LiC} \equiv \mathrm{CH}\left(\mathrm{OTBS}\right.$) $\mathrm{CH}_{3}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, THF; (vi) SEMCl, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vii) TBAF, THF; (viii) $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, 2,6$-lutidine; (ix) $1 \% \mathrm{Pd}_{\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}, \mathrm{CO}, \mathrm{THF} \text {, }}$ $\mathrm{H}_{2} \mathrm{O}$ then $\mathrm{AgNO}_{3}, \mathrm{SiO}_{2}$; (x) PPTS, EtOH.

Scheme 1.27 Installation of the butenolide of $(+)$-asimicin

1.193

Reagents and Conditions: (i) $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}, \mathrm{Et}_{2} \mathrm{NH}, \mathrm{CuI}$; (ii) $\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{PdCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CuI}\right.$; (iii) LDA; (iv) TBAF; (v) $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$.

Scheme 1.28 Alternative Marshall approaches to the butenolide

Bringing together a number of the most useful aspects of his methodology, Marshall also carried out a study into the versatile, modular synthesis of four bis-THF acetogenins from
seven fundamental subunits. ${ }^{114}$ This study is not detailed herein as the fundamental ideas have been addressed previously.

1.5.7 Subhash C. Sinha and Ehud Keinan et al.

The approach of Sinha et al. to the synthesis of bis-THF acetogenins is based primarily on a combination of the highly enantioselective Sharpless asymmetric dihydroxylation reaction and Kennedy's highly stereoselective rhenium based cyclisation of 5-hydroxy alkenes. ${ }^{115-120}$ The starting materials for this approach are generally long chain unsaturated aliphatic molecules, commonly terminating at one end with an ester or synthetic equivalent. This methodology had previously been successfully applied to the synthesis of mono-THF acetogenins. ${ }^{74}$

The use of Kennedy's cyclisation with rhenium was also investigated by Frank E. McDonald, who conducted studies directed at the synthesis of the tetrahydrofuran portions of tris-THF acetogenins. ${ }^{121}$ Although McDonald's work is worthy of mention, this summary focuses on the synthesis of bis-THF compounds, and it is therefore not detailed

1.5.7.1 Initial Studies Using the Sharpless / Kennedy Approach

The initial aim was the synthesis of a polyene substrate on which to attempt the generation of a number of chiral centres in a single step via tandem oxidative cyclisation. ${ }^{122}$ Thus, Wittig olefination of aldehyde $\mathbf{1 . 1 9 5}$ followed by hydrogenation over Lindlar's catalyst and dihydroxylation using AD -mix- β afforded hydroxylactone $\mathbf{1 . 1 9 8}$ as the major product. This differentiation is possible due to the significantly higher reactivity of AD reagents towards (E)-alkenes relative to (Z)-alkenes. ${ }^{115}$

Treatment of this intermediate with a mixture of $\mathrm{Re}_{2} \mathrm{O}_{7}$ and 2,6-lutidine gave cyclisation product 1.199. When treated with the more reactive combination of $\mathrm{Re}_{2} \mathrm{O}_{7}$ and periodic acid a second cyclisation ocurred, affording bis-THF lactone $\mathbf{1 . 2 0 0}$ in moderate yield. It was found that both cyclisations could be effected in a single step by initial exposure of hydroxylactone $\mathbf{1 . 1 9 8}$ to these more reactive conditions, affording $\mathbf{1 . 2 0 0}$ in 25% yield and
installing four new stereocentres (Sceme 1.29). The ability to halt the reaction after the first cyclisation has obvious synthetic advantages.

1.199

Reagents and Conditions: (i) $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{PPh}_{3}$; (ii) H_{2}, Lindlar cat.; (iii) AD-mix- β; (iv) $\mathrm{Re}_{2} \mathrm{O}_{7}$, 2,6-lutidine; (v) $\mathrm{Re}_{2} \mathrm{O}_{7}, \mathrm{H}_{5} \mathrm{IO}_{6}$.

Scheme 1.29 Sinha's combined osmium - rhenium approach

1.5.7.2 Library Synthesis of bis-THF Fragments

Sinha and Keinan next demonstrated the use of their osmium - rhenium approach, in combination with the Mitsunobu inversion of alcohols, ${ }^{123,124}$ to provide a number of intermediates which allowed the convergent synthesis of a library of bis-THF fragments. They then used one of these intermediates in the total synthesis of trilobacin 1.26. ${ }^{125}$

This library synthesis began with two Wittig partners, a phosphonium salt and an aldehyde, each containing two stereogenic centres. In the structure of trilobacin 1.26 the phosphonium salt contains centres 23 and 24 , and the aldehyde centres 15 and 16 . Phosphonium salts
1.203 and 1.204 and aldehydes 1.207 and 1.208 were prepared by asymmetric dihydroxylation of alkenes $\mathbf{1 . 2 0 1}$ and $\mathbf{1 . 2 0 5}$ respectively. These intermediates were then either transformed directly to the corresponding phosphonium salt or aldehyde, or subjected to Mitsunobu inversion and then transformed. Illustrated below are some of the intermediates synthesised using only AD-mix- β (Scheme 1.30).

Reagents and Conditions: (i) (a) AD-mix- $\beta, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, t$ - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (b) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ then 3 N HCl ; (c) $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) (a) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$; (b) $\mathrm{TsOH}, \mathrm{Me}_{2} \mathrm{CO}$, Dean - Stark; (c) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{l}_{2}$, imidazole, PhCH_{3}; (d) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$; (iii) p-nitrobenzoic acid, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{DEAD}, \mathrm{PhH}$; (iv) (a) TBDPSCl, imidazole, DMF; (b) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{H}_{2}$; (c) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) (a) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ then 3 N HCl ; (b) $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 1.30 Synthesis of some library building blocks

Coupling together of these two phosphonium salts and two aldehydes provided four (Z)alkenes, which were then subjected to the rhenium cyclisation affording the corresponding trans-substituted tetrahydrofurans. Illustrated below are the two products obtained by the reaction of phosphonium salt $\mathbf{1 . 2 0 3}$ with aldehydes $\mathbf{1 . 2 0 7}$ and $\mathbf{1 . 2 0 8}$ (Scheme 1.31). The products were desilylated and subjected to Kennedy cyclisation conditions, affording $\mathbf{1 . 2 0 9}$ and 1.212. Mesylation and acetonide removal resulted in Williamson cyclisation to bis-THF lactones $\mathbf{1 . 2 1 1}$ and 1.214. Sinha and Keinan synthesised four phosphonium salts and four
aldehydes, allowing the synthesis of sixteen possible Williamson cyclisation precursors of type 1.209. Mitsunobu inversion of these alcohols prior to the final cyclisation would allow access to a total of thirty two bis-THF lactones.

Reagents and Conditions: (i) $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$, then aldehyde, THF, HMPA; (ii) TBAF, THF; (iii) $\mathrm{Re}_{2} \mathrm{O}_{7}$, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{Me}_{2} \mathrm{CO}, \mathrm{TsOH}$; (v) $\mathrm{MsCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vi) $\mathrm{TsOH}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$; (vii) py, $100^{\circ} \mathrm{C}$

Scheme 1.31 Examples of some library products

One member of this library, lactone 1.215 , was used in the synthesis of trilobacin $\mathbf{1 . 2 6}$. Thus, LiAlH_{4} reduction, formation of the TMS ether of the primary hydroxyl group and protection of the secondary hydroxyl as the MOM ether, followed by desilylation gave the primary alcohol. Conversion to the corresponding Wittig salt $\mathbf{1 . 2 1 6}$ via the iodide, coupling with aldehyde 1.217 , and subsequent hydrogenation and deprotection afforded the natural product (Scheme 1.32).

Reagents and Conditions: (i) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF},-78^{\circ} \mathrm{C}$; (ii) TMSCl, DIPEA, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then MOMCl ; (iii) TBAF, THF; (iv) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{I}_{2}$, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) $\mathrm{Ph}_{3} \mathrm{P}^{2}, \mathrm{NaHCO}_{3}, \mathrm{MeCN}$; (vi) n-BuLi, 1.217, THF, $0^{\circ} \mathrm{C}$; (vii) $\mathrm{Rh}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{Cl}, \mathrm{PhH}, \mathrm{EtOH}$; (viii) $\mathrm{AcCl}, \mathrm{MeOH}, \mathrm{Et}_{2} \mathrm{O}$.

Scheme 1.32 Synthesis of trilobacin

An expanded library of sixty four bis-THF lactone building blocks was then constructed. ${ }^{126}$ The approach was based on two complementary oxidative cyclisation procedures involving either Kennedy's rhenium cyclisation to give trans-THF products, or the use of VO(acac) $)_{2}$ / TBHP to give cis-THF products.

A partial representation of this library (Scheme 1.33) originates from cis-alkene 1.218, which itself was synthesised as for the conversion of ester $\mathbf{1 . 1 9 7}$ to lactone 1.198 (Scheme 1.29). Thus, $\mathbf{1 . 2 1 8}$ was one of four lactones resulting from four dienynes. Treatment of 1.218 with either $\mathrm{Re}_{2} \mathrm{O}_{7}$ or $\mathrm{VO}(\mathrm{acac})_{2}$ gave trans- or cis-THF products $\mathbf{1 . 2 1 9}$ and $\mathbf{1 . 2 2 0}$ respectively. Lindlar reduction was followed by oxidative cyclisation by either strategy, or Mitsunobu inversion and then cyclisation affording eight bis-THF lactones 1.221-1.228 (Scheme 1.33). These lactones then underwent Mitsunobu inversion giving a total of sixteen products from 1.218.

A modular synthesis of acetogenins asimicin and bullatacin was carried out, partly based on this approach. ${ }^{127}$

1.221

$\mathrm{Re}_{2} \mathrm{O}_{7}$, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(ii) $\mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}, \mathrm{H}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, hexane; (iii) $\mathrm{VO}(\mathrm{acac})_{2}, t-\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) (a) 4-nitrobenzoic acid, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{DEAD}, \mathrm{PhH}$; (b) $\mathrm{KOH}_{\text {(aq) }}$, MeOH then 3 N HCl ; (c) $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) $\mathrm{Re}_{2} \mathrm{O}_{7}, \mathrm{H}_{5} \mathrm{IO}_{6}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Scheme 1.33 Library synthesis using a combination of $\mathrm{Re}_{2} \mathrm{O}_{7}$ and $\mathrm{VO}(\mathrm{acac})_{2} / t-\mathrm{BuOOH}$

1.5.7.3 Total Synthesis of Uvaricin 1.1

The total synthesis of uvaricin was achieved by Sinha and Keinan via an asymmetric dihydroxylation / Williamson annulation strategy. ${ }^{128}$ Asymmetric dihydroxylation of alkene 1.229 gave threo hydroxy lactone $\mathbf{1 . 2 3 0}$. Mitsunobu inversion of the alcohol followed by LiAlH_{4} reduction of the benzyl ester and protection of the vicinal diol gave acetonide 1.231. Oxidation by pyridimium chlorochromate and reaction of the resulting aldehyde with vinylmagnesium bromide afforded racemic alcohol 1.232, which underwent ClaisenJohnson rearrangement to ester 1.233. ${ }^{129}$ This underwent DIBAL-H reduction, HornerEmmons olefination with triethylphosphonoacetate, and DIBAL-H reduction of the ester.

Protection of the resulting allylic alcohol as the MOM ether, selective asymmetric dihydroxylation of the more electron rich, isolated alkene and mesylation afforded bismesylate 1.234. Asymmetric epoxidation of the remaining double bond and treatment with toluenesulfonic acid resulted in diol deprotection and double cyclisation. Removal of the MOM ether using boron trifluoride etherate, processing of the resulting vicinal diol to the epoxide and protection of the remaining alcohol gave epoxide $\mathbf{1 . 2 3 5}$.

This epoxide was opened using TMS-protected lithium acetylide, the product of which was desilylated affording the terminal alkyne. Palladium catalysed coupling with vinyl iodide 1.48, hydrogenation, sulfide oxidation and thermal elimination afforded uvaricin 1.1 (Scheme 1.34). Squamotacin and trilobin, two other bis-THF acetogenins, were synthesised in a similar fashion. ${ }^{130,131}$

Reagents and Conditions: (i) AD-mix- $\beta, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, t$ - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (ii) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ then 3 N HCl ; (iii) $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) 4-nitrobenzoic acid, $\mathrm{Ph}_{3} \mathrm{P}$, DEAD, PhH ; (v) $\mathrm{LiAlH}_{4}, \mathrm{THF}, \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$; (vi) $\mathrm{Me}_{2} \mathrm{CO}, \mathrm{TsOH}$; (vii) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (viii) Vinylmagnesium bromide, $-30^{\circ} \mathrm{C}$; (ix) Triethyl orthoacetate, propionic acid, p-xylene; (x) DIBAL-H, THF, $-78{ }^{\circ} \mathrm{C}$; (xi) (EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$; (xii) DIBAL-H, THF, $-78^{\circ} \mathrm{C}$; (xiii) MOMCl, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (xiv) AD-mix- $\alpha, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, t$ - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (xv) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (xvi) AD-mix- β, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, t$ - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (xvii) TsOH, MeOH; (xviii) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; (xix) $\mathrm{TsCl}, \mathrm{py}, 0^{\circ} \mathrm{C}$; (xx) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (xxi) $\mathrm{Ac}_{2} \mathrm{O}$, py; (xxii) LiC $\equiv \mathrm{CTMS}, n$ - BuLi, THF, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; (xxiii) TBAF, THF; (xxiv) 1.48, $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}$; (xxv) $\mathrm{Rh}^{\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{Cl}, \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{PhH} ;(\mathrm{xxvi})}$ m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (xxvii) $\Delta, \mathrm{PhCH}_{3}$.

Scheme 1.34 Total synthesis of uvaricin

1.5.7.4 Total Synthesis of Asimicin and Bullatacin

Sinha and Keinan also carried out the total synthesis of acetogenins asimicin and bullatacin, using a combination of asymmetric epoxidation and the Kennedy cyclisation strategy. ${ }^{132}$ The synthesis of bullatacin $\mathbf{1 . 1 1 0}$ is illustrated below (Scheme 1.35). Selective dihydroxylation of the trans-alkene of dienyne 1.196 gave hydroxy lactone 1.218 , which on treatment with pre-mixed $\mathrm{Re}_{2} \mathrm{O}_{7}$ and 2,6-lutidine cyclised to give THF lactone $\mathbf{1 . 2 3 6}$. Lindlar reduction of the alkyne and mesylation afforded cis-alkene 1.237. Displacement by cesium propionate followed by hydrolysis gave inverted alcohol 1.238. A second Kennedy cyclisation, using the more reactive combination of $\mathrm{Re}_{2} \mathrm{O}_{7}$ and periodic acid, gave bis-THF lactone 1.221. Protection of the hydroxyl groups as MOM ethers occurred during processing of the lactone moiety to phosphonium salt $\mathbf{1 . 2 3 9}$, as described previously. Wittig reaction with aldehyde 1.227 , followed by reduction over Wilkinson's catalyst and final deprotection, afforded the natural product $\mathbf{1 . 1 1 0}$ in a total of nineteen steps from the dienyne.

Reagents and Conditions: (i) AD-mix- $\beta, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, t-\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (ii) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ then 3 N HCl ; (iii) $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $\mathrm{Re}_{2} \mathrm{O}_{7}, 2$, 6 -lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) $5 \% \mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}, \mathrm{H}_{2}, \mathrm{Et}_{3} \mathrm{~N}$; (vi) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; (vii) Cesium propionate, DMF, $100{ }^{\circ} \mathrm{C}$; (viii) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ then 3 N HCl ; (ix) TsOH , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (x) $\mathrm{Re}_{2} \mathrm{O}_{7}, \mathrm{H}_{5} \mathrm{IO}_{6}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (xi) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$; (xii) TBSCl, DIPEA, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (xiii) MOMCl, DIPEA, $0^{\circ} \mathrm{C}$; (xiv) TBAF, THF; (xv) $\mathrm{I}_{2}, \mathrm{Ph}_{3} \mathrm{P}$, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (xvi) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{NaHCO}_{3}, \mathrm{MeCN}, 40^{\circ} \mathrm{C}$; (xvii) n-BuLi, THF, $0^{\circ} \mathrm{C}, 1.217$; (xviii) $\mathrm{Rh}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{Cl}, \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{PhH}$; (xix) $\mathrm{AcCl}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 1.35 Total synthesis of bullatacin

1.5.7.5 Rules of Stereoselectivity in the Rhenium (VII) Oxide Tandem Oxidative Polycyclisation Reaction

Kennedy's work on the monocyclisation reaction with simple bis-homoallylic alcohols suggested that the stereochemical outcome of the reaction resulted consistently in the formation of trans-THF products. This general rule was confirmed by the work of McDonald, and by Sinha and Keinan's library and natural product syntheses. More recently however, Sinha and Keinan carried out a triple oxidative cyclisation using trifluoroacetyl
perrhenate which gave a product with stereochemistry which was inconsistent with these findings. ${ }^{133}$ It was expected that the reaction of triene 1.240 with trifluoroacetyl perrhenate would give all-trans product 1.241 , however the product obtained was cis-cis-trans 1.242 (Scheme 1.36).

The relative and absolute stereochemistry of the triple cyclisation product was determined by conducting the reaction in a stepwise manner. Thus, the triene starting material underwent single cyclisation to 1.243 , which on treatment with further reagents was converted via 1.244 to the cis-cis-trans product. The structure of intermediates and final product was confirmed by a combination of Mosher's ester and long-range and throughspace nuclear magnetic resonance studies. Preparation of 1.241 and 1.242 by independent asymmetric synthesis provided absolute confirmation of the tris-THF stereochemistry. ${ }^{134}$

Reagents and Conditions: (i) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{ReO}_{3}, \mathrm{TFAA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Scheme 1.36 Unexpected stereochemical outcome of the triple cyclisation

It was concluded from this study that the relative configuration of the THF ring formed during the cyclisation reaction is strongly dependent upon the configuration of the vicinal oxygen functions formed in the previous cyclisation, which itself arises from the double bond geometry of the polyene substrate. Four dienol substrates 1.245 - 1.248 were then prepared and treated with trifluoroacetyl perrhenate (Scheme 1.37).

Reagents and Conditions: (i) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{ReO}_{3}, \mathrm{TFAA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Scheme 1.37 Cyclisation of four dienols

On the basis of these and previous results, the following rules were proposed for a single step polycyclisation of polydisubstituted alkenols:

1. With a simple bis-homoallylic alcohol (where the hydroxyl group is the only strong coordination site for rhenium), the first THF ring is always produced with transconfiguration.
2. If the two vicinal oxygen functions formed in the first cyclisation have a threo relationship, the next cyclisation will produce a cis-THF ring.
3. If the two vicinal oxygen functions formed in the first cyclisation have an erythro relationship, the next cyclisation will produce a trans-THF ring.

These rules reflect the marked change in the stereochemical course of the oxidative cyclisation from one substrate to the next. This might be explained by the ability of the newly formed THF ring to chelate the rhenium atom during the course of subsequent reactions. A transition state model was proposed to explain the experimental observations.

In the first cyclisation, the non-coordinating alkyl group will have a high preference to adopt a less sterically demanding $\dot{p s e u d o}$-equatorial position in the proposed [3+2] transition state
1.253, resulting in a trans-THF. In cases where the R group possesses a potential coordination site for rhenium, the substrate may become a bidentate ligand. In this case, the preference for the coordinating group would be to adopt an energetically favoured pseudoaxial position $\mathbf{1 . 2 5 5}$, resulting in the formation of a cis-THF product.

The coordinating ability of this bidentate ligand would depend on the relative configuration of the two oxygen functions. With a threo relationship the reaction can be seen to proceed via a favoured exo-type transition state $\mathbf{1 . 2 5 7}$, but with an erythro relationship a disfavoured endo-type transition state 1.258 would be required. In this case, the non-chelated intermediate 1.253 would become more favourable (Sceme 1.38).

Reagents and Conditions: (i) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{ReO}_{3}, \mathrm{TFAA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Scheme 1.38 Rhenium cyclisation transition states proposed by Sinha and Keinan

Later studies carried out by Morimoto and Iwai, using tertiary alcohols and trisubstituted double bonds, were in agreement with these basic rules. ${ }^{135}$ Sinha and Keinan used their
rules to correctly predict the starting materials required to synthesise adjacent tris-THF acetogenins. ${ }^{136}$

1.5.8 Giovanni Casiraghi and Franca Zanardi

Casiraghi and Zanardi carried out the synthesis of a series of oligo-THF fragments and their heteroatom analogues using a modular strategy. ${ }^{137,138}$ This approach involved the stepwise addition of heterocycle units using silyloxy diene methodology. ${ }^{139-144}$ The three building blocks on which this approach is based are the nucleophilic (acceptor) silyloxy dienes 2-(tert-butyldimethylsiloxy)furan (TBSOF) 1.259, 2-(tert-butyldimethylsiloxy)thiophene (TBSOT) 1.260 and N-(tert-butoxycarbonyl)-2-(tert-butyldimethylsiloxy)pyrrole (TBSOP)
1.261. The combinatorial coupling of these reagents with three electrophilic (donor) units
1.262-1.264 by sequential vinylogous couplings gave the project useful diversity (Scheme 1.39). ${ }^{145}$

Scheme 1.39 Casiraghi's acceptor and donor units

These units were used to construct dinuclear molecules using a method based on Lewis acid mediated Mukaiyama aldolisation. ${ }^{146}$ For example the addition of $\mathbf{1 . 2 5 9}$ to $\mathbf{1 . 2 6 2}$ in the presence of TBSOTf followed by hydrogenation of the unsaturated lactone intermediate gave a separable $45: 55$ mixture of $\mathbf{1 . 2 6 5}$ and $\mathbf{1 . 2 6 6}$ in total yield of 68% over two steps. Using the three donors and three acceptors, eighteen dinuclear products were synthesised. The products of the reaction of donor 1.262 with the three silyloxy dienes are shown (Scheme 1.40).

Reagents and Conditions: (i) 1.259, TBSOTf, then hydrogenation; (ii) $\mathbf{1 . 2 6 0}$, TBSOTf, then hydrogenation; (iii) 1.261, TBSOTf, then hydrogenation.

Scheme 1.40 Products from the reaction between the oxygen donor and three acceptors

Reduction of the lactone products to the corresponding lactol and activation by conversion to the acetate or methoxy derivative provided substrates for the addition of a third heterocyclic unit. This therefore is a divergent strategy which would allow the rapid synthesis of libraries of oligo-THF moieties. Although the reaction gives product ratios in the region of $1: 1$, therefore requiring chromatography to separate diastereoisomers, it might be argued that this is a benefit in terms of the creation of molecular diversity.

1.5.9 Bruno Figadere et al.

Figadere et al. carried out the synthesis of chiral THF lactones with a single, long alkyl chain. ${ }^{147}$ These corresponded to the central THF and sidechain parts of natural acetogenins. The approach involved the C-glycosylation of anomeric acetoxytetrahydrofurans with 2-(trimethylsilyloxy)furan, a direct analogy with the work of Casiraghi and Zanardi. Initially, L-glutamic acid was converted in seven steps to anomeric acetates $\mathbf{1 . 2 7 1}$ and $\mathbf{1 . 2 7 2}$. Reaction of these acetates with 2-(trimethylsilyloxy)furan in the presence of catalytic trityl perchlorate gave, in both cases, a mixture of two products 1.273:1.275 and 1.274:1.276 in ratios of $2: 3$ (Scheme 1.41). Hydrogenation of the unsaturated products gave the THF lactone fragments 1.277-1.280.

$1.273 n=9$
$1.277 n=9$
i, 90%
$1.271 n=9$
$1.272 n=11$

Reagents and Conditions: (i) 2-(trimethylsilyloxy)furan, $\mathrm{TrClO}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (ii) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{PhH}$; (iii) TBAF, THF.

Scheme 1.41 Figadere's synthesis of THF-lactone fragments

Figadere then demonstrated the stepwise nature of this approach, targeting intermediates in the synthesis of the acetogenin analogue (-)-desoxyasimicin. ${ }^{148}$ Reduction of lactone 1.277, activation of the resulting lactol as the acetate and treatment with 2-(trimethylsilyloxy)furan and catalytic trityl perchlorate, followed by reduction of the products gave separable threo-trans- and erythro-trans- lactones $\mathbf{1 . 2 8 1}$ and $\mathbf{1 . 2 8 2}$ in 70% yield over four steps and in a ratio of $2: 3$. This ratio was consistent with that obtained for the first glycosylation reaction (Scheme 1.42).

Reduction of $\mathbf{1 . 2 8 1}$ to the corresponding lactol followed by Wittig homologation gave alkene $\mathbf{1 . 2 8 3}$. This was an intermediate which could be converted to (-)-desoxyasimicin 1.284 using methodology employed by Figadere in the synthesis of more simple non- or mono-THF acetogenins. ${ }^{149}$ This protocol involved the treatment of ester $\mathbf{1 . 2 8 3}$ with lithium diisopropylamide followed by phenylselenium chloride. A second alkylation with (S)proplylene oxide resulted in lactonisation, and treatment with hydrogen peroxide and acetic acid resulted in oxidation of selenium and in-situ elimination, forming the desired butenolide.

Reagents and Conditions: (i) DIBAL-H; (ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$; (iii) 2-(trimethylsilyloxy)furan, $\mathrm{TrClO}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$; (iv) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{PhH}$; (v) DIBAL-H; (vi) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CO}_{2} \mathrm{Me}$; (vii) LDA then $\mathrm{PhSeCl}, \mathrm{THF},-78^{\circ} \mathrm{C}$; (viii) LDA then (S)-propylene oxide, THF, $-78^{\circ} \mathrm{C}$; (ix) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{AcOH}$.

Scheme 1.42 En-route to the total synthesis of (-)-desoxyasimicin

This approach is obviously suited to the construction of a number of acetogenin analogues by the use of starting materials of different alkyl chain length, and by the use of all product combinations of the glycosidation reactions. As for Casiraghi's work, the scope exists for the use of other heterocyclic building blocks.

1.5.10 David R. Mootoo et al.

1.5.10.1 A Monosaccharide-Based Approach to cis-2,5-Disubstituted THF's

Mootoo et al. described the halonium ion mediated transformation of monosaccharide alkenes 1.285 into tetrahydrofurans. The reaction is thought to proceed via the initial formation of an onium ion or charge transfer complex 1.286, then to bicyclic THF-oxonium intermediate 1.287 , fragmentation of which leads to oxonium species $\mathbf{1 . 2 8 8}$. On hydrolysis this gives THF aldehyde $\mathbf{1 . 2 8 9}$ (Scheme 1.43). The reaction is generally conducted in solution in wet dichloromethane with iodonium dicollidine perchlorate (IDCP) as the promoter. The bicyclic nature of the intermediate THF oxonium ion should lead to the transfer of chirality from the monosaccharide template to the newly formed THF ring. ${ }^{150-154}$ As the synthetic modification of saccharides is a well studied area, Mootoo investigated
structural features within the saccharide which would lead with high stereoselectivity to 2,5 disubstituted THF's. ${ }^{155}$

Scheme 1.43 Mechanism of haloetherification and examples of trityl glycoside selectivity

Initial studies involved $1: 1$ mixtures of $\alpha: \beta$ anomers of aglycones of similar size and different electronegativity, with a terminal alkene. When $\mathrm{R}=$ ethyl, the cis:trans ratio was 3:2. On changing from ethyl to trifluoroethyl this ratio remained unchanged, however reactivity decreased dramatically. More encouraging results were obtained by increasing the steric bulk of the aglycone. The tertiary butyl analogue gave a ratio of $3.5: 1$, and the trityl variant gave exclusively the cis-THF product in 81% yield.

The trityl glycosides of cis- and trans- alkenes were then investigated. It was found that Z alkenes were inherently less cis-selective than the corresponding E-isomers in the case of the α-benzylate anomer. The β-benzylate anomer gave exclusively $c i s$-THF products from both alkene geometries. (Scheme 1.43, inset).

Mootoo next carried out the synthesis of the bis-THF core of acetogenin rolliniastatin $1.296 .{ }^{156,157}$ This approach was based on the bis-pyranoside-E-alkene 1.293 which was prepared by the Wittig coupling of two monosaccharide components 1.290 and 1.291 , followed by aglycone exchange and alkene isomerisation. ${ }^{158}$ One monosaccharide had an activating, cis-directing trityl aglycone, the other a deactivating trifluoroethyl aglycone (Scheme 1.44).

Reagents and Conditions: $\mathrm{NaHMDS}, \mathrm{PhCH}_{3},-78{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{THF} / \mathrm{HCl}, 3: 1$; (iii) $\mathrm{Ph}_{3} \mathrm{CCl}^{2}, \mathrm{AgO}_{2} \mathrm{CF}_{3}$, collidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) m - $\mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, phosphate buffer; (v) $\mathrm{Ph}_{2} \mathrm{PLi}$ then MeI.

Scheme 1.44 Synthesis of the bis-pyranoside required for the rolliniastatin THF core

The conversion of this substrate to the required bis-THF fragment began with the haloetherification of the activated, stereodetermining pyranoside, affording halo-THFtrifluoroethyl pyranoside $\mathbf{1 . 2 9 4}$. Wittig extension of the aldehyde and hydrolytic removal of the trifluoroethyl group gave a six-membered lactol. A second Wittig reaction formed the terminal alkene, and the resulting γ-hydroxy iodide underwent in-situ cyclisation affording bis-THF 1.295. The use of two different Wittig partners would allow the installation of the sidechains of natural products such as rolliniastatin 1.296 (Scheme 1.45).

Reagents and Conditions: (i) $\mathrm{IDCP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$; (ii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, THF; (iii) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$; (iv) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, THF.

Scheme 1.45 Synthesis of the bis-THF core of rolliniastatin

1.5.10.2 Acetal Templates for the Synthesis of trans-2,5-Disubstituted THF's

As a complement to their work with pyranoside alkenes, Mootoo et al. carried out the halocyclisation of $5,6-O$-isopropylidene alkenes, resulting in the exclusive formation of trans-2,5-disubstituted THF's. ${ }^{159}$ The high selectivity appears to be consistent with the formation of a THF-oxonium ion intermediate which, to form the cis-THF product, would have to adopt a geometry 1.297 in which high steric strain would be experienced between the acetonide methyl group and the aliphatic chain. Transition state $\mathbf{1 . 2 9 8}$ leads to the transfused product, and is sterically much more favourable (Scheme 1.46).

Scheme 1.46 Halocyclisation of 5,6-O-isopropylidene alkenes

Mootoo then used this reaction as the key step in a formal synthesis of trilobacin. Dialdehyde 1.299 was converted in three steps to bis-alcohol 1.300. Asymmetric dihydroxylation of the trans-alkenes and acetal formation gave bis-acetonide $\mathbf{1 . 3 0 1}$ which underwent one-pot haloetherification and formation of a seven-membered acetal 1.302. Oxidation of the primary alcohol and Wittig extension followed by acetal hydrolysis, basemediated cyclisation and hydrogenation afforded triol 1.303, a known intermediate in the synthesis of trilobacin (Scheme 1.47). This reaction sequence therefore represented a formal synthesis.

Reagents and Conditions: (i) Vinylmagnesuim bromide, THF; (ii) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OEt})_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, 140{ }^{\circ} \mathrm{C}$; (iii) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; (iv) AD-mix- β; (v) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{CSA}$, DMF; (vi) IDCP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$; (vii) Swern; (viii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHC}_{6} \mathrm{H}_{13}$, THF; (ix) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$; (x) py, $100^{\circ} \mathrm{C}$; (xi) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, EtOAc.

Scheme 1.47 Formal synthesis of trilobacin

This approach was also used by Mootoo in the synthesis of non-adjacent bis-THF acetogenins, ${ }^{160}$ and as precursors to other oligo-THF compounds. ${ }^{161,162}$

1.6 Conclusions

The biological activities exhibited by the Annonaceous acetogenins have resulted in extensive synthetic study directed toward the tetrahydrofuran core domains, and toward total synthesis of the natural products and their analogues.

These approaches have utilised combinations of Sharpless asymmetric epoxidation and dihydroxylation with epoxide opening cascades, Williamson etherification annulations and Kennedy's cyclisation of hydroxy alkenes. The iterative annulation of pre-formed heterocyclic units, and haloetherification using monosaccharide templates has also been studied.

Although these approaches are varied and often complimentary, apart from Kennedy's cyclisation very little attention has been shown in the literature to the direct synthesis of the tetrahydrofuran domains of bis-THF acetogenins which rely on the oxidation of polyenes by transition metal oxo species.

Chapter 2

Oxidative Cyclisation of 1,5-Dienes and bis-Homoallylic Alcohols by Transition Metal Oxidants

The following chapter will briefly summarise the synthesis of 2,5 -disubstituted tetrahydrofurans from 1,5-dienes and bis-homoallylic alcohols via oxidative cyclisation using transition metal based oxidants. Brief mention was given in the previous chapter to the use of trifluoroacetyl perrhenate and vanadium (V) species by Sinha et al.

2.1 Permanganate Promoted Oxidative Cyclisation of 1,5-Dienes

The oxidative cyclisation of 1,5 -dienes to tetrahydrofurans by potassium permanganate in slightly basic solution was first reported in 1965. ${ }^{163}$ The tetrahydrofuran products of this oxidation were found to be exclusively cis-2,5-disubstituted. The oxidation of neryl acetate 2.1 and geranyl acetate $\mathbf{2 . 2}$ gave cis-2,5-bis-(hydroxymethyl)tetrahydrofurans (THF diols) 2.3 and 2.4 respectively (Scheme 2.1).

Scheme 2.1 Oxidative cyclisation of neryl and geranyl acetates by KMnO_{4}

This work was re-examined fourteen years later by the groups of Baldwin and Walba, who recognised the synthetic utility of a reaction which introduces four new chiral centres stereoselectively in a single step. Walba investigated the stereochemical course of the reaction by carrying out the oxidation of isomeric dienes $\mathbf{2 . 5 - 2} \mathbf{7}$, concluding that the stereochemistry of the hydroxymethyl groups in the predominant cis-THF products 2.8-2.10 are determined by the alkene geometry (Scheme 2.2). ${ }^{164}$ Analysis by gas chromatography indicated the presence of the trans-THF products in approximately 3% abundance.

2.5

2.8

2.6
a)

2.9

2.7 $a \mid$

2.10

Reagents and Conditions: (i) $\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}, \mathrm{pH}=7.5, \mathrm{CO}_{2}$ ebulliation.
Scheme 2.2 Stereochemical investigation by Walba

The mechanism suggested by Walba was based on earlier proposals from Sharpless concerning the oxidation of alkenes by transition metal oxo species. ${ }^{165}$ The initial formation of a bis- π-complex 2.11 between the diene and permanganate ion is followed by two [2+2] cycloadditions (either concerted or stepwise) giving octahedral manganese (VII) intermediate 2.12. Alkyl migration with retention followed by reductive elimination affords diester 2.14, which is oxidised and hydrolysed affording cis-THF diol 2.15 (Scheme 2.3).

Scheme 2.3 Mechanism Proposed by Walba

Baldwin's investigation involved the oxidative cyclisation of deuterated dienes of known geometry. ${ }^{166}$ The mechanism which he proposed began with the [3+2] cycloaddition of permanganate to the first double bond, forming cyclic Mn^{\vee} ester 2.17. This species is unreactive towards other double bonds, ${ }^{167}$ and undergoes rapid oxidation by permanganate to $\mathrm{Mn}^{\mathrm{VI}}$ ester 2.18. This reactive intermediate undergoes a stereospecific intramolecular $[3+2]$ cycloaddition to the second double bond, forming $\mathrm{Mn}^{\text {IV }}$ species 2.19. Subsequent hydrolysis affords THF diol 2.20 with complete stereospecificity (Scheme 2.4). The mechanism is supported by evidence for the formation of cyclic Mn^{V} esters in reactions of isolated olefins with permanganate species. ${ }^{168}$

Studies by Wolfe et al. using ${ }^{18} \mathrm{O}$ labelled water showed incorporation into the THF diol, suggesting the involvement of five-coordinate manganese during the course of the reaction. ${ }^{169}$

Scheme 2.4 Mechanism proposed by Baldwin

The yields observed for such reactions are often low, the reason for this being the formation of a number of side products which result from hydrolysis of intermediates such as Mn^{V} ester $\mathbf{2 . 1 7}$ prior to the second [3+2] cycloaddition. In the case of geranyl acetate $\mathbf{2 . 2}$ this results in the formation of α-hydroxy ketone 2.21, which has been isolated from the reaction mixture. Oxidation of the remaining alkene forms a second hydroxyketone 2.22, which undergoes cyclisation to lactol 2.23 (Scheme 2.5). Independent synthesis of 2.21 and exposure to the reaction conditions indeed afforded lactol 2.23. ${ }^{170}$ Buffering of the solution at pH 6.24 was found to give an optimum yield of desired THF-diol product of 59%.

Scheme 2.5 By-products from the oxidative cyclisation

Walba used the oxidative cyclisation to carry out the stereoselective (but racemic) synthesis of the B / C ring fragment of the monocarboxylic acid ionophore monensin 2.27. This was achieved by the oxidation of diene 2.24 followed by treatment with trimethyl orthoformate and acid affording bicyclic 2.26 (Scheme 2.6).

Reagents and Conditions: (i) $\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}, \mathrm{pH}=7.5, \mathrm{CO}_{2}$ ebulliation, $-30{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{CH}_{3}(\mathrm{OMe})_{3}$, TsOH, PhH .

Scheme 2.6

Walba then investigated the use of chiral auxiliaries to give regio- and facial selectivity to the oxidative cyclisation. ${ }^{171}$ Alkenes which are conjugated to a carbonyl group are known to be more reactive to permanganate than isolated double bonds, and therefore the ideal method of attachment of a 1,5-diene to a chiral auxiliary was through an amide linkage. The use of Evan's oxazolidinone, ${ }^{73,172-185}$ and Oppolzer's camphorsultam in asymmetric synthesis are well documented, ${ }^{186-193}$ and Walba chose these for his diene oxidations.

The oxazolidinone gave selectivity of only $3: 1$ in the oxidative cyclisation of $\mathbf{2 . 2 8}$, favouring major THF-diol $\mathbf{2 . 2 9}$ after transesterification. This resulted from initial addition of permanganate to the least hindered Re -face of the conjugated double bond, in which the carbonyl groups lie anti to each other. The relatively low selectivity was consistent with observations that Lewis acid chelation is required to obtain optimal results. ${ }^{194}$ This problem was overcome by the use of the camphorsultam. Oxidation of dienoate 2.31 gave selectivity in excess of 9:1 in favour of $\mathbf{2 . 2 9}$ after transesterification (Scheme 2.7). Kocienski also used the camphorsultam for the oxidation of a 1,5 -diene to provide a THF fragment in his elegant synthesis of the polyether anitibiotic salinomycin. ${ }^{195}$

Minor

Reagents and Conditions: (i) $\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}, \mathrm{pH}=7.5, \mathrm{CO}_{2}$ ebulliation, $-30^{\circ} \mathrm{C}$; (ii) $\mathrm{CH}_{3} \mathrm{OMgBr}$.
Scheme 2.7 Use of chiral auxiliaries in diene oxidation

2.2 Osmium Tetroxide Catalysed Oxidation of 1,5-Dienes

The treatment of 1,5 -dienes with catalytic osmium tetroxide using sodium periodate as cooxidant showed cis-selectivity for the THF cyclisation products. Oxidation of neryl and geranyl acetates afforded exclusively the cis-THF products as for the permanganate mediated cyclisation (Scheme 2.1) in yields of 53% and 55% for 2.3 and 2.4 respectively. ${ }^{196}$

Work by Donohoe et al. used a hydrogen bond acceptor combination of OsO_{4} and TMEDA in the dihydroxylation of cyclic allylic alcohols and amides such as $\mathbf{2 . 3 2}$, thus directing the reagent to one face of the alkene. ${ }^{197}$ Directed oxidation of 1,5 -diene substrates $\mathbf{2 . 3 5}$ and 2.37 afforded exclusively cis-THF products 2.36 and 2.38 in high yield (Scheme 2.8).

2.37

$\xrightarrow{69 \%}$

Reagents and Conditions: (i) OsO_{4}, TMEDA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{MeOH}, \mathrm{HCl}$; (iii) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, TFA.
Scheme 2.8 Directed oxidation by $\mathrm{OsO}_{4} /$ TMEDA

2.3 Oxidation of 1,5-Dienes by Ruthenium Tetroxide

As part of a project to improve the efficiency of ruthenium tetroxide as a catalytic alkene oxidant, Sharpless et al. found that oxidation of geranyl acetate gave a mixture of cis- and trans-THF products 2.4 and 2.39 in a ratio of $3: 1$, with a notable quantity of cis-2-keto derivative 2.40 also isolated. ${ }^{198}$ The stereoselectivity and yield of the desired THF diol products was later improved, with reduction of the proportion of the cis-2-keto product, by Picialli et al. (Scheme 2.9). ${ }^{199}$

Reagents and Conditions: (i) Sharpless: $2.2 \mathrm{~mol} \% \mathrm{ReCl}_{3} .\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}, 4.1$ eq. $\mathrm{NaIO}_{4}, \mathrm{CCl}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeCN}, \mathrm{rt}, 2 \mathrm{hr}$; Picialli: $4 \mathrm{~mol} \% \mathrm{RuO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 4$ eq. $\mathrm{NaIO}_{4}, \mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(3: 3: 1)$, rt, 4 min .

Scheme 2.9 Oxidative cyclisation by RuO_{4}

2.4 Chromium-Based Oxidants

Work by Walba et al. showed that the oxidative cyclisation of a 5,6-dihydroxyalkene such as geranyl acetate diol 2.41 by Collins reagent $\left(\mathrm{CrO}_{3}\right)$ resulted in the formation of cis-THF diol 2.4 in moderate yield, with small quantities of cleaved aldehyde 2.42. Similar results were obtained using pyridinium chlorochromate, however bipyridinium chlorochromate gave only aldehyde 2.42 (Scheme 2.10). ${ }^{200}$ Corey used pyridimium chlorochromate in a key cyclisation to form the THF region of the squalenoid, venustatriol 2.43. ${ }^{201}$

Reagents and Conditions: (i) CrO_{3}, py; (ii) PCC.
Scheme 2.10 Collins oxidation of a 5,6-dihydroxyalkene

2.5 Oxidation of bis-Homoallylic Alcohols by VO(acac) $)_{2}$ and \boldsymbol{t}-BuOOH

The preparation of optically enriched tetrahydrofurans by treatment of γ, δ-unsaturated alcohols 2.44 with a mixture of $\mathrm{VO}(\mathrm{acac})_{2}$ and t-butyl hydroperoxide was developed by Kishi et al. ${ }^{202}$ and has been used in the synthesis of a number of natural products, an example of which is the bicyclic squalenoid (+)-eurylene (Scheme 2.11). ${ }^{203}$ The alkene is epoxidised stereoselectively, and then undergoes cyclisation. A mechanism for the epoxidation was initially proposed by Sharpless. ${ }^{204}$

Prediction of the major THF diastereoisomer formed may be based on the following general principles:

1. When the γ, δ-unsaturated alcohol is substituted at the γ-position, the trans-THF is the major product.
2. When the γ, δ-unsaturated alcohol is substituted at the δ-position, the $c i s$-THF is the major product.
3. The double bond geometry does not play a crucial role in the relative THF stereochemistry.

Reagents and Conditions: (i) $\mathrm{VO}(\mathrm{acac})_{2}, t-\mathrm{BuOOH}, \mathrm{PhH}$; (ii) AcOH .
Scheme 2.11 VO(acac) $)_{2}$ and t-BuOOH in the epoxidation of γ, δ-unsaturated alcohols

2.6 Oxidation of Homoallylic Alcohols by Rhenium Oxide

The use of rhenium oxide to promote the oxidative cyclisation of bis-homoallylic alcohols 2.50 and 2.52 to trans-2,5-disubstituted tetrahydrofurans 2.51 and 2.53 was first investigated by Kennedy. ${ }^{116-119}$ The application of this work to acetogenin synthesis was discussed in detail previously (Chapter 1.5.7), and therefore only the early results are summarised below.

Treatment of a number of bis-homoallylic alcohols with rhenium (VII) oxide and 2,6lutidine provided trans-2,5-disubstituted THF products (Scheme 2.12). Further studies involving acyl perrhenate reagents such as trifluoroacetyl trioxorhenium $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{ReO}_{3}$ were conducted by McDonald and Towne. ${ }^{205-210}$

The coordination chemistry of oxorhenium compounds has been studied intensively by Herrmann et al. This included consideration of acyl perrhenates and methyl trioxorhenium, which catalyses a number of reactions of alkenes. ${ }^{211-216}$

Reagents and Conditions: (i) $\mathrm{Re}_{2} \mathrm{O}_{7}, 2,6$-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) NaOOH .
Scheme 2.12 Kennedy's cyclisation

2.7 Conclusions

The oxidation of alkenes and hydroxy alkenes by transition metal oxide species is a powerful synthetic technique in the synthesis of 2,5-disubstituted tetrahydrofuran compounds. Particular transition metal reagents may be selected to provide access to both cis- and trans-THF's.

There are many examples in the literature of the synthesis of acetogenins in which oxidation of alkenes by transition metals is employed. This commonly involves asymmetric epoxidation and dihydroxylation by osmium, with the products being used in epoxideopening based strategies. The only commonly used direct THF forming reaction to be applied to bis-THF acetogenins is the Kennedy cyclisation.

Apart from some unexpected results as part of Sinha's work, the transition metal mediated formation of cis-tetrahydrofuran ring systems has not been investigated in detail in the context of acetogenin synthesis.

Chapter 3

Southampton Approach to the Annonaceous Acetogenins

The previous chapters reviewed a number of synthetic approaches towards the Annonaceous acetogenins, as well as considering a number of general approaches to 2,5 -disubstituted tetrahydrofurans using transition metal chemistry. The following chapter is a brief summary of work undertaken within our group, which was investigated concurrently with the research described in this thesis. It also provides an introduction to the work described herein.

3.1 The Oxidation of $\mathbf{1 , 5 , 9}$-Trienes by Potassium Permanganate

Early work within the group focused on the stereoselective synthesis of tetrahydrofurancontaining fragments via the oxidative cyclisation of $1,5,9-$ trienes by potassium permanganate. This approach was attractive as THF rings are key structural features of many natural products, and potassium permanganate is a relatively cheap and non-toxic reagent when compared with a number of other transition metal oxidants.

Initial studies into the oxidative cyclisation of 1,5,9-trienes such as methyl-(E, E)-farnesoate 3.1 and C_{2}-symmetrical triene 3.2 resulted in the formation of THF-lactone intermediates 3.3 and 3.4 respectively (Scheme 3.1). ${ }^{217}$

Reagents and Conditions: (i) $\mathrm{KMnO}_{4}, \mathrm{AcOH}$, phosphate buffer (pH 6.2), $\mathrm{Me}_{2} \mathrm{CO}$; (ii) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 3.1 Permanganate oxidation of 1,5,9-trienes

3.2 Synthesis of cis-Solamin, a mono-THF Acetogenin

The synthesis of mono-THF acetogenin cis-solamin 3.9 was carried out in a total of fourteen steps from inexpensive starting materials. ${ }^{218}$ Key steps involved the oxidative cyclisation of sultam-diene 3.5, affording predominantly the cis-THF product 3.6 ($10: 1$ ratio based on crude proton NMR). Reduction with sodium borohydride, formation of the primary tosylate and treatment with base gave epoxide 3.7. Opening of the epoxide via a copper-catalysed Grignard reaction provided a terminal alkene which allowed synthesis of the butenolide using Trost's Alder-ene reaction. Careful reduction using diimide afforded cis-solamin (Scheme 3.2).

Reagents and Conditions: (i) KMnO_{4} (2 eq.), AcOH , (8 eq.), adogen-464 (0.1 eq .), $\mathrm{EtOAc},-30^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$; (iii) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{MgBr}, \mathrm{CuI}, \mathrm{THF},-6{ }^{\circ} \mathrm{C}$; (vi) Propargylic alcohol 1.146, catalyst 1.147, MeOH, reflux; (vii) $\mathrm{TsNHNH}_{2}, \mathrm{NaOAc}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$, reflux, 20 hr.

Scheme 3.2 Synthesis of cis-solamin

3.3 Synthesis of a bis-THF Acetogenin Analogue With Permanganate and Rhenium

The total synthesis of a bis-THF acetogenin analogue was carried out using a combination of the permanganate oxidative cyclisation of 1,5 -dienes, and Kennedy's perrhenate cyclisation. The key steps in this synthesis involved the selective oxidation of the 1,5 -diene part of sultam-dienyne $\mathbf{3 . 1 0}$ by potassium permanganate, affording cis-THF-diol $\mathbf{3 . 1 1}$ as the major diastereoisomer. Reduction of the alkyne to the cis-alkene and treatment with
trifluoroacetyl perrhenate resulted in formation of a second, cis-THF ring. Reductive removal of the sultam, primary tosylate formation and treatment with base afforded epoxide 3.13. As for the synthesis of cis-solamin, the epoxide was opened by a cuprate bearing a terminal alkene. Trost's Alder-ene reaction and diimide reduction of the isolated double bond afforded cis, cis, bis-THF 3.14 (Scheme 3.3).

Reagents and Conditions: (i) KMnO_{4} (1.1 eq.), acetone $/ \mathrm{AcOH} 1: 0.9,-30^{\circ} \mathrm{C}$ to $-15^{\circ} \mathrm{C}, 25 \mathrm{~min}$; (ii) $\mathrm{Pd} / \mathrm{BaSO}_{4}$, H_{2}, quinoline, hexane; (iii) $\mathrm{Re}_{2} \mathrm{O}_{7}, \mathrm{TFAA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $\mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$; (v) $\mathrm{Bu}_{2} \mathrm{SnO}$, PhH , reflux, 3 hr then $\mathrm{TsCl}, \mathrm{TBAB}, 1 \mathrm{hr}$; (vi) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vii) $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{MgBr}, \mathrm{CuI}, \mathrm{THF},-60^{\circ} \mathrm{C}$; (viii) Propargylic alcohol 1.146, catalyst $\mathbf{1 . 1 4 7}$, MeOH , reflux; (ix) $\mathrm{TsNHNH}_{2}, \mathrm{NaOAc}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$, reflux, 20 hr .

Scheme 3.3 Synthesis of a cis, cis, bis-THF acetogenin analogue

3.4 Proposed Work

Although the approaches to cis-solamin and bis-THF analogues summarised above were both efficient and diastereoselective, the incorporation of the aliphatic sidechain from the beginning of the synthesis was considered to be a limiting factor in terms of product diversity. The objective of this project was the asymmetric synthesis of a versatile key epoxy-THF-lactone intermediate, via the oxidative cyclisation of trienes (as for Scheme 3.1). The epoxide would allow for the addition of sidechains of various length, bearing a terminal alkene for later butenolide annulation using Trost's methodology. The lactone moiety would allow olefination via the corresponding lactol, thus forming a γ / δ-unsaturated
hydroxy product which could be used as a substrate for a second cyclisation (Scheme 3.4). We envisaged that the use of this methodology would provide a powerful approach to the synthesis of bis-THF acetogenin analogues.

We proposed to carry out initial studies into the permanganate mediated oxidation of a simple 1,5-diene model using Corey's hydroxy sulfone and Oppolzer's bornane-10,2-sultam chiral auxiliaries 3.15-3.18.

3.15

3.16

3.17

3.18

Scheme 3.4 Proposed work

We proposed to target a natural product with the general structure of membranacin 3.19, a cis, cis-bis-THF acetogenin. ${ }^{35,219,220}$ Our versatile epoxide intermediate contains the stereochemistry of the left hand THF ring. Installation of a terminal alkene sidechain will leave the task of effecting formation of the right hand ring, either of membranacin or epimers such as 3.20-3.22, and addition of the unsubstituted alkyl chain (Figure 3.5).

Figure 3.5 Membranacin and epimers

3.5 Conclusions

Previous work within our research group resulted in the efficient, diastereoselective synthesis of specific acetogenins and acetogenin analogues.

The following chapters will describe the research undertaken in an attempt to broaden this methodology by seeking complementary routes to acetogenin precursors.

Chapter 4
 Synthesis and Asymmetric Oxidation of 1,5-Dienes and 1,5,9-Trienes

The following chapter describes the synthesis of a simple 1,5-dienoate substrate, its attachment to two chiral auxiliaries, and oxidative cyclisation by potassium permanganate. The synthesis and oxidative cyclisation of 1,5,9-triene substrates also discussed.

4.1 Synthesis and Oxidative Cyclisation of a Simple 1,5-Diene

The proposed use of chiral auxiliaries in the permanganate mediated oxidation of 1,5 -dienes required the synthesis of a simple model substrate to which they could be attached. This model would allow a comparison of the effectiveness of the different chiral auxiliaries in directing the reaction of permanganate with the diene.

The model dienoate ester 4.3 was synthesised from inexpensive starting materials in two steps. Thus, 2-methyl-3-buten-1-ol 4.1 was heated in a sealed tube with ethyl vinyl ether and a catalytic quantity of phosphoric acid, affording aldehyde 4.2 in variable yield via a Claisen-Johnson rearrangement. ${ }^{129}$ Wittig homologation using (carbethoxymethylene)triphenylphosphorane afforded exclusively the $E-\alpha, \beta$-unsaturated ester 4.3 (single isomer by ${ }^{1} \mathrm{H}$ NMR), which was hydrolysed to the corresponding carboxylic acid 4.4 required for coupling to chiral auxiliaries. Oxidation of dienoate 4.3 by potassium permanganate using previously optimised conditions afforded racemic cis-THF-diol 4.5 (Scheme 4.1). ${ }^{170}$

Reagents and Conditions: (i) Ethyl vinyl ether, $\mathrm{H}_{3} \mathrm{PO}_{4}, 120^{\circ} \mathrm{C}, 16 \mathrm{hr}$, then $2 \mathrm{~N} \mathrm{HCl}, \mathrm{Me}_{2} \mathrm{CO}, \mathrm{rt}, 1 \mathrm{hr}$; (ii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 14 \mathrm{hr}$; (iii) $\mathrm{NaOH}, \mathrm{NaHCO}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$, reflux, 3 hr ; (iv) $0.4 \mathrm{M} \mathrm{KMnO}_{4(\mathrm{aq})}(2 \mathrm{eq}$.), AcOH (2.8 eq.), pH $6.5, \mathrm{Me}_{2} \mathrm{CO},-25^{\circ} \mathrm{C}$.

Scheme 4.1 Synthesis and oxidation of a simple 1,5-dienoate ester

4.2 Corey's Hydroxysulfone

Both enantiomers of the hydroxysulfone chiral auxiliary, 3.15 and 3.16, were synthesised by the method of Corey and Sarakinos. ${ }^{221}$ Initial attempts to couple 3.15 to dienoic acid 4.4 using three standard ester coupling reagents 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide, 2-chloro-1-methyl-pyridinium iodide and dicyclohexyl carbodiimide were unsuccessful, resulting in dimerisation of the acid to the anhydride. The acid was then converted to pentafluorophenyl ester 4.6 and unsymmetrical anhydride 4.7, both of which reacted with the anion of $\mathbf{3 . 1 5}$ affording ester 4.8. Due to the low yield obtained by the pentafluorophenyl ester method, 3.16 was attached to the acid via the anhydride affording ester 4.9 (Scheme 4.2). ${ }^{193}$

Reagents and Conditions: (i) $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}, \mathrm{DCC}, \mathrm{EtOAc}, 16 \mathrm{hr}$; (ii) Sulfone 3.15, n-Buli, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{hr}$; (iii) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCl}, \mathrm{Et} \mathrm{t}_{3} \mathrm{~N}$, THF, 2 hr ; (iv) Sulfone 3.15, $\mathrm{NaH}, \mathrm{THF},-78$ to $0^{\circ} \mathrm{C}, 1 \mathrm{hr}$; (v) Sulfone 3.16, $\mathrm{NaH}, \mathrm{THF}$, -78 to $0^{\circ} \mathrm{C}, 1 \mathrm{hr}$.

Scheme 4.2 Coupling of chiral auxiliaries to a 1,5 -dieneoic acid

Oxidative cyclisation of 4.9 by potassium permanganate in aqueous acetone afforded tetrahydrofuran diols 4.10 and 4.11 in 53% yield and a ratio of $3: 2(20 \%$ de $)$ based on integration of discrete signals in the crude proton NMR spectrum. It was not ascertained which of the two diastereoisomers was the major product. When the reaction was conducted under phase transfer conditions, in methylene chloride with aqueous potassium permanganate and adogen-464 as a phase transfer catalyst, the yield dropped to 18%. Interestingly the product ratio was found to be 1:2 ($33 \% \mathrm{de}$) in favour of the diastereoisomer which was the minor product in the aqueous acetone reaction (Scheme 4.3).

It was concluded that the combination of low yield for the formation of esters 4.8 and 4.9 and surprisingly low selectivity in the oxidative cyclisation meant that the use of this auxiliary was inpractical for acetogenin synthesis.

Reagents and Conditions: (i) $0.4 \mathrm{M}_{\mathrm{KMnO}_{4(\mathrm{aq})}}\left(2 \mathrm{eq}\right.$.), AcOH (2.8 eq .), $\mathrm{pH} 6.5, \mathrm{Me}_{2} \mathrm{CO},-25{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}$; (ii) $0.4 \mathrm{M} \mathrm{KMnO}_{4(\mathrm{aq})}(2 \mathrm{eq}),. \mathrm{AcOH}(2.8 \mathrm{eq}),. \mathrm{pH} 6.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, adogen $-464,0^{\circ} \mathrm{C}, 20 \mathrm{~min}$.

Scheme 4.3 Oxidative cyclisation directed by Corey's hydroxysulfone

4.3 Oppolzer's Sultam

Both enantiomers of Oppolzer's sultam were synthesised in four steps from the corresponding camphorsulfonic acids by the methods of Bartlett and Towson. ${ }^{222-224}$ Deprotonation of 3.17 with n-butyllithium and addition of pentafluorophenyl ester 4.6 afforded sultam-diene 4.12. The use of sodium hydride as base resulted in drastically reduced yields. Oxidative cyclisation was carried out both in aqueous acetone and under phase transfer conditions with solid potassium permanganate in methylene chloride with adogen-464. Both methods resulted in the formation of major and minor diastereoisomers 4.13 and 4.14 (Scheme 4.4).

The combined yields and diastereomeric excess for the two sets of conditions were identical within experimental error $(75 \%, 79 \%$ de. for the reaction in aqueous acetone and $78 \%, 78 \%$ $d e$. under phase transfer conditions). The ratios were estimated from integration of discrete signals in the crude proton NMR spectra, and were confirmed by isolated yields of the separable diastereoisomers.

The high yields obtained for both addition of the sultam to the diene component and oxidative cyclisation of the product, in combination with the good selectivity observed, confirmed this to be the best of the investigated chiral auxiliaries for our proposed asymmetric synthesis of acetogenin fragments.

Reagents and Conditions: (i) n - $\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$, then 4.6 ; (ii) $0.4 \mathrm{M} \mathrm{KMnO}_{4(\mathrm{aq})}$ (2 eq.), $\mathrm{AcOH}(2.8 \mathrm{eq}),$. $6.5, \mathrm{Me}_{2} \mathrm{CO},-25^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (iii) KMnO_{4} (2 eq.), AcOH (2.8 eq .), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, adogen- $464,0^{\circ} \mathrm{C}, 20 \mathrm{~min}$.

Scheme 4.4 Oxidative cyclisation directed by Oppolzer's sultam

The stereochemistry of the major product was predicted on the basis of previous use of this auxiliary in the permanganate mediated oxidative cyclisation of dienes. ${ }^{195}$ The selectivity may be explained by consideration of transition state models. ${ }^{186,189,190}$ The following conditions must be fulfilled for face-selective reaction of the first double bond to occur: ${ }^{225}$

1. The reactive conformation of the $\mathrm{CO}-\mathrm{CC}$ bond must be unambiguous. Of the two possible conformations which allow conjugation of the π-system, the s-cisorientation is favoured for steric reasons $\left(\mathrm{O}<\mathrm{NR}_{2}\right)$.
2. The orientation of the carbonyl group must also be unambiguous. It must lie parallel or antiparallel to the $\mathrm{N}-\mathrm{S}$ bond. Other orientations are energetically less favourable due to the lack of mesomeric stabilisation with the amide nitrogen atom.
3. In the most favoured conformation, one face of the double bond must be effectively blocked by the chiral auxiliary, thus allowing selective attack of the other face by the reagent.

In the case of the sultam the orientation of the carbonyl group may be influenced by the reaction conditions. Addition of a Lewis acid with two available coordination sites results in a syn-relationship between $\mathrm{C}=\mathrm{O}$ and SO_{2}, due to the formation of chelate 4.15 , involving the pseudo-equatorial S-O bond. The upper face of the alkene is blocked by the camphor framework, and the reagent must attack from the lower $\mathrm{C}_{\alpha}-R e$-face.

In the absence of a chelating Lewis acid there is an anti relationship between $\mathrm{C}=\mathrm{O}$ and SO_{2}, transition state 4.16. This is due both to steric and, in particular, stereoelectronic considerations, as this conformation minimises the dipole moment. Here the camphor framework is too distant to shield the alkene, however the pseudo-axial oxygen atom of the SO_{2} group effectively blocks the lower face, and reagent attack occurs from the upper C_{∞} Re-face (Figure 4.1). The sultam therefore induces identical stereoselectivity whether or not Lewis acid chelation is available. In the oxidative cyclisation of 1,5-diene 4.12, THF-diol 4.13 was the predicted product according to this model.

4.15

4.16

Figure 4.1 Transition state models for sultam selectivity.

4.4 Synthesis and Oxidation of a 1,5,9-Triene Substrate

The synthesis of a $1,5,9$-triene began with the reduction of ester 4.3. Conversion of the resulting alcohol to the allylic chloride 4.18 by treatment with methane sulfonyl chloride and lithium chloride, ${ }^{226}$ to bromide 4.19 by treatment with triphenylphosphine and carbon tetrabromide, ${ }^{227}$ and to iodide 4.20 by tretment of the chloride with sodium iodide in acetone was carried out. ${ }^{228}$ In the case of the iodide, an inseparable impurity was formed during the course of the halide exchange, thought to be due to rearrangement of the trisubstituted double bond. The iodide itself was inherently unstable, and was used immediately after being passed through a short plug of silica.

Alkylation of these halides with the dianion of ethyl acetoacetate afforded β-ketoester 4.21. The relative unreactivity of the chloride, and the presence of inseparable inpurity in the product of the iodide reaction, suggested that the use of bromide 4.19 would be best suited to large scale synthesis. This indeed proved to be the case, with good yields for multi-gram reactions. Borohydride reduction afforded β-hydroxy ester 4.22, which was mesylated and
treated with base to afford exclusively trans- α / β-unsaturated ester 4.23. Hydrolysis and esterification afforded pentafluorophenyl ester 4.25 (Scheme 4.5).

Reagents and Conditions: (i) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}, 3 \mathrm{hr}$; (ii) 2,6-lutidine, $\mathrm{MsCl}, \mathrm{LiCl}, \mathrm{DMF}, 16 \mathrm{hr}$; (iii) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CBr}_{4}, \mathrm{MeCN}$, dark, $0^{\circ} \mathrm{C}, 2 \mathrm{hr}$; (iv) $\mathrm{NaI}, \mathrm{Me} 2_{2} \mathrm{CO}$, reflux, dark, 18 hr ; (v) Premixed $\mathrm{H}_{3} \mathrm{CCOCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, LDA, THF, $-78^{\circ} \mathrm{C}, 3 \mathrm{hr}$; (vi) NaBH_{4}, THF, $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, 1 hr ; (vii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 1.5 hr ; (viii) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{hr}$; (ix) $\mathrm{NaOH}, \mathrm{NaHCO}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$, reflux, 3 hr ; (x) $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}, \mathrm{DCC}, \mathrm{EtOAc}, 16 \mathrm{hr}$.

Scheme 4.5 1,5,9-triene synthesis

Addition of 4.25 to the anion of sultam 3.17 afforded triene 4.26. Permanganate oxidation in aqueous acetone afforded lactol 4.27. Oxidative cleavage using either lead (IV) acetate, sodium periodate with periodic acid or silica-supported sodium periodate afforded lactone 4.28 in low to moderate yield (Scheme 4.6). Purification of the lactol proved difficult, and generally had no beneficial effect on the yield over two steps, therefore the crude product from the cyclisation was generally passed through a short plug of silica gel to remove only the non-polar and TLC baseline impurities. In later experiments the silica-supported periodate method was adopted due to convenience, and the cyclisation product was used crude.

The reaction was also conducted under phase transfer conditions in methylene chloride with adogen-464. Treatment of the crude product with silica-supported sodium periodate afforded the lactone in 35% yield over two steps.

Analysis of the crude NMR spectra failed to show discrete signals on which an estimation of selectivity could be based, although it was assumed that it would be in agreement with results obtained for the oxidative cyclisation of diene 4.12. The lactone product isolated after chromatography appeared to consist of a single diastereoisomer. The minor diastereoisomer was probably lost during the repeated chromatography which was necessary to obtain pure lactone product.

Results and Discussion: (i) n - $\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$ then 4.25 ; (ii) $\mathrm{KMnO}_{4}, \mathrm{AcOH}$, phosphate buffer pH 6.5 , $\mathrm{Me}_{2} \mathrm{CO},-25^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (iii) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}, 19 \%$ two steps; (iv) $\mathrm{NalO}_{4}, \mathrm{H}_{5} \mathrm{IO}_{6}$, $\mathrm{Me}_{2} \mathrm{CO}$, water, $24 \mathrm{hr}, 44 \%$ two steps; (v) $\mathrm{SiO}_{2} / \mathrm{NaIO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 35 \%$ two steps

Scheme 4.6 1,5,9-triene oxidative cyclisation

The second cyclisation reaction occurs when permanganate undergoes cycloaddition to the trisubstituted double bond of $\mathbf{4 . 2 9}$. Oxidation of $\mathrm{Mn}(\mathrm{V})$ ester $\mathbf{4 . 3 0}$, rearrangement to ketone 4.32 and hydrolysis by water give hydroxy ketone 4.33. Cyclisation affords lactol 4.27 (Scheme 4.7).

Scheme 4.7 Mechanism for the formation of the THF-lactol

The average two-step yield for the formation of lactone 4.28 from the triene was 35%, and it was decided that a more concise route to a more reactive triene was required. It was thought that the oxidative cyclisation of a trienedioate ester such as 4.36 would give improved yields of lactone, due to the increased reactivity of the enoate alkene which would replace the trisubstituted double bond in our original substrate. Trienedioate ester 4.36 was synthesised by the method of Hoye et al. ${ }^{22}$ Thus, 1,4-dibromo-2-butene 4.34 was alkylated with two equivalents of the dianion of methylacetoacetate affording bis- β-keto ester 4.35. Reduction of the ketone, mesylation and elimination using DBU afforded 4.36 in 52% yield over four steps (Scheme 4.8).

Reagents and Conditions: (i) $\mathrm{H}_{3} \mathrm{CCOCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$, LDA, THF, $-50^{\circ} \mathrm{C}$; (ii) $\mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O},-15{ }^{\circ} \mathrm{C}$; (iii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (iv) $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (v) KMnO_{4} (2.6 eq), $5 \mathrm{~mol} \%$ Adogen- $464, \mathrm{Me}_{2} \mathrm{CO} / \mathrm{AcOH}$ $3: 2, \mathrm{CH}_{2} \mathrm{Cl}_{2},-25^{\circ} \mathrm{C}$; (vi) $\mathrm{NaIO}_{4} / \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.

Scheme 4.8 Concise synthesis and oxidation of a trienedioate

A different approach to the oxidative cyclisation reaction was also used. The use of acetone and acetic acid as solvent in a 3:2 ratio, with 5% adogen- 464 to solubilise the permanganate, gave a relatively clean crude product which appeared to contain predominantly desired, racemic lactone 4.3 . Brief treatment with silica-supported NaIO_{4} afforded the lactone in 59% yield. It was hoped that this trienedioate approach would lend itself to the use of the sultam. A large batch of triene was prepared, using identical conditions to those used for the synthesis of $\mathbf{4 . 3 6}$ but starting with ethyl acetoacetate. Bis-ethyl ester 4.40 was synthesised in 65\% yield over four steps. Hydrolysis and esterification afforded bis-pentafluorophenyl ester 4.42 (Scheme 4.9).

Reagents and Conditions: (i) $\mathrm{H}_{3} \mathrm{CCOCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, LDA, THF, $-50^{\circ} \mathrm{C}$; (ii) $\mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O},-15{ }^{\circ} \mathrm{C}$; (iii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (iv) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (v) $\mathrm{NaOH}, \mathrm{NaHCO}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$; (vi) $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$, DCC, EtOAc, 16 hr .

Scheme 4.9 Synthesis of a bis-pentafluorophenyl trienedioate

Treatment of 4.42 with the anion of sultam 3.17 gave bis-sultam triene 4.43 in a moderate yield of 51%. The yield was improved by conversion of acid 4.41 to the acid chloride, followed by addition of the anions of sultams 3.17 and 3.18 , affording 4.43 and 4.44 in high yield (Scheme 4.10).

Reagents and Conditions: (i) Premixed 3.17, n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$; (ii) $\left(\mathrm{COCl}_{2}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}\right.$; (iii) Premixed 3.17, NaH, THF, $0^{\circ} \mathrm{C}$; (iv) Premixed 3.18, NaH, THF, $0^{\circ} \mathrm{C}$.

Scheme 4.10 Synthesis of bis-sultam trienedioates

Oxidative cyclisation of 4.43 and 4.44 using 2.6 equivalents of potassium permanganate in a 3:2 mixture of acetone and acetic acid, with $5 \mathrm{~mol} \%$ adogen-464 afforded lactones 4.28 and 4.45 respectively after periodate cleavage (Scheme 4.11). It was not possible to quantify the selectivity from the crude proton NMR, however the stated yields represent a single isolated diastereoisomer.

Reagents and Conditions: (i) KMnO_{4} (2.6 eq), $5 \mathrm{~mol} \%$ Adogen- $464, \mathrm{Me}_{2} \mathrm{CO} / \mathrm{AcOH} 3: 2, \mathrm{CH}_{2} \mathrm{Cl}_{2},-25{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{NaIO}_{4} / \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.

Scheme 4.11 Oxidative cyclisation of bis-sultam trienedioates

4.5 Conclusions

A comparison of two chiral auxiliaries showed Oppolzer's sultam to induce good stereoselectivity in the oxidative cyclisation of 1,5 -dienes. A concise synthetic route provided C_{2} symmetrical $1,5,9$-triene substrates which underwent oxidative cyclisation on treatment with potassium permanganate. The highest yields were obtained when a mixture of acetone and acetic acid was used as solvent, with the phase transfer reagent adogen-464 to aid solubility of the permanganate ion. This single synthetic step installed four new stereocentres with a good level of asymmetric induction.

Chapter 5

Removal of the Sultam Chiral Auxiliary

5.1 The Initial Reductive Approach

Oppolzer's sultam is commonly removed by hydrolysis using lithium hydroxide, however this approach was not compatible with our substrates 4.28 and $\mathbf{4 . 4 5}$ due to hydrolysis of the lactone moiety. Precedent exists in the literature for the chemoselective reductive removal of an α-hydroxy sultam auxiliary in the presence of a lactone. ${ }^{195}$ The method relied on the coordination of borane to the hydroxy group, and subsequent directed reduction using coordinated sodium borohydride. Lactone 4.28 was treated at $-10^{\circ} \mathrm{C}$ by the addition of borane dimethylsulfide complex, followed after two minutes by sodium borohydride and after ten minutes by a 9:1 mixture of methylene chloride and methanol. This gave diol 5.1 in yields ranging from $23-65 \%$. In all cases sultam 3.17 was recovered quantitatively (Scheme 5.1). The polar by-products were never isolated, generally remaining in the aqueous phase. This observation was consistent with over-reduction of the lactone giving tetraol 5.2, which one would expect to be soluble in water. The presence of this tetraol was confirmed by mass spectroscopy of the crude reaction mixture.

A number of other hydride sources were also investigated, with and without borane to direct them. These included lithium borohydride, lithium triethylborohydride, sodium cyanoborohydride and sodium triacetoxyborohydride, all of which failed to reduce the substrate chemoselectively.

Reagents and Conditions: (i) $\mathrm{BH}_{3}{ }^{\circ} \mathrm{SMe}_{2}, \mathrm{NaBH}_{4}, \mathrm{THF},-10^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1$.
Scheme 5.1 Reductive removal of the sultam

5.2 Displacement Using a Sulfur-Based Nucleophile

The cleavage of sultam-based amides and conversion to S-benzyl esters was reported by Naito et al. ${ }^{229}$ and later used by Oppolzer. ${ }^{191}$ This was achieved by the action of the "ate" complex $\mathrm{PhCH}_{2} \mathrm{SAlMe}_{3} \mathrm{Li}$, prepared in situ by the addition of trimethylaluminium to lithium benzylthiolate. The corresponding thioesters were obtained without racemisation at C_{α}. This methodology was used to effect the removal of the sultam from THF-diol 4.13. The use of 1.5 equivalents of the "ate" complex gave thioester 5.3 in 53% yield. Treatment with Raney-Nickel afforded no desired triol 5.4, and no recovered starting material. It was proposed that the polar triol product might have become bound to the Raney-Nickel surface. THF-diol was converted to bis-triethylsilyl ether 5.5 to reduce its polarity, however treatment of this compound with the "ate" complex gave thioester $\mathbf{5 . 6}$ in only 31% yield (Scheme 5.2).

Scheme 5.2 Thiol-based approach to sultam removal from the model THF-diol

After these initially disappointing results from the model substrate, it was decided at this point to attempt the removal of the sultam from lactone 4.28. Three equivalents of the "ate" complex were used to account for the desired reaction, reversible opening of the lactone and possible deactivation by the hydroxyl group. Relactonisation was achieved by treatment with hydrochloric acid. Lactone 4.28 was also protected as the triethylsilyl ether, and on treatment with three equivalents of "ate" complex sultam displacement was accompanied by desilylation, affording 5.8 in good yield (Scheme 5.3). Unfortunately these encouraging
results were overshadowed when, on treatment of thioester 5.8 with either Raney-Nickel or other reducing agents, a complex mixture of products was obtained.

Reagents and Conditions: (i) $\mathrm{PhCH}_{2} \mathrm{SH}, n$-BuLi, $\mathrm{AlMe}_{3}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{PhCH}_{3}, 0^{\circ} \mathrm{C}$; (ii) 1 M HCl ; (iii) TESOTf, 2,6lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.

Scheme 5.3 Reaction of the THF-lactone with the "ate" complex

The results obtained from the use of the "ate" complex prompted a return to the investigation of reductive methods of sultam removal, particularly to the use of boranedirected borohydride reduction. It was thought that the inconsistency encountered earlier may have been due to the insolubilty of sodium borohydride in the reaction mixture, or to the relative times of reagent addition.

The reaction was repeated a number of times with slight variation to the conditions. The most consistent conditions, giving a repeatable yield of 50% of THF-diol 5.1, required the addition of borane dimethylsulfide complex to the substrate at $-20^{\circ} \mathrm{C}$. After stirring at this temperature for ten minutes the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of sodium borohydride in diglyme was added. After 1.5 hours a 10% solution of methanol in methylene chloride was added via syringe, and after thirty minutes the cold reaction mixture was filtered rapidly through silica gel.

5.3 Conclusions

After extensive investigation into methods of sultam removal, the most consistent was found to be the rather capricious borane-directed borohydride reduction, with yields in the region of 50%.

Chapter 6

Synthesis of Acetogenin Analogues Using Oxidative Cyclisation Products

6.1 Conversion of Diol 5.1 to a Key Epoxide Intermediate

The conversion of the vicinal diol moiety of lactone 5.1 to the corresponding epoxide would provide us with a key intermediate in the synthesis of Annonaceous acetogenin analogues. The first step was the regiospecific tosylation of the primary alcohol. Precedent exists for the synthesis of primary tosylates from 1,2-diols upon treatment of cyclic stannylene intermediates with tosyl chloride and tetrabutylammonium bromide. ${ }^{230}$ This was initially attempted using model diol 6.2 , obtained by hydrolysis of the racemic THF product of the oxidative cyclisation of geranyl acetate (kindly provided by a member of our research group). ${ }^{170}$ The reaction was highly efficient, affording exclusively the primary tosylate. Conversion to the epoxide proceeded smoothly (Scheme 6.1).

Reagents and Conditions: (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 10 \mathrm{~min}$; (ii) $\mathrm{Bu}_{2} \mathrm{SnO}$, PhH , reflux, 3 hr then $\mathrm{TsCl}, \mathrm{TBAB}, 1 \mathrm{hr}$; (iii) $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 6.1 Model study of epoxide formation

Although THF-lactone 4.28 was used for initial studies into the removal of the sultam, our targeted natural product analogues required the use of its enantiomer 4.45. Removal of the sultam was followed by efficient conversion to the primary tosylate. Treatment with base afforded epoxide 6.7 in excellent yield (Scheme 6.2).

Reagents and Conditions: (i) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, 0.1 \mathrm{M} \mathrm{NaBH} 4, \mathrm{THF},-7{ }^{\circ} \mathrm{C}$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1$; (ii) $\mathrm{Bu}_{2} \mathrm{SnO}$, $\mathrm{TsCl}, \mathrm{TBAB}, \mathrm{PhH}$; (iii) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 6.2 Conversion of the lactone to our key epoxide intermediate

6.2 Elaboration of the Key Epoxide

The initial transformation of our key epoxide 6.7 was the installation of a sidechain, bearing a terminal alkene, which would eventually allow the annulation of the butenolide portion of our target molecules via Trost's Alder-ene reaction. This was achieved at reduced temperature in the presence of the lactone usung di-(undec-10-enyl)-cuprate, formed in situ from undec-10-enylmagnesiumbromide, affording alkene 6.8 in good yield. It was important for the attainment of good yields that the mixture of Grignard and copper iodide was not allowed to warm above $-30^{\circ} \mathrm{C}$, in which case it became yellow in colour instead of the desired dark grey. The resulting hydroxyl group was protected as its t butyldimethylsilyl ether 6.9 (Scheme 6.3).

Reagents and Conditions: (i) Undec-10-enylmagnesiumbromide, CuI, THF, -60 to $-50^{\circ} \mathrm{C}$; (ii) TBSCl , imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 18 \mathrm{hr}$.

Scheme 6.3 Opening of the lactone by a dialkylcuprate

The next aim was reduction of the lactone to the lactol, and homologation using Wittig chemistry. Reduction of the lactone by DIBAL-H appeared to proceed smoothly to a single product, however the product proved to be unstable to chromatograpy and a mixture of lactol 6.10 (as a $3: 2$ mixture of anomers) and ring-opened diol 6.11 was collected. Treatment of the lactol with (carbethoxymethylene)- triphenylphosphorane gave the desired, all-trans α / β-unsaturated ester 6.12. Formation of the diol was avoided by quenching the reduction with water, filtration of the dried organic phase through celite and Wittig reaction of the crude lactol (Scheme 6.4).

Reagents and Conditions: (i) DIBAL-H, THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{hr}$; (ii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{PhCH}_{3}, 20 \mathrm{hr}$.
Scheme 6.4 Lactone reduction and olefination

6.3 An Attempt at the Kennedy Cyclisation

To obtain intermediates which could be used in the synthesis of bis-THF acetogenin analogues, the stereospecific formation of a second THF ring was required. As mentioned previously, γ / δ-unsaturated alkenes are substrates for Kennedy's rhenium-mediated oxidative cyclisation. The literature contained no examples of this reaction in which the alkene was adjacent to an ester, therefore the reaction was attempted using ester 6.12. Unfortunately the only product isolated was alcohol 6.13, due to desilylation of the starting material (Scheme 6.5). The presence of the ester probably rendered the cycloaddition of the rhenium reagent to the alkene electronically unfavourable, although the steric bulk of the carbonyl group may also be contributory. Desilylation was probably caused by the presence of trifluoroacetic acid.

Reagents and Conditions: (i) $\mathrm{Re}_{2} \mathrm{O}_{7}, \mathrm{TFAA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) NaOOH .
Scheme 6.5 Attempted Kennedy cyclisation of the α / β-unsaturated ester

6.4 A Sharpless Asymmetric Epoxidation Approach to the Second Cyclisation

After the failure of the Kennedy cyclisation, it was decided that the second THF ring would be installed by reduction of ester 6.12 to the allylic alcohol, and Sharpless asymmetric epoxidation. In line with the work of Sinha and Keinan, ${ }^{134}$ the resulting epoxide would be expected to undergo immediate opening by the γ-hydroxyl group, resulting in the formation of the THF ring. Thus, DIBAL-H reduction gave allylic alcohol 6.14 in very good yield. Initial attempts at epoxidation using D-(-)-diethyl tartrate, t-butyl hydroperoxide (TBHP) and catalytic titanium (IV) isopropoxide in the presence of molecular sieves resulted in the recovery of starting material.

In order for the epoxidation to proceed, it was necessary to use 5.7 equivalents of the tartrate, 4.8 equivalents of titanium (IV) isopropoxide and 11.5 equivalents of TBHP. The reactions were conducted at $-20^{\circ} \mathrm{C}$ and generally took up to two days to reach completion. It was proposed that complexation of titanium by the existing THF moiety may have been responsible for the sluggish nature of the reactions. The reaction with D-(-)-diethyl tartrate afforded as the major product cis-trans-bis-THF diol 6.17. This reaction also produced the cis-cis-bis-THF product 6.18, although the two products were inseparable by chromatography. The ratio was found to be $15: 1$ (88% de.) in favour of the trans-THF after tosylation of the primary hydroxyl group via the cyclic stannylene and separation of the diastereoisomers. Reaction of 6.14 using L-(+)-diethyl tartrate afforded cis-THF 6.20 as the only product. Tosylation via the stannylene proceeded smoothly (Scheme 6.6).

Reagents and Conditions: (i) DIBAL-H, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{hr}$; (ii) $\mathrm{D}-(-)$-DET, $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}, t$ - $\mathrm{BuOOH}, 4 \AA \mathrm{~mol}$ sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 48 \mathrm{hr}$, major product shown; (iii) L-(+)-DET, $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}, t-\mathrm{BuOOH}, 4 \AA$ mol sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 48 \mathrm{hr}$; (iv) $\mathrm{Bu}_{2} \mathrm{SnO}, \mathrm{TsCl}, \mathrm{TBAB}, \mathrm{PhH}$.

Scheme 6.6 Asymmetric epoxidation, cyclisation and tosylation

Both tosylates 6.19 and 6.20 were converted to the corresponding epoxides 6.21 and 6.22 by treatment with base. Installation of the unfunctionalised alkyl chain of the acetogenins was carried out by treatment of the epoxides with the cuprate derived from n-nonyl magnesium bromide (Scheme 6.7).

6.19

6.23

6.20
i, 99%

ii, 85%

6.24

Reagents and Conditions: (i) $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20 \mathrm{~min}$; (ii) n-nonylmagnesiumbromide, $\mathrm{CuI}, \mathrm{THF},-60$ to $-50^{\circ} \mathrm{C}$.
Scheme 6.7 Installation of the acetogenin alkyl sidechain

6.5 Installation of the Butenolide and Completion of the Acetogenin Analogues

The chiral butenolide moiety present in all natural acetogenins was installed by the Alderene method of Trost et al, described previously (Chapter 1.5.5). ${ }^{94,100,101}$ This involved the reaction of terminal alkenes 6.23 and 6.24 with non-racemic propargylic alcohol 1.146 and ruthenium catalyst 1.147. These reactions required the use of 1.4 equivalents of alcohol and $5 \mathrm{~mol} \%$ catalyst, and were carried out in methanol which was degassed with nitrogen or argon for at least twenty minutes to ensure good yields.

Alkene 6.23 was converted to the desired butenolide 6.25 and hydroxy-ester 6.26 in a ratio of $4.8: 1$. In both products the silyl ether protecting groups were conveniently cleaved, thus avoiding a separate deprotection step. Alkene 6.27 was also recoved, a result of starting material desilylation (Scheme 6.8).

Reagents and Conditions: (i) Propargylic alcohol 1.146, catalyst 1.147, MeOH, reflux, 2.5 hr .
Scheme 6.8 Formation of the butenolide of the cis, trans, bis-THF acetogenin analogue

The reaction proceeds by coordination of the alkyne and alkene by the metal followed by metallacycle formation. The formation of the minor hydroxy-ester product is due to the passage of material through the disfavoured, sterically hindered transition state 6.33, in which the ethyl ester and ruthenium ligand are in close proximity. In the corresponding transition state 6.29 , which leads to the desired butenolide product, a ligand is thought to be displaced by the hydroxy group of the substrate, thus stabilising the complex.

The metallacycle collapses via β-hydride elimination followed by reductive elimination, giving hydroxy-esters 6.31 and $\mathbf{6 . 3 5}$ (Scheme 6.9). Fortunately, subsequent lactonisation occured only in the case of 6.31, affording the desired butenolide. This allowed chromatographic separation, which may not have been possible if both hydroxy-esters had undergone cyclisation.

Scheme 6.9 Alder-ene favoured (top) and disfavoured (bottom) transition states

Alkene 6.24 was converted to the desired butenolide 6.36 and hydroxy-ester 6.37 in a ratio of 3.8:1 (Scheme 6.10). As was the case for the cis, trans, bis-THF example, the silyl ether was cleaved from both products.

Reagents and Conditions: (i) Propargylic alcohol 1.146, catalyst 1.147, MeOH, reflux, 2.5 hr .
Scheme 6.10 Formation of the butenolide of the cis-cis-bis-THF acetogenin analogue

To complete the synthesis of the targeted acetogenin analogues, selective reduction of the isolated alkene in the presence of the butenolide was required. This was achieved for both 6.25 and 6.36 by diimide reduction, using ten equivalents of toluenesulfonyl hydrazide and sodium acetate in a mixture of tetrahydrofuran and water. No reduction of the conjugated double bond was noted in either case. Reduction of 6.36 afforded membranacin 3.19. Reduction of 6.25 afforded membranacin epimer 6.38 (Scheme 6.11).

Reagents and Conditions: (i) $\mathrm{TsNHNH} \mathrm{H}_{2}, \mathrm{NaOAc}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$, reflux, 20 hr .
Scheme 6.11 Diimide reduction and completion of acetogenin analogues

Both proton and carbon NMR data for the THF core portion of membranacin 3.19 was in close agreement with that for rollimembrin 6.39, an analogue of membranacin with a shorter, hydroxylated alkyl chain on the butenolide side of the THF core (Figure 6.1). The distance of this hydroxyl group would not be expected to interfere with the chemical shifts of protons in the THF region.

Figure 6.1

6.6 Conclusions

The synthesis of a versatile epoxy-THF-lactone intermediate, and conversion to the useful α / β-unsaturated ester $\mathbf{6 . 1 2}$ was carried out. This ester did not react under the conditions of the Kennedy cyclisation, however a change in strategy and the use of the Sharpless asymmetric epoxidation reaction allowed entry to both a cis, trans, bis-THF and a cis, cis, bis-THF product. Elaboration of these products allowed the synthesis of the natural product membranacin and an epimer thereof.

Chapter 7

Other Approaches to THF Fragments

This chapter describes two short projects which were investigated to complement the work summarised in chapter six.

7.1 A Kennedy Cyclisation Experiment

In an attempt at combining the permanganate oxidative cyclisation of 1,5 -dienes with Kennedy's rhenium cyclisation methodology, we attempted to arrest the reaction of 1,5,9trienedioate 4.26 after the permanganate cyclisation of the 1,5 -dienoate part. This would leave the trisubstituted double bond intact and provide 7.1, a substrate for the Kennedy cyclisation. The THF oxygen atom and the hydroxy group which would participate in the next cyclisation have a threo relationship, and according to the rules proposed by Sinha and Keinan a Kennedy cyclisation should result in the formation of a second, cis-THF ring.

Oxidation of triene 4.26 using 1.8 equivalents of potassium permanganate in the 3:2 acetone / acetic acid solvent system afforded as the major product THF diol 7.1 in 52% yield. This was treated with trifluoroacetyl perrhenate at room temperature. Purification of the crude material on silica gel, eluting with methylene chloride / methanol 99:1, afforded transesterified product 7.2 (Scheme 7.1). Although the structure of the product was confirmed, we were unfortunately unable to confirm the stereochemistry of the cyclisation using the NMR data, and the material proved not to be crystalline. Insufficient time was available for further investigation of the stereochemistry of this product due to focus on the bis-THF acetogenin compounds, however other members of the group are currently undertaking work to clarify this issue.

Reagents and Conditions: (i) KMnO_{4} (1.8 eq.), $5 \mathrm{~mol} \%$ Adogen-464, $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{AcOH} 3: 2, \mathrm{CH}_{2} \mathrm{Cl}_{2},-25{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{Re}_{2} \mathrm{O}_{7}$, TFAA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) $\mathrm{SiO}_{2}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 7.1 Predicted outcome of a permanganate / rhenium approach to a bis-THF

7.2 An Alternative Approach to THF Analogues

To demonstate the versatility of THF-diol fragments, it was proposed that the trisubstituted double bond of THF-diol 7.1 could be cleaved to the aldehyde, providing an intermediate which would allow the addition of alkyl chains of various lengths by olefination chemistry. Reductive removal of the sultam and conversion to the epoxide would allow for the addition of alkyl chains at the other side of the molecule by copper-promoted Grignard chemistry.

Thus, protection of 7.1 as bis-silyl ether 7.3 and treatment with osmium tetroxide followed by sodium periodate cleavage afforded aldehyde 7.4. This aldehyde underwent KocienskiJulia olefination with sulfone $7.9,{ }^{95,231,232}$ affording predominantly trans-alkene 7.5 (Scheme 7.2). The sulfone was synthesised from 1-t-butyl-1 H -tetrazolyl-5-thiol 7.7, which itself was synthesised from t-butylisothiocyanate 7.6 and sodium azide (Scheme 7.3). ${ }^{233}$

Although this work was pursued no further, it illustrates that, with optimisation of the alkene cleavage step, it is another potential route to acetogenin analogues.

7.5

Reagents and Conditions: (i) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) $\mathrm{OsO}_{4}, \mathrm{NMO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) $\mathrm{NaIO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) Pre-mixed 7.9, NaHMDS, DME.

Scheme 7.2 Alkene cleavage and olefination

Reagents and Conditions: (i) $\mathrm{NaN}_{3}, 2$-propanol, $\mathrm{H}_{2} \mathrm{O}$, reflux; (ii) $\mathrm{KOH}, 1$-undecyl bromide, EtOH ; (iii) $\mathrm{AcOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 7.3 Synthesis of the Kocienski-Julia olefination sulfone partner

7.3 Conclusions

Selective permanganate oxidative cyclisation of a 1,5 -diene was carried out in the presence of an isolated, trisubstituted double bond. The product underwent Kennedy cyclisation affording a bis-THF product, although unambiguous assignment of the relative stereochemistry of the THF portion was not achieved due to time constraints.

The product of the permanganate reaction was also shown to be a versatile synthetic intermediate for acetogenin analogue synthesis. Aldehyde 7.4 might be used in the synthesis of mono- or bis-THF acetogenins. Installation of one sidechain by Kocienski-Julia olefination was demonstrated, affording the trans-alkene. Wittig olefination would install
the sidechain with cis-alkene geometry. Reduction of this alkene would provide access to mono-THF acetogenins, and oxidative cyclisation using transition metal oxidants would install a second THF ring. The relative stereochemistry of this second ring would be influenced by the choice of oxidant and double bond geometry. The butenolide bearing sidechain would then be installed as described previously (Scheme 7.4).

Reagents and Conditions: (i) Kocienski-Julia olefination for trans alkene; (ii) Wittig olefination for cisalkene; (iii) $\mathrm{NaBH}_{4}, \mathrm{THF}$; (iv) $\mathrm{Bu}_{2} \mathrm{SnO}$, TsCl, PhH; (v) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vi) Alkylmagnesiumbromide, CuI, -60 to $-50{ }^{\circ} \mathrm{C}$; (vii) Propargylic alcohol 1.146, catalyst $\mathbf{1 . 1 4 7}$, MeOH, reflux, 2.5 hr ; (viii) $\mathrm{TsNHNH}_{2}, \mathrm{NaOAc}^{2}$, THF, $\mathrm{H}_{2} \mathrm{O}$, reflux, 20 hr ; (ix) TBAF, THF; (x) Oxidative cyclisation by transition metal oxidant.

Scheme 7.4

Chapter 8

Concluding Remarks

The following chapter summarises the key features of our approach to bis-2,5-disubstituted THF compounds and their use as synthetic precursors to the Annonaceous acetogenin membranacin and an unnatural epimer. The opportunities for future work in this area will also be discussed.

8.1 Our Approach Summarised

Initial studies to compare Corey's hydroxysulfone and Oppolzer's sultam chiral auxiliaries confirmed the sultam to be more effective at directing the oxidation of 1,5 -dienes by potassium permanganate. The sultam directed the oxidative cyclisation of $1,5,9$-trienes, installing four new stereocentres, affording useful, optically enriched THF-lactone intermediates 4.28 and 4.45 in very good yield. The use of a cheap and relatively environmentally friendly reagent such as permanganate is advantageous in comparison to other transition-metal based approaches to this synthetic transformation.

Removal of the sultam via a borane-directed borohydride reduction and processing of the resulting diol afforded versatile epoxide 6.7. This intermediate was used in the synthesis of acetogenin membranacin $\mathbf{3 . 1 9}$ and its epimer $\mathbf{6 . 3 8}$ (Figure 8.1). Installation of the second THF ring of each example was achieved using the Sharpless asymmetric epoxidation reaction, a procedure demonstrated previously by Sinha et al. ${ }^{132}$ The butenolide moiety was installed via Trost's Alder-ene reaction. ${ }^{101}$ The use of epoxide 6.7 provides access to libraries of acetogenin analogues for structure-activity studies, as two alkyl chains of any length may be installed using copper-mediated Grignard chemistry.

6.7

Figure 8.1

The selective oxidation of two double bonds of a 1,5,9-triene was also demonstrated. The product 7.1 was shown to be a substrate for Kennedy's perrhenate cyclisation, and also underwent oxidative cleavage to aldehyde 7.4, a potential precursor to both mono- and bisTHF acetogenins (Scheme 8.1).

[^0]Scheme 8.1

8.2 Further Work

The methodology established in chapters four and six may be used to synthesise acetogenin analogues from symmetrical $1,5,9$-trienes such as 4.43 and 4.44. By using the two enantiomers of the sultam auxiliary for the permanganate cyclisation, in combination with the two enantiomers of diethyl tartrate in the Sharpless asymmetric epoxidation, four discrete bis-THF core fragments may be accessed (Scheme 8.2).

Scheme 8.2 Four bis-THF core fragments

Further variety may be introduced by the use of trienes with different combinations of double bond geometries. The scope for the introduction of alkyl sidechains via the coppermediated Grignard reaction allows the possibility for library synthesis of many structural analogues, which could be used in SAR studies.

The selective oxidation of a $1,5,9$-triene, leaving one double bond intact, also provides the potential for tandem oxidation sequences involving the use of permanganate followed by perrhenate.

The route which was studied in section 7.2 might also be investigated as a method of acetogenin analogue synthesis.

Chapter 9

Experimental Section

9.1 General Experimental

All air and / or moisture sensitive reactions were carried out under an inert atmosphere in oven dried glassware. Methylene chloride was dried by distillation from CaH_{2}, and tetrahydrofuran was distilled from sodium / benzophenone prior to use. Brine refers to a saturated aqueous solution of NaCl . All other solvents and reagents were purified, if required, by standard methods. ${ }^{234}$ Reactions were monitored by TLC using aluminiumbacked plates coated with silica gel 60 containing a fluorescence indicator active at 254 nm . The plates were visualised under UV light (254 nm) and by staining with cerium sulfate / ammonium molybdate in $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$, 10% aqueous KMnO_{4} or 20% phosphomolybdic acid in ethanol. Flash column chromatography was carried out using $40-63 \mu \mathrm{~m}$ silica gel (Merck). Column dimensions are quoted in mm (width x height). In the case of known compounds, the CAS registry number is present in square brackets.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC300 or Bruker DPX400 spectrometer in deuterated chloroform with chloroform as the internal standard $\left({ }^{1}{ }^{\mathrm{H}} \delta \mathbf{\delta} 7.26\right.$ ppm, ${ }^{13} \mathrm{C} \delta 77.2 \mathrm{ppm}$. IR spectra are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$ and were collected on a Nicolet Impact 400 instrument as neat liquids or solids. Melting points were obtained in open-ended capillary tubes using a Gallenkamp Electrothermal apparatus, and are uncorrected. Low resolution mass spectra were obtained on a Fisons VG platform single quadrupole mass spectrometer in either chemical ionisation or electron impact ionisation mode, or on a Micromass platform mass analyser with an electrospray ion source.

9.2 Experimental Details

5-Methyl-4-hexenal [764-32-9] (4.2)

$$
\begin{gathered}
4.2 \\
\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O} \\
112.16
\end{gathered}
$$

The title compound was prepared according to the method of Johnson et al. ${ }^{129}$ Thus, ethyl vinyl ether ($100 \mathrm{~mL}, 956 \mathrm{mmol}$), 2-methyl-3-buten-1-ol ($50 \mathrm{~mL}, 478 \mathrm{mmol}$) and phosphoric acid (0.5 mL) were heated at reflux under an atmosphere of N_{2} at $120^{\circ} \mathrm{C}$ in a thick-walled glass flask behind a blast shield for 16 hr , then allowed to cool to room temperature. The solution was diluted with acetone $(150 \mathrm{~mL})$ and $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(150 \mathrm{~mL})$, and stirred at room temperature for 1 hr . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by distillation ($16 \mathrm{mbar}, 52-56^{\circ} \mathrm{C}$) afforded the title compound 4.2 ($27.4 \mathrm{~g}, 244 \mathrm{mmol}, 51 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.30\left(40 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $)$.
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 9.76(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 5.08(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.45\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.31(2 \mathrm{H}$, app. q, J $\left.=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 202.9(\mathrm{~s}, \mathrm{CHO}), 133.3\left(\mathrm{~s}, \mathrm{CH}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 122.3$ (d, $\left.\mathbf{C H}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.1$ ($\left.\mathrm{t}, \mathrm{CH}_{2} \mathrm{CHO}\right), 25.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.0$ (t, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$), $17.8\left(\mathrm{q}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.

FT-IR (film) $v_{\text {max }}$ 2969(m), 2915(m), 2853(w), 2720(w), 1725(s), 1445(m), $1410(\mathrm{w}), 1377(\mathrm{~m}), 1111(\mathrm{w}), 1058(\mathrm{~m}), 983(\mathrm{w}), 828(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS (CI) $m / z 112\left(\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 54 \%\right), 130\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 13 \%\right), 94([\mathrm{M}-$ $\left.\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}, 100 \%\right), 81\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHO}\right]^{+}, 10 \%\right), 69\left(\left[\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+}\right.$, $46 \%), 58\left(\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}\right]^{+}, 22 \%\right) \mathrm{Da}$.

Ethyl-(2E)-7-methyl-2,6-octadienoate [74063-60-8] (4.3)

$$
\begin{gathered}
\mathbf{4 . 3} \\
\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2} \\
182.26
\end{gathered}
$$

To a stirred solution of aldehyde $4.2(27.4 \mathrm{~g}, 244 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(350 \mathrm{~mL})$ at room temperature was added (carbethoxymethylene)triphenylphosphorane ($85.8 \mathrm{~g}, 246 \mathrm{mmol}$), portionwise over a period of 10 min . The mixture was stirred for 14 hr and concentrated in
vacuo. The residue was triturated with pentane, and the resulting white solid was removed by filtration. Concentration of the filtrate in vacuo and purification of the residue by Kugelrohr bulb-to-bulb distillation ($16 \mathrm{mbar}, 60^{\circ} \mathrm{C}$) afforded the title compound 4.3 (42.4 g , $233 \mathrm{mmol}, 95 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.28\left(30 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$.

${ }^{1} \mathrm{H}$ NMR	$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.97\left(1 \mathrm{H}, \mathrm{dt}, J=16.2,6.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$,
	$5.82\left(1 \mathrm{H}, \mathrm{dt}, J=16.2,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.10(1 \mathrm{H}, \mathrm{m}$,
	$\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.31-2.09(4 \mathrm{H}, \mathrm{m}$,
	$\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.70$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 1.62 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $1.28(3 \mathrm{H}, \mathrm{t}, J$
	$\left.=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 166.9$ (s, $\left.\mathrm{CO}_{2} \mathrm{Et}\right), 149.1$ (d, $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$,
	132.9 (s, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 123.0$ (d, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 121.5$ (d,
	$\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 60.3\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 32.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$,
	26.7 (t, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 25.8$ (q, CH_{3}), $17.9\left(\mathrm{q}, \mathrm{CH}_{3}\right.$), 14.4
	(q, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$) ppm.
FT-IR	(film) $\nu_{\text {max }}$ 2976(w), 2919(w), 1721(s), 1655(m), 1363(w), 1313(m),
	1264(m), 1184(m), 1147(m), 1042(m), $976(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	(CI) $m / z 183\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right), 200\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 23 \%\right), 139(17 \%)$,
	109 ([M-CH3 $\left.\left.\mathrm{CH}_{2} \mathrm{CO}_{2}\right]^{+}, 32 \%\right), 81\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHO}\right]^{+}, 10 \%\right), 69$
	$\left(\left[\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+}, 20 \%\right) \mathrm{Da}$.

(2E)-7-Methyl-2,6-octadienoic acid [84637-63-8] (4.4)

$\rangle=\mathrm{CO}_{2} \mathrm{H} \quad$| 4.4 |
| :---: |
| $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ |
| 154.21 |

A solution of ester $4.3(3.00 \mathrm{~g}, 16.5 \mathrm{mmol}), \mathrm{NaOH}(3.58 \mathrm{~g}, 89.5 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.69$ $\mathrm{g}, 8.2 \mathrm{mmol})$ in $\mathrm{MeOH}(19 \mathrm{~mL})$ and water $(66 \mathrm{~mL})$ was heated at reflux for 2 hr , allowed to cool to $0{ }^{\circ} \mathrm{C}$, acidified with $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 80 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to an oil which was purified by Kugelrohr bulb-to-bulb distillation ($0.5 \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$) affording the title compound 4.4 ($2.45 \mathrm{~g}, 16.2 \mathrm{mmol}, 98 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.31(30 \%$ EtOAc/hexane).
${ }^{1} \mathbf{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 11.44\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 7.10(1 \mathrm{H}, \mathrm{dt}, J=15.4$, $\left.6.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right), 5.84(1 \mathrm{H}, \mathrm{dt}, J=15.4,1.5 \mathrm{~Hz}$,
$\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right), 5.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.28(2 \mathrm{H}$, app. $\mathrm{q}, ~ J=6.6$ $\left.\mathrm{Hz}, \quad \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right), 2.17(2 \mathrm{H}$, app. q, $J=6.6 \mathrm{~Hz}$, $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR

FT-IR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 172.4\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}\right), 152.2\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right)$, 133.1 (s, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 122.8$ (d, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 120.9$ (d, $\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$), $\quad 32.7 \quad\left(\mathrm{t}, \quad \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right.$), $\quad 26.6 \quad$ (t , $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.9\left(\mathrm{q}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
(film) $v_{\max }$ 2971(w), 2919(w), 1696(s), 1650(m), 1420(m), 1287(m), 1218(m), $975(\mathrm{~m}), 935(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS (CI) $\mathrm{m} / \mathrm{z} 155\left([\mathrm{M}+\mathrm{H}]^{+}, 42 \%\right), 172\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 32 \%\right), 139\left(\left[\mathrm{M}-\mathrm{H}_{3} \mathrm{C}\right]^{+}\right.$, $100 \%), 109\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 24 \%\right), 69\left(\left[\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right]^{+}, 26 \%\right) \mathrm{Da}$.

Rac-Ethyl-2-hydroxy-2-[5-(1-hydroxy-1-methylethyl)tetrahydro-2-furanyl]acetate (4.5)

$$
\begin{gathered}
4.5 \\
\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5} \\
232.28
\end{gathered}
$$

To a solution of ester $4.3(500 \mathrm{mg}, 2.70 \mathrm{mmol})$ in acetone (27 mL) with phosphate buffer $\left(0.067 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4(\text { aq })} / 0.067 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4(\text { aq })} 4: 1,1.8 \mathrm{~mL}\right)$ at $-25^{\circ} \mathrm{C}$ was added a mixture of $0.4 \mathrm{M} \mathrm{KMnO}_{4(\mathrm{aq})}(13.7 \mathrm{~mL}, 5.50 \mathrm{mmol})$ and $\mathrm{AcOH}(0.46 \mathrm{~mL}, 7.70 \mathrm{mmol})$ via dropping funnel over 10 min . The reaction was stirred at $-25^{\circ} \mathrm{C}$ for 5 min , poured onto ice (3 mL) and quenched by the dropwise addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(40 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, then the aqueous phase was saturated with $\mathrm{NaCl}_{(\mathrm{s})}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo, and the residue was purified by flash column chromatography (silica gel $10 \times 60 \mathrm{~mm}, 60 \% \mathrm{EtOAc} /$ hexane) affording the title compound 4.5 ($389 \mathrm{mg}, 1.70 \mathrm{mmol}, 62 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.21$ ($60 \% \mathrm{EtOAc} /$ hexane $)$.
m. p. $44-45^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.39(\mathrm{lH}, \mathrm{ddd}, J=7.5,7.1,2.3 \mathrm{~Hz}$, $\left.\mathrm{CHCHOHCO}_{2} \mathrm{Et}\right), 4.28\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.10(1 \mathrm{H}, \mathrm{d}$, $\left.J=2.3 \mathrm{~Hz}, \mathrm{CHOHCO}_{2} \mathrm{Et}\right), 3.74(1 \mathrm{H}, \mathrm{dd}, J=7.5,7.0 \mathrm{~Hz}$, $\left.\mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.15(2 \mathrm{H}$, br s, $2 \times \mathrm{CHOH}), 2.19-1.77(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.

${ }^{13} \mathrm{C}$ NMR	($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 173.5$ (s, $\left.\mathrm{CO}_{2} \mathrm{Et}\right), 86.7\left(\mathrm{~d}, \mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right)$
	80.0 (d, $\left.\mathrm{CHCHOHCO}_{2} \mathrm{Et}\right), 73.9$ (d, $\mathrm{CHOHCO}_{2} \mathrm{Et}$), 72.0 (s,
	$\left.\mathrm{COH}\left(\mathrm{CH}_{3}\right)_{2}\right), 61.8\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 28.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 28.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 26.3$
	(t, CH_{2}), $25.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.3\left(\mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.
FT-IR	(solid) $v_{\text {max }} 3452(\mathrm{w}), 3329(\mathrm{w}), 2976(\mathrm{w}), 2929(\mathrm{w}), 2868(\mathrm{w}), 1737(\mathrm{~s})$,
	1475(w), 1445(w), 1388(w), 1362(w), 1332(w), 1236(m), 1195(m),
	1127(s), 1071(m), 1024(m), $955(\mathrm{~m}), 723(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 255\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 250\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 16 \%\right), 487$
	([2M+Na] ${ }^{+}$, 18\%) Da.
HRMS	(ES ${ }^{+}$) $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}$ Requires 255.1203; Found 255.1203 Da.
Elemental	Calc. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5}$: C, $56.88 ; \mathrm{H}, 8.68 \%$; Found: C, $56.85 ; \mathrm{H}, 8.87 \%$.

2,3,4,5,6-Pentafluorophenyl-(2E)-7-methyl-2,6-octadienoate (4.6)

$$
\begin{gathered}
4.6 \\
\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{O}_{2} \\
320.26
\end{gathered}
$$

To a solution of acid $4.4(1.28 \mathrm{~g}, 8.31 \mathrm{mmol})$ and pentafluorophenol $(1.64 \mathrm{~g}, 8.90 \mathrm{mmol})$ in dry EtOAc (21 mL) at $0^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added DCC $(1.84 \mathrm{~g}, 8.90 \mathrm{mmol})$ as a single batch. The reaction was allowed to warm to room temperature and stir for 18 hr . The mixture was filtered to remove the insoluble urea, and the filtrate concentrated in vacuo. Purification by flash column chromatography (silica gel $35 \times 120 \mathrm{~mm}, 8 \% \mathrm{EtOAc} /$ hexane) afforded the title compound $4.6(2.66 \mathrm{~g}, 8.30 \mathrm{mmol}, 100 \%)$ as a white solid. $\mathrm{R}_{\mathrm{f}}=0.73(40 \%$ EtOAc/hexane).

m.p.	$29-30{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR	$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.31(1 \mathrm{H}, \mathrm{dt}, J=15.4,6.6 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right), 6.07\left(1 \mathrm{H}, \mathrm{dt}, J=15.4,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right)$, 5.18-5.09 $\quad\left(1 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 2.43-2.32 \quad(2 \mathrm{H}, \quad \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right), 2.29-2.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.73(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	$\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 162.2\left(\mathrm{CO}_{2} \mathrm{Ar}\right), 155.2\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right)$

(d, $\left.\quad \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right), \quad 118.2 \quad\left(\mathrm{~d}, \quad \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 33.1 \quad$ (t, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right), 26.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.9$ ($\mathrm{q}, \mathrm{CH}_{3}$) ppm.
${ }^{19} \mathbf{F}$ NMR $\quad\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{F}} 9.14-8.88(\mathrm{~m}), 3.32-3.27(\mathrm{~m}),-0.75$ to -1.00 (m) ppm.

FT-IR (solid) $\nu_{\max }$ 2974(w), 2917(w), 1765(m), 1654(w), 1519(s), 1290(w), 1213(w), 1145(w), 1119(m), 1074(w), 1024(m), 1004(s) cm^{-1}.
LRMS (El) m/z $320\left([\mathrm{M}]^{++}, 6 \%\right), 137\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}+\mathrm{H}\right]^{+}, 81 \%\right), 109$ ([M$\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OCO}\right]{ }^{++}, 18 \%\right), 69\left(\left[\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]^{\circ+}, 100 \%\right) \mathrm{Da}$.
HRMS
(EI) $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~F}_{5}$ Requires 320.0836 ; Found 320.0844 Da
Elemental Calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~F}_{5}: \mathrm{C}, 56.26 ; \mathrm{H}, 4.09 \%$; Found: $\mathrm{C}, 56.13$; H, 4.05\%.

1,1-Dimethylpropanoic-(2E)-6-methyl-2,6-octadienoic anhydride (4.7)

4.7 $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}$ 238.32

The title compound was prepared according to the method of Otaka et al. ${ }^{193}$ Thus, to a solution of acid $4.4(2.75 \mathrm{~g}, 17.8 \mathrm{mmol})$ in THF (69 mL) at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added $\mathrm{Et}_{3} \mathrm{~N}(2.7 \mathrm{~mL}, 19.6 \mathrm{mmol})$ followed by trimethylacetyl chloride ($2.4 \mathrm{~mL}, 19.6$ mmol), both dropwise via syringe. The solution was stirred at this temperature for 1 hr then at $0^{\circ} \mathrm{C}$ for 20 min , and was diluted with water $(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and the combined organic phase was washed with water $(30 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $40 \times 110 \mathrm{~mm}, 10 \% \mathrm{EtOAc} /$ hexane) afforded the title compound $4.7(4.15 \mathrm{~g}, 17.4 \mathrm{mmol}, 98 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.68$ ($30 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane).
${ }^{1} \mathrm{H}$ NMR
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.09\left(1 \mathrm{H}, \mathrm{dt}, J=15.5,6.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2}\right)$, $5.87\left(1 \mathrm{H}, \mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2}\right), 5.10(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.18(2 \mathrm{H}, \mathrm{td}, J=8.1$,
$6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2}$), $1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.39$
($\left.9 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$.

${ }^{13} \mathrm{C}$ NMR	$\left(75 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta_{\mathrm{C}} \quad 174.3 \quad\left(\mathrm{~s}, \quad \mathrm{CO}_{2} \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 166.9 \quad$ (s,
	$\left.\mathrm{CO}_{2} \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 153.9$ (d, $\left.\mathrm{CH}=\mathrm{CHCO}_{2}\right), 133.4\left(\mathrm{~s}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$,
	122.5 (d, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 120.9$ (d, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2}$), 40.1 (s,
	$\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2}\right), 26.7\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.5(\mathrm{t}$,
	$\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) 25.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, ppm.
FT-IR	(film) $v_{\text {max }}$ 2971(w), 2930(w), 2914(w), 1801(s), 1732(s), 1639(m),
	$1481(\mathrm{~m}), 1365(\mathrm{w}), 1214(\mathrm{~m}), 1050(\mathrm{~m}), 1009(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	(CI) $m / z 172$ (5\%), 154 (27\%), 137 (100\%), 95 (32\%), 81 (16\%), 69
	$\left(\left[\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+}, 69 \%\right) \mathrm{Da}$.

(1R, 2R)-2-(2-Naphthylsulfonyl)cyclohexyl-(2E)-7-methyl-2,6-octadienoate (4.8)

4.8
$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}$
426.56

Via the mixed anhydride
A solution of (-)-(1R, 2R)-2-(2-Naphthylsulfonyl)-1-cyclohexanol 3.15 ($819 \mathrm{mg}, 2.80$ mmol) in THF (3.4 mL) at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was treated with a 60% suspension of sodium hydride in mineral oil ($113 \mathrm{mg}, 2.80 \mathrm{mmol}$). The mixture was stirred at this temperature for 10 min , at $-30^{\circ} \mathrm{C}$ for 10 min , and at room temperature for a further 10 min . The solution was then added dropwise via syringe to a solution of anhydride 4.7 ($560 \mathrm{mg}, 2.30 \mathrm{mmol}$) in THF (5.3 mL) at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 1 hr , warmed to $0{ }^{\circ} \mathrm{C}$ and quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, and the combined organic phase was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine (20 mL), then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $20 \times 100 \mathrm{~mm}, 20-40 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 4.8 ($543 \mathrm{mg}, 1.27 \mathrm{mmol}, 55 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.60(60 \%$ EtOAc/hexane).

Via the pentafluorophenyl ester
To a solution of $(-)-(1 R, 2 R)-2-(2-N a p h t h y l s u l f o n y l)-1-c y c l o h e x a n o l ~ 3.15(725 \mathrm{mg}, 2.50$ $\mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 1.12 M solution of
n -BuLi in hexanes ($2.23 \mathrm{~mL}, 2.50 \mathrm{mmol}$). The solution was stirred for 30 min and a solution of pentafluorophenyl ester $4.6(800 \mathrm{mg}, 2.50 \mathrm{mmol})$ in THF (5 mL) was added via syringe. The reaction was allowed to warm to room temperature and was stirred for 16 hr , then was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic phase was washed with water (30 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $25 \times 80 \mathrm{~mm}, 20-40 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound $4.8(180 \mathrm{mg}, 0.42 \mathrm{mmol}, 17 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.49(40 \%$ EtOAc/hexane).

${ }^{1} \mathrm{H}$ NMR	($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.40(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.89-7.98(3 \mathrm{H}$,
	$\mathrm{m}, 3 \mathrm{x} \mathrm{ArH}), 7.82(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.64(1 \mathrm{H}, \mathrm{ddd}, J=$
	$8.3,7.0,1.5 \mathrm{~Hz} \mathrm{ArH}), 7.60(1 \mathrm{H}, \mathrm{ddd}, J=8.3,6.8,1.3 \mathrm{~Hz} \mathrm{ArH}), 6.45$
	$\left(1 \mathrm{H}, \mathrm{dt}, J=15.8,6.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2}\right), 5.10(1 \mathrm{H}$, app. td, $J=10.0$,
	$\left.5.0 \mathrm{~Hz}, \quad \mathrm{CHO}_{2} \mathrm{CCH}=\mathrm{CH}\right), \quad 5.00-4.91 \quad\left(2 \mathrm{H}, \quad \mathrm{~m}, \quad \mathrm{CH}=\mathrm{CHCO}_{2}+\right.$
	$\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.42\left(1 \mathrm{H}\right.$, ddd, $\left.J=12.3,10.0,4.0 \mathrm{~Hz}, \mathrm{CHSO}_{2} \mathrm{Ar}\right)$,
	2.54-2.46 (1H, m), 2.19-2.11 ($1 \mathrm{H}, \mathrm{m}$), 1.97-1.90 ($1 \mathrm{H}, \mathrm{m}$), 1.89-1.67
	$(6 \mathrm{H}, \mathrm{m}), 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.42-1.20(3 \mathrm{H}, \mathrm{m})$ ppm.
${ }^{13} \mathrm{C}$ NMR	($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 164.9$ (s, CO_{2}), 149.7 (d, $\mathrm{CH}=\mathrm{CHCO}_{2}$), 137.4
	(s), 135.3 (s), 132.8 (s), 132.4 (s), 130.1 (d), 129.7 (d), 129.4 (d),
	129.2 (d), 128.0 (d), 127.7 (d), 123.3 (d), 122.9 (d), 120.5 (d,
	$\left.\mathrm{CH}=\mathrm{CHCO}_{2}\right), 70.9\left(\mathrm{~d}, \mathrm{CHO}_{2} \mathrm{CCH}=\mathrm{CH}\right), 65.9\left(\mathrm{~d}, \mathrm{CHSO}_{2} \mathrm{Ar}\right), 32.2(\mathrm{t}),$
	31.7 (t), 26.3 (t), 25.8 (q), 24.5 (t), 24.2 (t), 23.5 (t), 17.9 (q) ppm.
FT-IR	(film) $v_{\max } 3134(\mathrm{w}), 3054(\mathrm{w}), 2938(\mathrm{~m}), 2861(\mathrm{w}), 1717(\mathrm{~s}), 1651(\mathrm{~m})$,
	1452(m), 1348(m), 1310(s), 1260(m), 1181(m), 1144(s), 1126(s),
	1072(m), 1035(m), 854(w), 819(w), 760 (w) cm^{-1}.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 449\left([\mathrm{M}+\mathrm{Na}]^{+}, 42 \%\right), 490\left([\mathrm{M}+\mathrm{Na}+\mathrm{MeCN}]^{+}, 100 \%\right), 875$
	$\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 68 \%\right), 1301\left([3 \mathrm{M}+\mathrm{Na}]^{+}, 45 \%\right) \mathrm{Da}$.
HRMS	(ES) $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SNa}$ Requires 449.1757; Found 449.1747 Da .
Elemental	Calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 70.39 ; \mathrm{H}, 7.09 \%$; Found: C, 70.04; H, 7.18\%.
$[\alpha]^{25}$	-35.3 (c. $0.68, \mathrm{CHCl}_{3}$).

(1S, 2S)-2-(2-Naphthylsulfonyl)cyclohexyl-(2E)-7-methyl-2,6-octadienoate (4.9)

4.8
$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}$
426.56

A solution of (+)-(1S, 2S)-2-(2-Naphthylsulfonyl)-1-cyclohexanol $3.16(2.01 \mathrm{~g}, 6.92 \mathrm{mmol})$ in THF (8 mL) at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was treated with a 60% suspension of sodium hydride in mineral oil ($0.28 \mathrm{~g}, 6.92 \mathrm{mmol})$. The mixture was stirred at this temperature for 10 min , then at $0^{\circ} \mathrm{C}$ for 15 min and was added dropwise via syringe to a solution of anhydride $4.7(1.50 \mathrm{~g}, 6.29 \mathrm{mmol})$ in THF $(13 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred for 1 hr , warmed to $0^{\circ} \mathrm{C}$ and stirred for a further 1 hr , then quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 80 \mathrm{~mL}$), and the combined organic phase was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $20 \mathrm{x} 100 \mathrm{~mm}, 20-40 \%$ EtOAc/hexane) afforded the title compound $4.9(1.40 \mathrm{~g}, 3.27 \mathrm{mmol}, 52 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.57$ ($60 \% \mathrm{EtOAc} /$ hexane) .
${ }^{1} \mathbf{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.40(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz} \mathrm{ArH}), 7.89-7.98(3 \mathrm{H}$, $\mathrm{m}, 3 \mathrm{x} \mathrm{ArH}$), $7.82(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.64(1 \mathrm{H}, \mathrm{ddd}, J=$ $8.3,7.0,1.5 \mathrm{~Hz} \mathrm{ArH}), 7.60(1 \mathrm{H}, \mathrm{ddd}, J=8.3,6.8,1.3 \mathrm{~Hz} \mathrm{ArH}$), 6.45 ($1 \mathrm{H}, \mathrm{dt}, J=15.8,6.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2}$), $5.10(1 \mathrm{H}$, app. td, $J=10.0$, $\left.5.0 \mathrm{~Hz}, \quad \mathrm{CHO}_{2} \mathrm{CCH}=\mathrm{CH}\right), \quad 5.00-4.91 \quad\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCO}_{2}+\right.$ $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.42\left(1 \mathrm{H}\right.$, ddd, $\left.J=12.3,10.0,4.0 \mathrm{~Hz}, \mathrm{CHSO}_{2} \mathrm{Ar}\right)$, 2.54-2.46 ($1 \mathrm{H}, \mathrm{m}$), 2.19-2.11 ($1 \mathrm{H}, \mathrm{m}$), 1.97-1.90 ($1 \mathrm{H}, \mathrm{m}$), 1.89-1.67 $(6 \mathrm{H}, \mathrm{m}), 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.42-1.20(3 \mathrm{H}, \mathrm{m})$ ppm.

${ }^{13} \mathrm{C}$ NMR	($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 164.9$ (s, CO_{2}), 149.7 (d, $\mathrm{CH}=\mathrm{CHCO}_{2}$), 137.4
	$\text { (s), } 135.3 \text { (s), } 132.8 \text { (s), } 132.4 \text { (s), } 130.1 \text { (d), } 129.7 \text { (d), } 129.4 \text { (d), }$
	129.2 (d), 128.0 (d), 127.7 (d), 123.3 (d), 122.9 (d), 120.5 (d,
	$\mathrm{CH}=\mathrm{CHCO}_{2}$), $70.9\left(\mathrm{~d}, \mathrm{CHO}_{2} \mathrm{CCH}=\mathrm{CH}\right), 65.9\left(\mathrm{~d}, \mathrm{CHSO}_{2} \mathrm{Ar}\right), 32.2(\mathrm{t})$,
	31.7 (t), 26.3 (t), 25.8 (q), 24.5 (t), 24.2 (t), 23.5 (t), 17.9 (q) ppm.

FT-IR (film) $\nu_{\max } 3130(\mathrm{w}), 3054(\mathrm{w}), 2937(\mathrm{~m}), 2861(\mathrm{w}), 1717(\mathrm{~s}), 1651(\mathrm{~m})$, 1452(m), 1348(m), 1310(s), 1260(m), 1181(m), 1144(s), 1126(s), 1072(m), 1035(m), 856(w), 819(w), $760(\mathrm{w}) \mathrm{cm}^{-1}$.

LRMS

HRMS
Elemental
$[\alpha]^{25}{ }_{D}$
(ES^{+}) $m / z 449\left([\mathrm{M}+\mathrm{Na}]^{+}, 32 \%\right), 490\left([\mathrm{M}+\mathrm{Na}+\mathrm{MeCN}]^{+}, 100 \%\right), 875$ $\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 80 \%\right), 1301\left([3 \mathrm{M}+\mathrm{Na}]^{+}, 47 \%\right) \mathrm{Da}$. (ES ${ }^{+}$) $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SNa}$ Requires 449.1757; Found 449.1746 Da.
Calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}$: C, $70.39 ; \mathrm{H}, 7.09 \%$; Found: C, $79.99 ; \mathrm{H}, 7.02 \%$. +37.0 (c. $0.81, \mathrm{CHCl}_{3}$).
(1R,2R)-2-(2-Naphthylsulfonyl)cyclohexyl-(2S)-2-hydroxy-2-[(2S,2R)-5-(1-hydroxy-1-methylethyl)-tetrahydro-2-furanyllethanoate (4.10) and
(1S,2S)-2-(2-Naphthyl-sulfonyl)cyclohexyl-(2R)-2-hydroxy-2-[(2R,2S)-5-(1-hydroxy-1-methylethyl)-tetrahydro-2-furanyl]ethanoate (4.11)

4.11
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~S}$
476.58

To a stirred heterogeneous solution of diene 4.9 ($300 \mathrm{mg}, 0.70 \mathrm{mmol}$) and phosphate buffer $\left(0.067 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4(\mathrm{aq})} / 0.067 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4(\mathrm{aq})} 4: 1,0.49 \mathrm{~mL}\right)$ in acetone $(7.0 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$ was added a mixture of $0.4 \mathrm{M} \mathrm{KMnO}_{4(\mathrm{aq})}(3.5 \mathrm{~mL}, 1.40 \mathrm{mmol})$ and $\mathrm{AcOH}(0.11 \mathrm{~mL}, 11.96$ mmol) via dropping funnel over 10 min . The reaction was stirred at $-25^{\circ} \mathrm{C}$ for 10 min and quenched by the addition of an ice-cooled saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(10 \mathrm{~mL})$. The mixture was saturated with NaCl and extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ mL), and the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $20 \times 60 \mathrm{~mm}, 20-65 \%$ EtOAc/hexane) afforded an inseparable mixture of the title compounds 4.10 and 4.11 (177 $\mathrm{mg}, 0.37 \mathrm{mmol}, 53 \%)$ as a white solid. Proton NMR indicated the presence of an optically enriched mixture of diastereoisomers in a ration of 1.5:1 based on the integral of two distinct signals at 3.65 and 3.79 ppm respectively. Although the diastereoisomers were inseparable by chromatography, the middle fractions, which were used for NMR of the purified mixture, contained a $1: 1$ mixture. The following data corresponds to that NMR sample. $\mathrm{R}_{\mathrm{f}}=0.17$ ($60 \% \mathrm{EtOAc} /$ hexane) .

m.p.	$68-70{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR	($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.45$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 8.04-7.98 ($2, \mathrm{~m}, \mathrm{ArH}$), 7.94
	$(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.87$ \& 7.83 ($1 \mathrm{H}, \mathrm{dd}, J=8.5,1.8 \mathrm{~Hz} \& \mathrm{dd}$,
	$J=8.5,1.8 \mathrm{~Hz}, \mathrm{ArH}), 7.72-7.61(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.13$ \& $5.03(1 \mathrm{H}, \mathrm{td}, J$
	$\left.=10.0,4.8 \mathrm{~Hz} \& \mathrm{td}, J=9.5,4.5 \mathrm{~Hz}, \mathrm{CHCO}_{2}\right), 4.53 \& 4.10(1 \mathrm{H}, \mathrm{ddd}$,
	$3.53(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz} \&$ d, $J=2.0 \mathrm{~Hz}, \mathrm{CHCHOHCO} 2), 3.79$ \& 3.66
	$\left(1 \mathrm{H}\right.$, app. $\left.\mathrm{t}, J=6.8 \mathrm{~Hz} \& \mathrm{dd}, J=8.3,6.3 \mathrm{~Hz}, \mathrm{CHCOHC}\left(\mathrm{CH}_{3}\right)_{2}\right)$,
	3.45-3.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHSO}_{2}$), 2.48 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CHOH}$), $2.28-1.58$
	$(8 \mathrm{H}, \mathrm{m}), 1.55-1.36(2 \mathrm{H}, \mathrm{m}), 1.35-1.18(2 \mathrm{H}, \mathrm{m}), 1.30$ \& $1.18(3 \mathrm{H}, 2 \mathrm{x}$
	$\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.13$ \& $1.06\left(3 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 172.2$ (s), 172.1 (s), 135.8 (s), 135.6 (s), 135.4
	$\text { (s), } 134.3 \text { (s), } 134.0 \text { (s), } 132.3 \text { (s), } 131.1 \text { (d), } 130.6 \text { (d), } 129.7 \text { (d), }$
	129.62 (d), 129.60 (d), 129.5 (d), 128.2 (d), 128.1 (d), 128.0 (d),
	127.9 (d), 123.8 (d), 123.5 (d), 86.8 (d), 86.7 (d), 79.7 (d), 79.5 (d),
	74.3 (d), 74.0 (d), 72.4 (d), 72.1 (s), 71.84 (d), 71.79 (d), 66.0 (d), 65.5 (d), 31.4 (t), 31.2 (t), 28.3 (q), 28.2 (t), 28.12 (t), 28.06 (q), 26.3
	(q), 26.0 (q), 25.4 (t), 25.3 (t), 25.2 (t), 24.5 (t), 23.9 (t), 23.5 (t), 23.1
	(t) ppm.
FT-IR	(solid) $v_{\max } 3480(\mathrm{br}), \quad 3058(\mathrm{w}), \quad 2974(\mathrm{~m}), \quad 2942(\mathrm{~m}), \quad 2866(\mathrm{~m})$,
	1746(m), 1626(w), 1590(w), 1504(w), 1452(m), 1308(s), 1271(m),
	1196(m), 1144(s), 1126(s), 1074(m), 1021(m), 953(m), 906(w),
	869(w), 821 (m), $735(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / z 499\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 975$ ([2M+Na] $\left.{ }^{+}, 53 \%\right) \mathrm{Da}$.
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{SNa}$ Requires 499.1761; Found 499.1765 Da.
Elemental	Calc. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 63.01$; H, 6.77\%; Found: C, $62.95 ; \mathrm{H}, 6.73 \%$.
$[\alpha]^{25}$	-42.6 (c. 1.65, CHCl_{3}).

4.12
$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$
351.51

To a solution of ($1 S$)-(-)-2,10-camphorsultam $3.17(1.72 \mathrm{~g}, 7.97 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 2.36 M solution of n - BuLi in hexanes (3.4 $\mathrm{mL}, 7.97 \mathrm{mmol}$), dropwise via syringe. After 10 min a solution of pentafluorophenyl ester $4.6(2.43 \mathrm{~g}, 7.59 \mathrm{mmol})$ in THF (18 mL) was added dropwise, and the mixture was allowed to warm to $-25^{\circ} \mathrm{C}$ and stir for 10 min . The reaction was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, then the combined organic phase was washed with water ($2 \times 20 \mathrm{~mL}$) and brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $45 \times 200 \mathrm{~mm}, 4-10 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 4.12 ($2.53 \mathrm{~g}, 7.21$ $\mathrm{mmol}, 95 \%)$ as a white solid. $\mathrm{R}_{\mathrm{f}}=0.38$ (20\% EtOAc/hexane) .
m.p.
${ }^{1} \mathrm{H}$ NMR
$74-76^{\circ} \mathrm{C}$.
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.08(1 \mathrm{H}, \mathrm{dt}, J=15.1,6.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCON})$, $6.56(1 \mathrm{H}, \mathrm{dt}, J=15.1,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCON}), 5.10(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.93(1 \mathrm{H}, \mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, \mathrm{CHN}), 3.51 \& 3.44(2 \mathrm{x}$ $\left.1 \mathrm{H}, 2 \mathrm{x} \mathrm{d}, J=13.8 \mathrm{~Hz}, \quad \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.32-2.25(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCON}\right), \quad 2.21-2.05 \quad\left(4 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}+\right.$ $\left.\mathrm{CH}_{2} \mathrm{CHN}\right), 1.98-1.82\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CHN}+\mathrm{CHHCCH}_{2} \mathrm{SO}_{2}+\right.$ $\mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$), $1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.50-1.29$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHHCCH}_{2} \mathrm{SO}_{2}+\mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$), $1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 164.3(\mathrm{~s}, \mathrm{CON}), 150.7(\mathrm{~d}, \mathrm{CH}=\mathrm{CHCON})$, $133.0 \quad$ (s, $\left.\quad \mathrm{CH}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 123.0 \quad\left(\mathrm{~d}, \quad \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 121.2$ ($\mathrm{CH}=\mathbf{C H C O N}$), $65.3(\mathrm{~d}, \mathrm{CHN}), 53.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.6 \& 48.0(2 \mathrm{x} \mathrm{s}$, $\mathbf{C H C H}_{2} \mathbf{C H N}+\mathbf{C C H}_{2} \mathrm{SO}_{2}$), 44.9 ($\mathrm{d}, \mathbf{C H C H}_{2} \mathbf{C H N}$), 38.7 (t, $\mathrm{CH}_{2} \mathrm{CHN}$), 33.1 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCON}$), $32.9\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}\right.$), $26.8 \& 26.7\left(2 \times \mathrm{t}, \quad \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}+\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8(\mathrm{q}$, CH_{3}), $21.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 20.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, ppm.

FT-IR	(solid) $v_{\max } 2959(\mathrm{w}), 1678(\mathrm{~m}), 1640(\mathrm{~m}), 1370(\mathrm{w}), 1330(\mathrm{~s}), 1238(\mathrm{~m})$,
	1214(m), 1134(s), 742(m), 729 (s) cm^{-1}.
LRMS	(CI) $\mathrm{m} / \mathrm{z} 352\left([\mathrm{M}+\mathrm{H}]^{+}, 65 \%\right), 369\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 6 \%\right), 283(26 \%), 176$
	(16\%), 152 (20\%), 135 (52\%), 109 (29\%), 93 (24\%), 69 (100\%), 55
	(20\%) Da.
HRMS	(ES ${ }^{+}$) $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SNa}$ Requires 374.1760; Found 374.1760 Da.
Elemental	Calc. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 64.92 ; \mathrm{H}, 8.32$; $\mathrm{N}, 3.98 \%$; Found: C, 64.68;
	H, 8.42; $\mathrm{N}, 3.83 \%$.
$[\alpha]^{24} \mathrm{D}$	-80.3 (c. $0.35, \mathrm{CHCl}_{3}$).

(1S)-N-\{(2S)-2-Hydroxy-2-[(2S,5R)-5-(1-hydroxy-1-methylethyl)-tetrahydro-2-furanyl]-ethanoyl\}-camphor-10,2-sultam (4.13) and
(1S)-N-\{(2R)-2-Hydroxy-2-[(2R,5S)-5-(1-hydroxy-1-methylethyl)-tetrahydro-2-furanyl]-ethanoyl $\}$-camphor-10,2-sultam (4.14)

4.13
$\mathrm{C}_{19} \stackrel{\mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}}{401.52}$
Major Product

$\mathrm{C}_{19} \stackrel{4.14}{\mathrm{H}_{31}} \stackrel{-}{\mathrm{NO}_{6} \mathrm{~S}} \mathrm{SO}_{6} .52$
Minor Product

Aqueous Acetone Method

To a stirred heterogeneous solution of diene $4.12(400 \mathrm{mg}, 1.14 \mathrm{mmol})$ and phosphate buffer $\left(0.067 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4(\mathrm{aq})} / 0.067 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4(\mathrm{aq})} 4: 1,0.78 \mathrm{~mL}\right)$ in acetone $(16 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$ was added a mixture of $0.4 \mathrm{M} \mathrm{KMnO}_{4(\mathrm{aq})}(5.69 \mathrm{~mL}, 2.28 \mathrm{mmol})$ and $\mathrm{AcOH}(0.18 \mathrm{~mL}, 3.19$ mmol) via dropping funnel over 10 min . The reaction was stirred at $-25^{\circ} \mathrm{C}$ for 10 min and quenched by the addition of an ice-cooled saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(10 \mathrm{~mL})$. The mixture was saturated with NaCl and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 40 \mathrm{~mL})$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 30 mL), and the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $10 \times 80 \mathrm{~mm}, 30-60 \%$ EtOAc/hexane) afforded major diastereoisomer 4.13 ($307 \mathrm{mg}, 0.77 \mathrm{mmol}, 67 \%$) and minor diastereoisomer $4.14(36 \mathrm{mg}, 0.09 \mathrm{mmol}, 8 \%)$ as white solids (total yield THF product 343
$\mathrm{mg}, 0.86 \mathrm{mmol}, 75 \%)$. This corresponded to a product ratio of 8.5:1 $(d e=79 \%)$. $\mathrm{R}_{\mathrm{f}, \text { minor }}=0.35, \mathrm{R}_{\mathrm{f}, \text { major }}=0.27(60 \% \mathrm{EtOAc} /$ hexane $)$.

Phase Transfer Method

To a solution of diene 4.12 ($400 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{AcOH}(0.73 \mathrm{~mL}, 12.74 \mathrm{mmol})$ and adogen-464 ($65 \mathrm{mg}, 0.01 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added $\mathrm{KMnO}_{4}(360 \mathrm{mg}, 2.28 \mathrm{mmol})$ as a single batch, and the heterogeneous solution stirred for 2 hr . The reaction was quenched by addition to an ice-cooled saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(20 \mathrm{~mL})$ and the resulting yellow solution was extracted with EtOAc (3 $\times 50 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel 12×50 $\mathrm{mm}, 5-35 \%$ EtOAc/hexane) afforded major diastereoisomer 4.13 ($319 \mathrm{mg}, 0.79 \mathrm{mmol}, 70 \%$) and minor diastereoisomer 4.14 ($40 \mathrm{mg}, 0.10 \mathrm{mmol}, 8 \%$) as white solids (total yield THF product $359 \mathrm{mg}, 0.89 \mathrm{mmol}, 78 \%$). This corresponded to a product ratio of 8.5:1 ($d e=$ $78 \%) . \mathrm{R}_{\mathrm{f}, \text { minor }}=0.35, \mathrm{R}_{\mathrm{f}, \text { major }}=0.27(60 \% \mathrm{EtOAc} /$ hexane $)$.
Major Diastereoisomer 4.13
m.p $67-69^{\circ} \mathrm{C}$.
${ }^{1}$ H NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.64(1 \mathrm{H}$, ddd, $J=6.0,5.8,2.5 \mathrm{~Hz}$, CHCHOHCON), 4.56 ($1 \mathrm{H}, \mathrm{dd}, J=6.8,2.5 \mathrm{~Hz}, \mathrm{CHOHCON}$), 4.24 ($1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHOH}$), $3.96(1 \mathrm{H}, \mathrm{dd}, J=8.0,5.3 \mathrm{~Hz}, \mathrm{CHN}$), $3.78\left(1 \mathrm{H}, \mathrm{dd}, J=8.3,6.5 \mathrm{~Hz}, \mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.52 \& 3.44(2 \mathrm{x} \mathrm{1H}$, $\left.2 \mathrm{x} \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.96\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{COH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.29-2.18$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$), 2.09-1.62 ($7 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}+$ $\mathrm{CH}_{2} \mathrm{CHN}+\mathrm{CHCH}_{2} \mathrm{CHN}$), $1.40-1.12\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}+\right.$ $\mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$), $1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.12(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{3}$), ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 172.2(\mathrm{~s}, \mathbf{C O N}), 87.0\left(\mathrm{~d}, \mathbf{C H C O H}\left(\mathrm{CH}_{3}\right)_{2}\right), 78.7$ (d, CHCHOHCON), 74.5 (d, CHOHCON), 72.1 ($\left.\mathrm{s}, \mathrm{COH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 66.1 (d, CHN), 53.3 (t, $\mathrm{CH}_{2} \mathrm{SO}_{2}$), 49.3 (s), 48.1 (s), 44.8 (d, $\mathrm{CHCH}_{2} \mathrm{CHN}$), 38.6 ($\mathrm{t}, \mathrm{COCHOHCHCH}_{2}$), 33.2 (t$), 29.1$ (t), 28.5 (q), 26.6 (t), 26.4 (t), 25.2 (q), 21.1 (q), 20.1 (q) ppm.

FT-IR	(solid) $v_{\max } 3457(\mathrm{br}), 2963(\mathrm{w}), 2881(\mathrm{w}), 1686(\mathrm{~m}), 1457(\mathrm{w}), 1413(\mathrm{w})$,
	$\begin{aligned} & 1375(\mathrm{~m}), \quad 1330(\mathrm{~s}), \quad 1269(\mathrm{~s}), \quad 1236(\mathrm{~s}), \quad 1218(\mathrm{~s}), \quad 1166(\mathrm{~s}), \quad 1108(\mathrm{~s}), \\ & 1078(\mathrm{~s}), 990(\mathrm{~m}), 953(\mathrm{~m}), 735(\mathrm{~m}) \mathrm{cm}^{-1} . \end{aligned}$
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 402\left([\mathrm{M}+\mathrm{H}]^{+}, 8 \%\right), 424\left([\mathrm{M}+\mathrm{Na}]^{+}, 78 \%\right), 803\left([2 \mathrm{M}+\mathrm{H}]^{+}\right.$, $100 \%), 825\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 5 \%\right) \mathrm{Da}$.
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{SNa}$ Requires 424.1762; Found 424.1762 Da.
Elemental	Calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}$: C, $56.84 ; \mathrm{H}, 7.78$; N, 3.49\%; Found: C, 56.48; H, 7.45; N, 3.47\%.
$[\alpha]^{25}{ }_{\text {D }}$	-37.8 (c. $0.63, \mathrm{CHCl}_{3}$).

Minor Diastereoisomer 4.14
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 173.6(\mathrm{~s}, \mathrm{CON}), 86.9\left(\mathrm{~d}, \mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 80.3$
m.p
${ }^{1} \mathrm{H}$ NMR

FT-IR

LRMS

HRMS
$68-70^{\circ} \mathrm{C}$.
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.69(1 \mathrm{H}, \mathrm{dd}, J=9.8,2.3 \mathrm{~Hz}, \mathrm{CHOHCON})$, $4.55(1 \mathrm{H}, \mathrm{ddd}, J=7.3,3.0,2.3 \mathrm{~Hz}, \mathrm{CHCHOHCON}), 3.96(1 \mathrm{H}, \mathrm{dd}, J$ $=6.8,5.8 \mathrm{~Hz}, \mathrm{CHN}), 3.87(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{CHOH}), 3.69(1 \mathrm{H}, \mathrm{dd}$, $\left.J=8.5,6.8 \mathrm{~Hz}, \mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.51 \& 3.45(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=13.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.76\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.25-1.61(8 \mathrm{H}, \mathrm{m}$, $\mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}+\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}+\mathrm{CH}_{2} \mathrm{CHN}+\mathrm{CHCH}_{2} \mathrm{CHN}$), 1.42-1.21 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}+\mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$), $1.23(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. (d, CHCHOHCON), 75.5 (d, CHOHCON), 71.9 ($\left.\mathrm{s}, \mathrm{COH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 65.2 (d, CHN), 53.3 (t, $\mathrm{CH}_{2} \mathrm{SO}_{2}$), 49.3 (s), 48.2 (s), 44.8 (d, $\mathrm{CHCH}_{2} \mathrm{CHN}$), 37.9 ($\mathrm{t}, \mathrm{COCH}(\mathrm{OH}) \mathrm{CHCH}_{2}$), 32.9 (t), 28.7 (t$), 28.6$ (q), 26.8 (t), 26.5 (t), 25.0 (q), 20.7 (q), 20.2 (q) ppm.
(solid) $v_{\max } 3458(\mathrm{br}), 2963(\mathrm{~m}), 2881(\mathrm{~m}), 1686(\mathrm{~s}), 1458(\mathrm{~m}), 1375(\mathrm{~m})$, 1330(s), 1270(m), 1238(m), 1218(m), 1166(s), 1135(m), 1108(m), 1078(m), $991(\mathrm{~m}), 953(\mathrm{~m}), 735(\mathrm{~m}) \mathrm{cm}^{-1}$. $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 419\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 402\left([\mathrm{M}+\mathrm{H}]^{+}, 28 \%\right), 424$ $\left([\mathrm{M}+\mathrm{Na}]^{+}, 22 \%\right), 820\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 26 \%\right), 825\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 5 \%\right) \mathrm{Da}$. (ES $\left.{ }^{+}\right) \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{SNa}$ Requires 424.1764; Found 424.1759 Da.

Elemental	Calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 56.84 ; \mathrm{H}, 7.78 ; \mathrm{N}, 3.49 \%$; Found: $\mathrm{C}, 56.80 ;$
	$\mathrm{H}, 7.85 ; \mathrm{N}, 3.37 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}$	-119.8 (c. $\left.0.52, \mathrm{CHCl}_{3}\right)$.

(2E)-7-Methyl-2,6-octadien-1-ol [58167-00-3] (4.17)

To a solution of ester $4.3(26.4 \mathrm{~g}, 145 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ under an atmosphere of Ar was added a 1 M solution of di-iso-butyl aluminium hydride in hexanes ($290 \mathrm{~mL}, 290 \mathrm{mmol}$) via dropping funnel over a period of 3 hr . The reaction was stirred for a further 1 hr at $-30^{\circ} \mathrm{C}$, then was warmed to $0^{\circ} \mathrm{C}$ and quenched by the addition of MeOH (340 mL), water (340 mL) and $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(200 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 400 \mathrm{~mL})$ and the organic phase was washed with $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(100 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by flash column chromatography (silica gel $80 \times 160 \mathrm{~mm}, 20-50 \%$ EtOAc/hexane) afforded the title compound 4.17 ($16.2 \mathrm{~g}, 115$ $\mathrm{mmol}, 80 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.16(10 \% \mathrm{EtOAc} /$ hexane $)$.

${ }^{1} \mathrm{H}$ NMR	($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 5.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}\right), 5.12(1 \mathrm{H}$, app
	$\left.\mathrm{tt}, J=6.7,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.10\left(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$,
	2.11-2.04 ($\left.4 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60(3 \mathrm{H}, \mathrm{s}$,
	CH_{3}) ppm.
${ }^{13} \mathrm{C}$ NMR	($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 133.2$ (d, $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}$), 132.1 (s,
	64.0 (t, $\mathrm{CH}_{2} \mathrm{OH}$), 32.6 (t, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}$), 27.8 (t,
	$\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.9\left(\mathrm{q}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
FT-IR	(film) $v_{\text {max }} 3333(\mathrm{br}), 2969(\mathrm{w}), 2917(\mathrm{~m}), 2850(\mathrm{w}), 1441(\mathrm{~m}), 1375(\mathrm{~m})$,
	1224(w), 1093(m), 1003(s), 968(s), 835(m), 733(m) cm^{-1}.
LRMS	(CI) $m / z 140\left(\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 84 \%\right), 158\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 60 \%\right), 123$
	([M-OH] $\left.{ }^{+}, 100 \%\right), 109(28 \%), 69$ (68\%), 58 (18\%) Da.

4.18
$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{Cl}$
158.72

The title compound was prepared according to the method Collington et al. ${ }^{226}$ Thus, to a solution of alcohol $4.17(12.5 \mathrm{~g}, 89 \mathrm{mmol}), 2,6$-lutidine ($11.4 \mathrm{~mL}, 98 \mathrm{mmol}$) and oven-dried $\mathrm{LiCl}(4.2 \mathrm{~g}, 98 \mathrm{mmol})$ in dry DMF $(125 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added methanesulfonyl chloride ($8.3 \mathrm{~mL}, 107 \mathrm{mmol}$), dropwise via syringe. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hr , then at room temperature for 2 hr , at which point further $\mathrm{LiCl}(0.2 \mathrm{~g}$, 5 mmol) was added as a single batch. After stirring for 2.5 hr at room temperature, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and washed with water $(100 \mathrm{~mL}), 2 \mathrm{NHCl}_{(\mathrm{aq})}(100$ $\mathrm{mL})$, and brine $(100 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by short-path distillation under reduced pressure ($17 \mathrm{mbar}, 95^{\circ} \mathrm{C}$) afforded the title compound $4.19(10.1 \mathrm{~g}, 64 \mathrm{mmol}, 71 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.66(10 \%$ EtOAc/hexane).

${ }^{1} \mathrm{H}$ NMR	$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta_{\mathrm{H}} 5.79(1 \mathrm{H}, \quad \mathrm{dt}, \quad J=14.7,6.3 \mathrm{~Hz},$
	$\left.\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}\right), 5.63\left(1 \mathrm{H}, \mathrm{dt}, J=14.7,6.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}\right), 5.11$
	$\left(1 \mathrm{H}\right.$, app. tq, $\left.J=5.2,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.05(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$,
	$\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 2.12-2.05\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.70$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 1.62
	($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$) ppm.
${ }^{13} \mathrm{C}$ NMR	$\left.\left(75 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta_{\mathrm{C}} \quad 136.0 \text { (d, } \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}\right), \quad 132.4 \text { (s, }$
	$\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 126.2\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}\right), 123.6\left(\mathrm{~d}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$,
	45.7 (t, $\mathrm{CH}_{2} \mathrm{Cl}$), 32.4 (t, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}\right), 27.6$ (t,
	$\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.9\left(\mathrm{q}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
FT-IR	(film) $v_{\text {max }}$ 2959(m), 2926(m), 2855(w), 1730(w), 1663(w), 1441(m),
	1375(m), 1251(m), 965(s), 684(s) cm^{-1}.
LRMS	(CI) $\mathrm{m} / \mathrm{z} 158\left([\mathrm{M}]^{+}, 5 \%\right), 176\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 2 \%\right), 123$ ([M-Cl] $\left.{ }^{+}, 95 \%\right)$,
	109 (27\%), 91 (12\%), 81 (25\%), 69 (100\%), 58 (23\%) Da.
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNa}$ Requires 158.0862; Found 158.0871 Da .

4.19 $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{Br}$ 203.12

The title compound was prepared according to the method Collington et al. ${ }^{227}$ Thus, to a solution of alcohol $4.17(4.00 \mathrm{~g}, 28.53 \mathrm{mmol})$ in $\mathrm{MeCN}(150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added $\mathrm{CBr}_{4}(9.99 \mathrm{~g}, 29.95 \mathrm{mmol})$ as a single batch followed by PPh_{3} $(7.86 \mathrm{~g}, 29.95 \mathrm{mmol})$, via solid addition screw over a period of 10 min . The reaction vessel was enclosed in aluminium foil to exclude light at all times. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hr , then further $\mathrm{CBr}_{4}(0.47 \mathrm{~g}, 1.43 \mathrm{mmol})$ followed by $\mathrm{PPh}_{3}(0.37 \mathrm{~g}, 1.43 \mathrm{mmol})$ was added. After 1 hr , the solution was concentrated in vacuo, the residue was triturated with pentane ($2 \times 30 \mathrm{~mL}$), the solid removed by filtration and the filtrate concentrated in vacuo. Purification of the residue by flash column chromatography (silica gel $30 \times 80 \mathrm{~mm}, 5-15 \%$ EtOAc/hexane) afforded the title compound 4.19 ($5.67 \mathrm{~g}, 27.89 \mathrm{mmol}, 98 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.75$ (20\% EtOAc/hexane).

${ }^{1} \mathrm{H}$ NMR	$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.88-5.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}\right), 5.09(1 \mathrm{H}$,
	$\left.\mathrm{m}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.05\left(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 2.11-2.02(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	(75 MHz, CDCl_{3}) $\delta_{\mathrm{C}} 136.4$ (d, $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}$), 132.4 (s , $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 126.6\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}\right), 123.5\left(\mathrm{~d}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$,
	$33.8 \quad\left(\mathrm{t}, \quad \mathrm{CH}_{2} \mathrm{Br}\right), \quad 32.4 \quad\left(\mathrm{t}, \quad \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}\right), \quad 27.5$ (t, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.9\left(\mathrm{q}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
FT-IR	$\begin{aligned} & \text { (film) } v_{\max } 2960(\mathrm{~m}), 2922(\mathrm{~m}), 2851(\mathrm{w}), 1654(\mathrm{w}), 1446(\mathrm{~m}), 1370(\mathrm{~m}) \text {, } \\ & 1203(\mathrm{~m}), 966(\mathrm{~s}) \mathrm{cm}^{-1} . \end{aligned}$
LRMS	(CI) $m / z 123$ ($\left.[\mathrm{M}-\mathrm{Br}]^{+}, 69 \%\right), 107$ (28\%), 91 (22\%), 79 (36\%), 69 (100\%), 54 (46\%) Da.

(2E)-1-Iodo-7-methyl-2,6-octadiene (4.20)

The title compound was prepared according to the method D'Aniello et al. ${ }^{228}$ Thus, to a suspension of oven-dried $\mathrm{NaI}(22.4 \mathrm{~g}, 150 \mathrm{mmol}$) in dry acetone (60 mL) under an atmosphere of N_{2} was added a solution of chloride 4.18 ($9.5 \mathrm{~g}, 60 \mathrm{mmol}$) in dry acetone (40
mL). The mixture was heated at reflux for 3.5 hr , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and washed with water ($2 \times 50 \mathrm{~mL}$) and a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$. The organic phase was concentrated in vacuo to a brown liquid which was passed through a plug of silica gel ($60 \times 50 \mathrm{~mm}, 10 \% \mathrm{EtOAc} / \mathrm{hexane}$) affording the title compound $4.20(13.3 \mathrm{~g}$, $53.1 \mathrm{mmol}, 89 \%)$ as an orange oil. $\mathrm{R}_{\mathrm{f}}=0.66(10 \% \mathrm{EtOAc} / \mathrm{hexane})$. The compound was used immediately without further purification or characterisation due to a tendency towards decomposition. An impurity, thought to be due to double bond isomerisation, was present in the proton NMR spectrum. The data reported below corresponds to the desired product only.
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}$ 5.77-5.69 $(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.10(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{I}\right), 2.08-1.92\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.71$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.

Ethyl-(6E)-11-methyl-3-oxo-6,10-dodecadienoate (4.21)

4.21 $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}$ 252.35

To a solution of di-iso-propylamine ($1.50 \mathrm{~mL}, 10.67 \mathrm{mmol}$) in THF (13 mL) at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added, dropwise via syringe, a 1.36 M solution of $n-\mathrm{BuLi}(7.84$ $\mathrm{mL}, 10.67 \mathrm{mmol})$. The solution was allowed to warm to $0^{\circ} \mathrm{C}$ and stir for 10 min , then was re-cooled to $-78{ }^{\circ} \mathrm{C}$ and treated by the dropwise addition of ethyl acetoacetate $(0.68 \mathrm{~mL}$, $5.34 \mathrm{mmol})$. The yellow solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stir for 1.5 hr . The resulting orange solution was cooled to $-78^{\circ} \mathrm{C}$, and a solution of bromide $4.19(0.96 \mathrm{~g}, 4.85$ mmol) in THF (6 mL) was added via syringe. The solution was stirred for 1 hr at $-78^{\circ} \mathrm{C}$, allowed to warm to room temperature, and was quenched by the addition of water (10 mL) and $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$, and the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $25 \times 80 \mathrm{~mm}, 5-10 \%$ EtOAc/hexane) afforded the title compound $4.21(0.82 \mathrm{~g}, 3.23 \mathrm{mmol}, 67 \%)$ as a slightly yellow oil. $\mathrm{R}_{\mathrm{f}}=0.33(20 \%$ EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.49-5.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.07(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.12\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.36(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.60\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.30(2 \mathrm{H}, \mathrm{m}$,
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), 2.10-1.98 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.

Ethyl-(6E)-3-hydroxy-11-methyl-6,10-dodecadienoate (4.22)

4.22
$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3}$
254.60

To a solution of β-keto ester $4.21(1.00 \mathrm{~g}, 3.96 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added $\mathrm{NaBH}_{4}(0.15 \mathrm{~g}, 3.96 \mathrm{mmol})$ in 10 batches of approximately equal size at intervals of 4 min . Upon complete reduction, the reaction was quenched by the addition of water $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{~mL})$, and the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $25 \times 80 \mathrm{~mm}, 10-20 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound $4.22(0.89 \mathrm{~g}, 3.49 \mathrm{mmol}, 89 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.50(40 \%$ EtOAc/hexane).
${ }^{1} \mathbf{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.48-5.34(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.18-5.13(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.09-3.96(1 \mathrm{H}$, $\mathrm{dtd}, J=8.5,4.8,3.3 \mathrm{~Hz}, \mathrm{CHOH}), 2.93(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOH}), 2.49(1 \mathrm{H}$, $\left.\mathrm{dd}, J=16.4,3.3 \mathrm{~Hz}, \mathrm{CH} H \mathrm{CO}_{2} \mathrm{Et}\right), 2.39(1 \mathrm{H}, \mathrm{dd}, J=16.4,8.5 \mathrm{~Hz}$, $\left.\mathrm{CH} \mathrm{HCO}_{2} \mathrm{Et}\right), 2.24-1.92\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right) 1.68(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $1.59\left(3 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.59-1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHOH}\right)$, $1.27\left(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.

Ethyl-(2E,6E)-11-methyl-2,6,10-dodecatrienoate (4.23)

$$
\begin{gathered}
\mathbf{4 . 2 3} \\
\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} \\
236.35
\end{gathered}
$$

To a solution of β-hydroxy ester $4.22(4.62 \mathrm{~g}, 18.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added $\mathrm{MsCl}(1.55 \mathrm{~mL}, 19.98 \mathrm{mmol})$ followed by $\mathrm{Et}_{3} \mathrm{~N}(3.04$ $\mathrm{mL}, 21.79 \mathrm{mmol}$), both dropwise via syringe. The mixture was stirred at this temperature for 1.5 hr and washed with water (50 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 100 \mathrm{~mL})$, and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, and treated by the dropwise addition of DBU ($2.69 \mathrm{~mL}, 17.99 \mathrm{mmol}$). The mixture was stirred at this temperature for 30 min and treated by the addition of further DBU $(0.30 \mathrm{~mL}, 0.20 \mathrm{mmol})$, then was allowed to warm to room temperature and stir for 1 hr . The reaction was quenched by the addition of a $10 \% \mathrm{w} / \mathrm{v}$ aqueous solution of citric acid (100 mL), and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel 60×120 $\mathrm{mm}, 4 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 4.23 ($3.48 \mathrm{~g}, 14.71 \mathrm{mmol}, 81 \%$) as a slightly yellow oil. $\mathrm{R}_{\mathrm{f}}=0.71$ ($40 \% \mathrm{EtOAc} /$ hexane) .
${ }^{1}$ H NMR
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.96\left(1 \mathrm{H}, \mathrm{dt}, J=15.4,6.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $5.82\left(1 \mathrm{H}, \mathrm{dt}, J=15.4,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.52-5.33(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.15-5.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.18(2 \mathrm{H}, \mathrm{q}, J=$
$\left.6.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.33-2.12\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 2.08-$ $1.97\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.

${ }^{13}$ C NMR	$\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 166.8\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Et}\right), 148.8\left(\mathrm{~d}, \mathbf{C H}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$,
	$131.8\left(\mathrm{~s}, \mathrm{CH}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 131.5(\mathrm{~d}), 128.7(\mathrm{~d}), 124.1(\mathrm{~d}), 121.6(\mathrm{~d})$,
	$60.3\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 32.9(\mathrm{t}), 32.4(\mathrm{t}), 31.1(\mathrm{t}), 28.2(\mathrm{t}), 25.8(\mathrm{q}), 17.9$
	$(\mathrm{q}), 14.4\left(\mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.

(2E,6E)-11-Methyl-2,6,10-dodecatrienoic acid (4.24)

$$
\begin{gathered}
4.24 \\
\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \\
208.30
\end{gathered}
$$

A stirred heterogeneous solution of trienoate ester $4.23(1.00 \mathrm{~g}, 4.23 \mathrm{mmol}), \mathrm{NaOH}(0.91 \mathrm{~g}$, $22.85 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.18 \mathrm{~g}, 2.12 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ and water (18 mL) was heated at reflux for 3 hr . The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60$ mL). The aqueous layer was acidified to pH 1 with $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ $40 \mathrm{~mL})$. This second combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by Kugelrohr bulb to bulb distillation ($0.5 \mathrm{mbar}, 160^{\circ} \mathrm{C}$) afforded the title compound $4.24(0.85 \mathrm{~g}, 4.07 \mathrm{mmol}, 96 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.56$ (60% EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 11.00\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 7.09(1 \mathrm{H}, \mathrm{dt}, J=15.8$,
$\left.6.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right), 5.84(1 \mathrm{H}, \mathrm{dt}, J=15.8,1.5 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right), 5.53-5.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.14-5.08(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.34-2.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right), 2.21-2.14$ $\left(2 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right), \quad 2.10-1.97 \quad(4 \mathrm{H}, \quad \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.

${ }^{13}$ C NMR	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 172.2\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}\right), 151.9\left(\mathrm{~d}, \mathbf{C H}=\mathrm{CHCO}_{2} \mathrm{H}\right)$,
	$131.9\left(\mathrm{~s}, \mathrm{CH}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 131.8\left(\mathrm{~d}, \mathrm{CH}=\mathbf{C H C O}_{2} \mathrm{H}\right), 128.6(\mathrm{~d}), 124.2$
	$(\mathrm{~d}), 121.1(\mathrm{~d}), 32.9(\mathrm{t}), 32.5(\mathrm{t}), 31.0(\mathrm{t}), 28.2(\mathrm{t}), 25.8(\mathrm{q}), 17.9(\mathrm{q})$
	ppm.
FT-IR	(film) $v_{\max } 2966(\mathrm{~m}), 2916(\mathrm{~m}), 2852(\mathrm{~m}), 2671(\mathrm{w}), 2548(\mathrm{w}), 1698(\mathrm{~s})$,
	$1651(\mathrm{~s}), 1420(\mathrm{~m}), 1376(\mathrm{w}), 1286(\mathrm{~m}), 1232(\mathrm{w}), 968(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{-}\right) \mathrm{m} / \mathrm{z} 207([\mathrm{M}-\mathrm{H}], 100 \%) \mathrm{Da}$.

2,3,4,5,6-Pentafluorophenyl-(2E,6E)-11-methyl-2,6,10-dodecatrienoate (4.25)

$$
\stackrel{4.25}{\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{5} \mathrm{O}_{2}} \underset{374.35}{ }
$$

To a solution of acid $4.24(1.71 \mathrm{~g}, 8.22 \mathrm{mmol})$ and pentafluorophenol $(1.50 \mathrm{~g}, 8.15 \mathrm{mmol})$ in dry EtOAc (23 mL) at $0^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added DCC ($1.68 \mathrm{~g}, 8.15 \mathrm{mmol}$) as a single batch. The reaction was allowed to warm to room temperature and stir for 15 hr , then the mixture was diluted with hexane (30 mL) and filtered to remove the insoluble urea. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography (silica gel $40 \times 120 \mathrm{~mm}, 5 \% \mathrm{EtOAc} /$ hexane) affording the title compound 4.25 ($2.96 \mathrm{~g}, 7.90 \mathrm{mmol}, 96 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.75$ ($40 \% \mathrm{EtOAc} / \mathrm{hexane}$).
${ }^{1} \mathbf{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.30(1 \mathrm{H}, \quad \mathrm{dt}, \quad J=15.8,6.8 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right), 6.07\left(1 \mathrm{H}, \mathrm{dt}, J=15.8,1.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right)$, 5.57-5.38 ($2 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}$), $\quad 5.16-5.09 \quad(1 \mathrm{H}, \quad \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 2.44-2.36 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right), 2.28-2.20$ $\left(2 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right), \quad 2.11-1.98 \quad(4 \mathrm{H}, \quad \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 162.3\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Ar}\right), 154.9\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right)$, 144.0-136.0 (m, $5 \times$ F-coupled ArC), 132.2 ($\mathrm{d}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}$), 132.1 (s, $\left.\mathrm{CH}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 128.3$ (d), 124.2 (d), 118.5 (d), 34.0 (t), 33.0 (t), 31.0 (t$), 28.3$ (t$), 25.9$ (q), 18.0 (q) ppm.

${ }^{19} \mathrm{~F}$ NMR	($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}} 9.16-8.90(\mathrm{~m}), 3.31-3.26(\mathrm{~m}),-0.73$ to -1.00
	(m) ppm.
FT-IR	$\begin{aligned} & \text { (film) } v_{\max } 2941(\mathrm{w}), 1768(\mathrm{~m}), 1645(\mathrm{w}), 1519(\mathrm{~s}), 1209(\mathrm{w}), 1120(\mathrm{~m}), \\ & 1030(\mathrm{~m}), 1004(\mathrm{~s}), 741(\mathrm{~m}), 689(\mathrm{~m}) \mathrm{cm}^{-1} . \end{aligned}$
LRMS	(EI) $m / z \quad 374\left([\mathrm{M}]^{+}, \quad 10 \%\right), \quad 191\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right]^{+}, \quad 20 \%\right), 69$ $\left(\left[\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]^{++}, 100 \%\right) \mathrm{Da}$.
HRMS	(EI) $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~F}_{5}$ Requires 374.1304; Found 374.1305 Da.
Elemental	Calc. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~F}_{5}$: C, 74.96 ; H, 9.68\%; Found: $\mathrm{C}, 74.87$; H,
	9.79\%.

(1S)- N-[(2E,6E)-11-Methyl-2,6,10-dodecatrienoyl] -10,2-Camphorsultam (4.26)

To a solution of ($1 S$)-(-)-10,2-camphorsultam $3.17(1.62 \mathrm{~g}, 7.51 \mathrm{mmol})$ in THF (18 mL) at $78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 1.46 M solution of n - BuLi in hexanes (5.15 $\mathrm{mL}, 7.51 \mathrm{mmol}$), dropwise via syringe. The solution was allowed to warm to $-30^{\circ} \mathrm{C}$ over a period of 1 hr and stir for 10 min , then was cooled to $-50^{\circ} \mathrm{C}$. A solution of pentafluorophenyl ester $4.25(2.81 \mathrm{~g}, 7.51 \mathrm{mmol})$ in THF (15 mL) was added, dropwise via syringe. The mixture was allowed to warm to $-25^{\circ} \mathrm{C}$, then was stirred for 30 min and quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, then the combined organic phase was washed with 2 N $\mathrm{HCl}_{(\mathrm{aq})}(2 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $50 \times 95 \mathrm{~mm}, 5-10 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 4.26 ($2.46 \mathrm{~g}, 6.06 \mathrm{mmol}, 81 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.63(40 \% \mathrm{EtOAc} /$ hexane $)$.
m.p.
${ }^{1} \mathbf{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.09(1 \mathrm{H}, \mathrm{dt}, J=15.4,7.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCON})$, $6.57(1 \mathrm{H}, \mathrm{dt}, J=15.4,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCON}), 5.57-5.32(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.93(1 \mathrm{H}, \mathrm{dd}, J=7.4$, $5.9 \mathrm{~Hz}, \mathrm{CHN}$), $3.54 \& 3.45\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=13.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right.$), 2.35-2.28 ($2 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCON}$), $2.30-1.58 \quad(11 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}+\mathrm{CHCH}_{2} \mathrm{CHN}+\mathrm{CH}_{2} \mathrm{CHN}+$
$\left.\mathrm{CHHCCH}_{2} \mathrm{SO}_{2}+\mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.56-1.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHCCH}_{2} \mathrm{SO}_{2}+\mathrm{CHHCCH}_{2} \mathrm{SO}_{2}\right), 1.19$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 164.4$ (s, CON$), 150.6$ (d, $\left.\mathrm{CH}=\mathrm{CHCON}\right)$, 131.9 ($\left.\mathrm{s}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 131.7$ (d, $\mathrm{CH}_{2} \mathbf{C H}=\mathrm{CHCH}_{2}$), 128.8 (d, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}$), $124.4\left(\mathrm{~d}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 121.3(\mathrm{~d}, \mathrm{CH}=\mathbf{C H C O N})$, $65.5(\mathrm{~d}, \mathrm{CHN}), 53.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.7 \& 48.1\left(2 \mathrm{x} \mathrm{s}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}+\right.$ $\mathrm{CCH}_{2} \mathrm{SO}_{2}$), $45.0\left(\mathrm{~d}, \mathrm{CHCH}_{2} \mathrm{CHN}\right), 38.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 33.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 33.0$ (t, CH_{2}), $32.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 31.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 28.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 26.8\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $26.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 20.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 18.0\left(\mathrm{q}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
FT-IR (film) $\nu_{\text {max }} 2941(\mathrm{~m}), 2683(\mathrm{~m}), 1635(\mathrm{~m}), 1332(\mathrm{~s}), 1237(\mathrm{~m}), 1218(\mathrm{~m})$, 1134(s), 1119(m), 969(m), 761(w) cm^{-1}.
LRMS (CI) $m / z 406\left([\mathrm{M}+\mathrm{H}]^{+}, 22 \%\right), 283$ (33\%), 216 (8\%), 152 ([Msultam $]^{+}, 15 \%$), 135 (48%), 109 (30\%), 93 (37\%), 69 (100%) Da.
HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{SNa}$ Requires 428.2230; Found 428.2228 Da.
Elemental Calc. for $\mathrm{C}_{23} \mathrm{H}_{3} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 68.11 ; \mathrm{H}, 8.70$; N, 3.43\%; Found: C, 67.88; H, 8.92; N, 3.37\%.
$[\alpha]^{24}{ }^{\mathrm{D}} \quad-67.4\left(\mathrm{c} .0 .64, \mathrm{CDCl}_{3}\right)$.

(1S)- N-\{(R)-2-Hydroxy-2-((2S,5R)-5-((R)-5-ox0-tetrahydrofuran-2-yl)-

tetrahydrofuran-2-yl)ethanoyl\}-camphor-10,2-sultam (4.28)

$$
\begin{gathered}
4.28 \\
\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S} \\
427.51
\end{gathered}
$$

Aqueous Acetone Method

To a stirred heterogeneous solution of triene $4.26(2.00 \mathrm{~g}, 4.93 \mathrm{mmol})$ and phosphate buffer $\left(0.067 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4(\mathrm{aq})} / 0.067 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4(\mathrm{aq})} 4: 1,6.6 \mathrm{~mL}\right)$ in acetone $(80 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$ was added a mixture of $0.4 \mathrm{M} \mathrm{KMnO}_{4(\mathrm{aq})}(37.0 \mathrm{~mL}, 14.79 \mathrm{mmol})$ and $\mathrm{AcOH}(1.2 \mathrm{~mL}, 20.71$ mmol) via dropping funnel over 10 min . The reaction was stirred at $-25^{\circ} \mathrm{C}$ for 10 min and quenched by addition to an ice-cooled saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(100 \mathrm{~mL})$. The mixture was saturated with NaCl and extracted with $\mathrm{EtOAc}\left(3 \times 150 \mathrm{~mL}\right.$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \times 50 \mathrm{~mL})$, then the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in
vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{SiO}_{2}$-supported $\mathrm{NaIO}_{4}(1.00 \mathrm{~g})$ was added and the solution was stirred at room temperature for 5 hr . The solid was removed by filtration then washed with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, and the filtrate was concentrated in vacuo. Purification by flash column chromatography (silica gel 25×45 $\mathrm{mm}, 20-35 \% \mathrm{EtOAc} /$ hexane) afforded the title compound 4.28 ($0.76 \mathrm{~g}, 1.79 \mathrm{mmol}, 35 \%$) as a white foamy solid. $\mathrm{R}_{\mathrm{f}}=0.29$ ($70 \% \mathrm{EtOAc} /$ toluene) .

Phase Transfer Method

To a solution of triene $4.26(500 \mathrm{mg}, 1.23 \mathrm{mmol})$, adogen-464 ($57 \mathrm{mg}, 0.12 \mathrm{mmol}$) and AcOH ($0.79 \mathrm{~mL}, 13.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-35^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added powdered $\mathrm{KMnO}_{4}(574 \mathrm{mg}, 3.64 \mathrm{mmol})$ as a single batch. The reaction was stirred for 2 hr and quenched by addition to an ice-cooled saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (50 mL). The solution was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, and SiO_{2}-supported $\mathrm{NaIO}_{4}(980 \mathrm{mg})$ was added as a single batch. The suspension was stirred at room temperature for 5 hr , the solid was removed by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$, and the filtrate was concentrated in vacuo. Purification by flash column chromatography (silica gel 25×35 $\mathrm{mm}, 10-30 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 4.28 ($184 \mathrm{mg}, 0.04 \mathrm{mmol}, 35 \%$) as a white foamy solid. $\mathrm{R}_{\mathrm{f}}=0.28(70 \% \mathrm{EtOAc} /$ toluene $)$.

Acetone/Acetic Acid Method

To a solution of bis-sultam trienedioate $4.43(1.00 \mathrm{~g}, 1.62 \mathrm{mmol})$ and adogen-464 (0.04 g , $0.08 \mathrm{mmol})$ in acetone (23 mL) and $\mathrm{AcOH}(15 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added $\mathrm{KMnO}_{4}(0.66 \mathrm{~g}, 4.20 \mathrm{mmol})$ in three batches at intervals of 30 seconds. The reaction was stirred for 1 hr and was quenched by pouring into an ice-cooled saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(50 \mathrm{~mL}$). The solution was extracted with EtOAc ($3 \times 70 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$, and SiO_{2}-supported $\mathrm{NaIO}_{4}(3.23 \mathrm{~g})$ was added as a single batch. The suspension was stirred at room temperature for 40 min , the solid removed by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and CHCl_{3} ($3 \times 15 \mathrm{~mL}$), and the filtrate concentrated in vacuo. Purification by fiash column chromatography (silica gel $30 \times 45 \mathrm{~mm}, 10-30 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title
compound 4.28 ($0.46 \mathrm{~g}, 1.08 \mathrm{mmol}, 67 \%$) as a white foamy solid. $\mathrm{R}_{\mathrm{f}}=0.26(70 \%$ EtOAc/toluene).

m.p.	69-71 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR	($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.58-4.48(3 \mathrm{H}, \mathrm{m}, \mathrm{CHOC}=\mathrm{O}+\mathrm{CHOHCON}+$ CHCHOHCON), 4.01 ($1 \mathrm{H}, \mathrm{td}, J=7.3,3.0 \mathrm{~Hz}, \mathrm{CHCHOC}=0$), 3.93 $(1 \mathrm{H}, \mathrm{dd}, J=7.8,5.0 \mathrm{~Hz}, \mathrm{CHN}), 3.51 \& 3.43(2 \mathrm{x} 1 \mathrm{H}, 2 \mathrm{x} \mathrm{d}, J=13.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 3.24(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{CHOH}), 2.73(1 \mathrm{H}, \mathrm{ddd}, J=$ $17.6,10.0,7.3 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.43(1 \mathrm{H}, \mathrm{ddd}, J=17.6,10.0,6.3 \mathrm{~Hz}$, CHHC $=0$), $2.33-1.80(10 \mathrm{H}, \mathrm{m}), 1.50-1.30(3 \mathrm{H}, \mathrm{m}), 1.14(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	
FT-IR	$\begin{aligned} & (\mathrm{film}) \nu_{\max } 3507(\mathrm{br}), 2959(\mathrm{~m}), 2833(\mathrm{~m}), 1771(\mathrm{~s}), 1693(\mathrm{~s}), 1459(\mathrm{w}), \\ & 1414(\mathrm{~m}), 1331(\mathrm{~s}), 1270(\mathrm{~s}), 1218(\mathrm{~m}), 1167(\mathrm{~s}), 1136(\mathrm{~s}), 1109(\mathrm{~m}), \\ & 1063(\mathrm{~m}), 989(\mathrm{w}), 734(\mathrm{~m}), 701(\mathrm{w}) \mathrm{cm}^{-1} . \end{aligned}$
LRMS	$\begin{aligned} & \left(\mathrm{ES}^{+}\right) m / z 445 \quad\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 450\left([\mathrm{M}+\mathrm{Na}]^{+}, 38 \%\right), 466 \\ & \left([\mathrm{M}+\mathrm{K}]^{+}, 86 \%\right), 872\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 12 \%\right), 877\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 10 \%\right), 893 \\ & \left([2 \mathrm{M}+\mathrm{K}]^{+}, 16 \%\right) \mathrm{Da} . \end{aligned}$
HRMS	(ES ${ }^{+} \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{SNa}$ Requires 450.1557; Found 450.1563 Da.
Elemental	Calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}: \mathrm{C}, 56.19 ; \mathrm{H}, 6.84$; N, 3.27\%; Found: C, 55.96; H, 6.96; N, 3.13\%.
$[\alpha]^{23}{ }^{\text {D }}$	-40.5 (c. $0.24, \mathrm{CHCl}_{3}$).

Dimethyl-(6E)-3,10-dioxododec-6-enedioate [107093-52-7] (4.35)

4.35
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$
284.30

The title compound was prepared according to the method Hoye et al. ${ }^{22}$ Thus, to a solution of di-iso-propylamine ($13.4 \mathrm{~mL}, 96 \mathrm{mmol}$) in dry THF (80 mL) at $-55^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added, dropwise via syringe, a 2.28 M solution of $n-\mathrm{BuLi}$ in hexanes ($42.1 \mathrm{~mL}, 96 \mathrm{mmol}$). The solution was warmed to $0^{\circ} \mathrm{C}$, stirred for 10 min , then cooled to $-60^{\circ} \mathrm{C}$ and treated with methyl acetoacetate ($5.2 \mathrm{~mL}, 48 \mathrm{mmol}$), also added dropwise. The
yellow solution was allowed to warm to $0^{\circ} \mathrm{C}$ and stir for 1.5 hr . The resulting orange solution was cooled to $-50^{\circ} \mathrm{C}$, and a solution of 1,4-dibromo-2-butene $4.34(5.00 \mathrm{~g}, 23$ mmol) in dry THF (25 mL) was added dropwise via syringe. The solution was stirred for 30 \min at $-50^{\circ} \mathrm{C}$, allowed to warm to $0^{\circ} \mathrm{C}$, and was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(35 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$, and the combined organic phase was washed with $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(2 \times 50 \mathrm{~mL})$ and brine (50 mL) then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $50 \times 130 \mathrm{~mm}, 5-35 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound $4.35(5.00 \mathrm{~g}, 18 \mathrm{mmol}, 75 \%)$ as a pale yellow solid. $\mathrm{R}_{\mathrm{f}}=0.60(20 \%$ EtOAc/hexane).

m.p.	28-30 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.25(2 \mathrm{H}, \mathrm{tt}, J=3.5,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 3.74$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.44\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.59(4 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.27\left(4 \mathrm{H}, \mathrm{tdd}, J=7.3,3.5,1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right)$ ppm.
${ }^{13} \mathrm{C}$ NMR	($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 202.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right.$), $167.8\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), $129.6(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}), 52.6\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 49.3\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 42.9$ (t, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), $26.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right) \mathrm{ppm}$.
FT-IR	```(film) }\mp@subsup{v}{\operatorname{max}}{}\mathrm{ 2992(w), 2954(w), 2846(w), 1744(s), 1714(s), 1626(w), 1437(m), 1407(m), 1320(m), 1266(m), 1197(m), 1148(m), 973(w) cm```
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 285\left([\mathrm{M}+\mathrm{H}]^{+}, 72 \%\right), 302\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 307$ ([M+Na] $\left.{ }^{+}, 71 \%\right) \mathrm{Da}$.
HRMS	(ES ${ }^{+} \mathrm{m} / z \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}$ Requires 307.1152; Found 307.1151 Da.

Dimethyl-(2E,6E,10E)-3,10-dodeca-2,6,10-trienedioate [107093-49-2] (4.36)

4.36
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$
252.31

The title compound was prepared according to the method Hoye et al. ${ }^{22}$ Thus, to a solution of bis- β-keto ester $4.35(5.00 \mathrm{~g}, 17.6 \mathrm{mmol})$ in THF (135 mL) and water (7 mL) at $-15^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(0.67 \mathrm{~g}, 17.6 \mathrm{mmol})$ in ten batches over a period of 10 min . The reaction was monitored by TLC, and NaBH_{4} was added in small batches (0.05 g) until the starting
material was consumed. The mixture was quenched by the addition of $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(200 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$, then the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(135 \mathrm{~mL})$ and at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of $\mathrm{N}_{2} \mathrm{MsCl}(2.6 \mathrm{~mL}, 33.4 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.9 \mathrm{~mL}, 35.1 \mathrm{mmol})$ were added dropwise via syringe. The reaction was stirred for 1 hr then washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ and the combined organic phase was concentrated in vacuo to a volume of $\sim 135 \mathrm{~mL}$, cooled to $0{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2}, and DBU ($5.0 \mathrm{~mL}, 33.6 \mathrm{mmol}$) was added dropwise via syringe. After stirring for 1 hr the reaction was quenched by the addition of $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(200 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $40 \times 100 \mathrm{~mm}, 5-10 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound $4.36(2.67 \mathrm{~g}, 10.6 \mathrm{mmol}, 69 \%)$ as a pale yellow solid. $\mathrm{R}_{\mathrm{f}, \beta \text {-hydroxy ketone }}=0.17$, $\mathrm{R}_{f, \text { trienedioate }}=0.64(60 \% \mathrm{EtOAc} /$ hexane $)$.

tetrahydrofuran-2-yl)acetate (4.37)

$$
\begin{gathered}
4.37 \\
\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{6} \\
244.24
\end{gathered}
$$

To a solution of trienedioate $4.36(500 \mathrm{mg}, 1.98 \mathrm{mmol})$ and adogen-464 ($45 \mathrm{mg}, 0.10 \mathrm{mmol}$) in acetone (28 mL) and $\mathrm{AcOH}(18 \mathrm{~mL})$ at $-26^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added powdered $\mathrm{KMnO}_{4}(814 \mathrm{mg}, 5.15 \mathrm{mmol})$ and the solution stirred for 45 min . The reaction was quenched by dropwise addition to an ice-cooled saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (70 mL). The mixture was extracted with EtOAc ($5 \times 60 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 70 \mathrm{~mL}$) and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $30 \times 50 \mathrm{~mm}, 5-35 \%$ EtOAc/hexane) afforded the title compound 4.37 ($288 \mathrm{mg}, 1.78 \mathrm{mmol}, 59 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.23(60 \%$ EtOAc/hexane).

m.p.	67-69 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.52(1 \mathrm{H}$, ddd, $J=8.0,5.0,3.0 \mathrm{~Hz}$, $\mathrm{CHOC}=0), 4.28(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}(\mathrm{OH}) \mathrm{CO}), 4.11(1 \mathrm{H}$, br d, $J=2.5 \mathrm{~Hz}$, $\mathrm{CHOH}), 3.99(1 \mathrm{H}, \mathrm{ddd}, J=7.3,6.8,3.0 \mathrm{~Hz}, \mathrm{CHCHOC}=\mathrm{O}), 3.80(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.86(1 \mathrm{H}, \mathrm{br}$ s, CHOH$), 2.60(1 \mathrm{H}, \mathrm{ddd}, J=17.6,10.3$, $7.5 \mathrm{~Hz}, \mathrm{CHHCO}$), 2.43 (1 H , ddd, $J=17.6,10.0,5.8 \mathrm{~Hz}, \mathrm{CHHCO}$), 2.28 (1 H , dddd, $J=12.6,10.0,8.0,7.3 \mathrm{~Hz}, \mathrm{CHHCH}_{2} \mathrm{CO}$), 2.20-2.09 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2} \mathrm{CO}+\mathrm{CH}(\mathrm{OH}) \mathrm{CHCHH}\right), 2.08-1.90(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CHCHH}+\mathrm{CH}(\mathrm{OH}) \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 177.8$ (s), 173.1 (s), 81.9 (d, $\mathbf{C H C H C O}$), 80.6 d, $\mathbf{C H C H O H}$), 80.3 (d, $\mathbf{C H C O}$), 77.4 (d, $\mathbf{C H O H}), 52.7\left(\mathrm{q}, \mathbf{C H}_{3}\right), 28.2$ ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CO}$), 27.7 (t), $27.4(\mathrm{t}), 24.7\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right.$) ppm.
FT-IR	(film) $\nu_{\text {max }} 3506(\mathrm{br}), 2954(\mathrm{~m}), 2879(\mathrm{w}), 1770(\mathrm{~s}), 1746(\mathrm{~s}), 1460(\mathrm{~m})$, $1440(\mathrm{~m}), 1270(\mathrm{~m}), 1185(\mathrm{~s}), 1127(\mathrm{~s}), 1082(\mathrm{~m}), 1024(\mathrm{~m}), 930(\mathrm{w}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) m / z 262\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 506\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 37 \%\right), 511$ ($[2 \mathrm{M}+\mathrm{Na}]^{+}, 4 \%$) Da.
HRMS	(ES^{+}) $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{Na}$ Requires 267.0839; Found 267.0839 Da.
Elemental	Calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 54.09; H, 6.60\%; Found: C, 54.09 ; H, 6.70%.

Diethyl-(6E)-3,10-dioxododec-6-enedioate [207684-25-1] (4.38)

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6}$
312.36
The title compound was prepared according to the method Hoye et al. ${ }^{22}$ To a solution of di-iso-propylamine ($94 \mathrm{~mL}, 671 \mathrm{mmol}$) in THF (560 mL) at $-55^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added, dropwise via syringe, a 2.19 M solution of n - BuLi in hexanes ($307 \mathrm{~mL}, 671$ mmol). The solution was warmed to $0{ }^{\circ} \mathrm{C}$, stirred for 10 min , re-cooled to $-60^{\circ} \mathrm{C}$ and treated with ethyl acetoacetate ($43 \mathrm{~mL}, 335 \mathrm{mmol}$), also added dropwise. The yellow solution was allowed to warm to $0^{\circ} \mathrm{C}$ and stir for 1.5 hr . The resulting orange solution was cooled to $-50^{\circ} \mathrm{C}$, and a solution of 1,4-dibromo-2-butene $4.34(35.00 \mathrm{~g}, 164 \mathrm{mmol})$ in THF $(180 \mathrm{~mL})$ was added via syringe. The solution was stirred for 30 min at $-50^{\circ} \mathrm{C}$, allowed to warm to $0{ }^{\circ} \mathrm{C}$, and was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ (200 mL). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{~mL})$, and the combined organic phase was washed with $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(2 \times 100 \mathrm{~mL})$ and brine $(150 \mathrm{~mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel 70 x $170 \mathrm{~mm}, 5-35 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 4.38 ($43.96 \mathrm{~g}, 141 \mathrm{mmol}$, $86 \%)$ as a pale yellow oil. $\mathrm{R}_{\mathrm{f}}=0.66\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathbf{H} \mathbf{N M R} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.43(2 \mathrm{H}, \mathrm{tt}, J=3.5,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 4.19$ ($4 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.41\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.58(4 \mathrm{H}, \mathrm{t}$, $J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), $2.30-2.22\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 1.28$ $\left(6 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 202.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 167.3\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Et}\right), 129.5$ (d, $\mathbf{C H}=\mathbf{C H}), 61.5\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 49.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 42.7$ (t , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), $26.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 14.3\left(\mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.

FT-IR

LRMS
(film) $v_{\text {max }}$ 2983(w), 2936(w), 1743(s), 1714(s), 1444(w), 1410(m), 1368(m), 1316(m), 1249(m), 1184(m), 1096(m), 1033(m), 971(w) cm^{-1}.
$\left(\mathrm{ES}^{+}\right) m / z 335\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 351\left([\mathrm{M}+\mathrm{K}]^{+}, 4 \%\right), 647\left([2 \mathrm{M}+\mathrm{Na}]^{+}\right.$, 83\%) Da.

Diethyl-(6E)-3,10-dihydroxydodec-6-enedioate (4.39)

$$
\begin{gathered}
4.39 \\
\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{6} \\
316.39
\end{gathered}
$$

To a solution of bis- β-keto ester $4.38(42.8 \mathrm{~g}, 137 \mathrm{mmol})$ in THF (1050 mL) and water (50 $\mathrm{mL})$ at $-15^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(5.2 \mathrm{~g}, 137 \mathrm{mmol})$ in twenty batches over a period of 2 hr . The reaction was quenched by the addition of $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(300 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{x}$ $400 \mathrm{~mL})$ and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $100 \times 130 \mathrm{~mm}, 70-100 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexane $)$ afforded the title compound 4.39 ($33.6 \mathrm{~g}, 106 \mathrm{mmol}, 77 \%$) as a pale yellow oil. $\mathrm{R}_{\mathrm{f}}=0.34\left(\mathrm{Et}_{2} \mathrm{O}\right)$.

${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.46(2 \mathrm{H}, \mathrm{tt}, J=3.5,1.5 \mathrm{~Hz}, \mathrm{CH}$
	$\left(4 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00(2 \mathrm{H}, \mathrm{ttd}, J=8.3,4.8,3.5 \mathrm{~Hz}$,
	$\mathrm{CHOH}), 2.95(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOH}), 2.49$ (2 H , dd, $J=16.3,3.3 \mathrm{~Hz}$,
	$\left.\mathrm{CHHCO}_{2} \mathrm{Et}\right), 2.41$ (2H, dd, $\left.J=16.3,8.8 \mathrm{~Hz}, \mathrm{CHHCO}_{2} \mathrm{Et}\right), 2.20-2.12$
	($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}$), 1.62-1.39 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHOH}$), 1.27
	$\left(6 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .$
${ }^{13} \mathrm{C}$ NMR	(100 MHz, CDCl_{3}) $\delta_{\mathrm{C}} 173.1$ ($\mathrm{s}, \mathrm{CO}_{2} \mathrm{Et}$), 130.3 (d, $\mathrm{CH}=\mathbf{C H}$), 67.6 (d,
	$\mathrm{CHOH}), 60.8$ (t, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 41.5 (t, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 36.3$ (t,
	$\mathrm{CHCH}_{2} \mathrm{CHOH}$), 28.7 (t, CH2CH=CH), 14.3 (q, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$) ppm.
FT-IR	(film) $v_{\text {max }} 3449$ (br), 2981(m), 2934(s), 2850(m), 1732(s), 1446(s),
	1405(m), 1373(s), 1300(s), 1183(s), 1091(s), 1029(s), 970 (m) cm^{-1}.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 334\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 317\left([\mathrm{M}+\mathrm{H}]^{+}, 58 \%\right), 650$
	$\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 26 \%\right) \mathrm{Da}$.
HRMS	(ES^{+}) m/z $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}$ Requires 339.1778; Found 339.1777 Da.
Elemental	Calc. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{6}$: C, 60.74; H, 8.92\%; Found: C, 60.48; H, 9.01\%.

Diethyl-(2E,6E,10E)-3,10-dodeca-2,6,10-trienedioate [197968-20-0] (4.40)

$$
\begin{gathered}
4.40 \\
\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \\
280.36
\end{gathered}
$$

To a solution of bis- β-hydroxy ester $4.39(28.6 \mathrm{~g}, 90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(815 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added $\mathrm{MsCl}(14.7 \mathrm{~mL}, 190 \mathrm{mmol})$ followed by $\mathrm{Et}_{3} \mathrm{~N}(27.7$ $\mathrm{mL}, 199 \mathrm{mmol}$), both dropwise via syringe. The reaction was stirred for 1.5 hr then washed
with $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$ and the combined organic phase was concentrated in vacuo to a volume of $\sim 800 \mathrm{~mL}$, cooled to $0^{\circ} \mathrm{C}$ and DBU ($27.1 \mathrm{~mL}, 181 \mathrm{mmol}$) was added dropwise via syringe. The orange solution was stirred for 20 min and further $\mathrm{DBU}(2.0 \mathrm{~mL}, 13 \mathrm{mmol})$ was added. After 30 min the reaction was quenched by the addition of a $10 \% \mathrm{w} / \mathrm{v}$ aqueous solution of citric acid (100 $\mathrm{mL})$ followed by $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(250 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ $200 \mathrm{~mL})$ and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $100 \times 150 \mathrm{~mm}, 5 \%$ EtOAc/hexane) afforded the title compound $4.40(24.8 \mathrm{~g}, 88 \mathrm{mmol}, 98 \%)$ as a pale yellow oil. $\mathrm{R}_{\mathrm{f}}=0.79$ ($\mathrm{Et}_{2} \mathrm{O}$).

${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.94\left(2 \mathrm{H}, \mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right),$
	5.82 , (2H, dt, $\left.J=15.6,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.44(2 \mathrm{H}, \mathrm{dt}, J=3.5$
	$1.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 4.19\left(4 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.30-2.22$
	(4 H , app. qd, $\left.J=6.8,1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 2.19-2.12(4 \mathrm{H}, \mathrm{m}$,
	$\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 1.27\left(6 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 166.8\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Et}\right), 148.5\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$,
	130.0 (d, $\mathrm{CH}=\mathbf{C H C O}_{2} \mathrm{Et}$), 121.8 (d, $\mathbf{C H}=\mathbf{C H}$), $60.3\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$),
	32.3 ($\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 31.1$ (t, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 14.3$ (q,
	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$) ppm.
FT-IR	(film) $v_{\text {max }}$ 2982(m), 2934(m), 2848(w), 1720(m), 1655(s), 1446(m),
	1367(m), 1313(s), 1268(s), 1200(s), 1179(s), 1096(m), 1043(s),
	974(s), $853(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 281\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) 298\left(\left[\mathrm{M}^{+} \mathrm{NH}_{4}\right]^{+}, 40 \%\right), 578$
	$\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 15 \%\right), 583\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 8 \%\right) \mathrm{Da}$.
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}$ Requires 303.1567; Found 303.1567 Da.

(2E,6E,10E)-Dodeca-2,6,10-trienedioic acid (4.41)

4.41 $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$
224.25

A stirred heterogeneous solution of bis-ester $4.40(24.8 \mathrm{~g}, 88 \mathrm{mmol}), \mathrm{NaOH}(38.2 \mathrm{~g}, 955$ $\mathrm{mmol})$, and $\mathrm{NaHCO}_{3}(7.5 \mathrm{~g}, 88 \mathrm{mmol})$ in $\mathrm{MeOH}(206 \mathrm{~mL})$ and water $(710 \mathrm{~mL})$ was heated at reflux for 3 hr . The solution was allowed to cool to room temperature and was extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 150 \mathrm{~mL})$. The aqueous phase was cooled to $0^{\circ} \mathrm{C}$ and acidified to pH 3 with a $10 \% \mathrm{w} / \mathrm{v}$ aqueous solution of citric acid, then to pH 1 with $2 \mathrm{~N} \mathrm{HCl}_{\text {(aq) }}$. After slow stirring for 10 min the precipitate was collected by filtration and washed with ice-cooled $\mathrm{Et}_{2} \mathrm{O}(\sim 100 \mathrm{~mL})$. Drying in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ afforded the title compound $4.41(16.5 \mathrm{~g}, 74$ $\mathrm{mmol}, 83 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.26$, streaked ($90: 10: 0.01 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{AcOH}$).

m.p.

${ }^{1}$ H NMR
${ }^{13} \mathrm{C}$ NMR

FT-IR

HRMS
Elemental

LRMS (ES) m/z 223.1 ([M-H]', 100\%), 337.1 ([M-H+TFA], 12\%), 447.1 ([2M-H] ${ }^{[}, 22 \%$) Da. $234-237^{\circ} \mathrm{C}$.
(400 MHz, DMSO) $\delta_{\mathrm{H}} 12.15\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 6.84(2 \mathrm{H}, \mathrm{dt}, J=$ $\left.15.6,6.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right), 5.80,(2 \mathrm{H}, \mathrm{dt}, J=15.6,1.5 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right), 5.48\left(2 \mathrm{H}, \mathrm{tt}, J=3.5,1.3 \mathrm{~Hz} \mathrm{CH} \mathbf{C H}=\mathrm{CHCH}_{2}\right), 2.26$ (4 H , app. q, $J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$), 2.18-2.11 ($4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}$) ppm.
(100 MHz, DMSO) $\delta_{\mathrm{C}} 167.5\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}\right), 148.6\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right)$, $130.1\left(\mathrm{~d}, \mathrm{CH}_{2} \mathbf{C H}=\mathbf{C H C H}_{2}\right), 122.6\left(\mathrm{~d}, \mathrm{CH}=\mathbf{C H C O}_{2} \mathrm{H}\right), 31.8\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $30.9\left(\mathrm{t}, \mathrm{CH}_{2}\right) \mathrm{ppm}$.
(solid) $v_{\max } 3415(\mathrm{br}), 2909(\mathrm{w}), 1691(\mathrm{~s}), 1647(\mathrm{w}), 1425(\mathrm{w}), 1321(\mathrm{~m})$, 1250(w), 1214(w), 1039(w), 972(m), 856(w) cm^{-1}.
(ES) $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ Requires 223.0975; Found 223.0970 Da .
Calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$: C, 64.27; H, 7.19\%; Found: C, 64.47 ; H, 7.32\%.
(2E,6E,10E)-bis-(Perfluorophenyl)-dodeca-2,6,10-trienedioate (4.42)

556.35

To a heterogeneous solution of bis-acid $4.41(150 \mathrm{mg}, 0.67 \mathrm{mmol})$ and pentafluorophenol ($241 \mathrm{mg}, 1.31 \mathrm{mmol}$) in dry EtOAc (4.0 mL) at room temperature under an atmosphere of N_{2} was added DCC ($273 \mathrm{mg}, 1.32 \mathrm{mmol}$) as a single batch and the reaction allowed to stir for 20 hr . The solid urea was removed by filtration and the filtrate was concentrated in vacuo. Purification by flash column chromatography (silica gel $12 \times 120 \mathrm{~mm}, 4 \%$

EtOAc/hexane) afforded the title compound 4.42 ($335 \mathrm{mg}, 0.60 \mathrm{mmol}, 90 \%$) as a white crystalline solid. $\mathrm{R}_{\mathrm{f}}=0.93$ ($60 \% \mathrm{EtOAc} /$ hexane).

m.p.	$62-63{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.28(2 \mathrm{H}, \mathrm{dt}, J=15.5,6.8 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right), 6.08\left(2 \mathrm{H}, \mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right), 5.52$ $\left(2 \mathrm{H}, \mathrm{tt}, J=3.8,1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 2.42(4 \mathrm{H}$, app. $\mathrm{q}, J=7.0$
${ }^{13} \mathrm{C}$ NMR	$\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right)$, 2.31-2.24 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}$) ppm. $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 162.2$ (s, $\left.\mathrm{CO}_{2} \mathrm{Ar}\right), 154.5\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}\right)$, 144-136 (m, $5 \times$ F-coupled ArC), $130.2\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right.$), 118.7 (d, $\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Ar}$), 32.7 (t), 30.9 (t) ppm.
${ }^{19} \mathrm{~F}$ NMR	($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}} 9.15-8.89(\mathrm{~m}), 3.33-3.27(\mathrm{~m}),-0.75$ to $-1.0(\mathrm{~m})$ ppm.
FT-IR	(solid) $v_{\max }$ 2907(w), 2848(w), 1756(s), 1648(m), 1518(s), 1334(w), 1175(w), 1131(m), $993(\mathrm{~s}), 968(\mathrm{~m}), 920(\mathrm{w}), 851(\mathrm{w}) \mathrm{cm}^{-1}$.
LRMS	(EI) $m / z 373\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right]^{+}, 100 \%\right), 189(19 \%), 133$ (20\%), 68 (47%), 41 (11\%) Da.
HRMS	(EI) $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right]^{++}$Requires 373.0863 ; Found 373.0865 Da .
Elemental	Calc. for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~F}_{10} \mathrm{O}_{4}$: C, $51.81 ; \mathrm{H}, 2.54 \%$; Found: C, 52.19 ; H, 2.59\%.

(1S)- N-[(2E,6E,10E)-3,10-Dodeca-2,6,10-trienedioate]-bis-camphor-10,2-sultam (4.43)

4.43
$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$
618.85

Via the Pentafluorophenyl Ester

To a solution of (15)-(-)-camphorsultam $3.17(81 \mathrm{mg}, 0.38 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 2.05 M solution of n - BuLi in hexanes $(0.19 \mathrm{~mL}$, 0.38 mmol), dropwise via syringe. The solution was allowed to warm to $-40^{\circ} \mathrm{C}$ and stir for 20 min , then a solution of bis-pentafluorophenyl ester 4.42 ($100 \mathrm{mg}, 0.18 \mathrm{mmol}$) in THF $(1.5 \mathrm{~mL})$ was added dropwise via syringe. The mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ and stir for 45 min , then was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$ and $\mathrm{EtOAc}(30 \mathrm{~mL})$, then the
combined organic phase was washed with $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(2 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel 12×80 $\mathrm{mm}, 2-35 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 4.43 ($57 \mathrm{mg}, 0.09 \mathrm{mmol}, 51 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.54$ (60% EtOAc/hexane).

Via the Acid Chloride

To a heterogeneous solution of bis-acid $4.41(75 \mathrm{mg}, 0.33 \mathrm{mmol})$ and oxalyl chloride (0.06 $\mathrm{mL}, 0.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added dry DMF (2 drops) and the solution allowed to warm to room temperature and stir for 4.5 hr . The solvent was removed in vacuo and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Concurrently, 60% sodium hydride in mineral oil ($29 \mathrm{mg}, 0.74 \mathrm{mmol}$) was added to a solution of (1S)-(-)-camphorsultam 3.17 ($158 \mathrm{mg}, 0.74 \mathrm{mmol}$) in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2}. The mixture was allowed to warm to $-25^{\circ} \mathrm{C}$ and stir for 10 min , and the solution of acid chloride was added via canula. The reaction was warmed to $0{ }^{\circ} \mathrm{C}$, stirred for 30 min and was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and EtOAc (40 mL), and the combined organic phase was washed with water $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel 12×90 $\mathrm{mm}, 5-30 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 4.43 ($161 \mathrm{mg}, 0.26 \mathrm{mmol}, 78 \%$) as a white solid. $\mathrm{Rf}=0.54(60 \% \mathrm{EtOAc} /$ hexane $)$.

m.p. $\quad 172-174{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{Hexane})$.

${ }^{1} \mathbf{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.06(2 \mathrm{H}, \mathrm{dt}, J=15.1,7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCON})$, $6.55(2 \mathrm{H}, \mathrm{dt}, J=15.1,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCON}), 5.45(2 \mathrm{H}, \mathrm{tt}, J=3.5$, $\left.1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 3.93(2 \mathrm{H}, \mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, \mathrm{CHN}), 3.51$ \& $3.44\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.31(4 \mathrm{H}$, app. qd, $J=$ $\left.7.0,1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCON}\right), 2.23-2.04\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}+\right.$ $\left.\mathrm{CH}_{2} \mathrm{CHN}\right), 1.97-1.82\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CHN}\right)+\mathrm{CHHCCH}_{2} \mathrm{SO}_{2}+$ $\left.\mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}\right), \quad 1.47-1.30 \quad\left(4 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CHHCCH}_{2} \mathrm{SO}_{2}+\right.$ $\mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$), $1.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 164.3(\mathrm{~s}, \mathrm{CON}), 150.2$ (d, $\left.\mathrm{CH}=\mathrm{CHCON}\right)$, $130.0\left(\mathrm{~d}, \mathrm{CH}_{2} \mathbf{C H}=\mathrm{CHCH}_{2}\right), 121.3(\mathrm{~d}, \mathrm{CH}=\mathbf{C H C O N}), 65.3(\mathrm{~d}, \mathrm{CHN})$, $53.3\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.6 \& 48.0\left(2 \mathrm{x} \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 44.9(\mathrm{~d}$,
$\mathbf{C H C H}_{2} \mathrm{CHN}$), 38.7 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CHN}$), 33.0 ($\mathrm{t}, \mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$), 32.5 (t, $\mathbf{C H}_{2} \mathrm{CH}=\mathrm{CHCON}$), $31.0 \quad\left(\mathrm{t}, \quad \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right.$), $26.7 \quad(\mathrm{t}$, $\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$), $21.0\left(\mathrm{q}, \mathrm{CH}_{3}\right.$), 20.1 ($\mathrm{q}, \mathrm{CH}_{3}$) ppm.

FT-IR (solid) $v_{\max }$ 2959(m), 2880(w), 1681(s), 1638(s), 1455(w), 1414(w), 1373(m), 1330(s), 1282(m), 1236(s), 1217(s), 1165(m), 1134(s), 1048(m), 995(m), $971(\mathrm{~m}), 913(\mathrm{w}), 731(\mathrm{~s}) \mathrm{cm}^{-1}$.
LRMS $\quad\left(\mathrm{ES}^{+}\right) m / z 641\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 619\left([\mathrm{M}+\mathrm{H}]^{+}, 13 \%\right), 1259$ ($[2 \mathrm{M}+\mathrm{Na}]^{+}, 17 \%$) Da.

HRMS $\quad\left(\mathrm{ES}^{+}\right) \mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Na}$ Requires 641.2689; Found 641.2698 Da .
Elemental Calc. for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}: \mathrm{C}, 62.11 ; \mathrm{H}, 7.49 ; \mathrm{N}, 4.52 \%$; Found: C, 62.28; H, 7.55; N, 4.63\%.
$[\alpha]^{24}{ }^{24} \quad-84.2\left(\right.$ c. $\left.0.51, \mathrm{CHCl}_{3}\right)$.
(1R)-N-[(2E,6E,10E)-3,10-Dodeca-2,6,10-trienedioate]-bis-camphor-10,2-sultam (4.44)

To a heterogeneous solution of bis-acid $4.41(0.50 \mathrm{~g}, 2.30 \mathrm{mmol})$ and oxalyl chloride (0.49 $\mathrm{mL}, 5.57 \mathrm{nmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added dry DMF (2 drops) and the solution allowed to warm to room temperature and stir for 4 hr . The solvent was removed in vacuo and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$. Concurrently, 60% sodium hydride in mineral oil $(0.22 \mathrm{~g}, 5.56 \mathrm{mmol})$ was added to a solution of ($1 R$)-(+)-camphorsultam $3.18(1.14 \mathrm{~g}, 5.29 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under an atmosphere of N_{2}. The mixture was stirred for 40 min , and the solution of acid chloride was added via canula. The reaction was stirred for 40 min and quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo and purified by flash column chromatography (silica gel $15 \times 90 \mathrm{~mm}, 5-30 \% \mathrm{EtOAc} /$ hexane) affording the title compound $4.44(1.15 \mathrm{~g}, 1.86 \mathrm{mmol}, 81 \%)$ as a white solid. $\mathrm{R}_{\mathrm{f}}=0.54(60 \%$ EtOAc/hexane).
m.p.
$173-175^{\circ} \mathrm{C}$ (EtOAc/hexane).

${ }^{1} \mathrm{H}$ NMR	($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.06(2 \mathrm{H}, \mathrm{dt}, J=15.1,7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCON})$,
	6.56 (2H, dt, $J=15.1,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCON}), 5.45(2 \mathrm{H}, \mathrm{tt}, J=3.5$,
	$1.5 \mathrm{~Hz} \mathrm{CH} 2 \mathrm{CH}=\mathrm{CHCH}_{2}$), 3.93 ($2 \mathrm{H}, \mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, \mathrm{CHN}$), 3.51
	\& $3.44\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.31(4 \mathrm{H}, \mathrm{app} . \mathrm{qd}, J=$
	$\left.7.0,1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCON}\right), 2.23-2.04\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}+\right.$
	$\left.\mathrm{CH}_{2} \mathrm{CHN}\right), 1.97-1.81\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CHN}+\mathrm{CHHCCH}_{2} \mathrm{SO}_{2}+\right.$
	$\left.\mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}\right), \quad 1.47-1.30 \quad\left(4 \mathrm{H}, \mathrm{m}, \quad \mathrm{CHHCCH} 2 \mathrm{SO}_{2}+\right.$
	$\mathrm{CHHCH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$), $1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 164.3$ (s, CON), 150.2 (d, $\mathrm{CH}=\mathrm{CHCON}$),
	130.0 (d, $\mathrm{CHCH}=\mathbf{C H C H}_{2}$), 121.3 (d, $\mathrm{CH}=\mathbf{C H C O N}$), 65.3 (d, $\mathbf{C H N}$),
	53.3 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{SO}_{2}$), 48.6 \& $48.0\left(2 \mathrm{x} \mathrm{s}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 44.9$
	(d, $\mathrm{CHCH}_{2} \mathrm{CHN}$), 38.7 (t, $\mathrm{CH}_{2} \mathrm{CHN}$), 33.0 (t, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$),
	32.5 (t, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCON}$), 31.0 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}$), 26.7 (t,
	$\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}$), $21.0\left(\mathrm{q}, \mathrm{CH}_{3}\right.$), 20.1 (q, CH_{3}) ppm.
FT-IR	(solid) $v_{\text {max }}$ 2960(s), 1682(s), 1639(m), 1456(w), 1414(w), 1374(m),
	1331(s), 1217(s), 1166(s), 1134(s), 1063(m), 972(m), 813(m), 732(s)
	cm^{-1}.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 641\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 619\left([\mathrm{M}+\mathrm{H}]^{+}, 6 \%\right), 1259$
	$\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 5 \%\right) \mathrm{Da}$.
HRMS	(ES ${ }^{+} \mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Na}$ Requires 641.2689; Found 641.2696 Da.
Elemental	Calc. for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, $62.11 ; \mathrm{H}, 7.49$; N, 4.52\%; Found: C,
	62.23; H, 7.52; N, 4.54\%.
$[\alpha]^{24}{ }^{\text {d }}$	+82.3 (c. 0.47, CHCl_{3}).

(1R)- $N-[(S)$-Methyl-2-hydroxy-2-((2R,5S)-5-((S)-5-ox0-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)ethanoyl]-camphor-10,2-sultam (4.45)

$$
\begin{gathered}
4.45 \\
\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S} \\
427.51
\end{gathered}
$$

To a solution of bis-sultam trienedioate $4.44(1.00 \mathrm{~g}, 1.62 \mathrm{mmol})$ and adogen-464 (0.04 g , $0.08 \mathrm{mmol})$ in acetone $(23 \mathrm{~mL})$ and $\mathrm{AcOH}(15 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added powdered $\mathrm{KMnO}_{4}(0.66 \mathrm{~g}, 4.20 \mathrm{mmol})$ in three batches at intervals of 30
seconds. The reaction was stirred for 1 hr and was quenched by pouring into an ice-cooled saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(50 \mathrm{~mL})$. The solution was extracted with EtOAc (3 x 70 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$, and SiO_{2}-supported $\mathrm{NaIO}_{4}(3.23 \mathrm{~g})$ was added as a single batch. The suspension was stirred at room temperature for 40 min , the solid removed by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and CHCl_{3} ($3 \times 15 \mathrm{~mL}$), and the filtrate concentrated in vacuo. Purification by flash column chromatography (silica gel $20 \times 30 \mathrm{~mm}, 10-30 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound $4.45(0.52 \mathrm{~g}, 1.23 \mathrm{mmol}, 76 \%)$ as a white foamy solid. $\mathrm{R}_{\mathrm{f}}=0.26(70 \%$ EtOAc/toluene).

m.p.	69-71 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.55-4.45(3 \mathrm{H}, \mathrm{m}, \mathrm{CHOC}=\mathrm{O}+\mathrm{CHOHCON}+$
	CHCHOHCON), $3.99(1 \mathrm{H}, \mathrm{dt}, J=7.0,3.3 \mathrm{~Hz}, \mathrm{CHCHOC}=0)$, 3.92
	$(1 \mathrm{H}, \mathrm{dd}, J=7.8,5.0 \mathrm{~Hz}, \mathrm{CHN}), 3.50$ \& $3.42(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=13.8$
	$\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 3.25(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{CHOH}), 2.70(1 \mathrm{H}, \mathrm{ddd}, J=$
	$17.6,10.0,7.0 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.43(1 \mathrm{H}, \mathrm{ddd}, J=17.6,10.0,6.2 \mathrm{~Hz}$,
	CHHC=O), 2.37-1.79 (10H, m), 1.49-1.19 ($3 \mathrm{H}, \mathrm{m}$), $1.12(3 \mathrm{H}, \mathrm{s}$,
	$\left.\mathrm{CH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 178.0$ (s), 170.8 (s), 81.8 (d), 80.5 (d), 78.9 (d),
	72.7 (d), 65.7 (d), 53.0 (t), 49.3 (s), 48.1 (s), 44.7 (d), 38.3 (t), 33.0
	(t), 28.3 (t), 28.0 (t), 27.4 (t), 26.6 (t), 24.8 (t), 20.9 (q), 20.1 (q) ppm.
FT-IR	(film) $v_{\text {max }}$ 3492(br), 2958(w), 2879(w), 1774(s), 1692(s), 1460(w),
	1413(w), 1330(s), 1270(m), 1218(m), 1167(m), 1136(s), 1109(m),
	1063(m), 988(w), 760 (w), $734(\mathrm{w}) \mathrm{cm}^{-1}$.
LRMS	(ES^{+}) $m / z 450\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right) \mathrm{Da}$.
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{SNa}$ Requires 450.1557; Found 450.1571 Da.
Elemental	Calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}: \mathrm{C}, 56.19 ; \mathrm{H}, 6.84$; N, 3.27\%; Found: C, 56.01;
	H, 6.91; N, 3.17\%.
$[\alpha]^{24}{ }^{\text {d }}$	+63.3 (c. $0.35, \mathrm{CHCl}_{3}$).

($2 R, 2^{\prime} R, 5{ }^{\prime} S$)- $5^{\prime}-[(1 S)$-1,2-Dihydroxyethyl]-hexahydro-2-2'-bifuran-5-(2H)-one (5.1)

5.1
$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5}$
216.23

To a solution of THF-lactone $4.28(70 \mathrm{mg}, 0.16 \mathrm{mmol})$ in THF (1.6 mL) at $-10^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 2 M solution of $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in THF ($123 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) followed after 10 min by $\mathrm{NaBH}_{4}(6 \mathrm{mg}, 0.15 \mathrm{mmol})$. The reaction was stirred for 1.5 hr and $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added via syringe. The reaction was stirred for a further 10 min, quenched with $2 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{ml})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed in vacuo and the residue purified by flash column chromatography (silica gel $20 \times 25 \mathrm{~mm}, 0-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) affording the title compound $5.1(23 \mathrm{mg}, 0.11 \mathrm{mmol}, 65 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.25\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.51(1 \mathrm{H}, \mathrm{ddd}, J=7.5,5.5,3.5 \mathrm{~Hz}$, CHOC=O), 4.06-3.99 $(2 \mathrm{H}, \mathrm{m}), 3.73-3.54(3 \mathrm{H}, \mathrm{m}), 2.68(1 \mathrm{H}, \mathrm{ddd}, J=$ $17.6,10.0,6.5 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.50(1 \mathrm{H}, \mathrm{ddd}, J=17.6,10.0,6.5 \mathrm{~Hz}$, $\mathrm{CHHC}=\mathrm{O}), 2.34-2.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2} \mathrm{C}=\mathrm{O}+\mathrm{CHOH}\right), 2.17(1 \mathrm{H}$, ddd, $J=13.1,10.1,6.0, \mathrm{CHHCH}_{2} \mathrm{C}=\mathrm{O}$), 2.11-1.80 ($4 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 177.8$ (s), 81.3 (d), 81.2 (d), 81.1 (d), 74.0 (d), 65.6 (t), 28.5 (t), 28.0 (t), 27.7 (t), 24.7 (t) ppm.

FT-IR
(film) $v_{\max }$ 3398(br), 2946(w), 2881(w), 1767(s), 1459(w), 1418(w), 1342(w), 1294(w), 1227(m), 1188(m), 1067(m), 1016(m), 944(w), 896(w), 869(w), 812(w) cm ${ }^{-1}$.
LRMS (ES^{+}) $m / z 239$ ([M+Na $\left.]^{+}, 100 \%\right) \mathrm{Da}$.

HRMS
$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}$ Requires 239.0890 ; Found 239.0890 Da .
$[\alpha]^{24}{ }_{\mathrm{D}}$
-27.3 (c. $0.89, \mathrm{CDCl}_{3}$).
(2S)-2-Hydroxy-[(2S,2R)-5-(1-hydroxy-1-methylethyl)-tetrahydrofuran-2-yl]-thioacetic acid S-benzyl ester (5.3)

$\mathbf{5 . 3}$
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$
310.41

The title compound was prepared according to the method of Oppolzer et al. ${ }^{191}$ To a solution of benzyl mercaptan ($58 \mu \mathrm{~L}, 0.560 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(3.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 2.36 M solution of $n-\mathrm{BuLi}$ in hexanes ($0.24 \mathrm{~mL}, 0.560 \mathrm{mmol}$), dropwise via syringe. The yellow solution was stirred for 5 min and treated by the dropwise addition of a 2 M solution of AlMe_{3} in hexanes $(0.28 \mathrm{~mL}, 0.560 \mathrm{mmol})$. The now colourless solution was stirred for 30 min and treated by the dropwise addition of a solution of diol 4.13 ($150 \mathrm{mg}, 0.374 \mathrm{mmol}$) in dry toluene (4.8 mL), and the reaction was stirred for 1 hr . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and quenched by the addition of $2 \mathrm{~N} \mathrm{HCl}_{\text {(aq) }}(1$ $\mathrm{mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 10 \mathrm{~mL})$, and the combined organic phase was washed with $1 \mathrm{M} \mathrm{NaOH}(a q)(5 \mathrm{~mL})$ and a saturated aqueous solution of NaHCO_{3} $(10 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel, $12 \times 55 \mathrm{~mm}, 20-100 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 5.3 ($136 \mathrm{mg}, 0.437 \mathrm{mmol}, 78 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.38(60 \%$ EtOAc/hexane).

m.p.	$96-98{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.33-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.58(1 \mathrm{H}, \mathrm{ddd}, J=$
	$6.9,5.0,2.0 \mathrm{~Hz}, \mathrm{CHCHOH}), 4.19(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{SCHHAr})$,
	$4.13(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{SCHHAr}), 4.12(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{CHOH})$,
	$3.78\left(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.20-2.00(3 \mathrm{H}, \mathrm{m}), 1.87$
	$\left(1 \mathrm{H}, \mathrm{ddd}, J=12.1,8.0,7.5 \mathrm{~Hz}, \mathrm{CHHCHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.27(3 \mathrm{H}, \mathrm{s}$,
	$\left.\mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 203.5(\mathrm{~s}), 137.7(\mathrm{~s}), 129.0(\mathrm{~d}), 128.7(\mathrm{~d}), 127.4$
	$(\mathrm{~d}), 86.5(\mathrm{~d}), 81.0(\mathrm{~d}), 80.5(\mathrm{~d}), 72.9(\mathrm{~s}), 32.9(\mathrm{t}), 28.7(\mathrm{t}), 28.1(\mathrm{q})$,
${ }^{13}$ C NMR	$26.2(\mathrm{t}), 26.1(\mathrm{q}) \mathrm{ppm}$.

Elemental
$[\alpha]^{24}{ }^{\mathrm{D}}$

Calc. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 61.91 ; \mathrm{H}, 7.14 \%$; Found: C, $61.81 ; \mathrm{H}, 7.15 \%$. +93.9 (c. $0.26, \mathrm{CHCl}_{3}$).
(1S)- N-\{(2R)-2-Triethylsilyloxy-2-[(2R,5S)-5-(1-triethylsilyloxy-1-methylethyl)-tetrahydro-2-furanyl]-ethanoyl\}-camphor-10,2-sultam (5.5)

5.5 $\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{SSi}_{2}$ 630.05

To a solution of diol $4.13(192 \mathrm{mg}, 0.48 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added 2,6-lutidine ($0.12 \mathrm{~mL}, 1.00 \mathrm{mmol}$) followed by triethylsilyltrifluoromethanesulfonate ($0.22 \mathrm{~mL}, 0.98 \mathrm{mmol}$), and the solution stirred for 40 min . The reaction mixture was then washed twice with a $10 \% \mathrm{v} / \mathrm{w}$ aqueous solution of citric acid ($2 \times 5 \mathrm{~mL}$), and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $30 \times 50 \mathrm{~mm}, 15 \%$ EtOAc/hexane) afforded the title compound 5.5 ($261 \mathrm{mg}, 0.41 \mathrm{mmol}, 87 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.84$ ($60 \% \mathrm{EtOAc} /$ hexane) .
m.p.
${ }^{1} \mathbf{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.64\left(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHOSiEt}_{3}\right), 4.11(1 \mathrm{H}$, ddd, $\left.J=9.3,6.8,6.3 \mathrm{~Hz}, \mathrm{CHCHOSiEt}_{3}\right), 3.89(1 \mathrm{H}, \mathrm{dd}, J=7.8,5.3$ $\mathrm{Hz}, \mathrm{CHN}), 3.68\left(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.51 \& 3.43(2 \mathrm{x}$ $1 \mathrm{H}, 2 \mathrm{xd}, J=13.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}$), 2.20-2.03 ($2 \mathrm{H}, \mathrm{m}$), 1.98-1.70 (5 H , $\mathrm{m}), 1.66-1.53(2 \mathrm{H}, \mathrm{m}), 1.46-1.30(2 \mathrm{H}, \mathrm{m}), 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.18$ ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}$), 1.00-0.85 ($21 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}+2 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}$), 0.70 $\left(6 \mathrm{H}, \mathrm{q}, J=8.28 \mathrm{~Hz}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 0.58(6 \mathrm{H}, \mathrm{q}, J=8.03 \mathrm{~Hz}$, $\mathrm{SiCH}_{2} \mathrm{CH}_{3}$) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 170.5$ (s), 87.3 (d), 81.7 (d), 77.8 (d), 74.8 (s), 65.8 (d), 53.7 (t), 48.9 (s$), 48.2$ (s$), 45.1$ (d), 38.8 (t$), 33.5$ (t), 29.0 (q), 27.7 (t), 26.9 (t), 26.6 (t), 24.7 (q), 21.2 (q), 20.4 (q), 7.6 (q), 7.3 (q), 5.3 (t) ppm.

FT-IR (film) $v_{\text {max }}$ 2955(s), 2911(m), 2876(m), 1691(s), 1458(w), 1394(w), 1329(s), 1237(m), 1172(m), 1135(m), 1106(m), 1082(s), 1062(m), 1012(w), 985(w), 743(s), 728(s) cm^{-1}.

LRMS	$\left(\mathrm{ES}^{+}\right) m / z 652\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right) \mathrm{Da}$.
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{31} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{SSi}_{2} \mathrm{Na}^{2}$ Requires 652.3493 ; Found 652.3486 Da.
Elemental	Calc. for $\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{NO}_{7} \mathrm{SSi}_{2}: \mathrm{C}, 59.10 ; \mathrm{H}, 9.44 ; \mathrm{N}, 2.22 \%$; Found: C,
	$58.82 ; \mathrm{H}, 9.514 ; \mathrm{N}, 1.99 \%$.
$[\alpha]^{\mathbf{2 4}} \mathrm{D}$	$-27.8\left(\right.$ c. $\left.0.27, \mathrm{CDCl}_{3}\right)$.

(R)-S-Benzyl-2-(triethylsilyloxy)-2-((2S,2R)-5-(2-triethylsilyloxy))propan-2-yl)-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)ethanethioate 5.6

$\mathbf{5 . 6}$
$\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{SSi}_{2}$
538.93

To a solution of benzyl mercaptan ($19 \mu \mathrm{~L}, 0.164 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 2.15 M solution of $n-\mathrm{BuLi}$ in hexanes $(76 \mu \mathrm{~L}, 0.164$ mmol), dropwise via syringe. The yellow solution was stirred for 5 min and treated by the dropwise addition of a 2 M solution of AlMe_{3} in hexanes ($82 \mu \mathrm{~L}, 0.164 \mathrm{mmol}$). The now colourless solution was stirred for 30 min and treated by the dropwise addition of a solution of bis-silyl ether 5.5 ($69 \mathrm{mg}, 0.109 \mathrm{mmol}$) in dry toluene (2.0 mL), then stirred for 2 hr . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and quenched by the addition of an aqueous solution of $\mathrm{NaHSO}_{4}(1 \mathrm{~g}$ in $200 \mathrm{~mL}, 10 \mathrm{~mL}$ used). The mixture was extracted with EtOAc (3×30 mL) and the combined organic phase was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $10 \times 60 \mathrm{~mm}, 5-40 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 5.6 ($18 \mathrm{mg}, 0.033 \mathrm{mmol}, 31 \%$) as a colourless oil.
${ }^{1} \mathbf{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.33-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.17(1 \mathrm{H}, \mathrm{d}, J=5.0$ $\left.\mathrm{Hz}, \mathrm{CH}\left(\mathrm{OSiEt}_{3}\right)\right), 4.09 \& 4.04\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right.$), $3.95\left(1 \mathrm{H}\right.$, ddd, $\left.J=7.2,7.1,5.0 \mathrm{~Hz}, \mathrm{CHCH}\left(\mathrm{OSiEt}_{3}\right)\right), 3.67(1 \mathrm{H}, \mathrm{app} . \mathrm{t}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CHC}\left(\mathrm{OSiEt}_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right), 1.92-1.67\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $1.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.10-0.88\left(18 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{CH}_{2}\right)$, 0.71-0.50 ($12 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}$) ppm.

FT-IR
(film) $v_{\max }$ 2970(w), 2957(s), 2871(m), 1685(s), 1499(w), 1451(w), 1382(w), 1346(w), 1294(w), 1167(m), 1127(m), 1073(s), 947(m), 740 (s), $703(\mathrm{~m}) \mathrm{cm}^{-1}$.

LRMS $\quad\left(\mathrm{ES}^{+}\right) m / z 539\left([\mathrm{M}+\mathrm{H}]^{+}, 5 \%\right), 561\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right) \mathrm{Da}$.
Elemental Calc. for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{SSi}_{2}: \mathrm{C}, 62.40 ; \mathrm{H}, 9.35 \%$; Found: C, $62.80 ; \mathrm{H}$, 9.01\%.
$[\alpha]^{24}{ }^{24} \quad+84.3\left(\right.$ c. $\left.0.15, \mathrm{CHCl}_{3}\right)$.
(R)-S-Benzyl-2-hydroxy-2-((2S,5R)-5-((R)-5-oxo-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)ethanethioate (5.8)

$$
\begin{gathered}
\mathbf{5 . 8} \\
\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S} \\
336.40
\end{gathered}
$$

The title compound was prepared according to the method of Oppolzer et al. ${ }^{191}$ To a solution of benzyl mercaptan ($78 \mu \mathrm{~L}, 0.660 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 1.40 M solution of $n-\mathrm{BuLi}$ in hexanes ($0.47 \mathrm{~mL}, 0.660 \mathrm{mmol}$), dropwise via syringe. The yellow solution was stirred for 5 min and treated by the dropwise addition of a 2 M solution of AlMe_{3} in hexanes ($0.33 \mathrm{~mL}, 0.660 \mathrm{mmol}$). The now colourless solution was stirred for 30 min and treated by the dropwise addition of a solution of lactone $4.28(94 \mathrm{mg}, 0.220 \mathrm{mmol})$ in dry toluene $(3.0 \mathrm{~mL})$, then stirred for a further 1.25 hr . The reaction was quenched by the addition of $0.5 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(2 \mathrm{~mL})$, was stirred at room temperature for 1 hr , and the organic phase was shaken vigorously with $1 \mathrm{NHCl}_{(\mathrm{aq})}(2 \times 10$ $\mathrm{mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \times 20 \mathrm{~mL})$, and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel, 10-60\% EtOAc/hexane) afforded the title compound 5.8 ($53 \mathrm{mg}, 0.158 \mathrm{mmol}, 72 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.38(60 \% \mathrm{EtOAc} / \mathrm{hexane})$.

m.p.

${ }^{1} \mathrm{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.30-7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.48(1 \mathrm{H}, \mathrm{ddd}, J=$ $8.0,5.5,2.5 \mathrm{~Hz}, \mathrm{CHOH}), 4.39(1 \mathrm{H}$, app. td, $J=6.0,2.5 \mathrm{~Hz}$, CHOC=O), $4.16(1 \mathrm{H}, \mathrm{d}, J=15.1 \mathrm{~Hz}, \mathrm{SCHHAr}), 4.12(1 \mathrm{H}, \mathrm{dd}, J=$ $9.5,2.5 \mathrm{~Hz}, \mathrm{CHCHOH}), 4.08(1 \mathrm{H}, \mathrm{d}, J=15.1 \mathrm{~Hz}, \mathrm{SCHHAr}), 3.95$ $(1 \mathrm{H}, \mathrm{td}, J=7.0,2.5 \mathrm{~Hz}, \mathrm{CHCHOC}=0), 3.02(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $\mathrm{CHOH}), 2.42(1 \mathrm{H}, \mathrm{ddd}, J=17.6,10.5,7.0 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.34(1 \mathrm{H}$, ddd, $J=17.6,9.5,6.0 \mathrm{~Hz}, \mathrm{CHHC}=0), 2.27-1.90(6 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.

${ }^{13} \mathrm{C}$ NMR	($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 202.1$ (s), 177.7 (s), 137.7 (s), 129.0 (d), 128.7
	(d), 127.4 (d), 81.5 (d), 80.7 (d), 80.1 (d), 79.4 (d), 32.8 (t), 28.2 (t), 27.7 (t), 27.5 (t), 24.8 (t$) \mathrm{ppm}$.
FT-IR	$\begin{aligned} & \left(\text { film) } v_{\max } 3480(\mathrm{br}), 2950(\mathrm{w}), 2879(\mathrm{w}), 1771(\mathrm{~s}), 1681(\mathrm{~s}), 1495(\mathrm{w}),\right. \\ & 1454(\mathrm{w}), 1183(\mathrm{~m}), 1128(\mathrm{~m}), 1072(\mathrm{~m}), 983(\mathrm{w}), 925(\mathrm{w}), 813(\mathrm{w}), \\ & 731(\mathrm{~m}), 704(\mathrm{~m}) \mathrm{cm}^{-1} . \end{aligned}$
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 354\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 359\left([\mathrm{M}+\mathrm{Na}]^{+}, \quad 7 \%\right), 690$ $\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 68 \%\right), 695\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 20 \%\right) \mathrm{Da}$.
HRMS	(ES^{+}) $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{SNa}$ Requires 359.0923; Found 359.0920 Da .
$[\alpha]^{25}{ }_{\text {D }}$	+51.2 (c. $0.58, \mathrm{CDCl}_{3}$).

(1S)-N-\{(R)-2-Triethylsilyloxy-2-((2S,5R)-5-((R)-5-ox0-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)ethanoyl\}-camphor-10,2-sultam (5.9)

$$
\begin{gathered}
5.9 \\
\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{NO}_{7} \mathrm{SSi} \\
541.77
\end{gathered}
$$

To a solution of lactone $4.28(303 \mathrm{mg}, 0.71 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added 2,6-lutidine ($0.09 \mathrm{~mL}, 0.74 \mathrm{mmol}$) followed by triethylsilyltrifluoromethanesulfonate ($0.16 \mathrm{~mL}, 0.73 \mathrm{mmol}$), and the solution stirred for 20 min . The reaction was quenched by the addition of a $10 \% \mathrm{v} / \mathrm{w}$ aqueous solution of citric acid (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phase was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$ and a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $30 \times 50 \mathrm{~mm}, 10-40 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 5.9 ($301 \mathrm{mg}, 0.56 \mathrm{mmol}, 78 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.55$ ($70 \% \mathrm{EtOAc} /$ hexane).
m.p.
${ }^{1} \mathbf{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.72\left(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{CHOSiEt}_{3}\right), 4.50(1 \mathrm{H}$, td, $J=7.0,3.8 \mathrm{~Hz}, \mathrm{CHOC}=\mathrm{O}), 4.27\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHOSiEt}_{3}\right), 4.00(1 \mathrm{H}$, dd, $J=7.5,5.5 \mathrm{~Hz}, \mathrm{CHN}), 3.94(1 \mathrm{H}, \mathrm{td}, J=7.6,3.8 \mathrm{~Hz}$, $\mathrm{CHCHOC}=\mathrm{O}), 3.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.70(1 \mathrm{H}, \mathrm{ddd}, J=17.3,9.5$, $6.5 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.41(1 \mathrm{H}, \mathrm{ddd}, J=17.3,9.5,8.9 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O})$, 2.30-2.01 ($5 \mathrm{H}, \mathrm{m}$), 1.95-1.76 ($6 \mathrm{H}, \mathrm{m}$), 1.55-1.28 ($2 \mathrm{H}, \mathrm{m}$), $1.14(3 \mathrm{H}, \mathrm{s}$,

	$\left.\mathrm{CH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 0.63$
	$\left(6 \mathrm{H}, \mathrm{q}, J=7.8 \mathrm{~Hz}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.
	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 177.8(\mathrm{~s}), 169.9(\mathrm{~s}), 81.2(\mathrm{~d}), 80.8(\mathrm{~d}), 80.5(\mathrm{~d})$,
${ }^{13} \mathbf{C}$ NMR	$72.7(\mathrm{~d}), 65.6(\mathrm{~d}), 53.2(\mathrm{t}), 48.6(\mathrm{~s}), 47.8(\mathrm{~s}), 44.9(\mathrm{~d}), 38.5(\mathrm{t}), 32.8$
	$(\mathrm{t}), 28.5(\mathrm{t}), 27.0(\mathrm{t}), 26.8(\mathrm{t}), 26.4(\mathrm{t}), 24.3(\mathrm{t}), 21.0(\mathrm{q}), 20.0(\mathrm{q}), 6.8$
	$(\mathrm{q}), 4.8(\mathrm{t}) \mathrm{ppm}$.

Rac-(1S)-1-[(2S,5R)-5-(1-Hydroxy-1-methylethyl)-2-methyltetrahydrofuran-2-yl]-

 ethane-1,2-diol (6.2)

$$
\begin{gathered}
\mathbf{6 . 2} \\
\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4} \\
204.26
\end{gathered}
$$

To a solution of acetate $6.1(550 \mathrm{mg}, 2.23 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($15 \mathrm{mg}, 0.11 \mathrm{mmol}$) and the heterogeneous solution stirred for 2 hr . The $\mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtration and the filtrate concentrated in vacuo. Purification by flash column chromatography (silica gel $30 \times 40 \mathrm{~mm}, 0-10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the title compound 6.2 ($449 \mathrm{mg}, 2.20 \mathrm{mmol}, 99 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.33\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p. $\quad 97-99^{\circ} \mathrm{C}(\mathrm{MeOH})$.
${ }^{1} \mathbf{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.86\left(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.79$ $(1 \mathrm{H}, \mathrm{dd}, J=11.3,6.5 \mathrm{~Hz}, \mathrm{CHHOH}), 3.71(1 \mathrm{H}, \mathrm{dd}, J=11.3,3.0 \mathrm{~Hz}$, $\mathrm{CHHOH}), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J=6.5,3.0 \mathrm{~Hz}, \mathrm{CHOHCH}_{2} \mathrm{OH}\right), 3.26(3 \mathrm{H}$, br s, $3 \times \mathrm{CHOH}$), $2.23\left(1 \mathrm{H}\right.$, ddd, $J=12.3,9.0,5.3 \mathrm{~Hz}, \mathrm{CHHCCH}_{3}$), $2.01\left(1 \mathrm{H}\right.$, dddd, $\left.J=12.3,9.0,7.8,7.3 \mathrm{~Hz}, \mathrm{CHHCH}_{2} \mathrm{CCH}_{3}\right), 1.90$ (1 H , dddd, $J=12.3,8.5,7.3,5.3 \mathrm{~Hz}, \mathrm{CHHCH}_{2} \mathrm{CCH}_{3}$), $1.66(1 \mathrm{H}$, ddd,

	$\left.J=12.3,8.5,7.8 \mathrm{~Hz}, \mathrm{CHHCCH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.20(3 \mathrm{H}, \mathrm{s}$ CH_{3}), $1.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 86.0$ (d, $\left.\mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $85.4\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CCH}_{3}\right.$),
	76.8 (d, CHOHCH 2 OH$), 72.1\left(\mathrm{~s}, \mathrm{COH}\left(\mathrm{CH}_{3}\right)_{2}\right), 63.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{OH}\right), 35.9$
	(t, $\mathrm{CH}_{2} \mathrm{CCH}_{3}$), 27.0 (q, CH_{3}), 26.6 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{3}$), 25.7 ($\mathrm{q}, \mathrm{CH}_{3}$),
	23.8 (q, CH_{3}) ppm.
FT-IR	(film) $\nu_{\text {max }} 3376$ (br), 2972(s), 2879(m), 1457(w), 1379(m), 1182(m),
	1082(s), 1058(s), $1025(\mathrm{~s}), 951(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 227\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 431\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 11 \%\right) \mathrm{Da}$.
HRMS	(ES ${ }^{+}$) $m / z \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$ Requires 227.1254; Found 227.1254 Da.
Elemental	Calc. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4}$: C, 58.80; H, 9.87\%; Found: C, $58.90 ; \mathrm{H}, 9.89 \%$.

Rac-(2S)-2-Hydroxy-2-[(2S,5R)-5-(1-hydroxy-1-methylethyl)-2-

 methyltetrahydrofuran-2-yl]-ethyl-4-methylbenzenesufonate (6.3)
6.3
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S}$ 358.45

The title compound was prepared according to the method of Hu et al. ${ }^{230}$ Thus, to a solution of diol 6.2 ($336 \mathrm{mg}, 1.65 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(15 \mathrm{~mL})$ were added $\mathrm{Bu}_{2} \mathrm{SnO}(492 \mathrm{mg}, 1.97 \mathrm{mmol})$ and oven-dried molecular sieves (100 mg) and the heterogeneous solution stirred at reflux under an atmosphere of N_{2} for 2.5 hr . The reaction was allowed to cool to room temperature and $\mathrm{TsCl}(330 \mathrm{mg}, 1.73 \mathrm{mmol})$ and $\mathrm{TBAB}(530 \mathrm{mg}, 1.65 \mathrm{mmol})$ were added. The mixture was stirred for 1 hr , the sieves were removed by filtration and the filtrate concentrated in vacuo. Purification by flash column chromatography (silica gel 20×50 $\mathrm{mm}, 5-25 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound $6.3(564 \mathrm{mg}, 1.57 \mathrm{mmol}, 96 \%)$ as a white solid. $\mathrm{R}_{\mathrm{f}}=0.78\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
m.p.
${ }^{1}$ H NMR
$81-83^{\circ} \mathrm{C}(\mathrm{MeOH} /$ hexane $)$.
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.82(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 7.36(2 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=10.3,3.4 \mathrm{~Hz}, \mathrm{CHHOTs}), 4.06$ $(1 \mathrm{H}, \mathrm{dd}, J=10.3,8.0 \mathrm{~Hz}$, CHHOTs), $3.82(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.75-3.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOHCH} \mathrm{C}_{2} \mathrm{OTs}\right), 3.24(1 \mathrm{H}, \mathrm{d}, J$ $=5.0 \mathrm{~Hz}, \mathrm{CHOH}), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.40\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.20\left(1 \mathrm{H}, \mathrm{ddd}, J=12.3,9.0,5.5 \mathrm{~Hz}, \mathrm{CHHCCH}_{3}\right), 2.03-1.85(2 \mathrm{H}, \mathrm{m}$,
$\mathrm{CHHCCH}_{3}+\mathrm{CHHCH}_{2} \mathrm{CCH}_{3}$), $1.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2} \mathrm{CCH}_{3}\right), 1.20$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 145.1\left(\mathrm{~s}, \mathrm{ArCCH}_{3}\right), 133.0\left(\mathrm{~s}, \mathrm{ArCSO}_{2}\right), 130.1$ ($2 \mathrm{x} \mathrm{d}, \mathrm{ArCH}$), $128.2(2 \mathrm{x} \mathrm{d}, \mathrm{ArCH}), 85.9\left(\mathrm{~d}, \mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 84.1$ (s, $\left.\mathrm{CH}_{2} \mathrm{CCH}_{3}\right), 74.9\left(\mathrm{~d}, \mathrm{CHOHCH} \mathrm{COTs}_{2}\right), 72.1\left(\mathrm{~s}, \mathrm{COH}\left(\mathrm{CH}_{3}\right)_{2}\right), 71.7$ ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{OTs}$), 35.7 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{3}$), 27.8 ($\mathrm{q}, \mathrm{CH}_{3}$), 26.6 (t , $\mathrm{CH}_{2} \mathrm{CCH}_{3}$), 25.5 (q, CH_{3}), 23.7 (q, CH_{3}), $21.8\left(\mathrm{q}, \mathrm{ArCH}_{3}\right) \mathrm{ppm}$.

FT-IR

LRMS (film) $\nu_{\max }$ 3373(br), 2973(m), 2926(w), 2874(w), 1598(w), 1451(w), 1359(s), 1189(s), 1176(s), 1097(m), 970(s), 917(m), 837(m), 815(m), $772(\mathrm{w}) \mathrm{cm}^{-1}$.

HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 381\left([\mathrm{M}+\mathrm{Na}]^{+}, 92 \%\right), 739\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right) \mathrm{Da}$.

Elemental (ES^{+}) $m / z \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{SNa}$ Requires 381.1342; Found 381.1346 Da.
Calc. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S}$: C, 56.96 ; H, 7.31%; Found: C, 56.68 ; H, 7.39\%.

Rac-2-\{(2R,5S)-5-Methyl-5-[(2S)-oxiran-2-yl]-tetrahydrofuran-2-yl\}-propan-2-ol (6.4)

6.4
$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}$
186.25

To a solution of tosylate $6.3(427 \mathrm{mg}, 1.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added $\operatorname{DBU}(218 \mathrm{mg}, 1.43 \mathrm{mmol})$ and the reaction stirred for 10 min . Further DBU ($30 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added and the reaction was stirred for a further 10 min , then quenched by the addition of a $10 \% \mathrm{v} / \mathrm{w}$ aqueous solution of citric acid $(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $20 \times 35 \mathrm{~mm}, 0-20 \% \mathrm{EtOAc} /$ hexane) afforded the title compound $6.4(217 \mathrm{mg}, 1.17 \mathrm{mmol}, 96 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.31$ ($40 \% \mathrm{EtOAc} /$ hexane $)$.
${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.84\left(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.50$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOH}), 2.99(1 \mathrm{H}, \mathrm{dd}, J=4.3,3.0 \mathrm{~Hz}$, epoxide CH$), 2.86$ ($1 \mathrm{H}, \mathrm{dd}, J=5.3,3.0 \mathrm{~Hz}$, epoxide CHH), $2.72(1 \mathrm{H}, \mathrm{dd}, J=5.3,4.3$ Hz , epoxide CHH), 2.22 (1 H , ddd, $J=11.8,8.5,5.3 \mathrm{~Hz}, \mathrm{CHHCCH}_{3}$), 2.13-2.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2} \mathrm{CCH}_{3}$), 1.95-1.75 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHCCH}_{3}+\right.$ $\left.\mathrm{CHHCH}_{2} \mathrm{CCH}_{3}\right), 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.06(3 \mathrm{H}, \mathrm{s}$, CH_{3}) ppm.

${ }^{13} \mathrm{C}$ NMR	($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 86.8\left(\mathrm{~d}, \mathrm{CHCOH}\left(\mathrm{CH}_{3}\right)_{2}\right), 79.5\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CCH}_{3}\right)$,
	71.5 (s, $\mathbf{C O H}\left(\mathrm{CH}_{3}\right)_{2}$), 58.2 (d, epoxide $\mathbf{C H}$), 44.0 (t, epoxide CH_{2}),
	36.6 (t, $\mathrm{CH}_{2} \mathrm{CCH}_{3}$), 28.3 ($\mathrm{q}, \mathrm{CH}_{3}$), 26.1 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{3}$), 25.3 (q,
	CH_{3}), $24.8\left(\mathrm{q}, \mathrm{CH}_{3}\right.$) ppm.
FT-IR	(film) $v_{\text {max }} 3451(\mathrm{br}), 2975(\mathrm{~s}), 2926(\mathrm{~m}), 2874(\mathrm{~m}), 1469(\mathrm{~m}), 1375(\mathrm{~m})$,
	$\begin{aligned} & 1266(\mathrm{~m}), 1181(\mathrm{~m}), \quad 1120(\mathrm{~m}), \quad 1077(\mathrm{~s}), \quad 1053(\mathrm{~s}), \quad 1033(\mathrm{~s}), 951(\mathrm{~m}), \\ & 892(\mathrm{~s}) \mathrm{cm}^{-1} . \end{aligned}$
LRMS	(ES) $m / z 209\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 395$ ([2M+Na] $\left.{ }^{+}, 57 \%\right) \mathrm{Da}$.
HRMS	(ES') m/z $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Na}$ Requires 395.2404; Found 395.2403 Da.
Elemental	Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 64.49; $\mathrm{H}, 9.74 \%$; Found: C, 64.41; H, 9.61\%.

($2 S, 2{ }^{`} S, 5^{`} R$)-5`-[(1R)-1,2-Dihydroxyethyl]-hexahydro-2-2`-bifuran-5-(2H)-one (6.5)

6.5
$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5}$
216.23

To a solution of lactone 4.45 ($198 \mathrm{mg}, 0.46 \mathrm{mmol}$) in THF (5 mL) at $-20^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 2 M solution of $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in THF ($0.35 \mathrm{~mL}, 0.70 \mathrm{mmol}$). The mixture was stirred for 10 min , cooled to $-78^{\circ} \mathrm{C}$ and a 0.1 M solution of NaBH_{4} in diglyme ($2.45 \mathrm{~mL}, 0.23 \mathrm{mmol}$) was added via syringe. The reaction was stirred for 1.5 hr , $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added, and after stirring for a further 30 min the solution was passed through a plug of silica gel ($12 \times 30 \mathrm{~mm}, 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed in vacuo and the residue purified by flash column chromatography (silica gel 12 x $30 \mathrm{~mm}, 0-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) affording the title compound 6.5 ($49 \mathrm{mg}, 0.23 \mathrm{mmol}, 49 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.24\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.51(1 \mathrm{H}$, ddd, $J=7.5,5.5,3.5 \mathrm{~Hz}$, $\mathrm{CHOC}=\mathrm{O}), ~ 4.06-3.99(2 \mathrm{H}, \mathrm{m}), 3.73-3.54(3 \mathrm{H}, \mathrm{m}), 2.68(1 \mathrm{H}, \mathrm{ddd}, J=$ $17.6,10.0,6.5 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.50(1 \mathrm{H}$, ddd, $J=17.6,10.0,6.5 \mathrm{~Hz}$, $\mathrm{CHHC}=\mathrm{O}), 2.34-2.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2} \mathrm{C}=\mathrm{O}+\mathrm{OH}\right), 2.17(1 \mathrm{H}, \mathrm{ddd}, J$ $\left.=13.1,10.1,6.0, \mathrm{CHHCH}_{2} \mathrm{C}=\mathrm{O}\right), 2.10-1.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$ ppm.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 177.8$ (s), 81.3 (d), 81.2 (d), 81.1 (d), 74.0 (d), 65.6 (t), 28.5 (t$), 28.0$ (t$), 27.7$ (t$), 24.7$ (t) ppm.

FT-IR
(film) $\nu_{\max } 3398$ (br), 2947(w), 2886(w), 1767(s), 1463(w), 1418(w), 1342(w), 1293(w), 1188(m), 1127(m), 1067(m), 1015(m), 944(w), 895(w), 814(w) cm^{-1}.
LRMS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 239\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right) \mathrm{Da}$.
HRMS (ES $\left.{ }^{+}\right) \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}$ Requires 239.0890; Found 239.0890 Da.
$[\alpha]^{24}{ }^{24} \quad+26.4\left(c .0 .21, \mathrm{CDCl}_{3}\right)$.
(2R)-2-Hydroxy-2-[(2S,2S',5S)-5`-oxooctahydro-2-2'-bifuran-5-yl]-ethyl-4methylbenzenesulfonate (6.6)

$$
\begin{gathered}
\mathbf{6 . 6} \\
\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~S} \\
370.42
\end{gathered}
$$

The title compound was prepared according to the method of Hu et al. ${ }^{230}$ Thus, to a solution of diol 6.5 ($389 \mathrm{mg}, 1.80 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(22 \mathrm{~mL})$ was added $\mathrm{Bu}_{2} \mathrm{SnO}(537 \mathrm{mg}, 2.16 \mathrm{mmol})$ and the heterogeneous solution stirred at reflux under an atmosphere of N_{2} for 3.5 hr . The reaction was allowed to cool to room temperature and $\mathrm{TsCl}(360 \mathrm{mg}, 1.89 \mathrm{mmol}$) was added. The mixture was stirred for 2 hr , the sieves were removed by filtration and the filtrate concentrated in vacuo. Purification by flash column chromatography (silica gel 15 x $30 \mathrm{~mm}, 0-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the title compound 6.6 ($473 \mathrm{mg}, 1.28 \mathrm{mmol}, 71 \%$) as an off-white solid. $\mathrm{R}_{\mathrm{f}}=0.46\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

m.p.

${ }^{1} \mathrm{H}$ NMR
$99-101{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.81(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 7.36(2 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 4.50(1 \mathrm{H}, \mathrm{ddd}, J=7.8,5.8,5.5 \mathrm{~Hz}, \mathrm{CHOC}=\mathrm{O})$, 4.07-3.97 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTs}+\mathrm{CHOHCH}_{2} \mathrm{OTs}+\mathrm{CHCHOHCH}_{2} \mathrm{OTs}$), $3.71(1 \mathrm{H}, \mathrm{dtd}, J=7.0,5.5,4.0 \mathrm{~Hz}, \mathrm{CHCHOC}=\mathrm{O}), 2.58(1 \mathrm{H}, \mathrm{ddd}, J=$ $17.8,10.0,6.5 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.46(1 \mathrm{H}, \mathrm{ddd}, J=17.8,10.0,6.8 \mathrm{~Hz}$, $\mathrm{CHHC}=\mathrm{O}), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.28(1 \mathrm{H}$, dddd, $J=12.8,10.0,7.8$, $\left.6.5 \mathrm{~Hz}, \mathrm{CHHCH}_{2} \mathrm{C}=\mathrm{O}\right), 2.26(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CHOH}), 2.16(1 \mathrm{H}$, dddd, $J=12.8,10.0,7.0,5.8 \mathrm{~Hz}, \mathrm{CHHCH}_{2} \mathrm{C}=\mathrm{O}$), $2.06-1.86(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 177.6(\mathrm{~s}), 145.2(\mathrm{~s}), 132.8(\mathrm{~s}), 130.1(2 \mathrm{x} \mathrm{d})$, 128.2 (2 x d), 81.3 (d), 80.7 (d), 79.5 (d), 71.5 (d), 70.9 (t), 28.4 (t$),$ 28.0 (t), 27.5 (t), 24.8 (q), 21.8 (t) ppm.

FT-IR
(film) $\nu_{\max }$ 2950(w), 2923(w), 2851(w), 1772(s), 1455(w), 1357(m), 1175(s), 1166(s), 1098(w), 1019(w), 975(m), 950(m), 815(m) cm ${ }^{-1}$.
LRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 388\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 758\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 27 \%\right) \mathrm{Da}$.
HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{SNa}$ Requires 393.0978; Found 393.0944 Da .
Elemental $[\alpha]^{24}{ }_{D}$ Calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~S}$: C, 55.12 ; $\mathrm{H}, 5.99 \%$; Found: C, 54.86 ; H, 5.92%. +8.5 (c. $0.35, \mathrm{CDCl}_{3}$).
($2 S, 2^{2} S, 5^{`} S$)-5`-[(2R)-Oxiran-2-yl]-hexahydro-2-2'-bifuran-5-(2H)-one (6.7)

6.7 $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$
198.21

To a solution of tosylate $6.6(460 \mathrm{mg}, 1.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at room temperature was added a solution of $\operatorname{DBU}(199 \mathrm{mg}, 1.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the reaction stirred for 30 min then quenched by the addition of a $10 \% \mathrm{v} / \mathrm{w}$ aqueous solution of citric acid (5 mL). The aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $12 \times 35 \mathrm{~mm}, 0-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the title compound $6.7(245 \mathrm{mg}, 1.24 \mathrm{mmol}, 99 \%)$ as an off-white solid. $\mathrm{R}_{\mathrm{f}}=0.45\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The crystal structure for this epoxide is contained in the appendix at the rear of this thesis.

m.p.	$107-108{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.50(1 \mathrm{H}$, ddd, $J=7.8,5.5,3.0 \mathrm{~Hz}$, $\mathrm{CHOC}=\mathrm{O}$), $4.07(1 \mathrm{H}, \mathrm{ddd}, J=7.3,6.5,3.0 \mathrm{~Hz}, \mathrm{CHCHOC}=\mathrm{O}), 3.73$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.94(1 \mathrm{H}, \mathrm{ddd}, J=5.8,4.0,3.0 \mathrm{~Hz}$, epoxide CH$), 2.75$ $(1 \mathrm{H}, \mathrm{dd}, J=5.0,4.0 \mathrm{~Hz}$, epoxide CHH), $2.70(1 \mathrm{H}$, ddd, $J=17.6$, $10.0,7.0 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.61(1 \mathrm{H}, \mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}$, epoxide $\mathrm{CHH}), 2.46(1 \mathrm{H}, \mathrm{ddd}, J=17.6,9.5,7.0 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.33-2.18$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 2.05-1.88 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$) ppm.
${ }^{13} \mathrm{C}$ NMR	($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 177.8$ (s, $\mathbf{C = O}$), 81.5 (d, $\mathbf{C H C H O C}=\mathrm{O}$), 81.3 (d, $\mathbf{C H O C}=\mathrm{O}$), 81.0 (d, $\mathbf{C H}$), 53.8 (d, epoxide $\mathbf{C H}$), 44.0 (t, epoxide CH_{2}), 28.5 (t), 28.4 (t , $27.8(\mathrm{t}), 24.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right.$) ppm.
FT-IR	$\begin{aligned} & \text { (film) } v_{\max } 2916(\mathrm{~m}), 1770(\mathrm{~s}), 1257(\mathrm{~m}), 1180(\mathrm{~m}), 1072(\mathrm{~m}), 1023(\mathrm{~m}), \\ & 925(\mathrm{w}), 893(\mathrm{w}) \mathrm{cm}^{-1} . \end{aligned}$
LRMS	$\left(\mathrm{ES}^{+}\right) m / z 216\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 199\left([\mathrm{M}+\mathrm{H}]^{+}, 10 \%\right) \mathrm{Da}$.

Elemental	Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 60.54 ; H, 7.12\%; Found: C, $60.65 ; \mathrm{H}, 7.20 \%$.
$[\alpha]^{24}{ }_{\mathrm{D}}$	+24.8 (c. $0.25, \mathrm{CDCl}_{3}$).

(S)-5-((2S,5R)-5-((R)-1-Hydroxytridec-12-enyl)-tetrahydrofuran-2-yl)-dihydrofuran-2-(3H)-one (6.8)

$$
\begin{gathered}
\mathbf{6 . 8} \\
\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4} \\
352.49
\end{gathered}
$$

Magnesium turnings ($457 \mathrm{mg}, 18.8 \mathrm{mmol}$) were heated at $\sim 400^{\circ} \mathrm{C}$ under an atmosphere of Ar for 5 min then allowed to cool to room temperature. THF (50 mL) and I_{2} (1 crystal) were added, followed by the dropwise addition of 11 -bromo- 1 -undecene $(0.30 \mathrm{~mL}, 1.4$ mmol). The solution was heated at reflux for 10 min , further 11 -bromo- 1 -undecene (3.13 $\mathrm{mL}, 14.3 \mathrm{mmol}$) was added and the solution was heated at reflux for 20 min and then stirred at room temperature for 1 hr . Titration of this solution using excess I_{2} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ gave its average concentration as 0.33 M . An aliquot of this solution ($8.72 \mathrm{~mL}, 2.87 \mathrm{mmol}$) was added to a suspension of CuI ($273 \mathrm{mg}, 1.44 \mathrm{mmol}$) in THF (15 mL) at $-60^{\circ} \mathrm{C}$ under an atmosphere of Ar. The solution was allowed to warm to $-25^{\circ} \mathrm{C}$ and stir for 20 min , then was cooled to $-60^{\circ} \mathrm{C}$, and a solution of epoxide 6.7 ($237 \mathrm{mg}, 1.20 \mathrm{mmol}$) in THF (3 mL) was added via syringe. The solution was allowed to warm to $-50^{\circ} \mathrm{C}$ and stir for 10 min , then was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ followed by water (10 mL). The mixture was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 40 \mathrm{~mL})$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $25 \times 40 \mathrm{~mm}, 5-30 \%$ EtOAc/hexane) afforded the title compound 6.8 ($346 \mathrm{mg}, 0.98 \mathrm{mmol}, 82 \%$) as a white, waxy solid. $\mathrm{R}_{\mathrm{f}}=0.29$ (70\% EtOAc/hexane).
m.p.
${ }^{1}$ H NMR
$47-49{ }^{\circ} \mathrm{C}$.
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.81(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.3,6.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 4.99(1 \mathrm{H}, \mathrm{ddt}, J=17.1,2.3,1.8 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.93(1 \mathrm{H}$, ddt, $J=10.3,2.3,1.3 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.50(1 \mathrm{H}, \operatorname{ddd}, J=8.3,5.5,3.0$ $\mathrm{Hz}, \mathrm{CHOC}=\mathrm{O}), 4.02(1 \mathrm{H}, \mathrm{ddd}, J=7.0,6.8,3.0 \mathrm{~Hz}, \mathrm{CHCHOC}=\mathrm{O})$, $3.81\left(1 \mathrm{H}\right.$, ddd, $\left.J=7.5,6.5,6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHOHCH}\right), 3.41$ ($1 \mathrm{H}, \mathrm{ddd}, J$ $=11.3,6.5,5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHOHCH}$), $2.64(1 \mathrm{H}$, ddd, $J=17.8,10.0$, $7.0 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.48(1 \mathrm{H}$, ddd, $J=17.8,10.0,6.8 \mathrm{~Hz}$,

CHHC=O), $2.29(1 \mathrm{H}$, dddd, $J=12.6,10.0,8.3,6.8 \mathrm{~Hz}$, $\mathrm{CHHCH}_{2} \mathrm{C}=\mathrm{O}$), $2.20(1 \mathrm{H}$, dddd, $J=12.6,10.0,7.0,5.5 \mathrm{~Hz}$, $\left.\mathrm{CHHCH}_{2} \mathrm{C}=\mathrm{O}\right), 2.10-1.86(6 \mathrm{H}, \mathrm{m}), 1.76(1 \mathrm{H}, \mathrm{m}), 1.57-1.18(17 \mathrm{H}, \mathrm{m})$ ppm.

${ }^{13} \mathrm{C}$ NMR	(100 MHz, CDCl_{3}) $\delta_{\mathrm{C}} 177.7$ (s), 139.4 (d), 114.2 (t), 83.8 (d), 81.1
	(d), 81.0 (d), 74.6 (d), 34.0 (t), 33.9 (t), 29.9 (t), 29.8 (t), 29.7 (t), 29.3
	(t), 29.1 (t), 28.5 (t), 28.1 (t), 27.9 (t), 25.8 (t), 24.7 (t) ppm.
FT-IR	(film) $v_{\text {max }} 2926(\mathrm{~s}), 2854(\mathrm{~m}), 1781(\mathrm{~s}), 1463(\mathrm{w}), 1255(\mathrm{w}), 1170(\mathrm{w})$,
	1103(m), 1077(m), $835(\mathrm{~m}), 775(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 370\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 81 \%\right), 375\left([\mathrm{M}+\mathrm{Na}]^{+}, 11 \%\right), 722$
	$\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 727\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 32 \%\right) \mathrm{Da}$.
HRMS	(ES ${ }^{+}$) $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na}$ Requires 375.2506; Found 375.2509 Da.
Elemental	Calc. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4}$: C, $71.55 ; \mathrm{H}, 10.29$; Found: C, 71.42 ; H, 9.98\%.
$[\alpha]^{23}{ }_{\mathrm{D}}$	+21.4 (c. 0.28, CDCl_{3}).

(S)-5-((2S,5R)-5-((R)-1-(tert-Butyldimethylsilyloxy)tridec-12-enyl)-tetrahydrofuran-2-$\mathrm{yl})$-dihydrofuran-2-(3H)-one (6.9)

$$
\begin{gathered}
\mathbf{6 . 9} \\
\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si} \\
466.78
\end{gathered}
$$

To a solution of alcohol $6.8(198 \mathrm{mg}, 0.56 \mathrm{mmol})$ and $\mathrm{TBSCl}(169 \mathrm{mg}, 1.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at room temperature was added imidazole ($76 \mathrm{mg}, 1.13 \mathrm{mmol}$), and the cloudy solution stirred at room temperature for 72 hr . The reaction was quenched by the addition of water (4 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $12 \times 30 \mathrm{~mm}, 5 \%$ EtOAc/hexane) afforded the title compound $\mathbf{6 . 9}$ ($216 \mathrm{mg}, 0.46 \mathrm{mmol}, 82 \%$) as a white, waxy solid. $\mathrm{R}_{\mathrm{f}}=0.47$ ($40 \% \mathrm{EtOAc} / \mathrm{hexane}$).

[^1]ddd, $\left.J=6.8,6.0,3.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CH}\right), 2.61(1 \mathrm{H}, \mathrm{ddd}, J=$ $17.6,10.0,6.3 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{O}), 2.47(1 \mathrm{H}$, ddd, $J=17.6,9.5,8.0 \mathrm{~Hz}$, $\mathrm{CHHC}=\mathrm{O}$), 2.26-2.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), 2.01-1.58 ($6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}+\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.48-1.11\left(18 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{9}\right), 0.91$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 177.4$ (s), 139.5 (d), 114.2 (t), 83.5 (d), 81.4 (d), 80.3 (d), 74.7 (d), 34.0 (t), 33.1 (t), 30.0 (t), 29.81 (t), 29.77 (t), 29.7 (t), 29.3 (t$), 29.2$ (t$), 28.6$ (t$), 27.7$ (t$), 27.1$ (t$), 26.1$ (q$), 25.5$ (t$),$ 24.3 (s), 18.4 (t), -4.1 (q), -4.4 (q) ppm.

FT-IR (film) $v_{\max }$ 2926(s), 2854(s), 1782(s), 1462(w), 1252(m), 1169(m), 1101(m), 1071(m), 908(w), 835(s), 775(s) cm^{-1}.

LRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 489\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 484\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 61 \%\right), 467$ ($\left.[\mathrm{M}+\mathrm{H}]^{+}, 42 \%\right) \mathrm{Da}$.
HRMS $\quad\left(\mathrm{ES}^{+}\right) \mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{SiNa}$ Requires 489.3371; Found 489.3367 Da.
Elemental Calc. for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 69.48 ; \mathrm{H}, 10.80 \%$; Found: C, 69.23; H, 10.54%.
$[\alpha]^{\mathbf{2 5}}{ }^{\mathbf{D}} \quad+19.1$ (c. $\left.0.46, \mathrm{CDCl}_{3}\right)$.
(S)-5-((2S,5R)-5-((R)-1-(tert-Butyldimethylsilyloxy)tridec-12-enyl)-tetrahydrofuran-2-yl)-dihydrofuran-2-ol (6.10) and
(S)-1-((2S,5R)-5-((R)-1-(tert-Butyldimethylsilyloxy)tridec-12-enyl)-tetrahydrofuran-2-yl)-butane-1,4-diol (6.11)

$$
\begin{gathered}
\mathbf{6 . 1 0} \\
\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si} \\
468.76 \\
\\
\mathbf{6 . 1 1} \\
\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si} \\
470.80
\end{gathered}
$$

To a solution of lactone $6.9(151 \mathrm{mg}, 0.323 \mathrm{mmol})$ in THF (4.0 mL) at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 1M solution of DIBAL-H in hexanes ($0.42 \mathrm{~mL}, 0.420 \mathrm{mmol}$) and the solution allowed to stir for 2 hr . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ and quenched by the addition of $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(2 \mathrm{~mL}$), then extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash
column chromatography (silica gel $12 \times 30 \mathrm{~mm}, 5-10 \%$ EtOAc/hexane) afforded anomeric lactol $6.10(76 \mathrm{mg}, 0.165 \mathrm{mmol}, 50 \%)$ as a colourless oil, and diol $6.11(40 \mathrm{mg}, 0.084$ $\mathrm{mmol}, 26 \%)$ as a pale yellow oil. $\mathrm{R}_{\mathrm{f}, \text { lactol }}=0.47, \mathrm{R}_{\mathrm{f}, \text { diol }}=0.19$ ($40 \% \mathrm{EtOAc} /$ toluene $)$.

Lactol 6.10	
${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82(1 \mathrm{H}, \operatorname{ddt}, J=17.1,10.3,6.8 \mathrm{~Hz}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.60 \& 5.44(1 \mathrm{H}$ total, 2 x m , anomeric CHOH$), 5.00(1 \mathrm{H}$, ddt, $J=17.1,2.3,1.8 \mathrm{~Hz}, \mathbf{H H C}=\mathrm{CH}), 4.93(1 \mathrm{H}, \mathrm{ddt}, J=10.3,2.3$, $1.3 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.19 \& 4.10(1 \mathrm{H}$ total, $2 \times \mathrm{m}, \mathrm{CHOCHOH}), 3.99-$ $3.66(3 \mathrm{H}, \mathrm{m}), 3.54(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CHOH}), 2.16-1.74(10 \mathrm{H}, \mathrm{m})$, $1.68-1.50(2 \mathrm{H}, \mathrm{m}), 1.44-1.20(16 \mathrm{H}, \mathrm{m}), 0.91 \& 0.90($ total $9 \mathrm{H}, 2 \times \mathrm{s}$, $\left.2: 1, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08 \& 0.07\left(2 \times 6 \mathrm{H}, 2 \times \mathrm{s}, 2: 1, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 139.6$ (d), 114.4 (t$), 99.4$ (t$), 99.1$ (t), 82.5 (d), 82.3 (d), 82.0 (d), 81.8 (d), 81.6 (d), 81.0 (d), 74.3 (d), 74.2 (d), 34.8 (t$), 29.89$ (t$), 29.87(\mathrm{t}), 29.8(\mathrm{t}), 28.1(\mathrm{t}), 27.0(\mathrm{t}), 26.3(\mathrm{t}), 26.24(\mathrm{t})$, 26.22 (q), 25.9 (t , 25.8 (t , 18.5 (s), -4.0 (q), -4.2 (q) ppm.
FT-IR	(film) $\nu_{\max } 2945(\mathrm{~s}), 2857(\mathrm{~s}), 1590(\mathrm{w}), 1462(\mathrm{~m}), 1359(\mathrm{~m}), 1318(\mathrm{w})$, $1257(\mathrm{~m}), 1179(\mathrm{~m}), 1060(\mathrm{~m}), 911(\mathrm{~m}), 835(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	(ES ${ }^{+}$) m/z $491\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 959\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 13 \%\right) \mathrm{Da}$.
HRMS	(ES ${ }^{+} \mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{SiNa}$ Requires 491.3527; Found 491.3531 Da .
Elemental	Calc. for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 69.18$; H, 11.18\%; Found: C, 68.93; H, 11.21%.
$[\alpha]^{24}{ }_{\text {D }}$	+21.5 (c. $\left.0.72, \mathrm{CDCl}_{3}\right)$.

Diol 6.11

${ }^{1}$ H NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 5.82(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.3,6.8 \mathrm{~Hz}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.00(1 \mathrm{H}, \mathrm{ddt}, J=17.1,2.3,1.5 \mathrm{~Hz}, \mathbf{H H C}=\mathrm{CH}), 4.93(1 \mathrm{H}$, ddt, $J=10.3,2.3,1.3 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}$), 3.96 (1 H, app. td, $J=7.0,3.8$ $\mathrm{Hz}), 3.73-3.55(3 \mathrm{H}, \mathrm{m}), 3.42(1 \mathrm{H}$, ddd, $J=8.8,5.0,3.0 \mathrm{~Hz}), 3.13$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.08-2.01(2 \mathrm{H}, \mathrm{m}), 1.99-1.39$ $(10 \mathrm{H}, \mathrm{m}), 1.38-1.14(16 \mathrm{H}, \mathrm{m}), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$.

${ }^{13} \mathrm{C}$ NMR	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 139.5(\mathrm{~d}), 114.4 \text { (t), } 82.4 \text { (d), } 81.6 \text { (d), } 74.8 \text { (d), }$
	74.7 (d), 63.3 (t), 34.5 (t), 34.1 (t), 31.9 (t), 30.1 (t), 30.0 (t), 29.89 (t),
	29.85 (t), 29.8 (t), 29.4 (t), $29.2(t), 28.6$ (t), 27.7 (t), $26.2(\mathrm{q}), 25.7(\mathrm{t})$,
	18.5 (s), -4.0 (q), -4.2 (q) ppm.
FT-IR	(film) $v_{\text {max }}$ 3384(br), 2926(s), 2855(s), 1463(w), 1360(w), 1253(m),
	1078(m), 909(m), 836(m), $775(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 471\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right), 493$ ([M+Na] $\left.{ }^{+}, 86 \%\right), 963$
	$\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 27 \%\right), 958\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 16 \%\right), 941\left([2 \mathrm{M}+\mathrm{H}]^{+}, 10 \%\right) \mathrm{Da} .$
HRMS	(ES') $\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{SiNa}$ Requires 493.3683; Found 493.3676 Da.
Elemental	Calc. for $\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 68.88$; $\mathrm{H}, 11.56 \%$; Found: $\mathrm{C}, 68.41$; H,
	11.61\%.
$[\alpha]^{25}{ }_{\text {D }}$	-6.6 (c. 0.32, CDCl_{3}).

(S, E)-Ethyl-6-((2S,5R)-5-((R)-1-(tert-butyldimethylsilyloxy)tridec-12-enyl)-tetrahydrofuran-2-yl)-6 hydroxyhex-2-enoate (6.12)

$$
\begin{gathered}
\mathbf{6 . 1 2} \\
\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si} \\
538.88
\end{gathered}
$$

From lactol 6.10

To a solution of lactol $6.10(19 \mathrm{mg}, 0.041 \mathrm{mmol})$ in toluene (2.0 mL) at room temperature under an atmosphere of N_{2} was added (carbethoxymethylene) triphenylphosphorane (22 mg , 0.061 mmol) and the solution stirred at room temperature for 16 hr . Further phosphorane ($22 \mathrm{mg}, 0.061 \mathrm{mmol}$) was added and the reaction stirred for a further 5 hr , then the solvent was removed in vacuo. Purification by flash column chromatography (silica gel $8 \times 40 \mathrm{~mm}$, $5 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded the title compound 6.12 ($21 \mathrm{mg}, 0.039 \mathrm{mmol}, 96 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.66(40 \% \mathrm{EtOAc} / \mathrm{hexane})$.

From Lactone 6.9 Without Lactol Isolation

To a solution of lactone $6.9(0.734 \mathrm{~g}, 1.57 \mathrm{mmol})$ in THF (30 mL) at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 1 M solution of DIBAL-H in hexanes ($2.14 \mathrm{~mL}, 2.14 \mathrm{mmol}$). The solution was stirred for 1 hr , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and quenched with water (5 mL). The mixture was filtered through cellite and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was taken up in toluene (25 mL),
(carbethoxymethylene)triphenylphosphorane ($3.000 \mathrm{~g}, 8.21 \mathrm{mmol}$) was added and the solution stirred for 16 hr . Removal of the solvent in vacuo and purification by flash column chromatography (silica gel $20 \times 55 \mathrm{~mm}, 5 \% \mathrm{EtOAc} /$ hexane) afforded the title compound $6.12(0.834 \mathrm{~g}, 1.55 \mathrm{mmol}, 96 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.66$ ($40 \% \mathrm{EtOAc} / \mathrm{hexane}$).
${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.00\left(1 \mathrm{H}, \mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $5.85\left(1 \mathrm{H}, \mathrm{dt}, J=15.8,1.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.82(1 \mathrm{H}, \mathrm{ddt}, J=$ $\left.17.1,10.3,6.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.00(1 \mathrm{H}$, ddt, $J=17.1,2.3,1.5 \mathrm{~Hz}$, $\mathrm{HHC}=\mathrm{CH}$), 4.93 ($1 \mathrm{H}, \operatorname{ddt}, J=10.3,2.3,1.3 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.18$ $\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.95(1 \mathrm{H}$, app. td, $J=7.0,3.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CH}\right), 3.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHOH}), 3.58(1 \mathrm{H}$, ddd, $J=$ $\left.6.8,5.8,3.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CH}\right), 3.39(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.80$ $(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CHOH}), 2.46(1 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}$, $\mathrm{m}), 1.85(1 \mathrm{H}, \mathrm{m}), 1.81-1.76(3 \mathrm{H}, \mathrm{m}), 1.75-1.45(3 \mathrm{H}, \mathrm{m}), 1.40-1.18$ $(21 \mathrm{H}, \mathrm{m}), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 167.0(\mathrm{~s}), 149.4$ (d), 139.5 (d), 121.7 (d), 114.4 (t), 82.1 (d), 81.5 (d), 74.9 (d), 73.6 (d), 60.4 (t$), 34.6$ (t$), 34.1$ (t$)$, 33.2 ($)$, 30.2 (t$), 29.91$ (t$), 29.86$ (t$), 29.8$ (t$), 29.4$ (t$), 29.2$ (t$), 28.8$ (t), 28.6 (t), 27.7 (t , 26.2 (q), 25.7 (t$), 18.5$ (s$), 14.6$ (q), $-4.0(\mathrm{q}),-4.2$ (q) ppm.

FT-IR
(film) $v_{\max }$ 2927(s), 2855(s), 1722(s), 1655(w), 1463(w), 1257(m), 1194(m), 1072(m), 1046(m), 836(m), $775(\mathrm{~m}) \mathrm{cm}^{-1}$.

LRMS $\left(\mathrm{ES}^{+}\right) m / z 561\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 1099\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 49 \%\right) \mathrm{Da}$.

HRMS
Elemental
$[\alpha]^{25}$
(ES^{+}) $\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{SiNa}$ Requires 561.3946 ; Found 561.3958 Da .
Calc. for $\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 69.10 ; \mathrm{H}, 10.85 \%$; Found: C, 69.19 ; H, 11.21%.
-11.3 (c. $0.17, \mathrm{CDCl}_{3}$).
(S, E)-Ethyl-6-hydroxy-6-((2S,5R)-5-((R)-1-hydroxytridec-12-enyl)-tetrahydrofuran-2-yl)-hex-2-enoate (6.13)

To a suspension of $\mathrm{Re}_{2} \mathrm{O}_{7}$ ($123 \mathrm{mg}, 0.255 \mathrm{mmol}$) in THF (2 mL) at room temperature under an atmosphere of N_{2} was added freshly distilled TFAA ($0.045 \mathrm{~mL}, 0.321 \mathrm{mmol}$) and the suspension stirred for 1.5 hr . The solvent was removed in vacuo, and the dark blue residue washed with freshly distilled hexane ($2 \times 2 \mathrm{~mL}$) and solvated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. TFAA ($0.045 \mathrm{~mL}, 0.321 \mathrm{mmol}$) was added via syringe, followed by a solution of ester $6.12(50 \mathrm{mg}$, $0.095 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. The suspension was stirred for 2 hr during which the colour changed from dark blue to purple and then to black, and the reaction was quenched by the addition of a saturated aqueous solution of $\mathrm{NaHCO}_{3}(1.5 \mathrm{~mL})$ and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ (2 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $12 \times 40 \mathrm{~mm}, 10-40 \% \mathrm{EtOAc} /$ hexane) afforded the title compound $\mathbf{6 . 1 3}(37 \mathrm{mg}$, $0.087 \mathrm{mmol}, 92 \%)$ as a white solid. $\mathrm{R}_{\mathrm{f}}=0.21(40 \% \mathrm{EtOAc} /$ hexane $)$.

```
m.p
'H NMR
    27-29}\mp@subsup{}{}{\circ}\textrm{C}
    (400 MHz, CDCl )}\mp@subsup{)}{\textrm{H}}{}6.99(1\textrm{H},\textrm{dt},J=15.6,7.0 Hz, CH=CHCO2 Et)
    5.86(1H, dt, J=15.6, 1.8 Hz, CH=CHCO}\mp@subsup{}{2}{}\textrm{Et}),5.82(1H, ddt, J
    17.1, 10.0, 6.5 Hz, H2C=CH), 4.99(1H, ddt, J=17.1, 2.3, 1.5 Hz,
    HHC=CH), 4.93(1H, ddt, J=10.4, 2.3, 1.3 Hz, HHC=CH), 4.19
    (2H, q, J=7.3 Hz, OCH2CH
        3.41 (2H, m, CHOHCHOCHCHOH), 2.50-4.88(9H, m), 1.85-1.20
        (24H, m) ppm.
\mp@subsup{}{}{13}\mathbf{C NMR (100 MHz, CDCl ) }\mp@subsup{\delta}{\textrm{C}}{}166.9 (\textrm{s}),148.8 (d),139.4 (d), 121.9 (d),114.3
        (t), 82.9 (d), 82.7 (d),74.5 (d),73.6 (d), 60.4 (t), 34.3 (t), 34.0 (t),
        32.6 (t), 29.85 (t), 29.77 (t), 29.7 (t), 29.3 (t), 29.1 (t), 28.5 (t), 28.30
        (t), 28.25 (t), 25.9 (t), 14.5 (q) ppm.
FT-IR
LRMS
(ES ) m/z 447([M+Na]', 100%),871 ([2M+Na]+, 30%) Da.
```

HRMS
Elemental
$[\alpha]^{24}{ }^{\mathrm{D}}$
(ES^{+}) $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Na}$ Requires 447.3081; Found 447.3084 Da.
Calc. for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{5}: \mathrm{C}, 70.72 ; \mathrm{H}, 10.44 \%$; Found: C, 70.76 ; H, 10.72\%.
-2.2 (c. $0.49, \mathrm{CDCl}_{3}$).
(S,E)-6-((2S,5R)-5-((R)-1-(tert-Butyldimethylsilyloxy)tridec-12-enyl)-tetrahydrofuran-2-yl)hex-2-ene-1,6-diol (6.14)

$$
\begin{gathered}
\mathbf{6 . 1 4} \\
\mathrm{C}_{29} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si} \\
496.85
\end{gathered}
$$

To a solution of ester 6.12 ($112 \mathrm{mg}, 0.21 \mathrm{mmol}$) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added a 1 M solution of DIBAL-H in hexanes ($0.52 \mathrm{~mL}, 0.52 \mathrm{mmol}$) and the solution strirred for 30 min . Further DIBAL-H ($0.52 \mathrm{~mL}, 0.52 \mathrm{mmol}$) was then added and the reaction stirred for 20 min and quenched by the addition of water (3 mL). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $12 \times 30 \mathrm{~mm}, 5-20 \%$ EtOAc/hexane) afforded the title compound $6.14(92 \mathrm{mg}$, $0.19 \mathrm{mmol}, 89 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.40(40 \% \mathrm{EtOAc} /$ hexane $)$.
${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82(1 \mathrm{H}$, ddt, $J=17.1,10.3,6.8 \mathrm{~Hz}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.75-5.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}\right), 4.99(1 \mathrm{H}, \mathrm{ddt}, J=$ $17.1,2.3,1.5 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.93(1 \mathrm{H}, \mathrm{ddt}, J=10.3,2.3,1.3 \mathrm{~Hz}$, $\mathrm{HHC}=\mathrm{CH}), 4.09\left(2 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.93(1 \mathrm{H}, \mathrm{app} . \mathrm{td}, J=$ $\left.7.0,3.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CH}\right), 3.79(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHOH}), 3.59(1 \mathrm{H}$, app. td, $\left.J=6.0,3.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CH}\right), 3.39(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$, $2.28(1 \mathrm{H}, \mathrm{m}), 2.15(1 \mathrm{H}, \mathrm{m}), 2.08-2.00(2 \mathrm{H}, \mathrm{m}), 1.95-1.73(5 \mathrm{H}, \mathrm{m})$, 1.68-1.49 (3H, m), 1.47-1.23 (17H, m), $0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08$ ($\left.6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 139.5$ (d), 133.3 (d), 129.5 (d), 114.4 (t), 82.3 (d), 81.7 (d), 74.9 (d), 73.9 (d), 64.0 (t), 34.4 (t$), 34.2$ (t), 34.1 (t$)$, 30.1 (t$), 29.9$ (t$), 29.85$ (t), 29.76 (t$), 29.4$ (t), 29.2 (t$), 28.7$ (t$), 28.5$ (t), 27.7 (t$), 26.2(\mathrm{q}), 25.7(\mathrm{t}), 18.5(\mathrm{~s}),-4.0(\mathrm{q}),-4.2(\mathrm{q}) \mathrm{ppm}$.

FT-IR
(film) $v_{\text {max }} 3366(\mathrm{br}), 2926(\mathrm{~s}), 2854(\mathrm{~m}), 1460(\mathrm{w}), 1253(\mathrm{~m}), 1083(\mathrm{~m})$, $997(\mathrm{~m}), 968(\mathrm{~m}), 902(\mathrm{~m}), 835(\mathrm{~m}), 775(\mathrm{~m}) \mathrm{cm}^{-1}$.

LRMS	$\left(\mathrm{ES}^{+}\right) m / z 519 \quad\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 514 \quad\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 74 \%\right), 497$
	$\left([\mathrm{M}+\mathrm{H}]^{+}, 28 \%\right), 1010\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 5 \%\right), 1015\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 3 \%\right) \mathrm{Da}$.
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{29} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{SiNa}^{2}$ Requires $519.3840 ;$ Found 519.3840 Da.
$[\alpha]_{\text {D }}^{\mathbf{2 5}}$	$-9.7\left(\mathrm{c} .0 .21, \mathrm{CDCl}_{3}\right)$.

(R)-1-((2S,5S)-5-((2S,5R)-5-((R)-1-tert-Butyldimethylsilyloxy)tridec-12-enyl)-

 tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)ethane-1,2-diol (6.17)

The title compound was prepared according to the method Sinha et al. ${ }^{132}$ Thus, to a solution of alcohol $6.14(209 \mathrm{mg}, 0.421 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under an atmosphere of N_{2} were added powdered $4 \AA$ molecular sieves (200 mg), D-(-)-diethyl tartrate (0.42 mL , $2.415 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(0.60 \mathrm{~mL}, 2.013 \mathrm{mmol})$, and the mixture stirred for 30 min . A 5 M solution of $t-\mathrm{BuOOH}$ in $n-\mathrm{C}_{9} \mathrm{H}_{20}(0.80 \mathrm{~mL}, 4.830 \mathrm{mmol})$ was added via syringe and the reaction was stirred for a further 48 hr at $-20^{\circ} \mathrm{C}$ then quenched by the addition of water (2 mL) and $1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(3 \mathrm{~mL})$. After stirring vigorously for 20 min the mixture was filtered through celite and the filtrate concentrated in vacuo. Purification by flash column chromatography (silica gel $15 \mathrm{x} 85 \mathrm{~mm}, 10-25 \%$ EtOAc/hexane) afforded the title compound 6.17 ($185 \mathrm{mg}, 0.361 \mathrm{mmol}, 86 \%$) as a colourless oil. The product was an inseparable mixture of major (6.17) and minor (6.18) diastereoisomers, the ratio of which was obtained after later tosylation. All signals are reported in the carbon NMR. $\mathrm{R}_{\mathrm{f}}=0.32$ (60% EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.3,6.8 \mathrm{~Hz}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 4.99(1 \mathrm{H}, \mathrm{ddt}, J=17.1,2.3,1.5 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.93(1 \mathrm{H}$, $\operatorname{ddt}, J=10.3,2.3,1.3 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.03-3.58(8 \mathrm{H}, \mathrm{m}), 2.17(2 \mathrm{H}$, br s, $\left.2 \times \mathrm{CHOH}+\mathrm{CH}_{2} \mathrm{OH}\right), 2.10-1.59(10 \mathrm{H}, \mathrm{m}), 1.55-1.18(18 \mathrm{H}, \mathrm{m})$, $0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ ppm.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 139.4$ (d), 114.2 (t), 82.44 (d), 82.38 (d), 82.3 (d), 81.8 (d), 81.2 (d), 80.7 (d), 74.4 (d), 74.3 (d), 73.1 (d), 73.0 (d), 72.2 (d), 64.1 (t , 63.9 (t$), 34.0$ (t$), 32.6$ (t$), 32.2$ (t$), 30.08$ (t$), 30.05$

$28.5(\mathrm{t}), 28.3(\mathrm{t}), 28.2(\mathrm{t}), 27.2(\mathrm{t}), 26.6(\mathrm{t}), 26.4(\mathrm{t}), 26.1(\mathrm{q}), 26.02(\mathrm{t})$, 25.96 (t$), 25.8$ (t , 25.1 (t$), 18.4$ (s , 14.3 (s$),-4.1$ (q$),-4.4$ (q) ppm.

$(S)-1-((2 R, 5 S)-5-((2 S, 5 R)-5-((R)-1-t e r t-B u t y l d i m e t h y l s i l y l o x y) t r i d e c-12-e n y l)-$ tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)ethane-1,2-diol (6.18)

$$
\begin{gathered}
6.18 \\
\mathrm{C}_{29} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si} \\
512.84
\end{gathered}
$$

The title compound was prepared according to the method Sinha et al. ${ }^{132}$ Thus, to a solution of alcohol 6.14 ($221 \mathrm{mg}, 0.444 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under an atmosphere of N_{2} were added powdered $4 \AA$ molecular sieves (200 mg), L-(+)-diethyl tartrate (0.42 mL , $2.415 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(0.60 \mathrm{~mL}, 2.013 \mathrm{mmol})$, and the mixture stirred for 30 min . A 5 M solution of $t-\mathrm{BuOOH}$ in $n-\mathrm{C}_{9} \mathrm{H}_{20}(0.80 \mathrm{~mL}, 4.830 \mathrm{mmol})$ was added via syringe and the reaction was stirred for a further 48 hr at $-20^{\circ} \mathrm{C}$ then quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$ (2 $\mathrm{mL})$ and $1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(3 \mathrm{~mL})$. After stirring vigorously for 20 min the mixture was filtered through celite and the filtrate concentrated in vacuo. Purification by flash column chromatography (silica gel $15 \times 80 \mathrm{~mm}, 10-25 \%$ EtOAc/hexane) afforded the title compound 6.18 ($196 \mathrm{mg}, 0.382 \mathrm{mmol}, 86 \%$) as a colourless oil. The product was obtained as a single diastereoisomer. $\mathrm{R}_{\mathrm{f}}=0.32(60 \% \mathrm{EtOAc} /$ hexane $)$.
${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.3,6.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 4.99(1 \mathrm{H}, \mathrm{ddt}, J=17.1,2.0,1.5 \mathrm{~Hz}, \mathbf{H H C}=\mathrm{CH}), 4.93(1 \mathrm{H}$, ddt, $J=10.3,2.0,1.3 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.01-3.56(8 \mathrm{H}, \mathrm{m}), 2.97(1 \mathrm{H}, \mathrm{d}$, $J=4.0 \mathrm{~Hz}, \mathrm{CHOH}), 2.23\left(1 \mathrm{H}, \mathrm{dd}, J=7.5,4.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.08-$ $2.01(2 \mathrm{H}, \mathrm{m}), 2.00-1.73(6 \mathrm{H}, \mathrm{m}), 1.71-1.23(20 \mathrm{H}, \mathrm{m}), 0.89(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.075\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) \mathrm{ppm}$.

${ }^{13} \mathrm{C}$ NMR	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 139.5(\mathrm{~d}), 114.3(\mathrm{t}), 82.3(\mathrm{~d}), 81.8(\mathrm{~d}), 81.2(\mathrm{~d},$
	$2 \mathrm{xCH}), 74.4$ (d), 73.2 (d), 64.0 (t), 34.0 (t), 32.6 (t), 30.1 (t), 29.84
	(t), 29.77 (t), 29.7 (t), 29.3 (t), 29.1 (t), 28.5 (t), 28.3 (t), 26.6 (t),
	26.14 (q), 26.06 (t), 26.0 (t), 18.4 (s), -4.2 (q), -4.3 (q) ppm.
FT-IR	(film) $v_{\text {max }} 3550(\mathrm{br}), 2925(\mathrm{~s}), 2854(\mathrm{~m}), 1641$ (w), 1462(m), 1061(s),
	1006(m), $939(\mathrm{~m}), 908(\mathrm{~m}), 835(\mathrm{~s}), 775(\mathrm{~s}), 721(\mathrm{w}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 530\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 535\left([\mathrm{M}+\mathrm{Na}]^{+}, 96 \%\right) \mathrm{Da}$.
HRMS	(ES ${ }^{+} \mathrm{C}_{29} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{SiNa}$ Requires 535.3789; Found 535.3796 Da.
$[\alpha]^{23}{ }_{\text {D }}$	+18.1 ($\mathrm{c}=0.54, \mathrm{CDCl}_{3}$).

$(R)-2-((2 S, 5 S)-5-((2 S, 5 R)-5-((R)-1-t e r t-B u t y l d i m e t h y l s i l y l o x y) t r i d e c-12-e n y l)-$ tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)-2-hydroxyethyl-4methylbenzenesulfonate (6.19) and
(S)-2-((2R,5S)-5-((2S,5R)-5-((R)-1-tert-Butyldimethylsilyloxy)tridec-12-enyl)-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)-2-hydroxyethyl-4-
methylbenzenesulfonate (6.20)

$$
\begin{gathered}
6.19 \\
\mathrm{C}_{25} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{SSi} \\
667.03 \\
\text { Major Product } \\
\\
\mathbf{6 . 2 0} \\
\mathrm{C}_{25} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{SSi} \\
667.03 \\
\text { Minor Product }
\end{gathered}
$$

The title compounds were prepared according to the method Hu et al. ${ }^{230}$ Thus, to a solution of diol 6.17 (enriched, inseparable mixture of diastereoisomers, $196 \mathrm{mg}, 0.382 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(19 \mathrm{~mL})$ under an atmosphere of N_{2} was added $\mathrm{Bu}_{2} \mathrm{SnO}(124 \mathrm{mg}, 0.497 \mathrm{mmol})$ and the heterogeneous solution stirred at reflux for 3.5 hr then allowed to cool to room temperature. $\mathrm{TsCl}(80 \mathrm{mg}, 0.420 \mathrm{mmol})$ was added followed after 2 hr by $\mathrm{TBAB}(5 \mathrm{mg}, 0.016 \mathrm{mmol})$ and the reaction stirred for 18 hr . Concentration in vacuo and purification of the residue by flash column chromatography (silica gel $30 \times 80 \mathrm{~mm}, 5 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded major diastereoisomer 6.19 ($178 \mathrm{mg}, 0.267 \mathrm{mmol}, 70 \%$) and minor diastereoisomer $6.20(12 \mathrm{mg}$, $0.018 \mathrm{mmol}, 5 \%$) as pale yellow oils (total yield $190 \mathrm{mg}, 0.285 \mathrm{mmol}, 75 \%$). This
corresponded to an epoxidation product ratio of $15: 1(d e=86 \%) . \mathrm{R}_{\mathrm{f}, \text { minor }}=0.72, \mathrm{R}_{\mathrm{f}, \text { major }}=$ 0.75 (60% EtOAc/hexane).

Major Product 6.19

${ }^{1}$ H NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.80(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.35(2 \mathrm{H}, \mathrm{d}, J=$ $8.3 \mathrm{~Hz}, \mathrm{ArH}), 5.82\left(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.3,6.8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.00$ $(1 \mathrm{H}, \operatorname{ddt}, J=17.1,3.3,1.8 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.93(1 \mathrm{H}, \operatorname{ddt}, J=10.3$, $3.3,1.3 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.19(1 \mathrm{H}, \mathrm{dd}, J=10.3,3.3 \mathrm{~Hz}, \mathrm{CHHOTs})$, $4.00(1 \mathrm{H}, \mathrm{dd}, J=10.3,6.8 \mathrm{~Hz}, \mathrm{CHHOTs}), 3.96-3.86(4 \mathrm{H}, \mathrm{m}), 3.75-$ $3.62(2 \mathrm{H}, \mathrm{m}), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.33(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.11-1.58$ $(10 \mathrm{H}, \mathrm{m}), 1.54-1.20(18 \mathrm{H}, \mathrm{m}), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$.

${ }^{13} \mathrm{C}$ NMR	(100 MHz, CDCl_{3}) $\delta_{\mathrm{C}} 145.1$ (s), 139.5 (d), 133.0 (s), 130.1 (2 x d),
	129.2 (2 x d), 114.3 (t), 82.54 (d), 82.47 (d), 82.3 (d), 79.3 (d), 74.4
	(d), 71.7 (t), 70.9 (d), 34.0 (t), 32.2 (t), 30.1 (t), 29.9 (t), 29.8 ($), 29.7$
	(t), 29.3 (t), 29.1 (t), 28.6 (t), 28.2 (t), 27.2 (t), 26.4 (t), 26.1 (q), 26.0
	(t), 21.8 (q), 18.4 (s), -4.1 (q), -4.4 (q) ppm.
FT-IR	$\text { (film) } v_{\max } 2925(\mathrm{~s}), 2853(\mathrm{~m}), 1598(\mathrm{w}), 1462(\mathrm{~m}), 1360(\mathrm{~m}), 1252(\mathrm{~m})$
	```1191(m), 1177(s), 1097(m), 1067(m), 978(m), 908(m), 835(s), 813(m),776(m) cm-1.```
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 684\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 689\left([\mathrm{M}+\mathrm{Na}]^{+}, 98 \%\right), 705$ ( $[\mathrm{M}+\mathrm{K}]^{+}, 73 \%$ ) Da .
HRMS	(ES ${ }^{+}$) $\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{SSiNa}$ Requires 689.3878; Found 689.3888 Da.
Elemental	Calc. for $\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{SSi}$ : C, 64.82 ; $\mathrm{H}, 9.37 \%$; Found: C, 65.12 ; H, 9.73\%.
$[\alpha]^{23} \mathrm{D}$	+16.0 (c. 0.42, $\mathrm{CDCl}_{3}$ ).

## Minor Product 6.20

${ }^{1} \mathbf{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.80(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.35(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}, \mathrm{ArH}), 5.82\left(1 \mathrm{H}, \operatorname{ddt}, J=17.1,10.3,6.8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.00$ $(1 \mathrm{H}, \operatorname{ddt}, J=17.1,3.3,1.8 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.93(1 \mathrm{H}, \operatorname{ddt}, J=10.3$, $3.3,1.3 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.11(1 \mathrm{H}, \mathrm{dd}, J=10.0,4.5 \mathrm{~Hz}, \mathrm{CHHOTs})$, $4.01(1 \mathrm{H}, \mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, \mathrm{CHHOTs}), 3.97-3.91(2 \mathrm{H}, \mathrm{m}), 3.90-$
$3.84(2 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.45$
$\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.09-2.01(2 \mathrm{H}, \mathrm{m}), 1.98-1.21(26 \mathrm{H}, \mathrm{m}), 0.88(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 145.1$ (s), 139.5 (d), 133.0 (s), 130.1 ( 2 x d ), 128.2 ( 2 x d), 114.3 (t), 82.3 (d), 81.7 (d), 81.5 (d), 79.7 (d), 74.3 (d), 71.3 ( t$), 70.9$ (d), $34.0(\mathrm{t}), 32.6(\mathrm{t}), 30.1$ ( t$), 29.84(\mathrm{t}), 29.77(\mathrm{t}), 29.7$ (t), 29.3 (t), 29.2 ( t$), 28.3$ ( t$), 28.2$ ( t$), 26.6(\mathrm{t}), 26.1(\mathrm{t}), 25.9(\mathrm{q}), 25.8$ (t), 21.8 (q), 18.4 (s), -4.2 (q), -4.4 (q) ppm.

FT-IR (film) $v_{\max } 3439(\mathrm{br}), 2954(\mathrm{~m}), 2926(\mathrm{~s}), 2854(\mathrm{~m}), 1598(\mathrm{w}), 1462(\mathrm{~m})$, 1361(m), 1291(w), 1253(m), 1190(m), 1177(s), 1071(m), 974(m), $909(\mathrm{~m}), 836(\mathrm{~s}), 814(\mathrm{~m}), 776(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS $\quad\left(\mathrm{ES}^{+}\right) m / z 689\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 684\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 25 \%\right), 705$ ( $[\mathrm{M}+\mathrm{K}]^{+}, 52 \%$ ), 1355 ( $[2 \mathrm{M}+\mathrm{Na}]^{+}, 3 \%$ ) Da .
HRMS
$[\alpha]^{23}{ }^{\mathrm{D}}$ ( $\mathrm{ES}^{+}$) $\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{SSiNa}^{2}$ Requires 689.3878; Found 689.3882 Da. $+7.12\left(c .0 .85, \mathrm{CDCl}_{3}\right)$.

## (S)-2-((2R,5S)-5-((2S,5R)-5-((R)-1-tert-ButyIdimethylsilyloxy)tridec-12-enyl)-

tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)-2-hydroxyethyl-4-
methylbenzenesulfonate (6.20)
The title compound was prepared according to the method Hu et al. ${ }^{230}$ Thus, to a solution of diol $6.18(196 \mathrm{mg}, 0.382 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(19 \mathrm{~mL})$ under an atmosphere of $\mathrm{N}_{2}$ was added $\mathrm{Bu}_{2} \mathrm{SnO}(124 \mathrm{mg}, 0.497 \mathrm{mmol})$ and the heterogeneous solution stirred at reflux for 3.5 hr then allowed to cool to room temperature. $\mathrm{TsCl}(80 \mathrm{mg}, 0.420 \mathrm{mmol})$ was added and the reaction stirred for 5 hr . Concentration in vacuo and purification of the residue by flash column chromatography (silica gel $25 \times 75 \mathrm{~mm}, 5 \% \mathrm{EtOAc} / \mathrm{hexane}$ ) afforded the title compound 6.20 ( $252 \mathrm{mg}, 0.378 \mathrm{mmol}, 99 \%$ ) as a pale yellow oil. $\mathrm{R}_{\mathrm{f}}=0.72(60 \%$ $\mathrm{EtOAc} /$ hexane). The data for this product is stated above.
tert-Butyldimethyl((R)-1-((2S,5S)-5-((2S,5S)-5-((R)-oxiran-2-yl)-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)tridec-12-enyloxy)silane (6.21)


### 6.21 <br> $\mathrm{C}_{29} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}$

494.83

To a solution of tosylate $6.19(411 \mathrm{mg}, 0.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at room temperature under an atmosphere of $\mathrm{N}_{2}$ was added a solution of DBU ( $188 \mathrm{mg}, 1.23 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL ) and the mixture stirred for 10 min . Further DBU ( $188 \mathrm{mg}, 1.23 \mathrm{mmol}$ ) was added and the reaction stirred for a further 20 min , then quenched by the addition of a $10 \% \mathrm{v} / \mathrm{w}$ aqueous solution of citric acid ( 25 mL ). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 3 x 30 mL ) and EtOAc ( $2 \times 30 \mathrm{~mL}$ ) and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $15 \times 90$ $\mathrm{mm}, 5-20 \% \mathrm{EtOAc} / \mathrm{hexane}$ ) afforded the title compound 6.21 ( $276 \mathrm{mg}, 0.56 \mathrm{mmol}, 91 \%$ ) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.80$ ( $60 \% \mathrm{EtOAc} / \mathrm{hexane}$ ).

${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82(1 \mathrm{H}$, ddt, $J=17.1,10.3,6.5 \mathrm{~Hz}$,
	$\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.00(1 \mathrm{H}, \mathrm{ddt}, J=17.1,2.0,1.5 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.93(1 \mathrm{H},$
	ddt, $J=10.3,2.0,1.3 \mathrm{~Hz}, \mathrm{HHC=CH}$, , 4.03-3.83 ( $3 \mathrm{H}, \mathrm{m}$ ), 3.81-3.68
	$(2 \mathrm{H}, \mathrm{m}), 3.02(1 \mathrm{H}, \mathrm{ddd}, J=5.3,4.0,2.8 \mathrm{~Hz}$, epoxide CH$), 2.79(1 \mathrm{H}$,
	dd, $J=5.0,4.0 \mathrm{~Hz}$, epoxide CHH$), 2.58(1 \mathrm{H}, \mathrm{dd}, J=5.0,2.8 \mathrm{~Hz}$,
	epoxide CHH), 2.12-1.97 ( $4 \mathrm{H}, \mathrm{m}$ ), 1.88-1.62 $(6 \mathrm{H}, \mathrm{m}), 1.60-1.16$
	$(18 \mathrm{H}, \mathrm{m}), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 139.5$ (d), 114.3 (t), 82.3 (d), 82.2 (d), 79.8 (d),
	77.5 (d), 74.2 (d), 53.5 (d), 46.0 (t), 34.0 (t), 31.9 (t), 30.1 (t), 29.9 (t),
	29.78 (t), 29.77 (t), 29.7 (t), 29.3 (t), 29.1 (t), 28.4 (t), 28.3 (t), 28.2
	(t), 26.2 (t), 26.1 (q), 18.3 ( s , , 4.1 (q), -4.4 (q) ppm.
FT-IR	(film) $v_{\text {max }}$ 2926(s), 2854(s), 1635(w), 1460(w), 1247(w), 1076(w),
	902(w), $835(\mathrm{~m}), 775(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 517\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 512\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 62 \%\right), 1006$
	$\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 42 \%\right) \mathrm{Da} .$
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{29} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{SiNa}$ Requires 517.3684; Found 517.3695 Da.
$[\alpha]^{23}{ }_{\mathrm{D}}$	+14.6 (c. 0.37, $\mathrm{CDCl}_{3}$ ).

tert-Butyldimethyl((R)-1-((2S,5S)-5-((2S,5R)-5-((S)-oxiran-2-yl)-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)tridec-12-enyloxy)silane (6.22)

6.22
$\mathrm{C}_{29} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}$
494.83

To a solution of tosylate $\mathbf{6 . 2 0}(252 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at room temperature under an atmosphere of $\mathrm{N}_{2}$ was added a solution of DBU ( $188 \mathrm{mg}, 1.23 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL ) and the mixture stirred for 10 min . Further DBU ( $188 \mathrm{mg}, 1.23 \mathrm{mmol}$ ) was added and the reaction stirred for a further 20 min then quenched by the addition of a $10 \% \mathrm{v} / \mathrm{w}$ aqueous solution of citric acid ( 20 mL ). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $12 \times 80 \mathrm{~mm}, 5-25 \%$ EtOAc/hexane) afforded the title compound $\mathbf{6 . 2 2}$ ( $185 \mathrm{mg}, 0.38 \mathrm{mmol}, 99 \%$ ) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.80$ ( $60 \%$ EtOAc/hexane).
${ }^{1}$ H NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.0,6.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.00(1 \mathrm{H}, \mathrm{ddt}, J=17.1,2.0,1.5 \mathrm{~Hz}, \mathbf{H H C}=\mathrm{CH}), 4.93(1 \mathrm{H}$, $\mathrm{m}, \mathrm{HHC}=\mathrm{CH}), 4.04-3.68(5 \mathrm{H}, \mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{ddd}, J=5.5,4.0,3.0 \mathrm{~Hz}$, epoxide CH), $2.80(1 \mathrm{H}, \mathrm{m}$, epoxide CHH$), 2.62(1 \mathrm{H}, \mathrm{dd}, J=5.0,3.0$ Hz , epoxide CHH), 2.10-1.77 ( $8 \mathrm{H}, \mathrm{m}$ ), 1.74-1.51 ( $2 \mathrm{H}, \mathrm{m}$ ), 1.59-1.18 $(18 \mathrm{H}, \mathrm{m}), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.054\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.047(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiCH}_{3}\right) \mathrm{ppm}$.
${ }^{13}$ C NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 139.4$ (d), 114.2 (t), 82.7 (d), 82.4 (d), 82.3 (d), 80.1 (d), 74.1 (d), 53.5 (d), 46.5 (t), 34.0 (t), 31.7 (t), 30.1 (t), 29.84 (t), 29.77 (t), 29.75 (t), 29.7 (t), 29.3 ( $t$ ), 29.1 ( $t), 28.3$ ( $), 28.1$ ( $t$ ), 27.8 ( t$), 26.2$ (q), 26.1 (t), 18.3 ( s$),-4.1$ (q), -4.4 (q) ppm.

FT-IR (film) $v_{\max }$ 2926(s), 2854(s), 1635(w), 1460(w), 1247(w), 1076(w), 902(w), $835(\mathrm{~m}), 775(\mathrm{~m}) \mathrm{cm}^{-1}$.

LRMS $\quad\left(\mathrm{ES}^{+}\right) m / z 512\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 517\left([\mathrm{M}+\mathrm{Na}]^{+}, 46 \%\right), 1006$ $\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 18 \%\right) \mathrm{Da}$.

HRMS
( $\mathrm{ES}^{+}$) $\mathrm{C}_{29} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{SiNa}$ Requires 517.3684 ; Found 517.3686 Da .
$[\alpha]^{23}{ }_{\mathbf{D}} \quad+13.1\left(\right.$ c. $\left.0.37, \mathrm{CDCl}_{3}\right)$.

## ( $R$ )-1-((2S,5S)-5-((2S,5R)-5-((R)-1-tert-Butyldimethylsilyloxy)tridec-12-enyl)-

 tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)undec-1-ol (6.23)
6.23
$\mathrm{C}_{38} \mathrm{H}_{74} \mathrm{O}_{4} \mathrm{Si}$
623.08

Magnesium turnings ( $457 \mathrm{mg}, 18.8 \mathrm{mmol}$ ) were heated at $\sim 400{ }^{\circ} \mathrm{C}$ under an atmosphere of Ar for 5 min then allowed to cool to room temperature. THF ( 50 mL ) and a single crystal of $\mathrm{I}_{2}$ were added, followed by 9-bromononane ( $0.30 \mathrm{~mL}, 1.5 \mathrm{mmol}$ ), dropwise via syringe. The yellow solution was heated at reflux for 10 min until it became colourless, and the remaining l-bromononane ( $2.69 \mathrm{~mL}, 14.1 \mathrm{mmol}$ ) was added via syringe. The solution was heated at reflux for 20 min and at room temperature for 1 hr . The grignard solution was filtered under an atmosphere of Ar and titrated using excess $\mathrm{I}_{2}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, giving an average concentration of 0.40 M . An aliquot of this solution ( $13.6 \mathrm{~mL}, 3.27 \mathrm{mmol}$ ) was then added via syringe to a suspension of CuI ( $312 \mathrm{mg}, 1.64 \mathrm{mmol}$ ) in THF ( 30 mL ) at -60 ${ }^{\circ} \mathrm{C}$ under an atmosphere of Ar. The mixture was allowed to warm to $-25^{\circ} \mathrm{C}$ over a period of 30 min , and was stirred for a further 15 min until dark grey in colour. The reaction mixture was cooled to $-60^{\circ} \mathrm{C}$ and a solution of epoxide $6.21(270 \mathrm{mg}, 0.55 \mathrm{mmol})$ in THF ( 10 mL ) was added via syringe. After stirring for 20 min the reaction was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ followed by water $(10 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \times 30 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel, 5-10\% EtOAc/hexane) afforded the title compound 6.23 ( $312 \mathrm{mg}, 0.50 \mathrm{mmol}, 92 \%$ ) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.85$ ( $60 \% \mathrm{EtOAc} /$ hexane) .
${ }^{1}$ H NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.3,6.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathbf{C H}\right), 5.00(1 \mathrm{H}, \mathrm{ddt}, J=17.1,2.0,1.5 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.93(1 \mathrm{H}$, ddt, $J=10.3,2.0,1.2 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}$ ), 3.98-3.84 ( $4 \mathrm{H}, \mathrm{m}$ ), 3.79-3.69 $(2 \mathrm{H}, \mathrm{m}), 2.14(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOH}), 2.10-1.76(8 \mathrm{H}, \mathrm{m}), 1.71-1.19(41 \mathrm{H}$, $\mathrm{m}), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.054\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.047(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiCH}_{3}$ ) ppm.

${ }^{13} \mathbf{C N M R}$	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 139.5(\mathrm{~d}), 114.3(\mathrm{t}), 82.80(\mathrm{~d}), 82.77(\mathrm{~d}), 82.5$
	(d), 82.3 (d), 74.2 (d), $71.5(\mathrm{~d}), 34.0(\mathrm{t}), 32.6(\mathrm{t}), 32.1(\mathrm{t}), 31.9(\mathrm{t})$,
	$30.0(\mathrm{t}), 29.91(\mathrm{t}), 29.88(\mathrm{t}), 29.81(\mathrm{t}), 29.76(\mathrm{t}), 29.7(\mathrm{t}), 29.5(\mathrm{t}), 29.4$

( t$)$, $29.2(\mathrm{t}), 29.1(\mathrm{t}), 28.2(\mathrm{t}), 26.3(\mathrm{t}), 26.22(\mathrm{t}), 26.17(\mathrm{t}), 26.1(\mathrm{q})$, 24.7 (t), 22.9 (t), 18.4 (s), 14.3 (q), -4.1 (q), -4.4 (q) ppm.

FT-IR (film) $v_{\max }$ 3483(br), 2926(s), 2854(s), 1464(w), 1360(w), 1252(w), $1110(\mathrm{w}), 1075(\mathrm{~m}), 909(\mathrm{w}), 836(\mathrm{~m}), 776(\mathrm{~m}), 721(\mathrm{w}) \mathrm{cm}^{-1}$.
LRMS $\quad\left(\mathrm{ES}^{+}\right) m / z 640\left(\left[\mathrm{M}^{+} \mathrm{NH}_{4}\right]^{+}, 100 \%\right), 645\left([\mathrm{M}+\mathrm{Na}]^{+}, 40 \%\right), 661$ ( $\left.[\mathrm{M}+\mathrm{K}]^{+}, 12 \%\right) \mathrm{Da}$.

HRMS $\quad\left(\mathrm{ES}^{+}\right) \mathrm{C}_{38} \mathrm{H}_{74} \mathrm{O}_{4} \mathrm{SiNa}$ Requires 645.5248; Found 645.5246 Da.
Elemental Calc. for $\mathrm{C}_{38} \mathrm{H}_{74} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 73.25 ; \mathrm{H}, 11.97 \%$; Found: C, 72.86; H, 11.78\%.
$[\alpha]^{23}{ }^{2} \quad+12.5\left(\right.$ c. $\left.0.26, \mathrm{CDCl}_{3}\right)$.
(S)-3-(R,E)13-Hydroxy-13-((2R,5S)-5-((2S,5S)-5-((R)-1-hydroxyundecyl)-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)tridec-2-enyl)-5-methylfuran-2(5H)-one (6.25),
( $R, 2 Z, 5 E)$-Ethyl-16-Hydroxy-3-((S)-1-hydroxyethyl)-16-((2R,5S)-5-((2S,5S)-5-((R)-1-hydroxyundecyl)-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)hexadeca-2,5-dienoate (6.26) and
(R)-1-((2R,5S)-5-((2S,5S)-5-((R)-1-Hydroxyundecyl)-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)tridec-12-en-1-ol) (6.27)



6.26
$\mathrm{C}_{39} \mathrm{H}_{70} \mathrm{O}_{7}$
650.98

$\mathbf{6 . 2 7}$
${ }_{32} \mathrm{H}_{60} \mathrm{O}_{4}$ 508.83

A solution of terminal alkene $\mathbf{6 . 2 3}(23.7 \mathrm{mg}, 0.038 \mathrm{mmol})$ and hydroxy-alkyne 1.146 ( 7.6 $\mathrm{mg}, 0.053 \mathrm{mmol}$ ) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was degassed with $\mathrm{N}_{2}$ for 20 min . Ruthenium catalyst $1.147(0.6 \mathrm{mg}, 0.002 \mathrm{mmol})$ was added and the orange solution heated at $70^{\circ} \mathrm{C}$ under an
atmosphere of $\mathrm{N}_{2}$ for 18 hr . The solution was allowed to cool to room temperature, the solvent was removed in vacuo and the residue was purified by flash column chromatography (silica gel $15 \times 120 \mathrm{~mm}, 1-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). This afforded butenolide $6.25(15.5 \mathrm{mg}, 0.026 \mathrm{mmol}, 67 \%)$, hydroxy-ester $6.26(3.8 \mathrm{mg}, 0.005 \mathrm{mmol}, 14 \%)$, and desilylated starting material, alkene $6.27(4.0 \mathrm{mg}, 0.008 \mathrm{mmol}, 18 \%)$ as pale yellow oils. The ratio of butenolide to hydroxy ester was 4.8:1. $\mathrm{R}_{\mathrm{f}, 6.25}=0.71, \mathrm{R}_{\mathrm{f}, 6.26}=0.51, \mathrm{R}_{\mathrm{f}, 6.27}=$ $0.44\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

## Butenolide 6.25

${ }^{1} \mathbf{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.99\left(1 \mathrm{H}\right.$, app q $\left., J=1.5 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\right)$, 5.62-5.53 (1H, m, $\left.=\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right), \quad 5.51-5.42 \quad(1 \mathrm{H}, \quad \mathrm{m}$, $\left.=\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.04-4.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\right), 3.99-3.80(5 \mathrm{H}$, $\mathrm{m})$, $3.41-3.34(1 \mathrm{H}, \mathrm{m}), 2.96(2 \mathrm{H}, \mathrm{dd}, J=6.5,1.0 \mathrm{~Hz}$, $\left.=\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.07-1.66(12 \mathrm{H}, \mathrm{m}), 1.55-1.18(38 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR

FT-IR
(film) $v_{\text {max }} 3439$ (br), 2925(s), 2852(m), 1758(m), 1660(w), 1373(w), 1318(w), 1261(w), 1190(w), 1077(m), 1023(m), 968(w), 945(w), 875(w), 802(w), $732(\mathrm{~m}) \mathrm{cm}^{-1}$.

LRMS (ES $\left.{ }^{+}\right) m / z 627\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 622\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 78 \%\right) \mathrm{Da}$.
HRMS (ES') $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Na}$ Requires 627.4595; Found 627.4608 Da.
$[\alpha]^{24}{ }_{D}$ +9.0 (c. $0.51, \mathrm{CDCl}_{3}$ ).

## Hydroxy-ester 6.26

${ }^{1}$ H NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.01\left(1 \mathrm{H}, \mathrm{s},=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.57-5.48(1 \mathrm{H}, \mathrm{m}$, $\left.=\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.47-5.39\left(1 \mathrm{H}, \mathrm{m},=\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 4.34(1 \mathrm{H}, \mathrm{app}$ $\left.\mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{CHOHCH}_{3}\right), 4.18\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.00-3.80(5 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}$, ddd, $J=13.6,6.0,1.0 \mathrm{~Hz}$, $=\mathrm{CCHHCH}=\mathrm{CH}), 3.42-3.35(1 \mathrm{H}, \mathrm{m}), 3.17(1 \mathrm{H}, \mathrm{dd}, J=13.6,7.0 \mathrm{~Hz}$,
$=\mathrm{CCHHCH}=\mathrm{CH}), 2.85(2 \mathrm{H}$, br s, $2 \times \mathrm{CHOH}), 2.11-1.71(12 \mathrm{H}, \mathrm{m})$, 1.68-1.19 (42H, m) ppm.
${ }^{13}$ C NMR

FT-IR (film) $\nu_{\text {max }}$ 3432(br), 2924(s), 2853(s), 1716(m), 1647(w), 1460(m),

LRMS
HRMS
$[\alpha]^{24}{ }_{\text {D }}$

( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 163.5$ (s), 162.1 (s), 133.2 (d), 126.8 (d), 114.3 (d), 83.2 (d), 82.9 (d), 82.3 (d), 82.0 (d), 74.8 (d), 71.8 (d), 70.9 (d), 60.0 (t), 34.5 ( t), 32.9 ( t$), 32.8$ ( t$), 32.7$ ( t$), 32.1$ ( t$), 29.9$ ( t$), 29.81$ ( t$),$ 29.76 ( $), 29.72$ ( $), 29.68(t), 29.59(t), 29.56(t), 29.5(t), 29.4(t)$,
 14.5 (q), 14.3 (q) ppm. 1368(m), 1261(m), 1176(m), 1153(m), 1060(m), 970(w), 878(w), 804(w), 732(w) $\mathrm{cm}^{-1}$.
$\left(\mathrm{ES}^{+}\right) m / z 673\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 668\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 42 \%\right) \mathrm{Da}$.
(ES ${ }^{+}$) $\mathrm{C}_{39} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{Na}$ Requires 673.5014; Found 673.5022 Da. +20.2 (c. $0.29, \mathrm{CDCl}_{3}$ ).
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.5,6.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.00(1 \mathrm{H}, \mathrm{ddt}, J=17.1,2.0,1.5 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.93(1 \mathrm{H}$, ddt, $J=10.5,2.0,1.0 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.00-3.80(5 \mathrm{H}, \mathrm{m}), 3.42-3.35$ $(1 \mathrm{H}, \mathrm{m}), 2.10-1.20(49 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 139.3$ (d), 114.2 (t), 83.0 (d), 82.8 (d), 82.2 (d), 81.9 (d), 74.7 (d), 71.7 (d), $34.5(\mathrm{t}), 33.9$ (t), 32.7 (t), 32.0 (t), 30.4 ( $)$, $29.83(t), 29.78(t), 29.72(t), 29.70(t), 29.65(t), 29.58(t), 29.4(t)$, 29.3 (t), 28.5 ( t$), 28.3(\mathrm{t}), 26.1(\mathrm{t}), 26.0(\mathrm{t}), 25.0(\mathrm{t}), 22.8(\mathrm{t}), 14.2$ ( q$)$ ppm.
(film) $v_{\max }$ 3446(br), 2924(s), 2853(s), 1640(w), 1464(w), 1376(w), 1261(w), 1065(m), 952(w), 909(w), 874(w), 803(w), $721(\mathrm{w}) \mathrm{cm}^{-1}$.
( $\mathrm{ES}^{+}$) $m / z 531\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 526\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 37 \%\right), 547$ $\left([\mathrm{M}+\mathrm{K}]^{+}, 5 \%\right), 1039\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 18 \%\right) \mathrm{Da}$. +25.6 (c. $0.21, \mathrm{CDCl}_{3}$ ).
(S)-3-( $R, E)$ 13-Hydroxy-13-((2R,5S)-5-((2S,5R)-5-((S)-1-hydroxyundecyl)-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)tridec-2-enyl)-5-methylfuran-2(5H)-one (6.36) and
( $R, 2 Z, 5 E)$-Ethyl-16-hydroxy-3-((S)-1-hydroxyethyl)-16-((2R,5S)-5-((2S,5R)-5-((S)-1-hydroxyundecyl)-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)hexadeca-2,5-dienoate (6.37)




$$
\begin{gathered}
6.37 \\
\mathrm{C}_{39} \mathrm{H}_{70} \mathrm{O}_{7} \\
650.98
\end{gathered}
$$

A solution of terminal alkene $6.24(51.5 \mathrm{mg}, 0.083 \mathrm{mmol})$ and hydroxy-alkyne 1.146 (16.4 $\mathrm{mg}, 0.116 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ was degassed with $\mathrm{N}_{2}$ for 20 min . Ruthenium catalyst $1.147(1.3 \mathrm{mg}, 0.004 \mathrm{mmol})$ was added and the orange solution heated at $70^{\circ} \mathrm{C}$ under an atmosphere of $\mathrm{N}_{2}$ for 18 hr . The solution was allowed to cool to room temperature, the solvent was removed in vacuo and the residue was purified by flash column chromatography (silica gel $15 \times 130 \mathrm{~mm}, 1-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). This afforded butenolide 6.36 ( $36.0 \mathrm{mg}, 0.059 \mathrm{mmol}, 72 \%$ ) and hydroxy-ester $6.37(10.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 19 \%)$ as pale yellow oils. The ratio of butenolide to hydroxy ester was $3.8: 1 . \mathrm{R}_{\mathrm{f}, 6.36}=0.53, \mathrm{R}_{\mathrm{f}, 6.37}=$ 0.45 ( $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).

## Butenolide 6.36

${ }^{1}$ H NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.00\left(1 \mathrm{H}, \mathrm{appq}, J=1.5 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\right)$, 5.62-5.53 $\left(1 \mathrm{H}, \quad \mathrm{m}, \quad=\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right), \quad 5.51-5.41(1 \mathrm{H}, \quad \mathrm{m}$, $\left.=\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.00\left(1 \mathrm{H}\right.$, app q, $\left.J=1.5 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\right)$, $3.96-3.80(5 \mathrm{H}, \mathrm{m}), 3.44-3.34(1 \mathrm{H}, \mathrm{m}), 2.96(2 \mathrm{H}, \operatorname{app~d}, J=6.5 \mathrm{~Hz}$, $\left.=\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.85(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CHOH}), 2.18-1.70(12 \mathrm{H}, \mathrm{m})$, $1.55-1.18(38 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 173.7$ (s), 149.5 (d), 134.4 (d), 133.8 (s), 123.3 (d), 83.2 (d), 83.1 (d), 81.3 (d), 81.1 (d), 77.7 (d), 74.2 (d), 72.2 (d), 34.5 ( t$), 33.0$ ( t$), 32.7$ ( t$), 32.1$ ( t$), 30.5(\mathrm{t}), 29.9(\mathrm{t}), 29.80(\mathrm{t}), 29.76$
(t), $29.6(t), 29.5(t), 29.4(t), 29.0(t), 28.7(t), 28.6(t), 28.1(t), 26.2$ (t), 26.0 (t), 24.0 (t), 22.9 (t), 19.3 (q), 14.3 (q) ppm.

FT-IR

LRMS
HRMS
$[\alpha]^{24}{ }_{D}$
(film) $\nu_{\text {max }} 3441(\mathrm{br}), 2923(\mathrm{~s}), 2852(\mathrm{~s}), 1758(\mathrm{~m}), 1465(\mathrm{w}), 1370(\mathrm{w})$, 1318(w), 1261(w), 1191(w), 1081(m), 1023(m), 968(w), 862(w), 802(w), 733(w) $\mathrm{cm}^{-1}$.
$\left(\mathrm{ES}^{+}\right) m / z 627\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 622\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 45 \%\right) \mathrm{Da}$.
(ES ${ }^{+}$) $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Na}$ Requires 627.4595; Found 627.4600 Da. +9.6 (c. $0.18, \mathrm{CDCl}_{3}$ ).

Hydroxy-ester 6.37
${ }^{1} \mathrm{H}$ NMR $\left.=\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.47-5.38\left(1 \mathrm{H}, \mathrm{m},=\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 4.35(1 \mathrm{H}, \mathrm{app}$ $\left.\mathrm{dq}, J=6.5,1.0 \mathrm{~Hz}, \mathrm{CHOHCH}_{3}\right), 4.18(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.95-3.82(5 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=13.6,6.0 \mathrm{~Hz}$, $=\mathrm{CCHHCH}=\mathrm{CH}), 3.45-3.38(1 \mathrm{H}, \mathrm{m}), 3.07(1 \mathrm{H}, \mathrm{dd}, J=13.6,7.0 \mathrm{~Hz}$, $=\mathrm{CCHHCH}=\mathrm{CH}), 2.90(2 \mathrm{H}, \mathrm{br} \mathrm{s} 2 \times \mathrm{CHOH}),, 2.05-1.73(12 \mathrm{H}, \mathrm{m})$, 1.57-1.20 ( $42 \mathrm{H}, \mathrm{m}$ ) ppm.

## $(S)$-3-(( $R$ )-13-Hydroxy-13-((2R,5S)-5-((2S,5S)-5-(( $R$ )-1-hydroxyundecyl)-

 tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)tridecyl)-5-methylfuran-2-(5H)-one (6.38)
6.38 $\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{O}_{6}$ 606.92

To a solution of butenolide $\mathbf{6 . 2 5}(15.5 \mathrm{mg}, 0.026 \mathrm{mmol})$ and toluenesulfonyl hydrazide ( 38.2 $\mathrm{mg}, 0.205 \mathrm{mmol}$ ) in THF ( 2 mL ) was added a solution of $\mathrm{NaOAc}(16.2 \mathrm{mg}, 0.205 \mathrm{mmol}$ ) in water ( 2 mL ), and the reaction heated at $70^{\circ} \mathrm{C}$ for 20 hr . The mixture was allowed to cool to room temperature, diluted with water ( 5 mL ) and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x} 15 \mathrm{~mL})$ and EtOAc ( $3 \times 15 \mathrm{~mL}$ ). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $15 \times 100 \mathrm{~mm}, 1-2 \% \mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) afforded the title compound ( $12.6 \mathrm{mg}, 0.021 \mathrm{mmol}, 81 \%$ ) as a white solid. $\mathrm{R}_{\mathrm{f}}=$ $0.51\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

m.p	$38-39^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR	( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{H}} 6.99\left(1 \mathrm{H}\right.$, app q, $J=1.5 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=$ ), $5.00\left(1 \mathrm{H}\right.$, app qq, $\left.J=6.5,1.5 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\right), 3.99-3.81(5 \mathrm{H}$, $\mathrm{m}), 3.42-3.35(1 \mathrm{H}, \mathrm{m}), 2.27(2 \mathrm{H}$, app. $\mathrm{tt}, J=7.8,1.5 \mathrm{~Hz}$, $=\mathrm{CCH}_{2} \mathrm{CH}_{2}$ ), 2.13-1.71 $(12 \mathrm{H}, \mathrm{m}), 1.61-1.20(44 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 174.1$ (s), 149.0 (d), 134.6 (s), 83.1 (d), 83.0 (d), 82.3 (d), 82.0 (d), 78.0 (d), 74.8 (d), 71.8 (d), 34.5 (t), 32.8 (t),       25.1 (t), 22.9 (t), 19.4 (q), 14.3 (q) ppm.
FT-IR	(film) $\nu_{\text {max }} 3402(\mathrm{br}), 2923(\mathrm{~s}), 2852(\mathrm{~m}), 1758(\mathrm{~s}), 1465(\mathrm{~m}), 1317(\mathrm{~m})$, $1261(\mathrm{~m}), 1069(\mathrm{~s}), 1027(\mathrm{~s}), 952(\mathrm{~m}), 875(\mathrm{~m}), 804(\mathrm{~m}), 732(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 629\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 624\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 32 \%\right) \mathrm{Da}$.
HRMS	( $\mathrm{ES}^{+}$) $\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{Na}$ Requires 629.4751; Found 629.4759 Da.
$[\alpha]^{24} \mathrm{D}$	+8.5 (c. $0.35, \mathrm{CDCl}_{3}$ ).

(S)-3-((R)-13-Hydroxy-13-((2R,5S)-5-((2S,5R)-5-((S)-1-hydroxyundecyl)-tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)tridecyl)-5-methylfuran-2-(5H)-one (3.19)


3.19<br>$\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{O}_{6}$<br>606.92

To a solution of butenolide 6.36 ( $33 \mathrm{mg}, 0.055 \mathrm{mmol}$ ) and toluenesulfonyl hydrazide (102 mg, 0.546 mmol ) in THF ( 4 mL ) was added a solution of $\mathrm{NaOAc}(45 \mathrm{mg}, 0.546 \mathrm{mmol})$ in water ( 4 mL ), and the reaction heated at $70^{\circ} \mathrm{C}$ for 20 hr . The mixture was allowed to cool to room temperature, diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and $\mathrm{EtOAc}(3$ x 15 mL$)$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $15 \times 100 \mathrm{~mm}, 1-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) afforded the title compound ( $26 \mathrm{mg}, 0.055 \mathrm{mmol}, 78 \%$ ) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.51(5 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).

m.p	$37-38{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR	( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{H}} 6.99\left(1 \mathrm{H}\right.$, app q, $\left.J=1.5 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\right)$,
	$4.99\left(1 \mathrm{H}\right.$, app qq, $\left.J=6.5,1.5 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\right), 3.96-3.70(5 \mathrm{H}$,
	m), 3.45-3.38(1H, m), $2.31(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CHOH}), 2.27(2 \mathrm{H}, \mathrm{app} \mathrm{tt}, J$
	$\left.=7.8,1.5 \mathrm{~Hz},=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 2.10-1.71(10 \mathrm{H}, \mathrm{m}), 1.61-1.20(44 \mathrm{H}, \mathrm{m})$
	ppm.
${ }^{13} \mathrm{C}$ NMR	( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 174.0$ (s), 149.0 (d), 134.6 (s), 83.2 (d), 83.1
	(d), 81.3 (d), 81.2 (d), 77.6 (d), 74.2 (d), 72.2 (d), 34.5 (t), 33.0 (t),
	32.1 (t), 29.9 (t), 29.81 (t), 29.76 (t), 29.7 (t), 29.52 (t), 29.50 (t), 29.4
	(t), 29.0 (t), 28.6 (t), 28.1 (t), 27.6 (t), 26.2 (t), 26.0 (t), 24.0 ( t , , 22.9
	(t), 19.4 (q), 14.3 (q) ppm.
FT-IR	(film) $\nu_{\text {max }}$ 3444(br), 2924(s), 2852(s), 1757(s), 1464(m), 1373(w),
	1318(w), 1261(w), 1069(m), 1028(m), 954(w), 873(w), 802(m),
	$722(\mathrm{w}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 629\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 624\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 5 \%\right) \mathrm{Da}$.
HRMS	( $\mathrm{ES}^{+}$) $\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{Na}$ Requires 629.4752; Found 629.4748 Da.
$[\alpha]^{24}{ }_{\text {D }}$	+14.7 (c. 0.32, $\mathrm{CDCl}_{3}$ ).

( $1 S)$ - $N$-\{(R)-2-Hydroxy-2-((2S,5R)-5-((R)-1-hydroxy)-5methylhex-4-enyl)-tetrahydrofuran-2-yl)ethanoyl\}-camphor-10,2-sultam (7.1)

7.1
$\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{~S}$
455.61

To a solution of triene 4.26 ( $400 \mathrm{mg}, 0.99 \mathrm{mmol}$ ), and adogen-464 (2 drops) in acetone (14 mL ) and $\mathrm{AcOH}(9 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$ under an atmosphere of $\mathrm{N}_{2}$ was added powdered $\mathrm{KMnO}_{4}$ $(280 \mathrm{mg}, 1.78 \mathrm{mmol})$ in three batches at intervals of 30 seconds. The reaction was stirred for 1 hr and quenched by pouring into an ice-cooled saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ $(50 \mathrm{~mL})$. The solution was extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $20 \times 30 \mathrm{~mm}, 10-30 \% \mathrm{EtOAc} /$ hexane) afforded the title compound 7.2 ( $237 \mathrm{mg}, 0.52 \mathrm{mmol}, 52 \%$ ) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.53(60 \%$ EtOAc/hexane).

m.p.	$48-50^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR	( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{H}} 5.14-5.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.59-4.52$
	( $2 \mathrm{H}, \mathrm{m}, \mathrm{CHCHOHCON}$ ), $4.03(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{CHOH}), 3.95$
	$(1 \mathrm{H}, \mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, \mathrm{CHN}), 3.85(1 \mathrm{H}, \mathrm{td}, J=7.5,4.5 \mathrm{~Hz}$,
	$\mathrm{CHCHOHCH}_{2}$ ), $3.51 \& 3.44\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right.$ ),
	3.46 ( $1 \mathrm{H}, \mathrm{td}, J=13.1,4.5 \mathrm{~Hz}, \mathrm{CHCHOHCH} 2), 2.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}$,
	$\mathrm{CHOH}), 2.30-1.80(8 \mathrm{H}, \mathrm{m}), 1.68$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ ), $1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$,
	$1.60-1.16(7 \mathrm{H}, \mathrm{m}), 1.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 171.8$ (s), 132.2 (s), 124.2 (d), 83.3 (d), 78.8
	(d), 73.7 (d), 73.6 (d), 65.9 (d), 53.2 (t), 49.2 ( s$), 48.0$ ( s$), 44.7$ (d),
	38.4 (t), 34.7 (t), 33.0 (t), 28.5 (t), 28.3 (t), 26.5 (t), 25.9 (q), 24.4 (t),
	21.0 (q), 20.0 (q), 17.9 (q) ppm.
FT-IR	(film) $v_{\text {max }} 3462(\mathrm{br}), 2959(\mathrm{~m}), 2916(\mathrm{~s}), 2849(\mathrm{w}), 1690(\mathrm{~m}), 1456(\mathrm{w})$,
	1413(w), 1376(m), 1376(w), 1333(s), 1218(m), 1167(m), 1136(s),
	$1111(\mathrm{~m}), 1069(\mathrm{~m}), 990(\mathrm{w}), 763(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / z 478\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 933\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 25 \%\right) \mathrm{Da}$.
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{SNa}$ Requires 478.2234; Found 478.2234 Da.

Elemental
Calc. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 60.63 ; \mathrm{H}, 8.16 ; \mathrm{N}, 3.07 \%$; Found: C, 60.73 ; H, 8.16; N, 2.87\%.
$[\alpha]^{24}{ }^{24} \quad-25.5\left(\right.$ c. $\left.0.64, \mathrm{CHCl}_{3}\right)$.

## (R)-Methyl-2-hydroxy-2-((2S,5R)-5-((2R,5S)-5-(2-hydroxypropan-2-yl)-

 tetrahydrofuran-2-yl)-tetrahydrofuran-2-yl)acetate (7.2)
7.2
$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{6}$
288.34

To a suspension of $\mathrm{Re}_{2} \mathrm{O}_{7}$ ( $238 \mathrm{mg}, 0.49 \mathrm{mmol}$ ) in THF ( 4 mL ) at room temperature under an atmosphere of $\mathrm{N}_{2}$ was added TFAA ( $0.09 \mathrm{~mL}, 0.62 \mathrm{mmol}$ ), and the mixture stirred for 1.5 hr . The solvent was removed in vacuo and the residue was washed with freshly distilled hexane ( $2 \times 1 \mathrm{~mL}$ ) and then taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. To the dark blue suspension was added TFAA ( $0.09 \mathrm{~mL}, 0.62 \mathrm{mmol}$ ) followed by a solution of alkene $7.1(83 \mathrm{mg}, 0.18$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, resulting in an immediate colour change to purple. The mixture was stirred for 20 min , during which the colour changed to black. The reaction was quenched by the addition of a saturated aqueous solution of $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ and a $30 \%$ aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}(4 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $3 \times 20 \mathrm{~mL}$ ). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel, $12 \times 50 \mathrm{~mm}, 1-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) resulted in transesterification to the methyl ester, affording title compound 7.2 ( $32 \mathrm{mg}, 0.11 \mathrm{mmol}$, $61 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.20\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.50(1 \mathrm{H}, \mathrm{ddd}, J=8.0,3.0,2.0 \mathrm{~Hz}), 4.07-3.97$
	$(4 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.25-2.04(4 \mathrm{H}, \mathrm{m}), 2.00-1.85(6 \mathrm{H}, \mathrm{m}), 1.31$ $(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 173.5$ (s), 86.7 (d), 81.8 (d), 81.3 (d), 80.6 (d), 75.4 (d), 71.5 ( s$), 52.2$ (q), 29.7 ( t$), 29.0(\mathrm{t}), 28.9$ ( t$), 27.9$ ( q$), 27.1$ ( t ),
	24.2 (q) ppm.
FT-IR	$\begin{aligned} & \left(\text { film) } v_{\max } 3400(\mathrm{br}), 2972(\mathrm{~m}), 2874(\mathrm{w}), 1752(\mathrm{~s}), 1462(\mathrm{~m}), 1441(\mathrm{~m}),\right. \\ & 1268(\mathrm{~m}), 1195(\mathrm{~m}), 1178(\mathrm{~s}), 1128(\mathrm{~s}), 1104(\mathrm{~s}), 1061(\mathrm{~s}), 949(\mathrm{~m}), \\ & 881(\mathrm{~m}), 798(\mathrm{~m}), 760(\mathrm{~m}) \mathrm{cm}^{-1} . \end{aligned}$
LRMS	$\left(\mathrm{ES}^{+}\right) m / z 311\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 306\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 35 \%\right), 327$ $\left([\mathrm{M}+\mathrm{K}]^{+}, 7 \%\right), 594\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 8 \%\right), 594\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 35 \%\right) \mathrm{Da}$.

HRMS
$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}$ Requires 311.1465; Found 311.1466 Da.
$[\alpha]^{24}{ }^{\mathrm{D}}$ +42.0 (c. $0.49, \mathrm{CHCl}_{3}$ ).
(1S)- N -\{(R)-2-(tert-Butyldimethylsilyloxy)-2-((2S,5R)-5-( $(R)-1-($ tert-butyldimethylsilyloxy)-5methylhex-4-enyl)-tetrahydrofuran-2-yl)ethanoyl\}-camphor-10,2-sultam (7.3)

7.3
$\mathrm{C}_{35} \mathrm{H}_{65} \mathrm{NO}_{6} \mathrm{SSi}$
684.16

To a solution of diol $7.1(0.30 \mathrm{~g}, 0.67 \mathrm{mmol})$ and $\mathrm{TBSCl}(1.00 \mathrm{~g}, 6.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 8 mL ) at room temperature under an atmosphere of $\mathrm{N}_{2}$ was added imidazole ( $0.91 \mathrm{~g}, 13.34$ mmol ) as a single batch. The reaction was stirred for 30 hr , quenched with water ( 10 mL ) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel, $20 \times 50$ $\mathrm{mm}, 5 \% \mathrm{EtOAc} / \mathrm{hexane}$ ) afforded the title compound 7.3 ( $0.36 \mathrm{~g}, 0.53 \mathrm{mmol}, 79 \%$ ) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.66(40 \% \mathrm{EtOAc} /$ hexane $)$.
m.p.
${ }^{1} \mathrm{H}$ NMR
${ }^{13}$ C NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 170.1$ (s), 131.3 (s), 124.9 (d), 82.0 (d), 80.3 (d), 74.9 (d), 73.1 (d), 65.6 (d), 53.4 (t), 48.6 (s), 47.9 (s), 44.7 (d),
 24.8 (t), 21.1 (q), 20.1 (q), 18.4 (s), 18.3 (s), 17.9 (q), -4.2 (q), -4.37 (q), -4.42 (q), -4.7 (q) ppm.

FT-IR	(film) $v_{\text {max }} 2955(\mathrm{~m}), 2928(\mathrm{~m}), 2884(\mathrm{~m}), 2856(\mathrm{~m}), 1699(\mathrm{~m}), 1471(\mathrm{w})$,
	$1463(\mathrm{w}), 1389(\mathrm{w}), 1337(\mathrm{w}), 1251(\mathrm{w}), 1215(\mathrm{w}), 1166(\mathrm{w}), 1135(\mathrm{~m})$,
	$1081(\mathrm{~m}), 982(\mathrm{w}), 837(\mathrm{~s}), 774(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 706\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 701 \quad\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 76 \%\right), 1389$
	$\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 6 \%\right) \mathrm{Da}$.
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{35} \mathrm{H}_{65} \mathrm{NO}_{6} \mathrm{SSi}_{2} \mathrm{Na}^{2}$ Requires 706.3963; Found 706.3979 Da.
Elemental	Calc. for $\mathrm{C}_{35} \mathrm{H}_{65} \mathrm{NO}_{6} \mathrm{SSi}_{2}: \mathrm{C}, 61.45 ; \mathrm{H}, 9.58 ; \mathrm{N}, 2.05 \% ;$ Found: C,
	$61.23 ; \mathrm{H}, 9.80 ; \mathrm{N}, 1.91 \%$.

(1S)-N-\{(R)-2-(tert-Butyldimethylsilyloxy)-2-((2S,5R)-5-((R)-1-tert-butyldimethylsilyloxy)-4-oxobutyl)tetrahydrofuran-2-yl)ethanoyl\}-camphor-10,2sultam (7.4)


$\quad$| 7.4 |
| :---: |
| $\mathrm{C}_{32} \mathrm{H}_{59} \mathrm{NO}_{7} \mathrm{SSi}_{2}$ |
| 658.06 |

To a solution of alkene $7.3(50 \mathrm{mg}, 0.073 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature were added a $2.5 \% \mathrm{w} / \mathrm{w}$ solution of $\mathrm{OsO}_{4}$ in 2-methyl-2-propanol ( 10 mg ) and NMO (17 $\mathrm{mg}, 0.146 \mathrm{mmol}$ ) and the solution stirred for 8 hr . The mixture was quenched with a $10 \%$ w/v aqueous solution of $\mathrm{NaHSO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{SiO}_{2}$-supported $\mathrm{NaIO}_{4}(500 \mathrm{mg})$ was added. After 3 hr the solution was filtered, the filtrate concentrated in vacuo and the residue purified by flash column chromatography (silica gel, $20 \times 50 \mathrm{~mm}, 5 \% \mathrm{EtOAc} /$ hexane) affording the title compound 7.4 ( $18 \mathrm{mg}, 0.027 \mathrm{mmol}, 37 \%$ ) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.66$ ( $40 \% \mathrm{EtOAc} / \mathrm{hexane}$ ).
m.p.
$158-160^{\circ} \mathrm{C}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 9.77(1 \mathrm{H}, \mathrm{t}, J=13.6 \mathrm{~Hz}, \mathrm{CHO}), 4.70(1 \mathrm{H}, \mathrm{d}, J$ $\left.=5.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CON}\right), 4.27(1 \mathrm{H}$, app. $\mathrm{q}, J=5.5 \mathrm{~Hz}$, $\mathrm{CHCH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CON}$ ), 3.94-3.88 ( $\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CHN}+\mathrm{CHCH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CH}_{2}\right)$, 3.84-3.78 (1H, m, $\left.\mathrm{CH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CH}_{2}\right), 3.49 \& 3.43(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=$ $13.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}$ ), 2.55-2.41 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}$ ), 2.12-1.58 ( $10 \mathrm{H}, \mathrm{m}$ ),
$1.46-1.25(3 \mathrm{H}, \mathrm{m}), 1.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.88(18 \mathrm{H}, \mathrm{s}$,

	$\left.2 \times \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.13\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{SiCH}_{3}\right), 0.10\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{SiCH}_{3}\right), 0.06(3 \mathrm{H}, \mathrm{~s},$
${ }^{13} \mathrm{C}$ NMR	(100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 203.2$ (d), 169.9 (s), 82.0 (d), 80.2 (d), 74.4 (d),
	72.4 (d), 65.7 (d), 53.4 (t), 48.7 (s), 47.9 (s), 44.7 (d), 40.8 (t), 38.6
	(t), 33.1 (t), 27.4 (t), 26.6 (t), 26.0 (q), 25.7 (t), 24.7 (t), 21.0 (q), 20.1
	(q), 18.4 (s), 18.2 (s), -4.2 (q), -4.48 (q), -4.51 (q), -4.6 (q) ppm.
FT-IR	(film) $v_{\text {max }} 2954(\mathrm{~m}), 2926(\mathrm{~m}), 2885(\mathrm{~m}), 2855(\mathrm{~m}), 1724(\mathrm{~m}), 1701(\mathrm{~m})$,
	1471(w), 1390(w), 1334(m), 1252(m), 1216(m), 1134(s), 1005(s),
	838(s), $778\left(\mathrm{~m}\right.$ ) $\mathrm{cm}^{-1}$.
LRMS	$\left(\mathrm{ES}^{+}\right) m / z 680\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 675\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 4 \%\right), 696\left([\mathrm{M}+\mathrm{K}]^{+}\right.$,
	14\%) Da.
HRMS	( $\mathrm{SS}^{+}$) $\mathrm{C}_{32} \mathrm{H}_{59} \mathrm{NO}_{7} \mathrm{SSi}_{2} \mathrm{Na}^{\text {R }}$ Requires 680.3443; Found 680.3452 Da.
Elemental	Calc. for $\mathrm{C}_{32} \mathrm{H}_{59} \mathrm{NO}_{7} \mathrm{SSi}_{2}$ : $\mathrm{C}, 58.41 ; \mathrm{H}, 9.04 ; \mathrm{N}, 2.13 \%$; Found: C,
	58.56; H, 8.84; N, 1.88\%.
$[\alpha]^{24}{ }^{\text {d }}$	-10.8 (c. 0.64, $\mathrm{CHCl}_{3}$ ).

## (1S)- N -\{(R)-2-(tert-Butyldimethylsilyloxy)-2-((2S,5R)-5-((R,E)-1-tert-

 butyldimethylsilyloxy)pentadec-4-enyl)-tetrahydrofuran-2-yl)\}-camphor-10,2-sultam (7.5)

$$
\begin{gathered}
7.5 \\
\mathrm{C}_{43} \mathrm{H}_{81} \mathrm{NO}_{6} \mathrm{SSi} \\
796.34
\end{gathered}
$$

The title compound was prepared according to the method Kocienski et al. ${ }^{232}$ Thus, to a solution of sulfone $7.9(25 \mathrm{mg}, 0.072 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ under an atmosphere of $\mathrm{N}_{2}$ was added a 1 M solution of NaHMDS in hexanes ( $0.07 \mathrm{~mL}, 0.070 \mathrm{mmol}$ ) over 5 min , and the reaction was stirred for 45 min . A solution of aldehyde $7.4(43 \mathrm{mg}, 0.065 \mathrm{mmol})$ in DME ( 1 mL ) was added and the mixture was stirred at $-55^{\circ} \mathrm{C}$ for 1 hr then at room temperature for 18 hr . The reaction was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and EtOAc ( $2 \times 10 \mathrm{~mL}$ ). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to a residue which was purified by flash column chromatography (silica gel, $10 \times 60 \mathrm{~mm}, 5 \%$ EtOAc/hexane)
affording the title compound 7.5 ( $31 \mathrm{mg}, 0.039 \mathrm{mmol}, 60 \%$ ) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.69$ ( $40 \% \mathrm{EtOAc} /$ hexane).

m.p	$173-175{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.47-5.33(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 4.52(1 \mathrm{H}, \mathrm{d}, J=$ $\left.6.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CON}\right), 4.25-4.18(1 \mathrm{H}, \mathrm{m}), 3.94-3.87(2 \mathrm{H}, \mathrm{m})$, $3.78-3.71(1 \mathrm{H}, \mathrm{m}), 3.49 \& 3.42\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=14.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right)$, 2.55-2.41 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}$ ), 2.22-1.22 ( $33 \mathrm{H}, \mathrm{m}$ ), $1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.92-0.87\left(21 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.05$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}$ ) ppm.
${ }^{13} \mathrm{C}$ NMR	( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 170.1$ (s), 130.7 (d), 130.3 (d), 81.9 (d), 80.3 (d), 75.0 (d), 72.8 (d), 65.6 (d), 53.4 (t), 48.7 ( s$), 47.9$ ( s$), 44.7$ (d), $38.6(t), 33.2(t), 32.9(t), 32.1(t), 29.9(t), 29.8(t), 29.59(t), 29.56$ (t), 29.5 ( $), 29.2$ ( t$), 27.5(\mathrm{t}), 26.7(\mathrm{t}), 26.1(\mathrm{q}), 26.0(\mathrm{t}), 22.9(\mathrm{t}), 21.1$ (q), 20.1 (t), 18.5 ( s$), 18.3$ ( s$), 14.3$ (q), -4.2 (q), $-4.29(\mathrm{q}),-4.31(\mathrm{q})$, -4.7 (q) ppm.
FT-IR	```(film) }\mp@subsup{v}{\mathrm{ max }}{2959(m), 2925(m), 2854(m), 1701(s), 1459(m), 1338(s), 1252(s), 1215(s), 1165(m), 1135(s), 1081(s), 837(s), 779(s), 734(m) cm```
LRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 818\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 813\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 19 \%\right), 834$ ( $[\mathrm{M}+\mathrm{K}]^{+}, 4 \%$ ) Da.
HRMS	$\left(\mathrm{ES}^{+}\right) \mathrm{C}_{43} \mathrm{H}_{81} \mathrm{NO}_{6} \mathrm{SSi}_{2} \mathrm{Na}$ Requires 818.5215; Found 818.5226 Da.
$[\alpha]^{24}{ }^{2}$	-16.9 (c. $0.28, \mathrm{CHCl}_{3}$ ).

## 1-tert-Butyl-1H-tetrazole-5-thiol (7.7)



## 7.7

$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}$
158.23

The title compound was prepared according to the method Quast et al. ${ }^{233}$ Thus, a solution of $\mathrm{NaN}_{3}(2.82 \mathrm{~g}, 43.4 \mathrm{mmol})$ in water ( 13.6 mL ) was heated at reflux for 1.5 hr , and a solution of $t$-butyl-iso-thiocyanate $(5.00 \mathrm{~g}, 43.4 \mathrm{mmol})$ in 2-propanol $(10.6 \mathrm{~mL})$ was added. The mixture was heated at reflux for 16 hr , then was cooled to $0^{\circ} \mathrm{C}$ and quenched by the careful dropwise addition of concentrated $\mathrm{HCl}(6.4 \mathrm{~mL})$. The 2-propanol was removed in
vacuo and the resulting white solid was collected by filtration, recrystallised from cyclohexane and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ affording the title compound $7.7(4.44 \mathrm{~g}, 29.3$ $\mathrm{mmol}, 68 \%)$ as an off-white solid. $\mathrm{R}_{\mathrm{f}}=0.12(20 \%$ EtOAc/hexane $)$.

m.p.	92-94 ${ }^{\circ} \mathrm{C}$ (EtOH).
${ }^{1} \mathrm{H}$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 14.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{SH}), 1.86\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right)$ ppm.
${ }^{13} \mathrm{C}$ NMR	( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 163.1(\mathrm{~s}, \mathbf{C S H}), 63.8\left(\mathrm{~s}, \mathbf{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.9(\mathrm{q}$, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{ppm}$.
FT-IR	$\begin{aligned} & \text { (solid) } v_{\max } 3056(\mathrm{~m}), 2983(\mathrm{~s}), 2914(\mathrm{~s}), 2784(\mathrm{~s}), 2745(\mathrm{~m}), 2610(\mathrm{~m}), \\ & 2575(\mathrm{w}), 254 \mathrm{l}(\mathrm{w}), 1513(\mathrm{~s}), 1479(\mathrm{w}), 1406(\mathrm{w}), 1369(\mathrm{~m}), 1363(\mathrm{~m}), \\ & 1335(\mathrm{~s}), 1304(\mathrm{~s}), 1236(\mathrm{w}), 1213(\mathrm{~m}), 1095(\mathrm{~m}), 1065(\mathrm{~m}), 1029(\mathrm{~m}), \\ & 993(\mathrm{w}), 805(\mathrm{~m}) \mathrm{cm}^{-1} . \end{aligned}$
LRMS	(CI) $m / z 159\left([\mathrm{M}+\mathrm{H}]^{+}, 24 \%\right), 127$ (32\%), 99 (100\%), 57 (11\%) Da.
HRMS	(EI) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}$ Requires 158.0626; Found 158.0624 Da .
Elemental	Calc. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}$ : C, 37.96; H, 6.37; N, 35.39\%; Found: C, 37.74; H, 6.50; N, 35.22\%.

## 1-tert-Butyl-5-(undecylthio)-1H-tetrazole (7.8)



$$
\begin{gathered}
7.8 \\
\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{~S} \\
312.53
\end{gathered}
$$

The title compound was prepared according to the method Kocienski et al. ${ }^{232}$ Thus, to a solution of thiol $7.7(1.50 \mathrm{~g}, 9.48 \mathrm{mmol})$ in $\mathrm{EtOH}(95 \mathrm{~mL})$ was added ground $\mathrm{KOH}(0.75 \mathrm{~g}$, 13.36 mmol ) followed after 30 min by 1 -bromoundecane ( $2.33 \mathrm{~mL}, 9.32 \mathrm{mmol}$ ), and the solution stirred at room temperature for $60 \mathrm{hr} . \mathrm{SiO}_{2}(5 \mathrm{~g})$ was added, the solvent was removed in vacuo and the residue was purified by flash column chromatography (silica gel, $35 \times 150 \mathrm{~mm}, 5 \% \mathrm{EtOAc} /$ hexane $)$ affording the title compound $7.8(2.37 \mathrm{~g}, 7.59 \mathrm{mmol}$, $80 \%$ ) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.50$ ( $20 \% \mathrm{EtOAc} /$ hexane ).
m.p.
${ }^{1}$ H NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.37\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 1.80(2 \mathrm{H}$, app. quin, $\left.J=7.3 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 1.71\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.48-1.40(2 \mathrm{H}$,
$\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38-1.21\left(14 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{7}\right), 0.88(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ ) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 153.0(\mathrm{~s}), 61.0(\mathrm{~s}), 34.1(\mathrm{t}), 32.1(\mathrm{t}), 29.74(\mathrm{t})$, 29.71 (t), 29.6 ( t$), 29.5$ ( t$), 29.2$ (t), 28.9 (q), 23.3 ( t$), 14.7$ (q) ppm.

FT-IR (solid) $v_{\text {max }}$ 2983(m), 2918(s), 2852(m), 1470(w), 1388(s), 1360(m), $1286(\mathrm{~m}), 1224(\mathrm{~m}), 1138(\mathrm{~m}), 1101(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS $\quad\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 335\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 647\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 98 \%\right) \mathrm{Da}$.
HRMS
( $\mathrm{ES}^{+}$) $\mathrm{C}_{32} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{~S}_{2} \mathrm{Na}$ Requires 647.4588; Found 647.4589 Da.
Elemental Calc. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 61.49$; H, 10.32; N, 17.92\%; Found: C, 61.22; H, 10.19; N, 17.63\%.

1-tert-Butyl-5-(undecylsulfonyl)-1 $H$-tetrazole (7.9)


$$
\begin{gathered}
7.9 \\
\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} \\
344.53
\end{gathered}
$$

To a heterogeneous solution of thioether $7.8(2.78 \mathrm{~g}, 8.9 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(3.73 \mathrm{~g}, 44.5$ mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL})$ was added $50 \% m$-CPBA ( $7.67 \mathrm{~g}, 22.2 \mathrm{mmol}$ ) in ten batches over a period of 10 min . The reaction was stirred at room temperature for 14 hr , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and quenched by the addition of saturated aqueous solutions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ ( 75 mL ) then $\mathrm{NaHCO}_{3}(75 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 75 \mathrm{~mL})$ and the combined organic phase was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(3 \mathrm{x}$ 75 mL ) and brine ( 70 mL ), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (silica gel $30 \times 210 \mathrm{~mm}, 5 \% \mathrm{EtOAc} / \mathrm{hexane}$ ) afforded the title compound $7.9(1.91 \mathrm{~g}, 5.5 \mathrm{mmol}, 62 \%)$ as a white solid. $\mathrm{R}_{\mathrm{f}}=0.55(20 \% \mathrm{EtOAc} /$ hexane $)$.
m.p.
${ }^{1} \mathrm{H}$ NMR
${ }^{13} \mathrm{C}$ NMR
$65-67^{\circ} \mathrm{C}$.
( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{H}} 3.83-3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SO}_{2} \mathrm{CH}_{2}\right), 2.25-1.89(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.86\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.55-1.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.40-1.23\left(14 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{7}\right), 0.89\left(3 \mathrm{H}, \mathrm{t}, J=7.03 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$. ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 154.2\left(\mathrm{~s}, \mathrm{CSO}_{2}\right), 65.6\left(\mathrm{~s}, \mathbf{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 56.9$ (t, $\mathrm{SO}_{2} \mathrm{CH}_{2}$ ), $32.1\left(\mathrm{t}, \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ ), $29.8\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.7$ (t), 29.6 ( t$)$, 29.5 (t), 29.4 ( t , 29.1 ( t$), 28.4$ ( t , 22.8 ( t$), 22.3$ ( t$), 14.3\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ ppm.

FT-IR (solid) $v_{\text {max }}$ 2925(s), 2855(s), 1466(w), 1376(m), 1337(s), 1245(w), $1210(\mathrm{~m}), 1159(\mathrm{~s}), 1123(\mathrm{~m}) \mathrm{cm}^{-1}$.
LRMS $\quad\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 367\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right) \mathrm{Da}$.
HRMS
Elemental
(ES') $\mathrm{C}_{32} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}$ Requires 711.4384; Found 711.4397 Da. Calc. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 55.78 ; \mathrm{H}, 9.36$; N, 16.25\%; Found: C, 55.56; H, 9.51; N, 16.32\%.

## Chapter 10

## References

(1) Leboeuf, M.; Cave, A.; Bhaunik, P. K.; Mukherjee, B.; Mukherjee, R. Phytochemistry 1982, 21, 2783-2813.
(2) Jolad, S. D.; Hoffmann, J. J.; Schram, K. H.; Cole, J. R. J. Org. Chem. 1982, 47, 3151-3153.
(3) Alali, F. Q.; Liu, X. X.; McLaughlin, J. L. J. Nat. Prod. 1999, 62, 504-540.
(4) Zeng, L.; Ye, Q.; Oberlies, N. H.; Shi, G.; Gu, Z. M.; He, K.; McLaughlin, J. L. Nat. Prod. Rep. 1996, 13, 275-306.
(5) Cave, A. Chem. Listy 1993, 87, 24-27.
(6) Fang, X. P.; Rieser, M. J.; Gu, Z. M.; Zhao, G. X.; McLaughlin, J. L. Phytochem. Anal. 1993, 4, 27-48.
(7) Rupprecht, J. K.; Hui, Y. H.; McLaughlin, J. L. J. Nat. Prod. 1990, 53, 237-278.
(8) He, K.; Zeng, L.; Ye, Q.; Shi, G. E.; Oberlies, N. H.; Zhao, G. X.; Njoku, J.; McLaughlin, J. L. Pestic. Sci. 1997, 49, 372-378.
(9) He, K.; Zhao, G. X.; Shi, G.; Zeng, L.; Chao, J. F.; McLaughlin, J. L. Bioorg. Med. Chem. 1997, 5, 501-506.
(10) Johnson, H. A.; Oberlies, N. H.; Alali, F. Q.; McLaughlin, J. L. Biologically Active Natural Products 2000, 173-183.
(11) Lewis, M. A.; Arnason, J. T.; Philogene, B. J. R.; Rupprecht, J. K.; McLaughlin, J. L. Pest. Biochem. Physiol. 1993, 45, 15-23.
(12) Guadano, A.; Gutierrez, C.; de la Pena, E.; Cortes, D.; Gonzalez-Coloma, A. J. Nat. Prod. 2000, 63, 773-776.
(13) Alali, F. Q.; Kaakeh, W.; Bennett, G. W.; McLaughlin, J. L. J. Econ. Entomol. 1998, 91, 641-649.
(14) Wang, X.-W.; Xie, H. Drug Future 1999, 24, 159-165.
(15) Rodriguez-Saona, C.; Trumble, J. T. Curr. Org. Chem. 2000, 4, 1249-1260.
(16) Zhao, G. X.; Chao, J. F.; Zeng, L.; Rieser, M. J.; McLaughlin, J. L. Bioorg. Med. Chem. 1996, 4, 25-32.
(17) Zhao, G. X.; Ng, J. H.; Kozlowzki, J. F.; Smith, D. L.; McLaughlin, J. L. Heterocycles 1994, 38, 1897-1908.
(18) Hopp, D. C.; Zeng, L.; Gu, Z. M.; Kozlowski, J. F.; McLaughlin, J. L. J. Nat. Prod. 1997, 60, 581-586.
(19) Hopp, D. C.; Zeng, L.; Gu, Z. M.; McLaughlin, J. L. J. Nat. Prod. 1996, 59, 97-99.
(20) Ye, Q.; Zeng, L.; Zhang, Y.; Zhao, G. X.; McLaughlin, J. L.; Woo, M. H.; Evert, D. R. J. Nat. Prod. 1995, 58, 1398-1406.
(21) Ye, Q.; Alfonso, D.; Evert, D.; McLauglin, J. L. Bioorg. Med. Chem. 1996, 4, 537545.
(22) Hoye, T. R.; Ye, Z. X. J. Am. Chem. Soc. 1996, 118, 1801-1802.
(23) Gu, Z. M.; Fang, X. P.; Zeng, L.; Wood, K. V.; McLaughlin, J. L. Heterocycles 1993, 36, 2221-2228.
(24) Oberlies, N. H.; Chang, C. J.; McLaughlin, J. L. J. Med. Chem. 1997, 40, $2102-$ 2106.
(25) Morre, D. J.; Decabo, R.; Farley, C.; Oberlies, N. H.; McLaughlin, J. L. Life Sci. 1994, 56, 343-348.
(26) Oberlies, N. H.; Croy, V. L.; Harrison, M. L.; McLaughlin, J. L. Cancer Lett. 1997, 115, 73-79.
(27) Oberlies, N. H.; Jones, J. L.; Corbett, T. H.; Fotopoulos, S. S.; McLaughlin, J. L. Cancer Lett. 1995, 96, 55-62.
(28) Lopez-Lazaro, M.; Martin-Cordero, C.; Bermejo, A.; Cortes, D.; Ayuso, M. J. Anticancer Res. 2001, 21, 3493-3497.
(29) Ahammadsahib, K. I.; Hollingworth, R. M.; McGovren, J. P.; Hui, Y. H.; McLaughlin, J. L. Life Sci. 1993, 53, 1113-1120.
(30) Weiss, H.; Friedrich, T.; Hofhaus, G.; Preis, D. Eur. J. Biochem. 1991, 197, 563576.
(31) Londershausen, M.; Leicht, W.; Lieb, F.; Moeschler, H.; Weiss, H. Pestic. Sci. 1991, 33, 427-438.
(32) Horgan, D. J.; Ohno, H.; Singer, T. P.; Casida, J. E. J. Biol. Chem. 1968, 243, 596776.
(33) Tormo, J. R.; Gallardo, T.; Aragon, R.; Cortes, D.; Estornell, E. Chem.-Biol. Interact. 1999, 122, 171-183.
(34) Tormo, J. R.; Gallardo, T.; Gonzalez, M. C.; Bermejo, A.; Cabedo, N.; Andreu, I.; Estornell, E. Current Topics in Phytochemistry 1999, 2, 69-90.
(35) ZafraPolo, M. C.; Gonzalez, M. C.; Estornell, E.; Sahpaz, S.; Cortes, D. Phytochemistry 1996, 42, 253-271.
(36) Chavez, D.; Iglesias-Prieto, R.; Lotina-Hennsen, B. Physiol. Plant. 2001, 111, 262 268.
(37) Esposti, M. D.; Ghelli, A.; Ratta, M.; Cortes, D.; Estornel1, E. Biochem. J. 1994, 301, 161-167.
(38) Hollingworth, R. M.; Ahammadsahib, K. I.; Gadelhak, G.; McLaughlin, J. L. Biochem. Soc. Trans. 1994, 22, 230-233.
(39) Esposti, M. D. Biochim. Biophys. Acta 1998, 222-235.
(40) Ernster, L.; Dallner, G.; Azzone, G. F. J. Biol. Chem. 1963, 238, 1124-31.
(41) Singer, T. P. Method Enzymol. 1979, 55, 454-62.
(42) Friedrich, T.; Ohnishi, T.; Forche, E.; Kunze, B.; Jansen, R.; Trowitzsch, W.; Hofle, G.; Reichenbach, H.; Weiss, H. Biochem. Soc. Trans. 1994, 22, 226-230.
(43) Miyoshi, H. Biochim. Biophys. Acta 1998, 236-244.
(44) Landolt, J. L.; Ahammadsahib, K. I.; Hollingworth, R. M.; Barr, R.; Crane, F. L.; Buerck, N. L.; McCabe, G. P.; McLaughlin, J. L. Chem.-Biol. Interact. 1995, 98, 113.
(45) Wang, J. C. Annu. Rev. Biochem. 1985, 54, 665-697.
(46) Liu, L. F. Annu. Rev. Biochem. 1989, 58, 351-375.
(47) Pommier, Y. Cancer Chemother. Pharmacol. 1993, 32, 103-108.
(48) Hsiang, Y. H.; Lihou, M. G.; Liu, L. F. Cancer Res. 1989, 49, 5077-5082.
(49) Hoppe, R.; Scharf, H. D. Synthesis 1995, 1447.
(50) Figadere, B. Accounts Chem. Res. 1995, 28, 359-365.
(51) Figadere, B.; Cave, A. Studies in Natural Product Chemistry 1996, 18, 193-227.
(52) Cave, A.; Figadere, B.; Laurens, B.; Cortes, D. Prog. Ch. Org. Nat. Prod. 1997, 70, 81-288.
(53) Marshall, J. A.; Hinkle, K. W.; Hagedorn, C. E. Isr. J. Chem. 1997, 37, 97-107.
(54) Zafra-Polo, M. C.; Figadere, B.; Gallardo, T.; Tormo, J. R.; Cortes, D. Phytochemistry 1998, 48, 1087-1117.
(55) Casiraghi, G.; Zanardi, F.; Battistini, L.; Rassu, G.; Appendino, G. Chemtracts 1998, 11, 803-827.
(56) Hoye, T. R.; Suhadolnik, J. C. J. Am. Chem. Soc. 1985, 107, 5312-5313.
(57) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-6.
(58) Hoye, T. R.; Suhadolnik, J. C. Tetrahedron 1986, 42, 2855-2862.
(59) Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391-394.
(60) Hoye, T. R.; Hanson, P. R.; Kovelesky, A. C.; Ocain, T. D.; Zhuang, Z. P. J. Am. Chem. Soc. 1991, 113, 9369-9371.
(61) Brown, H. C.; Hamaoka, T.; Ravindran, N. J. J. Am. Chem. Soc. 1973, 95, 57865790.
(62) Iwai, T.; Kosugi, H.; Uda, H.; Kawai, M. Bull. Chem. Soc. Jpn. 1977, 50, 242-247.
(63) Hoye, T. R.; Humpal, P. E.; Jimenez, J. I.; Mayer, M. J.; Tan, L. S.; Ye, Z. X. Tetrahedron Lett. 1994, 35, 7517-7520.
(64) Hoye, T. R.; Hanson, P. R.; Hasenwinkel, L. E.; Ramirez, E. A.; Zhuang, Z. P. Tetrahedron Lett. 1994, 35, 8529-8532.
(65) Hoye, T. R.; Hanson, P. R. Tetrahedron Lett. 1993, 34, 5043-5046.
(66) Mori, K.; Watanabe, H. Tetrahedron 1986, 42, 295-304.
(67) Midland, M. M.; Halterman, R. L.; Brown, C. A.; Yamaichi, A. Tetrahedron Lett. 1981, 22, 4171-4172.
(68) Wityak, J.; Chan, J. B. Synth. Commun. 1991, 21, 977-979.
(69) Hoye, T. R.; Tan, L. S. Tetrahedron Lett. 1995, 36, 1981-1984.
(70) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D. Q.; Zhang, X. L. J. Org. Chem. 1992, 57, 2768-2771.
(71) Marshall, J. A.; Shearer, B. G.; Crooks, S. L. J. Org. Chem. 1987, 52, 1236-1245.
(72) Cowell, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4193-4198.
(73) Evans, D. A.; Ng, H. P.; Rieger, D. L. J. Am. Chem. Soc. 1993, 115, 11446-11459.
(74) Sinha, S. C.; Keinan, E. J. Am. Chem. Soc. 1993, 115, 4891-4892.
(75) Kolb, H. C.; Sharpless, K. B. Tetrahedron 1992, 48, 10515-10530.
(76) Taber, D. F.; Bhamidipati, R. S.; Thomas, M. L. J. Org. Chem. 1994, 59, 3442-3444.
(77) Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922-1925.
(78) Hoppe, R.; Flasche, M.; Scharf, H. D. Tetrahedron Lett. 1994, 35, 2873-2876.
(79) Roush, W. R.; Brown, R. J.; Dimare, M. J. Org. Chem. 1983, 48, 5083-5093.
(80) Wohrle, I.; Classen, A.; Peterek, M.; Scharf, H. D. Tetrahedron Lett. 1996, 37, 70017004.
(81) Boons, G. J.; Castle, G. H.; Clase, J. A.; Grice, P.; Ley, S. V.; Pinel, C. Synlett 1993, 913-914.
(82) Gypser, A.; Buelow, C.; Scharf, H.-D. Tetrahedron 1995, 51, 1921-30.
(83) Koert, U.; Stein, M.; Harms, K. Angew. Chem.-Int. Edit. Engl. 1994, 33, 1180-1182.
(84) Koert, U.; Stein, M.; Harms, K. Tetrahedron Lett. 1993, 34, 2299-2302.
(85) Hanessian, S.; Murray, P. J. Tetrahedron 1987, 43, 5055-5072.
(86) Kuchler, B.; Voss, G.; Gerlach, H. Liebigs Ann. Chem. 1991, 545-552.
(87) Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. 1959, 81, 2748-55.
(88) Pettit, G. R.; Cragg, G. M.; Polonsky, J.; Herald, D. L.; Goswami, A.; Smith, C. R.; Moretti, C.; Schmidt, J. M.; Weisleder, D. Can. J. Chemistry 1987, 65, 1433-5.
(89) Koert, U. Tetrahedron Lett. 1994, 35, 2517-2520.
(90) Wagner, H.; Koert, U. Angew. Chem.-Int. Edit. Engl. 1994, 33, 1873-1875.
(91) Fronza, G.; Fuganti, C.; Grasselli, P.; Pedrocchifantoni, G.; Servi, S. Tetrahedron Lett. 1993, 34, 2981-2984.
(92) Koert, U.; Stein, M.; Wagner, H. Liebigs Ann. 1995, 1415-1426.
(93) Koert, U.; Stein, M.; Wagner, H. Chem.-Eur. J. 1997, 3, 1170-1180.
(94) Trost, B. M.; Calkins, T. L.; Bochet, C. G. Angew. Chem.-Int. Ed. 1997, 36, $2632-$ 2635.
(95) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Tetrahedron Lett. 1991, 32, $1175-$ 1178.
(96) DeVries, V. G.; Moran, D. B.; Allen, G. R.; Riggi, S. J. J. Med. Chem. 1976, 19, 946-57.
(97) Garegg, P. J.; Johansson, R.; Ortega, C.; Samuelsson, B. J. Chem. Soc.-Perkin Trans. 1 1982, 681-683.
(98) Manchand, P. S.; Wong, H. S.; Blount, J. F. J. Org. Chem. 1978, 43, 4769-74.
(99) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287.
(100) Trost, B. M.; Muller, J. J.; Martinez, J. J. Am. Chem. Soc. 1995, 117, 1888-1899.
(101) Trost, B. M.; Calkins, T. L. Tetrahedron Lett. 1995, 36, 6021-6024.
(102) Marshall, J. A. Chem. Rev. 1996, 96, 31-47.
(103) Marshall, J. A.; Welmaker, G. S.; Gung, B. W. J. Am. Chem. Soc. 1991, 113, 647656.
(104) Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1995, 60, 1920-1921.
(105) Marshall, J. A.; Welmaker, G. S. J. Org. Chem. 1994, 59, 4122-4125.
(106) Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1996, 61, 4247-4251.
(107) Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1997, 62, 5989-5995.
(108) McDougal, P. G.; Rico, J. G.; Oh, Y. I.; Condon, B. D. J. Org. Chem. 1986, 51, 3388-3390.
(109) Marshall, J. A.; Chen, M. Z. J. Org. Chem. 1997, 62, 5996-6000.
(110) Marshall, J. A.; Hinkle, K. W. Tetrahedron Lett. 1998, 39, 1303-1306.
(111) Marshall, J. A.; Piettre, A.; Paige, M. A.; Valeriote, F. J. Org. Chem. 2003, 68, 1780-1785.
(112) Marshall, J. A.; Jiang, H. J. J. Nat. Prod. 1999, 62, 1123-1127.
(113) Marshall, J. A.; Jiang, H. J. J. Org. Chem. 1999, 64, 971-975.
(114) Marshall, J. A.; Piettre, A.; Paige, M. A.; Valeriote, F. J. Org. Chem. 2003, 68, 1771-1779.
(115) Kolb, H. C.; Vannieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 24832547.
(116) Tang, S. H.; Kennedy, R. M. Tetrahedron Lett. 1992, 33, 5299-5302.
(117) Tang, S. H.; Kennedy, R. M. Tetrahedron Lett. 1992, 33, 5303-5306.
(118) Boyce, R. S.; Kennedy, R. M. Tetrahedron Lett. 1994, 35, 5133-5136.
(119) Kennedy, R. M.; Tang, S. Tetrahedron Lett. 1992, 33, 3729-3732.
(120) Keinan, E.; Sinha, S. C. Pure Appl. Chem. 2002, 74, 93-105.
(121) Towne, T. B.; McDonald, F. E. J. Am. Chem. Soc. 1997, 119, 6022-6028.
(122) Sinha, S. C.; Sinhabagchi, A.; Keinan, E. J. Am. Chem. Soc. 1995, 117, 1447-1448.
(123) Mitsunobu, O. Synthesis 1981, 1-28.
(124) Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017-3020.
(125) Sinha, S. C.; Sinha, A.; Yazbak, A.; Keinan, E. J. Org. Chem. 1996, 61, 7640-7641.
(126) Keinan, E.; Sinha, A.; Yazbak, A.; Sinha, S. C. Pure Appl. Chem. 1997, 69, 423-430.
(127) Sinha, S. C.; SinhaBagchi, A.; Yazbak, A.; Keinan, E. Tetrahedron Lett. 1995, 36, 9257-9260.
(128) Yazbak, A.; Sinha, S. C.; Keinan, E. J. Org. Chem. 1998, 63, 5863-5868.
(129) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741-3.
(130) Sinha, S. C.; Keinan, E. J. Org. Chem. 1999, 64, 7067-7073.
(131) Sinha, A.; Sinha, S. C.; Keinan, E. J. Org. Chem. 1999, 64, 2381-2386.
(132) Avedissian, H.; Sinha, S. C.; Yazbak, A.; Sinha, A.; Neogi, P.; Keinan, E. J. Org. Chem. 2000, 65, 6035-6051.
(133) Sinha, S. C.; Keinan, E. J. Am. Chem. Soc. 1998, 120, 9076-9077.
(134) Sinha, S. C.; Sinha, A.; Keinan, E. J. Am. Chem. Soc. 1998, 120, 4017-4018.
(135) Morimoto, Y.; Iwai, T. J. Am. Chem. Soc. 1998, 120, 1633-1634.
(136) D'Souza, L. J.; Sinha, S. C.; Lu, S. F.; Keinan, E. Tetrahedron 2001, 57, 5255-5262.
(137) Zanardi, F.; Battistini, L.; Rassu, G.; Pinna, L.; Mor, M.; Culeddu, N.; Casiraghi, G. J. Org. Chem. 1998, 63, 1368-1369.
(138) Zanardi, F.; Battistini, L.; Rassu, G.; Auzzas, L.; Pinna, L.; Marzocchi, L.; Acquotti, D.; Casiraghi, G. J. Org. Chem. 2000, 65, 2048-2064.
(139) Hanessian, S.; Raghavan, S. Bioorg. Med. Chem. Lett. 1994, 4, 1697-1702.
(140) Casiraghi, G.; Zanardi, F.; Rassu, G.; Spanu, P. Chem. Rev. 1995, 95, 1677-1716.
(141) Pichon, M.; Figadere, B.; Cave, A. Tetrahedron Lett. 1996, 37, 7963-7966.
(142) Hanessian, S.; McNaughtonSmith, G. Bioorg. Med. Chem. Lett. 1996, 6, 1567-1572.
(143) Rassu, G.; Pinna, L.; Spanu, P.; Zanardi, F.; Battistini, L.; Casiraghi, G. J. Org. Chem. 1997, 62, 4513-4517.
(144) Rassu, G.; Zanardi, F.; Battistini, L.; Gaetani, E.; Casiraghi, G. J. Med. Chem. 1997, 40, 168-180.
(145) Christoffers, J. J. Org. Chem. 1998, 63, 4539-4540.
(146) Hutchinson, J. H.; Pattenden, G.; Myers, P. L. Tetrahedron Lett. 1987, 28, 1313-16.
(147) Figadere, B.; Chaboche, C.; Peyrat, J. F.; Cave, A. Tetrahedron Lett. 1993, 34, 80938096.
(148) Figadere, B.; Peyrat, J. F.; Cave, A. J. Org. Chem. 1997, 62, 3428-3429.
(149) Tam, V. T.; Chaboche, C.; Figadere, B.; Chappe, B.; Hieu, B. C.; Cave, A. Tetrahedron Lett. 1994, 35, 883-886.
(150) Isobe, M.; Ichikawa, Y.; Funabashi, Y.; Mio, S.; Goto, T. Tetrahedron 1986, 42, 2863-2872.
(151) Jarosz, S.; Fraser-Reid, B. Tetrahedron Lett. 1989, 30, 2359-2362.
(152) Brimacombe, J. S.; Hanna, R.; Kabir, A.; Bennett, F.; Taylor, I. D. J. Chem. Soc.Perkin Trans. 1 1986, 815-821.
(153) Labelle, M.; Guindon, Y. J. Am. Chem. Soc. 1989, 111, 2204-2210.
(154) Labelle, M.; Morton, H. E.; Guindon, Y.; Springer, J. P. J. Am. Chem. Soc. 1988, 110, 4533-4540.
(155) Zhang, H.; Wilson, P.; Shan, W.; Ruan, Z.; Mootoo, D. R. Tetrahedron Lett. 1995, 36, 649-52.
(156) Ruan, Z.; Wilson, P.; Mootoo, D. R. Tetrahedron Lett. 1996, 37, 3619-3622.
(157) Ruan, Z.; Dabideen, D.; Blumenstein, M.; Mootoo, D. R. Tetrahedron 2000, 56, 9203-9211.
(158) Vedejs, E.; Snoble, K. A. J.; Fuchs, P. L. J. Org. Chem. 1973, 38, 1178-83.
(159) Zhang, H.; Mootoo, D. R. J. Org. Chem. 1995, 60, 8134-5.
(160) Zhu, L.; Mootoo, D. R. Org. Lett. 2003, 5, 3475-3478.
(161) Dabideen, D.; Mootoo, D. R. Tetrahedron Lett. 2003, 44, 8365-8368.
(162) Zhang, H.; Seepersaud, M.; Seepersaud, S.; Mootoo, D. R. J. Org. Chem. 1998, 63, 2049-2052.
(163) Klein, E.; Rojahn, W. Tetrahedron 1965, 21, 2353-2358.
(164) Walba, D. M.; Wand, M. D.; Wilkes, M. C. J. Am. Chem. Soc. 1979, 101, 43964397.
(165) Sharpless, K. B.; Teranishi, A. Y.; Backvall, J. E. J. Am. Chem. Soc. 1977, 99, 31208.
(166) Baldwin, J. E.; Crossley, M. J.; Lehtonen, E. M. M. J. Chem. Soc., Chem. Commun. 1979, 918-20.
(167) Pode, J. S. F.; Waters, W. A. Journal of the Chemical Society, Abstracts 1956, 71725.
(168) Lee, D. G.; Brownridge, J. R. J. Am. Chem. Soc. 1973, 95, 3033-4.
(169) Wolfe, S.; Ingold, C. F. J. Am. Chem. Soc. 1981, 103, 940-941.
(170) Hughes, R. M. Thesis for Master of Research, University of Southampton 2000.
(171) Walba, D. M.; Przybyla, C. A.; Walker, C. B. J. Am. Chem. Soc. 1990, 112, 56245625.
(172) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129.
(173) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737-1739.
(174) Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1987, 109, 7151-7157.
(175) Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988, 110, 2506-2526.
(176) Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. J. Am. Chem. Soc. 1990, 112, 4011-4030.
(177) Evans, D. A.; Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler, R. J. Am. Chem. Soc. 1990, 112, 5290-5313.
(178) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497-4513.
(179) Evans, P. A.; Murthy, V. S. Tetrahedron Lett. 1999, 40, 1253-1256.
(180) Ager, D. J.; Prakash, I.; Schaad, D. R. Aldrichim. Acta 1997, 30, 3-12.
(181) Sibi, M. P. Aldrichim. Acta 1999, 32, 93-103.
(182) Evans, D. A.; Bender, S. L. Tetrahedron Lett. 1986, 27, 799-802.
(183) Evans, D. A.; Dow, R. L. Tetrahedron Lett. 1986, 27, 1007-1010.
(184) Evans, D. A.; Sjogren, E. B. Tetrahedron Lett. 1986, 27, 3119-3122.
(185) Damon, R. E.; Coppola, G. M. Tetrahedron Lett. 1990, 31, 2849-2852.
(186) Oppolzer, W. Tetrahedron 1987, 43, 1969-2004.
(187) Oppolzer, W. Pure Appl. Chem. 1988, 60, 39-48.
(188) Oppolzer, W. Pure Appl. Chem. 1990, 62, 1241-1250.
(189) Oppolzer, W.; Barras, J. P. Helv. Chim. Acta. 1987, 70, 1666-1675.
(190) Oppolzer, W.; Chapuis, C.; Bernardinelli, G. Helv. Chim. Acta. 1984, 67, $1397-$ 1401.
(191) Oppolzer, W.; Darcel, C.; Rochet, P.; Rosset, S.; DeBrabander, J. Helv. Chim. Acta. 1997, 80, 1319-1337.
(192) Lee, A. W. M.; Chan, W. H.; Yuen, W. H.; Xia, P. F.; Wong, W. Y. TetrahedronAsymmetry 1999, 10, 1421-1424.
(193) Otaka, A.; Mitsuyama, E.; Kinoshita, T.; Tamamura, H.; Fujii, N. J. Org. Chem. 2000, 65, 4888-4899.
(194) Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1984, 106.
(195) Kocienski, P. J.; Brown, R. C. D.; Pommier, A.; Procter, M.; Schmidt, B. J. Chem. Soc.-Perkin Trans. 1 1998, 9-39.
(196) de Champdore, M.; Lasalvia, M.; Piccialli, V. Tetrahedron Lett. 1998, 39, 97819784.
(197) Donohoe, T. J.; Winter, J. J. G.; Helliwell, M.; Stemp, G. Tetrahedron Lett. 2001, 42, 971-974.
(198) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3937-3938.
(199) Piccialli, V.; Cavallo, N. Tetrahedron Lett. 2001, 42, 4695-4699.
(200) Walba, D. M.; Stoudt, G. S. Tetrahedron Lett. 1982, 23, 727-730.
(201) Corey, E. J.; Ha, D. C. Tetrahedron Lett. 1988, 29, 3171-3174.
(202) Fukuyama, T.; Vranesic, B.; Negri, D. P.; Kishi, Y. Tetrahedron Lett. 1978, 31, 2741-2744.
(203) Ujihara, K.; Shirahama, H. Tetrahedron Lett. 1996, 37, 2039-2042.
(204) Chong, A. O.; Sharpless, K. B. J. Org. Chem. 1977, 42, 1587-90.
(205) McDonald, F. E.; Schultz, C. C. Tetrahedron 1997, 53, 16435-16448.
(206) McDonald, F. E.; Towne, T. B. J. Am. Chem. Soc. 1994, 116, 7921-7922.
(207) McDonald, F. E.; Towne, T. B. J. Am. Chem. Soc. 1994, 116, 7921-2.
(208) McDonald, F. E.; Towne, T. B. J. Org. Chem. 1995, 60, 5750-5751.
(209) McDonald, F. E.; Towne, T. B.; Schultz, C. C. Pure Appl. Chem. 1998, 70, 355-358.
(210) Towne, T. B.; McDonald, F. E. J. Am. Chem. Soc. 1997, 119, 12699.
(211) Herrmann, W. A.; Fischer, R. W.; Marz, D. W. Angew. Chem.-Int. Edit. Engl. 1991, 30, 1638-1641.
(212) Herrmann, W. A.; Fischer, R. W.; Scherer, W.; Rauch, M. U. Angew. Chem.-Int. Edit. Engl. 1993, 32, 1157-1160.
(213) Herrmann, W. A.; Roesky, P. W.; Kuhn, F. E.; Elison, M.; Artus, G.; Scherer, W.; Romao, C. C.; Lopes, A.; Basset, J. M. Inorg. Chem. 1995, 34, 4701-4707.
(214) Herrmann, W. A.; Roesky, P. W.; Wang, M.; Scherer, W. Organometallics 1994, 13, 4531-4535.
(215) Herrmann, W. A.; Wagner, W.; Flessner, U. N.; Volkhardt, U.; Komber, H. Angew. Chem.-Int. Edit. Engl. 1991, 30, 1636-1638.
(216) Thiel, W. R.; Fischer, R. W.; Herrmann, W. A. J. Organomet. Chem. 1993, 459, C9C11.
(217) Brown, R. C. D.; Hughes, R. M.; Keily, J.; Kenney, A. Chem. Commun. 2000, 17351736.
(218) Cecil, A. R. L.; Brown, R. C. D. Org. Lett. 2002, 4, 3715-3718.
(219) Gonzalez, M. C.; Tormo, J. R.; Bermejo, A.; ZafraPolo, M. C.; Estornell, E.; Cortes, D. Bioorg. Med. Chem. Lett. 1997, 7, 1113-1118.
(220) Saez, J.; Sahpaz, S.; Villaescusa, L.; Hocquemiller, R.; Cave, A.; Cortes, D. J. Nat. Prod. 1993, 56, 351-356.
(221) Sarakinos, G.; Corey, E. J. Org. Lett. 1999, 1, 1741-1744.
(222) Bartlett, P. D.; Knox, L. H. Org. Synth. 1966, 45, 14-16.
(223) Towson, J. C.; Weismiller, M. C.; Sankar Lal, G. Org. Synth. 1990, 69, 164-168.
(224) Weismiller, M. C.; Towson, J. C.; Davis, A. Org. Synth. 1990, 69, 154-156.
(225) Reiser, O. In Organic Synthesis, Highlights IV; Schmalz, H.-G., Ed.; Wiley-VCH (Weinheim): 2000, p 11-16.
(226) Collington, E. W.; Meyers, A. I. J. Org. Chem. 1971, 36, 3044-3045.
(227) Axelrod, E. H.; Milne, G. M.; van Tamelen, E. E. J. Am. Chem. Soc. 1970, 92, 21392141.
(228) D'Aniello, F.; Taddei, M. J. Org. Chem. 1992, 57, 5247-5250.
(229) Miyata, O.; Fujiwara, Y.; Nishiguchi, A.; Honda, H.; Shinada, T.; Ninomiya, I.; Naito, T. Synlett 1994, 637-638.
(230) Hu, T. S.; Yu, Q.; Wu, Y. L.; Wu, Y. K. J. Org. Chem. 2001, 66, 853-861.
(231) Blakemore, P. R.; Kocienski, P. J.; Morley, A.; Muir, K. J. Chem. Soc.-Perkin Trans. 1 1999, 955-968.
(232) Kocienski, P. J.; Bell, A.; Blakemore, P. R. Synlett 2000, 365-366.
(233) Quast, H.; Bieber, L. Chem. Ber. 1981, 114, 3253-72.
(234) Perrin, D. D.; Armarego, W. L. F. Purification of laboratory chemicals; 3rd ed.; Butterworth-Heinemann Ltd.: Oxford, 1994.

## Appendices

## Crystal Structure Data for Epoxide 6.7

Table 1. Crystal data and structure refinement.

Identification code	03 sot0105
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$
Formula weight	198.21
Temperature	120(2) K
Wavelength	$0.71073 \AA$
Crystal system	Orthorhombic
Space group	$P 2,22_{1}$
Unit cell dimensions	$a=10.3413(4) \AA \quad \alpha=90^{\circ}$
	$b=9.5255(3) \AA \quad \beta=90^{\circ}$
	$c=9.6037(3) \AA \quad \gamma=90^{\circ}$
Volume	$946.02(6) \AA^{3}$
$Z$	4
Density (calculated)	$1.392 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.107 \mathrm{~mm}^{-1}$
$F(000)$	424
Crystal	Slab; Colourless
Crystal size	$0.22 \times 0.18 \times 0.05 \mathrm{~mm}^{3}$
$\theta$ range for data collection	3.01-27.47 ${ }^{\circ}$
Index ranges	$-13 \leq h \leq 13,-12 \leq k \leq 12,-11 \leq l \leq 12$
Reflections collected	10543
Independent reflections	$2156\left[R_{\text {int }}=0.0657\right]$
Completeness to $\theta=27.47^{\circ}$	98.9\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9947 and 0.9768
Refinement method	Full-matrix least-squares on $F^{2}$
Data / restraints / parameters	2156/0/128
Goodness-of-fit on $F^{2}$	1.064
Final $R$ indices [ $\left.F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0367, w R 2=0.0887$
$R$ indices (all data)	$R 1=0.0396, w R 2=0.0909$
Absolute structure parameter	0.0(11)
Extinction coefficient	0.032(7)
Largest diff. peak and hole	0.299 and -0.155 e $\AA^{-3}$

Diffractometer: Nonius KappaCCD area detector ( $\phi$ scans and $\omega$ scans to fill asymmetric unit sphere). Cell determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

## Special details:

All hydrogen atoms were fixed.
It was not possible to determine the absolute structure.
The relative structure is $S, S, R, R(\mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 8, \mathrm{C} 9)$.

Table 2. Atomic coordinates [ $\times 10^{4}$ ], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	$x$	$y$	$z$	$U_{\text {eq }}$	S.o.f.
C1	$9711(2)$	$2113(2)$	$1427(2)$	$32(1)$	1
C2	$10802(2)$	$1080(2)$	$1257(2)$	$33(1)$	1
C3	$11323(2)$	$901(2)$	$2732(2)$	$23(1)$	1
C4	$10168(1)$	$1305(2)$	$3637(2)$	$20(1)$	1
C5	$10533(1)$	$2041(2)$	$4969(2)$	$20(1)$	1
C6	$11375(1)$	$1094(2)$	$5894(2)$	$23(1)$	1
C7	$10860(2)$	$1360(2)$	$7362(2)$	$23(1)$	1
C8	$9438(2)$	$1727(1)$	$7112(2)$	$21(1)$	1
C9	$8601(2)$	$445(2)$	$7143(2)$	$26(1)$	1
C10	$7901(2)$	$66(2)$	$8410(2)$	$31(1)$	1
O1	$9397(1)$	$2263(1)$	$2775(1)$	$24(1)$	1
O2	$9137(2)$	$2761(2)$	$529(1)$	$53(1)$	1
O3	$9389(1)$	$2382(1)$	$5766(1)$	$25(1)$	1
O4	$7222(1)$	$674(1)$	$7236(1)$	$35(1)$	1

Table 3. Bond lengths $[\AA]$ and angles [ ${ }^{\circ}$ ].

C1-O2	$1.215(2)$	C6-C7	1.529(2)
$\mathrm{Cl} 1-\mathrm{Ol}$	$1.343(2)$	C6-H6A	0.9900
C1-C2	$1.505(3)$	C6-H6B	0.9900
C2-C3	$1.525(2)$	C7-C8	1.531(2)
C2-H2A	0.9900	C7-H7A	0.9900
C2-H2B	0.9900	C7--H7B	0.9900
C3-C4	1.527(2)	C8-O3	$1.4365(18)$
C3-H3A	0.9900	C8-C9	$1.497(2)$
C3-H3B	0.9900	C8-H8	1.0000
C4-Ol	$1.4676(17)$	C9-O4	1.4450 (19)
C4-C5	1.507(2)	C9-C10	1.461(2)
C4-H4	1.0000	C9-H9	1.0000
C5-O3	1.4463(17)	C10-O4	1.449 (2)
C5-C6	$1.536(2)$	C10-H10A	0.9900
C5-H5	1.0000	C10-H10B	0.9900
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O} 1$	120.78(17)	O3-C5-C4	110.43 (12)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	128.40(16)	O3-C5-C6	106.85(11)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	110.82(13)	C4-C5-C6	111.03(12)
C1-C2-C3	103.71(13)	O3-C5-H5	109.5
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.0	C4-C5-H5	109.5
C3-C2-H2A	111.0	C6-C5-H5	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.0	C7-C6-C5	103.78(12)
C3-C2-H2B	111.0	C7-C6-H6A	111.0
H2A-C2-H2B	109.0	C5-C6-H6A	111.0
C2-C3-C4	102.96(13)	C7-C6-H6B	111.0
C2-C3-H3A	111.2	C5-C6-H6B	111.0
C4-C3-H3A	111.2	H6A-C6-H6B	109.0
C2-C3-H3B	111.2	C6-C7-C8	103.16(12)
C4-C3-H3B	111.2	C6-C7-H7A	111.1
H3A-C3-H3B	109.1	C8-C7-H7A	111.1
O1-C4-C5	108.98(11)	C6-C7-H7B	111.1
O1-C4-C3	105.09(12)	C8-C7-H7B	111.1
C5-C4-C3	113.86(12)	H7A-C7-H7B	109.1
O1-C4-H4	109.6	O3-C8-C9	110.61(13)
C5-C4-H4	109.6	O3-C8-C7	105.91(12)
C3-C4-H4	109.6	C9-C8-C7	111.49(13)


$\mathrm{O} 3-\mathrm{C} 8-\mathrm{H} 8$	109.6
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	109.6
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	109.6
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 10$	$59.82(10)$
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 8$	$116.62(13)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$120.27(15)$
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{H} 9$	116.1
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	116.1
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	116.1
$\mathrm{O} 4-\mathrm{C} 10-\mathrm{C} 9$	$59.56(10)$
$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{H} 10 \mathrm{~A}$	117.8
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	117.8
$\mathrm{O} 4-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	117.8
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	117.8
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	115.0
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4$	$110.25(12)$
$\mathrm{C} 8-\mathrm{O} 3-\mathrm{C} 5$	$110.47(10)$
$\mathrm{C} 9-\mathrm{O} 4-\mathrm{Cl} 10$	$60.62(11)$

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$.

factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{2}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$						
Atom	$U^{11}$	$U^{22}$	$U^{33}$	$U^{23}$	$U^{13}$	$U^{12}$
C1	$52(1)$	$24(1)$	$20(1)$	$-2(1)$	$-8(1)$	$7(1)$
C2	$50(1)$	$29(1)$	$20(1)$	$-3(1)$	$2(1)$	$8(1)$
C3	$26(1)$	$22(1)$	$22(1)$	$-1(1)$	$4(1)$	$0(1)$
C4	$21(1)$	$18(1)$	$20(1)$	$2(1)$	$-3(1)$	$1(1)$
C5	$20(1)$	$21(1)$	$20(1)$	$0(1)$	$3(1)$	$1(1)$
C6	$21(1)$	$26(1)$	$21(1)$	$1(1)$	$-2(1)$	$3(1)$
C7	$24(1)$	$25(1)$	$20(1)$	$0(1)$	$-3(1)$	$-2(1)$
C8	$24(1)$	$22(1)$	$18(1)$	$2(1)$	$0(1)$	$2(1)$
C9	$22(1)$	$25(1)$	$30(1)$	$2(1)$	$-4(1)$	$1(1)$
C10	$23(1)$	$32(1)$	$37(1)$	$12(1)$	$-3(1)$	$0(1)$
O1	$30(1)$	$22(1)$	$20(1)$	$0(1)$	$-5(1)$	$6(1)$
O2	$96(1)$	$38(1)$	$24(1)$	$-2(1)$	$-14(1)$	$30(1)$
O3	$26(1)$	$29(1)$	$20(1)$	$5(1)$	$4(1)$	$9(1)$
O4	$22(1)$	$35(1)$	$47(1)$	$14(1)$	$-9(1)$	$-1(1)$

Table 5. Hydrogen coordinates $\left[\times 10^{4}\right]$ and isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$.

Atom	$x$	$y$	$z$	$U_{\text {eq }}$	S.o.f.
H2A	11476	1455	627	40	1
H2B	10483	176	881	40	1
H3A	12067	1532	2903	28	1
H3B	11591	-81	2905	28	1
H4	9648	447	3857	23	1
H5	11016	2922	4746	24	1
H6A	11275	95	5631	27	1
H6B	12299	1356	5822	27	1
H7A	11323	2148	7813	27	1
H7B	10945	512	7951	27	1
H8	9139	2406	7838	25	1
H9	8884	-354	6540	31	1
H10A	7766	-944	8604	37	1
H10B	8030	660	9244	37	1

Crystal Structure Data for Epoxide 6.7



[^0]:    Reagents and Conditions: (i) $\mathrm{Re}_{2} \mathrm{O}_{7}, \mathrm{TFAA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) $\mathrm{SiO}_{2}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

[^1]:    m.p.
    $39-41^{\circ} \mathrm{C}$ (EtOAc/hexane).
    ${ }^{1} \mathrm{H}$ NMR $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.3,6.8 \mathrm{~Hz}$,
    $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 4.99(1 \mathrm{H}, \mathrm{ddt}, J=17.1,2.3,1.8 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.93(1 \mathrm{H}$, ddt, $J=10.3,2.3,1.3 \mathrm{~Hz}, \mathrm{HHC}=\mathrm{CH}), 4.50(1 \mathrm{H}, \operatorname{ddd}, J=7.8,6.5,3.3$ $\mathrm{Hz}, \mathrm{CHOC}=\mathrm{O}), 3.96(1 \mathrm{H}$, ddd, $J=7.8,6.5,3.3 \mathrm{~Hz}, \mathrm{CHCHOC}=\mathrm{O})$, $3.85\left(1 \mathrm{H}\right.$, app. dt, $\left.J=8.3,6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiR}_{3}\right) \mathrm{CH}\right), 3.63(1 \mathrm{H}$,

