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ABSTRACT 
In recent years, a subset of CD4+CD25+ T cells has been described that regulates cell 
mediated immune responses. Although CD4+CD25+ T cells prevent the development 
of autoimmunity their role in limiting allergic inflammation and their mode of action 
is not clearly understood. To investigate the role of regulatory T cells in airway 
inflammation, we have developed a model using the DO 11.10 mouse which expresses 
a OVA specific T cell receptor. 

FACS analysis revealed that 6.8% of CD4+ T lymphocytes in the lymph nodes of 
DO 11.10 mice were CD4+CD25+. CD4+CD25+ T cells were purified by magnetic 
bead separaration to a purity of 70-75 %. These CD4+CD25+ T cells mediated 
regulatory activity since they were effective at inhibiting T cell responses to anti-
CD3. Although DO 11.10 CD4+CD25+ T cells were anergic it was found that they 
could be expanded and polarised in vitro in the presence of OVA323-339 peptide and 
exogenous IL-2 and IL-4. Expanded CD4+CD25+ T cells expressed an OVA specific 
T-cell receptor (97-98% KJ1-26+) and were effective at inhibiting T cell proliferative 
responses to either OVA323-339 or anti-CD3. 

Total CD4+, CD4+CD25+ and CD4+CD25- T cells were analysed for the differential 
expression of adhesion molecules. FACS analysis revealed that CD44 was a 
predominant adhesion molecule expressed by all 3 groups. Total CD4+ and 
CD4+CD25- expressed P7 chain, CD62L and CD31 but the level of expression was 
lower than CD44. It was also found that PLN cells expressed CD103, but its 
expression was lost following the expansion of these cells in culture. 

The effect of CD4+CD25+ T cells on Th2 polarization and allergic inflammation in 
vivo was examined. Th2 cells were either generated 60m unlractionated CD4+ T cells 
or CD4+ T cells depleted of CD4+CD25+ cells prior to polarization. Depletion of 
CD4+CD25+ T cells markedly influenced anti-CD3 stimulated cytokine production 
by Th2 polarised cells. The level of IL-4, IL-5 and IL-13 produced by Th2 cells 
generated 60m CD4+CD25- T cells was markedly lower than that by unfiactionated 
CD4+ T cells. This reduced cytokine production was evident irrespective of the 
concentration of anti-CD3 used. Interestingly, cultured CD4+ CD25+ regulatory T 
cells inhibited IL-4 but not IL-5 production by Th2 cells. 

The effect of depleting CD4+CD25+ T cells on airway inflammation was assessed in 
vivo. A marked pulmonary eosinophilia could be induced following transfer of 
DO 11.10 Th2 cells if recipients were exposed to OVA aerosols. Recipient mice were 
exposed to aerosolised OVA for 7 consecutive days and then sacrificed on the last 
day. The number of CD4+KJ1-26+ T cells in the BALE and associated eosinophilia 
increased fi-om no detectable inflammation until 5 days of aerosol challenge. 
Surprisingly, BALB/c mice that had received Th2 cells generated fi-om CD4+CD25-
cells developed a significantly higher level of pulmonary eosinophilia and less 
CD4+KJ1-26+T cells in the BALE than recipients of imfiactionated CD4+ T cells. 
BALB/c mice which had received total CD4+ Th2 cells (CD4+CD25+ T cells not 
depleted) produced a relatively weak eosinophilia. 

Collectively, these studies demonstrate that CD4+CD25+ T cells influence both Th2 
polarization and the development of pulmonary inflammation. 
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Chapter 1 

Introduction 



1. Asthma 

Asthma is a common clinical disorder characterised by paroxysmal constriction of the 

airways, which is thought to be driven by chronic inflammation of the airways and is 

linked to atopy. It has been proposed that a type 2 response by CD4+ T cells in the 

airways drives this inflammatory response. Th2 cells are characterized by their 

secretion of IL-4, IL-5, IL-10 and IL-13, which are known to facilitate IgE production 

and eosinophilic inflammation that contribute to the pathogenesis of allergic disease. 

Much of our understanding of the mechanisms of asthma have been obtained using 

the model of allergen inhalation. The response to allergen inhalation is considered in 

two phases 1) early asthmatic response known as immediate-type hypersensitivity 

characterized by rapid onset of mucosal oedema, increase in airway smooth muscle 

tone and airway narrowing associated with mast cell degranulation (Pauwels, R., 

1989), 2) late asthmatic response begins 3-6 hours after allergen challenge 

characterized by airway narrowing with the migration of leukocytes from the blood 

into the airways (De Monchy, J.G et al., 1985.; Bousquet, J. et ah, 1990a). 

1.1 CD4+ Th cell responses : 

CD4+ effector T cells interact with other cells by producing soluble protein mediators 

(cytokines). The pattern of cytokines varies and determines the functional properties 

of that T cell. Once established, the cytokine profile is not stable. CD4+ effector T 

cells can be classified as either Thl or Th2 cells. Thl cells are CD4 + aP T cells 

which produce IFNy, TNF-P and D -̂2 (Ahmed, R. and Gray, D., 1996). These cells 



are responsible for the development of cell-mediated immunity and elimination of 

intracellular pathogens such as bacteria and virus. Th2 cells are CD4+ ap TCR T cells 

that produce IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13. Th2 cells are responsible for 

humoral immunity and are important in allergies and the elimination of parasites. 

1.2.1 Thl CD4+ T cell responsesi Thl and Th2 cells differentiate from 

precursor T cells termed as ThO cells. Antigen presentation in the presence of the 

cytokine IL-12 drives Thl development from ThO cells. IL-12 is a 70 KDa hetero-

dimer secreted by APC, neutrophils and keratinocytes (Macatonia, S.E. et aL, 1995). 

IL-4 inhibits its secretion and down-regulates the expression of the P2 subunit of the 

IL-12 receptor. Thl cells inhibit cytokine production by Th2 cells (IL-4 and IL-5) 

directly or indirectiy via the production of IFNy, which also inhibits the expression of 

IL-4 receptor. IFNy has several fimctions which include, promoting phagocytosis and 

upregulating microbial killing by macrophages. In mice, IFNy promotes 

immunoglobulin isotype switching to IgGia, known to be important for the 

opsonization of bacteria (Heinzel, P.P. et al., 1995). In addition, IPNy promotes the 

expression of FcyRI receptors which are important in phagocytosis. It also upregulates 

the production of NO, hydrogen peroxide and superoxide in cells actively 

participating in phagocytosis (Boehm, U. et al., 1997). To facilitate migration of 

monocytes/macrophages and T cells to the site of infection, IFNy, in association with 

TNF- P and LT-a, induces endothelial cells to express adhesion molecules and 

chemokines that specifically attract mononuclear cells (IP-10, MIG, RANTES and 

MCP-1) (Boehm, U et al, 1997; Cuff, C.A. et al, 1998). The development of Thl cells 

from the precursor ThO cells is a sequential step involving the interaction of TCR with 



the antigen presented in the context of MHC class II by antigen presenting cells 

(APC). Typically, these are dendritic cells in a primary response and macrophages or 

B cells in the secondary response. In addition to antigen recognition, there is a need 

for co-stimulatory molecule interactions to elicit IL-2 production. Such interactions 

include B7-CD28 and CD40-CD40L. CD40-L induced on T cells interacts with 

CD40 constitutively expressed on the APC. The interaction of CD40-CD40L 

stimulates the expression of CD86 (B7.2) and later CD80 (B7.1) by APCs. The 

expressed B7 acts as a ligand for CD28 on T-ceUs. B7-CD28 hgation triggers the 

amplification of IL-2 secretion and induces the anti- apoptotic molecule Bcl-XL 

(Boise, L.H. et al., 1995; Lenschow, D.J. et al., 1996). 

1.2.2 Th2 CD4+ T cell responses: The differentiation of Th2 cells &om a 

ThO precursor requires the presence of IL-4. IL-4 is considered dominant over IL-12 

since it upregulates the expression of IL-4 receptor and inhibits the secretion of IL-12. 

Moreover, it downregulates the expression of the |32 subunit of the IL-12 receptor. 

IL-4 is a 20kDa monomer secreted by Th2 cells, mast cells, basophils and eosinophils. 

It has been reported that Th2 cells can induce Thl cells to switch to Th2 by producing 

IL-4 (Nakamura, T. et ah, 1997b). In contrast, IL-12 cannot block IL-4 production 

and cannot induce a Th2 cell to switch to Thl. This may be due to the fact that Th2 

cells are constantiy making IL-4 which downregulates the IL-12 Rp2 subunit 

(O'Grarra, A., 1998). The development of Th2 cells play a major role in the protection 

against large extracellular parasites such as helminths, via the production of IL-4 and 

IL-5. IL-4 acts by promoting the production of IgGi and IgE in mice (IgE and IgG4 

in humans) important in priming both mast cells and eosinophils (Boehm, U. et al., 

1997). It also promotes the upregulation of IgE receptors on mast cells, eosinophils 

and 



macrophages and induces membrane expression of macrophages MHC class 11 

molecules and the IL-4 receptor. 

1.3 T cells in asthma 

It has been demonstrated that there is an increase in CD4+ T-cells following allergen 

challenge of the airways (Metzger, W.J. et al., 1987.; Frew, A.J et al., 1990) in 

addition to the infiltration of eosinophils suggesting that CD4+ T-cells might be 

involved in antigen-induced eosinophil recruitment of airway LPR. T-cell derived 

cytokine IL-5 has been shown to be an important mediator that increases the 

migration of eosinophils into the tissue (Yamaguchi, Y. et ah, 1988a.; Walsh, G.M. et 

aL, 1990) and prolongs the survival of eosinophils (Yamaguchi, Y. et al., 1988b). 

Later studies show (Nakajima, H. et al., 1992) that CD4+ not CD8+ T-cells mediate 

antigen-induced eosinophil recruitment in the airways and that IL-5 mediates this 

eosinophil recruitment. Anti-murine IL-5 mAb decreased OVA-induced eosinophil 

infiltration in the trachea (Nakajima, H. et aL, 1992). Th2 type cytokine lL-4 has been 

detected at the mRNA and protein level in BAL and bronchial biopsies from patients 

with atopic asthma and during late asthmatic responses (Humbert, M. et al., 1996). 

IL-4 induces bronchial mucus production and upregulates the expression of vascular 

cell adhesion molecule 1(VCAM-1) on vascular endothelium (Ying, S. et al., 1997b). 

Taken together with the role of IL-4, especially in promoting IgE, it seems likely that 

the Th2 cell may be involved in the development of asthma. Conversely, Thl cells 

may protect against asthma, for example, in infancy airborne endotoxin exposure may 

confer protection against asthma (Gereda, J.E. et al., 2000.; Martinez, F.D. and Holt, 

P.G., 1999.; von Mutius, E. et al., 2000) by promoting enhanced Thl response and 



tolerance to allergens (Reed, C.E. and Milton, D.K., 2001), although in later life, 

endotoxin has adverse effects on patients with asthma. Endotoxin binds to receptors 

on macrophages and other cells that generate EL-12 which inhibits IgE response and 

modulate T cells towards the Thl phenotype. 

CD4+ TH2 cells and the cytokines (IL-4, IL-5, IL-6, IL-9, and IL-13) contribute to 

the pathogenesis of allergic asthma directly or indirectly (Anderson, G.P., 2001). 

Interleukin -5 is crucial for the differentiation, migration, and activation of 

eosinophils (Kung, T.T. et aL, 1995a). IL-13 plays a key role in regulating AHR, 

mucus hypersecretion, eotaxin production, and eosinophUia in the allergic lung 

(Mattes, J. et al. 2001). BFN-y is an important pro-inflanmiatoiy cytokine involved in 

classical delayed type hypersensitivity but also opposes the actions of IL-4 (Snapper, 

C.M. et al., 1988.; Lopez, A.F. et al., 1988.; Thompson-Snipes, L. et a/.,1991.; 

Punnonen, J. et al., 1994.; Maggi, E. et al.,1992). IL-13 shares many functions with 

IL-4 including upregulation of eosinophil adhesion molecules and mucus induction 

(Zhu, Z. et ah,1999) and may have a more important role than IL-4 in established 

disease (Dabbagh, K. et al., 1999). IL-4 and IL-13 also promote the production of 

IgE antibody while IL-13 increases mucus hypersecretion by epithelial cells (Pene, J. 

et al., 1988). It has been found that the majority of allergen-specific T-cell clones 

derived from the peripheral blood of atopic individuals produce increased amounts of 

IL-4 and IL-5 but lower levels of IFN-y (Jung, T. et al., 1995). Furthermore, 

immunohistochemistiy and in situ hybridization studies have shown IL-4/TL-5 

cytokine protein or mRNA in biopsies from the airways of asthmatics 



(Kay, A.B. et al., 1991.; Ying, S. et al., 1995) and these Th2 cytokines were also 

increased in BAL after allergen challenge (Robinson, D.S. et al., 1992). Because of its 

role in synthesizing IL-4 and IL-5, the Th2 cell is a potential therapeutic target in the 

development of new treatments for asthma (Broide, D.H., 2001). 

Possible approaches include the inhibition of transcription factors such as nuclear 

factor kappa B and GATA-3 (Finotto, S. & Glimcher, L., 2004) that control cellular 

Th2 cytokine production of IL-4 and IL-5. There is already some evidence that 

experimental therapies that turn the immune responses away from Th2 immunity 

reduce asthmatic airway inflammation (Janssen, E.M. et al. 2000b). 

The importance of T cells in the regulation of allergy and asthma has been recognised 

and the investigators started to address the possible role of T cells in asthma during 

the early 1980s. They focused on a possible defect in T cell suppression which might 

allow the allergic inflammatory process to proceed. It has been observed following 

allergen inhalation, subjects who showed single early responses had more CD8+ cells 

in their airways than those who showed early and late phase responses (Gonzalez, 

M.C. et ah, 1987). After thorough investigation, it became clear that T-cell infiltration 

and activation were features of all grades of asthma and that activation was associated 

with symptomatic asthma (Robinson, D.S. et al., 1993a). Activated T cells were 

identified in the peripheral blood during exacerbations of asthma (Corrigan, C.J. et 

al., 1988), but under stable conditions the T cell changes were largely confined to the 

airways. It has been observed that treatment with inhaled corticosteroids reduced both 

the numbers and activation status of the airway T cells (Wilson, J.W. et al., 1994). 

Rapid expansion of understanding of cytokines and chemokines led to an 

appreciation of the possible function of T cells; in the context of allergy and asthma, 

the focus was on IL-4 because of its role in IgE switching. 



Some unexpected insights have been provided following the attempts to demonstrate 

the presence of cytokine protein in human samples, the overwhelming majority of cell 

staining for IL-4 protein turn out to be mast cells rather than T cells (Bradding, P., et 

al., 1992). Thus while T-cell -derived 11̂ -4 may be essential for switching B cells to 

make IgE (at the time of T-B cell interactions), it may be the mast-cell- derived IL-4 

that drive the differentiation of Th2 cells from precursor T-cells by providing Th2 

favouring environment. Mast cells also contain significant amounts of IL-5 and IL-6 

protein and it has been shown that these proteins are synthesised by the mast cell and 

released upon activation (Bradding, P. et al., 1994). T cells do not seem to store 

detectable amounts of cytokine protein but manufacture cytokines de novo and release 

them rapidly. Although the genes for IL-4 and IL-5 are located very close together on 

chromosome 5q (Frew, A.J. and Dasmahapatra, J., 1995), recent evidence indicates 

that their expression is not coordinately regulated (Jung, T. et a/., 1995). 

Both allergic and non-allergic asthma is characterised by the expression of mRNA for 

IL-5 (Humbert, M. et al., 1996), and it has been observed that there is a close 

correlation between T-cell activation and serum IL-5 concentrations in various forms 

of asthma (Corrigan, C.J. et al., 1993). Lack of a really good animal or in vitro model 

of asthma has hampered the experimental studies of the role of IL-4 and IL-5 in 

allergic disease. However, some animal models have shown that T-cells are the main 

source of IL-5, but not IL-4, in the lungs of antigen- challenged mice (Garlisi, C.G. et 

al., 1996). In addition, it has been consistently shown that monoclonal antibodies 

directed against IL-5 can prevent airways hyperresponsiveness in several species 



including mice, guinea pigs and monkeys (Kung, T.T. et a/.,1995a.; Mauser, P.J. et 

aL, 1993.; Mauser, P.J. etal., 1995). 

In bronchial biopsies, increased expression of IL-5 mRNA is one of the hallmarks of 

asthma (Hamid, Q. et a/.,1991a), but IL-4 mRNA is less diagnostic. A series of 

studies addressing cytokine expression by BAL T- cells has shown the expression of 

IL-13, TNF-a and IFN-y in unstimulated cells baseline BAL samples (Bodey, K.J. et 

ah, 1999). A minority of samples showed small amounts of IL-4 and IL-5. An 

increase in the expression of IL-3, IL-4 and IL-5 was observed when these BAL T-

ceUs are stimulated with the polyclonal mitogen PHA. Twenty-four hours after local 

endobronchial allergen challenge, mRNA for IL-13 and GM-CSF is readily detectable 

in unstimulated samples, but the level of expression of IFN-y mRNA is reduced 

compared to baseline samples (Bodey, K.J. et aL, 1999). When T cells become 

activated in culture CD25 expression is induced, and it was therefore assumed that the 

increased proportion of T cells expressing CD25 indicated active T cell involvement 

in asthma pathogenesis (Robinson, D.S. etal., 1993b.; Corrigan, C.J. et al.,l9SS). But 

it became clear later that T cells can also express CD25 if they are partially activated 

and then become anergic and unresponsive to further stimulation (Schall, T.J. et ah, 

1992). The expression of CD25 was compared with the production of IL-2 and IFN-y 

in BAL samples, and it has been found that virtually none of the CD25+ cells were 

producing cytokines (Bakakos, P. et aL, 2002). This suggests that the CD25+ T cell 

population in asthmatic airways is anergic or regulatory and not participating actively 

in the inflammatory process. 



1.4 The role of IL-10 in asthma 

It has been reported that IL-10 stimulates regulatory cells 1 to produce high levels of 

IL-10 (Groux, H. et al., 1997). It inhibits the production of pro-inflammatoiy 

cytokines including, under certain circumstances, its own production, by monocytes 

and enhances the production of IL-IRA (de Waal Malefyt., R. et al., 1991.). This 

cytokine inhibits the expression of HLA-DR (Moore, K.W. et al., 1993) and a number 

of costimulatory molecules including CD54, CD80 and CD86 on the APCs, IL-10 

also exerts anti-allergic effects by inhibiting the expression of CD40 on eosinophils 

(Ohkawara, Y. et al., 1996.), which accelerates eosinophil apoptosis, conferring an 

additional mechanism to prevent eosinophilic inflammation. 

Low IL-10 production may contribute to the development of the characteristic 

inflammatoiy response in asthma, since, lower levels of IL-10 are formed in the BAL 

of patients with asthma compared to normal healthy individuals (Borish, L. et al., 

1996). Decreased expression of IL-10 transcripts was also detected in purified T cells 

from children with allergic or non-allergic asthma, as compared to those in healthy 

controls (Koning, H. et al., 1997.). 

1.5 Eosinophils, mast cells and basophils in asthma 

Eosinophils are important mediators of allergic inflammation in the lung (Matsumoto, 

K and Saito, H., 2001). They contribute to the late asthmatic response, airway 

hyperresponsiveness and may also contribute to airway remodelling. Although, Th2 

lymphocytes, monocytes, macrophages and epithelial cells contribute to airway 

inflammation, it has been very well documented that eosinophils acts as a major 
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effector of airway damage and dysfimction (Corrigan, C.J. and Kay, A.B., 1992). 

There is a strong correlation between the severity of disease and the number and the 

state of maturation and activation of eosinophils detected in the bronchial mucosa and 

in BAL of asthmatics (a).Bousquet, J. et al., 1990). There is also a correlation 

between the resolution of eosinophilia and remission of asthma symptoms (Corrigan, 

C.J. and Kay, A.B., 1992.; Vignola, A.M. et al., 1998). 

In early stages of acute allergic inflammation, neutrophils may migrate into asthmatic 

airways but they cannot synthesize cysteinyl leukotrienes due to the lack of LTC4 

synthase. The Cys-Lts are among the most potent of all known bronchoconstrictors 

and are 1000- fold potent than that of histamine (Lelf, A.R., 2001). 

Eosinophils release cysteinyl- leukotrienes causing bronchospasm and directly 

damage the airways via release of highly cationic proteins from their granules (Frigas, 

E. et al., 1980). Over the long term, they may contribute to airway obstruction via 

fibrinogenic growth factors such as TGF-a and TGF-p. Eosinophils produce 

leukotriene C4 (Jorg, A. et al., 1982.; Weller, P.P. et al., 1983.; Henderson, W.R. et 

al., 1984) and PAP that increases vascular permeability and contracts smooth muscle 

(Lee, T. et a/.,1984.; Pinchard, R.N., 1983). Leukotriene synthase contained by 

eosinophils serves as the predominant leukotriene delivery instrument in human 

asthma. cPLA2 (cytosolic phospholipase A2) is a cytosolic enzyme critical for the 

conversion of membrane phospholipid into arachidonic acid and Lyso-platelet 

activating factor (lyso-PAP) which is eventually converted into PAP (Zhu, X. et al., 

1999). The migration of eosinophils into the airways is closely associated with the 

priming of cPLA2. 

11 



Eosinophils also release a number of other soluble inflammatory mediators including 

vasoactive intestinal peptide (Aliakbari, J. et al., 1987), substance P (Weinstock, J.V. 

et ah, 1988) and the chemokine IL-8 (Weller, P.F. et al., 1996). There are four 

principal cationic proteins in the eosinophil granule namely MB? (major basic 

protein), EPO (eosinophil peroxidase), EDN (eosinophil-derived neurotoxin) and ECP 

(eosinophil cationic protein) (Wasmoen, T.L. et al., 1988.; Barker, R.L. et al., 1988). 

MBP is exceedingly highly basic due to the fact that it contains 17 arginines. MBP 

also contains 9 cysteines (Wasmoen, T.L. et al., 1988.; Barker, R.L. et al., 1988) and 

at least 4 reactive sulfhydryl groups : these groups may explain its marked tendency to 

aggregate with itself and with other proteins at alkaline pH. Both EDN and ECP 

possess ribonuclease activity (Slifinan, N.R. et al., 1986.; Gullberg, U. et al., 1986) 

and demonstrate marked sequence similarity to ribonucleases from various species 

(Gleich, G.J. et al., 1986). EPO has been partially sequenced and its light chain has 

been distinguished from MBP (Weller, P.F. et al., 1988). In vitro, EPO in 

conjunction with H202 and halide kills a variety of microorganisms, and the 

preferred halide in vitro is iodide. Recent studies indicate that the effectiveness of 

EPO is dependant on the concentration of bromide that is present in physiological 

fluids (Weiss, S.J. et al., 1986). Injection of eosinophil cytoplasmic granule, 

containing MBP, into the airway in animal models in vivo induces bronchial 

hyperreactivity, possibly by effects on respiratory epithelium (Gleich, G.J. et al., 

1988). EPO (Henderson, W.R. et al., 1980) and MBP (O'Donnell, M.C. et a/., 1983.; 

Zheutlin, L.M. et al., 1984) may also have indirect pro-inflammatory effects through 

activation of mast cells to release histamine. 
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Eosinophil differentiation, activation and survival occur within the bone marrow 

under the influence of GM-CSF, IL-3 and IL-5, with IL-5 having the most cell-

specific effects (Sampson, A.P., 2001; Campbell, H.D. etal., 1987). IL-5 is essential 

to the haematopoeisis and survival of human eosinophils in vivo (Zhu, X. et al., 1999.; 

Strek, M.E. and Leff, A.R., 1990). IL-5 also upregulates p2-integrin in human 

eosinophils. Hence IL-5 was considered to be a good potential target for treating 

asthma. It has been well established that IL-5 mediates antigen-induced eosinophilia 

in guinea pigs (Van Oosterhout, A.J. et al., 1993) and mice. 

When exposed to IL-5 by inhalation patients with asthma developed airway 

eosinophilia and hyperreactivity which suggests an important role both for IL-5 and 

for eosinophils in human asthma (Shi, H.Z. et al., 1998b). 

In contrast, a recent clinical trial using a humanized anti-IL-5 monoclonal antibody 

failed to reduce airway hyperresponsiveness or the late asthmatic response after 

allergen inhalation despite a very substantial reduction in blood and sputum 

eosinophilia (Leckie, M.J. et al., 2000; Matsumoto, K. and Saito, H., 2001) suggesting 

that eosinophils may not be essential to the LAR. Eosinophils migrate from the 

peripheral circulation and are present in increased numbers in the conducting airways 

of chronic asthmatics. They are not present in significant numbers in the conducting 

airways of normal individuals (Leff, A.R. et al., 1991). 

Eosinophils are attracted in response to a variety of chemoattractants including lipid 

mediators, complement components, chemokines and cytokines. Eosinophils express 

receptors for complement components C3a and C5a, for chemokines including IL-8, 

RANTES (CCRl) and eotaxin (CCR-3), for cytokines including lL-1, IL-2, IL-3, IL-

4, IL-5, IL-9, IL-16, GM-CSF, IFN-y and TNF-a and for immunoglobulins (Ig) A, 
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IgG and IgE (high and low-afBnity) (Weller, P.F.,1997). Eosinophils are thus well 

equipped to respond to a range of inflammatory stimuli. 

Using recombinant murine IFN-y and anti -IFN-y monoclonal antibodies, it has 

been found that IFN-y inhibits antigen-induced eosinophil recruitment into the tissue 

(Iwamoto, I. et ah, 1993). The intraperitoneal administration of rIFN-y prevented 

antigen-induced eosinophil infiltration in the trachea of sensitized mice. The 

administration of rlFN-y also decreased antigen induced CD4+ T cell but not CDS + 

T-cell infiltration in the trachea. IFN-y regulates antigen induced eosinophil 

recruitment into the tissue by inhibiting CD4+ T cell infiltration (Iwamoto, I. et al., 

1993). It is unlikely that IFN-y directly acts on eosinophils thereby inhibiting the 

antigen-induced IL-5-dependant eosinophil infiltration, since it has been demonstrated 

that IFN-y is an activator for eosinophils to prolong the survival and enhance 

cytotoxicity (Valerius, T. et al., 1990). The effective inhibition of antigen-induced 

eosinophil recruitment into the tissues with r IFN-y suggests that r IFN-y would be 

usefiil for the treatment of atopic diseases such as asthma and atopic dermatitis. 

Eotaxin is a CC family chemokine (Luster, A.D., 1998), a potent eosinophil attractant 

and can induce eosinophil superoxide and leukotriene production as well as granule 

release (Jose, P.J. et al.,\994.; Garcia- Zepeda, A. E. et al., 1996.; Hisada, T. et al., 

1999b). Eotaxin has been found in asthmatic airways and can be upregulated by the 

cytokine IL-13. Later studies suggest that eotaxin-3 rather than eotaxin-1 or eotaxin-2 

may contribute to the ongoing eosinophil recruitment to asthmatic airways in the later 

stages following allergen challenge (Berkman, N. et al., 2001). The specific 

eosinophil recruiting chemokine eotaxin is important in the early recruitment of 
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eosinophils after allergen challenge (Rothenberg, M.E. et al., 1997), but, a recent 

study with neutralizing monoclonal abs demonstrated that chemokines such as 

RANTES, monocyte chemotactic protein-5, and macrophage inflammatory protein-

l a are also important in eosinophil tissue recruitment (Gonzalo, J. A. et a/., 1998). 

The selective recruitment of eosinophils into the tissues reUes on local expression of 

endothelial adhesion molecules including ICAM-1 and VCAM-1. ICAM-1 binds 

GDI 1/GD18 molecules on a range of leucocyte types, while VGAM-1 is induced by 

IL-4 (Schleimer, R.P. et al., 1992) and binds to VLA-4, which is found on eosinophils 

but not on neutrophils. 

Mast cells and basophils also contribute to the pathogenesis of allergic asthma (Walls, 

A.F. et al., 2001). The activation of mast cells and basophils results in the release of a 

range of potent mediators of inflammation and bronchoconstriction. Mast cells and 

basophils can be stimulated to degranulate by allergen cross-linking specific IgE 

bound to high-affinity IgE receptors on the cell membrane. In the airways, mast cells 

are abundant in the mucosal tissues, may also be present in the submucosa, 

particularly in the vicinity of mucus glands; and small numbers are free in the lumen, 

where they are well placed to respond to inhaled allergens. 

There is also some evidence indicate that basophils are recruited to the bronchial 

mucosa and express IL-4 mRNA and protein after aUergen provocation in sensitive 

patients with atopic asthma (Nouri-Aria, K.T. et al., 2001). The IL-4 released from 

basophils might contribute to local IgE synthesis, and the basophils may promote 

tissue eosinophilia or other aspects of allergic inflammation during late responses and 

ongoing asthma. 
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Several studies have demonstrated infiltration by basophils of human allergen-

induced late responses occuring in the skin, nose and bronchi (Prat, J. et al., 1993.; 

Gibson, P.G. et al., 1992.; lliopoulos, O. et al., 1992.; Guo, C.B. et al., 1994.; 

Maruyama, N. et al., 1994). 

1.6 Mouse models of asthma 

The increased tendency of bronchial smooth muscle to contract in response to an 

irritant is known as airway hyperreactivity and is a characteristic of asthma 

(McFadden, E.R. and Gilbert, I.A., 1992). Since an extensive study of the 

pathogenesis of asthma in human has been foimd to be impossible, it necessitated the 

development of appropriate mouse models. Mouse models resemble human disease in 

many aspects, therefore, studying asthma in the mouse may give an overall picture to 

understand what is happening in human. Studies in the mouse, suggest that IL-5 and 

IL-4 may control eosinophilia and IgE respectively (Coyle, A.J. et al., 1995c.; Foster, 

P.S. et ah, 1996) whereas IL-13 and IL-9 may control mucus production and airway 

hyperreactivity (Cohn, L. et al., 1999a.; Townsend, M.J. et al., 2000a). Depletion of 

CD4 cells 6om mice can prevent AHR and eosinophilia (Gavett, S.H. et al., 1994), 

while Th2 clones or primary CD4+ T cells secreting lL-4, IL-5 and lL-13 can induce 

asthmatic symptoms if adoptively transferred into unimmunized recipients (Cohn, L. 

et al., 1999a). OVA inhalation by mice that had received the Th2 cells developed a 

pronounced airway eosinophilia associated with the largest increase in the number of 

eosinophils in the BAL (Lee, S C., et al. 1999). An increase in the production of IL-4 

and IL-5 in these mice has also been reported. 

It has been demonstrated using a mouse model that much of the asthmatic Th2 

response is dependant on OX40/OX40L interactions including production of high 

levels of IL-5, recruitment of large numbers of eosinophils and induction of IgE 
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(Jember, A. G. et al., 2001). Notably, goblet cell hyperplasia, mucus production and 

AHR are all suppressed in mice not expressing OX40, demonstrating that this 

molecule plays a major role in the development of allergic airway inflammation. 

The role of IL-5 in the selective accumulation of eosinophils and the development of 

pulmonary dysfunction was analysed in IL-5 knockout mice using an aeroallergen-

induced lung damage model (Foster, P.S. et al., 1996). Sensitized IL-5 knockout mice 

on a C57BL/6 background failed to develop any airway or blood eosinophilia in 

response to OVA aerosolization, and minimal morphological changes to pulmonary 

structure were observed (Foster, P.S. et al., 1996). OVA -specific IgE was detected 

at similar levels in sera from IL-5+ and IL-5- mice after aeroallergen challenge 

indicating that IgE and eosinophilia are independently regulated. 

Airway hyperreactivity to beta -methacholine was also abolished in aeroallergen-

challenged IL-5- deficient mice. These observations establish that IL-5 plays an 

important role in generating blood and airway eosinophilic, the subsequent 

development of airway hyperreactivity and lung damage which occurs in response to 

aeroallergens. The role of eosinophil degranulation and peroxidase-mediated 

oxidation of airway proteins have been studied in knockout mice deficient for 

eosinophil peroxidase; the lack of EPO had no effect on the development of OVA-

induced pathology in the mouse (Denzler, K.L., 2001). OVA- induced airway 

hyperresponsiveness was also displayed by EPO- deficient animals after provocation 

with methacholine. This data demonstrates that EPO activity is not important to the 

development of allergic pulmonary pathology in the mouse. 

It has been observed in a mouse model of asthma, that allergen-induced bronchial 

hyperreactivity and eosinophilic inflammation can occur in the absence of IgE 

(Mehlhop, P.D. etal., 1997). 
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When wild type and IgE-deficient mice were sensitized iatranasally with Aspergillus 

fumigatm, both groups of animals developed bronchoalveolar lavage eosinophiUa and 

pulmonary parenchymal eosinophilia accompanied by increased serum levels of total 

and Ag-specific IgE in the wild-type animals only. But AHR was significantly 

elevated both in wild type mice and IgE-deficient mice (Mehlhop, P.D. et al., 1997.). 

Surprisingly, unsensitized IgE-deficient mice had increased bronchial responsiveness 

compared with unsensitized wild type controls. These suggest that AHR and airway 

inflammation can fiilly develop via IgE- independent mechanisms. 

Greater AHR and more eosinophil infiltration in the respiratory epithelium after OVA 

sensitization and challenge have been reported in mice bred for high IgE production 

than control animals (Eum, S. Y. et al., 1995). Attenuation of both eosinophilic 

airway inflammation and AHR in mice have been shown with the inhibition of IgE by 

anti-IgE (Coyle, A.J. et al., 1996c). Although IgE plays an important role in the 

development of AHR and airway pathology, it is likely that other mechanisms take 

part in asthma pathogenesis. 

It has been reported that the respiratory mucosa of asthmatic patients contains 

activated allergen-specific T- cells (Azzawi, M. et al., 1990.; Gerblich, A. A. et al., 

1984) and a mouse model of AHR induced by repeated applications of piciyl chloride 

has the features of a delayed type-hypersensitivity reaction and is T-cell dependant 

(Garssen, J. et al., 1993). IL-13 has also been identified as a potent regulator of 

bronchoconstriction in mouse models of allergic asthma and experimental AHR 

(WiUs-Karp, M. et al., 1998.; Grunig, G. et al., 1998). Although this cytokine is 

primarily secreted by Th2 cells, mast cells, macrophages, eosinophils and NK cells 

also express this cytokine (McKenzie, A.N. et al., 1993.; Burd, P R. et al., 1995.; 

Hancock, A et ah, 1998). IL-13 shares about 30% identity (at the protein level) with 
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IL-4 and in part, has similar biological functions through utilization of the IL-4 Ra 

chain (Zurawski, G. and de Vries, J.E., 1994). In mouse models of experimental 

asthma, blockade of IL-13 signaling by a soluble IL-13 R a 2-IgGFc fimction protein 

which specifically binds and neutralizes IL-13 has identified this cytokine as a 

principal regulator of AHR and mucus production in the allergic lung (Wills-Karp, M. 

etal., 1998.; Grunig, G. etal., 1998). 

IL-13 was found to be sufficient to induce pathological features of asthma i.e AHR, 

IgE production, eosinophilia and mucus production, when instilled into the airways of 

naive mice or overexpressed in the lung (Li, L. et ah, 1999.; Grunig, G. et ah, 1998). 

IL-13 also induces eotaxin production in the lung (Li, L. et ah, 1999). Activation of 

STAT6 occurs when IL-13 signals by binding to its primary receptor chain (IL-13 

Ral ) and recruiting the IL-4 Ra chain into the receptor complex (Zurawski, S.M. et 

ah, 1993.; Lin, J.X. et ah, 1995). In naive IL-4 Ra- deficient mice, IL-13 failed to 

induce asthma symptoms, which supports the concept that this receptor and 

subsequent signaling through STAT-6 are critical for the induction of allergic disease 

of the lung (Akimoto, T. et al., 1998.; Kuperman, D. et al., 1998.; Tomkinson, A. et 

al., 1999.; Foster, P.S., 1999). In contrast, IL-13 induced airways hyperreactivity 

independantly of the IL-4Ra chain in the allergic lung (Mattes, J. et al., 2001) but 

IL-13 +/+ T cells did not induce disease in STAT 6-deficient mice. These results 

indicate that IL-13 employs a novel component of the IL-13 receptor signaling system 

that involves STAT 6, independantly of the IL-4- Ra chain to modulate pathogenesis. 

It has been shown that IL-13 signaling is dependant on T-cell activation in the lung 

and is critically linked to down stream effector pathways regulated by eotaxin and 

STAT6 (Mattes, J. et al., 2001). 
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Recent studies in animals indicate that IL-13 can induce pathological changes 

reminiscent of asthma, including infiltration of eosinophils and mononuclear cells, 

epithelial damage, hyperplasia of goblet cells and subepithelial fibrosis (Zhu, Z. et al., 

1999.; Grunig, G. et aL, 1998.; Wills-Karp, M .et al., 1998). In the airway epithelial 

cell line BEAS-2B, IL-13 upregulated eotaxin mRNA and protein synthesis which is 

STAT6 -dependant mechanism (Matsukura, S. et al., 2001). As well as its role in the 

recruitment of eosinophils, IL-13 probably plays an important role as a mucus-

stimulating cytokine (Zhu, Z. et al., 1999.; Cohn, L. et al., 1999a); it also induced the 

expression of vascular cell adhesion molecule-1 (VCAM-1) which is involved in 

eosinophil recruitment (Bochner, B.S. et al., 1995.; Terada, N. et al., 1998). Eotaxin 

is a C-C chemokine that binds with high afiBnity and specificity to the chemokine 

receptor CCR3 (Jose, P.J. et al., 1994.; Rothenberg, M.E. et ah, 1995a.; Daugherty, 

B.L. et al., 1996.; Stellato, C. et al., 1997), which is expressed on important cells in 

allergic disease such as eosinophils, basophils, a subset of Th2 cells and mast cells 

(Daugherty, B.L. et al., 1996.; Sallusto, F. et al., 1997.; Yamada, H. et al., 1997.; 

Ochi, H. et a/.,1999). Eotaxin is highly expressed in the epithelium of asthmatics 

(Lamkhioued, B. et al., 1997.; Mattoli, S. et al., 1997.; Ying, S. et al., 1997c), it may 

play a role in the recruitment of eosinophils into the airways. IL-13 induces the 

expression of eotaxin in the airway epithelium of mice more effectively than IL-4 (Li, 

L. etal., 1999). 

1.7 Novel approachs at the molecular level for treatment of 
asthma 

Intramuscular injection of rats with a plasmid DNA encoding a house dust mite 

allergen results in its long -term expression and the induction of 
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specific immune responses. ( Hsu, C. et ah, 1996). This prevented the induction of 

immunoglobulin E synthesis, histamine release in bronchoalveolar larvage fluid and 

airway hyperresponsiveness in rats challenged with aerosolized allergen. This 

suppression is persistent and can be transferred into naive rats by CD8+ T cells from 

allergen gene-immunized rats. It suggests that allergen- gene immunization is 

effective in modulating allergic responses and may provide a novel therapeutic 

approach for allergic diseases. Recent experimental evidence indicate that 

fimctionally distinct subsets of CD8+ T cells may play an important regulatory role in 

IgE production and suppress allergen-induced airway hyperresponsiveness (AHR) 

(Sedgwick, J.D. and Holt, P.G., 1985b.; Kemeny, D.M. and Diaz-Sanchez, D., 

1991.; McMenamin, C. and Holt, P.G., 1993.; Renz, H. etal., 1994). 

1.8 Observations in patients with asthma and potential 
treatment 

Several human studies have demonstrated a correlation between the levels of 

eosinophils in the peripheral blood and bronchial hyperreactivity (Durham, S R. and 

Kay, A.B., 1985.; lijima, M. et al., 1985.; Taylor, K.J. and Luksza, A.R., 1987). 

Selective increase of eosinophils in the BAL fluid during the late-phase reaction 

(de Monchy, J.G. et al., 1985) and the elevated ECP/albumin ratio in the BAL 

suggest that eosinophils degranulate during the peak of the late reaction. The presence 

of eosinophils in BAL has also been reported for patients with intrinsic asthma for 

whom allergic triggers of asthma have not been identified (Bentley, A.M. et al., 

1992). Neutrophils were not increased in BAL fluid in these patients. The human 

airway produces an array of cytokines which is diverse and occurs in response to 
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many stimuli. These stimuli can be cytokines such as EL-ip and TGF-P which cause 

the release of IL-6, IL-11 and LIF from the smooth muscle cell (Elias, J.A. et al., 

1997). EL-ip and TNF-a promote the release of GM-CSF (Sukkar, M.B. et al., 2000) 

whereas TNF-a induces lL-8 (Pang, L. and Knox, A.J., 2000) and IL-6 (McKay, S. et 

al., 2000) release. 

The remodelling process is a key feature of persistent asthma which involves the 

deposition of extracellular matrix proteins within the airways. AHR and airway 

obstruction in asthmatics are associated with increases in total and antigen-specific 

IgE (Burrows, B. et aL, 1989.; Sears, M.R. et al., 1991) and the genetic analysis of 

families indicates that AHR and IgE levels are linked (Postma, D.S. et al., 1995). The 

development of therapeutics such as agents which block the interaction of IgE with its 

high affinity receptor, Fes RI has been driven by the concept that allergen-specific 

IgE initiates allergic airway symptoms (Saban, R. et al., 1994. ; Shields, R.L. et al., 

1995). IgE contributes to the pathogenesis of airways allergy in a number of ways, it 

is well established that IgE can initiate immediate hypersensivity reactions by 

triggering mast cell degranulation via FcsRI (Galli, S.J., 1993). In the airways, mast 

cell-derived mediators released after allergen challenge lead to immediate bronchial 

smooth muscle constriction, bronchial oedema and mucus hypersecretion (Kaliner, 

M., 1989.; Norel, X. etal, 1991). 

IgE-induced activation of mast cells leads to the synthesis of cytokines (Plaut, M. et 

al., 1989. ; Burd, P R. et al., 1989). Cellular immune responses to allergen may be 

modulated by IgE by facilitating antigen uptake, processing and presentation by B 
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cells via CD23 thereby amplifying and regulating the immune response to allergens 

(Sutton, BJ. and Gould, HJ., 1993.; Kehry, M.R. and Yamashita, L.C., 1989). 

IgE is a therapeutic target to develop new treatments for allergy and asthma as anti-

IgE has been shown to attenuate both early and late-phase responses in mildly 

asthmatic patients after the inhalation of allergens (Boulet, L.P. et al., 1997.; Fahy, 

J.V. et a/.,1997), and to reduce asthma exacerbations in patients with moderate to 

severe allergic asthma who are taking corticosteroids (Milgrom, H. et al., 1999). 

A recombinant humanized anti-IgE mAb , omalizumab has been developed and used 

in experimental and clinical studies in asthma. It acts by binding to free IgE and 

blocks its interaction with mast cells and basophils (Busse, W. et al., 2001). 

1.9 Characteristics of regulatory T cells. 

A distinct population of CD4+ T cells that constitutively express the IL-2 receptor 

(IL-2R) a chain (CD25) has recently been identified in mice (Sakaguchi, S., 2000. ; 

Asseman, C. et ah, 1999). CD4+CD25+ T cells are regulatory cells which constitute 

about 4-10 % of lymphocytes in mice and in humans. These cells play an essential 

role in the induction and maintenance of peripheral self-tolerance. Murine 

CD4+CD25+ T cells appear to mediate the suppression of effector T cell function 

both in vitro and in vivo via several mechanisms requiring either cell-cell contact or 

the production of immunosuppressive cytokines such as IL-10 and TGF-p 

(Sakaguchi, S., 2000. ; Asseman, C. et al., 1999; Shevach, E.M., 2000). The 

costimulatory molecules CD28 and CTLA-4 interact with CD80 and CD86 present 

onAPC. 
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CD28 is present on naive T-cells and is important for the development of primary 

responses (Shahinian, A. et al., 1993.; Allison, J.P., 1994.; June, C.H. et al., 1994.). 

In contrast, CTLA-4 is induced only after T-cell activation and its ligation results in 

the inhibition of T-cell activation. IL-2 gene expression and cell cycle progression are 

inhibited as a result of concomitant cross- linking of CTLA-4 with TCR- signaling 

(Walunas, T.L. et ah, 1996.; Krummel, M.F. and Allison, J.P., 1996.), CTLA-4 

contributes to maintaining immunological self-tolerance (Takahashi, T. et al., 2000.); 

in vivo blockade of CTLA-4 for limited period in normal mice led to the spontaneous 

development of chronic organ-specific autoimmune diseases. CD25+CD4+ T cells 

suppressed antigen-specific and polyclonal activation and proliferation of other T 

cells, including CTLA-4 -deficient T-ceils, when stimulated via T cell receptor in 

vitro-, blockade of CTLA-4 abrogated the suppression (Takahashi, T. et al., 2000.). 

There is another member of B7 family (B7-H1) whose ligation co-stimulated T-cell 

responses to polyclonal stimuli and allogeneic antigens and preferentially stimulated 

the production of IL-10 (Dong, H. et al., 1999) although it should be noted that small 

amounts of IL-2 were required for the effect of B7-H1 costimulation (Dong, H. et al., 

1999). 

CD28 -deficient CD25+CD4+T cells can also suppress normal T-cells suggesting that 

CD28 is not crucial for the activation of regulatory T-cells (Takahashi, T. et al., 

2000). The unique fimction of CTLA-4 could be exploited in controlling T-cell-

mediated immimoregulation and thereby induction of immunological tolerance or 

to control autoimmunity. 
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1.10 Role of regulatory T cells in preventing 
autoimmunity 

CD4+CD25+ regulatory T cells are thymus- dependent, are capable of suppressing 

auto-reactive T-cells (Itoh, M. et al., 1999) and prevent the induction of organ -

specific autoimmune diseases (Sakaguchi, S. et al., 1995.; Asano, M. et al., 1996.; 

Suri-payer, E. et al., 1998.; Sakaguchi, S., 2000.). These regulatory cells constitute 

about 5-10% of peripheral CD4+ T cells in non-immunized naive mice (Sakaguchi, S. 

et al., 1995; Asano, M. et al., 1996.; Suri-payer, E. et al., 1998) and inhibited the 

proliferation of CD4+CD25- cells in vitro (Thornton, A.M. and Shevach, E.M., 1998.; 

Takahashi, T. et a/., 1998). There is accumulating evidence demonstrating the 

existence of human CD4+CD25+regulatory cells. These cells express high levels of 

the IL-2 receptor (Baecher-Allan, C. et al., 2001) and following TCR cross-linking, 

CD4+CD25high cells did not proliferate but instead totally inhibited proliferation and 

cytokine secretion by activated CD4+CD25- responder T cells in a contact -

dependant manner. The inhibition is dependant on contact between responding 

CD4+CD25- T cells and the CD4+CD25+T cells and not mediated by cytokines (eg 

IL-4, IL-10 and TGF-P) (Thornton, A.M. and Shevach, E.M., 1998.; Takahashi, T. et 

a/.,1998). For the regulatory function of CD4+CD25+ T cells, the expression of 

cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) is required (Read, S. et 

a/.,2000.; Takahashi, T. et al., 2000). 

CD4+CD25+ cells play a major role in mediating immunological self tolerance via 

protecting the body from being attacked by T-cells reactive against self-antigens 

(Sakuguchi, S., 2000). It has been proposed that two distinct populations of CD4+T 
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cells exist, one capable of mediating autoimmune disease and a second inhibiting such 

responses. Typically, the latter are dominant and maintain self-tolerance. 

There have been different cell surface markers employed to identify regulatory cells, 

CD25 (IL-2 receptor alpha chain generally expressed on activated T-cells), 

CD45RB/RC (a protein tyrosine phosphatase expressed in almost all haematopoetic 

cells), CDS (expressed at high levels on mature T-ceUs and a possible Ugand for 

CD72) and RT6.1 (expressed on the majority of mature T-ceUs in rats, and having 

ADP- ribosylation activity (Sakaguchi, S., 2000). T-ceU deficient mice or rats which 

were given CD4+ splenic cells depleted of CD4+, RT6.1+, CDShigh or CD45 

RB/RC low cells spontaneously developed various organ specific autoimmune 

diseases such as insulin-dependant diabetes mellitus, thyroiditis, gastritis and 

systemic wasting disease in a few months (Sakaguchi, S., 2000). Although, the 

surface markers of the regulatory cells are not directly associated with the regulatory 

fimction itself, it may indicate that the cells are iu an "activated", "primed" or 

memory state. These cells suppress the activation and expansion of potentially 

pathogenic self-reactive T-ceUs in the normal immune system, thereby contributing 

to the maintainance of self-tolerance. In the thymus and the periphery, regulatory 

cells constitute about 4-10% of mature CD4+ T-cells. The removal of these cells leads 

to spontaneous activation and expansion of self-reactive T-cells and consequently to 

the development of various autoimmune diseases (Itoh, M. et al., 1999). Functionally 

mature regulatory cells are produced as CD4+ CDS- cells in the thymus and are 

capable of prevenfing autoimmunity (Itoh, M. et al., 1999.; Seddon, B. and Mason, 

D., 2000). The normal thymus seems to be continuously producing not only 
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pathogenic self-reactive T-cells but also functionally mature regulatory CD4+T-cells 

controUing them. There are some published evidence that these regulatory cells can be 

expanded in vitro in exogenous lL-2 ( Chen, Y. et al., 1994.; Groux, H. et ah, 1997). 

It has also been observed that the mice deficient in TGF-p or TGF-p- receptor 

developed various autoimmune diseases (Gorelik, L. and Flavell, R.A., 2000). 

Regulatory CD4+ T- cells unlike other T-cells, constitutively express CTLA-4, a 

costimulatory molecule expressed on T-cell activation, and the T-cells stimulated via 

CTLA-4 predominantly secrete TGF-P (Chen, W. et al., 1998a.; Salomon, B. et al., 

2000). Collectively, these observations suggest that regulatory CD4+ T-cells 

activated through CTLA-4 might suppress other T-cells by secreting TGF-p. 

Regulatory T-cells also exert a suppressive effect on other T-cells via a cognate 

cellular interaction with APCs (Itoh, M. et aL, 1999). Anergy and clonal deletion are 

the main mechanisms conferring inmiunological tolerance in order to avoid severe 

autoreactivity. Interestingly, thymectomy of neonatal and adult mice results in the 

development of organ specific autoimmunity. Thymectomised animals reconstituted 

with CD25+ CD4+ regulatory T cells do not develop autoimmunity. This regulatory 

cell lineage is generated in the thymus and the expression of CD25 antigens 

distinguishes regulatory ceUs fi"om other T cells. It has been very well documented 

that effector and suppressor T cell populations are CD4+CD8- (Smith, H. et al., 1991; 

Smith, H. et al., 1992). Although reconstitution experiments implied strongly that the 

development of autoimmunity was prevented by suppressor T-cells, the implication 

has been strengthened by the demonstration that the removal of suppressor T cells 

from an immune system of a normal animal resulted in disease, and that reconstitution 
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of the recipient with suppressor T cells triggered the reestablishment of self tolerance 

and prevented autoimmunity (Sakaguchi, S. et al., 1985). Similarly, a role for 

regulatory T cells in controlling antibody production has been hypothesized i.e that 

antibody- mediated autoimmune diseases might develop because of the failure of 

regulatory T cells to control autoantibody production (Penhale, W.J. et ah, 1973.; 

Penhale, W.J. etal., 1975.; Penhale, W.J. etal., 1976. ). 

1.11 Role of Tr cells in transplantation tolerance 

In organ transplantation in animals, tolerance can be acquired by transferring 

lymphocytes from long-term survivors to naive recipients (Zhai, Y. and Kupiec-

Weglinski, J.W., 1999). 

Tolerance established either by a course of cyclosporin A treatment or a blocking 

anti- CD4 antibody can be transferred to naive animals by CD4+ T cells from tolerant 

donors (Hall, B.M. et aZ.,1990; Qin, S. et ah, 1993). Encouragingly, transfer of CD4+ 

T cells from anti-CD4 antibody- treated tolerant mice triggered the naive CD4+ T 

cells in the recipients to gradually become tolerant with the allograft sustaining the 

tolerant state (Qin, S. et al., 1993). It is unclear whether the CD4+ regulatory T cells 

responsible for transplantation tolerance are similar to T cells mediating self-

tolerance. 

It has been demonstrated that retroviral mediated gene transfer of viral IL-10 prolongs 

allograft survival by decreasing donor- specific cytotoxic T lymphocyte precursor and 

IL-2-secreting helper T lymphocyte precursor frequency within graft-infiltrating cells 
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(Qin, L. et al. 2001). It also reports that local immunosuppression induced by viral 

IL-10 gene transfer is CD4+T cell and IL-4 and murine IL-10 dependent, and prevent 

direct alloantigen presentation through an alteration of donor type APC function. 

1.12 Role of Tr cells in allergy and asthma 

In a mouse model of asthma, depletion of CD4+CD25+ T cells resulted in a 

decreased antigen-induced eosinophil recruitment into the airways (Suto, A. et al., 

2001). Endogenous IL-10 suppresses allergen-induced airway inflammation and non-

specific airway responsiveness demonstrated in IL-10 knock out mice and wild type 

counterparts (Toumoy, K.G. et al., 2000). 

TGF-P has been implicated in immunosuppression (Nakao, A. et al., 2000.), since the 

blockade of TGF-ji/Smad signalling in mature T-cells by expression of Smad 7 

enhanced airway inflammation and airway reactivity (Nakao, A. et al.,2000). These 

observations indicate that regulation of T-cells by TGF-P was crucial for the negative 

regulation of inflammatory immune response. TGF-p/Smad signalling in mature 

T-cells has also been implicated as a regulatory component of allergic asthma (Nakao, 

A. et al., 2000). In the immune system, TGF-P regulates growth, differentiation and 

the fimction of macrophages, T-cells, B-cells and natural killer cells (Wahl, S.M., 

1992.; Miyazono, K. et al., 1994.; Letterio, J.J. and Roberts, A.B., 1998). 

Furthermore, it has also been noticed that TGF-P null mice developed extensive 

inflammation in various organs and died shortly after birth, suggesting that TGF-P 

played a crucial role in the suppression of the immune system. (Shull, M.M. et 

a/.,1992.; Kulkami, A.B. et al., 1993.). The mechanism of action of TGF-P in vivo is 
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not clear, TGF-P acts on multiple targets affecting the immune system (Wahl, S.M., 

1992). An extensive study into the pathological role of TGF-p/Smad signaling in the 

asthmatic airways needs to be established since TGF-p/Smad signaling has been 

implicated in the suppression of airway inflammation in mice (Nakao, A. et al., 2000). 

In another mouse model, treatment with a killed Mycobacterium vaccae- suspension, 

generated allergen-specific CD4+CD45RB (Lo) regulatory T cells, which confer 

protection against airway inflammation (Zuany-Amorim, C. et al., 2002). This 

mechanism appeared to be mediated by IL-10 and TGF-p, as antibodies against 

IL-10 and TGF-P abrogated the inhibitory effect of CD4+CD45RB (Lo) T cells. 

1.13 Role of Tr cells in limiting colitis 

Stimulation of CD4+T cells in the presence of IL-10 induces the differentiation of a 

unique subset of T-cells with immunoregulatory properties (Groux, H. et al., 1997) 

defined as regulatory cells secreted high levels of IL-10, low levels of IL-2 and no 

IL-4. These antigen specific T-cell clones suppressed the proliferation of CD4+T cells 

in response to antigen, and prevented colitis induced in SCID mice by pathogenic 

CD4+CD45 RB high splenic T cells (Groux, H. et ah, 1997). 

In the intestine, the regulatory cells which prevent the development of pathogenic 

responses to both self and intestinal antigens, have the same phenotype (CD25+CD45 

RB low CD4+) as those that control autoimmunity (Read, S. et al., 2000). Their 

immunosuppressive function in vivo depends on signaling via the negative regulator 

of T-cell activation cytotoxic T-lymphocyte -associated antigen-4 as well as the 

secretion of immune- suppressive cytokine transforming growth factor-p (Read, S. et 
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al., 2000). Regulatory cells constitutively express CTLA-4 , suggesting the expression 

of CTLA-4 by these cells is involved in their immunosuppressive function (Read, S. 

et al., 2000). 

1.14 The effects of prostaglandin on the immune 
system 

Prostaglandins are inflammatory mediators secreted by mononuclear cells such as 

macrophages and dendritic cells. There are several different types of prostaglandins 

(PGI2, PGE2, PGFio, TXB2, PGD2, etc) each of which has a different fimction. PGE2 

increases cyclic AMP in T cells, and inhibits the production of IL-2 and IFN-y by 

Thl cells but not IL-4 by Th2 cells (Betz, M. and Fox, B.S., 1991). We have 

preliminary in vitro data indicating that PGI2 can augment the production of IL-10 by 

CD4+CD25+ T cells. The critical enzymes involved in the production of 

prostaglandins from arachidonic acid are cyclooxygenases (COX). Two isoforms of 

the cyclooxygenase enzyme exist specifically, COX-1 and COX-2 which catalyse the 

rate limiting step in the formation of prostaglandins. The expression of COX- 1 is 

constitutive but COX-2 expression is induced following the onset of inflammatory 

responses. The effect of administration of COX-2 inhibitors on Th2 cells has been 

recently addressed in mice. 

It is well known that some asthmatics are sensitive to aspirin which inhibits both 

COX-1 and COX-2. This observation has encouraged previous students in our 

research group to conduct a study in a DO 11.10 mouse model, in which they 
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observed that mice treated with a COX-2 inhibitor still expressed PGE2, PGFia, 

PGD2 and TxAz in BALF but there was no PGI2. We have also found that 

CD4+CD25+ cells express receptors for PGI2. We have therefore hypothesised that 

the prostaglandin PGI2 may help to ease the symptoms in aspirin sensitive asthmatics 

via augmenting the production of IL-10 by CD4+CD25+ T cells. 

A variety of agents have been shown to induce COX-2 expression, including bacterial 

lipopolysaccharides, growth factors, cytokines and phorbol esters (O' Sullivan, M.G. 

et aL, 1992b.; Jones, D.A. et al., 1993b.; Kujubu, D.A. et aL, 1993). The liberation of 

arachidonic acid from membrane bound phospholipids is the first step in the 

production of prostaglandins. Phospholipase enzymes, primarily phospholipase A2, 

are involved in the liberation of phospholipids. Phospholipase A2 is expressed in 

different isoforms, some are expressed constitutively and others are induced in 

response to inflammatory stimuli (Cirino, G., 1998). It has been proposed that 

phospholipase and not cyclooxygenase is the rate limiting step in prostaglandins 

production (Cirino, G., 1998). The ability of cells and tissues expressing COX-2 in 

vitro (Saunders, M.A. et aL, 1999) and in vivo (Hamilton, L.C. et aL, 1999a) to 

release prostanoids is greatly enhanced when phospholipase is activated. The profile 

of products made by cells expressing COX-1 or COX-2 is determined by the 

presence of different downstream synthases. However, when cells express large 

amounts of COX-2 , the PGH2 formed results in the formation of large amounts of 

PGE2 (Bishop- Bailey, D. et aL, 1997a) possibly by non-enzymatic conversion. This 

is probably due to the apparent lack of regulation of synthase enzymes at the site of 

inflammation. 
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COX-2 is undetectable in most tissues in the absence of stimulation, but is induced as 

an intermediate early gene in a limited range of cells, notably in monocytes, 

macrophages, neutrophils and endothelial cells (Fu, J.Y. et ah, 1990.; Hla, T. and 

Neilson, K., 1992.; Niiro, H. et al., 1997). Expression of the COX-2 isoform is 

inhibited by glucocorticoids and by the anti-inflammatory cytokines interleukin 10 

and IL-4 (Masferrer, J.L. et a/.,1990.; Mertz, P.M. et al., 1994.; Dworski, R. and 

Sheller, J.R., 1997). Administration of conventional non- steroidal anti-inflammatory 

drugs inhibits the synthesis of prostaglandins thought to be responsible for both the 

therapeutic and adverse effects (Vane, J.R., 1971.; Vane, J.R. and Sotting, R.M., 

1995). These compounds do not discriminate between the two isozymes; however, 

the therapeutic effects of this agents are related to the inhibition of COX-2 at the sites 

of inflammation, whereas the adverse effects in gastrointestinal tract and platelets are 

attributable to the inhibition of COX-1 (Masferrer, J.L. et al., 1996.). 

Two factors which regulate the biological effects of COX-2 are: 1) distribution of 

synthase enzymes and the oxidative state of the cells, 2) Distribution of prostanoid 

receptors on local target tissue (Mitchell, J.A. and Warner, T.D., 1999). There are 

several different prostanoid receptor types. The main receptor for PGI2 is the IP 

receptor which is linked to activation of adenylate cyclase. Thus the action of PG12 

upon IP receptors elevates cyclic- AMP, leading to an inhibition of active processes 

(Mitchell, J.A. and Warner, T.D., 1999.). For example, the activation of IP receptors 

in vascular smooth muscle promotes vasodilation while its activation in platelets leads 

to a reduction in aggregation and adhesion (Armstrong, R.A., 1996). In vivo increases 

in the expression of COX-2 have been associated with inflammation (Vane, J.R. et al.. 
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1994), rheumatoid arthritis (Kang, R.Y. et al., 1996) and ischaemia (Planas, A.M. et 

ah, 1995). In the spinal cord, COX-2 expression is also elevated following peripheral 

inflammation (Beiche, F. et al., 1996). TNF-a and IL-10 production was modified 

with PGI2 or PGE2 in mice via IP, EP2 or EP4 receptors. The production of TNF-a 

was also down regulated resulting in an anti-inflammatory effect (Ueno, A. and 

Ohishi, S., 2001). COX-2 is downregulated by glucocorticoids (Masferrer, J.L. et al., 

1994) and also by related agents such as 17 ^-estradiol (Morisset, S. et ah, 1998). 

COX-2 metabolites are intimately involved in the induction of pain and inflammation. 

The precise role of prostanoids in pain and fever is not known, but delineation of such 

mechanisms wUl facilitate the development of anti-pyretic analgesics with fewer side 

effects. 

1.14.1 Production of prostaglandins during inflammation at 
the mucosal site: 

The expression of COX-2 is induced by cytokines in a number of airway cells 

including epithelium (Mitchell, J.A. et al., 1994) and underlying smooth muscle 

(Belvisi, M.G. et al., 1998). Narrowing airways in some patients is contributed to by 

the excessive proliferation of airway cells , which is characteristic of asthma and other 

related diseases. Proliferation of human airway smooth muscle cells is inhibited by 

COX-2 induction suggesting a protective role of this enzyme in diseases such as 

asthma (Belvisi, M.G. et ah, 1998). In mice in which the DP receptor has been 

disrupted, the allergen induced airway eosinophilic inflammation, Th2 type cytokine 

production, and bronchial hyperresponsiveness to cholinergic stimuli were reduced, 

suggesting that PGD2 is an important mediator of allergic asthma (Tanaka, H. and 

Nagai, H., 2001). Inflanmiatory resolution in carageen -induced pleurisy in rats at 48 
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hours coincided with an increase in the production of PGD2 and 15 deoxy delta 

prostaglandin J2 (Ujihara, M. et al.,1988d.; Foumier, T. et al., 1997.; Mizuno, H. et 

al., 1997), in contrast, PGE2 production was decreased. The COX-2 selective 

inhibitor NS-398 and non-specific COX-l/COX-2 inhibitor indomethacin inhibited 

inflammation at 2 hours but exacerbated inflammation at 48 hours (Gilroy, D.W. et 

al., 1999). This was due to the reduced prostaglandin D2 and 15 deoxy delta PGJ2 

concentration and was reversed by replacement of these prostaglandins, implying that 

they play an important role as anti- inflammatory agents. 

Why aspirin exacerbates symptoms in aspirin sensitive asthmatic patients is not 

known. There is a general level of acceptance that COX suppresses the production of 

leukotrienes (Kowalski, M.L., 1995). Increase in the production of leukotrienes when 

cyclo-oxygenase is blocked worsen the asthmatic symptoms. Aspirin sensitive 

asthmatics express COX-2 in their airways (Sousa, A.R. et a/.,1997a.; Cowbum, A.S. 

et al., 1998). There is a speculation that COX-2 in the airways leads to beneficial 

products that limit the production of leukotrienes. Endogenous PGI2 in gastric 

mucosal injury conferred protection via enhancement of calcitonin gene- related 

peptide (Boku, K. et al., 2001) demonstrating a protective role for PGI2 at the 

mucosal surface. 

1.14.2 Recent findings in our laboratory on evaluating the 
effect of COX-2 on CD4+ Th responses: 

When a COX-2 inhibitor is used in the DO 11.10 mouse adoptive transfer system, 

there was a pronounced increase in the level of pulmonary eosinophilia in mice given 

Th2 cells but no effect on the inflammation evident in Thl recipients. Analysis of 

BALF revealed that the COX-2 inhibitor selectively inhibited the production of PGI2. 
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In contrast, the amount of PGE2, PGFio, PGD2 and TxAi was not affected. 

Collectively, these observations suggest that PGI2 may play a role in inhibiting 

pulmonary Th2 responses. 

The expression of mRNA for PGI2 receptors by purified CD4+Th2 cells has been 

demonstrated using the PGR technique. In vitro, it has been demonstrated in our 

laboratory that PGI2 affects Th2 but not Thl cells; possibly PGI2 acts by increasing 

the production of IL-10 by Th2 cells. We speculate that the expression of PGI2 

receptors is induced by IL-4 and contributes to limiting Th2 responses. 
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Hypothesis 

Lung mucosal Th2 responses are regulated by CD4+CD25+ si^pressor T cells. 
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Aims 

1. Develop and characterise a mouse model of pulmonary Th2 responses 

2. Examine the effects of CD4+CD25+ regulatory T cells on: 

a. Polarization of CD4+ T cells into Th2 cells 
b. Pulmonary inflammation mediated by CD4+ Th2 cells 

3. Examine the effect of PGI2 on CD4+CD25+ T cells 
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Chapter 2 

Materials and Methods I 



2.0 Media 

CM-RPMI (CM-complete) consisted of RPMI1640 (Gibco BRL, Paisley, UK) 

supplemented with penicillin (50U/ml), Streptomycin (50(i.g/ml), 2mM glutamine, 2 

mercapto-ethanol (5(xM), 5mM HEPES and 5% foetal calf serum. 

2.1 Animals 

BALB/c mice were obtained from Harlan (Loughborough, UK). DOl 1.10 transgenic 

mice express a TCR recognizing OVA peptide 323-339 and backcrossed to BALB/c 

mice in the university of Texas Medical Branch facility were kindly provided by Dr. 

D. Y. Loh (Howard Hughes Medical Institute, St. Louis, MO). They were bred in a 

specific aseptic condition in a barrier facility at Southampton University 

(Southampton, UK). All mice used in these experiments were 4-8 weeks of age and 

were housed in our pathogen- free conditions with food and water provided. 

2.2 Antigen 

OVA peptide 323-339 (H-ISQAVHAAHAEINEAGR- OH) was purchased from 

Chiron Technologies. Peptide was dissolved in saline (pH>9.0) and purified using 

Sephadex GIO column (Pharmacia Biotech). PBS was used to elute the peptide. The 

protein was quantified by BCA protein assay (Pierce, UK). The final concentration 

used for proliferation assay was Ipg/ml (a dose response curve is shown in figure 

2.2a), by adding 50 fil of 4fig/ml of OVA peptide into each well having a total volume 

of 200 jiL 
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Proliferation of D011.10 lymph node cells 
in response to OVA peptide 
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Figure 2.2a 
D011.10 lymph node cells were cultured in vitro with different concentrations 

of OVA peptide (0.06-125ng/ml), incubated at 37.8°C for 48 hours. 

^H-thymidine was added after 48 hours and incubated for further 24 hours. 
The proliferative response of D011.10 lymph node cells to OVA peptide was 

measured by the level ^H-thymidine incorporation and expressed as 
counts/min. 
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2.3 Preparation of CD4+ Thl and Th2 cells from 
OVA specific DO 11.10 mice 

Peripheral and mesenteric lymph nodes were removed from OVA specific DO 11.10 

mice. The media containing lymph nodes were dissociated using a Sml syringe under 

aseptic condition and the cells were collected through a strainer in petri dish. The 

cells were transferred into a sterile universal and washed in HBSS. The suspension 

was centrifiiged at 438g, 19° C for 10 minutes and the supernatant was disposed of 

and resuspended in 10 ml of complete RPMI medium. Cells were counted using a 

neubaur chamber cell counter. For generating Thl lines, lymph node cells were 

cultured at a concentration of 5xl0^/ml with OVA peptide (Ipg/ml), anti- IL-4 

(5ng/ml 1 IBl 1 antibody, hybridoma supemate; American Type culture collection, 

Manassas, VA), mouse IL-12 (Ing/ml; R&D Systems, Abingdon, U.K.) and 

incubated at 37°C for 4 days. 

Thl cell line was generated by stimulating lymph node cells (5xlO^/ml) with OVA 

peptide (1 ng/ml) in the presence of anti- IFN-y (5|Ag/ml; R4-6A2; American Type 

Culture Collection) and murine IL-4 (2ng/ml; R&D Systems). Cell cultures (Th| and 

Thz) were removed from the incubator on the 5*̂  day, washed in HBSS and 

resuspended in fresh CM-RPMI medium. Thl cells (3xl0^/ml) were restimulated with 

mouse IL-12(lng/ml), anti-IL-4 (5pg/ml), IL-2 (lOOU/ml; Cetus, Emeryville, CA) 

and OVA peptide (l|ag/ml).Th2 cells (3x1 OVml) were restimulated with OVA 

peptide (l^g/ml), murine IL-4 (2ng/ml), anti-IFNy (5p.g/ml) and IL-2 

(100 U/ml). After 4 days of culture, CD8+ T cells and APCs were depleted by 

panning. 

The concentration of reagents used was as published by our group (Jafifar, Z. et al., 

2002). 
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2.3.1 Removal of CD8+ T cells and APCs by panning 

This was a technique used to deplete CD8+ T cells (using YTS 169.4; Serotec, 

Oxford, U.K.) and APCs (using anti-class II Ab M5/114; American Type Culture 

Collection) from Thl and Th2 cultures. Cells used to inject mice or for anti-CD3 

treatment were pure CD4+Thl and Th2 cells (10^ cells). To polarised Thl and Th2 

cells suspended in 8 ml of CM -RPMI medium, 20[xg/ml of a-CD8 and 

a- class II Ab (20%) were added and incubated for 30 minutes on ice. The cells were 

washed and resuspended in 5 ml of CM -RPMI. Both Thl and Th2 cell suspensions 

were added into the petri dishes (Stratech) coated with mouse anti-rat IgG (20|xg/mg; 

Mar 18.1) and incubated for 45 minutes. 

Non-adherant cells were collected, centrifiiged and resuspended in CM-RPMI media. 

The pure Thl and Th2 cells were used for injection and cytokine assessment. 

The concentration of reagents used was as published by our group (JafFar, Z. et al., 

2002). 

2.4 Adoptive transfer of cells 

CD4+ effector cells were transferred into histocompatible BALB/c mice by 

intravenous injection via the lateral tail vein. 10x10^ Thl or Tb2 cells in 200|il HBSS 

were adoptively transferred intravenously into each BALB/c recipient. 

2.5 Animal Sensitization 

We used the ovalbumin (OVA) specific — T cell receptor transgenic mouse, DOl 1.10, 

to model lung mucosal T cell responses. Mice were exposed to aerosolized 0.5% 

ovalbumin solution (Grade V, Sigma-Aldrich, Poole, UK) for 20 minutes a day for 7 
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consecutive days using a Wright's nebulizer (Buxco Europe, Petersfield, U.K). Mice 

were sacrificed on day 7 by using Diethyl ether inhalation anesthetized until dead. 

Bronchoalveolar lavage fliud was collected and the lung and peripheral lymph node 

cells were analysed by FACS for the expression of different receptors. 

The percentage of ovalbumin used was as published by our group (Jaffar, Z. et al., 

2004). 

2.6 Bronchoalveolar Lavage Fluid (BAL fluid) 

An open tracheotomy metiiod was used. Lungs were lavaged through a tracheal tube 

by cannulating the trachea of the mice and injecting with 0.5 ml PBS at 37° C via a 

cannula and retrieving the lavage. 

This procedure was repeated three times for each mouse. The volume and number of 

cells in the BALF was assessed. The BAL was centrifuged at 503 g for 10 minutes at 

4^C. The BAL cells in each group were resuspended in 1 ml of PBS which were used 

for the preparation of cytospin slide staining and eosinophil peroxidase analysis. 

Aliquots of BALF supematants were kept at -SO'̂ C for biochemical analysis. 

2.6.1 BAL Cells Staining and Differential Count 

BAL cells were cytospin onto glass slides at 280g (Cytospin 3, Shannon). Slides were 

air-dried and stained using modified Wright stain and the cell differential percentages 

were determined by light microscopic evaluation of stained cytospin preparations and 

expressed as absolute cell numbers. 
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2.6.2 An assessment of eosinophilia (EPOassay) and 
cytochemical evaluation of eosinophil infiltration 
into BALF. 

A colourimetric method was used to determine the eosinophil peroxidase (EPO) 

activity in BALF. Bronchoalveolar lavage fluid was centrifoged at 503g, 20°C for 

10 minutes, supernatant was poured off and the cell suspension was resuspended in 

1ml of PBS. Two- fold dilutions (spanning 1/2 - 1/256) of BALF (lOOpl in each well) 

were prepared in PBS in 96 wells, flat bottomed ELISA plates (NUNC). Substrate 

(Trizma hydrochloride 50mM , Triton (0.1%; Sigma), hydrogen peroxide ImM 

(Sigma) and OPD (orthophenylene diamine dihydrochloride, O.lmM; Sigma) was 

added (lOOfil) into all wells which contained diluted and neat samples and incubated 

in the dark at room temperature for 30 minutes. The reaction was stopped by adding 

50|al of 4M sulphuric acid (BDH) and the intensity of the colour was read in a plate 

reader at 495nm. 

2.7An evaluation of IL-10 production by Th2 cells driven 
either in IL-10 or anti-IL-10 with or without 
indomethacin 

DOl 1.10 T cells were polarised in Th2 favouring culture condition as described in 2.3 

but in the presence of either IL-10 (lOng/ml), 1L-10+ indomethacin (2fxg/ml, Sigma), 

anti-IL-10 (5pg/ml) or anti-IL-10+ indomethacin. On day 8, Th2 polarised cells were 

washed in HBSS and resuspended in CM-RPMI. Th2 cells depleted of CD8+T and 

APCs as described in 2.3.1 and stimulated with immobilized anti-CD3 (2pg/ml) for 

48 hours. IL-10 production in the supernatant was measured by ELISA as described in 

2.9. The concentration of reagents used was as published by our group (Jaffar, Z. et 

al., 2002.; Jaffar, Z. et al., 2004). 
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2.8 Anti-CD3 plate setup to perform cytokine (IFN-y, IL-4, 
IL-5 and IL-10) assessment on Thl and Th2 cells. 

An anti-CD3 plate was setup at a concentration of 2^g/ml in PBS, a day before the 

cell cultures were removed from the incubator and incubated at 3?" C for 24 hours. 

Next day, cells were washed twice with PBS and added into the wells at a 

concentration of 0.5 X 10^ cells/ml, 2ml /well. The anti-CD3 treatment was setup in 

parallel with wells containing OVA (l|j,g/ml) or control wells using media. The 

treated cells were incubated for 48 hours at 37° C, the supernatant was carefully 

removed from each well and frozen for future analysis. 

2.9 An assessment of IFN-y, IL-4, IL-5 and IL-10 by 
ELISA: 

Capture antibody (anti-IFN-y, anti-lL-4, anti-lL-5 or anti-IL-10) was diluted to 

2.5p.g/ml in carbonate buffer (1 mM, pH 9.6). Plates were coated with diluted 

antibody at 50|il/well, wrapped in a cling film and incubated overnight at 4°C. Next 

day, plates were washed in PBS/0. l%Tween, dried and blocked with blocking buffer 

(1% BSA which had been heat-treated, Sigma) 200pJ/well. Plates were incubated 

overnight at 4" C. Plates were washed, dried and the standards (50-0.8 ng/ml) and 

samples were added at 50|j.l/well in triplicate. Samples were added to plates either 

undiluted (IL-5 and IL-10) or diluted 1/10 IFN-y and IL-4). Plates were wrapped in a 

cling film and incubated overnight at 4° C. Plates were washed, dried and 50^1 of 

biotinylated detection antibody (2.5^g/ml) anti-BFNy (XMGl ab, Pharmingen), 
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anti-IL-4, anti-IL-S and anti-IL-10 were added. Plates were incubated at room 

temperature for 45 minutes, washed and dried. Streptavidin-aUcaline phosphatase 

(1:2000) was prepared in blocking buffer and added to all wells at 100|j,l/well. 

Plates were incubated for 30 minutes at room temperature and then plates were 

washed and dried. Plates were developed using an amplification system (KIT, 

GIBCO), amplifier substrate (GIBCO BRL, Paisley, Scotland) was added (50{j.l/well) 

and incubated for 30 minutes at room temperature. Amplifier was added (50(il/well) 

and the plates incubated until colour developed fully (less than 30 minutes). Stop 

solution (0.3 M sulphuric acid) was added at 50|xl/well and plates were read at 

492 nm. 

2.10 An assessment of IFN-y production by PLN cells 

Peripheral lymph node cells were stimulated either with OVA peptide (lp.g/ml) or 

OVA peptide + murine IL-4 (0.4 or 2 or lOng/ml) or OVA peptide^ IL-4+IND0 

(2|ig/ml) in 24 well plate for 48 hours. The level of IFN-y in the supernatant was 

measured by standard ELISA as described in 2.9. 

2.11 Measurement of IL-2 using the CTLL Bioassay 

The IL-2 dependent cell line, CTLL was maintained in CM-RPMI with exogenous 

IL-2 (lOU/ml) at 37°C, 5% C02. CTLL cells (5xl0^/well) were added to a 96-flat 

bottom plate. To assay supemates, 50/a1 of sample was added to wells and the well 

volume adjusted to 200pl To calibrate the assay recombinant human IL-2 (CETUS) 

was added to wells at known concentrations. The proliferation of the cells was 
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determined by adding luCi of ^H-thymidine to each well after 24 h. After a further 

18h, the plate was harvested using the Dynaltech Harvester and the ^H-TdR 

incorporation was measured by the p-counter. 
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Chapter 3 

Materials and Methods n 



3.0 Purification of CD4+CD25+ regulatory T cells 

CD4+CD25+ and CD4+CD25- T cells were purified finom DOll.lO mice by magnetic 

bead separation (MACS) using both biotinylated anti-CD25 Abs 3C7 and 7D4, 

labeled with streptavidin-FITC (BD PharMingen, San Diego, CA)and anti-FITC 

magnetic microbeads (Miltenyi Biotec, Bisley, Surrey, U.K.) : Peripheral and 

mesenteric lymph nodes were removed from OVA specific DO 11.10 mice. 

Lymph nodes were dissociated using a 5 ml syringe under aseptic condition and the 

cells were collected through a strainer in a petri dish. The cells were washed with 

HBSS and centriftiged at 500g, 19^C for 10 minutes and the cells resuspended in 10 

ml of CM-RPMI medium. Total lymphocytes were incubated with aCD8 (20p.g/ml) 

and a-MHC class II (M5114 supernatant, 20%) for 30 minutes, washed twice in 

HBSS and added onto a plate coated with mouse a-rat ab (20|j,g/mg) and incubated 

for another 60 minutes at room temperature to deplete CDS lymphocytes and APCs. 

Unbound cells were harvested from the plate, washed twice in HBSS and added onto 

another plate coated with a-mouse Ig to deplete the remaining B- cells. APCs, B-

cells and CDS depleted T- lymphocytes were then incubated with 7D4 (biotinylated 

anti-CD25 antibody labeled with avidin-FITC; BD PharMingen, San Diego, CA) for 

10 minutes and with 3C7 (biotinylated anti-CD25 antibody labeled with avidin-FITC; 

BD PharMingen, San Diego, CA) for another 10 minutes. After 20 minutes 

incubation, cells were washed twice in multisort buffer (phosphate buffered saline 

supplemented with 0.5% bovine serum albumin and 2mM EDTA, pH 7.2), incubated 

with streptavidin FITC for 20 minutes. After washing the cells twice, goat anti-rat 

FITC was added and incubated for 20 minutes. MACS MultiSort anti-FITC 

MicroBeads (Miltenyi Biotec, Bisley, Surrey, U.K.) were then added to the 

thoroughly washed cells, mixed well and incubated for 15 minutes at 6'̂ -12°C. Cells 
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were washed carefully and resuspended in 3nil of MultiSort buffer (LS^S^ Magnetic 

Separation column used) and proceeded to magnetic separation. 

A positive selection column was placed in a separater and the column was prepared 

for separation with 3 ml of multisort buffer. Cell suspension in 3 ml of multisort 

buffer was applied onto the column and the negative cells passed through the column 

were collected in a universal. Column was rinsed with 3x3ml of MultiSort buffer to 

flush out the unbound negative cells. Column was removed from separater and placed 

on a suitable collection tube. About 5ml of Multisort buffer was pipetted onto the 

column and the positive cells were flushed out using the plunger supplied with the 

column. A fraction of positive cells were analysed by FACS for making the purity 

assessment. 

3.1 Characterization of CD4+CD25+ regulatory T cells 

Purified CD4+CD25+ T cells (SxloVml) were polarised and expanded in vitro in the 

presence of OVA peptide (l^g/ml) + splenic APCs (5x10^ /ml) + murine IL-4 

(2ng/ml; R&D Systems, Abingdon, U.K.) + IL-2 (100 U/ml; Cetus, Emeryville, CA)+ 

anti-BFN-y (5p.g/ml) or OVA peptide + splenic APCs + IL-2+ anti-IFN-y. After 8 

days, Tr cells were added to Th2 cells and stimulated with immobilized anti-CD3 

(2pg/ml) for 48 hours. The level of cytokines secreted was measured by ELISA. 

To examine whether CD4+CD25+ T cells inhibit proliferation, DOl 1.10 lymph node 

cells (2x10^) were cultured in 96 wells-flat bottom plate (Falcon) 

in the presence of different numbers of either freshly isolated (day 0) or expanded 

(day 8) CD4+CD25+ T-cells. The proliferative response to immobilized anti-CD3 
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(2|j.g/ml) coated as described in 2.10 or to OVA peptide (l{ig/nil) was measured by 

the level of [^H]-thymidine (luCi; Amersham Memadoiuil) incorporation after 3 days 

[^H]: the plate was harvested onto a glass-fibre filter (Whatman International) in a 

Dynatech harvester. Dry filter paper discs were transferred to scintillation vials 

(Packard) and 2 ml of Optiscint scintillation fluid (Wallac) was added. [^H] 

incorporation was determined in a (^-counter (2000 CA, Packard). 

Method employed was as published by our group (Jaffar, Z. et al., 2004). 

3.2 Preparation of splenic antigen presenting cells 

Spleens of BALB/c mice were dissociated using a 5ml syringe under aseptic 

conditions and the cells were collected through a strainer in a petri dish. 

The cells were transferred into a sterile universal and washed in HBSS. 

The suspension was centrifiiged at 438g, 19°C for 10 minutes, the supernatant was 

disposed of and the cell pellet resuspended in 10 mis of complete RPMI medium. 

RBC's, CD4+, and CD8+ T cells were depleted fi-om the spleen cells prior to 

irradiation. 

3.2.1Renioval of RBCs (red blood cells) from the cell 
suspension prior to depletion of CD4+ and CD8+ T 
cells. 

Into a sterile universial, 5 ml of Ficol (stock) was added under aseptic condition. 

Spleen cells suspension was added slowly onto the top of the Ficol (lympho-sep 

mouse lymphocyte), centrifuged at 800g, 19"C for 20 minutes. After centrifugation, 

the supernatant containing RBCs depleted cells was transferred into a fi-esh universal. 

HBSS was added to the supernatant to dilute the remaining Ficol (otherwise, it is 

difficult to get the pellet containing the cells) and centrifuged at 500g, 19"C for 
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10 minutes. Supernatant was discarded and the cells were suspended in 10 ml of 

RPMI. Cells were counted using a neubaur chamber cell counter. 

3.2.2 Depletion of CD4+ and CD8+ T cells using 
complement 

RBCs depleted cells were treated with complement to deplete CD4+ and CD8+ T 

cells and irradiated (3000 rad). Irradiated splenic APCs (5x10 ̂  cells/ml) were then 

added to the culture. 

3.3 In vivo activity of Regulatory T cells 

DO 11.10 Th2 cells prepared from either total or CD4+CD25- cells were injected 

intravenously into BALB/c mice (lOVmouse). Mice (four to six per group) were then 

intranasally challenged by exposure to aerosolized solutions of OVA (0.5% Grade V; 

Sigma-Aldrich, Poole, U.K.) for 20 minute a day over 5 or 7 consecutive days using a 

Wright's nebulizer (Buxco Europe, Petersfield, U.K.). Control mice were exposed to 

OVA aerosols but did not receive DO 11.10 Th2 cells. AHR was measured on day 7 in 

response to methacholine inhalation by whole-body plethysmography (Buxco Europe, 

Petersfield, U.K.). Animals were placed in chambers and exposed to nebulized PBS 

(baseline) followed by increasing concentrations of methacholine. Enhanced pause 

(Penh) was measured after each 3-min exposure. Mice were killed on day 7, and BAL 

fluid was collected for analysis. Eosinophil peroxide (EPO) levels in the BAL fluid 

was determined by colorimetric analysis as described in 2.6.2. The number of 

lymphocytes, macrophages and the neutrophils were also determined in BAL by light 

microscopic evaluation of stained cytospin preparations. 
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The number of CD4+, DO 11.10 T cells in the lymph node and in the lung tissue were 

also analysed by FACS. 

3.3.1 "Isolation of the Lymph Node Cells" 

Peripheral lymph nodes (brachial, axillary, and inguinal LNs) were taken from mice 

and placed in CM-RPMI. Lymph nodes were dissociated using a 5 ml syringe and the 

cells were collected through a strainer in petri dish. The cells were then transferred 

into a universal, centrifiiged at 503g, 4°C for 10 minutes. Cells were counted and 

resuspended in CM-RPMI. 

3.3.2 Preparation of Mouse Lung Cells 

Lungs of 3-6 mice were collected and placed in a universal tube containing 

CM-RPMI (10-20ml). Lungs were placed in fresh media in petri dish and chopped 

finely for 15 minutes. Chopped lung fragments were transferred into clean universal 

containing fr^sh media. To digest the tissue, 0.1% collagenase (Sigma type IV) was 

added and incubated for 1 hr 10 minutes at 37 "C with gentle stirring. Lung fragments 

were shaken vigorously several times during to help in the digestion procedure. 

Sample was filtered to remove undigested fi-agment, the supernatant was harvested 

and washed with HBSS. 

In parallel, light and heavy Percoll was prepared and the cells were resuspended in 

14 ml of light Percoll. Into 2 universal tubes, 7ml of heavy Percoll was added (into 

each tube) and then 7ml of light percoll containing cells were overlaid. Tubes were 

topped with a final 7 ml of media. Tubes were spun at 800 g, 19^C for 30 minutes. 

The middle layer of cells was carefully collected using pasteur pipette (Alpha 

Laboratories LTD) by avoiding top layer (epithelium and fibroblasts) and bottom 

pellet (RBC). Cells were made up to 20ml with PBS in two tubes, spun at 500g, IP^C 
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for 10 minutes (brake 9 and acceleration 9). Cells in the two tubes were pooled, 

resuspended with 10 ml of RPMI and counted. 

3.3.2a Preparation of heavy and light Percoll: 

Osmolality of Percoll was corrected by adding 20 ml of stock solution of Percoll 

(Pharmacia) into a universal tube (Sterilin) containing 2ml lOx PBS. Light Percoll 

(41.7%) was prepared by adding 10 ml of osmolarity corrected Percoll into a 

universal tube containing 14 ml of RPMI. Heavy Percoll (67.6%) was prepared by 

adding 10 ml of Percoll into a tube containing 4.8 ml of RPMI. 

3.3.3 Flow cytometry 

Lung or lymph node cells were analysed on a FACSCalibre (BD Biosciences) using 

CellQuest software to enumerate CD4+ T cells (GKl .5-PE; BD PharMingen), 

clonotypic T cells (KJ1-26-FITC), and CD25+ T cells (anti-7D4-biotin and avidin-

FITC). Polarised CD4+ T cell subsets were also analysed on a FACSCalibre using 

CellQuest software for differential expression of adhesion molecules, CD31(MEC 

13.3-FITC, rat IgG), CD62L (MRl, rat IgG), P7 chain (M393-FITC, rat IgG), and 

CD44 (KM81-FITC, rat IgG) . Antibodies were obtained from PharMingen (Oxford, 

U.K). The cell subsets were compared to their isotype control Ig. 

3.4 Statistical analysis 

Data are expressed as means ± SEM. Data obtained from adoptive transfer 

experiments were analysed using the Mann-Whitney U test, and the differences were 

considered statistically significant with p< 0.05. In vitro data were evaluated using a 

two-way analysis of variance, followed by Student's t test for comparison between 

two groups. A probability value of p<0.05 was considered statistically significant. 
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Chapter 4 

Characterisation and validation of a DOl 1.10 mouse model. 



4.1 INTRODUCTION 

DOl 1.10 mouse is a transgenic model express a TCR recognising OVA peptide 

323-339 and it was characterised with particular reference to Thl and Th2 cells. Thl 

and Th2 cells differentiate from CD4+ Th lymphocytes, defined by fimctional 

attributes that reflect their different cytokine profiles (Mosmann, T.R. and Coffinan, 

R.L., 1989). Thl cells produce IFN-y and provide protection against intracellular 

pathogens and viruses. Th2 cells produce IL-4, IL-5, and IL-13, mediate IgE 

production and eosinophilic inflammation, which contribute to the elimination of 

extracellular parasites and the pathogenesis of allergic disease such as asthma 

(Robinson, D.S. et al., 1992.; Beasley, R. et al., 1989.; Jaffar, Z. et al., 1999.). 

IL-2 receptor is induced on the polarised Thl and Th2 cells, the cytokine IL-2 binds 

with IL-2 receptor and enhance the proliferation of T cells. But, IL-2 gene expression 

and cell cycle progression are inhibited as a result of concomitant cross- linking of 

CTLA-4 with TCR- signaling (Walunas, T.L. et al., 1996.; Krummel, M.F. and 

Allison, J.P., 1996.). 

To validate DOl 1.10 mouse model, airway eosinophilia was assessed by measuring 

eosinophil peroxidase (EPO) activity since eosinophils are important mediators of 

allergic inflammation in the lung (Matsumoto, K and Saito, H., 2001) responsible for 

the late asthmatic response, airway hyperresponsiveness and may also contribute to 

airway remodelling. Although Th2 lymphocytes, monocytes, macrophages and 

epithelial cells contribute to airway inflammation, it has been very well documented 

that eosinophils act as a major effector of airway damage and dysfiinction (Corrigan, 

C.J. and Kay, A.B., 1992). 
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4.2 AIMS: 

1). Characterise DOll.lO mice with particular reference to Thl and Th2. 

2). Validate the adoptive transfer experiments. 
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4.3 Results 

43.1 Cytokine production and receptor expression by polarised Thl and Thl 
cells. 

Lymph node cells from DO 11.10 mice expressing OVA- specifrc T cell receptor were 

polarized in vitro for 8 days in IL-12+OVA peptide+anti-IL-4 or in IL-4+ OVA 

peptide + anti-IFN-y. On day 8, cells were stimulated either with a-CD3 or with 

media. After 48 hours, the supernatant was harvested and the level of cytokines 

(TFN-y, IL-4, IL-5) was measured by standard ELISA since it was important to 

confirm that the cells cultured in vitro under different conditions were true Thl and 

Th2 cells. 

Thl polarised cells produced higher levels of IFN-y and little IL-4 and IL-5 

(figures 4.3.1,4.3.2,4.3.3; table 4.3.1 in the appendix). In contrast, Th2 polarised 

cells produced little IFN-y and higher levels of IL-4 and IL-5 (figures 4.3.1,4.3.2, 

4.3.3; table 4.3.1 in the appendix). In parallel, we analysed Thl-polarised and Th2-

polarised cells for the expression of OVA-specific T cell receptor (KJl-26) or IL-2 

receptor (figure 4.3.4). Thl-polarised cells were 90% positive for OVA-specific 

receptor +CD4 (assessed in relation to CD4+molecule) and about 74.26% positive for 

IL-2 receptor whereas Th2-polarised cells were 99% positive for OVA- specific 

receptor +CD4 and about 87.47% positive for IL-2 receptor. In figure 4.3.4, 25% of 

Thl-polarised cells were CD4- negative (assessed in relation to CD4 and CD4+KJ1-

26+) , but Th2-polarised cells were only 5% negative for CD4. Likewise, Thl-

polarised cells were 10% negative for KJl-26 whereas Th2-polarised cells were 1% 

negative for KJl-26. 
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The most likely explanation for this discrepancy would be that the Th2-polarised cells 

were depleted of CD8+T cells and antigen presenting cells (prior to FACS staining) 

whereas Thl-polarised cells were not depleted of CD8+T cells and antigen presenting 

cells. The presence of CD8+ T cells and APCs in Thl-polarised cells appear to 

account for the increased percentage of KJ1 -26-negative and CD4-negative T-cells. 

These results show that the polarisation procedure succeeded in generating polarised 

T cell population with the appropriate cytokine profiles of Thl and Th2 cells. 
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IFN^ production by Th1 and Th2 polarised ceils 

350-1 

I Till 

]Th2 

U_ 150 

Media a-CD3 

Figure 4.3.1 

The level of IFN-y production by Thi and Th2 polarised cells was measured 
by stimulating polarized cells with media or anti-CD3. The quantitative 

assessment of IFN-y was by ELISA. Data are shown for 1 experiment and are 
representative of 3 independent experiments (see appendix (4.3.1)). Data are 
means ± SEM (n=3). Number of mice used per experiment was 10. 
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IL-4 production by Th1 and Th2 
polarised cells 
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Figure 4.3.2 

The level of IL-4 production by Th1 and Th2 polarised cells was 
measured by stimulating polarised cells with media or anti-CD3. The 
quantitative assessment of IL-4 was by ELISA. Data are shown for 1 
experiment and are representative of 3 independent experiments (see 
appendix (table 4.3.1)). Data are means ± SEM (n=3). Number of mice 
used per experiment was 10. 
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IL-5 production by Th1 and Th2 polarised cells 
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Figure 4.3.3 
The level of IL-5 production by Th1 and Th2 cells was measured by 
stimulating polarized cells with media or a-CD3. Data are shown for 1 

experiment and are representative of 3 independent experiments 
(see appendix (table 4.3.1)). Data are means ± SEM (n=3). Number of 
mice used per experiment was 10. 
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Receptor expression by polarised Thl and Th2 cells 
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Figure 4.3.4 

Polarised Thl and Th2 cells were stained with either KJl-26 FITC +CD4 PE or IL-2 FITC and analysed by FACS. 
The figure is representative of two independent experiments. Number of mice used per experiment was 10. 
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4.3.2 The induction of pulmonary inflammation by the adoptive transfer of Th2 
cells. 

OVA-specific DOl 1.10 polarized Thl and Th2 cells were adoptively transferred into 

naive BALB/c mice. The mice were exposed to OVA-aerosol challenge for 7 

consecutive days, sacrificed on the last day and then BAL was performed. Airway 

eosinophilia in each group was measured by EPO assay. The results indicate that the 

mice that received Th2 cells showed a greatly heightened eosinophilia compared to 

the mice that received Thl cells (figure 4.3.5; table 4.3.5 in the appendix). Many 

previous studies have documented that Th2 cells mediate atopic asthma and favour 

the development of eosinophils in the bone marrow influenced by the cytokine IL-5. 
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An assessment of eosinophilia by EPO assay 
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Figure 4.3.5 
The level of eosinophilia in the bronchoalveolar lavage was measured 

by EPO assay. BALB/c mice were given either 10x10® Thi or Th2 cells. 
Recipients were exposed to OVA aerosol and the level of EPO in the 
bronchoalveolar lavage fluid determined at day 7. Data are shown for 1 
experiment and are representative of 3 independent experiments (see 
appendix (table 4.3.5)). Data are means ± SEM (n=3). Number of mice 

used in each group per experiment was 5. *, p<0.05 compared with 
recipients of Thi cells. 
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4.4 Summary 

DOl 1.10 mice was characterised with particular reference to Thl and Th2 cells. This 

was achieved by culturing DOl 1.10 lymph node cells in Thl and Th2 favouring 

environment and analysing the polarised populations for the production of different 

cytokines and receptor expression. In parallel, DO 11.10 mice was validated by 

measuring the level of eosinophilia in the adoptive transfer model. The principal 

observations were: 

1. Thl- polarised cells produced higher levels of IFN-y and little IL-4 and IL-5 

whereas Th2-polarised cells produced little IFN-y and higher levels of IL-4 and 

IL-5. 

2. In terms of receptor expression, Thl-polarised cells were 90% positive for OVA-

specific receptor +CD4 and 74.26% positive for IL-2 receptor whereas Th2-

polarised cells were 99% positive for OVA- specific receptor +CD4 and 87.47% 

positive for IL-2 receptor. 

3. Validation of theDO 11.10 mouse model resulted in that B ALB/ c mice that 

received DOl 1.10 Th2-polarised cells produced a greatly heightened eosinophilia 

compared to the mice that received Thl-polarised cells. 
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Chapter 5 

The production of the regulatory T cell cytokine IL-10 in Thl and Th2 cell 
populations. 

The effect of prostaglandins and the availability of exogenous IL-10 on the production 
of IL-10 by polarised Th2 cells. 



5.1 INTRODUCTION 

Next, production of the regulatory T cell cytokine IL-10 was assessed 

in these Thl+Th2 polarised cell populations. IL-10 is produced by many cell types, 

including T cells, has been shown to suppress mucosal immune responses (Asseman, 

C. etal., 1999.; Asano, M. etal., 1996). 

Lower concentrations of IL-10 are found in bronchoalveolar lavage from asthmatic 

patients than in normal control subjects as a result of defective IL-10 secretion from 

alveolar macrophages (Lim, S. et al., 2004). 

In this experiment, IL-10 production by polarised Thl and Th2 cells was assessed in 

a number of different culture conditions. 

The effect of prostaglandins and the availability of exogenous IL-10 on the production 

of IL-10 by polarised Thl cells was also assessed. Prostaglandins are inflammatory 

mediators secreted by mononuclear cells such as macrophages and dendritic cells. 

There are several different types of prostaglandins (PGI2, PGE2 PGF^a TXB2, PGD2 

etc) each of which has a different function. It has been reported that treatment with 

PGI2 or its stable analog, carbaprostacyclin augments the production of IL-10 by Th2 

cells (Jaffar, Z. et ah, 2002). T cells at mucosal sites are subject to immune regulation, 

partly due to the actions of cyclooxygenase(COX)- derived prostanoids (Newberry, 

R.D. et al., 1999) and cytokines such as IL-10 and TGF-p (Asseman, C. et al. 1999.; 

Khoo, U.Y. et al., 1997). Since prostaglandins have been shown to influence 

immune responses and, in particular, they stimulate IL-10 production from T-cells, 

we hypothesised that PGs might influence IL-10 production by Th2 polarised cells. It 

was also addressed whether IL-10 production was affected by the availability of IL-10 

during the polarization process. PLN cells were polarised towards Th2 phenotype as 
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in the previous experiments, but with the addition of either IL-10 or anti-DL-lO during 

the polarization period. Indomethacin (2iag/ml) was also present in some cultures 

during the polarization process. The concentration of indomethacin used throughout 

the culture conditions was as published by our group (JafiFar, Z. et al, 2002). 

5.2 AIMS 

1). Assess the production of regulatoiy T cell cytokine IL-10 in Thl and Th2 
polarised cell populations. 

2). Assess the effect of prostaglandins and the availability of exogenous IL-10 on 
the production of IL-10 by polarised Th2 cells. 
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5.3 Results 

53.1 The level of lL-10 production by polarised Thl and Thl cells 

Polarised Thl and Th2 cells (prepared from OVA-specific DO 11.10 mice) were 

stimulated with a-CD3 and IL-10 was measured in supematants after 48 hours. Th2 

polarised cells produced approximately 10 times more IL-10 than Thl polarised cells 

(figure 5.3.1; table 5.3.1 in the appendix). In order to assess the importance of antigen 

presenting cells in this experiment, we perft)rmed parallel experiments in which the 

Th2 polarised cells were depleted of APCs by one of 2 methods: 

1) Th2 cells were incubated on a mouse anti-rat Ig-coated plate and after 45 minutes, 

the non adherent cells were removed and stimulated with a-CD3. 

2) Th2 cells treated with monoclonal antibodies directed against CDS and MHC class 

II were incubated on a mouse anti-rat Ig-coated plate and after 45 minutes, the non-

adherent cells were stimulated with a-CD3. 

Both treatments led to a reduced IL-10 production in response to a-CD3 

(figure 5.3.1; table 5.3.1 in the appendix). These results suggest that the presence of 

APCs is important in enabling Th2 polarised cells to produce maximal amounts of 

IL-10. An alternative explanation for this reduced IL-10 production is APCs produced 

significant amounts EL-10. 
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Figure 5.3.1 
The production of IL-10 by unseparated Th1 and Th2 polarised cells was measured by 
stimulating polarized cells with a-CD3 for 48 hours, and the level of IL-10 in the 
supernatant was measured by standard ELISA. In parallel, Th2 polarised cells depleted 
either of APCs or APCs and CDS by any of the following methods respectively; 1) 
Th2 polarised cells were incubated on a mouse anti-rat Ig treated plate (MaR) 
2) Th2 cells treated with anti-classll and anti-CD8 before adding onto 
a MaR treated plate and the non-adherant cells were removed and stimulated with 
anti-CD3 and the level of IL-10 in the supernatant was measured after 48 hours by 

standard ELISA. Data are shown for 1 experiment and are representative of 3 
independent experiments (see appendix (table 5.3.1)). Data are means ± SEM (n=3). 
Number of mice used per experiment was 12. *, p<0.05 compared with Th2 cells 

depleted of CD8+ T-cells and APCs. 
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5.3.2 Th2 cells driven either in IL-10 or anti-IL-10 with or without indomethacin 
produced different levels of IL-10 

We polarised OVA-specific DO 11.10 lymph node cells in vitro, in the presence of 

either IL-10, IL-IO+INDO, anti-IL-10 or anti-IL-10 +INDO (all 4 groups received IL-

4+OVA+anti-IFN-y in addition). On day 8, cells were stimulated with a-CD3 for 48 

hours and IL-10 in the supernatant was measured by standard ELISA. The results 

indicate that Th2 cells polarised in anti-IL-10 produced virtually no IL-10 

(figure 5.3.2; table 5.3.2 in the appendix), presumably because the availability of IL-

10 required for the development of IL-10 producing Th2 cells was restricted. The 

amount of IL-10 produced by Th2 cells polarised in exogenous IL-10 showed no 

significant difference to that produced by Th2 cells polarised in the absence of 

exogenous IL-10. APCs are known to be a major source of IL-10, our inability to 

show any effect of exogenous IL-10 may therefore be because the Th2- polarised cells 

are aheady receiving sufficient IL-10 fi-om APCs to stimulate maximal production of 

IL-10. 

Th2 cells polarised in the presence of indomethacin produced about 75% less IL-10. 

This suggests that prostaglandins may influence the production of IL-10 by 

stimulating IL-10 producing cells and this efifect was inhibited by indomethacin. 
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Figure 5.3.2 
The level of IL-10 production by Th2 polarised cells driven in IL-10 (10ng/ml) or 
IL-10+INDO (2p,g/ml) or anti-IL-10 (5ng/ml) or anti-lL-10+lNDO was measured by 
stimulating polarised Th2 cells with anti-CD3 (2ng/ml) for 48 hours. All groups 
received IL-4(2ng/ml), OVA (1|ig/ml) and a-IFN-y (5|ig/ml), in addition, during the 
polarisation process. The level of IL-10 in the supernatant was measured by 
standard ELISA. Data are shown for 1 experiment and are representative of 2 

independent experiments (see appendix (table 5.3.2)). Data are means ± SEM 
(n=3). Number of mice used per experiment was 14. *, p<0.05 compared with 

eitherTh2 cells driven in indomethacin orTh2 cells driven in IL-10+indomethacin. 
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5.4 SUMMARY 

The production of regulatory T cell cytokine IL-10 was assessed in Thl and Th2-

polarised cell populations. The effect of prostaglandins and the availability of 

exogenous IL-10 on the production IL-10 by Th2-polarised cells was also assessed. 

The principal observations were: 

1. Th2- polarised cells produced approximately 10 times more IL-10 than Thl-

polarised cells and the Th2- polarised cells depleted of APCs led to a reduced IL-10 

production in response to a-CD3. 

2. The analysis of the effect of prostaglandins and the availability of exogenous IL-10 

on the production of EL-10 by Th2- polarised cells resulted in, that DO 11.10 lymph 

node cells polarised in the presence of indomethacin produced 75% less IL-10. The 

amount of IL-10 produced by DO 11.10 lymph node cells polarised in Th2-

favouring environment in the presence of exogenous IL-10 showed no significant 

difference to that produced by Th2 cells polarised in the absence of exogenous 

IL-10. 
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Chapter 6 

The effect of exogenous JL-4 on the production of IFN-y by PLN cells. 



6.1 INTRODUCTION 

It has been shown by others that exogenous IL-4 decreases the production of IFN-y by 

PLN cells, msty has several functions Wiich include, promoting phagocytosis and 

upregulating microbial killing by macrophages. In mice, IFNy promotes 

immunoglobulin isotype switching to IgGia, known to be important for the 

opsonization of bacteria (Heinzel, F.P. et ah, 1995). In addition, IFNy promotes the 

expression of FcyRI receptors which are important in phagocytosis. It also upregulates 

the production of NO, hydrogen peroxide and superoxide in cells actively 

participating in phagocytosis (Boehm, U. et al., 1997). 

We therefore investigated the effect of a range of concentration of exogenous IL-4 on 

the production of IFN-y by unpolarised DO 11.10 PLN cells. In parallel, as it has been 

proposed that prostaglandins influence IL-4 production, the experiment was also 

performed in the presence of indomethacin. 

6.2 AIM: 

Assess the effect of exogenous IL-4 on the production of IFN-y by PLN cells. 
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6.3 Results 

63.1 IFN-y produced by unpolarised PLN cells is influenced by exogenous 
cytokine IL-4. 

OVA-specific vmpolaiised DOl 1.10 peripheral lymph node cells were stimulated with 

OVA or with OVA+IL-4 or with OVA+IL-4+INDO for 48 hours. The IFN-y 

produced by PLN cells in the supernatant was assessed by standard ELIS A. PLN 

cells produced about 25% more IFN-y in the absence of exogenous IL-4 (lOng/ml) 

(figure 6.3.1; table 6.3.1 in the appendix ). The addition of indomethacin appears to 

have produced no effect. 
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Figure 6.3.1 

Peripheral lymph node cells were stimulated with OVA (1fjg/ml) or OVA+IL-4 or 
0VA+IL-4+IND0 (2ng/ml) for 48 hours. The level of IFN^ in the supernatant was 
measured by standard ELISA. Data are shown for 1 experiment and are representative 
of two independent experiments (see appendix (table 6.3.1)). Data are means ± SEM 
(n=3). Number of mice used per experiment was 10. 
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6.4 Summary 

The eflFect of exogenous IL-4 and the prostaglandins on the production of EFN-y was 

analysed by stimulating DO 11.10 PLN cells with IL-4+OVA or IL-4 

+OVA+indomethacin. The principal observations were: 

1. DOl 1.10 PLN cells produced about 25% more IFN-y in the absence of exogenous 

IL-4 (lOng/ml). 

2. Stimulation of DO 11.10 cells in the presence of indometh^in appeared to have 

produced no effect 
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Chapter 7 

The percentage of CD4+CD25+ T-cells in PLN of DOl 1.10 mice. 

Purification of CD4+CD25+ T-cells from PLN of DOl 1.10 mice. 



7.1 INTRODUCTION 

A distinct population of CD4+ T cells that constitutively express the IL-2 receptor 

(IL-2R) a chain (CD25) has recently been identified in mice (Sakaguchi, S., 2000. ; 

Asseman, C. et al., 1999). CD4+CD25+ T cells are regulatory cells which constitute 

about 4-10% of lymphocytes in mice and in humans. These cells play an essential role 

in the induction and maintenance of peripheral self-tolerance. 

Murine CD4+CD25+ T cells appear to mediate the suppression of effector T cell 

function both in vitro and in vivo via several mechanisms requiring either cell-cell 

contact or the production of immunosuppressive cytokines such as IL-10 and TGF-p 

(Sakaguchi, S., 2000. ; Asseman, C. et ah, 1999.). It has been well established that 

CD4+CD25+ Regulatory T cells control inflammation in autoimmune diseases and 

transplantation. I hypothesised that these cells might also have a role in regulating 

allergic inflammation in the lung. To address this, a series of experiments was 

conducted starting by, determining the percentage of CD4+CD25+ T cells in PLN of 

DOll.lO mice. 

In the first phase of these experiments, the proportion of PLN T cells which express 

the regulatory T cell phenotype was assessed. This was performed by FACS staining 

for CD4+CD25+ T cells. In parallel, PLN T cells were stained with antibodies for 

KJl-26 +CD25 and analysed by FACS to determine the proportion of CD25+ T cells 

expressing KJl-26 (OVA specific receptor). 

In order to work with the CD4+CD25+ T cells, it was first necessary to purify them, 

since total unpolaiised lymphocytes from DOll.lO mice constitute only about 4-7% 

of CD4+CD25+T cells. Although it proved possible to deplete CD4+CD25+ T cells 
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by panning, it was not possible to achieve sufficient purity for functional experiments. 

Instead, a magnetic bead separation column was used to obtain 

CD25+ and CD25- cell populations. This approach was effective at both depleting 

and enriching CD4+CD25+ T cells. Magnetic bead separation with a single anti-

CD25 antibody was inadequate, but effective separation was achieved when two 

CD25 monoclonal antibodies were used. The efficiency of the purification process 

was assessed by FACS. 

In this experiment, Tr cells were purified and enriched on the basis of their 

constitutive expression of CD25. CD25 is the a-chain of the high affinity IL-2 

receptor, which is also induced on conventional T cells after activation (Sakaguchi, S. 

et al., 1995). In an attempt to find novel Treg markers, two groups have independently 

found that freshly isolated CD4+CD25+ Treg cells but not CD4+CD25- T cells 

expressed uniformly high levels of GITR (Shimizu, J. et al., 2002.; McHugh, R.S. 

et a/.,2002). Activation of the CD4+CD25- T cells in vitro rapidly increased GITR 

surface expression to levels comparable to those observed on CD4+CD25+ T reg 

ceUs. Therefore, although IL-2R expression is not a perfect way to identify T reg 

cells, at present there are no better markers for distinguishing Tregs from activated 

conventional T cells. 

7.2 AIMS: 

1). Determine the percentage of CD4+CD25+ T-cells in PLN of DOll.lO mice. 

2). Purify CD4+CD25+ T-cells from PLN of DOll.lO mice. 
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7.3 Results 

73.1 CD4+CD25+ T cells constitute about 6.8 % of the total 
lymphocyte in DOll.lO mice 

In order to characterize CD4+CD25+T regulatory cells phenotypicaUy and 

functionally, we first assessed the proportion of these cells in the PLN of DO 11.10 

mice. 

Unpolarised DOll.lO PLN cells were stained with CD4PE and CD25FITC and 

analysed by FACS. The FACS results indicate that about 4- 6.8% of PLN 

lymphocytes were CD4+CD25+ T cells (figure 7.3.1; table 7.3.1 in the appendix). 

Separately, we assessed the proportion of CD25+T cells that expressed OVA-specific 

T cell receptors. Unpolarised DOll.lO PLN cells were stained with CD25-PE and 

KJl-26-FrrC and analysed by FACS. About 72% of CD25+T cells expressed the 

OVA specific TCR (figure 7.3.1). 

85 



Frequency of CD4+CD25+ T cells in DO 11.10 mice 

66.U% 

8^' 

h 

,23.25% •• 

6ar% 

....'3.80% 

10̂  10' 

i n 
CN 
Q 
O 

& 

& 
10* 

2.15% . '5.46% 
. • • • " • 

##: 
an (4 ' . 

10" 10' 10' 10* 10* 

CD25 KJl-26 

Figure 7.3.1 

Lymph node cells (unpolarised) from DO 11.10 mice were stained with either 
CD25-FITC+ CD4-PE or KJl-26- FITC +CD25-PE. The proportion of cells which 
expressed either CD4+CD25 or KJ1-26+CD25 was analysed by FACS. The figure is 
representative of 4 independent experiments. Number of mice used per experiment was 16. 
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13 J, The purification of CD4+CD25+ T cells from lymph node cells by magnetic 
bead separation. 

Although CD4+CD25+ cells were present in DO 11.10 mice it was important to 

determine whether these cells actually mediated regulatory fimction. This required 

developing approaches to either deplete or purify these cells. The relatively low 

numbers of CD4+CD25+ T cells present in DO 11.10 mice made it difficult to purify 

this cell type. Initially CD25+ cells were depleted by panning, however, while this 

approach was effective at depleting cells it proved unsuitable for purifying CD25+ 

cells. More recently sorting cells by magnetic bead separation (MACS) was used. 

This approach proved effective at both depleting and enriching CD4+CD25+ T cells. 

To purify CD4+CD25+ T cells 200 x 10^ lymph nodes cells were depleted of B, 

CD8+ and Ia+ cells by panning, and the resulting CD4+ cells fractionated into CD25+ 

and CD25- populations by magnetic bead separation (MACS) and analysed by FACS. 

The yield of CD4+CD25+ T cells was 0.5-3.0 x 10^ (0.25-1.5% of starting 

population). The purity of CD4+CD25- T cells was about 99% i.e virtually aU 

CD25+ cells were removed, while CD4+CD25+ population was 70% pure, 

representing a marked enrichment compared to the baseline proportion (about 6%) 

(figure 7.3.2). It was considered that this degree of enrichment would be sufficient for 

most practical purposes. 
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Figure 7.3.2 

CD4+CD25+ T regulatory cells were purified from peripheral lymph node cells by magnetic bead separation 
(MACS) using the antibody, anti-CD25, streptavidin-FITC and anti-FITC magnetic beads. Total (unseparated) 
lymph node cells, CD4+CD25+ T cells and CD4+CD25- T cells were analysed by FACS. The figure is 
representative of 3 separate experiments. Number of mice used per experiment was 16. 



7.4 Summary 

The proportion of CD4+CD25+ T cells in the PLN of DO 11.10 mice was analysed 

by FACS. In parallel, DO 11.10 PLN cells depleted of B, CD8+ and Ia+ cells by 

panning and fractionated into CD4+CD25+ and CD4+CD25- T cells 

by magnetic bead separation and the percentage purity was determined by 

FACS. The principal observations were: 

1. 4-6.8% of PLN lymphocytes were CD4+CD25+ T cells. 

2. After fractionation, the purity of CD4+CD25+ T cells was 70%, while the 

purity of CD4+CD25- T cells was about 99%. 
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Chapter 8 

Characterisation of unpolarised CD4+CD25+ T cells and CD4+CD25- T cells 
with respect to cytokine production. 

Functioml properties of unpolarised CD4+CD25+ T cells, specifically, in terms of 
inhibition of CD4+CD25- T cells proliferation in response to a-CD3 stimulation. 



8.1 INTRODUCTION 

It has been shown that the ability of Trl cells to downregulating immune responses in 

vitro and in vivo, mediated by the production of the immunosuppressive cytokines 

IL-10 and TGF-p (Roncarolo, M.G. et al., 2001). Characteristically, Tr cells produce 

high levels of IL-10 and TGF-P, moderate amounts of IFN-y and IL-5, but little or no 

IL-2 or IL-4 (Roncarolo, M.G. et al., 2001). 

To investigate whether difference in the nature of stimulants influence cytokine 

production, unpolarised CD25+ or CD25- T cells were stimulated with either a-CD3 

or OVA in the presence or absence of APCs. The characterisation of unpolarised cells 

in terms of cytokine production prior to polarisation may assist to demonstrate the 

importance of polarisation process to produce proinflammatory cytokines. 

Existence of regulatory CD4+ T cells subsets, CD25+, CD62L+ or CD45RB'°^ has 

been reported recently. However, the bulk of suppressor cells inhibiting the 

proliferation of CD4+CD25- T cells in coculture is concentrated within the CD25+ 

but not the CD62L+ or CD45RB'°™ (Alyanakian, M.A. et al., 2003). Similarly, 

cytokine production patterns are significantly different for each regulatory T cell 

subset. Using nonobese diabetic (NOD) mice, depending on the regulatory T cells that 

are depleted, distinct immune diseases appear after transfer into NOD severe 

combined immunodeficiency recipients, i.e reconstitution of NOD SCID mice with 

CD25- T cells induces major gastritis and late -onset diabetes, but no or mild colitis. 

Reconstitution with CD62L- T cells induces fulminant diabetes with no colitis or 

gastritis. Reconstitution with CD45RB^'^ T cells induces major colitis with wasting 

disease and no or very moderate gastritis and diabetes. This observation presents 

evidence for the existence of different subsets of regulatory CD4+ T cells. 
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8.2 AIMS: 

1). Characterise unpolarised CD4+CD25+ T-cells and CD4+CD25- T-cells with 
respect to (ytoldne production. 

2). Assess the functional properties of unpolarised CD4+CD25+ T cells, 
specificalty, in terms of inhibition of CD4+CD25- T cells proliferation in 
response to a-CD3 stimulation. 
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8.3 Results 

83.1 Cytokine production by unpolarised CD4+CD25+ and CD4+CD25- T cells. 

Unpolarised CD4+CD25+ or CD4+CD25- cells were stimulated either with a-CD3 or 

a-CD3+APC or APC+OVA. CD4+CD25+ cells produced large amounts of IL-5 and 

little BFN-Y when stimulated with a-CD3 in the presence of APCs (figure 8.3.1; table 

8.3.1 in the appendix). The CD4+CD25- population was unresponsive to this 

stimulus. No IL-4 was detected &om either cell population with any of the 3 stimuh. 

The absence of IL-4 production by CD4+CD25+ or CD4+CD25- unpolarised cells 

suggests that IL-4 production is induced only when cells become polarized. These 

data show that in the unpolarised state, anti-CD3- responsive cells are confined to the 

CD25+ population and they require the presence of APCs to become activated. 

To date, there are no other published studies addressing the AFC requirements of 

unpolarised CD4+CD25+ T ceUs to be activated with a-CD3. 
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CYTOKINE PRODUCTION BY UNPOLARISED T-CELLS 

RESPONDING CELLS 
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Figure 8.3.1 unpgiarised CD25+ or CD25- cells were stimulated with a-CD3 or a-CD3+APC or APC+OVA 
for 48 hours. The level of cytokines (IFN-y, IL-4 and IL-5) produced was measured by standard ELISA. 
Data are shown for 1 experiment and are representative of 2 independent experiments (see appendix (table 8.3.1)). 
Data are means ± SEM (n=3). Number of mice used per experiment was 13. 
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83.2 CD4+CD25+ regulatory T cells from DOll.lO mice inhibit T cell 
proliferation. 

CD4+CD25+ regulatory T cells have been shown by others to suppress T cell 

proliferation. This functional property of CD4+CD25+ unpolarised T cells was 

assessed here by adding increasing numbers of CD4+CD25+ T cells to unseparated, 

unpolarised DOl 1.10 lymph node cells. The proliferative response to anti-CD3 was 

measured by^H-thymidine incorporation after 3 days. CD4+CD25+ T-cells inhibited 

the proliferation of DOl 1.10 T cells in a dose-dependant manner (figure 8.3.2; table 

8.3.2 in the appendix). 
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Figure 8.3.2 

To examine whether CD4+CD25+ T cells inhibit proliferation, 5x10* D011.10 
lymph node cells were cultured in the presence of different numbers of 
CD4+CD25+ T-cells. The proliferative response to soluble anti-CD3 

was measured by the level of ^H-thymidine incorporation after 3 days. 
Data are shown for 1 experiment and are representative of 2 independent 
experiments (see appendix (table 8.3.2). Data are means ± SEM (n=3). Number 
of mice used per experiment was 12. 
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8.4 Summary 

Unpolarised CD4+CD25+ and CD4+CD25- T cells were characterised with respect to 

cytokine production in response to a-CD3 or a-CD3+APCs or APCs+OVA 

stimulation. The Amctional property of unpolarised CD4+CD25+ T cells was also 

analysed in terms of inhibition of DO 11.10 PLN cells proliferation in response to anti-

CD3. The principal observations were: 

1. CD4+CD25+ T cells produced large amounts of IL-5 and little DFN-y when 
stimulated with a-CD3 in the presence of APCs. 

2.CD4+CD25- T cells were unresponsive to this stimulus. 

3.Neither CD4+CD25+ nor CD4+CD25- T cells produced IL-4 with any of the 

3 stimuli. 

4. The assessment of functional property of CD4+CD25+ T cells showed that these 

cells were able to inhibit the proliferation of unseparated, unpolarised DO 11.10 

lymph node cells in response to a-CD3 in a dose-dependent manner. 

97 



Chapter 9 

Polarisation and expansion of CD4+CD25+ and CD4+CD25- T- cells in vitro 
in Th2 favouring culture conditions. 



9.1 INTRODUCTION 

Ex vivo expansion of regulatory T cells without loss of suppressor function is an 

important prerequisite in using these cells for immunotherapy. In recent years it has 

been reported that human anergic regulatory T cells could be expanded by 

Ag-specLfic stimulation in the presence of IL-2 (Koenen, H.J. et al., 2003). Both 

IL-15 and IL-2, are T cell growth factors, but, in contrast to IL-2, IL-15 stimulates 

the survival of T cells. It has been observed that compared to IL-2-expanded T reg 

cells, IL-15- expanded regulatory CD4+ T cells were more effective at suppressing 

both naive and memory T cells. The possibility of using regulatory T cells as a new 

therapeutic for the control of GVHD was recently proposed and has been 

demonstrated in mice by several groups (Cohen, J.L. et al., 2002.; 

Hoffmann, P. et al., 2002.; Taylor, P.A. et al. 2002). Ex vivo expansion of regulatoiy 

T cells is also possible by stimulation with allogenic APCs, which has the additional 

effect of producing alloantigen- specific regulatory T cells (Trenado, A. et al., 2003). 

9.2 AIM: 

Polarise and expand CD4+CD25+ and CD4+CD25- T cells in vitro in Th2 
favouring culture conditions. 

99 



9.3 Results 

93.1 CD4+CD25+ T cells and CD4+CD25- T cells can be polarised and 
expanded in vitro in Th2 favouring culture conditions. 

Before using these cells in functional assays and in adoptive transfer experiments, we 

polarised and expanded them in vitro using the same Th2 favouring culture conditions 

used earlier. The Th2 polarised cells were then stained with KJl-26 to assess how 

many of the polarised cells recognise OVA peptide. About 97% of polarised 

CD4+CD25+ T cells and about 98% of polarised CD4+CD25- cells stained with 

KJl-26 (figure 9.3.1). 

Consistent with the observation that CD4+CD25+ T cells stained with the KJl-26 

antibody was the finding that these cells could be expanded in the presence of OVA 

peptide. The purity of the expanded regulatory T cells following polarization is 

difficult to determine because all expanded cells expressed CD25. Collectively, these 

observations confirm that CD4+CD25+ T cells are present in DO 11.10 mice and that 

these cells can be expanded and polarised in culture in response to OVA. 
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Figure 9.3.1 

Purified CD25+ or CD25- T cells were driven in vitro in IL-4 (2ng/ml), OVA(l)ig/ml), a-IFN-y (5p,g/ml), 
APCs (SxlOVml) and IL-2 (100U/ml)for 8 days. The polarised cells were then stained with KJl-26 FITC and 
CD4 PE and the proportion of cells expressing KJl-26 and CD4 receptors were analysed by FACS on day 8. 
The figure is representative of 3 independent experiments. Number of mice used per experiment was 16. 
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9.4 Summary 

CD4+CD25+ and CD4+CD25- T cells were polarised in vitro in Th2 favouring 

culture conditions and analysed by FACS for the expression of KJ 1-26 (OVA specific 

receptor) + CD4. The principal observations were: 

1. About 97% of polarised CD4+CD25+ T cells and about 98% of polarised 

CD4+CD25- T cells stained with KJl-26. 

2. Consistent with 6 i s observation was the finding that tiliese cells could be 

expanded in the presence of OVA peptide. 
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Chapter 10 

Characterisatioii of polarised CD4+CD25+ regulatory T cells and CD4+CD25- T-
ceUs in vitro in terms of adhesion molecule expression and cytokine production. 

The ability of CD4+CD25+ regulatory T cells to affect T- cell proliferation and 
cytokine production by polarised unseparated DO 11.10 PLN cells in vitro. 



10.1 INTRODUCTION 

Polarised subsets were assessed in terms of adhesion molecule expression and 

cytokine production, as well as their ability to affect T cell proliferation and cytokine 

production by polarised unseparated DO 11.10 PLN cells in vitro. 

It has been reported that induction of mucosal tolerance to E-selectin, a cytokine-

inducible adhesion molecule restricted to activating blood vessels, prevents ischemic 

and hemorrhagic stroke in spontaneously hypertensive, genetically stroke-prone rats 

(Chen, Y. et ah, 2003). It has also been demonstrated that E-selectin-specific DTH 

responses were significantly suppressed in E-selectin-tolerized animals. Suppression 

of the Thl-mediated DTH reaction to E-selectin provides evidence for the generation 

of antigen-specific regulatory T cells in rats tolerized to E-selectin. 

CD62L (L-selectin) is a unique molecule expressed by naive regulatory T cell subset, 

which confer distinct regulatory Amctional property to these population (Alyanakian, 

M.A. et al., 2003). Therefore, differential expression of adhesion molecules was 

analysed in distinct polarised cell populations, as these may be implicated in later 

stages in inflammatory process. 

Expression of CD25 by naive Tr cells is associated with low production of IFN-y and 

IL-4 (Alyanakian, M.A. et al., 2003) consistent with our observation presented earlier 

for unpolarised Tr cells. But, the data presented here indicates that cytokine 

production pattern by polarised CD4+CD25+ regulatory T cells is reversed in 

response to a-CD3 stimulation i.e enhanced production of IL-4 and IL-5. 

Although it has been reported that CD4+CD25- T cells produced larger amounts of 

IFN-y (Alyanakian, M.A. et al., 2003), unpolarised CD4+CD25- T cells from 

DO 11.10 mice produced virtually no cytokines. The cytokine production by CD25 
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depleted CD4+ T cells driven in Th2 favouring environment was greatly reduced, 

suggesting that CD25- T cells require the assistance of CD4+CD25+ regulatory T 

cells to differentiate towards a Th2 cytokine profile. 

We had already demonstrated that unpolarised CD4+CD25+ regulatory T cells 

inhibited the proliferation of freshly isolated DO 11.10 lymph node cells, polarised 

CD4+CD25+ regulatory T cells also inhibited the proliferation of freshly isolated 

DO 11.10 lymph node cells. The evidence presented by Alyanakian, M.A. et al. 

supports our observation that CD4+CD25+ regulatory T cells are capable of inhibiting 

the proliferation of CD4+CD25- T cells. 

10.2 AIMS: 

1). Characterise polarised CD4+CD25+ regulatory T cells and CD4+CD25- T 
cells in vitro in terms of: 

a), adhesion molecule expression 
b). (^okine production 

2). Assess the ability of CD4+CD25+ regulatory T cells to affect T cell 
proliferation and cytokine production by polarised 
unseparated DOll.lO PLN cells in vitro. 
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10.3 Results 

103.1 Total, CD25+ and CD25- CD4+ T cells were analysed for the expression of 
different adhesion molecules. 

Polarised total, CD25+ and CD25- T cells were stained with monoclonal antibodies to 

identify the expression of different adhesion molecules and analysed by FACS. CD44 

was the predominant adhesion molecule expressed by all 3 groups (figure 10.3.1). 

Total, CD25+ and CD25- T cells also expressed (37 chain and CD62L but the level of 

expression was lower than for CD44. CD31 is the only adhesion molecule expressed 

predominantly by CD4+CD25- T cells. The only possible explanation for this 

discrepancy is that the polarisation of CD4+CD25- T cells in the absence of 

CD4+CD25+ T cells may have influenced the expression of CD31 molecule by 

CD4+CD25- T cells. The expression of the different adhesion molecules may 

influence the migration of lymphocytes into the ioflammed airways. 
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The expression of adhesion molecules by unseparated, CD25+ and CD25- T-cells 
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Figure 10.3.1 CD4+ T cells from DO 11.10 mice were separated on the basis of CD25 expression and then polarised with OVA peptide, IL-4, 
IL-2 and anti-IFN- y for 8 days. Polarised cells were then stained with FITC -labelled monoclonal antibodies specific for 
different adhesion molecules and then analysed by FACS. The figure is representative of 2 independent experiments. Number 
of mice used per experiment was 14. 
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103.2 CD4+CD25- T cells following Th2 differentiation produce only low levels 
of Th2 cytokines. 

Th2 polarised (total or CD25+ or CD25- ) cells were stimulated with either a-CD3 or 

KJl-26 and cytokine production was measured after 48 hours. When stimulated with 

KJl-26, polarised CD4+CD25+ cells produced IFN-y but when stimulated with anti-

CD3 they produced both IL-4 and IFN-y (figure 10.3.2; table 10.3.2 in the appendix). 

This suggests that IL-4 production is only induced when the cells receive higher level 

of signal i.e via CD3 ligation, while for IFN-y production, single receptor stimulation 

would be sufiScient. Th2 polarised unseparated CD4+ T cells produced both IL-4 and 

IL-5, which was reproducible and consistent with the previous data. In contrast, 

polarised CD4+CD25- cells consistently produced reduced levels of IL-4 and IL-5, as 

compared to unfractionated CD4+ T ceUs (figure 10.3.3). This difference is much 

more marked for IL-5, suggesting that the CD25- population requires the assistance of 

the CD25+ population in order to be stimulated to produce IL-5 (figure 10.3.2; table 

10.3.2 in the ^pendrx). 
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CYTOKINE PRODUCTION BY POLARISED T-CELLS 

RESPONDING CELLS 

STIMULUS 
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Figure 10.3.2 

Total (unseparated) or CD25+ or CD25- cells were driven in vitro in OVA peptide (1|ag/ml), IL-4 
(2ng/ml), IL-2 (100 U/ml) and a- IFN -y (S^ig/ml) for 8 days. The polarised cells were then stimulated 
with anti-CD3 or KJ1-26 for 48 hours and the level of cytokines (IFN-y, IL-4 and IL-5) produced was 
measured by standard ELISA. Data are shown for 1 experiment and are representative of 2 
independent experiments (see appendix (table 10.3.2)). Data are means ± SEM (n=3). Number of 
mice used per experiment was 14. p<0.05 compared with CD25- T-cells stimulated with a-CD3. 
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1033 Depletion of CD4+CD25+ T cells prior to Th2 polarization results in 
reduced cytokine production 

In order to assess whether the low production of cytokines was due to the separation 

procedure, I compared unfiactionated CD4+ T cells with cells that had been prepared 

for CD25 separation but had not yet been sorted (presort sample). Sorted CD25- T 

cells were used as a comparator. As in the previous experiment, the level of IL-4 and 

IL-5 produced by CD25- T cells was low compared to unfractionated cells 

(figure 10.3.3). The presort cells behaved similarly to the total cells in terms of IL-4 

and IL-5 production. Only low levels of IFN-y were produced by all three samples. 

This helps to confirm that CD25- T cells produce cytokines only if the favourable 

environment for polarization is provided, i.e the presence of CD25+ T cells is 

important 
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Depletion of CD4+CD25+ T cells prior to Th2 polarization 
results in reduced cytokine production 
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D011.10 T cells were depleted of CD25+ T cells and polarized into Th2 
cells over 8 days in Th2 favouring culture conditions used earlier. 
Control comprised of either unfractionated PLN cells (total) or 
unfractionated CD4+ T cells (presort) were also polarised into Th2 cells. 
After 8 days, cells were washed and stimulated with anti-CD3 coated 
plates. After 48 hours, supematants were harvested and the cytokine levels 
was determined by standard ELISA. Data are shown for 1 experiment and 
are representative of 2 independent experiments. Data are means ± SEM 
(n=3). Number of mice used per experiment was 16. 
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103.4 Th2 polarised CD4+CD25+ DOll.lO regulatory T cells inhibit the 
proliferation of T cells. 

I have akeady shown that unpolarised CD25+ T cells inhibited the proliferation of 

DO 11.10 lymph node cells in response to anti-CD3 (figure 8.3.2; table 8.3.2 in the 

appendix). Th2 ̂ x>larised CD4+CD25+ T cells also inhibited proliferation in 

response to OVA or anti-CD3. At low number of T regulatory cells, this inhibition 

was much more efifective against stimulation with anti-CD3 (figure 10.3.4). This may 

reflect the diEferent nature of the two stimuli : with OVA, signalling is transduced 

through the TCR, while anti-CD3 directly triggers the CD3 transduction mechanism, 

bypassing the TCR. 
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Figure 10.3.4 
To examine whether polarised CD4+CD25+ T cells inhibit proliferation, 

1x10^ D011.10 lymph node cells were cultured in the presence of different 
numbers of polarised CD4+CD25+ T- cells. The proliferative response 

to soluble anti-CD3 or OVA was measured by the level of ^H-thymidine 
incorporation after 3 days. Data are shown for 1 experiment and are 
representative of 2 independent experiments. Data are means ± SEM (n=3). 
Number of mice used per experiment was 12. 
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103.5 Th2 polarised CD4+ CD25+ regulatory T cells inhibit IL-4 but not IL-5 
production by Th2 cells 

Next, I assessed the influence of Th2 —polarised CD4+CD25+ T regulatory cells on 

cytokine production by Th2 cells. Polarised Th2 ceUs were stimulated with anti-CD3 

in the presence or absence of Th2 polarised T regulatory cells. As a control I used T 

regulatory cells that had been polarised in the absence of IL-4. Th2 polarised T 

regulatory cells were able to inhibit the anti-CD3 driven production of IL-4 by Th2 

polarised cells but had no effect on IL-5 production (figure 10.3.5; table 10.3.5 in the 

appendix). The specificity of this effect was confirmed by the demonstration that 

CD4+CD25+ T cells polarised in the absence of IL-4 had no effect on IL-4 

production by Th2 polarised cells. 

An alternative explanation is that the Th2-polarised cells may consume any IL-4 that 

is produced in response to anti-CD3. We know that the Th2-polarising conditions are 

likely to induce IL-4 receptors which may then bind any IL-4 that is produced. 

It was observed that stimulation of the CD4+CD25+ T cells with irradiated accessory 

cells, O V A 3 2 3 - 3 3 9 peptide, a-IFN-y and either IL-2 or IL-2 + IL-4 resulted in a marked 

expansion (10 and 18 fold respectively). Reproducibly, cell yields 60m CD4+CD25+ 

T cells expanded in IL-2 + IL-4 exceeded those obtained using IL-2 alone. 

CD4+CD25+ T cells could be polarised and expanded in the presence of irradiated 

accessory cells, OVA peptide, a-IFN-y, IL-4 and IL-2, however, in the absence of 

IL-4, cells could be expanded but not polarised. 
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Polarised regulatory T cells (Tr) inhibit IL-4 
but not IL-5 production by polarised Th2 cells 
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Figure 10.3.5 

Purified CD4+CD25+ Tr cells were polarised in vitro in the presence of 

APCs (5x10®/ml)+OVA (Img/mA.) +IL-4 (2ng/ml)+IL-2 (100 U/ml)+ 
a -ION -g (5pg/in^) or APC+OVA+ IL-2+alFN-g. Iv parallel, PLN cells were 
polarised with APC+OVA+IL-4 +IL-2+a-IFN-g. The concentration of 
reagente used in all culture conditions are same, unless stated otherwise. 
After 8 days, polarised Tr cells were added to polarised Th2 cells (1:1) 
which were then stimulated with anti-CD3 for 46 hours. The level of 
cytokines produced by polarised Th2 cells was measured by standard 
ELISA. Data are shown for 1 experiment and are representative of 2 
independent experiments (see appendix (table 10.3.5)). Data are means 
±SEM (n=3). Number of mice used per experiment was 12. *, p<0.05 
compared with Th2 cells stimulated in the presence of Tr cells driven in 
IL-2+IL-4. 
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10.4 Summary 

Th2 polarised (imseparated, CD4+CD25+ and CD4+CD25- ) T cells were 

characterised in vitro in terms of adhesion molecule expression and cytokine 

production. The ability of polarised CD4+CD25+ T cells to affect the proliferation of 

DO 11.10 PLN cells in response to a-CD3 or OVA and the cytokine production by 

Th2 -polarisedunseparated DOll.lO PLN cells was also assessed in vitro. The 

principal observations were: 

1. Analysis of adhesion molecule expression by FACS showed that CD44 was the 

predominant adhesion molecule expressed by all 3 groups. Unseparated, 

CD4+CD25+ and CD4+CD25- T cells also expressed (37 chain and CD62L but 

the level of expression was lower than for CD44. CD31 is the only adhesion 

molecule expressed predominantly by CD4+CD25- T cells. 

2. Analysis of cytokine production showed that Th2 polarised CD4+CD25+ T cells 

when stimulated with KJl-26 produced BFN-y, but when stimulated with anti-CD3 

they produced both IL-4 and IFN-y. Th2 polarised unseparated T cells produced 

both IL-4 and IL-5 when stimulated with anti-CD3. In contrast, CD4+CD25- T 

cells consistently produced reduced levels of IL-4 and IL-5, as compared to 

unfiactionated CD4+ T cells. 

3. Examining the effect of Th2 polarised CD4+CD25+ T cells on the proliferation of 

DO 11.10 PLN cells showed that these cells inhibited the proliferation of DO 11.10 

PLN cells in response to a-CD3 or OVA. At low number of CD4+C25+ T cells, 

the inhibition was much more effective against stimulation with a-CD3. 
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4. Assessing the effect of Th2- polarised CD4+CD25+ T cells on cytokine 

production by polarised- Th2 cells showed that Th2-polarised CD4+CD25+ T 

cells were able to inhibit the anti-CD3 driven production of IL-4 by Th2-polarised 

cells but had no effect on IL-5 production. 
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Chapter 11 
The ability of Th2- polarised CD4+CD25+ T-cells to modify the effect of Th2 cells 
in the adoptive transfer model of allergic lung inflammation. 



II.IINTRODUCTION 

In the final part of this work, Th2- polarised CD4+CD25+ T cells were assessed for 

their ability to modify the effect of Th2 cells in the adoptive transfer model of allergic 

Ixing inflammation. 

SCDD mice developed severe colitis when adoptively transferred with naive 

CD4+CD25- T cells and infected with the protozoan parasite Leishmania major 

(Liu, H. et aL, 2003), but the development of disease could be completely suppressed 

by transferring freshly isolated or activated CD4+CD25+T cells from syngeneic 

donors. Furthermore, the role of CD4+CD25+ T cells in transplantation immunology 

has also been demonstrated (Wood, K.J. et al., 2003): donor alloantigen-specific 

CD4+CD25+ regulatory T cells can control aggressive CD4+ as well as CD8+ T cells 

thereby preventing rejection and can mediate MHC- linked unresponsiveness. 

The DO 11.10 mouse model has been successfully used by others to study the 

induction of regulatory T cells in the nose-draining cervical lymph node 

(Unger, W.W. et al. 2003). 

The cytokines IL-4, IL-5 and XL-13 released from activated Th2 cells are associated 

with airway hyperreactivity, airway inflammation and mucus hyperproduction 

(Wills-Karp, M., 1999.; Taube, C. et al. 2003). In our mouse model, the role of 

CD4+CD25+ T cells in lung inflammation was investigated by assessing airway 

eosinophilia and airway hyperreactivity and by analysing the proportion of KJ1-26+ 

CD4+ T cells in bronchoalveolar fluid and in the lung tissue of BALB/c mice that had 

received either polarised total Th2 cells or polarised Th2 cells depleted of 

CD4+CD25+ T cells. 
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11.2 ABM: 

Assess the ability of Th2- polarised CD4+CD25+ T-cells to modify the effect of 
Th2 cells in the adoptive transfer model of a l le l ic lung inf lammation. 
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11.3 Results 

113.1 Th2 cells generated from CD4+CD25 — cells elicit an increased levels of 
eosinophilia in aerosol challenged BALB/c mice. 

To examine the role of CD4+CD25+T cells in vivo, Th2 polarised T cell subsets were 

prepared and injected into naive BALB/c mice, which were then challenged on 5 

consecutive days with ovalbumin. The mice were then sacrificed and airway 

eosinophilia was assessed by EPO assay of BALF. Somewhat unexpectedly, mice 

that received imseparated Th2 polarised CD4+ T cells showed a marked airway 

eosinophilia as measured by EPO in BALF. Mice that received Th2 —polarised 

CD4+CD25- T cells showed only a small degree of eosinophilia after OVA challenge, 

and there was no difference when a mixture of Th2 polarised CD25- and CD25+ cells 

were given to the mice (figure 11.3.1; table 11.3.1 in the appendix). 

In contrast, when the same experiment was performed over 7 days, the animals that 

received Th2 —polarised CD4+CD25- cells showed an enhanced airway eosinophilia 

as shown by increased EPO in BALF (figure 11.3.2; table 11.3.2 in the appendix), 

increased number of eosinophils in the BALF (figure 11.3.3; table 11.3.3 in the 

appendix) and a significantly higher level of AHR in response to methacholine 

(figure 11.3.4). 
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An assessment of eosinophilia by EPO assay 
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Figure 11.3.1 The level of eosinophilia in the bronchoalveolar lavage was 
measured by EPO assay. BALB/c mice were given either 10x10® total 
(unseparated) or CD25- or CD25- + Tr cells (CD25-:Tr 1:1). Recipients 
were exposed to OVA aerosol and the level of EPO in the broncho 
alveolar lavage fluid determined at day 5. Control mice did not receive 
Th2 cells (none). Data are shown for 1 experiment and are 
representative of 3 independent experiments (see appendix (table 
11.3.1)). Data are means ±SEM (n=3). Number of mice used in each 
group per experiment was 6. *, p<0.05 compared with recipients of 
CD25- T cells. 
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An assessment of eosinophilia by EPO assay 
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gure 11.3.2 

The level of eosinophilia in the broncho alveolar lavage was measured by EPO assay. 

BALB/c mice were given Th2 cells (10x10®) prepared from either total (unseparated) or 
CD25-. Receipients were exposed to OVA aerosol and the level of EPO in the broncho 
alveolar lavage fluid determined at day 7. Control mice did not receive Th2 cells. 
Data are shown for 1 experiment and are representative of 3 independent experiments 
(see appendix (table 11.3.2)). Data are means ± SEM (n=3). Number of mice used in 
each group per experiment was 6. *, p< 0.05 compared with recipients of total Th2 cells. 
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The number of eosinophils in BALF 
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Figure 11.3.3 
The number of eosinophils in the broncho alveolar lavage was counted. 

BALB/c mice were given Th2 cells (10x10®) prepared from either total (unseparated) 
or CD25-. Recipients were exposed to OVA aerosols and the number of eosinophils 
in the broncho alveolar lavage fluid determined at day 7. Control mice did not receive 
Th2 cells. Data are shown for 1 experiment and are representative of 3 independent 
experiments (see appendix (table 11.3.3)). Data are means ± SEM (n=3). Number of 
mice used in each group per experiment was 6. *, p<0.05 compared with recipients 
of total Th2 cells. 
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Changes of Penh measurements in response to inhaled 
methacholine 
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Figure 11.3.4 

Airway hyperreactivity was measured in response to methacholine inhalation by 

whole-body plethysmography. BALB/c mice were given Th2 cells (10x10®) prepared 
from either total (unseparated) or CD25-. Receipients were exposed to OVA aerosols 
for 7 consecutive days. Control mice did not receive Th2 cells (none). On day 7, animals 
were placed in chambers and exposed to nebulized PBS (baseline) followed by increasing 
concentrations of methacholine. Enhanced pause (Penh) was measured after each 3-min 
exposure. Data are shown for 1 experiment and are representative of 2 independent 
experiments. Data are means ±SEM (n=3). Number of mice used in each group per 
experiment was 6. 
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11.3.2 BALB/c mice that received Th2 cells generated from CD4-I-CD25- T cells 
expressed lower levels of CD4+KJ1-26+ T cells in the BALF. 

Having shown that CD4+CD25+ T cells influenced airway eosinophilia, we next 

assessed the proportion of CD4+ T cells that expressed the OVA specific T cell 

receptors in the BAL of BALB/c mice that were used in these adoptive transfer 

experiments. 

In mice that received polarised unseparated Th2 cells, about 45% of CD4+ cells 

expressed KJl-26. hi contrast, in mice that received CD4+CD25- cells, about 30% of 

CD4+ cells expressed KJl-26 (figure 11.3.5). One possible explanation is that 

regulatory T cells present in the unseparated cell population may have influenced the 

migration of OVA specific CD4+ T cells (KJ1-26+) from the lung into the airways 

where they are eliminated in BAL. In mice that received CD25- T cells, more OVA 

specific T cells may have been retained in the lung and therefore exacerbated the 

airway inflammation and eosinophilia shown in figure 11.3.2. Mice that received a 

mixture of equal number of CD25- and CD25+ T cells showed no significant 

difference to those that received CD4+CD25- T cells alone. This lack of effect of 

CD25+ cells may be a question of cell number and it would be interesting to repeat 

the experiment with a range of different proportion of CD25- and CD25+ T cells. 
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The expression of KJl-26 and CD4 by lymphocytes in the BALF 
of BALB/c mice received adoptive cell transfer. 

Total 

Qo- j 

. v; -: 

•iTmnf " n '1 """fj 
10" 10' 10'̂  10̂  10̂  

KJl-26 

Total+Tr 
TT 
O 1 

O 

8&1 

O o 
"10" 10̂  10̂  10̂  10'' 

KJl-26 

Tr 
T Of 

0 13^,. 6.62 
• !/Rli . RI( 

u - 1 

01 

O 
o - Ao HM|M IIIHll I 

r*' 10" 10" lO*- 10" 10" 
KJl-26 

CD25-

6:3^ 

R& 

8^1 

•n" "'"'Iq' 
10" 10̂  10"̂  10"̂  

KJl-26 

CD25-+Tr 

10̂  

T 
o - g 

0 1^44- 5.43. 
R8' • R9 

8 = 1 

-

;-4.\ &' 

0 . vrr:; 
"10° uxumq : I IIIiij 

10 
o . 3 ^ 4 , 

10"̂  10"̂  10̂  
KJ4-26 

T 

CO 
O' 

4 o-

...imi I i iu iH 

10"̂  10̂  10̂  

Control 

Figure 11.3.5 
BALB/c mice were given either polarised total (unseparated (10x10^)) or total +Tr (1:1) or 
CD25- (lOxlO^)or CD25- + Tr (1:1) or Tr (10x10^). Mice received adoptive cell transfer were exposed 
to OVA aerosol for 20 minutes for 7 consecutive days. On the last day, mice were sacrificed and the 
BALF was retrieved. The lymphocytes in the BALF of different groups were stained with 
KJl-26 FITC+ CD4PE and analysed by FACS. The figure is representative of 2 independent 
experiments. Number of mice used in each group per experiment was 5. 
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11.33 More KJl-26 expressing CD4+ T cells are retained in the lung of BALB/c 
mice given CD4+CD25- T cells. 

As well as looking in BALF, we assessed KJl-26 expression on T cells in the lung 

tissue of BALB/c mice that took part in these adoptive transfer experiments. In 

contrast to the BALF results, BALB/c mice which were given CD4+CD25- T cells 

had a higher proportion of KJ1-26+CD4+ in the lung than the mice that received 

unseparated CD4+Th2 polarised cells (figure 11.3.6). Taken together these results 

suggest that retention of CD4+CD25- T cells is much favoured in the lung in the 

absence of regulatory T cells. This observation fiirther reinforces our hypothesis that 

CD4+CD25+ T cells control inflammation by eliminating T cells actively involved in 

mediating inflammation. 
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The level of expression of KJl-26 and CD4 in the lung of BALB/c mice received 
adoptive cell transfer. 
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Figure 11.3.6 

BALB/c mice were given either polarised total or CD25- T cells and exposed to OVA aerosol for 20 
minutes for 7 consecutive days. On day 7, the mice were sacrificed and the lung was digested to 
concentrate T-lymphocytes. The samples from the 6 mice were pooled before staining for flow 
cytometry. Lymphocytes were stained with KJl-26 FITC + CD4PE and the level of expression was 
analysed by FACS. The figure is representative of 3 independent experiments. Number of mice used 
in each group per experiment was 6. 

129 



11.4 Summaiy 

The ability of Th2-polarised regulatory T-cells to modify the effect of Th2 cells in the 

adoptive transfer model of allergic lung inflammation was assessed. The principal 

observations were: 

1. BALB/c mice that received unseparated Th2 -polarised CD4+ T cells showed a 

marked airway eosinophiMa as measured by EPO in BALF at day 5. Mice that 

received Th2-polarised CD4+CD25- cells showed a small degree of 

eosinophilia after OVA challenge. In contrast, when the same experiment was 

performed over 7 days, mice that received Th2-polarised CD4+CD25- cells 

showed an enhanced airway eosinophilia as shown by increased EPO in BALF, 

increased number of eosinophils in the BALF and a significantly higher level of 

AHR in response to methacholine. 

2. FACS analysis of the proportion of CD4+ T cells expressing OVA- specific T cell 

receptor (KJ1-26) in the BAL of BALB/c mice showed that in mice that received 

polarised unseparated Th2 cells, about 45% of CD4+ T cells expressed KJl-26. In 

contrast, in mice that received CD4+CD25- cells, about 30% of CD4+ T cells 

expressed KJl-26. 

3. FACS analysis of the proportion of CD4+ T cells expressing OVA-specific T cell 

receptor in the lung tissue of BALB/c showed that mice which were given 

CD4+CD25- T cells had a higher proportion of KJ1-26+CD4+ in the lung than the 

mice that received unseparated Tb2- polarised cells. 
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Chapter 12 
The time course of recruitment of OVA- specific T- cells to the BAL and peripheral 
lymph nodes. 



12.1 INTRODUCTION 

In further analysis of this model, the time course of recruitment of OVA-specific 

T-cells to the BAL and peripheral lymph nodes was studied. 

Previous studies by other groups show that long-term allergen exposure can attenuate 

inflammation and revert airway hyperreactivity to normal responsiveness 

(Cui, Z. et al., 2003). This change in responsiveness and inflammation has been 

proposed to be associated with a transition from a Th2 phenotype to a Thl cytokine-

biased profile. 

12.2 AIM: 

Anafyse the time course of recruitment of OVA-specific T-cells to the BAL and 
peripheral fymph nodes. 
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12.3 Results 

123.1 The number of KJ1-26+CD4+ expressing T cells in BALF and peripheral 
fymph node varies with time. 

Since the previous experiments indicated that BAL eosinophilia is time-dependent 

(figures 11.3.1 and 11.3.2; tables 11.3.1 and 11.3.2), we addressed the time course of 

migration of KJ1-26+CD4+ T cells in the BALF and peripheral lymph nodes of 

BALB/c mice that received polarised total T lymphocytes. The FACS data shows that 

the percentage of CD4+ T cells in BAL increased over the 3 time points and by day 

6, 50% of the CD4+ T cells in BAL expressed KJl-26. (figure 12.3.1). In peripheral 

lymph nodes, the proportion of CD4+ cells decreased over 6 days but the relative 

proportion of KJl-26 cells was similar at all 3 timepoints. This suggests that the 

migration of inflammatory T cells fi-om lung into the airways is time-dependent and 

we have showed earlier that it is dependent on exposure to OVA aerosol challenge. 

The FACS plots also show a substantial number of of KJ1-26+CD4- cells. The 

identity of these cells remains obscure. They could conceivably be BALB/c host cells 

that have expanded but we have not pursued this aspect of the model in the present 

experiments. 
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The expression of KJ1-26 and CD4 by lymphocytes in BALF and 
peripheral lymph node cells at different time points. 
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Figure 12.3.1 
BALB/c mice were given polarised total (unseparated) T- Lymphocytes 10x10^ 
and exposed to OVA aerosol challenge for 6 consecutive days. Mice were 
sacrificed at different time points (2, 4, 6) and the expression of KJl-26 
and CD4 in BALF and peripheral lymph node cells were analysed by 
FACS. The figure is representative of 2 independent experiments. Number of 
mice used in each group per experiment was 5. 
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12.4 Summary 

The time course of recruitment of OVA-specific T ceils to the BAL and peripheral 

lymph nodes of BALB/c mice that received Th2 polarised total lymphocytes was 

assessed. The principal observations were : 

1. FACS analysis showed that the percentage of CD4+ T cells in BAL increased over 

the 3 time points and by day 6, 50% of the CD4+ T cells in BAL expressed 

KJl- 26. 

2. In peripheral lymph nodes, the proportion of CD4+ T cells decreased over 6 days 

but the relative proportion of KJl-26 cells was similar at all 3 timepoints. 
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Chapter 13 

Coexpression of CD4 and CD 103 by unpolarised and polarised lymph node cells. 



13.1 INTRODUCTION 

CD 103 is an integrin expressed by intraepithelial lymphocytes, and is expressed on 

20-30% CD4+CD25+ T cells but not on CD25- T cells. Both CD103+CD25+ and 

CD 103- CD25+ were able to suppress anti-CD3 induced proliferation of CD4+CD25-

T cells (McHugh, R.S. et ah, 2002), but CD103+CD25+ were more efficient on a per 

cell basis at suppressing the proliferation of the responders. Furthermore, it has been 

shown that the acquisition of suppressive activity was independent of CD 103 

expression, as CD25+CD103- cells were suppressive but did not express CD 103 upon 

activation (McHugh, R.S. et ah, 2002). 

There is some evidence that CD 103 plays a role in the maintenance of lymphocytes in 

the intestine. I therefore thought it would be of interest to investigate its role in 

pulmonary inflammation. 

13.2 AIM: 

Anafyse the coexpression of CD4 and CD103 by impolarised and polarised 
lymph node cells. 
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13.3 Results 

133.1 A population of impolarised OVA specific fymph node cells coexpress 
CD4 and CD103. 

In vinpolarised lymph node cells, about 3.8% of CD4+ cells expressed CD 103 

(figure 13.3.1). However, after polarisation virtually no CD4+ cells expressed CD 103 

(figure 13.3.2). On the basis of this experiment, it does not appear that CD 103 is 

relevant to the DO 11.10 lung inflammation model. It remains unclear whether this 

reflects dififerences between gut and lung, or is a feature of the DO 11.10 transgenic 

system. 
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Receptor expression by unpolarised 
T-lymphocytes 
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Figure 13.3.1 

Lymph node cells (unpolarised)from DO 11.10 mice were stained with 
CD 103 FITC+CD4 PE. The level of expression was then analysed by FACS. 
The figure is representative of 3 independent experiments. Number of mice used 
per experiment was 6. 
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Receptor expression by polarised 
T- lymphocytes 
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Figure 13.3.2 
Lymph node cells from DO 11.10 mice were driven in vitro in IL-4 (2ng/ml), 
IL-2 (100 U/ml), OVA (l|ig/ml) and a - IFN-y (5p,g/ml) for 8 days. The 
polarised cells were stained with CD 103 FITC+CD4PE. The level of 
expression was then analysed by FACS. Results are representative of 3 
independent experiments. Number of mice used per experiment was 6. 
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13.4 Siimmaiy 

Coexpression of CD4 and CD 103 by unpolarised and polarised lymph node cells 

was analysed by FACS. The principal observations were: 

1. In unpolarised lymph node cells, about 3.8% of CD4+ cells expressed CD103. 

2. After polarisatioil virtually no CD4+ T cells expressed CD 103. 
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Chapter 14 

Discussion 



Asthma is a common clinical condition that presents with episodes of wheezing and 

breathlessness. These symptoms are driven by physiological changes including 

variable airflow obstruction and airways irritabiUty. 

At the pathological level, asthma is char^terised by mucosal inflammation, increased 

mucus production and a number of structural changes, loosely termed as airways 

remodelling. In many, but not all, patients, the airways are infiltrated by eosinophils 

(Kay, A.B. et al., 1991; Haley, KJ. et al., 1998.), a phenomenon that is thought to be 

driven by CD4+ T helper 2 cells (Umetsu, D.T and DeKruyff, R.H.,1997.; Wills-

Karp, M., 1999.; Walter, D.M. et al., 2001). 

A key element in this process is the cytokine lL-5 which is produced by Th2 cells and 

promotes the differentiation/release of eosinophils from the bone marrow into the 

blood stream (Denburg, J.A., 1998). IL-5 is particularly important for the terminal 

differentiation of committed eosinophil precursors (Clutterbuck, E.J. et al., 1989.; 

WeUer, P.F., 1992.; Ogawa, M., 1994). It activates mature eosinophils and prolongs 

their survival in culture (Yamaguchi,Y., et al., 1988), possibly by its ability to prevent 

apoptosis (Yamaguchi, Y., et a/., 1991). In addition, it selectively enhances eosinophil 

degranulation, antibody-dependent cytotoxicity and adhesion to vascular endothelium 

(Lopez, A.F., et al., 1988. Fujisawa, T., et al., 1990). In contrast, activated Thl cells 

characteristically produce IFN-y, IL-2 and lymphotoxin (LT, TNF-p) (Abbas, A..K., 

et al., 1996) and do not mediate eosinophiUa in pulmonary inflammation but are 

associated with cell-mediated immunity (Modlin, R.L. and Nutman, T.B., 1993). 
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In this thesis, I have presented a series of experiments that have used the DO 11.10 

transgenic mouse to model allergic airway inflammation. I have focussed on the 

regulation of the response with particular reference to the role of CD4+CD25+ 

"regulatory" T cells. 

The T cells of DO 11.10 mice express a TCR specific for the O V A 3 2 3 - 3 3 9 peptide 

which is presented by the la^ class H MHC molecule. These mice enabled us to 

develop and study an adoptive transfer model of Thl- and Th2 —mediated pulmonary 

inflammation. The adoptive transfer of differentiated T cells into naive hosts makes it 

possible to exert a high level of control over the nature of CD4 response elicited by 

antigen inhalation. This has marked advantages over models based on immunising 

mice before exposure to aerosoUsed antigens, since the immune response that 

develops following adoptive transfer is independent of antibody generated by the host. 

Certainly, in immunised animals the antibodies generated are likely to contribute to 

the inflammatory response developing to inhaled antigens. Using the adoptive transfer 

model, the contribution of immune complex formation and complement activation to 

the inflammatory process is obviated. In addition, the adoptive transfer approach 

allows a high level of control over the Thl - and Th2- balance of the infused cells. 

Finally, using the DO 11.10 mice, antigen- specific T cells can be enumerated by flow 

cytometric techniques using the KJl-26 monoclonal antibody. 

DO 11.10 lymph node cells can be polarised in vitro using the O V A 3 2 3 - 3 3 9 peptide 

under appropriate conditions to produce either Thl (IFN-y and IL-2 ) or Th2 
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cytokines (IL-4, IL-5, IL-13 and IL-10). Throughout these studies the culture 

conditions used to promote the differentiation of DO 11.10 T cells into Thl and Th2 

effectors was as published previously by our group (Lee S.C. et al., 1999 ). Th2 

polarisation occurs in the presence of O V A 3 2 3 - 3 3 9 peptide and exogenous IL-4, 

whereas Thl polarisation can be achieved with IL-12 and O V A 3 2 3 - 3 3 9 . IL-4 powerfully 

inhibits the production of IL-2 and IFN-y by naive CD4+ T cells in response to 

accessory cell-dependent stimulation with soluble anti-CD3 (Tanaka, T. et al., 1993). 

In contrast, IL-12 is critical for the development of CD4+Thl cells (Macatonia, S.E. 

et al., 1995). An eight-day period of polarization was found to be sufficient for 

generating CD4+ Thl and Th2 cells which retained their cytokine profiles when 

adoptively transferred into mice. 

In recent years it has been demonstrated that immune responses are limited by the 

action of CD4+CD25+ regulatory T cells. To date there has been little evidence that 

such a suppressive mechanism acts during lung mucosal inflammation. However, it 

has been suggested that chronic inflammation evident in asthma may arise as a 

consequence of a failure of regulatory T cells to limit lung mucosal T cell responses 

(Umetsu, D.T. et al., 2002). Using the DO 11.10 mouse, we have examined whether 

CD4+CD25+ regulatory T cells inhibit Th2 polarization and/or the development of 

pulmonary eosinophilic inflammation. 

The frequency of CD4+CD25+ regulatory T cells in DOll.lO mice: In normal mice, 

regulatory function has been shown to be mediated by a small population of CD4+ T 

cells (typically approx. 10%) which constitutively express the a chain (CD25) of the 
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IL-2R complex (Sakaguchi, S. et al., 1995). Flow cytometry revealed that 

approximately 4-8 % of CD4+ T cells fix)m DO 11.10 mice were CD4+CD25+. 

Importantly, the majority of CD4+CD25+ T cells were foimd to stain with the KJl-26 

antibody and consequently would be expected to be OVA specific. 

Having purified CD4+CD25+ and CD4+CD25- T cells, 1 assessed the eflfect of the 

separation procedure on cytokine production by comparing polarised mrfractionated 

CD4+ Th2 cells with cells that had been prepared for CD25 separation but had not 

been separated and polarised in a Th2 favouring environment. We have found that the 

separation procedure did not have any significant effect on cytokine production, but 

the production of cytokines by polarised CD4+CD25- Th2 cells was very much 

reduced. This confirms that the reduced level of cytokine production by polarised 

CD4+CD25- Th2 cells was not due to the separation procedure but due to the 

depletion of CD4+CD25+ T cells. The reduced level of cytokine production by 

polarised CD4+CD25- Th2 cells suggests that these cells require the presence of 

CD4+CD25+ T cells during the polarisation process to produce typical Th2 cytokine 

profile. 

Regulatory function mediated by DOILIO CD4+CD25+ T cells: It was important to 

determine whether CD4+CD25+ T cells fi-om DO 11.10 mice mediated regulatory 

fimction. Previous in vitro work si^gests that CD4+CD25+ T regulatory cells control 

inflammation via dififerent mechanisms, among wiiich suppressing the proliferation of 

inflammatory cells is likely to be the most important. 
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We found that CD4+CD25+ T regulatory cells polarised in vitro inhibited the 

proliferation of DO 11.10 lymph node cells in response to either O V A 3 2 3 - 3 3 9 peptide or 

anti-CD3. Freshly isolated CD4+CD25+cells 60m DO 11.10 mice also inhibited the T 

cell proliferative response to anti-CD3, but we did not obtain sufficient CD4+CD25+ 

T cells to determine whether they could inhibit the OVA response. Interestingly, 

inhibition of the anti-CD3 induced proliferation by polarised cells was much more 

effective than the inhibition of O V A 3 2 3 - 3 3 9 peptide induced proliferation. This may be 

related to the greater level of Tr cell activation that we observed with anti-CD3 

compared with OVA323-339 peptide. This is possibly because the DO 11.10 T cells are 

able to express endogenous TCR a-chains in addition to the transgenic OVA specific 

TCR. a-CD3 interacts with both TCRs whereas, OVA peptide interacts only with the 

OVA specific TCRs. Collectively, these observations suggest that CD4+CD25+ T 

cells possess regulatory fimction prior to polarisation and retain it in culture. It has 

been demonstrated previously that CD4+CD25+ T cells when cocultured with 

CD4+CD25- cells markedly suppressed T-cell proliferation by inhibiting the 

production of IL-2 (Thornton, A.M. and Shevach, E.M., 1998). The inhibition was 

not cytokine mediated, but dependent on ceU contact between the regulatory cells and 

the responders, and required activation of the suppressors via the TCR. Of course in 

such experiments it is important to distinguish between the effect of removing all 

activated (CD25+) T cells from the responding population, as opposed to the true 

effect of T reg cells or potential responders. 

The effect of depleting CD4+CD25+ T cells on Th2 polarization: We next wanted to 

evaluate the effect of Tr cells on Th2 polarization and the development of pulmonary 

inflammation when Th2 cells were transferred into BALB/c mice. Since CD25 is 
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expressed by activated T cells, CD4+CD25+ T cells had to be removed prior to 

polarization of the DO 11.10 T cells. Unexpectedly, their removal had a marked effect 

on both the level of cytokines produced by the Th2 cells generated by polarizing in 

vitro and the level of eosinophilia in BALF. Most notably, the level of IL-4, IL-5 and 

EL-13 production by Th2 cells generated in the absence of Tr cells was markedly 

lower than that of Th2-polarised unfiractionated CD4+ T cells. This was irrespective 

of the concentration of anti-CD3 used to induce cytokine production. The mechanism 

by which Tr cells influence the level of cytokine production is unclear. It is unlikely 

that this arises as a consequence of Tr cells reducing IL-2 levels since exogenous IL-2 

was added during polarization. It has been suggested that Tr cells favour Th2 

polarization by inhibiting Thl development (Suto, A., et al., 2001). However, in our 

experiments, the CD4+CD25- Th2 cells did not produce any detectable IFN-y even 

after adoptive transfer into OVA- challenged mice. These results imply that the defect 

was not a consequence of incomplete polarization, but rather, results from reduced 

level of cytokine production. 

Unpolarised T regulatory cells produced IL-5 and littie IFN-y and no IL-4. In contrast, 

T regulatory cells maintained in culture produced IL-4 and IFN-y and no IL-5. In 

addition, cultured CD4+CD25+ T cells inhibited IL-4 but not IL-5 production by Th2 

cells in vitro, suggesting that CD4+CD25+ T cells control inflammation by 

influencing IL-4 production by Th2 cells, thereby suppressing its development and 

proliferation. The level of cytokines produced by CD25- cells functionally 

distinguishes them from CD25+ cells, i.e. unpolarised CD25- cells produced virtually 

no cytokines while the polarised CD25- cells produced both IL-4 and little IL-5. 
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The effect of CD4+CD25+ regulatory T cells on pulmonary inflammation: Given 

that Th2 cells produced from CD4+CD25- cells released lower levels of cytokines, we 

next evaluated the level of inflammation that these cells could mediate in vivo. When 

transferred into BALB/c hosts, Th2- polarised CD4+CD25- cells were capable of 

eliciting a pronounced increase in the number of eosinophils present in the BALF on 

day 7, and this was notably greater than that observed when unfiactionated CD4+T 

cells were used. This diiTerence was associated with a more intense eosinophilic 

inflammation, evident in the histology, and a significantly higher level of AHR in 

response to methacholine. This appeared to be a consequence of more effective 

expansion of DO 11.10 T cells in hosts in the absence of Tr cells since the number of 

KJ1-26+ T cells in the lung was significantly higher than in animals that received 

unfractionated CD4+ T cells. Moreover, restimulation of lung mononuclear cells with 

OVA peptide revealed that recipients of CD4+CD25- Th2 cells produced lower 

amounts of IL-4, IL-5 and IL-13. Collectively, these observations suggest that the 

reduced expression of Th2 cytokines was compensated by some additional 

proinflammatory attributes displayed by CD4+CD25- Th2 cells. Conceivably, Th2 

cells generated in the absence of Tr cells produce an altered spectrum of 

proinflammatory cytokines, chemokines or prostanoids. Although, to date, there is no 

other evidence to support this observation, the data that we presented suggests that Tr 

cells influence the production of the inflammatory mediators mentioned earlier. In 

addition, the percentage of OVA- specific T cells (KJ1-26+CD4+) was lower in the 

BALF of BALB/c mice that received CD25- cells than in the mice that received 

unfractionated T cells. This fiirther supports our hypothesis that CD25+ T cells 

appear to be involved in the elimination of the T cells that control lung inflammation 

as shown by the attenuated eosinophilia in the BALF of BALB/c mice that received 
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unseparated Th2 polarised cells. Since the level of eosinophilia is largely influenced 

by the time of exposure of mice to OVA aerosol challenge, the number of KJl-

26+CD4+ expressing T cells in BALF and peripheral lymph node of BALB/c mice 

received total Th2 cells was analysed at different time points and it was observed that 

the number of CD4+KJ1-26+ T cells present increased on day 6 of challenge. 

Paradoxically, it has been reported by other groups the mice that had received 

CD4+CD25- DOll.lO T cells displayed an increased level of neutrophil and T ceU 

recruitment in the airways of the mice (Suto, A. et al., 2001). There is no immediate 

explanation for this discrepancy. 

CD 103 is an integrin, the ligand for epithelial cell E-cadherin has been reported to be 

expressed by sputum T lymphocytes in asthma (Leckie, M.J. et al., 2003). It has been 

shown in our study that unpolarised DOll.lO lymph node cells express CD 103, but 

its expression is lost in culture. The expression of CD 103 could be implicated in the 

migration of T lymphocytes in pulmonary inflammation, but it needs to be examined 

in much greater detail in the lung as most previous work on CD 103 has addressed its 

role in the maintenance of lymphocytes in the intestine (Schon, M.P. et al., 1999). It 

has also been suggested that the expression of CD 103 and its maintenance is 

influenced by the availability of TGF-p. TGF-P is produced by several cell types 

including eosinophils (Ohno, I. et al., 1996) and has been imphcated in the asthmatic 

process, especially in various features of airways remodelling (Duvemelle, C. et al., 

2003). 

In conclusion, this work supports the proposed role of Tr cells in the regulation of 

allergen-specific airways inflammation- Although, there are several ways that Tr cells 
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may affect the process, the most likely roles are indicated in fig 14.1. These 

experiments show that CD4+CD25+ cells can be polarised in a Th2-favouring 

environment and characterised for their cytokine profile. This adoptive transfer 

system will allow further studies of the regulation and expression of allergic airways 

inflammation, and may be suitable for assessment of new therapeutic agents for 

asthma. 
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Fig: 14.1 

Diagrammatic representation of 
how "regulatory" T-cells control 
Th2- mediated lung inflammation. 
The most likely mechanisms of 
regulation are: 1). Cell-Cell contact 
controlling the proliferation of T-
cells that mediate inflammation; 
2). Production of 
immunosuppressive cytokines such 
as IL-10 and TGF-p. In addition, 
PGI^ as indicated, augments the 
production of IL-10 by the 
"regulatory" T- cell. 
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Aspects of the project that need clarification: 

1) Depletion of CD4+CD25+ T cells prior to Th2 polarization resulted in reduced level 

of Th2 cytokine production. It is important to investigate the mechanism that results 

in reduced cytokine production. (1) Possibly reduced cytokine production is caused 

by ineffective T cell costimulation. The expression of CD28, ICOS, CD30 etc will be 

examined. The effect of adding irradiated APC on cytokine production will be 

addressed. (2) The effect of adding exogenous IL-2 from the start of the Th2 

polarization process should be investigated. (3) It is important to determine the level 

of expression of cytokine mRNA to resolve whether this form of regulation occurs at 

a transcriptional level. (4) Ineffective cytokine production may arise if the TCR 

signalling is ineffective at eliciting an increase in intracellular Ca++. (5) Does 

depletion of CD4+CD25+ cells from human CD4+ cells result in reduced cytokine 

production by Th2 cells. 

2) To gain an insight into the mechanism of action of regulatory T-cells in pulmonary 

inflammation ie. possible roles for IL-10 and TGF-(3. 

3) Characterizing CD4+CD25+ T cells from DO 11.10 mice in more detail. For example, 

the CD4+CD25+ T cells expressed CD 103 but this was rapidly lost in culture. It would 

be interesting to examine the requirements for CD 103 expression by this population of 

T cells. One could study the possibility that TGF-P plays an important role in 

maintaining CD 103 expression in mucosal sites and thereby facilitating the 

migration of CD4+CD25+ T lymphocytes to the lung mucosa. 
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Appendix 



Table 4.3.1 Characterisation of DO 11.10 mouse model with particular 
reference to Thl+Th2 cells. Cytokines, IFN-y, IL-4, and IL-5 were 
measured by standard ELIS A. Data represent meaiK ±SEM, attained in 
3 independent experiments. Number of mice used per experiment was 
10. 

Experiment 1 IFN-y (ng/ml) IL-4 (ng/ml) IL-5 (ng/ml) 
Thl cells + 
media 

9.67+ 0.33 0.06+0.01 0.13±0.02 

Thl 
cells+aCD3 

277.33+39.27 0.06+0.01 0.27+0.13 

Th2 cells+ 
media 

4.67+0.310 0.59±0.26 0.45+0.25 

Th2 
cells+aCD3 

5.0+0.577 3458.67+358.4 50.49+9.227 

Experiment 2 
Thl cells+ 
media 

5.4±0.567 0.064±0.0078 0.360±0.058 

Thl 
cells+aCD3 

71.33±6.96 0.060+0.0087 0.427+0.173 

Th2 
cells+media 

3.33+0.333 0.515+0.237 0.537+0.123 

Th2 
ceIls+aCD3 

4.33+0.88 1437.49±272.5 54.96+3.39 

Experiment 3 
Thl 
ceUs+media 

4.67±0.882 0.041±0.0027 0.164±0.026 

Thlcells+ 
aCD3 

111.33+2.3 0.055+0.0069 0.430+0.128 

Th2 
cells+media 

3.0+0.58 0.563+0.066 0.553+0.175 

Thl cells+ 
aCD3 

3.4+0.52 800.58+34.57 62.3+3.46 
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Table 4.3.5. Validation of adoptive transfer experiments. The level of eosinophilia in 
the bronchoalveolar lavage was measured by EPO assay. Data represent 
means ±SEM, attained in 3 independent experiments. Number of mice 
used in each group per experiment was 5. 

Control 
(absorbance) 

Mice received Thl 
cells (absorbance) 

Mice received Th2 
cells (absorbance) 

Experiment 1 0.061+0.0020 0.179+0.0035 0.625+0.033 

Experiment 2 0.054+0.0013 0.129+0.013 0.495+0.011 

Experiment 3 0.410+0.116 0.155+0.012 0.670+0.017 
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Table 5.3.1. An assessment of production of the regulatory T cell cytokine lL-10 in 
Thl and Th2 polarised cell populations. Data represent means ±SEM, 
attained in 3 independent experiments. Number of mice used per 
experiment was 12. 

Thl 
unseparated 
(ng/ml) 

Th2 
unseparated 
(ng/ml) 

Th2(MaR 
plate) 

(ng/ml) 

Th2 
(CD8+MHC 11 
Depleted) 
(ng/ml) 

Experiment 1 3.823+1.140 33.93+2.97 20.0+3.0 21.33±3.38 

Experiment 2 3.03±0.77 29.8+0.79 16.66+2.028 19.33+1.45 

Experiment 3 2.89+0.96 35.37+2.74 18.78i2.31 23.28+2.31 
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Table 5.3.2. An assessment of IL-10 production by polarised Th2 cells driven in IL-10 
or a-IL-10 with or without indomethacin. Data represent means ±SEM, 
attained in 2 independent experiments. Number of mice used per 
experiment was 14. 

Th2 (ng/ml) Th2+indo 
(ng/ml) 

Th2+IL10 
(ng/ml) 

Th2+ 
IL-lO+indo 
(ng/ml) 

Th2+anti-
IL-10 
(ng/ml) 

Th2+ 
anti-l(H-indo 
(ng/ml) 

Experiment 1 164.33+16.58 53.33+2.9 221.33+15.06 71.0+3.61 8.33±0.33 14.67+0.33 

Experiment 2 142.2+9.4 63.3+4.4 166.67+12.02 47.67+6.64 5.0+0.58 7.0+0.54 
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Table 6.3.1. An assessment of IFN-y (expressed in ng/ml) production by PLN cells 
stimulated with different reagents. Data represent means ±SEM, attained 
in 2 independent experiments. Number of mice used per experiment was 
10. 

PLN+ 
OVA 

OVA+IL4 
(0.4ng/ml 

OVA+IL4 
(0.4ng/ml) 
+indo 

OVA+ 
IL-4 
(2ng/ml) 

OVA+IL-4 
(2ng/ml)+ 
indo 

OVA+ 
IL-4 
(lOng/ml 

OVA+IL-4 
(10ng/ml)+indo 

Exp 1 46.67±1.2 38.67±0.67 44.0±2.08 39.33± 
0.33 

38.33±2.03 33.67± 
0.67 

23.67±1.45 

Exp 2 35.0+1.73 25.67±1.86 31.0+3.60 28.0+ 
1.76 

27.67+1.2 2233+ 
1.86 

16.0+1.16 
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Table; 7.3.1. Frequency of CD4+CD25+ T cells in DO 11.10 mice, attained 
in 4 independent experiments. Number of mice used per experiment 
was 16. 

Experiment 1 4.25% 

Experiment 2 5.58% 

Experiment 3 4.69% 

Experiment 4 
6.81% 
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Table 8.3.1. An assessment of cytokine (IFN-y, IL-4, and IL-5) production by 
unpolarised T- cells. Data represent means +SEM, attained 
in 2 independent experiments. Number of mice used per experiment 
was 13. 

IFN-y (ng/ml) 

CD25+ 
+a-CD3 

CD25-
+0C-CD3 

CD25+ 
+CC-CD3+ 

APC 

CD25-
+ocCD3+ 
APC 

CD25+ 
+APC+OVA 

CD25-
+APC+OVA 

Exp 1 1.16±0.19 1.01+0.45 12.83+0.34 3.56+0.49 3.9+0.19 3.7+0.31 

Exp 2 1.0710.17 0.7810.36 10.37+0.47 2.67+0.59 4.7+1.09 2.52+0.49 

IL-4 (ng/ml) 

CD25+ 
+a-CD3 

CD25-
+a-CD3 

CD25+ 
+a-CD3+ 
APC 

CD25-
+aCD3+ 
APC 

CD25+ 
+APC+OVA 

CD25-
+APC+OVA 

Exp 1 0.54+0.12 0.35+0.03 0.24±0.076 0.510±0.06 0.940+0.02 0.443+0.26 

Exp 2 0.46±0.11 0.29±0.02 0.16+0.06 0.44+0.07 0.76±0.04 0.31±0.22 

IL-5 (ng/ml) 

CD25+ 
+a-CD3 

CD25-
+0C-CD3 

CD25+ 
+a-CD3+ 
APC 

CD25-
+(xCD3+ 
APC 

CD25+ 
+APC+OVA 

CD25-
+APC+OVA 

Exp 1 2.24+0.167 0.367+0.21 42.33±1.2 2.42+0.49 2.33±0.136 6.45+0.37 

Exp 2 1.78+0.074 0.337±0.17 38.3313.5 1.78+0.09 2.03+0.09 4.96+0.46 
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Table 8.3.2. Functional properties of unpolarised CD4+CD25+ regulatory T cells was 
assessed in vitro: the proliferative response of DOl 1.10 T- cells, in the 
presence of different numbers of CD4+CD25+ T- ceUs, to immobilized 
a-CD3 was measured by the level of incorporation. Data represent 
means ± SEM, attained in 2 independent experiments. Number of mice 
used per experiment was 12. 

CD25+T-cells 0 1562 3125 6250 12500 25000 50000 
Exp 1 
CPMXIO^) 

36.25± 
1.4 

21.97±1.4 2135+ 
3.8 

14.3±1.0 14.55± 
1.05 

5.75+0.65 2.73+0.32 

Exp 2 
CPMXIO^) 

28.21+ 
4.12 

22.57+0.99 20.47+ 
1.0 

12.90+1.6 11.10± 
1.4 

7.37+0.82 3.9+0.55 
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Table 10.3.2. An assessment of cytokine (IFN-y, IL-4, and IL-5) production by 
polarised T- cells. Data represent means ±SEM, attained 
in 2 independent experiments. Number of mice used per experiment 
was 14. 

IFN-y (ng/ml) 

CD25+ 
+KJ1-26 

CD25-
+ KJ1-26 

Unseparated 
+(xCD3 

CD25+ 
+ctCD3 

CD25-
+ctCD3 

Exp 1 79.67±3.18 1.56+0.60 6.42+0.87 88.0+5.77 3.69±0.37 

Exp 2 66.23+4.48 1.98+0.49 3.22+0.49 76.89+3.31 2.13+0.64 

IL-4 (ng/ml) 

CD25+ 
+KJ1-26 

CD25-
+ KJ1-26 

Unseparated 
+aCD3 

CD25+ 
+aCD3 

CD25-
+aCD3 

Exp 1 9.51+1.03 22.33±2.96 947.33+ 
22.85 

596.67± 
6.67 

774.33± 
45.63 

Exp 2 7.047+0.95 16.51+2.16 811.59+ 
25J5 

499.26+ 
2.65 

686.90+ 
64.13 

IL-5 (ng/ml) 

CD25+ 
+KJ1-26 

CD25-
+ KJ1-26 

Unseparated 
+aCD3 

CD25+ 
+aCD3 

CD25-
+aCD3 

Exp 1 1.89+0.28 2.29+0.097 37.33+1.76 3.64±1.91 7.15+0.28 

Exp 2 1.53+0.69 1.42+0.30 29.03+1.79 3.8±1.4 5.47+0.56 
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Table 10.3.5. An assessment of cytokine production by polarised Th2 cells in the 
presence of Tr cells (Tr cells were polarised in Th2 favouring culture 
condition, either in IL-2 or IL-2+IL-4). Data represent means ±SEM, 
attained in 2 independent experiments. Number of mice used per 
experiment was 12. 

IL-4 (ng/ml) 

Th2 Th2+CD25+(IL-2) Th2+CD25+(IL-2+ 
IL-4) 

Exp 1 143.0+3.22 172.33+3.76 39.33±8.45 

Exp 2 95.7+5.69 125.57+20.32 27.19+8.7 

IL-5 (ng/ml) 

Th2 Th2+CD25+(IL-2) Th2+CD25+(IL-2+ 
IL-4) 

Exp 1 7.0+1.0 8.67+1.2 7.0+1.0 

Exp 2 6.54±0.49 7.32±0.75 5.98+1.28 
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Table 11.3.1. Functional properties of CD4+CD25+ Regulatory T cells was assessed 
in vrvo: the level of eosinophilia in the bronchoalveolar lavage was 
measured by EPO assay at day 5. Data represent means ± SEM, attained 
in 3 independent experiments. Number of mice used in each group per 
experiment was 6. 

Control 
(ng/ml) 

Total (ng/ml) CD25- (ng/ml) CD25- +Tr 
(ng/ml) 

Exp 1 0.410+0.116 6.8+0.513 1.73+0.38 2.10+0.44 

Exp 2 0.36+0.21 5.2+1.51 1.28+0.33 1.62+0.24 

Exp 3 0.58±0.15 4.94+1.5 1.39±0.48 1.46+0.31 
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Table 11.3.2. Functional properties of CD4+CD25+ Regulatory T cells was assessed 
in vivo: the level of eosinophilia in the bronchoalveolar lavage was 
measured by EPO assay at day 7. Data represent means ± SEM, attained 
in 3 independent experiments. Number of mice used in each group per 
experiment was 6. 

Control (ng/ml) Total (ng/ml) CD25- (ng/ml) 
Exp 1 0.353+0.087 6.8+0.74 16.03+1.56 

Exp 2 0.383±0.034 5.2±0.98 14.2±1.05 

Exp 3 0.29+0.023 4.82+0.52 15.40+0.814 

Table 11.3.3. The number of eosinophils in the bronchoalveolar lavage was counted at 
day 7. Data represent means ±SEM, attained in 3 independent 
experiments. Number of mice used in each group per experiment was 6. 

Control Total CD25-
Exp 1 57000+6700 750000+110000 1600000+152000 

Exp 2 48000+5340 630000+90000 1400000+132000 

Exp 3 51000+5120 690000+100000 1500000+142000 
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