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by Yanying Li

This thesis presents a study of the use of GPS equipped probe vehicle to collect traffic data on a
motorway network. The performance of the GPS information in journey time estimation has been
studied by comparing the results against video camera data and the various factors affecting estimation
accuracy have been discussed. By discontinuing the use of Selective Availability, one of the main error
sources of GPS, current positioning accuracy without Differential GPS is sufficient for journey time

estimation.

Two types of GPS equipped probe vehicles, active and passive, have been studied. A passive probe
vehicle was considered to provide only link journey time and a minimum number of probe vehicles is
required for reliable estimation. This research has studied the distribution of individual journey times
and calculated the sample size of probe vehicles required in different traffic conditions. The sample size
has shown to be generally stable for the same link, but may decrease in heavier traffic. The use of real-
time estimates of journey time by probe vehicles has been studied for incident detection and journey
time prediction. Link journey times at current time intervals and the differences in journey times
between two adjacent time intervals have been shown to be bivariate-normally distributed in incident-
free traffic. Outliers of the distribution were considered to be observed in incident traffic. A bivariate
model has been developed for incident detection and a satisfactory detection and false alarm rates have
been achieved. Journey times were predicted based on current observations and historic data for incident

and incident-free conditions.

An active probe vehicle was found to be able to determine vehicle position and speed at 1 Hz frequency
over an entire journey. By analysing the speed profile of probe vehicles, journey times can be estimated
from fewer probe vehicles than normally required. In this research, a fuzzy model was developed to
analysis speed profiles, and journey time could be estimated using a single probe vehicle. Satisfactory
estimates were obtained in both non-incident and incident conditions. Combinations of average speed

and deceleration rates were used for incident detection.
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Introduction

Chapter One

Introduction

1.1 Background

Motorways were originally conceived and designed to provide continuous, free-flow,
high-speed movement of traffic on limited-access facilities. Initially, little
consideration was given to providing for the needs of traffic management and control
systems to maintain a high level of mobility on these facilities. However, as traffic
continued to grow, motorways became more congested. Today, it is recognised that the
previous approach of constructing more motorway lane-miles to relieve congestion is
often politically and socially unacceptable and economically infeasible (Carvell et al.,
1997). Motorway management systems are a primary means of making the best
possible use of the existing motorway network. Motorway management systems make
use of control strategies, and operational activities such as information dissemination
and incident management to reduce the occurrence of congestion and lessen its

duration and extent.

In a motorway management system, a sound and timely database is key to performing
management functions. such as measuring traffic conditions and making control
decisions. Many technologies are available for collecting traffic data. Although
inductive loop detectors are currently used most frequently, other technologies are
beginning to replace loop detectors in many applications (Nelson, 2002). Table 1.1
provides summaries of the characteristics for some embedded and non-intrusive
detectors. The cost estimation is mainly based on the Freeway Management Handbook
(Carvell et al., 1997). However, because of the decreasing cost of wireless
communication in the last few years, the cost estimation for Automatic Vehicle

Location (AVL) is according to the PRELUDE project (Kroes et al., 1999).
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Disadvantages of each detector based on current techniques and market penetration

have been summarised by Suennen (2000) (Table 1.1).

Table 1.1 Summary of traffic detectors

Detector Type Detector Estimated Annual Operation | Main Disadvantages
and Maintenance cost
Embedded Inductive £150-£200 per station Installation and maintenance
Loop require lane closure
Non-intrusive Microwave £150-£200 per station May lock on to the stronger
Radar signal (e.g. large truck)
Infrared £150-£200 per station Operation affected by
precipitation (e.g. rain, fog)
Ultrasonic £150-£200 per station Performance affected by
environmental conditions
(e.g. temperature, humidity)
Acoustic £150-£200 per station High level of special

maintenance capacity 1s

required

Performance affected by

Video Imaging | £350 per station

weather and light

Probe Vehicles | Automatic £350 per station Generally rely on automatic
Vehl(.:Ie _ toll collection systems
Identification
Global £150-£200 per vehicle Insufficient sample size in
Positioning the traffic stream
System

It can be found from Table 1.1 that Global Positioning System (GPS) equipped probe
vehicles have the advantages of being cost effective and are not limited to specific data
collection sites over other traffic detectors. The primary disadvantage of GPS equipped
probe vehicles is the limited number of vehicles equipped with the device. A statistic in
2000 has shown GPS device prices have fallen by about 15 to 20 per cent a year
(Barnes 2000). The decreasing cost has brought a continued growth of the global GPS
market. As GPS locations become more commonplace in vehicles, the ability of GPS

tracking to collect vehicle roadway data will continue to increase.

b
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1.2 Objectives

This research aims at journey time estimation and incident detection using GPS-

equipped probe vehicles. It has had the following objectives:

e Link journey time estimation: to calculate motorway link journey time from vehicle
location data at various GPS sampling frequencies; to evaluate estimation accuracy
and analyse factors which have a potential impact on accuracy.

e Sample size determination: to study the journey time distribution of individual
vehicles under different traffic conditions; to determine the required minimum
number of probe vehicles using statistical sampling theory.

e Incident detection: to develop a model using measures of probe vehicles for
motorway incident detection; to evaluate the model using field incident data.

e Journey time prediction: to develop a model for predicting motorway link travel
times under non-incident traffic condition at different prediction intervals; to

develop a model for predicting duration of incident.

1.3 Approach

This research starts with a review of current applications of probe vehicles and the
existing technologies of location and communication used with probe vehicles. In
application, there are two types of vehicle techniques used in collecting traffic data.
Active probe vehicles, named as test vehicle in the travel time data collection handbook
(Turner et al., 1998), are specially equipped for traffic data collection purpose, whilst

passive probe vehicles have the location and communication equipment installed for

other purposes, e.g. navigation.

Although both active and passive probe vehicles have been studied in this research, the
primary focus has been on passive probe vehicles. In passive probe vehicle research,
the sample size of probe vehicles is a key issue. By analysing the journey time
distribution of individual vehicles, the sample size in different traffic conditions has
been obtained using statistical sampling principles. Since an incident can cause
significant delays in journey times, an incident detection model is developed based on

journey time estimates using required number of probe vehicles. Because there are not

©I
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enough probe vehicles in the traffic stream, journey time prediction is required over a
short time interval when there is insufficient sample of probe vehicles. In research on
active probe vehicle, GPS data is used to build detailed speed profiles. Therefore, more
data in addition to journey time can be obtained. By analysing the speed profiles,
journey time might be estimated by relatively fewer GPS equipped probe vehicles.
Since an incident may influence some features of speed profiles, analyses of speed
profiles are also applied to incident detection. The structure of the thesis is illustrated in

Figure 1.1.

Literature Fevisw
(Chapter 2

v

Data Collection
(Chapter )

Passive Probe Vehicle ; Active Prohe Vehicle

. .

Tourney Time Estimation Speed Profile Analysis
Chapter ) (Hection §.2)
Hample Hize Determination Toumew Time Estimation
(Chapter ) (Hection 8.5
Incident Detection Incident Detection
(Chapter 6) (Bection 2.4

v

Jouarney Time Prediction
(Chapter )

v

Dizcussion ad Conclusions
(Chapter O

Figure 1.1 Structure of the thesis
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Chapter Two

GPS Equipped Probe Vehicles

2.1 GPS technology

2.1.1 Overview of GPS

GPS is a US owned space-based system of satellites providing 24 hour, all weather 3D
position, velocity and time all over the world. The full operational capacity of GPS was
achieved in 1995 with 24 satellites uniformly distributed in six orbital planes, at an
altitude of approximately 20,200km. This normal operational configuration ensures
that at least four satellites are visible at any time and from any point on the earth’s
surface. Note that with the current constellation (i.e. 27 satellites and rising) at least
seven satellites are visible (Ochieng and Sauer, 2002). Although civilians can access
GPS signals free, the performance of GPS had in the past been limited by the artificial
degradation of the signal through the process of Selective Availability (SA). The U.S.
government switched off SA on the first May 2000 to encourage the acceptance and
applications of GPS. This improves the positioning accuracy of GPS for civilian users
from within 100 meters to within 20 meters for 95% of the time (US DoC, 2000). In

many cases, real-world users find the accuracy to be even better.

GPS satellites transmit specially coded signals that can be decoded by a GPS receiver
to determine time, position and velocity of the receiver. This is one-way broadcast
system, so receivers do not transmit any signals back to the satellites. Since it is a
passive system, GPS can support an unlimited number of users. Positioning
measurement of GPS is based on the principle of time of arrival ranging. The time
interval taken for a signal transmitted from a satellite at a known location to reach a
GPS receiver is multiplied by the speed of the signals to obtain distance between the
satellite and the receiver. There are three unknowns (X, Y, Z) to determine position of

an object. Since the receiver clock is not so precise as satellite clock, the receiver clock

wn
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bias is considered as the fourth unknown. In a GPS receiver, signals from a minimum

of four satellites are required to solve the four unknowns (Hofmann-Wellenhof et al.,

1993).

In addition to positioning data, GPS also provides speed measurement. There are two
methods to estimate speed by GPS. The first is to derive speed from differences in
position. The second method is to use the Doppler effect. The Doppler shift in the
frequency measures the relative velocity between the receiver and the satellite along
the line between them. Velocity measurement using the Doppler effect is almost
instantaneous and essentially independent of positioning data. Most GPS receivers
products provide output of the Doppler speed and the measurement accuracy is 0.1m/s

with 95% confidence, after the termination of SA (Garmin, 2003).

Although GPS has many advantages, it suffers from several weaknesses. Civilian GPS

receivers have potential position errors primarily due to some of the following sources:

e Jonosphere and troposphere delays — The satellite signal slows as it passes through
the atmosphere;

e Signal multi-path — Occurs when the GPS signal is reflected off objects such as
tall building or large rock surface before it reaches the receiver. This increases the
journey time of the signal, thereby causing errors;

e Receiver noise;

e QOrbital errors.

2.1.2 Applications in transportation

Since positioning plays an essential role in transportation, GPS can be an effective tool
in the transportation industry. On-board navigation may be the most visible use of GPS
technology in transportation, and GPS based Automatic Vehicle Location (AVL) is
also applied to a variety of areas, e.g. commercial fleet monitoring, public transport
management and emergency response, etc. AVL combines a GPS receiver with an
outbound communication link to provide real-time position data for persons and
vehicles. The communication link can be accomplished through cellular phone
networks, terrestrial radio or through a separate satellite communication network.

Because AVL provides real-time location and status of vehicles, dispatchers can make
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informed decisions. In addition, the real-time map display of AVL can allow
dispatchers to help guide drivers through unfamiliar areas to reach their destinations
faster, vital in an emergency response. With support for schedule adherence and
delivery time prediction, GPS-based AVL can improve public transportation
management and commercial fleet operations (Shrestha, 2003). A new approach for
electronic road pricing (ERP) using GPS has been proposed. Different charges could be
set depending on which roads the driver uses and the time of day. It could cost more to

use congested routes and during peak conditions (Catling, 2000; Srinivasan et al.

2002).

2.2 Probe vehicle

The floating-car has been established as a method of collecting journey time data on
roads since the late 1920s. Traditionally, this technique has involved the use of a
vehicle within which an observer (passenger) records cumulative journey time at
predefined checkpoints along a travel route. This information is then converted to
journey time, speed, and delay for each segment along the survey route. The driver
attempts to travel at the speed of the traffic stream and maintain the number of
overtaking vehicles the same as those overtaken. In Drew (1968), the floating-car
method was applied to evaluate level of service (LOS) by measuring acceleration
noise. The rapid development of AVL and automatic vehicle identification (AVI)
technologies has enabled continuous automatic traffic data collection. Faghri et al.
(1999) compared the accuracy of journey time data collected by a GPS receiver with
data collected manually. The conclusion proved that GPS was a more efficient and
more accurate means of collecting data than manual records. When a vehicle is
instrumented specially for traffic data collection, it is referred to as an “active” probe
vehicle. Conversely, “passive” probe vehicles are vehicles that are already in the traffic

stream for purposes other than data collection.

To provide real-time traffic data, both active and passive vehicles should maintain
frequent communications with a central computer which tracks the vehicles along
travelled route (Kroes et al., 1999). In this research, a probe vehicle is defined as “a

vehicle, which is equipped with positioning and wireless communication systems
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providing real-time traffic data by running on road network.” Definitions of active and

passive probe vehicles are summarised in the following sections with characteristics.

2.2.1 Active probe vehicle

An active probe vehicle is defined as a specially equipped vehicle for traffic data
collection that actively gathers information through the monitoring of vehicle
attributes. Currently, GPS is the common positioning technique used in active probe
vehicles, as it provides accurate and detailed data over wide areas with relatively low
installation and operation costs. In most travel time studies involving active probe
vehicles, only one vehicle is used to characterise traffic flow along a pre-defined route.
Therefore, errors can occur from human or equipment failures and adequate quality
control is needed. In addition, detailed data collection (e.g. every second) can cause

data storage difficulties (Clark and McKimm, 2003).

2.2.2 Passive probe vehicle

A passive probe vehicle is one where the location and communication equipment has
been installed for another purpose, e.g. navigation. A passive probe vehicle provides
journey time only between two points rather than detailed descriptions of vehicle
movements over a journey. Passive probe vehicles allow continuous data collection
with minimal human interaction. If the infrastructure is permanently installed, data are

collected as long as the probe vehicles continue to travel through the system.

Probe vehicles can be buses, taxis, commercial vehicles or private cars. However,
journey time estimates from some vehicles may be biased, for example, heavy transit
vehicles may take much longer to travel over a road segment than an average value, if
the traffic stream consists mainly of passenger cars. Buses may have priority by using
bus lanes. The use of passive probe vehicles is increasing rapidly, for example, in
Singapore, more than 10,000 taxis from major taxi companies are now used as probe
vehicles for link journey time and speed estimation. The experience from the system 1is
that unloaded taxis usually tend to cruise at a lower speed when looking for passengers
(Xie et al., 2001). Hall et al (1999) evaluated the OCTA (Orange County Transit
Authority) Transit Probe Project in California. The OCTA Transit Probe Project used
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tracking data from GPS equipped buses for multiple purposes including bus schedule
adherence and information on roadway traffic. One of the research issues was whether
the tracking data could be effectively integrated into existing traffic management
systems. The study found significant problems with the use of buses as probes
primarily due to differences in the travel behaviour of buses and cars. Turner et al.
(1998) indicated that a major problem of using private cars as probe vehicles relates to

privacy issues, as in probe vehicle systems, motorists are monitored throughout their

entire journey.

2.3 Applications of probe vehicle

2.3.1 Data collection techniques

Probe vehicles can be instrumented with different types of electronic equipment, but a
common feature is the frequent reporting of vehicle location. Turner et al. (1998)
provided a comparison of five probe vehicle data collection techniques:

e Beacon-based Automatic Vehicle Location (AVL)

e Automatic Vehicle Identification (AVI)

e (Ground-based radio navigation

e GPS

e Cellular phone positioning

Beacon-based AVL systems use several beacons at known locations along the route.
Beacon-based AVL systems are operated with bus systems in London and
Southampton (Hounsell et al., 2000). In AVI systems, probe vehicles are equipped with
electronic tags, which communicate with roadside transceivers to uniquely identify
vehicles and collect journey times between transceivers. Both beacon-based AVL and
AVI transmit information from a probe vehicle at fixed points to roadside devices,
whilst the other techniques can locate a probe vehicle anywhere along a route and
transmit its position and characteristics at a regular frequency. Ground-based radio
navigation systems, such as LORAN C, Datatrak, and Omega, had been widely used as
main navigation means in the past. However, due to vulnerabilities in cost and

accuracy, they have been replaced by GPS completely, although they are still referred
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in recent literature as available positioning techniques (Shrestha, 2003). Compared with
other techniques, GPS has many strong points, e.g. high accuracy, good reliability and
low cost of device. However, GPS provides only a positioning function and requires an
additional communication system for transmitting real-time information. Many
communication systems can be used in GPS equipped probe vehicles and the cellular
phone is considered to be complementary to GPS. Cellular phones can also be used
independently for both positioning and reporting. On GSM network, currently sub-50
metre accuracy has been delivered. For the third generation network (3G), an accuracy
of sub-20 meters is expected, comparable with GPS (Bartlett and Morris, 2002). In
Section 2.3.2, several previous research and projects involved probe vehicles using
beacon-based AVL, AVI and cellular phone are briefly described and applications of

GPS equipped probe vehicles are discussed later in the section.

Table 2.1 Comparison of probe vehicle data collection techniques

Costs
Data Data Data
Technique Capital Installation | Collection | Reduction | Accuracy | Constraints
Beacon density
Beacon-Based High High Low High Low and placement,
AVL no. of probes
No. of probes
AVI High High Low Low High and tag
placement
Ground-Based No. of probes
Radio Low Low Low Low Moderate | and size of
Navigation service area
No. of mobile
Cellular phone High High Low Moderate Low users
GPS Low Low Low Moderate High No. of probes

Source: Turner et al., 1998

2.3.2 Previous experiences

2.3.2.1 Beacon-based Automatic Vehicle Location

The Road Traffic Adviser (RTA) project was based on applications of Dedicated Short
Range Communications (DSRC) beacons, on a demonstration site running the length
of the M25 and M4 motorways between the M23/M25 junction to the south of London,
to Wales in the west (McDonald et. al., 2002). Operating at 5.8G Hz, the DSRC

beacons allowed two-way data transfer between a moving vehicle and a stationary
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beacon. This technology provides location specific information relevant to the road and
direction being driven by the user and collects information about recent past
performance on that road for both road management and driver information purposes.
Over 70 DSRC beacons are deployed along the test site and linked to two network
control centres, one in Wales and one in England. Within the RTA project, vehicles
equipped with on-board units to communicate with beacons played the role of probe
vehicles to measure journey time and speed, and in turn benefited from information
collected by other probe vehicles. Within the RTA project, information has been passed
regarding speed profiles of vehicles between beacons, hence overcoming spatial
‘granularity’ problems. However, there would be a delay in the provision of some types
of information in some cases. For example, data indicating a queue several kilometres
before a beacon may be out of date when it is transmitted, due to the probe vehicle

itself being delayed in traffic (Koelbl et. al., 2002).

As illustrated in Table 2.1, the constraints for systems using beacon-based AVL are
beacon placement and density, as well as sample size of probe vehicles. Through
empirical experiment with the RTA project, Brackstone et. al (2001) found that at least
0.25% of the vehicle population using that road would need to be equipped to ensure
that representative speed measurements are available. Implementing a system with
beacon spacing below typical junction to junction distances may have minimal impact

on our ability to formulate an accurate picture of the average speeds on such links.

2.3.2.2 Automatic Vehicle Identification

Many toll agencies in the U. S. and Europe (Nelson, 2003) are using automatic vehicle
identification (AVI) technology for electronic toll collection (ETC). To validate ETC,
each vehicle’s presence not only has to be detected (identified), but also must be
recognised as unique. Because an AVI-equipped probe vehicle is uniquely identified,
its journey time between two roadside readers can be calculated. Some existing ETC
agencies have begun to use AVI technology for journey time data collection in addition
to toll processing. Some ETC systems experience between 25 percent to 100 percent of
all tollway vehicles equipped with ETC on-board units. This provides a large sample to

collect representative journey time data.

11
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Houston was the first city to apply AVI technology for monitoring traffic condition
(Houston TranStar, 2003). The Texas Department of Transportation has helped to
develop the TranStar system in Houston which operates an AVI system in order to
monitor traffic conditions, detect incidents, distribute travel information, and archive
journey time data. Roadside reader units are being placed at 1.8 to 8.0 kilometre
intervals along all major freeways in the Houston area, including over 483 kilometres
of highway. Several toll roads in the area have automated toll booths, encouraging the
acquisition of thousands of AVI transponders by motorists in the area. Over 200,000

ETC equipped vehicles have been distributed in the area (Turner et al., 1998).

In New York and New Jersey, the TRANSCOM agency operates the TRANSMIT
system to monitor traffic conditions with AVI technology. Fifteen roadside readers
have been deployed at 0.8 to 3.7 kilometres spacing on 29km of highway in the area

(Chien and Kuchipudi, 2002).

2.3.2.3 Cellular phone

The mobile phone is the most popular public communication means today. Cellular
phones have been used to report journey time manually (Balke et al, 1’996), in which
volunteer drivers call a central facility when they pass checkpoints along the route.
Location based services in mobile networks is widely considered to be a growing
opportunity. In the USA the Federal Communication Commission (FCC) has mandated
the introduction of technology that will enable a caller’s position to be pinpointed to
better than 100m 67% of the time and better than 300m 95% of the time when an
emergency call is made (Feng and Law, 2002). Europe has started looking at
requirements for an equivalent system to pinpoint the location of emergency calls from
mobile phones. New commercial applications are also emerging in which location

provides an important ingredient to make the service more attractive to users.

Cellular phone positioning is a kind of radio positioning that uses the propagation
characters of radio waves. Recently, several cellular phone location technologies have
been developed. The commonly used cellular phone positioning methods are cell
identification, signal level, angle of arrival, time of arrival, distance measurement, and

phase measurement. Some of these methods have been implemented in trial systems
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and some commercial products have already been introduced. However, no method

that is superior to all other has been found yet (VTT, 2003).

Cambridge Positioning Systems Ltd (CPS) in the UK now offers sub-100m
performance of mobile phone positioning on GSM networks with industry plan for
sub-50m next year. On a mobile network, the positioning accuracy depends on the
number of Base Stations (BS) are used in a location calculation. The more BS that can
be measured the better the results. Therefore, better accuracy is achieved in urban areas
with more BS than in rural areas. CPS tested that 90% of location estimates are within
100m from the true location in the city centre and within 200m in a suburban area
(Bartlett and Morris, 2002). Ygnace, Drane and Yim (2000) estimated that with 80
millions cellular phones subscribers in the U. S., the percentage of cars travelling on
major roads and motorway corridors with a phone switched in the “on” was high
enough to give a good sample of the travelling population. However with current
technologies and infrastructure, simulation results (Yim and Cayford, 2002) found that
in probe vehicle application, current accuracy of cellular phone positioning could

provide journey time information for only 68% of freeway segments.

Current mobile phone location technologies have been anticipated to achieve better
accuracy on third-generation networks (3G). 3G networks are already a reality in many
parts of the world. Japan launched the world’s first commercial 3G networks in 2001,
and similar networks are now operating commercially in Austria, Italy, Sweden and the
UK with more launches anticipated during 2003-2004 (Dunne, 2003). CPS announced
that CPS has developed high-accuracy location technology for 3G networks, which is
based on principle of observed time of arrival and promises an accuracy of 10-20m,
comparable with GPS. However, the accuracy will be only achieved in urban areas

with sufficient Base Stations.

Despite the low accuracy of cellular positioning, cellular phone equipped probe vehicle
systems have advantages, such as low establishment costs, two-way communication
link and great number of users. Yim and Cayford (2002) suggested that widely
deploying GPS in cellular phones may make probe vehicle methods more attractive and
realistic. As discussed above, mobile phone solution can provide good accuracy in city

centres bur worse accuracy in rural areas, while GPS has better performance in rural
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areas than in cities. Hybrid solution using the complementary nature of both
approaches to overcome situational weakness experienced by either mobile phone
network or GPS working alone has been developed. Benefits of the hybrid solution
(Feng and Law, 2002) include maximum availability, increased sensitivities and
reduced handset cost and complexity. The hybrid solution is considered to be widely
installed in future 3G handsets. Therefore, vehicles carrying 3G mobile phones will be

potential probe vehicles to provide traffic information (QCT, 2003).

2.3.2.4 GPS equipped probe vehicle

Many researches have used active GPS equipped probe vehicles for journey time
studies (Quiroge and Bullock, 1998) and measuring traffic system performance (D’Este
et al, 1999). In such research, only one probe vehicle was involved, collecting
positioning and speed data at short intervals, e.g. 1-s. The active probe vehicle method
1s based on the assumption that a probe vehicle represents a good average of the traffic
stream. Average speed, running time, average speed, variation of speed have been
calculated to measure traffic system performance and congestion. By repeatedly
running the probe vehicle along the same route, journey time statistics for different

time of day and different day were obtained (Clark and McKimm, 2003).

The earliest large scale application of probe vehicles was the ADVANCE (Advanced
Driver and Vehicle Advisory Navigation ConcEpt) project in the northwest suburb of
Chicago, Illinois (Sen et al., 1997). The main aim of ADVANCE system was to
provide dynamic route guidance to vehicles in study areas. Vehicles involved were
equipped with GPS-based navigation system and radio frequency modem for
transmitting and receiving message. With two-way communication equipment, in-
vehicle navigation systems could be used by the traffic information centre to locate
each equipped vehicle across the network. The equipped vehicles were therefore used
as “probes” to collect journey time information which was fused with inductive loop
data to provide real-time estimates. The fused data has been proven to be more efficient
in journey time estimation and prediction, as well as incident detection. Although probe
vehicles have some advantages over other technologies, probe vehicles provide only
speed and journey time, which may be not sufficient for traffic information systems.
Data fusion that combines information from multiple technologies, including fixed

sensors and probe vehicles may be a good solution to meet all requirements of various
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users. Probe vehicle data can be fused with existing detectors, such as MIDAS loops
spaced at 500m on the M1 between junction 9 and 19 (McDonald et al., 2000). The

data fusion will provide more sound traffic information more than any source working

alone.

The PRELUDE project (Kroes et al., 1999) in Rotterdam in 1997-1999 aimed to pilot
the use of floating car data, collected using GPS device to provide historical and real-
time information on the Dutch road network. Differential GPS devices on each probe
vehicle determined location and speed every 10 seconds and the resulting information
was stored together with time-stamp in an on-board computer. GSM
telecommunication technology was used to transmit accumulated series of recorded
time and location data to a central computer every five minutes. This information was
then used to update a demonstration system on a central computer which displayed

journey time in almost real-time.

In the UK, ITIS Holdings Plc has implemented the largest Floating Vehicle Data
(FVD) system in the world (Cowan and Gates, 2002) to provide journey time statistics
and real time traffic management information. The FVD system has been collecting
and storing traffic data since February 2000 with initially only a limited number of
probe vehicles on the network. Now the system has in excess of 30,000 probe vehicles
of various characteristics contributing to the gathering of data on live and historical
traffic conditions. Probe vehicles equipped with GPS and GSM technology regularly
send data on their current position and speed. The Floating Vehicles include
commercial trucks, National Express coaches and passenger cars. The information is
collected and centrally analysed, then transmitted to subscribers of the services in the

form of up-to-date traffic information.

The ITIS FVD system is the UK’s first commercial application of the probe vehicle
concept. Commercial provision of the data gathered by FVD commenced during 2002
and is now providing an ever-growing source of revenue with new customers and uses
of FVD being identified (Simmons et al., 2002). FVD captures data for motorways,
urban motorways, A roads and some B roads of the UK road network. These data are
aggregated into “road timetable” and “congestion schedule” by road and day/time

category. The FVD system identifies recurring congestion and uses these patterns to
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predict the future, thus enhancing route planning and navigation. ITIS FVD system
delivers dynamic traffic content and integrates this with navigation systems. ITIS have
installed Data Collection Units across the entire National Express coaches as part of the
strategy for acquiring FVD. National Express is also able to use this to monitor the
reliability of its services through the use of historical data and to provide better
customer information services. Control operators of National Express can locate the

exact position of coaches and the traffic conditions they are driving in.
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Figure 2.1 The Floating Vehicle Data System
(Source: Cowan and Gates 2002)

2.4 Summary

Probe vehicle has long been considered as an extremely cost effective means of
monitoring journey times when compared with the alternative of installing fixed
detectors. The concept is based on reporting location and speed information from
vehicles travelling the road network to a central information operator. Two types of
vehicle can be used in a ‘probe’ capacity to collect traffic data. There are: specially
equipped vehicle that actively gather information through the monitoring of vehicle
movement (active probe vehicle), and public transport vehicle, goods fleets or general

cars that have a passive role (passive probe vehicle).
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After discontinuing the use of Selective Availability (SA), GPS provides accurate
position and speed measurement. Currently, active probe vehicle uses GPS to collect
both position and speed data while passive probe vehicle can use many technologies,
e.g. automatic vehicle identification (AVI), beacon-based automatic vehicle location
(AVL), cellular phone positioning and GPS technology. Although each technology has
its own advantages and disadvantages, GPS is superior to the others with low
installation and operation costs, good accuracy and unlimited coverage area. In
addition, GPS provides detailed data continuously along the entire route. Since GPS is
becoming increasing available as a consumer product for in vehicle navigation and
monitoring, large samples of passive probe vehicles can be obtained. Large scale
applications of GPS equipped probe vehicles in the ADVANCE project have shown
encouraging results for journey time estimation and incident detection. A number of
commercial services based on GPS/GSM equipped probe vehicles are already
operating in the UK. The ITIS Holding Plc uses in excess of 30,000 commercial and
other vehicles as probes for the gathering of live and historical traffic data for UK’s

major roads and motorway corridors.

This PhD research focuses on using GPS-equipped probe vehicles for journey time
estimation and incident detection. Both active and passive probe vehicles are studied
with main attention on passive probe vehicle. Among following chapters, Chapter 4, 5
and 6 are based on passive probe vehicle and Chapter 7 studies active probe vehicle.
Journey time prediction discussed in Chapter 8 is based on the two types of probe
vehicles. Since the main part of this research focuses on passive probe vehicles, in the
following discussions, probe vehicles denote only passive probe vehicles while active

probe vehicles will be specially referred.
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Chapter Three

Data Collection

3.1 Introduction

Data from motorways have been used in this research: the M27 between Southampton
and Portsmouth, and the M3 between Southampton and Winchester. Details of the
survey sites are given in the following Section 3.2. Three different types of data were
used: loop data, video camera data, and probe vehicle data. Loops and video cameras
were installed by the Highways Agency (HA) for daily traffic control and
management. Loops provided traffic volume data such as vehicle count per minute.
Video cameras enabled journey times of individual vehicles to be obtained using
Automatic Number Plate Recognition (ANPR) techniques. GPS equipped vehicles
were driven through the survey sites as probe vehicles to measure journey times. The
three data sources have been used to study journey time calculation methods, assess
measurement accuracy, and determine sample size requirements, etc. In addition,
incident reports were provided by the HA and the Hampshire ROMANSE (Road
MANagement System for Europe) Office. Details of the incident data are described in

Chapter 6 (Incident Detection).

3.2 Survey site

In 1999, a 50-camera real-time journey time measurement system was supplied by
Initial Systems Ltd for use by the HA. This system is being used as part of the Ramp
Metering Trial conducted on the M3 (Junction 11 to 14) and M27 (Junction 2 to 11)
motorways in the UK (Adaway, 2001). Ramp metering controls the rate at which
traffic joins a motorway from the slip roads according to the traffic flow on both slip

road and the main carriageway. Data gathered by the loops and cameras have been

18



Data Collection

used to assess the operational performance of the ramp metering system (Gould et al.,
2002). The loops provided traffic volume data for 24 hours per day, while the cameras
provided individual journey times for the morning peak hours of 6:00-9:30 and the
evening peak hours of 15:00-19:30, on working days throughout a year. Seven links
are covered by ANPR cameras as shown in Figure 3.1. The seven links have different
lengths and geometric characteristics as well as different levels of traffic flow,
enabling probe vehicle applications to be compared for different links. The survey site
map with locations of video cameras is shown in Figure 3.1, and the length and

average speed of each link are shown in Table 3.1.

Table 3.1 Link length and average speed

AM Peak Hour PM Peak Hour

Link Number Length (km) Average Speed (km/h) | Average Speed (km/h)
o 1.44 96.5 N 88.9

2 2.21 75.3 89.5

3 4.51 67.2 79.3

4 3.40 94.1 95.6

5 3.56 73.5 94.9

6 3.31 97.5 99.9

7 3.72 93.7 100.7

3.3 Video camera data

3.3.1 ANPR technology

Automatic Number Plate Recognition or ANPR, also known as Automatic License
Plate Recognition or (ALPR), has been available for a number of years. Recent
advances in image processing techniques combined with the advent of low cost high
performance computing devices have led to the development of several journey time
measurement systems (JTMS). Typical systems are in UK motorway networks and
ring road around Helsinki in Finland (Ellis, 2002; Frith and Pearce, 2002; Eloranta et
al., 2000).
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ANPR is an image processing task, which incorporates the following processes (Bunn
and Barrett, 1997):

® detection of a vehicle in the scene

e detection of the number plate on the vehicle

e recognition of the individual characters within the plate area

s checking rules relating to the number plate format

e reporting result with confidence scores and time.

In a JTMS, video cameras are set at origin and destination locations, and cameras are
located above each lane of traffic in one direction only. Full vehicle registration
numbers are recorded and recognised by ANPR software. If a vehicle is recorded by an
‘origin’ camera, it is checked against corresponding records by ‘destination’ cameras.

If a match is found then the vehicle journey time is recorded in the database.

ANPR cameras cannot capture all passing vehicles for many reasons, such as dirty or
damaged license plates. Severe weather may also affect ANPR performance with snow,
water spray, low sun angles and so forth. Instances of poor capture occur shortly after
the onset of rain. Fast travelling vehicles throw out a curtain of spray, this spray then
obscures the number plate of the following vehicle. Not until the road surface has dried
out sufficiently does capture rate recover. Because of dry weather in summer, data
quality in summer is generally better than in winter. An average recognition rate of
85% to 95% for unobstructed license plates in real conditions is reported in literature,
and it may reach 97% in ideal circumstances (Wiggins, 1999; Bibaritsch and Egeler,
2002). In this research, cameras at a particular site usually recognised about 60% of
license plates by comparing with traffic counts provided by inductive loop detectors.
To collect point-to-point journey time of a vehicle, the vehicle should be captured by
both ‘origin’ and ‘destination’ cameras. Assume recognition rate of each camera
independent, capture rate of vehicle journey times was about 36% (60%x60%).
However, a certain group of vehicles with dirty or non-standard license plates was
missed by all cameras. The proportion of such vehicles was about 5%, that slightly

increased the capture rate of vehicle journey times.
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ANPR data for the eighteen weeks in 2001 and 2002 listed in Table 3.2, were chosen

for use in this study. Average capture rate of vehicle journey times was about 40%, i.e.

journey times of about 40% of all vehicles on a link were recorded. The minimum

capture rate of vehicle journey times used in this research was 23%.

Journey times logged by ANPR cameras may include outliers, and the outlier data have

been checked and removed where appropriate. Outlier detection and cleaning is dealt

with in Section 3.5,

Table 3.2 Video camera data weeks

Year 2001 Year 2002
21-27May 21-27Jan )
04-10June 28Jan-03Feb
11-17June 05-11Aug
18-24June 19-25Aug
25June-01July 26Aug-01Sept
02-08July 02-08Sept
09-15July 16-22Sept
16-22July 30Sept-060ct
23-29]July 07-130ct
3.3.2 ANPR data component

An example of a subset of the ANPR data is shown in Table 3.3 (the license plates

have been modified to preserve anonymity), and the format can be summarised as

follows:

e License plate

e Location of start cameras
e [ocation of end cameras
e Journey time

e Date

e Time at start cameras
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Table 3.3 An example of individual vehicle journey time data

VRN Location 1 Location 2 Journey Time | Date Time
(hh:mm:ss)

M212LJT M271J3 8/3A | M27J3/J4 14/0A | 00:02:34 19/06/01 | 08:07:05
R838GGH M27J3 8/3A } M27 J3/34 14/0A | 00:02:17 19/06/01 | 08:07:07
L583LVS M27J3 8/3A | M27 J3/]J4 14/0A | 00:14:14 19/06/01 | 08:07:07
D254WDP M271J3 8/3A | M27 13734 14/0A | 00:02:29 19/06/01 | 08:07:10
R932UOR M27 13 8/3A | M27J3/J4 14/0A | 00:02:37 19/06/01 | 08:07:10
PATAIT M271J3 8/3A | M27J3/J4 14/0A | 00:02:22 19/06/01 | 08:07:12
RO976NRW M271J3 8/3A | M27 J3/J4 14/0A | 00:02:36 19/06/01 | 08:07:13
F7441.RR M27 33 8/3A | M27J3/J4 14/0A | 00:02:28 19/06/01 | 08:07:14
K324EWK M271J3 8/3A | M27J3/14 14/0A | 00:02:21 19/06/01 | 08:07:16

Average journey times for a time interval on a link could be calculated from individual
journey times. For example, average journey time on a link for period of 9:00-9:05 is
obtained from the mean of journey times of all captured vehicles that entered the link
from 9:00 to 9:05. In every morning peak hour of 6:00-9:30, using five-minute interval,

there are a total of 42 observations of average journey time, denoted by JT,,
i=12,..,42 , where J7, denotes the average journey time of 6:00-6:05 on a given link,

and J7,, is denotes the average journey time of 9:25-9:30. Average journey time is

therefore considered to be a discrete time-series. For purposes of journey time

prediction and incident detection, time series models are developed for analysis and

forecasting.

3.3.3 ANPR data applications

ANPR data play a very important role in this research. The data are used for many
purposes, including:

1. Providing “real” journey times of probe vehicles.

In this research, GPS-equipped probe vehicles were used to collect journey time data
by travelling on the survey site. When the probe vehicles were running on the site,
registration numbers of the probe vehicles were sometimes recorded in the ANPR
database. The journey time observations by ANPR were compared with journey times

calculated from GPS data to assess accuracy of journey time estimation.
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2. Identifying distribution of individual vehicles’ journey times.

One important issue for probe vehicle applications is sample size, e.g. minimum
number of probe vehicles required for any particular estimate of accuracy. To
determine the minimum number of probe vehicle, it is necessary to study the
distribution of individual journey times. All vehicles on each link during a period can
be considered as the population being surveyed, the vehicles captured by video
cameras therefore can be considered as samples. As introduced in Section 3.3.1, the
minimum capture rate of vehicle journey times used in this study was 23%, i.e. journey
times of at least 23% of all vehicles on a link were recorded by ANPR cameras.
Therefore, a sample size of more than 23% was achieved and the sampling was used to
identify the distributions of wvehicle journey times as well as other statistical

characteristics.

3. Providing average journey time and developing historical database.

Statistically, the larger the sample size, the more likely the sample mean will be an
accurate representation of the mean of the whole data population. Since the capture rate
of ANPR was far beyond potential sample size of probe vehicles, the average journey
times provided by ANPR were considered as “real” average journey times’. The “real”
average journey times were used to analyse impacts of sample size of probe vehicles
and develop historical journey time database. Three weeks’ data were selected to
develop an historical journey time database: 21-25 May 2001, 2-9 Sept. and 16 -22
Sept 2002. This was used for the development of incident detection model and the

prediction of journey time.

4. Providing simulated probe vehicles.

While several vehicles were instrumented and used for data collection, the probe
vehicle database was relatively small. Therefore, a number of individual vehicles
recorded by the cameras were randomly selected to be simulated probe vehicles. Mean
journey times of these selected “probe vehicles” were compared with the “real”
average journey times to study sample size of probe vehicles required and used as input

to the journey time prediction and incident detection models.
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3.4 Loop data

3.4.1 Loop data component and reliability

In this research, loops provided traffic volume data as vehicle count on each lane in one
minute. The traffic volume data were used to study the relationship of required sample
size of probe vehicles and traffic volume. Loop detector is mature technology and the
count accuracy is always within 1 to 2 per cent of relative error compared with manual
counts (Middleton and Parker, 2000). Loops recorded data for 24 hours of day and data
included:

e Date

e Site (loop number)

e Time (I-minute commencing)

e Vehicle count for vehicle length 1

e Vehicle count for vehicle length 2

e Vehicle count for vehicle length 3

e Vehicle count for vehicle length 4

e Total vehicle count

e Average speed for each lane in km/h

e Vehicle count for each lane

e Average occupancy in percent for each lane

e Average headway (tenths of a second) for lane 1

There were records of zero for a number of minutes in the loop data files. Loop data of
zero could be due to no traffic or loop faults. For missing data caused by loop faults,
replacement is required. It is therefore necessary to distinguish between no traffic and
missing data. In this research, since only loops close to a group of ANPR cameras were
used to provide vehicle counts, ANPR data were used to distinguish between no traffic
and no data. For example, loop data was zero on the entrance of link 7, at 7:48, 9" July
2001. At the same time, ANPR cameras recorded 46 vehicles entering the link in the
one minute interval of 7:48-7:49. Therefore, missing data was supposed rather than no
traffic for the whole minute. In the loop data file, the failure rate was very low, less
than 1 %. Missing data can be replaced by estimation from adjacent minutes (Abou-

Rahme et al., 2002).
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However, zero record could also occur when fraffic comes to a halt. Replacement of
such gaps leads to overestimation of traffic volume (McDonald et al., 2000). In this
case, very low speeds should be observed in adjacent minutes, e.g. lower than 10 km/h.
If the average speed at the previous minute is lower than 10 km/h, zero loop data are
considered as traffic stop and no replacement is needed. However, this situation was
not found in the loop data file. Of data collected, very small but non-zero counts

occurred in severe congestion, e.g. 6 vehicles/minute.

3.4.2 Missing data replacement

Missing data can be replaced by estimation from adjacent minutes. Up to three

consecutive missing minutes were found in the loop data files. The missing data were

replaced by the following steps:

® For each loop, look through the data, minute by minute and identify where there are
gaps.

® For each gap, recognise whether the gap is missing data or no traffic.

e [or missing data, see where there is available data: either the previous minute or
the next minute, or both sides. If data are available at one side only, use that data to
replace the minute gap. If data are available at both sides, use the average of the
data either side.

e [fno data is available either side, first replace vehicle counts for the previous cases,
then perform another iteration to see if, once data have been replaced, there are

some data near to the missing minute and fills it.

3.5 Probe vehicle data

3.5.1 Main surveys

Three surveys involving GPS equipped vehicles were conducted on selected links of
the survey site. However, of the three survey databases, only one was specially
collected for this probe vehicle research. The original purposes of the other two surveys

were to study impacts of ramp metering, and the GPS application for automatic car

following.
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Survey 1: Ramp metering survey

To study merging behaviour and impact of ramp metering, a survey was carried out in
a period of two months, from May 21 to July 17, 2001 on the M27 Junction 1. A
combination of instrumented vehicle and camera technology was used to observe the

whole process of merging. For complete details of the survey, the reader should refer to

Zheng (2002).

During the survey period, the TRG instrumented vehicle (IV) was driven by different
drivers from Junction 10 to Junction 12 on the M27, on weekday morning peak hours
from 7 am to 9 am. Equipped with a GPS receiver, the IV was used as a probe vehicle
to collect journey time data. In total, 105 valid observations of journey time on link 7
were obtained. Since the instrumented vehicle was driven by different drivers every

morning, the impact of driver behaviour on journey times can be studied (Brackstone et

al., 2002).

Although the survey provided sufficient journey time data measured by GPS, the
journey times collected do not represent the real traffic conditions. Since the purpose of
the survey was to study merging behaviour, the IV drivers were required to drive the
vehicle on the motorway lane 1 for as long as possible. Therefore, most of the journey

time observations were longer than the average.

Survey 2: Car Following Survey

Automated car following is the core technology for various intelligent transport
systems, e.g. autonomous cruise control and convoy driving. The key parameters
required for automated car following are the separation and relative speeds of
successive vehicles. Most current automated car following systems rely on front facing
radar systems. TRG has studied the potential of using GPS in car following system.
During 15:30-17:30 on the 26" and the 27" of July 2001, six cars were driven on the
M27. The six cars departed in different intervals from 1 to 120 seconds each cycle and
ran 3 cycles from Junction 8 to Junction 12 of the M27 each day (McDonald et. al,.
2002). The data are used to study difference of journey times collected by different

vehicles under the same traffic conditions.
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Survey 3: Probe Vehicle Survey

Data of the two surveys discussed above were collected on the M27. A new survey was
designed and conducted on the M3 to study probe vehicle application on different
motorways. During morning peak hours of 7:00-9:00 from the 1™ to the 11" October
2002, on each weekday morning, a GPS equipped probe vehicle was driven by
different drivers from Junction 10 to Junction 14 of the M3. 84 observations of journey
time were obtained: 42 journey times from J12 to J11 northbound, and 42 journey
times from J11 to J12 southbound. The data are used to assess accuracy of journey time

estimation, study daily change of journey time and identify recurrent traffic congestion.

3.5.2 GPS Data component

GPS receivers used in the above surveys were Garmin 35 receivers in stand-alone
mode. The Garmin GPS 35 is a low-cost GPS receiver (current price about £100) and
made for navigation purpose. A Garmin 35 receiver can track up to 12 satellites and the
update rate is 1Hz (Garmin 2003). The main output of a Garmin 35 GPS receiver is:

e UTC (Universal Time Coordinated): data and time of day;

e Position data: latitude, longitude and height;

e Speed data: speed over ground, three-dimensional velocities: east, north and up;

e Estimated error information: estimated horizontal and vertical position errors;

e Satellites in view: total number of satellites in view and total number of satellites to

be used for positioning.

3.5.3 GPS data conversion

GPS position data are based on an ellipsoidal reference system, WGS-84 (World
Geodetic System 1984), and expressed by latitude and longitude. For journey time
estimation, a vehicle should be located on a plane map using a simple 2-D Cartesian
coordinate system in which the two axes are known as eastings and northings. The
coordinates of a point on the plane map can be converted from its ellipsoidal latitude
and longitude by a standard formula known as a map projection, which is a function to
convert ellipsoidal coordinates to plane coordinates. The projection can be expressed

as:

[y> X] = ﬂ;r(y'eﬁf/(}ﬂ (¢= /1) (3 1)



Data Collection

where xand y denote the easting and northing on the plane map, ¢ and A1 denote
latitude and longitude. Ordnance Survey (OS) maps use a type of projection known as
the Transverse Mercator (TM). The same type of projection is used in a worldwide
mapping standard known as Universal Transverse Mercator (UTM). The TM
projection can be thought of as a sheet of paper carrying the mapping grid (of eastings
and northings), which is curved so as to touch the ellipsoid along a certain line. The
line of contact is chosen to be north-south central meridian. Points on the ellipsoid are
projected onto the curved sheet, giving easting and northing coordinates for each point.
In different plane coordinate systems, different parameters are used in the TM

projection.

In this research, a map with the National Grid coordinate system was selected. Thus,
the National Grid TM was used to convert latitude and longitude data surveyed by GPS
(Ordnance Survey 2000). The TM projection for Ordnance Survey maps has a central
meridian at longitude 2°West and latitude 49°North. The two lines of true scale are
about 180 km to the east and west of the central meridian. The stated scale of an
Ordnance Survey map is only true on these lines of true scale, but the scale error
elsewhere is quite small. For instance, the true scale of Ordnance Survey 1:50,000 scale
map sheets is actually between 1:49 980 and 1:50 025 depending on easting. The

equations and parameters of the National Grid TM projection are given in Appendix A.

Using equation 3.1, latitude and longitude data are transferred to Cartesian coordinate
(x,y), which is compatible with OS National Grid maps. After coordinate conversions,
journeys of GPS equipped vehicles can be displayed on a OS National Grid map.
Figure 3.2 shows the paths of eight journeys of Survey 3 recorded by the GPS device.
The route is clearly visible. However, some data are displayed on the wrong side of the
roads. For journey time estimation, because lane differentiation is not required, the

current GPS accuracy without DGPS correlation is sufficient.

3.6 Cleaning of ANPR data

The availability of efficient and accurate ANPR technology has provided a valuable
source of data for traffic engineers (Eloranta et al., 2000; Ellis, 2002). ANPR data have

been assumed to present the real journey times and used as a reliable reference source.

29



Data Collection

ot ;,,’1 /"hc Mountbatten Buildin \\ S T :
i / aE ]

I JAN

Figure 3.2 The paths of the journeys as recorded by the GPS device
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For example, ANPR data have been used to validate the MIDAS journey time
estimation algorithm (Abou-Rahme et al, 2002). However, journey times logged by
ANPR are not 100% accurate. For example, a journey of the TRG instrumented vehicle
(registration number L583 LVS) from the M27 J11 to J12 on June 19 was logged by
the video cameras. Journey time of the vehicle measured by the video cameras was 14
mins 14 seconds (854 seconds), but the real journey time was only 3 mins 30 seconds
(210 seconds). Among all journey time records, some extremely long journey times
have been found. An example plot of the journey times in link 3 for a Thursday in June
2001 is shown in Figure 3.3.

apo

Journey Time (s)
T
]
1

6:20 6:45 7:00 715 7:30

Figure 3.3 Example of raw journey time data on link 3: Thursday, June 12, 2001
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The bulk of the data are within a band of 150 to 260 s (108 km/h to 62 km/h), but there
are some journey times substantially longer. Short journey times are also considered.
The shortest journey time in Figure 3.3 is 133 seconds, which corresponds to mean
space speed of 122 km/h (75.8mph). In the probe vehicle surveys, the highest mean
space speed achieved by the IV was 126 km/h (78.7 mph) in the morning peak hour.
Therefore, the journey time of 133 seconds is considered to be feasible. In this
circumstance, outliers were considered to occur only in the upper extreme (long
journey time), rather than in both extremes. The outliers can occur for a number of
reasons, including transcription errors, mismatching and short diversions (Bunn and
Barrett, 1997). In the following section, quality of ANPR journey time data will be
assessed and reasons of outlier occurrence will be discussed. An outlier detection

method is developed in Section 3.6.2 towards the reasons of outlier occurrence.

3.6.1 Assessment of ANPR data quality

Since individual observations of journey time will be used to identify journey time
distribution, it is necessary to assess quality of ANPR data before any analysis is
undertaken. GPS logged journey times are therefore used as a reliable reference to
assess the quality of ANPR data. Furthermore, ANPR data are also used to assess
accuracy of journey time estimated by GPS. During the ramp metering survey, the
ANPR cameras recorded 84 of the 189 journeys made by the TRG instrumented
vehicle, 1.e. 44%. There were 5 extremely long journey times in all the 84 records, as
shown in Table 3.4. For the other 79 records, GPS data and ANPR data are very

similar, and the maximum difference is only 5 seconds.

Table 3.4 Outliers of ANPR journey time

Date GPS data ANPR data
Time at start point | Journey Time (s) | Time at start point | Journey Time (s)
24/05/01 08:08:35 170 08:08:33 803
19/06/01 08:07:08 207 08:07:07 854
19/06/01 08:33:16 160 08:33:15 897
29/06/01 08:31:48 179 08:31:47 822
12/07/01 07:40:15 169 07:40:13 870
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Short diversion has been accounted to be the main reason to produce outliers of large
journey times by Clark et al. (2002). By studying all the above records, the outliers
with large journey times were observed during the ramp metering survey. In the ramp
survey (Wu et al., 2002), two test courses were performed to collect required data with
the TRG instrumented vehicle (IV): mainline route survey and merging route survey.
The 1V first jointed the eastbound M27 at J10 and drove along the M27 down to J12
and returned to J11 along the westbound M27 (mainline route). Then, the IV joined the
eastbound M27 from slip road at J11 and drove along the eastbound M27 down to J12
(merging route). For example, on June 19 2001, the IV passed J11 on the mainline
route (i.e. from J10 to J12) at 8:07:09, which was recorded by ANPR cameras on J11.
However, ANPR cameras on J12 did not capture the time when the IV passed the
cameras. The IV returned to Junction 11 along westbound and rejoined the eastbound
from slip road at 8:17:45, which could not be recorded by ANPR cameras since the
cameras were only able to capture vehicles on main carriageways. The ANPR cameras
on J12 captured the IV when it passed the cameras at 8:21:24. Therefore, a match was
found by ANPR and a journey time was obtained 854 s, similar to 855 s, i.e. the
difference between 8:21:24 and 8:07:09. All the extremely long journey times shown in
Table 3.4 were obtained because of the same reason. Thus, this research considered
that outliers in database were caused by short diversion and other error sources were
ignored.
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Figure 3.4 The path of the journey as recorded by the GPS device
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In the ANPR database, very few outliers occurred on link 1, link 2, link 6 and link 7,
while about 1-2 per cent of extremely long journey times were observed on link 3, link
4 and link 5. On average, about 1.38% of all raw journey times on the three links may
be considered as outliers. On the three links, there are some exits and entrances
between the origin and destination. It could be supposed that a lot of people use the

M27 for short and utility trips, and people may leave at one exit for a while and then

rejoin the motorway.

Two conclusions can be drawn from the above results:
e ANPR provided reliable journey time data.

e Outliers with large journey time occurred mainly because of short diversions.

3.6.2 QOutlier detection

By considering vehicle journey times logged by the ANPR cameras in a five minute
interval as a sample, very long journey time are considered as outliers of the sample. In
the ramp metering survey, drivers were required to drive on motorway lane 1 as long as
possible, the journey times obtained may be the longest on the link for the period. The

data were used to develop and validate outlier detection methods.

3.6.2.1 Previous researches

Three statistical methods have been developed for cleaning of matched license plate
data by Clark et al. (2002):
e Percentile test: to define as an outlier all observations that fall outside a range set
by the 10" and the 90" percentiles.
e Mean absolute deviation test: to identify as outlier any observation beyond the
limits:
M, £3MAD (3.2)

where, M, = median of individual journey times in the 5-minute interval

ST, - M,
MAD="2___ (3.3)

n

JI = individual journey time

n = number of observations in this interval.

(5]
(3]
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e The quartile deviation test: to identify as outlier any observation outside the limits:
M, F (H)ZLO.975,H*QD (3.4)

where, QD = (inter-quartile range)/1.34898, and ¢ .1s the appropriate f-statistic

09751

with 7 degrees of freedom at the 95% level. n is corrected sample size, computed

by n' ~ %n The value of F,(n) depends on whether » is odd or even and is given
by the following equations:

Fn= | —— neven (3.52)

nodd (3.5b)

For complete details of the three tests, the reader should refer to Clark, Grant-Muller
and Chen (2002). Clearly, the first test will be extreme, because 20% of all the
observations will be classed as outliers by its application. It is unsuitable for this
research since the outlier rate of ANPR data is only about 1.38%. Applying the second
and third test to journey time data in link 7, 7:15-7:20, July 12 2001, the limits are

calculated:

the second test: [89s, 168s]
the third test:  [79s, 179s]

However, journey time of the instrumented vehicle on the link in the time period was
188 s, which will be identified as an outlier by both tests. Thus, those tests are

unsuitable for this research, and a new method for outlier detection is required.

3.6.2.2 Outlier detection method
A traditional statistical method of outlier detection using inter-quartile range was first

tested. The inter-quartile range, Q, measures the range between the first and third

quartiles. The first quartile, O, , means that 25% of the observations are below (), , and
the third quartile, (,, means that 25% of the observations are above Q,. The inter-
quartile range is therefore Q =0.—0, which is the range of the central half of the data.

First, a distance of 1.5 inter-quartile range, 1.5Q, is chosen for detection of outliers, i.e.
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an observation is detected as outlier if it is outside [Q, =1.50, O, +1.50]. In this

research, since outliers were considered to occur only in the upper exireme, an
individual journey time J7,, which was longer than O, +1.5Q , was identified as an
outlier. For journey time data on link 7, 7:15-7:20, July 12 2001, the threshold of the
test was 183s and the journey time of 188 s obtained by the TRG IV, was still outside
the limit. Also, since in busy traffic most of individual journey times may be in a small
range and the value of Q is very small, some long but valid journey times may be

identified as outliers.

An alternative way is using range between 15th percentile (Q,) and 85th

percentile(Q,, ), 1.e. O,= O, -0, . An individual journey time is identified as invalid,
if' it 1s longer than Q,, +1.50, . An example is shown in Figure 3.5 with journey times

on link 3, in period of 7:25-7:30, August 27 2002. For this case,

0, =188s
0, =218s
0,=0,-0,=30s
0, +1.50,=263 s
A journey time longer than 263 seconds is identified as an outlier.

650 T 1
] = O Qutliers
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600 L Valid i

Journey Time (s)
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o
S
T
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Time

Figure 3.5 Identification of outliers on link 3, August 27, 2002.
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An example of this is shown in the 5-min period containing the following 10
observations: (196, 211, 195, 250, 187, 494, 187, 210, 225, 194). The threshold of 263

1s sufficient to reject the journey time of 494 but not 250.

This method is less sensitive than other methods. For example, for journey time data on

link 7, in period of 7:15-7:20, July 12 2001, the threshold Q, +1.50,= 207s. The
journey time of 188 s, produced by the TRG IV, is inside the limit and the higher

threshold is considered to be appropriate. Since in the ramp metering survey, drivers
were required to drive on motorway lane 1 as long as possible, the journey times
obtained may present the longest on the link for the period, which are generally
produced by heavy vehicles. This method can retain long but valid journey times and
detect outliers. By applying this method, outliers in Figure 3.3 have been detected and
removed and cleaned journey times are shown in Figure 3.6. The application of the
outlier detection method clearly identified the outliers in the data while avoiding

detecting genuine observations as outliers.
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Figure 3.6 Cleaned Journey Time data on link 3: Thursday, June 12 2001

36



Data Collection

3.7 Summary

This chapter has described the data collection process involved in this research in
detail. The data collection was carried out for seven links on two motorways around
Southampton: the M3 and the M27. Data were collected by video cameras and GPS

equipped probe vehicles.

Individual journey times were logged by video cameras using Automatic Number Plate
Recognition (ANPR). Data from eighteen weeks in 2001 and 2002 were used in this
research. By comparison with journey times measured by GPS, ANPR data have been
shown generally reliable and accurate but with outliers, which occurred mainly for
short diversions. A method of outlier detection using range between 15" and 85"

percentile has been developed and applied to clean ANPR data.

GPS equipped vehicles were driven on some links of the survey site as probe vehicles
to collect journey time data. GPS data are used for studying performance of GPS and
efficiency of probe vehicle for journey time estimation. The GPS data have been
converted into plane coordinates that are usable for journey time calculation. The
converted data were then ready to match the map and calculate journey times. The

journey time calculation based on converted GPS data is introduced in next chapter.



Journey Time Estimation

Chapter Four

Journey Time Estimation

4.1 Journey time calculation

For a GPS equipped probe vehicle, a link journey time is the time taken for the probe
vehicle to pass locations of successive checkpoints of the link which have been
accurately surveyed by GPS and stored in a database. The first step of computing
journey time is to search location data of a probe vehicle to find the point whose
coordinates are the closest to each checkpoint. Then, journey time is simply time

difference between two successive checkpoints.

Individual link journey time of JT, and speed v, are estimated as follows:

JI, =T =T/ (4.1)
L
v, = }7// (4.2)
where
JT, = Journey time of probe vehicle j for the itk time interval
7" =Time probe vehicle ; enters the link

77" = Time probe vehicle ; exits the link

v, = Link speed of probe vehicle j for the itk time interval

L = Length of link

In this research, since journey times calculated from GPS data will be compared with
Automatic Number Plate Recognition (ANPR) data, a link is considered as road
segment between two video cameras rather than two adjacent junctions, and position of

each camera has been surveyed by GPS. The capture zone of an ANPR camera is
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located between 5.5-7.3 meters (18 and 24 feet) from the camera. Thus, the passing

time of a vehicle recorded by the camera (7,,,,,,) is the time when the vehicle passed

the capture zone rather than the camera position. However, the time stamp calculated

from GPS data (7, ) is the time when the vehicle passed the camera position. The

relationship between the two time stamps can be estimated by:

D
capture
Tops =T, L— (4.3)

canerd
v

where D is the capture distance from the camera and v is the vehicle speed to

capture
traverse the capture distance. Assume v=222m/s (80km/h), 7, is about 0.3 s

behind 7 . The lower the vehicle speed, the larger the difference between the two

caniera
time stamps. The lowest speed when vehicle passed a camera observed in this research

was 2.45m/s, in that case 7,,,; was 3 seconds behind 7 . In general, since vehicle

camera
speed changes in a small range over such short period, time stamp calculated by GPS
data can be corrected by Equation 4.4 for comparison of journey time surveyed by GPS

and ANPR cameras:

D
T =T captire
(A

GPS —

B 1 Teps

\},/. = ZV, (44)
7 + 1 1=1ipy =1

T = Dc:a/mrc
V,/k;m

Most speed observations on motorway collected in this research are faster than 15 m/s
(54 km/h), and the difference between GPS surveyed time and ANPR recorded time is
less than 1 second. Thus, the correction equation, i.e. Equation 4.4, need only be

applied only in severe congestion.

The probe vehicles starting their journey on a link within a given interval are used to
estimate average link journey time and average link speed. For example, to estimate 5-
minute average link journey time and speed, if for a period of 9:00-9:05, all the
vehicles which enter that link between 9:00 and 9:05 are included. The average link

journey time and speed are estimated as:
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JI == (4.5)

y, = (4.6)

where nis the number of probe vehicles for the i/ time interval.

4.2 Accuracy of journey time estimation by GPS

For an update rate of 1 Hz, i.e. a GPS receiver surveys its position and speed at 1-
second interval, times when vehicle passes each checkpoint can be directly obtained
from GPS position data, and journey time can be calculated by Equation 4.1. To assess
accuracy of journey time estimation by GPS, journey time obtained from GPS data are
compared with ANPR data. Data collected in the car-following survey are used for the
comparison. In the car-following survey, as described in Section 3.4.1, six cars were
driven from the M27 J8 to J12 and a group of cameras were temporarily set on a bridge
downstream at J8 in addition to the HA cameras. Thus, during a journey, each car
passed four locations of ANPR cameras: J8, J10, J11 and J12. To obtain accurate
individual journey times from ANPR, raw vehicle registration number (VRN) data
logged by ANPR rather than matched journey time are used. An example of the raw
VRN data is:

11422

"LEA3 WS, 99, 93, 1

I

R CAMmEers number time stamp

T

confidence lewvel hour

Figure 4.1 Format of raw VRN data

The ‘time stamp’ was recorded at frequency 5 Hz, thus, there are 18,000 (60x60x5)

time stamps for one hour. And *11422" equals 38 minutes 4.4 seconds as follows:

11422 =38.07 ——p 38 minutes
60x5
11422_358X60X5 =44 ——p 4.4 seconds
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The record shown in Figure 4.1 represents camera 93 (Lane 3 at J10) having captured a

vehicle with registration number L583LVS at 15:38:04 with a confidence level of 99%.

In the car-following survey, there are 79 journey times derived from raw VRN data.
The 79 journey times were compared with corresponding results from GPS, as shown

in Figure 4.2.
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Figure 4.2 Comparison of journey times estimated from GPS and ANPR

It may be seen from Figure 4.2, that GPS can be used to estimate journey time of a
probe vehicle accurately. The correlation between the two measures is 0.9908 and the
mean absolute difference is near 2 seconds with a standard deviation of only 1 second.
The results have shown that probe vehicles equipped with stand-alone GPS receivers

using an update interval of 1 second can estimate motorway journey time accurately.

4.3 Effect of GPS update frequency

Although the update interval of 1 second (update rate of 1 Hz) is generally used by
current GPS products, probe vehicles may use longer update intervals due to storage
and computing capacity limits. For example, in the PRELUDE project in Rotterdam
(Kroes et al, 1999), GPS devices on each probe vehicle determined location and speed

every 10 seconds and the resulting information was stored together with a time-stamp
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in an on-board computer. Clark and McKimm (2003) used GPS devices for journey
time surveys within West Yorkshire area. In the study, the GPS device used had a
limited capacity to store such points in their memory and a time resolution of 15
seconds was calculated as the finest resolution possible in order to accommodate entire
shifts. In the ITIS FVD system, ecach in-vehicle data collection unit can record and
store vehicle positions and speed at a configurable interval, but at a minimum of one
minute. It is therefore necessary to study the GPS performance in estimating journey

time using longer update intervals.

Currently, in-car navigation devices update GPS data generally every 1, 5 or 10
seconds. For bus management systems, in Cardiff, bus locations are updated and
reported by GPS every 20 seconds, and in Maidstone, GPS devices determine bus
locations at 30-second interval (Shrestha, 2003). Fleet monitoring products mostly
report vehicle positions every one minute (Simmons et al., 2002). Therefore, time
intervals of 55, 10 s, 20 s, 30 s and 60 s are studied. Data used for accuracy assessment
were collected on the M3 (Survey 3) and 84 journeys were studied. Original data
collected at 1-s were sampled according to a required interval. An example of sampling

for 5-s interval is shown as below:
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Figure 4.3 An example of sampling for 5-s interval

4.3.1 Accuracy at various GPS update frequency

For an update interval more than one second, a vehicle can pass a checkpoint in
anytime of an interval with equal probability. Therefore, the error in journey time
estimation can be any value of the range of the interval. To assess the estimation
accuracy, original GPS data collected at 1-s are sampled according to the required
intervals, e.g. 5-s, 10-s, 20-s, 30-s and 60-s. The data used for accuracy assessment

were collected on the M3 and 84 journeys were studied.
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It has been shown that good accuracy of journey time estimation can be achieved using
GPS update interval of 1-s. Journey times estimated at 1-s interval are considered to be
“real” journey times and journey times estimated using longer intervals are compared
with the “real” values. The errors in journey time estimation using 5-second interval
are shown in Figure 4.4. Range of the errors is [0, 1, 2, 3, 4] and probabilities to

achieve each value in the range are equally likely.
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Figure 4.4 Errors in journey time estimation at 5-second interval

The errors are therefore estimated to have a discrete uniform distribution and the
probability function is:

Dy p=01..0-1

!

&

Plarrar=p) = 4.7

0 otherwise

where / is the length of the update interval. For example, if positions of a probe
vehicle are determined every 60 seconds, the errors of journey time estimation are
uniformly distributed on [0,59]. The distribution indicates that probability to achieve
error of zero is 1/60, and probability to obtain an error which is less than 30 seconds is

50%.
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4.3.2 Accuracy at various GPS update frequency with correlation

For an interval longer than one second, a higher accuracy can be achieved using a
simple computing method (Khan and Thanasupsin, 2000). The time stamp to pass a
checkpoint can be estimated based on linear interpolation between two consecutive

reports of location. The last reporting time before the checkpoint, #,, and the first
reporting time after the checkpoint, #,, are required, and corresponding distances D,

and D, are calculated (Figure 4.5).

Ths
i

Figure 4.5 Estimating the closest time stamp to a checkpoint

The closest time stamp when the vehicle passed the checkpoint J 1is calculated by
Equation 4.8:

D
I, =1 +([2_t1)52 (4.8)

1
This method is based on the assumption that vehicle speed is stable over a short
interval. Good accuracy can be achieved if a probe vehicle maintains stable speed over
a sampling period. Since the data used in this research were collected on motorways
and vehicle speed on motorway is generally stable over a short period, good accuracy
of journey time estimation can be obtained using a relatively shorter update interval,
such as 5-s, 10-s, 20-s and 30-s. However, 1-minute interval may cause large errors for
journey time measurement since speed may change greatly during a 1-minute interval.
Speed profiles at various update intervals are shown in Figure 4.6. It can be shown that
5-second and 10-second sampling intervals can retain the original information of speed
change. The longer the interval adopted, the more information is lost. Thus, the
accuracy of journey time estimation using this method depends on the stability of

vehicle speed.
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Figure 4.6 Speed profiles at various update intervals

Journey times of the 83 journeys on the M3, carried out in Survey 3, are calculated at
intervals of 5's, 10's, 20 s, 30 s, 60 s and compared with the ‘real’ value, i.e. estimated
journey times at 1-second interval. Journey time differences at various update intervals
are shown in Figure 4.7. The accuracy results of journey time estimation with different
update intervals, including mean error, standard deviation of error, observed maximum
of error and the percentage of zero error are summarised in Table 4.1. The results
shown in Table 4.1 indicate that relatively short update intervals, such as 5 seconds, 10
seconds, 20 seconds and 30 seconds, do not have a great effect on the accuracy of

journey time estimation, while large errors are observed with 1-minute intervals.
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It is not surprising that for 60-second intervals, the worst estimates (with an error of 18
seconds) were obtained during traffic flow breakdown. That is because the vehicle
speed changed greatly over one minute. However, some very good estimates (errors of
zero) were also observed in flow breakdown since the vehicle travelled in severe

congestion with very slow but stable speed.
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Figure 4.7 Distribution of journey time difference at various update intervals

Table 4.1 Statistics of errors in journey time estimation at various update intervals

Interval Mean Std.  Deviation | Maximum Percentage

(s) (s) (s) (s) of Zero Error*
5 0.57 0.498 1 42.9%

10 0.60 0.563 3 42.7%

20 0.80 0.753 4 35.7%

30 0.85 0.853 5 35.7%

60 3.69 4.502 18 15.5%

*Zero error means that estimated journey time equals to “true’ journey time.
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4.4 Journey time report

To provide real-time travel time information, probe vehicles need frequent
communication with a central computer. Generally, communication frequency is much
lower than GPS update frequency. Although collecting GPS data at such short intervals
has a very minor effect in terms of cost, communication and data management may be
significant. In the PRELUDE project in Rotterdam (Kroes et al., 1999), probe vehicles
determined and stored location and speed data every 10 seconds. The accumulated
information was transferred to a central computer by GSM every five minutes. In such
systems, vehicles are equipped with only GPS and communication systems, i.e. without
digital map and GIS (Geographic Information Systems) software, and travel times are
calculated by central computer from the vehicle location data. For probe vehicles with
navigation systems consisting of on-board computer and GIS software, a possible
solution would be to report link travel time along a journey. Navigation computers in
ADVANCE equipped vehicles carried on tasks of navigation and estimation of link
traversal times, which were transmitted by radio frequency to Traffic Information

Centre every 5 minutes (Sen et al., 1997).

4.5 Summary

This chapter has described the process of journey time estimation from position data
surveyed by GPS. Journey times calculated by GPS data have been compared with
video camera data, which provide a positioning measurement error within 0.8m. The
comparison has shown that the current performance of GPS enables stand-alone GPS
receivers to be used for journey time measurement. The results will encourage the

acceptance and application of GPS equipped probe vehicles.

Some potential GPS equipped probe vehicles use different intervals to determine
vehicle position. For example, in some bus management systems, an on-board GPS
device determines bus position each 20 or 30 seconds. It is therefore necessary to study
the impact of different update intervals on accuracy of journey time estimation. For
intervals larger than 1 second, without correlation, the error is directly related to the
length of the interval. With correlation, which is based on linear interpolation using the
two closest time stamps before and after a checkpoint to calculate the ‘true’ passing

time, relatively shorter intervals such as 5 s, 10 s, 20 s and 30 s can also produce
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accurate results. One-minute interval results in unstable accuracy because of the
variations in speed within such intervals. Traffic flow has great influence on the
estimate accuracy, e.g. poor estimates may be obtained during traffic flow breakdown.
The results will encourage more applications of probe vehicles. Vehicles equipped with
GPS devices using low updating frequency can be used to provide good estimates of

journey times.
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Chapter Five

Sample size of probe vehicles

5.1 Introduction

Although the results described in Chapter 4 have shown the ability of GPS to measure
link journey time of an individual vehicle accurately, the journey time of any one
vehicle does not represent average journey time. In general, the larger the sample size,
the greater the accuracy of representation of the mean of the whole data population.
Previous studies and applications have indicated that a relatively small number of probe
vehicles travelling in the traffic stream can provide potentially valuable information
about current journey times (Turner et. al., 1998; Srinivasan and Jovanis, 1996).
However, too few probe vehicles may provide erroneous or misleading data. For
example, in the ADVANCE system (Sen et al., 1996), probe vehicles were used to
estimate real-time journey times to navigation assistants. However, in general, the
navigation assistants computed the desirable routes using default journey times based
on historical data rather than the real-time estimates. The navigation assistants used
real-time observations only when the real-time estimates differed significantly from the
default estimates. In such situations, incidents were suspected. In incident free traffic,
the historical data were considered to be more reliable since the real-time journey times

estimated by few observations may have large variance.

Although the proportion of GPS-equipped vehicles is expected to increase with the
gradual implementation of in-vehicle navigation systems, the capacity and cost of
wireless communication links between in-vehicle devices and the traffic management
centre will be likely to still limit the available sample size of probe vehicles. Therefore,
it is necessary to determine the minimum number of vehicles that should be equipped

as “probes” to estimate journey time or speed within a satisfactory statistical accuracy.
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Probe vehicle sample size has two separate meanings: (1) overall probe vehicle
percentage of the total vehicle population to estimate journey times for a desired
reliability and proportion of link coverage over an entire network; and (2) number of
probe vehicles sampled in a link for a required time interval and a desired statistical
accuracy. This research focuses on the second, i.e. determining the minimum number

of probe vehicle in a link to estimate reliable link journey time.

Previous researches have provided various estimates of the number of probe vehicles
required on roads of different character. However, such researches to determine the
number of probe vehicles have used simulation data (Chen and Chien, 2000; Cheu et
al., 2002) or a small proportion of probe vehicles (Turner and Holdener, 1995). These
approaches lack a detailed description of individual journey times. Since video cameras
can log a large proportion of individual vehicles using ANPR (automatic number plate
recognition) technology, ANPR data have been used in this research to provide a
comprehensive description of individual journey times. Statistical characteristics of
individual journey times can be estimated from ANPR data, which are used to study
two main questions related to probe vehicle sample size: (1) How few probe vehicles in
a link are needed to maintain the desirable statistical accuracy of link journey time

estimation? (2) Which factors affect the sample size?

5.2 Literature Review

A number of studies into probe vehicle sample size have been reported in the literature.
Statistical analyses have been used to examine journey time data and determine sample
size for different sampling intervals and desirable accuracy. Two main data sources

have been employed: empirical data and simulation data.

5.2.1 Empirical data

In the ADVANCE project, probe vehicle sample size was calculated using a matrix of
trips between every origin and destination (O-D matrix). Sample sizes were calculated
based on having at least one probe vehicle traverse a certain percentage of roadway

links during different time intervals (5,10,15 and 20 minutes). For example, with 5,000
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probe vehicles, 60% of all links in a 200-square mile test area could be traversed by one

vehicle per 15 minute.

In the ADVANCE project, the relationship between sample size and accuracy of link
journey time estimates has been also studied. The effect of sample size on standard
error of means of probe reports is shown in Figure 5.1. The standard errors of the mean
of probe reports do not go to zero and there is a minimum value below which standard
errors never fall, no matter how large the number of probes becomes. While this
minimum value is link-specific, the general shape of the relationship between standard

error and sample size is similar for all moderately or heavily congested signalized links.
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Figure 5.1 Standard error vs. number of probes (Source: Sen, Soet and Berka 1997)

Turner and Holdener (1995) provided recommendations about probe vehicle sample
sizes using empirical journey time data from Houston AVI (Automatic Vehicle
Identification) traffic monitoring systems. In the Houston area, AVI reader units were
placed at 1.8- to 8.0 kilometre intervals along all the area’s major freeways, eventually
including over 483 kilometres of highway and 161 kilometres of HOV (high-occupancy
vehicle) lanes. Based upon the AVI checkpoints, there were a total of 60 freeway
segments for which journey time data were analysed. It has been estimated that
approximately 40,000 AVI tags have been distributed in the Houston area and the
average number of probe vehicles providing a journey time on each segment ranged
from 1 to 7 every 5 minutes, or 2 to 20 every 15 minutes. The coefficient of variation

(c.v.) of journey times were calculated and sampling theory was applied to determine

51



Sample Size of Probe Vehicles

the sample size based on the c.v. values. Results showed that for 5-minute periods, a
95% confidence level and a 10% relative error, the sample sizes needed ranged from 1
probe vehicle every 5 minutes for free-flow conditions (HOV lane segment) to 6 probe
vehicles every 5 minutes for severely congested conditions. Sample sizes were slightly
lower using a 90% confidence level and 10% relatively error. For 15-minute periods, a
95% confidence level and a 10% relative error, the sample sizes needed ranged from
one probe vehicle to 8 probe vehicles every 15 minutes. For a 90% confidence level

and 10% relatively error, sample sizes from 1 to 6 were required.

Since the required sample sizes calculated for the Houston AVI system were directly
related to the journey time variation, the relationship between average speed and
journey time variation was studied and a regression equation was then obtained that

predicted journey time variation using average speed:

85" percentile c.v. = 33.9-0.27xAverage Speed (km/h) (5.1)
r* =0.60
where 7 is the correlation coefficient of observed and estimated values. The 85"
percentile c.v. were then used to estimated the require sample sizes for the desired

statistical accuracy.

5.2.2 Based on simulation data

Simulation models have been used to determine probe vehicle sample sizes with
respect to (1) overall probe vehicle percentage; and (2) the number of probe vehicles

sampled in a link.

Srinivasan and Jovanis (1996) developed a heuristic algorithm to estimate the total
number of probe vehicles required for the Sacramento network, in California. A
heuristic algorithm was implemented using a simulation procedure. Based on three
simplifying assumptions: the normality of journey time distribution, constant journey
time variations over all links and constant journey time variations over all measurement
periods. The simulation procedure was run to determine the total number of probe
vehicles towards two scenarios: 4 probe vehicles on each link during 10 minutes, and 6

probe vehicles on each link during 15 minutes. However, in the absence of actual
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journey time data, it was not clear how the assumptions would affect the simulation

results.

More recently researchers used microscopic simulation to estimate the number of probe
vehicles. Chen and Chien (2000) used a microscopic model, CORSIM, to simulate
traffic flow on a freeway segment of 1-80 in New Jersey and determine the minimum
number of probe vehicles on a link for a 5 minute interval. Journey times of all vehicles
on each link of the freeway segment were recorded from the CORSIM output, and
distributions of link journey times were then obtained from these statistics. The
simulation results reported that vehicle journey times on some links were not normally
distributed. Factors affecting the vehicle journey time distribution were considered to
be geometric condition and traffic volume on the link. It was observed that longer links
tended to absorb the impact of various traffic flows. To study the impact of traffic
volume, five demand levels were chosen to generate various traffic volumes from free-
flow to near-capacity over the freeway links. Results showed that the type of link
journey time distribution could vary with the traffic volume it carries and non-normal

distributions were likely to be found under the highest level of demand (level 5).

The results also studied the impact of traffic volume on the percentage of probe
vehicles required to provide accurate estimates on link journey times. With 5-minute
time interval, 5 percent maximum relative error, the minimum percentages of probe

vehicles under five traffic volume levels are shown in Figure 5.2.
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It was shown that for light or heavy traffic flow, the minimum required probe vehicle

percentage was higher than at the medium demand levels.

In Singapore, a large-scale, nationwide travel speed information acquisition and
dissemination system has already been in operation using a large fleet of taxis equipped
with DGPS devices. Cheu et al. (2002) used a simulation approach to study the
minimum number of probe vehicles in a link and overall probe vehicle percentages for
the road network of the Clementi town area in Singapore. The simulation used GPS
equipped probe vehicles to report journey time/link speeds. A GPS receiver was
assumed to continuously survey its position at 1 sec or 2 sec intervals. The
instantaneous position was then compared with an on-board digital map database and
the vehicle position and time stamp passing each checkpoint along the route were
stored and transmitted to the traffic management centre every 700 seconds. The data
collection period was therefore 700 seconds. Results indicated that for an absolute error
in estimated average link speed to be less than Skm/h at least 95% of the time, the
network needed 4% to 5% of total traffic as probe vehicles or at least ten probe vehicles

on a link within 700 seconds.

5.3 Determining probe vehicle sample size

It is important to able to rely on as few probe vehicles as possible for satisfactory
statistical accuracy because probe vehicles are costly in both equipment and real-time
communication. The objective of this chapter is to develop a methodology to determine
the minimum number of probe vehicles in a motorway link that would provide link

journey time for a prescribed time period and desired accuracy.

If 5 minute interval is selected, journey times of all vehicles on a link during a 5 minute
interval are the population being surveyed. Probe vehicles are considered as samples.
The object of the sampling process is to estimate the population mean, e.g. average link
journey time. The statistical sampling methodology can be used to determine the
minimum required number of probe vehicles that would provide reliable link journey

time estimates. For a population, parameters of the population are denoted by:
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Population mean = 4
Population standard deviation = o
Statistical inferences about the population mean are based on the sample mean

X +X, +..+X,
n

X =
For a permitted error e, expressed as a percentage of the population mean, and a
confidence level 1—¢«, the statistical sampling methodology provides an equation to
determine the required sample size:

2
Z,,0
n=| 427 (5.2)
eu

where z,,, denotes the upper «/2 point of the standard normal distribution. A

detailed illustration of the notation z_,, is shown in Appendix B1. Commonly used
values of z_,, are shown in Table 5.1 for easy reference. The Equation 5.2 determines
the required sample size to be 100(1-«)% to ensure that the error of estimation
X
7

does not exceed e. See Appendix B2 for a rationale of the equation.

Table 5.1 Values of z_,

l-« .80 85 .90 95 .99
z 1.28 1.44 1.654 1.96 2.58

According to Equation 5.2, selection of permitted error and confidence level will
directly affect the minimum number of probe vehicles required. This research
calculated the required sample size of probe vehicles based on a permitted error of
+10%, which was widely used in previous probe vehicle studies (Turner and Holdener,
1995; Srinivasan and Jovanis, 1996; Chen and Chien, 2000; Cheu et al., 2002). The
confidence level is the probability associated with the permitted error. 90% and 95%
confidence levels are commonly used in statistics. However, the same methodology can

be used for any specified permitted error and confidence level.

Equation 5.2 can be applied only when the distribution of X is normal. It has been

proven that distribution of X is normal when sampling from a normal population.
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When sampling from a non-normal population, the central limit theorem (Johnson and
Bhattacharyya, 2001) states that when the sample size # is large, the distribution X is
approximately normal, regardless of the shape of the population distribution. In
practice, the normal approximation is usually adequate when # is greater than 30. Since
in this research, the number of probe vehicles in a link for a 5-minute interval generally
may not exceed 30, it is necessary to study vehicle journey time distribution and decide

whether Equation 5.2 can be applied.

5.4 Vehicle journey time distribution

By considering all individual journey times on a link over a 5 minute interval as the
population, individual journey times logged by ANPR cameras in the 5 minute interval
are a sample of the population to estimate the population distribution and parameters.
As introduced in Section 3.3.1, ANPR cameras can log individual journey times of a
substantial proportion of all vehicles and the sampling has been assumed to represent

the sampled population.

The distribution of journey times of individual vehicles on a link in a time interval has
been assumed to be normal by the majority of previous researches (Turner and
Holdener, 1995; Srinivasan and Jovanis, 1996; Cheu et al., 2002). However, Chen and
Chien (2000), analysing results generated by microscopic simulations, observed non-
normal distribution of journey times on a link during certain intervals. In this research,
the distribution of journey times on links with different characteristics in different
traffic conditions have been studied. The objective of this section is to reveal
relationships between journey time distribution and road characteristics as well as

traffic conditions.

5.4.1 Normal distribution

5.4.1.1 Normal distribution test: an example

In this research, individual journey times logged by video cameras were used to infer
distribution type and parameters. An example of the approach is described using link 7

at 9:20-9:25 on the 11" June 2001. In the 5 minute period, ANPR cameras logged 196
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individual journey times, in a total vehicle count of 390. Thus, with a sample size of

50.26%, the population distribution could be estimated from the sampling distribution.

A graphical normality test is shown in Figure 5.3, in which, if the samples came from a
normal distribution, the plot would appear linear. Otherwise the plot would appear
curved. In Figure 5.3, the individual journey times tend to follow the linearity of the
normal quantile plot, indicating that the journey time distribution can be considered as

normal.

Probability

Individual journey time in link 7 {5)

Figure 5.3 Normal Probability Plot

The Kolmogorov-Smirnov (K-S) Test was used to obtain a quantitative assessment of
normality. The output of the SPSS K-S test is given in Table 5.2. In a K-S test, large
significance values (>0.05) indicate that the observed distribution corresponds to the

expected normal distribution.

Table 5.2 One-Sample Kolmogorov-Smirnov Test

M 196
Mormal Farameter#®  Mean 1452245

Std. Deviation 138183383
Most Exdremes Absolute ad
Differences Fositive a0

Megative -033
kolmogorow-Smirmoy £ g0z
Asvimp. Sig. (2-tailed) v
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5.4.1.2 Percentage of normal distribution on each link

In this study, data from each of the seven links has been examined for 3 hours, i.e. 36
periods, selected from different times of morning and evening peak period in different
seasons. The percentage of time in which journey times is not statistically different to

normal distributions on each link are listed in Table 5.3.

Table 5.3 Normality percentage for each link

Link Number Percentage of Normality
1 80%

75%

74%

88%

85%

81%

83%

~N O W N

The results in Table 5.3 indicate that in most cases, journey times of all vehicles in a
link over a 5-minute interval have a normal distribution. A correlation of 0.095 between
the percentage of normality and link length indicates that there is no significant
relationship between the two variables. Relatively low percentages were observed for
link 2 and link 3 which carry heaviest traffic of the seven links. The impact of traffic
volume on individual journey time distribution can be studied, since on each of the
seven links studied, groups of inductive loops provided traffic flow data such as vehicle

count per minute.

5.4.2 Non-normal distribution

As introduced in Section 5.5.5, Chen and Chien (2000) observed non-normality in link
journey time distributions using microscopic simulation data, and non-normal
distributions were found mostly under the highest level of demand. The results may
have been affected by the mechanisms of the simulation process. However, results from
this study also showed that journey time distribution remained normal in heavy traffic,

and non-normality was observed to be most likely in some special stages of congestion.
In non-congested traffic, average link speeds were found to decline slightly with

increasing flow. When the traffic flow exceeded the estimated capacity of the location,

average link speed began to decline more quickly with increasing flows, and
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breakdowns in flow occurred. An example of the relationship between traffic flow and

average speed is shown in Figure 5.4, in which traffic on link 7 during the morning

peak hours on the 9™ July 2001 is displayed.
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Figure 5.4 Observed speed-flow relationship on link 7

Since the relationship between flow and speed is not linear, increase of traffic flow may

not affect link speed (or link journey time) instantaneously. Average link journey times

and flow data on link 7 during the morning peak on the 9™ July 2001 are shown in

Figure 5.5.
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Figure 5.5 Link journey time with flow data on link 7, 09/07/2001
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It may be seen from the figure that in the early part of the peak, link journey time only
increased by a small amount with increasing flow. Later when traffic flow data exceeds
the expected capacity flow, link journey times increased rapidly and traffic flow
declined. Journey time then remained at a high level for some time, before gradually
decreasing. Individual journey times in the link for each period from 6:00 to 9:30 have
been studied and the non-normality was only observed in five periods: 7:40-7:45, 7:45-
7:50, 7:50-7:55, 8:20-8:25, 8:25-8:30, as shown in Figure 5.6. In the five periods,
journey time increased or decreased significantly from the previous perod (i.e more
than about 10%). The distribution of journey times for a 5 minute interval between 8:00
and 8:20 was normal, when journey time was the highest, since journey time was
relatively stable over the period. Compared with the flow data shown in Figure 5.5,
non-normality begins to occur when traffic flow achieves the maximum value, i.e. the

occurrence of non-normality may indicate a breakdown in traffic flow.
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Figure 5.6 Non-normal distribution intervals, 09/07/2001

To explain the observed non-normality, all individual journey times logged during
these 5-minute intervals with non-normality were studied. When the update interval
was changed to 1 minute instead of 5 minutes, a normal distribution was obtained for
each of the 1-minute intervals. However, the means and standard deviations of each
interval would be very different. Since the journey time in a 5-minute interval can
change greatly, a 5-minute interval is not suitable for journey time updating. The
journey time distribution of each minute from 7:50 to 7:55 is shown in Figure 5.7.
Obviously, when journey time changes very rapidly, the journey time for even a minute

interval can have a non-normal distribution. In such cases, the mean and standard
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theory.

deviation of journey time are time-series rather than static variables, and the journey
time should be estimated by time series analysis methods instead of static sampling
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Figure 5.7 The journey time distribution for each minute

5.5 Determining sample size of probe vehicles

5.5.1 Sample size and average speed

After identifying the normal distribution of vehicle journey times, probe vehicle sample
size can be determined by Equation 5.2. As discussed in Section 5.3.2, the permitted

error used in this research has been defined as 10%. For a confidence level of 95%,
according to Table 5.2, z,,5,,= 1.96, Equation 5.2 can be written as:

n=[19.6(c/ 1)

(5.3)
by:

For a confidence level of 90%, z,,,, =1.654, probe vehicle sample size is determined

n=[1645/ 1)) (5.4)
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Equations 5.3 and 5.4 indicate that probe vehicle sample size is only related to the

coefficient of variation (c.v.), a relative measure of dispersion obtained by dividing the

standard deviation by the mean.

Individual journey times on link 3 were calculated for 20 hours, i.e. 240 time intervals.

Mean journey time and standard deviation for each time interval are shown in Figure

5.8.
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Figure 5.8 Mean journey time and standard deviation for link 3

These data indicate that:

@

(i)

For the same link and under non-congestion conditions, mean journey times
and standard deviations change only within a small range. 75% of all cases
have mean journey times in a range of 190-220 seconds, and standard
deviations in a range of 16-25 seconds, i.e. inside the rectangle shown in
Figure 5.8. That indicates that most c.v. values are in a small range,
furthermore, sample size requirements are similar for most cases according
to Equations 5.3 and 5.4.

Larger values of standard deviation occur with lower mean journey times,
and more probe vehicles are required in lighter traffic. This is in agreement
with simulation results obtained by Chen and Chien (2000). It is considered
that, in the situation of light traffic, large variations in link journey time can
be attributed mainly to the variation in driving behaviour, e.g. free speed

selections.
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(iii) ~ When mean journey time is increasing due to increasing levels of traffic
volume, standard deviation will be also increasing. However, the range of

increase in journey time is greater than that of standard deviation.

By applying Equation 5.3, the minimum numbers of probe vehicles for a confidence
level of 95% can be determined and falls within the range of probe vehicle sample size
1 to 10 for link 3 for various traffic conditions. The relationship between mean link
speed and the minimum number of probe vehicles required is shown in Figure 5.9,

which matches the above analyses about Figure 5.8.
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Figure 5.9 Relationship between the mean link speed and required minimum sample

size of probe vehicles for link 3

For those time intervals with non-normal journey time distribution (as shown in Figure
5.6), i.e. flow achieved the highest level, as shown in Figure 5.5, the required sample
size should be calculated for each minute of a five-minute interval. For the time interval
shown in Figure 5.7, two probe vehicles are required for each minute and in total, 10

vehicles are required for the five-minute intervals, which is generally higher than under

other circumstances.

Although the range of probe vehicle sample size is link-specific, the general shape of

the relationship between mean speed and the required probe vehicle sample size was



Sample Size of Probe Vehicles

found to be similar for all the seven links studied. The following comments may be

made to describe the relationship of sample size and traffic condition:

(1) The required minimum sample size remains stable in most cases.

(11) A larger number of probe vehicles is required when mean travel speed is high,
i.e. more probe vehicles are needed for light traffic. This is because of the
variability in desired speeds.

(i11)  The largest sample size are required in the period between stable and unstable
flow, when journey times are increasing or decreasing rapidly and are non-
normally distributed.

(tv)  In heavily congested traffic, i.e. cases with very low mean speeds, relatively
fewer probe vehicles are required. In this case, however, traffic flow is
relatively low, i.e. at medium level, as shown in Figure 5.5. This is in agreement
with simulation results by Chen and Chien (2000) that the smallest sample size

is required at the medium flow level (see Figure 5.2).

5.5.2 Sample size and traffic flow

As shown in Figure 5.4, the same average speed can be observed with different values
of traffic flow. Therefore, the relationship between average speed and probe vehicle
sample size may differ from the relationship between traffic flow and probe vehicle
sample size. Furthermore, since a traditional parameter to describe sample size of probe
vehicles is as a percentage of total traffic carried on a link during a period, it is
necessary to study the relationship between traffic flow and probe vehicle sample size.
Data from link 7 during morning peak hours on the 9" July 2001 was taken as an
example to study the relationship between traffic flow and probe vehicle sample size.
Data from the non-normal periods in the morning peak (as shown in Figure 5.6) have
been removed. The resulting sample sizes of probe vehicles, represented by percentage
of traffic flow with traffic flow data, are shown in Figure 5.10. The relationship
between traffic flow and probe vehicle sample size can be described by a power

regression equation that determines probe vehicle sample size using traffic flow data:

n, =64210¢ """
¥’ =0.86

(5.5)
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where ¢ denotes traffic flow (vehicle/5 minute), 7, denotes probe vehicle sample size,

represented as a percentage of traffic flow, and »* denotes the square of the correlation

coefficient of observed and estimated values by the equation.
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Figure 5.10 Traffic flow and probe vehicle sample size

5.5.3 Probe vehicle sample size for different links

Previous research (Turner and Holdener 1995, Chen and Chien 2000) has shown that
sample size of probe vehicles is link-specific, and factors affecting sample size can
include geometric conditions as well as traffic flows on a link. Since the seven links
studied in this research have different lengths and carry different traffic flows, probe
vehicle sample sizes for each of the seven links were calculated to study these factors.
Sample size of probe vehicles on each link have been calculated for 84 intervals, i.e. 42
intervals in the morning peak on May 23, 2001 (Wednesday), and 42 intervals in the
evening peak on 30 Oct. 2002 (Monday). In the two time periods, there was no non-
recurrent congestion on the seven links, i.e. traffic flow was as usually expected. Box
plots of resulting sample sizes for 10% permitted error and 95% confidence level are

shown in Figure 5.11.

Larger inter-quartile ranges of sample sizes were found on link 1 and link 2 compared
to others links (Figure 5.11). Since these two links are shorter, length is considered to
be an important factor, in that, with the same level of traffic, a short link requires more
probe vehicles. As discussed above in 5.5.2, an increase in traffic flow leads to a
reduced probe vehicle sample size. Therefore, busier links require fewer probe

vehicles. Link 3 which is the longest and busiest link requires the smallest sample size.
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Sample sizes of probe vehicles for each link have been calculated with confidence
levels of 90% and 95%. Mean sample sizes and corresponding 85% percentile values

are shown in Table 5.4.
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Figure 5.11 Probe vehicle sample size for different links

Table 5.4 Sample size for each link

Link Number 90% confidence level 95% confidence level
Mean 85% Percentile Mean 85% Percentile
Sample Size Sample Size Sample Size Sample Size
1 5 6 6 8
2 4 6 6 8
3 4 4 4 5
4 3 4 4 6
5 4 5 5 6
6 4 4 5 6
7 3 4 4 6

Shorter links were more sensitive to changes in traffic flow and Equation 5.5 is
unsuitable for links shorter than link 3. However, the general shape of the relationship
between traffic flow and probe vehicle sample size was found to be similar for all the
seven links. However, shorter links required slightly more probe vehicles for the same
traffic flow. The power equation can still be used to estimate required percentage of

probe vehicles but needs an adaptive factor of link length:

L, .
n, =64210x% (1+ L x0.05)g " (5.6)
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where ¢ denotes traffic flow (vehicle/5S min), 7, denotes probe vehicle sample size,

represented by percentage of traffic flow, L, denotes the length of link 3 and L denotes

the length of the calculated link. The Travel Time Data Collection Handbook (Turner
et. al., 1998) recommends the segment length for travel time data for
freeways/expressways should be in a general range of 1.6 — 4.8 km (1 to 3 mile).
Equation 5.6 is suitable for a link whose length is in this range. For instance, the sample
size on link 2 for a permitted error of 10% and confidence level of 95% can be

estimated based on traffic flow by:

n, =64210x(1+ 451
' 2.11

x0.05)g~"*" = 71072475 (5.7)

A comparison of required sample sizes calculated from ANPR data and estimated using

Equation 5.7 is shown in Figure 5.12.
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Figure 5.12 Required sample size calculated from ANPR data and
estimated using power regressions of traffic flow
It can be found that for the same link, different number of probe vehicles may be
required under the same traffic flow. However the sample size of probe vehicles
estimated by Equation 5.6 can generally represent average sample size required for

various traffic flow. Therefore, the Equation 5.6 is considered to be useful in early
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planning stages of probe vehicle deployment. For developing and implementing a data
collection plan of a route, the route should be sub-divided into links with the length in
the range 1.6 — 4.8 km. A traffic flow survey for different time interval is needed and
the flow data can be applied to the Equation 5.6 for estimating required sample size. An
alternative way is using video cameras to record journey times of individual vehicles on
a link and calculate the parameters of journey time distribution, applying Equation 5.2
to estimate the sample size of probe vehicles based on desirable permitted error and

confidence level.

5.5.4 Sample size for non-normality period

As discussed above in Section 5.4.2, the journey time distribution over a 5-minute
period will not be normal when the mean of journey time varies greatly during the 5
minutes. In that case, the analysis period should be shortened, for example, using 1-
minute period instead. For the period described in Figure 5.7, the sample size of probe

vehicles required for each minute is shown in Table 5.5.

Table 5.5 Minimum number of probe vehicles for 1-minute interval

Time Minimum required sample size
7:50 2
7:51 2
7:52 1
7:53 1
7:54 1

For the 5-min period, 7 probe vehicles would be required to estimate mean link journey
time. However, the sampling is dependent, e.g. 7 vehicles should be sampled from
different sub-intervals according to Table 5.4. In this case, shorter intervals to update
journey time information is recommended, and journey times at intervals with

inadequate probe vehicles should be estimated by data from adjacent intervals.

In practice, non-normality cannot be identified with a small number of probe vehicles.
Thus, when resulting mean journey time estimated from probe vehicles at an interval

differs greatly from estimates at previous intervals, a shorter update period should be

adopted.
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5.6 Summary

This chapter has used individual journey times logged by video cameras to study
journey time distribution. It has been generally shown to be true that individual journey
times are normally distributed, although non-normality was observed in some cases.
Individual journey times were most likely to be non-normally distributed when average
journey time changed rapidly and substantially, usually when congestion occurred. In
such situations, it would be inappropriate to use a 5-minute time interval to express
journey time. Thus, shorter intervals and a different sampling strategy should be

adopted.

This chapter studied the relationship between average speed and required probe vehicle
sample size. In most cases, changes in mean and standard deviation values of individual
journey times on the same link over a 5-min interval were found to be in a narrow
range, and the required sample size for the same link remained stable. However, in
congested traffic, i.e. very low mean speeds, fewer probe vehicles were needed, whilst
in light traffic, an extremely large sample size of probe vehicles may be required. By
using the percentage of traffic flow as parameter to describe the required sample size of
probe vehicles, the relationship between traffic flow and the required probe vehicle
sample size can be represented by a power regression equation. The equation is useful

in early planning stages of probe vehicle deployment.

It is not surprising that different links require different numbers of probe vehicles for a
desirable statistical accuracy. Factors affecting probe vehicle sample size include link
length and traffic condition on the link. The results indicated that shorter links require a
larger number of probe vehicles. With a similar length, a link that carries heavier traffic
requires a smaller sample size of probe vehicles. The sample size will also be
determined by the use to which it is put. If traffic flows are low and there is no
congestion, an accurate journey time may not be necessary with for management

proposes or as information to drivers, who can select their own desired speeds.
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Chapter Six

Incident Detection

6.1 Introduction

Incidents are responsible for a significant proportion of delays and costs to the
motoring public. In addition to the duration of an incident, an incident history can be
considered as four critical phases (shown in Figure 6.1). It is estimated that peak-period

incidents are responsible for more delay than recurrent peak-period congestion.
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Figure 6.1 Phases of a traffic incident

Source: Highway Capacity Manual (1994)

Although incidents have been discussed widely, their complexity has meant that there
is no common agreement on the definition of an incident. In this research, an incident
has been defined as “any non-recurrent event which causes reduction of roadway
capacity or abnormal increase in demand” (Weil et al., 1998). According to the
magnitude of the impact, incidents can be divided into two categories: major and minor
(see Table 6.1). The majority of incidents are minor, such as flat tyres, overheating and
out of fuel. Minor incidents will, in general, only result in a vehicle being parked on the
hard shoulder. Although a minor incident lasts less than half hour, 65% of the total
delay caused by incidents are attributable to this category. Major incidents contribute
35% of the overall incident caused delays, constituting severe capacity reduction
according to how many lanes are blocked or whether there are accompanying injuries
associated with the accident. One study of FHWA (1998) showed that an incident

removed to the shoulder on a three-lane facility still reduced capacity by one-third; a
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single-lane blockage reduced capacity by 50 percent; a two-lane blockage reduced
capacity by 79 percent. Table 6.2 summarises the effect of stalls and accidents on

capacity for motorway sections with three travel lanes per direction.

Table 6.1 Incident magnitudes

Characteristic Minor Major

Duration < V2 hour > 14 hour

Blockage Hard shoulder area only One or more travelled lanes
Contribution to overall 65% 35%

Incident-caused delay

Table 6.2 Typical capacity reductions during incident conditions

Type of incident Number of lanes blocked Capacity reduction
Accident on shoulder 0 26%
Vehicle stall 1 48%
Non-injury accident 1 50%
Severe accident 2 79%

(Source: FHWA 1998)

Incident detection is the process that brings an incident to the attention of agencies
responsible for maintaining traffic flow and safe operations. Impacts of incidents can
be reduced through a variety of actions including broadcasting traffic information,
ramp restrictions or closure, and alternative route suggestions. Detection of incidents
also helps agencies respond more quickly to remove the problem and to warn the
oncoming traffic, thereby reducing the danger of secondary incidents. In the MIDAS
(Motorway Incident Detection and Automatic Signalling) system on the M1, after
detecting the presence of moving or stationary traffic, signals of 50mph advisory speed
limit is set upstream of traffic queues. Analyses have found that a net reduction of 18%
in personal injury accidents and a raw reduction of 28% in accidents could be attributed

to the scheme (McDonald et al., 2000).

There are a number of automatic incident detection (AID) algorithms reported in the

literature. The common source of data for AID algorithms is inductive loops, which



Incident Detection

provide traffic measures such as occupancy and volume on the roadway. For example,
the MIDAS system uses the “High occupancy algorithm” (HIOCC) to process signals
from inductive loops spaced at 500m intervals. With the introduction of automatic
vehicle location (AVL) and automatic vehicle identification (AIV), probe vehicle based
AID algorithms have been developed and most of them are based on large sample sizes

of probe vehicles (Mahmassani et al., 1999).

In this study, the sample size of probe vehicles is assumed to achieve only the required
minimum number estimated in Chapter 5, and measure of probe vehicles is journey
time for a given roadway segment and a time interval. It is expected that an incident
can cause significantly higher journey time than normally experienced at that specific
time of day. The aim in this chapter is to use the average journey time data measured
by probe vehicles for incident detection. Since probe vehicles provide only journey
time, an incident cannot be detected unless the incident has caused delay in journey

time.

6.2 Literature Review

6.2.1 Methods for evaluating algorithms

Standard evaluation of incident detection has been widely accepted. Three quantitative
measures are commonly used to evaluate freeway incident detection algorithms:
eDectection Rate (DR): defined as the ratio of the number of incident cases correctly
detected by the algorithm to the total number of incident cases known to have occurred.
el'alse Alarm Rate (FAR): defined as the ratio of the number of false alarm cases to the
total number of applications or decisions made by the algorithm;

eDetection time: defined as the time it takes the algorithm to signal the incident after its

occurrence.

Traditionally, an incident detection algorithm is evaluated by detection rate versus false
alarm rate curves—where the higher the curve, the better the algorithm. This evaluation
has been and continues to be a useful tool for practitioners and traffic operators. DR-

FAR curves treat all incidents with equal importance. That is, failing to detect a low-
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impact breakdown on the shoulder contributes equally towards the non-DR as missing
a major accident that causes hours of congestion. From a practical point of view, this is
a fundamental flaw. Petty et. al. (2002) has proposed a new evaluation method of a
cost-benefit analysis where cost mimics the real costs of implementing algorithm and

benefits from reducing congestion.

6.2.2 Automatic incident detection algorithms

The following data sources are commonly used to detect incidents:

o Roadway detectors

e Video and closed circuit television

o Probe vehicle: Automatic Vehicle Identification (AVI) and Automatic Vehicle
Location(AVL)

e Cellular telephone (Emergency Phone) and motorist aid call boxes

e Service patrols and law enforcement

The most common data source for AID algorithms is loops, which provide traffic
measures such as occupancy and volume on the roadway. Other roadside sensors, such
as ultrasonic transmitter/receivers, microwave transmitter/receivers are also used in
incident detection. A recent development has been the application of image processing
techniques that use video cameras to monitor a section of the road and detect incidents
by pattern recognition. Since probe vehicles provide direct journey times of individual
vehicles, existing AID algorithms using probe vehicle data is based on the premise that
incidents cause the journey times to increase significantly over the journey time

normally experienced at that specific time of day.

6.2.2.1 AID algorithms based on loops

Numerous AID algorithms have been developed and reported in the literature. Most of
these algorithms are based on inductive loops and use the lane occupancy and volume
values averaged over a time interval. Based on video image processing, video detectors
can also be used for the same purpose. Michalopoulos et. al. (1993) described a
machine vision-based algorithm in which a single camera could provide similar traffic

measures as an inductive loop in multi-locations within the camera’s field of view, thus
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replacing many loops. With the development of image processing technology, video
detectors can now provide more traffic information, such as vehicle journey time and

stopped vehicle detection (Sachse, 2002).

Stephanedes et al. (1992) and Sethi et al. (1995) divided existing AID algorithms into
two broad categories: comparative (or pattern recognition) algorithms and time-series
algorithms. Comparative algorithms rely on the principle that an incident is likely to
increase significantly occupancy upstream while reducing the occupancy downstream.
Current values of occupancy are compared against preselected thresholds to detect an
incident. Time series algorithms forecast short-term traffic flow based on observed
traffic flow in previous time intervals. If the predicted flow differs significantly from
the observed flow (i.e. the deviation is greater than a predefined threshold), an incident

is declared.

The California algorithms are widely known comparative algorithms. As many as 10
variations of these algorithms have been developed since 1970s. All of these
algorithms use the lane occupancy values at one or two adjacent stations as input and
compare them with preselected thresholds to characterize the state of the traffic flow.
In the original California algorithm, California algorithm #1, traffic flow is
characterized as either incident or incident-free states based on three simple
comparisons to preselected thresholds. An incident is detected when upstream
occupancy is significantly higher than downstream occupancy (Test 1), and upstream
occupancy has increased during the past 2 min (Test 2) as well as downstream
occupancy has adequately decreased during the past 2 min (Test 3). Test 3
distinguishes an incident from a bottleneck situation by indicating that a reduction in
downstream occupancy has occurred over a short period of time as a result of the

incident (Mahmassani et al., 1999).

Later California algorithms extended this simple logic by increasing the number of
logic decisions made and the number of traffic flow states reported by the algorithm.
California algorithm #8 uses both temporal and spatial occupancy values as input and
classifies traffic into five states: incident-free, compression wave, tentative incident,
incident confirmed, and incident in progress. Since the algorithm suppresses the

signalling of an incident for a specified number of time periods after a compression
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wave is detected, it reports an incident only after the incident condition has persisted
for a while. The algorithm needs six parameters, presented in Table 6.3, for calibration.
Five of them ( 7, to P,) are thresholds for occupancy-based values, while parameter £
specifies the number of time periods the algorithm will wait for a compression wave

condition to persist before signalling an incident.

Table 6.3 Definition of Parameters Used in California Algorithm #8

Parameter Definition

P Threshold of occupancy difference between consecutive stations

P, Threshold of percent occupancy change at downstream station

P, Threshold of percent occupancy difference between consecutive
stations

P, Threshold 1 of occupancy at downstream station

P, Threshold 2 of occupancy at downstream station

P, Number of compression wave suppression periods

(Souce: Karim and Adeli 2002)

Time-series algorithms employ a time-series model to provide short-term forecasts.
Significant deviation between observed and forecast values are attributed to incidents.
The first three algorithms in this class, the standard normal deviation algorithms,
calculate the mean and standard deviation of occupancy for the last 3 to 5 minutes and
detect an incident when the present value differs significantly from the mean in units of

standard deviation.

Ahmed and Cook (1982) developed the autogressive integrated moving average
(ARIMA) algorithm, in which an ARIMA model provides short-term forecasts of
occupancy and associated 95 percent confidence limits. An incident is detected when

the observed occupancy values lies outside the confidence limits.
Unlike the other algorithms that use mainly occupancy data, the McMaster algorithm is

based on a two-dimensional analysis of the traffic data. It proposes separating the flow-

occupancy diagram into four areas corresponding to different states of traffic
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conditions. Incidents are detected after observing specific changes of the traffic state in

a short time period (Mahmassani et al., 1999).

Besides the previous approaches, which use aggregate traffic data average over 30 to
60 sec, Collins et al. developed the HIOCC algorithm at the UK Transportation
Research Laboratory (TRL) on the basis of one-second instantaneous occupancy data.
The algorithm seeks several consecutive seconds of high detector occupancy in order to
identify the presence of stationary or slow-moving vehicles over individual detectors
(Abou-Rahme et. al., 2000). A weakness of this method is the lack of an effort to
distinguish  incidents from other congestion-produced traffic phenomena

(Michalopoulos, et. al., 1993).

AID algorithms also take advantage of insights gained from research in traffic flow
modelling. Willsky et al. (1980) proposed using macroscopic traffic modelling to
describe the evolution of spatial average traffic variables (speed, flow and density),
thus capturing the dynamic aspect of the traffic phenomena to alleviate the false alarm

problem.

Stephanedes et al. (1992) concluded certain limitations of the above algorithms. The
limitations result mainly from two sources: (a) the use of row data with only limited
filtering and (b) the lack of effort, or effectiveness of effort, in distinguishing incidents

from incident-like traffic sitvation.

Over the last decade, the development of incident detection algorithms has gained an
advantage over conventional techniques by emergent mathematical tools, such as
neural network, fuzzy logic and wavelet transform (Cheu and Ritchie, 1995; Sachse,
2002; Adeli and Samant, 2000). Although still using flow speed and occupancy data
from loop detectors or video cameras, a number of new algorithms have been

developed based on new techniques.

Neural networks use parallel and distributed information processing structures that
mimic the simplified operation of a human brain. Consequently, neural networks are
capable of performing a non-linear mapping between inputs and outputs. For example,

associating patterns in traffic data with various traffic conditions. Cheu and Ritchie
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(1995) employed three types of neural network models for freeway incident detection.
The models were developed and tested with simulation and field data from a study site.
Test results with simulation and field data have shown that the neural network models
had lower false alarm rates and lower detection rates than California #8. Newly
developed algorithms of neural network have been applied rapidly to AID algorithms.
Dia and Rose (1997) investigated a multi-layer feedforward neural network AID model
using speed, flow and occupancy data. Jin et al. (2002) developed a constructive

probabilistic neural network AID algorithm based on a mixture of Gaussian models.

Fuzzy logic is a branch of mathematics that allows the introduction of a quantifiable
degree of uncertainty into the modelled process in order to reflect ‘natural’ or
subjective perception of real variables. The way fuzzy logic works is through the use of
fuzzy sets, which are different from traditional sets, which can be described as ‘yes/no’
or ‘black/white’. Traditional sets impose rigid membership requirements as an object 1s
in the set or not. In contrast fuzzy sets have more flexible membership requirements
that allow for partial membership in a set. A fuzzy logic AID model has been applied
to a motorway control system on the N2/N3 motorway near Basel, Switzerland (Sachse
2002). Good progress has been made with the fuzzy approach with decreasing
detection time and rate of false alarms. The fuzzy membership functions and key
parameters can be determined with neural networks and expert systems. Lin and Chang
(1998) proposed a fuzzy-expert system, which functioned to detect not only the
occurrence of incidents, but also their located lanes and the resulting type of severity.
With such information, the traffic control centre can better advise drivers to make
necessary lane changes and take timely actions to minimise the impacts of incident on

traffic conditions.

Recently, researchers have investigated discrete wavelet transformation-based incident
detection algorithms. Karim and Adeli (2002) created a fuzzy-wavelet Radial Basis
Function Neural Network (RBFNN) freeway incident detection algorithm. The
algorithm was a single-station pattern-based freeway incident detection model. The
characterising pattern used was a time-series of upstream lane occupancy and speed.
Wavelet-based de-noising, fuzzy clustering, and neural network classification were
used to reliably identify incident and non-incident conditions from the time-series

pattern. Using the algorithm, a zero false alarm rate was reported.
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6.2.2.2 AID algorithms based on probe vehicles

Sethi et. al. (1995) developed a probe vehicle algorithm based on two cases: using large
numbers of probe vehicles and using fewer probe vehicles. The algorithm compared
current journey time reports to historical average journey times for the corresponding
link, day type, and time period to infer the presence of incidents. The primary effect of
reducing the number of probe vehicles was to increase the critical journey time ratio
(the ratio of current to historical journey time above which an incident is declared).

This increase in the critical value is shown in Table 6.4.

Table 6.4 Critical journey time ratios for declaring incidents

“Number of probe reports Journey time ratio
! 3.50
2 3.45
3,4 2.80
5,6,7 2.60
8, ..., 15 2.40
15,16, ... 1.45

(Source: Sethi et al, 1995)

Balke et al. (1996) reported an algorithm which used probe- measured average journey
time for every 15-min interval. The algorithm was developed using the statistical
principle of standard normal deviate (SND). The standard normal deviate for the
normal distribution is referred to as the Z value. The SND principle, when used with
journey times, compares a current probe-provided journey time with the expected

journey time derived from historical data using the following formula:

snp = 1= (6.1)
S

where J7 =journey time measured by the probe vehicle at a given time;

JT = historical journey time on link for a given time interval of day; and
s = standard deviation about the historical journey time for the given time

interval of day.

Essentially, the SND establishes confidence intervals of historical journey time.

Reorganising Equation 6.1, the SND algorithm takes the form:
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JT = JT + (SND)(s) (6.2)

Using this formulation, an incident alarm is declared if reported journey time x exceeds
the confidence interval of JT + (SND)(s). The algorithm provided a mechanism for

detecting when a probe-measured journey time was outside a range that could be
considered typical for the link at a specific time of day and day of the week. If journey
times are normally distributed, SND value of 2 means that 97.72% of the distribution
can be expected to fall within the interval defined by the SND value. Five selected

critical SND values and corresponding percentage values are list in Table 6.5:

Table 6.5 Critical SND values and corresponding percentage values

SND Percentage Value
20 97.2%
2.5 99.38%
3.0 99.87%
3.5 99.98%
4.0 99.9968

Hellinga and Knapp (2000) described three time-series algorithms using AVI data: the
confidence limit algorithm, the speed and confidence limit algorithm and the dual
confidence limit algorithm. The three algorithms use 20-s time interval for journey
time reports that is equal to fifteen probe vehicles for a 5-minute interval. The premise
for all three models is that the journey time experienced by vehicles over a section of
roadway increases more rapidly as a result of a change in capacity than as a result of a
change in demand. Therefore, each of these algorithms attempts to characterise the
mean and variance of the journey times associated with the traffic conditions before
and after an incident. When an incident occurs, the statistical characteristics of journey
times change. Thus, the journey times before and after an incident can be thought of as
belonging to different populations. The algorithms attempt to determine if reported
journey times are outside of the confidence limits associated with the current

population, and if so, it is assumed that an incident has occurred.
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6.2.3 Summary for AID algorithms

Traditionally, AID algorithms have been divided into two broad categories:
comparative (or pattern recognition) algorithms and time-series algorithms.
Comparative algorithms compare traffic measurements upstream with those
downstream to identify an incident while time series algorithms compare cuirent
measurements with observed data in previous time periods. However, there are now
pattern-based time-series AID algorithms which use principles of both comparative and
time-series algorithms (Adeli and Karim, 2000). In the last 10 years, a number of
modern mathematical tools, such as neural network, fuzzy logic and wevelet
transformation, have been applied in AID algorithms. The algorithms using one or
more modern mathematical techniques rely on highly complex computation models
rather than traditional mathematical functions. This characteristic discriminates these
algorithms from traditional algorithms. Therefore, the author considers AID algorithms
as falling into two new categories: classic algorithms and modern algorithms. Classic
algorithms are wholly model-based approaches using statistical principles for
characterising incident and non-incident traffic conditions. In general, modemn
algorithms are computationally intensive algorithms, which may require high cost for

software.

6.3 Methodology

6.3.1 Incident Data

Logs of incident descriptions provided by the Highway Agency and Hampshire
ROMANSE Office were used for model evaluation. Information entered for an incident
reported included the following:

e Date and time the incident was reported

e Location of the incident

e Type of incident (whether it was an accident, a stalled vehicle, etc.)

e Brief description of the incident and the resulting traffic conditions.
The incident logs contained firsthand accounts of accidents, stalled vehicles, and other
capacity-reducing events. However, since the logs were not always involved in every

incident on the motorway area studied, it was difficult to obtain real values of the false
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alarm rate. Furthermore, the exact times of occurrence of incidents were unknown,
therefore detection time could not be determined in this research. Since incidents
reported in the log occurred only on link 1, link 2, link 3 and link 5, only these four
links were studied for AID algorithms. In addition, since major incidents on the four
links occurred only during morning peak periods, morning peak hours of 6:00-9:30

were used for model development and validation.

6.3.2 Model Input

In this research, an AID model has been developed using average journey time
measured by probe vehicles. Since sufficient probe vehicles were not deployed on the
survey site, individual vehicles recorded by Automatic Number Plate Recognition
(ANPR) cameras were randomly selected to simulate ‘probe vehicles’. The number of
probe vehicles for each link was assumed to achieve only the required sample size
estimated in Chapter 5. As discussed in Chapter 5, in a 5-min interval, even for the
same link, different sample size may be required in different traffic. However, a
uniform sample size for each link was used to simplify computation of model input.
The sample size used is the mean sample size estimated for 95% confidence level and

10% permitted error, as shown in Table 6.6.

Table 6.6 Required number of probe vehicles for each link

Link number Required number of probe vehicles
1 6
2 6
3 4
4 5

For a 5-min period, the required number of individual vehicles was randomly selected
from the ANPR database and average journey times of the selected vehicles were used
as the model input. It was assumed that there were the required minimum number of
probe vehicles to estimate journey times in each 5-min interval in the morning peak
hours of 6:00 - 9:30. Therefore, in every morning, there were totally 42 estimates of

average link journey time, denoted by J7,, i=1,2,...,42. For example, J7; denoted the
link journey time of 6:00-6:05 on the given segment, and J7,, denoted the link journey

time of 9:25-9:30,
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Duration of an incident can be affected by many uncertain factors, depending on the
incident characteristics, severity etc. The incident data collected in this study has
shown that the average duration of an incident was about one hour. Therefore, once an
incident was declared, it was assumed to last one hour and the detection task was
resumed after the assumed incident duration had elapsed. Of all incident data collected
in this study, the longest duration of incident was 2.5 hours. Within 1.5 hours after
resuming the detection task, if further incident was declared, journey time data from
ANPR was used to identify whether it is the same incident. If it was the same incident,
i.e. the effect of the incident lasted longer than one hour, the test was considered
invalid. If the effect of the incident had been eliminated before and there was no new

report of incident, the declaration was considered a ‘false alarm’.

6.3.3 Proposed algorithm

Not all motorway incidents impede traffic flow enough to affect journey time on a link.
An incident was assumed to affect link journey time if it blocked part or all of the link
or resulted in ‘rubbernecking’ by drivers. Rubbernecking refers to the action of drivers,
who pass an incident slowly and observe the incident scene. Since probe vehicles
provide only journey time (or mean space speed) on a motorway link and in a time
period, an incident can not be detected unless the incident has caused delay in journey

time.

The research described in this chapter relates to incident detection using average link
journey times measured by probe vehicles. An incident detection model has been
developed based on the premise that an incident causes link journey times to increase
significantly over the link journey time normally experienced at that specific time of
day. Previous algorithms have detected an incident using few probe vehicles, when a
real-time observation of journey time exceeded a threshold expected according to
historical data. However, since longer link journey time can be obtained also under
non-incident congested conditions, using link journey time data for incident detection

may be unable to distinguish incidents from other congestion-produced traffic

phenomena.
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When an incident occurs, the capacity at that location decreases. Journey time over the
road segment increases more rapidly as a result of a change in capacity than as a result
of a change in demand, 1.e. the reduction in capacity that results from the occurrence of
an incident causes larger magnitude of increase in link journey time over a time
interval than increase of traffic flow does. Therefore, the magnitude of increase in link
journey time can be used to characterise incident and non-incident condition. An
incident can be characterised by testing: (1) How much does link journey time

increase? (2) How rapidly does link journey time increase?

Two variables were used to characterise an incident: link journey time and difference in
Jjourney time between two adjacent time intervals. Bivariate analyses were used to
study statistical characteristics of two variables as well as their relationship in incident
and non-incident traffic. A BivariatE Analysis Model (BEAM) was developed using
two variables. The model identified an incident by comparing current link journey time
measured by probe vehicles not only with historical link journey time for the specific

time interval of day but also with link journey time obtained in the previous time

interval.

6.4 Model development

6.4.1 Variable definition

Two variables are used to describe the characteristics of journey time in incident
condition: link journey time J7 , and the difference of link journey time between two
adjacent time intervals, which is defined as:

DT, = JT, - JT, (6.3)
As introduced in Section 6.3.2, with 5-min interval, in every morning there is a total of
42 observations of link journey journey time, denoted by JT,, i=1,2,...,42. Since DT,

expresses the change of link journey time from the previous time interval, there are 41

observations, denoted by DT, i=23,....42.

With the definitions of the two variables, a time series of link journey time can be

transformed from one-dimension data into two-dimension. J7, and DT, observed on a
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link at a time interval are considered as a bivariate sample. Thus, bivariate analysis
method of statistics can be used to characterise journey time in incident and non-

incident conditions.

6.4.2 Bivariate Analysis

Data collected in non-incident condition will be shown that the joint distribution of J7,
and D7, is bivariate normal and detailed analyses are referred to Section 6.4.3.3. The
joint distributions of J7, and D7, describe not only spreads of J7, and D7, but also
the relationship between J7, and D7,. A detailed description of bivariate normal

distributions can be found in Appendix C1. J7, and D7, at a time interval in non-

incident traffic condition can be considered as one sample point of the bivariate normal
distribution, while data observed in incident traffic can be considered as outliers of the
distribution. The task of incident detection is therefore one of checking for outliers in

bivariate normal distribution.

The bivariate normal density is given by:

;
JT — 11, JT. — 11,

FUTLDT) = expl—=| 7 Hm | g e (6.4)
2| DT, — Hpr, DT, = Hpr

2172 . . A
where ¢, =270 ,,0,, (1-p, )""? and the covariance matrix > = { ;

A measure of the strength and direction of association between variables is provided by

the correlation coefficient:

Pi = O rpr /(7,1'/; Oy (6.5)

Therefore, the bivariate normal density contains five parameters i, , {0 7,0
and p,. For bivariate normal distribution, elliptical contours can be used to study the

distribution of the density over the J7, - DT, plane. The equation
JT—u, | [JT —u,,
T Hr s-i F T Hr — (6.6)
DT, = py, DT, = 1ty
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describes an ellipse in the J7,- DT, plane with centre at (z,,,1,, ). As Kk increases,
the area of the ellipse increases. For the bivariate normal density, the constant & on the

right-hand side of Equation (6.6) is equal to /1/542. The elliptical contour contains

average 100(1-« )% of the sample points. If a sample plot of (J7,, DT)) lies in the
elliptical contours, the Equation (6.7) should be fulfilled and the sample is considered
as non-incident data. Otherwise, when the sample plot lies outside the elliptical

contours, an incident is declared:

T — 1, g T — 1.
R IR T 6.7)
DT, = pty, DT, = pyy,

In this research, two elliptical contours containing 99% and 99.9% of the distributions
respectively were constructed. Each observation of (J7,, D7) was compared with

corresponding elliptical contours to check for outliers (incidents). Figure 6.2 shows
observations of 10 days on link 2 and the time interval of 7:40-7:45. Some plots are
displayed inside both contours and these indicate non-incident condition. The plot
outside the external elliptical boundary would result in an incident being declared. The
plot displayed outside the 99% coverage contour but inside the 99.9% coverage
contour results in an incident being declared with 99% contour but not with 99.9%

contour. The sensitivity of different contours has been studied in the following

evaluation.
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Figure 6.2 99% and 99.9% coverage contours
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6.4.3 Parameter Estimation

6.4.3.1 Link Journey Time

Observations of average journey time on the same link for the same interval were
considered as the population studied, and average journey times at each of the 15 days,
provided by ANPR, were considered as a sample of the population. For example, to
estimate the journey time distribution on link 2 at the 23rd time interval (7:45-7:50),

observations of J7,; at each of the 15 days were used, as shown in Table 6.7.

Table 6.7 Sample of JT,,

Day 21/5 22/5 23/5 24/5 25/5 2/9 3/9 4/9 5/9 6/9 16/9 17/9 18/9 20/9 21/9

JT5 (s) 91 91 132 88 90 141 94 97 196 166 106 145 101 124 g4

The Kolmogorov-Smirnov Test (K-S test) was used to assess and confirm that journey

times were distributed normally. The mean and standard deviation of J7,, were

estimated from the sample:
fyy, =116s

— 21 u
Oy, =33.45

For each of the 42 time intervals in the morning peak hours, J7,, i=12,...,42, have

been shown to be normally distributed. The normal distributions have time-varying
means and standard deviations. Due to the limited sample size, the directly estimated
means may include noise and a smoothing process was needed. Figure 6.3 shows the

smoothed mean of J7, over the morning peak period. Smoothed standard deviations of
JT at each time interval are shown in Figure 6.4. The results indicated that larger

values of standard deviation are most likely to be obtained at busier time, i.e. 7:30-
8:30. That is, average journey time for the same time interval can be very different
from day to day. Average journey time and standard deviation discussed here are
different from those discussed in Section 5.5.1. In Section 5.5.1, average journey time
is the mean journey time of all vehicles on a link in a time interval, and standard
deviation is calculated from journey times of all vehicles on the link in the time

interval. In this section, however, mean journey time and standard deviation describe
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how different average journey times of all vehicles for the same link in the same time

interval can be from day to day.
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Figure 6.3 Mean of link journey time at each time interval
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Figure 6.4 Standard deviation of link journey time at each time interval

6.4.3.2 Difference of link journey time between adjacent time intervals

The distribution of DT, at each time interval was studied using data from the same 15

days. Normal distributions have been shown for each time interval. Mean and standard
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deviation of DT, are shown in Figure 6.5. For time intervals before 6:30 and after 9:00,
DT is zero due to the stability of journey time in this period. Increasing of journey
time from 7:00 to 8:00 gave DT, positive values, while negative values of D7 in the
period of 8:00-9:00 were obtained due to decreasing of journey time. Similar to J7,,

larger values of standard deviation were obtained in busier time.
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Figure 6.5 Mean and standard deviation of difference of journey time
at two adjacent time intervals

6.4.3.3 Correlation Coefficient

Both J7T, and DT have been shown to be univariate normal. However, it is not
necessarily true that J7, and D7 will be bivariate if both J7, and D7, are univariate
normal. The correlation coefficient p, measures the strength and direction of
association between J7T, and DT,. For the time period when the journey time is stable,

L.e. before 6:30 and after 9:00, p, =0, i.e. J7, and DT, are independent. In this case,
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the joint density can be written as the product of the densities of J7, and DT, and

hence the joint density is bivariate normal.

During the time period when the journey time increases or decreases substantially and
quickly, large positive values of p, were obtained, indicating a strong positive
relationship between J7, and D7,. Relatively weak relationship between J7, and D7,
was obtained in the time intervals when J7, was increasing or decreasing slightly. The
correlation coefficient at each time interval were estimated as the following:
0 ie[2,6]U[37.40]
0.2 ie[7,12]U[32.36]

0.5 i e[19,31]
0.8 ie[13,18]

p, = (6.8)

For the time intervals with non-zero correlation, the distributions were determined be
bivariate normal by using Mahalanobis Distance. The assessment of bivariate

normality is introduced in detail in Appendix C2. After estimation of the five
parameters of the