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by Yanying Li 

This thesis presents a study of the use of GPS equipped probe vehicle to collect traffic data on a 

motorway network. The performance of the GPS information in journey time estimation has been 

studied by comparing the results against video camera data and the various factors affecting estimation 

accuracy have been discussed. By discontinuing the use of Selective Availability, one of the main error 

sources of GPS, current positioning accuracy without Differential GPS is sufficient for journey time 

estimation. 

Two types of GPS equipped probe vehicles, active and passive, have been studied. A passive probe 

vehicle was considered to provide only link journey time and a minimum number of probe vehicles is 

required for reliable estimation. This research has studied the distribution of individual journey times 

and calculated the sample size of probe vehicles required in different traffic conditions. The sample size 

has shown to be generally stable for the same link, but may decrease in heavier traffic. The use of real-

time estimates of journey time by probe vehicles has been studied for incident detection and journey 

time prediction. Link journey times at current time intervals and the differences in Journey times 

between two adjacent time intervals have been shown to be bivariate-normally distributed in incident-

R-ee traffic. Outliers of the distribution were considered to be observed in incident traffic. A bivariate 

model has been developed for incident detection and a satisfactory detection and false alarm rates have 

been achieved. Journey times were predicted based on current observations and historic data for incident 

and incident-free conditions. 

An active probe vehicle was found to be able to determine vehicle position and speed at 1 Hz frequency 

over an entire journey. By analysing the speed profile of probe vehicles, j ou rney times can be estimated 

from fewer probe vehicles than normally required. In this research, a fuzzy model was developed to 

analysis speed profiles, and journey time could be estimated using a single probe vehicle. Satisfactory 

estimates were obtained in both non-incident and incident conditions. Combinations of average speed 

and deceleration rates were used for incident detection. 
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Introduction 

Chapter One 

Introduction 

1.1 Background 

Motorways were originally conceived and designed to provide continuous, free-flow, 

high-speed movement of traffic on limited-access facilities. Initially, little 

consideration was given to providing for the needs of traffic management and control 

systems to maintain a high level of mobility on these facilities. However, as traffic 

continued to grow, motorways became more congested. Today, it is recognised that the 

previous approach of constructing more motorway lane-miles to relieve congestion is 

often politically and socially unacceptable and economically infeasible (Carvell et al., 

1997). Motorway management systems are a primary means of making the best 

possible use of the existing motorway network. Motorway management systems make 

use of control strategies, and operational activities such as information dissemination 

and incident management to reduce the occurrence of congestion and lessen its 

duration and extent. 

In a motorway management system, a sound and timely database is key to performing 

management functions, such as measuring traffic conditions and making control 

decisions. Many technologies are available for collecting traffic data. Although 

inductive loop detectors are currently used most &equently, other technologies are 

begirming to replace loop detectors in many applications (Nelson, 2002). Table 1.1 

provides summaries of the characteristics for some embedded and non-intrusive 

detectors. The cost estimation is mainly based on the Freeway Management Handbook 

(Carvell et al., 1997). However, because of the decreasing cost of wireless 

communication in the last few years, the cost estimation for Automatic Vehicle 

Location (AVL) is according to the PRELUDE project (Kroes et al., 1999). 
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Disadvantages of each detector based on current techniques and market penetration 

have been summarised by Suermen (2000) (Table 1.1). 

Table 1.1 Summary of traffic detectors 

Detector Type Detector Estimated Annual Operation 

and M a i n t e n a n c e cos t 

Main Disadvantages 

Embedded Induc t ive 

L o o p 

EI 50-^200 per station Installation and maintenance 

require lane closure 

Non- intrus ive M i c r o w a v e 

Radar 

t l 50-^6200 per station May lock on to the stronger 

signal (e.g. large truck) 

Non- intrus ive 

Infrared EI 50-^200 per station Operation affected by 

precipitation (e.g. rain, fog) 

Non- intrus ive 

Ultrasonic f IS0-E200 per station Performance affected by 

environmental conditions 

(e.g. temperature, humidity) 

Non-intrus ive 

Acous t i c f I 5 0 - f 2 0 0 per station High level of special 

maintenance capacity is 

required 

Non-intrus ive 

V i d e o Imaging f 3 5 0 per station Performance affected by 

weather and light 

Probe Veh ic l e s A u t o m a t i c 

V e h i c l e 

Iden t i f i ca t ion 

5 3 5 0 per station Generally rely on automatic 

toll collection systems 

Probe Veh ic l e s 

Global 

Posit ioning 

System 

f 150-jE200 per vehic le Insufficient sample size in 

the traffic stream 

It can be found Aom Table 1.1 that Global Positioning System (GPS) equipped probe 

vehicles have the advantages of being cost effective and are not limited to specific data 

collection sites over other traffic detectors. The primary disadvantage of GPS equipped 

probe vehicles is the limited number of vehicles equipped v\dth the device. A statistic in 

2000 has shown GPS device prices have fallen by about 15 to 20 per cent a year 

(Barnes 2000). The decreasing cost has brought a continued growth of the global GPS 

market. As GPS locations become more commonplace in vehicles, the ability of GPS 

tracking to collect vehicle roadway data vyill continue to increase. 
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1.2 Objectives 

This research aims at journey time estimation and incident detection using GPS-

equipped probe vehicles. It has had the following objectives: 

* Link journey time estimation: to calculate motorway link journey time from vehicle 

location data at various GPS sampling frequencies; to evaluate estimation accuracy 

and analyse factors which have a potential impact on accuracy. 

# Sample size determination: to study the journey time distribution of individual 

vehicles under different traffic conditions; to determine the required minimum 

number of probe vehicles using statistical sampling theory. 

# Incident detection: to develop a model using measures of probe vehicles for 

motorway incident detection; to evaluate the model using field incident data. 

* Journey time prediction: to develop a model for predicting motorway link travel 

times under non-incident traffic condition at different prediction intervals; to 

develop a model for predicting duration of incident. 

1.3 A p p r o a c h 

This research starts with a review of current applications of probe vehicles and the 

existing technologies of location and communication used with probe vehicles. In 

application, there are two types of vehicle techniques used in collecting traffic data. 

Active probe vehicles, named as test vehicle in the travel time data collection handbook 

(Turner et al., 1998), are specially equipped for traffic data collection purpose, whilst 

passive probe vehicles have the location and communication equipment installed for 

other purposes, e.g. navigation. 

Although both active and passive probe vehicles have been studied in this research, the 

primary focus has been on passive probe vehicles. In passive probe vehicle research, 

the sample size of probe vehicles is a key issue. By analysing the journey time 

distribution of individual vehicles, the sample size in different traffic conditions has 

been obtained using statistical sampling principles. Since an incident can cause 

significant delays in journey times, an incident detection model is developed based on 

journey time estimates using required number of probe vehicles. Because there are not 
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enough probe vehicles in the traffic stream, journey time prediction is required over a 

short time interval when there is insufficient sample of probe vehicles. In research on 

active probe vehicle, GPS data is used to build detailed speed profiles. Therefore, more 

data in addition to journey time can be obtained. By analysing the speed profiles, 

journey time might be estimated by relatively fewer GPS equipped probe vehicles. 

Since an incident may influence some features of speed profiles, analyses of speed 

profiles are also applied to incident detection. The structure of the thesis is illustrated in 

Figure 1.1. 

Literature Review 
(Chapter 2) 

Data Collection 
(Chapter 3) 

Passii'e Pi-obe Vehicle ^ Acth'e Pmlbe Vehicle 

Journey Time Estimation 
(Chapter 4) 

1 
Speed Profile Analysis 

(Section 8,2) 

Sample Size Determination 
(Chapter j ) 

3 

3 

Journey Time Estimation 
(Section 8.3) 

I 
Incident D ete ction 

(Chapter 6) 
Incident D ete ction 

(Section 8.4) 

1 r 

Journey Time Prediction 
(Chapter 7) 

Discussion and Conclusions 
(Chapter 9) 

Figure 1.1 Structure of the thesis 
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Chapter Two 

GPS Equipped Probe Vehicles 

2.1 GPS technology 

2.1.1 Overview of GPS 

GPS is a US owned space-based system of satellites providing 24 hour, all weather 3D 

position, velocity and time all over the world. The full operational capacity of GPS was 

achieved in 1995 with 24 satellites uniformly distributed in six orbital planes, at an 

altitude of approximately 20,200km. This normal operational configuration ensures 

that at least foui" satellites are visible at any time and from any point on the earth's 

surface. Note that with the current constellation (i.e. 27 satellites and rising) at least 

seven satellites are visible (Ochieng and Sauer, 2002). Although civilians can access 

GPS signals free, the performance of GPS had in the past been limited by the artificial 

degradation of the signal through the process of Selective Availability (SA). The U.S. 

government switched off SA on the first May 2000 to encourage the acceptance and 

applications of GPS. This improves the positioning accuracy of GPS for civilian users 

from vyithin 100 meters to v\dthin 20 meters for 95% of the time (US DoC, 2000). In 

many cases, real-world users find the accuracy to be even better. 

GPS satellites transmit specially coded signals that can be decoded by a GPS receiver 

to determine time, position and velocity of the receiver. This is one-way broadcast 

system, so receivers do not transmit any signals back to the satellites. Since it is a 

passive system, GPS can support an unlimited number of users. Positioning 

measurement of GPS is based on the principle of time of arrival ranging. The time 

interval taken for a signal transmitted from a satellite at a known location to reach a 

GPS receiver is multiplied by the speed of the signals to obtain distance between the 

satellite and the receiver. There are three unknowns (X, Y, Z) to determine position of 

an object. Since the receiver clock is not so precise as satellite clock, the receiver clock 
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bias is considered as the fourth unknown. In a GPS receiver, signals from a minimum 

of four satellites are required to solve the four unknowns (HoAnarm-Wellenhof et al., 

1993). 

In addition to positioning data, GPS also provides speed measurement. There are two 

methods to estimate speed by GPS. The first is to derive speed &om differences in 

position. The second method is to use the Doppler effect. The Doppler shift in the 

frequency measures the relative velocity between the receiver and the satellite along 

the line between them. Velocity measurement using the Doppler effect is almost 

instantaneous and essentially independent of positioning data. Most GPS receivers 

products provide output of the Doppler speed and the measurement accuracy is 0.1 m/s 

with 95% confidence, after the termination of SA (Garmin, 2003). 

Although GPS has many advantages, it suffers from several weaknesses. Civilian GPS 

receivers have potential position errors primarily due to some of the following sources: 

# Ionosphere and troposphere delays — The satellite signal slows as it passes through 

the atmosphere; 

# Signal multi-path — Occurs when the GPS signal is reflected off objects such as 

tall building or large rock surface before it reaches the receiver. This increases the 

journey time of the signal, thereby causing errors; 

# Receiver noise; 

# Orbital errors. 

2.1.2 Applications in transportation 

Since positioning plays an essential role in transportation, GPS can be an effective tool 

in the transportation industry. On-board navigation may be the most visible use of GPS 

technology in transportation, and GPS based Automatic Vehicle Location (AVL) is 

also applied to a variety of areas, e.g. commercial fleet monitoring, public transport 

management and emergency response, etc. AVL combines a GPS receiver with an 

outbound communication link to provide real-time position data for persons and 

vehicles. The communication link can be accomplished through cellular phone 

networks, terrestrial radio or through a separate satellite communication network. 

Because AVL provides real-time location and status of vehicles, dispatchers can make 
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informed decisions. In addition, the real-time map display of AVL can allow 

dispatchers to help guide drivers through unfamiliar areas to reach their destinations 

faster, vital in an emergency response. With support for schedule adherence and 

delivery time prediction, GPS-based AVL can improve public transportation 

management and commercial fleet operations (Shrestha, 2003). A new approach for 

electronic road pricing (ERP) using GPS has been proposed. Different charges could be 

set depending on which roads the driver uses and the time of day. It could cost more to 

use congested routes and during peak conditions (Catling, 2000; Srinivasan et al. 

2002). 

2.2 P r o b e vehicle 

The floating-car has been established as a method of collecting journey time data on 

roads since the late 1920s. Traditionally, this technique has involved the use of a 

vehicle within which an observer (passenger) records cumulative journey time at 

predefined checkpoints along a travel route. This information is then converted to 

journey time, speed, and delay for each segment along the survey route. The driver 

attempts to travel at the speed of the traffic stream and maintain the number of 

overtaking vehicles the same as those overtaken. In Drew (1968), the floating-car 

method was applied to evaluate level of service (LOS) by measuring acceleration 

noise. The rapid development of AVL and automatic vehicle identification (AVI) 

technologies has enabled continuous automatic traffic data collection. Faghri et al. 

(1999) compared the accuracy of journey time data collected by a GPS receiver with 

data collected manually. The conclusion proved that GPS was a more efficient and 

more accurate means of collecting data than manual records. When a vehicle is 

instrumented specially for traffic data collection, it is referred to as an "active" probe 

vehicle. Conversely, "passive" probe vehicles are vehicles that are already in the traffic 

stream for purposes other than data collection. 

To provide real-time traffic data, both active and passive vehicles should maintain 

frequent communications with a central computer which tracks the vehicles along 

travelled route (Kroes et al., 1999). In this research, a probe vehicle is defined as "a 

vehicle, which is equipped with positioning and wireless communication systems 
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providing real-time traffic data by running on road network." Definitions of active and 

passive probe vehicles are summarised in the following sections with characteristics. 

2.2.1 Active probe vehicle 

An active probe vehicle is defined as a specially equipped vehicle for traffic data 

collection that actively gathers information through the monitoring of vehicle 

attributes. Currently, GPS is the common positioning technique used in active probe 

vehicles, as it provides accurate and detailed data over wide areas with relatively low 

installation and operation costs. In most travel time studies involving active probe 

vehicles, only one vehicle is used to characterise traffic flow along a pre-defined route. 

Therefore, errors can occur from human or equipment failures and adequate quality 

control is needed. In addition, detailed data collection (e.g. every second) can cause 

data storage difficulties (Clark and McKimm, 2003). 

2.2.2 Passive probe vehicle 

A passive probe vehicle is one where the location and communication equipment has 

been installed for another purpose, e.g. navigation. A passive probe vehicle provides 

journey time only between two points rather than detailed descriptions of vehicle 

movements over a journey. Passive probe vehicles allow continuous data collection 

with minimal human interaction. If the in&astructure is permanently installed, data are 

collected as long as the probe vehicles continue to travel through the system. 

Probe vehicles can be buses, taxis, commercial vehicles or private cars. However, 

journey time estimates from some vehicles may be biased, for example, heavy transit 

vehicles may take much longer to travel over a road segment than an average value, if 

the traffic stream consists mainly of passenger cars. Buses may have priority by using 

bus lanes. The use of passive probe vehicles is increasing rapidly, for example, in 

Singapore, more than 10,000 taxis from m^or taxi companies are now used as probe 

vehicles for link journey time and speed estimation. The experience from the system is 

that unloaded taxis usually tend to cruise at a lower speed when looking fbr passengers 

(Xie et al., 2001). Hall et al (1999) evaluated the OCTA (Orange County Transit 

Authority) Transit Probe Project in California. The OCTA Transit Probe Project used 
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tracking data from GPS equipped buses for multiple purposes including bus schedule 

adherence and information on roadway traffic. One of the research issues was whether 

the tracking data could be effectively integrated into existing traffic management 

systems. The study found significant problems with the use of buses as probes 

primarily due to differences in the travel behaviour of buses and cars. Turner et al. 

(1998) indicated that a major problem of using private cars as probe vehicles relates to 

privacy issues, as in probe vehicle systems, motorists are monitored throughout their 

entire journey. 

2.3 Applications of probe vehicle 

2.3.1 Data collection techniques 

Probe vehicles can be instrumented with different types of electronic equipment, but a 

common feature is the frequent reporting of vehicle location. Turner et al. (1998) 

provided a comparison of five probe vehicle data collection techniques: 

» Beacon-based Automatic Vehicle Location (AVL) 

* Automatic Vehicle Identification (AVI) 

* Ground-based radio navigation 

. GPS 

» Cellular phone positioning 

Beacon-based AVL systems use several beacons at known locations along the route. 

Beacon-based AVL systems are operated with bus systems in London and 

Southampton (Hounsell et al., 2000). In AVI systems, probe vehicles are equipped with 

electronic tags, which communicate with roadside transceivers to uniquely identify 

vehicles and collect journey times between transceivers. Both beacon-based AVL and 

AVI transmit information from a probe vehicle at fixed points to roadside devices, 

whilst the other techniques can locate a probe vehicle anywhere along a route and 

transmit its position and characteristics at a regular frequency. Ground-based radio 

navigation systems, such as LORAN C, Datatrak, and Omega, had been widely used as 

main navigation means in the past. However, due to vulnerabilities in cost and 

accuracy, they have been replaced by GPS completely, although they are still referred 
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in recent literature as available positioning techniques (Shrestha, 2003). Compared with 

other techniques, GPS has many strong points, e.g. high accuracy, good reliability and 

low cost of device. However, GPS provides only a positioning function and requires an 

additional communication system for transmitting real-time information. Many 

communication systems can be used in GPS equipped probe vehicles and the cellular 

phone is considered to be complementary to GPS. Cellular phones can also be used 

independently for both positioning and reporting. On GSM network, currently sub-50 

metre accuracy has been delivered. For the third generation network (3G), an accuracy 

of sub-20 meters is expected, comparable with GPS (Bartlett and Morris, 2002). In 

Section 2.3.2, several previous research and projects involved probe vehicles using 

beacon-based AVL, AVI and cellular phone are briefly described and applications of 

GPS equipped probe vehicles are discussed later in the section. 

Table 2.1 Comparison of probe vehicle data collection techniques 

Technique 

Costs 

Data 
Accuracy Constraints Technique Capital Installation 

Data 
Collection 

Data 

Reduction 
Data 

Accuracy Constraints 

Beacon-Based 
AVL 

High High Low High Low 
Beacon density 
and placement, 
no. of probes 

AVI High High Low Low High 
No. of probes 
and tag 
placement 

Ground-Based 
Radio 

Navigation 
Low Low Low Low Moderate 

No. of probes 
and size of 
service area 

Cellular phone High High Low Moderate Low 
No. of mobile 
users 

GPS Low Low Low Moderate High No. of probes 

Source: Turner et al., 1998 

2.3.2 Previous experiences 

2.3.2.1 Beacon-based Automatic Vehicle Location 

The Road Traffic Adviser (RTA) project was based on applications of Dedicated Short 

Range Communications (DSRC) beacons, on a demonstration site running the length 

of the M25 and M4 motorways between the M23/M25 junction to the south of London, 

to Wales in the west (McDonald et. al., 2002). Operating at 5.8G Hz, the DSRC 

beacons allowed two-way data transfer between a moving vehicle and a stationary 
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beacon. This technology provides location specific information relevant to the road and 

direction being driven by the user and collects information about recent past 

performance on that road for both road management and driver information purposes. 

Over 70 DSRC beacons are deployed along the test site and linked to two network 

control centres, one in Wales and one in England. Within the RTA project, vehicles 

equipped with on-board units to communicate with beacons played the role of probe 

vehicles to measure journey time and speed, and in turn benefited from information 

collected by other probe vehicles. Within the RTA project, information has been passed 

regarding speed profiles of vehicles between beacons, hence overcoming spatial 

'granularity' problems. However, there would be a delay in the provision of some types 

of information in some cases. For example, data indicating a queue several kilometres 

before a beacon may be out of date when it is transmitted, due to the probe vehicle 

itself being delayed in traffic (Koelbl et. al., 2002). 

As illustrated in Table 2.1, the constraints for systems using beacon-based AVL are 

beacon placement and density, as well as sample size of probe vehicles. Through 

empirical experiment with the RTA project, Brackstone et. al (2001) found that at least 

0.25% of the vehicle population using that road would need to be equipped to ensure 

that representative speed measurements are available. Implementing a system with 

beacon spacing below typical junction to junction distances may have minimal impact 

on our ability to formulate an accurate picture of the average speeds on such links. 

2.3.2.2 Automatic Vehicle Identification 

Many toll agencies in the U. S. and Europe (Nelson, 2003) are using automatic vehicle 

identification (AVI) technology for electronic toll collection (ETC). To validate ETC, 

each vehicle's presence not only has to be detected (identified), but also must be 

recognised as unique. Because an AVI-equipped probe vehicle is uniquely identified, 

its journey time between two roadside readers can be calculated. Some existing ETC 

agencies have begun to use AVI technology for journey time data collection in addition 

to toll processing. Some ETC systems experience between 25 percent to 100 percent of 

all tollway vehicles equipped with ETC on-board units. This provides a large sample to 

collect representative journey time data. 
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Houston was the first city to apply AVI technology for monitoring traffic condition 

(Houston TranStar, 2003). The Texas Department of Transportation has helped to 

develop the TranStar system in Houston which operates an AVI system in order to 

monitor traffic conditions, detect incidents, distribute travel information, and archive 

journey time data. Roadside reader units are being placed at 1.8 to 8.0 kilometre 

intervals along all m^or freeways in the Houston area, including over 483 kilometres 

of highway. Several toll roads in the area have automated toll booths, encouraging the 

acquisition of thousands of AVI transponders by motorists in the area. Over 200,000 

ETC equipped vehicles have been distributed in the area (Turner et al., 1998). 

In New York and New Jersey, the TRANSCOM agency operates the TRANSMIT 

system to monitor traffic conditions with AVI technology. Fifteen roadside readers 

have been deployed at 0.8 to 3.7 kilometres spacing on 29km of highway in the area 

(Chien and Kuchipudi, 2002). 

2.3.2.3 Cellular phone 

The mobile phone is the most popular public communication means today. Cellular 

phones have been used to report journey time manually (Balke et al, 1996), in which 

volunteer drivers call a central facility when they pass checkpoints along the route. 

Location based services in mobile networks is widely considered to be a growing 

opportunity. In the USA the Federal Communication Commission (FCC) has mandated 

the introduction of technology that will enable a caller's position to be pinpointed to 

better than 100m 67% of the time and better than 300m 95% of the time when an 

emergency call is made (Feng and Law, 2002). Europe has started looking at 

requirements for an equivalent system to pinpoint the location of emergency calls from 

mobile phones. New commercial applications are also emerging in which location 

provides an important ingredient to make the service more attractive to users. 

Cellular phone positioning is a kind of radio positioning that uses the propagation 

characters of radio waves. Recently, several cellular phone location technologies have 

been developed. The commonly used cellular phone positioning methods are cell 

identification, signal level, angle of arrival, time of arrival, distance measurement, and 

phase measurement. Some of these methods have been implemented in trial systems 
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and some commercial products have already been introduced. However, no method 

that is superior to all other has been found yet (VTT, 2003). 

Cambridge Positioning Systems Ltd (CPS) in the UK now offers sub-lOOm 

performance of mobile phone positioning on GSM networks with industry plan for 

sub-50m next year. On a mobile network, the positioning accuracy depends on the 

number of Base Stations (BS) are used in a location calculation. The more BS that can 

be measured the better the results. Therefore, better accuracy is achieved in urban areas 

with more BS than in rural areas. CPS tested that 90% of location estimates are within 

lOOm &om the true location in the city centre and within 200m in a suburban area 

(Bartlett and Morris, 2002). Ygnace, Drane and Yim (2000) estimated that with 80 

millions cellular phones subscribers in the U. S., the percentage of cars travelling on 

m^or roads and motorway corridors with a phone switched in the "on" was high 

enough to give a good sample of the travelling population. However with current 

technologies and infrastructure, simulation results (Yim and Cayfbrd, 2002) found that 

in probe vehicle application, current accuracy of cellular phone positioning could 

provide Journey time information for only 68% of freeway segments. 

Current mobile phone location technologies have been anticipated to achieve better 

accuracy on third-generation networks (3G). 3G networks are already a reality in many 

parts of the world. Japan launched the world's first commercial 3G networks in 2001, 

and similar networks are now operating commercially in Austria, Italy, Sweden and the 

UK with more launches anticipated during 2003-2004 (Dunne, 2003). CPS aimounced 

that CPS has developed high-accuracy location technology for 3G networks, which is 

based on principle of observed time of arrival and promises an accuracy of 10-20m, 

comparable with GPS. However, the accuracy will be only achieved in urban areas 

with sufficient Base Stations. 

Despite the low accuracy of cellular positioning, cellular phone equipped probe vehicle 

systems have advantages, such as low establishment costs, two-way communication 

link and great number of users. Yim and Cayford (2002) suggested that widely 

deploying GPS in cellular phones may make probe vehicle methods more attractive and 

realistic. As discussed above, mobile phone solution can provide good accuracy in city 

centres bur worse accuracy in rural areas, while GPS has better performance in rural 
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areas than in cities. Hybrid solution using the complementary nature of both 

approaches to overcome situational weakness experienced by either mobile phone 

network or GPS working alone has been developed. Benefits of the hybrid solution 

(Feng and Law, 2002) include maximum availability, increased sensitivities and 

reduced handset cost and complexity. The hybrid solution is considered to be widely 

installed in future 3G handsets. Therefore, vehicles carrying 3G mobile phones will be 

potential probe vehicles to provide traffic information (QCT, 2003). 

2,3.2,4 GPS equipped probe vehicle 

Many researches have used active GPS equipped probe vehicles for journey time 

studies (Quiroge and Bullock, 1998) and measuring traffic system performance (D'Este 

et al, 1999). In such research, only one probe vehicle was involved, collecting 

positioning and speed data at short intervals, e.g. 1-s. The active probe vehicle method 

is based on the assumption that a probe vehicle represents a good average of the traffic 

stream. Average speed, running time, average speed, variation of speed have been 

calculated to measure traffic system performance and congestion. By repeatedly 

running the probe vehicle along the same route, journey time statistics for different 

time of day and different day were obtained (Clark and McKimm, 2003). 

The earliest large scale application of probe vehicles was the ADVANCE (Advanced 

Driver and Vehicle Advisory Navigation ConcEpt) project in the northwest suburb of 

Chicago, Illinois (Sen et al., 1997). The main aim of ADVANCE system was to 

provide dynamic route guidance to vehicles in study areas. Vehicles involved were 

equipped with GPS-based navigation system and radio frequency modem for 

transmitting and receiving message. With two-way communication equipment, in-

vehicle navigation systems could be used by the traffic information centre to locate 

each equipped vehicle across the network. The equipped vehicles were therefore used 

as "probes" to collect journey time information which was fused with inductive loop 

data to provide real-time estimates. The fused data has been proven to be more efficient 

in journey time estimation and prediction, as well as incident detection. Although probe 

vehicles have some advantages over other technologies, probe vehicles provide only 

speed and journey time, which may be not sufficient for traffic information systems. 

Data fusion that combines information from multiple technologies, including fixed 

sensors and probe vehicles may be a good solution to meet all requirements of various 
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users. Probe vehicle data can be fused with existing detectors, such as MIDAS loops 

spaced at 500m on the Ml between junction 9 and 19 (McDonald et al., 2000). The 

data fusion will provide more sound traffic information more than any source working 

alone. 

The PRELUDE project (Kroes et al., 1999) in Rotterdam in 1997-1999 aimed to pilot 

the use of floating car data, collected using GPS device to provide historical and real-

time information on the Dutch road network. Differential GPS devices on each probe 

vehicle determined location and speed every 10 seconds and the resulting information 

was stored together with time-stamp in an on-board computer. GSM 

telecommunication technology was used to transmit accumulated series of recorded 

time and location data to a central computer every five minutes. This information was 

then used to update a demonstration system on a central computer which displayed 

journey time in almost real-time. 

In the UK, ITIS Holdings Pic has implemented the largest Floating Vehicle Data 

(FVD) system in the world (Cowan and Gates, 2002) to provide journey time statistics 

and real time traffic management information. The FVD system has been collecting 

and storing traffic data since February 2000 with initially only a limited number of 

probe vehicles on the network. Now the system has in excess of 30,000 probe vehicles 

of various characteristics contributing to the gathering of data on live and historical 

traffic conditions. Probe vehicles equipped with GPS and GSM technology regularly 

send data on their current position and speed. The Floating Vehicles include 

commercial trucks. National Express coaches and passenger cars. The information is 

collected and centrally analysed, then transmitted to subscribers of the services in the 

form of up-to-date traffic information. 

The ITIS FVD system is the UK's first commercial application of the probe vehicle 

concept. Commercial provision of the data gathered by FVD commenced during 2002 

and is now providing an ever-growing source of revenue with new customers and uses 

of FVD being identified (Simmons et al., 2002). FVD captures data for motorways, 

urban motorways, A roads and some B roads of the UK road network. These data are 

aggregated into "road timetable" and "congestion schedule" by road and day/time 

category. The FVD system identifies recurring congestion and uses these patterns to 
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predict the future, thus enhancing route planning and navigation. ITIS FVD system 

delivers dynamic traffic content and integrates this with navigation systems. ITIS have 

installed Data Collection Units across the entire National Express coaches as part of the 

strategy for acquiring FVD. National Express is also able to use this to monitor the 

reliability of its services through the use of historical data and to provide better 

customer information services. Control operators of National Express can locate the 

exact position of coaches and the traffic conditions they are driving in. 
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Figure 2.1 The Floating Vehicle Data System 

(Source; Cowan and Gates 2002) 

2.4 Summary 

Probe vehicle has long been considered as an extremely cost effective means of 

monitoring journey times when compared with the alternative of installing fixed 

detectors. The concept is based on reporting location and speed information from 

vehicles travelling the road network to a central information operator. Two types of 

vehicle can be used in a 'probe' capacity to collect traffic data. There are; specially 

equipped vehicle that actively gather information through the monitoring of vehicle 

movement (active probe vehicle), and public transport vehicle, goods fleets or general 

cars that have a passive role (passive probe vehicle). 
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After discontinuing the use of Selective Availability (SA), GPS provides accurate 

position and speed measurement. Currently, active probe vehicle uses GPS to collect 

both position and speed data while passive probe vehicle can use many technologies, 

e.g. automatic vehicle identification (AVI), beacon-based automatic vehicle location 

(AVL), cellular phone positioning and GPS technology. Although each technology has 

its own advantages and disadvantages, GPS is superior to the others with low 

installation and operation costs, good accuracy and unlimited coverage area. In 

addition, GPS provides detailed data continuously along the entire route. Since GPS is 

becoming increasing available as a consumer product for in vehicle navigation and 

monitoring, large samples of passive probe vehicles can be obtained. Large scale 

applications of GPS equipped probe vehicles in the ADVANCE project have shown 

encouraging results for journey time estimation and incident detection. A number of 

commercial services based on GPS/GSM equipped probe vehicles are already 

operating in the UK. The ITIS Holding Pic uses in excess of 30,000 commercial and 

other vehicles as probes for the gathering of live and historical traffic data for UK's 

major roads and motorway corridors. 

This PhD research focuses on using GPS-equipped probe vehicles for journey time 

estimation and incident detection. Both active and passive probe vehicles are studied 

with main attention on passive probe vehicle. Among following chapters, Chapter 4, 5 

and 6 are based on passive probe vehicle and Chapter 7 studies active probe vehicle. 

Journey time prediction discussed in Chapter 8 is based on the two types of probe 

vehicles. Since the main part of this research focuses on passive probe vehicles, in the 

following discussions, probe vehicles denote only passive probe vehicles while active 

probe vehicles will be specially referred. 
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Chapter Three 

Data Collection 

3.1 Introduction 

Data from motorways have been used in this research: the M27 between Southampton 

and Portsmouth, and the M3 between Southampton and Winchester. Details of the 

survey sites are given in the following Section 3.2. Three different types of data were 

used: loop data, video camera data, and probe vehicle data. Loops and video cameras 

were installed by the Highways Agency (HA) for daily traffic control and 

management. Loops provided traffic volume data such as vehicle count per minute. 

Video cameras enabled journey times of individual vehicles to be obtained using 

Automatic Number Plate Recognition (ANPR) techniques. GPS equipped vehicles 

were driven through the survey sites as probe vehicles to measure journey times. The 

three data sources have been used to study journey time calculation methods, assess 

measurement accuracy, and determine sample size requirements, etc. In addition, 

incident reports were provided by the HA and the Hampshire ROMANSE (Road 

MANagement System for Europe) OfGce. Details of the incident data are described in 

Chapter 6 (Incident Detection). 

3.2 Survey site 

In 1999, a 50-camera real-time journey time measurement system was supplied by 

Initial Systems Ltd for use by the HA. This system is being used as part of the Ramp 

Metering Trial conducted on the M3 (Junction 11 to 14) and M27 (Junction 2 to I I ) 

motorways in the UK (Adaway, 2001). Ramp metering controls the rate at which 

traffic joins a motorway from the slip roads according to the traffic flow on both slip 

road and the main carriageway. Data gathered by the loops and cameras have been 
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used to assess the operational performance of the ramp metering system (Gould et al., 

2002). The loops provided traffic volume data for 24 hours per day, while the cameras 

provided individual journey times for the morning peak hours of 6:00-9:30 and the 

evening peak hours of 15:00-19:30, on working days throughout a year. Seven links 

are covered by ANPR cameras as shown in Figure 3.1. The seven links have different 

lengths and geometric characteristics as well as different levels of traffic flow, 

enabling probe vehicle applications to be compared for different links. The survey site 

map with locations of video cameras is shown in Figure 3.1, and the length and 

average speed of each link are shown in Table 3.1. 

Table 3.1 Link length and average speed 

AM Peak Hour PM Peak Hour 

ik Number Length (km) Average Speed (km/h) Average Speed (km/h) 

1 1.44 96.5 88.9 

2 2.21 75.3 89.5 

3 4.51 67.2 79.3 

4 3.40 94.1 95.6 

5 3.56 73.5 94.9 

6 3.31 97.5 99.9 

7 3.72 93.7 100.7 

3.3 Video camera data 

3.3.1 ANPR technology 

Automatic Number Plate Recognition or ANPR, also known as Automatic License 

Plate Recognition or (ALPR), has been available for a number of years. Recent 

advances in image processing techniques combined with the advent of low cost high 

performance computing devices have led to the development of several journey time 

measurement systems (JTMS). Typical systems are in UK motorway networks and 

ring road around Helsinki in Finland (Ellis, 2002; Frith and Pearce, 2002; Eloranta et 

al., 2000). 

19 



•EM 

fcO Camera Location 

L2 Link Number 

Junction 

Junction with Limited Access 

l i tKHl Motorway Number 

N 

t o * L6 

Figure 3.1 Survey site map with locations of video cameras 
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ANPR is an image processing task, which incorporates the following processes (Bunn 

and Barrett, 1997): 

* detection of a vehicle in the scene 

* detection of the number plate on the vehicle 

* recognition of the individual characters within the plate area 

* checking rules relating to the number plate format 

* reporting result with confidence scores and time. 

In a JTMS, video cameras are set at origin and destination locations, and cameras are 

located above each lane of traffic in one direction only. Full vehicle registration 

numbers are recorded and recognised by ANPR software. If a vehicle is recorded by an 

'origin' camera, it is checked against corresponding records by 'destination' cameras. 

If a match is found then the vehicle journey time is recorded in the database. 

ANPR cameras caimot capture all passing vehicles for many reasons, such as dirty or 

damaged license plates. Severe weather may also affect ANPR performance with snow, 

water spray, low sun angles and so forth. Instances of poor capture occur shortly after 

the onset of rain. Fast travelling vehicles throw out a curtain of spray, this spray then 

obscures the number plate of the following vehicle. Not until the road surface has dried 

out sufficiently does capture rate recover. Because of dry weather in summer, data 

quality in summer is generally better than in winter. An average recognition rate of 

85% to 95% for unobstructed license plates in real conditions is reported in literature, 

and it may reach 97% in ideal circumstances (Wiggins, 1999; Bibaritsch and Egeler, 

2002). In this research, camerzis at a particular site usually recognised about 60% of 

license plates by comparing with traffic counts provided by inductive loop detectors. 

To collect point-to-point journey time of a vehicle, the vehicle should be captured by 

both 'origin' and 'destination' cameras. Assume recognition rate of each camera 

independent, capture rate of vehicle journey times was about 36% (60%x60%). 

However, a certain group of vehicles with dirty or non-standard license plates was 

missed by all cameras. The proportion of such vehicles was about 5%, that slightly 

increased the capture rate of vehicle journey times. 
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ANPR data for the eighteen weeks in 2001 and 2002 listed in Table 3.2, were chosen 

for use in this study. Average capture rate of vehicle journey times was about 40%, i.e. 

journey times of about 40% of all vehicles on a link were recorded. The minimum 

capture rate of vehicle journey times used in this research was 23%. 

Journey times logged by ANPR cameras may include outliers, and the outlier data have 

been checked and removed where appropriate. Outlier detection and cleaning is dealt 

with in Section 3.5. 

Table 3.2 Video camera data weeks 

Year 2001 

21-27May 

04-10June 

11-17June 

18-24June 

25June-01July 

02-08July 

09-15July 

16-22July 

23-29July 

Year 2002 

21-27Jan 

28Jan-03Feb 

05-1 lAug 

19-25 Aug 

26Aug-01Sept 

02-08Sept 

16-22Sept 

30Sept-060ct 

07-13 Oct 

3.3.2 ANPR data component 

An example of a subset of the ANPR data is shown in Table 3.3 (the license plates 

have been modified to preserve anonymity), and the format can be summarised as 

follows: 

# License plate 

# Location of start cameras 

# Location of end cameras 

# Journey time 

# Date 

# Time at start cameras 
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Table 3.3 An example of individual vehicle journey time data 

VRN Location 1 Location 2 Journey Time 

(lili:mm:ss) 

Date Time 

M212LJT M27 J3 8/3A M27 J3/J4 14/OA 00:02:34 19/06/01 08:07:05 

R838GGH M27 J3 8/3A M27 J3/J4 14/OA 00:02:17 19/06/01 08:07:07 

L583LVS M27 J3 8/3A M27 J3/J4 14/OA 00:14:14 19/06/01 08:07:07 

D254WDP M27 J3 8/3A M27 J3/J4 14/OA 00:02:29 19/06/01 08:07:10 

R932U0R M27 J3 8/3A M27 J3/J4 14/OA 00:02:37 19/06/01 08:07:10 

P47AJT M27 J3 8/3A M27 J3/J4 14/OA 00:02:22 19/06/01 08:07:12 

R976NRW M27 J3 8/3A M27 J3/J4 14/OA 00:02:36 19/06/01 08:07:13 

F744LR.R M27 J3 8/3A M27 J3/J4 14/OA 00:02:28 19/06/01 08:07:14 

K324EWK M27 J3 8/3A M27 J3/J4 14/OA 00:02:21 19/06/01 08:07:16 

Average journey times for a time interval on a link could be calculated from individual 

journey times. For example, average journey time on a link for period of 9:00-9:05 is 

obtained from the mean of journey times of all captured vehicles that entered the link 

from 9:00 to 9:05. In every morning peak hour of 6:00-9:30, using five-minute interval, 

there are a total of 42 observations of average journey time, denoted by 

; = 1,2,...,42 , where denotes the average journey time of 6:00-6:05 on a given link, 

and 77^2 is denotes the average journey time of 9:25-9:30. Average journey time is 

therefore considered to be a discrete time-series. For purposes of journey time 

prediction and incident detection, time series models are developed for analysis and 

forecasting. 

3.3.3 ANPR data applications 

ANPR data play a very important role in this research. The data are used for many 

purposes, including: 

]. Providing "real" journey times of probe vehicles. 

In this research, GPS-equipped probe vehicles were used to collect journey time data 

by travelling on the survey site. When the probe vehicles w^ere running on the site, 

registration numbers of the probe vehicles were sometimes recorded in the ANPR 

database. The journey time observations by ANPR were compared with journey times 

calculated from GPS data to assess accuracy of journey time estimation. 
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2. Identifying distribution of individual vehicles' journey times. 

One important issue for probe vehicle applications is sample size, e.g. minimum 

number of probe vehicles required for any particular estimate of accuracy. To 

determine the minimum number of probe vehicle, it is necessary to study the 

distribution of individual journey times. All vehicles on each link during a period can 

be considered as the population being surveyed, the vehicles captured by video 

cameras therefore can be considered as samples. As introduced in Section 3.3.1, the 

minimum capture rate of vehicle journey times used in this study was 23%, i.e. journey 

times of at least 23% of all vehicles on a link were recorded by ANPR cameras. 

Therefore, a sample size of more than 23% was achieved and the sampling was used to 

identify the distributions of vehicle journey times as well as other statistical 

characteristics. 

3. Providing average journey time and developing historical database. 

Statistically, the larger the sample size, the more likely the sample mean will be an 

accurate representation of the mean of the whole data population. Since the capture rate 

of ANPR was far beyond potential sample size of probe vehicles, the average journey 

times provided by ANPR were considered as "real" average journey times'. The "real" 

average journey times were used to analyse impacts of sample size of probe vehicles 

and develop historical journey time database. Three weeks' data were selected to 

develop an historical journey time database: 21-25 May 2001, 2-9 Sept. and 16 -22 

Sept 2002. This was used for the development of incident detection model and the 

prediction of journey time. 

4. Providing simulated probe vehicles. 

While several vehicles were instrumented and used for data collection, the probe 

vehicle database was relatively small. Therefore, a number of individual vehicles 

recorded by the cameras were randomly selected to be simulated probe vehicles. Mean 

journey times of these selected "probe vehicles" were compared with the "real" 

average journey times to study sample size of probe vehicles required and used as input 

to the journey time prediction and incident detection models. 
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3.4 Loop data 

3.4.1 Loop data component and reliability 

In this research, loops provided traffic volume data as vehicle count on each lane in one 

minute. The traffic volume data were used to study the relationship of required sample 

size of probe vehicles and traffic volume. Loop detector is mature technology and the 

count accuracy is always within 1 to 2 per cent of relative error compared with manual 

counts (Middleton and Parker, 2000). Loops recorded data for 24 hours of day and data 

included: 

# Date 

# Site (loop number) 

» Time (1-minute commencing) 

# Vehicle count for vehicle length 1 

# Vehicle count for vehicle length 2 

# Vehicle count for vehicle length 3 

# Vehicle count for vehicle length 4 

# Total vehicle count 

« Average speed for each lane in km/h 

# Vehicle count for each lane 

# Average occupancy in percent for each lane 

# Average headway (tenths of a second) for lane 1 

There were records of zero for a number of minutes in the loop data files. Loop data of 

zero could be due to no traffic or loop faults. For missing data caused by loop faults, 

replacement is required. It is therefore necessary to distinguish between no traffic and 

missing data. In this research, since only loops close to a group of ANPR cameras were 

used to provide vehicle counts, ANPR data were used to distinguish between no traffic 

and no data. For example, loop data was zero on the entrance of link 7, at 7:48, 9^ July 

2001. At the same time, ANPR cameras recorded 46 vehicles entering the link in the 

one minute interval of 7:48-7:49. Therefore, missing data was supposed rather than no 

traffic for the whole minute. In the loop data file, the failure rate was very low, less 

than 1 %. Missing data can be replaced by estimation from adjacent minutes (Abou-

Rahme et al., 2002). 
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However, zero record could also occur when trafRc comes to a halt. Replacement of 

such gaps leads to overestimation of traffic volume (McDonald et al., 2000). In this 

case, very low speeds should be observed in adjacent minutes, e.g. lower than 10 km/h. 

If the average speed at the previous minute is lower than 10 km/h, zero loop data are 

considered as traffic stop and no replacement is needed. However, this situation was 

not found in the loop data file. Of data collected, very small but non-zero counts 

occurred in severe congestion, e.g. 6 vehicles/minute. 

3.4.2 Missing data replacement 

Missing data can be replaced by estimation from ac^acent minutes. Up to three 

consecutive missing minutes were fbund in the loop data files. The missing data were 

replaced by the following steps: 

# For each loop, look through the data, minute by minute and identify where there are 

gaps. 

* For each gap, recognise whether the gap is missing data or no traffic. 

# For missing data, see where there is available data: either the previous minute or 

the next minute, or both sides. If data are available at one side only, use that data to 

replace the minute gap. If data are available at both sides, use the average of the 

data either side. 

* If no data is available either side, first replace vehicle counts for the previous cases, 

then perform another iteration to see if̂  once data have been replaced, there are 

some data near to the missing minute and fills it. 

3.5 Probe vehicle data 

3.5.1 Main surveys 

Three surveys involving GPS equipped vehicles were conducted on selected links of 

the survey site. However, of the three survey databases, only one was specially 

collected for this probe vehicle research. The original purposes of the other two surveys 

were to study impacts of ramp metering, and the GPS application for automatic car 

following. 
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Survey 1: Ramp metering survey 

To study merging behaviour and impact of ramp metering, a survey vyas carried out in 

a period of two months, &om May 21 to July 17, 2001 on the M27 Junction 11. A 

combination of instrumented vehicle and camera technology was used to observe the 

whole process of merging. For complete details of the survey, the reader should refer to 

Zheng (2002). 

During the survey period, the TRG instrumented vehicle (IV) was driven by different 

drivers from Junction 10 to Junction 12 on the M27, on weekday morning peak hours 

from 7 am to 9 am. Equipped with a GPS receiver, the IV was used as a probe vehicle 

to collect journey time data. In total, 105 valid observations of journey time on link 7 

were obtained. Since the instrumented vehicle was driven by different drivers every 

morning, the impact of driver behaviour on journey times can be studied (Brackstone et 

al., 2002). 

Although the survey provided sufficient journey time data measured by GPS, the 

journey times collected do not represent the real traffic conditions. Since the purpose of 

the survey was to study merging behaviour, the IV drivers were required to drive the 

vehicle on the motorway lane 1 for as long as possible. Therefore, most of the journey 

time observations were longer than the average. 

Survey 2: Car Following Survey 

Automated car following is the core technology for various intelligent transport 

systems, e.g. autonomous cruise control and convoy driving. The key parameters 

required for automated car following are the separation and relative speeds of 

successive vehicles. Most current automated car following systems rely on front facing 

radar systems. TRG has studied the potential of using GPS in car following system. 

During 15:30-17:30 on the 26̂ "̂  and the 27^ of July 2001, six cars were driven on the 

M27. The six cars departed in different intervals from 1 to 120 seconds each cycle and 

ran 3 cycles 6om Junction 8 to Junction 12 of the M27 each day (McDonald et. al,. 

2002). The data are used to study difference of journey times collected by different 

vehicles under the same traffic conditions. 
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Survey 3: Probe Vehicle Survey 

Data of the two surveys discussed above were collected on the M27. A new survey was 

designed and conducted on the M3 to study probe vehicle application on different 

motorways. During morning peak hours of 7:00-9:00 from the 1̂^ to the 11^ October 

2002, on each weekday morning, a GPS equipped probe vehicle was driven by 

different drivers from Junction 10 to Junction 14 of the M3. 84 observations of journey 

time were obtained: 42 journey times from J12 to J l l northbound, and 42 journey 

times from J11 to J12 southbound. The data are used to assess accuracy of journey time 

estimation, study daily change of journey time and identify recurrent traffic congestion. 

3.5.2 GPS Data component 

GPS receivers used in the above surveys were Garmin 35 receivers in stand-alone 

mode. The Garmin GPS 35 is a low-cost GPS receiver (current price about flOO) and 

made for navigation purpose. A Garmin 35 receiver can track up to 12 satellites and the 

update rate is IHz (Garmin 2003). The main output of a Garmin 35 GPS receiver is: 

« UTC (Universal Time Coordinated): data and time of day; 

# Position data: latitude, longitude and height; 

# Speed data: speed over ground, three-dimensional velocities: east, north and up; 

# Estimated error information: estimated horizontal and vertical position errors; 

# Satellites in view: total number of satellites in view and total number of satellites to 

be used for positioning. 

3.5.3 GPS data conversion 

GPS position data are based on an ellipsoidal reference system, WGS-84 (World 

Geodetic System 1984), and expressed by latitude and longitude. For journey time 

estimation, a vehicle should be located on a plane map using a simple 2-D Cartesian 

coordinate system in which the two axes are known as eastings and northings. The 

coordinates of a point on the plane map can be converted from its ellipsoidal latitude 

and longitude by a standard formula known as a jDrq/gcr/oM, which is a function to 

convert ellipsoidal coordinates to plane coordinates. The projection can be expressed 

as: 

= (3.1) 
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where x and denote the easting and northing on the plane map, ^ and A denote 

latitude and longitude. Ordnance Survey (OS) maps use a type of projection known as 

the Transverse Mercator (TM). The same type of projection is used in a worldwide 

mapping standard known as Universal Transverse Mercator (UTM). The TM 

projection can be thought of as a sheet of paper carrying the mapping grid (of eastings 

and northings), which is curved so as to touch the ellipsoid along a certain line. The 

line of contact is chosen to be north-south central meridian. Points on the ellipsoid are 

projected onto the curved sheet, giving easting and northing coordinates fbr each point. 

In different plane coordinate systems, different parameters are used in the TM 

projection. 

In this research, a map with the National Grid coordinate system was selected. Thus, 

the National Grid TM was used to convert latitude and longitude data surveyed by GPS 

(Ordnance Survey 2000). The TM projection for Ordnance Survey maps has a central 

meridian at longitude 2°West and latitude 49°North. The two lines of true scale are 

about 180 km to the east and west of the central meridian. The stated scale of an 

Ordnance Survey map is only true on these lines of true scale, but the scale error 

elsewhere is quite small. For instance, the true scale of Ordnance Survey 1:50,000 scale 

map sheets is actually between 1:49 980 and 1:50 025 depending on easting. The 

equations and parameters of the National Grid TM projection are given in Appendix A. 

Using equation 3.1, latitude and longitude data are transferred to Cartesian coordinate 

(x,y), which is compatible with OS National Grid maps. After coordinate conversions, 

journeys of GPS equipped vehicles can be displayed on a OS National Grid map. 

Figure 3.2 shows the paths of eight journeys of Survey 3 recorded by the GPS device. 

The route is clearly visible. However, some data are displayed on the wrong side of the 

roads. For journey time estimation, because lane differentiation is not required, the 

current GPS accuracy without DGPS correlation is sufficient. 

3.6 Cleaning of ANPR data 

The availability of efficient and accurate ANPR technology has provided a valuable 

source of data for traffic engineers (Eloranta et al., 2000; Ellis, 2002). ANPR data have 

been assumed to present the real journey times and used as a reliable reference source. 
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Figure 3.2 The paths of the journeys as recorded by the GPS device 

For example, ANPR data have been used to validate the MIDAS journey time 

estimation algorithm (Abou-Rahme et al, 2002). However, journey times logged by 

ANPR are not 100% accurate. For example, a journey of the TRG instrumented vehicle 

(registration number L583 LVS) from the M27 J l l to J12 on June 19 was logged by 

the video cameras. Journey time of the vehicle measured by the video cameras was 14 

mins 14 seconds (854 seconds), but the real journey time was only 3 mins 30 seconds 

(210 seconds). Among all journey time records, some extremely long journey times 

have been found. An example plot of the journey times in link 3 for a Thursday in June 

2001 is shown in Figure 3.3. 

9 0 0 

- 5 4 0 0 

7:30 

Figure 3.3 Example of raw journey time data on link 3: Thursday, June 12, 2001 
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The bulk of the data are within a band of 150 to 260 s (108 km/h to 62 km/h), but there 

are some journey times substantially longer. Short journey times are also considered. 

The shortest journey time in Figure 3.3 is 133 seconds, which corresponds to mean 

space speed of 122 km/h (75.8mph). In the probe vehicle surveys, the highest mean 

space speed achieved by the IV was 126 km/h (78.7 mph) in the morning peak hour. 

Therefore, the journey time of 133 seconds is considered to be feasible. In this 

circumstance, outliers were considered to occur only in the upper extreme (long 

journey time), rather than in both extremes. The outliers can occur for a number of 

reasons, including transcription errors, mismatching and short diversions (Bunn and 

Barrett, 1997). In the following section, quality of ANPR journey time data will be 

assessed and reasons of outlier occurrence will be discussed. An outlier detection 

method is developed in Section 3.6.2 towards the reasons of outlier occurrence. 

3.6.1 Assessment of ANPR data quality 

Since individual observations of journey time will be used to identify journey time 

distribution, it is necessary to assess quality of ANPR data before any analysis is 

undertaken. GPS logged journey times are therefore used as a reliable reference to 

assess the quality of ANPR data. Furthermore, ANPR data are also used to assess 

accuracy of journey time estimated by GPS. During the ramp metering survey, the 

ANPR cameras recorded 84 of the 189 journeys made by the TRG instrumented 

vehicle, i.e. 44%. There were 5 extremely long journey times in all the 84 records, as 

shovm in Table 3.4. For the other 79 records, GPS data and ANPR data are very 

similar, and the maximum difference is only 5 seconds. 

Table 3.4 Outliers of ANPR journey time 

Date GPS data ANPR data Date 

Time at start point Journey Time (s) Time at start point Journey Time (s) 

24/05/01 08:08:35 170 08:08:33 803 

19/06/01 08:07:08 207 08:07:07 854 

19/06/01 08:33:16 160 08:33:15 897 

29/06/01 08:31:48 179 08:31:47 822 

12/07/01 07:40:15 169 07:40:13 870 
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Short diversion has been accounted to be the main reason to produce outhers of large 

journey times by Clark et al. (2002). By studying all the above records, the outliers 

with large journey times were observed during the ramp metering survey. In the ramp 

survey (Wu et al., 2002), two test courses were performed to collect required data with 

the TRG instrumented vehicle (IV): mainline route survey and merging route survey. 

The IV first jointed the eastbound M27 at JIO and drove along the M27 down to J12 

and returned to J11 along the westbound M27 (mainline route). Then, the IV joined the 

eastbound M27 fi-om slip road at J11 and drove along the eastbound M27 down to J12 

(merging route). For example, on June 19 2001, the IV passed J l l on the mainline 

route (i.e. from JIO to J12) at 8:07:09, which was recorded by ANPR cameras on J11. 

However, ANPR cameras on J12 did not capture the time when the IV passed the 

cameras. The IV returned to Junction 11 along westbound and rejoined the eastbound 

from slip road at 8:17:45, which could not be recorded by ANPR cameras since the 

cameras were only able to capture vehicles on main carriageways. The ANPR cameras 

on J12 captured the IV when it passed the cameras at 8:21:24. Therefore, a match was 

found by ANPR and a journey time was obtained 854 s, similar to 855 s, i.e. the 

difference between 8:21:24 and 8:07:09. All the extremely long journey times shown in 

Table 3.4 were obtained because of the same reason. Thus, this research considered 

that outliers in database were caused by short diversion and other error sources were 

ignored. 

h ™ 8:07:09 8 :17:45 

^ (Mainline) (Merging) 

J11 

pQt 8:1i;i::36 8:21:24 

\ (Mainline) (Merging) 

\ 

\ 
/ 

J 1 2 V 

Figure 3.4 The path of the journey as recorded by the GPS device 
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In the ANPR database, very few outhers occurred on link 1, link 2, link 6 and link 7, 

while about 1-2 per cent of extremely long journey times were observed on link 3, link 

4 and link 5. On average, about 1.38% of all raw journey times on the three links may 

be considered as outliers. On the three links, there are some exits and entrances 

between the origin and destination. It could be supposed that a lot of people use the 

M27 for short and utility trips, and people may leave at one exit for a while and then 

rejoin the motorway. 

Two conclusions can be drawn from the above results: 

* ANPR provided reliable journey time data. 

# Outliers with large journey time occurred mainly because of short diversions. 

3.6.2 Outlier detection 

By considering vehicle journey times logged by the ANPR cameras in a five minute 

interval as a sample, very long journey time are considered as outliers of the sample. In 

the ramp metering survey, drivers were required to drive on motorway lane 1 as long as 

possible, the journey times obtained may be the longest on the link for the period. The 

data were used to develop and validate outlier detection methods. 

3.6.2.1 Previous researches 

Three statistical methods have been developed for cleaning of matched license plate 

data by Clark et al. (2002): 

Percentile test: to define as an outlier all observations that fall outside a range set e 

by the 10^ and the 90^ percentiles. 

Mean absolute deviation test: to identify as outlier any observation beyond the 

limits: 

M, ±3A^D (3.2) 

where, = median of individual journey times in the 5-minute interval 

M4D = (3.3) 
n 

= individual journey time 

M = number of observations in this interval. 
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The quartile deviation test: to identify as outlier any observation outside the limits: 

± (3.4) 

where, g D = (inter-quartile range)/!.34898, and is the appropriate ^-statistic 

with M degrees of freedom at the 95% level. is corrected sample size, computed 

2 
by » y M . The value of (») depends on whether » is odd or even and is given 

by the following equations: 

Meven (3.5a) 
+ ( -1 ) 

f i ( « ) = - — - L nodd (3.5b) 

1 + { -1) 

For complete details of the three tests, the reader should refer to Clark, Grant-Muller 

and Chen (2002). Clearly, the first test will be extreme, because 20% of all the 

observations will be classed as outliers by its application. It is unsuitable for this 

research since the outlier rate of ANPR data is only about 1.38%. Applying the second 

and third test to journey time data in link 7, 7:15-7:20, July 12 2001, the limits are 

calculated: 

the second test: [89s, 168s] 

the third test: [79s, 179s] 

However, journey time of the instrumented vehicle on the link in the time period was 

188 s, which will be identified as an outlier by both tests. Thus, those tests are 

unsuitable for this research, and a new method for outlier detection is required. 

3.6.2.2 Outlier detection method 

A traditional statistical method of outlier detection using inter-quartile range was first 

tested. The inter-quartile range, Q, measures the range between the first and third 

quartiles. The first quartile, g , , means that 25% of the observations are below g , , and 

the third quartile, , means that 25% of the observations are above . The inter-

quartile range is therefore g which is the range of the central half of the data. 

First, a distance of 1.5 inter-quartile range, 1.5Q, is chosen fbr detection of outliers, i.e. 
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an observation is detected as outlier if it is outside - 1 . 5 g , +1.5Q]. In this 

research, since outliers were considered to occur only in the upper extreme, an 

individual journey time , which was longer than Q3 + 1 . 5 g , was identified as an 

outlier. For journey time data on link 7, 7:15-7:20, July 12 2001, the threshold of the 

test was 183s and the journey time of 188 s obtained by the TRG IV, was still outside 

the limit. Also, since in busy traffic most of individual journey times may be in a small 

range and the value of Q is very small, some long but valid journey times may be 

identified as outliers. 

An alternative way is using range between 15th percentile and 85th 

percentile(g^ ), i.e. - g , . An individual journey time is identified as invalid, 

if it is longer than + 1 5 ^ ^ . An example is shown in Figure 3.5 with journey times 

on link 3, in period of 7:25-7:30, August 27 2002. For this case, 

=188s 

6 ^ =218s 

& = 6,y - G i = 3 0 s 

+1.5g^ = 263 s 

A journey time longer than 263 seconds is identified as an outlier. 

650 

600 

550 

500 

2 450 

I 
^ 400 

° 350 

300 

250 

200 

150 

o Oiidiei* 
* Valid 

& #. & 
" Qz 

:25 7 :30 

T i m e 

Figure 3.5 Identification of outliers on link 3, August 27, 2002. 
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An example of this is shown in the 5-min period containing the following 10 

observations: (196, 211, 195, 250, 187, 494, 187, 210, 225, 194). The threshold of 263 

is sufficient to reject the journey time of 494 but not 250. 

This method is less sensitive than other methods. For example, for journey time data on 

link 7, in period of 7:15-7:20, July 12 2001, the threshold +L5g^= 207s. The 

journey time of 188 s, produced by the TRG IV, is inside the limit and the higher 

threshold is considered to be appropriate. Since in the ramp metering survey, drivers 

were required to drive on motorway lane 1 as long as possible, the journey times 

obtained may present the longest on the link for the period, which are generally 

produced by heavy vehicles. This method can retain long but valid journey times and 

detect outliers. By applying this method, outliers in Figure 3.3 have been detected and 

removed and cleaned journey times are shown in Figure 3.6. The application of the 

outlier detection method clearly identified the outliers in the data while avoiding 

detecting genuine observations as outliers. 

9 0 0 

b' LI U 

V ' l - f / • ? 

1 0 0 
6:30 6:45 7:00 7:15 7:30 

Time 

Figure 3.6 Cleaned Journey Time data on link 3: Thursday, June 12 2001 
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3.7 Summary 

This chapter has described the data collection process involved in this research in 

detail. The data collection was carried out for seven links on two motorways around 

Southampton: the M3 and the M27. Data were collected by video cameras and GPS 

equipped probe vehicles. 

Individual journey times were logged by video cameras using Automatic Number Plate 

Recognition (ANPR). Data from eighteen weeks in 2001 and 2002 were used in this 

research. By comparison with journey times measured by GPS, ANPR data have been 

shown generally reliable and accurate but with outliers, which occurred mainly for 

short diversions. A method of outlier detection using range between 15^ and 85*"̂  

percentile has been developed and applied to clean ANPR data. 

GPS equipped vehicles were driven on some links of the survey site as probe vehicles 

to collect journey time data. GPS data are used for studying performance of GPS and 

efficiency of probe vehicle for journey time estimation. The GPS data have been 

converted into plane coordinates that are usable for journey time calculation. The 

converted data were then ready to match the map and calculate journey times. The 

journey time calculation based on converted GPS data is introduced in next chapter. 
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Chapter Four 

Journey Time Estimation 

4.1 Journey time calculation 

For a GPS equipped probe vehicle, a link journey time is the time taken for the probe 

vehicle to pass locations of successive checkpoints of the link which have been 

accurately surveyed by GPS and stored in a database. The first step of computing 

journey time is to search location data of a probe vehicle to find the point whose 

coordinates are the closest to each checkpoint. Then, journey time is simply time 

difference between two successive checkpoints. 

TMGfz'vzWwa/ n'mg of and are estimated as follows: 

(4.1) 

^ 

where 

= Journey time of probe vehicle y for the time intei-val 

7̂ '" = Time probe vehicle y enters the link 

= Time probe vehicle y exits the link 

V = Link speed of probe vehicle / for the zYA time interval 

1 == Length of link 

In this research, since journey times calculated from GPS data will be compared with 

Automatic Number Plate Recognition (ANPR) data, a link is considered as road 

segment between two video cameras rather than two adjacent junctions, and position of 

each camera has been surveyed by GPS. The capture zone of an ANPR camera is 
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located between 5.5-7.3 meters (18 and 24 feet) from the camera. Thus, the passing 

time of a vehicle recorded by the camera ( ) is the time when the vehicle passed 

the capture zone rather than the camera position. However, the time stamp calculated 

&om GPS data ( ) is the time when the vehicle passed the camera position. The 

relationship between the two time stamps can be estimated by: 

V 
T = r + /A l"! 

where is the capture distance from the camera and v is the vehicle speed to 

traverse the capture distance. Assume v = 22.2/M/j' (80km/h), is about 0.3 s 

behind - The lower the vehicle speed, the larger the difference between the two 

time stamps. The lowest speed when vehicle passed a camera observed in this research 

was 2. j/wA, in that case was 3 seconds behind . In general, since vehicle 

speed changes in a small range over such short period, time stamp calculated by GPS 

data can be corrected by Equation 4.4 for comparison of journey time surveyed by GPS 

and ANPR cameras: 

T _ T" I 

1 ' 

T 
D 

v.. 

Most speed observations on motorway collected in this research are faster than 15 m/s 

(54 km/h), and the difference between GPS surveyed time and ANPR recorded time is 

less than 1 second. Thus, the correction equation, i.e. Equation 4.4, need only be 

applied only in severe congestion. 

The probe vehicles starting their journey on a link within a given interval are used to 

estimate average link journey time and average link speed. For example, to estimate 5-

minute average link journey time and speed, if for a period of 9:00-9:05, all the 

vehicles which enter that link between 9:00 and 9:05 are included. The average link 

journey time and speed are estimated as: 
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T.JT, 
= 

V, = 
L 

(4.5) 

(4.6) 

where «is the number of probe vehicles for the zY/z time interval. 

4.2 Accuracy of journey time estimation by GPS 

For an update rate of 1 Hz, i.e. a GPS receiver surveys its position and speed at 1-

second interval, times when vehicle passes each checkpoint can be directly obtained 

from GPS position data, and journey time can be calculated by Equation 4.1. To assess 

accuracy of journey time estimation by GPS, journey time obtained from GPS data are 

compared with ANPR data. Data collected in the car-following survey are used for the 

comparison. In the car-following survey, as described in Section 3.4.1, six cars were 

driven from the M27 J8 to J12 and a group of cameras were temporarily set on a bridge 

downstream at J8 in addition to the HA cameras. Thus, during a journey, each car 

passed four locations of ANPR cameras: J8, J10, J l l and J12. To obtain accurate 

individual journey times from ANPR, raw vehicle registration number (VRN) data 

logged by ANPR rather than matched journey time are used. An example of the raw 

VRN data is: 

"L583 LVS", yy. q:-i 

VRN camera number 

confidence level hour 

11422 

time stamp 

Figure 4.1 Format of raw VRN data 

The 'time stamp' was recorded at frequency 5 Hz, thus, there are 18,000 (60x60x5) 

time stamps for one hour. And ' 11422' equals 38 minutes 4.4 seconds as follows: 

11422 

60x5 

11422-38x60x5 

5 

= 38.07 

= 4.4 

J 8 mmutes 

4.4 seconds 

4 0 
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The record shown in Figure 4.1 represents camera 93 (Lane 3 at JIO) having captured a 

vehicle with registration number L583LVS at 15:38:04 with a confidence level of 99%. 

In the car-following survey, there are 79 journey times derived fi-om raw VRN data. 

The 79 journey times were compared with corresponding results from GPS, as shown 

in Figure 4.2. 
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Figiire 4.2 Comparison of journey times estimated from GPS and ANPR 

It may be seen from Figure 4.2, that GPS can be used to estimate journey time of a 

probe vehicle accurately. The correlation between the two measures is 0.9908 and the 

mean absolute difference is near 2 seconds with a standard deviation of only 1 second. 

The results have shown that probe vehicles equipped with stand-alone GPS receivers 

using an update interval of 1 second can estimate motorway journey time accurately. 

4.3 Effect of GPS update frequency 

Although the update interval of 1 second (update rate of 1 Hz) is generally used by 

current GPS products, probe vehicles may use longer update intervals due to storage 

and computing capacity limits. For example, in the PRELUDE project in Rotterdam 

(Kroes et al, 1999), GPS devices on each probe vehicle determined location and speed 

every 10 seconds and the resulting information was stored together with a time-stamp 
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in an on-board computer. Clark and McKimm (2003) used GPS devices for journey 

time surveys within West Yorkshire area. In the study, the GPS device used had a 

limited capacity to store such points in their memory and a time resolution of 15 

seconds was calculated as the finest resolution possible in order to accommodate entire 

shifts. In the ITIS FVD system, each in-vehicle data collection unit can record and 

store vehicle positions and speed at a configurable interval, but at a minimum of one 

minute. It is therefore necessary to study the GPS performance in estimating journey 

time using longer update intervals. 

Currently, in-car navigation devices update GPS data generally every 1, 5 or 10 

seconds. For bus management systems, in Cardiff, bus locations are updated and 

reported by GPS every 20 seconds, and in Maidstone, GPS devices determine bus 

locations at 30-second interval (Shiestha, 2003). Fleet monitoring products mostly 

report vehicle positions every one minute (Simmons et al., 2002). Therefore, time 

intervals of 5 s, 10 s, 20 s, 30 s and 60 s are studied. Data used for accuracy assessment 

were collected on the M3 (Survey 3) and 84 journeys were studied. Original data 

collected at 1-s were sampled according to a required interval. An example of sampling 

for 5-s interval is shown as below: 

Time X ( m ) y (m) S p e e d (m/s) 

7:00:00 41934,4 36449 l j . 7 

7:00:01 41926.9 3 6 4 4 8 9 4 7 

7:00:02 41920.2 3644S74.7 21.17 

7:00:03 41913.9 3644833.7 20.08 Time Y ( m ) S p e e d (m ' s ) 
7 :00:04 41908,0 3644837.9 1%,K9 ^ 7:00:00 4 1 9 3 4 , 4 3644913,7 23.81 
7:00:05 41902.3 3644821.1 17.61 7:00:03 4 1 9 0 2 , 3 3644821.1 17.61 
7:00:06 41% 97.6 644803.9 16.14 

7:00:07 41893.4 3644791,8 14,67 

7:00:08 41:589,7 3644779,0 13,30 

7:00:09 41826.3 3644766,9 12,30 

Figure 4.3 An example of sampling for 5-s interval 

4.3.1 Accuracy at various GPS update frequency 

For an update interval more than one second, a vehicle can pass a checkpoint in 

anytime of an interval with equal probability. Therefore, the error in journey time 

estimation can be any value of the range of the interval. To assess the estimation 

accuracy, oiiginal GPS data collected at 1-s are sampled according to the required 

intervals, e.g. 5-s, 10-s, 20-s, 30-s and 60-s. The data used for accuracy assessment 

were collected on the M3 and 84 journeys were studied. 
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It has been shown that good accuracy of journey time estimation can be achieved using 

GPS update interval of 1-s. Journey times estimated at 1-s interval are considered to be 

"real" journey times and journey times estimated using longer intervals are compared 

with the "real" values. The errors in journey time estimation using 5-second interval 

are shown in Figure 4.4. Range of the errors is [0, 1, 2, 3, 4] and probabilities to 

achieve each value in the range are equally likely. 

Error (second) 

Figure 4.4 Errors in journey time estimation at 5-second interval 

The errors are therefore estimated to have a discrete uniform distribution and the 

probability function is: 

P{error = p) = 

1 if p = 0 ,1 , . . . , / - ! 

(4.7) 

0 otherwise 

where / is the length of the update interval. For example, if positions of a probe 

vehicle are determined every 60 seconds, the errors of journey time estimation are 

uniformly distributed on [0,59]. The distribution indicates that probability to achieve 

error of zero is 1/60, and probability to obtain an error which is less than 30 seconds is 

50%t. 
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4.3.2 Accuracy at various GPS update frequency with correlation 

For an interval longer than one second, a higher accuracy can be achieved using a 

simple computing method (Khan and Thanasupsin, 2000). The time stamp to pass a 

checkpoint can be estimated based on linear interpolation between two consecutive 

reports of location. The last reporting time before the checkpoint, , and the first 

reporting time after the checkpoint, , are required, and corresponding distances D, 

and Dj are calculated (Figure 4.5). 

Pi ,1, A ,1 

1 O 1— 

Figure 4.5 Estimating the closest time stamp to a checkpoint 

The closest time stamp when the vehicle passed the checkpoint J is calculated by 

Equation 4.8: 

+(^2 (4-^) 

This method is based on the assumption that vehicle speed is stable over a short 

interval. Good accuracy can be achieved if a probe vehicle maintains stable speed over 

a sampling period. Since the data used in this research were collected on motorways 

and vehicle speed on motorway is generally stable over a short period, good accuracy 

of journey time estimation can be obtained using a relatively shorter update interval, 

such as 5-s, 10-s, 20-s and 30-s. However, 1-minute interval may cause large errors for 

journey time measurement since speed may change greatly during a 1-minute interval. 

Speed profiles at various update intervals are shown in Figure 4.6. It can be shown that 

5-second and 10-second sampling intervals can retain the original information of speed 

change. The longer the interval adopted, the more information is lost. Thus, the 

accuracy of journey time estimation using this method depends on the stability of 

vehicle speed. 
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Figure 4.6 Speed profiles at various update intervals 

Journey times of the 83 journeys on the M3, carried out in Survey 3, are calculated at 

intervals of 5 s, 10 s, 20 s, 30 s, 60 s and compared with the 'real' value, i.e. estimated 

journey times at 1-second interval. Journey time differences at various update intervals 

are shown in Figure 4.7. The accuracy results of journey time estimation vyith different 

update intervals, including mean error, standard deviation of error, obsei-ved maximum 

of error and the percentage of zero error are summarised in Table 4.1. The results 

shown in Table 4.1 indicate that relatively short update intervals, such as 5 seconds, 10 

seconds, 20 seconds and 30 seconds, do not have a great effect on the accuracy of 

journey time estimation, while large errors are observed with 1-minute intervals. 
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It is not surprising that for 60-second intervals, the worst estimates (with an error of 18 

seconds) were obtained during traffic flow breakdown. That is because the vehicle 

speed changed greatly over one minute. However, some very good estimates (errors of 

zero) were also observed in flow breakdown since the vehicle travelled in severe 

congestion with very slow but stable speed. 

Jpdate Interval (s) 

Figure 4.7 Distribution of journey time difference at various update intervals 

Table 4.1 Statistics of en ors in journey time estimation at various update intervals 

In t e rva l M e a n Std. D e v i a t i o n M a x i m u m Percentage 

( s ) (s) ( s ) (s) o f Zero Error* 

5 0 . 5 7 0 . 4 9 8 1 4 2 . 9 % 

10 0 . 6 0 0 . 5 6 3 3 4 2 . 7 % 

2 0 0 . 8 0 0 . 7 5 3 4 3 5 . 7 % 

3 0 0 .85 0 . 8 5 3 5 3 5 . 7 % 

6 0 3 . 6 9 4 . 5 0 2 18 1 5 . 5 % 

*Zero error means that estimated journey time equals to 'true' journey time. 
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4.4 Journey time report 

To provide real-time travel time information, probe vehicles need firequent 

communication with a central computer. Generally, communication frequency is much 

lower than GPS update frequency. Although collecting GPS data at such short intervals 

has a very minor effect in terms of cost, communication and data management may be 

significant. In the PRELUDE project in Rotterdam (Kroes et al., 1999), probe vehicles 

determined and stored location and speed data every 10 seconds. The accumulated 

information was transferred to a central computer by GSM every five minutes. In such 

systems, vehicles are equipped with only GPS and communication systems, i.e. without 

digital map and GIS (Geographic Information Systems) software, and travel times are 

calculated by central computer from the vehicle location data. For probe vehicles with 

navigation systems consisting of on-board computer and GIS software, a possible 

solution would be to report link travel time along a journey. Navigation computers in 

ADVANCE equipped vehicles carried on tasks of navigation and estimation of link 

traversal times, which were transmitted by radio frequency to Traffic Information 

Centre every 5 minutes (Sen et al., 1997). 

4.5 Summary 

This chapter has described the process of journey time estimation from position data 

surveyed by GPS. Journey times calculated by GPS data have been compared with 

video camera data, which provide a positioning measurement error within 0.8m. The 

comparison has shown that the current performance of GPS enables stand-alone GPS 

receivers to be used for journey time measurement. The results will encourage the 

acceptance and application of GPS equipped probe vehicles. 

Some potential GPS equipped probe vehicles use different intervals to determine 

vehicle position. For example, in some bus management systems, an on-board GPS 

device determines bus position each 20 or 30 seconds. It is therefore necessary to study 

the impact of different update intervals on accuracy of journey time estimation. For 

intervals larger than 1 second, without correlation, the error is directly related to the 

length of the interval. With correlation, which is based on linear interpolation using the 

two closest time stamps before and after a checkpoint to calculate the 'true' passing 

time, relatively shorter intervals such as 5 s, 10 s, 20 s and 30 s can also produce 

47 



Journey Time Estimation 

accurate results. One-minute interval results in unstable accuracy because of the 

variations in speed within such intervals. Traffic flow has great influence on the 

estimate accuracy, e.g. poor estimates may be obtained during traffic flow breakdown. 

The results will encourage more applications of probe vehicles. Vehicles equipped with 

GPS devices using low updating frequency can be used to provide good estimates of 

journey times. 
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Chapter Five 

Sample size of probe vehicles 

5.1 Introduction 

Although the results described in Chapter 4 have shown the ability of GPS to measure 

link journey time of an individual vehicle accurately, the journey time of any one 

vehicle does not represent average journey time. In general, the larger the sample size, 

the greater the accuracy of representation of the mean of the whole data population. 

Previous studies and applications have indicated that a relatively small number of probe 

vehicles travelling in the traffic stream can provide potentially valuable information 

about current journey times (Turner et. al., 1998; Srinivasan and Jovanis, 1996). 

However, too few probe vehicles may provide erroneous or misleading data. For 

example, in the ADVANCE system (Sen et al., 1996), probe vehicles were used to 

estimate real-time journey times to navigation assistants. However, in general, the 

navigation assistants computed the desirable routes using default journey times based 

on historical data rather than the real-time estimates. The navigation assistants used 

real-time observations only when the real-time estimates differed significantly from the 

default estimates. In such situations, incidents were suspected. In incident free traffic, 

the historical data were considered to be more reliable since the real-time journey times 

estimated by few observations may have large variance. 

Although the proportion of GPS-equipped vehicles is expected to increase with the 

gradual implementation of in-vehicle navigation systems, the capacity and cost of 

wireless communication links between in-vehicle devices and the traffic management 

centre will be likely to still limit the available sample size of probe vehicles. Therefore, 

it is necessary to determine the minimum number of vehicles that should be equipped 

as "probes" to estimate journey time or speed within a satisfactory statistical accuracy. 
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Probe vehicle sample size has two separate meanings: (1) overall probe vehicle 

percentage of the total vehicle population to estimate journey times for a desired 

reliability and proportion of link coverage over an entire network; and (2) number of 

probe vehicles sampled in a link for a required time interval and a desired statistical 

accuracy. This research focuses on the second, i.e. determining the minimum number 

of probe vehicle in a link to estimate reliable link journey time. 

Previous researches have provided various estimates of the number of probe vehicles 

required on roads of different character. However, such researches to determine the 

number of probe vehicles have used simulation data (Chen and Chien, 2000; Cheu et 

al., 2002) or a small proportion of probe vehicles (Turner and Holdener, 1995). These 

approaches lack a detailed description of individual journey times. Since video cameras 

can log a large proportion of individual vehicles using ANPR (automatic number plate 

recognition) technology, ANPR data have been used in this research to provide a 

comprehensive description of individual journey times. Statistical characteristics of 

individual journey times can be estimated from ANPR data, which are used to study 

two main questions related to probe vehicle sample size: (1) How few probe vehicles in 

a link are needed to maintain the desirable statistical accuracy of link journey time 

estimation? (2) Which factors affect the sample size? 

5.2 Literature Review 

A number of studies into probe vehicle sample size have been reported in the literature. 

Statistical analyses have been used to examine journey time data and determine sample 

size for different sampling intervals and desirable accuracy. Two main data sources 

have been employed: empirical data and simulation data. 

5.2.1 Empirical data 

In the ADVANCE project, probe vehicle sample size was calculated using a matrix of 

trips between every origin and destination (0-D matrix). Sample sizes were calculated 

based on having at least one probe vehicle traverse a certain percentage of roadway 

links during different time intervals (5,10,15 and 20 minutes). For example, with 5,000 
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probe vehicles, 60% of all links in a 200-square mile test area could be traversed by one 

vehicle per 15 minute. 

In the ADVANCE project, the relationship between sample size and accuracy of link 

journey time estimates has been also studied. The effect of sample size on standard 

error of means of probe reports is shown in Figure 5.1. The standard errors of the mean 

of probe reports do not go to zero and there is a minimum value below which standard 

errors never fall, no matter how large the number of probes becomes. While this 

minimum value is link-specific, the general shape of the relationship between standard 

error and sample size is similar for all moderately or heavily congested signalized links. 
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Figure 5.1 Standard error vs. number of probes (Source: Sen, Soet and Berka 1997) 

Turner and Holdener (1995) provided recommendations about probe vehicle sample 

sizes using empirical journey time data from Houston AVI (Automatic Vehicle 

Identification) traffic monitoring systems. In the Houston area, AVI reader units were 

placed at 1.8- to 8.0 kilometre intervals along all tbe area's m^or freeways, eventually 

including over 483 kilometres of highway and 161 kilometres of HOV (high-occupancy 

vehicle) lanes. Based upon the AVI checkpoints, there were a total of 60 freeway 

segments for which journey time data were analysed. It has been estimated that 

approximately 40,000 AVI tags have been distributed in the Houston area and the 

average number of probe vehicles providing a journey time on each segment ranged 

from 1 to 7 every 5 minutes, or 2 to 20 every 15 minutes. The coefficient of variation 

(c.v.) of journey times were calculated and sampling theory was applied to determine 
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the sample size based on the c.v. values. Results showed that for 5-minute periods, a 

95% confidence level and a 10% relative error, the sample sizes needed ranged 6om 1 

probe vehicle every 5 minutes for free-flow conditions (HOV lane segment) to 6 probe 

vehicles every 5 minutes for severely congested conditions. Sample sizes were slightly 

lower using a 90% confidence level and 10% relatively error. For 15-minute periods, a 

95% confidence level and a 10% relative error, the sample sizes needed ranged from 

one probe vehicle to 8 probe vehicles every 15 minutes. For a 90% confidence level 

and 10% relatively error, sample sizes from 1 to 6 were required. 

Since the required sample sizes calculated for the Houston AVI system were directly 

related to the journey time variation, the relationship between average speed and 

journey time variation was studied and a regression equation was then obtained that 

predicted journey time variation using average speed: 

85^ percentile c.v. = 33.9-0.27xAverage Speed (km/h) (5.1) 

f ^ = 0.60 

where ^ is the correlation coefficient of observed and estimated values. The 85'̂ ^ 

percentile c.v. were then used to estimated the require sample sizes for the desired 

statistical accuracy. 

5.2.2 Based on simulation data 

Simulation models have been used to determine probe vehicle s ^ p l e sizes with 

respect to (1) overall probe vehicle percentage; and (2) the number of probe vehicles 

sampled in a link. 

Srinivasan and Jovanis (1996) developed a heuristic algorithm to estimate the total 

number of probe vehicles required for the Sacramento network, in California. A 

heuristic algorithm was implemented using a simulation procedure. Based on three 

simplifying assumptions: the normality of journey time distribution, constant journey 

time variations over all links and constant journey time variations over all measurement 

periods. The simulation procedure was run to determine the total number of probe 

vehicles towards two scenarios: 4 probe vehicles on each link during 10 minutes, and 6 

probe vehicles on each link during 15 minutes. However, in the absence of actual 
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journey time data, it was not clear how the assumptions would affect the simulation 

results. 

More recently researchers used microscopic simulation to estimate the number of probe 

vehicles. Chen and Chien (2000) used a microscopic model, CORSIM, to simulate 

trafRc flow on a freeway segment of 1-80 in New Jersey and determine the minimum 

number of probe vehicles on a link for a 5 minute interval. Journey times of all vehicles 

on each link of the freeway segment were recorded from the CORSIM output, and 

distributions of link journey times were then obtained from these statistics. The 

simulation results reported that vehicle journey times on some links were not normally 

distributed. Factors affecting the vehicle journey time distribution were considered to 

be geometric condition and traffic volume on the link. It was observed that longer links 

tended to absorb the impact of various traffic flows. To study the impact of traffic 

volume, five demand levels were chosen to generate various traffic volumes firom free-

flow to near-capacity over the freeway links. Results showed that the type of link 

journey time distribution could vary with the traffic volume it carries and non-normal 

distributions were likely to be found under the highest level of demand (level 5). 

The results also studied the impact of traffic volume on the percentage of probe 

vehicles required to provide accurate estimates on link journey times. With 5-minute 

time interval, 5 percent maximum relative error, the minimum percentages of probe 

vehicles under five traffic volume levels are shown in Figure 5.2. 

Flow Level 

Figure 5.2 Probe vehicle percentage versus demand level 

(Source: Chen and Chien 2000) 



Sample Size of Probe Vehicles 

It was shown that for light or heavy traffic flow, the minimum required probe vehicle 

percentage was higher than at the medium demand levels. 

In Singapore, a large-scale, nationwide travel speed information acquisition and 

dissemination system has already been in operation using a large fleet of taxis equipped 

with DGPS devices. Cheu et al. (2002) used a simulation approach to study the 

minimum number of probe vehicles in a link and overall probe vehicle percentages for 

the road network of the dementi town area in Singapore. The simulation used GPS 

equipped probe vehicles to report journey time/link speeds. A GPS receiver was 

assumed to continuously survey its position at 1 sec or 2 sec intervals. The 

instantaneous position was then compared with an on-board digital map database and 

the vehicle position and time stamp passing each checkpoint along the route were 

stored and transmitted to the traffic management centre every 700 seconds. The data 

collection period was therefore 700 seconds. Results indicated that for an absolute error 

in estimated average link speed to be less than 5km/h at least 95% of the time, the 

network needed 4% to 5% of total traffic as probe vehicles or at least ten probe vehicles 

on a link within 700 seconds. 

5.3 Determining probe vehicle sample size 

It is important to able to rely on as few probe vehicles as possible for satisfactory 

statistical accuracy because probe vehicles are costly in both equipment and real-time 

communication. The objective of this chapter is to develop a methodology to determine 

the minimum number of probe vehicles in a motorway link that would provide link 

journey time for a prescribed time period and desired accuracy. 

If 5 minute interval is selected, journey times of all vehicles on a link during a 5 minute 

interval are the population being surveyed. Probe vehicles are considered as samples. 

The object of the sampling process is to estimate the population mean, e.g. average link 

journey time. The statistical sampling methodology can be used to determine the 

minimum required number of probe vehicles that would provide reliable link journey 

time estimates. For a population, parameters of the population are denoted by: 
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Population mean = // 

Population standard deviation = cr 

Statistical inferences about the population mean are based on the sample mean 

X, + X-, + + 
X = 

n 

For a error e, expressed as a percentage of the population mean, and a 

confidence level 1 - a , the statistical sampling methodology provides an equation to 

determine the required sample size: 

n (5.2) 
e/y 

where denotes the upper a / 2 point of the standard normal distribution. A 

detailed illustration of the notation shown in Appendix Bl. Commonly used 

values of shown in Table 5.1 for easy reference. The Equation 5.2 determines 

the required sample size to be 100(1 - « ) % to ensure that the error of estimation 

^ does not exceed e. See Appendix B2 for a rationale of the equation. 

Table 5.1 Values of 

l - a .80 .85 .90 .95 .99 

^a/2 1.28 1.44 1.654 1.96 2.58 

According to Equation 5.2, selection of permitted error and confidence level will 

directly affect the minimum number of probe vehicles required. This research 

calculated the required sample size of probe vehicles based on a permitted error of 

±10%, which was widely used in previous probe vehicle studies (Turner and Holdener, 

1995; Srinivasan and Jovanis, 1996; Chen and Chien, 2000; Cheu et al., 2002). The 

confidence level is the probability associated with the permitted error. 90% and 95% 

confidence levels are commonly used in statistics. However, the same methodology can 

be used for any specified permitted error and confidence level. 

Equation 5.2 can be applied only when the distribution of is normal. It has been 

proven that distribution of A" is normal when sampling fi-om a normal population. 

55 



Sample Size of Probe Vehicles 

When sampling &om a non-normal population, the central limit theorem (Johnson and 

Bhattacharyya, 2001) states that when the sample size « is large, the distribution is 

approximately normal, regardless of the shape of the population distribution. In 

practice, the normal approximation is usually adequate when M is greater than 30. Since 

in this research, the number of probe vehicles in a link for a 5-minute interval generally 

may not exceed 30, it is necessary to study vehicle journey time distribution and decide 

whether Equation 5.2 can be applied. 

5.4 Vehicle journey time distribution 

By considering all individual journey times on a link over a 5 minute interval as the 

population, individual journey times logged by ANPR cameras in the 5 minute interval 

are a sample of the population to estimate the population distribution and parameters. 

As introduced in Section 3.3.1, ANPR cameras can log individual journey times of a 

substantial proportion of all vehicles and the sampling has been assumed to represent 

the sampled population. 

The distribution of journey times of individual vehicles on a link in a time interval has 

been assumed to be normal by the majority of previous researches (Turner and 

Holdener, 1995; Srinivasan and Jovanis, 1996; Cheu et al., 2002). However, Chen and 

Chien (2000), analysing results generated by microscopic simulations, observed non-

normal distribution of journey times on a link during certain intervals. In this research, 

the distribution of journey times on links with different characteristics in different 

traffic conditions have been studied. The objective of this section is to reveal 

relationships between journey time distribution and road characteristics as well as 

traffic conditions. 

5.4.1 Normal distribution 

5.4.1.1 Normal distribution test: an example 

In this research, individual journey times logged by video cameras were used to infer 

distribution type and parameters. An example of the approach is described using link 7 

at 9:20-9:25 on the 11̂ "̂  June 2001. In the 5 minute period, ANPR cameras logged 196 
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individual journey times, in a total vehicle count of 390. Thus, with a sample size of 

50.26%, the population distribution could be estimated from the sampling distribution. 

A graphical normality test is shown in Figure 5.3, in which, if the samples came from a 

normal distribution, the plot would appear linear. Otherwise the plot would appear 

curved. In Figure 5.3, the individual journey times tend to follow the linearity of the 

normal quantile plot, indicating that the journey time distribution can be considered as 

normal. 

o 
CL 

Ind iv idua l j o u r n e y t ime in l ink 7 (s) 

Figure 5.3 Normal Probability Plot 

The Kolmogorov-Smimov (K-S) Test was used to obtain a quantitative assessment of 

normality. The output of the SPSS K-S test is given in Table 5.2. In a K.-S test, large 

significance values (>0.05) indicate that the observed distribution corresponds to the 

expected normal distribution. 

Table 5.2 One-Sample Kolmogorov-Smimov Test 

V1 

N 

Normal P a r a m e t e r ^ '' Mean 

196 

145 .2245 

Std. Deviation 13 .91883 

Most Extreme Absolute .050 
Differences Positive .050 

Negative - .033 

Kolmogorov-SmirnovZ .702 

Asvrrip. Siq. f2-tailed) .707 

a. Tes t distribution is Normal. 

b. Calcula ted from data. 
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5.4.1.2 Percentage of normal distribution on each link 

In this study, data from each of the seven links has been examined for 3 hours, i.e. 36 

periods, selected from different times of morning and evening peak period in different 

seasons. The percentage of time in which journey times is not statistically different to 

normal distributions on each link are listed in Table 5.3. 

Table 5.3 Normality percentage for each link 

Link Number Percentage of Normality 
1 80% 
2 75% 
3 74% 
4 88% 
5 85% 
6 81% 
7 83% 

The results in Table 5.3 indicate that in most cases, journey times of all vehicles in a 

link over a 5-minute interval have a normal distribution. A correlation of 0.095 between 

the percentage of normality and link length indicates that there is no significant 

relationship between the two variables. Relatively low percentages were observed for 

link 2 and link 3 which carry heaviest traffic of the seven links. The impact of traffic 

volume on individual journey time distribution can be studied, since on each of the 

seven links studied, groups of inductive loops provided traffic flow data such as vehicle 

count per minute. 

5.4.2 Non-normal distribution 

As introduced in Section 5.5.5, Chen and Chien (2000) observed non-normality in link 

journey time distributions using microscopic simulation data, and non-normal 

distributions were found mostly under the highest level of demand. The results may 

have been affected by the mechanisms of the simulation process. However, results from 

this study also showed that journey time distribution remained normal in heavy traffic, 

and non-normality was observed to be most likely in some special stages of congestion. 

In non-congested traffic, average link speeds were found to decline slightly with 

increasing flow. When the traffic flow exceeded the estimated capacity of the location, 

average link speed began to decline more quickly with increasing flows, and 
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breakdowns in flow occurred. An example of the relationship between traffic flow and 

average speed is shown in Figure 5.4, in which traffic on link 7 during the morning 

peak hours on the 9'̂  July 2001 is displayed. 
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Figure 5.4 Observed speed-flow relationship on link 7 

Since the relationship between flow and speed is not linear, increase of traffic flow may 

not affect link speed (or link journey time) instantaneously. Average link journey times 

and flow data on link 7 during the morning peak on the 9* July 2001 are shown in 

Figure 5.5. 
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Figure 5.5 Link journey time with flow data on link 7, 09/07/2001 
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It may be seen from the figure that in the early part of the peak, link journey time only 

increased by a small amount with increasing flow. Later when traffic flow data exceeds 

the expected capacity flow, link journey times increased rapidly and traffic flow 

declined. Journey time then remained at a high level for some time, before gradually 

decreasing. Individual journey times in the link for each period &om 6:00 to 9:30 have 

been studied and the non-normality was only observed in five periods: 7:40-7:45, 7:45-

7:50, 7:50-7:55, 8:20-8:25, 8:25-8:30, as shown in Figure 5.6. In the five periods, 

journey time increased or decreased significantly from the previous perod (i.e more 

than about 10%). The distribution of journey times for a 5 minute interval between 8:00 

and 8:20 was normal, when journey time was the highest, since journey time was 

relatively stable over the period. Compared with the flow data shown in Figure 5.5, 

non-normality begins to occur when traffic flow achieves the maximum value, i.e. the 

occurrence of non-normality may indicate a breakdown in traffic flow. 
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Figure 5.6 Non-normal distribution intervals, 09/07/2001 

To explain the observed non-normality, all individual journey times logged during 

these 5-minute intervals with non-normality were studied. When the update interval 

was changed to 1 minute instead of 5 minutes, a normal distribution was obtained for 

each of the I-minute intervals. However, the means and standard deviations of each 

interval would be very different. Since the journey time in a 5-minute interval can 

change greatly, a 5-minute interval is not suitable for journey time updating. The 

journey time distribution of each minute from 7:50 to 7:55 is shown in Figure 5.7. 

Obviously, when journey time changes very rapidly, the journey time for even a minute 

interval can have a non-normal distribution. In such cases, the mean and standard 
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deviation of journey time are time-series rather than static variables, and the journey 

time should be estimated by time series analysis methods instead of static sampling 

theory. 
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Figure 5.7 The journey time distribution for each minute 

5.5 Determining sample size of probe vehicles 

5.5.1 Sample size and average speed 

After identifying the normal distribution of vehicle journey times, probe vehicle sample 

size can be determined by Equation 5.2. As discussed in Section 5.3.2, the permitted 

error used in this research has been defined as 10%. For a confidence level of 95%, 

according to Table 5.2, z,,g;,; ̂  ^ 96, Equation 5.2 can be written as: 

M = [19.6(o-///)]" (5.3) 

For a confidence level of 90%, = 1.654, probe vehicle sample size is determined 

by: 

M = [16.45(0-///)]' (5.4) 
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Equations 5.3 and 5.4 indicate that probe vehicle sample size is only related to the 

coefficient of variation (c.v.), a relative measure of dispersion obtained by dividing the 

standard deviation by the mean. 

Individual journey times on link 3 were calculated for 20 hours, i.e. 240 time intervals. 

Mean journey time and standard deviation for each time interval are shown in Figure 

5.8. 
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Figure 5.8 Mean journey time and standard deviation for link 3 

These data indicate that: 

(i) For the same link and under non-congestion conditions, mean journey times 

and standard deviations change only within a small range. 75% of all cases 

have mean journey times in a range of 190-220 seconds, and stajndard 

deviations in a range of 16-25 seconds, i.e. inside the rectangle shown in 

Figure 5.8. That indicates that most c.v. values are in a small range, 

fiirthermore, sample size requirements are similar for most cases according 

to Equations 5.3 and 5.4. 

(ii) Larger values of standard deviation occur with lower mean journey times, 

and more probe vehicles are required in lighter traffic. This is in agreement 

with simulation results obtained by Chen and Chien (2000). It is considered 

that, in the situation of light traffic, large variations in link journey time can 

be attributed mainly to the variation in driving behaviour, e.g. fr-ee speed 

selections. 
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(iii) When mean journey time is increasing due to increasing levels of traffic 

volume, standard deviation will be also increasing. However, the range of 

increase in journey time is greater than that of standard deviation. 

By applying Equation 5.3, the minimum numbers of probe vehicles for a confidence 

level of 95% can be determined and falls within the range of probe vehicle sample size 

1 to 10 for link 3 for various traffic conditions. The relationship between mean link 

speed and the minimum number of probe vehicles required is shown in Figure 5.9, 

which matches the above analyses about Figure 5.8. 
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Figure 5.9 Relationship between the mean link speed and required minimum sample 

size of probe vehicles for link 3 

For those time intervals with non-normal journey time distribution (as shown in Figure 

5.6), i.e. flow achieved the highest level, as shown in Figure 5.5, the required sample 

size should be calculated for each minute of a five-minute interval. For the time interval 

shown in Figure 5.7, two probe vehicles are required for each minute and in total, 10 

vehicles are required for the five-minute intervals, which is generally higher than under 

other circumstances. 

Although the range of probe vehicle sample size is link-specific, the general shape of 

the relationship between mean speed and the required probe vehicle sample size was 

63 



Sample Size of Probe Vehicles 

fbund to be similar for all the seven links studied. The following comments may be 

made to describe the relationship of sample size and traffic condition: 

(i) The required minimum sample size remains stable in most cases. 

(ii) A larger number of probe vehicles is required when mean travel speed is high, 

i.e. more probe vehicles are needed for light traffic. This is because of the 

variability in desired speeds. 

(iii) The largest sample size are required in the period between stable and unstable 

flow, when journey times are increasing or decreasing rapidly and are non-

normally distributed. 

(iv) In heavily congested traffic, i.e. cases with very low mean speeds, relatively 

fewer probe vehicles are required. In this case, however, traffic flow is 

relatively low, i.e. at medium level, as shovm in Figure 5.5. This is in agreement 

with simulation results by Chen and Chien (2000) that the smallest sample size 

is required at the medium flow level (see Figure 5.2). 

5.5.2 Sample size and traffic flow 

As shown in Figure 5.4, the same average speed can be observed with different values 

of traffic flow. Therefore, the relationship between average speed and probe vehicle 

sample size may differ from the relationship between traffic flow and probe vehicle 

sample size. Furthermore, since a traditional parameter to describe sample size of probe 

vehicles is as a percentage of total traffic carried on a link during a period, it is 

necessary to study the relationship between traffic flow and probe vehicle sample size. 

Data from link 7 during morning peak hours on the 9^ July 2001 was taken as an 

example to study the relationship between traffic flow and probe vehicle sample size. 

Data from the non-normal periods in the morning peak (as shown in Figure 5.6) have 

been removed. The resulting sample sizes of probe vehicles, represented by percentage 

of traffic flow with traffic flow data, are shown in Figure 5.10. The relationship 

between traffic flow and probe vehicle sample size can be described by a power 

regression equation that determines probe vehicle sample size using traffic flow data: 

M, =64210^-" ' '" 

r " = 0 . 8 6 
(5.5) 
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where q denotes traffic flow (vehicle/5 minute), denotes probe vehicle sample size, 

represented as a percentage of traffic flow, and denotes the square of the correlation 

coefficient of observed and estimated values by the equation. 
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Figure 5.10 Traffic flow and probe vehicle sample size 

5.5.3 Probe vehicle sample size for different links 

Previous research (Turner and Holdener 1995, Chen and Chien 2000) has shown that 

sample size of probe vehicles is link-specific, and factors affecting sample size can 

include geometric conditions as well as traffic flows on a link. Since the seven links 

studied in this research have different lengths and carry different traffic flows, probe 

vehicle sample sizes for each of the seven links were calculated to study these factors. 

Sample size of probe vehicles on each link have been calculated for 84 intervals, i.e. 42 

intervals in the morning peak on May 23, 2001 (Wednesday), and 42 intervals in the 

evening peak on 30 Oct. 2002 (Monday). In the two time periods, there was no non-

recurrent congestion on the seven links, i.e. traffic flow was as usually expected. Box 

plots of resulting sample sizes for 10% permitted error and 95% confidence level are 

shown in Figure 5.11. 

Larger inter-quartile ranges of sample sizes were found on link 1 and link 2 compared 

to others links (Figure 5.11). Since these two links are shorter, length is considered to 

be an important factor, in that, with the same level of traffic, a short link requires more 

probe vehicles. As discussed above in 5.5.2, an increase in traffic flow leads to a 

reduced probe vehicle sample size. Therefore, busier links require fewer probe 

vehicles. Link 3 which is the longest and busiest link requires the smallest sample size. 
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Sample sizes of probe vehicles for each link have been calculated with confidence 

levels of 90% and 95%. Mean sample sizes and corresponding 85% percentile values 

are shown in Table 5.4. 

Link Number 

Figure 5.11 Probe vehicle sample size for different links 

Table 5.4 Sample size for each link 

Link Number 90% confidence level 95% confidence level 

Mean 85% Percentile Mean 85% Percentile 
Sample Size Sample Size Sample Size Sample Size 

1 5 6 6 8 
2 4 6 6 8 
3 4 4 4 5 
4 3 4 4 6 
5 4 5 5 6 
6 4 4 5 6 
7 3 4 4 6 

Shorter links were more sensitive to changes in traffic flow and Equation 5.5 is 

unsuitable for links shorter than link 3. However, the general shape of the relationship 

between traffic flow and probe vehicle sample size was found to be similar for all the 

seven links. However, shorter links required slightly more probe vehicles for the same 

traffic flow. The power equation can still be used to estimate required percentage of 

probe vehicles but needs an adaptive factor of link length: 

=64210x(l + ^x0 .05 )g ' .8514 (5.6) 
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where ^ denotes trafGc flow (vehicle/5 min), denotes probe vehicle sample size, 

represented by percentage of traffic flow, Z;, denotes the length of link 3 and Z denotes 

the length of the calculated link. The Travel Time Data Collection Handbook (Turner 

et. al., 1998) recommends the segment length for travel time data for 

freeways/expressways should be in a general range of 1.6 - 4.8 km (1 to 3 mile). 

Equation 5.6 is suitable for a link whose length is in this range. For instance, the sample 

size on link 2 for a permitted error of 10% and confidence level of 95% can be 

estimated based on traffic flow by: 

My =64210x(l + ^ x 0 . 0 5 ) g r - ' » ' ' ^ =71072^- .8514 (5.7) 

A comparison of required sample sizes calculated from ANPR data and estimated using 

Equation 5.7 is shown in Figure 5.12. 
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Figure 5.12 Required sample size calculated from ANPR data and 
estimated using power regressions of traffic flow 

It can be found that for the same link, different number of probe vehicles may be 

required under the same traffic flow. However the sample size of probe vehicles 

estimated by Equation 5.6 can generally represent average sample size required for 

various traffic flow. Therefore, the Equation 5.6 is considered to be useful in early 
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planning stages of probe vehicle deployment. For developing and implementing a data 

collection plan of a route, the route should be sub-divided into links with the length in 

the range 1 . 6 - 4 . 8 km. A traffic flow survey for different time interval is needed and 

the flow data can be applied to the Equation 5.6 for estimating required sample size. An 

alternative way is using video cameras to record journey times of individual vehicles on 

a link and calculate the parameters of journey time distribution, applying Equation 5.2 

to estimate the sample size of probe vehicles based on desirable permitted error and 

confidence level. 

5.5.4 Sample size for non-normality period 

As discussed above in Section 5.4.2, the journey time distribution over a 5-minute 

period will not be normal when the mean of journey time varies greatly during the 5 

minutes. In that case, the analysis period should be shortened, for example, using 1-

minute period instead. For the period described in Figure 5.7, the sample size of probe 

vehicles required for each minute is shown in Table 5.5. 

Table 5.5 Minimum number of probe vehicles for 1-minute interval 

Time 
7:50 
7:51 
7:52 
7:53 
7:54 

Minimum required sample size 
2 
2 

For the 5-min period, 7 probe vehicles would be required to estimate mean link journey 

time. However, the sampling is dependent, e.g. 7 vehicles should be sampled from 

different sub-intervals according to Table 5.4. In this case, shorter intervals to update 

journey time information is recommended, and journey times at intervals with 

inadequate probe vehicles should be estimated by data from adjacent intervals. 

In practice, non-normality cannot be identified with a small number of probe vehicles. 

Thus, when resulting mean journey time estimated from probe vehicles at an interval 

differs greatly from estimates at previous intervals, a shorter update period should be 

adopted. 
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5.6 Summary 

This chapter has used individual journey times logged by video cameras to study 

journey time distribution. It has been generally shown to be true that individual journey 

times are normally distributed, although non-normality was observed in some cases. 

Individual journey times were most likely to be non-normally distributed when average 

journey time changed rapidly and substantially, usually when congestion occurred. In 

such situations, it would be inappropriate to use a 5-minute time interval to express 

journey time. Thus, shorter intervals and a different sampling strategy should be 

adopted. 

This chapter studied the relationship between average speed and required probe vehicle 

sample size. In most cases, changes in mean and standard deviation values of individual 

journey times on the same link over a 5-min interval were found to be in a narrow 

range, and the required sample size for the same link remained stable. However, in 

congested traffic, i.e. very low mean speeds, fewer probe vehicles were needed, whilst 

in light traffic, an extremely large sample size of probe vehicles may be required. By 

using the percentage of traffic flow as parameter to describe the required sample size of 

probe vehicles, the relationship between traffic flow and the required probe vehicle 

sample size can be represented by a power regression equation. The equation is useful 

in early plarming stages of probe vehicle deployment. 

It is not surprising that different links require different numbers of probe vehicles for a 

desirable statistical accuracy. Factors affecting probe vehicle sample size include link 

length and traffic condition on the link. The results indicated that shorter links require a 

larger number of probe vehicles. With a similar length, a link that carries heavier traffic 

requires a smaller sample size of probe vehicles. The sample size will also be 

determined by the use to which it is put. If traffic flows are low and there is no 

congestion, an accurate journey time may not be necessary with for management 

proposes or as information to drivers, who can select their own desired speeds. 
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Chapter Six 

Incident Detection 

6.1 Introduction 

Incidents are responsible for a significant proportion of delays and costs to the 

motoring public. In addition to the duration of an incident, an incident history can be 

considered as four critical phases (shown in Figure 6.1). It is estimated that peak-period 

incidents are responsible for more delay than recurrent peak-period congestion. 

Incident 
Occurs 

Incident 
Removed 

Detection Respufisy Treatment Effects 
to scene Persist 

Time 

Figure 6.1 Phases of a traffic incident 

Source: Highway Capacity Manual (1994) 

Although incidents have been discussed widely, their complexity has meant that there 

is no common agreement on the definition of an incident. In this research, an incident 

has been defined as "any non-recurrent event which causes reduction of roadway 

capacity or abnormal increase in demand" (Weil et al., 1998). According to the 

magnitude of the impact, incidents can be divided into two categories: m^or and minor 

(see Table 6.1). The m^ority of incidents are minor, such as flat tyres, overheating and 

out of fuel. Minor incidents will, in general, only result in a vehicle being parked on the 

hard shoulder. Although a minor incident lasts less than half hour, 65% of the total 

delay caused by incidents are attributable to this category. M ^ o r incidents contribute 

35% of the overall incident caused delays, constituting severe capacity reduction 

according to how many lanes are blocked or whether there are accompanying iryuries 

associated with the accident. One study of FHWA (1998) showed that an incident 

removed to the shoulder on a three-lane facility still reduced capacity by one-third; a 
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single-lane blockage reduced capacity by 50 percent; a two-lane blockage reduced 

capacity by 79 percent. Table 6.2 summarises the effect of stalls and accidents on 

capacity for motorway sections with three travel lanes per direction. 

Table 6.1 Incident magnitudes 

Characteristic Minor M ^ o r 

Duration < hour > hour 

B l o c k a g e Hard shoulder area only O n e or more travelled lanes 

Contribution to overall 65% 3 5 % 

Incident-caused delay 

Table 6.2 Typical capacity reductions during incident conditions 

Type of incident Number of lanes blocked Capacity reduction 

Accident on shoulder 0 26% 

Vehicle stall 1 48% 

Non-iigury accident 1 50% 

Severe accident 2 79% 

(Source: FHWA 1998) 

Incident detection is the process that brings an incident to the attention of agencies 

responsible for maintaining traffic flow and safe operations. Impacts of incidents can 

be reduced through a variety of actions including broadcasting traffic information, 

ramp restrictions or closure, and alternative route suggestions. Detection of incidents 

also helps agencies respond more quickly to remove the problem and to warn the 

oncoming traffic, thereby reducing the danger of secondary incidents. In the MIDAS 

(Motorway Incident Detection and Automatic Signalling) system on the Ml, after 

detecting the presence of moving or stationary traffic, signals of 50mph advisory speed 

limit is set upstream of traffic queues. Analyses have found that a net reduction of 18% 

in personal iryury accidents and a raw reduction of 28% in accidents could be attributed 

to the scheme (McDonald et al., 2000). 

There are a number of automatic incident detection (AID) algorithms reported in the 

literature. The common source of data for AID algorithms is inductive loops, which 
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provide trafRc measures such as occupancy and volume on the roadway. For example, 

the MIDAS system uses the "High occupancy algorithm" (HIOCC) to process signals 

from inductive loops spaced at 500m intervals. With the introduction of automatic 

vehicle location (AVL) and automatic vehicle identification (AIV), probe vehicle based 

AID algorithms have been developed and most of them are based on large sample sizes 

of probe vehicles (Mahmassani et al., 1999). 

In this study, the sample size of probe vehicles is assumed to achieve only the required 

minimum number estimated in Chapter 5, and measure of probe vehicles is journey 

time fbr a given roadway segment and a time interval. It is expected that an incident 

can cause significantly higher journey time than normally experienced at that specific 

time of day. The aim in this chapter is to use the average journey time data measured 

by probe vehicles fbr incident detection. Since probe vehicles provide only journey 

time, an incident cannot be detected unless the incident has caused delay in journey 

time. 

6.2 Literature Review 

6.2.1 Methods for evaluating algorithms 

Standard evaluation of incident detection has been widely accepted. Three quantitative 

measures are commonly used to evaluate freeway incident detection algorithms: 

"Detection Rate (DR): defined as the ratio of the number of incident cases correctly 

detected by the algorithm to the total number of incident cases known to have occurred. 

"False Alarm Rate (FAR): defined as the ratio of the number of false alarm cases to the 

total number of applications or decisions made by the algorithm; 

"Detection time: defined as the time it takes the algoritlim to signal the incident after its 

occurrence. 

Traditionally, an incident detection algorithm is evaluated by detection rate versus false 

alarm rate curves—where the higher the curve, the better the algorithm. This evaluation 

has been and continues to be a useful tool fbr practitioners and traffic operators. DR-

FAR curves treat all incidents with equal importance. That is, failing to detect a low-
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impact breakdown on the shoulder contributes equally towards the non-DR as missing 

a m^or accident that causes hours of congestion. From a practical point of view, this is 

a fundamental flaw. Petty et. al. (2002) has proposed a new evaluation method of a 

cost-benefit analysis where cost mimics the real costs of implementing algorithm and 

benefits from reducing congestion. 

6.2.2 Automatic incident detection algorithms 

The following data sources are commonly used to detect incidents: 

* Roadway detectors 

# Video and closed circuit television 

* Probe vehicle: Automatic Vehicle Identification (AVI) and Automatic Vehicle 

Location(AVL) 

» Cellular telephone (Emergency Phone) and motorist aid call boxes 

# Service patrols and law enforcement 

The most common data source fbr AID algorithms is loops, which provide traffic 

measures such as occupancy and volume on the roadway. Other roadside sensors, such 

as ultrasonic transmitter/receivers, microwave transmitter/receivers are also used in 

incident detection. A recent development has been the application of image processing 

techniques that use video cameras to monitor a section of the road and detect incidents 

by pattern recognition. Since probe vehicles provide direct journey times of individual 

vehicles, existing AID algorithms using probe vehicle data is based on the premise that 

incidents cause the journey times to increase significantly over the journey time 

normally experienced at that specific time of day. 

6.2.2.1 AID algorithms based on loops 

Numerous AID algorithms have been developed and reported in the literature. Most of 

these algorithms are based on inductive loops and use the lane occupancy and volume 

values averaged over a time interval. Based on video image processing, video detectors 

can also be used fbr the same purpose. Michalopoulos et. al. (1993) described a 

machine vision-based algorithm in which a single camera could provide similar traffic 

measures as an inductive loop in multi-locations within the camera's field of view, thus 
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replacing many loops. With the development of image processing technology, video 

detectors can now provide more trafGc information, such as vehicle journey time and 

stopped vehicle detection (Sachse, 2002). 

Stephanedes et al. (1992) and Sethi et al. (1995) divided existing AID algorithms into 

two broad categories: comparative (or pattern recognition) algorithms and time-series 

algorithms. Comparative algorithms rely on the principle that an incident is likely to 

increase significantly occupancy upstream while reducing the occupancy downstream. 

Current values of occupancy are compared against preselected thresholds to detect an 

incident. Time series algorithms forecast short-term traffic flow based on observed 

traffic flow in previous time intervals. If the predicted flow differs significantly from 

the observed flow (i.e. the deviation is greater than a predefined threshold), an incident 

is declared. 

The California algorithms are widely known comparative algorithms. As many as 10 

variations of these algorithms have been developed since 1970s. All of these 

algorithms use the lane occupancy values at one or two adjacent stations as input and 

compare them with preselected thresholds to characterize the state of the traffic flow. 

In the original California algorithm, California algorithm #1, traffic flow is 

characterized as either incident or incident-free states based on three simple 

comparisons to preselected thresholds. An incident is detected when upstream 

occupancy is significantly higher than downstream occupancy (Test 1), and upstream 

occupancy has increased during the past 2 min (Test 2) as well as downstream 

occupancy has adequately decreased during the past 2 min (Test 3). Test 3 

distinguishes an incident from a bottleneck situation by indicating that a reduction in 

downstream occupancy has occurred over a short period of time as a result of the 

incident (Mahmassani et al., 1999). 

Later California algorithms extended this simple logic by increasing the number of 

logic decisions made and the number of traffic flow states reported by the algorithm. 

California algorithm #8 uses both temporal and spatial occupancy values as input and 

classifies traffic into five states: incident-free, compression wave, tentative incident, 

incident confirmed, and incident in progress. Since the algorithm suppresses the 

signalling of an incident for a specified number of time periods after a compression 
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wave is detected, it reports an incident only after the incident condition has persisted 

for a while. The algorithm needs six parameters, presented in Table 6.3, for calibration. 

Five of them to are thresholds for occupancy-based values, while parameter 

specifies the number of time periods the algorithm will wait for a compression wave 

condition to persist before signalling an incident. 

Table 6.3 Definition of Parameters Used in California Algorithm #8 

Parameter Definition 

^ Threshold of occupancy difference between consecutive stations 

^ Threshold of percent occupancy change at downstream station 

^ Threshold of percent occupancy difference between consecutive 

stations 

Threshold 1 of occupancy at downstream station 

^ Threshold 2 of occupancy at downstream station 

Number of compression wave suppression periods 

(Souce: Karim and Adeli 2002) 

Time-series algorithms employ a time-series model to provide short-term forecasts. 

Significant deviation between observed and forecast values are attributed to incidents. 

The first three algorithms in this class, the standard normal deviation algorithms, 

calculate the mean and standard deviation of occupancy for the last 3 to 5 minutes and 

detect an incident when the present value differs significantly firom the meein in units of 

standard deviation. 

Ahmed and Cook (1982) developed the autogressive integrated moving average 

(ARJMA) algorithm, in which an ARIMA model provides short-term forecasts of 

occupancy and associated 95 percent confidence limits. An incident is detected when 

the observed occupancy values lies outside the confidence limits. 

Unlike the other algorithms that use mainly occupancy data, the McMaster algorithm is 

based on a two-dimensional analysis of the traffic data. It proposes separating the flow-

occupancy diagram into four areas corresponding to different states of traffic 
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conditions. Incidents are detected after observing specific changes of the trafOc state in 

a short time period (Mahmassani et al., 1999). 

Besides the previous approaches, which use aggregate traffic data average over 30 to 

60 sec, Collins et al. developed the HIOCC algorithm at the UK Transportation 

Research Laboratory (TRL) on the basis of one-second instantaneous occupancy data. 

The algorithm seeks several consecutive seconds of high detector occupancy in order to 

identify the presence of stationary or slow-moving vehicles over individual detectors 

(Abou-Rahme et. al., 2000). A weakness of this method is the lack of an effort to 

distinguish incidents from other congestion-produced traffic phenomena 

(Michalopoulos, et. al., 1993). 

AID algorithms also take advantage of insights gained from research in traffic flow 

modelling. Willsky et al. (1980) proposed using macroscopic traffic modelling to 

describe the evolution of spatial average traffic variables (speed, flow and density), 

thus capturing the dynamic aspect of the traffic phenomena to alleviate the false alarm 

problem. 

Stephanedes et al. (1992) concluded certain limitations of the above algorithms. The 

limitations result mainly from two sources: (a) the use of row data with only limited 

filtering and (b) the lack of effort, or effectiveness of effort, in distinguishing incidents 

from incident-like tiaffic situation. 

Over the last decade, the development of incident detection algorithms has gained an 

advantage over conventional techniques by emergent mathematical tools, such as 

neural network, fiizzy logic and wavelet transform (Cheu and Ritchie, 1995; Sachse, 

2002; Adeli and Samant, 2000). Although still using flow speed and occupancy data 

&om loop detectors or video cameras, a number of new algorithms have been 

developed based on new techniques. 

Neural networks use parallel and distributed information processing structures that 

mimic the simplified operation of a human brain. Consequently, neural networks are 

capable of performing a non-linear mapping between inputs and outputs. For example, 

associating patterns in traffic data with various traffic conditions. Cheu and Ritchie 

76 



Incident Detection 

(1995) employed three types of neural network models for freeway incident detection. 

The models were developed and tested with simulation and field data from a study site. 

Test results with simulation and field data have shown that the neural network models 

had lower false alarm rates and lower detection rates than California #8. Newly 

developed algorithms of neural network have been applied rapidly to AID algorithms. 

Dia and Rose (1997) investigated a multi-layer feedforward neural network AID model 

using speed, flow and occupancy data. Jin et al. (2002) developed a constructive 

probabilistic neural network AID algorithm based on a mixture of Gaussian models. 

Fuzzy logic is a branch of mathematics that allows the introduction of a quantifiable 

degree of uncertainty into the modelled process in order to reflect 'natural' or 

subjective perception of real variables. The way fuzzy logic works is through the use of 

fuzzy sets, which are different from traditional sets, which can be described as 'yes/no' 

or 'black/white'. Traditional sets impose rigid membership requirements as an object is 

in the set or not. In contrast fuzzy sets have more flexible membership requirements 

that allow for partial membership in a set. A fuzzy logic AID model has been applied 

to a motorway control system on the N2/N3 motorway near Basel, Switzerland (Sachse 

2002). Good progress has been made with the fuzzy approach with decreasing 

detection time and rate of false alarms. The fiizzy membership fimctions and key 

parameters can be determined with neural networks and expert systems. Lin and Chang 

(1998) proposed a fLizzy-expert system, which functioned to detect not only the 

occurrence of incidents, but also their located lanes and the resulting type of severity. 

With such information, the traffic control centre can better advise drivers to make 

necessary lane changes and take timely actions to minimise the impacts of incident on 

traffic conditions. 

Recently, researchers have investigated discrete wavelet transformation-based incident 

detection algorithms. Karim and Adeli (2002) created a fuzzy-wavelet Radial Basis 

Function Neural Network (RBFNN) fi'eeway incident detection algorithm. The 

algorithm was a single-station pattern-based freeway incident detection model. The 

characterising pattern used was a time-series of upstream lane occupancy and speed. 

Wavelet-based de-noising, fuzzy clustering, and neural network classification were 

used to reliably identify incident and non-incident conditions from the time-series 

pattern. Using the algorithm, a zero false alarm rate was reported. 
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6.2.2.2 AID algorithms based on probe vehicles 

Sethi et. al. (1995) developed a probe vehicle algorithm based on two cases: using large 

numbers of probe vehicles and using fewer probe vehicles. The algorithm compared 

current journey time reports to historical average journey times for the corresponding 

link, day type, and time period to infer the presence of incidents. The primary effect of 

reducing the number of probe vehicles was to increase the critical journey time ratio 

(the ratio of current to historical journey time above which an incident is declared). 

This increase in the critical value is shown in Table 6.4. 

Table 6.4 Critical journey time ratios for declaring incidents 

Numb^of_prot^repo^s _ Journey time ratio 
1 3̂.50 
2 3.45 
3,4 2.80 
5, 6, 7 2.60 
8, . . . ,15 2.40 
15,16,. . . 1.45 

(Source: Sethi et al, 1995) 

Balke et al. (1996) reported an algorithm which used probe- measured average journey 

time for every 15-min interval. The algorithm was developed using the statistical 

principle of .yfoM&zrc/ MormaZ (SND). The standard normal deviate for the 

normal distribution is referred to as the Z value. The SND principle, when used with 

journey times, compares a current probe-provided journey time with the expected 

journey time derived from historical data using the following formula: 

= — (6.1) 
5' 

where = journey time measured by the probe vehicle at a given time; 

JT = historical journey time on link for a given time interval of day; and 

j' = standard deviation about the historical journey time for the given time 

interval of day. 

Essentially, the SND establishes confidence intervals of historical journey time. 

Reorganising Equation 6.1, the SND algorithm takes the form: 
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JT = j r + (gND)(^) (6.2) 

Using this formulation, an incident alarm is declared if reported journey time % exceeds 

the confidence interval of JT + . The algorithm provided a mechanism for 

detecting when a probe-measured journey time was outside a range that could be 

considered typical for the link at a specific time of day and day of the week. If journey 

times are normally distributed, SND value of 2 means that 97.72% of the distribution 

can be expected to fall within the interval defined by the SND value. Five selected 

critical SND values and corresponding percentage values are list in Table 6.5: 

Table 6.5 Critical SND values and corresponding percentage values 

SND 

2.0 

2.5 

3.0 

3.5 

4.0 

Percentage Value 

97.2% 

99.38% 

99.87% 

99.98% 

99.9968 

Hellinga and Knapp (2000) described three time-series algorithms using AVI data: the 

confidence limit algorithm, the speed and confidence limit algorithm and the dual 

confidence limit algorithm. The three algorithms use 20-s time interval for journey 

time reports that is equal to fifteen probe vehicles for a 5-minute interval. The premise 

for all three models is that the journey time experienced by vehicles over a section of 

roadway increases more rapidly as a result of a change in capacity than as a result of a 

change in demand. Therefore, each of these algorithms attempts to characterise the 

mean and variance of the journey times associated with the traffic conditions befbre 

and after an incident. When an incident occurs, the statistical characteristics of journey 

times change. Thus, the journey times before and after an incident can be thought of as 

belonging to different populations. The algorithms attempt to determine if reported 

journey times are outside of the confidence limits associated with the current 

population, and if so, it is assumed that an incident has occurred. 
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6.2.3 Summary for AID algorithms 

Traditionally, AID algorithms have been divided into two broad categories: 

comparative (or pattern recognition) algorithms and time-series algorithms. 

Comparative algorithms compare traffic measurements upstream with those 

downstream to identify an incident while time series algorithms compare current 

measurements with observed data in previous time periods. However, there are now 

pattern-based time-series AID algorithms which use principles of both comparative and 

time-series algorithms (Adeli and Karim, 2000). In the last 10 years, a number of 

modem mathematical tools, such as neural network, fiizzy logic and wevelet 

transformation, have been applied in AID algorithms. The algorithms using one or 

more modem mathematical techniques rely on highly complex computation models 

rather than traditional mathematical functions. This characteristic discriminates these 

algorithms from traditional algorithms. Therefore, the author considers AID algorithms 

as falling into two new categories: classic algorithms and modem algorithms. Classic 

algorithms are wholly model-based approaches using statistical principles for 

characterising incident and non-incident traffic conditions. In general, modem 

algorithms are computationally intensive algorithms, which may require high cost for 

software. 

6.3 Methodology 

6.3.1 Incident Data 

Logs of incident descriptions provided by the Highway Agency and Hampshire 

ROMANSE Office were used for model evaluation. Information entered for an incident 

reported included the following: 

# Date and time the incident was reported 

* Location of the incident 

# Type of incident (whether it was an accident, a stalled vehicle, etc.) 

* Brief description of the incident and the resulting traffic conditions. 

The incident logs contained firsthand accounts of accidents, stalled vehicles, and other 

capacity-reducing events. However, since the logs were not always involved in every 

incident on the motorway area studied, it was difficult to obtain real values of the false 
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alarm rate. Furthermore, the exact times of occurrence of incidents were unknown, 

therefore detection time could not be determined in this research. Since incidents 

reported in the log occurred only on link 1, link 2, link 3 and link 5, only these four 

links were studied for AID algorithms. In addition, since m ^ o r incidents on the four 

links occurred only during morning peak periods, morning peak hours of 6:00-9:30 

were used for model development and validation. 

6.3.2 Model Input 

In this research, an AID model has been developed using average journey time 

measured by probe vehicles. Since sufficient probe vehicles were not deployed on the 

survey site, individual vehicles recorded by Automatic Number Plate Recognition 

(ANPR) cameras were randomly selected to simulate 'probe vehicles'. The number of 

probe vehicles fbr each link was assumed to achieve only the required sample size 

estimated in Chapter 5. As discussed in Chapter 5, in a 5-min interval, even fbr the 

same link, different sample size may be required in different traffic. However, a 

uniform sample size fbr each link was used to simplify computation of model input. 

The sample size used is the mean sample size estimated for 95% confidence level and 

10% permitted error, as shown in Table 6.6. 

Table 6.6 Required number of probe vehicles for each link 

Link number 
1 
2 
3 

Required number of probe vehicles 

6 
4 
5 

For a 5-min period, the required number of individual vehicles was randomly selected 

from the ANPR database and average journey times of the selected vehicles were used 

as the model input. It was assumed that there were the required minimum number of 

probe vehicles to estimate journey times in each 5-min interval in the morning peak 

hours of 6:00 - 9:30. Therefore, in every morning, there were totally 42 estimates of 

average link journey time, denoted byJT), ...X2. For example, denoted the 

link journey time of 6:00-6:05 on the given segment, and denoted the link journey 

time of 9:25-9:30. 
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Duration of an incident can be affected by many uncertain factors, depending on the 

incident characteristics, severity etc. The incident data collected in this study has 

shown that the average duration of an incident was about one hour. Therefore, once an 

incident was declared, it was assumed to last one hour and the detection task was 

resumed after the assumed incident duration had elapsed. Of all incident data collected 

in this study, the longest duration of incident was 2.5 hours. Within 1.5 hours after 

resuming the detection task, if further incident was declared, journey time data from 

ANPR was used to identify whether it is the same incident. If it was the same incident, 

i.e. the effect of the incident lasted longer than one hour, the test was considered 

invalid. If the effect of the incident had been eliminated before and there was no new 

report of incident, the declaration was considered a 'false alarm'. 

6.3.3 Proposed algorithm 

Not all motorway incidents impede traffic flow enough to affect journey time on a link. 

An incident was assumed to affect link journey time if it blocked part or all of the link 

or resulted in 'rubbernecking' by drivers. Rubbernecking refers to the action of drivers, 

who pass an incident slowly and observe the incident scene. Since probe vehicles 

provide only journey time (or mean space speed) on a motorway link and in a time 

period, an incident can not be detected unless the incident has caused delay in journey 

time. 

The research described in this chapter relates to incident detection using average link 

journey times measured by probe vehicles. An incident detection model has been 

developed based on the premise that an incident causes link journey times to increase 

significantly over the link journey time normally experienced at that specific time of 

day. Previous algorithms have detected an incident using few probe vehicles, when a 

real-time observation of journey time exceeded a threshold expected according to 

historical data. However, since longer link journey time can be obtained also under 

non-incident congested conditions, using link journey time data for incident detection 

may be unable to distinguish incidents from other congestion-produced traffic 

phenomena. 

82 



Incident Detection 

When an incident occurs, the capacity at that location decreases. Journey time over the 

road segment increases more rapidly as a result of a change in capacity than as a result 

of a change in demand, i.e. the reduction in capacity that results from the occurrence of 

an incident causes larger magnitude of increase in link journey time over a time 

interval than increase of trafGc flow does. Therefore, the magnitude of increase in link 

journey time can be used to characterise incident and non-incident condition. An 

incident can be characterised by testing: (1) How much does link journey time 

increase? (2) How rapidly does link journey time increase? 

Two variables were used to characterise an incident: link journey time and m 

yow/'Mg}' rz/Mg between two adjacent time intervals. Bivariate analyses were used to 

study statistical characteristics of two variables as well as their relationship in incident 

and non-incident traffic. A BivariatE Analysis Model (BEAM) was developed using 

two variables. The model identified an incident by comparing current link journey time 

measured by probe vehicles not only with historical link journey time for the specific 

time interval of day but also with link journey time obtained in the previous time 

interval. 

6.4 Model development 

6.4.1 Variable definition 

Two variables are used to describe the characteristics of journey time in incident 

condition: link journey time , and the difference of link journey time between two 

adjacent time intervals, which is defined as: 

(6.3) 

As introduced in Section 6.3.2, with 5-min interval, in every morning there is a total of 

42 observations of link journey journey time, denoted byJT] , ...X2. Since D7] 

expresses the change of link journey time from the previous time interval, there are 41 

observations, denoted by D7], j, ...X2. 

With the definitions of the two variables, a time series of link journey time can be 

transformed from one-dimension data into two-dimension. ^ and 2)7 observed on a 
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link at a time interval are considered as a bivariate sample. Thus, bivariate analysis 

method of statistics can be used to characterise journey time in incident and non-

incident conditions. 

6.4.2 Bivariate Analysis 

Data collected in non-incident condition will be shown that the joint distribution of 

and D7] is bivariate normal and detailed analyses are referred to Section 6.4.3.3. The 

joint distributions of and D7] describe not only spreads of andDT] but also 

the relationship between and . A detailed description of bivariate normal 

distributions can be found in Appendix CI. and D7] at a time interval in non-

incident traffic condition can be considered as one sample point of the bivariate normal 

distribution, while data observed in incident traffic can be considered as outliers of the 

distribution. The task of incident detection is therefore one of checking for outliers in 

bivariate normal distribution. 

The bivariate normal density is given by: 

) = exp 

where c, =2;To-/., o-/̂ y. ( 1 - / ? / ) a n d the covariance matrix Z = 

(6.4) 

2 

A measure of the strength and direction of association between variables is provided by 

the corA-eZarz'oM 

(6.5) 

Therefore, the bivariate normal density contains five parameters //yy., , CTg,; 

and . For bivariate normal distribution, elliptical contours can be used to study the 

distribution of the density over the - D2] plane. The equation 

r 

y - l - /̂ jy; 
= K (6.6) 
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describes an ellipse in the plane with centre at ). As /r increases, 

the area of the ellipse increases. For the bivariate normal density, the constant A; on the 

right-hand side of Equation (6.6) is equal to , . The elliptical contour contains 

average 100(l-(z)% of the sample points. If a sample plot of , D7]) lies in the 

elliptical contours, the Equation (6.7) should be fulfilled and the sample is considered 

as non-incident data. Otherwise, when the sample plot lies outside the elliptical 

contours, an incident is declared: 

<K- (6.7) 

In this research, two elliptical contours containing 99% and 99.9% of the distributions 

respectively were constructed. Each observation of (J7] , D7]) was compared with 

corresponding elliptical contours to check for outliers (incidents). Figure 6.2 shows 

observations of 10 days on link 2 and the time interval of 7:40-7:45. Some plots are 

displayed inside both contours and these indicate non-incident condition. The plot 

outside the external elliptical boundary would result in an incident being declared. The 

plot displayed outside the 99% coverage contour but inside the 99.9% coverage 

contour results in an incident being declared with 99% contour but not with 99.9% 

contour. The sensitivity of different contours has been studied in the following 

evaluation. 

200 

N 0 

- 1 0 0 

- 2 0 0 
210 240 270 am 

Figure 6.2 99% and 99.9% coverage contours 

85 



Incident Detection 

6.4.3 Parameter Estimation 

6.4.3.1 Link Journey Time 

Observations of average journey time on the same link for the same interval were 

considered as the population studied, and average journey times at each of the 15 days, 

provided by ANPR, were considered as a sample of the population. For example, to 

estimate the journey time distribution on link 2 at the 23rd time interval (7:45-7:50), 

observations of at each of the 15 days were used, as shown in Table 6.7. 

Table 6.7 Sample of 

Da\ 21/5 22'5 23'5 24 5 25 5 2'9 3'9 4'9 5'9 6/9 16/9 17/9 18/9 20/9 2]79' ' 

VT,. (s) 9] 91 132 88 90 141 94 97 196 166 106 145 101 124 84 

The Kohnogorov-Smimov Test (K-S test) was used to assess and confirm that journey 

times were distributed normally. The mean and standard deviation of were 

estimated from the sample: 

=33.4j' 

For each of the 42 time intervals in the morning peak hours, (=7,2, ...X2, have 

been shown to be normally distiibuted. The normal distributions have time-varying 

means and standard deviations. Due to the limited sample size, the directly estimated 

means may include noise and a smoothing process was needed. Figure 6.3 shows the 

smoothed mean of over the morning peak period. Smoothed standard deviations of 

at each time interval are shown in Figure 6.4. The results indicated that larger 

values of standard deviation are most likely to be obtained at busier time, i.e. 7:30-

8:30. That is, average journey time for the same time interval can be very different 

from day to day. Average journey time and standard deviation discussed here are 

different from those discussed in Section 5.5.1. In Section 5.5.1, average journey time 

is the mean journey time of all vehicles on a link in a time interval, and standard 

deviation is calculated from journey times of all vehicles on the link in the time 

interval. In this section, however, mean journey time and standard deviation describe 
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how different average journey times of all vehicles for the same link in the same time 

interval can be from day to day. 
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Figure 6.3 Mean of link journey time at each time interval 
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Figure 6.4 Standard deviation of link journey time at each time interval 

6.4.3.2 Difference of link journey time between adjacent time intervals 

The distribution of DT. at each time interval was studied using data from the same 15 

days. Normal distributions have been shown for each time interval. Mean and standard 
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deviation of D7] are shown in Figure 6.5. For time intervals before 6:30 and after 9:00, 

is zero due to the stability of journey time in this period. Increasing of journey 

time from 7:00 to 8:00 gaveDT] positive values, while negative values of D7] in the 

period of 8:00-9:00 were obtained due to decreasing of journey time. Similar to JT] , 

larger values of standard deviation were obtained in busier time. 

fa) Mean Difference 

g 0 

IG.05-6 10) 
15 20 

(7:35-7:40) 
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b) Standard Deviation 
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Figure 6.5 Mean and standard deviation of difference of journey time 
at two adjacent time intervals 

6.4.3.3 Correlation Coefficient 

Both and D7] have been shown to be univariate normal. However, it is not 

necessarily true that and D7] will be bivariate if both and D7] are univariate 

normal. The correlation coefficient measures the strength and direction of 

association between and . For the time period when the journey time is stable, 

i.e. before 6:30 and after 9:00, p, = 0 , i.e. and D7] are independent. In this case, 
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the joint density can be written as the product of the densities of and D7] , and 

hence the joint density is bivariate normal. 

During the time period when the journey time increases or decreases substantially and 

quickly, large positive values of /?, were obtained, indicating a strong positive 

relationship between and D7]. Relatively weak relationship between and Dlj 

was obtained in the time intervals when wEis increasing or decreasing slightly. The 

correlation coefficient at each time interval were estimated as the following: 

0 ze [2,6] U [37,40] 

_ 0.2 ze [7,12] U [32,36] 

^0.5 ze [19,31] 

0.8 ZE [13,18] 

For the time intervals with non-zero correlation, the distributions were determined be 

bivariate normal by using Mahalanobis Distance. The assessment of bivariate 

normality is introduced in detail in Appendix C2. After estimation of the five 

parameters of the bivariate normal distribution, ,cr^y. andp, , the 

bivariate normal density of the distribution could be obtained. The surface of bivariate 

normal density at the 23rd time interval, i.e. 7:50-7:55, is shown in Figure 6.6. The 

three dimensional picture shows that the density at ( i s given by the height 

. According to the Equation 6.4, decreases exponentially 

with the square of the distance between ( ) and the centre ( ) , then 

the surface looks like a bell. The marginal densities for and are the familiar 

normal densities: 

1 1 — u 
% ) = , ^ e x p [ - - ( 

% ) = ^ L _ e x p [ - 1 ( ^ ^ ' ' 

(6.9) 

Contours of the surface on the JT] - plane are ellipses, as shovyn in Figure 6.2. 

89 



Incident Detection 

1 
1 00 

-so 1 • • 

- 1 0 0 0 

2 S 0 

I so 

(s) 

Figure 6.6 Bivariate normal density of ^ and D7] 

6.5 Model evaluation 

In this research, the logs of incident descriptions provided by the Highway Agency and 

Hampshire ROMANSE OfGce were used to evaluate model performance. However, 

since the log data were not always available for every incident on the survey site, the 

FAR obtained may be higher than the actual value. Furthermore, due to an unknown 

exact occurrence times of incidents in the logs, detection time could not be evaluated. 

6.5.1 Model performance 

For each of the four links in the study motorway area, 9 weeks data were used for 

model evaluation. The evaluation was carried out using 99% and 99.9% coverage 

contours respectively. The results of the test are summarised in Table 6.8. The best 

detection rate and false alarm rate were obtained on link 1. This was because journey 

time was strongly stable on link 1 and an incident could produce more obvious impact. 

The lowest detection rate was on link 5. However, it may not be associated vyith carried 

traffic or geometric conditions of the link. It may be that more minor incidents 

occurred on link 5. Table 6.9 summarises the results on the four links using different 

contours. 
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Table 6.8 Model performance 

Contour 

Link 1 Link 2 Link 3 Link 5 

Contour 99% 99.9% 99% 99.9% 99% 99.9% 99% 99.9% 

Number of Incidents 4 4 5 6 

Number of Incidents Detected 4 4 4 3 5 4 4 4 

Number of Tests 1678 1698 1668 1612 

Number of False Alarms 6 4 12 10 17 14 12 10 

Detection Rate (DR) 100% 100% 100% 75% 100% 80% 66.7% 66.7% 

False Alarm Rate (FAR) 0.36% 0.24% 0.71% 0.59% 1.02% 0.84% 0.74% 0.62% 

Table 6.9 Model Performance Summary 

Detection Rate (100%) 
False Alarm Rate (100%) 

99% Contour 
90.5% 
0.71% 

99.9% Contour 
85.7% 
0.57% 

6.5.2 Performance Analysis 

The four links studied carry heavy traffic in morning peak hours. Therefore, an incident 

occurring on these links can produce significant impact on journey time of any 

individual vehicle. Consequently, a high detection rate was achieved by probe vehicle 

algorithm. However, a higher false alarm rate was obtained on the same links. In 

general, algorithms with probe vehicle journey times have experienced a considerably 

higher false alarm rate than the other algorithms using loop detector data (Balke et al., 

1996). The false alarms are likely to occur when one or two of the probe vehicles have 

unusually large journey times due to driver' behaviour or vehicle condition. 

The length of a link can have an impact on model performance. With relatively short 

lengths, links 1 and 2 have higher detection rates than the others. That is because an 

incident may produce more significant increases in journey time on a shorter link. 

Previous research (Hellinga and Knapp, 2000) has shown that an incident is likely to 

create congestion upstream and reduce the flow downstream. The decrease in flow 

downstream of the incident is in turn likely to allow an increase in speed. Therefore, 

the speeds of vehicles exiting the incident area will increase. In that case, loss of 

journey time due to a minor incident may be made up over a longer journey. The same 
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AID algorithm may be more sensitive to an incident for shorter links than for longer 

links. 

6.6 Summary 

In this chapter, existing AID algorithms have been reviewed. Based on experiences of 

previous researchers, the author chose statistical principles to develop an AID model 

using average journey time measured by probe vehicles. The premise of the model is 

that link journey time increases more rapidly as a result of a change in capacity (i.e. 

such as the reduction in capacity that results from the occurrence of an incident) than as 

a result of a change in demand. In this case, incident conditions were suspected if 

probe-measured journey time at a time interval was not only significantly higher than 

normally expected, but also higher than the journey time measured at the previous 

interval. Two variables, average journey time and journey time difference between two 

ac^acent time intervals, have been used to characterise incident condition. Statistical 

principles of the bivariate analysis have been used to describe the relationship of the 

two variables. The joint distribution of the two variables obtained in non-incident 

traffic is considered to be bivariate normal, while observations of the two variables in 

incident traffic are considered as outliers of the bivariate normal distribution. The task 

of the BivariatE Analysis Model (BEAM) is to check observations fbr outliers. Four 

links have tested the feasibility of the model with 99% and 99.9% coverage contours 

respectively. High detection rates and reasonable false alarm rates have been obtained. 
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Chapter Seven 

Journey Time Prediction 

7.1 Introduction 

It has been shown in Chapter 4 and Chapter 5 that GPS equipped probe vehicles can 

measure journey time accurately, and only a small sample size is required to estimate 

mean journey time reliably on a motorway link over a period. However, where there 

are insufficient probe vehicles to meet this minimum criterion, an alternative approach 

is to predict journey time. Moreover, although probe vehicles can provide accurate 

real-time or near real-time journey time, many ITS applications (e.g. in-vehicle 

navigation systems) need sound estimates of future conditions. Short term prediction of 

journey times can be particularly important Ibr motorway management/operations and 

dynamic route planning. Real-time and predictive traveller information has become 

possible by the convergence of information technology and wireless communications, 

for example delivering information through the SMS (Short Message Service) function 

of mobile phones. Individual travellers will have an opportunity to review their travel 

options every time just before they travel. A report (Karl and Trayford, 2000) found 

that 33 per cent of peak hour travellers have the opportunity to start their journeys at 

flexible times and predictive journey time information benefits this group of motorists 

as they can decide what time and route to take. 

This chapter is concerned with predicting motorway link journey times from real-time 

journey times estimated by probe vehicles and historic travel times. Different models 

have been developed to forecast journey times for incident and incident-free traffic 

conditions. For incident-free conditions, the predictive periods will be fi-om 5 to 30 

minutes. As discussed in Chapter 6, since the duration of delay caused by an incident 

may be more than 30 minutes, a longer term prediction is required for incident 

conditions. In this chapter, journey times for each time interval of one hour after an 
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incident have been forecast based on impact of the incident, i.e. if an incident occurred 

at 7:30, journey times at each time interval &om 7:30-8:30 should be forecast. 

7.2 Literature review 

There has been much research into journey time prediction. Examples include time 

series models (D'Angelo et al., 1999), Kalman Filter Model (Chen and Chien, 2001), 

simulation models (Chien et al., 2003), and neural network models (Lint et al., 2003; 

Krikke, 2002). Prediction models can be based on inductive loops (Huisken and 

Berkum, 2002;), probe vehicle data (Sun et. al, 2003), and fused data of both sources 

(Nanthawichit et al., 2003). 

Sun et al. (2003) proposed a local linear regression model for short term speed 

forecasting based on AVI data. The model has been developed based on the assumption 

that speed data on different days may show similar trends, although the shifts are 

different on the time axis. Therefore, patterns could be matched after sliding the data in 

the time dimension. 

In Chien and Kuchipudi (2002), a Kalman filter algorithm has used in predicting travel 

time. The system model was written as: 

j x (0 = f ) ( / - l ) x ( r - l ) + M;(r-l) 

jz(r) = x(/) + v(r) 

where, %(%) denotes the travel time at time interval r that is to be predicted, denotes 

a white noise process, denotes the observation of travel time on time interval t and 

denotes the measurement error. The transition parameter ^(r) was determined 

using historic data, i.e. travel time from the same time interval of a previous data with a 

similar traffic condition was used to obtain ^(f). This assumes that the pattern of 

journey time variation over time remains similar between two days. 

However, data collected on links on the M3 and the M27 have shovm very different 

patterns of journey times from day to day. Figure 7.1 shows journey times on link 2 in 

the morning peak time on three days: 30 Sept. (Monday), 1 Oct. (Tuesday), and 2 Oct. 
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(Wednesday), 2002. It can be found that journey time could achieve its highest value at 

any time between 7:30 and 8:30, in which journey time has larger variance (as shown 

in Figure 6.3). Therefore, the assumption that the pattern of journey time variation over 

time remains similar between days may not be supported and the transition parameter 

(pit) obtained from a previous day may not reflect journey time change in another day. 

1 8 0 - 1 Monday 

Tuesday 

Wednesday 

cu 120 -

1 0 0 -

(6:00-6:05) 
'22" " " 

(7:50-7:55) 
Time interval 

(9:25-9:30) 

Figure 7.1 Journey time on different days 

7.3 Journey time prediction in non-incident condition 

7.3.1 One-step-ahead prediction 

One-step-ahead prediction in this study is used to forecast average journey time of the 

next 5-minute interval. As introduced in Section 3.3.2, in the morning peak period of 

6:30-9:30, using five minute interval, there are a total of 42 observations of average 

journey time, denoted by JT^, i=l,2, 42. Average journey time is considered to be a 

discrete time-series. For prediction, average journey time is considered as a first-order 

autoregressive (Markov) process: 

jz;,, (7.2) 
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where 6. is an independent white noise process with mean zero and variance g, . The 

journey time prediction consists of estimating the time-variant mean of a stochastic 

system. 

Analyses in Section 6.4 have shown for the same time interval, average journey times 

obtained from different days are normally distributed, although mean and variation for 

each time interval are different (Figure 6.3 and 6.5). Therefore, the relationship 

between VT] and depends on the parameter /. Journey times in each time interval 

can be transformed to standard normal distributions by the formula: 

J ? : - / / , 

cr, 
(7.3) 

It can be found that the relationship between Z/T] and is approximately linear, 

shown in Figure 7.2. 

n r 

-0 .5 -

K ' 
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-1.5 -1 -0.5 0 .5 1 1.5 

'J% 

Figure 7.2 Scatterplot of Z/7] vs. 2/7]+,, ..., 

The linear relationship can be explained by noting that the deviation of journey time 

from its mean in the current time interval is the same as in the previous time interval. 

The relationship can be described by the following equation: 
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-̂ ^+1 " /̂ ,+i " A 
a i + \ O", 

(7.4) 

Journey time in the next time interval can be forecast by: 

"^+1 - Mi+} + W - M,) 
a. 

C7.5) 

An example of the observed and predicted journey times is shown in Figure 7.3. It may 

be seen that the predicted journey times closely follow the propagation of the observed 

journey times over the entire morning peak period. For non-congested time slices 

before 7:30 and after 9:00, the predictions match. Throughout the congested period, 

journey time predictions take time to adjust to significant increases/decreases. 
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Figure 7.3 Comparison of observed and predicted journey times 
on link 2, Sept. 30 2002 

Prediction accuracy is assessed by prediction error, which is estimated by: 

predicted observed J 
= 

JZ 
(7.6) 
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Equation 7.4 was applied to morning peak period data from 30 Sept. to 4 Oct. 2002 and 

the calculated prediction errors for the five weekdays are listed in Table 7.1. Over the 

five days, 90% of all predictions errors of journey times fell within 10%, and the 

average prediction error was 6.64%. Larger prediction errors occur at the temporal 

boundaries of congestion due to the property of delay in the linear prediction model. 

Table 7.1 One-step-ahead prediction error 

Day Average Prediction Error Maximum Prediction Error 

30/09/02 5.28% 20.69% 

01/10/02 9.56% 39.26% 

02/10/02 7.86% 60.89% 

03/10/02 5.46% 40.67% 

04/10/02 5.07% 17.46% 

7.3.2 Multi-step-ahead prediction 

In practice, the time scales of interest are longer than those applied in one-step-ahead 

prediction, typically 10 to 30 minutes (Karl and Trayfbrd, 2000). In this study, three 

prediction cases are considered, 10-minute, 20-minute and 30-minute predictions. 

Since journey time may change substantially in 10 minutes, use of linear regression 

equation (Equation 7.3) may result in larger prediction errors, thus a more 

comprehensive model is required for multi-step-ahead prediction. In the model, the 

current observation of journey time is still of prime interest but the weight of historic 

data increases. 

For multi-step-ahead prediction, journey time is considered to be generated by a 

random walk plus drift: 

(7.7) 

where denotes the difference of mean journey time between the two time intervals: 

(7.8) 
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Although parameter is known and constant, is still treated as part of the state 

variables, by defining the state variable as a, = . Equation 7.7 can be written 

in the state space form as: 

= [l 0}%, + f . (7.9) 

a, = 
JT, 1 1 JT, 7, 

= + 
7, 

A 0 1 0 
(7.10) 

Equation 7.9 is the observation equation and Equation 7.10 is the transition equation. 

The Kalman filter can be applied to solve the equations in two phases. The first step is 

to predict the next value of the state and the variance of the state: 

a 

p 

0 1 

1 r 

0 1 

a 
/-/r /-A 

P 
/-AlZ-A: 

1 1 

0 1 
+ & 

(7.11) 

(7.12) 

where g, is the covariance matrix of O] .̂ As the equations are first order 

stochastic difference equations, starting values are required. Thus the initial state, a,,, 

and its covariance matrix, ^, are assumed to be known. 

The second step in the Kalman filter is to update the value of the state by reviewing the 

current predictions when new information is available: 

-[1 (7.13) 

P , =( / -A: , ( I 0])P„„,, (7.14) 

0]'([1 0]/;,_,[l O f + f f / ) - ' (7.15) 

where cr/ is the variance of . 

Rearranging the terms on the right hand side of Equation 7.13 yields: 

&<,=K,y,+U~K{l 0|)6„., (7.16) 

The updated state in Equation 7.16 is expressed as a weighted average of and . 

In this study, the new observation, , is the historic journey time for the same time 
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interval. Thus, the Kalman filter model provides an estimate of journey time in the zth 

time interval from journey time in the (z - A: time interval and historic data. 

Prediction results for the same day predicted in Figure 7.3 are shown in Figure 7.4. As 

journey times increase, the error of prediction becomes greater, and the level of delay 

increases with the length of the prediction period. Compared with one-step-ahead 

prediction, multi-step-ahead predictions are unable to forecast significant change in 

journey time since the Kalman model adheres to historic data. 

The Kalman filter model has been applied to morning peak period data from 30 Sept. to 

4 Oct. 2002. Average prediction errors for various prediction periods are summarised 

in Figure 7.5. It can be seen that the prediction error increases with the length of the 

prediction time period. With the prediction time of 20 minutes, the error approached 

10%. For the prediction time of 30 minutes, average prediction error of 11% is 

obtained. 

7.4 Journey time prediction in incident conditions 

Journey time prediction in incident-free conditions is based on current observations and 

historic data, and the prediction period is from 5 minutes to 30 minutes. However, in 

incident conditions, journey time will have very different characteristics and those 

prediction models developed in Section 7.2 are unable to predict journey times in 

incident conditions. Moreover, after an incident is identified, traffic operators and 

travellers may want to know the impacts of the incident, such as duration of the 

incident. Therefore, a prediction model should aim to forecast the duration as well as 

journey times during the period, and a different prediction strategy is required. 

Analyses in Chapter 6 have shown that an incident may cause a considerable increase 

in journey time and, by studying the increasing magnitude, an incident can be 

identified. A typical example of changes in journey times is shown in Figure 7.6. This 

displays an incident on link 2 in the morning peak period on the 11^ Oct. 2002. 
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Figure 7.6 Journey time changes during an incident period 
on link 2, October 11 2002 

It can be seen that in the early stage of the incident, journey times increase rapidly. It is 

then maintained at a high level before gradually decreasing. The corresponding average 

speed during the incident is shown in Figure 7.7. More incident data are presented in 

Appendix D. Although different incidents produce different impacts, changes in 

average speed during an incident period have similar characteristics. By studying the 

102 



Journey Time Prediction 

characteristics of speed changes, it is possible to predict the duration of an incident and 

journey times in each time interval during the incident period. 

15 2 0 2 5 
(7:3).7:40) 

Time intend 

3 5 4 0 4 5 

Figure 7.7 Average speed during an incident period 
on link 2, October 11 2002 

In general, the same incident may cause longer delay in busy traffic than in light traffic. 

However, impacts of incidents may also be affected by many uncertain factors, such as 

driver behaviour and traffic operators' response. Therefore, it is difficult to precisely 

predict the duration of an incident at the beginning. Moreover, due to very limited 

incident database, the statistical characteristics of an incident process obtained may be 

biased. 

Despite such disadvantages of journey time prediction in incident conditions, a trial of 

prediction has been carried out in this section. The prediction model aims to predict 

journey time by forecasting average speed. Speed change in an incident period has 

been divided into two stages: breakdown stage and recovery stage. Different 

mathematical functions have been used to reflect the different characteristics of the two 

stages of an incident. 
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7.4.1 Breakdown stage 

A rapid decrease in the average speed can be fbund at beginning of a breakdown stage, 

with a minimum speed approached afLer only a few time intervals. This is considered to 

be the breakdown stage. For the incident process shown in Figure 7.7, the BEAM 

model identified the incident in the 6^ time interval, and the minimum speed was 

achieved in the 12^ time interval. Therefore, the breakdown stage includes seven time 

intervals, i.e. from the 6'"̂  to the 12^ time interval. Incident data shown in Appendix D 

indicate that length of the breakdown stage for different incidents is generally from 25 

minutes (5 time intervals) to 35 minutes (7 time intervals). A fixed length of 30 

minutes is used for the prediction. The minimum speed in an incident period depends 

on many factors, such as traffic conditions and incident type. Data collected during this 

research (Appendix D) has shown that minimum speeds for different incidents are 

distributed 6om 2.65 m/s to 10.7 m/s with most of them are around 6 m/s. Since no 

dominating factors have been found, a fixed minimum speed of 6 m/s has been used for 

the prediction. 

For the incident process shown in Figure 7.7, the breakdown stage is considered to be 

from the 6^ time interval to the 11^ time interval. Speeds in the six time intervals are 

shown in Figure 7.8. Five types of fimctions have been chose to fix the data as 

following: 

1. Linear Function 

:,/ = -1.6889x + I4.989 (7.17) 

2. Logarithmic Function 

=-5.2827 hi(x)+ 14.87 (7.18) 

3. Polynomial Function 

)/ =-0.6173%"-6.01% + 20.751 (7.19) 

4. Exponential Function 

y = 15.55exp(-0.169x) (7.20) 

5. Power Function 

_y = 15.135%-"''"" (7.21) 
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Figure 7.8 Speed and fitted curves in breakdown stage 

Figure 7.8 shows fitted curves of the five functions and the best fitting function is the 

power function. For the power fiinction, two parameters should be determined: 

(7.22) 
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Speed at the first interval of the breakdown stage is known. Speed at the last interval of 

the breakdown stage is supposed to be the minimum speed of the incident process, i.e. 

6m/s: 

}/(!) = or = 15.75 

}'(6) = (%(6)̂  = 6 ^ ^ 

Solving the Equation 7.23, the two parameters can be obtained: 

= 15.75 

=-0.538 

Therefore, the power function used for estimating speeds in the breakdown stage is: 

;/ = 15.75%-^ '̂̂  (7.24) 

It can be found that the parameters of Equation 7.24 are similar to parameters of 

Equation 7.21 which were estimated by known data in breakdown stage. For the 

incident shown in Figure 7.8, the breakdown stage is from the 6̂"̂  to the ll '^ time 

interval and estimated speed at each time interval for the period is calculated by: 

V, =15.75(z-5)-"' ' ' 7, ...,77 (7.25) 

Incident data shown in Appendix D support the concept that average speed changes in 

the breakdown stage are generally similar to Figure 7.8. Thus, the power function can 

be used to predict the rapid decrease in speed in the breakdown stage. Two parameters, 

(z and A, are required. The parameter a is estimated from speeds at the early stage of 

an incident. For example, an incident causes a significant increase in journey time in 

the k̂ A interval and the BEAM model will identify the incident in the (k+l)^A interval. 

The parameter a is estimated as speed at the (k+1)^/! time intervals: 

a = (7.26) 

Since a fixed length of 30 minutes is used for the prediction, the 6^ time interval of the 

breakdown stage is the minimum speed of the incident process: 

=^.+,6" (7.27) 

is calculated by solving Equation 7.27: 

A = 28) 
ln(6) 
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7.4.2 Recovery Stage 

The recovery stage of an incident is the period in which speed increases from the 

minimum speed to the normal link speed. The duration of the recovery stage also 

depends on many factors, such as the minimum speed of the incident and traffic flow 

on the link during the incident period. Data collected in incident conditions have shown 

that the length of the recovery stage substantially relates to the traffic flow during the 

time period when the incident occurred. In general, the busier the traffic, the longer 

period required for recovery from an incident. If it is assumed that the recovery stage 

lasts 30 minutes, i.e. six time intervals, the mean speed of the six time intervals can be 

calculated using historic journey time data. An approximately linear relationship 

between the mean speed and length of the recovery stage has been found, as shown in 

Figure 7.9. 
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Figure 7.9 Length of recovery stage and mean speed 

The length of the recovery stage, presented in the number of time intervals, is estimated 

by a linear regression as: 

=-0.996^6 +32.05 

j;- =0.65 
(7.29) 
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where 5"̂  is mean travel speed on the link for the six time interval, estimated from 

historic data. Thus, length of the recovery stage can be estimated using historic journey 

time data. Increase in speed in the recovery stage can be represented by a hyperbolic 

cosine function: 

cosh(,&) = ^ (7.30) 

The function describes the speed change from the minimum speed to the speed before 

the incident occurred: 

where denotes the minimum speed in the incident period, i.e. 6 m/s, and is 

speed in the conesponding time interval, estimated from historic data. Parameters of 

the Equation 7.29 are therefore estimated from the following equations: 

In summary, the duration of the recovery stage, presented as the number of time 

interval, is estimated by: 

=-0.996^6 +32.05 

where 5"̂  is mean travel speed on the link for the six time intervals, estimated from 

historic data. Average speed in each time interval of the recovery stage is predicted by: 

V, =6cosh[yg(/-A;-6)] ;= A; + 7, A:+ 8 , ..., A; + 6 + #^ 

where - — l n ( - ^ ) . 

7.4.3 Summary of Prediction Procedure 

When an incident causes a significant increase in journey time in the k̂ A interval, and 

the BEAM model will identify an incident in the (k+l)rA interval, the following 

prediction procedure is applied: 

Step 1. The breakdown stage is from (k+l)rA interval to (k+6)f/z interval; 
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Step 2. Assume the recovery stage is from the (k+7)^A k+7^ to the (k+12)fA time 

intei-val, and calculate historic mean speed of the six time intervals 5'^; 

Step 3. Recalculate length of the recovery stage by: 

= -0.996^^6 + 32.05 

and the recovery stage is estimated from the (k+7)f/z time interval to the (A: + 6 + 

time interval; 

Step 4. Estimate the parameters a = and A 
ln(6) 

Step 5. Use v, = (z - to calculate speed in each time interval of the breakdown 

stage; 

Step 6. Estimate historic speed in the (A: + 6 + )r/z time interval 

Step 7. Calculate = — l n ( — ; 
TV, 3 

Step 8. Use v. =6cosh[y^(z-A-6)] to calculate speed in each time interval of the 

recovery stage. 

7.4.4 An example of prediction 

In this section, an incident which occurred on the 11^ October 2002 on link 1 has been 

taken as example to illustrate the prediction procedure. The BEAM model declared the 

incident in the 16'̂ ^ time interval, i.e. 7:15-7:20. The breakdown stage is estimated from 

the 16̂ ^ to the 21^^ time interval. By obtaining 5"̂ = 26.22 m/s from historic data, length 

of the recovery stage is estimated as: 

= -0.996 X 26.22 + 32.05 = 5.9 

The recovery stage involves six time intervals, i.e. from the 22"̂ ^ to the 27*'̂  time 

interval. The historic speed in the 27"̂  time interval is =26.9 m/s. 

Parameters or and A are estimated as: 

a = 14.23 

= -0.4823 

Therefore, the speed in each time interval in the breakdown stage is estimated by: 
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V, =14.23(z-15) -0.4823 / = 76̂  7 7 , 2 7 

The speed in each time interval in the recovering stage is estimated by: 

V, =6xcosh[0.3656(z-21)] z = 22, ...,27 

The incident period is considered from the 16*̂  to 27^ time intervals, i.e. 60 minutes. 

Comparison of observed and predicted speeds in the period is shown in Figure 7.10. 

Because of lighter traffic on link 1 than on other links in the morning peak time, the 

incident period is likely to last a shorter time on link 1. 
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Figure 7.10 Comparison of observed and predicted speed on link 1, Oct. 11 2002 

7.5 Summary 

This chapter has developed a model to predict motorway link journey times based on 

journey time data measured by probe vehicles. Consideration was given to the fact that 

probe vehicle data provides only direct journey time with good accuracy. Average link 

journey times expressed by 5-minute intervals were considered as stationary stochastic 

processes. In incident-free traffic flow, a linear model has been developed for one-step-
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ahead prediction (5 minutes ahead), and the Kalman Alter algorithm has been used for 

multi-step-ahead prediction. The Kahnan filter model developed in this research has 

been shown to be effective in predicting journey time and acceptable errors have been 

obtained using this model. The average relative prediction error was found to increase 

with the length of the prediction interval. With a 20-minute interval, the prediction 

error remains under 10%. However, significant increases in the prediction error were 

observed at 30-minute prediction period. 

As the above predictions are based on historic journey time data, the predictions are 

unsuitable for incident condition. Therefore, a different prediction strategy was 

required for use in incident situation. After an incident is identified, prediction work 

aims to forecast journey times over an entire process of an incident rather than in a 

certain time interval. According to characteristics of speed in incident traffic, a process 

of an incident has been divided into two stages: breakdown stage and recovery stage. 

Length of the breakdown stage has been considered as fixed, i.e. six time intervals, 

while length of the recovery stage has been estimated by historic journey times. A 

power equation has been used to estimate speed in each time interval in the breakdown 

stage, and a hyperbolic cosine equation has been used for the recovery stage. Due to 

complexity of change in journey time with various incidents, the model may not 

provide accurate prediction results universally for all cases. However, the model can 

give an entire predictive description of an incident at the begirming of the incident. 

Although the predictive journey times may not match the real journey times precisely, 

the model will be helpful for traffic operators and travellers, especially before further 

information becomes available. 
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Chapter Eight 

Active Probe Vehicle 

8.1 Introduction 

Two types of vehicle can be used in a 'probe' capacity: specially equipped probe 

vehicles for traffic data collection (active probe vehicles), and general vehicles 

installed with the location and communication equipment for another purpose other 

than data collection (passive probe vehicles). Historically, the manual method has been 

the most commonly used travel time data collection technique. This method requires a 

driver and a passenger to be in the vehicle. The driver operates the vehicle while the 

passenger records time information at pre-defined checkpoints. Now GPS has become 

the most common technology used for active probe vehicle. As introduced in Section 

2.2.1, in most travel time studies involving active probe vehicles, only one vehicle is 

used to measure journey time along a specific direction of travel. Since the driver of the 

probe vehicle is a member of the data collection team, driving styles and behaviours 

can be controlled to match desired driving behaviour. Most travel time studies ask 

drivers to travel at the speed of the traffic stream and maintain the number of 

overtaking vehicles the same as those overtaken. And journey time of the active probe 

vehicle will be directly taken as the average journey time. In practice, however, drivers 

may be unable to achieve the requirement because of the inherent difficulties of 

keeping track of passed and passing vehicles. 

Since GPS device can measure vehicle location and speed at 1 Hz, GPS data can be 

used to build detailed speed profiles of the probe vehicle over an entire journey. By 

combining the high time resolution data, it is possible to assemble a detailed picture of 

the movements of the probe vehicle. This study seeks insight into various sispects of 

traffic flow by measuring and analysing the movement of the probe vehicle. In this 

chapter, journey time will be calculated based on the analysis of the speed profiles 

rather than directly taking journey time of the probe vehicle. In this case, drivers of 
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probe vehicles do not have to attempt to drive at the speed of the traffic stream, i.e. 

drivers can drive as they would normally. 

8.2 Speed proRle development 

Speed measurement is a basic output of GPS, although it has been ignored by most 

users. GPS speed measurement is almost instantaneous and essentially independent of 

position fixes (D'Este et al., 1999). After the termination of the Selective Availability 

(SA), the speed measurement can achieve to O.lm/s with 95% confidence. By 

combining GPS observations of location, time and speed, GPS can offer a cost-

effective way of collecting a stream of traffic information that can be processed to 

derive journey time estimation and incident detection. Tw^o speed profiles can be 

derived from GPS data: time-speed profile, and space-speed profile. Examples of the 

two speed profiles is shown in Figure 8.1, in which a journey on link 2 in the morning 

peak hour of the 1 '̂. October 2002 is described. Speed profiles are likely to differ by 

vehicle type, road type and driver style as well as traffic flow conditions. Any study 

based on speed profiles should extract traffic flow characteristics and filter influence of 

other factors. 

8.3 Journey time estimation using single GPS equipped probe vehicle 

8.3.1 Driving pattern 

Speed profiles are determined not only by traffic flow but also driver behaviour. Speed 

profiles of four vehicles on link 2 at 15:50-15:55, 26^ July 2001 are shown in Figure 

8.2. The figure illustrates that in the same general traffic condition, speed profiles can 

be very different. In this study, three driving patterns have been classified: fast, 

medium and slow. Assuming that average journey time on a link in a time interval is 

known, fast driving is classified when the journey time of a vehicle is shorter than the 

average journey time in the same time interval and on the same link. 
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Figure 8.1 Time-speed and space-speed profiles 

Conversely, slow driving is classified if journey time of the vehicle is longer than the 

average journey time. Medium driving means that journey time of the vehicle is similar 

to the average journey time, i.e. the difference between the two journey times is less 

than 5 seconds. The driving pattern in this study is associated only with the difference 

between vehicle journey time and the average journey time. Therefore, the same driver 

can be classified as belonging to different groups of driving pattern for different 

journeys. As shown in Figure 8.2, different driving patterns have different 

characteristics in acceleration and deceleration. Therefore, driving patterns can be 

identified from features of speed profiles. 

Data collected in the ramp metering survey have been used to characterise speed 

profiles for different driving patterns. As introduced in Section 3.4.1, in the ramp 

metering survey, the TRG Instrumented Vehicle (IV) carried out 105 valid journeys on 

link 7. During the survey, the IV was driven by a variety of drivers. However, since in 

the ramp metering survey, drivers were required to drive the vehicle on the motorway 
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lane 1 for as long as reasonably possible, most journey time observations were longer 

than the average. Of all 105 journeys, 81 were classified as slow, 21 medium and only 

3 fast driving patterns. Characteristics of fast driving cannot be obtained due to the 

small sample. 
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Figure 8.2 Different driving patterns 

As described in Section 3.4, the car fbllov^ng survey provided some speed profiles 

which can be used to study features of driving patterns. 69 journeys on link 7 fi-om the 

survey have been used, including 30 fast, 18 medium and 15 slow driving patterns. The 

data collected from the two surveys have been used to develop a model to estimate the 

average journey time from a speed profile obtained by a GPS equipped probe vehicle. 

By identifying driving pattern of a journey, the model will also estimate the difference 

between journey time of the probe vehicle and average journey time, therefore obtain 

the average journey time. 

8.3.2 Definition of variables 

Speed and acceleration have been used to describe the driving style and performance of 

individual drivers (Drew, 1968; Lu, 1992; Sermons and Koppelman, 1996; Ericsson, 

2001). In this research, two variables associated with speed and acceleration 
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respectively have been used to characterise speed profiles of different driving patterns. 

Average speed is a common parameter to describe trafGc conditions and driving style. 

For a GPS equipped probe vehicle, the average speed of a journey is calculated from a 

speed profile as follows: 

(8.1) 

where 7]̂  is start time of the journey, 7]̂ , is the end time of the journey, v(r) is the 

speed of probe vehicle at time 

Traditionally, both acceleration and deceleration were considered to have the same 

weighting in characterising vehicle movement (Drew, 1968). However, research on 

'Acceleration Signatwe' (Robertson et al, 1992), which used acceleration to describe 

the style of a driver, has shown that deceleration rate of most drivers is very similar, 

even though they have various acceleration rate. That means that deceleration rate may 

not represent the characteristics of driving styles as efficiently as acceleration rate does. 

Therefore, in this research, only acceleration rate is used to classify driving patterns. A 

new variable, yfcce/grafmn (CA), has been defined to described 

characteristics of acceleration: 

CA = 
2̂ "A (8 2) 

2̂ - r, > 5 j' 

Equation 8.2 calculates average accelerations which last at least 5 seconds. In an 

'Acceleration Signature', it was required to place more priority on accelerations at high 

speed than at low speed, since high acceleration is easier to achieve at low speed. To 

combine acceleration with speed, a speed factor was introduced, and Equation 8.2 can 

be written as: 

V, - V , V , 

2: 56' 

where S is mean travel speed on the link in the time interval, estimated from historic 

data. For a journey, more than one CA may be obtained and the Mazz/Mwrni 
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(MCA) has been used to identify driving pattern. If in a journey, there is 

no acceleration which lasts more than 5 seconds, the value of MCA is zero. 

A fast driver may have a high average speed. However, high average speed may also 

be achieved by a medium driver if the trafGc is light. Moreover, in relatively busy 

traffic, a fast driver may produce a low average speed but still with high value of MCA. 

Fuzzy logic has been used to recognise driving pattern using average speed and MCA 

and a fuzzy model has been developed to estimate journey time from the speed profile 

of a GPS equipped probe vehicle. Inputs of the model are average speed and MCA, 

derived from the speed profile. Output of the model is the ratio of journey time of the 

probe vehicle to average journey time of all vehicles on the link in the time interval: 

/ = (8.4) 
JT 

If / > 1, journey time of probe vehicle is longer than the average journey time and 

driving pattern is slow. If / <1, journey time of probe vehicle is shorter than the 

average journey time and driving pattern is fast. / = I indicates a medium driving 

pattern. Of the data collected, the maximum value of / w a s 1.35, and the minimum 

value is 0.75. Consequently the range of the output is determined to be from 0.75 to 

1.35. 

8.3.3 Parameter estimation 

Each input variable has five membership functions (MF): "very slow", "slow", 

"medium", "fast", "very fast". Triangular MF is used for "slow", "medium" and "fast", 

while trapezoidal MF is used for "very slow" and "very fast". Membership functions of 

average speed are shown in Figure 8.3. 

very s low s low med ium fast ve tv fas t 

VI V2 V3 V4 V5 
Averaqe speed 

Figure 8.3 Membership functions of average speed 
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For membership functions of average speed, there are five parameters, which are 

estimated by historic journey time data. As introduced in Section 6.4.3, historic journey 

time was obtained from 15 incident free days. and are given by: 

L 

F, 

F, = = (8.5) 

where, V7]̂ a îs the maximum journey time of the 15 days, is the minimum 

journey time of the 15 days, and JT is the mean journey time. K, and are given by: 

K, 

2 

It can be found from Equation 8.5 and 8.6 that the membership fimction values for 

average speed are link-specific. For the same link, the membership function values also 

vary for different intervals. For instance, the five parameters for link 2 and time 

interval of 7:50-7:55 are determined by the journey time data presented in Table 6.5. 

The maximum journey time in Table6.5 is 196 seconds, the minimum journey time is 

84 seconds and the mean journey time is 115 seconds. The five parameters are 

calculated as: 

^ 2208 

' 196 

115 

K = 26.29?M/^ 
84 

F, = =15.23;M/;y 
- 2 

+ F 
K ^ = 22.74/M/;y 

' 2 

The membership fimctions of average speed for link 2 and time interval of 7:50-7:55 

are presented in Figure 8.4. 
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Figure 8.4 The membership functions of average speed 

for link 2 and time interval of 7:50-7:55 

The data collected from the ramp metering survey have been used to estimate the 

membership function values of MCA. The same membership functions of MCA have 

been used for different time intervals. The membership functions of the MCA with the 

corresponding parameters are presented in Figure 8.5. 
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Figure 8.5 The membership functions of Maximum Continuous Acceleration 

Differing from the input variables, the output variable ^ has only three triangular 

membership fiinctions: fast, medium and slow, as shown in Figure 8.6. 
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Figure 8.6 The membership functions of the output variable 

8.3.4 Fuzzy model development 

Two variables, average speed and maximum continuous acceleration (MCA), have 

been extracted from the speed profiles of probe vehicles. Fuzzy logic was used to 

describe the relationship between the two variables and the driving patterns. A model 

using fuzzy logic has been developed to identify a driving pattern of a journey using 

the two variables. A graphical presentation of the potential fuzzy model is shown is 

Figure 8.7. 

Input 1: Average speed 
Filezv Rules 

Oû ut: f 

Input 2: MCA 

Figure 8.7 Graphic presentation of the fuzzy model 
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The fuzzy rule presents the relationship between the input variables, i.e. average speed 

and MCA, and the output variable, i.e. driving pattern. The data collected on link 7 

have indicated that fast driving generally results in a fast average speed and large value 

of MCA. However, fast driving may have a fast average speed but a very low MCA. 

This situation occurs when speed in the journey is maintained at a high level and it is 

difficult to be increased in the traffic condition. Fast and very fast average speed may 

also present medium driving pattern, if with a medium MCA. This is generally because 

of light traffic. Slow average speed with low MCA indicates slow driving. However, 

very slow average speed is generally observed in congested traffic. In congested traffic, 

since vehicle movement may be dominated by traffic flow, i.e. it is difficult to drive too 

fast or too slow in congestion, driving patterns in congestion are generally medium, 

even with a high MCA. The fuzzy rules of the model are summarised in Table 8.1 

Table 8.1 Fuzzy rule matrix 

very s low slow 

Average speed 

m e d i u m & s t very fas t 

very s low slow slow slow m e d i u m fast 

s low m e d i u m slow m e d i u m m e d i u m m e d i u m 

m e d i u m m e d i u m m e d i u m m e d i u m m e d i u m fast 

Fast m e d i u m medium m e d i u m f a s t fast 

very Fast m e d i u m fast fast f a s t fast 

An example of output of the fuzzy model which parameters indicated in Figure 8.4 and 

Figure 8.5 is shown in Table 8.2. 

Table 8.2 An example of fiizzy output 

Average Speed (m/s) MCA(/M/^3 
30.6 
29.1 
26.5 
26.5 
2 0 . 8 

2 0 . 8 

21.5 
21.5 
17.5 

0.16 
0.39 
0 . 2 8 

0.16 
0.39 
0.22 
0.05 
0.22 
0.15 

/ Driving pattern 

0.%5 Fast 
0.883 Fast 
0.905 Fast 

1 M e d i u m 

0.925 Fast 
1 M e d i u m 

1.03 Slow 
1 M e d i u m 

1.1 S low 
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8.3.5 Model validation 

Data collected on link 1 and link 2 are used to validate the fuzzy model. The data were 

collected in the morning peak hours of 7:00-9:00, from the to the 11 October 2002. 

Each weekday morning, a GPS equipped probe vehicle was driven by a different driver 

between Junction 10 and Junction 14 on the M3. 83 journeys, 42 on link 1 and 41 on 

link 2, were carried out. For each journey, average speed and MCA are calculated and 

used as the input to the fuzzy model. Average journey time was then estimated by: 

JT 

/ 
(8.7) 

where JTp^ is journey time of the probe vehicle, / i s output of the fuzzy model, and 

JT J is estimated average journey time. 

To estimate the accuracy of the fuzzy model, average journey times measured by 

Automatic Number Plate Recognition (ANPR) were considered as 'real journey time' 

and compared with results estimated by the fuzzy model. Estimation results for all 42 

journeys on link 1 are shown in Figure 8.8. Journey times on link 1 are generally 

stable. The large journey times in journey 41 and 42 were obtained in incident 

conditions. Results in Figure 8.8 show that the fuzzy model can produce good results in 

general traffic as well as in incident conditions. 
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Figure 8.8 Comparison of estimated journey times and ANPR data for link 1 
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Journey times on link 2 vary more than on link 1 and more congestion occurs on link 2. 

Results shown in Figure 8.9 indicate that the fuzzy model can perform better in busier 

traffic than in lighter traffic. Since traffic on link 2 is generally busier than on link 1, 

more accurate estimation results was obtained for link 2. 
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Figure 8.9 Comparison of estimated journey times and ANPR data for link 2 

The model performance on link 1 and link 2 are summarised in Table 8.3, in which 

estimation error is calculated by: 

JT f — JT ANPR 

= 

JT ANPR 

where JT ANPR denotes ANPR average journey time. 

(8.8) 

Table 8.3 Comparison of link 1 and link 2 estimation results 

Number of journeys 

Mean 

Estimation error 

Total Estimation error < 10% Estimation error = 0 Mean 

Estimation error 

Link 1 42 36 9 5.5694 

Link 2 41 39 4 410% 

123 



Active Probe Vehicle 

8.4 Incident detection using single GPS equipped probe vehicle 

In Section 8.3, it has been shown that using single GPS equipped probe vehicle, the 

average link journey time of all vehicles on a link and in 5-min intervals can be 

estimated accurately. The resulting journey times can be used for incident detection as 

input of the BEAM model developed in Chapter 6. The BEAM model requires journey 

times for both previous and current time intervals. In most studies involving active 

probe vehicles, only one probe vehicle may be used and journey time cannot be 

measured for each time interval. Since active probe vehicles can collect much more 

data than link journey time, a new method for incident detection using a single probe 

vehicle is required. 

Speed profiles of the probe vehicle can be also used to detect incidents by analysing 

characteristics associated with each traffic flow condition. As introduced in Section 

8.3, characteristics of speed profiles can be affected not only by traffic flow but also by 

driving style and vehicle type. However, in incident conditions, traffic flow will 

dominate speed profile over other factors. Figure 8.10 shows speed profiles of three 

journeys in link 2 on the 8^ October 2002, in which an incident was reported at 7:40 on 

the link. Therefore, speed profiles from single probe vehicles will be able to detect the 

presence of slow-moving or stationary traffic. 

3 0 

I / \ 

/ I 

7:15:06 

- 8:44:19 

/ 7:53:22 

0 .5 

Length (km) 

Figure 8. 10 Speed profiles in incident and non-incident condition 
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8.4.1 Methodology 

In Section 6.2.2.2, some AID algorithms based on probe vehicles have been reviewed. 

Since incidents can cause larger journey time than usually experienced, previous 

researchers have compared current and historical journey time to identify incidents. In 

Bhandari et al. (1995), for one probe vehicle report, when the ratio of current journey 

time to historic data rises above 3.5, an incident is declared (see Table 6.4). Although 

an incident causes rapid increases in journey time, such high level will not be achieved 

immediately. Therefore, if a probe vehicle is travelling on a link where an incident has 

just occurred, the probe vehicle journey time is unlikely to be declared. For example, 

on the 8"̂  Oct. 2002, an incident occurred at 7:40 on link 2. The TRG IV travelled on 

the link at 7:50 with a journey time of 156 seconds, which is only 1.35 times the 

historic journey time. 

Sermons and Koppelman (1996) investigated the effectiveness of individual vehicle 

movement measures in the detection of incidents on urban arterial road segments. 

Several measures of varying complexity, including average speed, running time and 

speed, and coefficient of variation of speed, were calculated from vehicle positioning 

data recorded at 1-s time intervals. Analysis showed that incident journeys result in 

higher running times, total times and coefficients of variation of speed, but lower 

average speeds and running speeds. A number of discriminant models using the 

measures were developed, and these require sufficient incident data and incident-free 

data to classify the two traffic conditions. In this research, since only a few journeys 

were conducted in incident conditions, using existing data will not enable a 

discriminant model to be developed. 

The BEAM model introduced in Section 6.4 was developed based on the premise that 

an incident can cause significant increase in journey time. The BEAM model uses two 

input variables: link journey time and difference of journey time between two adjacent 

time intervals. Since link journey time can be measured by an active probe vehicle, 

another alternative variable should be defined to reflect the change in journey times 

between two adjacent time intervals. At the beginning of an incident, the incident will 

not have affected upstream traffic. Thus, a vehicle may travel with normal speed from 

upstream, and then decelerate on approach to the incident location. Therefore, a large 
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deceleration rate can be observed. Drew (1968) showed that in congestion, the traffic 

condition dominated acceleration and deceleration rates over driver behaviours and it 

could be considered that a large deceleration rate is obtained mainly as a result of 

traffic conditions. Thus, deceleration rate can be used as an input variable of the 

BEAM model to replace the difference of journey time between two adjacent time 

intervals. 

Similar to the variable used in the estimation fiizzy model, Maximum Continuous 

Acceleration (MCA), a new variable, (CD), has been defined 

to describe the characteristics of deceleration in incident condition: 

CD = (^^^^—^)(—) 
^2-A \ (8.9) 

2̂ - > 5 

where 5"̂  is a constant with a value of 26/M/j'^. Equation 8.9 is used to calculate 

average deceleration which lasts at least 5 seconds. Differing from Equation 8.2, speed 

at the end of the deceleration process rather than speed at the start point is used in 

Equation 8.9. The lower the speed at the end point, the larger the value of the 

continuous deceleration. For a journey, the Mzxzmwm CoMrmwoM:y Dece/emfzon (MCZ^ 

will be used as input of the BEAM model. Speed at the end of a deceleration process is 

not associated with average link speed, and a constant value is used to maintain the 

same form as the definition of the MCA. Thus, the MCD is not link-specific as the 

MCA. If there is no deceleration process lasting more than 5 seconds in a journey, the 

value of MCD is zero. 

Values of MCD for six incident-free journeys on link 1 and link 2 respectively have 

been calculated to estimate the distribution of MCD. The values of MCD firom different 

journeys in incident-free condition are normally distributed and the parameters of the 

distribution are: 

=0.39/M/j'^ 

= 0.52/M/ 

The data have been shown to be independent to journey time, i.e. p - 0 . Due to the 

independence between the two variables, the bivariate normal distribution is simply the 
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product of two univariate normal distributions. Therefore, an incident will be declared 

if either journey time or MCD exceeds the confidence level of the normal distribution. 

8.4.2 Result analysis 

The BEAM model using MCD is applied to all 42 journeys on link 2 and 41 journeys 

on link 2. Since journey time on link 1 maintains stable over the morning peak hours 

and the journey time distribution for different time intervals in the morning peak hours 

are same. Detection results using 99.9% coverage contour for the 42 journeys on link 1 

are shovm in Figure 8.11. 

40 60 80 100 

Joiirnev Time fs) 

140 160 180 

Figure 8.11 Incident detection on link 1 

There are two incidents declared. The detection rate is 100% and the false alarm is 

zero. As introduced in Section 6. 5, good performance of the BEAM model has also 

been obtained due to stable traffic on link 1. Applying the model to the journeys on 

link 2, large false alarm rate is obtained while the detection rate remains good. 

Detection results on link 1 and link 2 are summarised in Table 8.4. 

Table 8.4 Incident detection result on link 1 and link 2 

Link 1 Link 2 

Detection Rate 

False Alarm Rate 

100% 

0% 

100% 

14.63% 
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For link 2 journey conducted at 7:50 on the 8"̂  Oct. 2002, although the measured 

journey time of 156 seconds is in the confidence level of the historical journey time, 

the MCD of 4.71 indicates occurrence of incident. By using MCD, the model enables 

detecting an incident in a very early stage. If a probe vehicle is travelling in middle 

stage of an incident, a small value of MCD may be obtained but long journey time can 

declare the incident. By combining journey time and MCD, the model performs well in 

detection rate. However, the model is unable to classify severe congestion caused by 

busy traffic and high false alarm rate can be obtained when applying to links carrying 

busy traffic. 

As discussed in Section 6.4.2, 99% coverage contour can produce better incident rate 

but worse false alarm than 99.9% contour. Since using 99.9% contour has achieve 

detection rate of 100%, 99% coverage contour is not used for active probe vehicle. 

8.5 Summary 

The study described in this chapter uses active probe vehicle to characterise traffic 

flow. Since GPS can provide instantaneous and accurate speed measurement, GPS 

equipped probe vehicle can provide an efficient tool for journey time estimation and 

incident detection based on detailed analyses of speed profiles. 

In contrast to research on passive probe vehicles, in which journey times estimation 

directly records the journey times of probe vehicle and calculates the mean of journey 

times from a number of probe vehicles, this chapter describes a new approach to 

estimate journey time using a single probe vehicle. According to the features extracted 

from the speed profiles, the driving pattern of a probe vehicle is classified by using 

fuzzy sets. Differing from the traditional concept in research of driving behaviour, the 

driving pattern in this study is only associated with difference between journey time of 

the probe vehicle and mean journey time. A new variable, the Maximum Continuous 

Acceleration (MCA) is introduced to reflect acceleration characteristics of the driver by 

combining continuous acceleration and the speed at the acceleration start point. MCA 

and average speed of probe vehicle are taken as the input variables of fuzzy sets. The 

fuzzy memberships are determined by historical traffic data. Journey time is calculated 
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by corresponding equation for different driving patterns. Comparison of estimated 

journey time and actual average journey time illustrates the value of the approach. 

The BEAM model developed in Chapter 6 is still used in active probe vehicle data. 

One input variable of the model, difference of journey time between two ac^acent time 

intervals is replaced by the Maximum Continuous Deceleration (MCD), a variable 

derived from speed profile of the probe vehicle. Values of MCD obtained from 

different journeys have been shown to be normally distributed in incident-free 

condition and the distribution is uniform for different time intervals and different links. 

Combination of MCD and journey time of probe vehicle can achieve good detection 

rate. A weakness of the model is the lack of an effort to distinguish incidents from 

other congestion producing traffic phenomena. Thus, poor performance in false alarm 

rate has been obtained when the model was applied to links carrying busy traffic. 
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Chapter Nine 

Summary and Conclusions 

This research has studied GPS-equipped probe vehicles in collecting traffic data. Since 

this research started after discontinuing the use of Selective Availability (SA), the main 

error source of GPS, stand-alone GPS receivers were used in data collection. 

Performance of GPS in journey time estimation has been studied. Journey times 

estimated by GPS were compared with results from Automatic Number Plate 

Recognition (ANPR.) cameras for assessing estimation accuracy. Data were collected 

on the M3 Junction 11 to 14, and the M27 Junction 2 to 11, where ANPR cameras have 

been operational. GPS equipped vehicles were driven by different drivers on the survey 

site. 

This reseai'ch has studied two types of probe vehicles: active and passive. In this 

research, a passive probe vehicle was considered to provide only point-to-point journey 

time, while an active probe vehicle could provide continuous GPS data over an entire 

journey, including time, position and speed at 1 Hz frequency. 

A key issue concerning passive probe vehicles is sample size, which can be affected by 

many factors, e.g. traffic flow and link geometric condition. Statistical sampling theory 

has been used to study journey time distribution of individual vehicles and estimate the 

required sample size in different traffic conditions. Incident detection using journey 

time measured by probe vehicles was based on the premise that an incident causes 

more significant increase in journey time than busy traffic. A BivariatE Analysis 

Model (BEAM) has been developed using journey time at current time interval and 

difference of journey times between two adjacent time intervals. Although probe 

vehicles provide real-time and near real-time journey time, many ITS applications (e.g. 

vehicle navigation systems) require estimate of future journey times. In this research, 

journey time predictions have been studied for incident and incident-free traffic 
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conditions. For non-incident traffic, predictions are based on historic data and current 

observation. After declaration of an incident, journey times were predicted according to 

the magnitude of increase in journey time at begirming of the incident. 

Active probe vehicle can provide speed profile through a journey rather than journey 

time only. By analysing speed profile, journey time can be estimated from fewer probe 

vehicles than normally required. In this research, a fuzzy model has been developed to 

analyse the speed profile, and journey time could be estimated using a single probe 

vehicle. Good estimates were obtained in both non-incident and incident conditions. 

For active probe vehicle, BEAM model was used in incident detection. One variable 

representing deceleration calculated from speed profiles was used as input of the model 

to replace the difference of journey time between two adjacent time intervals. 

9.1 Main findings of the research 

« Data collected in this research have shown that in motorway area, GPS performed 

well in positioning accuracy and availability of service. Journey time can be 

estimated accurately using GPS positioning data at updating fi-equency of 1 Hz. 

Good estimates can also be obtained using long updating intervals up to 30 

seconds. For updating interval of one minute, estimation accuracy is associated 

with traffic flow condition. Poor estimates may be obtained in traffic flow 

breakdown due to non-stability of speed in such a long interval. 

# The journey time distribution of individual vehicles in a 5 minute interval on the 

same motorway link has been studied. The common assumption that link journey 

time has a noimal distribution has been shown, although non-normality has been 

observed in some cases. Non-normality of journey time distribution is most likely 

found when the link journey times change rapidly and greatly. The minimum 

sample sizes of probe vehicles were calculated for the seven links studied in this 

research. In general, 4-6 probe vehicles on the motorway links can estimate journey 

times for 10% permitted eiTor and 95% confidence level. Results have shown 

shorter links may require more probe vehicles. For the same link, the sample size 

decreases with increasing traffic flow. 
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Joint distribution of link journey time at current time interval and difference of 

journey times between two adjacent time intervals have been shown to be bivariate 

normal in incident-free traffic. Occurrence of an outlier in the distribution can be 

considered to declare an incident. The method can achieve detection rate of 90.5% 

and false alarm rate of 0.71%. The method performed better in shorter links since 

the increase of journey time caused by an incident was more significant in shorter 

links than in longer links. 

Journey time at the next 5 minute interval can be predicted by a linear model using 

journey time observation at the current interval. Kalman filter algorithms could be 

used to predict journey time for next thirty minutes. Prediction errors have been 

found to increase with the length of prediction interval. Up to 20 minute intervals, 

the average prediction errors remains under 10%. 

Journey time in incident traffic has been shown to have different characteristics and 

a different prediction strategy should be used after an incident declared. Change of 

journey time during an incident period can be considered as breakdown stage and 

recovery stage. Decreasing journey time in breakdown stage may be described by a 

hyperbolic cotangent function and increasing journey time in recovery stage may 

be described by an exponential function. However, due to complexity of change in 

journey time with various incidents, the method is not universal. 

A GPS equipped probe vehicle can provide continuous speed measures of the 

vehicle at 1 Hz frequency. Fuzzy logic can be used to analyse the speed profiles 

and identify the driving style. By removing the influence of driving behaviour, the 

fuzzy logic model can obtain estimates of journey time which are closer to the 

average journey time of all vehicles on the same link for the same time interval. 

Speed profiles can also be used for incident detection. Estimated journey time and 

deceleration rate derived from speed profiles have been shown independent and 

normally distributed in incident-free traffic. An incident can be declared, if either 

journey time or deceleration rate of a journey exceeds a confidence level of the 

normal distribution. The method can achieve good detection rate but relatively high 

false alarm rate. 



Summary and Conclusions 

9.2 Potential applications 

An increasing number of GPS equipped vehicles are already running in the traffic 

stream. Some of them have been used as probe vehicles to collect journey times. 

Results provided by this research should be useful for designing journey time data 

collection efforts and systems, performing journey time studies, and summarising 

journey time data. This reseaich focused on link journey time estimation. Link journey 

times can be cumulated to generate route journey times. Link journey time is more 

flexible in use than route journey times. For example, car navigation systems consider 

a road network as database of links. Therefore, providing real time journey time of 

each link is critical for dynamic route planning. 

Probe vehicle can be expected to play an important role in collecting traffic data in the 

near future. By mid 2002, over 1.5 million mobile phones in U.S. have been equipped 

with GPS to meet Federal Communications Commission (FCC) requirements of 

locating emergency callers (Borras, 2003). Vehicles carrying the GPS equipped mobile 

phones are therefore potential probe vehicles if regularly reporting locations. Location 

based road charging schemes have been proposed in many countries. The approach 

enables a real-time assessment of road user charges based on time, location and 

distance travelled. GPS based location devices have been considered as one of potential 

choices. In such a scheme, GPS devices can be used also for traffic data collection and 

sufficient sample size of probe vehicles is possible (Srinvivasan et al., 2002). Suppliers 

of vehicle navigation systems have realised that good route guidance should be based 

on real-time traffic infomiation. Since traffic information should be provided based on 

vehicle location, two-way communication has been emerged in vehicle navigation 

systems. Through frequent reports of location, the vehicles can be used as probe 

vehicles (Li and McDonald, 2003). 

The European Commission has supported a new generation satellite navigation system, 

known as Galileo. The fully deployed Galileo system consists of 30 satellites, 

providing positioning accuracy to within 45 cm on the earth surface. Galileo is 

scheduled to lunched the first satellites in 2005 and provide full user capabilities 

between 2007 and 2008 (ESA, 2003). The Galileo initiative has triggered the search for 

commercial and mass-market location-enabled services, including road charging and 
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furthermore traffic data collection. Applications of probe vehicles will be promising 

with Galileo. 

Location technology applications within the automobile industry are dominated by 

GPS. However, mobile phone location technologies have also been developed. On 

GSM network, currently sub-50 meters accuracy has been delivered. With the 

introduction of third generation networks, the accuracy can be improved to 20 meters 

(VTT, 2003). The mobile phone location technologies enable any motorist carrying a 

mobile phone to be a traffic data provider. Sample size of probe vehicles is expected to 

be further enlarged. 

9.3 Further work 

As discussed above, a wide range of vehicles can be potential probe vehicles. 

Widespread implementation of probe vehicle data collection systems has created a 

pressing demand for standards and protocols to provide interoperability and 

compatibility between various data sources. Standards and protocols will combine all 

potential probe vehicle data sources, such as car navigation systems, bus and taxi 

management. Standards and protocols will also enable integrating location data from 

different technologies, such as GPS, Galileo and mobile phone. The unification would 

provide a sufficiently large sample size of probe vehicles to collect traffic data over an 

entire road network. 

The traditional way of defining the state of network is by determining the relationships 

between the three parameters of flow, speed and density and creating journey time by 

combining these parameters. Probe vehicles with GPS and mobile communication 

systems enable direct communication between vehicles and central traffic monitoring 

systems, providing real-time or near real-time journey time. Although journey time is a 

fimdamental measure in transportation, it is unable to provide a comprehensive 

estimation of the state of the network. For example, the AID model developed in this 

research can declare an incident, which has caused a significant increase in journey 

time. The detection time may be longer than AID algorithms using signals from 

inductive loops. Moreover, without comprehensive understanding of the state of all 
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parts in the road network, good prediction of journey time is difficult to achieve, 

especially in an incident period. 

In future ITS applications, it is likely to be advantageous to integrate data from various 

sources to make more informed journey time estimations and incident detection 

decisions. Although there is a small number of studies with data from more than one 

methodology, most traffic data research has concentrated only on one form of 

detection. It will be desirable to further study how data from various sources can be 

fused to provide accurate and comprehensive traffic information direct to network 

operators and motorists. The study on data fusion will be helpful in design and 

implementation of surveillance systems. 
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Appendix A 

Converting ellipsoidal latitude and longitude to 

grid eastings and northings 

For National Grid TM Projection, 

Map coordinate of northing origin: -100 000m 

Map coordinate of easting origin: Xg = 400 000m 

Latitude of true origin: = 49° N 

Longitude of true origin: /l,, = 2° W 

To convert a position from the graticule of latitude and longitude coordination to 

a grid of easting and northing coordinate (%, }/) using a National Grid Transverse 

Mercator (TM) Projection, compute the following formulae: 

where: /g - j/g 

Northing and easting coordinates are computed by the following equations. is the 

corresponding northing coordinate of true origin, i.e. (49° N, 2° W), calculated by 

Equation A-1. 

# = ^ ( ^ ) + ^ [^cos^ 0 ( / l - / l J ^ f ^ c o s " 0(5 +9?/^ + 47;'')(/l-Ag)" 

+ :^cos"(z)(61-58/" + / +2707/" -330r" / /" ) (A- / l J^ (A-1) 

+ — ^ c o s ' ^ ( 1 3 8 5 - 3 1 1 k " + 5 4 3 / - f " ) ( A - ; i j " +...] 
40320 A ov J 

^ A:A/̂ [coŝ (;t - Ag) + - coŝ  0(1 - f ̂  + 7;̂  )(A - )̂  
6 

^ 10,2 , ,4 
120^°^ +147;--58r/^-)(A-Ao)^ (A 2) 

+ -^cos'(z)(61-479r" +179r" + . ] 
5040 vv ov J 
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where: 

Arc length of meridian: 5'(^) 

Radius of curvature in prime vertical: # 
6^1 + 

a" -6 ' 
Auxiliary quantity: — c o s ' 

Auxiliary quantity: r = tan((z)) 

Longitude ofthe central meridian: Ag 

Scale factor on central meridian: A;=0.999(^07277 7 

The Arc length of the meridian is the ellipsoidal distance fi-om the equator to the 

point to be transformed and is given by the series expansion: 

5'(0) = sin 2^ + ;̂  sin 4^ + <5" sin 6^ + g sin 8^ + - ] 

For WGS-84 reference system the parameters are listed here: 

a = 6367449.14587M 

^ = -2.51882792x10-" 

% = 2.64354x10"^ 

^ = -3.45x10'^ 

g = 5xlO-'" 
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Appendix B 

Sample of Normal Distribution 

Appendix B1 

Notation of z a/2 

Zg/2 is the upper all point of the standard normal distribution. For a standard normal 

distribution, 100(1-«)% of the distribution is contained within the range 

N(0, !) 

a 12 
\ 

\ 

1 - Ci 

/ 
C'J2 

•.n 

Figure B-1 the notation of z a / 2 

Appendix B2 

Determination of Sample Size 

At the planing stage of a statistical investigation, the question of sample size n is 

critical. Let parameters of a population be: 
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Population mean = // 

Population standard deviation = cr 

Statistical inferences about the population mean are based on the sample mean 

— _ +^2 + 
n 

The distribution of the sample mean ^ , based on a random sample size has: 

E ( ^ ) = (= population mean) 

, — a , population standard deviation , 

size 

The first result shows that the distribution of ^ is centred at the population mean // in 

the sense that expectation serves as a measure of centre of a distribution. The second 

result states that the standard deviation of A" equals the population standard deviation 

divided by the square root of the sample size. That is, the variability of the sample 

mean is governed by the two factors: the population variability cr and the sample size 

n. 

In random sampling from a normal population, the sample mean has the normal 

distribution. When the sample from non-normal population, if the sample size » is 

large, the distribution % is approximately normal. That statement is known as central 

limit theorem, hi practice, the normal approximation is usually adequate when » is 

greater than 30. 

For permitted error g and a confidence level 1 - a : 

X — j^L 
<e>>l-a (B-1) 

If A' is the normal distribution with mean // and standard deviation cr / Vn , % can be 

converted to be standard normal distribution as: 

Z = #(0,1) (B-2) 
cr/VM 

Substituting Equation B2-2 in Inequality B2-1, 
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Zcr/Vn 
< g> > 1 - a (B-3) 

Rewriting Inequality B-3 as: 

cr/vM 
> 1 -<% (B-4) 

Since Z is standard normal distribution, according to Figure B-1, Inequality B-4 is 

equal to: 

e^L 

cr/ VM 

Solving for it can be obtained: 

(B-5) 

M > (B-6) 
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A p p e n d i x C 

Bivariate Data Analysis 

Bivariate Normal Distribution 

In bivariate analysis, the relationship between the random variables A" and 7 is studied. 

The relationship between the two variables can be described by the 

which assigns probabilities to all possible outcomes (x, jy). The joint 

distribution is usually characterized by theyomf 

A measure of the strength and direction of association between the variables and 7 is 

provided by the covariance which is defined by: 

= ( c - i ) 

The covariance matrix for the joint distribution is given by 

E = 
cr; 

(C-2) 

A relatively large value of cr,.̂  indicates a strong relationship between ^ and F. An 

index of covariance between A' and F is provided by the correlation coefGcient 

/?-cr^^/cr^.(7y. This index has the range -1 to +1. When compared to 1, the absolute 

value of yo indicates the strength of linear association between ^ and K For 

quantitative variables jycj = 1 is equivalent to a perfect linear relationship. The slope of 

the linear relationship is indicated by the sign of . If /? = 0 , % and 7 are independent. 

The correlation matrix for the joint distribution is given by /? = 
1 p 

P 1 

The bivariate normal density is given by: 

/ ( % , = c e x p [ ( % - / / J^ /crj J" / or̂  - / / - //^.) / J } (C-3) 

where c|=2;rcr^cr ( l - / 7 ' ) ' " a n d c \ = - l / [ 2 ( l - / ? ^ ) ] . The bivariate normal density 
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contains five parameters and /?. Figure C-1 shows a bivariate normal 

surface. The three dimensional picture shows that the density at (x, is given by the 

height The pi'obability for any region of values <y<}; , ) is 

given by the volume under the normal surface. 

Figure C - ] Bivar iate Norma l Surface 

The marginal density for ̂  is obtained from the integral expression: 

and similarly for F 

exp[(-l/2X 
o". 

) ' ] (C-4) 

/ , W = j2/(^,}^)^ = ̂ ^ e x p [ ( - l / 2 X ^ ^ ) ' ] (C-5) 
cr, 

These densities are the familiar univariate normal densities. The marginal densites for 

the bivariate normal therefore are also normal. It is not necessarily true however that 

and y will be bivariate normal if A' and F are both univariate normal. I f / ) = 0 the joint 

density for the bivariate normal can be written as the produce of the marginal densities 

and hence and 7 are independent. Thus for the bivariate normal, independence and 

zero correlation are equivalent. 

For a univariate distribution, a plot of the density of the standardized random variable 

( 
cr„ 

-) is useful for making comparisons with other densities such as the normal 

distribution. For a normal random variable X, 100(1-CK)% of the distribution is 

] 4 2 
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contained within the range - For a bivariate distribution, 100(l-(z)% of 

the distribution contained within an elhptical contour in the 7plane. The equation 

1 
(C-6) 

1-p" 
describes an ellipse in the ^ 7 p l a n e with centre at as shown in Figure C-2. 

As A: increases the area of the ellipse increases. The equation for the elliptical contour 

can also be vyritten in matrix notation as 

= K 

For the bivariate normal density, the constant A: on the right-hand side of Equation C-6 

is equal to xj.2; where denotes the value of a random variable with 2 degrees 

of freedom and a ̂ -value of in the upper tail. The elliptical contour will on average 

contain 100(1 -<z)% of the sample points. 

y - l 

^ 

X y / 

X ( A . ' 

Figure C-2 Elliptical Contours for bivariate normal density 

Appendix C2 

Assessing Bivariate Normality 

For the bivariate normal distribution, marginal distributions must be normal. However, 

the marginal normality is necessary but not sufficient conditions. To assess bivariate 
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normality, the Mahanobis Distance is used. The left-hand side of Equation C-6 

measures the square of the Mahalanobis Distance, which describes the distance 

between any pairs of (%, jx) and the center For bivariate normal distribution, 

the squared Mahalanobis Distances are distributed as Chi-Square with 2 degrees 

freedom. The assessment is executed by computing the squared Mahalanobis Distances 

of each observation and checking to see that they are chi-square distribution by Q-Q 

plot: 

1. Compute the squared Mahalanobis Distances z= 7, 2, ..., M 

2. Order the from smallest the largest to get observed quantiles of the distribution 

as: 

3. Compute expected quantiles from the distribution, where , 

corresponding with each (f/, 7, 2, ..., » 

4. Plot versus for /= 7, 2, » and check for linearity in the plot. If the points 

do not foim a straight line, then the observed quantiles do following from the chi-

square distribution, so accept bivariate normality. 
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Appendix D 

Speed Changes in Incident Periods 

Changes in journey time of seveial incidents on link 1 and link 2 are shown in this 

appendix. It may be considered that changes in journey time over an entire incident 

period have shown substantially similar characteristics for various types of incident 

and various links. 

1. May 24^, 2001, on link 1 
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4. J u ^ l 9 ^ , 2001,onlH&2 
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