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Longitudinal surveys provide a key source of information for analysing dynamic phenomena.
Typical examples of longitudinal data are gross flows, which are defined as transition counts
between a finite number of states from one point in time to another. There are, however, a
number of methodological problems associated with the use of longitudinal surveys. This
thesis focuses on the measurement error problem or more naturally in a discrete framework

on the misclassification problem.

We investigate the use of double sampling for correcting discrete longitudinal data for
misclassification. In a double sampling context, we assume that along with the main
measurement device, which is affected by misclassification, we can use a secondary
measurement device (validation survey), which is free of error but more expensive to apply.
Due to its higher cost, the secondary measurement device is employed only for a subset of
units. Inference, using double sampling, is based on combining information from both

measurement devices.

Traditional moment-based inference is reviewed and alternative moment-type estimators,
which attempt to overcome the drawbacks of the traditional approach, are proposed. We
subsequently argue that a more efficient parameterisation is offered in a likelihood-based
framework by simultaneously modeling the true transition process and the measurement error
process within the context of a missing data problem. Variants of likelihood-based inference,
which allow for alternative double sampling schemes, for a complex survey design and for
observed heterogeneity, are investigated. Constrained maximum likelihood estimation is also
considered for relaxing some of the model assumptions. Variance estimation for the moment-
type and the likelihood-based estimators is illustrated. In addition, empirical research aimed
at identifying optimal design characteristics for validation surveys is presented.

The methodology is applied in the context of the UK Labour Force Survey (LFS) by
estimating labour force gross flows adjusted for misclassification. Results from Monte-Carlo
simulation experiments indicate that the proposed likelihood-based parameterisation offers
significant gains in efficiency over the traditional moment-based parameterisation while
interval estimation for the adjusted estimates can be reliably performed using the proposed
variance estimators.
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Key to Notation

U : Population

S : Sample

N : Population size

1 : Sample size of the main survey (common sample of the panel survey between ¢ and £ 4 1)
n”: Sample size of the validation survey

Y, : Random variable that describes the way that unit ¢ is classified at time ¢ by the fallible

classifier

Y,,: Random variable that describes the way that unit ¢ is classified at time ¢ by the error free

classifier

Y. _,.,: Random variable that describes the fallible flow of unit £ between ¢ and ¢ +1

ft—t+1"

Y, : Random variable that describes the true flow of unit £ between ¢ and ¢ +1

ft—t+1”

P : Matrix that describes the probability distribution of the true classifications. A superscript u

denotes this matrix at the population level

P™: Matrix that describes the probability distribution of the true classifications in the main

sample

P?: Matrix that describes the probability distribution of the true classifications in the

validation sample

IT: Matrix that describes the probability distribution of the observed classifications. A

superscript u denotes this matrix at the population level

II™: Matrix that describes the probability distribution of the observed classifications in the
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Chapter 1

Background to the Problem, Literature Review and

Description of the Data Sources

1.1 Introduction, Aim and Structure of the Thesis

Gross flows are generally defined as transition counts, between a finite number of states, from
one point in time to another. In the same manner, labour force gross flows represent the
transition counts of the labour force population between the different labour force states. In
the simplest case, labour force gross flows can be represented by a 3 x 3 gross flows matrix.
The dimension of this matrix can be justified if we assume that a member of the labour force
population can be classified only to one of the following mutually exclusive states: a) being
employed, which is denoted by (E), b) being unemployed, which is denoted by (U) and c)
being economically inactive, which is denoted by (N). If someone belongs to one of the first
two categories then he/she is assumed as being a member of the labour force otherwise as
being out of the labour force. Schematically, the gross flows table between two time points,

say ¢t and ¢ -+ 1, can be represented as follows.

Table 1.1: Labour force gross flows between ¢ and? 4 1

(E) U (N)
(E) EE EU EN
() UE UU UN
(N) NE NU NN

The diagonal elements of the gross flows table (Table 1.1) represent the number of
individuals that remain stable between ¢ and ¢+ 1. The off-diagonal cells describe the

number of individuals that change labour force status between ¢ and ¢+ 1.



The aim of this thesis is to develop methodology for adjusting gross flows for measurement
error. The application will be in the estimation of labour force gross flows. The approach we
follow assumes the existence of validation data and the theory is based on the use of double
sampling methods. Chapter 1 provides an overview of problems encountered in estimating
gross flows. Modelling strategies to correct for measurement error are reviewed and classified
into strategies that assume validation data and strategies that do not assume validation data. A
description of the data sources that are used in this thesis is given and a review of the
literature on validation surveys is provided. Chapter 2 describes the estimation framework of
double sampling. Double sampling methods in a cross-sectional framework are contrasted
with double sampling methods in a longitudinal framework. New research results on the
analysis of cross-sectional misclassified data are presented. In a longitudinal framework,
some new moment-type estimators are presented. Chapter 3 focuses on likelihood-based
inference. The measurement error model is formulated, under alternative double sampling
designs, in a missing data framework and model parameters are estimated via maximum
likelihood. Alternative likelihood-based inference is examined by relaxing some of the model
assumptions. The measurement error model is further extended to account for the existence of
a complex survey design. The methodology is illustrated by calculating estimates of UK
labour force gross flows adjusted for measurement error. In Chapter 4, the measurement error
model is extended to account for heterogeneity in the gross flows mechanism and in the
measurement error mechanism. The effect of measurement error on inference based on labour
force gross flows is examined using data from the UK Labour Force Survey (LFS). Chapter 5
deals with variance estimation issues. Variance estimators for the moment-type and the
maximum likelihood estimators are developed and illustrated using UK LFS data. In Chapter
6, we evaluate our methodology by a series of Monte-Carlo simulation experiments. In
Chapter 7, we give recommendations for designing a UK LFS re-interview survey and for
selecting an appropriate double sampling design. Chapter 8 summarises the research

outcomes and sets directions for future research.

1.2 The Importance of Labour Force Gross Flows for Social and Economic

Research

Labour force gross flows are indicators frequently used in social and economic research. In
this section, we describe some of the applications with labour force gross flows. To start with,

let us consider the following situation. A fall in unemployment is the net result of a larger
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number of individuals moving between the different labour force states. However, this net |
result, which is often estimated and published, is based on a series of individual gross flows.
These flows can be approximated only by linking each individual’s labour force activity in
successive time points. Figure 1.1 shows the flows between the main labour force states of
economic activity and economic inactivity. For example, the (EU) arrow refers to the number
of people who moved from employment to unemployment between ¢ and ¢+ 1. A more
complete description of the gross flows must take into account the dynamic evolution of the
population (Figure 1.2). Taking this dynamic evolution into consideration, we observe that in
addition to the usual flows we have inflows and outflows, which are distributed between the

different labour force states.

Employed
E)

Unemployed >
()] —

Figure 1.1: Simple model

‘ |
/ l
/' —

Unemployed
) «

A 4

Figure 1.2: Complete model

How can these transitions be used in economic analysis? There are occasions when both the

labour force participation and unemployment rise. Are these events attributable to a greater
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inflow of job seekers from outside the labour force or to reduced exits from the labour force?
Gross flows provide a way to examine, for example, how many workers enter or leave the
labour force or how many move from employment to unemployment (Barkume and Horvath

1995).

Gross flows can be interpreted as measures of the labour market condition. Consider the
labour force entries to employment (NE flows). The magnitude of these flows depends on
both labour force participation decisions and the demand for labour (i.e. the number of job
prospects). Another example is the flows from employment to unemployment (EU flows).
These transitions characterise recession periods. A further example concerns the labour force
exits from unemployment (UN flows). The variations in these flows have been used to

measure discouraged worker effects in business downturns (Hansen 1961).

The transition probabilities implied by labour force gross flows can be used to calculate
several summary statistics for the labour market activity. Summary statistics of this type
include the expected duration of a complete spell in each labour market state, the probability
of an unemployment spell ending in employment and the probability of labour force
withdrawal. For example, the expected duration of completed spells is calculated as the

reciprocal of the exit probability from each state. The probability of an unemployment spell
ending in an employment entry, given that a transition has occurred, is given by ——-—1:[—@——
HUE + 1—[UN
where Il denotes the probability that an individual is moving from employment to
unemployment and II,,, denotes the probability that an individual is moving from
unemployment to inactivity. The probability of a labour force withdrawal is given by

HUNHU + HENHE

where II,, and II, denote respectively the probability that an individual
HU + HE

1s unemployed or employed (Poterba and Summers 1986).

Gross flows can be used in order to establish for how long people who have previously been
in a governmental training for work scheme remain in a job. In the same field of research,
gross flows allow the evaluation of different training programmes. This can be done by
comparing the labour market progress of non-participants in such programmes with

programme participants. In addition, by analysing the transition probabilities associated with
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the different job search techniques it becomes possible to evaluate these techniques and to
explore the extent to which movements from unemployment into part time and temporary
work act as a stepping-stone to full time employment (Atkinson and Micklewright 1991).
Labour market transitions have been used in literature for studying the effects of
unemployment compensation. Questions of the following type have been explored. Do cuts in
unemployment benefit compensation increase the rate of exit from unemployment but cause
people to leave the labour force rather than to enter employment? Does the existence of
unemployment insurance lead job losers registering as unemployed rather than leaving the
labour force? Does unemployment compensation provide the security that allows people to
give up their jobs and acquire training? (Atkinson and Micklewright 1991). A further
application of the gross flows can be in equal opportunities monitoring. This can be done by
comparing people from ethnic minorities with others. Gross flows can be also used for
assessing the stability over time of the labour market movements of people with disabilities
and of those who receive sickness or disability benefits. For other applications using the
labour force gross flows see Akerlof and Main (1980), Burda and Wyplosz (1994) and Jones
and Riddell (1998).

1.3 Panel Surveys versus Retrospective Surveys and Registration Systems

in Longitudinal Data Collection

Panel surveys can be regarded as the most natural way of collecting longitudinal information.
Among the alternative ways of collecting longitudinal data, rotating panel designs have a
prominent role. In fact, rotating panel designs have been adopted by most national Labour
Force Surveys. Under a rotating panel design, sample units are interviewed in consecutive
time periods usually months, quarters or years. In the simplest case, each time period
corresponds to one wave of the panel survey and the interviewed sample units report their
labour force state for the current period. Using such designs, one can obtain information on
labour force gross flows by matching data of individuals who participate in the survey for two

oI Mmore successive waves.

Alternatively, longitudinal information may be collected using retrospective surveys. This
may happen by introducing retrospective questions in a cross-sectional survey. For example,
in the US Survey of Income and Programme Participation (SIPP) interviews take place every
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four months but monthly data are collected by questioning respondents about their behaviour
during the past four months. In the UK LFS (Laux and Tonks 1996), the retrospective way of
collecting longitudinal information co-exists with the panel one. The UK LFS contains two
sets of recall questions. The first set of recall questions is asked for respondents who move
into a sampled household after the household’s first interview (wave 1) and for those
respondents who have worked for the same employer or who have been self-employed for
less than three months. These questions are related to respondents’ circumstances three
months prior to the current interview and explore respondents’ occupation and full-time/part-
time status. The second set of recall questions is based on a twelve-month period and is asked
for all respondents in the spring quarter (i.e. March to May) each year. These questions cover
the same topics as the ones of the first set with the addition of information about respondents’

managerial duties and the number of staff at the place of employment.

Data that are produced in a retrospective way may be affected more severely by measurement
error compared to data where respondents report their status for the current period. There are
a number of reasons for this to happen. Firstly, the nature of measurement error 1s likely to be
more complex when panel data are constructed by piecing together retrospective histories.
This may happen because of memory problems such as forgetting or mistiming as well as
because of the respondents’ or the interviewers’” misunderstand. Moreover, errors in
reconstructing event histories can lead to dependencies between measurement errors for
example, “seam” effects where more change may be observed between measurements
recorded in different interviews than for measurements recorded within the same interview
(Hill 1987, Marquis and Moore 1990, Kalton and Miller 1991). Furthermore, there are
significant problems regarding the consistency of definitions of the different labour force
states. Assume for example the ILO definition for unemployment. This definition includes
those who are out of work, available to start work within two weeks following the interview
and have either looked for work in the four weeks prior to the interview or they are waiting to
start a job they have already obtained. The implementation of this definition is easy in the
context of a survey that collects information about activities within a reference week.
However, it is unrealistic to seek information in such a detailed level about respondents’ past

labour activities.



The panel way of collecting longitudinal data provides a much richer source of information.
The main advantage is that under a panel design the information recorded refers to the same
time period that the interview takes place. Consequently, this way of collecting data
minimises memory problems. For this reason, the panel way of collecting longitudinal data is
the most promising one and that is why it is widely used. Nevertheless, panel surveys are
affected by a number of factors that complicate estimation of the quantities of interest. One
problem associated with panel surveys is the increased risk of attrition. This problem can be
attributed to the increased risk of failing to follow all sample units throughout the period
during which they are supposed to participate in the survey. When attrition is truly random,
the only problem that is created is the loss of efficiency for the estimators. However, in many
cases attrition is non-random and the resulting estimates are severely biased. Another
problem associated with panel surveys is the impact of measurement error on the estimates of
change. Typical examples of this problem include the overestimation of the labour market
mobility and of the poverty dynamics. Last but not least, a further complication arising in
panel surveys is the presence of conditioning effects. Conditioning effects occur when the
behaviour of a respondent is affected by the number of times that this respondent has
participated in the survey. A general review on the problems associated with panel surveys

can be found in (Duncan 2000).

An alternative source of longitudinal information is registration systems. Such systems
include (a) simple systems, which allow only flows in and out of the register to be recorded
and (b) longitudinal systems, where individuals can be traced over periods of time as they
leave and re-enter the register. Theoretically, registration systems are capable of producing
true flow statistics since only registers can record every movement between the different
labour force states. In addition, registers can be regarded as having perfect memories.

However, these advantages are weakened if the registers are not properly updated.

Labour force gross flows statistics stem from the longitudinal character of the Labour Force
Surveys (LFS). The dynamics of the labour market have presented a challenge to researchers
in the United States (US) and in Canada since the 40°s and 50°s. Since that time researchers
have recognised the importance of studying the labour market mobility and also the problems
encountered in the estimation of labour force gross flows. The status of research of the labour

market dynamics outside North America is described by Evans (1985). As he points out, in



the 80’s very few countries had published flows from household-based Labour Force
Surveys. For example, in the US Current Population Survey (CPS) the base of rotation is the
month and the rotation pattern is 4-8-4. This implies that the sample units are followed for
four consecutive months, subsequently they are dropped out from the sample for eight months
and eventually they are included again in the sample for four more months. The following
table (Table 1.2) reports the countries that utilised labour force sample surveys appropriate

for estimating labour force gross flows.

Table 1.2 Rotation sampling schemes of labour force sample surveys in nine countries

(Evans 1985).

Countries Base of Rotation Pattern of Rotation

Australia Month 8-
Canada Month 6-
Finland Quarter 6-
France Year 3-

Italy Quarter 2-2-2

Japan Month 2-10-2
Spain Quarter 6-
Sweden Quarter 8-

usS Month 4-8-4

In the past years, large-scale longitudinal surveys of socio-economic conditions and
behaviour of households have been established in several European countries including

Belgium, Germany, Greece, Ireland, Luxembourg, The Netherlands and UK.
1.4 Problems Encountered in Estimating Labour Force Gross Flows

Labour force gross flows are estimated by linking together panel data. In this process several
problems are typically encountered. Since 1953, two presidential committees in the US have
recommended that the problem of gross change estimation should be studied. In 1962, the
President’s Committee to Appraise Employment and Unemployment Statistics under the
direction of Robert A. Gordon urged that the problems discovered in gross change estimation
should be thoroughly researched so that publication of the data could then be resumed. In
1978, the National Commission on Employment and Unemployment Statistics headed by
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Professor Sar Levitan reviewed a paper by Ralph Smith and Jean Vanski entitled “Gross
Change: The Neglected Data Base.” This paper examined the potential uses of data, research
that has been done using the data and errors in the data. According to this paper the main
problems encountered in the estimation of labour force gross flows include (a) sampling
attrition, (b) response errors and (c) rotation group bias or conditioning effects. General
descriptions of these problems can be found in Hilaski (1968), Hogue (1985), Hogue and
Flaim (1986), Clarke and Tate (1999) and Kristiansson (1999). Literature on non-sampling
errors includes among others Bailar (1987), Barnes (1987), Trewin (1987) and Lessler and
Kalsbeek (1992). In the sequel, we describe each of the problems in detail and we examine

their implications for estimation of labour force gross flows.

1.4.1 Sampling Attrition

Attrition bias is one of the problems affecting the estimation of gross flows. For example, the
UK LFS is based on a sample of addresses each of which is occupied by a household or, less
commonly, by multiple households. The aim is to interview every eligible household
member. However, when a household is approached, non-response can occur due to outright
refusal, circumstantial refusal or non-contact. Outright refusal occurs when a household, or
the individual from whom permission is sought, refuses to participate in the survey.
Circumstantial refusal is less terminal, arising when the household does not agree to be
interviewed for example, because the timing is inconvenient. The third category of interview
non-response i.e. non-contact refers to the situation where it is not possible to contact an
eligible household member. In the event of an outright refusal no further attempt is usually
made to interview that household and consequently it is dropped out of the survey. If
permission to interview a household is obtained, individuals can still non-respond because of
refusal, non-contact or because other household members are unwilling or ineligible to
provide proxy responses. A further complication arises due to the rotation design. This means
that sampled households leave the sample after having participated in the survey for a specific
number of times. Furthermore, after the first wave, families or persons may move away from
the sampled addresses. The effect on the gross change data is magnified because addresses
where people move in and others out cannot be used until a mover has been there for two
consecutive waves. Sample units who do not match from one wave to another have generally

different characteristics from the matched sample units. Hilaski (1968) points out that those
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who move are generally young and either married with small family or single. Empirical -
work (Tate 1997) verified these results by showing that a higher proportion of sample losses
are associated with younger adults living in privately rented accommodation and being

temporarily employed.

How can attrition affect the estimation of the gross flows? It is possible for people who move
away from their addresses to be associated with a higher probability of changing labour force
status. The loss of these people may lead to a downward bias in the estimates of the gross
flows. For example, a family may move because an unemployed person has found job in a
new location. Although this transition should have contributed to the UE cell of the transition
matrix (see Table 1.1), in fact it will not since movers are not followed. Another example is
students moving from a university town to other cities when looking for a job. These
transitions would have contributed to the NE or NU cell. It is apparent that these losses may

lead to the estimation of lower market mobility than really exists (Kristiansson 1999).

Research investigating methods of adjusting for sampling attrition can be found in Stasny and
Fienberg (1985), Stasny (1986), Clarke and Chambers (1998) and Clarke and Tate (1999).
Stansy and Fienberg (1985) and Stasny (1986) propose the use of models that allow for non-
ignorable non-response. In the context of the UK LFS, Clarke and Chambers (1998) also
propose models that account for non-ignorable non-response but, in addition, they extend
their models to hold at the household level. In the same context, Clarke and Tate (1999)
compare the model-based approach with the weighting approach for adjusting for non-
response and conclude that the weighting approach can provide a good alternative. Based on
the work by Clarke and Chambers (1998) and Clarke and Tate (1999), a weighting scheme
has been developed for the UK LFS that aims also at correcting for attrition bias. The

variables on which this weighting scheme is based are age, gender, tenure and region.

1.4.2 Rotation Group Bias

Rotation group bias is a further problem that complicates the estimation of labour force gross
flows. Rotation group bias occurs when the number of times respondents have been exposed
to the survey affects the data reported. It is hypothesised that the estimates for each of the

rotation groups of a panel survey must have the same expected values. This means that it

10



must be possible to regard the response stratum in each of the rotation groups as randomly
generated from a common survey population by the same mechanism. Moreover, the
measurement process must function in the same way regardless of the time that the sample

members are interviewed.

Studies of the CPS have revealed systematic differences in the estimates based on different
rotation groups. Empirical work (Bailar 1975) has shown that unemployment rates estimated
from the CPS are higher for the first and the fifth month, decrease for the intermediate
months and increase slightly for the fourth and eighth month. The effect of rotation group
bias on the estimates of employment rate has been also studied by Hansen, Hurwitz,
Nisselson and Steinberg (1955). Furthermore, Solon (1985) discusses different forms of
rotation group bias and the effects that this phenomenon has on the estimates of
unemployment. In Great Britain, Kemsley (1961) and Turner (1961) examined the presence
of rotation group bias in expenditure surveys and found that the reported expenditures were

higher in the first interview than in later interviews.

Rotation group bias can be attributed to the telescoping phenomenon. Telescoping means that
a respondent may recall an event that happened some months ago, but state that it happened
more recently. Events that are more traumatic are more likely to be reported than the real
events. Think of the rotation design in the CPS. This is a 4-8-4 design. We suspect that
months one and five may contain more telescoping, either because people have never been to
the survey before or they have been out of the survey for eight months and they want to report
something of interest. The intermediate months are probably less affected by this
phenomenon since respondents have the opportunity to report on a regular basis. Other
reasons that cause rotation group bias may include the change of the mode of data collection
from the first to subsequent waves or the conditioning, i.e. participants in a panel survey leam

a shortcut through the questionnaire, of the respondents after the initial interview.
1.4.3 Measurement Error

Every sample survey is subject to response error when the information given by the
respondent is not an accurate reflection of the reality. The existence of response error implies

the existence of measurement error. When dealing with discrete data, the term measurement
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error can be replaced by the more natural term misclassification. Hereinafter, the terms
misclassification and measurement error will have an identical meaning and will imply the
existence of response error. Response error may occur for a variety of reasons. A respondent
may deliberately give an incorrect answer for reasons of embarrassment, prestige, or fear
(Hilaski 1968, Hogue 1985). Further potential sources of error include the use of proxy
respondents where one respondent answers the questions on behalf of someone else in the
same household and the mode of data collection i.e. the use of face to face or telephone
interviews (Tate and Clarke 1999). Other causes of misclassification reported in Kristiansson

(1999) include problems in the questionnaire and difficulties in the classification of a

respondent’s status.

A considerable amount of literature deals with the effects of misclassification on hypothesis
testing and the measures of association. Rogot (1961) studies the effects of misclassification
on the Type II errors (i.e. not rejecting the null hypothesis when it should be rejected). The
author restricts his interest in four specific patterns of misclassification. He concludes that the
misclassification patterns of the specific type that he describes tend to increase the probability
of making a Type II error. This result is consistent with the description of Kuha and Skinner
(1997), (see also Buell and Dunn 1964, White 1986), that the effect of misclassification in the
multivariate case is to attenuate the differences between the subclass proportions. Kuha and
Skinner (1997) study the effects of misclassification also for univariate analysis. They
conclude that bias is a function both of the misclassification probabilities and of the true
parameters and can take any arbitrary form. Thus, an instrument with a given
misclassification can lead to biased estimates in one population and unbiased estimates in
another. Mote and Anderson (1965) investigate the effects of misclassification on the
properties of X tests for goodness of fit and for contingency tables. They conclude that the
effect of misclassification is to reduce the power of these tests. Koch (1969) studies the
effects of non-sampling errors on different measures of association in 2x2 tables.
Chiacchierini and Arnold (1977) develop a test for independence in 2 x2 tables under
misclassification. They conclude that ignoring misclassification can result in erroneously
rejecting the null hypothesis and vice versa. Other papers dealing with the effects of
misclassification on the analysis of categorical data include Bross (1954) and Assakul and
Proctor (1967) whilst two more general papers, on the effects of measurement error on the

analysis of survey data, are given by Cochran (1963) and by Biemer and Trewin (1997).
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It is believed that for cross-sectional data there is no particular tendency for errors to be
systematic (Veevers and Macredie 1983, Lemaitre 1999, Skinner 2000). However, for
longitudinal data produced by linking together data collected for the same person in different
time points, this cancellation may not occur. We investigate this argument using the
following approach. Denote by () the misclassification matrix. The diagonal elements of this
matrix denote the probabilities of correct classification and the off-diagonal elements the
probabilities of misclassification. Denote further by P a matrix that describes the probability
distribution of the true classifications, by Il a matrix that describes the probability
distribution of the observed (i.e. affected by measurement error) classifications and by I the
identity matrix. Under misclassification, is reasonable to assume that bias is introduced in the
estimation of P . The bias can be quantified as follows:

Bias(P)=1II—P. (1.1)
Using simple matrix operations, (1.1) can be expressed in the following way

Bias(P)=(Q —I)P. (1.2)

Note that bias becomes zero when () = I i.e. when no misclassification exists. Let us assume

that we are dealing with an example in the context of the UK LFS. Assume further that there
are three mutually exclusive states namely Employment (E), Unemployment (U) and
Inactivity (N). Following (1.2), the bias introduced in the estimation of the proportion of

people that belong to each labour force category is given below

Bias <PE> 9gr — 1 4py dEn Py
Bias <PU> = dyg Qy — 1 Qun F, (1.3)
Bias (PN) I v G — 1| Py

We are interested in finding whether there exists a combination of values such that (1.3) is

equal to zero. A set of values for which (1.3) becomes zero is the following.

P, = 0.7071, P, = 0.0606, P, = 0.2323¢,;, = 0.9, g = 0.003,¢,; = 0.007
Gy = 0.04,q,; = 0.85,qyy = 0.11, gy = 0.02,g,y = 0.03,qyy = 0.95.
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This combination of values can be considered as a realistic one in a labour force framework.
Thus, in a cross-sectional framework it is possible to obtain unbiased estimates of the

parameters of interest even in the presence of misclassification.

In a longitudinal context, Skinner (2000) provides a similar example in which, while the
marginal estimates of the gross flows matrix are unbiased, the estimates of the transition
probabilities are seriously biased. For example, many researchers believe that the response
errors can have serious implications for estimation of labour force gross flows. Think of the
gross flows between the main labour force states (Employment, Unemployment and
Inactivity). The number of people who move from one state to another during a relatively
short period is small compared to the number of people who remain stable. Consequently, a
response error is much more likely to lead to an apparent change when the true situation is
one of stability. This implies that response errors can have an effect by upwardly biasing the
flows between the different labour force states. For this reason, the response error problem
and methods that attempt to correct for response error have been at the centre of research in
the US and Canada during the 80’s and in Europe mainly during the last decade. Generally
speaking, the major aim of this thesis is to develop methodology that adjusts labour force
gross flows for misclassification. As a result, from now on we will focus our interest on

misclassification related issues.

1.5 Modelling Strategies to Correct for Misclassification

Misclassification can introduce bias in the estimation of the parameters of interest and as a
result in the analysis and inference based on these parameters. Consequently, it is of interest
to investigate modelling strategies that attempt to correct for the biasing effect of
misclassification. In the following sections, we describe techniques that have been developed
for both cross-sectional and longitudinal data. Before doing so, however, we should mention
that due to the discrete nature of the gross flows, conventional methods of errors in variables
modelling (Fuller 1987) are not applicable. Generally speaking, these modelling strategies
can be placed into two broad categories (see Figure 1.3): (a) strategies that assume the
existence of validation information and (b) strategies that do not require validation

information.
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Modelling Strategies to Correct for Misclassification

Strategies that assume Strategies that do not assume
validation information validation information
- Latent Markov Models

- Latent Markov Models with
Correlated Classification Errors

Matrix Adjustment Likelihood- based - Instrumental Variables Models
Methods Methods - Systems of Multinomial Logistic
Models

Figure 1.3: Modelling strategies to correct for measurement error in a discrete framework

Although the alternative modelling strategies utilise different parameterizations, they share
many common characteristics. In all approaches, the observed and the true classifications are
interrelated using the misclassification mechanism. The observed classifications can then be
expressed as a function of the parameters of the misclassification mechanism and of the true
classifications and vice versa. As we will see later in this chapter, expressing the observed
classifications as a function of the true classifications and the parameters of the
misclassification mechanism is the approach that is generally adopted by the likelihood-based
strategies either in the presence of validation data or when no validation data are available.
The reverse approach is employed by the matrix adjustment methods. In the sequel, we

describe the alternative modelling strategies.

1.5.1 Strategies that Require Validation Information

1.5.1.1 Matrix Adjustment Methods

The term matrix adjustment methods appears in Kuha and Skinner (1997) and is used to

describe simple methods that provide adjustments for measurement error via matrix
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computations. We should mention that these methods do not specify any parametric model
for estimating quantities adjusted for measurement error. Matrix adjustment techniques can
be placed into the general framework of the double sampling methods. Assume that the
standard measurement device (e.g. the Labour Force survey) is subject to measurement error.
As a result, if the fallible measurement device is used, we will have biased results. One way
of obtaining unbiased estimates is by using validation information obtained through a double
sampling scheme. Literature on validation surveys is reviewed later in this chapter. Here we

describe the general framework.

Denote by Y,; arandom variable describing the observed state (i.e. affected by measurement
error) of unit £ at time ¢ and Y, a random variable describing the hypothetical true state of

the same unit at time ¢. The estimation process under a double sampling scheme can be

described as follows.

A random sample of n units is selected from a population of N units and

1. For the n units selected, the classifications, Y, , are obtained for each unit £ using the

standard measurement device, which is subject to measurement error.

2. Following this first measurement, the true classifications, Y, are obtained for each
unit £ in a sub-sample of n” units, selected from the n units, using the validation

procedure.

Generally speaking, the double sampling methods try to combine information from both the
true and the fallible classifiers in order to obtain adjusted estimates. The basic assumption of
this approach is that the validation procedure identifies the true value. Consequently, using
the validation information one can exogenously estimate the parameters of the

misclassification mechanism and then adjust the quantities of interest for measurement error.

Matrix adjustment methods were developed initially for cross-sectional applications. Bross
(1954) describes the application of such methods to adjust binomial data (proportions) for
misclassification. Tenenbein (1970) derives maximum likelihood estimators and asymptotic
variances for proportions adjusted for misclassification and extends these results to the

multinomial case (Tenenbein 1972).
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Similar methods have also been used in the analysis of longitudinal misclassified data.
Literature that deals with the adjustment of labour force gross flows for misclassification
using matrix adjustment methods includes Abowd and Zellner (1985), Poterba and Summers
(1986), Chua and Fuller (1987), Skinner and Torelli (1993) and Singh and Rao (1995). The
general set up for longitudinal applications is as follows. Assume a panel survey is conducted

and a sample unit £ is interviewed at two consecutive periods ¢,¢ + 1. We assume that the

variable of interest measured by the panel survey is subject to misclassification. Let Y]

denote an observed measurement (i.e. affected by measurement error) and Y, an error free

measurement for the same quantity. The pairs (Yg,Yg +1) for different sample units are
assumed to be iid with distribution Il = pr (Yg =14,V = j). The pairs (Y&,Y& +1) for

different sample units are assumed to be iid with distribution F, = pr (Y& =kYy, = l).

We assume that we can use validation information to make inference about the probability of
misclassification. However, the validation survey is conducted only at time ¢. Denote by
Gy = PT (Yg =0iY5, =Yy =kY,, = l) the probability that a person is observed as
making a transition from state ¢ at time ¢ to state j at time ¢+ 1 when his/her actual

transition is from state k to state [. We further define the matrix of misclassification
probabilities () with elements g,,, . A parenthesis next to matrix ¢ will be used to define the
time that the misclassification refers to. For example, @ (¢,¢ 4+ 1) is used to denote the joint

misclassification matrix at these two time points. Finally, we define matrix P with elements

P, and matrix II with elements II,. The vec operator will be used throughout this thesis to

define a vector obtained by stacking the columns of a matrix one on top of the other.

Assuming that @Q(t,¢+1) is invertible, the adjusted gross flows are derived using the

following expression

vec(P) = [Q (t,t + 1)]_1 vec (I1). (1.4)

Due to the absence of panel validation information, one way to determine the joint

misclassification matrix @ (¢¢+1), based on cross-sectional validation data, is by

introducing the Independent Classification Errors (ICE) assumption, i.e.

pr(Yg =Yg =J|Y, = kYo = l) :pT(Y; =1i|Y, = k) Z)T(Y§+l =J| Y = l)' (1.5)

3y e+
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This ICE assumption implies that the observed states Y, Y, are conditionally independent
given the true states Y,,,Y,,,; and that the misclassification at time ¢ depends only on the

current true state and not on the previous or future true states. The ICE assumption and ways

of relaxing it will be discussed in subsequent chapters. Under ICE, (1.4) becomes

vec(P)=[Q(t+1)® Q)] vec(Il). (1.6)

The main difference between articles dealing with the adjustment of gross flows for

measurement error is in the estimation of the parameters of the misclassification mechanism.

Poterba and Summers (1986) Approach

While investigating validation data from the reconciled' sub-sample and the unreconciled’
sub-sample of the CPS validation survey, Poterba and Summers observed an anomaly. More
specifically, they found that the discrepancies between the original survey and the re-
interview survey were much greater for the unreconciled sub-sample than for the reconciled
one. Due to this problem, the authors assumed that the reconciled sub-sample gives
information on the true labour force status while the unreconciled sub-sample can be used for
estimating the actual incidence of error. Regarding individuals in the reconciled sub-sample,
they estimate the probability that a respondent truly belongs in each labour force category
conditional upon the initial and the unreconciled reported status. To determine these
probabilities they assume that when there is an inconsistency between the two survey

responses the reconciliation procedure correctly identifies the true status. Denoting by Y&(”
the classification obtained through the reconciliation process for sample unit & and by Y;t“’

the classification obtained from the unreconciled part of the re-interview sample for the same

unit, these probabilities are given by

by = pr(YY = k| Yy =4 Y = j) subject to by + by, + by =1, 4,5 = E,U,N. (1.7)

Subsequently, they use b, to impute a probability distribution of the true labour force status
for each individual in the unreconciled sub-sample conditional upon the responses in the
initial and the unreconciled part of the re-interview survey. Using the imputed distribution of

the true labour force status, two probabilities can be determined: the probability that an

! Usually, a validation survey is divided into reconciled and unreconciled sub-samples. The reconciled sub-sample is
assumed to provide the true values. The unreconciled sub-sample replicates the survey process.
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individual’s recorded initial interview response is i conditional upon the imputed

reconciliation status %,g, and the probability that an individual’s recorded interview
response in the unreconciled sample is j conditional upon the imputed reconciliation status

k,q;,. Using these two sets of probabilities, the error rates are computed by averaging g,
and ¢, . The final misclassification probabilities can be substituted in expression (1.6) in

order to adjust the quantities of interest for measurement error.

Abowd and Zellner (1985) Approach

The common characteristics between the Poterba and Summers approach and the Abowd and
Zellner approach, for adjusting gross flows for measurement error, are the following: (a) both
assume the availability of validation information and employ the independent classification
errors assumption to estimate the matrix of misclassification probabilities and (b) both
assume that the reconciliation process identifies the true labour force status. The difference
between these two approaches is that while the Poterba-Summers approach utilises data both
from the reconciled and the unreconciled sub-sample, the Abowd and Zellner approach
utilises data only from the reconciled sub-sample. Furthermore, the model proposed by

Abowd and Zellner simultaneously adjusts labour force gross flows for bias due to attrition

and response error.

Chua and Fuller (1987) Approach

Chua and Fuller (1987) proposed a parametric approach for estimating the response error
matrices using validation information that is derived from the unreconciled part of the
validation sample only. However, they still use the ICE assumption in order to estimate the

longitudinal structure of the misclassification mechanism.

Matrix Adjustment Methods that Attempt to Relax the ICE Assumption

Poterba and Summers (1986), Skinner and Torelli (1993) and Singh and Rao (1995)
examined similar adjustment techniques. However, they extend the ICE assumption to hold
within sub-populations. This is the so-called unit heterogeneity approach. Under this

approach, (1.6) becomes

19



-1

UQC(P) = vec(H ), (1.8)

S, {@(tH)g@ Q(‘%]

where ¢ denotes the total number of sub-groups, «, denotes the fraction of people that

belong to sub-group g and @ (¢), denotes the misclassification matrix for sub-group g. The

use of the unit heterogeneity approach reduces the effects of the ICE assumption. As pointed
out by Skinner and Torelli (1993), the effect of ignoring unit heterogeneity, when such
heterogeneity is present, leads to over-adjustments of the labour force gross flows. However,
they believe that the bias introduced in the estimation of the adjusted gross flows when

ignoring unit heterogeneity is not large.

In the same framework, an alternative adjustment method, which has been adopted by many
researchers (Poterba and Summers 1986, Singh and Rao 1995), is the unbiased margins
method. Under this approach, it is assumed that the margins of the adjusted gross flows
matrix must agree with the observed margins at ¢,¢ 4+ 1. This implies that cross-sectional
estimates remain unbiased in the presence of measurement error. As we illustrated in Section

1.3.3, this is possible in a cross-sectional framework.
1.5.1.2 Likelihood-based Methods in the Presence of Validation Information

Using the matrix adjustment methods we can obtain estimates adjusted for misclassification.
However, we cannot use standard methods of statistical inference (hypothesis testing, model
selection) since these methods do not account for the extra uncertainty introduced by the
adjustment procedure. This type of inference can be performed using likelihood-based

methods.

There is a considerable literature on likelihood-based methods for adjusting for
misclassification in a cross-sectional framework when validation data are available. Chen
(1979) examines estimation from double sampling designs using models that are placed into a
log-linear framework and specified at two levels. First, a misclassification model that
specifies the relationship between the true and the misclassified variables is formulated.
Using this model, we can test for the existence of a differential or a non-differential

misclassification mechanism. Secondly, a model for the relationship between the true
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variables is specified. Using this system of models, one can utilise the misclassification
structure to adjust for misclassification and then investigate the relationships among the
correct classifications. Chen (1979) estimates these models using a recursive system of

maximum likelihood equations.

Hochberg (1977) considers models for doubly sampled data and proposes two alternative
estimation methods namely, maximum likelihood estimation and a combination of least

squares and maximum likelihood estimation.

Espeland and Odoroff (1985) present models for doubly sampled data. They assume that the
variable of interest is measured both by a precise and an imprecise device. They further
assume that there are other variables (covariates), which are measured precisely. They specify
three different types of models namely, the sampling model that describes the relationship
between all variables included in the model, the misclassification model that describes the
relationship between the precise and the imprecise measured variable, and the experimental
model that describes the relationship between the precise variable and the precisely measured
covariates. These models are estimated using the EM algorithm. Ekholm and Palmgren

(1987) present also models that correct doubly-sampled data for misclassification.

The work presented by Hochberg (1977), Chen (1979), Espeland and Odoroff (1985) and
Ekholm and Palmgren (1987) deals with cross-sectional data. Poterba and Summers (1995)
formulate a longitudinal model for doubly sampled labour force related data that focuses on
transitions from unemployment to employment and inactivity. They model the probability of
an actual transition as a multinomial logistic model. The likelihood defined by the model is
written as a function of the misclassification probabilities and the true transition probabilities.
In the maximisation of this likelihood they assume that the misclassification probabilities are
fixed at estimated values derived from the validation sample. This is equivalent to treating
these misclassification probabilities as nuisance parameters. Consequently, the likelihood is
maximised only with respect to a reduced set of parameters. As the authors recognise, the
maximisation of the resulting conditional likelihood leads to inconsistent estimates of the
standard errors since the process ignores the variability introduced from the estimation of the
misclassification probabilities. An additional assumption that they impose is that the

probability of misclassification is independent of the characteristics of the respondents. This

21



is equivalent to assuming the existence of a non-differential misclassification mechanism and
can be considered as quite restrictive. Their final assumption is that the observed
classifications at the first time point are free of error. This might be justified given the nature
of the data considered in the article. However, in most applications this assumption can not be
regarded as realistic. Assuming that the observed classifications at the first time point are free
of error simplifies the estimation process. This is done as follows: The observed data are
derived from a panel survey whereas the validation data are derived from a cross-sectional
survey. Assuming that the observed classifications at the first time point are free of error is
equivalent to transforming the measurement error process from a longitudinal to a cross-

sectional one. Hence, there is no need to impose the ICE assumption.

1.5.2 ‘Strategies that do not Require Validation Information

The main objection to adjustment procedures that assume the existence of validation
information is the ability to measure the truth. In the case of an external validation sample
(e.g. based on administrative records), this becomes the question of how informative this
source of information is about the misclassification process in the target population. For
example, a validation study based on the employees in one company can provide no
information on the probability of an unemployed person being classified as employed. In the
case of an internal validation sample, based on re-interviewing a sub-sample of units, the
main problem is the measurement of the truth via this re-interviewing process. Despite the
fact that re-interviews that aim at obtaining the true values are designed to be optimal in terms

of the survey procedures, they still have deficiencies.

A class of models has been developed, which does not estimate the parameters of the
misclassification mechanism by attempting to measure the truth but by replicating the
measurement process. Generally speaking, these models involve the combination of a true
model that relates the true values at different waves and a measurement mode] that relates the
true values to the measured (misclassified) values. Without imposing further assumptions the
parameters of these models are not identified. This is because these modelling strategies do
not assume validation information. To achieve identification we either have to add
information provided by repeated measurements or to impose assumptions on the

relationships between the variables. Such assumptions can be for example that (i) the
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observed measurements are conditionally independent given the true measurements, (ii) the
measurement error depends only on the current state and not on previous or future true states,
(iii) the distribution of error is homogeneous through time, (iv) the distribution of error is
homogeneous across or within subpopulations, (v) the true values follow a Markov process
within subpopulations. Given such assumptions, these models can be identified and the
parameters (e.g. the transition probabilities) can be estimated using maximum likelithood
estimation. Models of this type include latent Markov models, instrumental variables models

and systems of multinomial logistic models.

1.5.2.1 Latent Markov Models

Latent structure analysis was developed by Lazarsfeld and Henry (1968) in order to solve
problems involving unobserved variables when the data are measured at the nominal level. In
one of their models they assume panel data and a latent Markov chain underpinning the
observed (manifest) data. In this context, Van de Pol and De Leeuw (1986) proposed a latent
Markov model to correct data from the Dutch civil servants panel survey for measurement

CITorT.

Formulating the Manifest Structure

Assume that a set of consecutive measurements is obtained by a measurement device that is

affected by measurement error. Recalling the notation form previous sections, a Markov

chain is specified by the initial distribution II, = pr (Y; = z) and a set of transition matrices
R with elements R for transitions from ¢ toj between t and ¢+ 1. The relationship

between II,, R, and II;is given by

I, = IR, (1.9)

Pl v
where I denotes a diagonal matrix with elements only in the diagonal and zeros elsewhere.
The main assumption of the Markov model is that a transition matrix R is independent of the
past states through which the process has passed. This implies that a transition matrix say for

two consecutive periods (¢, + 1) and (¢ + 1,¢ + 2) satisfies the following relationship

R(t,t+2)= R(t,t +1)R(¢t +1,t +2). (1.10)
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The length of periods (¢,¢ +1) and (¢ + 1,£ 4 2) can be assumed to be the same as the time
between consecutive waves of the panel survey but this is not a necessary assumption. Using
relationships (1.9), (1.10) and assuming that we obtain measurements at three consecutive

time points, the probability that a person belongs to manifest cell (4, 7, k) is given by

M, = 11,11, = II,R,R, (1.11)

i gt vkt
In many cases an assumption of stationary transition probabilities is imposed.

Rtt+1)=R(t+1,t+2) = =R (1.12)

In most of the cases, however, the Markov assumption is not met by the data. The approach
adopted by the authors for relaxing the Markov assumption is to decompose the manifest data

into latent data and error. This naturally leads to the formulation of the latent structure.

Formulating the Latent Structure

Corresponding to every manifest variable one latent variable is assumed. The distribution of
the manifest variable IT depends on the distribution of the corresponding latent variable P
and a matrix of transition probabilities ). This matrix is equivalent to the misclassification
matrix used by the strategies that require validation information. The diagonal elements of )
denote the probabilities of correct classification (i.e. the reliability by which a latent class is

measured). The latent variable is related with the manifest variable, via matrix ), by the

following relationship.
IT = QP. (1.13)

Apart from the relationship between the latent and the manifest variables, there is also a

structure for the latent variables similar to the structure of the manifest variables.

Consequently, on a latent level and for three time points (¢,¢+1,t+ 2), there are
Y, Yey 15 Yy, latent observations for sample unit &, which are interrelated by a Markov
chain. The latent transition matrix is denoted by M and the latent initial distribution
by P, = pr (Ya = a). The probability that a person belongs to latent class (a,b,c) is given by

P, =PM,M,,. (1.14)

abe

In order to relate the manifest variables to the latent variables, an assumption of local

independence is being made. This means that the manifest variable at time ¢ depends only on
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the latent variable at time ¢ (see Figure 1.4). Thus, for a respondent in cell (a,b,c) the

probability of answering (4, 7, k) is given by the following expression

Iy = za Zb chaqaiMabquMbcqck‘ (1.15)
M(tt+1) M(t,t+2)
£ "E | L ]
Q(t)l Q(r+1)i Q(r+2)l
Hi Hj Hk

Figure 1.4: An example of a latent Markov chain in discrete time

Estimation

As proposed by Van de Pol and De Leeuw (1986), the vector of parameters © of the latent
Markov model can be estimated using the EM algorithm. Assuming a multinomial model and

denoting by n the data for each cell of the cross-classification of the manifest and the

abcijk

latent variable, the log-likelihood for the latent Markov model is given by

l(@) = Za Zb Zc ZiZ]’ Zk nabcijk 1Og (PaqaiMa.bquMbcqck)' (]‘16)

In the E-step, the latent observations are replaced by their conditional expectations given the
current vector of parameter values and the observed data. In the M-step, the likelihood 1s
maximised and new parameter values are computed. The authors provide the steps for the
EM algorithm under the assumption of stationary transition probabilities given in (1.12).
However, the EM algorithm can be modified in order to relax this assumption. An alternative
way of estimating the parameters of the latent Markov mo&del is by attempting a direct
maximisation of the likelihood function (1.16) using numerical methods (Haberman 1979).
However, Hagenaars (1985) points out that Haberman’s algorithm requires very good starting

values otherwise it will not converge.

1.5.2.2 Latent Markov Models that Allow for Correlated Classification
Errors

Bassi, Torelli and Trivellato (1998) describe latent class models for estimating labour force

gross flows affected by classification errors when data are partially collected using
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retrospective questions. They start by describing a general estimation framework where the
joint probability of the observed and the true classifications can be marginalized over the
latent (true) classifications and expressed as a product of conditional and marginal
probabilities. In this paper, the emphasis is on latent class models that allow also for
correlated classification errors i.e. relaxing the ICE assumption. A suitable approach for

handling such models is the so-called modified LISREL approach proposed by Hagenaars
(1990).

The authors present two case studies; one from the Survey of Income and Programme
Participation (SIPP) and another from the French LFS. The common characteristic of these
surveys is that data are collected partially using retrospective questions. Gross flows can be
separated into Within-Wave (WW) flows, which are estimated using the retrospective part of
the survey, and Between-Wave (BW) flows. While for the (BW) transitions ICE can be
regarded as a reasonable assumption, for the (WW) transitions it is more reasonable to
assume that they are affected by correlated classification errors. The authors noticed that
(BW) flows show a lower stability while (WW) flows show higher stability. The higher
stability of (WW) flows can be attributed to “seam effects” i.e. more change is observed
when data are collected in different interviews than when they are collected in the same
interview. The proposed model corrects the (WW) transitions towards higher mobility i.e.

reducing “seam effects” and (BW) transitions towards stability.

Magnac and Visser (1999) study transition models with measurement error when information
is gathered partially by using retrospective questions. More specifically, they use data from
the French LFS in which the sample units are interviewed for three times. At each interview
the survey participants are asked to report their current labour force status and also their
labour force status month by month in the preceding twelve months. The modelling
assumptions that they impose are the following: (a) the labour market histories are generated
using a discrete-time Markov chain, (b) the observed and the true states are related using a
measurement error mechanism, (c) the current reported state is assumed to be free of error
while the retrospective reported states are affected by classification error and (d) errors
increase linearly with time due to recall problems. The assumption that the currently reported
state is free of error is unrealistic. This is because the currently reported data are derived

through an ordinary interviewing process i.e. not derived, for example, via a validation

26



procedure. However, it might be the case that the retrospectively derived data are more
severely affected by measurement error. Regarding assumption (b), Magnac and Visser used
the so-called d -ICE assumption, which can be seen as a relaxed ICE assumption. The d -ICE

assumption states that the misclassifications recorded at time ¢ and t+d, d>1, are

independent.

The vector of model parameters © is estimated by maximising a log-likelihood function.
Denoting by n,; the number of individuals observed in state 4 at time ¢ and state j at time
t+d, by k,l the true states and by r the total number of states, the log-likelihood function

is given by the following expression

1(©)= Z Zn log (IT, ). @117

It can be shown that under the d -ICE assumption
=> > 4Pt (1.18)
k=1 I=1

where gy and ¢, are elements of the misclassification matrices @Q(t) and Q(t+ d)

respectively. The misclassification matrices Q(¢) and @ (¢+d) are estimated under

assumption (c¢) and the assumption that recall error increases linearly with time. After
estimating Q(¢) and Q(¢ +d), the log-likelihood (1.17) is maximised and maximum
likelihood estimators for the true tramsition probabilities, P,, are derived. The model
proposed by Magnac and Visser corrects the gross flows towards stability, which contradicts
the findings from the model of Bassi et al. (1998). Bassi and Trivellato (2000) criticise the
assumptions imposed by Magnac and Visser and re-analyse the data using the modified
LISREL modelling approach, which allows for correlated classification errors. Their model

corrects the retrospectively collected flows towards higher mobility.

1.5.2.3 Instrumental Variables Estimation

For measurement error in continuous variables an approach employed in the absence of

auxiliary information is the method of instrumental variables estimation. An instrumental

variable is one that is related to the true variable but is uncorrelated with the measurement

error. Skinner and Humphreys (1997) (see also Humphreys 1996) extend the instrumental
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variables model to estimate flows among discrete states that are affected by classification
errors. The paper focuses on the case of a binary variable. A discrete instrumental variable W
is defined, which is correlated with the true variable but uncorrelated with error. The
following assumptions are made: (a) the instrumental variable is conditionally independent of
the observed states given the true states, (b) the instrumental variable is conditionally
independent of the true state at the second time point given the true state at the first time
point, (c) the classification errors at two occasions are conditionally independent given the
true states, (d) the measurement errors are unbiased at each occasion in the sense that the
margins of the adjusted gross flows should equal the margins of the observed gross flows

matrix and (e) the error process is constant over time.

Denote by II., = pr(Y, =4,Y, , = j,W = k)and by n,, the number of individuals in the
ik &t y ik

s L et
ijk combination defined by the cross-classification of the observed variable with the

instrumental variable. Expressing II, as a product of conditional probabilities using

assumptions (a)-(e), the vector model parameters © can be estimated by maximising the

following multinomial log- likelihood
1(©) = Zzzniﬂc log(Hijk>' (1.19)
ik

The maximisation of (1.19) can be done either directly or by using software that fits latent

class models.

The authors describe an application that involves the selection of an actual instrumental
variable and they point out problems related to the choice of an instrumental variable that
obeys both assumptions (&) and (b). They argue that it is more difficult to find an instrumental
variable that satisfies the second assumption than one that satisfies the first assumption.
Subsequently, they investigate models using two different instrumental variables i.e. one,
which is highly correlated with the error free variable and one that is less correlated with the
error free variable. The results indicate that the estimates obtained using the instrumental
variable that is less related with the error free variable are associated with higher standard
errors. Skinner and Humphreys (1997) investigate the trade-off between the bias of the
unadjusted estimates and the increased variance of the instrumental variables estimates
assuming that the instrumental variables estimates are unbiased. They point out that the

variance of the instrumental variables estimates increase as the dependence between the

28



instrumental variable and the error free variable, measured by Cramer’s V, decreases.
However, they conclude that in the absence of external information about the

misclassification probabilities the instrumental variables approach can be very useful.

1.5.2.4 Systems of Multinomial Logistic Models

An alternative approach to adjusting labour force gross flows for measurement error is
proposed by Pfeffermann, Skinner and Humphreys (1998) (see also Pfeffermann and Tsibel
1998). This approach utilises multinomial logistic models that are specified at the unit level
for both the transition and the classification probabilities. The combination of these models
yields an overall model for the observed flows, which permits the identification of the true
transitions. The advantages of this approach are that no validation data are required and that
the ICE assumption can be relaxed by including the previously observed states as covariates
in the models. The following assumptions are made: (a) the observed classifications at
different time points are dependent given the corresponding true values and covariates, (b) the
true classifications are dependent but they do not depend on past observed states and (c) the
initial state probabilities do not depend on past observed states. Assumptions (a) and (b)
impose a Markovian structure on the observed and the true state probabilities. Utilising the

previous assumptions and denoting by X,, the covariate information for sample unit ¢ at
time ¢, the initial state probabilities are given by F, = pr (Y§1 =k X 51), the
misclassification probabilities are given by g, = pr (Y; =71Y, =1 }/'5;1 =1,X &), and the
true transition probabilities are given by F, = pr (th =Yy, =k th). The joint

distribution of the observed and the true states can now be expressed as a function of the
misclassification probabilities and the true transition probabilities. The authors postulate
separate multinomial logistic models for the misclassification probabilities, the true transition
probabilities and the initial state probabilities. Generally speaking, the different parameters

are expressed as follows:

_ en(Xa) o _ ew(XB) . _ exp(X1)
T = {1 + exp (Xa)} = {1 + exp (X 6)} A= {1 +exp(Xfy)}’ (1.20)
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where X denotes the design matrix and «,(,v denote the vector of parameters of the

logistic models. Note also that there is no restriction for the different models to include the
same set of covariates. The authors suggest that direct maximisation of the likelihood should
be avoided due to the possibly high dimensionality of the problem. Instead, they propose the
use of the EM algorithm. The approach proposed by Pfeffermann, Skinner and Humphreys
(1998) is a very important one since the ICE assumption is directly relaxed by including the
previously observed states as covariates in the models. One difficulty with this approach is

the computation of standard errors for the parameters of interest.

1.6 A Critical Comparison of the Alternative Modelling Strategies

For each of the alternative modelling strategies we need to specify the structure of the
observed classifications, the structure of the true classifications and the way that the observed
classifications are related to the true classifications via the measurement error mechanism.
The alternative methods differ with respect to the approach they choose to estimate the
measurement error mechanism. This depends on the availability of validation information.
Nevertheless, in terms of modelling assumptions, the different methods share common

characteristics.

Comparing the matrix adjustment methods with the latent Markov approach, we see that both
approaches use the local independence assumption to estimate the parameters of the
measurement error mechanism. However, the latent Markov approach results in the
computation of maximum likelihood estimates, which may be considered as more efficient
than the estimates obtained via the matrix adjustment methods. On the other hand, the lack of
validation information in the latent Markov approach imposes some extra constraints. For
example, in order that the parameters of the latent Markov model are identified, we need to
utilise linked data for at least three quarters and to impose assumptions about stationary

transition probabilities.

Comparing the instrumental variables model with the matrix adjustment methods, we also
find common modelling assumptions. For example, assumption (c) in the instrumental
variables model is equivalent to the ICE assumption of the matrix adjustment methods and

assumption (d) is equivalent to the unbiased margins assumption that is also utilised by the
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matrix adjustment methods (Poterba and Summers 1986, Singh and Rao 1995). However, the
instrumental variables model also results in maximum likelihood estimates.

The latent Markov models with correlated classification errors and the systems of
multinomial logistic models can be viewed as a separate group of methods since they attempt
to relax the local independence assumption in the specification of the measurement error
model. These methods can be seen as similar, in the sense of trying to relax the local
independence assumption, to the unit heterogencity approach and the unbiased margins

approach of the matrix adjustment methods.

One of the major aims of this thesis is to develop likelihood-based methods for adjusting
gross flows data in the presence of validation information. Generally speaking, the models
induced by these methods can be parameterised in the same way as the models that do not
require validation information (e.g. the latent Markov model). This means that the observed
transition probabilities can be expressed as a function of the true transition probabilities and
the misclassification probabilities and estimation can be performed within the context of a
missing data problem. However, when validation information is available, one can avoid
introducing the whole range of assumptions utilised by the modelling strategies that do not

require validation information.

1.7 The UK Labour Force Survey (LFS)

In this section, we describe the main source of data that we will use for illustrating the theory

throughout this thesis namely, the UK LFS.
1.7.1 Historical Notes and Purposes of the UK LF'S

The UK LFS is a survey of households living at private addresses, which is conducted by the
Social Survey Division (SSD) of the Office for National Statistics (ONS) in Great Britain and
by the Central Survey Unit of the Department of Finance and Personnel in Northern Ireland.
The first LFS in UK was conducted in 1973. Between 1973 and 1983 the survey took place
every two years in the spring quarter. Between 1984 and 1991 the survey was carried out
annually and consisted of two elements: (a) a quarterly survey of approximately 15000

private households and (b) a “boost” survey, in the quarter between March and May, of over
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44000 private households in Great Britain and 5200 houscholds in Northern Ireland.
Quarterly LFS estimates for Great Britain became possible in 1992 when the sample was
increased to cover 60000 households every quarter. The LFS quarters refer to the seasonal
quarters March-May (spring), June-August (summer), September-November (autumn) and
December-February (winter). Whilst the quarterly LFS is built on the annual one, there are
some differences mainly regarding the response rates (response rates in quarterly LFS are
lower due to the cumulative refusal across waves), the sampling design (introduction of an
un-clustered design) and the target population (inclusion of people in two categories of non-
private accommodation i.e. in National Health Service (NHS) accommodation and students in

halls of residence).

The main purpose of the quarterly LFS is to provide information needed to develop, manage,
evaluate and report on labour market policies. One potential use of the quarterly LEFS is in
macro-economic monitoring. Main indicators regularly published from the LFS include total
employment, the unemployment rate and the economic activity rate. A further important use
of the LFS is for the production of regional statistics. Based on regional data, governmental
offices can assess the local labour markets and design future labour market policies. Further
purposes of the LFS include the monitoring of the characteristics of the unemployed people,
the gathering of information related to training and qualifications, the monitoring of the youth
labour market, the gathering of information on income related variables, the monitoring of
working conditions and working related accidents and also the gathering of information

related to participation in trade unions.
1.7.2 Survey Design Issues

Coverage and Sampling Desien

The LFS results refer to persons of working age i.e. women aged 15 to 59 and men aged 15 to
64 who are residents in private houses and in NHS accommodation in UK. The sampling
frame, from which most (99%) of the Great Britain sample is taken, is the Postcode Address
File (PAF). The PAF is a computer list, prepared by the Post Office, of all the addresses to
which mail is delivered. In addition to the PAF, another frame is the NHS accommodation

sampling frame, which was specially developed for the LFS by utilising information from
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district health authorities and NHS trusts. In sparsely populated areas random samples are

selected from the published telephone directory while for Northern Ireland the Valuation List

1s used.

The LFS utilises a two stage sampling procedure. The first stage is a stratified random sample
of areas and the second stage is a systematic sample of addresses selected from the PAF. The
country is split into 110 interviewing areas. Each of these areas is then split into 13 “stints”.
These 13 stint areas are randomly allocated to the 13 weeks of a quarter. The same stint area
is covered in the same week of each quarter by an LFS interviewer. A systematic sample of
addresses is selected for each quarter throughout the country and is distributed between the
stint areas to provide a list of addresses to be interviewed each week. The sample currently
consists of about 59000 responding households in Great Britain every quarter, representing
0.3% of the population. A sample of approximately 2000 responding households in Northern
Ireland is added to this, representing 0.4% of the Northern Ireland population, allowing UK

level analyses.

Rotating Design

Each quarter the LFS sample of UK households is made up of five waves each of
approximately 12000 households. Each wave is interviewed in five successive quarters such
that in any quarter sample units belonging to the first wave will have their first interview,
sample units belonging to the second wave will have their second interview etc. Thus, there is

an 80% overlap in the samples for each successive quarter.
Weighting

The UK LFS includes longitudinal survey weights. These weights serve two purposes. They
compensate for differential non-response and also produce estimates at the national level. As
described in ONS (2000), the computation of weights for the two-quarter linked datasets
involves the following stages:
1) Initial prior weights are calculated such that they reproduce the distribution of the
cross-sectional sample from the first quarter according to the tenure/landlord
categories: owned, rented from local authority/housing association, privately

rented.
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(i)  These initial prior weights are then multiplied by a single grossing factor such that
the weighted sample cases sum to an overall population control total. This process
results in the derivation of prior weights used in the calculation of the final

weights.

(iii) A process of calibration weighting (also known as generalised raking) is then
applied to the sample using CALMAR software (see Elliot 1997). This process
minimises the distance between the prior and final weights while constraining the
final weights simultaneously to several marginal distributions or control totals.
For the production of the weighting factors in the UK LFS, four sets of control
totals are utilised (see ONS 1999, ONS 2000).

As mentioned in Section 1.4.1, the UK weighting system accounts for the sampling attrition
problem. Hence, by incorporating the survey weights in the analysis we account for one of

the major sources of bias affecting the estimation of labour force gross flows.

Other Design Characteristics

Households belonging to the first wave are interviewed face to face while interviews for the
remaining waves are carried out by telephone. The LFS design allows interviewers to receive
answers from proxy respondents (about 30% of the LFS responses are collected by proxy). A
proxy respondent is usually another related adult who is a member of the same household.
The LFS interviews are carried out using Computer Assisted Interviewing (CAI), which
ensures improved speed from fieldwork to the analysis of the data and also better data quality

(e.g. automatic check of inconsistencies).

1.7.3 Estimating Labour Force Gross Flows Using LFS Linked Datasets

The design of the UK LFS enables estimates of levels such as the number of people in
employment, which are representative of the national labour force population, to be produced
for any period of three consecutive months. However, due to its panel character, the LFS also
allows estimates of change to be produced. This can be achieved by linking the responses of

sample units that belong to consecutive quarters i.e. that belong to the common sample (see
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ONS 1999, Kristiansson and Mirza 2000). These parameters of change will be the main

parameters of interest in this thesis.

A labour force gross flows matrix between ¢ and ¢+ 1, taking into account the dynamic
evolution of the population, is presented in Table 1.3. The inflows include persons who have
turned 16 or who have immigrated to the country between ¢ and ¢ + 1. The outflows include

persons who have turned 65, have died or have left the country between ¢ and ¢ +1.

Table 1.3: Complete labour force gross flows between ¢ and ¢ + 1.

(E) (U) (N) Outflows Total at ¢
(E) EE EU EN EO E.
(U) UE uu UN uo U.
N) NE NU NN NO N.
Inflows IE U IN
Totalat t + 1 .E .U .N

The margins of Table 1.3 give the quantities that are regularly estimated by the UK LFS. The
column ‘Total at ¢’ describes the distribution of labour force states for the population in
working age (i.e. 16-64) at ¢. Similarly, the row ‘Total at ¢ -~ 1’ describes the distribution of
labour force states for the population in working age (i.e. 16-64) at ¢ + 1. Table 1.3 shows
also the distribution of labour force states for those who leave (Outflows) the working
population and for those who enter (Inflows) the working population between ¢ and ¢+ 1.

Denote by O the outflows and by I the inflows. The relation between the population at ¢

(U,) and the population at ¢ + 1 (U,,,)can be expressed as follows:

Uy=U~0+ITorlU,=UnU, +1I (1.21)

t+1
We define the following notation

Population Level

= U = {1, 2,...,5,...,Nt}denotes the working population at ¢ consisting of NV,

units.

= U,= {1, 2,..,&.., N, +1} denotes the working population at ¢ 4+ 1 consisting

of N, units.
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= U, =Un0,,=1{12.,§... N} denotes the population units that belong

both to U, and U, consisting of N units.

Sample Level
S = {1, 2,...,5,...,nt} C U, consisting of n, units.
" S = {1,2,...,5,...,nt+1} C U,,, consisting of n, ; units.

= S/ =S, — Outflows consisting of n,, n,” < n, units.

/ [ ! / .
= 5. =5, —Inflows consistingof n,; , n,,,; <mn,, units.

t-+1

= S

41 ={12,...,&,...,n}. Sample members who belong to U,,,,

=S5'NnS/

t+1

and also to the sample both at ¢ and ¢+ 1 consisting of n units,

/ /
n<<n, <n,n<n,, <N,.

In a quarterly survey with five rotation groups and 80% overlap, the difference between

samples S/, S/, and S,,,, is that while S/ and S}, are based on all five rotation groups,

S

1¢.1 15 based on four rotation groups.

Estimates of Level

Denote by w, the cross-sectional survey weight for sample unit £ and by Y a random

variable that describes the labour force status of the same unit at time ¢ . Denote further by T,
the total number of persons in the population with the specific labour force characteristic at

time ¢. An estimator of 7’ is given by
A
T = wYg. (1.22)

Estimates of Change

Denote by Y, ,,,, arandom variable that describes a specific labour force flow of sample unit
§ between ¢t and ¢+ 1 and by w, the longitudinal weight for sample unit {. Let T, .,

denote the total number of population units that belong to a specific internal cell of Table 1.3.

Utilising the common sample S,, , , an estimator of 7,_,,, is given by
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A
Tia = > wY5 .. (1.23)

£€S; 141
Using (1.23), we obtain estimates of the labour force gross flows (i.e. our parameters of

interest) as well as of the margins of the gross flows table.
1.8 Inference about the Misclassification Mechanism

Techniques that adjust the quantities of interest for misclassification require the specification
of the structure of the measurement error. One way of doing this in a latent class context is by
specifying the relationship between the manifest and the latent variables. An alternative way
is by exogenously estimating the parameters of the misclassification mechanism using
information derived from validation surveys. In the upcoming sections we focus our interest
on the second approach. After a general overview of some of the validation procedures that
can be used, we focus our interest to validation studies with preferred procedures (Kuha and

Skinner 1997) or to what Forsman and Schreiner (1991) refer to as re-interview surveys.

1.8.1 On the Definition of True Values

The definition of what is a true value has caused large debates in the statistical community.
Generally, two approaches exist. One approach assumes that true values exist independently
of the survey conditions. The second approach adopts a more operational definition and
assumes true or preferred values only in relation to the survey conditions. According to the

first approach (Hansen et al. 1951) three criteria exist for the definition of a true value.

1. The true value is uniquely defined.

2. The true value is defined in such a way that the purposes of the survey are met.

3. Where it is possible to be consistent with the first two criteria, the true value
should be defined in terms of operations that can actually be carried through

despite the fact that these procedures can be expensive or difficult to perform.

However, as pointed out by Hansen et al. (1951), it may be impossible to define a true value
that meets all three criteria above. Consequently, they propose to define a value that satisfies

the first two criteria and an operation whose expected value under a large number of
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replications will give a satisfactory approximation to the true value. This approach influenced

subsequent work by Kish (1965), Raj (1968) and Moser and Kalton (1972).

In contrast to this approach, which defines the true values separately from the survey
conditions, Deming (1944) defines the true values as a function of the survey conditions. He
states that there is no true value and we have the liberty to define and to accept a specific set
of operations as preferred. However, due to cost or other reasons, these operations are not
always easy to be adopted. In the same framework, Zarcovich (1966) defines true values in
the context of an adopted system that consists of chosen measurement methods, concepts and
definitions, tabulation plans and data collection instructions. The true values can be obtained
if the system is implemented without error. A thorough literature review on the definition of

the true values is given in Lessler and Kalsbeek (1992).

Assume that the standard survey process gives a contaminated measurement and the preferred
procedure gives an error free measurement. Then the quantities ¢, = pr (Yg; =1 Y, = k)

can be determined exogenously using preferred procedures. We consider these probabilities
as the parameters that describe the misclassification mechanism. It is apparent that the
preferred procedures play a key role in studying the misclassification mechanism and in
evaluating the quality of the survey measurements. Examples of preferred procedures are (a)
judgments of experts e.g. Swires-Hennessy and Thomas (1987) describe an application of this
kind in some surveys of housing in Wales and Chen (1977) compares survey data to data
derived from a physician’s examination, (b) checks against administrative records e.g.
Greenland (1988) describes an application where re-interview data on antibiotic use are
compared against medical records and (c) re-interview programmes as part of large scale
sample surveys that attempt to identify the true values e.g. the Swedish LFS re-interview

programme (Kristiansson 1999).

1.8.2 Preferred Procedures: The Case of Re-interview Surveys

Survey models have been developed to meet the need for an integrated treatment of sampling
errors and response errors. An example of a model of this kind is the US Bureau of the
Census survey model (Hansen, et al. 1951). In this model, the mean squared error is
decomposed into sampling components and response error components. Two major
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methodologies exist for measuring the response error components: (1) The method of
interpenetrated sub-samples, which is designed for estimating the correlated component of the
response variance and (2) the method of replicated measurement, which is designed for

estimating the response variance and the response bias.

The method of replicated measurement is known as the re-interview method. Re-interview
methodology was developed in the US and India during the 1940°s and since then it has been
used in a number of countries. By the term re-interview we mean a new interview that takes
place some time after the original survey but refers to the same point in time as the original
interview. In other words, the re-interview does not include interviews of the same persons in
two or more waves of a panel survey since different waves refer to different time points. Re-
interviews are important tools for estimating and reducing response errors in surveys.
Response errors may be caused for a variety of reasons i.e. imperfect instructions to the
interviewers, badly designed questions and questionnaires, coincidental factors that affect the
interviewer or the respondent, deliberate errors from the respondent and deliberate
falsification of interview results from the interviewer. There are two basic reasons for
designing a re-interview survey (1) to evaluate fieldwork and (2) to estimate the error
components in a survey model. As far as the first reason is concerned, a re-interview may
seek to identify interviewers who falsify data or misunderstand the interview procedure and
as a result require further training. With regard to the second reason, a re-interview survey
may seek to estimate the response bias or the response variance. For the purposes of our
work, we are mainly interested in re-interview procedures that aim at estimating components

of the response error.

A considerable amount of the literature dealing with measurement error in labour force gross
flows utilises re-interview data under the assumption that the re-interview responses represent
an error free measurement. This implies that the re-interview survey is treated as a perfect
instrument. However, this may not be the case. In what follows we will identify re-interview

design characteristics that allow these assumptions to. more closely reflect reality.

When the aim is to estimate the response variance component the crucial assumption is that
the re-interview survey is an independent replication of the original survey. This implies that

the re-interview survey must be repeated independently of the original survey but under the
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same survey conditions. An example of such a re-interview survey is the unreconciled part of
the re-interview programme of the CPS. This sub-sample represents the 25% percent of the
total re-interview sample. If we aim at obtaining the truth, we will need to conduct the re-
interview survey under different survey conditions from those of the original survey. When
we use the term “different survey conditions” we mean conditions of better quality such that
the true value is identified. It is apparent that in this case the two measurements (i.e. the
original and the re-interview measurement) are not identically distributed since the second
measurement 1s assumed to be of higher quality. However, the assumption of independence
between the original and the re-interview survey is crucial and must still hold. An example of
a re-interview survey that aims at estimating the response bias component is the reconciled
part of the CPS re-interview sample, which represents the 75% of the total re-interview
sample of the CPS. Independence between the original and the re-interview survey can be
viewed at two levels i.e. at the respondent level and at the re-interviewer level. Independence
at the respondent level means that there are no recall effects between the original and the re-
interview survey. If this is not the case, serial correlation will be introduced. This implies that
the respondents might recall the original response and simply replicate it during the re-
interview. Consequently, if the original response is erroneous, the re-interview response will
be erroneous too. In such a case no discrepancy between the two measurements is observed
and no attempt for reconciliation takes place. Independence at the re-interviewer level means
that the re-interviewer has no access to the original responses and reconciliation is conducted
using an independent method. While independence at the re-interviewer level can be achieved
by elaborating the re-interview survey conditions, independence at the respondent level is

more difficult to achieve and does not depend only on the re-interview survey conditions.

For the purposes of adjusting labour force gross flows for measurement error we are
interested in identifying the true labour force status of each respondent by means of a re-
interview survey. In the sequel, we will examine suitable re-interview survey conditions such
that the assumption that we estimate the truth is close to reality. The re-interview survey
design characteristics that we study are: (a) the type of reconciliation, (b) the questionnaire
design, (c) the time lag between the original and the re-interview survey, (d) field
implementation issues and (e) the use of computerised assisted techniques (e.g. CATI) in re-

interview surveys.
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Method of Reconciliation

By the term reconciliation we mean the attempt, made by the re-interviewer, to obtain the true
value. Assume that during the original survey the respondent gives a specific answer while in
the re-interview survey the same respondent provides a different response. The re-interviewer
must find which of the two different responses reflect reality. It is apparent that when no
discrepancy exists, reconciliation is not conducted. Consequently, when the aim is to estimate
the response bias, reconciliation should always be carried out. The crucial decision concerns

the method of reconciliation.

There are two ways of carrying out the reconciliation process: (a) the re-interviewer is
supplied with the original answers and reconciliation takes place at the same time as the re-
interview survey and (b) the re-interviewer is not provided with the original answers and
reconciliation is conducted either by a third contact with the household or by using another

independent method.

There are serious objections regarding the first method of reconciliation. These concemn the
fact that the assumption of independence between the original and the re-interview survey is
violated when the re-interviewers are provided with the original responses. In order to
understand more the consequences of the violation of this assumption, we describe the
following situation. As we already mentioned, the re-interview sample of the CPS is divided
into two parts: in one part of the sample differences are reconciled by providing the re-
interviewer with the original responses whereas in the other part no reconciliation takes place.
Theoretically, the discrepancies from both sub-samples should be the same. However, this not
the case. The US Bureau of Census (1963) and O’Muircheartaigh (1986) showed that there
are substantial differences in the number of discrepancies reported by the two sub-samples.
Biemer and Forsman (1992) provide similar evidence by comparing estimates of the response
variance from the two sub-samples. More specifically they found that the reconciled sub-
sample shows fewer discrepancies than the unreconciled one. Bailar (1968) investigated the
effect of reconciliation by comparing results from different re-interview strategies. She
concluded that results from a re-interview sample where the reconciliation is made at the
same time as the re-interview (“on the spot” reconciliation) and where the re-interviewers had
access to the original answers exhibit more dependence. Similar results, in the context of

estimating labour force gross flows, are reported by Poterba and Summers (1986). The US
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Bureau of Census (1963) points out the difficulty of conducting an independent reconciliation

when re-interviewers are provided with the original responses.

The question is whether by using an independent reconciliation we can assure the assumption
of independence between the original and the re-interview survey. In this context, Schreiner
(1980) conducted an independent reconciliation experiment, which did not reveal any
significant differences like those revealed under a dependent reconciliation. Biemer and
Forsman (1992) used also data from an independent reconciliation experiment. They
concluded that the independent reconciliation offers a better solution. However, in their
opinion the serial correlation does not disappear and as a result the hypothesis that we
identify the true value is highly suspect. We therefore conclude that independent
reconciliation of data seems to be more consistent with the assumption that the reconciliation

process identifies the true values.

Questionnaire Design

The design of the questionnaire plays a crucial role in a re-interview survey since it can be
directly connected with the assumption that the re-interview survey identifies the truth.
According to Forsman and Schreiner (1991), two alternative questionnaire designs exist: (1)
the original question(s) may be repeated and differences between the two responses are
reconciled or (2) there may be a series of questions replacing the original question in an effort
to obtain the truth.

The first design is used mainly when we want to estimate the response variance by
conducting a re-interview that is an identical replicate of the original interview. The second
design seems to be more appropriate when the aim is to discover the truth. This is because the
re-interviewer is then not restricted to replicating the same question as in the original survey

but is free to conduct the re-interview in a way that attempts to identify the true value.

Time Lag between the Original Interview and the Re-interview Survey

The time lag is also an important factor when trying to estimate the error components using a
re-interview survey. As we have already stated, a crucial assumption when attempting to
estimate the error components is the assumption of independence between the original and

the re-interview survey. The time lag between the two surveys is directly connected with this
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assumption. Assume a situation where the time lag is not sufficiently enough and as a result
respondents remember the answers they gave in the original survey. This introduces serial
correlation and consequently, respondents may repeat an erroneous answer in which case no
reconciliation is conducted. As a result, the time lag should neither be so large so the
respondents forget what their actual status was during the reference period nor so short as to
have recall effects. Furthermore, the time lag also depends on the nature of the data gathered
i.e. the more the data are subject to variation the shorter the time lag should be. For example,
the CPS focuses on labour force items (i.e. mobility items) and so a one-week time lag is
used. However, for other surveys dealing with less volatile variables like race, gender and
education the time lag can be several months. Palmer (1943) concluded that the greater lapse
of time between the two surveys implies greater variability for responses related to
employment status. In the same context, Bailar (1968) compared re-interview surveys with
different time lags and concluded that for certain response items, like mobility items, the

shorter time lag is preferable.

Field Implementation Issues

One issue associated with the fieldwork is the choice of the interviewer who is going to
conduct the re-interview survey. The choices vary between the original interviewer and the
better interviewer. When the target is to identify the true value, the better interviewer should
be used. Another important issue is the mode used to conduct the re-interview. Usually, the
telephone is used in order to reduce the costs of the re-interview survey. However, when the
original survey has been conducted by a face-to-face interview, using the telephone in the re-

interview survey may have a significant impact on the results.

Use of Computer Assisted Interviewing (CATI) in Re-interview Surveys

Under CATI, the perspective of re-interview changes since interviewing, which is conducted
at a centralised telephone facility, can be monitored. This allows for the focus to be
estimation of error components and not evaluation of the fieldwork. For the estimation of the

response bias, CATI has the following advantages:

a) It is possible to conduct the re-interview using the best interviewer and the most

knowledgeable respondent.
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b) There is much more flexibility in deciding the “optimal” time lag between the original
and the re-interview survey since in a centralised telephone facility the re-interviews
can be conducted much more quickly.

c) The re-interviewer has no access to the original interview data until the end of the re-
interview.

d). It is not possible for the re-interviewer to alter the re-interview responses once the re-
interview has finished.

e) Identification of when there is a difference and why this difference occurs can be

made automatically.

Discussion

A well-designed re-interview survey can be an extremely useful tool for estimating and
reducing measurement error and consequently for improving survey quality. However, re-
interview surveys have certain disadvantages. Firstly, the method is considered to be fairly
expensive. In addition, re-interview surveys are multipurpose surveys. This implies that the
characteristics of a re-interview survey designed to serve one purpose are not necessarily
optimal for another purpose. Furthermore, the model assumptions that we impose in order to
estimate the different components (i.e. the response variance and the response bias) using a
re-interview survey are not always satisfied. For example, we assume that the re-interview
survey is independent of the original survey and thus there are no recall effects. However, this
may not be the case since the respondents may remember their prior responses and simply

replicate them (i.e. serial correlation is introduced).

With regard to the cost considerations, re-interview surveys can maximise the use of the
telephone so as to have reduced costs. This advantage is reinforced with computer assisted
interviewing (CATI) in a centralised setting. Using CATI, costs can be kept minimal while

the usefulness of a re-interview is increased.

For the purposes of our research, we are interested in a re-interview survey designed to obtain
true values. In order to estimate the response bias, we need to impose two assumptions: (a)
the re-interview is independent from the original survey and (b) the re-interview identifies the
truth. An optimal re-interview survey, in the sense that the above assumptions become more

realistic, must have certain design characteristics. We are in favour of a re-interview survey
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that (a) uses an independent (i.e. not “on the spot”) reconciliation procedure where the re-
mterviewers are not provided with the original responses, (b) is carried out in a more
conversational form, (c) is conducted by the best interviewers and (d) utilises a computer

assisted interviewing system (CATI).

1.8.3 Validation Studies in UK

The UK LFS has not yet developed a re-interview programme that will allow the estimation
of the parameters of the misclassification mechanism. However, there are other examples of
validation studies in UK. For example, the UK Census Validation Survey (CVS) (Heady,
Smith and Avery 1991) had as main targets to assess the coverage of the Census, to evaluate
how prone to error Census questions were and to identify possible sources of error. An
example of a panel (two-wave) validation study is described in the context of the Panel Study

of Income Dynamics (PSID) in Hill (1992).

In a UK LFS framework, there are suggestions that one could compare the UK Census results
on labour market related topics with corresponding UK LFS results. Our objection to this
comparison is that the UK Census cannot be considered as a survey of higher quality for
labour market related issues for example, the UK Census is a self-reported survey.
Furthermore, while the UK Census is conducted every ten years, the UK LES is a panel
survey making the comparison more difficult. Other examples of validation experiments, in a
UK LFS framework, include the linkage of UK LFS responses with administrative records
about claimants of unemployment related benefits (ONS 1997). The purpose of this linkage
study is to obtain adjusted LFS estimates for the claimants of unemployment related benefits.
The disadvantage of this study is that it is restricted to specific groups of the labour force

population.
1.8.4 The Swedish LFS Re-interview Programme

Sweden is one of the few countries that uses re-interview survey programmes in order to
assess the impact of the measurement error on the estimation of labour force estimates
(Kristiansson 1999). The first important evidence for the assessment of this measurement
error came from the results of a re-interview survey in January 1978. This re-interview
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program was designed to obtain the true values. For this reason, the re-interviews were
performed using a group of specially trained re-interviewers who, after the standard
questions, asked further questions about the persons’ employment status in a more
conversational form. Approximately 3600 additional re-interviews were carried out in
connection with the introduction of computer assisted interviewing (CATI) in the Labour
Force Survey in 1989-1990 and 2100 further re-interviews were conducted during the period
from October 1994 to April 1995. The aim of these more recent re-interview surveys was also
to obtain the true values. Consequently, the quality characteristics of the Swedish re-interview
programme seem close to those required when the target is to estimate the response bias
component i.e. use of experienced interviewers, use of probing and utilisation of computer

assisted interviewing to facilitate independent reconciliation.

In the absence of validation information for the UK LFS, this thesis utilises mainly Swedish
validation data. The assumption is that the Swedish misclassification probabilities can be
used as proxies for corresponding UK misclassification probabilities. This can be regarded as
a fairly restrictive assumption. However, the methodology we develop is not data specific.
The Swedish validation data offer one possible scenario for the UK measurement error
process. There is evidence suggesting that the Swedish validation data may show less
measurement error than what really exists in the UK LFS. For example, while the Swedish
LES allows for 3% of proxy response, the UK LFS allows for 30% proxy response.
Nevertheless, the utilisation of Swedish validation data can provide a useful insight into the
measurement error process in the UK LFS and experience for developing a UK LFS

validation survey.
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Chapter 2

Using Double Sampling for Misclassification Error
Correction: From a Cross-sectional to a Panel

Framework

2.1 Introduction

Methods for adjusting for measurement error via double sampling were first developed in a
cross-sectional framework by Bross (1954) and Tenenbein (1970, 1972). However, recent
literature on adjustment of gross flows for measurement error using validation information
does not link adjustment procedures with double sampling theory. Following the suggestion
of Kuha and Skinner (1997), in the first part of this chapter we investigate the links between
the use of double sampling designs in a longitudinal and in a cross-sectional framework. We
start by describing alternative double sampling schemes and moment-based inference in a
cross-sectional framework and we investigate the impact of these schemes on the efficiency
of the derived adjusted estimates. Generalising from the cross-sectional case, we extend
double sampling designs and associated point estimators to a longitudinal framework and we
investigate the impact of these designs on the efficiency of the resulting adjusted gross flows.
There are two new features in our development. Firstly, we utilise an alternative
parameterisation to the one proposed by Tenenbein (1972) for deriving maximum likelihood
estimators of adjusted for misclassification quantities. A similar parameterisation is discussed
in Espeland and Odoroff (1985). Secondly, we propose a parameterisation of the

measurement error model in a quasi-likelihood framework as an alternative to maximum

likelihood estimation.

In the second part of this chapter, we describe the disadvantages of moment-based inference
in a longitudinal framework and we study some alternative moment-type estimators. In this

context, we investigate the unbiased margins estimator (Poterba and Summers 1986, Singh
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and Rao 1995) and we propose three alternative estimators i.e. the modified estimator, the

composite estimator with fixed weights and the composite estimator with adaptive weights.

2.2 Alternative Double Sampling Schemes Utilised to Correct for

Misclassification in a Discrete Framework

We consider the general framework of double sampling methods described by Bross (1954)
and Tenenbein (1970, 1972). Assume that the standard measurement device that we use 1s
subject to measurement error. As a result, we have biased results. However, unbiased
estimates can be obtained by using preferred procedures. Unfortunately, these procedures are
costly to implement. The aim of double sampling methods is to combine information from

both the true and the fallible classifier in order to obtain estimates that are adjusted for

measurement error.

The sample where the preferred (validation) procedure is applied can be either internal or
external. Kuha and Skinner (1997) make this distinction following literature on
misclassification in the context of bio-statistical applications (see also Greenland 1988). From
our point of view, the basic characteristic that distinguishes an internal from an external
validation sample is whether the fallible classifications from the validation sample can be
combined with the fallible classifications from the main sample. The validation sample is
characterised as internal if it is a random sub-sample of: n” units from the main sample of n
units obtained via a randomised double sampling scheme. Alternatively, the validation
sample can be regarded as internal if it is selected independently from the main sample and
from the same target population. On the other hand, a validation sample is external if it is
derived from an external source of information (Hill 1992). The parameters of the
misclassification mechanism estimated from an external validation sample are assumed to be
informative of the misclassification process in the target population. However, the fallible
classifications from the external validation sample cannot be combined with the fallible
classifications from the main sample. Sometimes, it may be preferable to use an external
validation sample or an internal validation sample that is selected independently from the
main sample. An example is when our main measurement instrument is a panel survey and
we wish to avoid additional measurements on the sample units that already participate in the

panel survey.
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2.2.1 The Cross-sectional Case

We start by introducing the basic notation. Denote by II, = pr (YE; = z) the probability that
unit £ is classified in state ¢ by the standard measurement device, which is subject to
measurement error. Denote further by B, = pr(Y@f = k) the probability that unit £ truly
belongs in state k£, by ¢, = pr(Y,; =i|Y, = k) the misclassification probabilities and by
Q(t) the matrix of misclassification probabilities with elements ¢, . Recall that V,;, Y, are
random variables that describe the way that unit £ is classified at time ¢ using the fallible
classifier and the perfect classifier respectively. Define now a matrix II with elements 1I,
and a matrix P with elements P,. Generally speaking, the cross-sectional measurement error

model with » mutually exclusive states can be described as follows:

pr(Ya =1,Y, =k) = pr(Yy = | ¥, = Kpr (¥, = k)=

dopr(Ya =iy = k)= pr(Vy =i Y, = bppr (Y, = k)=
k=1 k=1
pr(Yy =1) =Y pr(¥y =i|Y, = R)pr (Y, = k)= 1L, = > ¢,h.
k=1 k=1
Expressing the previous relationship in matrix notation, assuming that @ (¢) is invertible and

solving the equation with respectto P we derive the following expression

P=[Q®]" 1. 2.1)

Expression (2.1) has been used extensively in literature to adjust discrete data for
measurement error in a cross-sectional framework. Unknown quantities involved in (2.1) are
typically estimated using a double sampling scheme. Below, we describe three such schemes.
This parameterisation of the measurement error model leads to a moment-type estimator of

the adjusted for misclassification quantities.

Double Sampling Scheme 1

A simple random sample of n —n” units is selected from a population of N units and the
fallible classifications are obtained for each sample unit. For another simple random sample
of n” units, independently selected from the n —n" units and from the same target

population, the fallible classifications are also obtained. At a second stage, the true
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classifications are obtained for each of the n’ units. Under this scheme we obtain information

on the fallible classifications for n units i.e. (n —n’ + n”) and further information on the

true classifications for n” units. Figure 2.1 illustrates this double sampling scheme.

Population consists of N units

v

n—n’ units are selected n” units are selected from N,
from N and Y is obtained. independently from the n—n" units,
and Y,; is obtained. At a second stage,

Y,, is also obtained for the n” units.

Figure 2.1: Double sampling scheme 1-Cross-sectional case

Double Sampling Scheme 2

A simple random sample of 7 units is selected from a population of N units and the fallible
classifications are obtained for each sample unit. At the second stage, a sub-sample of n’
units is selected from the 7 units that already belong to the main sample and the true
classifications are obtained for each of these n’ units. Figure 2.2 illustrates this double

sampling scheme.

Population consists of N units

n  units are selected from At a second stage, n' units are selected
N and Y is obtained. » fromthe n units and Y, is obtained.

Figure 2.2: Double sampling scheme 2-Cross-sectional case

Double Sampling Scheme 3

A simple random sample of n —n” units is selected from a population of N units and the
fallible classifications are obtained for each sample unit. Information about the incidence of

error is derived for n’ units from an external source of information (e.g. administrative

records). Figure 2.3 illustrates this double sampling scheme.
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Population consists of N units External source of information

y \ 4
n —n"units are selected Information on the incidence
from N and Y; is obtained. of error is obtained for n’

units using an external source.

Figure 2.3: Double sampling scheme 3-Cross-sectional case

2.2.1.1 Review of Alternative Double Sampling Schemes in a Cross-

sectional Framework

For double sampling scheme 1 (see Figure 2.1), the validation sample includes additional
information on the observed classifications that can be combined with information on the
observed classifications from the main sample. In fact, the first and the second double
sampling schemes are identical. This is because under the second double sampling scheme
the sample can be divided into n — n" units that participate only in the main survey and n’

units that participate both in the main and in the validation survey.

For the third scheme, the validation sample can be regarded as an external since it is selected
from an external source of information. This implies that the fallible classifications from this
validation sample cannot be combined with the fallible classifications from the main sample.
Nevertheless, here we argue that the external validation sample can be transformed into an
internal validation sample. Since the misclassification probabilities estimated from this

external validation sample are assumed to be informative of the misclassification process in
the target population, we propose to calibrate pr(Yg =1,Y, = k) on the marginal
information derived from the main sample. In the simplest case, this calibration procedure
can be performed using the Iterative Proportional Fitting (IPF) algorithm (Deming and
Stephan 1940). After transforming the external validation sample into an internal validation
sample, the fallible classifications from the validation sample can be combined with the

fallible classifications from the main sample.
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Assuming that all relevant quantities can be estimated using information from the main and
the validation sample, an estimator of (2.1) under double sampling scheme 1 is given by the
following expression

AT

L =5 — 1L =5—. (22)

n—n 7

]/\)(1) 1 { } A ZY; A ZY&;

rx1 n—mn' +'n/v

@(t)r [(n — n”)rlillm-{— n’

TXP

1

A ™ AT
Note that II denotes the matrix, with elements II; , of estimated probabilities based on data
AV AV
from the main sample, II denotes the corresponding estimate, with elements II:, based on
AT AU .
data from the validation sample. Combining II with II , yields the matrix of estimated

A A
probabilities 11, with elements II:, based on both samples.

Under double sampling scheme 2, an estimator of (2.1) is given below

\
L, XY

A

1L, Tl = 5=1n . (2.3)

A

P {Q (t)

71 T

Note that by dividing the sample of the second double sampling scheme into units that
participate only in the main survey and units that participate both in the main and mn the

validation survey, estimators (2.2) and (2.3) become identical.

For double sampling scheme 3, the validation sample is external. Here, it is not logical to
combine information on the fallible classifications from the validation sample with
information on the fallible classifications from the main sample. As a result, an estimator of

(2.1) takes the following form

A (3) A -1 Am AT ;Yét
P _—_[Q@] S | A = S 2.4)
X1 o X1 n—n

Comparing estimators (2.2), (2.3) and (2.4), we conclude that estimators that are based on an
internal validation sample i.e. (2.2) and (2.3) are more efficient than estimator that is based on
an external validation sample i.e. (2.4). However, if an external validation sample is

transformed into an internal validation sample all three estimators become equivalent.
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2.2.1.2 Calibration Probabilities versus Misclassification Probabilities and

Maximum Likelihood Estimation in a Cross-sectional Framework

Estimators (2.2),(2.3) and (2.4) utilise the misclassification probabilities ¢, in order to

describe the misclassification mechanism. Another way of making inferences about the

misclassification mechanism is by using what Carroll (1992) refers to as calibration
probabilities. The calibration probabilities are defined as ¢,; = pr( =k|Y,= z) Thus,

while the misclassification probabilities condition on the true classifications, the calibration

probabilities condition on the observed classifications. Denote by C'(¢) the matrix of

calibration probabilities with elements ¢, . The measurement error model under the

calibration probabilities becomes

pr(Ye =4Y, =k)=pr(Y,, =k|Y; = ipr (Y = i) =

Zpr(Y =1,Y, =k)= zer =k|Y; =ipr(Y; =i)=
=1

pr(¥, = k)= S pr(Yy = k| ¥; = dpr(V =) = B = Y ell
i=1

i=1

In matrix notation,
P =C(@)II. (2.5)

1 T X1

Unknown quantities involved in (2.5) can also be estimated using a double sampling scheme.
However, the measurement error model that utilises calibration probabilities can be used only
in the case of an internal validation sample. In contrast to calibration probabilities that
condition on the observed classifications, misclassification probabilities condition on the true
classifications. The true classifications can be thought of as representative of a universal
truth. This implies that unlike calibration probabilities, misclassification probabilities can be
regarded as transportable to the population of interest (Kuha and Skinner 1997) and can be

used also in the case of an external validation sample.

Utilising similar notation as in the case of the model defined in terms of misclassification

probabilities, an estimator of (2.5) under the first double sampling scheme is defined as

n—n Yt zn: }/Et
2

A A n—mn') Am YA Am — AV —
P :O(t)L—>H +lal, =8 -, 1L =2 (2.6)
rx1 =T n =1 n, X1 7, -~ T, n
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Under the second double sampling, an estimator of (2.5) is given by

PP _bwh, = —;—E 2.7

1 rxr 1 n
Estimator (2.6) is identical to estimator (2.7). Tenenbein (1972) proved that the estimator
defined either by (2.6) or (2.7) is the maximum likelihood estimator of the adjusted for
misclassification proportions. He also provided an expression for its asymptotic variance.
Assume that we utilise double sampling scheme 1 or 2 and that a sample unit can be
classified in r mutually exclusive states. Denote by n,, the count for each cell of the cross-
classification of the observed by the true classifications in the validation sa:mplé and by
n,.,n; the total number of sample units classified in state ¢ by the fallible measurement
device in the main sample and in the validation sample respectively. In order to obtain
maximum likelihood estimates for the parameters of interest, Tenenbein (1972) maximised

the log-likelihood function

-
-~

T T r—1
1(©) = ZZn& loge, + (nf — n&)log(l — %) + Z(nz + nf,)log(ﬂi)
k=1 =1 k=1 i=1 3=1 (2 ) 8)

r—1
+(n,. + n:_)log[1 — Zﬂi].

i=1

As noted by Marshall (1990) and Kuha and Skinner (1997), the maximum likelihood
estimator (2.7) will be more efficient than the moment-type estimator based on (2.1).
However, this assumes internal validation data. When only external validation data are
available, the moment-type estimator must be used and its poor performance is an important
problem. One way to overcome this problem is by transforming the external validation

sample into an internal validation sample.

2.2.1.3 An Alternative Parameterisation for Maximum Likelihood

Estimation in a Cross-sectional Framework

In what follows, we present an alternative parameterisation of the measurement model
presented by Tenenbein (1972). More specifically, we argue that an alternative way of
obtaining maximum likelihood estimators is by using misclassification probabilities instead

of calibration probabilities. The general set up is as follows. For the main sample of n units
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the classifications are made using only the fallible classifier. For a smaller sample of n’
units, selected independently from the main sample and from the same target population, the
classifications are made using both the perfect and the fallible classifier. The problem can be

described schematically as follows:

Table 2.1: Validation sample

True Classifications
(D) Q) Margins
€)) 7y . n, n,.
Fuallible Classifications
) no ny. n,
Margins ny n.. n’

Table 2.2: Main sample

True Classifications
(D e Q) Margins
* )
(1) ny . ne ,,
Fallible Classifications
(€] )
) 7, cee o n.
Margins 77,.(;‘) e 77,(:) n

The key concept of the parameterisation, as shown in the tables above, is that both the main
sample and the validation sample have a similar structure. However, for the validation sample
full information exists while for the main sample we have only marginal information about
the observed classifications. Consequently, this parameterisation will lead to an optimisation
problem that involves missing data. This is due to the fact that the validation procedure is not
applied to the units of the main sample. We need to combine information from both the main
and the validation survey. In order to do so, we make the basic assumption that the main and
the validation samples share common parameters because both are assumed to be
representative of the same population. Assuming independence between the main sample and
the validation sample and denoting by (%) any unobserved quantities, the likelihood function
of the augmented data defined in terms of the misclassification probabilities is

L©) = [1T1(Ra ) TIT [(Bge)™® = £(0) =[] Jau"* R0, 2.9)

k=1 i=1 k=1 i=1 k=1 =1
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Recall that P, = pr (th = k) denotes the probability of a correct classification in state £ and
g, = pr (Y£7§ =1|Y, = k) denotes the probability of misclassification. Taking the

logarithms in both sides of (2.9) and imposing the additional constraints that

Z P.=1 (2.10)
k=1
> gy =1 for fixed k, (2.11)
=1

we obtain the following expression for the log-likelihood of the augmented data

r 71 1
l(@):ZZ(n§;>+nfk)log(qﬂ) (n,k +n log[l quJ—Jrz n2, +n)log (B)

k=1 i=1 1=l k (2 12)

r—1
e +nf:>>1og{1_za].
k=1
Estimation

The log-likelihood function (2.12) assumes the availability of unobserved data. One way of
using this likelihood function to maximise the likelihood of the observed data is via the EM
algorithm (Chen and Fienberg 1976, Dempster, Laird and Rubin 1976). The EM algorithm is
based on two steps, the expectation (E-step) and the maximisation (M-step). Generally
speaking, the algorithm is initialised using a set of arbitrarily selected starting values for the
parameters involved in the model. Based on these starting values, in the E-step sufficient
statistics defined by the complete data likelihood (e.g. equation (2.12) ) are replaced by their
conditional expectations given the observed data and the current set of parameter estimates.
Having estimated these conditional expectations, the full data likelihood can now be
maximised to produce a new set of maximum likelihood estimates. Using this new set of
maximum likelihood estimates, new conditional expectations are estimated in the E-step and
new maximum likelihood estimates are derived in the M-step. The E and M step are iterated

until a convergence criterion is satisfied. For the measurement error model, these steps are

described below.
E-step

We start by taking the conditional expectation of the log-likelihood of the augmented data

given the observed data and the current estimates. We denote by D°the complete data,
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defined both by the observed and the missing data, by D" the observed data derived from the
validation sample, by D™ the observed data derived from the main sample, by (h) the

current EM iteration and by ©" the vector of parameters in the (k) EM iteration. The form

of the log-likelihood of the augmented data after taking the conditional expectations becomes

Ell(&; )| D", D", 6] = ZZE[ ng +nj,) | D", D",6" |log(g;,)

k=] i=1

+E|(n +n) | D", D",6) ]1og[1 iqu+iE{n +nl)| D", D", 6" ]log(R)(2.13)

=1 k=

+E{(nj;+nfj>) | D™, D",0 Jlog[l ia]

k=1

The conditional expectations are only for missing data. Under this parameterisation, missing
data exist in the main sample. The expectation step (E-step) can be performed using the

following result.

Result 2.1
The conditional expectations of the missing data in the main sample are estimated using the

following expressions

-~

A( o1 0m,0") =n, gy g EAJ(nf;>|Dm,@<h>):Z (ng | D™, M) (2.14)

=

—

Proof

The number of sample units that belong in the ik cell of the cross-classification of the
observed by the true classification is denoted by n} . Note that while a superscript () refers
to the unobserved quantities, a superscript * refers to the observed classifications. The
expectation of an unobserved quantity is given by

E(ng)=nE(Y; =14,Y, = k), (2.15)
Equation (2.15) can be re-expressed as follows

E(ny)=nE(Y; =i|Y, =k)E(Y, =k).

From the main sample we have information about the observed classifications. This

information can be expressed by summing the unobserved quantities within row 4 in Table

2.2
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n, = nj:E(Y;; =i|Y, =k)E(Y, =k)

(2
k=1

Given the data constraints, the conditional expectations of the missing data can now be

expressed as follows

~ Bt =11¥, = (Y, =1

E(ny | D™)=n,|—= , (2.16)
SB(Y; =il Y, = K)E(Y, =H)
k=1

The expectations of the random variables involved in the expression above can be determined

using well known results for binomial random variables. More specifically,
E(Y;=i|Y, =k)=q,, BE(Y, =k)=h. (2.17)

Substituting (2.17) in (2.16) we obtain the required result

NOING!
l%(n(*) | Dm @(m) =n Pk Qik
ik H e T A(R) AlR) '
Pr gy
k=1
It follows that
E (n‘:) | Dm,@(h)) = Zﬁ](nf}f) | D™, 0" )
i=1 I:]
M-step

For the maximisation step (M-step), we need to obtain the score functions defined by (2.13).
These score functions are obtained by computing the partial derivatives of the log-likelihood
of the augmented data with respect to the vector of parameters. The maximum likelihood

estimators are then obtained by setting these derivatives equal to zero, i.€.

8E[l(@;D“)|D”,D’”,@(h) .

(2.18)
00
and solving for ©.
Result 2.2
The maximum likelihood estimators are given by the following expressions.
A A
E(ngy | D™,0") +n, E(ny | D™, 0™) +n,
@ik: (Ll ) kand]gk::r (kl ) : . (2.19)

ﬁv(n(i) I Dm,@(h)> + n:vk ZIA?(”(? l Dm,@(h)) +nl
k=1
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Proof

The system of normal equations we need to solve is defined by setting the score functions
equal to zero.
oE[1(6;D°)| D", D",6%)|
00

The(r2 — r)x (7“2 —r) system of normal equations and the corresponding maximum

= 0.

likelihood estimator for g, is given below.

(77’11) IDm @(h )+n11 - ( *) IDm @(h))+nrl _
@1 (1_911 “"'—qr~11>

(2.20)

B, 109 e ne_B(a 1980

rlr

qr—lr (1 - ql'r T qr—lr) ]

l%(nf,f’ | D™, @(h)> + 7,
l%(n(};) l Dm,@(h)) + n?,

A

9 =

Similarly, the (r —1) x (r — 1) system of normal equations and the corresponding maximum

likelihood estimator for P, is given below.

E(n$ | D™,0")+n}  E(n|D",0")+n!,

1 . —0
A (1=B——P,)
2.21)
E(n?, | D"0%)+n:,  E(no|D",6%)+n! ;
P -7 —=P,)
(*) Dm + .v
B S l ) n, .

(n | D",0) 4+ ni,

k=1

Identification of the Model Parameters and Convergence of the EM-algorithm

Identification of the model parameters can be checked by initialising the EM algorithm from
different starting values and by seeing whether the algorithm converges to the same solution.
Conditional expectations are estimated using Result 2.1. For these conditional expectations,

new maximum likelihood estimates are obtained in the maximisation step (M-step) using
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Result 2.2. The E and M steps are iterated until convergence. We assume that convergence is

achieved when the difference between the maximum likelihood estimates obtained from two
successive iterations is less than a small value §. Denote by w = r* — 1 the dimension of the
parameter space. The convergence criterion that we use is the [?-norm of the vector of
parameters obtained in two successive iterations ©® and ©"*V. This is defined by the

following expression

r2-1

|o® — et = \/Z (6 —fY. (2.22)

i=1

The parameterisation presented in this section is not specific to the first double sampling
scheme. Assume that the validation sample is obtained by sub-sampling n" units from the
main sample of n units. The main sample and the validation sample now share common
units. Thus, independence between the main sample and the validation sample is not directly
implied. However, the main sample can be divided in two parts. There are n —n" sample
units that participate only in the main survey and n” sample units that participate both in the
main and in the validation survey. We now have independence between the n — n” units and
the n* units. Therefore, under both double sampling schemes the model can be formulated in
exactly the same way. Variance estimation for the maximum likelihood estimates under this

parameterisation will be discussed in Chapter 5.

Application 2.1: Comparing the Alternative Parameterisations of the Measurement Error

Model in a Cross-sectional Framework

We contrast the parameterisation of the measurement error model in a missing data
framework with the parameterisation given by Tenenbein (1972). To facilitate the
comparison, we utilise the numerical example that appears in Tenenbein (1972 p.197). The

data of this example are given below.

Table 2.3: Validation sample derived from Tenenbein (1972 p.197)

True Classifications
Defective Satisfactory Superior Margins
@ 2) 3)
Fallible Defective (1) 12 6 0 18
Classifications|  Satisfactory (2) 0 20 0 20
Superior (3) 0 1 19 20
Margins 12 27 19 n' =58
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Table 2.4: Main sample derived from Tenenbein (1972 p.197)

True Classifications
Defective Satisfactory Superior Margins
(D 2 ©)
Fallible Defective (1) ngy ny Ny 47
Classifications Satisfactory(2) ns? ng ng 53
Superior (3) ne ny ne 49
Margins ny nS ny n =149

The algorithm is initialised using arbitrarily selected parameter values. For the specific
application, a difference between successive values of the parameters in the order of
8 =10"" can be achieved within 40 iterations. The results from the application of the EM

algorithm are given below along with the results that appear in Tenenbein (1972).

Table 2.5: Contrasting the alternative parameterisations of the measurement error model

Parameters  Results from the application of the EM  Results reported in Tenenbein (1972)
algorithm using the misclassification using the calibration probabilities
probabilities (3 decimal places)
B 0.209 0.209
P, 0.474 0.474
P, 0.317 0.317
du 1 1
In 0 0
a1 0 0
Qo 0.221 0.221
Tra 0.745 0.745
32 0.034 0.034
Qs 0 0
O3 0 0
933 1 1

As expected, the maximum likelihood estimates obtained under the two parameterisations are
the same. The application presented here will serve as a basis when attempting to develop

maximum likelihood estimators for adjusted gross flows. However, in a longitudinal context
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we need to introduce additional assumptions in order to identify the measurement error
model. The assumptions we need to impose will depend on whether we specify the model

using the calibration or the misclassification probabilities.

2.2.1.4 Quasi-likelihood Estimation for Discrete Cross-sectional Data in the

Presence of Misclassification and Double Sampling

In this section, we propose a quasi-likelihood parameterisation of the measurement error
model as an alteranative to maximum likelihood estimation. The approach we follow was
introduced by Wedderburn (1974) as a basis for fitting generalised linear regression models.
As described in Heyde (1997), Wedderburn observed that from a computational point of view
the only assumptions for fitting such a model are the specification of the mean and of the
relationship between the mean and the variance and not necessarily a fully specified
likelihood. Under this approach, Wedderburn replaced the assumptions about the underlying
probability distribution by assumptions based solely on the mean variance relationship,
leading to an estimating function with properties similar to those of the derivative of a log-
likelihood. This estimating function is usually referred to as the quasi-score estimating
function. The quasi-likelihood estimator is then defined as the solution of the system of
equations defined by the quasi-score estimating function. To illustrate, consider the following
model

V=pu®)+e¢ (2.23)
where Y is a nx1 data vector and E(¢) = 0. The quasi-score estimating function is then

defined (see Heyde 1997 Theorem 2.3) as

G(®)= (%—gj_)]T [Var @] e. (2.24)

The quasi-score estimating function defined by (2.24) is also referred to in the literature as
Wedderburn’s quasi-score estimating function. Here, a quasi-likelihood parameterisation of
the measurement error model offers an alternative to the EM algorithm way of resolving a
missing data problem. The advantage of this approach is that it does not require any explicit

definition of the likelihood function.
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Formulating the Model

Denote by P the probability of correct classification in category % for units in the validation
sample, by ¢, the probability of misclassification for units in the validation sample, by n,,

the number of units in the main survey classified in category ¢ by the standard measurement
device and by n the sample size of the main survey. Recall that a superscript v is used to
denote quantities that are estimated using the data from the validation sample. Without loss of
generality, we describe the model for the case of two mutually exclusive states to which a
sample unit can be classified. Instead of specifying the form of the likelihood function (2.12),
the model can now be described by a system of equations. The number of equations we need
is defined by the smallest possible set of independent and unbiased estimating equations that
can be established for the underlying problem. For the two-state cross-sectional measurement
error model a possible system of equations is
AV
Py =F +¢g
Gy = ¢y + €
fjf R (2.25)
Gy = G T &
., = n{Pﬂn + (1 - PJ)QIQ} + 4]

Note that in (2.25) n, =n pAr <th = 1). The left hand side of the equations given in (2.25)

describes estimates obtained from the main sample and the validation sample whereas the
right hand side describes the unknown parameters of interest plus an error term. Equations
described by (2.25) incorporate the extra constraints that are also utilised by the maximum
likelihood approach. For the current model, P, =1—P,,q,, =1—¢; and ¢,, =1—¢q;,. As
in the maximum likelihood approach, we assume that the main and the validation sample
share common parameters due to the fact that both are representative of the same population.
Instead of (2.25), one can define another set of independent equations. For example, we can
define the first three equations of (2.25) in count and not in probability terms. The estimation

process, however, will be invariant under such transformations.

Assuming the general form of the model defined by (2.23), denote by 1 (©) the vector of
means and by © =(PB,q,,q,) the vector of parameters. Following Heyde (1997),

Wedderburn’s quasi-score estimating function is then defined as
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G(O)= [?—g—é@l] [Var )] ¢. (2.26)

Setting the quasi-score estimating function equal to zero and solving for ©, we obtain the
quasi-score normal equations. The target is to solve the system of the quasi-score normal
equations and obtain estimates of the unknown parameters. This can be achieved using
numerical techniques. In terms of (2.25), equation (2.26) for the two-state model can be

expressed as follows:

_ A
( ) (712 09 O3 Oy 1 Pi— P
1 0 0 n(g— s 2 AT
Oy 0F O, O gu—q 2.27
G@)=[0 1 0 =P LoromE e o @2
04 Oy 05 O _
00 1 n(l_Pl) ! 32 324 qi9— Gy
04 Oy 0Oy Oy ny, — n[quu + (1 - Pl)qm}

In (2.27) the middle term denotes the covariance matrix of the error terms. This is defined in

the next sub-section. Setting (2.27) equal to zero, leads to three quasi-score normal equations.

Estimating the Covariance Matrix of the Frror Terms

In the system of quasi-score normal equations defined by (2.27), the elements of the
covariance matrix of the error terms are unknown and need to be estimated using the sample
data. In this sub-section, we provide an approximation to elements of this covariance matrix.

The variance components (i.e. the diagonal elements) are given by the following expressions

AU
ol =Var (P1)

o} =Var(,) (2.28)
AV
o: = Var (qm)
o; =Var(n,).
Under simple random sampling, o7 ,o. can be estimated by
AV AU
o I (1 - Pl)
g1 = v (2.29)
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In order to estimate the covariance matrix of the estimates of the misclassification

probabilities, we denote by n, the number of sample units in the validation sample classified

by the standard measurement device in state ¢ when they truly belong in state k. The

) ) ) e ) n; } e
misclassification probabilities can be estimated by aik = —%_ While n” = ZZnik can

v o1 k=l
Ty

i=1
be considered as fixed, Zn;‘,i must be considered as random. Consequently, in the
=1
computation of the covariance matrix of the estimates of the misclassification probabilities

we must take into account the non-linearity introduced by the fact that both the numerator and

the de-numerator of g/}ik are random quantities. Thus, we apply the Delta method (Bishop,

*

Fienberg and Holland 1975, Agresti 1990). Let © = (ny,ny,ni,7n,) and

Q[é*ﬂ _

simplicity we drop the parenthesis next to the misclassification matrix @ that is specific of

/\*

#\1T "
vec ﬂ(@ J,...,f;z [é H be a 77 x1 vector of functions of © . Note that for

the time periods to which the misclassification matrix refers. Applying the delta method to

0]

vec , we obtain the following approximation

A ) At Ovec (Q (@*ﬂ
vec Q(@ ) —vec[Q(O%)| » V [@ -0 ], Ve*:———a-éy———— l@*zé* . (2.30)
Taking the variance operator on both sides of (2.30) leads to
A* A* T
Var{vec Q[@ ”} ~ V. Var [@ }(Ve*> . (2.31)

Under simple random sampling, Var (é ] can be estimated using the following results

Var(ny) = n’ pr(V; =Y, = B)[L-5r (¥ = 1.Y, = &) (2.32)

Cou(nyni, ) = —n* Br(Y = i¥, =) r (Ve = 7Y, =) ()= (i)
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while the general expression of the Jacobian matrix V. is

Ny T . 0 0
(ngl + 77'11) (n21 + n1v1)
—71;’1 5 ’n’fl ; 0 0
V. = (s ) (s + ) ] @3
0 0 Tl Ty '
(”zjz + n2:2) (nfz + n;?)
—-n, n,
0 O 22 12
(nlv2 + "5y )2 (nm + 7752)

Substituting (2.32) and (2.33) into (2.31), we obtain estimates for o> ,0- and 0, = 04,.

Next we observe that due to the double sampling design, we can further assume independence

between the main and the validation sample. This implies that

Oy =04 =0y =04y =0, =045 =0.

It only remains to estimate the following covariance terms: o,, = g, and o, = 0, . These
covariance terms can be generally estimated as follows:

”

v

¥ D,
AU i=1

A A n? -
CO’U(qik,Pk):OO’U —E— =] (2.34)

v n
__>_ : Ty
i=1

Resulr 2.3

Assume that X,Y,A are three random variables and n is fixed. An approximation for
Cov [—)S,éJ is given by
Y 'n

Cov[—X—,é}% ! {Cov(A,X)—%—%;—(—))—Cov(A,Y). 2.35)

Proof

Proof of this result is given in Chapter 5 that deals with variance estimation issues.

]
Setting X =n;, ¥V = Zn;, A= Znﬁc and n = n" in Result 2.3, we can then estimate
g=1 =1

the remaining covariance terms of interest.
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Solving the System of Quasi-score Normal Equations

Having obtained estimates for the variance terms, the final step in evaluating the quasi-
likelihood estimators is to solve the system of equations defined by (2.27). This can be done
using a Newton-Raphson algorithm. Define by © the vector of parameters of dimension

wx1andby A a wXw matrix with elements A, = %@ 1,7 = 1,---,w. The system of

7

quasi-score normal equations defined by (2.27) can be now solved numerically. Assume a

.. . A0 o . .
vector of initial solutions © . The vector of initial solutions can be updated using

ADA@  [A@] [A©
=0 —-A|0 |G|O (2.36)
The iterations continue until a pre-specified convergence criterion is satisfied. This is when

the difference between the solutions obtained from two successive iterations of the algorithm,
as defined by (2.22), is less than a pre-specified small value §. Variance estimation for the
quasi-likelihood estimates is discussed in Chapter 5. Some of the practical advantages offered
by the quasi-likelihood approach are also discussed there. Properties of the maximum
likelihood and the quasi-likelihood estimators are empirically compared, using a Monte-Carlo

simulation study, in Chapter 6.

Application 2.2: Comparing the Maximum Likelihood Approach with the Quasi-likelihood

Approach

We illustrate the quasi-likelihood approach and we compare it with the maximum likelihood
approach using the following fictitious example. A firm wishes to assess the quality of the
units that it produces. The units can be classified into two categories i.e. either as defective or
satisfactory. The firm suspects that a number of satisfactory units are classified as defective.
The management team is interested in investigating the trade-off between the loss of
satisfactory units and the extra cost of improving the current classifier. There are two
classification methods. One, which is currently used, is not very costly but is subject to
measurement error (main survey). Altenatively, the firm can use an accurate but more
expensive classification method (validation survey). A sample of n = 60000 production
units is selected and the units are classified using the inexpensive classification method. In

order to validate the inexpensive classifier, another sample of n’ = 10000 production units is
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selected and these units are classified using both the expensive and the inexpensive classifier.

The data for this numerical example are summarised below.

Table 2.6: Validation sample

True Classifications
Defective (1) Satisfactory (2) Margins
Fallible Classifications Defective (1) 672 918 1590
Satisfactory (2) 28 8382 8410
Margins 700 9300 n® =10000

Table 2.7: Main sample

True Classifications

Defective (1) Satisfactory (2) Margins
Defective (1) ny ney 9000
Fallible Classifications Satisfactory(2) n® e 51000
21 2
Margins nyy n&y n = 60000

Table 2.8: Estimated parameters under the alternative parameterisations of the measurement

error model
Alternative Fitting Methods ng 311 @12
MLE (Tenenbein 1972) 0.0667 0.9586 0.0936
MLE via EM 0.0667 0.9576 0.0936
Quasi-likelihood 0.0669 0.9580 0.0932

The model parameters are identified. This is checked by initialising the EM algorithm from
different starting points and by seeing whether the algorithm converges to the same solution.
Figures 2.4 and 2.5 illustrate this idea. The Newton-Raphson algorithm is also invariant to the
choice of starting x;alues. The convergence criterion for the EM algorithm and for the
Newton-Raphson algorithm is § = 10™*. The quasi-likelihood parameterisation produces
reasonable estimates that are almost identical to the maximum likelihood estimates. When the

underlying distribution is from the exponential family (here we assume a multinomial
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distribution), the quasi-likelihood estimates will be the same as the maximum likelihood
estimates (see Wedderburn 1974). However, the quasi-likelihood approach only requires that
one specifies the mean and the variance structure, thus avoiding any explicit definition of the

likelihood function.

=3 w
- il
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1
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Figure 2.4: Tracing the convergence of the EM Figure 2.5: Tracing the convergence of the EM
algorithm. Starting values close to the maximum algorithm. Starting values further from the
likelihood  point, convergence  criterion maximum likelihood point, convergence criterion
5=10". §=10"".

2.2.2 The Longitudinal Case

We now turn our attention to the longitudinal case and start by introducing the basic notation.

Suppose that we conduct a panel survey where a sample unit ¢ is interviewed at two
consecutive time points ¢, + 1. The variable of interest, measured by the panel survey, is
subject to misclassification. Denote by P, the probability that sample unit £ truly belongs in
state k at ¢ and state [ at ¢ +1 and by II,; the probability that sample unit ¢ is observed in
state ¢ at ¢ and state j at ¢+ 1. Let P denote the matrix with elements F, and II the

matrix with elements II;. Corresponding to each element of II and sample unit { we define

the random variables Y, Yy ,, which describe the way that the £" sample unit is classified
at ¢t and ¢+ 1 by the standard measurement device. We also define the random variables

Y.;sYe.,, which describe the true status of the ¢" sample unit at ¢ and ¢+ 1. The pairs

&t Lettle

(Y&,Yg +1) and (Y Y, +1> are assumed to be iid for different sample units. We also assume

&
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that we can use a cross-sectional validation procedure via which we can make inference

about the misclassification process.

Denote by ¢ =pr(Y, =1 Y., =34|Y, =k Y, =10 the misclassification
probabilities and by @ (¢t + 1)the matrix of misclassification probabilities. Generally

speaking, the measurement error model in the longitudinal case is defined by expressing the
joint distribution of the observed and true classifications as a product of the misclassification

probabilities times the true transition probabilities.

7

pr(Y&* =1, Yg*t+1 = ]> = ZZPT(Y@* =1, Y§+1 =7 Y.Et =k, Ygt+1 = l>pr(}2t = k?Ygtﬂ = l)
b=l =1
and

Hij = qijkl‘Pkl . (2.37)
k=1 [=1

Writing (2.37) in matrix notation, assuming that Q(¢,¢+ 1) is invertible and solving this

system of equations with respect to P, we obtain the following expression for the adjusted

gross flows

vec(P) = [Q(t,t +1)] " vee (I1) (2.38)

T2X1 1~2><1‘2 7‘2X1
This parameterisation of the measurement error model leads to a moment-type estimator of

the adjusted for misclassification quantities. However, estimation of the misclassification

matrix Q(¢,¢ + 1) is not straightforward. To see this, note that the number of free parameters

when attempting to estimate Q(t,¢+1) is equal to r? (7"2 — 1) ie.
r’ xr’ — r’ . This implies that information obtained from a cross-
Total number of parameters Available Information

sectional validation sample is not sufficient to determine @ (¢,¢+1). In a longitudinal

context, we therefore need to introduce additional assumptions that enable us to estimate the
longitudinal misclassification matrix. An assumption that has been used widely in this context
is the Independent Classification Errors (ICE) assumption. The ICE assumption is defined as

follows

pT(Y; =0, g =7 | Yy =kYy, = l) = pr(Yg =1 Yy = k>pT(YE§+1 =J|Yon = l)' (2.39)
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From (2.39) we can say that the ICE assumption embodies the following two assumptions.

a) The observed states Yg,Yj,, are conditionally independent given the true states

ng Y§t+1 .
b) The misclassification at time ¢ depends only on the current true state and not on the
previous or future true states.

Define by @ (t) the cross-sectional matrix of misclassification probabilities at ¢ with
elements g, and by Q(¢+1) the cross-sectional matrix of misclassification probabilities at
t+1 with elements ¢,. An implication of ICE is that the longitudinal misclassification
matrix can be expressed as follows

Qtt+1)=Q+1)@Q(t) . (2.40)
However, @ (¢t +1) is not known. We therefore assume that Q(¢) = Q (¢ +1). We now

investigate three alternative double sampling schemes that can be used for estimation

purposes in a longitudinal framework.

Double Sampling Scheme 1

A simple random sample of n units is selected from a population of N units and the fallible

classifications at two time points, Yy, Y,,,;, are obtained for each sample unit. For another

simple random sample of n" units, independently selected from the main sample and from
the same target population, cross-sectional information on the fallible classifications is also
obtained. At a time point, between ¢ and ¢+ 1, information on the true classifications is
obtained for these n” units. Under this scheme, we obtain panel information on the fallible

classifications for » units and further cross-sectional information on the fallible and true

classification for »” units. This double sampling scheme is set out in Figure 2.6.

Population consists of N units

n units are selected from N and n’ units are selected from N
Y., Y, are obtained independently from n and Y is obtained.
At a second time point, between ¢ and
t+1,Y,,is obtained for n” units

Figure 2.6: Double sampling scheme 1-Longitudinal case
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Double Sampling Scheme 2

A simple random sample of n units is selected from a population of N units and the fallible

classifications at two time points,Y};, Y} ,, are obtained for each sample unit. At a second
time point, between ¢ and ¢+ 1, the true classifications,Y,,, are also obtained for a sub-

sample of n' units selected from the n units that already belong to the main sample. This

double sampling scheme is set out in Figure 2.7.

Population consists of N units

n units are selected from N At a second time point, betweent
and Y, Yy, are obtained and t+1, n" units are selected

v

from n units that already belong to
the main sample and Y, is obtained

Figure 2.7: Double sampling scheme 2-Longitudinal case

Double Sampling Scheme 3

A simple random sample of n units is selected from a population of N units and the fallible

classifications at two time points,Y,;,Y,,,;, are obtained for each sample unit. Using an

external source, we obtain cross-sectional information on the incidence of error for n” umnits.

This double sampling scheme is set out in Figure 2.8.

Population consists of N units External source of information

v :

n units are selected from N Information on the incidence
and Y, Y, are obtained of error is obtained for n’

units using an external source

Figure 2.8: Double sampling scheme 3-Longitudinal case
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2.2.2.1 Review of the Alternative Double Sampling Schemes in a

Longitudinal Framework

The absence of a panel validation sample plays a key role in the longitudinal case. If a panel
validation sample is available, conclusions from the cross-sectional case can be directly
extended to a longitudinal framework. Under the first double sampling scheme, although the
validation and the main samples are representative of the same population, information on the
fallible classifications from the validation sample cannot be directly combined with
information on the fallible classifications from the main sample. We can only make
inferences about the cross-sectional incidence of error from the validation sample. This is also
true for the other two double sampling schemes. Furthermore, the different double sampling
designs have different costs. Under the first scheme and the third scheme, we obtain fallible
classifications at two time points for n units and true and fallible classifications at the first
time point for n’ units. Thus, under these schemes we have cross-sectional information on
the fallible classifications for n -+ n” units. Under the second scheme, we obtain fallible
classifications at two time points for n units and true classifications for n” units selected
from the n units that already belong to the main sample. As a result, for this scheme we have
cross-sectional information on the fallible classifications only for n units. This implies that
the first and the third double sampling scheme may be associated with an increased cost
compared to the second double sampling scheme. However, the second double sampling
scheme can increase the response burden, which is something we may wish to avoid in a

longitudinal study.

Recalling (Section 1.7.3) that V;_, ; denotes a random variable that describes a specific flow

of sample unit £ between ¢ and £+ 1 and assuming that all quantities involved in the

measurement error model can be estimated by utilising a double sampling scheme and the
ICE assumption, a moment-type estimator, hereinafter conventional or standard point

estimator, of (2.38) is given by the following expression.

13

} SV

AN A o
vec (H), Iy =—— . (2.41)
m

[P] ~[6wetw

r2xl rexr? rx1

Estimation of @ (¢,¢+1) is based on information from the validation sample and the ICE

assumption while estimation of II is based only on the main sample. Unlike in a cross-
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sectional framework, the choice of the double sampling scheme does not affect the efficiency

of the adjusted estimates in a longitudinal framework.

2.2.2.2 Calibration Probabilities versus Misclassification Probabilities and

Maximum Likelihood Estimation in a Longitudinal Framework

We now extend the previous discussion about calibration and misclassification probabilities
to a longitudinal framework. Meyer (1988) compared two adjustment procedures for
correcting labour force gross flows for measurement error. The first procedure is one that
utilises misclassification probabilities and has been described in Section 2.2.2.1. The second
procedure has been developed by Statistics Canada (1979) and Wong (1983) and is discussed
in Stasny (1983). This method aims at correcting gross flows for misclassification by utilising
calibration probabilities. Under this approach, the joint distribution of the observed and the
true classifications can be expressed as a product of the calibration probabilities and the
observed transition probabilities.

o (Ve =B Yo = 1) = 300 o (Ve = b Yo = 11 Ya = 6. = 3)pr (Ve = 4% = 3).

i=1 j=1

Denote by C'(t,¢ + 1) the matrix of calibration probabilities. In matrix notation, we obtain

vec (ngl) = [C (t,t + 1)] vec (}:Id ) (2.42)

T X7

In order to estimate C (t,¢ + 1), an Independent Classification Errors assumption is imposed.

However, unlike the ICE that conditions on the true classifications, this new conditional

independence assumption conditions on the observed classifications and is defined as

follows:
p']”(}/’ét = k’nt-{-l fuens Z ! }/g; frnd 7;’}/2;_1 = ]) == pr(i@t — ](; I }/Z; = ?;)p/r<}/ét+l = l I }/2‘4—1 = j>(243)

Using (2.43), expression (2.42) becomes
vec (rﬁ) =[C(t+1)® C (t)]vec (H1 ) 2.44)

7‘2 X'I"2

Since C (¢ + 1)is not known, we further assume that C' (¢ +1) = C (¢).
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Meyer (1988) points out some theoretical deficiencies associated with the conditional
independence assumption that utilises the calibration probabilities. More specifically, this
type of conditional independence assumption embodies the following two assumptions.

a) The true classifications, Y,,Y,,,, are conditionally independent given the observed

classifications, Y, Y, ,.

b) The misclassification at time ¢ depends only on the current observed state and not on

previous or future observed states.

Meyer (1988) argues that the main difference between the adjustment procedure that utilises
misclassification probabilities and the adjustment procedure that utilises calibration
probabilities is in the second assumption. Think of the following example in the context of
estimating labour force gross flows. Assume that a sample unit £ can be classified as
employed (E) or unemployed (U). Using (2.43) we define the following conditional
probabilities.
pr(Yan =U 1Yy = B Y, =B)=pr(Yp, =U| Y, = B)
pr(Yau =U Vg =U.Yg = B) = pr(Vesy = U | Y = B).

The probability of misclassification at the second time point for someone who is observed to
remain stable is the same as the probability of misclassification for someone who is observed
to change status between t and t+ 1. However, an observed transition can happen either
because the transition is true or because the respondent is misclassified at one time point. As
a result, we expect the probability of misclassification of someone who is observed to change
status to be higher than the probability of misclassification of someone who is observed to be
stable. Hence, the method that utilises calibration probabilities will predict a lower number of
spurious transitions than the approach that utilises misclassification probabilities. It has been
shown numerically by Meyer (1988) that the adjustments under this method are in the wrong
direction i.e. lower diagonal elements and higher off-diagonal elements than actually
observed. A further problem, not pointed out by Meyer (1988), is that the approach that
utilises the calibration probabilities can be used only in the case of an internal validation
sample. This is due to the fact that for an external validation sample only the misclassification

probabilities can be regarded as transportable to the population of interest.

One advantage of the method that uses calibration probabilities is that it always produces

positive adjustments. On the other hand, the method that utilises misclassification
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probabilities can lead to negative adjusted estimates due to the inversion of the
misclassification matrix. A further advantage is that the distribution theory of an estimator
that utilises calibration probabilities is simpler than the distribution theory of an estimator that

utilises misclassification probabilities. This will be illustrated in Chapter 5.

In a cross-sectional framework, we have already showed that the parameterisation of the
measurement error model using either misclassification or calibration probabilities will
produce identical results. Likelihood-based inference in a longitudinal framework is the sole
focus of Chapter 3. For the time being, all we can say is that the measurement error models
based on misclassification or calibration probabilities will be different. This is due to the two

different forms of conditional independence utilised by these alternative models.

2.3 A Comparison of the Double Sampling Methods in a Cross-sectional

and in a Longitudinal Framework

A comparison of the different double sampling methods in a cross-sectional and in a
longitudinal framework leads to some interesting findings. Before starting this comparison,
we should point out that the main cause of the differences is the lack of a panel validation
sample. However, the use of a cross-sectional validation sample in a panel framework is
justifiable if we think of the costs associated with a validation survey. The first major
difference that exists in the estimation process is the introduction of the ICE assumption. This
allows estimation of the measurement error mechanism at two time points based on cross-
sectional validation information. While this assumption is not imposed in the cross-sectional
case, its implications for the longitudinal case can be quite important. If ICE is not valid,
misclassification will be over-predicted and thus we will tend to over-adjust (Skinner and
Torelli 1993). This over-correction, under the model that uses misclassification probabilities,
can lead to negative adjusted estimates due to the inversion of the misclassification matrix

involved in expression (2.41) (Poterba and Summers 1986).

Next, consider the impact of the alternative double sampling schemes on the efficiency of the
adjusted estimates. In a cross-sectional framework, the first two double sampling designs
produce more efficient estimates than the third design. However, by transforming the external

validation sample into an internal validation sample, the estimates produced under the third
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double sampling scheme will become as efficient as the estimates produced under the first
double sampling scheme and the second double sampling scheme. In a longitudinal context,
the moment-type (conventional) estimator (see (2.41)) of the adjusted gross flows remains the

same under all double sampling schemes.

Finally, we note that another difference between cross-sectional analysis and longitudinal
analysis is in the use of calibration probabilities. In a cross-sectional framework, calibration
probabilities are used when an internal validation sample is available and lead to maximum
likelihood estimates (see (2.7)). These estimates are more efficient than the estimates
produced by the moment-type estimator that utilises misclassification probabilities (see for
example, (2.3)). Nevertheless, maximum likelihood estimates can be also derived using
misclassification probabilities and the alternative parameterisation that we presented in
Section 2.2.1.3. In a longitudinal framework, the use of calibration probabilities in
conjunction with the Independent Classification Errors assumption, defined by (2.43), is

inferior to the approach that utilises misclassification probabilities.

2.4 Alternative Moment-type Estimators for Gross Flows in the Presence of

Misclassification

As discussed in Section 2.3, the absence of a panel validation sample plays a key role in the
process of estimating adjusted for measurement error gross flows. The main consequence is
the introduction of the ICE assumption. The consequences of using the ICE assumption can
be quite important. In this section, we focus our interest on the study and development of
alternative moment-type estimators. We first study the unbiased margins estimator (Poterba
and Summers 1986, Chua and Fuller 1987, Singh and Rao 1995, Skinner 1998) and
subsequently we describe a modified and a composite estimator (with fixed and adaptive
weights). The reason for looking at these alternative estimators is that we are reluctant to
accept the ICE assumption. From our point of view, a more reasonable scenario is that there
is a dependence structure in the measurement error mechanism between two time points. All
alternative point estimators, described in the following sections, assume the existence of
homogeneous gross flows and measurement error mechanisms. Later in this thesis, we relax

this assumption and allow for heterogeneity in both mechanisms.
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2.4.1 The Unbiased Margins Estimator

The unbiased margins estimator (Poterba and Summers 1986, Chua and Fuller 1987, Singh
and Rao 1995, Skinner 1998) is defined by constraining the margins of the adjusted, under
the conventional estimator, gross flows matrix to equal the published stocks at each time
point. These imposed constraints can be achieved using a raking (IPF) algorithm (Deming
and Stephan 1940). The unbiased margins estimator is an alternative to the conventional
estimator if we believe that ICE is not valid. The assumption underlying the unbiased margins
estimator is that cross-sectional estimates remain unbiased in the presence of measurement

error. As we illustrated in Section 1.4.3, this assumption may not be far from reality.

Raking Methodologies

Two raking approaches for obtaining the unbiased margins estimator have been proposed.
Poterba and Summers (1986) suggest that raking be applied to the final adjusted gross flows
matrix. The main disadvantage of this approach is that if one of the adjusted gross flows is
negative, the raking algorithm cannot be used. An alternative raking approach is described in

Singh and Rao (1995). They suggest that the cross-sectional misclassification matrix be raked

A
before the final adjustment is carried out. Under the Singh and Rao methodology, () is raked
©
twice. The first raking produces 62 (t), which is consistent with the published stocks at

(€]
and the second raking produces é\) (¢ + 1), which is consistent with the published stocks at

t+1. Under this approach and by using (2.41) and properties of wvec operators (Harville

1997), the unbiased margins estimator of the adjusted gross flows is given by

U@C(f/\jum) = Héw (t + 1)]~:l ® [@m (t) _l}vec (TA[) (2.45)

2.4.2 A Modified Estimator for Gross Flows in the Presence of

Misclassification
Assume that a double sampling scheme is employed, with the validation sample selected

independently from the main sample and from the same target population (i.e. scheme 1 in

Section 2.2.2). This scheme can be regarded as reasonable when the main measurement
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instrument is a panel survey and we want to avoid additional measurements on the same

sample units. We now propose a modified estimator based on the following assumptions:

a) The Independent Classification Errors assumption (ICE) is used to estimate
longitudinal misclassification probabilities based on estimated cross-sectional
misclassification probabilities.

b) The unconditional independence assumption is used to estimate the observed flows of
the units in the validation sample based on the cross-sectional observed
classifications. Using this assumption, we ignore the correlation structure implied by

the longitudinal nature of gross flows.

Under the first double sampling scheme, information on the observed flows of the units in the

validation sample is not available. The modified estimator makes use of this absence of panel
AT
information. Denote by TI  the matrix of estimated observed transition probabilities based on

AY
data from the main sample. Denote further by II the corresponding estimate based on data
from the validation sample and the unconditional independence assumption. The modified

estimator is, then, defined as follows

A mod AM AU n

vec[P ]: [@(t) ®é\2(t)]_1) w, ., vec(H )+(1 — W) vec(ﬂ ) ) Wpoa = (2.46)

A B Ridge

Unlike the unbiased margins estimator that modifies the measurement error structure (i.e.
component A in (2.46)), the modified estimator modifies the observed flows structure. One
can view the second term in square brackets, in (2.46), as a ridge component. If ICE is
erroneously assumed, the observed flows will be overcorrected (i.e. diagonal flows will be
over-increased and off-diagonal flows over-decreased). The effect of the unconditional
independence assumption, which underpins the modified estimator, is to overestimate the
probability of transition from state ¢ to state j and consequently underestimate the
probability of stability. This is because the unconditional independence assumption ignores
the correlation structure implied by the longitudinal nature of gross flows. The modified
observed flows that are produced by combining component B with the ridge component in
(2.46) will have the following pattern. Diagonal elements of the final gross flows matrix will
be underestimated compared to diagonal elements of the gross flows matrix derived when

using only the main sample. Off-diagonal elements of the final gross-flows matrix will be
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overestimated compared to off-diagonal elements of the gross flows matrix derived when
using only the main sample. As noted by Skinner and Torelli (1993), under ICE we expect to
derive an upper bound of the adjustments. Adjustments produced by the modified estimator
will be less severe than adjustments produced by the conventional estimator. This is due to
the effect of the unconditional independence assumption. Therefore, adjustments under the
modified estimator can be regarded as more reasohablé if thereis a doubt aboﬁt the validity of
the ICE assumption. If ICE is assumed to be valid, the modified estimator will be biased. In
such a case, the only gain from using the modified estimator is that it protects against the
occurrence of negative adjusted estimates. Thus, under ICE the modified estimator resembles
a ridge procedure. On the other hand, if we believe that ICE is not valid, the modified
estimator can provide more efficient adjusted estimates than the adjusted estimates derived
under the conventional estimator. Gains from using the modified estimator, instead of the
conventional estimator, will depend on how severe the problem of misclassification is. For
example, if misclassification is not very severe, it may be more reasonable to use the
conventional estimator since the effect of the ICE assumption may not be so pronounced. If
severe misclassification exists, the impact of the ICE assumption becomes more important

and the modified estimator can be considered as an alternative approach.

The main disadvantage of the modified estimator is that it is sample size dependent.
Estimation of the observed flows under the modified estimator is based on two parts. One part
uses panel information from the main survey i.e. part B in (2.46). The other part uses the
unconditional independence assumption and cross-sectional data from the validation survey
i.e. the ridge component in (2.46). Normally, the main sample is much larger than the
validation sample. However, if the validation sample is large, the modified estimator will

depend on the ridge component and the resulting estimates will be unstable.

24.3 A Composite Estimator for Gross Flows in the Presence of

Misclassification

In previous sections, we investigated alternative moment-type estimators for obtaining
adjusted gross flows in the presence of misclassification. Each of these estimators has certain
drawbacks. On the one hand, the conventional estimator is based solely on the ICE

assumption and therefore can give over-adjustments if ICE is invalid. On the other hand, the
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modified estimator, proposed above, can give very unstable results if the ridge component of
this estimator dominates. The question is whether we can do better by combining the

conventional estimator with the modified estimator. One way of achieving this, is by defining

A comp . .
a composite estimator of the adjusted gross flows, P, defined as a linear combination of

the conventional estimator and the modified estimator. We start by briefly reviewing the
general theory of composite estimation and subsequently we focus our interest on the use of

composite estimation for adjusting gross flows for measurement error.

General Theory of Composite Estimation

Composite estimation is often used in conjunction with rotation sampling schemes to reduce
variability of survey estimators. In composite estimation, we derive a more precise point
estimator by borrowing strength from a class of alternative point estimators (Wolter 1979,

Tam 1985). Following Kuo (1989), assume that we have two independent and unbiased

A A .
estimators P1 and P» for the same parameter P with known variances o ,0°, respectively.
Generally speaking, a composite estimator based on these two unbiased estimators is defined

as

A comp A

P =W f/\j1+<1——wmmp)P2. (2.47)

comp

and (b) select w,,,, such that

comp

Two options for defining w_,_ exist: (a) select a fixed w

comp comp

A comp

the mean squared error of P is minimised. For the second case, the minimum variance

unbiased estimator of P is given by

A comp

A
P =w P1+(1-—w

comp

F _ % 48
mp)Pz’wwmp (‘721 + 022) 249

This result is derived as follows: The general form of the composite estimator is given in

A comp

A A
(2.47). The mean squared error of P , taking into account that both P1 and P are

independent and unbiased estimators of P, is given by
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A

A comp\ 2 A
Bias (P ﬂ = Var (wcomp P+ <1 — wcomp>P2) =

A comp A comp
s (E7) = var[77) 4

! A comp

MSE(P ) = (wcamp)Q Var (1/51) + (1 - wcomp>2 Var (1/\32) =

A comp

MSE <P ) = (w,,, ) o+ (1-w,, ) o (2.49)

The aim is to find the value of w that minimises expression (2.49). We proceed as

comp

follows:
A comp
OMSE (P ) | .
e e I/ 1) 2_ 202 +2 o=z w, =
awcomp compal J2 wcompa2 comp (0_12 + 0_22)
and,
5 A comp
0" MSE (P )
=2(0} +0;)>0. (2.50)

0w

comp

Expression (2.50) states that the value of w___ that minimises the mean square error of the

comp

2
. . . . g
composite estimator is given by w,,,, = (——2——2——2— Usually, o?,,0%, are unknown and are
o, +o )
1 2

estimated from the sample data.

A Composite Estimator for Gross Flows in the Presence of Misclassification

We now utilise the idea of the composite estimation for estimating gross flows in the
presence of misclassification. A composite estimator can be defined as a linear combination
of the conventional estimator (see (2.41)) and the modified estimator (see (2.46)). The general

form of this estimator is

A comp A mod

st
vec (P ) = W,y VEC {P ] + (1 — wwmp> vec []AD } (2.51)

A mod
Replacing P by its equivalent using (2.46), the composite estimator becomes

A comp A st AV

vec (P ) = [wcompwmd + (1 = Wy )] vec (P ] + Wy (1 — W,pq ) VEC (P ) (2.52)

82



AU
Note that vec (P ) denotes the vector of adjusted gross flows in the validation sample derived

by multiplying component A with the ridge component in (2.46).

Regarding the choice of composite weights, w,,,,, we investigate two options (a) selection of

fixed weights and (b) selection of adaptive weights that minimise the mean squared error of

the composite estimator.

Composite Estimator with Fixed Weights

For this case, we can choose weights at will. We believe that the conventional estimator
should receive a higher weight than the modified estimator. This choice is reasonable given
that the modified estimator is based on a much stricter assumption i.e. the unconditional
independence assumption, which under certain conditions can have a larger impact on the
final adjustments than the impact of the ICE assumption. A set of possible weights is

W = 0.3,0.2,0.1.

comp

Composite Estimator with Adaptive Weights

Adaptive weights have to be determined via a minimisation process. The composite estimator

with adaptive weights is defined as

A St

A comp—ad AU
vec{P ) = {wwmpwmod + (1 = Weopmp )J vec[P J + Wiy (1= Wipa ) VEC (P ) (2.53)

A comp—ad

The mean squared error of P can be written as follows.

A comp—ad A St

MSE [P ] = [wcompwmod + (1 — W,y )r Var [P ] + {wwmp (1= W,y )}2 Var (1/5”)

+ 2 {wcompwmod + (1 - wcomp )] wwmp (1 - wm0d>C’OIU (ﬁ“’ﬁv] (254)

A st AV 2
+ B'I;CLS {[wcompwmod + (1 - wcomp) P + wcamp (1 - wm"d)P } )

The target is to derive composite weights w,,,,, such that (2.54) is minimised.
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Result 2.4

An estimated approximate value of w which minimises the mean squared error of the

comp ?

composite estimator, is given by

A A st
Var [P J

(1— wmod){vzr[f?“] +v3r<]3”) I {ﬁ; (ﬁ“] - }%(lgv)ﬂ

Weomp ~=2

Proof
Denoting by P the true flows, the mean squared error of the composite estimator with

adaptive weights can be expressed in the following form

A comp—ad A St

MSE [P ] = [wcompwmod + (1 —~ W )]2 Var [P ] + [wcomp (1= w,, )]2 Var (]A;v)

comp ~ mod

2t 00+ (L= W )| Wy (1 = 50 G0 []A?St,ﬁy] (2.56)

+ Bias {[wwmpwmod + (1 — Wy )} ﬁ5t+ {wwmp (1 —w_, )] }/\3”}2 )

We first evaluate the bias term in (2.56)

A St AT 2
Bty (L= 00) P} =

Bias {[wwmpwmod + (1 - wcomp)

w? (w 1) [E (JAD“] _ E(JAD”) e ﬁ“]— Pr 2.57)

Next, we substitute (2.57) into (2.56) and we minimise (2.56) with respect tow

comp *
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st AU st v

VAT {wmodV&T []’5 } + Var[ ] + Var( ) ZwmodVar[ ] +w? Var (]/5 )
ASt AU ASt AT

Cov( ,P] )Cov(P P]

st A St /\21
— 2w, Var( J—Q(l mod)Cov[ , ]

mod

—2w Var(A ) + 2w, (1

—2(w,,, — 1)[E (ﬁ“] - E(ﬁ”ﬂ [E [fft] - P} =

A comp-—ad
OMSE [p |
=0=

ow

comp

A St yw:

st st
2w, w, Var|P’ ] + 2w, Var []AD ] —2Var [P ] + 2w, Var [P ] - 4wcompwmodVa'r( F J

comp ~ mod

comp " mod comp " mod

wompVar( + 2w, w’ Var(?’u) —4w, W Var(]/\?ﬂ)
ASE AU

ASE AU
+4w,, w,,, (1— mod)C’ov{P P]+2(1~—wmod)Cov[P ,P]

comp ~ mod
_4w00mp (1 m0d>cov{ﬁ)3t ﬁv] comp (wmod - 1)2 E [ﬁ“] - E (ﬁ)v)

2

A st A St

st ) o

wcomp (1 - mod)

(1- mod){Var[ASt] — Cow {JAJ“,JAD”J + [E []gStJ _E (JAJ”)

Var[.;\’St]JrVar( ) 200?}[ St,ﬁvljuE[fD“—ﬁ”]?}:
E[ﬁSt]-P”é
o)

2 ASt AV
—ZC’ov[P ,PJ

{var[ﬁ“]-ow[ﬁ“,ﬁ”]+{E[f>“]_g(fa”)

=V )4 var () 4 o[ ) - (]

ASt AU

We approximate (2.58) assuming that Cov [P , P ]: 0. This assumption may not be far

. (2.58)

comp

from reality. As we will see later on, the variance of the composite estimator with fixed

weights under this assumption provides a good approximation to the true variance of this

85



ASE AV
estimator. Therefore, there is little impact from assuming that Cov (P P ]: 0

Consequently, an approximately optimal value of w,,,,, 1s given by

var[ﬁ“HE(ﬁ“]_pl

(= var B v ) () - (P

comp

Furthermore,

comp-—-ad
0*MSE [f? ’ ] v . ,
:( Var[P ]—i—Var(P )+E{P —P]

82w 1 - wmod )2

comp

A St
One way of estimating w,,, is by assuming, for example, that P = F [P ] Under this

comp

scenario, we favour the conventional estimator since we assume that ICE is valid. This can be

considered as a “worst” case scenario for the modified estimator. The composite weights can

now be estimated by

A A st
Var [P ]
9 . (2.60)

o o {v?w (ﬁst ] V() {E [ﬁ“] - (fv”)”

In Chapter 5, we develop variance estimators that make it possible to compute these adaptive

weights.

2.5 Summary

In the first part of this chapter, we compared alternative double sampling designs within a
cross-sectional framework and a longitudinal framework. We also presented some new results
for the analysis of misclassified data in a cross-sectional framework. More specifically, we
contrasted the parameterisation of the measurement error model presented by Tenenbein
(1972) with an alternative parameterisation for maximum likelihood estimation within a
missing data framework. The parameterisation of the measurement error model as a missing
data problem offers a robust basis for extending the model to handle more complex situations

for example, extending the measurement error model to a longitudinal framework. We further
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proposed a quasi-likelihood approach to fitting the cross-sectional measurement error model.
This approach offers an alternative, to the EM algorithm, way for resolving the missing data

problem implicit in the maximum likelihood approach.

In the last part of this chapter, we describe alternative moment-type estimators and argue that
they provide solutions for problems affecting the conventional point estimator. However,
each of the alternative estimators has disadvantages. The unbiased margins estimator is based
on the assumption that the cross-sectional estimates are not affected by measurement error.
The modified estimator can be very unstable if too much emphasis is placed on the
unconditional independence assumption. The composite estimator with fixed weights depends
on the subjective choice of these weights while the estimation of adaptive weights is also not
free of assumptions. Our aim is to develop an estimator that performs reasonably under ICE
but also performs better than the conventional estimator under reasonable departures from
ICE. Consequently, it is of interest to investigate the performance of these alternative
moment-type estimators under ICE and under departures from ICE. We use Monte-Carlo

simulation experiments to examine research questions of this kind later in this thesis.
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Chapter 3

Likelihood-based Inference for Gross Flows in the

Presence of Misclassification and Double Sampling

3.1 Introduction

One of the main objectives of this thesis is to develop likelihood-based gross flows estimates
when auxiliary information obtained via a validation procedure, for example a re-interview
survey, is available. Literature on the adjustment of gross flows statistics for misclassification
has focused on two approaches. In a double sampling framework, moment-type estimators
have been proposed. These estimators alongside with some new moment-type estimators
were described in Chapter 2. When validation information is not available, the model-based
approaches described in Section 1.5.2 can be utilised. Developing maximum likelihood
estimators in a double sampling context will serve two main purposes: Firstly, to improve
upon the efficiency of the moment-type estimators and secondly to create a competing

approach to the modelling strategies that do not assume validation information.

The structure of this chapter is as follows. We start by presenting a model for gross flows in
the presence of misclassification. The model is formulated in a missing data framework and
maximum likelihood estimates are derived via the EM algorithm. Although the focus of
likelihood-based inference, in this chapter and throughout this thesis, will be on a double
sampling scheme where the validation sample is selected independently from the main
sample and from the same target population (Section 3.2.1), we also describe the model in the
case that the validation sample is selected by sub-sampling units that already participate in the
main survey (Section 3.2.2). In an attempt to relax the ICE assumption, a constrained
maximum likelihood estimator is also presented. The constrained estimator can be seen as a
maximum likelihood analogue of the unbiased margins estimator. The measurement error

model is further extended to account for the existence of a complex survey design. This is
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achieved by utilising the survey weights and the pseudo-maximum likelihood approach. In
this context, a pseudo-maximum likelihood estimator and a constrained pseudo-maximum
likelihood estimator are also presented. Due to the nature of the UK LFS weights (see
discussion in Section 1.7.2), a weighted analysis offers a bias correction to unweighted
estimates. The methodology is illustrated in the context of the UK LFS by deriving adjusted

for misclassification labour force gross flows.

3.2 Maximum Likelihood Estimation for Gross Flows in the Presence of

Misclassification and Double Sampling

In this section, we formulate a measurement error model for gross flows and obtain maximum

likelihood estimates for the parameters of interest under the alternative double sampling

schemes that we presented in Chapter 2.

3.2.1 Maximum Likelihood Estimation When the Validation Sample is
Selected Independently from the Main Sample

Stating the Assumptions and Formulating the Model

Assume a double sampling scheme under which a validation sample of n’ units is selected
independently from the main sample of n units and from the same population as the main
sample has been also selected (i.e. double sampling scheme 1 in Section 2.2.2). This scheme
implies that the main sample and the validation sample do not share common units. The main
survey is a panel survey and provides information about the flows of people between r
mutually exclusive states at ¢ and ¢ + 1. On the other hand, the validation survey provides
information about the cross-sectional incidence of misclassification errors related to these
states at time ¢ . In what follows, we define a category as a pair of states for which there is a
flow so there are 7 such flow categories. Using as an example the UK LFS, category (1) of
the true classifications in Table 3.1 denotes units in the validation sample who were truly
employed at ¢ and ¢ + 1. Category (1) of the fallible classifications in the same table denotes
units in the validation sample who are reported to be employed at ¢ and ¢ + 1. Consequently,
respondents that are in category (1) of both classifications correctly classified themselves as

employed at both occasions.
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We now need to describe the information available from the main survey and from the
validation survey. The validation survey provides cross-sectional information on the observed
and the true classifications. The main survey provides information on the observed flows.
Consider the cross-classification of the fallible with the true classifications in the main and in
the validation sample (see Table 3.1 and Table 3.2). The information available from the
validation survey can be described schematically by forming all possible 7 xr adjacent
squares and by summing the elements in each of these squares. For example, in the case that
r =2 one can form 4 different adjacent squares each of dimension 2 x2 (see Table 3.3).
The sum of the elements of the first square denotes the number of people in the validation
survey that were reported to be employed and were truly employed at the first time point. The
information available from the main survey can be described by summing the elements in
each column of Table 3.2. For example, the sum of the elements of the first column

represents the number of people in the main survey that reported to be employed at both time

points.

Despite the different kind of information that is contained in the main sample and in the
validation sample, the way we formulate the model implies a similar structure for both data
sources. This structure consists of the observed flows, the true flows and a misclassification
mechanism that relates the observed flows to the true flows. The basic idea is to formulate a
model by combining information from both samples. This will eventually lead to a missing
data problem. One source of missing data is attributed to the different time dimensions of the
main survey and the validation survey. While the main survey is panel, the validation survey
is cross-sectional. The other source of missing data is due to the fact that people participating
in the main survey do not participate in the validation survey. Unlike the parameterisation
presented in Section 2.2.1.3, under the current parameterisation missing data exist both in the

main and in the validation sample.

The final assumption that we use is the ICE assumption. This is an identifying assumption
and 1s used in order to estimate longitudinal misclassification probabilities based on cross-
sectional misclassification probabilities. Recalling the notation from Chapter 1, ICE is

defined as

pT(Y; =6Yq, =71Y, =kY,, :Z> ZPT(YQ =i|Y, = k>p7"(y§+1 =7 Y = Z)'(3'1)
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Denote by n,,n; the number of sample units classified in cell 7j defined by the cross-

59
classification of the true with the fallible classifications in the main sample and in the

validation sample respectively. Note that a (x) superscript denotes unobserved quantities.

Table 3.1: Validation sample

Fallible Classifications
) . (Tz) Margins
() (%) vy
, , D Ty e M .
True Classifications

v(k) V() ?(*)

(’f'z ) nr21 ree nrzrz nra .

Margins n® - n’y n’

Table 3.2: Main sample

Fallible Classifications
(1) e (ﬁ) Margins
(*)
o O W e
True Classifications

2 () () ()

(T ) nr21 o nr2r2 nrz-

Margins M, . n s n

Denote by F, the probability that a respondent truly belongs in category %, by g;the

probability that a respondent is classified in category j given that he/she truly belongs in

category ¢ and by © the vector of parameters. The probability that a sample unit belongs in

cell 7j is expressed as a product of the true transition probabilities and the misclassification

probabilities. Assuming independence between the main sample and the validation sample,
the likelihood function of the augmented data for the model described by Tables 3.1 and 3.2

1s given by

2 2 2 2
LA o T T ™

L(©)= H]:I(quz])n] HH(RQ’L]) 7, 3.2)

which can be expressed as follows:
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2 2

L©)= TT1T(e)" " @ys . (3.3)

i=1 j=1
Taking the logarithms on both sides and imposing the following constraint
SLEE
=1
we obtain the following expression for the log-likelihood of the augmented data

-1 -1

1(©)= Z(nﬁ(” + 1 )log P, + (n;(f) +n5 ) log {1 — Z P

=1 =]

£ m +n)logla,) ()

=1 j=1

The longitudinal misclassification probabilities, g, , are unknown and are estimated using the

cross-sectional misclassification probabilities and the ICE assumption. The log-likelihood
function given in (3.4) is presented here in its generic form i.e. without incorporating the ICE
assumption. However, after incorporating ICE, we need to add the extra constraint that the

sum of the cross-sectional misclassification probabilities for a given true classification must
add up to one. This extra constraint implies that we have to estimate r*> —r parameters that
describe the misclassification process and 7> —1 gross flows-specific parameters. Thus,

under this parameterization we finally need to estimate 2r° — r — 1 parameters.

Estimation

Since the likelihood function involves missing data, one way of using this likelihood to
maximise the likelihood of the observed data is via the EM algorithm (for a general

description see Section 2.2.1.3). In the sequel, we describe the expectation step and the

maximisation step.
E-step

Recalling the notation from Chapter 2, denote by D° the complete data, by D® the observed
data from the validation sample, by D™ the observed data from the main sample, by (h) the

current iteration of the EM algorithm and by ©® the vector of parameters in the (h)EM

iteration. Taking the conditional expectation of the augmented log-likelihood given the

observed data and the current vector of parameters, the augmented log-likelihood is given by
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E[i(&;D°)| D™, D*,0%] = E[EW” | 0°,6%) + B (ng | D",6%)|10g P,

i=1

+[ (22| D",6%) + B(n% |Dm,@<h>)}1og[1—§ﬂ] (3.5)
i=1

+5[B

=] j=1

D, oW ) + E( @1 Dm0 )}bg(qij).

In (3.5), the longitudinal misclassification probabilities, ¢, , need to be replaced under ICE by

products of the cross-sectional misclassification probabilities and the additional constraint
that the sum of the misclassification probabilities for a given true classification must add up
to one. In order to perform the E-step, we need to estimate the unobserved quantities in (3.5).

This can be done using the following two results:

Result 3.1

The conditional expectations of the missing data in the main sample are estimated using the
following expression
A(R) A (h)
/\
E(n? | D",0")=n, s P | (3.6)

AR) /\ (R
Z 9y P

Proof

The number of sample units that belong in cell 45 defined by the cross-classification of the

observed with the true classifications in the main sample is denoted by n;’. Recall that

Y, ..., denotes an indicator random variable, which takes value 1 if the £" sample unit is
classified by the fallible measurement device as making a specific transition between ¢ and

t+1 and 0 otherwise. Denote further by Y,, ., an indicator random variable, which takes

value 1 if the ¢* sample unit is classified by the “perfect” measurement device as making a

specific transition between ¢ and ¢+ 1 and O otherwise. Note that while a superscript ()

refers to unobserved quantities, a superscript * refers to observed classifications. Using these

two random variables, the expectations of the missing data can now be expressed as follows
E(ng)) =nk <Y§t—>t+1 = 1, Y§:_>t+1 - ]) (3.7

Expression (3.7) is re-defined below
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E( (*)) = nk (qum =7lY, Gotl Z.)E(}/ft—»H—] - i)'
From the main sample we have information about the observed flows. This information is

summarised by summing the unobserved quantities within column 7 in Table 3.2 as follows:

= an< it = J | Yoo = Z')E<Y5t—>t+1 = i)'

i=1

Given the data constraints, the conditional expectations of the missing data can now be

expressed as follows

E(Yg_,tﬂ =7JlY gottl ) (th“’t*l :i) . (3.8)

ZE( ft—t+1l T .7[ [T R )E(}/Et—nHl ey >

E( ®

D")=n

The expectations of the random variables involved in the expression above are determined

using results for binomial random variables. More specifically,

B (y;:;_»tﬂ =7lY, ftsttl T 7;) =G> E (Ygt_,ﬂ,l = Z) =P . 3.9

Substituting (3.9) in (3.8) we obtain the required result

() A
/\< (*) le @(h)) ; a: Pz .
AlR) /\(h)
e
It follows that
A r A
BE(n® | D™,6W) =Y E(ny | D",0%) . -

i=1

We now proceed to the computation of the conditional expectations of the missing data in the

validation sample. As we mentioned at the beginning of this section, the information
available from the validation sample can be summarised by forming 7 adjacent squares each
of dimension 7 x 7 and by denoting by n/, k=1,2,---r> the sum of the elements of each

square. This is schematically illustrated in Table 3.3. For example, the sum of the elements of

the first square, n;, represents the number of sample units that were observed to be employed

and were truly employed at the first time point. In the same way, the sum of the elements of

the last square represents the number of sample units that were observed to be unemployed
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and were truly unemployed at the first time point. For the 4-state model there are four such

summations defined by

2 2 2 4 4 2 4 4
D) WIRTES S ITEED 3 RIRTED 99 HURINCIL
=1 j=1 =1 j=3 =3 =1 =3 j=3
Table 3.3: Validation sample in the 4-state model
Fallible Classifications
(D 2) 3) @) Margins
(k) (k) (k) u(x) v}
M ny Ny T Ty .
True o) v w0 uee) v(*) (%)
. . @) Ny Mgy Tlys oy LY
Classifications
) (%) (%) (%) v(%)
€) gy Mgy Mgy Ty n,
*) () () v(¥) v(*)
4 4y Ty Ty Ty Ny,
Margins n.ul(*) n.vQ(*) n:u;*) n:vi*) nv
Result 3.2

The conditional expectations of the missing data in the validation sample are estimated using

the expression below

ARy A (R
h)) v qZ] P"
=N,

y AR
DV e

where i, j are running over the rows and columns of the square we are working with.

E(n | D",6f (3.11)

Proof

The number of sample units that belong in cell 7/ defined by the cross-classification of the
observed with the true classifications in the validation sample is denoted by ni’;.‘*’. Using the

same notation as in Result 3.1, the expectations of the missing data in the validation sample

are expressed as

B(ny®)=n"B (Y = 5. = 1) . (3.12)

)

Expression (3.12) is re-defined below
B (n?(*)> E<Y§—>t+1 = i)E(K&t—nﬂ = i) :

£y

=J ] th—-»t+1
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For the validation sample we have information about the cross-sectional incidence of error.

This information can be expressed as follows:

= nUZZE(}/Z;-—%—I—l =J Yo = i)E (Ygt—»tﬂ = 7’)
i

Given the data constraints, the conditional expectations of the missing data are expressed as

follows

E'(YE;_,M =Yg un = i)E(Y@”’Hl — Z> . (3.13)

ZZE< cote1 = J | Y, Cotrl i>E(}[§t_,t+1 = i)

j=1 i=1

< v0) ’Dv>_ v

The expectations of the random variables involved in the expression above can be determined

using (3.9). Substituting (3.9) in (3.13) we obtain the required result

A(h) ﬁ(h)
A 2
E(?’LZZ-(*) ’ Dv, @(h)) — u 93

() A
zzaj P,

It follows that

Bn | 0,0%) = S By (mi | D,6%)
=1 0

Note that in Results 3.1 and 3.2 the parameters g, need to be replaced under ICE by products

of the cross-sectional misclassification probabilities.

M-step

For the maximisation step (M-step), we need to derive the score functions. These score
functions are obtained by computing the partial derivatives of the log-likelihood of the
augmented data with respect to the vector of parameters. The maximum likelihood estimators

are then obtained by setting these derivatives equal to zero 1.e.

Bal m v (h)
OE[l(6;D°)| D", D*,© }:o 514)
00

and solving for ©. For the model described here, the maximisation step is performed

numerically using a Newton —type algorithm (Dennis and Schnabel 1983).
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Identification of the Model Parameters and Convergence of the EM algorithm

An important requirement for fitting a model is that the model parameters are identified.
There are many tests available for checking identifiability empirically. Relevant literature can
be found in Goodman (1974). A first test is offered by computing the eigenvalues of the
information matrix. If all eigenvalues are positive, the model parameters are identified. In
Chapter 5, we provide an approximation to the information matrix. Based on this
approximation, this test can be implemented. An alternative solution is offered by initialising
the EM algorithm from different sets of starting values. If the algorithm converges to the
same region, it is reasonable to assume that the parameters are identified (see also Section
2.2.1.3). This test is implemented in this chapter (see application 3.1). As a convergence
diagnostic we use the I’-norm of the vector of parameters derived from two successive

iterations of the EM algorithm defined as

2r®—r—1

”@(h) _ @(h+1)“ — \/ z

(00 — oY (3.15)

7=

3.2.2 Maximum Likelihood Estimation When the Validation Sample is
Selected by Sub-sampling Units from the Main Sample

In Section 3.2.1, we formulated the measurement error model under a double sampling
scheme where the validation sample is selected independently from the main sample and
from the same target population. In this section, we formulate the measurement error model
assuming that the validation sample of n” units is selected by sub-sampling units from the
main sample of n units. Under this scheme, independence between the units in the main
sample and in the validation sample is not automatically guaranteed. However, independence
can be imposed by dividing the main sample into units that participate only in the main

survey and units that participate both in the main survey and in the validation survey.

After dividing the main sample into units that participate only in the main survey and units
that participate both in the main survey and in the validation survey, the information available
from these two samples is as follows. The main survey is a panel survey and provides
information on the observed flows of the n — n” units between r mutually exclusive states at

t and ¢4 1. On the other hand, the validation survey provides information on the cross-
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sectional incidence of misclassification errors related to these states at time ¢ and the
observed flows of the n” units. One can now notice the difference between this model and
the model that we presented in Section 3.2.1. If the wvalidation sample is selected
independently from the main sample (see Section 3.2.1), the validation sample will provide
information only on the cross-sectional incidence of misclassification errors. On the other
hand, if the validation sample is selected by sub-sampling units that already participate in the
main survey (Section 3.2.1), the validation sample will provide information both on the cross-

sectional incidence of misclassification errors and the observed flows.

We form a model similar to the model that we described in Section 3.2.1. The target is to
obtain maximum likelihood estimates for the adjusted gross flows. Assuming independence
between the units in the main sample and in the validation sample, the augmented data log-
likelihood of the model is described by (3.4). Since this likelihood involves missing data, we
can maximise it via the EM algorithm. In the E-step we need to estimate the conditional
expectations of the missing data in the main sample and in the validation sample using the

information available from these two samples. The E-step is described below.

E-step

For the main sample, we have information on the observed flows of the units that participate
only in the main survey. Therefore, the conditional expectations of the missing data in the

main sample can be simply estimated using Result 3.1.

For the validation survey, we now have information on the cross-sectional misclassification
probabilities and the observed flows. As a result, estimating the conditional expectations for
the validation sample cannot be based only on Result 3.2. Instead, we use a two-step
procedure. For simplicity, we describe this procedure for the 4-state model. The two steps for
estimating the conditional expectations of the missing data in the validation sample can be

illustrated using Table 3.3.

Step a

In this first step, we estimate initial conditional expectations using Result 3.2. These

provisional conditional expectations will therefore respect the cross-sectional validation
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information. However, we also need to respect the information about the observed flows.

This is achieved using the second step.

Step b

Based on these provisional conditional expectations, we compute the following quantities:

o ulH) v(*} IR C5) () R 5 o) 7 C)) v(x)
a=mn" + 0", D=5 40,0, c=mny" + 0,7, d =15 Ny

(3.16)

e A U v(%) R /(¢ y() V) v(x) N 7 C)] (%)
e=ny +Ny, [=myg 0y, =g g h=m0 oy

We then form two 2x2 tables defined by {a,b,c,d}and {e,f,g,h}respectively. One can
realise that the margins of these tables summarise the information available from the
validation sample. More specifically, the column margins define the observed flows and the
row margins define the cross-sectional validation information. Having formed these 2 x 2
tables, we use the IPF algorithm to rake the internal cells of these matrices to the information
available from the validation survey. The newly derived internal cells are denoted by
{a*,b",¢",d" }and {e*,f",g",h"}. For example, a* + ¢" will respect n} and a* 40" will
respect n!. It remains to estimate the final conditional expectations of the unobserved
quantities in the validation sample. In order to do so, we form the 2x1 vectors that
summarise {a”,b",c",d"}and {e’,f*,g",h"}. For example, a 2x1 vector is defined by
n;”,ny” such that o* =n)” +n”. For the 4-state model one can form 8 such vectors.
Following the same logic as for Results 3.1 and 3.2, the conditional expectations are then

estimated within each of the 2 x 1 vectors. For example,

A AR) Jg(’ﬂ Ay A
(%) P} RY\ qu 1 A ) v Y\ _ * q21 2

E(n}” | D",0") = a’ | 52— o g and B (ny” | D",0") = 0" | 72— L] @)
Gy L 4y L

i=1 i=1

These final conditional expectations will respect both the cross-sectional validation
information and the observed flows of the units in the validation sample. Having estimated
the conditional expectations of the unobserved quantities in the main sample and in the
validation sample, the M-step is performed numerically using the procedures that we

described in Section 3.2.1. The convergence of the EM algorithm is checked using (3.15).
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A “naive” alternative for estimating the conditional expectations of the missing data in the
validation sample, when the validation sample is selected by sub-sampling units from the
main sample, is to ignore the observed flows of the units that participate both in the main
survey and in the validation survey. This implies that these conditional expectations can be
estimated by satisfying only the cross-sectional validation information using the results from
Section 3.2.1. The assumption underlying this procedure is that the observed flows of the
units that participate both in the main survey and in the validation survey are not different
from the observed flows of the units that participate only in the main survey. It is of interest
to investigate what we actually lose by ignoring this extra piece of information. This is
examined in Chapter 6. The theory we describe in the rest of this chapter allows for a
validation sample that is selected independently from the main sample and from the same
target population. However, this theory can be easily modified to allow for an alternative

double sampling scheme.

3.3 A Constrained Maximum Likelihood Estimator for Gross Flows in the

Presence of Misclassification and Double Sampling

In Section 3.2.1, we presented a maximum likelihood estimator for gross flows in the
presence of misclassification and double sampling. This estimator utilizes the ICE
assumption for estimating longitudinal misclassification probabilities based on cross-
sectional misclassification probabilities. However, as discussed in Chapter 2, the
consequences of using the ICE assumption can be quite important. In this section, we develop
a maximum likelihood estimator that attempts to relax the ICE assumption by imposing an
unbiased margins constraint. From now on we will refer to this point estimator as the

constrained maximum likelihood estimator. The relaxation to the ICE occurs because under

the unbiased margins constraint we use two distinct misclassification matrices 0O(z),

O(z+1)instead of assuming, as under ICE, that Q(¢)=Q(z+1). In order to obtain this
estimator, we need to impose constraints on the P, parameters. The most natural way of

resolving the constraint maximisation problem is to impose the raking constraints directly
into the log-likelihood function. This is equivalent to full maximum likelihood. However, this
approach introduces complexities since the constraints are non-linear functions. Instead, we
follow an alternative approach namely, the estimated likelihood approach (Gong and

Samaniego 1981, Pawitan 2001). The estimated likelihood approach offers one way of
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dealing with nuisance parameters. Generally speaking, this method replaces nuisance
parameters by their estimates and then treats them as fixed. Here, we treat the parameters of

the misclassification mechanism, g, as nuisance parameters and gross flows-specific

parameters as the parameters of primary interest. Constraints on P, are imposed implicitly via

g, - It is apparent that this procedure is not equivalent to full maximum likelihood since

estimates for the parameters of interest are obtained by maximising only a part of the full

likelihood.

Without loss of generality, let us consider the observed labour force gross flows matrix as
obtained from a Labour Force Survey. Let us assume that the margins of this matrix represent
the published stocks’ at ¢ and ¢+ 1. In the first step, we are implementing the raking
approach proposed by Singh and Rao (1995). We rake the cross-sectional misclassification
matrix, estimated using data from the validation survey, twice. The first raking produces
Q@ (t), which is consistent with the observed estimates at time ¢ and the second raking
produces @ (¢ +1), which is consistent with the observed estimates at time ¢+ 1. The
produced raked misclassification matrices can be seen as two different sources of data. The
elements of the first matrix represent cross-sectional validation data such that the first set of
constraints is satisfied, whereas the elements of the second matrix represent cross-sectional

validation data such that the second set of constraints is satisfied.

The second step involves two maximization problems. We maximize the log-likelihood
function (3.4) using as information from the validation sample the data from the first raked
matrix. This maximization step will produce maximum likelihood estimates for P, and the
cross-sectional misclassification probabilities under the first set of constraints. We denote

these maximum likelihood estimates for the cross-sectional misclassification probabilities by

(/};) (t). Subsequently, we maximize the log-likelihood function (3.4) using as information

from the validation sample the data from the second raked matrix. This maximization step

will produce maximum likelihood estimates for P, and the cross-sectional misclassification

probabilities under the second set of constraints. We denote these maximum likelihood

! Note that usually the published stocks are computed taking into account the survey weights. However, for the time being
we are only concerned with unweighted estimates.
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. . . . agn, ©
estimates for the cross-sectional misclassification probabilities by @ij (t+1). Both

maximisations are performed using the EM algorithm and Results 3.1 and 3.2.

AL

In the third step, we bring the unbiased margins constraint into P, via qv (t) and g, (t+1).

This is done as follows. Assume that a;c) (t) and a:) (t+1) are fixed at their maximum

likelihood values as these are obtained from the second step. The usual likelihood function of

the augmented data that is given below

L(©)= TITE* (4,)" " (3.18)

becomes now
L(@)=c JJ(B)" . (3.19)
i=1

Term c denotes a constant term resulting from the second component of the likelihood

function (3.18). It follows that

o H e (3.20)
Taking the logarithms on both sides of (3.20) and imposing the additional constraint that

SF =1
=1

we obtain the following log-likelihood function
!

1(©) o Z(n”(*) +n)log B} +( o +n(’;))10g{1 ZB] . (3.21)

=1

In the final step, the log-likelihood function given in (3.21) is maximized assuming that

(/};) (t) and qy (t +1) are fixed at their maximum likelihood values as these obtained from

the second step of the estimation process. This can be done using the EM algorithm. Taking
the conditional expectation of the a log-likelihood (3.21), we have that

Bli(6;D)| D", D*,0"] o

1->F

i=1

2 (3.22)
ZE{ o n(*) iDm D° @(h)POgP—*_ E[( v n(*)) | D™, D" @<h)]log( ]

=1

The E-step can be performed using the following two results.
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Result 3.3

The conditional expectations of the missing data in the main sample are estimated using the

expressions below

/\( ) /\(c)

A A
Eqw (t+1) g, () Pz

i=1

/\( @ le @(h))

It follows that
7 ) m (k) o ) m (k)
E(ne | D™,0")=>"E(ng | D,6%)
=1
Proof
The proof is identical to the proof that is given for Result 3.1. 0
Result 3.4

The conditional expectations of the missing data in the validation sample are estimated using

the expressions below

AO A

A Y(E v v q; (t 1) q; (t)‘P’
E(ny” | D°,0%) = np | —1—— - . (3.24)
ZZQZ] (t 1) QZ] <t> Pz

Furthermore, it follows that

7,2

E(n | D*,0") = Y B (n | D',0%) .
=1

Proof

The proofis identical to the proof that is given for Result 3.2. .

In Results 3.3 and 3.4, the data constraints, n,;, are derived from the main sample. The data
constraints, n’, are obtained from the original (i.e. not raked) cross-sectional validation
sample. The misclassification probabilities do not have a superscript (h) since they are

assumed to be fixed at their maximum likelihood values under the first and the second set of
constraints. We also note that in the expressions of the conditional expectations (3.23) and

(3.24) the products of the cross-sectional misclassification probabilities, under the first and
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second set of constraints, appear. These products replace the classical ICE assumption by a
“modified” ICE assumption that is also utilised by the unbiased margins estimator (see
Section 2.4.1). Having estimated the conditional expectations in the E-step, the M-step is
performed numerically. The effect of fixing the cross-sectional misclassification probabilities
at their maximum likelihood values is to restrict the estimates derived from the maximisation

of the log-likelihood function (3.21) so that they satisfy the marginal constraints.

Before closing this section, we need to make two additional comments. One way to simplify
the second step in computing the constrained maximum likelihood estimator, is by simply
replacing the cross-sectional misclassification probabilities by their sample estimates as these
are obtained from the two raked misclassification matrices. Furthermore, in this thesis we do
not discuss variance estimation for the unbiased margins estimator. Approaches for
computing the variance of an estimator in the presence of raking can be found in survey
literature (Deville and Sarndal 1992). In addition, inference based on the estimated likelihood
approach must account for the extra variability introduced by the estimation of the nuisance

parameters. An approach for accounting for this additional variability is described in Gong

and Samaniego (1981).

3.4 Accounting for the Complex Survey Design

The previously described methodology has been developed within a simple random sampling
framework. However, in most of the cases survey data are collected by utilizing complex

survey designs. In the following sections, we attempt to account for the existence of a

complex survey design.

3.4.1 Pseudo-Maximum Likelihood Estimation: A General Framework

Under simple random sampling, the general framework for maximum likelihood estimation is

as follows. Let y,, 1=1,---,n denote n independent and identically distributed random

variables with known probability density function fi(yi;9>. Assume now that we are

interested in making inference about the unknown parameter 6. In order to do so, we need to

use the likelihood function given below

L(0) =] £ (v:0) (3.25)



The maximum likelihood estimator of & is given by the value that maximises the logarithm
of the likelihood function. This value can be obtained by setting the score function equal to
zero and solving the resulting normal equation with respect to the unknown parameter ¢

old) & dlog[L(0)] B
3?_;—3?—_& (3.26)

When the sampling design is complex, the density functions f (yi; 9) become the conditional

densities of the population given the sampling design. If we want to apply maximum
likelihood estimation with complex samples, we will need to define the structure of these
conditional distributions. This process can be highly complicated since it requires modelling

the relationship between y, and the design variables. An alternative approach, avoiding the

complications of defining these conditional distributions, is offered by the Pseudo-Maximum
Likelihood approach, hereinafter PML approach. For a general description of the PML
approach see Skinner (1989).

Denote by U the population of interest consisting of N units. If population information is
available, we can write the log-likelihood function at the population level as follows:
1(8) = E)%{%] (3.27)
i=1
The population level maximum likelihood estimator can be obtained by setting the population

score function equal to zero and solving the equation with respect to the unknown parameter

0

m% dlog[L(O)] _ (3.28)

Y
i=1
In practice, census information is not available. In the absence of auxiliary information an
estimator of the population parameter of interest can be obtained by employing the survey

weights. In the simplest case, the survey weights are inversely proportional to the probability
of selecting a unit in the sample. Denote by w, the survey weights for the £ sampled unit.

The PML approach works by replacing the population level score function by a consistent

estimate

81(0) & Blog[L(0)]
'ET”;%_Tﬁ""J' (3.29)
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Solving equation (3.29) with respect to the unknown parameter 8, we obtain the pseudo-

Apml Apml . .
maximum likelihood estimator § . We should, however, note that @  is not unique since

many consistent estimators of the population score function may exist.

3.4.2 The Gross Flows Model and Pseudo-Maximum Likelihood in the

Presence of Misclassification and Double Sampling

We now extend the measurement error model presented in Section 3.2.1 to incorporate
survey weights using the PML approach. We assume a double sampling design similar to
the one described in Section 3.2.1. We start by formulating the measurement error model

pretending that population information is available. Denote by N, /N the population

counts for the main survey and for the validation survey respectively. Before proceeding
with the description of the model, we need to explain the choice of notation. When the

validation sample refers to the same population as the main sample, N, N, are the same.

In our developments, however, we distinguish between these two quantities. When the
validation sample is selected independently from the main sample and from the same target
population (Section 3.2.1), the data we use for estimating the conditional expectations of
the missing data in the main sample are the observed flows from the main sample. The data
that we use for estimating the conditional expectations of the missing data in the validation
sample are the cross-sectional validation data. Under this approach, we ignore the
information from the main sample when estimating the conditional expectations in the

validation sample. This is equivalent to treating N, differently from N . Nevertheless, one

may argue that since both samples refer to the same population, the information from the
main sample must be also used in the validation sample otherwise this will impact on the
efficiency of the maximum likelihood estimator. If we wish to include this extra piece of

information for fitting the model, we will need to use the results of Section 3.2.2.

The log-likelihood function of the augmented data at the population level is defined by
replacing sample counts with population counts in (3.4). This log-likelihood function is

given by

2
]

1(0)= i(m(*> + N )log P, + (N:Z(*) + NS )log [1 - EP

2

i TZ{;(NZ;*) + Ny )log(g, ) - (3.30)

i=1 j=1

i=1 i=1
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In (3.30), the g, parameters need to be replaced, under ICE, by the products of cross-sectional
misclassification probabilities. In addition, we need to include the extra constraint that the
sum of the cross-sectional misclassification probabilities for a given true classification must

add up to one.

Estimation

The maximisation of the likelihood function (3.30) is performed using the EM algorithm.
Implementation of the EM algorithm into a pseudo-maximum likelihood estimation
framework is also considered in Pfeffermann (1988) but for solving a different problem. The

author proves that the estimates obtained via the weighted EM algorithm are unbiased and
consistent. Denote by ©™"™ the vector of pseudo-maximum likelihood estimates in the

(h)EM iteration. We start by writing the conditional expectation of the augmented log-

likelihood as in (3.5) but by replacing the sample by population counts.

B[1(&; D) | D", D", 0®] = i[ﬁ; (N2 | D*,0®) + B(N2 | Dm,@w’ml)pogﬁ

i=1

+[E(Nx | D',0") 4+ B(NS: | Dm0 log[l - };P] (3.31)

+ ii{E (N;;'(*) ' Du, @(h)pml) + E(N;j*) I D™, @(h)pml)} log (qij )

=1 j=1
The conditional expectations involved in (3.31) are estimated using the following two results.

Result 3.5

Denote by w,; the survey weights for individual £ performing an observed transition j. The

conditional expectations of the missing data in the main sample are estimated using the

expression below

A ! — q.: i
E(NS | Dm,0Mm) = n| = g . 3.32
(| D", 8™ ) = n| | (3.32)
gy I

Proof

Replacing sample counts by population counts and utilising Result 3.1, the conditional
expectations of the unobserved quantities in the main sample are estimated using the

expression below
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We note that the data we pretend to have are the population observed gross flows N .. In

reality, the NV,;’s are unknown. We estimate N, ; using the survey weights as follows:

>
3

No=> 1w, (3.33)

Replacing the N,;’s by their estimates from (3.33), the expression for estimating the

conditional expectations of the missing data is now given by

A(R) A(R)
/\ (*) m (R)pmi - qij 171
E(Ng | D™, 00m) =3 |t —— — (3.34)
= Zqzj P
i=1

In (3.34) we can further replace the survey weights by normalised survey weights. In this case
expression (3.34) takes the following form

D a@ p

/\ ~ s P
( (*) |Dm @(h pml) n £=1 jj

N Al ’\ (h .
Z 4y P

i=]

It follows that

-
(5}

E(N® | D™,0%) = ST E(NS | Dm,e®rm) .
iz 5708 = S o 70 ]

Result 3.6

The conditional expectations of the unobserved quantities in the validation sample are
estimated using the expression below
w Ry AR
D Wy o p,

A i
E(Ny | D*,0") = n* | &= . 5| (3.35)

N ZZM

Proof

Replacing the sample counts by population counts and utilising Result 3.2, the conditional

expectations of the unobserved quantities in the validation survey are estimated by
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The data that we pretend to have are the cross-sectional population counts on the incidence of

ﬁl (N;;(*) ! ])v7 @(h)pml) Nv

error. In reality, these N ’s are unknown and need to be estimated. This can be done using

the survey weights of the validation survey and the following expression
AV n
Mo =S ug (3.36)
¢=1
Replacing the N, ’s by their estimates from (3.36), we obtain the following expression

A(h) /\(h)
qU ]
AR) ’\(h) '

quv :

Replacing survey weights by normalised survey weights, we obtain the required results

} :wgk Al A®)
l/}/’(N Ve ID”,@(h)pml) n | &L i P;
i =

()
g
i

BNy | D,60) = Zw&

It follows that

o

(AT | pe @Mt _ f( nrue | e QWi
E(NZ | DY, 0" HE(NU | D", ) -

After estimating the conditional expectations of the unobserved quantities in the main sample
and in the validation sample, full information is obtained that is used to maximise the log-
likelihood function (3.30). The M-step is performed numerically. Note that the score
functions are now the weighted score functions. These provide estimates of the population
level score functions. The algorithm runs until the convergence criterion defined by (3.15) is

satisfied. At the end of this algorithm a vector of pseudo maximum likelihood estimators,

O™ | is derived.
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3.4.3 A Note on the Estimation of Conditional Expectations in the Case of

an External Validation Sample

In this section, we present a procedure for obtaining cross-sectional population estimates for
the incidence of error when weights for the validation survey are not available or not
appropriate for the population of interest. This can happen, for example, in the case that we

employ an external validation sample. The procedure is as follows.

Population cross-sectional estimates at ¢ are derived using the weights of the main survey.
Assume now that the misclassification process in the external validation sample is
informative of the misclassification process in the target population. Under this assumption,
the misclassification probabilities from the validation sample can be employed to correct
population cross-sectional estimates at ¢ for measurement error. This can be achieved by
using one of the estimators that we presented in Section 2.2.1.1. At the end of this process we

obtain cross-sectional observed and adjusted for misclassification population estimates. The

final step in this process involves calibrating pr (Yg; =1,Y, = k:), from the external

validation sample, to these two estimated population margins. The internal cells of the raked
matrix can then be multiplied by the population size to produce cross-sectional estimated
population counts for the incidence of error. These estimates are employed to estimate the
conditional expectations of the missing data in the validation sample when using the EM

algorithm and the PML approach.

The same procedure can be used also for unweighted analysis. The only difference now is
that the marginal observed and adjusted estimates are derived without utilising the weights of
the main survey, but simply by using unweighted data from the main survey. This is
equivalent to transforming an external validation sample into an internal validation sample.
Both procedures will be illustrated later when employing misclassification probabilities from

an external validation sample.
3.4.4 A Constrained Pseudo-Maximum Likelihood Estimator

A natural extension to the pseudo-maximum likelihood estimator is the constrained pseudo-

maximum likelihood estimator. In this section, we briefly describe this estimator, which can
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be derived by a straightforward extension of the results presented in Sections 3.3 and 3.4.2.
The constrained pseudo-maximum likelihood estimator must approximately respect the
marginal population estimates at ¢ and ¢ + 1. Pretending that census information is available,
the log-likelihood function given in (3.30) is utilised. The constrained pseudo-maximum
estimator is obtained using the procedure described in Section 3.3. The only modification is
the following: We now rake the cross-sectional misclassification matrix twice. The first

raking produces Q“*(¢), which is consistent with the population observed marginal
estimates at the first time point and the second raking produces Q" (t+1), which is

consistent with the population observed marginal estimates at the second time point. The rest
of the estimation process remains the same. The second step involves two maximisation
problems under the first and the second set of constraints. These maximisation problems are
solved using the EM algorithm and Results 3.5 and 3.6. In the final step, the log-likelihood

function (3.30) is maximised only with respect to P, assuming that ¢, are fixed at their

maximum likelihood values. This final maximisation problem is also solved using the EM

algorithm. .
(07 o0y,
. ] (X UBRARY =
3.4.5 Weighted Moment-type Estimators i’%

Before illustrating the methodology of the previous sections, we need to provide expressions

for the weighted versions of some of the moment-type estimators presented in Chapter 2.

The Weighted Conventional Estimator

/\ “ —— age .
Denote by II the matrix of population level estimates of the observed transition probabilities.

/\ u . - .
Denote further by @) (¢) the weighted cross-sectional misclassification matrix. The weighted

equivalent of estimator (2.41) is given by

o U@C(I/\Iu). (3.37)

vec[f:“_“] - {62” H®0

The Weighted Unbiased Margins Estimator

A (©u

Denote by ¢ (t-+1) the misclassification matrix produced by raking the weighted

AT .
misclassification matrix, ¢ (t), to the population observed marginal estimates at ¢+ 1.
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Denote also by ¢ (¢) the misclassification matrix produced by raking the weighted

AU
misclassification matrix , () (¢), to the population observed marginal estimates at ¢. A

weighted equivalent of the unbiased margins estimator (see Section 2.4.1) is given by

_1}7)60(1%”). (3.38)

vee(P) = ‘MQ (t+ 1)r ® [52@" ®)

3.5 Deriving UK Labour Force Gross Flows Adjusted for Misclassification

In this section, we present five applications. The first two applications illustrate the
adjustment of UK labour force gross flows for misclassification. This is done using a number
of alternative point estimators that were presented in Chapter 2 and Chapter 3. The third
application aims at contrasting the conventional (moment-type) estimator with the maximum
likelihood estimator in the presence of intense misclassification. In the fourth application, we
conduct a sensitivity analysis of the adjusted UK labour force gross flows using different
validation datasets. Finally, in the fifth application we derive maximum likelihood estimates
of the adjusted gross flows when the validation sample is selected by sub-sampling units that
already participate in the main survey. Observed labour force gross flows are estimated by
utilising the common sample between two quarters from the UK LFS (see discussion in

Section 1.7.3). Due to the absence of a UK validation survey, we utilise external validation

data. The joint distribution for the incident of error pr (Y; =1,Y, = k) , estimated from the

external validation survey, is raked to the UK marginal labour force estimates at time ¢ using

the procedures described in Section 3.4.3. This is done both for unweighted analysis and for

weighted analysis.

Application 3.1: Adjusting UK Labour Force Gross Flows - Unweighted Analysis

For this application, we utilise UK labour force gross flows between summer-autumn 1997
and a smoothed version of reconciled validation data from the Swedish (October 1994 - April
1995) LFS re-interview programme (see Section 1.8.4). The estimators we consider are the
following: The unadjusted point estimator, the conventional estimator (Section 2.2.2.1), the
unbiased margins estimator (Section 2.4.1), the maximum likelihood estimator (Section 3.2.1)

and the constrained maximum likelihood estimator (Section 3.3). The matrix of
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misclassification probabilities is given below. The columns of this matrix denote true states
whereas the rows denote observed states. The convergence criterion for the EM algorithm, as
this is defined by (3.15), is § = 10™*. Convergence was achieved within 43 iterations. An
empirical investigation of the identifiability of the model is provided by initialising the EM
algorithm using different sets of starting values. Two scenarios are examined. Under the first
scenario, the EM is initialised using values close to the maximum likelihood point. Under the
second scenario, the EM is initialised using values further from the maximum likelihood
point. The algorithm always arrived at the same convergence region. This is illustrated by
producing figures that trace the convergence of the EM algorithm, for the different gross

flows parameters, under the two scenarios (see figures in Appendix II).

E U N

E(0.981 0.017 0.032
O =0|0.008 0951 0.027
N{0011 0.032 0.941

The UK observed marginal labour force estimates for summer-autumn 1997 are given below.
These marginal estimates must be approximately respected both by the unbiased margins

estimator and by the constrained maximum likelihood estimator.

Unweighted observed labour force marginal estimates at ¢
E =0.741, U=0.052, N=0.207
Unweighted observed labour force marginal estimates at 741

E =0.748, U=0.046, N=0.206

Table 3.4: Adjusted UK labour force gross flows for summer-autumn 1997 using the

alternative moment-type and maximum likelihood estimators - Unweighted analysis

Flow Observed Conventional Maximum - Unbiased Constrained

Flows (ICE) Likelihood Margins Maximum

(ICE) Likelihood
EE 0.716 0.7420 0.7410 0.7325 0.7330
EU 0.009 0.0028 0.0033 0.0063 0.0060
EN 0.016 0.0024 0.0026 0.0020 0.0025
UE 0.016 0.0102 0.0106 0.0138 0.0132
UU 0.027 0.0292 0.0291 0.0330 0.0327
UN 0.009 0.0033 0.0036 0.0051 0.0046
NE 0.016 0.0026 0.0028 0.0019 0.0024
NU 0.010 0.0045 0.0050 0.0068 0.0064
NN 0.181 0.2030 0.2020 0.1986 0.1992
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Application 3.2: Adjusting UK Labour Force Gross Flows - Weighted Analysis

In this application, we bring into the analysis the weights of the UK LFS by using weighted
UK labour force gross flows between summer-autumn 1997. As discussed in Section 1.7.2,
the weights of the UK LFS serve two purposes i.e. they produce population level estimates
and at the same time compensate for the bias due to sampling attrition. Therefore, by
including the survey weights into the measurement error model we implicitly provide a bias
correction to labour force gross flows estimates also for sampling attrition. The estimators we
consider are the weighted unadjusted point estimator, the weighted conventional estimator
and the weighted unbiased margins estimator (Section 3.4.5), the pseudo-maximum
likelihood estimator (Section 3.4.2) and the constrained pseudo-maximum likelihood
estimator (Section 3.4.4). The convergence criterion for the EM algorithm is § =107

Convergence was achieved within 22 iterations. The UK weighted observed marginal labour
force estimates for summer-autumn 1997 are given below. These marginal estimates must be

approximately respected both by the weighted unbiased margins estimator and by the

constrained pseudo-maximum likelihood estimator.

Weighted observed marginal estimates at ¢

E =0.734, U=0.059, N=0.207

Weighted observed marginal estimates at ¢ + 1
E =0.737, U=0.052, N=0.211

Table 3.5: Adjusted UK labour force gross flows for summer-autumn 1997 using the

alternative moment-type and maximum likelihood estimators - Weighted analysis

Flow Weighted Weighted Pseudo Weighted Constrained

Observed Conventional — Maximum Unbiased Pseudo
Flows (ICE) Likelihood Margins Maximum

(ICE) Likelihood
EE 0.705 0.7312 0.7304 0.7225 0.7226
EU 0.010 0.0038 0.0041 0.0068 0.0067
EN 0.019 0.0049 0.0052 0.0043 0.0051
UE 0.017 0.0113 0.0114 0.0143 0.0139
Uu 0.032 0.0349 0.0347 0.0390 0.0380
UN 0.010 0.0042 0.0044 0.0060 0.0057
NE 0.015 0.0005 0.0015 0.0001 0.0013
NU 0.010 0.0046 0.0047 0.0067 0.0065
NN 0.182 0.2046 0.2036 0.2003 0.2002
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Application 3.3: Comparing the Moment-type Estimators with the Maximum Likelihood

Estimators in the Presence of Intense Misclassification

One of the main disadvantages associated with the use of the conventional point estimator is
that it can result in estimates that lie outside the parameter space. This can happen due to the
inversion of the misclassification matrix involved in the computation of this estimator. In
Chapter 2, we investigated ways to overcome this problem by defining alternative moment-
type estimators. An alternative solution can be offered by the maximum likelihood estimator.
In this application, we use the original (i.e. not smoothed) misclassification matrix estimated
from the Swedish validation survey (October 1994 - April 1995). Some of the elements of

this matrix are associated with intense misclassification for example, g¢g, = 0.041. We

compare estimates derived when using the moment-type and the maximum likelihood

estimators. The matrix of misclassification probabilities is given by

E U N

£({0.980 0.016 0.041
O=10]0.008 0950 0.023
N|0.012 0.034 0.936

Table 3.6: Comparing the moment-type estimators with the maximum likelihood estimators

in the presence of intense misclassification

Flow Observed Conventional Maximum Unbiased Constrained

Flows (ICE) Likelihood Margins Maximum

(ICE) Likelihood
EE 0.716 0.7450 0.7419 0.7365 0.7346
EU 0.009 0.0025 0.0028 0.0059 0.0056
EN 0.016 -0.0009 0.0016 -0.0014 0.0019
UE 0.016 0.0101 0.0103 0.0135 0.0129
UU 0.027 0.0294 0.0293 0.0331 0.0320
UN 0.009 0.0038 0.0040 0.0053 0.0052
NE 0.016 -0.0012 0.0013 -0.0020 0.0017
NU 0.010 0.0051 0.0052 0.0069 0.0069
NN 0.181 0.2062 0.2036 0.2022 0.1992

The results indicate that when intense misclassification exists, the conventional point
estimator can easily produce awkward estimates (in this case negative probabilities) that lie
outside the parameter space. On the other hand, the maximum likelihood estimator

overcomes this problem by constraining the estimates to lie within the parameter space.
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Furthermore, although the unbiased margins estimator is designed to relax ICE, it can still
lead to negative adjusted flows (see for example, Table 3.6). In contrast, the constrained
maximum likelihood estimator produces estimates that lie within the boundaries of the
parameter space. Therefore, we propose that both the unconstrained maximum likelihood
estimator and the constrained maximum likelihood estimator should be preferred over the

corresponding moment-type estimators.

Application 3.4: Sensitivity Analysis of the Adjusted UK Labour Force Gross Flows

In applications 3.1 and 3.3, we used different Veréions of the Swedish misclassification
probabilities in order to adjust UK labour force gross flows for measurement error. In this
application, we conduct a sensitivity analysis. More specifically, we investigate the impact
that alternative sets of misclassification matrices have on the unweighted adjusted UK labour
force gross flows. For the purposes of this application, we employ the misclassification
probabilities from the LFS re-interview survey in Canada (Singh and Rao 1995) and from the
CPS re-interview survey in the US (Poterba and Summers 1986). We further use the
smoothed version of the Swedish misclassification probabilities (see application 3.1), the
original Swedish misclassification probabilities (see application 3.3) and a weighted version,
using the weights from the Swedish re-interview survey (October 1994 - April 1995), of the
Swedish misclassification matrix. Adjusted gross flows are derived using the maximum
likelihood estimator. The smoothed version and the original version of the Swedish
misclassification matrices are reported in applications 3.1 and 3.3 respectively. The new

misclassification matrices are defined as follows;

E U N E U N
£10.993 0.024 0.007 FE10.981 0.023 0.035
A Canadian LFS A Weighted Swedish
Q = {(0.002 0.90 0.008 Q = {/10.004 0.907 0.007
N[0.0056 0.076 0.985 N10.015 0.070 0.958

E U N

£10.981 0.035 0.02
A CPS
@ =U|[0003 083 0.01
N{0.016 0.135 0.97
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Table 3.7: Sensitivity analysis of the adjusted UK labour force gross flows using the

alternative sources of validation data

Flow Observed Original Smoothed Weighted CPS Canadian
Flows Swedish Swedish Swedish LFS

EE 0.716 0.7419 0.7410 0.7391 0.7395 0.7254
EU 0.009 0.0028 0.0033 0.0058 0.0067 0.0076
EN 0.016 0.0016 0.0026 0.0012 0.0019 0.0103
UE 0.016 0.0103 0.0106 0.0136 0.0151 0.0154
uvU 0.027 0.0293 0.0291 0.0326 0.0385 0.0330
UN 0.009 0.0040 0.0036 0.0062 0.0036 0.0059
NE 0.016 0.0013 0.0028 0.0011 0.0013 0.0101
NU 0.010 0.0052 0.0050 0.0075 0.0050 0.0071
NN 0.181 0.2036 0.2020 0.1929 0.1884 0.1852

To quantify the effect of the different misclassification matrices, we compute the sum of the
off-diagonal adjusted flows. This sum represents the overall adjusted probability of changing
labour force status between two quarters. We further compute the sum of the off-diagonal
unadjusted flows. The closer the adjusted sum is to the unadjusted sum, the less the impact of

the adjustment procedure. These sums appear in the table below.

Table 3.8: Investigating the impact of the alternative misclassification matrices

Unadjusted Original Smoothed Weighted CPS Canadian
Swedish Swedish Swedish LES
Sum 0.076 0.025 0.028 0.035 0.034 0.056

The Canadian set of misclassification probabilities provides the less severe set of adjustments
while the original Swedish misclassification probabilities provide the most severe set of

adjustments. Using these results, one can construct a range of adjusted UK labour force gross

flows.

Application 3.5: Maximum Likelihood Estimation When the Validation Sample is Selected

by Sub-sampling Units from the Main Sample - Unweighted Analysis

In this application, we allow for a double sampling scheme under which the validation sample
is selected by sub-sampling units that already participate in the main survey. The size of the
main survey is n = 60000. Between ¢ and ¢ + 1 we select a sub-sample of 10000 units out
of the 60000 units. The units of this sub-sample participate in the cross-sectional validation
survey. The information we have consists of the observed flows for n — n” = 50000 units

and the observed flows and the cross-sectional misclassification probabilities for
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n” = 10000 units. We compute maximum likelihood estimates of the adjusted gross flows
using the theory of Section 3.2.2. For comparison reasons, we also include the conventional
estimator. Without loss of generality, the theory is illustrated for the 2-state model i.e.
Employed and Unemployed or Inactive. The convergence criterion for the EM algorithm is
§ =107*. Convergence was achieved within 58 iterations. The observed labour force gross
flows are estimated from the UK LFS (summer-autumn 1997). The matrix of
misclassification probabilities is estimated using the smoothed version of the Swedish re-

interview data and is given by

E U+N
R E (0.99 0.053
Q:U+N 0.01 0.947|

Table 3.9: Adjusted labour force gross flows (4-state model) when the validation sample is

selected by sub-sampling units from the main sample

Flow Observed Conventional (ICE) Maximum Likelihood (ICE)
E.E 0.716 0.7284 0.7270
E, U+N 0.025 0.0051 0.0054
U+N, E 0.032 0.0131 0.0134
U+N, U+N 0.227 0.2532 0.2542

3.5.1 Discussion on the Adjustments Derived from the Alternative

Estimators

The existence of measurement error, when estimating labour force gross flows, results in the
overestimation of the labour market mobility. The effect of adjusting labour force gross flows
is to increase the diagonal elements and decrease the off-diagonal elements of the unadjusted
gross flows matrix. Adjustments derived under ICE are more severe than those produced
when relaxing ICE. For example, a relaxation of ICE is provided by the unbiased margins
assumption. To see the effect of this assumption, one can compare the sum of the diagonal
adjusted flows when using the unbiased margins estimator (or the weighted unbiased margins
estimator) with the sum of the diagonal adjusted flows when using the conventional estimator
(or the weighted conventional estimator). The sum of the diagonal adjusted flows produced

under the former group of estimators is lower than the sum of the diagonal adjusted flows
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produced under the latter group of estimators. The same holds also when comparing the

constrained maximum likelihood estimator with the maximum likelihood estimator.

When incorporating the survey weights into the estimation process, the adjustments remain in
the same direction. However, it is of interest to investigate the impact of weighting.
Comparing the weighted with the unweighted observed flows, we note that in most of the
cases the weighted off-diagonal elements increase compared to their unweighted equivalents.
This seems reasonable. The UK LFS weights account for sampling attrition. Sampling
attrition is related to more volatile sample units i.e. units associated with a higher probability
of changing labour force status between ¢ and ¢ + 1. Therefore, the survey weights appear to

correctly modify the unweighted estimates.

3.6 Summary

In this chapter, we presented a model for adjusting gross flows estimates for
misclassification. The model is formulated in a missing data framework and under alternative
double sampling schemes. Maximum likelihood estimates are derived using maximum
likelihood estimation via the EM algorithm. A constrained maximum likelihood estimator
relaxes ICE and protects against the misspecification of the model assumptions. The model
has been extended to account for the existence of a complex survey design. This is achieved
by using the survey weights and the pseudo-maximum likelihood approach. Adjusted UK
labour force gross flows are derived using alternative point estimators and re-interview data.
Accounting for measurement error, results in estimating a less dynamic labour market. Use of
the maximum likelihood estimator offers some practical advantages over the use of the
conventional (moment-type) estimator. The current model assumes a non-differential
measurement error mechanism and a non-differential gross flows mechanism. In Chapter 4,
we extend the model to allow for heterogeneity in both mechanisms. In Chapter 5, we derive
variance estimators for the moment-based and the likelihood-based adjusted gross flows.
Finally, in Chapter 6 we contrast the likelihood-based approach with the moment-type

approach using Monte-Carlo simulation experiments.
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Chapter 4

Likelihood-based Inference for Gross Flows in the
Presence of Misclassification, Double Sampling and

Heterogeneity Associated with Discrete Covariates

4.1 Introduction

In Chapter 3, we presented a likelihood-based approach for adjusting gross flows for
measurement error. However, the underlying model assumes the existence of a homogeneous
measurement error and gross flows mechanism. It may be more realistic to assume that
respondents with different socio-demographic characteristics have different probabilities of
misclassification and different gross flows patterns. For example, younger respondents can be
regarded as being more volatile and more prone to misclassification than older respondents.
After giving some basic definitions, the model for adjusting gross flows for measurement
error (see Chapter 3) will be extended to allow for heterogeneity. The use of discrete
covariates implies that we account for heterogeneity by fitting the measurement error model
within the post-strata defined by these covariates. The constrained maximum likelihood
estimator and the pseudo-maximum likelihood (PML) estimator that allow for heterogeneity
are also presented. Since most of the theory in this chapter is derived by using a
straightforward extension of the theory in Chapter 3, the focus will be on applications. The
effect of introducing heterogeneity is examined by contrasting estimators that allow for
heterogeneity with estimators that ignore heterogeneity. The impact of measurement error on
summary statistics of the labour market activity and on the probabilities of transition for
different socio-demographic groups is also investigated. In the final sections, we discuss the
limitations of the post-stratification parameterisation and we sketch an alternative, more

flexible parameterisation.
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4.2 Definitions and Previous Work
We start by giving the following two definitions.

Definition 4.1

Assume a p X z cross-classification defined by p categorical variables with z levels each.

The misclassification mechanism is defined as non-differential if the following holds
pr (Y; =4,Y5, =7 | Y, =kY,, = Z) = g, ¥ groups defined by p X z. 4.1)

The assumption of non-differential misclassification states that the all groups defined by the

p X z cross-classification have the same proneness to error.

Definition 4.2

Assume a p x z cross-classification defined by p categorical variables with z levels each.
The gross flows mechanism is defined as non-differential if the following holds

pr(Yy =i,Yy,, = j) =11, V groups defined by p x 2. (4.2)

y Lt

The assumption of a non-differential gross flows mechanism states that the all groups defined

by the p x zcross-classification have the same gross flows pattern.

In the presence of cross-sectional validation information, the existing literature accounts for
heterogeneity by allowing ICE to hold within the groups defined by the p Xz cross-

classification. This is the so-called unit heterogeneity assumption since heterogeneity is

assumed to exist between units that belong in different groups. Let us assume that there are

/\ .
® groups defined by the p x z cross-classification. Denote by II the matrix of estimated

/\ -
observed transition probabilities, by @, the estimated misclassification matrix for group g
and by «, the fraction of sample units that belong in group g. The unit heterogeneity

estimator is defined by

-1

vec (1/—\1 ) 4.3)

@

> e, (0, 000,0)

A unit
vec {P J =
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This is a moment-type estimator that allows for heterogeneity. However, this is only in the
measurement error mechanism. Skinner and Torelli (1993) provide an expression for the bias
introduced when ignoring heterogeneity. Denoting by A\ the overall probability of correct

classification and by diag a matrix with elements only in the main diagonal and zeros

A
elsewhere, the bias of A when ignoring heterogeneity is given by

pias( i) - tr{

The authors suggest that ignoring heterogeneity will result in underestimating the overall

QH)RQ® - 6,0, ®0, )

g=1

diag (ﬁ)}. (4.4)

probability of correct classification or, equivalently, in overcorrecting for measurement error.
Unlike some of the methods that do not use validation information (see for example,
Pfeffermann, Skinner and Humphreys 1998), the unit heterogeneity approach does not allow
for heterogeneity in the gross flows mechanism. In the following sections, we present a more
flexible way of incorporating heterogeneity than the one that is proposed in a moment-based

framework.

4.3 Modelling Gross Flows in the Presence of Heterogeneity Induced by

Discrete Covariates

Stating the Assumptions and Formulating the Model

Assume a double sampling scheme under which a validation sample of n” units 1s selected
independently from the main sample of n units and from the same population as the main
sample has been also selected. This scheme implies that the main sample and the validation
sample do not share common units. The main survey is a panel survey and provides
information about the flows of people between r mutually exclusive states at ¢ and ¢+ 1.
On the other hand, the validation survey provides information about the cross-sectional
incidence of misclassification errors related to these states at ¢. Let us further assume that
both the validation sample and the main sample can be stratified in ® mutually exclusive

groups defined by p categorical variables with z levels each. The double sampling scheme
described by Tables 3.1 and 3.2 (see Chapter 3) is now defined for each of the ® groups. In

what follows, we define a category as a pair of states for which there is a flow so there are 7°

such flow categories. Denote by n,,n’ the number of sample units that belong in group g
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and cell 7y defined by the cross-classification of the observed with the true classifications in

the main sample and in the validation sample respectively. A superscript (x) is used to denote
unobserved quantities. Extending the likelihood function of the augmented data (3.2) to allow

for heterogeneity, we have that

2

T (Pigqijg )ng; ) (4' 5)

X

22
d 7 B8

@) =111 ) ¥ 11

g=1 i=1 j=1 g=1 i=1 j=I

5

The model described by the likelihood function (4.5) assumes the existence of both a
heterogeneous gross flows mechanism and of a heterogeneous misclassification mechanism.
The modél assumes that sample units in different groups have different misclassification and
gross flows patterns. Taking the logarithms on both sides of (4.5) and imposing the additional

constraint that

T‘2

Y P, =1 forfixed g, (4.6)

i=1

we obtain the following log-likelihood function

D rP-l |

1) =D 3 (n + iy )log B, +(ni), +n2, |log [1 -2k,

g=1 =1 =]

&
+ ZZZ(“ZZ*) + ’I’I,;z ) 1og<qijg )

=1 i=1 j=1

4.7)
The group-specific misclassification probabilities, g, , are unknown and are estimated using

the group-specific cross-sectional misclassification probabilities and the ICE assumption.
However, under this model ICE holds within groups. This assumption is equivalent to the
unit heterogeneity assumption that is also used in moment-based framework. The likelihood
function presented here does not incorporate the ICE assumption. After incorporating ICE,
we need to add the extra constraint that the sum of the cross-sectional misclassification

probabilities for a given true classification must add up to one. This implies that the final

number of group-specific parameters is 2r> —r — 1.

Estimation

The log-likelihood function of the augmented data is maximised using the EM algorithm. The

expectation step and the maximisation step are described below.
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E-step

Denote by DY the group-specific observed data from the validation sample, by D™ the
group-specific observed data from the main sample, by (%) the current EM iteration and by
O™ the vector of parameters in the (k) EM iteration. Taking the conditional expectation of
the augmented log-likelihood (4.7) given the observed data and the parameters from the

(h) EM iteration, the augmented log-likelihood is given by

o -1

El(eDf) | D", D",6"] = ZZ[ (s | D,0%) + B(ns5 | D™,6)[10g P,

g=l i=1

—l—[E( v

DY @(h)-%—E( % ‘DW)@(h))]log(l—i_iPig] (4.8)

=1

# S B | 7,0%)+ B(n? | 0,6 loga, )

g=1 i=1 j=1

The expectation step (E-step) can be performed using the following two results.

Result 4.1

Denote by n,,, the total number of sample units in the main sample and group g that make
transition j. The conditional expectations of the missing data in the main sample and group

g are estimated using the following expression

/\ AR ]/5@
( | D™, oW ) q”g k for fixed g. (4.9)
Ug /\(h) /\
Z ql]g
=1

It follows that

A( ® | pms, @(h> ﬁ(nz [Dmg,@(h)> for fixed g. (4.10)
J=1 ‘

Result 4.2

Denote by n,‘;’g the total number of sample units in the validation sample and group g that

belong in the k™ combination of the true and the fallible classifications (see Table 3.3). The
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conditional expectations of the missing data in the validation sample and group g are

estimated using the following expression

ARy AR

" P
f/\?( ;;o DY, o® ) = nkg Dij - /\ (h) for fixed g. (4.11)
ZZQW
It follows that
/\ v(*) 'Dvg @(h é\j v(x) DY, @(h for fixed g. (4.12)
Mg

=1

In Results 4.1 and 4.2, the parameters (:Az;hg) need to be replaced by the products of group-

specific cross-sectional misclassification probabilities. The proofs of Results 4.1 and 4.2 are

identical to the proofs of Results 3.1 and 3.2.
M-step and Convergence of the EM Algorithm

The maximisation step is performed numerically using a Newton—type algorithm. However,
unlike the model that assumes homogeneity, the maximisation step is now replaced by a

series of maximisation steps i.e. one for each group ¢ . For a fixed group g, the convergence

criterion we use is the I’-norm of the vector of parameters obtained from two successive

iterations of the EM algorithm defined by

o -] = 5 (0 -5 e
i=1

Using the previously described model, we obtain group-specific maximum likelihood
estimates for the adjusted gross flows and for the misclassification probabilities. However, in
many cases we are interested in obtaining overall adjusted gross flows. Combining the group-

specific maximum likelihood estimates and assuming that a, is fixed, we derive overall

adjusted gross flows using the following expression

vec(B) = iagvec(fag). (“.14)
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Extending the Heterogeneity Model to Account for the Complex Survey Design

The heterogeneity model can now be extended to account for the existence of a complex
survey design. This can be achieved using the survey weights and the pseudo-maximum

likelihood approach (see Section 3.4.2). Denote by N2, N**° the number of population units

g >~ g
that belong in group ¢ and cell 4j defined by the cross-classification of the observed with the
true classifications. The expectation step (E-step) is performed using the following two

results.

Result 4.3

Denote by w,,, the survey weights for sample unit £, which belongs in sub-population g and
performs transition j, by N, the size of sub-population g and by 7, the size of group g in
the main sample. The conditional expectations of the missing data in the main sample and

group ¢ are estimated using the following expression

Z Wejg A (k) ]/5@

B(Ng | D™,00m) = g | £ ELRL I ) (4.15)

ijg ) /\ (h

g
N
’ qu

It follows that

-
()

g

( N(*’ | D™ @(h)Pml> ( E(N® | D™ @(h)Pml) (4.16)

L.
R

Result 4.4

Denote by w,,, the survey weights for sample unit ¢ in the validation sample, which belongs
in sub-population ¢ and in the £* combination of the true and the fallible classifications, by
N, the size of sub-population g and by n; the size of group g in the validation sample. The

conditional expectations of the missing data in the validation sample and group g are

estimated using the following expression

n’

Z Wekg (k) J/\D(,h)

(NU@ | D, 00 = | Dyg 78 | (4.17)

iig AR /\ h)

R DN
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It follows that

B(Nx | D7,00m) = S B (N | Do) (4.18)

yg
=1
The proofs of Results 4.3 and 4.4 are identical to the proofs of Results 3.5 and 3.6.

Extending the Constrained Maximum Likelihood Estimator to Account for Heterogeneity

Induced by Discrete Covariates

The constrained maximum likelihood estimator (see Section 3.3) can be modified to account
for the existence of heterogeneity. The stratification assumed here defines ® gross flows
matrices. The rows and columns of these matrices represent marginal constraints that need to
be respected by the adjusted gross flows. Following the same approach as in Section 3.3,

these constraints are imposed implicitly via the estimated likelihood approach. More
specifically, after estimating group-specific misclassification probabilities aijq under the first

and the second set of constraints, in the third step we impose the unbiased margins constraint

by fixing g, at their maximum likelihood values. The log-likelihood defined by (4.7) will
now depend only on 7, and is maximised using the EM algorithm and the following two

results:

Result 4.5

The conditional expectations of the missing data in the main sample and group g are

estimated using the following expression

ACC)

A
qw (t 1) ) (t) Pzg ' (4.19)

AC) NG
qu (t+1) gy (t)Pzg

i=1

A( o (Dmy @(h)>
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Result 4.6

The conditional expectations of the missing data in the validation sample and group ¢ are

estimated using the following expression

ALY ALC)

HERR LS it (4.20)
ALO AL
quw (t + 1) QZ]g (t) PZQ

A( ) leg @h)) 11

1]9
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The data constraints n, ,, are derived from the main sample and group g . The data constraints

n,, are derived from the original (i.e. not raked) cross-sectional validation sample and group

g.

4.4 Adjusted UK Labour Force Gross Flows that Allow for Heterogeneity

The measurement error model that allows for heterogeneity is used to derive labour force
gross flows adjusted for measurement error. The observed labour force gross flows are
estimated by utilising the common UK LFS sample between summer-autumn 1997. Due to
the absence of a UK validation survey, we use a smoothed version of reconciled validation
data from the Swedish (October 1994 — April 1995) LFS re-interview programme (see also
the applications in Chapter 3). The joint distribution pr (Y: =1,Y, = k) for group g,
estimated from the smoothed Swedish validation sample, is raked to corresponding UK
group-specific marginal labour force estimates. This is achieved using the procedures
described in Section 3.4.3. We present three applications. In the first application, we employ
multinomial logistic models in an attempt to investigate the existence of heterogeneity in the
gross flows and/or in the measurement error mechanism. The other two applications illustrate
the methodology for adjusting labour force gross flows for measurement error. Both weighted

and unweighted analysis is considered.

Application 4.1: Detecting the Existence of Heterogeneity in the Misclassification and/or in

the Gross Flows Mechanism

The simplest way to detect heterogeneity is to fit multinomial logistic models. If respondents
that belong to different groups are associated with different transition and/or misclassification
probabilities, we will assume that heterogeneity exists. We model the probability that a unit

of the main sample £ makes a transition from state i at ¢ to state j at ¢ + 1, compared to a
baseline probability of transition, as a function of p categorical variables. This model is
described by

pr(Yy =i,Y5,, = j)

=a'X, (i 5. 421
(Ve =1Yan=7) - (@)= () D

log
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We further model the probability that a unit of the validation sample ¢ is classified in state 3

at ¢t when he/she truly belongs in state %, compared to a baseline probability of

misclassification, as a function of p categorical variables. This model is given by

pr (Y, =1Y, =k)
p’l“(YQ* :ri/,}/; — k/>

log =pB'X, (ik)=(i't). (4.22)

In (4.21) and (4.22), X denotes the design matrix and «,3 are the vectors of parameters to
be estimated. Note that there is no requirement for the two models to include the same set of
covariates. We fit the models (4.21) and (4.22) using the common UK LFS sample between
summer-autumn 1997 and the smoothed version of the Swedish validation dataset
respectively. Both modelling exercises do not account for the complex survey design under
which the data have been collected. For the purposes of this application, we include in the
models two categorical variables with two levels each i.e. gender (1="Males, 0="Females”)
and age (1="16-227, 0="23-64"). The reason for using this particular partitioning of the age
variable is because we are trying to maximise the dissimilarity between the age groups.

However, one can use a more detailed partitioning.

Table 4.1: Anova table from modelling the unadjusted probabilities of transition

Model Deviance Change in Degrees Likelihood Ratio
(Terms added sequentially) of Freedom Statistic*
Null 117611.8 8
Gender 116017.6 8 1594.20
Age 1138724 8 2145.20

* X ar005 = 15.50, X% aom = 20.09

Table 4.2: Parameter estimates from modelling the unadjusted probabilities of transition-

Multinomial logistic model with age and gender as covariates

Transition Intercept Gender Age
EU -4.69 0.19 1.31
EN -3.92 -0.50 1.78
UE -4.16 0.01 1.73
[819) -3.72 0.51 0.96
UN -4.70 -0.06 1.75
NE -3.85 -0.56 1.74
NU -4.33 -0.40 1.47
NN -1.05 -0.80 0.25

The parameter estimates for gender and age, reported in Table 4.2 and in Table 4.4, refer to
young males. In comparison to the empty model, the anova table (Table 4.1) indicates that the

inclusion of age and gender significantly improves the fit of the model that describes the
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probability of transition between the different labour force states. This implies the existence
of heterogeneity in labour force gross flows. For example, the odds of an EU transition for

young males are 3.7 times the odds of an EU transition for older males.

Table 4.3: Anova table from modelling the cross-sectional incidence of error

Model Deviance Change in Degrees  Likelihood Ratio
(Terms added sequentially) of Freedom Statistic*
Null 16841.20 8
Gender 16617.46 8 223.74
Age 16287.86 8 329.60

* X28 4,005 — 15.50 5 XQg 47,001 — 20.09

Table 4.4: Parameter estimates from modelling the cross-sectional incidence of error -

Multinomial logistic model with age and gender as covariates

Misclassification Pattern * Intercept Gender Age
EU , -5.55 0.16 1.73
EN -5.36 -0.64 2.49
UE -6.94 -0.39 1.48
UU -3.29 0.31 1.36
UN -6.29 -0.75 1.75
NE -4.78 -0.005 0.53
NU -4.80 -0.17 -0.44
NN -1.01 -0.71 0.31

*The first letter refers to the true classification while the second letter refers to the classification that contains
measurement error i.e. diagonal elements (EE,UU,NN) indicate correct classification and off-diagonal elements
indicate misclassification.

In comparison to the empty model, the anova table (Table 4.3) indicates that the inclusion of
age and gender significantly improves the fit of the model that describes the cross-sectional
misclassification process. This implies the existence of heterogeneity in the measurement

error mechanism. For example, the odds of young respondents to be classified as inactive (N)

when they are truly employed (E) are 12 times the odds of older respondents.

Application 4.2: Adjusting UK Labour Force Gross Flows for Measurement Error in the

Presence of Heterogeneity-Unweighted Analysis

Having investigated the existence of heterogeneity in the measurement error and in the gross
flows mechanism, we now utilise the methodology derived in this chapter to adjust labour
force gross flows for measurement error. The estimators considered here are the following:
The conventional non-heterogencous estimator (Section 2.2.2.1), the unit heterogeneity
estimator (Section 4.2), the non-heterogeneous maximum likelihood estimator (Section 3.2)

and the maximum likelihood estimator that allows for heterogeneity (Section 4.3). We allow
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for heterogeneity according to age, (1="16-22”, 0="23-64") and gender (1="Males,
0="Females”). The convergence criterion for the EM algorithm is § = 107*. Table 4.5
presents adjusted for measurement error labour force gross flows, using the alternative

estimators, and contrasts them with the observed (unadjusted) labour force gross flows.

Table 4.5: Adjusted UK labour force gross flows for summer-autumn 1997 using a range of

different estimators — Unweighted analysis

Flow Observed  Conventional Non- Unit MILE Non- MLE
Flows Heterogeneous Heterogeneity  Heterogeneous  Heterogeneity
(ICE) (Age,Gender) (ICE) (Age,Gender)
EE 0.716 0.7420 0.7415 0.7410 0.7323
EU 0.009 0.0028 0.0030 0.0033 0.0043
EN 0.016 0.0024 0.0027 0.0026 0.0065
UE 0.016 0.0102 0.0104 0.0106 0.0120
[3]3] 0.027 0.0292 0.0291 0.0291 0.0292
UN 0.009 0.0033 0.0033 0.0036 0.0044
NE 0.016 0.0026 0.0029 0.0028 0.0067
NU 0.010 0.0045 0.0045 0.0050 0.0057
NN 0.181 0.2030 0.2026 0.2020 0.1989

Table 4.6: Anova table from fitting the measurement error model

Model Log (L) Likelihood Ratio Statistic*
Null -89199.30
Gender -87686.68 3025.24 (14)*
Gender * Age -84767.11 5839.14 (28)*

*In brackets we report the change in the degrees of freedom as we move from the simplest model towards the

more complicated model. Also, X%, o0 = 29.14, X% ..o = 48.28

Table 4.6 indicates that the inclusion of age and gender significantly improves the fit of the

measurement error model.

Application 4.3: Adjusting UK Labour Force Gross Flows for Measurement Error in the

Presence of Heterogeneity-Weighted Analysis

We now derive adjusted UK labour force gross flows between summer-autumn 1997 using
the alternative point estimators and the UK LFS weights. The survey weights implicitly
adjust for sampling attrition. The estimators considered in the current application are the
following: The weighted non-heterogeneous conventional estimator (Section 3.4.5), the
weighted estimator that allows for heterogeneity (i.e. the weighted version of estimator
presented in Section 4.2), the non-heterogeneous pseudo-maximum likelihood estimator and

the pseudo-maximum likelihood estimator that allows for heterogeneity (Sections 3.4.2 and
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4.3 respectively). We allow for heterogeneity according to age and gender. The convergence
criterion for the EM algorithm is § = 107*. Table 4.7 presents adjusted for measurement
error labour force gross flows, using the alternative estimators, and contrasts them with the

weighted observed (unadjusted) labour force gross flows.

Table 4.7: Adjusted UK labour force gross flows for summer-autumn 1997 using a range of

different estimators — Weighted analysis

Flow Weighted Weighted Weighted PML PML
Observed Conventional Unit- Non-Heterogeneous Heterogeneity
Flows  Non-Heterogeneous Heterogeneity (ICE) (Age,Gender)
(ICE) (Age,Gender)
EE 0.705 0.7312 0.7307 0.7304 0.7245
EU 0.010 0.0038 0.0039 0.0041 0.0051
EN 0.019 0.0049 0.0052 0.0052 0.0081
UE 0.017 0.0113 0.0114 0.0114 0.0122
Uu 0.032 0.0349 0.0347 0.0347 0.0343
UN 0.010 0.0042 0.0042 0.0044 0.0052
NE 0.015 0.0005 0.0008 0.0015 0.0038
NU 0.010 0.0046 0.0046 0.0047 0.0057
NN 0.182 0.2046 0.2045 0.2036 0.2011

4.4.1 Discussion of the Adjustments Derived from the Alternative

Estimators

The effect of adjusting labour force gross flows for measurement error is to increase the
diagonal elements and decrease the off-diagonal elements of the unadjusted gross flows
matrix. Adjustments derived when accounting for heterogeneity are less severe than
adjustments derived when heterogeneity is ignored. To illustrate this, one can compute the
sum of the off-diagonal adjusted gross flows derived from the alternative point estimators.
For example, in Table 4.5 the sum of the off-diagonal gross flows derived from the
conventional non-heterogeneous estimator is 0.0258. The same sum computed when using
the conventional unit heterogeneity estimator is 0.0268. Similarly, for the non-heterogeneous
maximum likelihood this sum is 0.0279 and for the maximum likelihood estimator that
accounts for heterogeneity the sum is 0.0396. These results are consistent with the
assumption that the effect of ignoring heterogeneity, when heterogeneity exists, results in
over-adjusting gross flows for measurement error. Unlike the unit heterogeneity estimator
that allows for heterogeneity only in the measurement error mechanism, the maximum

likelihood estimator allows for heterogeneity both in the measurement error and in the gross
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flows mechanism. This explains the larger impact of the adjustments derived when using this

estimator.

4.4.2 The Effect of Misclassification on Inference Based on Labour Force

Gross Flows

Labour force gross flows are widely used by social scientists and economists for research and
policy purposes. In this section, we analyse the effects of making inference based on the
unadjusted as opposed to the adjusted labour force gross flows. As a summary statistic, we

use the estimated probabilities of transition from state ¢ to state j between ¢ and ¢ +1.

More specifically, we compute two sets of probabilities. Firstly, we determine the unadjusted
probabilities of transition by modelling the unweighted observed labour force gross flows.
The model we employ is a multinomial logistic that includes the main effects according to
age and gender and the interaction term between these two covariates. In addition, we use the
adjusted probabilities of transition derived from the maximum likelihood estimator that
accounts for heterogeneity (see Table 4.5). The reason for including the interaction term in
the multinomial logistic model is because fitting the measurement error model within the
post-strata is equivalent to a multinomial logistic model that includes all possible interaction
terms. To quantify the effect of measurement error, we compute ratios of estimated transition
probabilities, before and after adjustment is applied, for different age and gender groups.
Moreover, we investigate the effect of measurement error on two widely used summary
statistics of the labour market activity. These are the probability of a successful exit from
unemployment and the probability of a successful exit from inactivity for different age and

gender groups. These probabilities are defined respectively by

(4.23)

pT(Yt = U)Y;H = E>
Y, =U,Y,, = E)=
p?“( ¢ U’ i E> p7"<Yt:U7Y;+1:E)+pT(Yt:U’Y;H:NY

pT<Yt :N,Y;H :E)

. (4.24)
pr(Yt =NY,.,= E)—i—p’r‘(Y; =NY, = U)

pr(¥, = NY,, = E)=
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Table 4.8: Ratios of probabilities of transition for young males vs. old males

Flow Ratios based on the unadjusted labour Ratios based on the adjusted labour force
Sforce gross flows (multinomial logistic gross flows obtained from the MLE with

model with age and gender) heterogeneity according to age and gender
EU 2.55 3.29
EN 5.11 12.4
UE 4.66 6.94
UN 4.00 16.5
NE 5.00 12.2
NU 3.29 13.5

Table 4.9: Ratios of probabilities of transition for young females vs. old females

Flow  Ratios based on the unadjusted labour  Ratios based on the adjusted labour force gross
Jorce gross flows (multinomial logistic flows obtained from the MLE with
model with age and gender) heterogeneity according to age and gender
EU 3.16 0.63
EN 4.00 3.45
UE 3.72 3.12
UN 4.66 16.7
NE 3.80 2.81
NU 3.22 5.47

Table 4.10: Ratios of probabilities of transition for young males vs. young females

Flow Ratios based on the unadjusted labour Ratios based on the adjusted labour force
force gross flows (multinomial logistic gross flows obtained from the MLE with

model with age and gender) heterogeneity according to age and gender
EU 1.21 4.33
EN 0.82 1.16
UE 1.36 1.56
UN 1.00 1.16
NE 0.79 1.18
NU 0.80 0.86

Table 4.11: Ratios of probabilities of transition for old males vs. old females

Flow Ratios based on the unadjusted labour Ratios based on the adjusted labour force
Jorce gross flows (multinomial logistic gross flows obtained from the MLE with

model with age and gender) heterogeneity according to age and gender
EU 1.50 0.83
EN 0.64 0.32
UE 1.09 0.70
UN 1.16 1.17
NE 0.60 0.27
NU 0.77 0.35
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Table 4.12: The effect of measurement error on the probability of a successful exit from

unemployment
Group Probability of successful exit from Probability of successful exit from
' unemployment based on the unemployment based on the adjusted
unadjusted labour force gross flows labour force gross flows obtained
(multinomial logistic model with age  from the MLE with heterogeneity
and gender) according to age and gender

Young males 0.66 0.64
Young Females 0.59 0.57
Old males 0.63 0.81
Old females 0.65 0.88

Table 4.13: The effect of measurement error on the probability of a successful exit from

Inactivity
Group Probability of successful exit from Probability of successful exit from
inactivity based on the unadjusted inactivity based on the adjusted
labour force gross flows labour force gross flows obtained
(multinomial logistic model with age  from the MLE with heterogeneity
and gender) according to age and gender

Young males 0.66 0.51
Young Females 0.66 0.44
Old males 0.56 0.55
Old females 0.62 0.61

The previous results indicate that measurement error can have a significant impact on
inference based on labour force gross flows. Two key characteristics emerge from this
analysis. Firstly, the probability of transition of one group compared to another can be
underestimated or overestimated but remain in the same direction when the unadjusted flows
are used. For example, based on the unadjusted flows, the probability of transition from
unemployment to inactivity for young males is 4 times higher than the same probability for
old males. Based on the adjusted flows, young males have 16.5 times the probability of old
males for making a transition from unemployment to inactivity. An example where the
probability of transition is overestimated when using the unadjusted gross flows is in the
transition from inactivity to employment for young females compared to old females. A
second, more important consequence of measurement error is that in some cases there is a
complete reversal in the direction of inference. The most obvious case is in the probability of
transition from employment to unemployment for young females compared 'to old females.
Based on the unadjusted gross flows, young females have 3.16 times the probability of older
females for making a transition from employment to unemployment. Based on the adjusted
gross flows, young females have 0.63 times the probability of older females for making the

same transition. Other examples, where reversals in the direction of inference occur, are
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reported in Table 4.11. Observing further the results reported in Table 4.10, one can say that
in most of the cases, based on the adjusted gross flows, young males are more volatile than
young females. Based also on the adjusted gross flows and Table 4.11, in most of the cases
old females are more volatile than old males. Based on the unadjusted flows, the volatility of
young males is underestimated relatively to the volatility of young females and the volatility

of old females is underestimated relatively to the volatility of old males.

Measurement error appears also to have a distorting effect on the summary statistics of the
labour market activity. Based on the unadjusted labour force gross flows, the probability of a
successful exit from unemployment is seriously underestimated for the less volatile groups
(old males and old females). For the more volatile groups (young males and young females),
the same probability is slightly overestimated. Poterba and Summers (1986) report similar
findings in the context of the CPS. Based also on the unadjusted labour force gross flows, the
probability of a successful exit from inactivity is overestimated for all different groups with

the most volatile groups being affected more.

4.5 The Limitations of the Current Parameterisation of the Measurement

Error Model and Extensions

In this last section, we discuss some of the limitations of the current parameterisation of the
measurement error model that allows for heterogeneity and we sketch an alternative

parameterisation.

Under the current parameterisation, the model parameters are estimated by fitting the model
within the post-strata defined by the discrete covariates. This is equivalent to a logistic
parameterisation that includes interaction terms. Let us assume that we employ two discrete
covariates with two levels each. Consequently, there are four different post-strata formed and
56 parameters estimated by fitting the measurement error model within each of the post-
strata. An equivalent multinomial logistic parameterisation is as follows: (a) A multinomial
logistic model for modelling the probability of transition that includes the two main effects
and the two-way interaction (32 parameters), (b) a multinomial logistic model for each
column of the misclassification matrix that includes the two main effects and the two-way

interaction (24 parameters). However, one may wish to include, for example, only main
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effects in the model or include a different set of covariates for modelling the transition and
the misclassification probabilities. An alternative, more natural solution is offered by re-
expressing the parameters of the measurement error model using a logistic formulation. For
exp ( B'X )

—————*— where X denotes the design matrix and [ is the vector of
1+ exp (ﬁ X )

example, P, =

parameters to be estimated.

A second limitation of the current parameterisation is that it allows for heterogeneity only via
discrete covariates. Unlike this model, latent Markov models can allow for heterogeneity
according to discrete and continuous covariates (Humphreys 1996). In addition, the small
sample size of the validation survey implies sparseness of data when attempting to estimate

more complicated models (i.e. with many categorical variables).

Given appropriate validation data, one possibility for extending the measurement error model
is to include as a covariate the type of response i.e. “self” or “proxy” response. Relevant
theory (O’Muircheartaigh 1991) suggests that the type of response is highly related to the
measurement error problem. Unfortunately, we were not able to include the response status
variable into our analysis because of insufficient data. This is due to the low percentage of
proxy response in the Swedish LFS (around 3%) and the small sample size of the Swedish
validation survey. Finally, one can view the rotation group bias as a misclassification
problem. If rotation group bias exists, the misclassification mechanism can be expected to be
differential with respect to rotation group. By including rotation group as a covariate in the

heterogeneity model, one can adjust also for this source of bias.

4.6 Summary

The analysis presented in this chapter indicated that heterogeneity is likely to exist both in the
gross flows and in the measurement error mechanism. The model presented allows for
heterogeneity in both mechanisms and can be considered as more realistic than the model that
ignores heterogeneity or the moment-based approach that assumes heterogeneity only in the
measurement error mechanism. The effect of ignoring heterogeneity, when heterogeneity
exists, can result in an overcorrection for measurement error. For example, we show that

ignoring heterogeneity, when correcting UK labour force gross flows for measurement error,
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results in estimating a less volatile labour market than the real one. A further result concerns
the effect of measurement error on inference based on gross flows. Our analysis indicates that
ignoring the measurement error problem can have a severe effect, which in some cases can

result in a complete reversal of the direction of inference.
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Chapter 5

Variance Estimation for Gross Flows Estimates in

the Presence of Misclassification and Double

Sampling

5.1 Introduction

Having discussed alternative approaches for point estimation, we now turn to development of
variance estimators for the adjusted gross flows estimates. Generally speaking, variance
estimation in a double sampling framework must account for the extra variability introduced
by the smaller size of the second phase sample. Literature on variance estimation for cross-
sectional estimates in the presence of misclassification and double sampling includes

Tenenbein (1972), Selen (1986) and Greenland (1988).

The structure of this chapter is as follows. In Section 5.2, we develop a variance estimator for
the conventional (moment-type) estimator (see Section 2.2.2.1). In Section 5.3, we develop
variance estimators for alternative moment-type estimators that were presented in Section 2.4.
In Section 5.4 variance estimation for the maximum likelihood estimator, when the validation
sample is selected independently from the main sample and from the same target population
(see Section 3.2.1), is considered. We further present a procedure for estimating the variance
of the adjusted cross-sectional estimates when using maximum likelihood estimation via the
EM algorithm (see Section 2.2.1.3). Variance estimation for the quasi-likelihood adjusted

estimates (see Section 2.2.1.4) is discussed in Section 5.5. In the final section, the theory is

illustrated via three applications.
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5.2 Variance Estimation for the Conventional (Moment-Type) Estimator of

the Adjusted Gross Flows

The conventional estimator, under ICE, is given by

1

A st A-1 A (A-1\T
vec[P’]:vecQ H(Q] : (5.1)

In order to simplify the notation, we drop the parenthesis next to @ that is specific of the time

periods to which the misclassification matrix refers. A variance estimator for (5.1) can be
derived by employing the ¢-method (Bishop, Fienberg and Holland 1975, Agresti 1990).

A st
This involves expanding wvec (P ] in a Taylor series around its true value vec(P). Let

1T

# (] e8] 8

AAA A D AN A . . .
0= (qu,qm,q31,...,q,r,,Hn,Hm,IIm,...,HW). Recall that ¢, denotes the misclassification

vec represent a 7> x 1 vector of non-linear functions of

probabilities and IT; denotes the observed transition probabilities between ¢ and ¢ + 1. Note
also that we now distinguish between the subscripts [, for reasons that will become apparent

later in this chapter. However, both subscripts refer to the observed classification at ¢.

A st
Expanding vec (P ] around its true value using Taylor series, we have that

o dvec|Q ' I1 (Q‘1>T
8 A YT TXT r
vec|P (@) ~ vec[P(©)]+ V, (@-— @),V@ = 50 |@=é : (5.2)
It follows that
1 ()T
v . Owvec|Q) Tl;IT (Q )
vec|P (@) —vec|[P (©)] & V, (@— @),Ve = ) = Iezé . (5.3)
Taking the variance operator on both sides of (5.3), we have that
st A A T
Var {vec P (@)J} ~ VVar (@) (Vo) - (5.4)

140



In order to estimate (5.4), we need to evaluate the Jacobian matrices Vg, (V@)T and

A
estimate the covariance matrix Var (@) In the later case, we need to estimate the following
components: (a) the variance-covariance structure of the unadjusted estimated probabilities of
A
transition Il;, (b) the variance-covariance structure of the estimated misclassification

A
probabilities @ik and (c) the covariance structure of sz,c/}ik 1,7,k = 1,2,...r. Without loss
of generality, we focus our interest on the case that » = 3, 4, 7,k,{ = 1,2,3 . This is due to our

interest in estimating labour force gross flows that are frequently described by a 3 x 3 gross

flows matrix. For simplicity, we denote Var (é) by ¥. When r =3 % is described by a

18 x 18 matrix whose general form is given below

A

Var (@11) -~ Cov <au, 833> Cov (‘/}117 I/—\Iu) <+ Cov (@11, H33)

A

000(83374/}11) Var(@as) Cov(asmﬁll) 00'0(333,1133)
2= A A A A A AA ’
COU(Hu,qn) CO’U(H11,(]33) VCN‘(HM) COU<H11,H33)

A A A A AA A

Cov (H33, qn) - Cov (Hss, q33) Cov (Hag, Hn) “ee Var (H33>

The upper left block of X represents the covariance matrix of the estimates of the elements of
the misclassification matrix, the upper right block and the lower left block represent the
covariance structure between the estimated unadjusted probabilities of transition and the
estimated misclassification probabilities and the lower right block represents the covariance

matrix of the estimated unadjusted probabilities of transition.

Variance-Covariance Structure of the Unadjusted Estimated Probabilities of Transition

Result 5.1

Under simple random sampling and taking also into account that the sample size of the main
sample is fixed, we can regard the cells of the observed gross flows matrix as multinomial

proportions. Ignoring the finite population correction, the covariance matrix of the elements
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of the unadjusted gross flows matrix is estimated using standard results for the variance of

binomial random variables as follows:

A A
N 7 (1 —Hz]-)
firff) = L)
« n (5.5)
A [A A .Jﬁ~ﬁ*ﬂ
Cov (sz,Hz*j‘) = (b) = (l*j*>.
! n

Substituting (5.5) into lower right block of X, we obtain an estimate for the covariance

matrix of the estimated unadjusted probabilities of transition.

Variance-Covariance Structure of the Estimated Misclassification Probabilities

Denote by n” the size of the validation sample and by 7}, the number of sample units that are

observed in state ¢ at ¢ when they truly belong in state k. The estimated misclassification

probabilities are defined by g, = —rn—””—— While n’ = ZZnZ; can be considered as fixed,

v i=1 k=1
T

1=1

T
. A . . .
an’z must be considered as a random. Thus, g, is defined as a ratio of random quantities.

j=1
Consequently, in the computation of the variance-covariance structure of the misclassification

probabilities, we must take into account an extra level of non-linearity introduced by the fact
that both the numerator and denominator of g, are random quantities. Therefore, we need to

make a second application of the § -method.

Denote by @ the misclassification matrix estimated from the validation sample. Let
A* Ax AF
Q1O ||=I/ @],...,]‘;2 ©

non-linear functions of é . Applying the delta method to wvec

A* T
]

© = (n/), N1, My, ...,ne) and vec be the 7> x1 vector of

/8]

we derive the

3

following

vec

A 5} <}
~ vec[Q (@*)] +V, {@ — @*), Ve*:_le_%[_gg__)l ]@*zé* - (5.6)

/)
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It follows that

Taking the variance operator on both sides of (5.7), we obtain the following

Q{é*]” ~ V Var [é*](v@*)T. (5.8)

Var {vec

T
In order to estimate (5.8), we need to evaluate the Jacobian matrices Ve*, <V9*) and the

A *
covariance matrix Var (@ ] Under simple random sampling and taking into account that the

sample size of the validation survey is fixed, we can regard n; as multinomial counts.

Ignoring the finite population correction, the required covariance matrix can be estimated as

follows:

A A A
Var(n},)=n"Pa (1 — Pik)
(5.9)
A AA . w
Cov (nf,h,n:’k) = —n" Py Py (k) = <z’ k )

It remains to evaluate the Jacobian matrices V. involved in the second application of the

delta method. These matrices are evaluated using the expressions below

I' v v v v
7 n n n
0 11} 0 11} 0 11} 0 li]
YS! L U S
v v Y v
on} ony, Ong, Ong,
v v v v
1, n n n,
0 2?} 0 2:} 0 21} 0 22
US 7, n, YA
v v v v
Vg =| Ong ony, Ong, Ong,
v v kil v
n n n n
5{ 3?)] 8[ 3?}} 6{ 33] a{ 3?)]
UE Us Ux UE
v k) kil v
ony Oy, Ony Ong,

and
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“;)1 +”§1 _lnfl _’nfl 0
(rfy gy i) (i ) ()
_1’7;1 77;1 +T’§1 _ngl 0
(rfy gy ) () (A )

(5.10)

Ty 7 2
(s 45y 70

]
Substituting (5.9) and (5.10) into (5.8), we obtain an estimate for the covariance matrix of the

estimated misclassification probabilities.

Covariance Structure between the Estimated Unadjusted Transition Probabilities and the

Estimated Misclassification Probabilities

JAY
The remaining part, in estimating Var (6) , is to evaluate the covariance structure between the

unadjusted estimated transition probabilities and the estimated misclassification probabilities

. AT
ie. Cov (sz,qm>,
We distinguish two cases:

(a2) a double sampling scheme under which the misclassification probabilities are
estimated either via an internal validation sample that is selected independently from
the main sample and from the same target population or via an external validation

sample. For this case, it is reasonable to assume that
A A
Cov(qik, sz) =0. (5.11)

(b) a double sampling scheme under which the misclassification probabilities are
estimated via an internal validation sample that is selected by sub-sampling units

that already participate in the main survey. For this case, we assume that

007)(31‘1;, ﬁh) = Cov r—nzl”——,ﬁj— = 0. (5.12)

v n
E : T
i=1
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In order to derive variance estimates for the second case, we need to estimate the covariance

A A
terms Cov (qik’ Hg) .

Lemma 5.1
An approximate expression for the expectation of a function ¢(X,Y) of two random
variables X,Y using a Taylor’s series expansion around (fiy, 4ty ) is given by

15 16
EMXWNﬂ%MWQ@w@YMWWWW*ﬁgﬂXWmMWW@

2 (5.13)
+ XY Cov(X,Y).
28 /T L, Go(257)
Proof
Proof of this Lemma can be found in Mood et al. (1963 p.181).
(1

Result 5.2

Let X,Y,A denote three random variables and n is fixed. An approximate expression for

Cov [—)g,-é] is given by
Y n

X A) 1 B,
Cov[?,;] ~ E(Y) {OOU(A,X) %) ) Couv(A,Y)]. (5.14)

Proof
We start the proof by expanding the covariance term of interest using the standard definition

for the covariance between random variables i.e.

0 Y Y

oo )-8} ool o] o

We evaluate the different components of the expression above using Lemma 5.1. More

: . AXY) .. . : AX
specifically, we approximate F BT utilising the Taylor series expansion of =7 around

( Py Moy 1o A). This Taylor series expansion is given below
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2

1 & . 10
E[g(X,Y, A)| =~ g(1 /J,A)+55? d(X Y, 4, Var(Y) e (XY, A) |, Var(X)

10 o
_*__5——2‘ g(X’ Y’ A) ‘HX)#Y):“A VCL?”(A) + (93:83; g<X’ Y7 A) |#x,uy,#A OOU(X’ Y)
o ok
+&E8a 9(XY A Cov( X, A) + y 9 XY, A |, Cou(Y, A).
Tt follows that

E[g(X,Y, 4)| ~ Pl ; 2xbia o (v) — 24 Cov(X,Y) + L cou(x, 4) = £ Cov(A,Y).
P o oy hy Py
(5.16)

Next, we approximate F {—‘;g] using a Taylor series expansion of —‘;g around (,LLX, [y ) 8s

follows
10° 1 9°
E[g(X,Y)] ~ g(uX,,uY) 6 —g(X, Y) . Var(Y)+§—a-2—g(X Y) \H oy Var(X)+
82
8x8yg(X’Y) \HNY Cov(X,Y).
It follows that
Elg(X,Y)]~ P4 = L2y o (v) — 1 cou(x,7). (5.17)
py 2 Py

Substituting expressions (5.16) and (5.17) into (5.15), we derive the following

Pxbla | = L 2xta yry, (Y)——/:L—AQ—OO’U(X,Y)—*‘

XA] 1
B 2y iy

Cov [— —
Y

n

i—Cov(X,A)——“—XQ—Cov(A,Y)* Fixta _EQ’MXQLA Var(Y)-!—i%—Cov(X,Y)}.
Py [y Ly 2 Iy Ly

It follows that

L cov(x,4) 2 Con(4,)| =

Hy /J’Y

C’ov[—X; é] ~ 1
Y

i

Cov(X,A)— Ex 0oy (A,Y)} :
Hy

n T fly
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Finally,

Cov[ ’n]wn ( l)[CO’U(AX,A) ( )OO’U(A,Y) . -
Result 5.3

Let X =n,,Y = Zn;;,A = ny, be three random variables and 7 fixed. Using Result 5.2,

i=1

A .
an approximate expression for Cov (8%7 sz) is given by

Cow ng M| L C’ov(n;,nlj) _ MOO’U[TLH,ZTL;] .

i=1 P i=1

i=1

An estimator for the covariance term of interest is given by

A A
ju Ny * * * E n’;}" E Ty
CAOU rnzk ’_IL %__lr______ n”};\T(Ygt — i,ng — j,yét = Z,Y& = ]{;)—__(___.k_)_.v__<_l'7_)
n, " onE|S e "
A A A A A
_"A—T—L)_n W(Yét:Z>Y£t+1:-7>Y€t:k)— n’ ] —Z n’ ]
E n;;c] I=1
i=1
(5.18)
Proof
We start the proof by evaluating Cov (n;};, nlj>
Cov(nfk,nlj): E(nfk,nl])—E(n;)E(nlJ) (5.19)
We define the following indicator variables
1 if individual € has status ik 1 4f individual £ has status [
I e z] ;7 =
¢ |0 otherwise |0 otherwise
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At this point, we need to make the following comments:

1. k is known only for those units that belong to the validation sample

2. Since the validation sample is selected by sub-sampling units from the main sample,

the main sample and the validation sample will have some units in common. This
implies that for all £ units {j is known.

3. 5,s denote the main and the validation sample respectively.

Tt follows that

B> IJc+ >, IJs|=
£es tes,t’es
=g’

+F

£es £'es

S AR

= [ZIJ

ées

> 1J ]
655565
=2 B(IJ)+ 3 B(IJ.)=

fes 562;55,68

E(njny)=S"E(IJ)+ Y. E(I)E(].). (5.20)

£es test'esS
&=

Furthermore,

B)B(n) = D B)E) = SE(EV)+ 3 BlE) 62

Substituting expressions (5.20) and (5.21) into (5.19), we obtain the following

Cov(nf,m, ) = ;E(Igjg) +EE§;€SE(I§)E(J5,)— ;E(Ig)E<J£) - > B(L)EJ)=

test'es
g=f'

33

Cov(ny,ny)=> E(IJ. )= > E(I)E(],). (5.22)

ges £es

From (5.22), it follows that an estimator of the covariance term is given by
C/(\Jv<ni”k,nlj) = Zl%(]EJE) —ZE(IJE%’(JJ =n' pT(Y =] Y&Jrl = j,Y =14,Y, = k)
£es

n n

n’

=

A
CO”(”Z““IJ>—” pr(Ye =Yen =Y =4Y, = k>_M
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where

];\T<}/;::l)}2:+1:j>}2: :%Yét :k>:0 if =1 (5.24)
pr(Ye =10, =5,Y0=56Y, =k)=0 ifl=i.
In order to complete the proof, we further need to evaluate the following expression
E(n; r
————(:-li]‘)—C’ov [nlj,Zn;] (5.25)
i=1

2

This can be done as follows:

E(n; r E(n;
———(—@—J—Cov[nh,z:n;] = ——SMCov[nlj,(nfk +ng +o T+ n:k)] =
E

] T e[

i=1
E(n?
uﬁwﬁﬂ%%ﬁ%+mHMFE%W@hwih+%»

Consequently,

{C'ov(nlj,nfk> + C’ov(nlj,n;’k) + ...+ Cov(nh,nfk)].(5.26)

42%f[ ;J 42@

7=1

We estimate the covariance terms involved in (5.26) by employing expression (5.23) as

follows:
A A
* * . * E zv E ni' . -
A n”p/\r(Ygt WY = 0 Yy =0,Y, k>_“ ( k)v ( ]) iof L=1
C v — T (5.27)
OU(”*’”U) A sy A
—E(n"’“>E(nl’) if 1=
nv
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Consequently,

(Y = Z7Y§t+1 = jaYgt = k)_’

_; ﬂ»>E(”lf> _

(5.28)

Combining (5.23) and (5.28), we obtain an estimator for the covariance terms that are of

Interest for our analysis.

vooony,
Olf\w rnl]C a_h‘]%‘—‘”l_““‘]‘{n p'r(Y “27Y5t+1—j7y =LY, =k)—

I=1

_———;—J- n’ pT‘(Y - Z>Y§t+1 - j7Y§t = k)_

Evaluation of the Jacobian Matrices from the First Application of the § -Method

Analvtical Differentiation

In order to complete the variance estimation process, we need to evaluate the Jabobian

matrices from the first application of the delta method given by

Ovec|Q ' 11 (Q”1>T
v@ — a@ TXT [@Zé )

The general form of this Jacobian is given by the following 9x18 matrix
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o) oB) . 9(R)
6Q11 8QQ1 8H33
0(By) 0(By) . O(F)
Vo =| Ot 0gy oll,, |. (5.29)
8(P33) 5(]333) 5‘<P33)
aqll aQQl 8H33
. . . dvec(P)
One way of evaluating the elements of (5.29) is analytically. For ————=%= we can follow
8 [vec(I1)]

Harville (1997 p.366) and evaluate these elements using the following result

Ovec(AXB) _ pr oy (5.30)
dvec (X)]T

Applying this result in our case, we derive the following
Jvec [Q“lﬂ (Q“l )T
0 [vec (H)]T

' Q' =Q"®Q". (5.31)

= (@)

Odvec(P)
8 [vec (Q)]T

expressions that cannot be expressed easily in a general form.

Furthermore, can be evaluated analytically but this involves more complex

Numerical Differentiation

Alternatively, one can employ numerical differentiation to evaluate the elements of (5.29) and

(5.10). The method we utilise is the method of central differences (Dennis and Schnabel,
1983).

We employ both analytical and numerical differentiation. The numerical approach is used for
validating the analytical results. Substituting the results from the evaluation of the Jacobian
matrices using either analytical or numerical differentiation and expressions (5.5), (5.9),
(5.10) and (5.11) (for the case of an internal validation sample that is selected independently
from the main sample or for the case of an external validation sample) or (5.18) (for the case
of an internal validation sample that is selected by sub-sampling units from the main sample)
into (5.4), we obtain variance estimates for the adjusted gross flows estimated from the

conventional point estimator.
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5.3 Variance Estimation for Alternative Moment-type Estimators of the

Adjusted Gross Flows

Based on the results from Section 5.2, we now develop variance estimators the alternative

moment-type estimators of the adjusted gross flows.

5.3.1 Variance of the Modified Estimator

Utilising the results from Section 5.2, we now derive a variance estimator for the modified
estimator of the adjusted gross flows (see Section 2.4.2). These variance estimates are also
required for computing the set of adaptive weights of the composite estimator (see Section
2.4.3). Recall that the modified estimator was developed by employing a double sampling
scheme under which the validation sample is selected independently from the main sample

and from the same target population. The modified estimator is defined as follows:

AY 7

mod st
vec[]/5 ) = w,,, Vec [1/5 ]4— (1—w,,,)vec (P ), w, = —. (5.32)
n—+n

ASE AT . .
Taking the variance operator on both sides of (5.32), ignoring Cov [P , P } and taking into

account that w,__, is fixed we have that

A mod 9
Var|vec| P =uw, Var

vec (Z/\Dv)} (5.33)

A st 9
vec [P ]J + (1 — W) Var

can be found by utilising the results from Section 5.2 for the
AV
vec (P )

the results from Section 5.2 for the case of an internal validation sample that is selected by

An estimate of Var

A st
vee [P }

case of an external validation sample. An estimate of Var

can be found by utilising

sub-sampling units from the main sample.
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5.3.2 Variance of the Composite Estimator

Utilising the results from Section 5.2, we derive a variance estimator for the composite

estimator (see Section 2.4.3). The general form of the composite estimator is given by

A st

A comp AV
vec (P ) = [w Wypog + (1 - wwmpﬂ vec {P ]+ Wy (1 = Wy ) VEC (P ) (5.34)

comp ~~mod

Taking the variance operator on both sides of (5.34) we have that

A comp A st

Var|vec (P )} = Var {[wwmpwmad + (1 — wcomp)J vec [P ) F Wy (1= Wy ) vec(]/\DU)}. (5.35)

We distinguish two cases: (a) the composite weights w,,,,, are fixed and (b) the composite

weights w are adaptive, i.e. random, since they are estimated by minimising the mean

comp

squared error of the composite estimator. For the first case, the variance of the composite

ASt AV

estimator, ignoring Cov [P , P ),is given below

Var

‘comp ““'mod

vec(]/\’v)} .(5.36)

— [w w +<1 — W )r Var vec[]/\;tﬂ +uf,, (1— wmad>2 Var

A comp—ft
vec [P ]

An estimate of Var

st
vec {]/5 H is derived by employing the results from Section 5.2 for the
AV
vec (P )

employing the results of Section 5.2 for the case of an internal validation sample that is

is derived by

case of an external validation sample and an estimate of Var

selected by sub-sampling units from the main sample. Variance estimation in the case of the
composite estimator with adaptive weights becomes more complicated since the composite
weights can no longer be considered as fixed quantities. One possible solution, for
approximating the variance of a composite estimator with adaptive weights, is to use the

jackknife method (Kuo 1989).
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5.4 Variance Estimation for the Maximum Likelihood Estimator of the

Adjusted Gross Flows

In this section, we develop a variance estimator for the maximum likelihood estimator when
the validation sample is selected independently from the main sample and from the same
target population (see Section 3.2.1). Variance estimation for the maximum likelihood
estimates of the adjusted gross flows can be placed into the general framework of maximum
likelihood estimation. This implies the use of the inverse of the information matrix. However,
due to the parameterisation of the measurement error model in a missing data framework,
variance estimation must reflect the additional variability introduced by the existence of
missing data. One way of obtaining variance estimates for the parameters of interest in an EM

framework is by using the Missing Information Principle (Woodbury 1977, Efron and
Hinkley 1978, Louis 1982).

A .
Denote by © the vector of maximum likelihood estimates, by Z™,Z" the missing data in the
main and in the validation sample respectively and by D™, D’ the observed data in the main

and in the validation sample respectively. The missing data and the observed data define the

complete data denoted by D°. The Missing Information Principle is defined as

Observed Information = Complete Information — Missing Information (5.37)

Lemma 5.2
The complete information matrix is evaluated using the following expression
2l _DC
Complete Information = E —Q&?—) | D™, D"|. (5.38)
0600
Proof
Proof of this lemma can be found in Tanner (1996, p.75).
[1
Lemma 5.3
The missing information matrix is evaluated using the following expression
Missing Information = Var Q—M | D™, D"|. (5.39)

00
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Proof

Proof of this lemma can be found in Tanner (1996, p.75).
[]

When full information exists, the second component of (5.37) disappears and variance
estimates for the maximum likelihood estimates are derived by employing the inverse of the
complete information matrix. In the presence of missing data, the effect of the missing
information matrix is to reduce the available information and, thus, introduce extra

variability. In this section, we derive estimates of the complete information matrix and of the

A
missing information matrix at ©. Having derived these estimates, we can then apply the
Missing Information Principle to derive the observed information matrix and the inverse of

the observed information matrix to compute appropriate variance estimates.

Lemma 5.4
Conditionally on the information available from the validation sample, there are 7’

multinomial distributions defined.

Proof

Before selecting the validation sample, the only fixed quantity is the size of this sample n”.

This implies that n, is random. The EM algorithm conditions on the information available

from the validation sample. Thus, conditionally on this information, 7, is considered to be

fixed. Consequently, there are »* multinomial distributions defined (see Section 3.2.1).

[

Lemma 5.5
Conditionally on the information available from the main sample, there are 7° multinomial
distributions defined by the > columns of the cross-classification of the observed with the

true classifications.

Proof

Before selecting the main sample, the only fixed quantity is the size of this sample n . This

implies that n,; is random. The EM algorithm conditions on the information available from
the main sample. Thus, conditionally on this information, n,; is considered to be fixed.

Consequently, there are r® multinomial distributions defined by the r* columns of the cross-

classification of the observed with the true classifications (see Section 3.2.1).

]
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Evaluatine the Complete Information Matrix

The first step in the application of the Missing Information Principle involves the evaluation
of the complete information matrix. Some of the second order derivatives required for
computing this information matrix can be found in Appendix III. These quantities are

evaluated at the last step of the EM algorithm.

Evaluating the Missing Information Matrix

The second step in the application of the Missing Information Principle involves the
evaluation of the missing information matrix. This is achieved by computing the variance of

the score functions.

Definition 5.1
Let X denote a d x 1 vector of random variables. It follows that the variance of X is given

by the following d X d covariance matrix

Var(X) = E(XX")- E(X)E(X"). (5.40)

Let © denote the vector of parameters with elements 6, i = 1,---,w. Utilising definition 5.1,
the covariance matrix of the score functions will be of dimension
(27“2 —r— 1) X (27"2 —r— 1) with diagonal and off-diagonal elements given respectively by

the following general expressions

[ 81(6;D°
Vi], = Var ————————(@’ ) ]Dm,DU}, 1=7
" (5.41)
1(©;D%) 0l(©;D°
Vij:C’ova(@’ ),6(@’D)1Dm,D” e
06, 00,
Lemma 5.6
For the main sample, under simple random sampling, the following holds
A A A A
. oo Bl iome)ll Blny | )
Var (ngf’ | Dm,G) = Z n,; 1— (5.42)
n n

J=1 oj o
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Proof

We start the proof using the standard definition for the variance of a sum of random variables

D,0)

Var(nﬁ‘) [Dm,@) = TZV&?‘( “ | D", >+22001)< l(;), n®
=1

Using Lemma 5.5, there are r* multinomial distributions defined. This implies that random
variables that refer to different conditional distributions are independent. Thus, the
covariance terms of the above expression are equal to zero. Using results for the variance and
the covariance of binomial random variables (see also (5.9)) and information available from

the main sample, we derive the variance component of interest.

1

Lemma 5.7

For the validation sample, under simple random sampling, the following holds

Var( “ | po )
[ A A /\ . »
, E(nf;*) IDv7@) E( v(x) Dv @) 1 ., E( v(*) Du @) ( v() ]D )
n, 1-— -2 T - "
; - n, n, j—le’:Zr—l ¢ Ty L
A A A A A JAY
B(ne | %,6) B(w | 0,0) o | Bwe1078)| Bl 106)
+2|m ; - +ot > ng - 1- -
'n'k nk j=r2~r+1 nk nk

A A

E( v ID” )E( v ID” )
v P + 2 In’;: v ] '

n, n, , n,

A v(*) v /\ /\ u(*) v
r’—1 r? E ni]- l D , l D

Y

-2 E E n,
jer?—r4l fl=r? -1

(5.43)
Proof
We start the proof using the standard definition for the variance of a sum of random variables
and we decompose this sum into a sum with r components. This is because the covariance
terms involved in the summation exist only for random variables that refer to the same

conditional distribution (see Lemma 5.4). Consequently,
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D*,0)+-+

=1 j'=r—1

Var (nf_(*) | D, @) = zr:VaT (n;.(*) | D, @) + QS zr: Cov( ng”, ;’(*)
=1

2_1 7‘2

(*) v v(x) v(*) v
N ;H Var( | D, )—{— 2]«;.”1 j’;l C’ov( ng " yny” | DY >
Replacing the variance and the covariance terms using results for binomial random variables,
subtracting the covariance terms between identical random variables resulting from the
double summation and utilising information from the validation sample, we end up with the
required result.

[

Lemma 5.8

For the main sample, under simple random sampling, the following holds

Bl 107,8] Bl 17
Zn . (5.44)

.] n.j

A
C’ov(n(*) | D™, )

Proof

Using Lemma 5.5, the required covariance term can be expanded as follows

[anwm J[Zn‘*)(D"‘ ]

This is due to the fact that these covariance terms exist only for random variables that refer to

Cov(n,n? | D™,0) = Cov

the same conditional distribution. Substituting results for the covariance between binomial

random variables into the expression above, we derive the required result.

L

Lemma 5.9

For the validation sample, under simple random sampling, the following holds

S A X A\ A N A
N . E(n;” 1D",@)E(n;:j,<> w”,@)
Oov(n;’.(),ni”,_() | D, ) —n? _ - 4 4
g=1 j'=1 nk 7,
(5.45)

j=rt—r4l f=rf—r41
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Proof

In order to prove this lemma, we need to utilise Lemma 5.4. Using Lemma 5.4, we realise
that the requested covariance terms exist only for random variables that refer to the same

conditional distribution. For example, when r = 3 the following covariance terms exist
C’ov(nf_(*),n;.(*) | D*, > C’ov(nl 9o @) Cov <n2 ; ;’_(*) ) D”,@)
Cow (nf;_(*),n;’.(*) | D", @),C’ov (n;’.(*),n;’.(*) | D”,@),Cov (ng’_(*),ng’_(*) | D”,@)
Cov (n;’,(*),n;’.(*) |D”,@>,Cov (n?,(*),ng_(*) | D*,0 ) Cowv (ns ,7, [ D, )

Each one of the covariance terms above can be decomposed into a sum with r terms as

follows
2 P
Cou(ni.",m,” | I',6) !ZZC‘W( | D) et S0 ST Cov(my?,m | D7,0)|.
=1 7= jemrt—r 4l fl=r? —rdd
r—terms

Replacing the covariance terms using results for binomial random variables and information

from the validation sample, we end up with the required result.

[

An estimate of the covariance matrix of the score functions can be obtained using the first
order derivatives of the augmented log-likelihood (see Appendix III), Lemmas 5.6-5.9 and
standard definitions for the variance and the covariance of sums of random variables. In the

sequel, we present general expressions for computing some of the elements of this covariance

matrix.

Resulr 5.4

o1(©;D°)

Var
o

]Dm,D”J:

-;—Z[Var (n2 | D™,0)+ Var (n” | D*, )] + —————%ﬂ;——ﬁVar (nﬁ) | D™, © )+ Var (n = | D", >]
i=1

____*3.2.:1_ [Oov(n<*> n2> le )+OO?}( v(*) 1}(*) [D,, )]

(5.46)
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Proof

Taking the variance operator on both sides of the first order derivative with respect to P, (see

Appendix III), we obtain the following

n(*) + nv(*)) (n(*) + nvz(*)
2 S
i=1

The required result is obtained by applying the definition for the variance of a sum of random

a1(0;0°)

)| 7 00|
oF,

Var | D™, D”] Var (

variables and taking into account the fact that the main sample and the validation sample are

independent. An estimate of this variance component is obtained using Lemmas 5.6-5.9.

[
Result 5.5
Cov al(?;pc),alg@;c)]pm,zr :PiPz' [Cov(ni,n | D*,0) + Cov(n,n? | D",0)|
i | 7.0)+ ool 21 %0)
- Jz,Prz [Cov (2, ns? | D*,0) + Cov(n2,n) | D™,0)]
+ ; Var (n's? | D*,0) + Var (n5 | D",0)].

7;2

(5.47)

Proof
Using the first order derivative of the augmented log-likelihood with respect to F, (see

Appendix III), the covariance term of interest is expressed as follows

Cou <nz(*) + n:.(*)) - (nm + nv(*))’< n® ;nm*)) - (n(*) + nv(*)) l Dm Dv ol

K 1—23 : 1——ZP
1=1

=1

However, we note that the covariance term above has the following general form

Cov(A— B,C — B) = Cov(4,C) — Cov(4,B) — Cov(B,C)+Var(B). (5.48)

Applying (5.48) to the covariance term of interest, we derive the required result. An estimate

of this covariance component is obtained using Lemmas 5.6-5.9.

[
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Using also the definitions for the variance and the covariance of sums of random variables

and Lemmas 5.6-5.9, the following quantities can be evaluated analytically

CoulOL(E:D ),81(@;13 ),Dm,Dv , (5.49)
OF, D¢
Var| 2HE D7) Pl (5.50)
6%‘
Coy PHOL) BUODT) o pol iy (i), (s.51)
aqz] 3qi/j;

However, these are more complex expressions that are not easily expressed in a general form.

Note also that g, refers to the longitudinal misclassification probabilities. These probabilities

need to be replaced, under ICE, by products of cross-sectional misclassification probabilities.
This reduces the dimensionality of the problem. The elements of the covariance matrix of the
score functions are evaluated at the last step of the EM algorithm. After evaluating the
complete information matrix and the missing information matrix, the observed information
matrix is defined as the difference of these two matrices. Inverting the observed information

matrix, results in an estimate of the covariance matrix of the maximum likelihood estimates.

5.4.1 Evaluating the Complete Information Matrix and the Missing

Information Matrix Using Simulation

In spite of being able to derive general expressions for the complete information matrix and
for the missing information, it is tedious to evaluate these expressions analytically. The main
problem arises in evaluating of the covariance matrix of the score functions. An alternative
solution for approximating the components of the Missing Information Principle is offered by
means of simulation. The idea is described in Tanner (1996). The algorithm is as follows.
Having arrived at the maximum likelihood estimates, we generate H complete datasets by

drawing

70,72, 7" ﬁp(Z“ }D”,é),' (5.52)

Ir I I ﬁffp(zm |Dm,é) (5.53)
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where p (Z v D”,é), P (Z "D, é) denote the conditional distributions of the missing data

in the validation sample and in the main sample respectively given the observed data and the
maximum likelthood estimates and H denotes the total number of simulations. The
conditional distributions are defined by Lemma 5.4 and Lemma 5.5. This first step of the
simulation can be viewed as the imputation step. Having replaced the missing data with
imputed values in simulation (h), we derive complete data D® that are employed for
evaluating the complete information matrix and the missing information matrix. This is done
by using the simulation-based (empirical) estimators for the complete information matrix and

for the variance of the score functions over simulations defined as

27 (0. DE 5 9%(0: D"
Bl— 0 l(@;DT) | Dm)Dv _ __1__2_____<______T__)_’ (554)
00 00 H = 00 00
2
o1(6; ") 1|9 (9 Dc"‘)> o1(0:0%)
Var|——"~| D™ D"| = — — 5.55

5.4.2 Variance Estimation for the Likelihood-based Adjusted Estimates in

a Cross-sectional Framework

In Section 2.2.1.3, we parameterised the cross-sectional measurement error model in a
missing data framework and maximum likelihood estimates were derived via the EM
algorithm. Variance estimates for the cross-sectional maximum likelihood estimates can be
also derived using the Missing Information Principle. The crucial difference between the
longitudinal framework and the cross-sectional framework is that in the latter case missing
data exist only in the main sample. The complete information matrix is evaluated at the last
step of the EM algorithm using the second order derivatives of the augmented log-likelihood
(see Appendix I). The covariance matrix of the score functions is evaluated also at the last
step of the EM using the first order derivatives of the augmented log-likelihood (see

Appendix I), results for the variance of binomial random variables and the lemma below.

Lemma 5.10
Conditionally on the information available from the main sample, there are r multinomial
distributions defined by the = columns of the cross-classification between the observed and

the true classifications.
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Proof
The proof'is identical to the proof of Lemma 5.5.

]

Alternatively, one can use the simulation approach described in Section 5.4.1 along with the
expressions given in Appendix I. The implementation of the simulation approach requires
sampling from the conditional distributions of the missing data given the observed data in the

main sample and the maximum likelihood estimates. These conditional distributions are

defined by Lemma 5.10.
5.5 Variance Estimation for the Quasi-likelihood Adjusted Estimates

In this section, we develop variance estimates for the parameters of the cross-sectional

measurement error model when using a quasi-likelihood approach (see Section 2.2.1.4).

Result 5.6

Variance estimates for the parameters of the cross-sectional measurement error model when

using the quasi-likelihood approach are derived using the expression below

- [a‘; é@ s ]F . (5.56)

A
Var ()

v f8) (220,

Proof

A
Let © denote the vector of quasi-likelihood estimates. The quasi-score estimating function is

defined by
()Y
G(@):[—L) [Var @] e (5.57)
00
It follows that
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Taken into account that [Var (6)]_1 1s symmetric, it follows that

G (é)} - {%@1 A]T Var o] (%g—) |e:é]T T (5.59)

Var

50 o8

Now, G (é) can be expanded as follows

A op©), Y Slfoe©), Y (a
G(@)NG(@)—}—[ - 1@26] Var (&) [a@ |@:é] (@ @). (5.60)
Thus,
A N 3,&(@) ! -1 ,u(@) a A
Var G(@) NVar[[ 36 |=é] [Var (&) [ 56 [ezé] (@—@)}. (5.61)
It follows that
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Solving equation (5.62) with respect to Var (é) and replacing the unknown quantities by

() 1626]}‘1.

The evaluation of the covariance matrix of the quasi-likelihood estimates is now

their estimates, we obtain the required result

Var (é) ~ {[%@ |@=é}T

AN
Var (&)

O

straightforward since it requires the utilization of matrices that have been already used during

the estimation process. Note also that V/c\zr (e) is computed using the results from Section
2.2.1.4. Unlike in the case of the EM algorithm, variance estimation in a quasi-likelihood
framework does not imply the use of computer intensive methods. This practical advantage
offers an additional justification for preferring the quasi-likelihood approach, instead of the

maximum likelihood approach, when analyzing cross-sectional misclassified data.
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5.6 Applications

The methodology for variance estimation is illustrated in three applications. In the first
application, we obtain variance estimates for the adjusted labour force gross flows estimated
by the conventional point estimator. In the second application, we derive variance estimates
for the likelihood-based adjusted labour force gross flows. The third application illustrates
variance estimation for the parameters of the cross-sectional measurement error model
estimated using either the EM algorithm (see Section 2.2.1.3) or the quasi-likelihood

approach (see Section 2.2.1.4).

Application 5.1: Variance estimation for the Conventional (Moment-type) Estimator of the

Adjusted Gross Flows

Variance estimation for the conventional point estimator is performed using the results from
Section 5.2. We employ gross flows data from the UK LFS (summer —autumn 1997) and the
smoothed version of the validation data from the Swedish (October 1994 — April 1995) LEFS
re-interview programme. The estimated observed labour force gross flows and the adjusted
labour force gross flows, using the conventional estimator, are reported below. The matrix of
misclassification probabilities we use is the same as the matrix used in application 3.1. The

variance of the observed labour force gross flows is computed assuming a multinomial

distribution for these flows.

Table 5.1: Variance estimation for the adjusted labour force gross flows derived from the

conventional estimator, standard deviations in parenthesis

Flow Observed Labour Force Gross Flows Adjusted Labour Force Gross Flows
EE 0.716 (1.84E-03) 0.7420 (3.09E-03)

EU 0.009 (3.85E-04) 0.0028 (9.16E-04)

EN 0.016 (5.12E-04) 0.0024 (1.31E-03)

UE 0.016 (5.12E-04) 0.0102 (9.77E-04)

uu 0.027 (6.61E-04) 0.0292 (9.86E-04)

UN 0.009 (3.85E-04) 0.0033 (9.13E-04)

NE 0.016 (5.12E-04) 0.0026 (1.37E-03)

NU 0.010 (4.06E-04) 0.0045 (9.18E-04)

NN 0.181 (1.57E-03) 0.2030 (2.87E-03)

n = 60000,n" = 10000
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Application 5.2: Variance BEstimation for the Maximum Likelihood Estimator of the

Adjusted Gross Flows

In order to evaluate the variance of the likelihood-based adjusted estimates, we use the
Missing Information Principle. We utilise gross flows data from the UK LFS (summer —
autumn 1997) and the smoothed version of the validation data from the Swedish (October
1994 — April 1995) LFS re-interview programme. Due to the large number of computations
involved, we derive variance estimates for the 2-state model i.e. Employed and Unemployed
or Inactive. The observed labour force gross flows, the adjusted labour force gross flows,
using the likelihood-based approach, and the matrix of misclassification probabilities are
reported below. The variance of the observed labour force gross flows is computed assuming
a multinomial distribution. The variance of the adjusted labour force gross flows is evaluated
using the Missing Information Principle and the simulation approach. More specifically, we
generated 20000 complete datasets using the conditional distributions of the missing data
given the observed data and the maximum likelihood estimates in the main and in the
validation sample. For each generated dataset, we computed the complete information matrix
and the score functions. Subsequently, we evaluated the expectation of the complete
information matrix and the variance of the score functions using (5.54) and (5.55)
respectively. Finally, we employed the Missing Information Principle to determine the
observed information matrix and the inverse of the observed information matrix to determine

the covariance matrix of the adjusted likelihood-based estimates.

Misclassification Matrix

E U+N
£ (0.99 0.053
U+ N|[0.01 0.947|

Table 5.2: Variance estimation for the maximum likelihood estimates (4-state model),

standard deviations in parenthesis

Flow Observed Labour Force Gross Flows Adjusted Labour Force Gross Flows
E,E 0.716 (1.84E-03) 0.730 (2.30E-03)
E, U+N 0.025 (6.37E-04) 0.006 (1.52E-03)
U+N, E 0.032 (7.18E-04) 0.014 (1.54E-03)
U+N, U+N 0.227 (1.71E-03) 0.250 (2.69E-03)

n = 60000,n" = 10000
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Application 5.3: Variance Estimation for the Maximum Likelihood and the Quasi-likelihood

Cross-sectional Adjusted Estimates

In Chapter 2, we parameterised the cross-sectional measurement error model in a missing
data framework and maximum likelihood estimates were derived via the EM algorithm. As
an alternative approach, we further presented a quasi-likelihood parameterisation of the cross-
sectional measurement error model. Variance estimation, under these two parameterisations,
is illustrated using the data from application 2.2 in Section 2.2.1.4. For the maximum
likelihood adjusted estimates, we employed the Missing Information Principle and the results
from Section 5.4.2. The components of the Missing Information Principle are approximated
by means of simulation. More specifically, we generated 10000 complete datasets using the
conditional distributions of the missing data given the observed data and the maximum
likelihood estimates in the main sample. For the quasi-likelihood approach, we utilised the

results from Section 5.5.

Table 5.3: Variance estimation for the maximum likelihood and the quasi-likelihood cross-

sectional adjusted estimates, standard deviations in parenthesis

Estimate MLE (EM Algorithm) Quasi-likelihood
p 0.0667 (0.0021) 0.0669 (0.0022)
1

5.7 Summary

In this chapter, we developed variance estimators for some of the alternative point estimators
of the adjusted gross flows. More specifically, we presented variance estimators for the
conventional (moment-type) estimator under alternative double sampling schemes, for the
modified estimator, for the composite estimator with fixed weights and for the maximum
likelihood estimator under a validation sample that is selected independently from the main
sample. Variance estimation for the maximum likelihood estimates when the validation
sample is selected by sub-sampling units from the main survey (see Section 3.2.2), is more
complex. The complexity arises due to the approach we follow for estimating the conditional
expectations of the missing data in the validation sample. For the time being, we will rely on
Monte-Carlo simulation for computing the variance of the maximum likelihood estimates
under the specific double sampling scheme. We further developed variance estimators for the

cross-sectional maximum likelihood estimates, using the parameterisation presented in
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Section 2.2.1.3, and for the cross-sectional quasi-likelihood estimates. The quasi-likelihood
parameterisation offers a practical advantage over the EM parameterisation by providing an
easier way of performing variance estimation. The variance estimators account for the extra
variability introduced by the adjustment for measurement error. The variance estimator of the
maximum likelihood estimator accounts for the existence of missing data via the missing
information matrix. Using the missing information matrix, we can now quantify the loss of
information due to the missing data. In addition, the existence of a positive definite
covariance matrix, obtained from the application of the Missing Information Principle, can be
used as a diagnostic for checking whether the parameters of the measurement error model are
identified. Having derived variance estimates, one can further examine the trade off between
the increased variance of the adjusted estimates and the bias, due to measurement error, of the
unadjusted estimates. It remains to evaluate the empirical properties of the different variance

estimators. This is tackled in Chapter 6 using Monte-Carlo simulation.
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Chapter 6

Monte-Carlo Evaluation

6.1 Introduction

In previous chapters we developed tools for point and interval estimation of gross flows
statistics in the presence of misclassification and double sampling. However, it remains to
assess the properties of these inference tools. In this chapter, we perform this assessment by
designing a series of Monte-Carlo simulation experiments. In Section 6.2, we design a
general simulation algorithm that can be employed with any type of flows data in the
presence of misclassification and double sampling. As a special case, a simulation algorithm
for cross-sectional inference is also presented. In Section 6.3, we describe a procedure that
aims at relaxing the ICE assumption in the simulation. This is achieved by introducing
dependence structure in the measurement error mechanism. In Section 6.4, we provide
detailed information about the Monte-Carlo simulation studies and the data used in the
context of the UK LFS. Sections 6.5 to 6.8 are devoted to reporting and commenting on the

results.
6.2 Description of the Simulation Algorithm

Gross flows are estimated using information on the same individuals from at least two time
points. This common sample consists of n sample units. From now on, we will refer to the
sample that we use as the basis for our simulation as the original sample. We denote by H
the total number of simulations that we perform and by (k) a specific simulation. Generally
speaking, the simulation is performed in a reverse mechanics way. We start by generating
true flows and then generate observed flows by introducing measurement error to these true

flows.
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For iteration (k)

Step 1: Generating True Flows

In this step, we generate true flows. This is done by employing the probability distribution
function (defined explicitly in Section 6.4) of the true flows between two time points (e.g.
months, quarters) say ¢ and ¢ + 1. From this probability distribution function we draw a with

replacement sample of size n . Recalling the notation from Chapter 2, Y,,,V,,,, are random
variables that describe the observed status of the ¢* unit at ¢ and ¢+ 1 and Y Yoy, are
random variables that describe the true status of the £” unit at ¢ and ¢ + 1. Consequently, in

this first step we generate values £,/ such that (Y& =kY,, = l) for each sample unit§ .

Step 2: Generating Cross-sectional Measurement Error

Having generated true flows, we now assume the existence of a cross-sectional measurement

error model that is described by the misclassification probabilities ¢, . Using these

misclassification probabilities, we generate the observed status at ¢ given the true status at ¢

for each sample unit & i.e. <Y§ =1i|Y, = k)

Step 3: Generating Longitudinal Measurement Error

Having generated the observed status at ¢, we then generate the observed status at ¢ +1

given the observed status at ¢, the true status at ¢ and the true status at ¢ + 1 for each sample
unit £ 1.e. (Y;: =17l Y;; =4,Y, =kY,, = l). The theory we develop assumes the
availability of the cross-sectional misclassification probabilities. Therefore, in order to
generate the longitudinal measurement error we need to introduce additional assumptions.

Initially, we generate longitudinal measurement error assuming that ICE is valid. However,

we will also later investigate approaches that relax the ICE assumption.

To facilitate the description of the simulation algorithm, we present an example in the context
of the labour force gross flows. The true flows, generated from Step 1, can be represented by
the 1x 9 vector shown in Table 6.1, where the cells represent the number of sample units that

belong to the different labour force flows categories.
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Table 6.1: Data generated after Step 1 of the simulation process

Yoo Voot EE EU EN UE UU . NN

Tgg Mgy Tgn Mg Ty e oYY

At Step 2 we generate the observed status for sample unit £ at ¢ Y&, given his/her true

status at ¢, using the cross-sectional misclassification probabilities g, (see Table 6.2). As a

result, at this step we introduce cross-sectional measurement error. For example, a sample

unit £ that is truly employed both at ¢ and ¢ + 1 is allocated to (EEE, UEE, NEE) according
10 g5

Table 6.2: Data generated after Step 2 of the simulation process

Yo |Ye, Yo EE EU EN UE uu oo NN
E Uo7 Npry Neen Npyp Npuy . enn
U g Nygy Nyen Nyye Tyvy e Tyny
N Nyer Nyey Ny Nyur Nyyy ‘e Tvyn

At Step 3 we generate the observed status for sample unit £ at t+1, Ygt .1, given the

information from Steps 1 and 2. For example, a sample unit £ that is truly employed both at
t and at ¢t + 1 and is also observed to be employed at ¢ is allocated to (EEEE, EUEE and
ENEE). This leads to the counts shown in Table 6.3.

Table 6.3: Data generated after Step 3 ofithe simulation process

Y;;H | YE“ Yo, Yo EEE UEE NEE EEU UEU e NNN
E Nppep yreR NypER NpprU Nyeey ‘e ngNNy
U N pyep yuee L% Npypy Nyupy e NN
N NpvEg Tynee NyneE NevpU Nynpy . T yNNN

Therefore, in Steps 1-3 we generate (Y; = i,Y; w=5hYy =kYq, = l). The observed

flows correspond to certain margins of Table 6.3. More specifically, the observed flow from

state 7 at ¢ to state j at £+ 1 can be extracted using the following summation

N N =n
Zz (Y; = i,Ygﬂ = j>Y§t = k7Y§t+1 = l)- (6.1)

k=E I=E ¢=1
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Step 4: Simulating an Internal or an External Second Phase Sample

In order to simulate the availability of validation information, derived from a smaller

validation sample of n” units (n’ < n), we distinguish two cases:

(a) An internal validation sample is simulated by selecting a sub-sample of 7” units using
the generated data of Table 6.3. The generated cross-sectional validation information

can be extracted using the following summation

N N =
(Y§t = 1, Y§t+1 = J, Yg; = k, Y§t+1 = Z>- (6.2)
=B I=E ¢&=1
(b) An external validation sample of n’ units is simulated independently of the data

generated in Step 3.

Hereinafter, when referring to an internal validation sample we will imply a validation sample
that is generated using procedure 4a. An external validation sample will refer to a validation
sample that is generated using procedure 4b. Note that throughout this chapter we assume that
the independently selected validation sample (using 4b) is drawn from the same target
population as the main sample. In that respect, this validation sample can be also regarded as

internal.

Step 5: Estimation Step

Having generated observed (unadjusted) gross flows and cross-sectional validation
information in Steps 1-4, we then utilise the generated data for estimation purposes 1.e. for

computing the alternative point and variance estimators.

Extending the Simulation Algorithm to Allow for Heterogeneity in the Gross Flows

Mechanism and/or in the Measurement Frror Mechanism

The simulation algorithm can be modified to allow for heterogeneity in the measurement
error mechanism and/or in the gross flows mechanism. Generally speaking, this can be
achieved by employing group-specific information to generate this heterogeneity. Two
different scenarios are investigated: (a) we allow for heterogeneity both in the gross flows
mechanism and in the measurement error mechanism and (b) we allow for heterogeneity in
the measurement error mechanism while assuming a homogeneous gross flows mechanism.

Scenario (a) is implemented by generating group-specific information at all stages of the
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simulation algorithm. This is equivalent to introducing stratification in the simulation.
Scenario (b) requires the generation of group-specific data only for the measurement error

mechanism.

A Simulation Algorithm for Cross-sectional Inference

The simulation algorithm can be modified in order to be suitable for cross-sectional
inference. The cross-sectional algorithm is also performed in a reverse mechanics way. We
start by generating cross-sectional true classifications. These true classifications are then
contaminated with cross-sectional measurement error to produce cross-sectional observed
classifications. Validation information is obtained by simulating an internal or an external
second phase sample. Estimation is performed at the final step using the generated data. This
algorithm will be used for comparing the maximum likelihood with the quasi-likelihood and

the moment-based approach (see Chapter 2).

6.3 Relaxing the ICE Assumption by Introducing Dependence Structure in

the Measurement Error Mechanism

The key assumption for estimating gross flows adjusted for measurement error, when only
cross-sectional validation information is available, is the ICE. From our point of view, this is
a rather strong assumption since we should expect some carry-over effects from the
classification at the first time point. We believe that a scenario where a dependence structure
in the errors exists is more realistic. One possibility for relaxing the ICE assumption arises
when allowing for heterogeneity. However, this approach still assumes that ICE holds but
now within the different sub-groups. An alternative proposal for relaxing the ICE assumption
is given by Kristiansson (1983) and is described also in Hoem (1985). Under ICE, the

following holds for each sample unit &

Q4 = PT (Y§: = i>Y§:+1 =7 l Ygt - k’aygt_u = l): 395 i,j,k},l = 1,2,~--T.(6.3)

Kristiansson (1983) proposed to replace (6.3) with an expression of the following form

Ui = 2y k= !
where &, > q, > D, (6.4)
Qg = qikq)ijk

The idea is that (a) a change in the real status should make the classifications recorded at two

time points independent and (b) the classifications recorded at two time points should be
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conditionally dependent, given the true states, when no change in the true status has occurred.
Kristiansson’s proposal seems reasonable and can be justified using the memory effect. For
example, when an individual’s true labour force status remains stable between two time
points we can assume that there is a memory effect, which is stronger compared to the case
where the true labour force status changes between the two time points. For the latter case
Kristiansson assumes that the ICE assumption is valid. However, for the former case he
imposes a dependence structure defined by (6.4). Think of the following three examples.
Assume that an individual is truly employed at both time points. According to (6.4) the
following holds

9epEe = PT <Y; = E>Y§:+1 =E|Y,=EY,, = E): Upp®Pppp Where  Pppp> Gy

This means that the probability of correct classification at the second time point, given that
the individual is correctly classified at the first time point and the true labour force is stable
between the two time points, is reinforced compared to the probability of correct
classification at the second time point predicted under ICE. Assume now that an individual
who is truly employed at both time points is correctly classified at the first time point and

misclassified as unemployed at the second time point. According to (6.4)

9svsE = PT(Y; = E’Ygzﬂ =U|Y,=EY,, = E): 0psPror  Where @pip < Q.

This means that the probability of misclassification at the second time point of an individual
whose true labour force status is stable at both time points and who has been correctly
classified at the first time point is lower than the probability of misclassification predicted
under ICE. Assume finally that an individual who is truly employed at both time points is
correctly classified at the second time point and misclassified as unemployed at the first time
point. According to (6.4)

Yygge — PT (Y§ =UY,,=E ] Ygt = E?}/gt-H = E): QpPyps  Where gpy > Pppp

» L e

This means that the probability of correct classification at the second time point of an
individual who is truly employed at both time points and is misclassified at the first time
point is lower than the probability of correct classification at the second time point predicted

under ICE.
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Based on Kristiansson’s idea, we investigate the robustness of the alternative estimators
under ICE and under departures from ICE. With respect to the choice of alternative to the
ICE error models, we investigate two scenarios. These scenarios are defined by modifying the
probabilities of correct classification and misclassification, predicted under ICE, for
individuals that remain truly stable between ¢ and ¢ + 1 while preserving the probabilities of
correct classification and misclassification, predicted under ICE, for individuals who truly
change their status between ¢ and ¢ -+ 1. These modified probabilities are then used to

generate the data in the simulation.

6.4 Describing the Simulation Studies and the Data Sources in the Context

of the UK LFS

The methodology we develop in this thesis is targeted at flows data obtained from the UK
LFS. The UK LFS is a quarterly panel survey and labour force gross flows are estimated
using information on the same sampled individuals at two successive quarters. This common
sample consists of approximately 60000 individuals. We now describe a series of Monte-
Carlo simulation studies based on these data. Table 6.4 summarises the information about the
simulation studies we conducted. Tables 6.5 and 6.6 summarise the notation for the different

point and variance estimators that are included in the simulation studies.

As we described in Section 6.2, after the first three steps of the simulation algorithm we can
compute the generated observed gross flows. The UK LFS is used implicitly by ensuring that
the generated observed labour force gross flows are close to the un-weighted UK labour force
gross flows defined by the common LFS sample between summer-autumn 1997. This is
achieved as follows. Utilising the unadjusted UK labour force gross flows between summer-
autumn 1997 and a set of misclassification probabilities, we estimate UK labour force gross
flows (summer-autumn 1997) adjusted for misclassification using one of the alternative
estimators. The probability distribution function defined by these estimated adjusted labour
force gross flows is then used to generate the true flows at Step 1 of the simulation. For
simulation studies I-V (Tables 6.7-6.31 and 6.42-6.51), VIII (Table 6.52) and X (Tables 6.54-
6.61), the probability distribution function that we use to generate true flows is estimated
using the conventional (moment-type) estimator. For simulation study VI (Tables 6.32-6.36),
the probability distribution function is estimated using the moment-type unit heterogeneity

estimator. For simulation study VII (Tables 6.37-6.41), the probability distribution function is
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estimated using the post-stratified version of the conventional estimator. Finally, for
simulation study IX (Table 6.53) the probability distribution function is estimated using the

maximum likelihood estimator.

In Step 2, the algorithm requires the specification of a set of misclassification probabilities
that will be used for inflating the generated true flows with cross-sectional measurement
error. For simulation studies I-ITI and VIII, we define the misclassification probabilities by
modifying slightly the unweighted Swedish (October 1994 — April 1995) misclassification
probabilities. This modification was performed in order to avoid, under ICE, problems with
negative adjusted flows. For simulation study X, we use the misclassification probabilities as
these appear in application 5.2. For simulation studies IV-V, we further modify the Swedish
(October 1994 — April 1995) misclassification probabilities. This modification is performed
in order to avoid boundary values when fitting the EM algorithm. For simulation studies VI-
VII, the group-specific Swedish (October 1994 — April 1995) misclassification probabilities
are also modified for the same reason. Note that the misclassification probabilities, which we
use in Step 2, are the same as the misclassification probabilities we use to estimate the

probability distribution function of the true flows that is utilised in Step 1.

In Step 3, we need to generate longitudinal measurement error based on cross-sectional
measurement error. The simulations are conducted both under ICE and under relaxed-ICE
scenarios. The relaxed-ICE scenarios are defined using (6.4). The cross-sectional
misclassification matrices utilised in Step 2 along with the misclassification probabilities

either under ICE or under a relaxed-ICE scenario are reported in Appendix IV.

In Step 4, we simulate the availability of validation information. More specifically, we
simulate (a) a validation sample that is selected by sub-sampling units that already participate
in the main survey and (b) an independently selected from the main sample validation sample

that refers to the same target population.

In simulation study X, we compare the maximum likelihood estimator with the conventional
point estimator when the validation sample is selected by sub-sampling units from the main
survey. For simplicity, we compare these two estimators for the 4-state model (i.e. Employed
and Unemployed or Inactive). In Section 3.2.2, we also described a “naive” approach for

estimating the conditional expectations of the missing data in the validation sample when the
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validation sample is selected by sub-sampling units from the main sample. This “naive”
approach attempts to simplify the E-step of the EM algorithm (see Section 3.2.2). The

“naive” approach is compared with the approach that utilises full information also in

simulation study X.

In Section 6.2, we presented an extension to the simulation algorithm that allows for
heterogeneity. Two scenarios for heterogeneity are investigated. Under the first scenario, we
allow for heterogeneity both in the measurement error and in the gross flows mechanism.
Under the second scenario, we allow for heterogeneity in the measurement error mechanism
while assuming a homogeneous gross flows mechanism. Here, we assume the existence of
moderate heterogeneity only according to gender. However, the algorithm can be easily
extended to accommodate heterogeneity according to more variables. Note also that the
simulation studies that allow for heterogeneity are designed to preserve the group-specific
labour force gross flows patterns of the original sample. The matrices of the misclassification

probabilities (i.e. for males and for females) used in simulation studies VI-VII are reported in

Appendix IV.

In simulation study XI, (Tables 6.62-6.63) we contrast the alternative point estimators used
for cross-sectional inference. The estimators we consider are the following: (a) the moment-
type estimator, (b) the maximum likelihood estimator with calibration probabilities
(Tenenbein 1972), (c) the maximum likelihood estimator with misclassification probabilities
(using the EM algorithm) and (d) the quasi-likelihood estimator. For the purposes of this
simulation study, we use an artificial dataset. The set of probabilities we used to generate the

data is the following: F, = 0.606,¢,;, = 0.98, ¢,, = 0.04.
Details of each simulation study i.e. the sample size of the main survey, the sample size of the

validation survey, the number of iterations and the type of the second phase sample are

reported along with the results from the specific simulation study.
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Table 6.4: Information about the alternative simulation studies

Simulation Study Description
1 Comparing alternative moment-type estimators and variance estimators under ICE
1I Comparing alternative moment-type estimators under relaxed-ICE 1
m Comparing alternative moment-type estimators and variance estimators under relaxed-ICE 2
1AY - Comparing alternative moment-type estimators with the maximum likelihood estimators under ICE
v Comparing alternative moment-type estimators with the maximum likelihood estimators under a relaxed-ICE scenario
VI Comparing alternative point estimators when allowing for heterogeneity only in the measurement error mechanism
VII Comparing alternative point estimators when allowing for heterogeneity in the gross flows and in the measurement error mechanism
VIII Evaluating the performance of the variance estimator of the conventional estimator in the case of an internal validation sample
X Evaluating the performance of the variance estimator of the maximum likelihood estimator under an external validation sample
X Comparing the moment-type estimator with the maximum likelihood estimator under ICE and an internal validation sample
X1 Comparing the maximum likelihood with the quasi-likelihood and the moment-based approach in a cross-sectional framework
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Table 6.5: Notation for the point estimators appearing in the simulation studies

(for cross-sectional inference) (Section 2.2.1.3)

Point Estimator Notation
Observed flows (Section 1.7.3) P-OBS
Conventional (Moment-type) (Section 2.2.2.1) P-ST
Modified (Section 2.4.2) P-MOD
Unbiased margins (Section 2.4.1) P-UM
Composite with fixed weights w,,,, = 0.3 (Section 2.4.3 — 1* set of weights) P-CF1
Composite with fixed weightsw,,,, = 0.2 (Section 2.4.3 - 2" set of weights) P-CF2
Composite with fixed weights Wy = 0.1 (Section2.4.3 — 3" get of weights) P-CE3
Composite with adaptive weights (Section 2.4.3) P-CAD
Maximum likelihood (Section 3.2) P-MLE
Constrained maximum likelihood (Section 3.3) P-UMLE
Moment-type unit heterogeneity (Section 4.2) P-UNIT
Maximum likelihood that allows for heterogeneity (Section 4.3) P-UNMLE
Moment-type (for cross-sectional inference) (Section 2.2.1.1) Moment-type
Quasi-likelihood (for cross-sectional inference) (Section 2.2.1.4) Quasi-likelihood
Maximum likelihood with calibration probabilities-Tenenbein (1972) MLE
(for cross-sectional inference) (Section 2.2.1.2) (Tenenbein 1972)
Maximum likelihood with misclassification probabilities-EM algorithm MLE

(EM algorithm)

Table 6.6: Notation for the variance estimators appearing in the simulation studies

Variance Estimator

Notation

Variance estimator of the conventional (Moment-type) estimator under an
external double sampling scheme (Section 5.2)

Variance estimator of the conventional (Moment-type) estimator under an
internal double sampling scheme (Section 5.2)

Variance estimator of the modified estimator (Section 5.3)
Variance estimator of the composite estimator with fixed weights (Section 5.3)

Variance estimator of the maximum likelihood estimator under an external

double sampling scheme (Section 5.4)

A A st—ext
Var {P J
A A st—int
Var [P J
A A mod
Var {P ]

A A comp—~fz
Var [P ]

A A mle
Var [P ]
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6.5 Evaluating the Performance of the Alternative Point and Variance

Estimators

The performance of the different point and variance estimators is assessed using the

following evaluation criteria:

Relative bias of a point estimator.
Standard deviation of a point estimator.
Root Mean Squared Error (RMSE) of a point estimator.

Relative bias of a variance estimator.

e I

Coverage rate.

A
Bias and Relative Bias of a Point Estimator P

Bias (13) _FB (]AD) _ (ﬁ) - %iﬁw, 6.5)

A (h)
where P denotes the point estimator in simulation (h)

RB (JAD) - ——}))—i % 100. (6.6)

Simulation (Empirical) Variance of a Point Estimator

V()= ‘j{l—]i P E(ﬁ?)r. 6.7)

- h=1

The standard deviation is derived by taking the square root of (6.7)

A
Root Mean Squared Error of a Point Estimator P

RMSE (ﬁ') — \/V (1“3) +

Bias (ﬁ)r . (6.8)
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Bias and Relative Bias of a Variance Estimator V/c\w" (]AD)

Bias|Var (ﬁ)} = E|Var (ﬁ) _ v(ﬁ), B V&(ﬁ)} - -}Ifi:V/c\zr{A( )] (6.9)
RB|Var (}A?)J - Bl (P> _ V<P) « 100 (6.10)

Coverage Rate

. A(R)
For each replication (h) we calculate the 95% confidence interval for each estimator P

given by

) ()
CI® = P +1.96 Vﬁw{fﬂ ] (6.11)

The coverage rate is defined as the total number of times that C7 M contains the true value P
divided by the total number of simulations / . Ideally, the coverage rate given by (6.11),
should be close to 95%.

6.6 Results

In this section, we report the results from the different simulation studies.
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Simulation Study I: Non-differential flows — Non—differential misclassification

Table 6.7: True flows

n’ = 2150, n = 60000, H = 20000

ICE True Scenario — External Validation Sample

UN

EE UE NE EU uvu NU EN NN
0.7459 0.0102 0.0004 0.0015 0.0295 0.005 0.0008 0.0027 0.204
Table 6.8: Point estimates, Averages over simulations
Estimators EE UE NE EU gy NU EN UN NN
P-OBS 0.7180 0.0160 0.0160 0.0080 0.0270 0.010 0.0160 0.0080 0.1810
P-ST 0.7460  0.0102 0.00038 0.00149 0.0295 0.0049 0.00072 0.00260 0.2042
P-MOD 0.7395 0.0109 0.00577 0.00250 0.0286 0.0051 0.00610 0.00285 0.1986
P-UM 0.7361 0.0139 0.00002 0.00526 0.0328 0.0069 0.00048 0.00410 0.2005
P-CF1 0.7441 0.0104 0.00198 0.00178 0.0292 0.0050 0.00233 0.00270 0.2025
P-CF2 0.7447 0.0103 0.00144 0.00170 0.0293  0.0050 0.00179 0.00267 0.2031
P-CF3 0.7454  0.0102 0.00089 0.00157 0.0294 0.0050 0.00125 0.00266 0.2036
P-CAD 0.7458 0.0102 0.00041 0.00157 0.0294 0.0053 0.00076 0.00300 0.2036
Table 6.9: Relative bias of point estimators (%)
Estimators EE UE NE EU 4y NU EN UN NN
P-OBS -3.74 57.9 3900 4333 -8.47 100 1900 196 -11.3
P-ST 0.01 0.01. -5 -0.66 0.01 -2 -10 -3.70 0.10
P-MOD -0.86 6.86 1343 66.6 -3.05 2 662 5.55 -2.64
P-UM 131 362 95 251 11.2 38 -40 519 -1.71
P-CF1 024 196 395 187  -1.02 001 191 001 073
P-CF2 0.16 098 260 133 -0.68 0.01 124 -111  -0.44
P-CF3 007  0.01 123 466  -034 001 562  -148  -0.19
P-CAD 001 001 250 466 034 6 5 1.1 -0.19
Table 6.10: Standard deviation of point estimators (*106)
Estimators EE UE NE EU uu NU EN UN NN
P-OBS 1.83 0.51 0.51 0.36 0.66 0.41 0.51 0.51 0.54
P-ST 5.72 1.86 2.91 1.84 1.66 1.68 2.90 1.70 1.67
P-MOD 5.40 1.78 2.67 1.76 1.58 1.63 2.77 1.64 1.62
P-UM 3.13 1.24 2.86 1.29 1.93 1.42 2.80 1.62 1.04
P-CF1 5.64 1.84 2.86 1.83 1.63 1.67 2.86 1.69 1.65
P-CF2 5.67 1.85 2.90 1.83 1.63 1.67 2.88 1.70 1.66
P-CF3 5.70 1.85 2.92 1.84 1.64 1.68 2.90 1.71 1.67
P-CAD 5.65 1.82 2.88 1.81 1.65 1.49 2.87 1.61 1.66
Table 6.11: RMSE of point estimators (*10°)
Estimators EE UE NE EU uu NU EN UN NN
P-OBS 8.86 1.85 4.93 2.07 0.80 1.58 4.82 1.69 7.31
P-ST 1.81 0.59 0.92 0.58 0.52 0.53 0.92 0.54 1.67
P-MOD 2.66 0.61 1.90 0.65 0.57 0.52 1.91 0.52 2.37
P-UM 3.27 1.24 0.92 1.27 1.23 0.73 0.89 0.68 1.53
P-CF1 1.88 0.59 1.04 0.58 1.65 0.53 1.03 0.54 1.73
P-CF2 1.84 0.58 0.97 0.58 0.52 0.53 0.97 0.54 1.70
P-CF3 1.81 0.59 0.89 0.58 0.52 0.53 0.93 0.54 1.68
P-CAD 1.79 0.57 0.91 0.57 0.52 0.49 0.91 0.52 1.67
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Simulation Study II: Non-differential flows — Non—differential misclassification
Relaxed ICE Scenario 1— External Validation Sample
n’ = 2150,n = 60000, H = 20000
Table 6.12: True flows

EE UE NE EU v NU EN UN NN
0.744 0.0103 0.0012 0.0018 0.0294 0.006 0.0015 0.003 0.2028
Table 6.13: Point estimates, Averages over simulations
Estimators EE UE NE EU uvu NU EN UN NN
P-OBS 0.7178 0.0161 0.01610 0.00760 0.0271 0.0103 0.01560 0.00810 0.1809
P-ST 0.7458 0.0102 0.00049 0.00108 0.0297 0.0054 0.00033 0.00280 0.2042
P-MOD 0.7394  0.0110 0.00590 0.00214 0.0287 0.0055 0.00570 0.0030 0.1986
P-UM 0.7358 0.0133 0.00064 0.00480 0.0328 0.0081 0.00108 0.00450 0.1989
P-CF1 0.7439 0.0104 0.00211 0.00140 0.0293 0.0054 0.00195 0.00286 0.2024
P-CF2 0.7445 0.0104 0.00157 0.00130 0.0294 0.0054 0.00141 0.00283 0.2031
P-CF3 0.7452  0.0103 0.00100 0.00120 0.0295 0.0054 0.00087 0.00281 0.2036
P-CAD 0.7457 0.0104 0.00052 0.00120 0.0295 0.0058 0.00036 0.00310 0.2039
Table 6.14: Relative bias of point estimators (%)
Estimators EE UE NE EU (4 NU EN UN NN
P-OBS -3.52 56.3 1241 322 -7.82 71.6 940 170 -10.8
P-ST 0.24 -0.97 -59.2 -40 1.02 -10 -78 -6.66 0.69
P-MOD -0.62 6.79 392 18.9 -2.38 -8.33 280 0.01 -2.07
P-UM -1.10 29.1 -46.6 167 11.6 35 -28 50 -1.92
P-CF1 -0.01 0.97 75.8 22.2 -0.34 -10 30 -4.67 -0.19
P-CF2 0.07 097 308 277 001 -10 6 566  0.15
P-CF3 0.16 001  -166 333 034 -10 42 633 039
P-CAD 0.23 097 566 333 034  -3.33 76 333 0.54
Table 6.15: Standard deviation of point estimators (*10°)
Estimators EE UE NE EU uvu NU EN UN NN
P-OBS 1.84 0.51 0.51 0.35 0.66 041 0.51 0.36 1.50
P-ST 5.72 1.85 2.92 1.84 1.64 1.67 2.91 1.70 5.24
P-MOD 5.54 1.79 2.82 1.77 1.58 1.62 2.81 1.64 5.07
P-UM 2.93 1.26 2.83 1.34 1.93 1.36 2.79 1.60 3.11
P-CF1 5.67 1.84 2.89 1.82 1.62 1.66 2.88 1.68 5.20
P-CF2 5.68 1.84 2.90 1.82 1.63 1.66 2.88 1.69 522
P-CF3 5.70 1.85 291 1.83 1.63 1.67 2.89 1.69 5.22
P-CAD 5.69 1.83 2.91 1.81 1.60 1.56 2.89 1.65 5.22
Table 6.16: RMSE of point estimators (*10°)
Estimators EE UE NE EU Uu NU EN UN NN
P-OBS 8.30 1.84 4.71 1.84 0.75 1.36 4.46 1.62 6.92
P-ST 1.88 0.58 0.95 0.62 0.52 0.57 0.99 0.54 1.71
P-MOD 2.27 0.61 1.73 0.57 0.55 0.53 1.61 0.52 2.09
P-UM 2.78 1.01 0.91 1.04 1.24 0.79 0.89 0.69 1.58
P-CF1 1.79 0.58 0.95 0.58 0.51 0.55 0.92 0.53 1.65
P-CF2 1.81 0.58 0.92 0.60 0.51 0.56 0.91 0.54 1.65
P-CF3 1.85 0.58 0.92 0.61 0.52 0.56 0.94 0.54 1.67
P-CAD 1.88 0.57 0.94 0.60 0.51 0.50 0.98 0.52 1.69
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Simulation Study III: Non—differential flows — Non—differential misclassification
Relaxed ICE Scenario 2 — External Validation Sample
n’ = 2150, n = 60000, H = 20000
Table 6.17: True flows

EE UE NE EU Uuu NU EN UN NN
0.7425  0.0103  0.0018  0.0027  0.0291  0.0063 _ 0.0027  0.0031 _ 0.2015
Table 6.18: Point estimates, Averages over simulations
Estimators EE UE NE EU 9y NU EN UN NN
P-OBS 0.7179  0.0161 0.01590 0.0080 0.0270 0.0102 0.01560 0.00810 0.1810
P-ST 0.7460  0.0102 0.00025 0.0015 0.0296 0.0052 0.00037 0.00270 0.2042
P-MOD 0.7395 0.0109 0.00570 0.0025 0.0286 0.0053 0.00570 0.00300 0.1986
P-UM 0.7358 0.0132 0.00067 0.0048 0.0328 0.0081 0.00111 0.00450 0.1989
P-CF1 0.7440  0.0104 0.00188 0.0018 0.0292 0.0052 0.00199 0.00280 0.2024
P-CF2 0.7447 0.0104 0.00133 0.0017 0.0294 0.0052 0.00145 0.00277 0.2031
P-CF3 0.7453  0.0103 0.00080 0.0016 0.0295 0.0052 0.00091 0.00274 0.2036
P-CAD 0.7458 0.0104 0.00029 0.0016 0.0294 0.0056 0.00041 0.00310 0.2040
Table 6.19: Relative bias of point estimators (%)
Estimators EE UE NE EU uv NU EN UN NN-
P-OBS 3.31 56.3 783 196 -7.2 61.9 478 161 -10.2
P-ST 0.47 -0.97 -86 -44 1.72 -174 -86 -12.9 1.34
P-MOD -0.40 5.82 217 -7.40 -1.72 -15.8 111 -3.22 -1.44
P-UM -0.90 28.1 -62.7 77.7 12.7 28.5 -58.8 45.1 -1.29
P-CF1 0.20 0.97 4.44 -33 0.34 -17 -26.3 -9.67 0.44
P-CF2 0.29 0.97 -26.1 -37 1.03 -17.5 -46.3 -10.6 0.79
P-CF3 0.37 0.01 -55.5 -40.7 1.37 -17.4 -66.3 -11.6 1.04
P-CAD 0.44 0.97 -83.9 -40.7 1.03 -11.1 -84.8 0.01 1.24
Table 6.20: Standard deviation of point estimators (*106)
Estimators  EE UE NE EU uu NU EN UN NN
P-OBS 1.84 0.51 0.51 0.36 0.66 0.41 0.51 0.36 1.72
P-ST 5.68 1.85 2,95 1.83 1.66 1.71 2.93 1.73 5.29
P-MOD 5.51 1.79 2.86 1.77 1.60 1.65 2.84 1.68 5.11
P-UM 3.14 1.26 2.82 1.35 1.82 1.39 2.77 1.59 3.15
P-CF1 5.63 1.83 2.92 1.81 1.64 1.69 2.90 1.72 5.23
P-CF2 5.65 1.84 2.93 1.82 1.64 1.70 2.91 1.72 5.25
P-CF3 5.67 1.85 2.94 1.82 1.65 1.71 2.92 1.73 5.27
P-CAD 5.67 1.83 2.94 1.81 1.62 1.60 2.92 1.68 5.26
Table 6.21: RMSE of point estimators (*¥10°)
Estimators  EE UE NE EU Uvu NU EN UN NN
P-OBS 7.80 1.84 4.47 1.68 0.69 1.24 4.09 1.58 6.50
P-ST 2,12 0.58 1.05 0.69 0.54 0.64 1.18 0.56 1.87
P-MOD 1.97 0.60 1.52 0.57 0.53 0.61 1.33 0.53 1.85
P-UM 2.37 1.00 0.96 0.79 1.30 0.72 1.01 0.68 1.30
P-CF1 1.85 0.58 0.93 0.64 0.52 0.64 0.94 0.55 1.69
P-CF2 1.92 0.58 0.94 0.66 0.53 0.64 1.00 0.56 1.73
P-CF3 2.01 0.58 0.98 0.68 0.53 0.65 1.08 0.56 1.80
P-CAD 2.08 0.57 1.04 0.67 0.52 0.56 1.17 0.53 1.84
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Simulation Study I'V: Non—differential flows — Non—differential misclassification

ICE True Scenario — External Validation Sample

n' =10000, » = 60000, H =100

Table 6.22: True flows

EE UE NE EU uu NU EN UN NN
0.7316  0.0131 0.0091 0.0047 0.0283 0.0071 0.0093 0.0049 0.1919

Table 6.23: Point estimates, Averages over simulations

Estimators EE UE NE EU uv NU EN UN NN
P-OBS 0.7177 0.0160 0.0161 0.0080 0.0267 0.010 0.0161 0.0081 0.1813
P-ST 0.7318 0.0131 0.0090 0.0047 0.0281 0.0070 0.0093 0.0048 0.1922
P-UM 0.7262 0.0148 0.0087 0.0064 0.0301 0.0083 0.0092 0.0059 0.1904
P-CF2 0.7268 0.0136 0.0132 0.0055 0.0274 0.0071 0.0134 0.0050 0.1880
P-CF3 0.7293 0.0133 0.0111 0.0051 0.0278 0.0071 0.0113 0.0049 0.1901
P-CAD 0.7318 0.0130 0.0090 0.0047 0.0281 0.0072 0.0092 0.0049 0.1921
P-MLE 0.7320 0.0130 0.0089 0.0046 0.0281 0.0071 0.0091 0.0049 0.1923
P-UMLE 0.7276 0.0140 0.0088 0.0058 0.0295 0.0083 0.0093 0.0059 0.1908

Table 6.24: Relative bias of point estimators (%)
Estimators EE UE NE EU uu NU EN UN NN

P-OBS -1.89 22.1 76.9 70.2 -5.65 40.8 73.1 65.3 -5.52
P-ST 0.03 0.01 -1.09 0.01 -0.71 -1.41 0.01 -2.42 0.16
P-UM -0.74 12.9 -4.39 36.2 6.36 16.9 -1.07 204 -0.78
P-CF2 -0.66 3.81 45 17 -3.18 0.01 44.1 2.04 -2.03
P-CF3 -0.31 1.53 21.9 8.51 -1.76 0.01 21.5 0.01 -0.94

P-CAD 0.03 -0.76 -1.09 0.01 -0.71 1.41 -1.07 0.01 0.10
P-MLE 0.05 -0.76 -2.19 2.12 -0.71 0.01 -2.15 0.01 0.21
P-UMLE -0.55 6.87 -3.29 234 4.24 16.9 0.01 20.4 -0.57

Table 6.25: Standard deviation of point estimators (*10°)

Estimators  EE UE NE EU uu NU EN UN NN
P-OBS 1.92 0.48 0.52 0.33 0.80 041 0.47 0.35 1.55
P-ST 241 0.73 1.09 0.62 1.01 0.71 1.05 0.69 2.17
P-UM 2.09 0.66 1.04 0.54 1.10 0.60 0.98 0.61 1.96
P-CF2 2.36 0.71 1.07 0.62 0.98 0.69 0.33 0.66 2.11
P-CF3 2.38 0.72 0.35 0.62 0.99 0.70 0.33 0.68 2.14
P-CAD 2.40 0.73 1.09 0.62 1.01 0.72 0.33 0.69 2.17
P-MLE 2.03 0.60 0.82 0.48 0.90 0.60 0.78 0.54 1.82
P-UMLE 1.67 0.47 0.44 0.30 0.77 0.42 0.40 0.33 1.45

Table 6.26: RMSE of point estimators (¥10°)

Estimators EE UE NE EU uUvu NU EN UN NN
P-OBS 14.1 2.95 7.00 3.33 1.71 3.07 6.84 3.24 345
P-ST 2.42 0.73 1.09 0.62 1.01 0.71 1.05 0.69 2.17
P-UM 5.78 1.85 1.10 1.79 2.18 1.39 0.98 1.16 2.60
P-CF2 5.30 0.41 424 1.04 1.30 0.69 4.27 0.67 4.63
P-CF3 3.27 0.76 2.29 0.75 1.11 0.70 2.31 0.68 2.92
P-CAD 241 0.73 1.09 0.62 1.02 0.72 1.05 0.69 2.17
P-MLE 2.12 0.61 0.85 0.49 0.91 0.61 0.80 0.55 1.82
P-UMLE 429 1.04 0.48 1.16 1.41 1.25 0.40 0.99 1.86
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Simulation Study V: Non—differential flows — Non—differential misclassification

Table 6.27: True flows

ICE Relaxed Scenario — External Validation Sample
n' =10000, n» = 60000, H = 100

EE UE NE EU uvu NU EN UN NN
0.7283 0.0131 0.01 0.0059 0.028 0.008 0.0117 0.0052 0.1898
Table 6.28: Point estimates, Averages over simulations
Estimators EE UE NE EU uu NU EN UN NN
P-OBS 0.7180 0.0160 0.0160 0.0081 0.0270 0.010 0.0160 0.0080 0.1809
P-ST 0.7320 0.0133 0.0088 0.0049 0.0284 0.0070 0.0090 0.0049 0.1917
P-UM 0.7266  0.0149 0.0086 0.0065 0.0303 0.0082 0.0090 0.0058 0.1901
P-CF2 0.7269 0.0139 0.0130 0.0057 0.0276 0.0071 0.0132 0.0050 0.1876
P-CF3 0.7294 0.0136 0.0110 0.0053 0.0280 0.0071 0.0111 0.0049 0.1896
P-CAD 0.7319 0.0133 0.0088 0.0049 0.0284 0.0072 0.0090 0.0050 0.1915
P-MLE 0.7320  0.0131 0.0088 0.0048 0.0284 0.0071 0.0090 0.0049 0.1919
P-UMLE  0.7280 0.0140 0.0089 0.0057 0.030 0.0081 0.0091 0.0058 0.1904
Table 6.29: Relative bias of point estimators (%)
Estimators EE UE NE EU uu NU EN UN NN
P-OBS -1.41 22.1 60 373 -3.57 25 36.7 53.8 -4.69
P-ST 0.51 1.53 -12 -16.9 1.43 -12.5 -23.1 -5.77 1
P-UM -0.23 13.7  -14 102 821 25 -23.1 115 0.16
P-CF2 -0.19 6.10 30 -3.39 -1.43 -11.2 12.8 -3.84 -1.16
P-CF3 0.15 3.81 10 -10.2 0.01 -11.2 -5.12 -5.77 -0.11
P-CAD 0.49 1.53 -12 -16.9 1.42 -10 -23.1 -3.84 0.89
P-MLE 0.51 0.01 -12 -18.6 1.42 -11.2 -23.1 -5.77 1.10
P-UMLE -0.04 6.87 -11 -3.39 7.14 1.25 -22.2 11.5 0.32
Table 6.30: Standard deviation of point estimators (*10°)
Estimators EE UE NE EU uvu NU EN UN NN
P-OBS 1.77 0.50 0.52 0.37 0.60 0.42 0.49 0.39 1.66
P-ST 2.65 0.74 1.14 0.71 0.82 0.62 1.00 0.64 2.28
P-UM 2.02 0.66 1.10 0.61 0.89 0.58 0.97 0.59 2.08
P-CF2 2.60 0.73 .11 0.69 0.80 0.60 0.99 0.62 2.22
P-CF3 2.62 0.73 1.13 0.70 0.81 0.61 0.99 0.62 2.25
P-CAD 2.65 0.74 1.14 0.71 0.82 0.62 1.00 0.65 2.28
P-MLE 2.27 0.68 0.84 0.59 0.77 0.53 0.73 0.49 2.02
P-UMLE 1.68 0.58 0.41 0.33 0.58 0.41 0.40 0.35 1.65
Table 6.31: RMSE of point estimators (*106)
Estimators  EE UE NE EU uv NU EN UN NN
P-OBS 10.63 2.99 6.11 2.31 1.30 2.09 442 2.87 9.19
P-ST 4.55 0.77 1.66 1.23 0.92 1.17 2.88 0.71 2.97
P-UM 2.64 1.91 1.78 0.85 2.47 0.61 2.87 0.84 2.10
P-CEF2 2.95 1.08 3.19 0.72 0.89 1.08 1.80 0.65 3.13
P-CF3 2.84 0.88 1.51 0.92 0.81 1.09 1.16 0.69 2.26
P-CAD 4.46 0.77 1.66 1.22 0.92 1.01 2.89 0.67 2.84
P-MLE 4.34 0.68 1.47 1.24 0.87 1.04 2.80 0.57 2.92
P-UMLE 1.71 1.07 1.17 0.39 2.08 0.42 2.63 0.69 1.75
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Simulation Study VI: Differential measurement error — Non—differential flows

External validation sample, Heterogeneity according to gender

n® = 10000, n = 60000, H =100

Table 6.32: True flows

EE UE NE EU uu NU EN UN NN
0.7353 0.0128 0.0080 0.0056 0.0280 0.0081 0.0077 0.0070 0.1875
Table 6.33: Point estimates, Averages over simulations
Estimators EE UE NE EU 0y NU EN UN NN
P-OBS 0.7154  0.0160 0.0167 0.0091 0.0268 0.0101 0.0163 0.0091 0.1805
P-ST 0.7356 0.0127 0.0080 0.0056 0.0280 0.0081 0.0077 0.0070 0.1873
P-UM 0.7243  0.0146 0.0092 0.0075 0.0296 0.0090 0.0090 0.0077 0.1891
P-UNIT 0.7355 0.0128 0.0080 0.0056 0.0280 0.0081 0.0077 0.0070  0.1873
P-MLE 0.7363  0.0127 0.0076 0.0055 0.0280 0.0080 0.0073 0.0070  0.1876
P-UNMLE 0.7359 0.0127 0.0079 0.0055 0.0280 0.0082 0.0076 0.0071  0.1871
P-UMLE 0.7259 0.0141 0.0093 0.0072 0.0293 0.0089 0.0091 0.0076 0.1886
Table 6.34: Relative Bias (%) of the estimators
Estimators EE UE NE EU 4y NU EN UN NN
P-OBS -2.70 25 108 62.5 -4.28 25 112 30 -3.73
P-ST 0.04 -0.78 0.01 0.01 0.01 0.01 0.01 0.01 -0.11
P-UM -1.49 14.1 15 339 5.71 11.1 16.8 10 0.85
P-UNIT 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.11
P-MLE 0.13 -0.78 -5 -1.78 0.01 -1.23 -5.19 0.01 0.05
P-UNMLE 0.08 -0.78 -1.25 -1.78 0.01 1.23 -1.30 1.43 -0.21
P-UMLE -1.28 10.2 16.2 28.6 4.64 9.87 18.2 8.57 0.59
Table 6.35: Standard deviation of the point estimators (*106)
Estimators EE UE NE EU v NU EN UN NN
P-OBS 1.72 0.56 0.53 0.41 0.66 0.39 0.54 0.39 1.54
P-ST 2.84 0.85 0.99 0.71 0.73 0.57 1.05 0.52 2.08
P-UM 2.03 0.71 1.04 0.55 0.80 0.49 1.08 0.54 1.89
P-UNIT 2.84 0.85 0.98 0.71 0.73 0.57 1.04 0.52 2.07
P-MLE 2.31 0.73 0.70 0.59 0.67 0.52 0.79 0.47 1.92
P-UNMLE 2.12 0.69 0.61 0.56 0.67 0.50 0.66 0.45 1.85
P-UMLE 1.80 0.63 0.85 0.52 0.71 0.47 0.91 0.50 1.75
Table 6.36: RMSE of point estimators (*106)
Estimators EE UE NE EU Uuu NU EN UN NN
P-OBS 19.9 3.26 8.71 3.52 1.37 2.00 8.64 2.17 7.18
P-ST 2.85 0.85 0.99 0.71 0.74 0.57 1.05 0.52 2.08
P-UM 11.2 1.96 1.55 1.95 1.75 0.98 1.73 0.93 2.50
P-UNIT 2.84 0.85 0.98 0.71 0.75 0.57 1.04 0.52 2.07
P-MLE 2.51 0.73 0.84 0.61 0.68 0.54 0.90 0.47 1.98
P-UNMLE 221 0.70 0.63 0.57 0.68 0.50 0.68 0.45 1.84
P-UMLE 9.63 1.48 1.55 1.64 1.51 0.82 1.72 0.74 2.15
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Simulation Study VII: Differential measurement error — Differential flows

Table 6.37: True flows

External validation sample, Heterogeneity according to gender

n’ = 10000, n = 60000, H =100

EE UE NE EU iy NU EN UN NN
0.7353 0.0128 0.0080 0.0056 0.0280 0.0081 0.0077 0.0070 0.1875
Table 6.38: Point estimates, Averages over simulations
Estimators EE UE NE EU uvu NU EN UN NN
P-OBS 0.7163  0.0160 0.0160 0.0091 0.0269 0.0102 0.0156 0.0091 0.1808
P-ST 0.7363 0.0127 0.0072 0.0056 0.0281 0.0082 0.0068 0.0070 0.1881
P-UM 0.7247 0.0144 0.0091 0.0074 0.0296 0.0092 0.0090 0.0079 0.1887
P-UNIT 0.7362 0.0127 0.0072 0.0057 0.0281 0.0082 0.0069 0.0071 0.1879
P-MLE 0.7368 0.0125 0.0073 0.0055 0.0280 0.0083 0.0070 0.0072 0.1874
P-UNMLE 0.7362 0.0125 0.0077 0.0055 0.0279 0.0085 0.0074 0.0074 0.1869
P-UMLE 07265 0.0140 0.0092 0.0071 0.0293  0.0090 0.0090 0.0077 0.1882
Table 6.39: Relative Bias (%) of the estimators
Estimators EE UE NE EU uu NU EN UN NN
P-OBS -2.58 25 100 62.5 -3.93 259 103 30 -3.57
P-ST 0.14 -0.78 -10 0.01 0.36 1.23 -11.7 0.01 0.32
P-UM -1.44 12.5 13.7 32.1 5.71 13.6 16.9 12.8 0.64
P-UNIT 0.12 -0.78 -10 1.78 0.35 1.23 -10.4 1.43 0.21
P-MLE 0.20 -2.34 -8.75 -1.78 0.01 2.47 -9.09 2.85 -0.05
P-UNMLE 0.12 -2.34 -3.75 -1.78 -0.35 4,94 -3.89 5.71 -0.32
P-UMLE -1.19 9.37 15 26.8 4.64 11.1 16.9 10 0.37
Table 6.40: Standard deviation of the point estimators (*10°)
Estimators EE UE NE EU uvu NU EN UN NN
P-OBS 1.93 0.49 0.48 0.36 0.72 0.45 0.48 0.37 1.72
P-ST 2.87 0.78 1.13 0.69 0.89 0.66 1.10 0.66 2,23
P-UM 2.20 0.63 0.99 0.56 0.94 0.59 1.04 0.56 2.05
P-UNIT 2.87 0.78 1.13 0.69 0.89 0.63 1.10 0.66 2.22
P-MLE 2.27 0.68 0.79 0.57 0.78 0.57 0.77 0.53 1.67
P-UNMLE 2.04 0.62 0.66 0.50 0.77 0.54 0.66 0.49 1.67
P-UMLE 1.86 0.55 0.83 0.53 0.84 0.58 0.84 0.51 1.67
Table 6.41: RMSE of point estimators (*10°)
Estimators EE UE NE EU uovu NU EN UN NN
P-OBS 19.0 3.14 7.95 3.52 1.33 2.07 7.86 2.20 6.72
P-ST 3.05 0.79 0.45 0.69 0.90 0.66 1.39 0.66 2.32
P-UM 10.8 1.73 1.47 1.87 1.83 1.22 1.61 1.11 2.43
P-UNIT 3.04 0.79 1.40 0.69 0.89 0.66 1.37 0.66 2.30
P-MLE 2.77 0.72 1.06 0.58 0.78 0.60 1.05 0.57 1.68
P-UNMLE 225 0.67 0.75 0.52 0.78 0.65 0.74 0.62 1.78
P-UMLE 8.98 1.26 1.40 1.57 1.57 1.05 1.37 0.91 1.88
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Simulation Study I: Non—differential flows — Non—differential misclassification

ICE True Scenario — External Validation Sample
n’ = 2150, n = 60000, H = 20000

Table 6.42: Performance of the variance estimator for the conventional estimator

-st—ext st—ext 7 7 0 3
Flow Bl ( 3 J v ( I ] Absolute Relative Bias (%)  Coverage Rate
(*10% (*10°)
EE 32.6 32.7 0.30 0.945
UE 347 3.48 0.28 0.934
NE 8.55 8.44 1.30 0.949
EU 3.42 3.44 0.58 0.934
Uu 2.82 2.80 0.71 0.924
NU 2.89 2.87 0.69 0.939
EN 8.48 8.36 1.43 0.948
UN 2.96 2.88 2.77 0.935
NN 27.9 27.6 1.08 (.943
Table 6.43: Performance of the variance estimator for the modified estimator
mod A mod ’- y 0, .
Flow z V/c\z . [ ]/5 H v [P ) Absolute Relative Bias (%)  Coverage Rate
(*10° (*10%)
EE 30.5 30.6 0.33 0.751
UE 3.24 3.20 1.25 0.895
NE 8.08 7.95 1.63 0.514
EU 3.20 3.15 1.58 0.864
Tu 2.62 2.57 1.94 0.826
NU 2.70 2.68 0.75 0.931
EN 7.75 7.86 1.40 0.502
UN 2.76 2.73 1.10 0.927
NN 25.9 26.1 0.77 0.764

Table 6.44: Performance of the variance estimator for the composite estimator with fixed

weights (1 set of weights, see Table 6.5)

comp—frl comp—frl r y, 0, .
Flow Var { P £ J V( » ) Absolute Relative Bias (%)  Coverage Rate
(*10°) (*10°)
EE 319 314 1.59 0.918
UE 3.40 3.36 1.19 0.930
NE 8.37 8.30 0.84 0.881
EU 3.34 3.29 1.52 0.922
UU 2.75 2.69 2.23 0.902
NU 2.83 2.81 0.71 0.937
EN 8.14 8.25 1.33 0.877
UN 2.90 2.87 1.04 0.935
NN 27.2 27.4 0.73 0.914
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Table 6.45: Performance of the variance estimator for the composite estimator with fixed

weights (2™ set of weights, see Table 6.5)

Flow [V/& . [ ]/5 comp—fa2 JJ v ( ]/5 wmp—fﬂJ Absolute Relative Bias (%) Coverage Rate
(*10°) (*10°)
EE 32.1 31.7 1.26 0.931
UE 3.42 3.39 0.88 0.934
NE 8.42 8.36 0.85 0.911
EU 3.37 3.32 0.72 0.928
UU 2.77 2.71 221 0.910
NU 2.86 2.83 1.06 0.937
EN 8.20 8.31 1.32 0.905
UN 2.92 2.89 1.04 0.937
NN 27.4 27.6 0.72 0.926

Table 6.46: Performance of the variance estimator for the composite estimator with fixed

weights (3 set of weights, see Table 6.5)

Flow . ( A comp~fr3]} . { » comﬂ—fﬁ] Absolute Relative Bias (%) Coverage Rate
(*10%) (*10°)

EE 32.4 31.9 1.56 0.941
UE 3.44 341 0.88 0.937
NE 8.48 8.41 0.83 0.930
EU 3.39 3.34 1.50 0.933
Uu 2.79 2.73 2.20 0.917
NU 2.88 2.85 1.05 0.938
EN 8.25 8.36 1.31 0.927
UN 2.94 291 1.03 0.938
NN 27.6 27.8 0.72 0.936
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Simulation Study ITI: Non—differential flows —~ Non—differential misclassification

Relaxed ICE Scenario 2 — External Validation Sample

n’ = 2150, n = 60000, H = 20000

Table 6.47: Performance of the variance estimator for the conventional estimator

Flow V/c\z - ( ]/5 st~ezt] v ( j% st~m] Absolute Relative Bias (%) Coverage Rate
(*10°) (*10°)

EE 32,6 327 0.31 0.928
UE 3.46 3.44 0.58 0.942
NE 8.54 8.66 1.38 0.939
EU 341 3.37 1.10 0.936
Uu 2.81 2.78 1.19 0.944
NU 2.89 2.84 1.76 0.946
EN 848 8.36 1.43 0.908
UN 2.96 2.91 1.72 0.950
NN 27.8 28.1 1.07 0.945

Table 6.48: Performance of the variance estimator for the modified estimator

Flow 5 ‘V/c\z i ( ]/5 mod} v [ }A) mad} Absolute Relative Bias (%) Coverage Rate
(*10%) (*10°)
EE 30.5 30.7 0.65 0.890
UE 3.25 3.22 0.93 0.900
NE 8.09 8.10 0.12 0.678
EU 3.20 3.15 1.58 0.942
18] 0 2.62 2.59 1.16 0.876
NU 2.70 2.65 1.88 0.949
EN 7.79 7.81 0.26 0.749
UN 2.76 2.72 1.47 0.942
NN 25.9 26.2 1.14 0.870

Table 6.49: Performance of the variance estimator for the composite estimator with fixed

weights (1% set of weights, see Table 6.5)

Flow g V/n\z . [ j\jwmp“fﬂ]J v [ champ—le) Absolute Relative Bias (%) Coverage Rate
(+109 (*109
EE 31.9 32.1 0.62 0.950
UE 3.39 3.37 0.59 0.933
NE 8.37 8.48 1.29 0.940
EU 3.34 3.30 1.21 0.946
[814) 2.76 2.72 1.47 0.932
NU 2.83 2.78 1.79 0.947
EN 8.15 8.19 0.49 0.945
UN 2.90 2.85 1.75 0.948
NN 27.2 27.5 1.09 0.949
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Table 6.50: Performance of the variance estimator for the composite estimator with fixed

weights (2™ set of weights, see Table 6.5)

Flow Vo [ » comp—fﬂ]} v ( A campﬂfﬂ] Absolute Relative Bias (%) Coverage Rate
(*109 (*10°)

EE 32.1 323 0.62 0.947
UE 3.42 3.39 0.88 0.936
NE 8.42 8.54 1.40 0.945
EU 3.36 3.32 1.20 0.946
Uuu 2.78 2.74 1.46 0.936
NU 2.85 2.80 1.78 0.947
EN 8.21 8.25 0.48 0.942
UN 291 2.87 1.39 0.948
NN 274 27.7 1.08 0.951

Table 6.51: Performance of the variance estimator for the composite estimator with fixed

weights (3™ set of weights, see Table 6.5)

Flow Vg . ( }A) camp—fmsJJ v [ }A) comp—fﬁJ Absolute Relative Bias (%) Coverage Rate
(*10%) (*10°)

EE 323 32.5 0.61 0.939
UE 3.44 341 0.88 0.940
NE 8.48 8.60 1.39 0.947
EU 3.38 3.35 0.89 0.941
[510) 2.80 2.76 1.45 0.942
NU 2.87 2.82 1.77 0.946
EN 8.26 8.31 0.60 0.931
UN 2.94 2.89 1.73 0.949
NN 27.6 27.9 1.07 0.949
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Simulation Study VIII: Non—differential flows — Non—differential misclassification

ICE True Scenario — Internal Validation Sample

n' = 2150, n —n" = 57850, H = 20000

Table 6.52: Performance of the variance estimator for the conventional estimator

Flow V/(\z . ( }/\) st—int H v { ]/5 Sf—int} Absolute Relative Bias (%) Coverage Rate
(*10%) (*10%

EE 314 31.3 0.32 0.944
UE 3.23 3.29 1.82 0.931
NE 8.21 8.29 0.96 0.942
EU 3.38 344 1.74 0.930
Uu 2.72 2.73 0.36 0.920
NU 2.87 2.90 1.03 0.933
EN 8.20 8.31 1.32 0.943
UN 2.79 2.84 1.76 0.933
NN 27.0 27.2 0.73 0.942

Simulation Study IX: Non—differential flows — Non-differential misclassification
ICE True Scenario — External Validation Sample

n’ =10000, n» = 60000, H = 100

Table 6.53: Performance of the variance estimator for the maximum likelihood estimator (4-

state model) under the Missing Information Principle with 50000 simulations (Section 5.4.1)

Flow 5 Vg - ( }A) mk} v [ ]AjmleJ Absolute Relative Bias (%) Coverage Rate
(*10% (*10°
EE 5.19 5.00 3.80 0.94
E,U+N 2.95 2.02 46.0 0.90
U+N,E 2.95 2.00 475 0.92
U+N,U+N 7.70 6.80 13.2 0.94
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Simulation Study X: Non-differential flows — Non-differential misclassification
ICE Scenario — Internal Validation Sample
n’ =10000, n —n’ = 50000, = 500
Table 6.54: True flows

EE U+NE E,U+N U+N, U+N
0.7288 0.0129 0.0054 0.2529
Table 6.55: Point estimates, Averages over simulations
Estimator EE U+N,E E,U+N U+N,UtN
P-OBS 0.7160 0.0320 0.0250 0.2270
P-ST 0.7290 0.0128 0.0053 0.2529
P-MLE 0.7286 0.0132 0.0057 0.2525
Table 6.56: Relative bias of point estimators (%)
Estimator EE U+N,E E,U+N U+N,UtN
P-OBS -1.756 148.0 362.9 -10.24
P-ST 0.027 -0.775 -1.851 0.039
P-MLE -0.027 2.325 5.555 -0.158

Table 6.57: Standard deviation of point estimators (*10%)

Estimator EE U+N,E E,U+N U+N,U+N
P-OBS 2.58 1.09 0.87 2.54
P-ST 3.21 1.86 1.68 3.45
P-MLE 3.03 1.62 1.39 3.08

Table 6.58: RMSE point estimators (*10°)

Estimator EE U+N,E E,U+tN U+N,U+N
P-OBS 4.13 6.05 6.20 8.23
P-ST 1.02 1.87 1.69 1.09
P-MLE 0.96 1.64 1.41 0.98
Table 6.59: Point estimates, Averages over simulations (“Naive” Vs. Full information)
Estimator EE U+N,E E,U+N U+N,U+N
P-ST 0.7290 0.0128 0.0053 0.2529
P-MLE (“Naive”) 0.7285 0.0133 0.0059 0.2522
P-MLE (Full Information) 0.7286 0.0132 0.0057 0.2525
Table 6.60: Standard deviation of point estimators (*10°%) (“Naive” Vs. Full information)
Estimator EE U+N,E E,U+N U+N,U+N
P-ST 3.21 1.86 1.68 3.45
P-MLE (*Naive”) 3.09 1.83 1.62 3.28
P-MLE (Full Information) 3.03 1.62 1.39 3.08
Table 6.61: RMSE of point estimators (*10°) (“Naive” Vs. Full information)
Estimator EE U+N,E E,U+N U+N, U+N
P-ST 1.02 1.87 1.69 1.09
P-MLE (“Naive”) 0.98 1.87 1.69 1.06
P-MLE (Full Information) 0.96 1.64 141 0.98
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Simulation Study XI: Comparing alternative parameterisations for cross-sectional inference

External Validation Sample
n = 60000, n” = 3000, A = 1000

Table 6.62: Point Estimates, Averages of 1000 simulations

Point Estimators P
Moment-type 0.6061
MLE (Tenenbein 1972) 0.6059
MLE (EM algorithm) 0.6059
Quasi-likelihood 0.6059

Table 6.63: Empirical comparison of the alternative point estimators

Point Estimators Relative Bias (%) Standard Deviation RMSE
(*10%) (*10)) (*10))
Moment-type 1.65 1.18 1.18
MLE (Tenenbein 1972) -1.65 1.13 1.13
MLE (EM algorithm) -1.65 1.13 1.13
Quasi-likelihood -1.65 1.13 1.13

6.7 The Performance of the Alternative Point Estimators

Based on the results derived from the different simulation studies, we now compare the

alternative point estimators.

The Performance of the Unadjusted Estimator

Measurement error has a significant effect on the estimated labour force gross flows. Ignoring
measurement error and estimating labour force gross flows without any further adjustment
results in the overestimation of the probabilities of transition. Deciding whether to use the
unadjusted estimates or the adjusted estimates will depend on the intensity of the
misclassification problem and on the trade-off between the variance of the adjusted gross
flows and the bias of the unadjusted gross flows. Based on the simulation results, the variance
of the unadjusted gross flows appears to be smaller than the variance of the adjusted gross

flows (see for example, Tables 6.10, 6.15, 6.20). This is due to the extra variability
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introduced by the adjustment procedure. However, the bias of the unadjusted gross flows is
always larger than the bias of the adjusted gross flows (see for example, Tables 6.9, 6.14,
6.19). This is the case both under ICE and under the relaxed-ICE scenarios. Based on a mean
squared error criterion (see for example, Tables 6.11, 6.16, 6.21), we conclude that the point
estimators that adjust gross flows for measurement error should be preferred over the point

estimator that ignores measurement error.

The Performance of the Altemative Moment-type Estimators

As expected, the effect of the conventional estimator is to correct the observed flows towards
higher stability i.e. decrease the off diagonal observed flows and increase the diagonal
observed flows. This estimator performs very well under ICE (see for example, Table 6.11),
but starts deteriorating under the relaxed-ICE scenarios. However, it appears to be quite

robust to departures from ICE (see for example, Tables 6.16 and 6.21).

The modified estimator adjusts the observed flows in the same direction as the conventional
estimator. However, it tends to reduce the adjustments produced under ICE. Consequently,
the performance of the modified estimator is in the reverse direction from that of the
conventional estimator (see Tables 6.11, 6.16 and 6.21). Given the disadvantages associated
with the modified estimator (see Section 2.4.2) and the robustness of the conventional

estimator, we propose the use of the conventional estimator instead of the modified estimator.

The composite estimator with fixed weights also reduces the adjustments produced by the
conventional estimator. However, this estimator performs reasonably well under ICE (see
Table 6.11) and very well under the relaxed ICE scenarios (see Tables 6.16 and 6.21). Thus,
we propose the use of the composite estimator with fixed weights, as an alternative to the

conventional estimator, in situations where the effect of the ICE assumption is very

pronounced.

The composite estimator with adaptive weights provides less severe adjustments than the
adjustments derived by the conventional estimator. The composite estimator with adaptive
weights performs very well under ICE (see Table 6.11). In fact, under ICE this estimator has

the minimum mean squared error. In addition, the composite estimator with adaptive weights
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is robust to departures from the ICE. We suggest that this estimator provides a promising

moment-based alternative to the conventional estimator.

In contrast to the conventional estimator that provides an upper bound for the adjustments,
the unbiased margins estimator provides a lower bound for the adjustments. The unbiased
margins estimator behaves like the moment-type estimators that attempt to relax the ICE
assumption. It is biased under ICE (see Table 6.9) but it improves under the relaxed ICE
scenarios (see Tables 6.16 and 6.21). This estimator provides an alternative to the

conventional estimator when the impact of the ICE assumption is very pronounced.

In summary, the composite estimator with fixed or adaptive weights and the unbiased

margins estimator provide reasonable moment-type alternatives to the conventional estimator.

Contrasting the Moment-type Estimators with the Maximum Likelihood Estimators

In Chapter 3, we developed a maximum likelihood estimator and a constrained maximum
likelihood estimator as alternatives to the conventional estimator and to the unbiased margins
estimator respectively. Our simulation results indicate that when the validation sample is
selected independently from the main sample and from the same target population, the
proposed maximum likelihood estimators are more efficient than the moment-type estimators
(see for example, Tables 6.26 and 6.31). A validation sample that is selected by sub-sampling
units from the main (panel) survey may increase the response burden of these units. Using an
independently selected validation sample in a panel framework may be more reasonable.
However, such an independently selected validation sample is also associated with higher
costs. This is because, when using an independently selected validation sample, we conduct
an additional cross-sectional survey of individuals that do not participate in the main survey.
The conventional estimator uses information from the cross-sectional validation sample only
for estimating the misclassification probabilities. On the other hand, the maximum likelihood
estimator makes optimal use of the cross-sectional validation information, leading to an
increase of the effective sample size. One could object that in order to gain this increased
efficiency, we pay the price of conducting an expensive validation survey. For this reason, in
simulation study X we contrast the maximum likelihood estimator with the conventional
estimator when the validation sample is selected by sub-sampling units from the main

sample. Under this double sampling scheme, both estimators use the same information.
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Again, our results indicate that the maximum likelihood estimator is more efficient (see
Table 6.58). Based on these results, we therefore recommend the maximum likelihood
estimator and the constrained maximum likelihood estimator instead of the conventional

estimator and the unbiased margins estimator.

In Section 3.2.2, we also presented two alternative approaches (i.e. the “naive” approach and
the full information approach) for performing the E-step of the EM algorithm when the
validation sample is selected by sub-sampling units from the main sample. In Tables 6.59-
6.61 we contrast these two approaches. We conclude that in performing the E-step of the EM
algorithm under the specific double sampling scheme, the full information approach is more

efficient than the “naive” approach (see Table 6.61) and therefore should be preferred.

Comparing the Alternative Estimators in the Presence of Heterogeneity

In simulation studies VI and VII, we allowed for moderate gender-based heterogeneity in the
gross flows mechanism and/or in the measurement error mechanism. The maximum
likelihood estimator that allows for heterogeneity is generally more efficient than the
corresponding moment-type (unit heterogeneity) estimator (see Tables 6.36 and 6.41). In
addition, since the maximum likelihood that allows for heterogeneity incorporates
stratification, we expect that it will be superior to the maximum likelihood estimator that
ignores heterogeneity. The results verify this assumption (see Table 6.36 and Table 6.41). We
conclude that even in the presence of moderate heterogeneity, the maximum likelihood
estimator that allows for heterogeneity should be preferred over the maximum likelihood

estimator that ignores heterogeneity.

6.8 The Performance of the Alternative Variance Estimators

In this section, we assess the performance of the variance estimators. Two evaluation criteria
are used. These are the relative bias of the variance estimator and the coverage rate when

using the variance estimator.
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The Performance of the Variance Estimator for the Conventional Estimator

Under ICE, the variance estimator of the conventional estimator works very well. More
specifically, in the case of an external validation sample the absolute relative bias ranges
between 0.28 % and 2.77 % and the coverage rate ranges between 92.4% and 94.9% (see
Table 6.42). For the case of an internal validation sample, the absolute relative bias ranges
between 0.32% and 1.82% and the coverage rate ranges between 92.0% and 94.4% (see Table
6.52). Under the second relaxed-ICE scenario, the variance estimator for the conventional
estimator performs well with low relative bias. The coverage rates are not affected (see Table
6.47). In only one case does the coverage rate drop from 94.8% to 90.8% (EN flow). The
preservation of coverage rates close to 95% indicates that the conventional estimator is robust

to departures from ICE.

The Performance of the Variance Estimator for the Modified Estimator

Under ICE, the variance estimator of the modified estimator works well with absolute relative
bias that ranges between 0.33% and 1.94%. However, the coverage rates range between 50%
and 93% (see Table 6.43). This under-coverage can be attributed to the bias of the modified
estimator under ICE. Under the second relaxed-ICE scenario, the modified estimator
preserves its good performance (see Table 6.48). The coverage rates increase but there are

still cases of under-coverage due to the bias of this estimator.

The Performance of the Variance Estimator for the Composite Estimator with Fixed Weights

Under ICE, the variance estimator of the composite estimator with fixed weights works well
with absolute relative bias that ranges between 0.71% and 2.23%. The coverage rates come
closer to 95% as we reduce the weight of the modified estimator (see Tables 6.44, 6.45 and
6.46). This is expected, since under the third set of weights (Table 6.5) the composite
estimator is closer to the conventional estimator and thus approximately unbiased when ICE
is valid. Under a relaxed-ICE scenario, the variance approximations for this estimator work

well with coverage rates close to 95 % (see Tables 6.49, 6.50 and 6.51).
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The Performance of the Variance Estimator for the Maximum Likelihood Estimator

The variance estimator of the maximum likelihood estimator (under a validation sample that
is selected independently from the main sample and from the same target population) appears
to be conservative since it overestimates the true variance (see Table 6.53). This
overestimation occurs mainly in the off-diagonal elements of the gross flows matrix. Despite
being conservative, two positive outcomes emerge from the use of this variance estimator.
Firstly, we feel confident that we capture the variability due to the missing data. Secondly, we
derive reasonable coverage rates that range between 90%-94%. Given the complexity of the
problem, we believe that this variance estimator provides a reasonable approximation to the

variance of the maximum likelihood estimator.

6.9 Summary

We now summarise the main findings from the evaluation of the methodology presented in
this chapter. Among the alternative moment-type estimators, we propose the use of the
composite estimator with fixed or with adaptive weights and of the unbiased margins
estimator as alternatives to the conventional estimator. The maximum likelihood estimator
and the constrained maximum likelihood estimator are more efficient than the conventional
estimator and the unbiased margins estimator respectively. The higher efficiency of the
maximum likelihood estimator is preserved under a validation sample that is selected by sub-
sampling units from the main sample. When using the EM algorithm under this double
sampling scheme, it is preferable to employ the full information approach instead of the
“naive” approach for estimating the conditional expectations of the missing data in the
validation sample (see Section 3.2.2). The gains from accounting for heterogeneity seem also
to be quite significant. The variance estimators of the moment-type estimators provide
reasonable approximations to the true variance of these estimators. The variance estimator of
the maximum likelihood estimator, under a validation sample that is selected independently
from the main sample, appears to be conservative. However, since this estimator captures the
variability due to the missing data and leads to reasonable coverage rates, we argue that it can

provide a reliable solution.
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Chapter 7

A Note on the Design of a UK LFS Re-interview

Survey: Suggestions Based on Empirical Evidence

7.1 Introduction

The methodology developed in this thesis assumes the availability of validation data that are
derived from a re-interview survey. However, the UK LFS has not yet developed a re-
interview survey for estimating the parameters of the measurement error mechanism. For this
reason, throughout this thesis we have relied on external re-interview data (mainly Swedish,
and also data from Canada and the US) calibrated to information derived from the UK LFS.
In this chapter, we provide some recommendations for the design of a re-interview survey for
the UK LFS. The emphasis is on identifying optimal design characteristics for conducting a
re-interview survey. In Section 7.2, we empirically compare re-interview surveys with
different reconciliation strategies. In Section 7.3, we compare alternative double sampling
schemes. We give suggestions for the selection of an appropriate double sampling scheme
based on the following three criteria: (a) the cost of implementing this scheme, (b) the
implications for the quality of the main (ongoing) survey and of the validation survey and (c)

the implications for point and interval estimation.

7.2 Comparing Re-interview Surveys with Different Reconciliation

Strategies

A crucial design characteristic of a re-interview survey is the method of reconciling the
original response with the re-interview response (see Section 1.8.2). In this section, we
investigate the effect of different reconciliation strategies using information from two
validation surveys namely, the CPS re-interview survey as described in Poterba and Summers

(1986) and the Swedish re-interview survey (Kristiansson 1999). The CPS re-interview

201



survey consists of two samples. In one sample, consisting of the 25% of the total re-interview
sample, re-interviews are carried out without any attempt for reconciliation and without
access to the original responses. For the remaining 75% of the total re-interview sample, re-
interviewers are provided with the original responses and attempt reconciliation if there are
discrepancies between the original and the re-interview responses. The Swedish validation

survey is described in Section 1.8.4.

One way to quantify the comparison between validation surveys with different reconciliation
procedures is by contrasting the misclassification rates from the unreconciled and the
reconciled samples and examine whether these are significantly different. One indication of
the violation of the assumption that the re-interview survey identifies the true value is that the
reconciled sample shows a smaller number of discrepancies compared to the unreconciled
sample. A problem of this kind has been reported by Poterba and Summers (1986) using data
from the CPS re-interview programme. Unfortunately, similar comparisons between the
reconciled and the unreconciled data for the Swedish re-interview programme (October 1994
- April 1995) are difficult because the design of this re-interview programme is different from
that of the CPS re-interview survey. In the Swedish case, after the first interview a sub-
sample of units is re-interviewed using computer assisted telephone interviewing.
Furthermore, due to the computerised nature of the Swedish re-interview programme, re-
interviewers have no access to the original data before the re-interview survey. In case a
discrepancy between the original and the re-interview occurs, reconciliation takes place. Note
that this reconciliation process is not just a clerical check where the results from the re-
interview are considered as the true values. For example, there are discrepancies between the

re-interview and the reconciled results in the Swedish re-interview dataset.

In order to examine whether the reconciliation process in the Swedish case introduces any
problems, we simulate a design similar to the design that is used by the CPS re-interview
survey. We use re-interview data from the Swedish LFS re-interview programme (October
1994 - April 1995). The Swedish re-interview programme consists of approximately
n’ = 2150 individuals. In each simulation, we randomly select a sample of size n"” = 538
(i.e. 25% of the total re-interview sample) from the Swedish re-interview data set. For these

units, we compare the original with the re-interview responses and we construct the

misclassification matrix. For the non-sampled units n*” = 1613 (i.e. the 75% of the total re-
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interview sample), we compare the original responses with the reconciled responses and we
construct a second misclassification matrix. We conduct a total of A = 1000 simulations.
The first sample can be regarded as equivalent to the unreconciled sample of the CPS re-
interview survey while the second sample can be regarded as equivalent to the reconciled
sample of the CPS re-interview survey. Furthermore, the responses in the first sample are
independent from the responses in the second sample since the two samples do not share
common units. Qur primary target is to compare corresponding off-diagonal elements of the

misclassification matrices estimated from these two samples.

One way to perform these comparisons is by constructing confidence intervals for the
differences between corresponding off-diagonal elements of the misclassification matrices.
Treating the elements of the misclassification matrices as multinomial proportions, one can
make inferences by constructing simultaneous confidence intervals. Literature on
simultaneous confidence intervals for multinomial proportions includes Quesenberry and
Hurst (1964), Goodman (1964, 1965), and Fitzpatrick and Scott (1987). For the purposes of
our application we follow Goodman’s approach (1964). Assume that for each re-interview
programme we have two samples. In one sample reconciliation takes place while in the other
sample no reconciliation is conducted. Previously we used ¢, to denote the cross-sectional
misclassification probabilities. However, ¢, will now refer to the joint and not to the
conditional probabilities of misclassification. Recalling the notation from Chapter 1, a
superscript (u) will denote quantities from the unreconciled sample while a superscript (r)
will denote quantities from the reconciled sample. Denote also by n"® the sample size of the
unreconciled sample and by n"” the sample size of the reconciled sample. Define a contrast

0, between the two samples to be a linear function of ¢, satisfying

Zcuzlk, S =0, (7.1)

]—-’M

A T
Let 6 = Z(:f,f> sz denote the estimated contrast for a fixed cell . Under a multinomial

assumption and the assumption of independence between the reconciled sample and the

unreconciled sample, we have that

Al 1 a(u) a(r) 1 &(T)
AG) 242%(” ik) \2 ik(_ ik)
Var( ) Var [Zcﬂ? qzk] o) — + () —— (72
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For the purposes of our application, we are not interested in all possible combinations of
contrasts but in comparisons between corresponding off-diagonal elements of the
misclassification matrices. Goodman (1964) gives an expression for constructing
simultaneous confidence intervals in case one is interested to a specific set of G contrasts

A

A A A A A
Ou— |Var (9ik> Z <0, <0u— |Var (9%) Z, (7.3)

where Var (ém) is defined by (7.2) and Z is the 100(1 — o /2G)th percentile point of the

unit normal distribution. For the CPS re-interview programme, we directly apply (7.3) using
the data from Poterba and Summers (1986 p.1323). For the Swedish re-interview programme,
we evaluate the quantities involved in (7.3) using the simulation study. The expectation (over

simulations) of an off-diagonal element of the misclassification matrix from re-interview

sample j is given by
O AC) |
E(Qik ) = Z—*qz‘kh : (7.4)
w1 H
The empirical (simulation-based) variance of an off-diagonal element of the misclassification

matrix from re-interview sample j is given by

. H
v(al)=——

2

A(9) A
——E()} 7.5
H—1% Qi Ti (7.5)

Using (7.4) and (7.1), one can estimate the expectation (over simulations) of contrast &, .
Using (7.5), one can estimate the variance of contrast 8, . The simultaneous confidence

intervals are then determined using (7.3).

Table 7.1: Simultaneous confidence intervals for contrasts between corresponding off-
diagonal elements derived from the unreconciled sample and the reconciled sample of the

CPS re-interview survey, o« = 0.05, G = 6.

CPS Re-interview Survey
Contrast Lower Bound Upper Bound
- 0.0015 0.0069
Opy 0.0052 0.0110
Oup 0.0001 0.0049
O 0.0006 0.0068
Oye 0.0001 0.0088
- -0.0018 0.0051
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Table 7.2: Simultaneous confidence intervals for contrasts between corresponding off-
diagonal elements derived from the unreconciled sample and the reconciled sample of the

Swedish LFS re-interview survey, @ = 0.05, G =6, H =10000.

Swedish Re-interview Survey
Contrast Lower Bound Upper Bound
Ony -0.0056 0.0082
Opy -0.0115 0.0096
Oy -0.0089 0.0127
(T -0.0080 0.0097
Ovp -0.0120 0.0127
- -0.0079 0.0108

The results for the CPS re-interview survey (Table 7.1) show that in all cases but one the
probabilities of misclassification estimated from the unreconciled sample are significantly
higher than the probabilities of misclassification estimated from the reconciled sample. This
suggests that the reconciliation process of the CPS re-interview survey invalidates the
assumption that reconciliation identifies the true value. For the Swedish re-interview survey,
the confidence intervals indicate that in all cases there is no significant difference in the

probabilities of misclassification estimated from the reconciled and the unreconciled samples

(Table 7.2).

One can object that the simultaneous confidence intervals are conservative. However, the
results are in the same direction even by constructing the less conservative pair-wise
confidence intervals (each at « = 0.05). One can further object that these differences are a
consequence of the different sample sizes of the CPS re-interview survey and of the Swedish
re-interview survey. The sample size of the Swedish re-interview survey is smaller than the
sample size of the CPS re-interview survey. Consequently, the fact that we don’t detect any
differences between the unreconciled sample and the reconciled sample of the Swedish re-
interview survey is due to the higher variability (smaller sample size) in this survey. For this
reason, we constructed simultaneous confidence intervals assuming that the sample size of
the Swedish re-interview survey is the same as the sample size of the CPS re-interview
survey. The results indicated that in all cases there is no significant difference in the
probabilities of misclassification estimated from the reconciled and the unreconciled samples.

Unlike the CPS reconciliation process, the reconciliation process of the Swedish re-interview
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survey allows unbiased estimation of the misclassification rates. This can be attributed to the
design characteristics of the Swedish re-interview survey, which are close to the optimal

characteristics when the aim is to estimate the response bias component (see Section 1.8.2).

7.3 Selecting a Double Sampling Scheme

In designing a re-interview survey, one key decision relates to the choice of a double
sampling scheme. In this section, we compare different double sampling schemes for
selecting a validation sample. The criteria we use to assess these schemes are the following:
(a) the cost of implementing the scheme, (b) the implications for the quality of the main
(ongoing) survey and of the validation survey and (c) the implications for point and interval

estimation.

One option is to select a validation sample independently from the main sample (double
sampling scheme 1). This can be either an external validation (transformed into an internal
validation sample using the ideas in Section 2.2.1.1) or a validation sample that is selected
independently from the main sample and from the same target population. The second option

is to select a validation sample by sub-sampling units from the main sample (double sampling

scheme 2).

A validation sample that is selected independently from the main sample or an external
validation sample may be associated with higher costs than a validation sample that is
selected by sub-sampling units from the main sample. This is because, when using an
independently selected validation sample, we conduct an additional cross-sectional survey of

individuals that do not participate in the main survey.

When comparing double sampling schemes, we need to account for the fact that the main
survey instrument, for example the UK LFS, is a panel survey. Sub-sampling units that
already participate in the main survey is equivalent to introducing an extra wave into the
panel survey. These additional measurements can lead to an increase in the response burden.
Therefore, this double sampling scheme may have implications for the quality both of the

main (ongoing) survey and of the validation survey.
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In Section 3.2, we formulated the measurement error model both under double sampling
scheme 1 and double sampling scheme 2. Point estimation is performed via the EM
algorithm. However, when the validation sample is selected by sub-sampling units from the
main sample (i.e. double sampling scheme 2), the expectation step in the EM algorithm
becomes complicated (see Section 3.2.2). This implies that interval estimation under the

specific double sampling scheme will also be complicated.

Based on this comparison, we conclude the following. A validation sample that is selected
independently from the main sample is associated with higher costs. However, this double
sampling scheme does not impact on the quality of the main survey and of the validation
survey. Moreover, under this double sampling scheme, point and interval estimation is

simpler. This comparison is summarised in Table 7.3.

Table 7.3: Comparing alternative double sampling schemes

Double Sampling Scheme Cost Risk for Quality of Surveys Inference
1 High Low risk Easy
2 Lower High risk Complicated

In some cases, an efficient way of selecting a validation sample is offered by the use of
administrative databases. The use of an administrative data source can be placed into the
context of double sampling scheme 1 or 2. Using an administrative data source may not be as
expensive as conducting an interview-based validation survey. In addition, under this
approach, we don’t prejudice the quality of the main survey. As an alternative, one could
include in the re-interview survey only the sample units that participate for the last time in the
panel survey (double sampling'scheme 2). The advantage of this approach is that there is no
risk to the quality of the ongoing survey, since these units participate for a last time in this
survey. However, we may risk the quality of the validation survey due to possible existence
of conditioning effects in the respondents. Finally, an alternative but more costly solution is
offered by selecting the validation sample from a cross-sectional survey that collects
information of similar nature to the information that is collected by the main (panel) survey

(double sampling scheme 1).
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7.4 Summary

In this chapter, we provide some suggestions for designing a UK LFS re-interview survey
based on empirical evidence. We suggest an independent reconciliation process, where the re-
interviewers have no access to the original responses, and a double sampling scheme based
on a validation sample that is selected independently from the main sample. Although this
scheme is considered to be less cost efficient, it has advantages in the sense that it does not
affect the quality of the ongoing survey and it provides an easier way of performing

inference.
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Chapter 8

Summary and Suggestions for Further Research

8.1 Summary

The purpose of this thesis is to develop methodology for correcting gross flows estimates for
measurement error. The application we focus on is estimation of labour force gross flows,
and the approach we follow assumes the availability of cross-sectional validation data that
provide information about the measurement error process. We now summarise our basic

findings and give directions for future research.

In Chapter 2, we define a general estimation framework and contrast the use of alternative
double sampling schemes in both cross-sectional and longitudinal situations. In a cross-
sectional situation, we present two alternative parameterisations of the measurement error
model that work by combining information both from the main sample and the validation
sample. Under the first parameterisation, we formulate the measurement error model as a
missing data problem and maximum likelihood estimation is performed via the EM
algorithm. Under the second parameterisation, the measurement error model is formulated in
a quasi-likelihood framework. There are two advantages offered by the quasi-likelihood
parameterisation. Firstly, under this approach we avoid an explicit definition of the likelihood
function. Secondly, the quasi-likelihood approach offers an alternative to the EM algorithm,
when tackling a missing data problem, and an easier method, compared with the application
of the Missing Information Principle, for computing the variances of the adjusted cross-
sectional estimates. The results from a Monte-Carlo simulation study (Chapter 6) indicate that
the quasi-likelihood approach leads in estimates that are as efficient as the estimates derived
from the maximum likelihood approach. In the rest of Chapter 2, we extend the double
sampling schemes to the longitudinal situation and we present alternative moment-based

cstimators to the conventional (moment-based) estimator. These alternative estimators
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attempt to relax the ICE assumption and to overcome some of the practical problems
affecting the conventional estimator for example, the possibility of deriving negative adjusted
estimates. Based on the simulation results reported in Chapter 6, we propose the use of the
composite estimator with fixed or adaptive weights and the unbiased margins estimator as
alternatives to the conventional estimator. We further relaxed the ICE assumption i our
simulations by introducing dependence structure in the measurement error mechanism. Our

results indicate that the conventional estimator is robust to departures from ICE.

Having parameterised the measurement error model as a missing data problem, in Chapter 3
we extend this idea from the cross-sectional into the longitudinal framework. The lack of a
panel validation survey introduces extra complications since missing data exist now in both
the main sample and the validation sample. In order to identify the parameters of the
measurement error model, the ICE assumption is utilised and estimation is based on the EM
algorithm. The model is formulated under two alternative double sampling schemes. Under
the first scheme, the validation sample is selected independently from the main sample and
from the same target population. Under the second scheme, the validation sample is selected
by sub-sampling units from the main sample. In addition, we further propose a constrained
maximum likelihood estimator that imposes an unbiased margins constraint on the estimation
of the adjusted gross flows and therefore relaxes ICE. The survey weights are allowed for
estimation via the pseudo-maximum likelihood approach. In the context of the UK LFS, the
survey weights are constructed to adjust for sampling attrition. Thus, the inclusion of the
survey weights into the measurement error model contributes implicitly towards the
adjustment for sampling attrition and provides a bias correction to the unweighted results.
From the simulation results (Chapter 6), we conclude that the maximum likelihood estimators
are more efficient than the moment-type estimators. The higher efficiency of the maximum
likelihood estimators is preserved under the alternative double sampling schemes. A further
advantage of the maximum likelihood estimators is that they constrain estimates to lie within
the boundaries of the parameter space. Unlike the maximum likelihood estimators, the
moment-type estimators can produce estimates that lie outside the boundaries of the
parameter space for example, negative proportions. Based on the outcomes of this research,

we argue in favour of the use of maximum likelihood estimators.

In Chapter 4, the longitudinal measurement error model is extended to account for the

existence of heterogeneity associated with discrete covariates. The measurement error model
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allows for heterogeneity through post-strata defined by the cross-classification between these
covariates. The results indicate that this type of heterogeneity can have an effect on the
adjustments for measurement error. Also the gains in efficiency, even when allowing for
moderate heterogeneity (Chapter 6), can be quite significant. One important outcome of this
modelling exercise is that we can naturally quantify the effect of misclassification. To explore
 this effect, we compared the predicted probabilities of transition from a multinomial logistic
model that utilises the unadjusted data to the predicted probabilities of transition from the
model that accounts for the measurement error process for different age by gender groups.
The results indicate that ignoring measurement error can have a severe effect, which in some

cases can result in a complete reversal of the direction of the flows.

The central theme of Chapter 5 is variance estimation. A variance estimator for the
conventional (moment-type) estimator, under the alternative double sampling schemes, is
derived using Taylor series linearization. Based on these results, we further develop variance
estimators for the modified estimator and for the composite estimator with fixed weights.
Variance estimation for the maximum likelihood estimator, when the validation sample is
selected independently from the main sample and from the same target population, is also
derived using the Missing Information Principle. General expressions for applying the
Missing Information Principle are provided. However, due to the large number of
computations involved in the evaluation of this estimator, we follow a simulation-based
approach. This algorithm is based on sampling from the conditional distribution of the
missing data given the observed data and the maximum likelihood estimates. The simulation
results from Chapter 6 indicate that the variance estimators of the moment-type estimators
give reasonable approximations to the true variance of these estimators. The variance
estimator of the maximum likelihood estimator appears to be conservative. However, since it
captures the variability due to the missing data and results in reasonable coverage rates it can

be regarded as providing a reliable solution.

In Chapter 7, we provide some suggestions for the design of a re-interview survey for the UK
LFS. An empirical comparison of re-interview surveys with different reconciliation strategies
(CPS vs. Swedish) indicated that the Swedish method of reconciliation is superior to the CPS
reconciliation procedure. A validation sample that is selected by sub-sampling units from the
main survey appears to be more cost efficient than a validation sample that is selected

independently from the main sample. However, we suggest that the inclusion in the validation
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survey of sample units that already participate in a panel survey should be avoided since this
can contribute to an increase in the response burden. Moreover, inference under this double
sampling scheme appears to be more complex than under a scheme where the validation
sample is selected independently from the main sample. Some approaches for selecting a
validation sample are discussed below. In the case that an administrative database exists that
is representative of the target population, we recommend that it should be preferred over an
interview-based validation survey. Alternatively, given that there are no conditioning effects,
one may use the sample units that are due to be rotated out of the survey. Finally, one may
design a validation survey based on a cross-sectional survey that collects information of
similar nature to the information that is collected by the panel survey. As a first step towards
the design of a UK LFS validation survey, we propose the use of a small-scale experimental

survey that will attempt to identify the basic characteristics of the measurement error process

in the UK LFS.
8.2 Further Ongoing Research

In this thesis, we have demonstrated that measurement error can introduce severe bias in the
estimation of gross flows. The implementation of this methodology in the context of the UK
LFS requires the development of a validation survey by the UK Office for National Statistics.
Many practical and theoretical issues will undoubtedly arise during a possible
implementation. However, we believe that the methodology we developed provides a reliable
and efficient solution for adjusting gross flows data for measurement error. Nevertheless,
there remain many issues associated with adjusting gross flows for measurement error that
are not tackled in this thesis. Firstly, variance estimation taking into account the survey
weights requires investigation. One option is to treat these weights as random and use the
jackknife method for variance estimation. Variance estimation for the constrained maximum
likelihood estimator and for the maximum likelihood estimator, when the validation sample is

selected by sub-sampling units from the main survey, also requires further investigation.

In this final section, we describe some ongoing research as well as potential research that
extends the methodology developed in this thesis. In Chapter 1 (Section 1.8.3), we described
the UK 1991 Census Validation Survey (CVS) (Heady, Smith and Avery 1991). This survey

had as its main target an evaluation of how prone to error Census questions were. Among the
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questions that were tested was one asking about the labour force status of the respondents.
Treating the CVS as an error free source of information and linking the CVS to the Census
responses, one can estimate a misclassification matrix. However, the Census may contain
more measurement error than the LFS. This is because the Census is a self-reported survey.
Consequently, the misclassification matrix estimated by linking the CVS to the Census
respoﬁses may overestimate the measurement error problem in the UK LFS. The question is
how we can use the UK CVS in order to approximate the parameters of the misclassification
mechanism in the UK LFS. Currently, we are investigating two alternative approaches. Under
the first approach, the misclassification probabilities estimated by linking the CVS to the
Census responses are employed in order to adjust the Census-based cross-sectional labour
force distribution for misclassification. This initial adjustment can be achieved using for
example the moment-type estimator described in Section 2.2.1.1. Recalling the notation from
Chapter 2, one can then use the following identity that relates the observed, LFS-based, cross-
sectional labour force distribution to the adjusted, Census-based, cross-sectional labour force

distribution.
I=Q({)P. (8.1)

1 s TXL

We know II (i.e. the LFS-based observed cross-sectional labour force distribution) and P
(i.e. the adjusted Census-based cross-sectional labour force distribution). The unknown
quantity in (8.1) is Q(¢). Unfortunately, the system of equations defined by (8.1) does not
have a unique solution. Consequently, in order to solve this system of equations, we need to
introduce additional constraints. One such constraint is offered by minimising the Euclidian
distance between the CVS-based misclassification matrix and @) (¢). This minimisation can

be achieved using Lagrange multipliers. However, initial results have indicated that this
approach can lead to negative misclassification probabilities. For this reason, we investigate a
second approach. At the first step, the misclassification probabilities estimated by linking the
CVS to the Census responses are employed in order to adjust the Census-based cross-
sectional labour force distribution for misclassification. In addition, from the LFS we derive
an estimate of the observed cross-sectional labour force distribution. The margins of the
matrix estimated by linking the CVS to the Census responses represent the cross-sectional
observed and adjusted for misclassification labour force distributions. Consequently, one can
use the IPF algorithm in order to rake this matrix to the information from LFS (observed

cross-sectional labour force distribution) and to the Census-adjusted cross-sectional labour
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force distribution. This approach provides another solution to the system of equations defined

by (8.1). It remains to evaluate both methods in the context of the UK LFS.

In Chapter 2 (Section 2.2.1.4), we parameterised the cross-sectional measurement error model
in a quasi-likelihood framework. This needs to be extended by parameterisation of the
longitudinal measurement error model in a quasi-likelihood framework. The advantage of the
quasi-likelihood parameterisation is that it provides an easier approach to variance estimation
(see Section 5.5). This is particularly important in a loﬁgitudinal framework where variance
estimation for the adjusted maximum likelihood estimates is tedious both analytically and

computationally.

The measurement error model we presented in Chapter 3 adjusts implicitly for sampling
attrition via the survey weights and the pseudo-maximum likelihood approach. However, due
to the formulation of the measurement error model as a missing data problem, it will be
interesting to examine whether a simultaneous modelling of the measurement error process
and the sampling attrition process is feasible. Preliminary research has indicated that in order
for the parameters of the simultaneous model to be identified, we need to impose fairly strong
assumptions. Furthermore, the likelihood-based approach that we developed in Chapter 3
opens the possibility of directly contrasting the modelling strategies that assume validation
information with the modelling strategies that do not assume validation information for

example, the latent class approach.

It is also of some interest to identify other research areas where this methodology can be
applied. For example, in demographic applications one of the most common problems is
heaping. In reporting the age of death, heaping occurs when the respondents round the
reporting age. A graphical representation of the frequency of deaths by age (grouped n 5-
year bands) will reveal peaks at 0 and 5 years. This probiem is currently tackled using
smoothing techniques (Benjamin and Pollard 1986). An alternative adjustment may be
possible by viewing heaping as a misclassification problem. Validation data, regarding the
year of birth, can be derived from administrative data sources and misclassification

probabilities can be estimated by comparing the true to the reported age of death.

Two additional areas of research in official statistics are related to the research conducted in

this thesis. In statistical disclosure control, one way of protecting the data is by deliberately
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misclassifying them and then providing the data analyst with the misclassified data and the
misclassification probabilities (Van den Hout and Van der Heijden 2002). The basic
difference between the approach utilised by the statistical disclosure control and our
methodology is that in the former case the misclassification probabilities are treated as fixed
and known whereas in the latter case the misclassification probabilities are unknown and are
estimated from a validation survey. Nevertheless, the approach followed in statistical

disclosure control shares many similarities with our approach.

The second area of potential application regards adjustments in the Census. For example, the
existence of inaccurate addresses can result in the erroneous estimation of the population size
in an area. This problem can be modelled in a misclassification context. In some countries,
for example in Israel, there are administrative lists that provide information about the address
of a population unit. Treating the Census as the main survey and the administrative list as the
validation survey, one can employ a model that combines information from both sources to

provide adjustments to the Census-based estimates.
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Appendix I

First and Second Order Derivatives Involved in the Application of

the Missing Information Principle in a Cross-sectional Framework
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Appendix 11

Tracing the Convergence of the EM Algorithm in Application 3.1
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Figure I1.1: Tracing the convergence of the EM algorithm for
the EE flow. Starting values close to the maximum likelihood
point, convergence criterion 0.00001.
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Figure I1.2: Tracing the convergence of the EM algorithm for
the EE flow. Starting values further from the maximum
likelihood point, convergence criterion 0.00001.
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Figure IL.3: Tracing the convergence of the EM algorithm for

the EU flow. Starting values close to the maximum likelihood
point, convergence criterion 0.00001.
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Figure IL.4: Tracing the convergence of the EM algorithm for

the EU flow. Starting values further from the maximum
likelihood point, convergence criterion 0.00001.
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Figure I1.5: Tracing the convergence of the EM algorithm for

the EN flow. Starting values close to the maximum likelihood
point, convergence criterion 0.00001.
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Figure IL.6: Tracing the convergence of the EM algorithm for

the EN flow. Starting values further from the maximum
likelihood point, convergence criterion 0.00001.
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Figure I1.7: Tracing the convergence of the EM algorithm for
the UE flow. Starting values close to the maximum likelihood
point, convergence criterion 0.00001.

@
-
<
o

o

-

S

Q
©
-
e
()

o

—

o L

° =)

0o <
-
<@
(=)

-

‘—_.

o o~

o —
=
o

= =}

-~ -

Q7 <

o I I [ t ! I ! o

220

T [ 1 T
0 50 100 150
EM lterations
Figure IL.8: Tracing the convergence of the EM algorithm for
the UE flow. Starting values further from the maximum
likelihood point, convergence criterion 0.00001.
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Figure I1.9: Tracing the convergence of the EM algorithm for

the UU flow. Starting values close to the maximum likelihood
point, convergence criterion 0.00001.
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Figure I1.10: Tracing the convergence of the EM algorithm for
the UU flow. Starting values further from the maximum
likelihood point, convergence criterion 0.00001.



P.UN

0.005 0.006
| 1

0.004

0.003
[

0.002
1

I T T T T T 0
0 20 40 60 80 100 120

EM lterations
Figure IL.11: Tracing the convergence of the EM algorithm
for the UN flow. Starting values close to the maximum
likelihood point, convergence criterion 0.00001.
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Figure I1.12: Tracing the convergence of the EM algorithm for
the UN flow. Starting values further from the maximum
likelihood point, convergence criterion 0.00001.
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Figure I1.13: Tracing the convergence of the EM algorithm
for the NE flow. Starting values close to the maximum
likelihood point, convergence criterion 0.00001.
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Figure I1.14: Tracing the convergence of the EM algorithm for
the NE flow. Starting values further from the maximum
likelihood point, convergence criterion 0.00001.
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likelihood point, convergence criterion 0.00001.
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Appendix 1

First and Second Order Derivatives Involved in the Application of

the Missing Information Principle in a Longitudinal Framework
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The first and second order derivatives with respect to the misclassification parameters can be
also computed analytically but due to the introduction of the ICE assumption this involves

more complicated expressions.
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Appendix IV

Misclassification Probabilities Employed in Simulation Studies

Matrix of Misclassification Probabilities Used in Simulation Studies I-III and VIII

E U N

£10.981 0.016 0.036
¢ =U]0.008 0.950 0.023
N|[0.011 0.034 0.941

Matrix of Misclassification Probabilities Used in Simulation Studies IV-V

E U N

E1099 0.01 0.015
@=U[0.004 097 0.015
N10.006 0.02 0.97

Matrices of Misclassification Probabilities Used in Simulation Studies VI-VII

E U N

FE[{0.991 0.01 0.015
Quuee = U 10.005 0.98 0.015
N|[0.004 0.01 0.97

B U N

£10.981 0.01 0.005
QFemales - U 0-004 0.97 0005
N10.015 0.02 0.99
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Table IV.1: Sets of misclassification probabilities at #+1used in simulation studies I[-III
under the different scenarios for the longitudinal measurement error mechanism. The relaxed-

ICE scenarios are based on Kristiansson’s (1983) proposal

Misclassification Probability ICE Relaxed-ICE 1 Relaxed-ICE 2
9eEEE 0.981 0.983 0.985
4puEE 0.008 0.007 0.0063
UngE 0.011 0.010 0.0087
QuesE 0.981 0.979 0.976
QvuEE 0.008 0.0088 0.01
QunvEE 0.011 0.0122 0.014
AyeEs 0.981 0.979 0.976
ynvEs 0.008 0.0088 0.01
Avves 0.011 0.0122 0.014
sgyy 0.016 0.0166 0.0188
4evvy 0.95 0.9444 0.9375
oy 0.034 0.039 0.0437
Quevy 0.016 0.0135 0.012
Qyvvy 0.95 0.955 0.96
- 0.034 0.0315 0.028
dnsvy 0.016 0.0166 0.0188

Avyuy 0.95 0.9444 0.9375
Qyvuu 0.034 0.039 0.0437
deenN 0.036 0.041 0.0463
dzunn 0.023 0.025 0.0287
Qenny 0.941 0.934 0.9250
Queny 0.036 0.041 0.0463
Qyuwn 0.023 0.025 0.0287
Qunnn 0.941 0.934 0.9250
AveNN 0.036 0.033 0.030
Anunn 0.023 0.021 0.018
Avvvn 0.941 0.946 0.952
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Table IV.2: Sets of misclassification probabilities at z+1used in simulation studies IV-V
under the different scenarios for the longitudinal measurement error mechanism. The relaxed-

ICE scenario is based on Kristiansson’s (1983) proposal

Misclassification Probability ICE Relaxed-ICE
Y5vee 0.004 0.0025
9EveE 0.006 0.0025
Queer 0.99 0.98
o — 0.004 0.01
- 0.006 0.01
dnpER 0.99 0.98
o - 0.004 0.01
GynEE 0.006 0.01
Arrvy 0.01 0.015
Typvy 0.01 0.01
Tvvvy 0.97 0.98
Quvvy 0.02 0.01
Anvsvy 0.01 0.015
Qyvuvy 0.97 0.96
Avvoy 0.02 0.025
9gEnn 0.015 0.02
guny 0.015 0.02
9ennn 0.97 0.96
Qyenn 0.015 0.02
Quvnn 0.015 0.02
Qunnn 0.97 0.96
Anenn 0.015 0.01
Ivuwn 0.015 0.01
Qunnn 0.97 0.98
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