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IT/lCILILTnri:)]? LvMAr, Ĵ RTTS 6k SCDKZI/LLSiCIDEfjCIiS 

SCHOOL OF SOCIAL SCIENCES 

DIVISION OF SOCIAL STATISTICS 

Doctor of Philosophy 

ON THE USE OF DOUBLE SAMPLING SCHEMES TO CORRECT FOR 
MEASUREMENT ERROR IN DISCRETE LONGITUDINAL DATA 

by Nikolaos Tzavidis 

Longitudinal surveys provide a key source of information for analysing dynamic phenomena. 
Typical examples of longitudinal data are gross flows, which are defined as transition counts 
between a finite number of states firom one point in time to another. There are, however, a 
number of methodological problems associated with the use of longitudinal surveys. This 
thesis focuses on the measurement error problem or more naturally in a discrete fi-amework 
on the misclassification problem. 

We investigate the use of double sampling for correcting discrete longitudinal data for 
misclassification. In a double sampling context, we assume that along with the main 
measurement device, which is affected by misclassification, we can use a secondary 
measurement device (validation survey), which is fi-ee of error but more expensive to apply. 
Due to its higher cost, the secondary measurement device is employed only for a subset of 
units. Inference, using double sampling, is based on combining information fi:om both 
measurement devices. 

Traditional moment-based inference is reviewed and alternative moment-type estimators, 
which attempt to overcome the drawbacks of the traditional approach, are proposed. We 
subsequently argue that a more efficient parameterisation is offered in a likelihood-based 
firamework by simultaneously modeling the true transition process and the measurement error 
process within the context of a missing data problem. Variants of likelihood-based inference, 
which allow for alternative double sampling schemes, for a complex survey design and for 
observed heterogeneity, are investigated. Constrained maximum likelihood estimation is also 
considered for relaxing some of the model assumptions. Variance estimation for the moment-
type and the likelihood-based estimators is illustrated. In addition, empirical research aimed 
at identifying optimal design characteristics for validation surveys is presented. 

The methodology is applied in the context of the UK Labour Force Survey (LFS) by 
estimating labour force gross flows adjusted for misclassification. Results from Monte-Carlo 
simulation experiments indicate that the proposed likelihood-based parameterisation offers 
significant gains in efficiency over the traditional moment-based parameterisation while 
interval estimation for the adjusted estimates can be reliably performed using the proposed 
variance estimators. 
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Chapter 1 

Background to the Problem, Literature Review and 

Description of the Data Sources 

1.1 Introduction, Aim and Structure of the Thesis 

Gross flows are generally defined as transition counts, between a finite number of states, from 

one point in time to another, hi the same manner, labour force gross flows represent the 

transition counts of the labour force population between the different labour force states. In 

the simplest case, labour force gross flows can be represented by a 3 x 3 gross flows matrix. 

The dimension of this matrix can be justified if we assume that a member of the labour force 

population can be classified only to one of the following mutually exclusive states: a) being 

employed, which is denoted by (E), b) being unemployed, which is denoted by (U) and c) 

being economically inactive, which is denoted by (N). If someone belongs to one of the first 

two categories then he/she is assumed as being a member of the labour force otherwise as 

being out of the labour force. Schematically, the gross flows table between two time points, 

say t and t + 1, can be represented as follows. 

Table 1.1: Labour force gross flows between t andi + 1 

EE EU EN 

UE uu UN 

NE NU NN 

The diagonal elements of the gross flows table (Table 1.1) represent the number of 

individuals that remain stable between t and t + 1 . The off-diagonal cells describe the 

number of individuals that change labour force status between t and t + 1. 



The aim of this thesis is to develop methodology for adjusting gross flows for measurement 

error. The application will be in the estimation of labour force gross flows. The approach we 

follow assumes the existence of validation data and the theory is based on the use of double 

sampling methods. Chapter 1 provides an overview of problems encountered in estimating 

gross flows. Modelling strategies to correct for measurement error are reviewed and classified 

into strategies that assume validation data and strategies that do not assume validation data. A 

description of the data sources that are used in this thesis is given and a review of the 

literature on validation surveys is provided. Chapter 2 describes the estimation framework of 

double sampling. Double sampling methods in a cross-sectional framework are contrasted 

with double sampling methods in a longitudinal framework. New research results on the 

analysis of cross-sectional misclassified data are presented. In a longitudinal framework, 

some new moment-type estimators are presented. Chapter 3 focuses on likelihood-based 

inference. The measurement error model is formulated, under alternative double sampling 

designs, in a missing data framework and model parameters are estimated via maximum 

likelihood. Alternative likelihood-based inference is examined by relaxing some of the model 

assumptions. The measurement error model is further extended to account for the existence of 

a complex survey design. The methodology is illustrated by calculating estimates of UK 

labour force gross flows adjusted for measurement error. In Chapter 4, the measurement error 

model is extended to account for heterogeneity in the gross flows mechanism and in the 

measurement error mechanism. The effect of measurement error on inference based on labour 

force gross flows is examined using data from the UK Labour Force Survey (LPS). Chapter 5 

deals with variance estimation issues. Variance estimators for the moment-type and the 

maximum likelihood estimators are developed and illusfrated using UK LPS data. In Chapter 

6, we evaluate our methodology by a series of Monte-Carlo simulation experiments. In 

Chapter 7, we give recommendations for designing a UK LFS re-interview survey and for 

selecting an appropriate double sampling design. Chapter 8 summarises the research 

outcomes and sets directions for future research. 

1.2 The Importance of Labour Force Gross Flows for Social and Economic 

Research 

Labour force gross flows are indicators frequently used in social and economic research. In 

this section, we describe some of the applications with labour force gross flows. To start with, 

let us consider the following situation. A fall in unemployment is the net result of a larger 
2 



number of individuals moving between the different labour force states. However, this net 

result, which is often estimated and published, is based on a series of individual gross flows. 

These flows can be approximated only by linking each individual's labour force activity in 

successive time points. Figure 1.1 shows the flows between the main labour force states of 

economic activity and economic inactivity. For example, the (EU) arrow refers to the number 

of people who moved from employment to unemployment between t and i + 1 . A more 

complete description of the gross flows must take into account the dynamic evolution of the 

population (Figure 1.2). Taking this dynamic evolution into consideration, we observe that in 

addition to the usual flows we have inflows and outflows, which are distributed between the 

different labour force states. 

Employed 
(E) 

Unemployed Inactive 
(N) 

Figure 1.1: Simple model 

Inflows 
(I) 

Employed 
(E) 

Outflows 
(O) 

Unemployed Inactive 
(N) 

Figure 1.2: Complete model 

How can these transitions be used in economic analysis? There are occasions when both the 

labour force participation and unemployment rise. Are these events attributable to a greater 
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inflow of job seekers from outside the labour force or to reduced exits from the labour force? 

Gross flows provide a way to examine, for example, how many workers enter or leave the 

labour force or how many move fi-om employment to unemployment (Barkume and Horvath 

1995). 

Gross flows can be interpreted as measures of the labour market condition. Consider the 

labour force entries to employment (NE flows). The magnitude of these flows depends on 

both labour force participation decisions and the demand for labour (i.e. the number of job 

prospects). Another example is the flows from employment to unemployment (EU flows). 

These transitions characterise recession periods. A further example concerns the labour force 

exits from unemployment (UN flows). The variations in these flows have been used to 

measure discouraged worker effects in business downturns (Hansen 1961). 

The transition probabilities implied by labour force gross flows can be used to calculate 

several summary statistics for the labour market activity. Summary statistics of this type 

include the expected duration of a complete spell in each labour market state, the probability 

of an unemployment spell ending in employment and the probability of labour force 

withdrawal. For example, the expected duration of completed spells is calculated as the 

reciprocal of the exit probability fi-om each state. The probability of an unemployment spell 

ending in an employment entry, given that a transition has occurred, is given by 
^uE + 

where denotes the probability that an individual is moving from employment to 

unemployment and denotes the probability that an individual is moving firom 

unemployment to inactivity. The probability of a labour force withdrawal is given by 

and Hg denote respectively the probability that an individual 

is unemployed or employed (Poterba and Summers 1986). 

Gross flows can be used in order to establish for how long people who have previously been 

in a governmental training for work scheme remain in a job. In the same field of research, 

gross flows allow the evaluation of different training programmes. This can be done by 

comparing the labour market progress of non-participants in such programmes with 

programme participants. In addition, by analysing the transition probabilities associated with 



the different job search techniques it becomes possible to evaluate these techniques and to 

explore the extent to which movements from unemployment into part time and temporary 

work act as a stepping-stone to full time employment (Atkinson and Micklewright 1991). 

Labour market transitions have been used in literature for studying the effects of 

unemployment compensation. Questions of the following type have been explored. Do cuts in 

unemployment benefit compensation increase the rate of exit from unemployment but cause 

people to leave the labour force rather than to enter employment? Does the existence of 

unemployment insurance lead job losers registering as unemployed rather than leaving the 

labour force? Does unemployment compensation provide the security that allows people to 

give up their jobs and acquire training? (Atkinson and Micklewright 1991). A further 

application of the gross flows can be in equal opportunities monitoring. This can be done by 

comparing people from ethnic minorities with others. Gross flows can be also used for 

assessing the stability over time of the labour market movements of people with disabilities 

and of those who receive sickness or disability benefits. For other applications using the 

labour force gross flows see Akerlof and Main (1980), Burda and Wyplosz (1994) and Jones 

andRiddell (1998). 

1.3 Panel Surveys versus Retrospective Surveys and Registration Systems 

in Longitudinal Data Collection 

Panel surveys can be regarded as the most natural way of collecting longitudinal information. 

Among the alternative ways of collecting longitudinal data, rotating panel designs have a 

prominent role, hi fact, rotating panel designs have been adopted by most national Labour 

Force Surveys. Under a rotating panel design, sample units are interviewed in consecutive 

time periods usually months, quarters or years. In the simplest case, each time period 

corresponds to one wave of the panel survey and the interviewed sample units report their 

labour force state for the current period. Using such designs, one can obtain information on 

labour force gross flows by matching data of individuals who participate in the survey for two 

or more successive waves. 

Alternatively, longitudinal information may be collected using retrospective surveys. This 

may happen by introducing retrospective questions in a cross-sectional survey. For example, 

in the US Survey of Income and Programme Participation (SIPP) interviews take place every 
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four months but monthly data are collected by questioning respondents about their behaviour 

during the past four months. In the UK LFS (Laux and Tonks 1996), the retrospective way of 

collecting longitudinal information co-exists with the panel one. The UK LFS contains two 

sets of recall questions. The first set of recall questions is asked for respondents who move 

into a sampled household after the household's first interview (wave 1) and for those 

respondents who have worked for the same employer or who have been self-employed for 

less than three months. These questions are related to respondents' circumstances three 

months prior to the current interview and explore respondents' occupation and full-time/part-

time status. The second set of recall questions is based on a twelve-month period and is asked 

for all respondents in the spring quarter (i.e. March to May) each year. These questions cover 

the same topics as the ones of the first set with the addition of information about respondents' 

managerial duties and the number of staff at the place of employment. 

Data that are produced in a retrospective way may be affected more severely by measurement 

error compared to data where respondents report their status for the current period. There are 

a number of reasons for this to happen. Firstly, the nature of measurement error is likely to be 

more complex when panel data are constructed by piecing together retrospective histories. 

This may happen because of memory problems such as forgetting or mistiming as well as 

because of the respondents' or the interviewers' misunderstand. Moreover, errors in 

reconstructing event histories can lead to dependencies between measurement errors for 

example, "seam" effects where more change may be observed between measurements 

recorded in different interviews than for measurements recorded within the same interview 

(Hill 1987, Marquis and Moore 1990, Kalton and Miller 1991). Furthermore, there are 

significant problems regarding the consistency of definitions of the different labour force 

states. Assume for example the ILO definition for unemployment. This definition includes 

those who are out of work, available to start work within two weeks following the interview 

and have either looked for work in the four weeks prior to the interview or they are waiting to 

start a job they have already obtained. The implementation of this definition is easy in the 

context of a survey that collects information about activities within a reference week. 

However, it is unrealistic to seek information in such a detailed level about respondents' past 

labour activities. 



The panel way of collecting longitudinal data provides a much richer source of information. 

The main advantage is that under a panel design the information recorded refers to the same 

time period that the interview takes place. Consequently, this way of collecting data 

minimises memory problems. For this reason, the panel way of collecting longitudinal data is 

the most promising one and that is why it is widely used. Nevertheless, panel surveys are 

affected by a number of factors that complicate estimation of the quantities of interest. One 

problem associated with panel surveys is the increased risk of attrition. This problem can be 

attributed to the increased risk of failing to follow all sample units throughout the period 

during which they are supposed to participate in the survey. When attrition is truly random, 

the only problem that is created is the loss of efficiency for the estimators. However, in many 

cases attrition is non-random and the resulting estimates are severely biased. Another 

problem associated with panel surveys is the impact of measurement error on the estimates of 

change. Typical examples of this problem include the overestimation of the labour market 

mobility and of the poverty dynamics. Last but not least, a further complication arising in 

panel surveys is the presence of conditioning effects. Conditioning effects occur when the 

behaviour of a respondent is affected by the number of times that this respondent has 

participated in the survey, A general review on the problems associated with panel surveys 

can be found in (Duncan 2000). 

An alternative source of longitudinal information is registration systems. Such systems 

include (a) simple systems, which allow only flows in and out of the register to be recorded 

and (b) longitudinal systems, where individuals can be traced over periods of time as they 

leave and re-enter the register. Theoretically, registration systems are capable of producing 

true flow statistics since only registers can record every movement between the different 

labour force states. In addition, registers can be regarded as having perfect memories. 

However, these advantages are weakened if the registers are not properly updated. 

Labour force gross flows statistics stem from the longitudinal character of the Labour Force 

Surveys (LFS). The dynamics of the labour market have presented a challenge to researchers 

in the United States (US) and in Canada since the 40's and 50's. Since that time researchers 

have recognised the importance of studying the labour market mobility and also the problems 

encountered in the estimation of labour force gross flows. The status of research of the labour 

market dynamics outside North America is described by Evans (1985). As he points out, in 



the 80's very few countries had published flows from household-based Labour Force 

Surveys. For example, in the US Current Population Survey (CPS) the base of rotation is the 

month and the rotation pattern is 4-8-4. This implies that the sample units are followed for 

four consecutive months, subsequently they are dropped out from the sample for eight months 

and eventually they are included again in the sample for four more months. The following 

table (Table 1.2) reports the countries that utilised labour force sample surveys appropriate 

for estimating labour force gross flows. 

Table 1.2 Rotation sampling schemes of labour force sample surveys in nine countries 

(Evans 1985). 

Countries Base of Rotation Pattern of Rotation 

Australia Month 8-

Canada Month 6-

Finland Quarter 6-

France Year 3-

Italy Quarter 2-2-2 

Japan Month 2-10-2 

Spain Quarter 6-

Sweden Quarter 8-

US Month 4-8-4 

In the past years, large-scale longitudinal surveys of socio-economic conditions and 

behaviour of households have been established in several European countries including 

Belgium, Germany, Greece, Ireland, Luxembourg, The Netherlands and UK. 

1.4 Problems Encountered in Estimating Labour Force Gross Flows 

Labour force gross flows are estimated by linking together panel data. In this process several 

problems are typically encountered. Since 1953, two presidential committees in the US have 

recommended that the problem of gross change estimation should be studied. In 1962, the 

President's Committee to Appraise Employment and Unemployment Statistics under the 

direction of Robert A. Gordon urged that the problems discovered in gross change estimation 

should be thoroughly researched so that publication of the data could then be resumed. In 

1978, the National Commission on Employment and Unemployment Statistics headed by 



Professor Sar Levitan reviewed a paper by Ralph Smith and Jean Vanski entitled "Gross 

Change: The Neglected Data Base." This paper examined the potential uses of data, research 

that has been done using the data and errors in the data. According to this paper the main 

problems encountered in the estimation of labour force gross flows include (a) sampling 

attrition, (b) response errors and (c) rotation group bias or conditioning effects. General 

descriptions of these problems can be found in Hilaski (1968), Hogue (1985), Hogue and 

Flaim (1986), Clarke and Tate (1999) and Kristiansson (1999). Literature on non-sampling 

errors includes among others Bailar (1987), Barnes (1987), Trewin (1987) and Lessler and 

Kalsbeek (1992). In the sequel, we describe each of the problems in detail and we examine 

their implications for estimation of labour force gross flows. 

1.4.1 Sampling Attrition 

Attrition bias is one of the problems affecting the estimation of gross flows. For example, the 

UK LPS is based on a sample of addresses each of which is occupied by a household or, less 

commonly, by multiple households. The aim is to interview every eligible household 

member. However, when a household is approached, non-response can occur due to outright 

refusal, circumstantial refusal or non-contact. Outright refusal occurs when a household, or 

the individual from whom permission is sought, refuses to participate in the survey. 

Circumstantial refusal is less terminal, arising when the household does not agree to be 

interviewed for example, because the timing is inconvenient. The third category of interview 

non-response i.e. non-contact refers to the situation where it is not possible to contact an 

eligible household member. In the event of an outright refusal no further attempt is usually 

made to interview that household and consequently it is dropped out of the survey. If 

permission to interview a household is obtained, individuals can still non-respond because of 

refusal, non-contact or because other household members are unwilling or ineligible to 

provide proxy responses. A further complication arises due to the rotation design. This means 

that sampled households leave the sample after having participated in the survey for a specific 

number of times. Furthermore, after the first wave, families or persons may move away fi-om 

the sampled addresses. The effect on the gross change data is magnified because addresses 

where people move in and others out cannot be used until a mover has been there for two 

consecutive waves. Sample units who do not match from one wave to another have generally 

different characteristics from the matched sample units. Hilaski (1968) points out that those 



who move are generally young and either married with small family or single. Empirical 

work (Tate 1997) verified these results by showing that a higher proportion of sample losses 

are associated with younger adults living in privately rented accommodation and being 

temporarily employed. 

How can attrition affect the estimation of the gross flows? It is possible for people who move 

away from their addresses to be associated with a higher probability of changing labour force 

status. The loss of these people may lead to a downward bias in the estimates of the gross 

flows. For example, a family may move because an unemployed person has found job in a 

new location. Although this transition should have contributed to the UE cell of the transition 

matrix (see Table 1.1), in fact it will not since movers are not followed. Another example is 

students moving from a university town to other cities when looking for a job. These 

transitions would have contributed to the NE or NU cell. It is apparent that these losses may 

lead to the estimation of lower market mobility than really exists (Kristiansson 1999). 

Research investigating methods of adjusting for sampling attrition can be found in Stasny and 

Fienberg (1985), Stasny (1986), Clarke and Chambers (1998) and Clarke and Tate (1999). 

Stansy and Fienberg (1985) and Stasny (1986) propose the use of models that allow for non-

ignorable non-response. In the context of the UK LFS, Clarke and Chambers (1998) also 

propose models that account for non-ignorable non-response but, in addition, they extend 

their models to hold at the household level. In the same context, Clarke and Tate (1999) 

compare the model-based approach with the weighting approach for adjusting for non-

response and conclude that the weighting approach can provide a good alternative. Based on 

the work by Clarke and Chambers (1998) and Clarke and Tate (1999), a weighting scheme 

has been developed for the UK LFS that aims also at correcting for attrition bias. The 

variables on which this weighting scheme is based are age, gender, tenure and region. 

1.4.2 Rotation Group Bias 

Rotation group bias is a further problem that complicates the estimation of labour force gross 

flows. Rotation group bias occurs when the number of times respondents have been exposed 

to the survey affects the data reported. It is hypothesised that the estimates for each of the 

rotation groups of a panel survey must have the same expected values. This means that it 
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must be possible to regard the response stratum in each of the rotation groups as randomly 

generated from a common survey population by the same mechanism. Moreover, the 

measurement process must frmction in the same way regardless of the time that the sample 

members are interviewed. 

Studies of the CPS have revealed systematic differences in the estimates based on different 

rotation groups. Empirical work (Bailar 1975) has shown that unemployment rates estimated 

from the CPS are higher for the first and the fifth month, decrease for the intermediate 

months and increase slightly for the fourth and eighth month. The effect of rotation group 

bias on the estimates of employment rate has been also studied by Hansen, Hurwitz, 

Nisselson and Steinberg (1955). Furthermore, Solon (1985) discusses different forms of 

rotation group bias and the effects that this phenomenon has on the estimates of 

unemployment. In Great Britain, Kemsley (1961) and Turner (1961) examined the presence 

of rotation group bias in expenditure surveys and found that the reported expenditures were 

higher in the first interview than in later interviews. 

Rotation group bias can be attributed to the telescoping phenomenon. Telescoping means that 

a respondent may recall an event that happened some months ago, but state that it happened 

more recently. Events that are more traumatic are more likely to be reported than the real 

events. Think of the rotation design in the CPS. This is a 4-8-4 design. We suspect that 

months one and five may contain more telescoping, either because people have never been to 

the survey before or they have been out of the survey for eight months and they want to report 

something of interest. The intermediate months are probably less affected by this 

phenomenon since respondents have the opportunity to report on a regular basis. Other 

reasons that cause rotation group bias may include the change of the mode of data collection 

from the first to subsequent waves or the conditioning, i.e. participants in a panel survey learn 

a shortcut through the questionnaire, of the respondents after the initial interview. 

1.4.3 Measurement Error 

Every sample survey is subject to response error when the information given by the 

respondent is not an accurate reflection of the reality. The existence of response error implies 

the existence of measurement error. When dealing with discrete data, the term measurement 
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error can be replaced by the more natural term misclassification. Hereinafter, the terms 

misclassification and measurement error will have an identical meaning and will imply the 

existence of response error. Response error may occur for a variety of reasons. A respondent 

may deliberately give an incorrect answer for reasons of embarrassment, prestige, or fear 

(Hilaski 1968, Hogue 1985). Further potential sources of error include the use of proxy 

respondents where one respondent answers the questions on behalf of someone else in the 

same household and the mode of data collection i.e. the use of face to face or telephone 

interviews (Tate and Clarke 1999). Other causes of misclassification reported in Kristiansson 

(1999) include problems in the questionnaire and difficulties in the classification of a 

respondent's status. 

A considerable amount of literature deals with the effects of misclassification on hypothesis 

testing and the measures of association. Rogot (1961) studies the effects of misclassification 

on the Type II errors (i.e. not rejecting the null hypothesis when it should be rejected). The 

author restricts his interest in four specific patterns of misclassification. He concludes that the 

misclassification patterns of the specific type that he describes tend to increase the probability 

of making a Type II error. This result is consistent with the description of Kuha and Skinner 

(1997), (see also Buell and Dunn 1964, White 1986), that the effect of misclassification in the 

multivariate case is to attenuate the differences between the subclass proportions. Kuha and 

Skinner (1997) study the effects of misclassification also for univariate analysis. They 

conclude that bias is a function both of the misclassification probabilities and of the true 

parameters and can take any arbitrary form. Thus, an instrument with a given 

misclassification can lead to biased estimates in one population and unbiased estimates in 

another. Mote and Anderson (1965) investigate the effects of misclassification on the 

properties of X'̂  tests for goodness of fit and for contingency tables. They conclude that the 

effect of misclassification is to reduce the power of these tests. Koch (1969) studies the 

effects of non-sampling errors on different measures of association in 2 x 2 tables. 

Chiacchierini and Arnold (1977) develop a test for independence in 2 x 2 tables under 

misclassification. They conclude that ignoring misclassification can result in erroneously 

rejecting the null hypothesis and vice versa. Other papers dealing with the effects of 

misclassification on the analysis of categorical data include Bross (1954) and Assakul and 

Proctor (1967) whilst two more general papers, on the effects of measurement error on the 

analysis of survey data, are given by Cochran (1963) and by Biemer and Trewin (1997). 

12 



It is believed that for cross-sectional data there is no particular tendency for errors to be 

systematic (Veevers and Macredie 1983, Lemaitre 1999, Skinner 2000). However, for 

longitudinal data produced by linking together data collected for the same person in different 

time points, this cancellation may not occur. We investigate this argument using the 

following approach. Denote by Q the misclassification matrix. The diagonal elements of this 

matrix denote the probabilities of correct classification and the off-diagonal elements the 

probabilities of misclassification. Denote further by P a matrix that describes the probability 

distribution of the true classifications, by 11 a matrix that describes the probability 

distribution of the observed (i.e. affected by measurement error) classifications and by I the 

identity matrix. Under misclassification, is reasonable to assume that bias is introduced in the 

estimation of P . The bias can be quantified as follows; 

jB%og(f)) ==n-- f . (1.1) 

Using simple matrix operations, (1.1) can be expressed in the following way 

B m a ( f ) = ( Q - i ) f . (1.2) 

Note that bias becomes zero when Q = I i.e. when no misclassification exists. Let us assume 

that we are dealing with an example in the context of the UK LFS. Assume further that there 

are three mutually exclusive states namely Employment (E), Unemployment (U) and 

Inactivity (N). Following (1.2), the bias introduced in the estimation of the proportion of 

people that belong to each labour force category is given below 

Bias(P^) Qee " 1 Ien 'Pe' 

Bias(Py) = luE luu 1 Pu (1.3) 

Inu Inn 1 

We are interested in finding whether there exists a combination of values such that (1.3) is 

equal to zero. A set of values for which (1.3) becomes zero is the following. 

Pg = 0.7071, Pj; 0.0606, = 0.2323ggg = 0.99, = 0.003, = 0.007 

Q.EU ~ 0 - 0 4 , = 0 . 8 5 , = 0 . 1 1 , = 0 . 0 2 , = 0 . 0 3 , 0 . 9 5 . 
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This combination of values can be considered as a realistic one in a labour force framework. 

Thus, in a cross-sectional framework it is possible to obtain unbiased estimates of the 

parameters of interest even in the presence of misclassification. 

In a longitudinal context, Skinner (2000) provides a similar example in which, while the 

marginal estimates of the gross flows matrix are unbiased, the estimates of the transition 

probabilities are seriously biased. For example, many researchers believe that the response 

errors can have serious implications for estimation of labour force gross flows. Think of the 

gross flows between the main labour force states (Employment, Unemployment and 

Inactivity). The number of people who move from one state to another during a relatively 

short period is small compared to the number of people who remain stable. Consequently, a 

response error is much more likely to lead to an apparent change when the true situation is 

one of stability. This implies that response errors can have an effect by upwardly biasing the 

flows between the different labour force states. For this reason, the response error problem 

and methods that attempt to correct for response error have been at the centre of research in 

the US and Canada during the 80's and in Europe mainly during the last decade. Generally 

speaking, the major aim of this thesis is to develop methodology that adjusts labour force 

gross flows for misclassification. As a result, from now on we will focus our interest on 

misclassification related issues. 

1.5 Modelling Strategies to Correct for Misclassification 

Misclassification can introduce bias in the estimation of the parameters of interest and as a 

result in the analysis and inference based on these parameters. Consequently, it is of interest 

to investigate modelling strategies that attempt to correct for the biasing effect of 

misclassification. In the following sections, we describe techniques that have been developed 

for both cross-sectional and longitudinal data. Before doing so, however, we should mention 

that due to the discrete nature of the gross flows, conventional methods of errors in variables 

modelling (Fuller 1987) are not applicable. Generally speaking, these modelling strategies 

can be placed into two broad categories (see Figure 1.3): (a) strategies that assume the 

existence of validation information and (b) strategies that do not require validation 

information. 
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Likelihood- based 
Methods 

Matrix Adjustment 
Methods 

Strategies that assume 
validation information 

Strategies that do not assume 
validation information 

Modelling Strategies to Correct for Misclassification 

Latent Markov Models 
Latent Markov Models with 
Correlated Classification Errors 
Instrumental Variables Models 
Systems of Multinomial Logistic 
Models 

Figure 1.3: Modelling strategies to correct for measurement error in a discrete framework 

Although the alternative modelling strategies utilise different parameterizations, they share 

many common characteristics. In all approaches, the observed and the true classifications are 

interrelated using the misclassification mechanism. The observed classiJications can then be 

expressed as a function of the parameters of the misclassification mechanism and of the true 

classifications and vice versa. As we will see later in this chapter, expressing the observed 

classifications as a function of the true classifications and the parameters of the 

misclassification mechanism is the approach that is generally adopted by the likelihood-based 

strategies either in the presence of validation data or when no validation data are available. 

The reverse approach is employed by the matrix adjustment methods. In the sequel, we 

describe the alternative modelling strategies. 

1.5.1 Strategies that Require Validation Information 

1.5.1.1 Matrix Adjustment Methods 

The term matrix adjustment methods appears in Kuha and Skinner (1997) and is used to 

describe simple methods that provide adjustments for measurement error via matrix 
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computations. We should mention that these methods do not specify any parametric model 

for estimating quantities adjusted for measurement error. Matrix adjustment techniques can 

be placed into the general framework of the double sampling methods. Assume that the 

standard measurement device (e.g. the Labour Force survey) is subject to measurement error. 

As a result, if the fallible measurement device is used, we will have biased results. One way 

of obtaining unbiased estimates is by using validation information obtained through a double 

sampling scheme. Literature on validation surveys is reviewed later in this chapter. Here we 

describe the general framework. 

Denote by a random variable describing the observed state (i.e. affected by measurement 

error) of unit f at time t and a random variable describing the hypothetical true state of 

the same unit at time t . The estimation process under a double sampling scheme can be 

described as follows. 

A random sample of n units is selected from a population of # units and 

1. For the n units selected, the classifications, , are obtained for each unit ^ using the 

standard measurement device, which is subject to measurement error. 

2. Following this first measurement, the true classifications, , are obtained for each 

unit ^ in a sub-sample of n" units, selected from the n units, using the validation 

procedure. 

Generally speaking, the double sampling methods try to combine information from both the 

true and the fallible classifiers in order to obtain adjusted estimates. The basic assumption of 

this approach is that the validation procedure identifies the true value. Consequently, using 

the validation information one can exogenously estimate the parameters of the 

misclassification mechanism and then adjust the quantities of interest for measurement error. 

Matrix adjustment methods were developed initially for cross-sectional applications. Bross 

(1954) describes the application of such methods to adjust binomial data (proportions) for 

misclassification. Tenenbein (1970) derives maximum likelihood estimators and asymptotic 

variances for proportions adjusted for misclassification and extends these results to the 

multinomial case (Tenenbein 1972). 
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Similar methods have also been used in the analysis of longitudinal misclassified data. 

Literature that deals with the adjustment of labour force gross flows for misclassification 

using matrix adjustment methods includes Abowd and Zellner (1985), Poterba and Summers 

(1986), Chua and Fuller (1987), Skinner and Torelli (1993) and Singh and Rao (1995). The 

general set up for longitudinal applications is as follows. Assume a panel survey is conducted 

and a sample unit ^ is interviewed at two consecutive periods i + 1. We assume that the 

variable of interest measured by the panel survey is subject to misclassification. Let 

denote an observed measurement (i.e. affected by measurement error) and an error free 

measurement for the same quantity. The pairs for different sample units are 

assumed to be iid with distribution liij = = i,Y^t+x = i) • The pairs for 

different sample units are assumed to be iid with distribution Py = pr = A;, = Zj. 

We assume that we can use validation information to make inference about the probability of 

misclassification. However, the validation survey is conducted only at time t . Denote by 

lijki ~ (^0 = h Ŷ *t+i = j I ^0+1 = the probability that a person is observed as 

making a transition from state i at time t to state j at time t + 1 when his/her actual 

transition is fi-om state k to state I. We further define the matrix of misclassification 

probabilities Q with elements . A parenthesis next to matrix Q will be used to define the 

time that the misclassification refers to. For example, Q{t,t + 1) is used to denote the joint 

misclassification matrix at these two time points. Finally, we define matrix P with elements 

and matrix IT with elements . The vec operator will be used throughout this thesis to 

define a vector obtained by stacking the columns of a matrix one on top of the other. 

Assuming that Q(t,t +1) is invertible, the adjusted gross flows are derived using the 

following expression 

vec{P) = + 1)]^ vecQl). (1.4) 

Due to the absence of panel validation information, one way to determine the joint 

misclassification matrix Q(t,t + 1), based on cross-sectional validation data, is by 

introducing the Independent Classification Errors (ICE) assumption, i.e. 

P-riy; = = i I =') = pr{Y; = i | ¥„ = k) = j \ = l). (1.5) 
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This ICE assumption imphes that the observed states are conditionally independent 

given the true states and that the misclassification at time t depends only on the 

current true state and not on the previous or future true states. The ICE assumption and ways 

of relaxing it will be discussed in subsequent chapters. Under ICE, (1.4) becomes 

?;ec (jP) = [Q (t +1) (2) 0 "uec (H). (1.6) 

The main difference between articles dealing with the adjustment of gross flows for 

measurement error is in the estimation of the parameters of the misclassification mechanism. 

Poterba and Summers (1986) Approach 

While investigating validation data from the reconciled^ sub-sample and the unreconciled^ 

sub-sample of the CPS validation survey, Poterba and Summers observed an anomaly. More 

specifically, they found that the discrepancies between the original survey and the re-

interview survey were much greater for the unreconciled sub-sample than for the reconciled 

one. Due to this problem, the authors assumed that the reconciled sub-sample gives 

information on the true labour force status while the unreconciled sub-sample can be used for 

estimating the actual incidence of error. Regarding individuals in the reconciled sub-sample, 

they estimate the probability that a respondent truly belongs in each labour force category 

conditional upon the initial and the unreconciled reported status. To determine these 

probabilities they assume that when there is an inconsistency between the two survey 

responses the reconciliation procedure correctly identifies the true status. Denoting by 

the classification obtained through the reconciliation process for sample unit ^ and by 

the classification obtained from the unreconciled part of the re-interview sample for the same 

unit, these probabilities are given by 

^ I + 6.̂ .̂  + 6̂ .̂̂  = 1, jV. (1.7) 

Subsequently, they use to impute a probability distribution of the true labour force status 

for each individual in the unreconciled sub-sample conditional upon the responses in the 

initial and the unreconciled part of the re-interview survey. Using the imputed distribution of 

the true labour force status, two probabilities can be determined: the probability that an 

' Usually, a validation survey is divided into reconciled and unreconciled sub-samples. The reconciled sub-sample is 
assumed to provide the true values. The unreconciled sub-sample replicates the survey process. 
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individual's recorded initial interview response is i conditional upon the imputed 

reconciliation status k,q^j. and the probability that an individual's recorded interview 

response in the unreconciled sample is j conditional upon the imputed reconciliation status 

k, . Using these two sets of probabilities, the error rates are computed by averaging 

and q-j,. The final misclassification probabilities can be substituted in expression (1.6) in 

order to adjust the quantities of interest for measurement error. 

Abowd and Zellner (1985) Approach 

The common characteristics between the Poterba and Summers approach and the Abowd and 

Zellner approach, for adjusting gross flows for measurement error, are the following: (a) both 

assume the availability of validation information and employ the independent classification 

errors assumption to estimate the matrix of misclassification probabilities and (b) both 

assume that the reconciliation process identifies the true labour force status. The difference 

between these two approaches is that while the Poterba-Summers approach utilises data both 

firom the reconciled and the unreconciled sub-sample, the Abowd and Zellner approach 

utilises data only from the reconciled sub-sample. Furthermore, the model proposed by 

Abowd and Zellner simultaneously adjusts labour force gross flows for bias due to attrition 

and response error. 

Chua and Fuller (1987) Approach 

Chua and Fuller (1987) proposed a parametric approach for estimating the response error 

matrices using validation information that is derived from the unreconciled part of the 

validation sample only. However, they still use the ICE assumption in order to estimate the 

longitudinal structure of the misclassification mechanism. 

Matrix Adjustment Methods that Attempt to Relax the ICE Assumption 

Poterba and Summers (1986), Skinner and Torelli (1993) and Singh and Rao (1995) 

examined similar adjustment techniques. However, they extend the ICE assumption to hold 

within sub-populations. This is the so-called unit heterogeneity approach. Under this 

approach, (1.6) becomes 
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^ ; e c f f ) = i;ecfn ), (1.8) 
g=i I j \ / 

- 1 

where 0 denotes the total number of sub-groups, a denotes the fraction of people that 

belong to sub-group g and Q (t)^ denotes the misclassification matrix for sub-group g . The 

use of the unit heterogeneity approach reduces the effects of the ICE assumption. As pointed 

out by Skinner and Torelli (1993), the effect of ignoring unit heterogeneity, when such 

heterogeneity is present, leads to over-adjustments of the labour force gross flows. However, 

they believe that the bias introduced in the estimation of the adjusted gross flows when 

ignoring unit heterogeneity is not large. 

In the same framework, an alternative adjustment method, which has been adopted by many 

researchers (Poterba and Summers 1986, Singh and Rao 1995), is the unbiased margins 

method. Under this approach, it is assumed that the margins of the adjusted gross flows 

matrix must agree with the observed margins at t,t + l. This implies that cross-sectional 

estimates remain unbiased in the presence of measurement error. As we illustrated in Section 

1.3.3, this is possible in a cross-sectional framework. 

1.5.1.2 Likelihood-based Methods in the Presence of Validation Information 

Using the matrix adjustment methods we can obtain estimates adjusted for misclassification. 

However, we cannot use standard methods of statistical inference (hypothesis testing, model 

selection) since these methods do not account for the extra uncertainty introduced by the 

adjustment procedure. This type of inference can be performed using likelihood-based 

methods. 

There is a considerable literature on likelihood-based methods for adjusting for 

misclassification in a cross-sectional framework when validation data are available. Chen 

(1979) examines estimation from double sampling designs using models that are placed into a 

log-linear framework and specified at two levels. First, a misclassification model that 

specifies the relationship between the true and the misclassified variables is formulated. 

Using this model, we can test for the existence of a differential or a non-differential 

misclassification mechanism. Secondly, a model for the relationship between the true 
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variables is specified. Using this system of models, one can utilise the misclassification 

structure to adjust for misclassification and then investigate the relationships among the 

correct classifications. Chen (1979) estimates these models using a recursive system of 

maximum likelihood equations. 

Hochberg (1977) considers models for doubly sampled data and proposes two alternative 

estimation methods namely, maximum likelihood estimation and a combination of least 

squares and maximum likelihood estimation. 

Espeland and Odoroff (1985) present models for doubly sampled data. They assume that the 

variable of interest is measured both by a precise and an imprecise device. They further 

assume that there are other variables (covariates), which are measured precisely. They specify 

three different types of models namely, the sampling model that describes the relationship 

between all variables included in the model, the misclassification model that describes the 

relationship between the precise and the imprecise measured variable, and the experimental 

model that describes the relationship between the precise variable and the precisely measured 

covariates. These models are estimated using the EM algorithm. Ekholm and Palmgren 

(1987) present also models that correct doubly-sampled data for misclassification. 

The work presented by Hochberg (1977), Chen (1979), Espeland and Odoroff (1985) and 

Ekholm and Palmgren (1987) deals with cross-sectional data. Poterba and Summers (1995) 

formulate a longitudinal model for doubly sampled labour force related data that focuses on 

transitions from unemployment to employment and inactivity. They model the probability of 

an actual transition as a multinomial logistic model. The likelihood defined by the model is 

written as a function of the misclassification probabilities and the true transition probabilities. 

In the maximisation of this likelihood they assume that the misclassification probabilities are 

fixed at estimated values derived from the validation sample. This is equivalent to treating 

these misclassification probabilities as nuisance parameters. Consequently, the likelihood is 

maximised only with respect to a reduced set of parameters. As the authors recognise, the 

maximisation of the resulting conditional likelihood leads to inconsistent estimates of the 

standard errors since the process ignores the variability introduced from the estimation of the 

misclassification probabilities. An additional assumption that they impose is that the 

probability of misclassification is independent of the characteristics of the respondents. This 
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is equivalent to assuming the existence of a non-differential misclassification mechanism and 

can be considered as quite restrictive. Their final assumption is that the observed 

classifications at the first time point are 6ee of error. This might be justified given the nature 

of the data considered in the article. However, in most applications this assumption can not be 

regarded as realistic. Assuming that the observed classifications at the first time point are 6ee 

of error simplifies the estimation process. This is done as follows: The observed data are 

derived firom a panel survey whereas the validation data are derived fi'om a cross-sectional 

survey. Assuming that the observed classifications at the first time point are firee of error is 

equivalent to transforming the measurement error process firom a longitudinal to a cross-

sectional one. Hence, there is no need to impose the ICE assumption. 

1.5.2 Strategies that do not Require Validation Information 

The main objection to adjustment procedures that assume the existence of validation 

information is the ability to measure the tmth. In the case of an external validation sample 

(e.g. based on administrative records), this becomes the question of how informative this 

source of information is about the misclassification process in the target population. For 

example, a validation study based on the employees in one company can provide no 

information on the probability of an unemployed person being classified as employed. In the 

case of an internal validation sample, based on re-interviewing a sub-sample of units, the 

main problem is the measurement of the truth via this re-interviewing process. Despite the 

fact that re-interviews that aim at obtaining the true values are designed to be optimal in terms 

of the survey procedures, they still have deficiencies. 

A class of models has been developed, which does not estimate the parameters of the 

misclassification mechanism by attempting to measure the truth but by replicating the 

measurement process. Generally speaking, these models involve the combination of a true 

model that relates the true values at different waves and a measurement model that relates the 

true values to the measured (misclassified) values. Without imposing further assumptions the 

parameters of these models are not identified. This is because these modelling strategies do 

not assume validation information. To achieve identification we either have to add 

information provided by repeated measurements or to impose assumptions on the 

relationships between the variables. Such assumptions can be for example that (i) the 
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observed measurements are conditionally independent given the true measurements, (ii) the 

measurement error depends only on the current state and not on previous or future true states, 

(iii) the distribution of error is homogeneous through time, (iv) the distribution of error is 

homogeneous across or within subpopulations, (v) the true values follow a Markov process 

within subpopulations. Given such assumptions, these models can be identified and the 

parameters (e.g. the transition probabilities) can be estimated using maximum likelihood 

estimation. Models of this type include latent Markov models, instrumental variables models 

and systems of multinomial logistic models. 

1.5.2.1 Latent Markov Models 

Latent structure analysis was developed by Lazarsfeld and Henry (1968) in order to solve 

problems involving unobserved variables when the data are measured at the nominal level. In 

one of their models they assume panel data and a latent Markov chain underpinning the 

observed (manifest) data. In this context. Van de Pol and De Leeuw (1986) proposed a latent 

Markov model to correct data from the Dutch civil servants panel survey for measurement 

error. 

Formulating the Manifest Structure 

Assume that a set of consecutive measurements is obtained by a measurement device that is 

affected by measurement error. Recalling the notation form previous sections, a Markov 

chain is specified by the initial distribution H, = pr{Y^^ = and a set of transition matrices 

R with elements R^- for transitions from i to j between t and t + 1 . The relationship 

between II., R.. and 11 is given by 

n . j = n , i j , , (1.9) 

where H denotes a diagonal matrix with elements only in the diagonal and zeros elsewhere. 

The main assumption of the Markov model is that a transition matrix R is independent of the 

past states through which the process has passed. This implies that a transition matrix say for 

two consecutive periods [t, t + 1) and (i +1, t + 2) satisfies the following relationship 

^ ( ( , ( + 2) = ji!(^,^ + l ) ^ ( ( + l , ( + 2). (1.10) 

23 



The length of periods (i, t + 1) and (t +1, i + 2) can be assumed to be the same as the time 

between consecutive waves of the panel survey but this is not a necessary assumption. Using 

relationships (1.9), (1.10) and assuming that we obtain measurements at three consecutive 

time points, the probability that a person belongs to manifest cell {i, j, k) is given by 

^ijk ~ (1-11) 

In many cases an assumption of stationary transition probabilities is imposed. 

R{t,t V) = R{t 2) =••• = R. (1.12) 

hi most of the cases, however, the Markov assumption is not met by the data. The approach 

adopted by the authors for relaxing the Markov assumption is to decompose the manifest data 

into latent data and error. This naturally leads to the formulation of the latent structure. 

Formulating the Latent Structure 

Corresponding to every manifest variable one latent variable is assumed. The distribution of 

the manifest variable 11 depends on the distribution of the corresponding latent variable P 

and a matrix of transition probabilities Q. This matrix is equivalent to the misclassification 

matrix used by the strategies that require validation information. The diagonal elements of Q 

denote the probabihties of correct classification (i.e. the reliability by which a latent class is 

measured). The latent variable is related with the manifest variable, via matrix Q, by the 

following relationship. 

n = Q f . (1.13) 

Apart from the relationship between the latent and the manifest variables, there is also a 

structure for the latent variables similar to the structure of the manifest variables. 

Consequently, on a latent level and for three time points ( ,̂ i +1, t + 2), there are 

latent observations for sample unit which are interrelated by a Markov 

chain. The latent transition matrix is denoted by M and the latent initial distribution 

by = pr = a). The probability that a person belongs to latent class (a, b, c) is given by 

(1.14) 

In order to relate the manifest variables to the latent variables, an assumption of local 

independence is being made. This means that the manifest variable at time t depends only on 
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the latent variable at time t (see Figure 1.4). Thus, for a respondent in cell {a,b,c) the 

probability of answering (i, j, k) is given by the following expression 

P 

e(') 
n. 

+1) 

> p 

n n 
J 

> 

^)\ r 
n k 

Figure 1.4: An example of a latent Markov chain in discrete time 

Estimation 

(1.15) 

As proposed by Van de Pol and De Leeuw (1986), the vector of parameters 6 of the latent 

Markov model can be estimated using the EM algorithm. Assuming a multinomial model and 

denoting by the data for each cell of the cross-classification of the manifest and the 

latent variable, the log-likelihood for the latent Markov model is given by 

KG) = E . E . E X . E , E . " . « (1.16) 

In the E-step, the latent observations are replaced by their conditional expectations given the 

current vector of parameter values and the observed data. In the M-step, the likelihood is 

maximised and new parameter values are computed. The authors provide the steps for the 

EM algorithm under the assumption of stationary transition probabilities given in (1.12). 

However, the EM algorithm can be modified in order to relax this assumption. An alternative 

way of estimating the parameters of the latent Markov model is by attempting a direct 

maximisation of the likelihood function (1.16) using numerical methods (Haberman 1979). 

However, Hagenaars (1985) points out that Haberman's algorithm requires very good starting 

values otherwise it will not converge. 

1.5.2.2 Latent Markov Models that Allow for Correlated Classification 

Errors 

Bassi, Torelli and Trivellato (1998) describe latent class models for estimating labour force 

gross flows affected by classification errors when data are partially collected using 
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retrospective questions. They start by describing a general estimation framework where the 

joint probability of the observed and the true classifications can be marginalized over the 

latent (true) classifications and expressed as a product of conditional and marginal 

probabilities. In this paper, the emphasis is on latent class models that allow also for 

correlated classification errors i.e. relaxing the ICE assumption. A suitable approach for 

handling such models is the so-called modified LISREL approach proposed by Hagenaars 

(1990). 

The authors present two case studies; one from the Survey of Income and Programme 

Participation (SIPP) and another from the French LPS. The common characteristic of these 

surveys is that data are collected partially using retrospective questions. Gross flows can be 

separated into Within-Wave (WW) flows, which are estimated using the retrospective part of 

the survey, and Between-Wave (BW) flows. While for the (BW) transitions ICE can be 

regarded as a reasonable assumption, for the (WW) transitions it is more reasonable to 

assume that they are affected by correlated classification errors. The authors noticed that 

(BW) flows show a lower stability while (WW) flows show higher stability. The higher 

stability of (WW) flows can be attributed to "seam effects" i.e. more change is observed 

when data are collected in different interviews than when they are collected in the same 

interview. The proposed model corrects the (WW) transitions towards higher mobility i.e. 

reducing "seam effects" and (BW) transitions towards stability. 

Magnac and Visser (1999) study transition models with measurement error when information 

is gathered partially by using retrospective questions. More specifically, they use data from 

the French LFS in which the sample units are interviewed for three times. At each interview 

the survey participants are asked to report their current labour force status and also their 

labour force status month by month in the preceding twelve months. The modelling 

assumptions that they impose are the following: (a) the labour market histories are generated 

using a discrete-time Markov chain, (b) the observed and the true states are related using a 

measurement error mechanism, (c) the current reported state is assumed to be free of error 

while the retrospective reported states are affected by classification error and (d) errors 

increase linearly with time due to recall problems. The assumption that the currently reported 

state is free of error is unrealistic. This is because the currently reported data are derived 

through an ordinary interviewing process i.e. not derived, for example, via a validation 
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procedure. However, it might be the case that the retrospectively derived data are more 

severely affected by measurement error. Regarding assumption (b), Magnac and Visser used 

the so-called d -ICE assumption, which can be seen as a relaxed ICE assumption. The d -ICE 

assumption states that the misclassifications recorded at time t and t + d, d > 1, are 

independent. 

The vector of model parameters 6 is estimated by maximising a log-likelihood function. 

Denoting by n-- the number of individuals observed in state i at time t and state j at time 

t d, by the true states and by r the total number of states, the log-likelihood function 

is given by the following expression 

' ( e ) = E E E n , i o g ( n , ) . (1.17) 
4=1 j=l j=l 

It can be shown that under the d -ICE assumption 

(1 18) 
k=l 1=1 

where and q^i are elements of the misclassification matrices Qit) and Q{t-^d) 

respectively. The misclassification matrices Q (t) and Q (t + d) are estimated under 

assumption (c) and the assumption that recall error increases linearly with time. After 

estimating Q(t) and Q(t + d), the log-likelihood (1.17) is maximised and maximum 

likelihood estimators for the true transition probabilities, , are derived. The model 

proposed by Magnac and Visser corrects the gross flows towards stability, which contradicts 

the findings firom the model of Bassi et al. (1998). Bassi and Trivellato (2000) criticise the 

assumptions imposed by Magnac and Visser and re-analyse the data using the modified 

LISREL modelling approach, which allows for correlated classification errors. Their model 

corrects the retrospectively collected flows towards higher mobility. 

1.5.2.3 Instrumental Variables Estimation 

For measurement error in continuous variables an approach employed in the absence of 

auxiliary information is the method of instrumental variables estimation. An instrumental 

variable is one that is related to the true variable but is uncorrelated with the measurement 

error. Skinner and Humphreys (1997) (see also Humphreys 1996) extend the instrumental 
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variables model to estimate flows among discrete states that are affected by classification 

errors. The paper focuses on the case of a binary variable. A discrete instrumental variable W 

is defined, which is correlated with the true variable but uncorrelated with error. The 

following assumptions are made: (a) the instrumental variable is conditionally independent of 

the observed states given the true states, (b) the instrumental variable is conditionally 

independent of the true state at the second time point given the true state at the first time 

point, (c) the classification errors at two occasions are conditionally independent given the 

true states, (d) the measurement errors are unbiased at each occasion in the sense that the 

margins of the adjusted gross flows should equal the margins of the observed gross flows 

matrix and (e) the error process is constant over time. 

Denote by 1 1 = pr(Y^^ = i, = j-,W = &)and by n.̂ .̂ the number of individuals in the 

ijk combination defined by the cross-classification of the observed variable with the 

instrumental variable. Expressing as a product of conditional probabilities using 

assumptions (a)-(e), the vector model parameters 6 can be estimated by maximising the 

following multinomial log- likelihood 

' ( e ) = E E E « . » ' ° g ( n , 0 - (119) 
i j k 

The maximisation of (1.19) can be done either directly or by using software that fits latent 

class models. 

The authors describe an application that involves the selection of an actual instrumental 

variable and they point out problems related to the choice of an instrumental variable that 

obeys both assumptions (a) and (b). They argue that it is more difficult to find an instrumental 

variable that satisfies the second assumption than one that satisfies the first assumption. 

Subsequently, they investigate models using two different instrumental variables i.e. one, 

which is highly correlated with the error firee variable and one that is less correlated with the 

error free variable. The results indicate that the estimates obtained using the instrumental 

variable that is less related with the error free variable are associated with higher standard 

errors. Skinner and Humphreys (1997) investigate the trade-off between the bias of the 

unadjusted estimates and the increased variance of the instrumental variables estimates 

assuming that the instrumental variables estimates are unbiased. They point out that the 

variance of the instrumental variables estimates increase as the dependence between the 
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instrumental variable and the error free variable, measured by Cramer's V, decreases. 

However, they conclude that in the absence of external information about the 

misclassification probabilities the instrumental variables approach can be very useful. 

1.5.2.4 Systems of Multinomial Logistic Models 

An alternative approach to adjusting labour force gross flows for measurement error is 

proposed by Pfeffermann, Skinner and Humphreys (1998) (see also Pfeffermann and Tsibel 

1998). This approach utilises multinomial logistic models that are specified at the unit level 

for both the transition and the classification probabilities. The combination of these models 

yields an overall model for the observed flows, which permits the identification of the true 

transitions. The advantages of this approach are that no validation data are required and that 

the ICE assumption can be relaxed by including the previously observed states as covariates 

in the models. The following assumptions are made: (a) the observed classifications at 

different time points are dependent given the corresponding true values and covariates, (b) the 

true classifications are dependent but they do not depend on past observed states and (c) the 

initial state probabilities do not depend on past observed states. Assumptions (a) and (b) 

impose a Markovian structure on the observed and the true state probabilities. Utilising the 

previous assumptions and denoting by the covariate information for sample unit ^ at 

time t, the initial state probabilities are given by i^, = pr = k | ), the 

misclassification probabilities are given by = pr (Y^^ = j \ = I, = i, ), and the 

true transition probabilities are given by Pa = The joint 

distribution of the observed and the true states can now be expressed as a function of the 

misclassification probabilities and the true transition probabilities. The authors postulate 

separate multinomial logistic models for the misclassification probabilities, the true transition 

probabilities and the initial state probabilities. Generally speaking, the different parameters 

are expressed as follows: 

_ exp(Zo) _ exp(%/3) exp^Y^) 

{l + exp (Za)} ' " ( l + exp (%/))} ' {l + exp (Z"/)} ' 
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where X denotes the design matrix and a,/?,7 denote the vector of parameters of the 

logistic models. Note also that there is no restriction for the different models to include the 

same set of covariates. The authors suggest that direct maximisation of the likelihood should 

be avoided due to the possibly high dimensionality of the problem. Instead, they propose the 

use of the EM algorithm. The approach proposed by Pfeffermann, Skinner and Humphreys 

(1998) is a very important one since the ICE assumption is directly relaxed by including the 

previously observed states as covariates in the models. One difficulty with this approach is 

the computation of standard errors for the parameters of interest. 

1.6 A Critical Comparison of the Alternative Modelling Strategies 

For each of the alternative modelling strategies we need to specify the structure of the 

observed classifications, the structure of the true classifications and the way that the observed 

classifications are related to the true classifications via the measurement error mechanism. 

The alternative methods differ with respect to the approach they choose to estimate the 

measurement error mechanism. This depends on the availability of validation information. 

Nevertheless, in terms of modelling assumptions, the different methods share common 

characteristics. 

Comparing the matrix adjustment methods with the latent Markov approach, we see that both 

approaches use the local independence assumption to estimate the parameters of the 

measurement error mechanism. However, the latent Markov approach results in the 

computation of maximum likelihood estimates, which may be considered as more efficient 

than the estimates obtained via the matrix adjustment methods. On the other hand, the lack of 

validation information in the latent Markov approach imposes some extra constraints. For 

example, in order that the parameters of the latent Markov model are identified, we need to 

utilise linked data for at least three quarters and to impose assumptions about stationary 

transition probabilities. 

Comparing the instrumental variables model with the matrix adjustment methods, we also 

find common modelling assumptions. For example, assumption (c) in the instrumental 

variables model is equivalent to the ICE assumption of the matrix adjustment methods and 

assumption (d) is equivalent to the unbiased margins assumption that is also utilised by the 
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matrix adjustment methods (Poterba and Summers 1986, Singh and Rao 1995). However, the 

instrumental variables model also results in maximum likelihood estimates. 

The latent Markov models with correlated classification errors and the systems of 

multinomial logistic models can be viewed as a separate group of methods since they attempt 

to relax the local independence assumption in the specification of the measurement error 

model. These methods can be seen as similar, in the sense of trying to relax the local 

independence assumption, to the unit heterogeneity approach and the unbiased margins 

approach of the matrix adjustment methods. 

One of the major aims of this thesis is to develop likelihood-based methods for adjusting 

gross flows data in the presence of validation information. Generally speaking, the models 

induced by these methods can be parameterised in the same way as the models that do not 

require validation information (e.g. the latent Markov model). This means that the observed 

transition probabilities can be expressed as a function of the true transition probabilities and 

the misclassification probabilities and estimation can be performed within the context of a 

missing data problem. However, when validation information is available, one can avoid 

introducing the whole range of assumptions utilised by the modelling strategies that do not 

require validation information. 

1.7 The UK Labour Force Survey (LFS) 

In this section, we describe the main source of data that we will use for illustrating the theory 

throughout this thesis namely, the UK LFS. 

1.7.1 Historical Notes and Purposes of the UK LFS 

The UK LFS is a survey of households living at private addresses, which is conducted by the 

Social Survey Division (SSD) of the Office for National Statistics (ONS) in Great Britain and 

by the Central Survey Unit of the Department of Finance and Personnel in Northern Ireland. 

The first LFS in UK was conducted in 1973. Between 1973 and 1983 the survey took place 

every two years in the spring quarter. Between 1984 and 1991 the survey was carried out 

annually and consisted of two elements: (a) a quarterly survey of approximately 15000 

private households and (b) a "boost" survey, in the quarter between March and May, of over 
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44000 private households in Great Britain and 5200 households in Northern Ireland. 

Quarterly LPS estimates for Great Britain became possible in 1992 when the sample was 

increased to cover 60000 households every quarter. The LPS quarters refer to the seasonal 

quarters March-May (spring), June-August (summer), September-November (autumn) and 

December-February (winter). Whilst the quarterly LPS is built on the annual one, there are 

some differences mainly regarding the response rates (response rates in quarterly LPS are 

lower due to the cumulative refusal across waves), the sampling design (introduction of an 

un-clustered design) and the target population (inclusion of people in two categories of non-

private accommodation i.e. in National Health Service (NHS) accommodation and students in 

halls of residence). 

The main purpose of the quarterly LPS is to provide information needed to develop, manage, 

evaluate and report on labour market policies. One potential use of the quarterly LPS is in 

macro-economic monitoring. Main indicators regularly published from the LPS include total 

employment, the unemployment rate and the economic activity rate. A further important use 

of the LPS is for the production of regional statistics. Based on regional data, governmental 

offices can assess the local labour markets and design future labour market policies. Further 

purposes of the LPS include the monitoring of the characteristics of the unemployed people, 

the gathering of information related to training and qualifications, the monitoring of the youth 

labour market, the gathering of information on income related variables, the monitoring of 

working conditions and working related accidents and also the gathering of information 

related to participation in trade unions. 

1.7.2 Survey Design Issues 

Coverage and Sampling Design 

The LPS results refer to persons of working age i.e. women aged 15 to 59 and men aged 15 to 

64 who are residents in private houses and in NHS accommodation in UK. The sampling 

frame, from which most (99%) of the Great Britain sample is taken, is the Postcode Address 

Pile (PAP). The PAP is a computer list, prepared by the Post Office, of all the addresses to 

which mail is delivered. In addition to the PAP, another frame is the NHS accommodation 

sampling frame, which was specially developed for the LFS by utilising information from 
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district health authorities and NHS trusts, hi sparsely populated areas random samples are 

selected from the published telephone directory while for Northern Ireland the Valuation List 

is used. 

The LFS utilises a two stage sampling procedure. The first stage is a stratified random sample 

of areas and the second stage is a systematic sample of addresses selected from the PAF. The 

country is split into 110 interviewing areas. Each of these areas is then split into 13 "stints". 

These 13 stint areas are randomly allocated to the 13 weeks of a quarter. The same stint area 

is covered in the same week of each quarter by an LFS interviewer. A systematic sample of 

addresses is selected for each quarter throughout the country and is distributed between the 

stint areas to provide a list of addresses to be interviewed each week. The sample currently 

consists of about 59000 responding households in Great Britain every quarter, representing 

0.3% of the population. A sample of approximately 2000 responding households in Northern 

Ireland is added to this, representing 0.4% of the Northern Ireland population, allowing UK 

level analyses. 

Rotating Design 

Each quarter the LFS sample of UK households is made up of five waves each of 

approximately 12000 households. Each wave is interviewed in five successive quarters such 

that in any quarter sample units belonging to the first wave will have their first interview, 

sample units belonging to the second wave will have their second interview etc. Thus, there is 

an 80% overlap in the samples for each successive quarter. 

Weighting 

The UK LFS includes longitudinal survey weights. These weights serve two purposes. They 

compensate for differential non-response and also produce estimates at the national level. As 

described in ONS (2000), the computation of weights for the two-quarter linked datasets 

involves the following stages: 

(i) Initial prior weights are calculated such that they reproduce the distribution of the 

cross-sectional sample from the first quarter according to the tenure/landlord 

categories: owned, rented firom local authority/housing association, privately 

rented. 
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(ii) These initial prior weights are then multiplied by a single grossing factor such that 

the weighted sample cases sum to an overall population control total. This process 

results in the derivation of prior weights used in the calculation of the final 

weights. 

(iii) A process of calibration weighting (also known as generalised raking) is then 

applied to the sample using CALMAR software (see Elhot 1997). This process 

minimises the distance between the prior and final weights while constraining the 

final weights simultaneously to several marginal distributions or control totals. 

For the production of the weighting factors in the UK LFS, four sets of control 

totals are utilised (see ONS 1999, ONS 2000). 

As mentioned in Section 1.4.1, the UK weighting system accounts for the sampling attrition 

problem. Hence, by incorporating the survey weights in the analysis we account for one of 

the major sources of bias affecting the estimation of labour force gross flows. 

Other Design Characteristics 

Households belonging to the first wave are interviewed face to face while interviews for the 

remaining waves are carried out by telephone. The LFS design allows interviewers to receive 

answers from proxy respondents (about 30% of the LFS responses are collected by proxy). A 

proxy respondent is usually another related adult who is a member of the same household. 

The LFS interviews are carried out using Computer Assisted Interviewing (CAI), which 

ensures improved speed from fieldwork to the analysis of the data and also better data quality 

(e.g. automatic check of inconsistencies). 

1.7.3 Estimating Labour Force Gross Flows Using LFS Linked Datasets 

The design of the UK LFS enables estimates of levels such as the number of people in 

employment, which are representative of the national labour force population, to be produced 

for any period of three consecutive months. However, due to its panel character, the LFS also 

allows estimates of change to be produced. This can be achieved by linking the responses of 

sample units that belong to consecutive quarters i.e. that belong to the common sample (see 
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ONS 1999, Kristiansson and Mirza 2000). These parameters of change will be the main 

parameters of interest in this thesis. 

A labour force gross flows matrix between t and t + 1, taking into account the dynamic 

evolution of the population, is presented in Table 1.3. The inflows include persons who have 

turned 16 or who have immigrated to the country between t and t + 1. The outflows include 

persons who have turned 65, have died or have left the country between t and t + 1. 

Table 1.3: Complete labour force gross flows between t and t + 1. 

(E) (U) Outflows Total at t 

(E) EE EU EN EO E. 

(U) UE u u UN UO U. 

NE NU NN NO N. 

Inflows IE lU IN 

Total at t + 1 .E .U .N 

The margins of Table 1.3 give the quantities that are regularly estimated by the UK LPS. The 

column 'Total at t ' describes the distribution of labour force states for the population in 

working age (i.e. 16-64) at t . Similarly, the row 'Total at i + 1' describes the distribution of 

labour force states for the population in working age (i.e. 16-64) at t + 1. Table 1.3 shows 

also the distribution of labour force states for those who leave (Outflows) the working 

population and for those who enter (Inflows) the working population between t and t + 1. 

Denote by 0 the outflows and by I the inflows. The relation between the population at t 

{U )̂ and the population at ( + 1 ) can be expressed as follows: 

(7,+, - - 0 + 7 or (7,+, = (7, n + f . (1.21) 

We define the following notation 

Population Level 

• C/j = (l, 2,..., , iVj} denotes the working population at t consisting of 

units. 

• } denotes the working population at i + 1 consisting 

of units. 
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" (+1 = (7(11 = {1,2,..., ..., denotes ± e population units that belong 

both to U^ and consisting of N units. 

Sample Level 

® = { 1 , 2 , . . . , ^ , C t/j consisting of units. 

" = {l, 2,..., ..,, } C consistiiig of units. 

• S! = S^ — Outflows consisting of n^ , n / < n^ units. 

• — Inflows consisting of units. 

" ={l,2,...,^,...,7i}. Sample members who belong to 

and also to the sample both at t and t + 1 consisting of n units, 

M M . 

hi a quarterly survey with five rotation groups and 80% overlap, the difference between 

samples S', 5";̂ ^ and is that while S' and are based on all five rotation groups, 

is based on four rotation groups. 

Estimates of Level 

Denote by w^ the cross-sectional survey weight for sample unit ^ and by Ŷ* a random 

variable that describes the labour force status of the same unit at time t . Denote further by 

the total number of persons in the population with the specific labour force characteristic at 

time t. An estimator of T is given by 

^ (1 22) 
(eg, 

Estimates of Change 

Denote by a random variable that describes a specific labour force flow of sample unit 

^ between t and i + 1 and by the longitudinal weight for sample unit ^ . Let 

denote the total number of population units that belong to a specific internal cell of Table 1.3. 

Utilising the common sample , an estimator of is given by 
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A 

r . - , « = g (1.23) 

Using (1.23), we obtain estimates of the labour force gross flows (i.e. our parameters of 

interest) as well as of the margins of the gross flows table. 

1.8 Inference about the Misclassification Mechanism 

Techniques that adjust the quantities of interest for misclassification require the specification 

of the structure of the measurement error. One way of doing this in a latent class context is by 

specifying the relationship between the manifest and the latent variables. An alternative way 

is by exogenously estimating the parameters of the misclassification mechanism using 

information derived from validation surveys. In the upcoming sections we focus our interest 

on the second approach. After a general overview of some of the validation procedures that 

can be used, we focus our interest to validation studies with preferred procedures (Kuha and 

Skinner 1997) or to what Forsman and Schreiner (1991) refer to as re-interview surveys. 

1.8.1 On the Definition of True Values 

The definition of what is a true value has caused large debates in the statistical community. 

Generally, two approaches exist. One approach assumes that true values exist independently 

of the survey conditions. The second approach adopts a more operational definition and 

assumes true or preferred values only in relation to the survey conditions. According to the 

first approach (Hansen et al. 1951) three criteria exist for the definition of a true value. 

1. The true value is uniquely defined. 

2. The true value is defined in such a way that the purposes of the survey are met. 

3. Where it is possible to be consistent with the first two criteria, the true value 

should be defined in terms of operations that can actually be carried through 

despite the fact that these procedures can be expensive or difficult to perform. 

However, as pointed out by Hansen et al. (1951), it may be impossible to define a true value 

that meets all three criteria above. Consequently, they propose to define a value that satisfies 

the first two criteria and an operation whose expected value under a large number of 
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replications will give a satisfactory approximation to the true value. This approach influenced 

subsequent work by Kish (1965), Raj (1968) and Moser and Kalton (1972). 

In contrast to this approach, which defines the true values separately from the survey 

conditions, Deming (1944) defines the true values as a function of the survey conditions. He 

states that there is no true value and we have the liberty to define and to accept a specific set 

of operations as preferred. However, due to cost or other reasons, these operations are not 

always easy to be adopted. In the same framework, Zarcovich (1966) defines true values in 

the context of an adopted system that consists of chosen measurement methods, concepts and 

definitions, tabulation plans and data collection instructions. The true values can be obtained 

if the system is implemented without error. A thorough literature review on the definition of 

the true values is given in Lessler and Kalsbeek (1992). 

Assume that the standard survey process gives a contaminated measurement and the preferred 

procedure gives an error free measurement. Then the quantities = % | = k'j 

can be determined exogenously using preferred procedures. We consider these probabilities 

as the parameters that describe the misclassification mechanism. It is apparent that the 

preferred procedures play a key role in studying the misclassification mechanism and in 

evaluating the quality of the survey measurements. Examples of preferred procedures are (a) 

judgments of experts e.g. Swires-Hennessy and Thomas (1987) describe an application of this 

kind in some surveys of housing in Wales and Chen (1977) compares survey data to data 

derived from a physician's examination, (b) checks against administrative records e.g. 

Greenland (1988) describes an application where re-interview data on antibiotic use are 

compared against medical records and (c) re-interview programmes as part of large scale 

sample surveys that attempt to identify the true values e.g. the Swedish LPS re-interview 

programme (Kristiansson 1999). 

1.8.2 Preferred Procedures: The Case of Re-interview Surveys 

Survey models have been developed to meet the need for an integrated treatment of sampling 

errors and response errors. An example of a model of this kind is the US Bureau of the 

Census survey model (Hansen, et al. 1951). In this model, the mean squared error is 

decomposed into sampling components and response error components. Two major 
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methodologies exist for measuring the response error components: (1) The method of 

interpenetrated sub-samples, which is designed for estimating the correlated component of the 

response variance and (2) the method of replicated measurement, which is designed for 

estimating the response variance and the response bias. 

The method of replicated measurement is known as the re-interview method. Re-interview 

methodology was developed in the US and India during the 1940's and since then it has been 

used in a number of countries. By the term re-interview we mean a new interview that takes 

place some time after the original survey but refers to the same point in time as the original 

interview. In other words, the re-interview does not include interviews of the same persons in 

two or more waves of a panel survey since different waves refer to different time points. Re-

interviews are important tools for estimating and reducing response errors in surveys. 

Response errors may be caused for a variety of reasons i.e. imperfect instructions to the 

interviewers, badly designed questions and questionnaires, coincidental factors that affect the 

interviewer or the respondent, deliberate errors from the respondent and deliberate 

falsification of interview results from the interviewer. There are two basic reasons for 

designing a re-interview survey (1) to evaluate fieldwork and (2) to estimate the error 

components in a survey model. As far as the first reason is concerned, a re-interview may 

seek to identify interviewers who falsify data or misunderstand the interview procedure and 

as a result require further training. With regard to the second reason, a re-interview survey 

may seek to estimate the response bias or the response variance. For the purposes of our 

work, we are mainly interested in re-interview procedures that aim at estimating components 

of the response error. 

A considerable amount of the literature dealing with measurement error in labour force gross 

flows utilises re-interview data under the assumption that the re-interview responses represent 

an error free measurement. This implies that the re-interview survey is treated as a perfect 

instrument. However, this may not be the case. In what follows we will identify re-interview 

design characteristics that allow these assumptions to more closely reflect reality. 

When the aim is to estimate the response variance component the crucial assumption is that 

the re-interview survey is an independent replication of the original survey. This implies that 

the re-interview survey must be repeated independently of the original survey but under the 
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same survey conditions. An example of such a re-interview survey is the unreconciled part of 

the re-interview programme of the CPS. This sub-sample represents the 25% percent of the 

total re-interview sample. If we aim at obtaining the truth, we will need to conduct the re-

interview survey under different survey conditions from those of the original survey. When 

we use the term "different survey conditions" we mean conditions of better quality such that 

the true value is identified. It is apparent that in this case the two measurements (i.e. the 

original and the re-interview measurement) are not identically distributed since the second 

measurement is assumed to be of higher quality. However, the assumption of independence 

between the original and the re-interview survey is crucial and must still hold. An example of 

a re-interview survey that aims at estimating the response bias component is the reconciled 

part of the CPS re-interview sample, which represents the 75% of the total re-interview 

sample of the CPS. Independence between the original and the re-interview survey can be 

viewed at two levels i.e. at the respondent level and at the re-interviewer level. Independence 

at the respondent level means that there are no recall effects between the original and the re-

interview survey. If this is not the case, serial correlation will be introduced. This implies that 

the respondents might recall the original response and simply replicate it during the re-

interview. Consequently, if the original response is erroneous, the re-interview response will 

be erroneous too. In such a case no discrepancy between the two measurements is observed 

and no attempt for reconciliation takes place. Independence at the re-interviewer level means 

that the re-interviewer has no access to the original responses and reconciliation is conducted 

using an independent method. While independence at the re-interviewer level can be achieved 

by elaborating the re-interview survey conditions, independence at the respondent level is 

more difficult to achieve and does not depend only on the re-interview survey conditions. 

For the purposes of adjusting labour force gross flows for measurement error we are 

interested in identifying the true labour force status of each respondent by means of a re-

interview survey. In the sequel, we will examine suitable re-interview survey conditions such 

that the assumption that we estimate the truth is close to reality. The re-interview survey 

design characteristics that we study are: (a) the type of reconciliation, (b) the questionnaire 

design, (c) the time lag between the original and the re-interview survey, (d) field 

implementation issues and (e) the use of computerised assisted techniques (e.g. CATI) in re-

interview surveys. 
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Method of Reconciliation 

By the term reconciliation we mean the attempt, made by the re-interviewer, to obtain the true 

value. Assume that during the original survey the respondent gives a specific answer while in 

the re-interview survey the same respondent provides a different response. The re-interviewer 

must find which of the two different responses reflect reality. It is apparent that when no 

discrepancy exists, reconciliation is not conducted. Consequently, when the aim is to estimate 

the response bias, reconciliation should always be carried out. The crucial decision concerns 

the method of reconciliation. 

There are two ways of carrying out the reconciliation process: (a) the re-interviewer is 

supplied with the original answers and reconciliation takes place at the same time as the re-

interview survey and (b) the re-interviewer is not provided with the original answers and 

reconciliation is conducted either by a third contact with the household or by using another 

independent method. 

There are serious objections regarding the first method of reconciliation. These concern the 

fact that the assumption of independence between the original and the re-interview survey is 

violated when the re-interviewers are provided with the original responses. In order to 

understand more the consequences of the violation of this assumption, we describe the 

following situation. As we already mentioned, the re-interview sample of the CPS is divided 

into two parts: in one part of the sample differences are reconciled by providing the re-

interviewer with the original responses whereas in the other part no reconciliation takes place. 

Theoretically, the discrepancies firom both sub-samples should be the same. However, this not 

the case. The US Bureau of Census (1963) and O'Muircheartaigh (1986) showed that there 

are substantial differences in the number of discrepancies reported by the two sub-samples. 

Biemer and Forsman (1992) provide similar evidence by comparing estimates of the response 

variance from the two sub-samples. More specifically they found that the reconciled sub-

sample shows fewer discrepancies than the unreconciled one. Bailar (1968) investigated the 

effect of reconciliation by comparing results from different re-interview strategies. She 

concluded that results from a re-interview sample where the reconciliation is made at the 

same time as the re-interview ("on the spot" reconciliation) and where the re-interviewers had 

access to the original answers exhibit more dependence. Similar results, in the context of 

estimating labour force gross flows, are reported by Poterba and Summers (1986). The US 
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Bureau of Census (1963) points out the difficulty of conducting an independent reconciliation 

when re-interviewers are provided with the original responses. 

The question is whether by using an independent reconciliation we can assure the assumption 

of independence between the original and the re-interview survey. In this context, Schreiner 

(1980) conducted an independent reconciliation experiment, which did not reveal any 

significant differences like those revealed under a dependent reconciliation. Biemer and 

Forsman (1992) used also data from an independent reconciliation experiment. They 

concluded that the independent reconciliation offers a better solution. However, in their 

opinion the serial correlation does not disappear and as a result the hypothesis that we 

identify the true value is highly suspect. We therefore conclude that independent 

reconciliation of data seems to be more consistent with the assumption that the reconciliation 

process identifies the true values. 

Questionnaire Design 

The design of the questionnaire plays a crucial role in a re-interview survey since it can be 

directly connected with the assumption that the re-interview survey identifies the truth. 

According to Forsman and Schreiner (1991), two alternative questionnaire designs exist: (1) 

the original question(s) may be repeated and differences between the two responses are 

reconciled or (2) there may be a series of questions replacing the original question in an effort 

to obtain the truth. 

The first design is used mainly when we want to estimate the response variance by 

conducting a re-interview that is an identical replicate of the original interview. The second 

design seems to be more appropriate when the aim is to discover the truth. This is because the 

re-interviewer is then not restricted to replicating the same question as in the original survey 

but is free to conduct the re-interview in a way that attempts to identify the true value. 

Time Lag between the Original Interview and the Re-interview Survey 

The time lag is also an important factor when trying to estimate the error components using a 

re-interview survey. As we have already stated, a crucial assumption when attempting to 

estimate the error components is the assumption of independence between the original and 

the re-interview survey. The time lag between the two surveys is directly connected with this 



assumption. Assume a situation where the time lag is not sufficiently enough and as a result 

respondents remember the answers they gave in the original survey. This introduces serial 

correlation and consequently, respondents may repeat an erroneous answer in which case no 

reconciliation is conducted. As a result, the time lag should neither be so large so the 

respondents forget what their actual status was during the reference period nor so short as to 

have recall effects. Furthermore, the time lag also depends on the nature of the data gathered 

i.e. the more the data are subject to variation the shorter the time lag should be. For example, 

the CPS focuses on labour force items (i.e. mobility items) and so a one-week time lag is 

used. However, for other surveys dealing with less volatile variables like race, gender and 

education the time lag can be several months. Palmer (1943) concluded that the greater lapse 

of time between the two surveys implies greater variability for responses related to 

employment status. In the same context, Bailar (1968) compared re-interview surveys with 

different time lags and concluded that for certain response items, like mobility items, the 

shorter time lag is preferable. 

Field Implementation Issues 

One issue associated with the fieldwork is the choice of the interviewer who is going to 

conduct the re-interview survey. The choices vary between the original interviewer and the 

better interviewer. When the target is to identify the true value, the better interviewer should 

be used. Another important issue is the mode used to conduct the re-interview. Usually, the 

telephone is used in order to reduce the costs of the re-interview survey. However, when the 

original survey has been conducted by a face-to-face interview, using the telephone in the re-

interview survey may have a significant impact on the results. 

Use of Computer Assisted Interviewing (CATI) in Re-interview Surveys 

Under CATI, the perspective of re-interview changes since interviewing, which is conducted 

at a centralised telephone facility, can be monitored. This allows for the focus to be 

estimation of error components and not evaluation of the fieldwork. For the estimation of the 

response bias, CATI has the following advantages: 

a) It is possible to conduct the re-interview using the best interviewer and the most 

knowledgeable respondent. 
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b) There is much more flexibility in deciding the "optimal" time lag between the original 

and the re-interview survey since in a centralised telephone facility the re-interviews 

can be conducted much more quickly. 

c) The re-interviewer has no access to the original interview data until the end of the re-

interview. 

d) It is not possible for the re-interviewer to alter the re-interview responses once the re-

interview has finished. 

e) Identification of when there is a difference and why this difference occurs can be 

made automatically. 

Discussion 

A well-designed re-interview survey can be an extremely useful tool for estimating and 

reducing measurement error and consequently for improving survey quality. However, re-

interview surveys have certain disadvantages. Firstly, the method is considered to be fairly 

expensive. In addition, re-interview surveys are multipurpose surveys. This implies that the 

characteristics of a re-interview survey designed to serve one purpose are not necessarily 

optimal for another purpose. Furthermore, the model assumptions that we impose in order to 

estimate the different components (i.e. the response variance and the response bias) using a 

re-interview survey are not always satisfied. For example, we assume that the re-interview 

survey is independent of the original survey and thus there are no recall effects. However, this 

may not be the case since the respondents may remember their prior responses and simply 

replicate them (i.e. serial correlation is introduced). 

With regard to the cost considerations, re-interview surveys can maximise the use of the 

telephone so as to have reduced costs. This advantage is reinforced with computer assisted 

interviewing (CATI) in a centralised setting. Using CATI, costs can be kept minimal while 

the usefulness of a re-interview is increased. 

For the purposes of our research, we are interested in a re-interview survey designed to obtain 

true values. In order to estimate the response bias, we need to impose two assumptions: (a) 

the re-interview is independent fi-om the original survey and (b) the re-interview identifies the 

truth. An optimal re-interview survey, in the sense that the above assumptions become more 

realistic, must have certain design characteristics. We are in favour of a re-interview survey 
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that (a) uses an independent (i.e. not "on the spot") reconciliation procedure where the re-

interviewers are not provided with the original responses, (b) is carried out in a more 

conversational form, (c) is conducted by the best interviewers and (d) utilises a computer 

assisted interviewing system (CATI). 

1.8.3 Validation Studies in UK 

The UK LPS has not yet developed a re-interview programme that will allow the estimation 

of the parameters of the misclassification mechanism. However, there are other examples of 

validation studies in UK. For example, the UK Census Validation Survey (CVS) (Heady, 

Smith and Avery 1991) had as main targets to assess the coverage of the Census, to evaluate 

how prone to error Census questions were and to identify possible sources of error. An 

example of a panel (two-wave) validation study is described in the context of the Panel Study 

of Income Dynamics (PSID) in Hill (1992). 

In a UK LPS framework, there are suggestions that one could compare the UK Census results 

on labour market related topics with corresponding UK LPS results. Our objection to this 

comparison is that the UK Census cannot be considered as a survey of higher quality for 

labour market related issues for example, the UK Census is a self-reported survey. 

Furthermore, while the UK Census is conducted every ten years, the UK LPS is a panel 

survey making the comparison more difficult. Other examples of validation experiments, in a 

UK LPS framework, include the linkage of UK LPS responses with administrative records 

about claimants of unemployment related benefits (ONS 1997). The purpose of this linkage 

study is to obtain adjusted LPS estimates for the claimants of unemployment related benefits. 

The disadvantage of this study is that it is restricted to specific groups of the labour force 

population. 

1.8.4 The Swedish LFS Re-interview Programme 

Sweden is one of the few countries that uses re-interview survey programmes in order to 

assess the impact of the measurement error on the estimation of labour force estimates 

(Kristiansson 1999). The first important evidence for the assessment of this measurement 

error came from the results of a re-interview survey in January 1978. This re-interview 
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program was designed to obtain the true values. For this reason, the re-interviews were 

performed using a group of specially trained re-interviewers who, after the standard 

questions, asked further questions about the persons' employment status in a more 

conversational form. Approximately 3600 additional re-interviews were carried out in 

connection with the introduction of computer assisted interviewing (CATI) in the Labour 

Force Survey in 1989-1990 and 2100 further re-interviews were conducted during the period 

from October 1994 to April 1995. The aim of these more recent re-interview surveys was also 

to obtain the true values. Consequently, the quality characteristics of the Swedish re-interview 

programme seem close to those required when the target is to estimate the response bias 

component i.e. use of experienced interviewers, use of probing and utilisation of computer 

assisted interviewing to facilitate independent reconciliation. 

In the absence of validation information for the UK LFS, this thesis utilises mainly Swedish 

validation data. The assumption is that the Swedish misclassification probabilities can be 

used as proxies for corresponding UK misclassification probabilities. This can be regarded as 

a fairly restrictive assumption. However, the methodology we develop is not data specific. 

The Swedish validation data offer one possible scenario for the UK measurement error 

process. There is evidence suggesting that the Swedish validation data may show less 

measurement error than what really exists in the UK LFS. For example, while the Swedish 

LFS allows for 3% of proxy response, the UK LFS allows for 30% proxy response. 

Nevertheless, the utilisation of Swedish validation data can provide a useful insight into the 

measurement error process in the UK LFS and experience for developing a UK LFS 

validation survey. 
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Chapter 2 

I])oujb)l<e jPc)*" IBCnnoM" 

Correction: From a Cross-sectional to a Panel 

lEfizumiErwoiE^lk 

2.1 Introduction 

Methods for adjusting for measurement error via double sampling were first developed in a 

cross-sectional Gramework by Bross (1954) and Tenenbein (1970, 1972). However, recent 

literature on adjustment of gross flows for measurement error using validation information 

does not link adjustment procedures with double sampling theory. Following the suggestion 

of Kuha and Skinner (1997), in the first part of this chapter we investigate the links between 

the use of double sampling designs in a longitudinal and in a cross-sectional fi^amework. We 

start by describing alternative double sampling schemes and moment-based inference in a 

cross-sectional framework and we investigate the impact of these schemes on the efficiency 

of the derived adjusted estimates. Generalising from the cross-sectional case, we extend 

double sampling designs and associated point estimators to a longitudinal framework and we 

investigate the impact of these designs on the efficiency of the resulting adjusted gross flows. 

There are two new features in our development. Firstly, we utilise an alternative 

parameterisation to the one proposed by Tenenbein (1972) for deriving maximum likelihood 

estimators of adjusted for misclassification quantities. A similar parameterisation is discussed 

in Espeland and Odoroff (1985). Secondly, we propose a parameterisation of the 

measurement error model in a quasi-likelihood framework as an alternative to maximum 

likelihood estimation. 

hi the second part of this chapter, we describe the disadvantages of moment-based inference 

in a longitudinal framework and we study some alternative moment-type estimators. In this 

context, we investigate the unbiased margins estimator (Poterba and Summers 1986, Singh 
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and Rao 1995) and we propose three alternative estimators i.e. the modified estimator, the 

composite estimator with fixed weights and the composite estimator with adaptive weights. 

2.2 Alternative Double Sampling Schemes Utilised to Correct for 

Misclassification in a Discrete Framework 

We consider the general Iramework of double sampling methods described by Bross (1954) 

and Tenenbein (1970, 1972). Assume that the standard measurement device that we use is 

subject to measurement error. As a result, we have biased results. However, unbiased 

estimates can be obtained by using preferred procedures. Unfortunately, these procedures are 

costly to implement. The aim of double sampling methods is to combine information from 

both the true and the fallible classifier in order to obtain estimates that are adjusted for 

measurement error. 

The sample where the preferred (validation) procedure is applied can be either internal or 

external. Kuha and Skinner (1997) make this distinction following literature on 

misclassification in the context of bio-statistical applications (see also Greenland 1988). From 

our point of view, the basic characteristic that distinguishes an internal from an external 

validation sample is whether the fallible classifications from the validation sample can be 

combined with the fallible classifications from the main sample. The validation sample is 

characterised as internal if it is a random sub-sample of n" imits from the main sample of n 

units obtained via a randomised double sampling scheme. Alternatively, the validation 

sample can be regarded as internal if it is selected independently from the main sample and 

from the same target population. On the other hand, a validation sample is external if it is 

derived from an external source of information (Hill 1992). The parameters of the 

misclassification mechanism estimated from an external validation sample are assumed to be 

informative of the misclassification process in the target population. However, the fallible 

classifications from the external validation sample cannot be combined with the fallible 

classifications from the main sample. Sometimes, it may be preferable to use an external 

validation sample or an internal validation sample that is selected independently from the 

main sample. An example is when our main measurement instrument is a panel survey and 

we wish to avoid additional measurements on the sample units that already participate in the 

panel survey. 
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2.2.1 The Cross-sectional Case 

We start by introducing the basic notation. Denote by 11. = pr the probability that 

unit ^ is classified in state i by the standard measurement device, which is subject to 

measurement error. Denote further by P,. — pr the probability that unit ^ truly 

belongs in state k, by q-,. = pr = i \ = k'j the misclassification probabilities and by 

Q (t) the matrix of misclassification probabilities with elements . Recall that are 

random variables that describe the way that unit ^ is classified at time t using the fallible 

classifier and the perfect classifier respectively. Define now a matrix n with elements 11-

and a matrix P with elements P^. Generally speaking, the cross-sectional measurement error 

model with r mutually exclusive states can be described as follows: 

A) = 11 = A:) => 

= 2,]^, = A;) = 1 = A;) => 
k=l k=l 

| ^ 

k—1 k=l 

Expressing the previous relationship in matrix notation, assuming that Q (t) is invertible and 

solving the equation with respect to P we derive the following expression 
f = [ Q ( ^ ) r n . (2.1) 

Expression (2.1) has been used extensively in literature to adjust discrete data for 

measurement error in a cross-sectional framework. Unknown quantities involved in (2.1) are 

typically estimated using a double sampling scheme. Below, we describe three such schemes. 

This parameterisation of the measurement error model leads to a moment-type estimator of 

the adjusted for misclassification quantities. 

Double Sampling Scheme 1 

A simple random sample of n — n" units is selected from a population of N units and the 

fallible classifications are obtained for each sample unit. For another simple random sample 

of n" units, independently selected from the n — n" units and from the same target 

population, the fallible classifications are also obtained. At a second stage, the true 
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classifications are obtained for each of the n" units. Under this scheme we obtain information 

on the fallible classifications for n units i.e. {n — n" + n") and further information on the 

true classifications for n" units. Figure 2.1 illustrates this double sampling scheme. 

Population consists of N units 

n — n" units are selected 
from N and is obtained. 

n" units are selected from N, 
independently from the n — n" units, 
and is obtained. At a second stage, 

Yf, is also obtained for the n" units. 

Figure 2.1: Double sampling scheme 1-Cross-sectional case 

Double Sampling Scheme 2 

A simple random sample of n units is selected from a population of N units and the fallible 

classifications are obtained for each sample unit. At the second stage, a sub-sample of n" 

units is selected fi"om the n units that already belong to the main sample and the true 

classifications are obtained for each of these n" units. Figure 2.2 illustrates this double 

sampling scheme. 

Population consists of N units 

n units are selected from 
N and is obtained. 

At a second stage, rf units are selected 
from the n units and Y^^ is obtained. 

n units are selected from 
N and is obtained. 

At a second stage, rf units are selected 
from the n units and Y^^ is obtained. 

Figure 2.2: Double sampling scheme 2-Cross-sectional case 

Double Sampling Scheme 3 

A simple random sample of n — n" units is selected from a population of N units and the 

fallible classifications are obtained for each sample unit. Information about the incidence of 

error is derived for n'" units from an external source of information (e.g. administrative 

records). Figure 2.3 illustrates this double sampling scheme. 
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Population consists of N units External source of information 

n — n" units are selected 
from N and Y,* is obtained. 

Information on the incidence 
of error is obtained for n" 
units using an external source. 

Figure 2.3: Double sampling scheme 3-Cross-sectional case 

2.2.1.1 Review of Alternative Double Sampling Schemes in a Cross-

sectional Framework 

For double sampling scheme 1 (see Figure 2.1), the validation sample includes additional 

information on the observed classifications that can be combined with information on the 

observed classifications from the main sample. In fact, the first and the second double 

sampling schemes are identical. This is because under the second double sampling scheme 

the sample can be divided into n — n" units that participate only in the main survey and n" 

units that participate both in the main and in the validation survey. 

For the third scheme, the validation sample can be regarded as an external since it is selected 

from an external source of information. This implies that the fallible classifications from this 

validation sample cannot be combined with the fallible classifications from the main sample. 

Nevertheless, here we argue that the external validation sample can be transformed into an 

internal validation sample. Since the misclassification probabilities estimated firom this 

external validation sample are assumed to be informative of the misclassification process in 

the target population, we propose to calibrate pr = i, on the marginal 

information derived from the main sample. In the simplest case, this calibration procedure 

can be performed using the Iterative Proportional Fitting (IFF) algorithm (Deming and 

Stephan 1940). After transforming the external validation sample into an internal validation 

sample, the fallible classifications from the validation sample can be combined with the 

fallible classifications from the main sample. 
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Assuming that all relevant quantities can be estimated using information from the main and 

the validation sample, an estimator of (2.1) under double sampling scheme 1 is given by the 

following expression 

A(l) 
P 
rxl 

1 

7% -

- 1 

A "I A D 
+7 i ' ' n 

rxl rxl 

A "I 
Ili 

E i ; E n : 
(=1 
7% — 7̂  

-,ni (=1 
71 

. (2.2) 

/\ m A 
Note that II denotes the matrix, with elements Hi , of estimated probabilities based on data 

A « A " 

from the main sample, 11 denotes the corresponding estimate, with elements Hi, based on 

A m /\ 
data from the validation sample. Combining 11 with 11 , yields the matrix of estimated 

A A 

probabilities IT, with elements Hi, based on both samples. 

Under double sampling scheme 2, an estimator of (2.1) is given below 

P = 
rxl 

(?(() 
- 1 

A A n, n, = 
rxl 

f=i (2.3) 
n 

Note that by dividing the sample of the second double sampling scheme into units that 

participate only in the main survey and units that participate both in the main and in the 

validation survey, estimators (2.2) and (2.3) become identical. 

For double sampling scheme 3, the validation sample is external. Here, it is not logical to 

combine information on the fallible classifications from the validation sample with 

information on the fallible classifications from the main sample. As a result, an estimator of 

(2.1) takes the following form 

P 
rxl 

(?(z) 
A m 
n , 
rxl 

A 
Ili = 

En; 
n — n 

(2 /0 

Comparing estimators (2.2), (2.3) and (2.4), we conclude that estimators that are based on an 

internal validation sample i.e. (2.2) and (2.3) are more efficient than estimator that is based on 

an external validation sample i.e. (2.4). However, if an external validation sample is 

transformed into an internal validation sample all three estimators become equivalent. 
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2.2.1,2 Calibration Probabilities versus Misclassification Probabilities and 

Maximum Likelihood Estimation in a Cross-sectional Framework 

Estimators (2.2),(2.3) and (2.4) utilise the misclassification probabilities q̂ ,. in order to 

describe the misclassification mechanism. Another way of making inferences about the 

misclassification mechanism is by using what Carroll (1992) refers to as calibration 

probabilities. The calibration probabilities are defined as c .̂ = pr = k | = ij. Thus, 

while the misclassification probabilities condition on the true classifications, the calibration 

probabilities condition on the observed classifications. Denote by C (t) the matrix of 

calibration probabilities with elements . The measurement error model under the 

calibration probabilities becomes 

p r ( y ; = 1,7;, = k) = = k I r; = ,)pr(r;, = i) ^ 

^pr(Y; = i,V^, =k)= ^pr(Y., = k [ Y; = t)pr{Y;, = i) 

= A) = = A; I = 2)pr(y(; = 
z=l 

In matrix notation, 

JO = (7(f) n. (2.5) 

Unknown quantities involved in (2.5) can also be estimated using a double sampling scheme. 

However, the measurement error model that utilises calibration probabilities can be used only 

in the case of an internal validation sample. In contrast to calibration probabilities that 

condition on the observed classifications, misclassification probabilities condition on the true 

classifications. The true classifications can be thought of as representative of a universal 

truth. This implies that unlike calibration probabilities, misclassification probabilities can be 

regarded as transportable to the population of interest (Kuha and Skinner 1997) and can be 

used also in the case of an external validation sample. 

Utilising similar notation as in the case of the model defined in terms of misclassification 

probabilities, an estimator of (2.5) under the first double sampling scheme is defined as 

AO) A 

rxl 
i i H 11 n r = £ i . ( 2 4 
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Under the second double sampling, an estimator of (2.5) is given by 

A (2) A A A 

==cCOn, = — . C2 7) 

Estimator (2.6) is identical to estimator (2.7). Tenenbein (1972) proved that the estimator 

defined either by (2.6) or (2.7) is the maximum likelihood estimator of the adjusted for 

misclassification proportions. He also provided an expression for its asymptotic variance. 

Assume that we utilise double sampling scheme 1 or 2 and that a sample unit can be 

classified in r mutually exclusive states. Denote by the count for each cell of the cross-

classification of the observed by the true classifications in the validation sample and by 

ra..,n". the total number of sample units classified in state % by the fallible measurement 

device in the main sample and in the validation sample respectively. In order to obtain 

maximum likelihood estimates for the parameters of interest, Tenenbein (1972) maximised 

the log-likelihood function 

r-l 

1=1 ^=1 i=. 

+ (M,. +7i;.)log 

6=4 %=1 &=1 &=1 %=1 QX 

2 = 1 

As noted by Marshall (1990) and Kuha and Skinner (1997), the maximum likelihood 

estimator (2.7) will be more efficient than the moment-type estimator based on (2.1). 

However, this assumes internal validation data. When only external validation data are 

available, the moment-type estimator must be used and its poor performance is an important 

problem. One way to overcome this problem is by transforming the external validation 

sample into an internal validation sample. 

2.2.1.3 An Alternative Parameterisation for Maximum Likelihood 

Estimation in a Cross-sectional Framework 

In what follows, we present an alternative parameterisation of the measurement model 

presented by Tenenbein (1972). More specifically, we argue that an alternative way of 

obtaining maximum likelihood estimators is by using misclassification probabilities instead 

of calibration probabilities. The general set up is as follows. For the main sample of n units 
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the classifications are made using only the fallible classifier. For a smaller sample of n" 

units, selected independently from the main sample and fi-om the same target population, the 

classifications are made using both the perfect and the fallible classifier. The problem can be 

described schematically as follows: 

Table 2.1: Validation sample 

True Classifications 

(1) (r) Margins 

Fallible Classifications 

(1) <1 K < 

(r) K < 
Margins < n" 

Table 2.2: Main sample 

True Classifications 

(1) (r) Margins 

Fallible Classifications 

(1) < "i. 

(r) < 
Margins < n 

The key concept of the parameterisation, as shown in the tables above, is that both the main 

sample and the validation sample have a similar structure. However, for the validation sample 

full information exists while for the main sample we have only marginal information about 

the observed classifications. Consequently, this parameterisation will lead to an optimisation 

problem that involves missing data. This is due to the fact that the validation procedure is not 

applied to the units of the main sample. We need to combine information from both the main 

and the validation survey. In order to do so, we make the basic assumption that the main and 

the validation samples share common parameters because both are assumed to be 

representative of the same population. Assuming independence between the main sample and 

the validation sample and denoting by (*) any unobserved quantities, the likelihood function 

of the augmented data defined in terms of the misclassification probabilities is 

m = ^ ^ ( e ) = ( 2 . 9 ) 
k=l 2 = 1 k—1 1=1 k=l i=l 
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Recall that P̂ . = pr = A:) denotes the probability of a correct classification in state k and 

q.^ =z pr = i \ denotes the probability of misclassification. Taking the 

logarithms in both sides of (2.9) and imposing the additional constraints that 

t,P,=l (2.10) 
6 = 1 

'^Qik = 1 for fixed k, (2.11) 
!=1 

we obtain the following expression for the log-likelihood of the augmented data 

(2.12) t=l i=l 
r—1 

i=l 

k 
t=i y 

+ ( n : + < ' ) l o g 1 - E - P i 

Estimation 

The log-likelihood function (2.12) assumes the availability of unobserved data. One way of 

using this likelihood function to maximise the likelihood of the observed data is via the EM 

algorithm (Chen and Fienberg 1976, Dempster, Laird and Rubin 1976). The EM algorithm is 

based on two steps, the expectation (E-step) and the maximisation (M-step). Generally 

speaking, the algorithm is initialised using a set of arbitrarily selected starting values for the 

parameters involved in the model. Based on these starting values, in the E-step sufficient 

statistics defined by the complete data likelihood (e.g. equation (2.12)) are replaced by their 

conditional expectations given the observed data and the current set of parameter estimates. 

Having estimated these conditional expectations, the fall data likelihood can now be 

maximised to produce a new set of maximum likelihood estimates. Using this new set of 

maximum likelihood estimates, new conditional expectations are estimated in the E-step and 

new maximum likelihood estimates are derived in the M-step. The E and M step are iterated 

until a convergence criterion is satisfied. For the measurement error model, these steps are 

described below. 

E-step 

We start by taking the conditional expectation of the log-likelihood of the augmented data 

given the observed data and the current estimates. We denote by D" the complete data. 
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defined both by the observed and the missing data, by D" the observed data derived from the 

validation sample, by D™ the observed data derived from the main sample, by {h) the 

current EM iteration and by the vector of parameters in the {h) EM iteration. The form 

of the log-likelihood of the augmented data after taking the conditional expectations becomes 

k~X 1=1 

+ £ [ « +<) I B - . - D ' , e ' " | i o g f i - f ; 5 j + « : : ' ) l ir,D-,ef'-^]iog{p,)(2.n) 

+b[« h- <•) e'̂ liog 1 - gi] . 

6=1 

t= l 

The conditional expectations are only for missing data. Under this parameterisation, missing 

data exist in the main sample. The expectation step (E-step) can be performed using the 

following result. 

Result 2.1 

The conditional expectations of the missing data in the main sample are estimated using the 

following expressions 

AW 

A (ft) /\(A) 

k=l 

and I | (2.14) 
8 = 1 

Proof 

The number of sample units that belong in the ik cell of the cross-classification of the 

observed by the true classification is denoted by . Note that while a superscript (*) refers 

to the unobserved quantities, a superscript * refers to the observed classifications. The 

expectation of an unobserved quantity is given by 

S { < ) = « £ (Fp = i ) . (2.15) 

Equation (2.15) can be re-expressed as follows 

£«>) = nE{Yl, =,\Y„ = k)E(Y^, = k). 

From the main sample we have information about the observed classifications. This 

information can be expressed by summing the unobserved quantities within row i in Table 

2.2 
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n, 
t=i 

Given the data constraints, the conditional expectations of the missing data can now be 

expressed as follows 

B(n;;> \D-) = n,. 
E{Y; =,\Y^,=k)B{Y^,=k) 

J2E(Y;=i\Y„=k)E{Y^.=k) 
t=l 

(2.16) 

The expectations of the random variables involved in the expression above can be determined 

using well known results for binomial random variables. More specifically, 

E{Y; =i\Y„=k) = 4 . . E{Y^, =k) = n . (2.17) 

Substituting (2.17) in (2.16) we obtain the required result 

AW 
Pk Qik 

E 
k=l 

AW AW 
Pk Qik 

It follows that 

2 = 1 • 
M-step 

For the maximisation step (M-step), we need to obtain the score functions defined by (2.13). 

These score functions are obtained by computing the partial derivatives of the log-likelihood 

of the augmented data with respect to the vector of parameters. The maximum likelihood 

estimators are then obtained by setting these derivatives equal to zero, i.e. 

8 8 
(2 18) 

and solving for 8 . 

Result 2.2 

The maximum likelihood estimators are given by the following expressions. 

amdUPt-
(*) I 
k I ̂  (2.19) 

k=\ 
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Proof 

The system of normal equations we need to solve is defined by setting the score functions 

equal to zero. 

— 
a e 

The {r̂  — r) x — r) system of normal equations and the corresponding maximum 

likelihood estimator for is given below. 

E I D " , 8 ^ ) + Ti;, E | D", 
— _ . — y 

(2.20) 
(l - 9r-ii 

I D - . e w ) + I 

? r - l r 9 r - l r ) 

A 
Qik — A 

Similarly, the (r — 1) x (r — 1) system of normal equations and the corresponding maximum 

likelihood estimator for P,. is given below. 

p. (i — Pi — • • • — p^ r—1 y 

(l — Pj _ ... — 
= 0 

(2.21) 

— 

E ® K ' 1 0 - , 
k=l 

• 

Identification of the Model Parameters and Convergence of the EM-algorithm 

Identification of the model parameters can be checked by initialising the EM algorithm fi"om 

different starting values and by seeing whether the algorithm converges to the same solution. 

Conditional expectations are estimated using Result 2.1. For these conditional expectations, 

new maximum likelihood estimates are obtained in the maximisation step (M-step) using 
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Result 2.2. The E and M steps are iterated until convergence. We assume that convergence is 

achieved when the difference between the maximum likelihood estimates obtained from two 

successive iterations is less than a small value 6. Denote by lu = — 1 the dimension of the 

parameter space. The convergence criterion that we use is the L^-norm of the vector of 

parameters obtained in two successive iterations 6 '̂'̂  and . This is defined by the 

following expression 

r'-l 

V i=l 

(2.22) 

The parameterisation presented in this section is not specific to the first double sampling 

scheme. Assume that the validation sample is obtained by sub-sampling n" units from the 

main sample of n units. The main sample and the validation sample now share common 

units. Thus, independence between the main sample and the validation sample is not directly 

implied. However, the main sample can be divided in two parts. There are n — n® sample 

units that participate only in the main survey and n" sample units that participate both in the 

main and in the validation survey. We now have independence between the n — n° units and 

the ri" units. Therefore, under both double sampling schemes the model can be formulated in 

exactly the same way. Variance estimation for the maximum likelihood estimates under this 

parameterisation will be discussed in Chapter 5. 

Application 2.1: Comparing the Alternative Parameterisations of the Measurement Error 

Model in a Cross-sectional Framework 

We contrast the parameterisation of the measurement error model in a missing data 

framework with the parameterisation given by Tenenbein (1972). To facilitate the 

comparison, we utilise the numerical example that appears in Tenenbein (1972 p. 197). The 

data of this example are given below. 

Table 2.3: Validation sample derived from Tenenbein (1972 p. 197) 

True Classifications 

Defective Satisfactory Superior Margins 

(1) (2) (3) 

Fallible Defective (1) 12 6 0 18 

Classifications Satisfactory (2) 0 20 0 20 

Superior (3) 0 1 19 20 

Margins 12 27 19 
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Table 2.4: Main sample derived from Tenenbein (1972 p.197) 

True Classifications 

Defective 

(1) 

Satisfactory 

(2) 

Superior 

(3) 

Margins 

Fallible 

Classifications 

Defective (1) 

Satisfactory(2) ^2 

47 

53 

Superior (3) 49 

Margins < n = 149 

The algorithm is initialised using arbitrarily selected parameter values. For the specific 

application, a difference between successive values of the parameters in the order of 

5 = 10""̂  can be achieved within 40 iterations. The results from the application of the EM 

algorithm are given below along with the results that appear in Tenenbein (1972). 

Table 2.5: Contrasting the alternative parameterisations of the measurement error model 

Parameters Results from the application of the EM 

algorithm using the misclassification 

probabilities (3 decimal places) 

Results reported in Tenenbein (1972) 

using the calibration probabilities 

0209 0209 

P, 0.474 0474 

P. 0317 0317 

Ill 1 1 

I21 0 0 

0 0 

I12 0J21 0221 

0J45 (1745 

5*32 0.034 (1034 

1l3 0 0 

I23 0 0 

%3 1 1 

As expected, the maximum likelihood estimates obtained under the two parameterisations are 

the same. The application presented here will serve as a basis when attempting to develop 

maximum likelihood estimators for adjusted gross flows. However, in a longitudinal context 
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we need to introduce additional assumptions in order to identify the measurement error 

model. The assumptions we need to impose will depend on whether we specify the model 

using the calibration or the misclassification probabilities. 

2.2.1.4 Quasi-likelihood Estimation for Discrete Cross-sectional Data in the 

Presence of Misclassification and Double Sampling 

In this section, we propose a quasi-likelihood parameterisation of the measurement error 

model as an alteranative to maximum likelihood estimation. The approach we follow was 

introduced by Wedderbum (1974) as a basis for fitting generalised linear regression models. 

As described in Heyde (1997), Wedderbum observed that firom a computational point of view 

the only assumptions for fitting such a model are the specification of the mean and of the 

relationship between the mean and the variance and not necessarily a fully specified 

likelihood. Under this approach, Wedderbum replaced the assumptions about the underlying 

probability distribution by assumptions based solely on the mean variance relationship, 

leading to an estimating function with properties similar to those of the derivative of a log-

likelihood. This estimating fiinction is usually referred to as the quasi-score estimating 

function. The quasi-likelihood estimator is then defined as the solution of the system of 

equations defined by the quasi-score estimating function. To illustrate, consider the following 

model 

== / / (8) 4-5 (2.213) 

where F i s a n x 1 data vector and E(e} = 0. The quasi-score estimating function is then 

defined (see Heyde 1997 Theorem 2.3) as 

[Far (e)] 6. (2.24) 
3 8 

The quasi-score estimating function defined by (2.24) is also referred to in the literature as 

Wedderbum's quasi-score estimating fimction. Here, a quasi-likelihood parameterisation of 

the measurement error model offers an alternative to the EM algorithm way of resolving a 

missing data problem. The advantage of this approach is that it does not require any explicit 

definition of the likelihood function. 
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Formulating the Model 

Denote by the probability of correct classification in category k for units in the validation 

sample, by the probability of misclassification for units in the validation sample, by n-. 

the number of units in the main survey classified in category i by the standard measurement 

device and by n the sample size of the main survey. Recall that a superscript v is used to 

denote quantities that are estimated using the data from the validation sample. Without loss of 

generality, we describe the model for the case of two mutually exclusive states to which a 

sample unit can be classified. Instead of specifying the form of the likelihood function (2.12), 

the model can now be described by a system of equations. The number of equations we need 

is defined by the smallest possible set of independent and unbiased estimating equations that 

can be established for the underlying problem. For the two-state cross-sectional measurement 

error model a possible system of equations is 

A 
PI = PJ + CJ 

A" 

A" 
1l2 — %2 ^3 

nj. = n I 

(2.25) 

+ (l — + 4̂-

Note that in (2.25) Wj. = npriY^^ = i j . The left hand side of the equations given in (2.25) 

describes estimates obtained from the main sample and the validation sample whereas the 

right hand side describes the unknown parameters of interest plus an error term. Equations 

described by (2.25) incorporate the extra constraints that are also utilised by the maximum 

likelihood approach. For the current model, Pj = 1 — ^ , 2̂1 = 1 ̂  2̂2 = 1 ~ 9i2 • As 

in the maximum likelihood approach, we assume that the main and the validation sample 

share common parameters due to the fact that both are representative of the same population. 

Instead of (2.25), one can define another set of independent equations. For example, we can 

define the first three equations of (2.25) in count and not in probability terms. The estimation 

process, however, will be invariant under such transformations. 

Assuming the general form of the model defined by (2.23), denote by jii(©) the vector of 

means and by 8 = the vector of parameters. Following Heyde (1997), 

Wedderbum's quasi-score estimating function is then defined as 
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G(8) [For(£)] ^ e. (126) 

Setting the quasi-score estimating function equal to zero and solving for 6 , we obtain the 

quasi-score normal equations. The target is to solve the system of the quasi-score normal 

equations and obtain estimates of the unknown parameters. This can be achieved using 

numerical techniques. In terms of (2.25), equation (2.26) for the two-state model can be 

expressed as follows: 

2(8) 

1 0 0 

0 1 0 

0 0 1 n ( l - j ) ) 

1̂2 •̂ 13 -1 A ^ 
f i - f i 

•̂ 23 "̂24 Ai; (2.27) 

^31 "̂32 "̂34 A" 
912- 9l2 

0'4I 4̂2 <̂43 — n[Pigii + (l - -Pi)9I2]_ 

In (2.27) the middle term denotes the covariance matrix of the error terms. This is defined in 

the next sub-section. Setting (2.27) equal to zero, leads to three quasi-score normal equations. 

Estimating the Covariance Matrix of the Error Terms 

In the system of quasi-score normal equations defined by (2.27), the elements of the 

covariance matrix of the error terms are unknown and need to be estimated using the sample 

data. In this sub-section, we provide an approximation to elements of this covariance matrix. 

The variance components (i.e. the diagonal elements) are given by the following expressions 

' A » 
For I f 1 

cr̂  = (2.28) 

Under simple random sampling, , cr| can be estimated by 

a2 
Ul 

a2 
<74 

A%/ AO 
1 - f i 

n 

= = i) 1 - = i) 

C2.29) 

64 



In order to estimate the covariance matrix of the estimates of the misclassification 

probabilities, we denote by the number of sample units in the validation sample classified 

by the standard measurement device in state i when they truly belong in state k. The 

misclassification probabilities can be estimated by g-j. = —. While n" = can 

E " . ' . 
i= l 

be considered as fixed, must be considered as random. Consequently, in the 
i=l 

computation of the covariance matrix of the estimates of the misclassification probabilities 

we must take into account the non-linearity introduced by the fact that both the numerator and 

the de-numerator of are random quantities. Thus, we apply the Delta method (Bishop, 

A * 
Fienberg and Holland 1975, Agresti 1990). Let 8 and 

A* 

be a r X1 vector of functions of G . Note that for 

simplicity we drop the parenthesis next to the misclassification matrix Q that is specific of 

the time periods to which the misclassification matrix refers. Applying the delta method to 

fA*) fA*̂  rA*Y 
fee 0 8 — /̂i 8 8 

I /. 

fee e , we obtain the following approximation 

fee 
A* 
8—8 ) -?;ee[Q(8*)]R^ Vg 

Taking the variance operator on both sides of (2.30) leads to 

0tiee <9(e' 

9 8 
(2.30) 

Var4vec 0 8 
I /. 

% Vg.For 8 (2.31) 

Under simple random sampling, Var 
A ' 

e can be estimated using the following results 

C2J2) 
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while the general expression of the Jacobian matrix V , is 

V«. = 

n.-
'21 

-n-11 
(?̂ 21 + "'11) ()^1 + )Tll ) 

-n. 
'21 ri-l l 

« i + < i ) « + < i , 

0 0 

0 0 

0 

0 

n. 
"22 

0 

0 

-ri-l l 

(^2 + ^22) ("12+^^^22) 

-n. 22 ri-ll 

C2J3) 

Substituting (2.32) and (2.33) into (2.31), we obtain estimates for ,a^ and = a^^-

Next we observe that due to the double sampling design, we can further assume independence 

between the main and the validation sample. This implies that 

(Tj4 = = CT24 = (7̂ 2 — <̂34 ~ ^43 ~ 0. 

It only remains to estimate the following covariance terms: — <̂21 cr̂ g = . These 

covariance terms can be generally estimated as follows: 

E 
i=l 

i:=l 

n 
(2.34) 

Result 2.3 

Assume that X^Y^A are three random variables and n is fixed. An approximation for 

Z j4 

l y ' n 
is given by 

Co?; 
y ' n 

1 
Cov{AX)-^Cov{A.Y) 

ME(y) 

Proof 

Proof of this result is given in Chapter 5 that deals with variance estimation issues. 

(235) 

• 
Setting Z = y = ^ Ti = 71" in Result 2.3, we can then estimate 

i=l %=1 

the remaining covariance terms of interest. 
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AO) AW [A (0)1 [A (0)1 
9 = 9 ~ A 9 G 9 

Solving the System of Quasi-score Normal Equations 

Having obtained estimates for the variance terms, the final step in evaluating the quasi-

likelihood estimators is to solve the system of equations defined by (2.27). This can be done 

using a Newton-Raphson algorithm. Define by 9 the vector of parameters of dimension 

w X 1 and by 4̂ a lux uj matrix with elements a.^ = j = 1, - - -, w. The system of 

quasi-score normal equations defined by (2.27) can be now solved numerically. Assume a 

vector of initial solutions 9 . The vector of initial solutions can be updated using 

C136) 

The iterations continue until a pre-specified convergence criterion is satisfied. This is when 

the difference between the solutions obtained fi'om two successive iterations of the algorithm, 

as defined by (2.22), is less than a pre-specified small value 8. Variance estimation for the 

quasi-likelihood estimates is discussed in Chapter 5. Some of the practical advantages offered 

by the quasi-likelihood approach are also discussed there. Properties of the maximum 

likelihood and the quasi-likelihood estimators are empirically compared, using a Monte-Carlo 

simulation study, in Chapter 6. 

Application 2.2: Comparing the Maximum Likelihood Approach with the Quasi-likelihood 

Approach 

We illustrate the quasi-likelihood approach and we compare it with the maximum likelihood 

approach using the following fictitious example. A firm wishes to assess the quality of the 

units that it produces. The units can be classified into two categories i.e. either as defective or 

satisfactory. The firm suspects that a number of satisfactory units are classified as defective. 

The management team is interested in investigating the trade-off between the loss of 

satisfactory units and the extra cost of improving the current classifier. There are two 

classification methods. One, which is currently used, is not very costly but is subject to 

measurement error (main survey). Altenatively, the firm can use an accurate but more 

expensive classification method (validation survey). A sample of n = 60000 production 

units is selected and the units are classified using the inexpensive classification method. In 

order to validate the inexpensive classifier, another sample of n" = 10000 production units is 
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selected and these units are classified using both the expensive and the inexpensive classifier. 

The data for this numerical example are summarised below. 

Table 2.6: Validation sample 

True Classifications 

Defective (1) Satisfactory (2) Margins 

Fallible Classifications Defective (1) 672 918 1590 

Satisfactory (2) 28 8382 8410 

Margins 700 9300 7̂ :̂= 10000 

Table 2.7: Main sample 

True Classifications 

Defective (1) Satisfactory (2) Margins 

Defective (1) 9000 

Fallible Classifications Satisfactory(2) 51000 

Margins < n = 60000 

Table 2.8: Estimated parameters under the alternative parameterisations of the measurement 

error model 

Alternative Fitting Methods A 
Pi 

A 
Qii 

A 

MLE (Tenenbein 1972) 0.0667 0.9586 0.0936 

MLE via EM 0.0667 0.9576 0.0936 

Quasi-likelihood &0669 0.9580 0.0932 

The model parameters are identified. This is checked by initialising the EM algorithm from 

different starting points and by seeing whether the algorithm converges to the same solution. 

Figures 2.4 and 2.5 illustrate this idea. The Newton-Raphson algorithm is also invariant to the 

choice of starting values. The convergence criterion for the EM algorithm and for the 

Newton-Raphson algorithm is 6 = 10"^. The quasi-likelihood parameterisation produces 

reasonable estimates that are almost identical to the maximum likelihood estimates. When the 

underlying distribution is from the exponential family (here we assume a multinomial 



distribution), the quasi-hkelihood estimates will be the same as the maximum likelihood 

estimates (see Wedderbum 1974). However, the quasi-likelihood approach only requires that 

one specifies the mean and the variance structure, thus avoiding any explicit definition of the 

likelihood function. 

W 15 

EM Iterations 

30 40 

EM iMtions 

Figure 2.4: Tracing the convergence of the EM 
algorithm. Starting values close to the maximum 
likelihood point, convergence criterion 
a ==10-4. 

Figure 2.5: Tracing the convergence of the EM 
algorithm. Starting values further from the 
maximum likelihood point, convergence criterion 
g = 10^. 

2.2.2 The Longitudinal Case 

We now turn our attention to the longitudinal case and start by introducing the basic notation. 

Suppose that we conduct a panel survey where a sample unit ^ is interviewed at two 

consecutive time points t,t + 1. The variable of interest, measured by the panel survey, is 

subject to misclassification. Denote by the probability that sample unit ^ truly belongs in 

state k at t and state I at t + 1 and by 1 1 t h e probability that sample unit ^ is observed in 

state i at t and state j at t +1. Let F denote the matrix with elements and 11 the 

matrix with elements . Corresponding to each element of 11 and sample unit ^ we define 

the random variables which describe the way that the sample unit is classified 

at t and i + 1 by the standard measurement device. We also define the random variables 

which describe the true status of the sample unit at t and t + 1 . The pairs 

Y^t^Y^t+i) 3iid j are assumed to be iid for different sample units. We also assume 
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that we can use a cross-sectional validation procedure via which we can make inference 

about the misclassification process. 

Denote by t j | = A; = Z) the misclassiGcation 

probabilities and by Q{t,t 1) the matrix of misclassification probabilities. Generally 

speaking, the measurement error model in the longitudinal case is defined by expressing the 

joint distribution of the observed and true classifications as a product of the misclassification 

probabilities times the true transition probabilities. 

= J I = Z) 

and 

— 7 1 ^gPu • (2.37) 
1=1 

Writing (2.37) in matrix notation, assuming that Q(t , tH-l ) is invertible and solving this 

system of equations with respect to P , we obtain the following expression for the adjusted 

gross flows 

f e c ( f ) = [Q((,^ + l)] \ e c ( n ) . (2.38) 
r̂ xl r'xr̂  r^xl 

This parameterisation of the measurement error model leads to a moment-type estimator of 

the adjusted for misclassification quantities. However, estimation of the misclassification 

matrix Q(t,t + 1) is not straightforward. To see this, note that the number of fi:ee parameters 

when attempting to estimate Q{t,t + 1) is equal to l) i.e. 

X . This implies that information obtained from a cross-

sectional validation sample is not sufficient to determine Q(t,t + 1). hi a longitudinal 

context, we therefore need to introduce additional assumptions that enable us to estimate the 

longitudinal misclassification matrix. An assumption that has been used widely in this context 

is the Independent Classification Errors (ICE) assumption. The ICE assumption is defined as 

follows 

pr{Y; = 4%, = j I 7;, = = i) = pr(Y; =i\Y^,= k)pr{Y;,, = j | = l). (2.39) 
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From (2.39) we can say that the ICE assumption embodies the following two assumptions. 

a) The observed states are conditionally independent given the true states 

y y 
(t+1 • 

b) The misclassification at time t depends only on the current true state and not on the 

previous or future true states. 

Define by Q{t) the cross-sectional matrix of misclassification probabilities at t with 

elements and by Q{t + 1) the cross-sectional matrix of misclassification probabilities at 

t + 1 with elements q^i. An implication of ICE is that the longitudinal misclassification 

matrix can be expressed as follows 

Q + l) = Q ( t 1 ) iS> Q {t) . (2.40) 

However, Q (i + 1) is not known. We therefore assume that Q{t) = Q(t + 1). We now 

investigate three alternative double sampling schemes that can be used for estimation 

purposes in a longitudinal framework. 

Double Sampling Scheme 1 

A simple random sample of n units is selected from a population of N units and the fallible 

classifications at two time points, , are obtained for each sample unit. For another 

simple random sample of n" units, independently selected from the main sample and from 

the same target population, cross-sectional information on the fallible classifications is also 

obtained. At a time point, between t and f + 1 , information on the true classifications is 

obtained for these n" units. Under this scheme, we obtain panel information on the fallible 

classifications for n units and further cross-sectional information on the fallible and true 

classification for units. This double sampling scheme is set out in Figure 2.6. 

Population consists of N units 

n units are selected from N and 
are obtained 

n" units 
independently from n and is obtained. 

At a second time point, between t and 
t + 1, is obtained for n" units 

are selected from N 

Figure 2.6: Double sampling scheme 1-Longitudinal case 
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Double Sampling Scheme 2 

A simple random sample of n units is selected from a population of N units and the fallible 

classifications at two time points, are obtained for each sample unit. At a second 

time point, between t and t + 1, the true classifications, , are also obtained for a sub-

sample of n" units selected from the n units that already belong to the main sample. This 

double sampling scheme is set out in Figure 2.7. 

Population consists of N units 

n units are selected from N 
and are obtained 

At a second time point, between t 
and Z + 1, rf units are selected 
from n units that already belong to 
the main sample and Y^^ is obtained 

n units are selected from N 
and are obtained 

At a second time point, between t 
and Z + 1, rf units are selected 
from n units that already belong to 
the main sample and Y^^ is obtained 

Figure 2.7: Double sampling scheme 2-Longitudinal case 

Double Sampling Scheme 3 

A simple random sample of n units is selected from a population of N units and the fallible 

classifications at two time p o i n t s , a r e obtained for each sample unit. Using an 

external source, we obtain cross-sectional information on the incidence of error for n" units. 

This double sampling scheme is set out in Figure 2.8. 

Population consists of N units External source of information 

n units are selected from N 
and YL K!,, are obtained 

Information on the incidence 
of error is obtained for n" 
units using an external source 

Figure 2.8: Double sampling scheme 3-Longitudinal case 
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2.2.2.1 Review of the Alternative Double Sampling Schemes in a 

Longitudinal Framework 

The absence of a panel validation sample plays a key role in the longitudinal case. If a panel 

validation sample is available, conclusions from the cross-sectional case can be directly 

extended to a longitudinal framework. Under the first double sampling scheme, although the 

validation and the main samples are representative of the same population, information on the 

fallible classifications from the validation sample cannot be directly combined with 

information on the fallible classifications from the main sample. We can only make 

inferences about the cross-sectional incidence of error from the validation sample. This is also 

true for the other two double sampling schemes. Furthermore, the different double sampling 

designs have different costs. Under the first scheme and the third scheme, we obtain fallible 

classifications at two time points for n units and true and fallible classifications at the first 

time point for n" units. Thus, under these schemes we have cross-sectional information on 

the fallible classifications for n + n" units. Under the second scheme, we obtain fallible 

classifications at two time points for n units and true classifications for n" units selected 

from the n units that already belong to the main sample. As a result, for this scheme we have 

cross-sectional information on the fallible classifications only for n units. This implies that 

the first and the third double sampling scheme may be associated with an increased cost 

compared to the second double sampling scheme. However, the second double sampling 

scheme can increase the response burden, which is something we may wish to avoid in a 

longitudinal study. 

Recalling (Section 1.7.3) that denotes a random variable that describes a specific flow 

of sample unit ^ between t and t + 1 and assuming that all quantities involved in the 

measurement error model can be estimated by utilising a double sampling scheme and the 

ICE assumption, a moment-type estimator, hereinafter conventional or standard point 

estimator, of (2.38) is given by the following expression. 

fee 
A 
P 

-1 A \ A 
E n ; 

. (241) 

Estimation of Q(t,t +1) is based on information from the validation sample and the ICE 

assumption while estimation of H is based only on the main sample. Unlike in a cross-
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sectional framework, the choice of the double sampling scheme does not affect the efficiency 

of the adjusted estimates in a longitudinal framework. 

2.2.2.2 Calibration Probabilities versus Misclassification Probabilities and 

Maximum Likelihood Estimation in a Longitudinal Framework 

We now extend the previous discussion about calibration and misclassification probabilities 

to a longitudinal framework. Meyer (1988) compared two adjustment procedures for 

correcting labour force gross flows for measurement error. The first procedure is one that 

utilises misclassification probabilities and has been described in Section 2.2.2.1. The second 

procedure has been developed by Statistics Canada (1979) and Wong (1983) and is discussed 

in Stasny (1983). This method aims at correcting gross flows for misclassification by utilising 

calibration probabilities. Under this approach, the joint distribution of the observed and the 

true classifications can be expressed as a product of the calibration probabilities and the 

observed transition probabilities. 

pr{Y,, = = i) = = ' i n : = = j)-
2—1 j=zl 

Denote by C{t,t +1) the matrix of calibration probabilities. In matrix notation, we obtain 

veci P 
\r̂xl 

C (t,t +1) 
x̂l 

veci II . (2.42) 

In order to estimate C {t,t +1), an Independent Classification Errors assumption is imposed. 

However, unlike the ICE that conditions on the true classifications, this new conditional 

independence assumption conditions on the observed classifications and is defined as 

follows: 

— ^:^+l — n ^t+1 " j) — ^ I ~ ^ I ^it+1 — (2.43) 

Using (2.43), expression (2.42) becomes 

i , e c f f ) = [C(( + l)(g)C(t)]?;ec(n (2.44) 

Since C (t + 1) is not known, we further assume that C {t + 1) = C (t). 
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Meyer (1988) points out some theoretical deficiencies associated with the conditional 

independence assumption that utilises the calibration probabilities. More specifically, this 

type of conditional independence assumption embodies the following two assumptions. 

a) The true classifications, are conditionally independent given the observed 

classiGcations, 

b) The misclassification at time t depends only on the current observed state and not on 

previous or future observed states. 

Meyer (1988) argues that the main difference between the adjustment procedure that utilises 

misclassification probabilities and the adjustment procedure that utilises calibration 

probabilities is in the second assumption. Think of the following example in the context of 

estimating labour force gross flows. Assume that a sample unit ^ can be classified as 

employed (E) or unemployed (U). Using (2.43) we define the following conditional 

probabilities. 

= [ / 1 = ^ ) = | = .s) 

=( /1 y ; : = = E ) . 

The probability of misclassification at the second time point for someone who is observed to 

remain stable is the same as the probability of misclassification for someone who is observed 

to change status between t and t + 1 . However, an observed transition can happen either 

because the transition is true or because the respondent is misclassified at one time point. As 

a result, we expect the probability of misclassification of someone who is observed to change 

status to be higher than the probability of misclassification of someone who is observed to be 

stable. Hence, the method that utilises calibration probabilities will predict a lower number of 

spurious transitions than the approach that utilises misclassification probabilities. It has been 

shown numerically by Meyer (1988) that the adjustments under this method are in the wrong 

direction i.e. lower diagonal elements and higher off-diagonal elements than actually 

observed. A further problem, not pointed out by Meyer (1988), is that the approach that 

utilises the calibration probabilities can be used only in the case of an internal validation 

sample. This is due to the fact that for an external validation sample only the misclassification 

probabilities can be regarded as transportable to the population of interest. 

One advantage of the method that uses calibration probabilities is that it always produces 

positive adjustments. On the other hand, the method that utilises misclassification 
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probabilities can lead to negative adjusted estimates due to the inversion of the 

misclassification matrix. A further advantage is that the distribution theory of an estimator 

that utilises calibration probabilities is simpler than the distribution theory of an estimator that 

utilises misclassification probabilities. This will be illustrated in Chapter 5. 

In a cross-sectional fi-amework, we have already showed that the parameterisation of the 

measurement error model using either misclassification or calibration probabilities will 

produce identical results. Likelihood-based inference in a longitudinal framework is the sole 

focus of Chapter 3. For the time being, all we can say is that the measurement error models 

based on misclassification or calibration probabilities will be different. This is due to the two 

different forms of conditional independence utilised by these alternative models. 

2.3 A Comparison of the Double Sampling Methods in a Cross-sectional 

and in a Longitudinal Framework 

A comparison of the different double sampling methods in a cross-sectional and in a 

longitudinal framework leads to some interesting findings. Before starting this comparison, 

we should point out that the main cause of the differences is the lack of a panel validation 

sample. However, the use of a cross-sectional validation sample in a panel framework is 

justifiable if we think of the costs associated with a validation survey. The first major 

difference that exists in the estimation process is the infroduction of the ICE assumption. This 

allows estimation of the measurement error mechanism at two time points based on cross-

sectional validation information. While this assumption is not imposed in the cross-sectional 

case, its implications for the longitudinal case can be quite important. If ICE is not valid, 

misclassification will be over-predicted and thus we will tend to over-adjust (Skinner and 

Torelli 1993). This over-correction, under the model that uses misclassification probabilities, 

can lead to negative adjusted estimates due to the inversion of the misclassification matrix 

involved in expression (2.41) (Poterba and Summers 1986). 

Next, consider the impact of the alternative double sampling schemes on the efficiency of the 

adjusted estimates. In a cross-sectional framework, the first two double sampling designs 

produce more efficient estimates than the third design. However, by transforming the external 

validation sample into an internal validation sample, the estimates produced under the third 
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double sampling scheme will become as efficient as the estimates produced under the first 

double sampling scheme and the second double sampling scheme. In a longitudinal context, 

the moment-type (conventional) estimator (see (2.41)) of the adjusted gross flows remains the 

same under all double sampling schemes. 

Finally, we note that another difference between cross-sectional analysis and longitudinal 

analysis is in the use of calibration probabilities, hi a cross-sectional framework, calibration 

probabilities are used when an internal validation sample is available and lead to maximum 

likelihood estimates (see (2.7)). These estimates are more efficient than the estimates 

produced by the moment-type estimator that utilises misclassification probabilities (see for 

example, (2.3)). Nevertheless, maximum likelihood estimates can be also derived using 

misclassification probabilities and the alternative parameterisation that we presented in 

Section 2.2.1.3. In a longitudinal framework, the use of calibration probabilities in 

conjunction with the Independent Classification Errors assumption, defined by (2.43), is 

inferior to the approach that utilises misclassification probabilities. 

2.4 Alternative Moment-type Estimators for Gross Flows in the Presence of 

Misclassification 

As discussed in Section 2.3, the absence of a panel validation sample plays a key role in the 

process of estimating adjusted for measurement error gross flows. The main consequence is 

the introduction of the ICE assumption. The consequences of using the ICE assumption can 

be quite important. In this section, we focus our interest on the study and development of 

alternative moment-type estimators. We first study the unbiased margins estimator (Poterba 

and Summers 1986, Chua and Fuller 1987, Singh and Rao 1995, Skinner 1998) and 

subsequently we describe a modified and a composite estimator (with fixed and adaptive 

weights). The reason for looking at these alternative estimators is that we are reluctant to 

accept the ICE assumption. From our point of view, a more reasonable scenario is that there 

is a dependence structure in the measurement error mechanism between two time points. All 

alternative point estimators, described in the following sections, assume the existence of 

homogeneous gross flows and measurement error mechanisms. Later in this thesis, we relax 

this assumption and allow for heterogeneity in both mechanisms. 
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2.4.1 The Unbiased Margins Estimator 

The unbiased margins estimator (Poterba and Summers 1986, Chua and Fuller 1987, Singh 

and Rao 1995, Skinner 1998) is defined by constraining the margins of the adjusted, under 

the conventional estimator, gross flows matrix to equal the published stocks at each time 

point. These imposed constraints can be achieved using a raking (EPF) algorithm (Deming 

and Stephan 1940). The unbiased margins estimator is an alternative to the conventional 

estimator if we believe that ICE is not valid. The assumption underlying the unbiased margins 

estimator is that cross-sectional estimates remain unbiased in the presence of measurement 

error. As we illustrated in Section 1.4.3, this assumption may not be far from reality. 

Raking Methodologies 

Two raking approaches for obtaining the unbiased margins estimator have been proposed. 

Poterba and Summers (1986) suggest that raking be applied to the final adjusted gross flows 

matrix. The main disadvantage of this approach is that if one of the adjusted gross flows is 

negative, the raking algorithm cannot be used. An alternative raking approach is described in 

Singh and Rao (1995). They suggest that the cross-sectional misclassification matrix be raked 

A 

before the final adjustment is carried out. Under the Singh and Rao methodology, Q is raked 

twice. The first raking produces Q (t), which is consistent with the published stocks at t 
A Crt 

and the second raking produces Q {t + 1), which is consistent with the published stocks at 

t + 1. Under this approach and by using (2.41) and properties of vec operators (Harville 

1997), the unbiased margins estimator of the adjusted gross flows is given by 

veclP \ = 
' A M - 1 A ( 0 - r 

Q (t + 1) 8 0 ( ^ ) i;ec(n). (2.45) 

2.4.2 A Modified Estimator for Gross Flows in the Presence of 

Misclassification 

Assume that a double sampling scheme is employed, with the validation sample selected 

independently from the main sample and from the same target population (i.e. scheme 1 in 

Section 2.2.2). This scheme can be regarded as reasonable when the main measurement 
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instrument is a panel survey and we want to avoid additional measurements on the same 

sample units. We now propose a modified estimator based on the following assumptions: 

a) The Independent Classification Errors assumption (ICE) is used to estimate 

longitudinal misclassification probabilities based on estimated cross-sectional 

misclassification probabilities. 

b) The unconditional independence assumption is used to estimate the observed flows of 

the units in the validation sample based on the cross-sectional observed 

classifications. Using this assumption, we ignore the correlation structure implied by 

the longitudinal nature of gross flows. 

Under the first double sampling scheme, information on the observed flows of the units in the 

validation sample is not available. The modified estimator makes use of this absence of panel 

A m 
information. Denote by 11 the matrix of estimated observed transition probabilities based on 

A « 

data firom the main sample. Denote further by H the corresponding estimate based on data 

from the validation sample and the unconditional independence assumption. The modified 

estimator is, then, defined as follows 

' /\ mod' ' A A -1 j A m\ 
P 

- (?(Z) gi0(() wee n 
A B 

:(«•) 

Unlike the unbiased margins estimator that modifies the measurement error structure (i.e. 

component A in (2.46)), the modified estimator modifies the observed flows structure. One 

can view the second term in square brackets, in (2.46), as a ridge component. If ICE is 

erroneously assumed, the observed flows will be overcorrected (i.e. diagonal flows will be 

over-increased and off-diagonal flows over-decreased). The effect of the unconditional 

independence assumption, which underpins the modified estimator, is to overestimate the 

probability of transition from state i to state j and consequently underestimate the 

probability of stability. This is because the unconditional independence assumption ignores 

the correlation structure implied by the longitudinal nature of gross flows. The modified 

observed flows that are produced by combining component B with the ridge component in 

(2.46) will have the following pattern. Diagonal elements of the final gross flows matrix will 

be underestimated compared to diagonal elements of the gross flows matrix derived when 

using only the main sample. Off-diagonal elements of the final gross-flows matrix will be 
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overestimated compared to off-diagonal elements of the gross flows matrix derived when 

using only the main sample. As noted by Skinner and Torelli (1993), under ICE we expect to 

derive an upper bound of the adjustments. Adjustments produced by the modified estimator 

will be less severe than adjustments produced by the conventional estimator. This is due to 

the effect of the unconditional independence assumption. Therefore, adjustments under the 

modified estimator can be regarded as more reasonable if there is a doubt about the validity of 

the ICE assumption. If ICE is assumed to be valid, the modified estimator will be biased. In 

such a case, the only gain from using the modified estimator is that it protects against the 

occurrence of negative adjusted estimates. Thus, under ICE the modified estimator resembles 

a ridge procedure. On the other hand, if we believe that ICE is not valid, the modified 

estimator can provide more efficient adjusted estimates than the adjusted estimates derived 

under the conventional estimator. Gains from using the modified estimator, instead of the 

conventional estimator, will depend on how severe the problem of misclassification is. For 

example, if misclassification is not very severe, it may be more reasonable to use the 

conventional estimator since the effect of the ICE assumption may not be so pronounced. If 

severe misclassification exists, the impact of the ICE assumption becomes more important 

and the modified estimator can be considered as an alternative approach. 

The main disadvantage of the modified estimator is that it is sample size dependent. 

Estimation of the observed flows under the modified estimator is based on two parts. One part 

uses panel information from the main survey i.e. part B in (2.46). The other part uses the 

unconditional independence assumption and cross-sectional data from the validation survey 

i.e. the ridge component in (2.46). Normally, the main sample is much larger than the 

validation sample. However, if the validation sample is large, the modified estimator will 

depend on the ridge component and the resulting estimates will be unstable. 

2.4.3 A Composite Estimator for Gross Flows in the Presence of 

Misclassification 

In previous sections, we investigated alternative moment-type estimators for obtaining 

adjusted gross flows in the presence of misclassification. Each of these estimators has certain 

drawbacks. On the one hand, the conventional estimator is based solely on the ICE 

assumption and therefore can give over-adjustments if ICE is invalid. On the other hand, the 
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modified estimator, proposed above, can give very unstable results if the ridge component of 

this estimator dominates. The question is whether we can do better by combining the 

conventional estimator with the modified estimator. One way of achieving this, is by defining 

a composite estimator of the adjusted gross flows, P , defined as a linear combination of 

the conventional estimator and the modified estimator. We start by briefly reviewing the 

general theory of composite estimation and subsequently we focus our interest on the use of 

composite estimation for adjusting gross flows for measurement error. 

General Theory of Composite Estimation 

Composite estimation is often used in conjunction with rotation sampling schemes to reduce 

variability of survey estimators, hi composite estimation, we derive a more precise point 

estimator by borrowing strength from a class of alternative point estimators (Wolter 1979, 

Tam 1985). Following Kuo (1989), assume that we have two independent and unbiased 

A A • 2 2 * 1 

estimators P i and P2 for the same parameter P with known variances a a ^ respectively. 

Generally speaking, a composite estimator based on these two unbiased estimators is defined 

as 
A A / \ A 
p A . (2-47) 

Two options for defining exist: (a) select a jBxed and (b) select such that 

/\ comp 

the mean squared error of P is minimised. For the second case, the minimum variance 

unbiased estimator of P is given by 

9 
/\ comp A / \ A 
^ -Pi + (1 - f 2, = / 2 , % \ 

\o' a 2) 

This result is derived as follows: The general form of the composite estimator is given in 

/\ A A 

(2.47). The mean squared error of P , taking into account that both Pi and P2 are 

independent and unbiased estimators of P , is given by 
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/ A \ /A comp \ / A cofrg; \ ^ / A , \ /\ \ 
MSEI^P ] = Va r (p ] + B w s ( j > ) P . + ( l j P ^ ) 

2 /A \ . ^ /A 
USE (P j = (»„,) Var (p.) + (l - Var [p. 

/ \2 m / \2 » 
" ^comp) CTg GL49) 

and, 

The aim is to find the value of that minimises expression (2.49). We proceed as 

follows: 

— (̂̂ 2 "I" ^̂ comp'̂ 2 — 0 ^ ĉonm — 
comp (cr̂  +(72^ 

' A corny 

2^cr̂  + CTg) > 0. (2.50) 
comp 

Expression (2.50) states that the value of that minimises the mean square error of the 

composite estimator is given by . Usually, cr\,cr^2 are unknown and are 

estimated from the sample data. 

A Composite Estimator for Gross Flows in the Presence of Misclassification 

We now utilise the idea of the composite estimation for estimating gross flows in the 

presence of misclassification. A composite estimator can be defined as a linear combination 

of the conventional estimator (see (2.41)) and the modified estimator (see (2.46)). The general 

form of this estimator is 

' A comp A p / \ (2.51) 

A 
Replacing P by its equivalent using (2.46), the composite estimator becomes 

' A comp 
fee IF uec P + (1 - f . (2.52) 
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Note that vec j denotes the vector of adjusted gross flows in the validation sample derived 

by multiplying component A with the ridge component in (2.46). 

Regarding the choice of composite weights, , we investigate two options (a) selection of 

fixed weights and (b) selection of adaptive weights that minimise the mean squared error of 

the composite estimator. 

Composite Estimator with Fixed Weights 

For this case, we can choose weights at will. We believe that the conventional estimator 

should receive a higher weight than the modified estimator. This choice is reasonable given 

that the modified estimator is based on a much stricter assumption i.e. the unconditional 

independence assumption, which under certain conditions can have a larger impact on the 

final adjustments than the impact of the ICE assumption. A set of possible weights is 

= 0.3,0.2,0.1. 

Composite Estimator with Adaptive Weights 

Adaptive weights have to be determined via a minimisation process. The composite estimator 

with adaptive weights is defined as 

i;ec 
' A comp-ad 
P uec p 

/ 

+ (1 - t. (2.53) 

A comp-ad 
The mean squared error of P can be written as follows. 
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+ j + ^«mp (1 — j ' 

(2.54) 

The target is to derive composite weights such that (2.54) is minimised 
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Result 2.4 

An estimated approximate value of w , which minimises the mean squared error of the 

composite estimator, is given by 

For 
Ad!' 
P 

W 

A 
P 

A /A«, 
+ VariP I + 

l' A 
P 

A/A« 
C155) 

Proof 

Denoting by P the true flows, the mean squared error of the composite estimator with 

adaptive weights can be expressed in the following form 

/\ comp—(wf ̂  2 r A'*') 

P — ) F a r P + 

comp mod + (1 - ^ j 

(1 - j ' 

(2.56) 

We first evaluate the bias term in (2.56) 

on on comp mo j 

, r Â f") 
^ "^comp) E P ' comp 

f A sO / A1'\ < A at" / A«\ r A«() 
?/7 ?/7 comp E P 

/ - 4 1 
— %D comp 

E P f 1 + E P -P 

' A comp—mi ̂  1' r , r A:*'! 1 AV\ r Aft) 
Bias P = - 1 ) E p + E P - P = - 1 ) 

\ / 

/AfX 2 
E + E P \-P 

J 

- 1 ) 
/ A«\ r A'f'j 

E P P E P - P 
V , \ / . I J 

(2.57) 

Next, we substitute (2.57) into (2.56) and we minimise (2.56) with respect to 
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ĉomp (l -
/ AI'X f A «( A ( A ^ A «' 2 

For P + yGr f -2Co?; P ,P + E f - f 
\ / ' 

' A f A A < A / Â 'X (A St'y 
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( A St A 
We approximate (2.58) assuming that Gov P ,P = 0 . This assumption may not be far 

from reality. As we will see later on, the variance of the composite estimator with fixed 

weights under this assumption provides a good approximation to the true variance of this 
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estimator. Therefore, there is Uttle impact from assuming that Gov P ,P 

Consequently, an approximately optimal value of is given by 

= 0 

w„ 

P + E P -P E 
A ^ 

F 

( l - W m a d ) y a r 

f A a \ 

P E 
A 

P 
' A « 

21 • 
(2.59) 

Furthermore, 

/\ comp—ad' 
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y&r p M + Var P +E 

AW 
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One way of estimating w is by assuming, for example, that P = E 
A«( 
p 

> 0. 

Under this 

scenario, we favour the conventional estimator since we assume that ICE is valid. This can be 

considered as a "worst" case scenario for the modified estimator. The composite weights can 

now be estimated by 

A 

Var 
f Af* 
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/ \ A f A d ^ A /A%\ A f A d ^ A /A«\ 
E P -E 

(2.60) 

• 
In Chapter 5, we develop variance estimators that make it possible to compute these adaptive 

weights. 

2.5 Summary 

In the first part of this chapter, we compared alternative double sampling designs within a 

cross-sectional framework and a longitudinal framework. We also presented some new results 

for the analysis of misclassified data in a cross-sectional firamework. More specifically, we 

contrasted the parameterisation of the measurement error model presented by Tenenbein 

(1972) with an alternative parameterisation for maximum likelihood estimation within a 

missing data framework. The parameterisation of the measurement error model as a missing 

data problem offers a robust basis for extending the model to handle more complex situations 

for example, extending the measurement error model to a longitudinal framework. We further 

86 



proposed a quasi-likelihood approach to fitting the cross-sectional measurement error model. 

This approach offers an alternative, to the EM algorithm, way for resolving the missing data 

problem implicit in the maximum likelihood approach. 

In the last part of this chapter, we describe alternative moment-type estimators and argue that 

they provide solutions for problems affecting the conventional point estimator. However, 

each of the alternative estimators has disadvantages. The unbiased margins estimator is based 

on the assumption that the cross-sectional estimates are not affected by measurement error. 

The modified estimator can be very unstable if too much emphasis is placed on the 

unconditional independence assumption. The composite estimator with fixed weights depends 

on the subjective choice of these weights while the estimation of adaptive weights is also not 

free of assumptions. Our aim is to develop an estimator that performs reasonably under ICE 

but also performs better than the conventional estimator under reasonable departures from 

ICE. Consequently, it is of interest to investigate the performance of these alternative 

moment-type estimators under ICE and under departures Irom ICE. We use Monte-Carlo 

simulation experiments to examine research questions of this kind later in this thesis. 
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Chapter 3 

Likelihood-based Inference for Gross Flows in the 

Presence of Misclassification and Double Sampling 

3.1 Introduction 

One of the main objectives of this thesis is to develop likelihood-based gross flows estimates 

when auxiliary information obtained via a validation procedure, for example a re-interview 

survey, is available. Literature on the adjustment of gross flows statistics for misclassification 

has focused on two approaches. In a double sampling framework, moment-type estimators 

have been proposed. These estimators alongside with some new moment-type estimators 

were described in Chapter 2. When validation information is not available, the model-based 

approaches described in Section 1.5.2 can be utilised. Developing maximum likelihood 

estimators in a double sampling context will serve two main purposes: Firstly, to improve 

upon the efficiency of the moment-type estimators and secondly to create a competing 

approach to the modelling strategies that do not assume validation information. 

The structure of this chapter is as follows. We start by presenting a model for gross flows in 

the presence of misclassification. The model is formulated in a missing data framework and 

maximum likelihood estimates are derived via the EM algorithm. Although the focus of 

likehhood-based inference, in this chapter and throughout this thesis, will be on a double 

sampling scheme where the validation sample is selected independently from the main 

sample and from the same target population (Section 3.2.1), we also describe the model in the 

case that the validation sample is selected by sub-sampling units that already participate in the 

main survey (Section 3.2.2). In an attempt to relax the ICE assumption, a constrained 

maximum likelihood estimator is also presented. The constrained estimator can be seen as a 

maximum likelihood analogue of the unbiased margins estimator. The measurement error 

model is further extended to account for the existence of a complex survey design. This is 
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achieved by utilising the survey weights and the pseudo-maximum likelihood approach. In 

this context, a pseudo-maximum likelihood estimator and a constrained pseudo-maximum 

likelihood estimator are also presented. Due to the nature of the UK LFS weights (see 

discussion in Section 1.7.2), a weighted analysis offers a bias correction to unweighted 

estimates. The methodology is illustrated in the context of the UK LFS by deriving adjusted 

for misclassification labour force gross flows. 

3.2 Maximum Likelihood Estimation for Gross Flows in the Presence of 

Misclassification and Double Sampling 

In this section, we formulate a measurement error model for gross flows and obtain maximum 

likelihood estimates for the parameters of interest under the alternative double sampling 

schemes that we presented in Chapter 2. 

3.2.1 Maximum Likelihood Estimation When the Validation Sample is 

Selected Independently from the Main Sample 

Stating the Assumptions and Formulating the Model 

Assume a double sampling scheme under which a validation sample of n" units is selected 

independently from the main sample of n units and from the same population as the main 

sample has been also selected (i.e. double sampling scheme 1 in Section 2.2.2). This scheme 

implies that the main sample and the validation sample do not share common units. The main 

survey is a panel survey and provides information about the flows of people between r 

mutually exclusive states at t and t + 1. On the other hand, the validation survey provides 

information about the cross-sectional incidence of misclassification errors related to these 

states at time t . In what follows, we define a category as a pair of states for which there is a 

flow so there are such flow categories. Using as an example the UK LFS, category (1) of 

the true classifications in Table 3.1 denotes units in the validation sample who were truly 

employed at t and t + 1. Category (1) of the fallible classifications in the same table denotes 

units in the validation sample who are reported to be employed at t and t + 1. Consequently, 

respondents that are in category (1) of both classifications correctly classified themselves as 

employed at both occasions. 
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We now need to describe the information available from the main survey and from the 

validation survey. The validation survey provides cross-sectional information on the observed 

and the true classifications. The main survey provides information on the observed flows. 

Consider the cross-classification of the fallible with the true classifications in the main and in 

the validation sample (see Table 3.1 and Table 3.2). The information available from the 

validation survey can be described schematically by forming all possible r x r adjacent 

squares and by summing the elements in each of these squares. For example, in the case that 

r = 2 one can form 4 different adjacent squares each of dimension 2 x 2 (see Table 3.3). 

The sum of the elements of the first square denotes the number of people in the validation 

survey that were reported to be employed and were truly employed at the first time point. The 

information available from the main survey can be described by summing the elements in 

each column of Table 3.2. For example, the sum of the elements of the first column 

represents the number of people in the main survey that reported to be employed at both time 

points. 

Despite the different kind of information that is contained in the main sample and in the 

validation sample, the way we formulate the model implies a similar structure for both data 

sources. This structure consists of the observed flows, the true flows and a misclassification 

mechanism that relates the observed flows to the true flows. The basic idea is to formulate a 

model by combining information from both samples. This will eventually lead to a missing 

data problem. One source of missing data is attributed to the different time dimensions of the 

main survey and the validation survey. While the main survey is panel, the validation survey 

is cross-sectional. The other source of missing data is due to the fact that people participating 

in the main survey do not participate in the validation survey. Unlike the parameterisation 

presented in Section 2.2.1.3, under the current parameterisation missing data exist both in the 

main and in the validation sample. 

The final assumption that we use is the ICE assumption. This is an identifying assumption 

and is used in order to estimate longitudinal misclassification probabilities based on cross-

sectional misclassification probabilities. Recalling the notation from Chapter 1, ICE is 

defined as 

= 4 ^ ( + 1 = J I ^ I ( ^ ( + 1 ~ ^ I ^ ( + 1 ~ (3.1) 
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Denote by the number of sample units classified in cell ij defined by the cross-

classification of the true with the fallible classifications in the main sample and in the 

validation sample respectively. Note that a (*) superscript denotes unobserved quantities. 

Table 3.1: Validation sample 

Fallible Classifications 

(1) Margins 

True Classifications 
(1) 

< : • 

P ) 

Margins n" 

Table 3.2: Main sample 

Fallible Classifications 

(1) {<•') Margins 

True Classifications 
(1) < 

P ) 

Margins n,-^ n 

Denote by P- the probability that a respondent truly belongs in category i, by the 

probability that a respondent is classified in category j given that he/she truly belongs in 

category i and by 9 the vector of parameters. The probability that a sample unit belongs in 

cell ij is expressed as a product of the true transition probabilities and the misclassification 

probabilities. Assuming independence between the main sample and the validation sample, 

the likelihood function of the augmented data for the model described by Tables 3.1 and 3.2 

is given by 

M e ) = n n ( % , f n n ( % ) 

which can be expressed as follows: 

(3.2) 
%=! j=l 
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m= nnfer • (pr 
1=1 j=i 

(3 3) 

Taking the logarithms on both sides and imposing the following constraint 

i=l 

we obtain the following expression for the log-likelihood of the augmented data 

' (e) = £ « • ' + <')ioeP, + {nX + + E E « " + O i ° g ( « 
i=l I 2=1 J 2=1 7=1 

(3 /0 

The longitudinal misclassification probabilities, , are unknown and are estimated using the 

cross-sectional misclassification probabilities and the ICE assumption. The log-hkelihood 

function given in (3.4) is presented here in its generic form i.e. without incorporating the ICE 

assumption. However, after incorporating ICE, we need to add the extra constraint that the 

sum of the cross-sectional misclassification probabilities for a given true classification must 

add up to one. This extra constraint implies that we have to estimate — r parameters that 

describe the misclassification process and — 1 gross flows-specific parameters. Thus, 

under this parameterization we finally need to estimate 2r^ — r — 1 parameters. 

Estimation 

Since the likelihood function involves missing data, one way of using this likelihood to 

maximise the likelihood of the observed data is via the EM algorithm (for a general 

description see Section 2.2.1.3). In the sequel, we describe the expectation step and the 

maximisation step. 

E-step 

Recalling the notation fi-om Chapter 2, denote by D" the complete data, by D" the observed 

data from the validation sample, by the observed data firom the main sample, by {h) the 

current iteration of the EM algorithm and by 0'''' the vector of parameters in the (h) EM 

iteration. Taking the conditional expectation of the augmented log-likelihood given the 

observed data and the current vector of parameters, the augmented log-likelihood is given by 
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i=l 

+ E ( n ; r I ^ " , 8 ^ ) + ^(71;;^ I 1 - ^ 
I i = l 

r'-l 

p. 

+ E Z l ^ W " I O ' . e ' " ) + 2 ( 4 , " I D " , 6 « ) ] l o g { g , ) . 

(3 5) 

In (3.5), the longitudinal misclassification probabilities, , need to be replaced under ICE by 

products of the cross-sectional niisclassification probabilities and the additional constraint 

that the sum of the misclassification probabilities for a given true classification must add up 

to one. In order to perform the E-step, we need to estimate the unobserved quantities in (3.5). 

This can be done using the following two results: 

Result 3.1 

The conditional expectations of the missing data in the main sample are estimated using the 

following expression 

AW A (h) 
9% 

A(A) 

V i=l 

(3.60 

Proof 

The number of sample units that belong in cell ij defined by the cross-classification of the 

observed with the true classifications in the main sample is denoted by ri'^. Recall that 

y : denotes an indicator random variable, which takes value 1 if the sample unit is 

classified by the fallible measurement device as making a specific transition between t and 

t + 1 and 0 otherwise. Denote further by an indicator random variable, which takes 

value 1 if the sample unit is classified by the "perfect" measurement device as making a 

specific transition between t and t + 1 and 0 otherwise. Note that while a superscript (*) 

refers to unobserved quantities, a superscript * refers to observed classifications. Using these 

two random variables, the expectations of the missing data can now be expressed as follows 

Expression (3.7) is re-defined below 

(3.7) 
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- S « ) = = 3 I 

From the main sample we have information about the observed flows. This information is 

summarised by summing the unobserved quantities within column j in Table 3.2 as follows: 

n — ^ — 3 I — •̂ )-S" (̂ Cî t+1 — 
2=1 

Given the data constraints, the conditional expectations of the missing data can now be 

expressed as follows 

I D " n 
s ( n u . = i I = ' ) 

i = l 

= 2 

(3!0 

The expectations of the random variables involved in the expression above are determined 

using results for binomial random variables. More specifically. 

^ = J I = i) = - (3^0 

Substituting (3.9) in (3.8) we obtain the required result 

It follows that 

A(A) A (A) 
9% 

/ V ' 
i=l 

j=i • 

We now proceed to the computation of the conditional expectations of the missing data in the 

validation sample. As we mentioned at the beginning of this section, the information 

available from the validation sample can be summarised by forming adjacent squares each 

of dimension r x r and by denoting by nl, k=l,2,---r^ the sum of the elements of each 

square. This is schematically illustrated in Table 3.3. For example, the sum of the elements of 

the first square, n", represents the number of sample units that were observed to be employed 

and were truly employed at the first time point. In the same way, the sum of the elements of 

the last square represents the number of sample units that were observed to be unemployed 
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and were truly unemployed at the first time point. For the 4-state model there are four such 

summations defined by 

2 2 

E E " . . " = = E E % . " : = E E « , 
1=1 j = 3 i=3 j = l t=3 ^ 3 

< = E E " . , - E E " . . "3 = E E % . < = E E 

Table 3.3: Validation sample in the 4-state model 

(3.10) 

Fallible Classifications 

(1) (2) (3) (4) Margins 

True 
(1) 

Classifications 
(2) 

(3) 

(4) 

Margins n" 

Result 3.2 

The conditional expectations of the missing data in the validation sample are estimated using 

the expression below 

A(A) A (A) 
9% 

A(A) 
Qij 

(3 11) 

where i,j are running over the rows and columns of the square we are working with. 

Proof 

The number of sample units that belong in cell ij defined by the cross-classification of the 

observed with the true classifications in the validation sample is denoted by . Using the 

same notation as in Result 3.1, the expectations of the missing data in the validation sample 

are expressed as 

E(n-«') = = i) . (3.12) 

Expression (3.12) is re-defined below 

S ( n ' - ) = n-E{Y, i)E{Y, 
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For the validation sample we have information about the cross-sectional incidence of error. 

This information can be expressed as follows: 

Given the data constraints, the conditional expectations of the missing data are expressed as 

follows 

I B") = nl 
= i i n 

Ct-»j+i 
;=1 i=l 

(3^3) 

The expectations of the random variables involved in the expression above can be determined 

using (3.9). Substituting (3.9) in (3.13) we obtain the required result 

AW A (h) 
9% 

V—\ ^ aW A 
E E ' s P-

* J 

It follows that 

3=1 • 
Note that in Results 3.1 and 3.2 the parameters q̂ . need to be replaced under ICE by products 

of the cross-sectional misclassification probabilities. 

M-step 

For the maximisation step (M-step), we need to derive the score functions. These score 

functions are obtained by computing the partial derivatives of the log-likelihood of the 

augmented data with respect to the vector of parameters. The maximum likelihood estimators 

are then obtained by setting these derivatives equal to zero i.e. 

a 8 
0 (3.14) 

and solving for 8 . For the model described here, the maximisation step is performed 

numerically using a Newton -type algorithm (Dennis and Schnabel 1983). 
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Identification of the Model Parameters and Convergence of the EM algorithm 

An important requirement for fitting a model is that the model parameters are identified. 

There are many tests available for checking identifiability empirically. Relevant literature can 

be found in Goodman (1974). A first test is offered by computing the eigenvalues of the 

information matrix. If all eigenvalues are positive, the model parameters are identified. In 

Chapter 5, we provide an approximation to the information matrix. Based on this 

approximation, this test can be implemented. An alternative solution is offered by initialising 

the EM algorithm Jxom different sets of starting values. If the algorithm converges to the 

same region, it is reasonable to assume that the parameters are identified (see also Section 

2.2.1.3). This test is implemented in this chapter (see application 3.1). As a convergence 

diagnostic we use the Z? -norm of the vector of parameters derived firom two successive 

iterations of the EM algorithm defined as 

2r-r~l 
gW _ @M| | = ^ ^ . (3.15) 

3.2.2 Maximum Likelihood Estimation When the Validation Sample is 

Selected by Sub-sampling Units from the Main Sample 

In Section 3.2.1, we formulated the measurement error model under a double sampling 

scheme where the validation sample is selected independently firom the main sample and 

from the same target population. In this section, we formulate the measurement error model 

assuming that the validation sample of n" units is selected by sub-sampling units fi'om the 

main sample of n units. Under this scheme, independence between the units in the main 

sample and in the validation sample is not automatically guaranteed. However, independence 

can be imposed by dividing the main sample into units that participate only in the main 

survey and units that participate both in the main survey and in the validation survey. 

After dividing the main sample into units that participate only in the main survey and units 

that participate both in the main survey and in the validation survey, the information available 

fi'om these two samples is as follows. The main survey is a panel survey and provides 

information on the observed flows of the n — n" units between r mutually exclusive states at 

t and (-t-1. On the other hand, the validation survey provides information on the cross-
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sectional incidence of misclassification errors related to these states at time t and the 

observed flows of the n" units. One can now notice the difference between this model and 

the model that we presented in Section 3.2.1. If the validation sample is selected 

independently from the main sample (see Section 3.2.1), the validation sample will provide 

information only on the cross-sectional incidence of misclassification errors. On the other 

hand, if the validation sample is selected by sub-sampling units that already participate in the 

main survey (Section 3.2.1), the validation sample will provide information both on the cross-

sectional incidence of misclassification errors and the observed flows. 

We form a model similar to the model that we described in Section 3.2.1. The target is to 

obtain maximum likelihood estimates for the adjusted gross flows. Assuming independence 

between the units in the main sample and in the validation sample, the augmented data log-

likelihood of the model is described by (3.4). Since this likelihood involves missing data, we 

can maximise it via the EM algorithm. In the E-step we need to estimate the conditional 

expectations of the missing data in the main sample and in the validation sample using the 

information available from these two samples. The E-step is described below. 

E-step 

For the main sample, we have information on the observed flows of the units that participate 

only in the main survey. Therefore, the conditional expectations of the missing data in the 

main sample can be simply estimated using Result 3.1. 

For the validation survey, we now have information on the cross-sectional misclassification 

probabilities and the observed flows. As a result, estimating the conditional expectations for 

the validation sample cannot be based only on Result 3.2. Instead, we use a two-step 

procedure. For simplicity, we describe this procedure for the 4-state model. The two steps for 

estimating the conditional expectations of the missing data in the validation sample can be 

illustrated using Table 3.3. 

Step a 

In this first step, we estimate initial conditional expectations using Result 3.2. These 

provisional conditional expectations will therefore respect the cross-sectional validation 
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infonnation. However, we also need to respect the information about the observed flows. 

This is achieved using the second step. 

Step b 

Based on these provisional conditional expectations, we compute the following quantities: 

a = 6 
ni + C = "42 

/ "̂4 ) 

(3.16) 
4̂4 

We then form two 2 x 2 tables defined by {a,6,c,d}and {e,/,51,/i}respectively. One can 

realise that the margins of these tables summarise the information available from the 

validation sample. More specifically, the column margins define the observed flows and the 

row margins define the cross-sectional validation information. Having formed these 2 x 2 

tables, we use the EPF algorithm to rake the internal cells of these matrices to the information 

available from the validation survey. The newly derived internal cells are denoted by 

{a*, b*,c*,d*] and {e*,f*,g*,h*}. For example, a* + c* will respect n" and a* + b* will 

respect n". It remains to estimate the final conditional expectations of the unobserved 

quantities in the validation sample, hi order to do so, we form the 2 x 1 vectors that 

summarise {a*,b*,c\d*}md {e%f*,g*,h*}. For example, a 2 x 1 vector is defined by 

such that a* = . For the 4-state model one can form 8 such vectors. 

Following the same logic as for Results 3.1 and 3.2, the conditional expectations are then 

estimated within each of the 2 x 1 vectors. For example, 

hi 

AW A (A) 

(A) A (A) 

\ 

and E\n. «(*) 

AW AW 
921 -Ps 

(h) A(h) 
EW) 

9,1 Pi :=1 

(3.17) 

These final conditional expectations will respect both the cross-sectional validation 

information and the observed flows of the units in the validation sample. Having estimated 

the conditional expectations of the unobserved quantities in the main sample and in the 

validation sample, the M-step is performed numerically using the procedures that we 

described in Section 3.2.1. The convergence of the EM algorithm is checked using (3.15). 
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A "naiVe" alternative for estimating the conditional expectations of the missing data in the 

validation sample, when the validation sample is selected by sub-sampling units from the 

main sample, is to ignore the observed flows of the units that participate both in the main 

survey and in the validation survey. This implies that these conditional expectations can be 

estimated by satisfying only the cross-sectional validation information using the results from 

Section 3.2.1. The assumption underlying this procedure is that the observed flows of the 

units that participate both in the main survey and in the validation survey are not different 

from the observed flows of the units that participate only in the main survey. It is of interest 

to investigate what we actually lose by ignoring this extra piece of information. This is 

examined in Chapter 6. The theory we describe in the rest of this chapter allows for a 

validation sample that is selected independently from the main sample and from the same 

target population. However, this theory can be easily modified to allow for an alternative 

double sampling scheme. 

3.3 A Constrained Maximum Likelihood Estimator for Gross Flows in the 

Presence of Misclassification and Double Sampling 

In Section 3.2.1, we presented a maximum likelihood estimator for gross flows in the 

presence of misclassification and double sampling. This estimator utilizes the ICE 

assumption for estimating longitudinal misclassification probabilities based on cross-

sectional misclassification probabilities. However, as discussed in Chapter 2, the 

consequences of using the ICE assumption can be quite important. In this section, we develop 

a maximum likelihood estimator that attempts to relax the ICE assumption by imposing an 

unbiased margins constraint. From now on we will refer to this point estimator as the 

constrained maximum likelihood estimator. The relaxation to the ICE occurs because under 

the unbiased margins constraint we use two distinct misclassification matrices Q{t), 

2(^ + 1)instead of assuming, as under ICE, that Q{t)-Q{t + \). In order to obtain this 

estimator, we need to impose constraints on the P̂  parameters. The most natural way of 

resolving the constraint maximisation problem is to impose the raking constraints directly 

into the log-likelihood function. This is equivalent to full maximum likelihood. However, this 

approach introduces complexities since the constraints are non-linear functions. Instead, we 

follow an alternative approach namely, the estimated likelihood approach (Gong and 

Samaniego 1981, Pawitan 2001). The estimated likelihood approach offers one way of 
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dealing with nuisance parameters. Generally speaking, this method replaces nuisance 

parameters by their estimates and then treats them as fixed. Here, we treat the parameters of 

the misclassification mechanism, , as nuisance parameters and gross flows-specific 

parameters as the parameters of primary interest. Constraints on P̂  are imposed implicitly via 

g.j. It is apparent that this procedure is not equivalent to full maximum likelihood since 

estimates for the parameters of interest are obtained by maximising only a part of the full 

likelihood. 

Without loss of generality, let us consider the observed labour force gross flows matrix as 

obtained from a Labour Force Survey. Let us assume that the margins of this matrix represent 

the published stocks' at t and t + 1. In the first step, we are implementing the raking 

approach proposed by Singh and Rao (1995). We rake the cross-sectional misclassification 

matrix, estimated using data from the validation survey, twice. The first raking produces 

(t), which is consistent with the observed estimates at time t and the second raking 

produces Q''"^ (t + 1), which is consistent with the observed estimates at time t + 1. The 

produced raked misclassification matrices can be seen as two different sources of data. The 

elements of the first matrix represent cross-sectional validation data such that the first set of 

constraints is satisfied, whereas the elements of the second matrix represent cross-sectional 

validation data such that the second set of constraints is satisfied. 

The second step involves two maximization problems. We maximize the log-likelihood 

function (3.4) using as information from the validation sample the data firom the first raked 

matrix. This maximization step will produce maximum likelihood estimates for and the 

cross-sectional misclassification probabilities under the first set of constraints. We denote 

these maximum likelihood estimates for the cross-sectional misclassification probabilities by 

Qij (t). Subsequently, we maximize the log-likelihood function (3.4) using as information 

from the validation sample the data fiom the second raked matrix. This maximization step 

will produce maximum likelihood estimates for P. and the cross-sectional misclassification 

probabilities under the second set of constraints. We denote these maximum likelihood 

' Note that usually the published stocks are computed taking into account the survey weights. However, for the time being 
we are only concerned with unweighted estimates. 
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estimates for the cross-sectional misclassification probabilities by {t + 1). Both 

maximisations are performed using the EM algorithm and Results 3.1 and 3.2. 

In the third step, we bring the unbiased margins constraint into P. via (t) and {t + 1). 

This is done as follows. Assume that (t) and q-^ (t + 1) are fixed at their maximum 

likelihood values as these are obtained irom the second step. The usual likelihood function of 

the augmented data that is given below 

i ( e ) = n r i K f p . 1 8 ) 
2=1 j—1 

becomes now 

j&fG)=c ] I ( f : ' O' lso 
1=1 

Term c denotes a constant term resulting fi'om the second component of the likelihood 

function (3.18). It follows that 

. (3JW) 
i=l 

Taking the logarithms on both sides of (3.20) and imposing the additional constraint that 

we obtain the following log-likelihood function 
r'-l 

m" E«" +<')ioĝ +« +<.)!% i-E^ 
i=l 

/-I 

i=l 
C3.21) 

In the final step, the log-likelihood function given in (3.21) is maximized assuming that 

(t) and q'^/ (t + 1) are fixed at their maximum likelihood values as these obtained from 

the second step of the estimation process. This can be done using the EM algorithm. Taking 

the conditional expectation of the a log-likelihood (3.21), we have that 

^[z(e;D'=)|D'",D'',e('')] a 

' (^%0 
+ < 1 1 D'",D\8W]log | 1 - ^ 

^1 I 

E 

The E-step can be performed using the following two results. 
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Result 3.3 

The conditional expectations of the missing data in the main sample are estimated using the 

expressions below 

It follows that 

n 

A(c) 

E 
2=1 

A ID", g A ID", ). 

C3.23) 

Proof 

The proof is identical to the proof that is given for Result 3.1. • 

Result 3.4 

The conditional expectations of the missing data in the validation sample are estimated using 

the expressions below 

A(c) A(4 
(3.24) 

Furthermore, it follows that 

;=i 

Proof 

The proof is identical to the proof that is given for Result 3.2. • 
In Results 3.3 and 3.4, the data constraints, n,-, are derived from the main sample. The data 

constraints, nl , are obtained from the original (i.e. not raked) cross-sectional validation 

sample. The misclassification probabilities do not have a superscript {h) since they are 

assumed to be fixed at their maximum likelihood values under the first and the second set of 

constraints. We also note that in the expressions of the conditional expectations (3.23) and 

(3.24) the products of the cross-sectional misclassification probabilities, under the first and 
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second set of constraints, appear. These products replace the classical ICE assumption by a 

"modified" ICE assumption that is also utilised by the unbiased margins estimator (see 

Section 2.4.1). Having estimated the conditional expectations in the E-step, the M-step is 

performed numerically. The effect of fixing the cross-sectional misclassification probabilities 

at their maximum likelihood values is to restrict the estimates derived from the maximisation 

of the log-likelihood function (3.21) so that they satisfy the marginal constraints. 

Before closing this section, we need to make two additional comments. One way to simplify 

the second step in computing the constrained maximum likelihood estimator, is by simply 

replacing the cross-sectional misclassification probabilities by their sample estimates as these 

are obtained firom the two raked misclassification matrices. Furthermore, in this thesis we do 

not discuss variance estimation for the unbiased margins estimator. Approaches for 

computing the variance of an estimator in the presence of raking can be found in survey 

literature (Deville and Samdal 1992). In addition, inference based on the estimated likelihood 

approach must account for the extra variability introduced by the estimation of the nuisance 

parameters. An approach for accounting for this additional variability is described in Gong 

and Samaniego (1981). 

3.4 Accounting for the Complex Survey Design 

The previously described methodology has been developed within a simple random sampling 

framework. However, in most of the cases survey data are collected by utilizing complex 

survey designs. In the following sections, we attempt to account for the existence of a 

complex survey design. 

3.4,1 Pseudo-Maximum Likelihood Estimation: A General Framework 

Under simple random sampling, the general framework for maximum likelihood estimation is 

as follows. Let y., denote n independent and identically distributed random 

variables with known probability density function ^ (%; . Assume now that we are 

interested in making inference about the unknown parameter 9 . In order to do so, we need to 

use the likelihood function given below 

i=l 
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The maximum likelihood estimator of 6 is given by the value that maximises the logarithm 

of the likelihood function. This value can be obtained by setting the score function equal to 

zero and solving the resulting normal equation with respect to the unknown parameter 9 

« = = (3.26) 
#4 oW 

When the sampling design is complex, the density functions ^ become the conditional 

densities of the population given the sampling design. If we want to apply maximum 

likelihood estimation with complex samples, we will need to define the structure of these 

conditional distributions. This process can be highly complicated since it requires modelling 

the relationship between y- and the design variables. An alternative approach, avoiding the 

complications of defining these conditional distributions, is offered by the Pseudo-Maximum 

Likelihood approach, hereinafter PML approach. For a general description of the PML 

approach see Skinner (1989). 

Denote by U the population of interest consisting of N units. If population information is 

available, we can write the log-likelihood function at the population level as follows: 

m = P-27) 
1 

The population level maximum likelihood estimator can be obtained by setting the population 

score function equal to zero and solving the equation with respect to the unknown parameter 

9 

^ ^81og[Z , (g ) ] Q g rpg) 

,5W izf 

In practice, census information is not available. In the absence of auxiliary information an 

estimator of the population parameter of interest can be obtained by employing the survey 

weights. In the simplest case, the survey weights are inversely proportional to the probability 

of selecting a unit in the sample. Denote by the survey weights for the sampled unit. 

The PML approach works by replacing the population level score function by a consistent 

estimate 

= (3.29) 
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Solving equation (3.29) with respect to the unknown parameter 9 , we obtain the pseudo-

/\pml /\pml 

maximum likelihood estimator 6 . We should, however, note that 9 is not unique since 

many consistent estimators of the population score function may exist. 

3.4.2 The Gross Flows Model and Pseudo-Maximum Likelihood in the 

Presence of Misclassitication and Double Sampling 

We now extend the measurement error model presented in Section 3.2.1 to incorporate 

survey weights using the PML approach. We assume a double sampling design similar to 

the one described in Section 3.2.1. We start by formulating the measurement error model 

pretending that population information is available. Denote by the population 

counts for the main survey and for the validation survey respectively. Before proceeding 

with the description of the model, we need to explain the choice of notation. When the 

validation sample refers to the same population as the main sample, are the same. 

hi our developments, however, we distinguish between these two quantities. When the 

validation sample is selected independently from the main sample and from the same target 

population (Section 3.2.1), the data we use for estimating the conditional expectations of 

the missing data in the main sample are the observed flows from the main sample. The data 

that we use for estimating the conditional expectations of the missing data in the validation 

sample are the cross-sectional validation data. Under this approach, we ignore the 

information from the main sample when estimating the conditional expectations in the 

validation sample. This is equivalent to treating N-̂  differently from iV^ . Nevertheless, one 

may argue that since both samples refer to the same population, the information fi'om the 

main sample must be also used in the validation sample otherwise this will impact on the 

efficiency of the maximum likelihood estimator. If we wish to include this extra piece of 

information for fitting the model, we will need to use the results of Section 3.2.2. 

The log-likelihood function of the augmented data at the population level is defined by 

replacing sample counts with population counts in (3.4). This log-likelihood function is 

given by 

i=l i=l 1=1 7=1 
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In (3.30), the parameters need to be replaced, under ICE, by the products of cross-sectional 

misclassification probabilities. In addition, we need to include the extra constraint that the 

sum of the cross-sectional misclassification probabilities for a given true classification must 

add up to one. 

Estimation 

The maximisation of the likelihood function (3.30) is performed using the EM algorithm. 

Implementation of the EM algorithm into a pseudo-maximum likelihood estimation 

framework is also considered in Pfeffermann (1988) but for solving a different problem. The 

author proves that the estimates obtained via the weighted EM algorithm are unbiased and 

consistent. Denote by the vector of pseudo-maximum likelihood estimates in the 

(A) EM iteration. We start by writing the conditional expectation of the augmented log-

likelihood as in (3.5) but by replacing the sample by population counts. 

i=l 

+ I I log 1 - Y ] 
I »=1 

r - 1 

'p. 
(3.31) 

i=l j=l 

The conditional expectations involved in (3.31) are estimated using the following two results. 

Result 3.5 

Denote by w -̂ the survey weights for individual ^ performing an observed transition j . The 

conditional expectations of the missing data in the main sample are estimated using the 

expression below 

n f=i 

A(A) W 

N 

\ / 

A (A) 

. t=l 

(3.32) 

Proof 

Replacing sample counts by population counts and utilising Result 3.1, the conditional 

expectations of the unobserved quantities in the main sample are estimated using the 

expression below 
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A(A) AW 
9% 

V—\ aW A W 

i=l 

We note that the data we pretend to have are the population observed gross flows N^-. In 

reality, the N,j 's are unknown. We estimate N,j using the survey weights as follows: 

(3J3) w. = E 
f=i 

% ' 

Replacing the N, j ' s by their estimates from (3.33), the expression for estimating the 

conditional expectations of the missing data is now given by 

5=1 

A(A) AC') 
Qii ^ ' 

AW 

j=i 

(3.34) 

In (3.34) we can further replace the survey weights by normalised survey weights. In this case 

expression (3.34) takes the following form 

6=1 
AW A(A) 
Qij Pi 

N 

/ 

' A AW AW 

It follows that 

i = i • 

Result 3.6 

The conditional expectations of the unobserved quantities in the validation sample are 

estimated using the expression below 

|Z)'',8Wp^) = 
E - J 
e=i 

A(A) AW 
lij P' 

N 

J 

sr^ \—\ AW 
E L « # P-

2 j 

(3.35) 

Proof 

Replacing the sample counts by population counts and utilising Result 3.2, the conditional 

expectations of the unobserved quantities in the validation survey are estimated by 
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AW AW 
9% 

V—\ V—A a W 

* J 

The data that we pretend to have are the cross-sectional population counts on the incidence of 

error. In reality, these 's are unknown and need to be estimated. This can be done using 

the survey weights of the validation survey and the following expression 

Arl = (336) 
f=i 

Replacing the N l ' s by their estimates from (3.36), we obtain the following expression 

(=1 

AW A W 
9% 

V—> V—\ A (A) 

* ; 

Replacing survey weights by normalised survey weights, we obtain the required results 

E " . AW 
Qij Pi 

N •sr~~\ a W A 

^ i j 

It follows that 

i = i • 

After estimating the conditional expectations of the unobserved quantities in the main sample 

and in the validation sample, full information is obtained that is used to maximise the log-

likelihood function (3.30). The M-step is performed numerically. Note that the score 

functions are now the weighted score functions. These provide estimates of the population 

level score functions. The algorithm runs until the convergence criterion defined by (3.15) is 

satisfied. At the end of this algorithm a vector of pseudo maximum likelihood estimators, 

9^"' , is derived. 
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3.4.3 A Note on the Estimation of Conditional Expectations in the Case of 

an External Validation Sample 

In this section, we present a procedure for obtaining cross-sectional population estimates for 

the incidence of error when weights for the validation survey are not available or not 

appropriate for the population of interest. This can happen, for example, in the case that we 

employ an external validation sample. The procedure is as follows. 

Population cross-sectional estimates at t are derived using the weights of the main survey. 

Assume now that the misclassification process in the external validation sample is 

informative of the misclassification process in the target population. Under this assumption, 

the misclassification probabilities from the validation sample can be employed to correct 

population cross-sectional estimates at t for measurement error. This can be achieved by 

using one of the estimators that we presented in Section 2.2.1.1. At the end of this process we 

obtain cross-sectional observed and adjusted for misclassification population estimates. The 

final step in this process involves calibrating pr = k'j, firom the external 

validation sample, to these two estimated population margins. The internal cells of the raked 

matrix can then be multiplied by the population size to produce cross-sectional estimated 

population counts for the incidence of error. These estimates are employed to estimate the 

conditional expectations of the missing data in the validation sample when using the EM 

algorithm and the PML approach. 

The same procedure can be used also for unweighted analysis. The only difference now is 

that the marginal observed and adjusted estimates are derived without utilising the weights of 

the main survey, but simply by using unweighted data fi"om the main survey. This is 

equivalent to transforming an external validation sample into an internal validation sample. 

Both procedures will be illustrated later when employing misclassification probabilities from 

an external validation sample. 

3.4.4 A Constrained Pseudo-Maximum Likelihood Estimator 

A natural extension to the pseudo-maximum likelihood estimator is the constrained pseudo-

maximum likelihood estimator. In this section, we briefly describe this estimator, which can 
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be derived by a straightforward extension of the results presented in Sections 3.3 and 3.4.2. 

The constrained pseudo-maximum likelihood estimator must approximately respect the 

marginal population estimates at t and t + 1. Pretending that census information is available, 

the log-likelihood function given in (3.30) is utilised. The constrained pseudo-maximum 

estimator is obtained using the procedure described in Section 3.3. The only modification is 

the following: We now rake the cross-sectional misclassification matrix twice. The first 

raking produces (t), which is consistent with the population observed marginal 

estimates at the first time point and the second raking produces Q'"'" (t +1 ) , which is 

consistent with the population observed marginal estimates at the second time point. The rest 

of the estimation process remains the same. The second step involves two maximisation 

problems under the first and the second set of constraints. These maximisation problems are 

solved using the EM algorithm and Results 3.5 and 3.6. In the final step, the log-likelihood 

function (3.30) is maximised only with respect to assuming that q̂^ are fixed at their 

maximum likelihood values. This final maximisation problem is also solved using the EM 

algorithm. 

3.4.5 Weighted Moment-type Estimators 

Before illustrating the methodology of the previous sections, we need to provide expressions 

for the weighted versions of some of the moment-type estimators presented in Chapter 2. 

The Weighted Conventional Estimator 

A « 

Denote by II the matrix of population level estimates of the observed transition probabilities. 

A « 

Denote further by Q (t) the weighted cross-sectional misclassification matrix. The weighted 

equivalent of estimator (2.41) is given by 
^ A 

P = 
A A " 

0 (^) 
A « 

?;ec n . (3.37) 

The Weighted Unbiased Margins Estimator 

A (C)u 

Denote by Q {t +1) the misclassification matrix produced by raking the weighted 

A 

misclassification matrix, Q (t), to the population observed marginal estimates at t + 1. 
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Denote also by Q {t) the misclassification matrix produced by raking the weighted 

A ̂  

misclassification matrix , Q (t), to the population observed marginal estimates at t. A 

weighted equivalent of the unbiased margins estimator (see Section 2.4.1) is given by 
/ / \ u - u m \ Fr A (c)u A (c)" /A«\ 

2;ecff (̂  + 1) ® 0 M N e c i n I. (3.38) 

3.5 Deriving UK Labour Force Gross Flows Adjusted for Misclassification 

In this section, we present five applications. The first two applications illustrate the 

adjustment of UK labour force gross flows for misclassification. This is done using a number 

of alternative point estimators that were presented in Chapter 2 and Chapter 3. The third 

application aims at contrasting the conventional (moment-type) estimator with the maximum 

likelihood estimator in the presence of intense misclassification. hi the fourth application, we 

conduct a sensitivity analysis of the adjusted UK labour force gross flows using different 

validation datasets. Finally, in the fifth application we derive maximum likelihood estimates 

of the adjusted gross flows when the validation sample is selected by sub-sampling units that 

already participate in the main survey. Observed labour force gross flows are estimated by 

utilising the common sample between two quarters from the UK LPS (see discussion in 

Section 1.7.3). Due to the absence of a UK validation survey, we utilise external validation 

data. The joint distribution for the incident of error pr = z, , estimated fi'om the 

external validation survey, is raked to the UK marginal labour force estimates at time t using 

the procedures described in Section 3.4.3. This is done both for unweighted analysis and for 

weighted analysis. 

Application 3.1: Adjusting UK Labour Force Gross Flows - Unweighted Analysis 

For this application, we utilise UK labour force gross flows between summer-autumn 1997 

and a smoothed version of reconciled validation data firom the Swedish (October 1994 - April 

1995) LFS re-interview programme (see Section 1.8.4). The estimators we consider are the 

following; The unadjusted point estimator, the conventional estimator (Section 2.2.2.1), the 

unbiased margins estimator (Section 2.4.1), the maximum likelihood estimator (Section 3.2.1) 

and the constrained maximum likelihood estimator (Section 3.3). The matrix of 
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misclassification probabilities is given below. The columns of this matrix denote true states 

whereas the rows denote observed states. The convergence criterion for the EM algorithm, as 

this is defined by (3.15), is 5 = lOT*. Convergence was achieved within 43 iterations. An 

empirical investigation of the identifiability of the model is provided by initialising the EM 

algorithm using different sets of starting values. Two scenarios are examined. Under the first 

scenario, the EM is initialised using values close to the maximum likelihood point. Under the 

second scenario, the EM is initialised using values further from the maximum likelihood 

point. The algorithm always arrived at the same convergence region. This is illustrated by 

producing figures that trace the convergence of the EM algorithm, for the different gross 

flows parameters, under the two scenarios (see figures in Appendix II). 

E U N 

E 0.981 0.017 0.032 

U 0.008 0.951 (1027 

N 0.011 0.032 0.941 

A 

Q 

The UK observed marginal labour force estimates for summer-autumn 1997 are given below. 

These marginal estimates must be approximately respected both by the unbiased margins 

estimator and by the constrained maximum likelihood estimator. 

Unweighted observed labour force marginal estimates at t 

E = 0.741, U=0.052, N=0.207 

Unweighted observed labour force marginal estimates at ^ + 1 

E = 0.748, U=0.046, N=0.206 

Table 3.4: Adjusted UK labour force gross flows for summer-autumn 1997 using the 

alternative moment-type and maximum likelihood estimators - Unweighted analysis 

Flow Observed Conventional Maximum Unbiased Constrained 
Flows Likelihood Margins Maximum 

Likelihood 
EE 0.716 0.7420 &7410 0.7325 0.7330 
EU 0.009 0.0028 0.0033 &0063 0.0060 
EN 0.016 0.0024 0.0026 0.0020 0.0025 
UE 0.016 O.OIM 0.0106 0.0138 0.0132 
UU 0X%7 0.0292 0X%91 0.0330 0.0327 
UN 0.009 0.0033 0.0036 0.0051 0.0046 
NE (1016 &0026 0.0028 &0019 0.0024 
NU (1010 0.0045 0.0050 0.0068 0.0064 
NN 0U81 0.2030 0.2020 0.1986 0.1992 
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Application 3.2: Adjusting UK Labour Force Gross Flows - Weighted Analysis 

In this application, we bring into the analysis the weights of the UK LFS by using weighted 

UK labour force gross flows between summer-autumn 1997. As discussed in Section 1.7.2, 

the weights of the UK LFS serve two purposes i.e. they produce population level estimates 

and at the same time compensate for the bias due to sampling attrition. Therefore, by 

including the survey weights into the measurement error model we implicitly provide a bias 

correction to labour force gross flows estimates also for sampling attrition. The estimators we 

consider are the weighted unadjusted point estimator, the weighted conventional estimator 

and the weighted unbiased margins estimator (Section 3.4.5), the pseudo-maximum 

likelihood estimator (Section 3.4.2) and the constrained pseudo-maximum likelihood 

estimator (Section 3.4.4). The convergence criterion for the EM algorithm is 6 == lOT*. 

Convergence was achieved within 22 iterations. The UK weighted observed marginal labour 

force estimates for summer-autumn 1997 are given below. These marginal estimates must be 

approximately respected both by the weighted unbiased margins estimator and by the 

constrained pseudo-maximum likelihood estimator. 

Weighted observed marginal estimates at t 

E = 0.734, U=0.059, N-0 .207 

Weighted observed marginal estimates at t + 1 

E 0.737, U-0.052, N=0.211 

Table 3.5: Adjusted UK labour force gross flows for summer-autumn 1997 using the 

alternative moment-type and maximum likelihood estimators - Weighted analysis 

Flow Weighted Weighted Pseudo Weighted Constrained 
Observed Conventional Maximum Unbiased Pseudo 

Flows Likelihood Margins Maximum 
Likelihood 

EE 0705 0.7312 0.7304 0.7225 0.7226 
EU 0.010 0.0038 0.0041 0.0068 0.0067 
EN 0.019 0.0049 0.0052 0.0043 0.0051 
UE 0.017 0.0113 0.0114 0.0143 0.0139 
UU 0.032 0.0349 0.0347 0.0390 0.0380 
UN &010 0.0042 0.0044 0.0060 0.0057 
NE 0.015 0.0005 0.0015 0.0001 0.0013 
NU 0.010 0.0046 0.0047 0.00^ 0.0065 
NN 0U82 0.2046 0JW36 0.2003 0.2002 
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Application 3.3: Comparing the Moment-type Estimators with the Maximum Likelihood 

Estimators in the Presence of Intense Misclassification 

One of the main disadvantages associated with the use of the conventional point estimator is 

that it can result in estimates that lie outside the parameter space. This can happen due to the 

inversion of the misclassification matrix involved in the computation of this estimator. In 

Chapter 2, we investigated ways to overcome this problem by defining alternative moment-

type estimators. An alternative solution can be offered by the maximum likelihood estimator. 

In this application, we use the original (i.e. not smoothed) misclassification matrix estimated 

from the Swedish validation survey (October 1994 - April 1995). Some of the elements of 

this matrix are associated with intense misclassification for example, = 0.041. We 

compare estimates derived when using the moment-type and the maximum likelihood 

estimators. The matrix of misclassification probabilities is given by 

E U N 

0.980 0.016 0.041 

u 0.008 0.950 0.023 

N 0.012 0.034 0.936 

Table 3.6: Comparing the moment-type estimators with the maximum likelihood estimators 

in the presence of intense misclassification 

Flow Observed Conventional Maximum Unbiased Constrained 
Flows Likelihood Margins Maximum 

Likelihood 
EE 0J16 0J450 &7419 (17365 0.7346 
EU 0.009 0.0025 0.0028 0.0059 0.0056 
EN 0.016 410009 0.0016 -0.0014 0.0019 
UE 0.016 0.0101 O.OIM (10135 0.0129 
UU (1027 0.0294 0.0293 (10331 0.0320 
UN 0.009 0.0038 0.0040 (10053 0.0052 
NE 0.016 410012 0.0013 -0.0020 0.0017 
NU 0.010 0.0051 0.0052 (10069 0.0069 
NN 0^81 &20^ OjW36 (12022 0.1992 

The results indicate that when intense misclassification exists, the conventional point 

estimator can easily produce awkward estimates (in this case negative probabilities) that lie 

outside the parameter space. On the other hand, the maximum likelihood estimator 

overcomes this problem by constraining the estimates to lie within the parameter space. 
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Furthermore, although the unbiased margins estimator is designed to relax ICE, it can still 

lead to negative adjusted flows (see for example. Table 3.6). In contrast, the constrained 

maximum likelihood estimator produces estimates that lie within the boundaries of the 

parameter space. Therefore, we propose that both the unconstrained maximum likelihood 

estimator and the constrained maximum likelihood estimator should be preferred over the 

corresponding moment-type estimators. 

Application 3.4: Sensitivity Analysis of the Adjusted UK Labour Force Gross Flows 

In applications 3.1 and 3.3, we used different versions of the Swedish misclassification 

probabilities in order to adjust UK labour force gross flows for measurement error. In this 

application, we conduct a sensitivity analysis. More specifically, we investigate the impact 

that alternative sets of misclassification matrices have on the unweighted adjusted UK labour 

force gross flows. For the purposes of this application, we employ the misclassification 

probabilities firom the LFS re-interview survey in Canada (Singh and Rao 1995) and from the 

CPS re-interview survey in the US (Poterba and Summers 1986). We further use the 

smoothed version of the Swedish misclassification probabilities (see application 3.1), the 

original Swedish misclassification probabilities (see application 3.3) and a weighted version, 

using the weights from the Swedish re-interview survey (October 1994 - April 1995), of the 

Swedish misclassification matrix. Adjusted gross flows are derived using the maximum 

likelihood estimator. The smoothed version and the original version of the Swedish 

misclassification matrices are reported in applications 3.1 and 3.3 respectively. The new 

misclassification matrices are defined as follows: 

Q 

E u N E U N 

E OLSWS 0.024 OIW?' E 1].981 0X%3 &035 

U 0.002 &90 0.008 Q = U 0.004 0.907 01^7 

N 0XM5 0.076 0.985 N 0.015 a070 0.958 

A CPS 

E U N 

E 0.981 0.035 0.02 

U &003 0.83 0.01 

N 0.016 0J.35 0.97 
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Table 3.7: Sensitivity analysis of the adjusted UK labour force gross flows using the 

alternative sources of validation data 

Flow Observed Original Smoothed Weighted CPS Canadian 
Flows Swedish Swedish Swedish LFS 

EE &716 0J419 &7410 0.7391 0.7395 0J254 
EU 0.009 0.0028 &0033 0.0058 &0067 &0076 
EN &016 0.0016 0.0026 &0012 0.0019 0.0103 
UE 0.016 0.0103 0.0106 0.0136 0.0151 0.0154 
u u (1027 &0293 0X%91 &0326 0.0385 0.0330 
UN 0.009 0.0040 0.0036 0.0062 0.0036 &0059 
NE 0.016 0.0013 0.0028 (10011 0.0013 0.0101 
NU 0.010 &0052 0.0050 (10075 0.0050 0.0071 
NN 0T8I <12036 0.2020 (11929 0J884 &1852 

To quantify the effect of the different misclassification matrices, we compute the sum of the 

off-diagonal adjusted flows. This sum represents the overall adjusted probability of changing 

labour force status between two quarters. We further compute the sum of the off-diagonal 

unadjusted flows. The closer the adjusted sum is to the unadjusted sum, the less the impact of 

the adjustment procedure. These sums appear in the table below. 

Table 3.8: Investigating the impact of the alternative misclassification matrices 

Unadjusted Original 
Swedish 

Smoothed 
Swedish 

Weighted 
Swedish 

CPS Canadian 
LFS 

Sum 0.076 0.025 (1028 0.035 0.034 (1056 

The Canadian set of misclassification probabilities provides the less severe set of adjustments 

while the original Swedish misclassification probabilities provide the most severe set of 

adjustments. Using these results, one can construct a range of adjusted UK labour force gross 

flows. 

Application 3.5: Maximum Likelihood Estimation When the Validation Sample is Selected 

by Sub-sampling Units firom the Main Sample - Unweighted Analysis 

In this application, we allow for a double sampling scheme under which the validation sample 

is selected by sub-sampling units that already participate in the main survey. The size of the 

main survey is n = 60000. Between t and t + 1 we select a sub-sample of 10000 units out 

of the 60000 units. The units of this sub-sample participate in the cross-sectional validation 

survey. The information we have consists of the observed flows for n — n" = 50000 units 

and the observed flows and the cross-sectional misclassification probabilities for 
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n" ~ 10000 units. We compute maximum likelihood estimates of the adjusted gross flows 

using the theory of Section 3.2.2. For comparison reasons, we also include the conventional 

estimator. Without loss of generality, the theory is illustrated for the 2-state model i.e. 

Employed and Unemployed or Inactive. The convergence criterion for the EM algorithm is 

5 = lOr*. Convergence was achieved within 58 iterations. The observed labour force gross 

flows are estimated from the UK LFS (summer-autunon 1997). The matrix of 

misclassification probabilities is estimated using the smoothed version of the Swedish re-

interview data and is given by 

E 
Q 

E [/ + # 

0.99 O-OSS"! 

0.01 0.947 

Table 3.9: Adjusted labour force gross flows (4-state model) when the validation sample is 

selected by sub-sampling units from the main sample 

Flow Observed Conventional (ICE) Maximum Likelihood (ICE) 

E,E 0.716 &7284 0.7270 

E,U+N 0.025 0.0051 0.0054 

U+N,E 0.032 0.0131 0.0134 

U+N, U+N 0.227 02532 0.2542 

3.5.1 Discussion on the Adjustments Derived from the Alternative 

Estimators 

The existence of measurement error, when estimating labour force gross flows, results in the 

overestimation of the labour market mobility. The effect of adjusting labour force gross flows 

is to increase the diagonal elements and decrease the off-diagonal elements of the unadjusted 

gross flows matrix. Adjustments derived under ICE are more severe than those produced 

when relaxing ICE. For example, a relaxation of ICE is provided by the unbiased margins 

assumption. To see the effect of this assumption, one can compare the sum of the diagonal 

adjusted flows when using the unbiased margins estimator (or the weighted unbiased margins 

estimator) with the sum of the diagonal adjusted flows when using the conventional estimator 

(or the weighted conventional estimator). The sum of the diagonal adjusted flows produced 

under the former group of estimators is lower than the sum of the diagonal adjusted flows 
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produced under the latter group of estimators. The same holds also when comparing the 

constrained maximum likelihood estimator with the maximum likelihood estimator. 

When incorporating the survey weights into the estimation process, the adjustments remain in 

the same direction. However, it is of interest to investigate the impact of weighting. 

Comparing the weighted with the unweighted observed flows, we note that in most of the 

cases the weighted off-diagonal elements increase compared to their unweighted equivalents. 

This seems reasonable. The UK LFS weights account for sampling attrition. Sampling 

attrition is related to more volatile sample units i.e. units associated with a higher probability 

of changing labour force status between t and t + 1. Therefore, the survey weights appear to 

correctly modify the unweighted estimates. 

3.6 Summary 

hi this chapter, we presented a model for adjusting gross flows estimates for 

misclassification. The model is formulated in a missing data framework and under alternative 

double sampling schemes. Maximum likelihood estimates are derived using maximum 

likelihood estimation via the EM algorithm. A constrained maximum likelihood estimator 

relaxes ICE and protects against the misspecification of the model assumptions. The model 

has been extended to account for the existence of a complex survey design. This is achieved 

by using the survey weights and the pseudo-maximum likelihood approach. Adjusted UK 

labour force gross flows are derived using alternative point estimators and re-interview data. 

Accounting for measurement error, results in estimating a less dynamic labour market. Use of 

the maximum hkelihood estimator offers some practical advantages over the use of the 

conventional (moment-type) estimator. The current model assumes a non-differential 

measurement error mechanism and a non-differential gross flows mechanism, hi Chapter 4, 

we extend the model to allow for heterogeneity in both mechanisms, hi Chapter 5, we derive 

variance estimators for the moment-based and the likelihood-based adjusted gross flows. 

Finally, in Chapter 6 we contrast the likelihood-based approach with the moment-type 

approach using Monte-Carlo simulation experiments. 
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Chapter 4 

Likelihood-based Inference for Gross Flows in the 

Presence of Misclassification, Double Sampling and 

Heterogeneity Associated with Discrete Covariates 

4.1 Introduction 

In Chapter 3, we presented a likelihood-based approach for adjusting gross flows for 

measurement error. However, the underlying model assumes the existence of a homogeneous 

measurement error and gross flows mechanism. It may be more realistic to assume that 

respondents with different socio-demographic characteristics have different probabilities of 

misclassification and different gross flows patterns. For example, younger respondents can be 

regarded as being more volatile and more prone to misclassification than older respondents. 

After giving some basic definitions, the model for adjusting gross flows for measurement 

error (see Chapter 3) will be extended to allow for heterogeneity. The use of discrete 

covariates implies that we account for heterogeneity by fitting the measurement error model 

within the post-strata defined by these covariates. The constrained maximum likelihood 

estimator and the pseudo-maximum likelihood (PML) estimator that allow for heterogeneity 

are also presented. Since most of the theory in this chapter is derived by using a 

straightforward extension of the theory in Chapter 3, the focus will be on applications. The 

effect of introducing heterogeneity is examined by contrasting estimators that allow for 

heterogeneity with estimators that ignore heterogeneity. The impact of measurement error on 

summary statistics of the labour market activity and on the probabilities of transition for 

different socio-demographic groups is also investigated. In the final sections, we discuss the 

limitations of the post-stratification parameterisation and we sketch an alternative, more 

flexible parameterisation. 
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4.2 Definitions and Previous Work 

We start by giving the following two definitions. 

Definition 4.1 

Assume a px z cross-classification defined by p categorical variables with z levels each. 

The misclassification mechanism is defined as non-differential if the following holds 

pr ; I = z) = V groups defined by p x 2. (4 1) 

The assumption of non-differential misclassification states that the all groups defined by the 

px z cross-classification have the same proneness to error. 

Definition 4.2 

Assume a. px z cross-classification defined by p categorical variables with z levels each. 

The gross flows mechanism is defined as non-differential if the following holds 

pr V groups defined by p x z. (4.2) 

The assumption of a non-differential gross flows mechanism states that the all groups defined 

by the p X z cross-classification have the same gross flows pattern. 

In the presence of cross-sectional validation information, the existing literature accounts for 

heterogeneity by allowing ICE to hold within the groups defined by the px z cross-

classification. This is the so-called unit heterogeneity assumption since heterogeneity is 

assumed to exist between units that belong in different groups. Let us assume that there are 

A 

$ groups defined by the px z cross-classification. Denote by 11 the matrix of estimated 

A 

observed transition probabilities, by the estimated misclassification matrix for group g 

and by the fraction of sample units that belong in group g . The unit heterogeneity 

estimator is defined by 

P 
9=1 ^ 

fee in (4.3) 
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This is a moment-type estimator that allows for heterogeneity. However, this is only in the 

measurement error mechanism. Skinner and Torelli (1993) provide an expression for the bias 

introduced when ignoring heterogeneity. Denoting by A the overall probability of correct 

classification and by diag a matrix with elements only in the main diagonal and zeros 

elsewhere, the bias of A when ignoring heterogeneity is given by 

Bias A = ir -,(a) (4 4) 0(^) ® 0 (^) - Q) (^) (S) (^) 
5=1 

The authors suggest that ignoring heterogeneity will result in underestimating the overall 

probability of correct classification or, equivalently, in overcorrecting for measurement error. 

Unlike some of the methods that do not use validation information (see for example, 

Pfeffermann, Skinner and Humphreys 1998), the unit heterogeneity approach does not allow 

for heterogeneity in the gross flows mechanism. In the following sections, we present a more 

flexible way of incorporating heterogeneity than the one that is proposed in a moment-based 

framework. 

4.3 Modelling Gross Flows in the Presence of Heterogeneity Induced by 

Discrete Covariates 

Stating the Assumptions and Formulating the Model 

Assume a double sampling scheme under which a validation sample of n" units is selected 

independently from the main sample of n units and from the same population as the main 

sample has been also selected. This scheme implies that the main sample and the validation 

sample do not share common units. The main survey is a panel survey and provides 

information about the flows of people between r mutually exclusive states at t and t + 1. 

On the other hand, the validation survey provides information about the cross-sectional 

incidence of misclassification errors related to these states at t . Let us further assume that 

both the validation sample and the main sample can be stratified in $ mutually exclusive 

groups defined by p categorical variables with z levels each. The double sampling scheme 

described by Tables 3.1 and 3.2 (see Chapter 3) is now defined for each of the $ groups. In 

what follows, we define a category as a pair of states for which there is a flow so there are 

such flow categories. Denote by the number of sample units that belong in group ^ 
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and cell ij defined by the cross-classification of the observed with the true classifications in 

the main sample and in the validation sample respectively. A superscript (*) is used to denote 

unobserved quantities. Extending the likelihood function of the augmented data (3.2) to allow 

for heterogeneity, we have that 

M=f[nn(^.A.f"finn(^^A.f • 
g=\ !=1 i=l g=l i=l j=l 

The model described by the likelihood function (4.5) assumes the existence of both a 

heterogeneous gross flows mechanism and of a heterogeneous misclassification mechanism. 

The model assumes that sample units in different groups have different misclassification and 

gross flows patterns. Taking the logarithms on both sides of (4.5) and imposing the additional 

constraint that 

== 1 for fLxexi g, (4.6) 
i=l 

we obtain the following log-likelihood function 

J, / _ ! $ / 

'(©)=EE«;' i°g +EEE«" 
9=1 ̂ =1 ^ *=1 J =̂1 J=1 

(4.7) 

The group-specific misclassification probabilities, , are unknown and are estimated using 

the group-specific cross-sectional misclassification probabilities and the ICE assumption. 

However, under this model ICE holds within groups. This assumption is equivalent to the 

unit heterogeneity assumption that is also used in moment-based framework. The likelihood 

function presented here does not incorporate the ICE assumption. After incorporating ICE, 

we need to add the extra constraint that the sum of the cross-sectional misclassification 

probabilities for a given true classification must add up to one. This implies that the final 

number of group-specific parameters is 2r^ — r — 1. 

Estimation 

The log-likelihood function of the augmented data is maximised using the EM algorithm. The 

expectation step and the maximisation step are described below. 
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E-step 

Denote by D"® the group-specific observed data from the validation sample, by D™® the 

group-specific observed data from the main sample, by (h) the current EM iteration and by 

0^ )̂ the vector of parameters in the (h) EM iteration. Taking the conditional expectation of 

the augmented log-likelihood (4.7) given the observed data and the parameters from the 

(A) EM iteration, the augmented log-likelihood is given by 

E[z(e;i7) I I + I Zr',8(''))]log;^ 
g—l i=l 

r̂ -1 
+ 

r 
log 

t=l 

+ «(«-•' i£ ' ' , e '«) + E(ng |D"»,e"')]log(«^), 

(4.8) 

The expectation step (E-step) can be performed using the following two results. 

Result 4.1 

Denote by the total number of sample units in the main sample and group g that make 

transition j . The conditional expectations of the missing data in the main sample and group 

g are estimated using the following expression 

It follows that 

AC") 
Qijg P is 

t= l 

for fixed g. 

I g | D"", for sxed 
i = i 

(4.9) 

(4.10) 

Result 4.2 

Denote by the total number of sample units in the validation sample and group g that 

belong in the combination of the true and the fallible classifications (see Table 3.3). The 
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conditional expectations of the missing data in the validation sample and group g are 

estimated using the following expression 

It follows that 

Pig 

EE A(k) ^ijg 5̂ 

i j 

for Gxed g. 

^ I I for 6xed g. 
j=i 

04 11) 

(4.12) 

In Results 4.1 and 4.2, the parameters q̂ •g need to be replaced by the products of group-

specific cross-sectional misclassification probabilities. The proofs of Results 4.1 and 4.2 are 

identical to the proofs of Results 3.1 and 3.2. 

M-step and Convergence of the EM Algorithm 

The maximisation step is performed numerically using a Newton-type algorithm. However, 

unlike the model that assumes homogeneity, the maximisation step is now replaced by a 

series of maximisation steps i.e. one for each group g . For a fixed group g, the convergence 

criterion we use is the I? -norm of the vector of parameters obtained from two successive 

iterations of the EM algorithm defined by 

0(A) _ gCi+l) 
g 9 

2r-r-l 
E (C (4.13) 
:=1 

Using the previously described model, we obtain group-specific maximum likelihood 

estimates for the adjusted gross flows and for the misclassification probabilities. However, in 

many cases we are interested in obtaining overall adjusted gross flows. Combining the group-

specific maximum likelihood estimates and assuming that is fixed, we derive overall 

adjusted gross flows using the following expression 

uec (>)-E A 
aveciPc (4.14) 
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Extending the Heterogeneity Model to Account for the Complex Survey Design 

The heterogeneity model can now be extended to account for the existence of a complex 

survey design. This can be achieved using the survey weights and the pseudo-maximum 

likelihood approach (see Section 3.4.2). Denote by the number of population units 

that belong in group g and cell ij defined by the cross-classification of the observed with the 

true classifications. The expectation step (E-step) is performed using the following two 

results. 

Result 4.3 

Denote by the survey weights for sample unit ^ , which belongs in sub-population g and 

performs transition j, by N^ the size of sub-population g and by » the size of group g m 

the main sample. The conditional expectations of the missing data in the main sample and 

group g are estimated using the following expression 

It follows that 

/ n \ 
E n J 
5=1 

AW AW 

\ A(ft) 

. t=l 

J=1 

(4.15) 

(4.16) 

Result 4.4 

Denote by the survey weights for sample unit ^ in the validation sample, which belongs 

in sub-population g and in the combination of the true and the fallible classifications, by 

Ng the size of sub-population g and by the size of group g in the validation sample. The 

conditional expectations of the missing data in the validation sample and group g are 

estimated using the following expression 

E 
f=i 

A(h) 

V—\ \ aĈ) 
(4.17) 
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It follows that 

i=i 

The proofs of Results 4.3 and 4.4 are identical to the proofs of Results 3.5 and 3.6. 

Extending the Constrained Maximum Likelihood Estimator to Account for Heterogeneity 

Induced by Discrete Covariates 

The constrained maximum likelihood estimator (see Section 3.3) can be modified to account 

for the existence of heterogeneity. The stratification assumed here defines $ gross flows 

matrices. The rows and columns of these matrices represent marginal constraints that need to 

be respected by the adjusted gross flows. Following the same approach as in Section 3.3, 

these constraints are imposed implicitly via the estimated likelihood approach. More 

specifically, after estimating group-specific misclassification probabilities under the first 

and the second set of constraints, in the third step we impose the unbiased margins constraint 

by fixing at their maximum likelihood values. The log-likelihood defined by (4.7) will 

now depend only on P.̂  and is maximised using the EM algorithm and the following two 

results; 

Result 4.5 

The conditional expectations of the missing data in the main sample and group g are 

estimated using the following expression 

C ( ( + 1 ) 

%=1 

(4.19) 

Result 4.6 

The conditional expectations of the missing data in the validation sample and group g are 

estimated using the following expression 

n kg 

C it +1) ^ijg 
/\ (A) 

E E C ( « + 1) 
0L2O) 
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The data constraints are derived from the main sample and group g . The data constraints 

nl̂  are derived from the original (i.e. not raked) cross-sectional validation sample and group 

9-

4.4 Adjusted UK Labour Force Gross Flows that Allow for Heterogeneity 

The measurement error model that allows for heterogeneity is used to derive labour force 

gross flows adjusted for measurement error. The observed labour force gross flows are 

estimated by utilising the common UK LPS sample between summer-autumn 1997. Due to 

the absence of a UK validation survey, we use a smoothed version of reconciled validation 

data from the Swedish (October 1994 - April 1995) LPS re-interview programme (see also 

the applications in Chapter 3). The joint distribution pr(Y* = i,Y^ — for group g, 

estimated from the smoothed Swedish validation sample, is raked to corresponding UK 

group-specific marginal labour force estimates. This is achieved using the procedures 

described in Section 3.4.3. We present three applications. In the first application, we employ 

multinomial logistic models in an attempt to investigate the existence of heterogeneity in the 

gross flows and/or in the measurement error mechanism. The other two applications illustrate 

the methodology for adjusting labour force gross flows for measurement error. Both weighted 

and unweighted analysis is considered. 

Application 4.1: Detecting the Existence of Heterogeneity in the Misclassification and/or in 

the Gross Flows Mechanism 

The simplest way to detect heterogeneity is to fit multinomial logistic models. If respondents 

that belong to different groups are associated with different transition and/or misclassification 

probabilities, we will assume that heterogeneity exists. We model the probability that a unit 

of the main sample ^ makes a transition from state ^ at t to state j at t + 1, compared to a 

baseline probability of transition, as a function of p categorical variables. This model is 

described by 

log 
- d 

= « % (4.21) 
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We further model the probability that a unit of the validation sample ^ is classified in state i 

at t when he/she truly belongs in state k, compared to a baseline probability of 

misclassification, as a function of p categorical variables. This model is given by 

log (4.22) 
pr[Y: = l',Y,=k') 

hi (4.21) and (4.22), X denotes the design matrix and a, (3 are the vectors of parameters to 

be estimated. Note that there is no requirement for the two models to include the same set of 

covariates. We fit the models (4.21) and (4.22) using the common UK LPS sample between 

summer-autumn 1997 and the smoothed version of the Swedish validation dataset 

respectively. Both modelling exercises do not account for the complex survey design under 

which the data have been collected. For the purposes of this application, we include in the 

models two categorical variables with two levels each i.e. gender (l="Males, 0="Females") 

and age (1-T6-22", 0="23-64"). The reason for using this particular partitioning of the age 

variable is because we are trying to maximise the dissimilarity between the age groups. 

However, one can use a more detailed partitioning. 

Table 4.1: Anova table from modelling the unadjusted probabilities of transition 

Model 
(Terms added sequentially) 

Deviance Change in Degrees 
of Freedom 

Likelihood Ratio 
Statistic* 

Null 11761L8 8 
Gender 116017.6 8 1594.20 

Age 113872.4 8 2145.20 
* ^ 8 l i / ,0 .05 ~ 1 5 . 5 0 , X g — 2 0 . 0 9 

Table 4.2: Parameter estimates fi"om modelling the unadjusted probabilities of transition-

Multinomial logistic model with age and gender as covariates 

Transition Intercept Gender 
EU -4.69 0U9 IJl 
EN -3.92 -0^0 1J8 
UE 4T6 0.01 1.73 
u u -1.72 OJl 0.96 
UN -470 -0.06 1.75 
NE -3.85 -&56 1J4 
NU -4Ja -0.40 1.47 
NN -1.05 -&80 025 

The parameter estimates for gender and age, reported in Table 4.2 and in Table 4.4, refer to 

young males. In comparison to the empty model, the anova table (Table 4.1) indicates that the 

inclusion of age and gender significantly improves the fit of the model that describes the 
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probability of transition between the different labour force states. This implies the existence 

of heterogeneity in labour force gross flows. For example, the odds of an EU transition for 

young males are 3.7 times the odds of an EU transition for older males. 

Table 4.3: Anova table from modelling the cross-sectional incidence of error 

Model Deviance Change in Degrees Likelihood Ratio 
(Terms added sequentially) of Freedom Statistic* 

Null 16841.20 8 
Gender 16617.46 8 223.74 

Age 16287.86 8 329.60 
* ^ 8 dffi.05 ^ 15.50, X g = 20.09 

Table 4.4: Parameter estimates from modelling the cross-sectional incidence of error -

Multinomial logistic model with age and gender as covariates 

Misclassification Pattern * Intercept Gender 
EU -5.55 0.16 1.73 
EN -5.36 -0.64 2.49 
UE -6.94 -0.39 1.48 
UU -3.29 0.31 1.36 
UN -6.29 -0.75 1.75 
NE -4.78 -0.005 0.53 
NU -4.80 -0.17 -0.44 
NN -1.01 -0.71 0.31 

*The first letter refers to the true classification while the second letter refers to the classification that contains 
measurement error i.e. diagonal elements (EE,UU,]SnSf) indicate coixect classification and off-diagonal elements 
indicate misclassification. 

In comparison to the empty model, the anova table (Table 4.3) indicates that the inclusion of 

age and gender significantly improves the fit of the model that describes the cross-sectional 

misclassification process. This implies the existence of heterogeneity in the measurement 

error mechanism. For example, the odds of young respondents to be classified as inactive (N) 

when they are truly employed (E) are 12 times the odds of older respondents. 

Application 4.2: Adjusting UK Labour Force Gross Flows for Measurement Error in the 

Presence of Heterogeneity-Unweighted Analysis 

Having investigated the existence of heterogeneity in the measurement error and in the gross 

flows mechanism, we now utilise the methodology derived in this chapter to adjust labour 

force gross flows for measurement error. The estimators considered here are the following: 

The conventional non-heterogeneous estimator (Section 2.2.2.1), the unit heterogeneity 

estimator (Section 4.2), the non-heterogeneous maximum likelihood estimator (Section 3.2) 

and the maximum likelihood estimator that allows for heterogeneity (Section 4.3). We allow 
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for heterogeneity according to age, (l-'16-22", 0-'23-64") and gender ( l -Males , 

0="Females"). The convergence criterion for the EM algorithm is 5 = IGT*. Table 4.5 

presents adjusted for measurement error labour force gross flows, using the alternative 

estimators, and contrasts them with the observed (unadjusted) labour force gross flows. 

Table 4.5: Adjusted UK labour force gross flows for summer-autumn 1997 using a range of 

different estimators - Unweighted analysis 

Flow Observed Conventional Non- Unit MLE Non- MLE 
Flows Heterogeneous Heterogeneity Heterogeneous Heterogeneity 

rzcE!) (Age,Gender) rzcE) (Age,Gender) 
EE 0.716 0.7420 0.7415 (17410 0.7323 
EU 0.009 0.0028 0.0030 0.0033 0.0043 
EN 0.016 0.0024 0.0027 (10026 0.0065 
UE 0.016 0.0102 0.0104 (10106 0.0120 
u u 0.027 0.0292 0.0291 0.0291 0.0292 
UN 0.009 0.0033 0.0033 0.0036 0.0044 
NE 0.016 0.0026 0.0029 0.0028 0.0067 
NU 0.010 0.0045 0.0045 0.0050 0.0057 
NN 0.181 0.2030 0.2026 (12020 0.1989 

Table 4.6: Anova table from fitting the measurement error model 

Model Log (L) Likelihood Ratio Statistic* 

Null -89199.30 
Gender -87686.68 3025.24 (14)* 

Gender * Age -8476711 5839.14 (28)* 
*In brackets we report the change in the degrees of freedom as we move from the simplest model towards the 

more complicated model. Also, X' 14 ( ,̂0.01 = 29.14,%' 28 ,̂0.01 — 48.28 

Table 4.6 indicates that the inclusion of age and gender significantly improves the fit of the 

measurement error model. 

Application 4.3: Adjusting UK Labour Force Gross Flows for Measurement Error in the 

Presence of Heterogeneity-Weighted Analysis 

We now derive adjusted UK labour force gross flows between summer-autumn 1997 using 

the alternative point estimators and the UK LFS weights. The survey weights implicitly 

adjust for sampling attrition. The estimators considered in the current application are the 

following; The weighted non-heterogeneous conventional estimator (Section 3.4.5), the 

weighted estimator that allows for heterogeneity (i.e. the weighted version of estimator 

presented in Section 4.2), the non-heterogeneous pseudo-maximum likelihood estimator and 

the pseudo-maximum likelihood estimator that allows for heterogeneity (Sections 3.4.2 and 
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4.3 respectively). We allow for heterogeneity according to age and gender. The convergence 

criterion for the EM algorithm is 5 = 10"^. Table 4,7 presents adjusted for measurement 

error labour force gross flows, using the alternative estimators, and contrasts them with the 

weighted observed (unadjusted) labour force gross flows. 

Table 4.7: Adjusted UK labour force gross flows for summer-autumn 1997 using a range of 

different estimators - Weighted analysis 

Flow Weighted Weighted Weighted PML PML 
Observed Conventional Unit- Non-Heterogeneous Heterogeneity 

Flows Non-Heterogeneous Heterogeneity (Age,Gender) 
(Age,Gender) 

EE 0.705 0.7312 0.7307 0.7304 0.7245 
EU 0.010 0.0038 0.0039 0.0041 0.0051 
EN 0.019 0.0049 0.0052 0.0052 0.0081 
UE 0.017 0.0113 0.0114 0.0114 0.0122 
UU 0.032 0.0349 0.0347 0.0347 0.0343 
UN 0.010 0.0042 0.0042 0.0044 0.0052 
NE 0.015 0.0005 0.0008 0.0015 0.0038 
NU 0.010 0.0046 0.0046 0.0047 0.0057 
NN 0J.82 0.2046 0.2045 0.2036 0.2011 

4.4.1 Discussion of the Adjustments Derived from the Alternative 

Estimators 

The effect of adjusting labour force gross flows for measurement error is to increase the 

diagonal elements and decrease the off-diagonal elements of the unadjusted gross flows 

matrix. Adjustments derived when accounting for heterogeneity are less severe than 

adjustments derived when heterogeneity is ignored. To illustrate this, one can compute the 

sum of the off-diagonal adjusted gross flows derived from the alternative point estimators. 

For example, in Table 4.5 the sum of the off-diagonal gross flows derived from the 

conventional non-heterogeneous estimator is 0.0258. The same sum computed when using 

the conventional unit heterogeneity estimator is 0.0268. Similarly, for the non-heterogeneous 

maximum likelihood this sum is 0.0279 and for the maximum likelihood estimator that 

accounts for heterogeneity the sum is 0.0396. These results are consistent with the 

assumption that the effect of ignoring heterogeneity, when heterogeneity exists, results in 

over-adjusting gross flows for measurement error. Unlike the unit heterogeneity estimator 

that allows for heterogeneity only in the measurement error mechanism, the maximum 

likelihood estimator allows for heterogeneity both in the measurement error and in the gross 
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flows mechanism. This explains the larger impact of the adjustments derived when using this 

estimator. 

4.4.2 The Effect of Misdassification on Inference Based on Labour Force 

Gross Flows 

Labour force gross flows are widely used by social scientists and economists for research and 

policy purposes. In this section, we analyse the effects of making inference based on the 

unadjusted as opposed to the adjusted labour force gross flows. As a summary statistic, we 

use the estimated probabilities of transition from state i to state j between t and t + 1. 

More specifically, we compute two sets of probabilities. Firstly, we determine the unadjusted 

probabilities of transition by modelling the unweighted observed labour force gross flows. 

The model we employ is a multinomial logistic that includes the main effects according to 

age and gender and the interaction term between these two covariates. hi addition, we use the 

adjusted probabilities of transition derived from the maximum likelihood estimator that 

accounts for heterogeneity (see Table 4.5). The reason for including the interaction term in 

the multinomial logistic model is because fitting the measurement error model within the 

post-strata is equivalent to a multinomial logistic model that includes all possible interaction 

terms. To quantify the effect of measurement error, we compute ratios of estimated transition 

probabilities, before and after adjustment is applied, for different age and gender groups. 

Moreover, we investigate the effect of measurement error on two widely used summary 

statistics of the labour market activity. These are the probability of a successful exit from 

unemployment and the probability of a successful exit from inactivity for different age and 

gender groups. These probabilities are defined respectively by 

pr{Y,=U,Y,^,=E)= J,, (5. = E)T^r\r, = N)' 

pr {Y, = N, Y,^, =E) = ^ ( r , - y,y - g ) , (4,24) 
^ ' pr{Y,=N,Y,^, = E) + pr{Y,=N,Y,^,=U) 
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Table 4.8: Ratios of probabilities of transition for young males vs. old males 

Flow Ratios based on the unadjusted labour Ratios based on the adjusted labour force 
force gross flows (multinomial logistic gross flows obtained from the MLE with 

model with age and gender) heterogeneity according to age and gender 
EU 329 
EN 1Z4 
UE 4.66 6.94 
UN 4IW 1 6 j 
NE 5.00 122 
NU 13 j 

Table 4.9: Ratios of probabilities of transition for young females vs. old females 

Flow Ratios based on the unadjusted labour Ratios based on the adjusted labour force gross 
force gross flows (multinomial logistic flows obtained from the MLE with 

model with age and gender) heterogeneity according to age and gender 
EU &63 
EN 4.00 145 
UE 172 312 
UN 4.66 1&7 
NE 3.80 2.81 
NU 122 5 j J 

Table 4.10: Ratios of probabilities of transition for young males vs. young females 

Flow Ratios based on the unadjusted labour Ratios based on the adjusted labour force 
force gross flows (multinomial logistic gross flows obtained from the MLE with 

model with age and gender) heterogeneity according to age and gender 
EU 4J3 
EN 0^2 1.16 
UE 136 1.56 
UN 1.00 1.16 
NE 0J9 1.18 
NU 0.80 O j # 

Table 4.11: Ratios of probabilities of transition for old males vs. old females 

Flow Ratios based on the unadjusted labour Ratios based on the adjusted labour force 
force gross flows (multinomial logistic gross flows obtained from the MLE with 

model with age and gender) heterogeneity according to age and gender 
EU 1.50 o^a 
EN 0.64 0 J 2 
UE 1.09 OJO 
UN 1.17 
NE 0.60 OJ^ 
NU 0J7 0J5 
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Table 4.12: The effect of measurement error on the probability of a successful exit from 

unemployment 

Group Probability of successful exit from Probability of successful exit from 
unemployment based on the unemployment based on the adjusted 

unadjusted labour force gross flows labour force gross flows obtained 
(multinomial logistic model with age from the MLE with heterogeneity 

and gender) according to age and gender 
Young males 0.66 0.64 

Young Females 0.59 0J7 
Old males 0.63 OjU 

Old females 0.65 0.88 

Table 4.13: The effect of measurement error on the probability of a successful exit from 

inactivity 

Group Probability of successful exit from Probability of successful exit from 
inactivity based on the unadjusted inactivity based on the adjusted 

labour force gross flows labour force gross flows obtained 
(multinomial logistic model with age from the MLE with heterogeneity 

and gender) according to age and gender 
Young males o^a OJl 

Young Females 0.66 0.44 
Old males 0^6 0.55 

Old females 0.62 0.61 

The previous results indicate that measurement error can have a significant impact on 

inference based on labour force gross flows. Two key characteristics emerge firom this 

analysis. Firstly, the probability of transition of one group compared to another can be 

underestimated or overestimated but remain in the same direction when the unadjusted flows 

are used. For example, based on the unadjusted flows, the probability of transition from 

unemployment to inactivity for young males is 4 times higher than the same probability for 

old males. Based on the adjusted flows, young males have 16.5 times the probability of old 

males for making a transition from unemployment to inactivity. An example where the 

probability of transition is overestimated when using the unadjusted gross flows is in the 

transition from inactivity to employment for young females compared to old females. A 

second, more important consequence of measurement error is that in some cases there is a 

complete reversal in the direction of inference. The most obvious case is in the probability of 

transition from employment to unemployment for young females compared to old females. 

Based on the unadjusted gross flows, young females have 3.16 times the probability of older 

females for making a transition from employment to unemployment. Based on the adjusted 

gross flows, young females have 0.63 times the probability of older females for making the 

same transition. Other examples, where reversals in the direction of inference occur, are 
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reported in Table 4.11. Observing further the results reported in Table 4.10, one can say that 

in most of the cases, based on the adjusted gross flows, young males are more volatile than 

young females. Based also on the adjusted gross flows and Table 4.11, in most of the cases 

old females are more volatile than old males. Based on the unadjusted flows, the volatility of 

young males is underestimated relatively to the volatility of young females and the volatility 

of old females is underestimated relatively to the volatility of old males. 

Measurement error appears also to have a distorting effect on the summary statistics of the 

labour market activity. Based on the unadjusted labour force gross flows, the probability of a 

successful exit from unemployment is seriously underestimated for the less volatile groups 

(old males and old females). For the more volatile groups (young males and young females), 

the same probability is slightly overestimated. Poterba and Summers (1986) report similar 

findings in the context of the CPS. Based also on the unadjusted labour force gross flows, the 

probability of a successful exit from inactivity is overestimated for all different groups with 

the most volatile groups being affected more. 

4.5 The Limitations of the Current Parameterisation of the Measurement 

Error Model and Extensions 

In this last section, we discuss some of the limitations of the current parameterisation of the 

measurement error model that allows for heterogeneity and we sketch an alternative 

parameterisation. 

Under the current parameterisation, the model parameters are estimated by fitting the model 

within the post-strata defined by the discrete covariates. This is equivalent to a logistic 

parameterisation that includes interaction terms. Let us assume that we employ two discrete 

covariates with two levels each. Consequently, there are four different post-strata formed and 

56 parameters estimated by fitting the measurement error model within each of the post-

strata. An equivalent multinomial logistic parameterisation is as follows: (a) A multinomial 

logistic model for modelling the probability of transition that includes the two main effects 

and the two-way interaction (32 parameters), (b) a multinomial logistic model for each 

column of the misclassification matrix that includes the two main effects and the two-way 

interaction (24 parameters). However, one may wish to include, for example, only main 
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effects in the model or include a different set of covariates for modelling the transition and 

the misclassification probabilities. An alternative, more natural solution is offered by re-

expressing the parameters of the measurement error model using a logistic formulation. For 

example, P. = X denotes the design matrix and (3 is the vector of 
l + exp(^r jQ 

parameters to be estimated. 

A second limitation of the current parameterisation is that it allows for heterogeneity only via 

discrete covariates. Unlike this model, latent Markov models can allow for heterogeneity 

according to discrete and continuous covariates (Humphreys 1996). hi addition, the small 

sample size of the validation survey implies sparseness of data when attempting to estimate 

more complicated models (i.e. with many categorical variables). 

Given appropriate validation data, one possibility for extending the measurement error model 

is to include as a covariate the type of response i.e. "se l f or "proxy" response. Relevant 

theory (O'Muircheartaigh 1991) suggests that the type of response is highly related to the 

measurement error problem. Unfortunately, we were not able to include the response status 

variable into our analysis because of insufficient data. This is due to the low percentage of 

proxy response in the Swedish LFS (around 3%) and the small sample size of the Swedish 

validation survey. Finally, one can view the rotation group bias as a misclassification 

problem. If rotation group bias exists, the misclassification mechanism can be expected to be 

differential with respect to rotation group. By including rotation group as a covariate in the 

heterogeneity model, one can adjust also for this source of bias. 

4.6 Summary 

The analysis presented in this chapter indicated that heterogeneity is likely to exist both in the 

gross flows and in the measurement error mechanism. The model presented allows for 

heterogeneity in both mechanisms and can be considered as more realistic than the model that 

ignores heterogeneity or the moment-based approach that assumes heterogeneity only in the 

measurement error mechanism. The effect of ignoring heterogeneity, when heterogeneity 

exists, can result in an overcorrection for measurement error. For example, we show that 

ignoring heterogeneity, when correcting UK labour force gross flows for measurement error. 
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results in estimating a less volatile labour market than the real one. A further result concerns 

the effect of measurement error on inference based on gross flows. Our analysis indicates that 

ignoring the measurement error problem can have a severe effect, which in some cases can 

result in a complete reversal of the direction of inference. 
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Chapter 5 

Variance Estimation for Gross Flows Estimates in 

the Presence of Misclassification and Double 

Sampling 

5.1 Introduction 

Having discussed alternative approaches for point estimation, we now turn to development of 

variance estimators for the adjusted gross flows estimates. Generally speaking, variance 

estimation in a double sampling framework must account for the extra variability introduced 

by the smaller size of the second phase sample. Literature on variance estimation for cross-

sectional estimates in the presence of misclassification and double sampling includes 

Tenenbein (1972), Selen (1986) and Greenland (1988). 

The structure of this chapter is as follows. In Section 5.2, we develop a variance estimator for 

the conventional (moment-type) estimator (see Section 2.2.2.1). In Section 5.3, we develop 

variance estimators for alternative moment-type estimators that were presented in Section 2.4. 

In Section 5.4 variance estimation for the maximum likelihood estimator, when the validation 

sample is selected independently from the main sample and from the same target population 

(see Section 3.2.1), is considered. We further present a procedure for estimating the variance 

of the adjusted cross-sectional estimates when using maximum likelihood estimation via the 

EM algorithm (see Section 2.2.1.3). Variance estimation for the quasi-likelihood adjusted 

estimates (see Section 2.2.1.4) is discussed in Section 5.5. In the final section, the theory is 

illustrated via three applications. 
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5.2 Variance Estimation for the Conventional (Moment-Type) Estimator of 

the Adjusted Gross Flows 

The conventional estimator, under ICE, is given by 

f A St' A -1 A fA-n 
uec P = %ec 0 n Q 

rxr 
Q (5 1) 

In order to simplify the notation, we drop the parenthesis next to Q that is specific of the time 

periods to which the misclassification matrix refers. A variance estimator for (5.1) can be 

derived by employing the 5-method (Bishop, Fienberg and Holland 1975, Agresti 1990). 

This involves expanding vec P in a Taylor series around its true value vec (P). Let 

t/ec 
/ A 

f 8 Pi 8 ,^2 8 , - 0 represent a r ^ x l vector of non-linear functions of 

A A A A A A 
0 = 921,931,- iQ'rr,nil, 1121,1131,...,Ilrrj. RecslI that denotcs the misclassifcation 

probabilities and Ilij denotes the observed transition probabilities between t and t + 1. Note 

also that we now distinguish between the subscripts I, i for reasons that will become apparent 

later in this chapter. However, both subscripts refer to the observed classification at t . 

/ A -St 
Expanding vec P around its true value using Taylor series, we have that 

V , 

;̂ec 
St / A 

f 8 i ,ec[f(8)] + V J 8 - 8 ,Ve = 
a e e=e 

(5J0 

It follows that 

?;ec 
si / A 

f 8 — vec f ( 8 ) ] ; ^ v J 8 - 8 ,Va = 
9 8 e=e 

(5.3) 

Taking the variance operator on both sides of (5.3), we have that 

For < i;ec 
St / A 

f 8 VeFor 8 (Ve) (5.40 
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In order to estimate (5.4), we need to evaluate the Jacobian matrices Vg, (Vg)^ and 

estimate the covariance matrix Var j . In the later case, we need to estimate the following 

components: (a) the variance-covariance structure of the unadjusted estimated probabilities of 

A 

transition 11;;, (b) the variance-covariance structure of the estimated misclassification 

probabilities q̂ .̂ and (c) the covariance structure of h j ,k , l = l,2,...r. Without loss 

of generality, we focus our interest on the case that r = 3, i, j, k,l = 1,2,3 . This is due to our 

interest in estimating labour force gross flows that are frequently described by a 3 x 3 gross 

/ A 
flows matrix. For simplicity, we denote Var 8 by S . When r = 3 E is described by a 

18 X 18 matrix whose general form is given below 

" C'ô (9ii,L) " Co?; Has j 

Co?, (nil,?,,) . " (7ô ;|nii,g33j yor|niij •• Cow llllljllssj 

Cccy (llsajllii j Far (llss j 

The upper left block of E represents the covariance matrix of the estimates of the elements of 

the misclassification matrix, the upper right block and the lower left block represent the 

covariance structure between the estimated unadjusted probabilities of transition and the 

estimated misclassification probabilities and the lower right block represents the covariance 

matrix of the estimated unadjusted probabilities of transition. 

Variance-Covariance Structure of the Unadjusted Estimated Probabilities of Transition 

Result 5.1 

Under simple random sampling and taking also into account that the sample size of the main 

sample is fixed, we can regard the cells of the observed gross flows matrix as multinomial 

proportions. Ignoring the finite population correction, the covariance matrix of the elements 
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of the unadjusted gross flows matrix is estimated using standard results for the variance of 

binomial random variables as follows: 

A 

Far N 

A / A 

Jllj (l — IIzj 

n 

A /A A 
A A 

-n!; n r / 

n 

(5.5) 

Substituting (5.5) into lower right block of E, we obtain an estimate for the covariance 

matrix of the estimated unadjusted probabilities of transition. 

Variance-Covariance Structure of the Estimated Misclassification Probabilities 

Denote by re" the size of the validation sample and by the number of sample units that are 

observed in state i at t when they truly belong in state k . The estimated misclassification 

r r 

. While can be considered as fixed. probabilities are defined by 
2=1 k=l 

2 = 1 

must be considered as a random. Thus, is defined as a ratio of random quantities. 
!=1 

Consequently, in the computation of the variance-covariance structure of the misclassification 

probabilities, we must take into account an extra level of non-linearity introduced by the fact 

that both the numerator and denominator of are random quantities. Therefore, we need to 

make a second application of the S -method. 

Denote by Q the misclassification matrix estimated firom the validation sample. Let 

fA*)' 
0 8 — e 0 ® and 

A * 

non-linear functions of 0 . Applying the delta method to vec 

following 

be the x 1 vector of 

e , we derive the 

fee Q 6 t,ec[Q(8*)l + V, 8 - 8 
Q ( e ' ) 

a e 8 =@ 
(5.6) 
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It follows that 

fee Q e 
\ y 

%ec[Q(8')]R, 8 - 8 
0uec 

"^8' = 
Q(8 ' 

8 =8 
(5.7) 

Taking the variance operator on both sides of (5.7), we obtain the following 

Far i fee Q 8 8 K-r (5.8) 

In order to estimate (5.8), we need to evaluate the Jacobian matrices V^., (^Vg.) and the 

covariance matrix Var 
A ' 
e . Under simple random sampling and taking into account that the 

sample size of the validation survey is fixed, we can regard njj. as multinomial counts. 

Ignoring the finite population correction, the required covariance matrix can be estimated as 

follows: 

Cof ) — —Ti" f i t f i ' t ' (%A) A; ). 

It remains to evaluate the Jacobian matrices V . involved in the second application of the 

delta method. These matrices are evaluated using the expressions below 

V„. = 

d 1 
^<1 

d 

d 

fi-ll 
n. 

(9n, 21 

d 
n. 21 

n. 

d 
n. '33 

n„ 

'21 

\ 1 / 

d 
n-11 
n, 

d 
n. 

'21 

n •1 ; 

d 
n. 

n. 

d ri-ll 
n, 

33 

d 
n. -V 

•21 

n 1 y 

d 
n, 

'33 

fin 

and 
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v.. = 

^ 1 

+)4 + ^ ) + ^ + ^ ) + ^ + ^ 
.(5.10) 

+ ^ +^) 

Substituting (5.9) and (5.10) into (5.8), we obtain an estimate for the covariance matrix of the 

estimated misclassification probabilities. 

Covariance Structure between the Estimated Unadjusted Transition Probabilities and the 

Estimated Misclassification Probabilities 

The remaining part, in estimating Var |@j, is to evaluate the covariance structure between the 

unadjusted estimated transition probabilities and the estimated misclassification probabilities 

i.e. c»« (ns , s» ) . 

We distinguish two cases: 

(a) a double sampling scheme under which the misclassification probabilities are 

estimated either via an internal validation sample that is selected independently from 

the main sample and from the same target population or via an external validation 

sample. For this case, it is reasonable to assume that 

(5^1) j = 0. 

(b) a double sampling scheme under which the misclassification probabilities are 

estimated via an internal validation sample that is selected by sub-sampling units 

that already participate in the main survey. For this case, we assume that 

n. •ik 

i=l 

n,, 

n 
(5.12) 
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In order to derive variance estimates for the second case, we need to estimate the covariance 

terms Coi; . 

Lemma 5.1 

An approximate expression for the expectation of a function g[X,Y) of two random 

variables X^Y using a Taylor's series expansion around is given by 

E\g(X,Y)]^g{^,„^^)+^-^9(X,Y) Vor{Y) Var{X) 

d' 
(5 13) 

Proof 
Proof of this Lemma can be found in Mood et al. (1963 p.181). 

• 
Result 5.2 

Let X,Y,A denote three random variables and n is fixed. An approximate expression for 

Cov 
y 

is given by 

1 

n. ^ 7iE(y) 
Cov{A,X)^^^Cov{A,Y) (5.14) 

Proof 

We start the proof by expanding the covariance term of interest using the standard definition 

for the covariance between random variables i.e. 

% 
y ' n 

= E 
l y 

-E 
(X 

l y 
B 

n. 
E y 

E 
. y . 

E(A) (5.15) 

We evaluate the different components of the expression above using Lemma 5.1. More 

specifically, we approximate E 
I y 

AX 
utilising the Taylor series expansion of around 

This Taylor series expansion is given below 
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1 a" 

2 

~^9{X,Y,A)U,, CoviX,Y) 

^ s(XXA)l^„, Cov(X,A)+^g(XXA)l,^^.,. Cm{Y,A). 
^0^2/ 

It follows that 

E [p (%, y , A)1 Far (F) - - ^ Co?; (%, Y) + — Co?; (X, ̂ ) - - ^ Co?; (A ^ ) 
^ //y 2 /.ty //y /4 

(5.16) 

Next, we approximate E 

follows 

X 

i F j 
using a Taylor series expansion of — around AY) as 

d' 

It follows that 

E[g(X,Y)]^!^ + f - ^ V a r { Y ) ^ ^ , 
Hy ^ [Jy rh^ 

Co?;(%,y). (5.17) 

Substituting expressions (5.16) and (5.17) into (5.15), we derive the following 

Co?; 
_ 1 

I ^ X ^ A 

n fJry /iy 
+ 

/iy 
.Cov{X,A)-^Cov{A,Y)-!^^ (Y) + -^Gov(X,Y) 

//y jUy ^ 

It follows that 

Co?; 
_ 1 1 

T n . n Hy 

. C o ? ; ( % , A ) - - ^ C o ? ; ( A F ) 
fly 

Co?; (%, Co?; (v4, Y) 
My 
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Finally, 

Co2; 
1 

M^(y) 
Cov{X,A]-^^Ccv{AY) 

• 

Result 5.3 

Let X = = n^- be three random variables and n fixed. Using Result 5.2, 

1=1 

an approximate expression for Gov 11 g is given by 

"'it ^0 1 

E < ' " nE E<) 
V :=1 , \ i=l / 

Cot; , Tig) f ^ (̂7' ̂  

E " . i 
k:=l 

An estimator for the co variance term of interest is given by 

A 
Cof 

E " » 
k 1=1 

?% A 
n E 

\ 

A ^ \ ^ / 

n 

E K ) 
A 

E 
2=1 

• HK = = ;.y, = 4 -

(5.18) 

Proof 

We start the proof by evaluating Gov 

We define the following indicator variables 

(5.19) 

[1 ^ /log iA 

0 ot/ienmge 
J^, = i 

0 o^Aermge 
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At this point, we need to make the following comments: 

1. & is known only for those units that belong to the validation sample. 

2. Since the validation sample is selected by sub-sampling units from the main sample, 

the main sample and the validation sample will have some units in common. This 

implies that for all ^ units Ij is known. 

3. S ,s denote the main and the validation sample respectively. 

£ ( « > , ) = £ J . E = E 

It follows that 
/ 

E 4 4 + E 4 4 

E f i ( V s ) + E • B ( V f ) = ^ 

E 4 4 + E E % 
(=(' 

(-f 

(5.20) 

Furthermore, 

= E E ^ k ) B ( 4 ) = E ^ k l ^ k ) + E e{I,)E(J,). (5.21) 
('eg (ea (ea,('G8 

(-f 

Substituting expressions (5.20) and (5.21) into (5.19), we obtain the following 

C « « « . s ) = E ^ ( V j + E E{lt)E{j,)-Y.E{l,)E{j,)- E E(I,)E(J,] 

e-f (-f 

Cov{nl,„^) = E ^ ( W ) - E ^ k ) B k ) . (5.22) 

From (5.22), it follows that an estimator of the covariance term is given by 

c2« = E « ( V f ) - E ^ k ) ^ k ) = «' pHK = ''K*i = iX = '.n. = ' 

„.1K)£W 
rC n" 

A V \ ^ f \ 

Co?; (7%;̂ , = z, = A) ^ (5.23) 
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where 

A 
pr K ^ = A;) = 0 %/ Z ;z± % 

= A:) 0 2/ / = 2 . 
(5.24) 

hi order to complete the proof, we further need to evaluate the following expression 

E « ) 
-Co!; 

E 
k i=l 

i=l 

05.25) 

This can be done as follows: 

E 

E K ) 
-Cof n 

i—1 E 

H O 

1=1 

Cov , (rill. + + ... + n^f.) 

E 
V i=i 

Consequently, 

E 

-Cot; 

U=l 

n, 
t=l 

E{nl) 
/ , \ 

E E 
V !=1 

n. 'ik 

Co?; , "st) + -" + ) - (^ 

We estimate the co variance terms involved in (5.26) by employing expression (5.23) as 

follows: 

n 

n (5.27) 

if I ^ i . 
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Consequently, 

EK) 
A 

E E < 
k:=l 

7̂ , 
%=1 

E«' 
A 

E E < 
2=1 y 

n>"r(yj ; = i , r ; „ = j ,yj , = fc) 
E{ni)E{n„) 

n 

E n 

(5.28) 

Combining (5.23) and (5.28), we obtain an estimator for the covariance terms that are of 

interest for our analysis. 

A 
Co?; 

E 
1̂=1 

7%, V 72 A 

E 
n- pr (y; = i, F;„. = i, Y; = 4 4 ^ ̂  

i=i ; 

B(nl) 
A 

E E < 

A . . A 

72 

72 

• 

Evaluation of the Jacobian Matrices from the First Application of the (5-Method 

Analytical Differentiation 

In order to complete the variance estimation process, we need to evaluate the Jabobian 

matrices from the first application of the delta method given by 

V« = 

0 - ' n ( Q -

a e 8=@ 

The general form of this Jacobian is given by the following 9x18 matrix 
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^921 on*, 

V8 = "9911 #921 o n , . 

a K ) 

a n , , 

(5.29) 

One way of evaluating the elements of (5.29) is analytically. For 
9 f e c ( f ) 

a[t,ec(n)] 

Harville (1997 p.366) and evaluate these elements using the following result 

(g) A 

we can follow 

ec 

9[fec(%)] 

Applying this result in our case, we derive the following 

(5J0) 

9[t;ec(n) 
(5 31) 

Furthermore, 
^i;ec ( f ) 

can be evaluated analytically but this involves more complex 
^ ['uec (Q)] 

expressions that cannot be expressed easily in a general form. 

Numerical Differentiation 

Alternatively, one can employ numerical differentiation to evaluate the elements of (5.29) and 

(5.10). The method we utilise is the method of central differences (Dermis and Schnabel, 

1983). 

We employ both analytical and numerical differentiation. The numerical approach is used for 

validating the analytical results. Substituting the results from the evaluation of the Jacobian 

matrices using either analytical or numerical differentiation and expressions (5.5), (5.9), 

(5.10) and (5.11) (for the case of an internal validation sample that is selected independently 

from the main sample or for the case of an external validation sample) or (5.18) (for the case 

of an internal validation sample that is selected by sub-sampling units from the main sample) 

into (5.4), we obtain variance estimates for the adjusted gross flows estimated from the 

conventional point estimator. 
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5.3 Variance Estimation for Alternative Moment-type Estimators of the 

Adjusted Gross Flows 

Based on the results from Section 5.2, we now develop variance estimators the alternative 

moment-type estimators of the adjusted gross flows. 

5.3.1 Variance of the Modified Estimator 

Utilising the results from Section 5.2, we now derive a variance estimator for the modified 

estimator of the adjusted gross flows (see Section 2.4.2). These variance estimates are also 

required for computing the set of adaptive weights of the composite estimator (see Section 

2.4.3). Recall that the modified estimator was developed by employing a double sampling 

scheme under which the validation sample is selected independently from the main sample 

and from the same target population. The modified estimator is defined as follows: 

'Ad:' 
P P 

/ 

n 

n 4- M 
. (5.32) 

Taking the variance operator on both sides of (5.32), ignoring Gov 

account that is fixed we have that 

f A St A " ' 
P , P and taking into 

Far fee P fee 
A 

P + (1 - j (5.33) 

An estimate of Var fee P can be found by utilising the results from Section 5.2 for the 

case of an external validation sample. An estimate of Var 
A" 

"ueclf can be found by utilising 

the results from Section 5.2 for the case of an internal validation sample that is selected by 

sub-sampling units from the main sample. 
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5.3.2 Variance of the Composite Estimator 

Utilising the results from Section 5.2, we derive a variance estimator for the composite 

estimator (see Section 2.4.3). The general form of the composite estimator is given by 

vec(P 1 = uec p W. mod (5.34) 

Taking the variance operator on both sides of (5.34) we have that 

/ A coTnp 
veclP = Var- '^comp^mod fee p 

I / 
+ (5.35) 

We distinguish two cases: (a) the composite weights are fixed and (b) the composite 

weights are adaptive, i.e. random, since they are estimated by minimising the mean 

squared error of the composite estimator. For the first case, the variance of the composite 

estimator, ignoring Cov 
.St A v\ 

P ,P , is given below 

' A comp-]x' 2 f A d V 

P — tec P 2;ec 
/ Ai; 
p .(5.36) 

An estimate of Var fee 
' A St 
P is derived by employing the results from Section 5.2 for the 

case of an external validation sample and an estimate of Var ?;ec 
/ A 
P is derived by 

employing the results of Section 5.2 for the case of an internal validation sample that is 

selected by sub-sampling units from the main sample. Variance estimation in the case of the 

composite estimator with adaptive weights becomes more complicated since the composite 

weights can no longer be considered as fixed quantities. One possible solution, for 

approximating the variance of a composite estimator with adaptive weights, is to use the 

jackknife method (Kuo 1989). 
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5.4 Variance Estimation for the Maximum Likelihood Estimator of the 

Adjusted Gross Flows 

In this section, we develop a variance estimator for the maximum likelihood estimator when 

the validation sample is selected independently from the main sample and from the same 

target population (see Section 3.2.1). Variance estimation for the maximum likelihood 

estimates of the adjusted gross flows can be placed into the general framework of maximum 

likelihood estimation. This implies the use of the inverse of the information matrix. However, 

due to the parameterisation of the measurement error model in a missing data framework, 

variance estimation must reflect the additional variability introduced by the existence of 

missing data. One way of obtaining variance estimates for the parameters of interest in an EM 

framework is by using the Missing Information Principle (Woodbury 1977, Efron and 

Hinkley 1978, Louis 1982). 

A 

Denote by 9 the vector of maximum likelihood estimates, by Z'"̂  ̂ Z'° the missing data in the 

main and in the validation sample respectively and by D"" the observed data in the main 

and in the validation sample respectively. The missing data and the observed data define the 

complete data denoted by D". The Missing Information Principle is defined as 

Lemma 5.2 

The complete information matrix is evaluated using the following expression 

(538) 

Proof 

Proof of this lemma can be found in Tanner (1996, p.75). 

Lemma 5.3 

The missing information matrix is evaluated using the following expression 

• 

Mtaamp = For 
a e 

(5.39) 
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Proof 

Proof of this lemma can be found in Tanner (1996, p.75). 
• 

When full information exists, the second component of (5.37) disappears and variance 

estimates for the maximum likelihood estimates are derived by employing the inverse of the 

complete information matrix. In the presence of missing data, the effect of the missing 

information matrix is to reduce the available information and, thus, introduce extra 

variability. In this section, we derive estimates of the complete information matrix and of the 

A 

missing information matrix at 9 . Having derived these estimates, we can then apply the 

Missing Information Principle to derive the observed information matrix and the inverse of 

the observed information matrix to compute appropriate variance estimates. 

Lemma 5.4 

Conditionally on the information available from the validation sample, there are 

multinomial distributions defined. 

Proof 

Before selecting the validation sample, the only fixed quantity is the size of this sample n". 

This implies that nl is random. The EM algorithm conditions on the information available 

from the validation sample. Thus, conditionally on this information, nl is considered to be 

fixed. Consequently, there are multinomial distributions defined (see Section 3.2.1). 
• 

Lemma 5.5 

Conditionally on the information available from the main sample, there are multinomial 

distributions defined by the columns of the cross-classification of the observed with the 

true classifications. 

Proof 

Before selecting the main sample, the only fixed quantity is the size of this sample n . This 

implies that n,. is random. The EM algorithm conditions on the information available from 

the main sample. Thus, conditionally on this infoiTnation, n,- is considered to be fixed. 

Consequently, there are multinomial distributions defined by the columns of the cross-

classification of the observed with the true classifications (see Section 3.2.1). 

• 
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Evaluating the Complete Information Matrix 

The first step in the application of the Missing Information Principle involves the evaluation 

of the complete information matrix. Some of the second order derivatives required for 

computing this information matrix can be found in Appendix III. These quantities are 

evaluated at the last step of the EM algorithm. 

Evaluating the Missing Information Matrix 

The second step in the application of the Missing Information Principle involves the 

evaluation of the missing information matrix. This is achieved by computing the variance of 

the score functions. 

Definition 5.1 

Let X denote a <i x 1 vector of random variables. It follows that the variance of X is given 

by the following d x d covariance matrix 

yor(%) = (5.40) 

Let 0 denote the vector of parameters with elements 9., i = 1, - - , w. Utilising definition 5.1, 

the covariance matrix of the score functions will be of dimension 

— r — l) X {2r^ — r — l) with diagonal and off-diagonal elements given respectively by 

the following general expressions 

Vjy = For 
aZ(0;D':) 

% = J 

t J 

(5.41) 

Lemma 5.6 

For the main sample, under simple random sampling, the following holds 

i=i 

n. 
^ I D " , 8 

n 

| D " , 8 

n 
(5.42) 
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Proof 

We start the proof using the standard definition for the variance of a sum of random variables 

r 

I ^ " , 8 ) = | D ' , 8 ) + | D ' , 8 ) . 
j=i i=i 

Using Lemma 5.5, there are multinomial distributions defined. This implies that random 

variables that refer to different conditional distributions are independent. Thus, the 

covariance terms of the above expression are equal to zero. Using results for the variance and 

the covariance of binomial random variables (see also (5.9)) and information available firom 

the main sample, we derive the variance component of interest. 

• 
Lemma 5.7 

For the validation sample, under simple random sampling, the following holds 

FarLr I ^',81 = 

E 
i=i 

+2 

n,. 
n,. 

D \ 8 
• 2 E E 
j=iy=r—1 

A A 
K K 

7%. 

A 
E 1 fl'.e) 

A 
E 

< 
+ ••• + E 

j=r̂ —r+1 n,. 

-2 E E 
j=r̂ —r+1 y=r̂—1 

A I?!;'*' 1 D \ 8 j 
A 
E 1 D \ 8 j 

< < 
+ 2 

n. 

(5.43) 

Proof 

We start the proof using the standard definition for the variance of a sum of random variables 

and we decompose this sum into a sum with r components. This is because the covariance 

terms involved in the summation exist only for random variables that refer to the same 

conditional distribution (see Lemma 5.4). Consequently, 
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r 

j=l j=\ j'—r-\ 

E 
j=r^-r+l 

Far I D\ e) + 2 g E Coz, (72̂ , <'*' I 8) -

Replacing the variance and the covariance terms using results for binomial random variables, 

subtracting the covariance terms between identical random variables resulting from the 

double summation and utilising information from the validation sample, we end up with the 

required result. 
O 

Lemma 5.8 

For the main sample, under simple random sampling, the following holds 

A / A \ A / , ̂  A 
(*) n"' 

(5.44) 

Proof 

Using Lemma 5.5, the required covariance term can be expanded as follows 

.i=i j vi=i 

This is due to the fact that these covariance terms exist only for random variables that refer to 

the same conditional distribution. Substituting results for the covariance between binomial 

random variables into the expression above, we derive the required result. 

• 
Lemma 5.9 

For the validation sample, under simple random sampling, the following holds 

E E -

A W ' ) | D \ 8 ] A W ' ) ID-'.e 
: + • • • + 

J=1 j'=l n. 

E E -n 

A 
E [71;" 1 

nl < 

(5.45) 
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Proof 

In order to prove this lemma, we need to utilise Lemma 5.4. Using Lemma 5.4, we realise 

that the requested covariance terms exist only for random variables that refer to the same 

conditional distribution. For example, when r = 3 the following covariance terms exist 

I e), Cot; I e), (70?, | D", e) 

Each one of the covariance terms above can be decomposed into a sum with r terms as 

follows 

i=i i'=i 

t/(*) — 1; (*) mi\n,. ,n,y D-,e) + • • •+ g g Co«(nf ' , n J , " |D ' , e 
j=r̂ —r+l y=r̂ —r+l 

r—(erma 

Replacing the covariance terms using results for binomial random variables and information 

from the validation sample, we end up with the required result. 

• 
An estimate of the covariance matrix of the score functions can be obtained using the first 

order derivatives of the augmented log-likelihood (see Appendix III), Lemmas 5.6-5.9 and 

standard definitions for the variance and the covariance of sums of random variables. In the 

sequel, we present general expressions for computing some of the elements of this covariance 

matrix. 

Result 5.4 

Var 
az(e;D'=) 

P: I + yor I ^",8)1 + 

P 
r̂ -1 

•[Var{nX \ D-,&)+Var[aX [ f . © ) ] 

1 - E ^ ; 
i=l 

(5.46) 
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Proof 

Taking the variance operator on both sides of the first order derivative with respect to P- (see 

Appendix III), we obtain the following 

Far 
aZ(8;D':) 

8 ^ P. r-i 

:=1 

The required result is obtained by applying the definition for the variance of a sum of random 

variables and taking into account the fact that the main sample and the validation sample are 

independent. An estimate of this variance component is obtained using Lemmas 5.6-5.9. 

• 
Result 5.5 

1 

1 

PP, 

1 

P 'P , 

+ 

% r' 

1 

P . 
I ^",8) + Far | ^",8)]. 

(5.47) 

Proof 

Using the first order derivative of the augmented log-likelihood with respect to P̂  (see 

Appendix III), the covariance term of interest is expressed as follows 

Cor 
K " + < ' ) + » ? : ' ) « ' + " ? : • ) « . + < : ' ) 

P. r̂ -1 p. 7̂ -1 

i=l :=1 

However, we note that the covariance term above has the following general form 

Coi, (v4 - B, C - B) = (yl, C) - Cot, B) - Co?/ (B, C) -I- For (^). (5.48) 

Applying (5.48) to the covariance term of interest, we derive the required result. An estimate 

of this covariance component is obtained using Lemmas 5.6-5.9. 

• 
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Using also the definitions for the variance and the covariance of sums of random variables 

and Lemmas 5.6-5.9, the following quantities can be evaluated analytically 

Cot; 

Far 
^9^ 

aZ(8;D') aZ(8;D') 
(u) (^'O-

(5.49) 

(5.50) 

(5.51) 

However, these are more complex expressions that are not easily expressed in a general form. 

Note also that refers to the longitudinal misclassification probabilities. These probabilities 

need to be replaced, under ICE, by products of cross-sectional misclassification probabilities. 

This reduces the dimensionality of the problem. The elements of the covariance matrix of the 

score functions are evaluated at the last step of the EM algorithm. After evaluating the 

complete information matrix and the missing information matrix, the observed information 

matrix is defined as the difference of these two matrices. Inverting the observed information 

matrix, results in an estimate of the covariance matrix of the maximum likelihood estimates. 

5.4.1 Evaluating the Complete Information Matrix and the Missing 

Information Matrix Using Simulation 

In spite of being able to derive general expressions for the complete information matrix and 

for the missing information, it is tedious to evaluate these expressions analytically. The main 

problem arises in evaluating of the covariance matrix of the score functions. An alternative 

solution for approximating the components of the Missing Information Principle is offered by 

means of simulation. The idea is described in Tanner (1996). The algorithm is as follows. 

Having arrived at the maximum likelihood estimates, we generate incomplete datasets by 

drawing 

(5.52) 

(5.53) 
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where piZ" \ D" ,Q\,p[Z'^ | i^™,9 denote the conditional distributions of the missing data 

in the validation sample and in the main sample respectively given the observed data and the 

maximum likelihood estimates and H denotes the total number of simulations. The 

conditional distributions are defined by Lemma 5.4 and Lemma 5.5. This first step of the 

simulation can be viewed as the imputation step. Having replaced the missing data with 

imputed values in simulation {h), we derive complete data that are employed for 

evaluating the complete information matrix and the missing information matrix. This is done 

by using the simulation-based (empirical) estimators for the complete information matrix and 

for the variance of the score functions over simulations defined as 

E 
1 ^ 

(5.54) 

<9J(8;D') 

a 8 

1 ^ 
1 

= y 
^ 6 " ^ 8 

E 
gZ (8; 

9 8 
(5.55) 

5.4.2 Variance Estimation for the Likelihood-based Adjusted Estimates in 

a Cross-sectional Framework 

In Section 2.2.1.3, we parameterised the cross-sectional measurement error model in a 

missing data firamework and maximum likelihood estimates were derived via the EM 

algorithm. Variance estimates for the cross-sectional maximum likelihood estimates can be 

also derived using the Missing Information Principle. The crucial difference between the 

longitudinal framework and the cross-sectional framework is that in the latter case missing 

data exist only in the main sample. The complete information matrix is evaluated at the last 

step of the EM algorithm using the second order derivatives of the augmented log-likelihood 

(see Appendix I). The covariance matrix of the score functions is evaluated also at the last 

step of the EM using the first order derivatives of the augmented log-likelihood (see 

Appendix I), results for the variance of binomial random variables and the lemma below. 

Lemma 5.10 

Conditionally on the information available from the main sample, there are r multinomial 

distributions defined by the r columns of the cross-classification between the observed and 

the true classifications. 
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Proof 

The proof is identical to the proof of Lemma 5.5. 

• 
Alternatively, one can use the simulation approach described in Section 5.4.1 along with the 

expressions given in Appendix I. The implementation of the simulation approach requires 

sampling from the conditional distributions of the missing data given the observed data in the 

main sample and the maximum likelihood estimates. These conditional distributions are 

defined by Lemma 5.10. 

5.5 Variance Estimation for the Qiiasi-Iikelihood Adjusted Estimates 

In this section, we develop variance estimates for the parameters of the cross-sectional 

measurement error model when using a quasi-likelihood approach (see Section 2.2.1.4). 

Result 5.6 

Variance estimates for the parameters of the cross-sectional measurement error model when 

using the quasi-likelihood approach are derived using the expression below 

A 
( e ) 

A 

Kar(6) 
-1 f a / / ( 8 ) 

0r=© 

- 1 

(5.56) 
0 8 

Proof 

Let 6 denote the vector of quasi-likelihood estimates. The quasi-score estimating function is 

defined by 

ra//(8)' 
G(8) = 

9 8 
[yar (6)] ,̂ (5.57) 

It follows that 

Far = Var\ fa^:(8) 
t 

f s ^ ( e ) "I 
I /, 1 

t 

e=e 
[For (6)] 

8 8 

(5.58) 

[For (6)] ^ 
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Taken into account that \yar (e)] ^ is symmetric, it follows that 

For 
t 

^ ̂  1 ^ 

t' 

I 1. QQ 0—0 

t 

^ 8 8 8=8 
(5.59) 

Now, G16) can be expanded as follows 

G | e | R ^ G ( e ) + 

Thus, 

Far 

It follows that 

G i e Var 

QQ e=e 

a / / (8 ) 

[Far (6)] -1 
\T 

9—0 
[yar (e)] 

'8=e 
8— 8 . (5.60) 

e=e 
0 — 8 (5.61) 

For G I 8 

'9// (8) 

a 8 8=8 

QQ 6=6 

t 

[Far (6)] 

[yar(e)] ^ 

f a / / ( 8 ) , 

a / / (8 ) 

a 8 8=8 

t 

Var^Q 

^ 8 8=8 

0^^G) 
Q Q e=e 

[Far (6)] ^ 
0^,(8) 

^ 8 8=0 

(5.62) 

Solving equation (5.62) with respect to Far j and replacing the unknown quantities by 

their estimates, we obtain the required result 

A /A 

For 18 
Ya^^9 ) , 

t 
A 

Far(6) 
-1 9^ , (8 ) , 

[ 0 8 8^», e=ej 

• 
The evaluation of the covariance matrix of the quasi-likelihood estimates is now 

straightforward since it requires the utilization of matrices that have been already used during 

the estimation process. Note also that Var is) is computed using the results from Section 

2.2.1.4. Unlike in the case of the EM algorithm, variance estimation in a quasi-likelihood 

framework does not imply the use of computer intensive methods. This practical advantage 

offers an additional justification for preferring the quasi-likelihood approach, instead of the 

maximum likelihood approach, when analyzing cross-sectional misclassified data. 
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5.6 Applications 

The methodology for variance estimation is illustrated in three applications, hi the first 

application, we obtain variance estimates for the adjusted labour force gross flows estimated 

by the conventional point estimator. In the second application, we derive variance estimates 

for the likelihood-based adjusted labour force gross flows. The third application illustrates 

variance estimation for the parameters of the cross-sectional measurement error model 

estimated using either the EM algorithm (see Section 2.2.1.3) or the quasi-likelihood 

approach (see Section 2.2.1.4). 

Application 5.1: Variance estimation for the Conventional (Moment-type) Estimator of the 

Adjusted Gross Flows 

Variance estimation for the conventional point estimator is performed using the results from 

Section 5.2. We employ gross flows data from the UK LPS (summer -autumn 1997) and the 

smoothed version of the validation data from the Swedish (October 1994 - April 1995) LPS 

re-interview programme. The estimated observed labour force gross flows and the adjusted 

labour force gross flows, using the conventional estimator, are reported below. The matrix of 

misclassification probabilities we use is the same as the matrix used in application 3.1. The 

variance of the observed labour force gross flows is computed assuming a multinomial 

distribution for these flows. 

Table 5.1: Variance estimation for the adjusted labour force gross flows derived from the 

conventional estimator, standard deviations in parenthesis 

Flow Observed Labour Force Gross Flows Adjusted Labour Force Gross Flows 

EE 0.716 (1.84E-03) 0.7420 (3.09E-03) 

EU 0.009 (3.85E-04) 0.0028 (9.16E-04) 

EN 0.016 (5.12E-04) 0.0024(1.3 lE-03) 

UE 0.016 (5.12E-04) 0.0102 (9.77E-04) 

UU 0.027 (6.61E-04) 0.0292 (9.86E-04) 

UN 0.009 (3.85E-04) 0.0033 (9.13E-04) 

NE 0.016 (5.12E-04) 0.0026 (1.37E-03) 

NU 0.010 (4.06E-04) 0.0045 (9.18E-04) 

NN 0.181 (1.57E-03) 0.2030 (2.87E-03) 

n = 60000,7%" = 10000 
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Application 5.2: Variance Estimation for the Maximum Likelihood Estimator of the 

Adjusted Gross Flows 

In order to evaluate the variance of the likelihood-based adjusted estimates, we use the 

Missing Information Principle. We utilise gross flows data from the UK LFS (summer -

autumn 1997) and the smoothed version of the validation data from the Swedish (October 

1994 - April 1995) LFS re-interview programme. Due to the large number of computations 

involved, we derive variance estimates for the 2-state model i.e. Employed and Unemployed 

or Inactive. The observed labour force gross flows, the adjusted labour force gross flows, 

using the likelihood-based approach, and the matrix of misclassification probabilities are 

reported below. The variance of the observed labour force gross flows is computed assuming 

a multinomial distribution. The variance of the adjusted labour force gross flows is evaluated 

using the Missing Information Principle and the simulation approach. More specifically, we 

generated 20000 complete datasets using the conditional distributions of the missing data 

given the observed data and the maximum likelihood estimates in the main and in the 

validation sample. For each generated dataset, we computed the complete information matrix 

and the score functions. Subsequently, we evaluated the expectation of the complete 

information matrix and the variance of the score functions using (5.54) and (5.55) 

respectively. Finally, we employed the Missing Information Principle to determine the 

observed information matrix and the inverse of the observed information matrix to determine 

the covariance matrix of the adjusted likelihood-based estimates. 

Misclassification Matrix 

E 

(7 4-jV 

0.99 0.0531 

0.01 0.947 

Table 5.2: Variance estimation for the maximum likelihood estimates (4-state model), 

standard deviations in parenthesis 

Flow Observed Labour Force Gross Flows Adjusted Labour Force Gross Flows 

E,E 0.716 (1.84E-03) 0.730 (2.30E-03) 

E,U-HN 0.025 (6.37E-04) 0.006 (1.52E-03) 

U+N,E 0.032 (7.18E-04) 0.014 (1.54E-03) 

U+N, U+N 0.227 (1.71E-03) 0.250 (2.69E-03) 

n = 60000,71" = 10000 
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Application 5.3: Variance Estimation for the Maximum Likelihood and the Quasi-likelihood 

Cross-sectional Adjusted Estimates 

In Chapter 2, we parameterised the cross-sectional measurement error model in a missing 

data framework and maximum likelihood estimates were derived via the EM algorithm. As 

an alternative approach, we further presented a quasi-likelihood parameterisation of the cross-

sectional measurement error model. Variance estimation, under these two parameterisations, 

is illustrated using the data fi-om application 2.2 in Section 2.2.1.4. For the maximum 

likelihood adjusted estimates, we employed the Missing Information Principle and the results 

&om Section 5.4.2. The components of the Missing Information Principle are approximated 

by means of simulation. More specifically, we generated 10000 complete datasets using the 

conditional distributions of the missing data given the observed data and the maximum 

likelihood estimates in the main sample. For the quasi-likelihood approach, we utilised the 

results from Section 5.5. 

Table 5.3: Variance estimation for the maximum likelihood and the quasi-likelihood cross-

sectional adjusted estimates, standard deviations in parenthesis 

Estimate MLE (EM Algorithm) Ouasi-likelihood 
A 

Px 0.0667 (0.0021) 0.0669(0.0022) 

5.7 Summary 

In this chapter, we developed variance estimators for some of the alternative point estimators 

of the adjusted gross flows. More specifically, we presented variance estimators for the 

conventional (moment-type) estimator under alternative double sampling schemes, for the 

modified estimator, for the composite estimator with fixed weights and for the maximum 

likelihood estimator under a validation sample that is selected independently from the main 

sample. Variance estimation for the maximum likelihood estimates when the validation 

sample is selected by sub-sampling units from the main survey (see Section 3.2.2), is more 

complex. The complexity arises due to the approach we follow for estimating the conditional 

expectations of the missing data in the validation sample. For the time being, we will rely on 

Monte-Carlo simulation for computing the variance of the maximum likelihood estimates 

under the specific double sampling scheme. We further developed variance estimators for the 

cross-sectional maximum likelihood estimates, using the parameterisation presented in 
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Section 2.2.1.3, and for the cross-sectional quasi-likelihood estimates. The quasi-likelihood 

parameterisation offers a practical advantage over the EM parameterisation by providing an 

easier way of performing variance estimation. The variance estimators account for the extra 

variability introduced by the adjustment for measurement error. The variance estimator of the 

maximum likelihood estimator accounts for the existence of missing data via the missing 

information matrix. Using the missing information matrix, we can now quantify the loss of 

information due to the missing data. In addition, the existence of a positive definite 

covariance matrix, obtained from the application of the Missing Information Principle, can be 

used as a diagnostic for checking whether the parameters of the measurement error model are 

identified. Having derived variance estimates, one can further examine the trade off between 

the increased variance of the adjusted estimates and the bias, due to measurement error, of the 

unadjusted estimates. It remains to evaluate the empirical properties of the different variance 

estimators. This is tackled in Chapter 6 using Monte-Carlo simulation. 
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Chapter 6 

Monte-Carlo Evaluation 

6.1 Introduction 

In previous chapters we developed tools for point and interval estimation of gross flows 

statistics in the presence of misclassification and double sampling. However, it remains to 

assess the properties of these inference tools. In this chapter, we perform this assessment by 

designing a series of Monte-Carlo simulation experiments. In Section 6.2, we design a 

general simulation algorithm that can be employed with any type of flows data in the 

presence of misclassification and double sampling. As a special case, a simulation algorithm 

for cross-sectional inference is also presented. In Section 6.3, we describe a procedure that 

aims at relaxing the ICE assumption in the simulation. This is achieved by introducing 

dependence structure in the measurement error mechanism. In Section 6.4, we provide 

detailed information about the Monte-Carlo simulation studies and the data used in the 

context of the UK LPS. Sections 6.5 to 6.8 are devoted to reporting and commenting on the 

results. 

6.2 Description of the Simulation Algorithm 

Gross flows are estimated using information on the same individuals from at least two time 

points. This common sample consists of n sample units. From now on, we will refer to the 

sample that we use as the basis for our simulation as the original sample. We denote by H 

the total number of simulations that we perform and by Qi) a specific simulation. Generally 

speaking, the simulation is performed in a reverse mechanics way. We start by generating 

true flows and then generate observed flows by introducing measurement error to these true 

flows. 
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For iteration (h) 

Step 1: Generating True Flows 

In this step, we generate true flows. This is done by employing the probability distribution 

function (defined explicitly in Section 6.4) of the true flows between two time points (e.g. 

months, quarters) say t and t + 1. From this probability distribution function we draw a with 

replacement sample of size n . Recalling the notation from Chapter 2, are random 

variables that describe the observed status of the unit at t and t + 1 and are 

random variables that describe the true status of the unit at t and t + 1. Consequently, in 

this first step we generate values k, I such that = k, j for each sample unit ̂  . 

Step 2: Generating Cross-sectional Measurement Error 

Having generated true flows, we now assume the existence of a cross-sectional measurement 

error model that is described by the misclassification probabilities . Using these 

misclassification probabilities, we generate the observed status at t given the true status at t 

for each sample unit ^ i.e. | 

Step 3: Generating Longitudinal Measurement Error 

Having generated the observed status at t , we then generate the observed status at t + 1 

given the observed status at t, the true status at t and the true status at i -!- 1 for each sample 

unit ^ i.e. = j | = A;, . The theory we develop assumes the 

availability of the cross-sectional misclassification probabilities. Therefore, in order to 

generate the longitudinal measurement error we need to introduce additional assumptions. 

Initially, we generate longitudinal measurement error assuming that ICE is valid. However, 

we will also later investigate approaches that relax the ICE assumption. 

To facilitate the description of the simulation algorithm, we present an example in the context 

of the labour force gross flows. The true flows, generated from Step 1, can be represented by 

the 1 X 9 vector shown in Table 6.1, where the cells represent the number of sample units that 

belong to the different labour force flows categories. 
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Table 6.1: Data generated after Step 1 of the simulation process 

y y EE EV EN UE uu 

'^EE '^uu ĵVJV 

At Step 2 we generate the observed status for sample unit ^ at t , given his/her true 

status at t , using the cross-sectional misclassification probabilities (see Table 6.2). As a 

result, at this step we introduce cross-sectional measurement error. For example, a sample 

unit ^ that is truly employed both at t and ^ + 1 is allocated to (EEE, UEE, NEE) according 

to 

Table 6.2: Data generated after Step 2 of the simulation process 

y y EE EU EN UE UU MV 

E "^EEN ''^EUE ''^EUU 

V 

N ''^NEN ''^MUE "^NUU 

At Step 3 we generate the observed status for sample unit at t + 1 , , given the 

information from Steps 1 and 2. For example, a sample unit ^ that is truly employed both at 

t and at ^ + 1 and is also observed to be employed at t is allocated to (EEEE, EUEE and 

ENEE). This leads to the counts shown in Table 6.3. 

Table 6.3: Data generated after Step 3 of the simulation process 

y* 1 y ' y y ^ (t+l 1 ^ -'(t+i EEE UEE NEE EEU UEU NNN 

E '^BEBU ''^UEEU ''^NENN 

U ''^EUEE '^NVBE '^BUEU ''^UUEU 

N '^BNEU '^UNEU ''^NNNN 

, y„ = k, y„^i = M • The observed Therefore, in Steps 1-3 we generate -- 'u,^,^+1 

flows correspond to certain margins of Table 6.3. More specifically, the observed flow from 

state i at t to state J at t + 1 can be extracted using the following summation 

yy AT 
EEEK 
k=E l=B ( = 1 

(f+i jjYft — Ci+l (&1) 
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Step 4: Simulating an Internal or an External Second Phase Sample 

In order to simulate the availability of validation information, derived from a smaller 

validation sample of n® units ( n " < n ) , we distinguish two cases: 

(a) An internal validation sample is simulated by selecting a sub-sample of n" units using 

the generated data of Table 6.3. The generated cross-sectional validation information 

can be extracted using the following summation 

Z} E Z ^ ^ 0-
j—B l=E ^=1 

(b) An external validation sample of n" units is simulated independently of the data 

generated in Step 3. 

Hereinafter, when referring to an internal validation sample we will imply a validation sample 

that is generated using procedure 4a. An external validation sample will refer to a validation 

sample that is generated using procedure 4b. Note that throughout this chapter we assume that 

the independently selected validation sample (using 4b) is drawn from the same target 

population as the main sample. In that respect, this validation sample can be also regarded as 

internal. 

Step 5: Estimation Step 

Having generated observed (unadjusted) gross flows and cross-sectional validation 

information in Steps 1-4, we then utilise the generated data for estimation purposes i.e. for 

computing the alternative point and variance estimators. 

Extending the Simulation Algorithm to Allow for Heterogeneitv in the Gross Flows 

Mechanism and/or in the Measurement Error Mechanism 

The simulation algorithm can be modified to allow for heterogeneity in the measurement 

error mechanism and/or in the gross flows mechanism. Generally speaking, this can be 

achieved by employing group-specific information to generate this heterogeneity. Two 

different scenarios are investigated: (a) we allow for heterogeneity both in the gross flows 

mechanism and in the measurement error mechanism and (b) we allow for heterogeneity in 

the measurement error mechanism while assuming a homogeneous gross flows mechanism. 

Scenario (a) is implemented by generating group-specific information at all stages of the 
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simulation algorithm. This is equivalent to introducing stratification in the simulation. 

Scenario (b) requires the generation of group-specific data only for the measurement error 

mechanism. 

A Simulation Algorithm for Cross-sectional Inference 

The simulation algorithm can be modified in order to be suitable for cross-sectional 

inference. The cross-sectional algorithm is also performed in a reverse mechanics way. We 

start by generating cross-sectional true classifications. These true classifications are then 

contaminated with cross-sectional measurement error to produce cross-sectional observed 

classifications. Validation information is obtained by simulating an internal or an external 

second phase sample. Estimation is performed at the final step using the generated data. This 

algorithm will be used for comparing the maximum likelihood with the quasi-likelihood and 

the moment-based approach (see Chapter 2). 

6.3 Relaxing the ICE Assumption by Introducing Dependence Structure in 

the Measurement Error Mechanism 

The key assumption for estimating gross flows adjusted for measurement error, when only 

cross-sectional validation information is available, is the ICE. From our point of view, this is 

a rather strong assumption since we should expect some carry-over effects fi-om the 

classification at the first time point. We believe that a scenario where a dependence structure 

in the errors exists is more realistic. One possibility for relaxing the ICE assumption arises 

when allowing for heterogeneity. However, this approach still assumes that ICE holds but 

now within the different sub-groups. An alternative proposal for relaxing the ICE assumption 

is given by Kristiansson (1983) and is described also in Ho em (1985). Under ICE, the 

following holds for each sample unit ^ 

lijki — ^(+1 ^ 3 I Q-iklji hi 1^1^ — 1,2,• • • r.(6.3) 

Kristiansson (1983) proposed to replace (6.3) with an expression of the following form 

lijkk ~ lik^ijk 

The idea is that (a) a change in the real status should make the classifications recorded at two 

time points independent and (b) the classifications recorded at two time points should be 
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conditionally dependent, given the true states, when no change in the true status has occurred. 

Kjistiansson's proposal seems reasonable and can be justified using the memory effect. For 

example, when an individual's true labour force status remains stable between two time 

points we can assume that there is a memory effect, which is stronger compared to the case 

where the true labour force status changes between the two time points. For the latter case 

Kristiansson assumes that the ICE assumption is valid. However, for the former case he 

imposes a dependence structure defined by (6.4). Think of the following three examples. 

Assume that an individual is truly employed at both time points. According to (6.4) the 

following holds 

Ieebe ~ ~ ^ ^ I where 

This means that the probability of correct classification at the second time point, given that 

the individual is correctly classified at the first time point and the true labour force is stable 

between the two time points, is reinforced compared to the probability of correct 

classification at the second time point predicted under ICE. Assume now that an individual 

who is truly employed at both time points is correctly classified at the first time point and 

misclassified as unemployed at the second time point. According to (6.4) 

^euee ̂  (^t ~ E, \ Y^^ = E, = E^j = (Jee^bue where ^eue ^ ^ue • 

This means that the probability of misclassification at the second time point of an individual 

whose true labour force status is stable at both time points and who has been correctly 

classified at the first time point is lower than the probability of misclassification predicted 

under ICE. Assume finally that an individual who is truly employed at both time points is 

correctly classified at the second time point and misclassified as unemployed at the first time 

point. According to (6.4) 

%EEE — ~ ^ E \ = E ^ = where q^g > • 

This means that the probability of correct classification at the second time point of an 

individual who is truly employed at both time points and is misclassified at the first time 

point is lower than the probability of correct classification at the second time point predicted 

under ICE. 
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Based on Kristiansson's idea, we investigate the robustness of the alternative estimators 

under ICE and under departures from ICE. With respect to the choice of alternative to the 

ICE error models, we investigate two scenarios. These scenarios are defined by modifying the 

probabilities of correct classification and misclassification, predicted under ICE, for 

individuals that remain truly stable between t and t + 1 while preserving the probabilities of 

correct classification and misclassification, predicted under ICE, for individuals who truly 

change their status between t and t + 1. These modified probabilities are then used to 

generate the data in the simulation. 

6.4 Describing the Simulation Studies and the Data Sources in the Context 

oftheUKLFS 

The methodology we develop in this thesis is targeted at flows data obtained firom the UK 

LPS. The UK LPS is a quarterly panel survey and labour force gross flows are estimated 

using information on the same sampled individuals at two successive quarters. This common 

sample consists of approximately 60000 individuals. We now describe a series of Monte-

Carlo simulation studies based on these data. Table 6.4 summarises the information about the 

simulation studies we conducted. Tables 6.5 and 6.6 summarise the notation for the different 

point and variance estimators that are included in the simulation studies. 

As we described in Section 6.2, after the first three steps of the simulation algorithm we can 

compute the generated observed gross flows. The UK LPS is used implicitly by ensuring that 

the generated observed labour force gross flows are close to the un-weighted UK labour force 

gross flows defined by the common LPS sample between summer-autumn 1997. This is 

achieved as follows. Utilising the unadjusted UK labour force gross flows between summer-

autumn 1997 and a set of misclassification probabilities, we estimate UK labour force gross 

flows (summer-autumn 1997) adjusted for misclassification using one of the alternative 

estimators. The probability distribution function defined by these estimated adjusted labour 

force gross flows is then used to generate the true flows at Step 1 of the simulation. Por 

simulation studies I-V (Tables 6.7-6.31 and 6.42-6.51), VIII (Table 6.52) and X (Tables 6.54-

6.61), the probability distribution function that we use to generate true flows is estimated 

using the conventional (moment-type) estimator. For simulation study VI (Tables 6.32-6.36), 

the probability distribution function is estimated using the moment-type unit heterogeneity 

estimator. For simulation study VII (Tables 6.37-6.41), the probability distribution function is 
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estimated using the post-stratified version of the conventional estimator. Finally, for 

simulation study IX (Table 6.53) the probability distribution function is estimated using the 

maximum likelihood estimator. 

In Step 2, the algorithm requires the specification of a set of misclassification probabilities 

that will be used for inflating the generated true flows with cross-sectional measurement 

error. For simulation studies I-III and VIII, we define the misclassification probabilities by 

modifying slightly the unweighted Swedish (October 1994 - April 1995) misclassification 

probabilities. This modification was performed in order to avoid, under ICE, problems with 

negative adjusted flows. For simulation study X, we use the misclassification probabilities as 

these appear in application 5.2. For simulation studies IV-V, we further modify the Swedish 

(October 1994 - April 1995) misclassification probabilities. This modification is performed 

in order to avoid boundary values when fitting the EM algorithm. For simulation studies VI-

VII, the group-specific Swedish (October 1994 - April 1995) misclassification probabilities 

are also modified for the same reason. Note that the misclassification probabilities, which we 

use in Step 2, are the same as the misclassification probabilities we use to estimate the 

probability distribution function of the true flows that is utilised in Step 1. 

In Step 3, we need to generate longitudinal measurement error based on cross-sectional 

measurement error. The simulations are conducted both under ICE and under relaxed-ICE 

scenarios. The relaxed-ICE scenarios are defined using (6.4). The cross-sectional 

misclassification matrices utilised in Step 2 along with the misclassification probabilities 

either under ICE or under a relaxed-ICE scenario are reported in Appendix IV. 

In Step 4, we simulate the availability of validation information. More specifically, we 

simulate (a) a validation sample that is selected by sub-sampling units that already participate 

in the main survey and (b) an independently selected 6om the main sample validation sample 

that refers to the same target population. 

In simulation study X, we compare the maximum likelihood estimator with the conventional 

point estimator when the validation sample is selected by sub-sampling units fi-om the main 

survey. For simplicity, we compare these two estimators for the 4-state model (i.e. Employed 

and Unemployed or Inactive). In Section 3.2.2, we also described a "naive" approach for 

estimating the conditional expectations of the missing data in the validation sample when the 
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validation sample is selected by sub-sampling units from the main sample. This "naive" 

approach attempts to simplify the E-step of the EM algorithm (see Section 3.2.2). The 

"naive" approach is compared with the approach that utilises full information also in 

simulation study X. 

In Section 6.2, we presented an extension to the simulation algorithm that allows for 

heterogeneity. Two scenarios for heterogeneity are investigated. Under the first scenario, we 

allow for heterogeneity both in the measurement error and in the gross flows mechanism. 

Under the second scenario, we allow for heterogeneity in the measurement error mechanism 

while assuming a homogeneous gross flows mechanism. Here, we assume the existence of 

moderate heterogeneity only according to gender. However, the algorithm can be easily 

extended to accommodate heterogeneity according to more variables. Note also that the 

simulation studies that allow for heterogeneity are designed to preserve the group-specific 

labour force gross flows patterns of the original sample. The matrices of the misclassification 

probabilities (i.e. for males and for females) used in simulation studies VI-VII are reported in 

Appendix IV. 

In simulation study XI, (Tables 6.62-6.63) we contrast the alternative point estimators used 

for cross-sectional inference. The estimators we consider are the following; (a) the moment-

type estimator, (b) the maximum likelihood estimator with calibration probabilities 

(Tenenbein 1972), (c) the maximum likelihood estimator with misclassification probabilities 

(using the EM algorithm) and (d) the quasi-likelihood estimator. For the purposes of this 

simulation study, we use an artificial dataset. The set of probabilities we used to generate the 

data is the following: = 0.606 — 0.98 , = 0.04. 

Details of each simulation study i.e. the sample size of the main survey, the sample size of the 

validation survey, the number of iterations and the type of the second phase sample are 

reported along with the results 6om the specific simulation study. 
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Table 6.4; Information about the alternative simulation studies 

Simulation Study Description 

I Comparing alternative moment-type estimators and variance estimators under ICE 

II Comparing alternative moment-type estimators under relaxed-ICE 1 

III Comparing alternative moment-type estimators and variance estimators under relaxed-ICE 2 

rV Comparing alternative moment-type estimators with the maximum likelihood estimators under ICE 

V Comparing alternative moment-type estimators with the maximum likelihood estimators under a relaxed-ICE scenario 

VI Comparing alternative point estimators when allowing for heterogeneity only in the measurement error mechanism 

VII Comparing alternative point estimators when allowing for heterogeneity in the gross flows and in the measurement error mechanism 

VIII Evaluating the performance of the variance estimator of the conventional estimator in the case of an internal validation sample 

IX Evaluating the performance of the variance estimator of the maximum likelihood estimator under an external validation sample 

X Comparing the moment-type estimator with the maximum likelihood estimator under ICE and an internal validation sample 

XI Comparing the maximum likelihood with the quasi-likelihood and the moment-based approach in a cross-sectional framework 
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Table 6.5: Notation for the point estimators appearing in the simulation studies 

Point Estimator Notation 

Observed flows (Section 1.7.3) 

Conventional (Moment-type) (Section 2.2.2.1) 

Modified (Section 2.4.2) 

Unbiased margins (Section 2.4.1) 

Composite with fixed weights = 0.3 (Section 2.4.3 - T' set of weights) 

Composite with fixed weights = 0.2 (Section 2.4.3 - 2°"̂  set of weights) 

Composite with fixed weights = 0.1 (Section 2.4.3 - 3"" set of weights) 

Composite with adaptive weights (Section 2.4.3) 

Maximum likelihood (Section 3.2) 

Constrained maximum likelihood (Section 3.3) 

Moment-type unit heterogeneity (Section 4.2) 

Maximum likelihood that allows for heterogeneity (Section 4.3) 

Moment-type (for cross-sectional inference) (Section 2.2.1.1) 

Quasi-likelihood (for cross-sectional inference) (Section 2.2.1.4) 

Maximum likelihood with calibration probabilities-Tenenbein (1972) 

(for cross-sectional inference) (Section 2.2.1.2) 

Maximum likelihood with misclassification probabilities-EM algorithm 

(for cross-sectional inference) (Section 2.2.1.3) 

P-OBS 

P-ST 

P-MOD 

P-UM 

P-CFl 

P-CF2 

P-CF3 

P-CAD 

P-MLE 

P-UMLE 

P-UNTT 

P-UNMLE 

Moment-type 

Quasi-likelihood 

MLE 

(Tenenbein 1972) 

MLE 

(EM algorithm) 

Table 6.6: Notation for the variance estimators appearing in the simulation studies 

Variance Estimator Notation 

Variance estimator of the conventional (Moment-type) estimator under an 

external double sampling scheme (Section 5.2) 

Variance estimator of the conventional (Moment-type) estimator under an 

internal double sampling scheme (Section 5.2) 

Variance estimator of the modified estimator (Section 5.3) 

Variance estimator of the composite estimator with fixed weights (Section 5.3) 

Variance estimator of the maximum likelihood estimator under an external 

double sampling scheme (Section 5.4) 

A 
yar 

A 
Far 

A 
Far 

/\ ' 

P 

/ \ ^ 

P 

/\ mod ̂  
P 

A yar p 

^ A 
P 
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6.5 Evaluating the Performance of the Alternative Point and Variance 

Estimators 

The performance of the different point and variance estimators is assessed using the 

following evaluation criteria: 

1. Relative bias of a point estimator. 

2. Standard deviation of a point estimator. 

3. Root Mean Squared Error (RMSE) of a point estimator. 

4. Relative bias of a variance estimator. 

5. Coverage rate. 

A 
Bias and Relative Bias of a Point Estimator P 

Bma j = E p j - f , ^ j = ^ f (6.5) 

A (A) 

where P denotes the point estimator in simulation (A) 

l - f 
j ^ X100. (6.6) 

Simulation (Empirical) Variance of a Point Estimator 

A (A) /A 
f - E l f 

2 

The standard deviation is derived by taking the square root of (6.7) 

A 

Root Mean Squared Error of a Point Estimator P 

= J y f f 1 + Bias (^P 

(6.7) 

(6.8) 
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A /A 

Bias and Relative Bias of a Variance Estimator Var P 

A /A 

E 
A /A 

Var\P F a r ! 
\ A f A Cl) 

Far P 

A /A 

For f 
E 

A /A 

F a r f 
xlOO. 

(6 SO 

(6.10) 

Coverage Rate 

For each replication (h) we calculate the 95% confidence interval for each estimator P 

given by 

A (h) I A / A (h) ' 

(&11) 
A W I A 

P 

The coverage rate is defined as the total number of times that contains the true value P 

divided by the total number of simulations R . Ideally, the coverage rate given by (6.11), 

should be close to 95%. 

6.6 Results 

In this section, we report the results from the different simulation studies. 
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Simulation Study I: Non-differential flows - Non-differential misclassification 

ICE True Scenario - External Validation Sample 
= 2150, M ^ 6 0 0 0 0 , = 20000 

Table 6.7: True flows 

EE UE NE EU uu A17 EN AW 
0.7459 0.0102 0.0004 0.0015 0.0295 0.005 0.0008 0.0027 0.204 

Table 6.8: Point estimates, Averages over simulations 

Estimators EE UE NE EU UU NU EN [W AW 
P-OBS 0.7180 0.0160 0.0160 0.0080 0.0270 0.010 0.0160 0.0080 0.1810 
P-ST 0.7460 0.0102 0.00038 0.00149 0.0295 0.0049 0.00072 0.00260 0.2042 

P-MOD 0.7395 0.0109 0.00577 0.00250 0.0286 0.0051 0.00610 0.00285 0.1986 
P-UM 0.7361 0.0139 0.00002 0.00526 0.0328 0.0069 0.00048 0.00410 0.2005 
P-CFl 0.7441 0.0104 0.00198 0.00178 0.0292 0.0050 0.00233 0.00270 0.2025 
P-CF2 0.7447 0.0103 0.00144 0.00170 0.0293 0.0050 0.00179 0.00267 0.2031 
P-CF3 0.7454 0.0102 0.00089 0.00157 0.0294 0.0050 0.00125 0.00266 0.2036 
P-CAD 0.7458 0.0102 0.00041 0.00157 0.0294 0.0053 0.00076 0.00300 0.2036 

Table 6.9: Relative bias of point estimators 

Estimators EE UE NE WZ7 EN NN 
P-OBS -3.74 57.9 3900 433.3 -8.47 100 1900 196 -11.3 
P-ST 0.01 0.01 -5 -0.66 0.01 -2 -10 -3.70 0.10 

P-MOD -0.86 6.86 1343 66.6 -3.05 2 662 5.55 -2.64 
P-UM -1.31 36.2 -95 251 11.2 38 ^0 51.9 -1.71 
P-CFl -0.24 1.96 395 18.7 -1.02 0.01 191 0.01 -0.73 
P-CF2 -0.16 0.98 260 13.3 -0.68 0.01 124 -1.11 -0.44 
P-CF3 -0.07 0.01 123 4.66 -0.34 0.01 56.2 -1.48 -0.19 
P-CAD -0.01 0.01 2.50 4.66 -0.34 6 -5 11.1 -0.19 

Table 6.10: Standard deviation of point estimators (*10^) 

Estimators EE UE NE UU NU EN KV AW 
P-OBS 1.83 0.51 0.51 0.36 0.66 0.41 0.51 0.51 0.54 
P-ST 5.72 1.86 2.91 1.84 1.66 1.68 2.90 1.70 1.67 

P-MOD 5.40 1.78 2.67 1.76 1.58 1.63 2.77 1.64 1.62 
P-UM 3.13 1.24 2.86 1.29 1.93 1.42 2.80 1.62 1.04 
P-CFl 5.64 1.84 2.86 1.83 1.63 1.67 2.86 1.69 1.65 
P-CF2 5.67 1.85 2.90 1.83 1.63 1.67 2.88 1.70 1.66 
P-CF3 5.70 1.85 2.92 1.84 1.64 1.68 2.90 1.71 1.67 
P-CAD 5.65 1.82 2.88 1.81 1.65 1.49 2.87 1.61 1.66 

Table 6.11: RMSE of point estimators (*10^) 

Estimators EE UE NE jEc; UU NU EN UN AW 
P-OBS 8.86 1.85 4.93 2.07 0.80 1.58 4.82 1.69 7.31 
P-ST 1.81 0.59 0.92 0.58 0.52 0.53 0.92 0.54 1.67 

P-MOD 2.66 0.61 1.90 0.65 0.57 0.52 1.91 0.52 2.37 
P-UM 3.27 1.24 0.92 1.27 1.23 0.73 0.89 0.68 1.53 
P-CFl 1.88 0.59 1.04 0.58 1.65 0.53 1.03 0.54 1.73 
P-CF2 1.84 0.58 0.97 0.58 0.52 0.53 0.97 0.54 1.70 
P-CF3 1.81 0.59 0.89 0.58 0.52 0.53 0.93 0.54 1.68 
P-CAD 1.79 0.57 0.91 0.57 0.52 0.49 0.91 0.52 1.67 
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Simulation Study II: Non-differential flows - Non-differential misclassification 

Relaxed ICE Scenario 1 - External Validation Sample 

re" = 2150, re = 60000,-ff = 20000 

Table 6.12: True flows 

EE UE NE EU JYTV 
0J44 0.0103 0.0012 0.0018 0.0294 0.006 0.0015 0.003 0.2028 

Table 6.13: Point estimates. Averages over simulations 

Estimators EE UE NE EU DT7 NU EN BAT A9V 
P-OBS 0J178 0.0161 0.01610 0.00760 0.0271 0.0103 0.01560 0.00810 0J.809 
P-ST &7458 0.0102 0.00049 0.00108 0.0297 0.0054 0.00033 0.00280 0.2042 

P-MOD &7394 0.0110 0.00590 0.00214 &0287 0.0055 0.00570 0.0030 &1986 
P-UM 0.7358 0.0133 0.00064 &00480 0.0328 0.0081 0.00108 0.00450 01989 
P-CFl 0.7439 0.0104 0.00211 &00140 0.0293 0.0054 0.00195 0.00286 0.2024 
P-CF2 0.7445 0.0104 0.00157 0.00130 0.0294 0.0054 0.00141 0.00283 &2031 
PJCF3 0.7452 0.0103 0.00100 0.00120 0.0295 0.0054 0.00087 0.00281 0.2036 
P-CAD &7457 0.0104 0.00052 (100120 0.0295 0.0058 0.00036 0.00310 0.2039 

Table 6.14: Relative bias of point estimators 

Estimators EE UE #2" EU EN NN 
P-OBS -3.52 5&3 1241 322 -7.82 7L6 940 170 -10.8 
P-ST 024 -0.97 -40 1.02 -10 -78 -6.66 0.69 

P-MOD ^&62 6J9 392 1&9 -238 -833 280 0.01 -2.07 
P-UM -LIO 291 -46.6 167 11.6 35 -28 50 -L92 
P-CFl 4101 0.97 75^ -22.2 -0.34 -10 30 .4^7 -019 
P-CF2 0.07 0.97 30^ -27.7 0.01 -10 -6 -5.66 015 
P-CF3 &16 0.01 -16.6 -333 034 -10 -42 4533 039 
P-CAD &23 0.97 -56.6 -33.3 034 -333 -76 333 0^4 

Table 6.15: Standard deviation of point estimators (*10®) 

Estimators EE UE NE EU uu EN UN NN 
P-OBS IjW 0.51 Ojl 0J5 0.66 0.41 OJl 036 1^0 
P-ST 5J2 1.85 2jG 1.84 1.64 1.67 2.91 IJO 5j4 

P-MOD 5^4 1J9 2^2 1.77 1^8 1.62 2 j l 1.64 5.07 
P-UM 2.93 2.83 1J4 1.93 136 2 j g 1.60 3.11 
P-CFl 5.67 IjW 2 j# 1.82 1.62 1.66 2.88 1.68 5jW 
P-CF2 5.68 1.84 2.90 1^2 1.63 1.66 2 j# 1.69 522 
P-CF3 5.70 1.85 2.91 L83 L63 1.67 2.89 1.69 5.22 
P-CAD 5.69 L83 2.91 L81 L60 1.56 2.89 1.65 522 

Table 6.16: RMSE of point estimators (*10^) 

Estimators EE DE NE EU UU NU UN 
l̂ OBS &30 L84 4.71 L84 0.75 136 4^6 1.62 6.92 
P-ST L88 0.58 0.95 0.62 0.52 0^7 0.99 OJW L71 

P-MOD 2.27 0.61 L73 0.57 0.55 &53 L61 0.52 2.09 
P-UM 2.78 LOl 0.91 L04 L24 0.79 0.89 0.69 L58 
P-CFl L79 0.58 0.95 0.58 0.51 0.55 0.92 &53 L65 
P-CF2 L81 0.58 0.92 0.60 0,51 0.56 0.91 0.54 L65 
P-CF3 L85 0.58 0.92 0.61 0.52 &56 0.94 OJW 1.67 
P-CAD L88 &57 0.94 0.60 0.51 0.50 0.98 0J2 L69 
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Simulation Study III: Non-differential flows - Non-differential misclassification 

Relaxed ICE Scenario 2 - External Validation Sample 

71" = 2150, M = 6 0 0 0 0 , = 20000 

Table 6.17; True flows 

EE UE NE EU UU NU EN UN 
0.7425 0.0103 0.0018 0.0027 0X%91 0.0063 0.0027 0.0031 0.2015 

Table 6.18: Point estimates, Averages over simulations 

Estimators EE UE NE EU UU NU EN UN NN 
P-OB8 0.7179 0.0161 (101590 0.0080 0.0270 0.0102 0.01560 0.00810 0A810 
P-ST &7460 0.01&2 0.00025 (10015 &0296 0.0052 0.00037 0.00270 0.2042 

P-MOD 0.7395 0.0109 0.00570 0.0025 01886 0.0053 0.00570 0.00300 04986 
P-UM 0^358 0.0132 &00067 0.0048 0/M28 OjW81 0.00111 &0&#0 04989 
P-CFl 0.7440 0.0104 &00188 0.0018 0.0292 0.0052 0.00199 0.00280 0.2024 
P-CF2 0.7447 0.0104 0.00133 0.0017 0.0294 0.0052 0.00145 0.00277 0.2031 
P-CF3 0.7453 0.0103 0.00080 0.0016 &0295 0.0052 0.00091 0.00274 0.2036 
P-CAD 0.7458 0.0104 0.00029 0.0016 0.0294 (10056 0.00041 &00310 0.2040 

Table 6.19: Relative bias of point estimators (%) 
Estimators EE UE JYE EU NU EAT UN NN-

P-OBS 3.31 5&3 783 196 -7.2 6L9 478 161 -10.2 
P-ST 047 -&97 -86 -44 -rA4 -86 -12.9 134 

P-MOD -0.40 5.82 217 -7.40 -L72 -15.8 111 -3.22 -1.44 
P-UM 28T -62.7 77.7 12.7 28.5 -58.8 45T -L29 
P-CFl &20 0.97 4.44 -33 034 -17 -26.3 -9.67 0.44 
P-CF2 0.29 0.97 -2&1 -37 L03 -17.5 -46.3 -10.6 0J9 
P-CF3 &37 0.01 -55.5 -40.7 137 4 7 4 -663 -1L6 1.04 
P-CAD 0.44 0.97 -83.9 ^0.7 1.03 -11.1 -84.8 0.01 1J4 

Table 6.20: Standard deviation of point estimators (*10®) 

Estimators EE UE AfE EU NU EN UN 
P-OBS L84 OJ^ 0.51 036 0.66 0.41 &51 036 1J2 
P-ST 5.68 2.95 1.83 1.66 1.71 2.93 1J3 5 j # 

P-MOD 5.51 1.79 2.86 1.77 1.60 L65 2jW 1.68 5.11 
P-UM 3.14 126 2.82 1J5 1^2 139 2J7 1.59 345 
P-CFl 5.63 1.83 2.92 1.81 1.64 L69 2.90 1J2 523 
P-CF2 5.65 IjW 2.93 1^2 1.64 L70 2.91 1J2 525 
P-CF3 5.67 1.85 2.94 1.82 1.65 1.71 2.92 1J3 527 
P-CAD 5.67 1.83 2.94 L81 1.62 L60 2.92 1.68 526 

Table 6.21: RMSE of point estimators (*10^) 

Estimators EE UE NE EU UU EN UN NN 
P-OBS 7.80 1.84 4.47 1.68 0 69 1J4 4 j # 1^8 6^0 
P-ST 2^2 0.58 1.05 0.69 0.54 0.64 I J ^ 0.56 I j ^ 

P-MOD L97 0.60 1J2 0^7 0J3 0.61 133 0.53 1.85 
P-UM 237 1.00 0.96 0.79 130 0J2 1.01 0.68 130 
P-CFl 1.85 0^8 0.93 0.64 0J2 0.64 0.94 0J5 1.69 
P-CF2 1.92 0^8 0.94 0.66 0^3 0.64 1.00 0^6 1J3 
P-CF3 2.01 0.58 0.98 0.68 0.53 0.65 1.08 0.56 1.80 
P-CAD 2.08 0.57 1.04 0.67 0J2 OJ^ 1.17 0.53 IjW 
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Simulation Study IV: Non-differential flows - Non-differential misclassification 

ICE True Scenario - External Validation Sample 

= 10000, M = 60000,jy = 100 

Table 6.22: True flows 

EE VE NE EU uu NU EAT UN 
0J316 0.0131 0.0091 0.0047 &0283 &0071 0.0093 0.0049 0J919 

Table 6.23: Point estimates, Averages over simulations 

Estimators EE UE NE EU UU EN UN NN 
P-OBS 0.7177 0.0160 0.0161 0.0080 0.0267 0.010 0.0161 0.0081 0.1813 
P-ST (17318 0.0131 0.0090 0.0047 &0281 0.0070 0.0093 0.0048 &1922 

P-UM (17262 0.0148 0.0087 0.0064 0.0301 0.0083 0.0092 0.0059 0J.904 
P-CF2 (17268 0.0136 0.0132 0.0055 0.0274 0.0071 0.0134 0.0050 0J.880 
P-CF3 0.7293 0.0133 0.0111 0.0051 &0278 0.0071 0.0113 0.0049 &1901 
P-CAD 0.7318 0.0130 0.0090 0.0047 0.0281 0.0072 0.0092 0.0049 0J921 
P-MLE 0.7320 0.0130 0.0089 0.0046 &0281 0.0071 0.0091 0.0049 &1923 

P-UMLE &7276 0.0140 0.0088 0.0058 0.0295 0.0083 0.0093 0.0059 &1908 

Table 6.24: Relative bias of point estimators (%) 

Estimators UE NE EU UU UN 
P-OBS -1.89 2Z1 7&9 7&2 -5^5 4&8 711 653 -5^2 
P-ST 0.03 0.01 -L09 0.01 -OJl -L41 0.01 -2.42 0U6 

P-UM -0.74 129 -439 3&2 6.36 16.9 -L07 2&4 -&78 
P-CF2 -0.66 3jU 45 17 -3^8 0.01 44.1 2.04 -203 
P4]F3 -031 I j ^ 2L9 8.51 -1.76 0.01 2L5 0.01 -0.94 
P-CAD O^G -0J6 -1.09 0.01 4171 L41 -1.07 0.01 QUO 
P-MLE 0.05 -0.76 -219 2J^ 4171 0.01 -215 0.01 021 

P-UMLE 4155 6.87 <129 214 4J4 1&9 0.01 2&4 -0.57 

Table 6.25: Standard deviation of point estimators (*10®) 

Estimators EE UE TVE EU UU NU UN AW 
P-OBS 1.92 048 &52 033 0.80 041 0.47 035 L55 
P-ST 241 0.73 L09 0^2 LOl 0.71 L05 0.69 217 
P-UM 2.09 0.66 1.04 0^4 1.10 (160 0.98 0.61 L96 
P-CF2 236 0.71 1.07 0.62 0.98 0.69 033 0.66 211 
P-CF3 238 0J2 035 0.62 0.99 0.70 0.33 0.68 214 
P-CAD 240 0J3 L09 0.62 LOl 0.72 0.33 0.69 217 
P-MLE 2.03 0.60 0.82 048 0.90 0.60 0.78 0.54 L82 

P-UMLE 1.67 047 0.44 030 0J7 0.42 0.40 033 145 

Table 6.26: RMSE of point estimators (* 10^) 

Estimators EE BE NE EU UU Aiy EN UN NN 
P-OBS 141 2.95 7.00 333 1.71 3.07 6^4 324 345 
P-ST 242 0.73 1.09 0.62 1.01 &71 1.05 0.69 217 
P-UM 5J8 1.85 110 I J ^ 218 139 0.98 116 2.60 
P-CF2 530 041 424 1.04 130 0.69 427 0.67 4.63 
P-CF3 127 0J6 229 OJ^ 1.11 OJ^ 231 0.68 2.92 
P-CAD 241 0J3 1.09 0.62 1.02 0J2 1.05 0.69 217 
P-MLE 212 0.61 0.85 049 0.91 0.61 0.80 0J5 1.82 

P-UMLE 4.29 1.04 048 1.16 141 L25 040 0.99 l j # 
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Simulation Study V: Non-differential flows - Non-differential misclassification 

ICE Relaxed Scenario - External Validation Sample 

= 10000, M = 60000,^ = 100 

Table 6.27: True flows 

EE UE NE EU UU WD" EN KV NN 
0J283 0.0131 0.01 0.0059 0X%8 0.008 0.0117 0.0052 0.1898 

Table 6.28: Point estimates. Averages over simulations 

Estimators EE UE NE ' EU UU NU EN UN NN 
P-OBS 0.7180 0.0160 0.0160 0.0081 0.0270 0.010 0.01&) 0.0080 01809 
P-ST 0.7320 0.0133 OiW88 0.0049 0.0284 0.0070 0.0090 0.0049 0.1917 
P-UM 0.7266 0.0149 &0086 0.0065 0.0303 0.0082 0.0090 0.0058 0A901 
P-CF2 &7269 0.0139 0.0130 0.0057 0.0276 0.0071 0.0132 &0050 &1876 
PJCF3 0.7294 0.0136 0.0110 0.0053 &0280 0.0071 0.0111 0.0049 &1896 
P-CAD 0J319 0.0133 0.0088 0.0049 0.0284 0.0072 0.0090 0.0050 &1915 
P-MLE 0.7320 0.0131 0.0088 0.0048 0.0284 0.0071 0.0090 0.0049 &1919 

P-UMLE 0.7280 0.0140 0.0089 &0057 (1030 0.0081 0.0091 0.0058 0.1904 

Table 6.29: Relative bias of point estimators 

Estimators EE UE NE EU UU EN UN 
P-OBS -1.41 22T 60 373 -1,57 25 3&7 53^ ^.69 
P-ST Oj l 1^3 -12 -16.9 L43 -12.5 -23T -5J7 1 

P-UM 4123 13.7 -14 102 821 2.5 -23.1 1L5 0T6 
P-CF2 -0T9 6T0 30 -3J9 -L43 -112 12^ -3.84 -L16 
P-CF3 0T5 3.81 10 -10.2 0.01 -112 -5T2 -5.77 -0.11 
P-CAD 0^4 1.53 -12 -16.9 1^2 -10 -23T -3^4 &89 
P-MLE 0.51 0.01 -12 -18.6 L42 -112 -23T -5J7 LIO 

P-UMLE -0.04 6 j ^ -11 -339 7T4 125 -22.2 1L5 032 

Table 6.30: Standard deviation of point estimators (*10^) 

Estimators EE UE NE EU UU NU EN UN NN 
P-OBS 1.77 OJO 0^2 0J7 OjW &42 0^4 039 1.66 
P-ST 2.65 0.74 1.14 OJl 0^2 0.62 1.00 0.64 228 
P-UM 2.02 0.66 1.10 0.61 Oj# 0.58 0.97 0.59 2.08 
P-CF2 2.60 0.73 1.11 0.69 0.80 0.60 0.99 O^G 222 
P-CF3 2.62 0.73 1T3 OJO 0.81 &61 Oj^ 0.62 225 
P-CAD 2.65 0J4 1.14 OJl 0.82 0.62 1.00 0.65 228 
P-MLE 227 0.68 OjW 0.59 0J7 0.53 0J3 0^4 2.02 

P-UMLE 1.68 0^8 &41 033 0^8 &41 0.40 035 1.65 

Table 6.31: RMSE of point estimators (*10®) 

Estimators EE UE NE EU z w NU EN KV NN 
P-OBS 10.63 2^^ 6.11 231 130 2.09 4^2 2 j ^ 9 19 
P-ST 4.55 0.77 1.66 123 0.92 1.17 2.88 0.71 2.97 
P-UM 2.64 1.91 L78 0.85 2.47 0 61 2.87 Ô W 2T0 
P-CF2 2.95 L08 3T9 0J2 0.89 1.08 1.80 0.65 3T3 
P-CF3 2.84 0.88 1.51 0.92 0.81 1.09 1.16 0.69 226 
P-CAD 4.46 0.77 1.66 1.22 0.92 1.01 2 j # 0.67 2jW 
P-MLE 4.34 0.68 L47 L24 0.87 1.04 2jW 0J7 2.92 

P-UMLE 1.71 1.07 1.17 039 2.08 &42 2.63 0.69 1.75 
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Simulation Study VI: Differential measurement error - Non-differential flows 

External validation sample, Heterogeneity according to gender 

10000, 71 = 60000,^^ = 100 n 

Table 6.32: True flows 

EE BE EU uu NU EN NN 
0.7353 0.0128 0.0080 &0056 &0280 (10081 0.0077 0.0070 &1875 

Table 6.33: Point estimates. Averages over simulations 

Estimators EE BE NE EU UU NU EN UN 
P-OBS 0.7154 0.0160 0.0167 0.0091 0.0268 0.0101 0.0163 0.0091 0J^05 
P-ST 0.7356 0.0127 &0080 &0056 O^GSO 0.0081 0.0077 &0070 &1873 
P-UM 0.7243 &0146 0.0092 0.0075 0.0296 0.0090 0.0090 0.0077 0J891 

P-UNIT &7355 0.0128 0.0080 &0056 0.0280 0.0081 0.0077 0.0070 &1873 
P-MLE (17363 0.0127 0.0076 0.0055 0.0280 0.0080 0.0073 0.0070 0J^76 

P-UNMLE 0.7359 0.0127 0.0079 0.0055 &0280 0.0082 0.0076 0.0071 0J^71 
P-UMLE 0.7259 0.0141 0.0093 &0072 0.0293 0.0089 0.0091 0.0076 0J^86 

Table 6,34: Relative Bias (%) of the estimators 
Estimators EE UE EU UU NU EN UN NN 

P-OBS -2.70 25 108 625 -428 25 112 30 -173 
P-ST &04 -&78 0.01 0.01 0.01 0.01 0.01 0.01 -0.11 
P-UM -1/49 14^ 15 334 5.71 11.1 1&8 10 &85 

P-UNTT 0.03 0.01 0.01 0.01 0.01 0.01 OIU 0.01 4JT 
P-MLE 0J3 -&78 -5 .L78 0.01 -L23 ^ J 9 0.01 0.05 

P-UNMLE 0.08 -0.78 -1.25 -L78 0.01 L23 -L30 143 -&21 
P-UMLE -l.:28 10.2 16.2 28^ 4.64 9^^ 1&2 8^7 &59 

Table 6.35: Standard deviation of the point estimators (*10^) 

Estimators EE UE NE EU UU NU EN UN NN 
P-OBS 1.72 0.56 0.53 044 0.66 0J4 0J4 0J9 L54 
P-ST 2.84 0.85 0.99 OJl 0J3 0^7 L05 0.52 2.08 
P-UM 2.03 0.71 L04 0^5 0.80 049 L08 0J4 1.89 

P-UNTT 284 0.85 0.98 OJl 0J3 0^7 L04 0^2 2.07 
P-MLE 231 0J3 OJO 0J9 0.67 0.52 0J9 047 142 

P-UNMLE 2J2 0.69 0.61 Oj# 0.67 0.50 0.66 045 L85 
P-UMLE L80 0.63 Oj# 0^2 OJl 047 041 0.50 L75 

Table 6.36: RMSE of point estimators (*10^) 

Estimators EE BE NE EU UU A17 ETV UN 
P-OBS 19.9 8.71 3^2 1J7 2.00 8.64 2J^ 748 
P-ST 2 j # 0.85 0.99 OJl 0J4 0^7 1.05 0^2 2.08 
P-UM 11.2 1.96 1^5 145 1J5 048 1J3 043 2^0 

P-UNIT 2jW 0.85 048 OJl OJ^ 0.57 1.04 0J2 2.07 
P-MLE 2 j l 0J3 0.84 0.61 0.68 0.54 040 047 148 

P-UNMLE 2j^ OJO 0.63 0.57 0.68 0.50 0.68 045 1^4 
P-UMLE 9.63 148 1^5 1.64 1.51 0.82 1J2 0J4 245 
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Simulation Study VII: Differential measurement error - Differential flows 

External validation sample, Heterogeneity according to gender 

= 10000, M = 60000,g = 100 

Table 6.37: True flows 

EE UE NE EU uu #Z7 EN UN AW 
0J353 0.0128 0.0080 0.0056 &0280 0.0081 0.0077 &0070 0.1875 

Table 6.38: Point estimates. Averages over simulations 

Estimators EE UE NE EU [W NU EN [W NN 
P-OBS 0.7163 0.0160 0.0160 &0091 &0269 0.0102 0.0156 0.0091 0T808 
P-ST 0.7363 0.0127 0.0072 &0056 0.0281 0.0082 0.0068 0.0070 0T881 
P-UM 0.7247 0.0144 0.0091 0.0074 0.0296 (10092 0.0090 0.0079 0T887 

P-UNTT 0.7362 0.0127 0.0072 0.0057 0.0281 (10082 0.0069 0.0071 0T879 
P-MLE 0.7368 0.0125 &0073 &0055 &0280 0.0083 0.0070 0.0072 0T874 

P-UNMLE &7362 0.0125 0.0077 &0055 0.0279 0.0085 0.0074 0.0074 0T869 
P-UMLE 0J265 0.0140 0.0092 0.0071 0.0293 0.0090 0.0090 0.0077 0T882 

Table 6,39: Relative Bias (%) of the estimators 
Estimators EE UE NE EU UU NU EN A9V 

P-OBS -258 25 100 625 -3.93 25^ 103 30 -&57 
P-ST 0T4 -&78 -10 0.01 036 L23 -11.7 0.01 032 
P-UM -L44 12.5 13.7 321 5.71 13.6 1&9 128 0.64 

P-UNTT 0T2 -0.78 -10 L78 035 L23 -10.4 L43 0.21 
P-MLE &20 -2J4 -8.75 -L78 0.01 2.47 -9.09 2.85 -0.05 

P-UNMLE 0T2 -234 -3.75 -L78 -035 4.94 -3^9 5.71 -0.32 
P-UMLE -1.19 9J7 15 2&8 4.64 11.1 1&9 10 037 

Table 6.40: Standard deviation of the point estimators (*10^) 

Estimators EE EU UU NU EN UN NN 
P-OBS L93 0.49 0.48 0J6 0J2 0.45 &48 037 L72 
P-ST 2.87 0.78 1.13 0.69 0.89 0.66 LIO 0.66 2.23 
P-UM 2.20 0.63 0.99 0.56 0.94 0.59 L04 &56 2.05 

P-UNIT 2.87 0.78 1.13 OjO OjO 0.63 1.10 0.66 2.22 
P-MLE 2.27 0.68 0.79 0J7 0.78 0.57 0.77 0.53 1.67 

P-UmiLE 2.04 0.62 0.66 &50 0J7 0.54 0.66 0.49 L67 
P-UMLE L86 0.55 0^3 &53 OjW &58 OjW OJ^ 1.67 

Table 6.41: RMSE of point estimators (* 10^) 

Estimators EE UE NE EU UU NU EN NN 
P-OBS 19.0 3T4 7.95 3.52 L33 2.07 7.86 220 6.72 
P-ST 3.05 0J9 O j j 0.69 OjW 0.66 L39 0.66 232 
P-UM 10.8 L73 L47 L87 L83 L22 L61 1.11 2.43 

P-UNTT 3.04 0J9 1^4 0.69 0.89 0.66 1.37 0.66 230 
P-MLE 2J7 0J2 1.06 &58 0.78 0.60 1.05 0.57 1.68 

P-UNMLE 2J5 0.67 0J5 0.52 0.78 0.65 0.74 0.62 L78 
P-UMLE 8.98 126 1.40 1.57 1.57 1.05 1.37 0.91 L88 
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Simulation Study I: Non-differential flows - Non-differential misclassification 

ICE True Scenario - External Validation Sample 

= 2150, M = 6 0 0 0 0 , = 20000 

Table 6.42: Performance of the variance estimator for the conventional estimator 

Flow A ^ at—ert' 
V 

' at—ea:t Absolute Relative Bias (%) Coverage Rate 
E y a r P V P 

Coverage Rate 

EE 32.6 327 OJO 0.945 
UE 3.48 0.934 
NE 8J5 8.44 IJO 0.949 
EU 3^2 3.44 0^8 0.934 
u u 2.82 2.80 OJl 0.924 
NU 2 j # 2.87 0.69 0.939 
EN 848 8.36 0.948 
UN 2.96 2.88 2J7 0.935 
NN 27^ 27.6 1.08 0.943 

Table 6.43: Performance of the variance estimator for the modified estimator 

Flow A ' A TTWd ^ 

V 
' / \ m o d Absolute Relative Bias (%) Coverage Rate 

E Var p V P 
Coverage Rate 

^70^ 
EE 3&5 3&6 OJ^ 0.751 
UE 3J4 3jW 0.895 
NE 8.08 7.95 1^3 0.514 
EU 3jW 3J^ 1^8 0.864 
UU 2.62 2.57 1.94 0.826 
NU 2J0 2.68 0J5 &931 
EN 7J^ 7.86 L40 0.502 
UN 2.76 2.73 1^0 &927 
NN 25^ 2&1 &77 0.764 

Table 6.44: Performance of the variance estimator for the composite estimator with fixed 

weights (]/* set of weights, see Table 6.5) 

Flow A Absolute Relative Bias (%) Coverage Rate 
E Far P 7 [ P 

Coverage Rate 

rvoO 
EE 3L9 3L4 1J# 0.918 
UE 344 336 1.19 0.930 
NE 5 ;.37 8J0 OjW 0.881 
EU 3J4 329 1^2 0.922 
UU 2J5 2.69 223 0.902 
NU 2.83 2.81 0.71 0.937 
EN .14 825 133 0^177 
UN 2.90 2.87 1.04 0.935 
NN 272 274 0J3 0.914 
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Table 6.45: Performance of the variance estimator for the composite estimator with fixed 

weights set of weights, see Table 6.5) 

Flow 
E 

A 

y&r 
^ A C(M7q)-J%2 

p y 
^ /\ comp—/r2 ^ 

P 
Absolute Relative Bias (%) Coverage Rate 

EE 3Z1 3L7 1J# 0.931 
UE 3^2 339 OjW &934 
NE 842 &36 0.911 
EU 3J7 3.32 0.72 0.928 
u u 2J7 2.71 221 O^^O 
NU 2.83 1.06 0.937 
EN ^20 831 132 0.905 
UN 2.92 2.89 1.04 0.937 
NN 274 2%6 0J2 0.926 

Table 6.46: Performance of the variance estimator for the composite estimator with fixed 

weights (3"̂  set of weights, see Table 6.5) 

Flow 
E 

A 

Var P V 
^ / \ c o m p — j k 3 ' 

P 
Absolute Relative Bias (%) Coverage Rate 

EE 324 31.9 1.56 0.941 
UE 344 3.41 OjW 0.937 
NE 8 .48 8.41 0^3 0.930 
EU 339 334 1.50 0.933 
UU 2J3 220 0.917 
NU 2jW 2.85 1.05 0.938 
EN 8 .25 836 131 0.927 
UN 2.94 2.91 1.03 0.938 
NN 27^ 27^ 0J2 0.936 
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Simulation Study III: Non-differential flows - Non-differential misclassification 

Relaxed ICE Scenario 2 - External Validation Sample 

= 2150, 71 = 60000,a" = 20000 

Table 6.47: Performance of the variance estimator for the conventional estimator 

Flow A ^ /\ gt—ert ' 

F 
^ A a f — ^ Absolute Relative Bias (%) Coverage Rate 

E Far P F P 
Coverage Rate 

EE 32.6 327 OJl 0.928 
UE 3^6 3.44 0.58 0.942 
NE 8. 54 8.66 1J8 0.939 
EU 3 j^ 3.37 0.936 
UU 2.81 2.78 0.944 
NU 2 j # 2.84 1J6 0.946 
EN 8.36 0.908 
UN 2.96 2.91 1.72 0.950 
NN 2%8 2&1 1.07 0.945 

Table 6.48: Performance of the variance estimator for the modified estimator 

Flow A /\ mod ̂  

V 
^ A ffwd Absolute Relative Bias (%) Coverage Rate 

E P V P 
Coverage Rate 

EE 3&5 3&7 0.65 0.890 
UE 3J^ 3J2 0.93 0.900 
NE 8.09 8.10 0U2 0.678 
EU 3jW 3J^ 1J8 &942 
UU 2.62 2J9 0.876 
NU 2J^ 2.65 1.88 0.949 
EN 7J^ 7.81 Oj^ (1749 
UN 2.76 2J2 0.942 
NN 25^ 2&2 1.14 0jl70 

Table 6.49: Performance of the variance estimator for the composite estimator with fixed 

weights (1^ set of weights, see Table 6.5) 

Flow 
E 

A ^ A coTzq)—\ ' A coT?q)—^ 

F o r P V P 
^ / 1 / 

Absolute Relative Bias (%^ Coverage Rate 

EE 3L9 3Z1 0.62 (1950 
UE 339 337 0.59 0.933 
NE 837 8.48 L29 0.940 
EU 3J4 3.30 L21 (1946 
UU 2J^ 2J2 L47 (1932 
NU 2.83 2J8 L79 0.947 
EN 8J^ 8U9 0.49 0.945 
UN 2.90 2.85 1.75 0.948 
NN 2%2 2%5 1.09 0.949 
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Table 6.50: Performance of the variance estimator for the composite estimator with fixed 

weights (2"^ set of weights, see Table 6.5) 

Flow 
E 

A 

Var 
^ /\ comp-)z2 ̂  

P V 
' /\ c(M7q)—/r2 

P 
Absolute Relative Bias (%) Coverage Rate 

EE 3Z1 323 0.62 0.947 
UE 3^4 339 0.88 0.936 
NE S.42 &54 1^4 0.945 
EU 3J6 3J2 120 0.946 
UU 2.74 1^6 0.936 
NU 2.85 2.80 1J8 0.947 
EN .̂21 8.25 o ^ a 0.942 
UN 2.91 2.87 139 0.948 
NN 274 27.7 1.08 &951 

Table 6.51: Performance of the variance estimator for the composite estimator with fixed 

weights (3̂ ^ set of weights, see Table 6.5) 

Flow 
E 

A 

Far 
/\ comp—/r3 ̂  

P V 
/\ copq)—^3 ̂  

P 
Absolute Relative Bias (%) Coverage Rate 

EE 323 3 2 j 0.61 0.939 
UE 3.44 3^4 0.88 0.940 
NE 8 .48 8.60 139 0.947 
EU 338 335 0.89 0.941 
UU 2.80 2J6 145 0.942 
NU 2 j ^ 2^2 1J7 0.946 
EN 8 .26 831 0.60 0.931 
UN 2.94 2 j # 1J3 0.949 
NN 27^ 2%9 1.07 0.949 
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Simulation Study VIII: Non-differential flows - Non-differential misclassification 

ICE True Scenario - Internal Validation Sample 

= 2150, -Ti" = 57850,n = 20000 

Table 6.52: Performance of the variance estimator for the conventional estimator 

Flow A " / \ ^ 

V 
Absolute Relative Bias (%) Coverage Rate 

E y&r P V P 
Coverage Rate 

EE 3L4 3L3 0J2 0.944 
UE 323 3.29 1.82 0.931 
NE 821 8.29 0.96 0.942 
EU 338 3.44 1J4 0.930 
UU 2J2 2.73 0J6 0.920 
NU 2.87 2.90 1.03 0.933 
EN 820 8.31 132 0.943 
UN 2J9 2.84 I J ^ 0.933 
NN 27^ 272 0J3 0.942 

Simulation Study IX: Non-differential flows - Non-differential misclassification 

ICE True Scenario - External Validation Sample 

= 10000, M = 60000, = 100 

Table 6.53: Performance of the variance estimator for the maximum likelihood estimator (4-

state model) under the Missing Information Principle with 50000 simulations (Section 5.4.1) 

Flow 
E 

A A mZe ̂  ^ / \ 

Var P V P 
Absolute Relative Bias (%) Coverage Rate 

EE 
E,U+N 
U+N,E 

U+N,U+N 

5J9 
2.95 
2.95 
7J0 

5.00 
2.02 
2.00 
6.80 

3.80 
4&0 
4 7 j 
132 

0^4 
0.90 
0.92 
0^4 
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Simulation Study X: Non-differential flows - Non-differential misclassification 

ICE Scenario - Internal Validation Sample 

= 10000, 71 - = 50000, = 500 

Table 6.54: True flows 

EE U+N,E 
0^288 0.0129 &0054 0.2529 

Table 6.55: Point estimates, Averages over simulations 
Estimator EE U+N,E E,U+N U+N,U+N 

P-OBS 0.7160 0X%20 0.0250 02270 
P-ST 0.7290 0.0128 0.0053 0.2529 

P-MLE &7286 0.0132 0.0057 &2525 

Table 6.56: Relative bias of point estimators (%) 

Estimator EE U+N,E E,U+N U+N,U+N 
P-OBS -L756 14&0 36Z9 -10.24 
P-ST 0.027 -0775 -L851 (1039 

P-MLE -0.027 2325 5.555 -0T58 

Table 6.57: Standard deviation of point estimators (*10'̂ ) 

Estimator U+N,E E,U+N U+N,U+N 
P-OBS 2.58 1.09 0.87 2.54 
P-ST 3.21 l j # L68 145 

P-MLE 3.03 1.62 L39 3.08 

Table 6,58: RMSE point estimators (*10^) 

Estimator EE U+N,E E,U+N U+N,U+N 
P-OBS 4T3 6.05 6JW 823 
P-ST L02 1.87 L69 1.09 

P-MLE 0.96 1.64 1.41 0.98 

Table 6.59: Point estimates, Averages over simulations ("Naive" Vs. Full information) 

Estimator EE E,U+N [f+Afpfy+AT 
P-ST &7290 0.0128 0.0053 0.2529 

P-MLE ("Naive") &7285 0.0133 0.0059 0.2522 
P-MLE (Full Information) 07286 0.0132 0.0057 0.2525 

Table 6.60: Standard deviation of point estimators (*10^ ("Naive" Vs. Full information) 

Estimator EE U+N,E U+N,U+N 
P-ST 3.21 1.86 L68 345 

P-MLE ("Naive") 3.09 1.83 1.62 328 
P-MLE (Full Information) 3.03 1.62 139 3.08 

Table 6.61: RMSE of point estimators (*10^) ("Naive" Vs. Full information) 

Estimator EE U+N,E U+N,U+N 
P-ST 1.02 1.87 1.69 1.09 

P-MLE ("Naive") 0.98 1.87 1.69 1.06 
P-MLE (Full Information) 0.96 1.64 1.41 0.98 
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Simulation Study XI: Comparing alternative parameterisations for cross-sectional inference 

External Validation Sample 

M = 60000, = 3000, = 1000 

Table 6.62: Point Estimates, Averages of 1000 simulations 

Point Estimators A 

Pi 

Moment-type 0X#61 

MLE (Tenenbein 1972) oum59 

MLE (EM algorithm) 0U#59 

Quasi-likelihood 0.6059 

Table 6.63: Empirical comparison of the alternative point estimators 

Point Estimators Relative Bias (%) Standard Deviation RMSE 

Moment-type 1.65 I J ^ I J^ 

-1.65 1J3 1.13 

MLE (EM algorithm) -1.65 1.13 1T3 

Quasi-likelihood -1.65 1.13 1.13 

6.7 The Performance of the Alternative Point Estimators 

Based on the results derived from the different simulation studies, we now compare the 

alternative point estimators. 

The Performance of the Unadjusted Estimator 

Measurement error has a significant effect on the estimated labour force gross flows. Ignoring 

measurement error and estimating labour force gross flows without any further adjustment 

results in the overestimation of the probabilities of transition. Deciding whether to use the 

unadjusted estimates or the adjusted estimates will depend on the intensity of the 

misclassification problem and on the trade-off between the variance of the adjusted gross 

flows and the bias of the unadjusted gross flows. Based on the simulation results, the variance 

of the unadjusted gross flows appears to be smaller than the variance of the adjusted gross 

flows (see for example. Tables 6.10, 6.15, 6.20). This is due to the extra variability 
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introduced by the adjustment procedure. However, the bias of the unadjusted gross flows is 

always larger than the bias of the adjusted gross flows (see for example, Tables 6.9, 6.14, 

6.19). This is the case both under ICE and under the relaxed-ICE scenarios. Based on a mean 

squared error criterion (see for example, Tables 6.11, 6.16, 6.21), we conclude that the point 

estimators that adjust gross flows for measurement error should be preferred over the point 

estimator that ignores measurement error. 

The Performance of the Alternative Moment-type Estimators 

As expected, the effect of the conventional estimator is to correct the observed flows towards 

higher stability i.e. decrease the off diagonal observed flows and increase the diagonal 

observed flows. This estimator performs very well under ICE (see for example, Table 6.11), 

but starts deteriorating under the relaxed-ICE scenarios. However, it appears to be quite 

robust to departures from ICE (see for example, Tables 6.16 and 6.21). 

The modified estimator adjusts the observed flows in the same direction as the conventional 

estimator. However, it tends to reduce the adjustments produced under ICE. Consequently, 

the performance of the modified estimator is in the reverse direction from that of the 

conventional estimator (see Tables 6.11, 6.16 and 6.21). Given the disadvantages associated 

with the modified estimator (see Section 2,4.2) and the robustness of the conventional 

estimator, we propose the use of the conventional estimator instead of the modified estimator. 

The composite estimator with fixed weights also reduces the adjustments produced by the 

conventional estimator. However, this estimator performs reasonably well under ICE (see 

Table 6.11) and very well under the relaxed ICE scenarios (see Tables 6.16 and 6.21). Thus, 

we propose the use of the composite estimator with fixed weights, as an alternative to the 

conventional estimator, in situations where the effect of the ICE assumption is very 

pronounced. 

The composite estimator with adaptive weights provides less severe adjustments than the 

adjustments derived by the conventional estimator. The composite estimator with adaptive 

weights performs very well under ICE (see Table 6.11). In fact, under ICE this estimator has 

the minimum mean squared error. In addition, the composite estimator with adaptive weights 
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is robust to departures from the ICE. We suggest that this estimator provides a promising 

moment-based alternative to the conventional estimator. 

In contrast to the conventional estimator that provides an upper bound for the adjustments, 

the unbiased margins estimator provides a lower bound for the adjustments. The unbiased 

margins estimator behaves like the moment-type estimators that attempt to relax the ICE 

assumption. It is biased under ICE (see Table 6.9) but it improves under the relaxed ICE 

scenarios (see Tables 6.16 and 6.21). This estimator provides an alternative to the 

conventional estimator when the impact of the ICE assumption is very pronounced. 

In summary, the composite estimator with fixed or adaptive weights and the unbiased 

margins estimator provide reasonable moment-type alternatives to the conventional estimator. 

Contrasting the Moment-type Estimators with the Maximum Likelihood Estimators 

In Chapter 3, we developed a maximum likelihood estimator and a constrained maximum 

likelihood estimator as alternatives to the conventional estimator and to the unbiased margins 

estimator respectively. Our simulation results indicate that when the validation sample is 

selected independently from the main sample and from the same target population, the 

proposed maximum likelihood estimators are more efficient than the moment-type estimators 

(see for example, Tables 6.26 and 6.31). A validation sample that is selected by sub-sampling 

units from the main (panel) survey may increase the response burden of these units. Using an 

independently selected validation sample in a panel framework may be more reasonable. 

However, such an independently selected validation sample is also associated with higher 

costs. This is because, when using an independently selected validation sample, we conduct 

an additional cross-sectional survey of individuals that do not participate in the main survey. 

The conventional estimator uses information from the cross-sectional validation sample only 

for estimating the misclassification probabilities. On the other hand, the maximum likelihood 

estimator makes optimal use of the cross-sectional validation information, leading to an 

increase of the effective sample size. One could object that in order to gain this increased 

efficiency, we pay the price of conducting an expensive validation survey. For this reason, in 

simulation study X we contrast the maximum likelihood estimator with the conventional 

estimator when the validation sample is selected by sub-sampling units from the main 

sample. Under this double sampling scheme, both estimators use the same information. 
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Again, our results indicate that the maximum hkelihood estimator is more efficient (see 

Table 6.58). Based on these results, we therefore recommend the maximum likelihood 

estimator and the constrained maximum likelihood estimator instead of the conventional 

estimator and the unbiased margins estimator. 

In Section 3.2.2, we also presented two alternative approaches (i.e. the "naive" approach and 

the full information approach) for performing the E-step of the EM algorithm when the 

validation sample is selected by sub-sampling units from the main sample. In Tables 6.59-

6.61 we contrast these two approaches. We conclude that in performing the E-step of the EM 

algorithm under the specific double sampling scheme, the full information approach is more 

efficient than the "naive" approach (see Table 6.61) and therefore should be preferred. 

Comparing the Alternative Estimators in the Presence of Heterogeneity 

In simulation studies VI and VII, we allowed for moderate gender-based heterogeneity in the 

gross flows mechanism and/or in the measurement error mechanism. The maximum 

likelihood estimator that allows for heterogeneity is generally more efficient than the 

corresponding moment-type (unit heterogeneity) estimator (see Tables 6.36 and 6.41). In 

addition, since the maximum likelihood that allows for heterogeneity incorporates 

stratification, we expect that it will be superior to the maximum likelihood estimator that 

ignores heterogeneity. The results verify this assumption (see Table 6.36 and Table 6.41). We 

conclude that even in the presence of moderate heterogeneity, the maximum likelihood 

estimator that allows for heterogeneity should be preferred over the maximum likelihood 

estimator that ignores heterogeneity. 

6.8 The Performance of the Alternative Variance Estimators 

In this section, we assess the performance of the variance estimators. Two evaluation criteria 

are used. These are the relative bias of the variance estimator and the coverage rate when 

using the variance estimator. 
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The Performance of the Variance Estimator for the Conventional Estimator 

Under ICE, the variance estimator of the conventional estimator works very well. More 

specifically, in the case of an external validation sample the absolute relative bias ranges 

between 0.28 % and 2.77 % and the coverage rate ranges between 92.4% and 94.9% (see 

Table 6.42). For the case of an internal validation sample, the absolute relative bias ranges 

between 0.32% and 1.82% and the coverage rate ranges between 92.0% and 94.4% (see Table 

6.52). Under the second relaxed-ICE scenario, the variance estimator for the conventional 

estimator performs well with low relative bias. The coverage rates are not affected (see Table 

6.47). In only one case does the coverage rate drop from 94.8% to 90.8% (EN flow). The 

preservation of coverage rates close to 95% indicates that the conventional estimator is robust 

to departures from ICE. 

The Performance of the Variance Estimator for the Modified Estimator 

Under ICE, the variance estimator of the modified estimator works well with absolute relative 

bias that ranges between 0.33% and 1.94%. However, the coverage rates range between 50% 

and 93% (see Table 6.43). This under-coverage can be attributed to the bias of the modified 

estimator under ICE. Under the second relaxed-ICE scenario, the modified estimator 

preserves its good performance (see Table 6.48). The coverage rates increase but there are 

still cases of under-coverage due to the bias of this estimator. 

The Performance of the Variance Estimator for the Composite Estimator with Fixed Weights 

Under ICE, the variance estimator of the composite estimator with fixed weights works well 

with absolute relative bias that ranges between 0.71% and 2.23%. The coverage rates come 

closer to 95% as we reduce the weight of the modified estimator (see Tables 6.44, 6.45 and 

6.46). This is expected, since under the third set of weights (Table 6.5) the composite 

estimator is closer to the conventional estimator and thus approximately unbiased when ICE 

is valid. Under a relaxed-ICE scenario, the variance approximations for this estimator work 

well with coverage rates close to 95 % (see Tables 6.49, 6.50 and 6.51). 
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The Performance of the Variance Estimator for the Maximum Likelihood Estimator 

The variance estimator of the maximum likelihood estimator (under a validation sample that 

is selected independently from the main sample and from the same target population) appears 

to be conservative since it overestimates the true variance (see Table 6.53). This 

overestimation occurs mainly in the off-diagonal elements of the gross flows matrix. Despite 

being conservative, two positive outcomes emerge from the use of this variance estimator. 

Firstly, we feel confident that we capture the variability due to the missing data. Secondly, we 

derive reasonable coverage rates that range between 90%-94%. Given the complexity of the 

problem, we believe that this variance estimator provides a reasonable approximation to the 

variance of the maximum likelihood estimator. 

6.9 Summary 

We now summarise the main findings from the evaluation of the methodology presented in 

this chapter. Among the alternative moment-type estimators, we propose the use of the 

composite estimator with fixed or with adaptive weights and of the unbiased margins 

estimator as alternatives to the conventional estimator. The maximum likelihood estimator 

and the constrained maximum likelihood estimator are more efficient than the conventional 

estimator and the unbiased margins estimator respectively. The higher efficiency of the 

maximum likelihood estimator is preserved under a validation sample that is selected by sub-

sampling units from the main sample. When using the E M algorithm under this double 

sampling scheme, it is preferable to employ the frill information approach instead of the 

"naive" approach for estimating the conditional expectations of the missing data in the 

validation sample (see Section 3.2.2). The gains from accounting for heterogeneity seem also 

to be quite significant. The variance estimators of the moment-type estimators provide 

reasonable approximations to the true variance of these estimators. The variance estimator of 

the maximum likelihood estimator, under a validation sample that is selected independently 

from the main sample, appears to be conservative. However, since this estimator captures the 

variability due to the missing data and leads to reasonable coverage rates, we argue that it can 

provide a reliable solution. 
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Chapter 7 

fVote oil the I)esigii of a IJIKI IJF5) 

Survey: Suggestions Based on Empirical Evidence 

7.1 Introduction 

The methodology developed in this thesis assumes the availability of validation data that are 

derived from a re-interview survey. However, the UK LFS has not yet developed a re-

interview survey for estimating the parameters of the measurement error mechanism. For this 

reason, throughout this thesis we have relied on external re-interview data (mainly Swedish, 

and also data from Canada and the US) calibrated to information derived from the UK LFS. 

In this chapter, we provide some recommendations for the design of a re-interview survey for 

the UK LFS. The emphasis is on identifying optimal design characteristics for conducting a 

re-interview survey. In Section 7.2, we empirically compare re-interview surveys with 

different reconciliation strategies. In Section 7.3, we compare alternative double sampling 

schemes. We give suggestions for the selection of an appropriate double sampling scheme 

based on the following three criteria: (a) the cost of implementing this scheme, (b) the 

implications for the quality of the main (ongoing) survey and of the validation survey and (c) 

the implications for point and interval estimation. 

7.2 Comparing Re-interview Surveys with Different Reconciliation 

Strategies 

A crucial design characteristic of a re-interview survey is the method of reconciling the 

original response with the re-interview response (see Section 1.8.2). In this section, we 

investigate the effect of different reconciliation strategies using information from two 

validation surveys namely, the CPS re-interview survey as described in Poterba and Summers 

(1986) and the Swedish re-interview survey (Kristiansson 1999). The CPS re-interview 
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survey consists of two samples. In one sample, consisting of the 25% of the total re-interview 

sample, re-interviews are carried out without any attempt for reconciliation and without 

access to the original responses. For the remaining 75% of the total re-interview sample, re-

interviewers are provided with the original responses and attempt reconciliation if there are 

discrepancies between the original and the re-interview responses. The Swedish validation 

survey is described in Section 1.8.4. 

One way to quantify the comparison between validation surveys with different reconciliation 

procedures is by contrasting the misclassification rates from the unreconciled and the 

reconciled samples and examine whether these are significantly different. One indication of 

the violation of the assumption that the re-interview survey identifies the true value is that the 

reconciled sample shows a smaller number of discrepancies compared to the unreconciled 

sample. A problem of this kind has been reported by Poterba and Summers (1986) using data 

from the CPS re-interview programme. Unfortunately, similar comparisons between the 

reconciled and the unreconciled data for the Swedish re-interview programme (October 1994 

- April 1995) are difficult because the design of this re-interview programme is different from 

that of the CPS re-interview survey. In the Swedish case, after the first interview a sub-

sample of units is re-interviewed using computer assisted telephone interviewing. 

Furthermore, due to the computerised nature of the Swedish re-interview programme, re-

interviewers have no access to the original data before the re-interview survey. In case a 

discrepancy between the original and the re-interview occurs, reconciliation takes place. Note 

that this reconciliation process is not just a clerical check where the results from the re-

interview are considered as the true values. For example, there are discrepancies between the 

re-interview and the reconciled results in the Swedish re-interview dataset. 

In order to examine whether the reconciliation process in the Swedish case introduces any 

problems, we simulate a design similar to the design that is used by the CPS re-interview 

survey. We use re-interview data from the Swedish LFS re-interview programme (October 

1994 - April 1995). The Swedish re-interview programme consists of approximately 

n" = 2150 individuals. In each simulation, we randomly select a sample of size = 538 

(i.e. 25% of the total re-interview sample) from the Swedish re-interview data set. For these 

units, we compare the original with the re-interview responses and we construct the 

misclassification matrix. For the non-sampled units = 1613 (i.e. the 75% of the total re-
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interview sample), we compare the original responses with the reconciled responses and we 

construct a second misclassification matrix. We conduct a total of H = 1000 simulations. 

The first sample can be regarded as equivalent to the unreconciled sample of the CPS re-

interview survey while the second sample can be regarded as equivalent to the reconciled 

sample of the CPS re-interview survey. Furthermore, the responses in the first sample are 

independent from the responses in the second sample since the two samples do not share 

common units. Our primary target is to compare corresponding off-diagonal elements of the 

misclassification matrices estimated from these two samples. 

One way to perform these comparisons is by constructing confidence intervals for the 

differences between corresponding off-diagonal elements of the misclassification matrices. 

Treating the elements of the misclassification matrices as multinomial proportions, one can 

make inferences by constructing simultaneous confidence intervals. Literature on 

simultaneous confidence intervals for multinomial proportions includes Quesenberry and 

Hurst (1964), Goodman (1964, 1965), and Fitzpatrick and Scott (1987). For the purposes of 

our application we follow Goodman's approach (1964). Assume that for each re-interview 

programme we have two samples. In one sample reconciliation takes place while in the other 

sample no reconciliation is conducted. Previously we used q-/. to denote the cross-sectional 

misclassification probabilities. However, will now refer to the joint and not to the 

conditional probabilities of misclassification. Recalling the notation from Chapter 1, a 

superscript (u) will denote quantities from the unreconciled sample while a superscript (r) 

will denote quantities from the reconciled sample. Denote also by the sample size of the 

unreconciled sample and by the sample size of the reconciled sample. Define a contrast 

0-j, between the two samples to be a linear function of satisfying 

== (]' Cf.l) 

Let denote the estimated contrast for a fixed cell zA. Under a multinomial 

assumption and the assumption of independence between the reconciled sample and the 

unreconciled sample, we have that 
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For the purposes of our application, we are not interested in all possible combinations of 

contrasts but in comparisons between corresponding off-diagonal elements of the 

misclassification matrices. Goodman (1964) gives an expression for constructing 

simultaneous confidence intervals in case one is interested to a specific set of G contrasts 

<:<?* <: 9 a - C 7 . 3 ) 

where Var{Oi]}^ is defined by (7.2) and Z is the 100 (l — a. /2G)th percentile point of the 

unit normal distribution. For the CPS re-interview programme, we directly apply (7.3) using 

the data from Poterba and Summers (1986 p. 1323). For the Swedish re-interview programme, 

we evaluate the quantities involved in (7.3) using the simulation study. The expectation (over 

simulations) of an off-diagonal element of the misclassification matrix from re-interview 

sample j is given by 

= (7.4) 

The empirical (simulation-based) variance of an off-diagonal element of the misclassification 

matrix 6om re-interview sample j is given by 

-B (««)[• (7 5) 

Using (7.4) and (7.1), one can estimate the expectation (over simulations) of contrast 6 ,̂.. 

Using (7.5), one can estimate the variance of contrast 9^̂ .. The simultaneous confidence 

intervals are then determined using (7.3). 

Table 7.1: Simultaneous confidence intervals for contrasts between corresponding off-

diagonal elements derived from the unreconciled sample and the reconciled sample of the 

CPS re-interview survey, a = 0.05, C? = 6. 

CPS Re-interview Survey 

Contrast Lower Bound Upper Bound 

^EU &0015 (X0069 

0.0052 (10110 

^UE 0.0001 0.0049 

0.0006 0.0068 

^NB 0.0001 0.0088 

-&0018 0.0051 

204 



Table 7.2: Simultaneous confidence intervals for contrasts between corresponding off-

diagonal elements derived firom the unreconciled sample and the reconciled sample of the 

Swedish LFS re-interview survey, a = 0.05, G = 6, H — 10000. 

Swedish Re-interview Survey 

Contrast Lower Bound Upper Bound 

^EU -0.0056 0.0082 

-&0115 0.0096 

-&0089 0.0127 

^UN -&0080 0.0097 

^NE 410120 0.0127 

410079 0.0108 

The results for the CPS re-interview survey (Table 7.1) show that in all cases but one the 

probabilities of misclassification estimated from the unreconciled sample are significantly 

higher than the probabilities of misclassification estimated fi-om the reconciled sample. This 

suggests that the reconciliation process of the CPS re-interview survey invalidates the 

assumption that reconciliation identifies the true value. For the Swedish re-interview survey, 

the confidence intervals indicate that in all cases there is no significant difference in the 

probabilities of misclassification estimated from the reconciled and the unreconciled samples 

(Table 7.2). 

One can object that the simultaneous confidence intervals are conservative. However, the 

results are in the same direction even by constructing the less conservative pair-wise 

confidence intervals (each at a = 0.05). One can further object that these differences are a 

consequence of the different sample sizes of the CPS re-interview survey and of the Swedish 

re-interview survey. The sample size of the Swedish re-interview survey is smaller than the 

sample size of the CPS re-interview survey. Consequently, the fact that we don't detect any 

differences between the unreconciled sample and the reconciled sample of the Swedish re-

interview survey is due to the higher variability (smaller sample size) in this survey. For this 

reason, we constructed simultaneous confidence intervals assuming that the sample size of 

the Swedish re-interview survey is the same as the sample size of the CPS re-interview 

survey. The results indicated that in all cases there is no significant difference in the 

probabilities of misclassification estimated from the reconciled and the unreconciled samples. 

Unlike the CPS reconciliation process, the reconciliation process of the Swedish re-interview 
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survey allows unbiased estimation of the misclassification rates. This can be attributed to the 

design characteristics of the Swedish re-interview survey, which are close to the optimal 

characteristics when the aim is to estimate the response bias component (see Section 1.8.2). 

7.3 Selecting a Double Sampling Scheme 

In designing a re-interview survey, one key decision relates to the choice of a double 

sampling scheme, hi this section, we compare different double sampling schemes for 

selecting a validation sample. The criteria we use to assess these schemes are the following: 

(a) the cost of implementing the scheme, (b) the implications for the quality of the main 

(ongoing) survey and of the validation survey and (c) the implications for point and interval 

estimation. 

One option is to select a validation sample independently from the main sample (double 

sampling scheme 1). This can be either an external validation (transformed into an internal 

validation sample using the ideas in Section 2.2.1.1) or a validation sample that is selected 

independently from the main sample and from the same target population. The second option 

is to select a validation sample by sub-sampling units from the main sample (double sampling 

scheme 2). 

A validation sample that is selected independently from the main sample or an external 

validation sample may be associated with higher costs than a validation sample that is 

selected by sub-sampling units from the main sample. This is because, when using an 

independently selected validation sample, we conduct an additional cross-sectional survey of 

individuals that do not participate in the main survey. 

When comparing double sampling schemes, we need to account for the fact that the main 

survey instrument, for example the UK LPS, is a panel survey. Sub-sampling units that 

already participate in the main survey is equivalent to introducing an extra wave into the 

panel survey. These additional measurements can lead to an increase in the response burden. 

Therefore, this double sampling scheme may have implications for the quality both of the 

main (ongoing) survey and of the validation survey. 
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In Section 3.2, we formulated the measurement error model both under double sampling 

scheme 1 and double sampling scheme 2. Point estimation is performed via the EM 

algorithm. However, when the validation sample is selected by sub-sampling units from the 

main sample (i.e. double sampling scheme 2), the expectation step in the EM algorithm 

becomes complicated (see Section 3.2.2). This implies that interval estimation under the 

specific double sampling scheme will also be complicated. 

Based on this comparison, we conclude the following. A validation sample that is selected 

independently from the main sample is associated with higher costs. However, this double 

sampling scheme does not impact on the quality of the main survey and of the validation 

survey. Moreover, under this double sampling scheme, point and interval estimation is 

simpler. This comparison is summarised in Table 7.3. 

Table 7.3: Comparing alternative double sampling schemes 

Double Sampling Scheme Cost Risk for Quality of Swveys Inference 

1 High Low risk Easy 

2 Lower High risk Complicated 

In some cases, an efficient way of selecting a validation sample is offered by the use of 

administrative databases. The use of an administrative data source can be placed into the 

context of double sampling scheme l o r 2. Using an administrative data source may not be as 

expensive as conducting an interview-based validation survey, hi addition, under this 

approach, we don't prejudice the quality of the main survey. As an alternative, one could 

include in the re-interview survey only the sample units that participate for the last time in the 

panel survey (double sampling scheme 2). The advantage of this approach is that there is no 

risk to the quality of the ongoing survey, since these units participate for a last time in this 

survey. However, we may risk the quality of the validation survey due to possible existence 

of conditioning effects in the respondents. Finally, an alternative but more costly solution is 

offered by selecting the validation sample from a cross-sectional survey that collects 

information of similar nature to the information that is collected by the main (panel) survey 

(double sampling scheme 1). 
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7.4 Summary 

In this chapter, we provide some suggestions for designing a UK LFS re-interview survey 

based on empirical evidence. We suggest an independent reconciliation process, where the re-

interviewers have no access to the original responses, and a double sampling scheme based 

on a validation sample that is selected independently from the main sample. Although this 

scheme is considered to be less cost efficient, it has advantages in the sense that it does not 

affect the quality of the ongoing survey and it provides an easier way of performing 

inference. 
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Chapter 8 

Summary and Suggestions for Further Research 

8.1 Summary 

The purpose of this thesis is to develop methodology for correcting gross flows estimates for 

measurement error. The application we focus on is estimation of labour force gross flows, 

and the approach we follow assumes the availability of cross-sectional validation data that 

provide information about the measurement error process. We now summarise our basic 

findings and give directions for future research. 

In Chapter 2, we define a general estimation framework and contrast the use of alternative 

double sampling schemes in both cross-sectional and longitudinal situations. In a cross-

sectional situation, we present two alternative parameterisations of the measurement error 

model that work by combining information both from the main sample and the validation 

sample. Under the first parameterisation, we formulate the measurement error model as a 

missing data problem and maximum likelihood estimation is performed via the EM 

algorithm. Under the second parameterisation, the measurement error model is formulated in 

a quasi-likelihood framework. There are two advantages offered by the quasi-likelihood 

parameterisation. Firstly, under this approach we avoid an explicit definition of the likelihood 

function. Secondly, the quasi-likelihood approach offers an alternative to the EM algorithm, 

when tackling a missing data problem, and an easier method, compared with the application 

of the Missing Information Principle, for computing the variances of the adjusted cross-

sectional estimates. The results from a Monte-Carlo simulation study (Chapter 6) indicate that 

the quasi-likelihood approach leads in estimates that are as efficient as the estimates derived 

from the maximum likelihood approach. In the rest of Chapter 2, we extend the double 

sampling schemes to the longitudinal situation and we present alternative moment-based 

estimators to the conventional (moment-based) estimator. These alternative estimators 
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attempt to relax the ICE assumption and to overcome some of the practical problems 

affecting the conventional estimator for example, the possibility of deriving negative adjusted 

estimates. Based on the simulation results reported in Chapter 6, we propose the use of the 

composite estimator with fixed or adaptive weights and the unbiased margins estimator as 

alternatives to the conventional estimator. We further relaxed the ICE assumption in our 

simulations by introducing dependence structure in the measurement error mechanism. Our 

results indicate that the conventional estimator is robust to departures from ICE. 

Having parameterised the measurement error model as a missing data problem, in Chapter 3 

we extend this idea j&om the cross-sectional into the longitudinal framework. The lack of a 

panel validation survey introduces extra complications since missing data exist now in both 

the main sample and the validation sample. In order to identify the parameters of the 

measurement error model, the ICE assumption is utilised and estimation is based on the EM 

algorithm. The model is formulated under two alternative double sampling schemes. Under 

the first scheme, the validation sample is selected independently from the main sample and 

from the same target population. Under the second scheme, the validation sample is selected 

by sub-sampling units from the main sample. In addition, we further propose a constrained 

maximum likelihood estimator that imposes an unbiased margins constraint on the estimation 

of the adjusted gross flows and therefore relaxes ICE. The survey weights are allowed for 

estimation via the pseudo-maximum likelihood approach. In the context of the UK LPS, the 

survey weights are constructed to adjust for sampling attrition. Thus, the inclusion of the 

survey weights into the measurement error model contributes implicitly towards the 

adjustment for sampling attrition and provides a bias correction to the unweighted results. 

From the simulation results (Chapter 6), we conclude that the maximum likelihood estimators 

are more efficient than the moment-type estimators. The higher efficiency of the maximum 

likelihood estimators is preserved under the alternative double sampling schemes. A further 

advantage of the maximum likelihood estimators is that they constrain estimates to lie within 

the boundaries of the parameter space. Unlike the maximum likelihood estimators, the 

moment-type estimators can produce estimates that lie outside the boundaries of the 

parameter space for example, negative proportions. Based on the outcomes of this research, 

we argue in favour of the use of maximum likelihood estimators. 

In Chapter 4, the longitudinal measurement error model is extended to account for the 

existence of heterogeneity associated with discrete covariates. The measurement error model 
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allows for heterogeneity through post-strata defined by the cross-classification between these 

covariates. The results indicate that this type of heterogeneity can have an effect on the 

adjustments for measurement error. Also the gains in efficiency, even when allowing for 

moderate heterogeneity (Chapter 6), can be quite significant. One important outcome of this 

modelling exercise is that we can naturally quantify the effect of misclassification. To explore 

this effect, we compared the predicted probabilities of transition firom a multinomial logistic 

model that utilises the unadjusted data to the predicted probabilities of transition from the 

model that accounts for the measurement error process for different age by gender groups. 

The results indicate that ignoring measurement error can have a severe effect, which in some 

cases can result in a complete reversal of the direction of the flows. 

The central theme of Chapter 5 is variance estimation. A variance estimator for the 

conventional (moment-type) estimator, under the alternative double sampling schemes, is 

derived using Taylor series linearization. Based on these results, we further develop variance 

estimators for the modified estimator and for the composite estimator with fixed weights. 

Variance estimation for the maximum likelihood estimator, when the validation sample is 

selected independently from the main sample and firom the same target population, is also 

derived using the Missing Information Principle. General expressions for applying the 

Missing Information Principle are provided. However, due to the large number of 

computations involved in the evaluation of this estimator, we follow a simulation-based 

approach. This algorithm is based on sampling from the conditional distribution of the 

missing data given the observed data and the maximum likelihood estimates. The simulation 

results from Chapter 6 indicate that the variance estimators of the moment-type estimators 

give reasonable approximations to the true variance of these estimators. The variance 

estimator of the maximum likelihood estimator appears to be conservative. However, since it 

captures the variability due to the missing data and results in reasonable coverage rates it can 

be regarded as providing a reliable solution. 

In Chapter 7, we provide some suggestions for the design of a re-interview survey for the UK 

LFS. An empirical comparison of re-interview surveys with different reconciliation strategies 

(CPS vs. Swedish) indicated that the Swedish method of reconciliation is superior to the CPS 

reconciliation procedure. A validation sample that is selected by sub-sampling units from the 

main survey appears to be more cost efficient than a validation sample that is selected 

independently from the main sample. However, we suggest that the inclusion in the validation 
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survey of sample units that already participate in a panel survey should be avoided since this 

can contribute to an increase in the response burden. Moreover, inference under this double 

sampling scheme appears to be more complex than under a scheme where the validation 

sample is selected independently from the main sample. Some approaches for selecting a 

validation sample are discussed below. In the case that an administrative database exists that 

is representative of the target population, we recommend that it should be preferred over an 

interview-based validation survey. Alternatively, given that there are no conditioning effects, 

one may use the sample units that are due to be rotated out of the survey. Finally, one may 

design a validation survey based on a cross-sectional survey that collects information of 

similar nature to the information that is collected by the panel survey. As a first step towards 

the design of a UK LPS validation survey, we propose the use of a small-scale experimental 

survey that will attempt to identify the basic characteristics of the measurement error process 

in the UK LPS. 

8.2 Further Ongoing Research 

hi this thesis, we have demonstrated that measurement error can introduce severe bias in the 

estimation of gross flows. The implementation of this methodology in the context of the UK 

LPS requires the development of a validation survey by the UK Office for National Statistics. 

Many practical and theoretical issues will undoubtedly arise during a possible 

implementation. However, we believe that the methodology we developed provides a reliable 

and efficient solution for adjusting gross flows data for measurement error. Nevertheless, 

there remain many issues associated with adjusting gross flows for measurement error that 

are not tackled in this thesis. Pirstly, variance estimation taking into account the survey 

weights requires investigation. One option is to treat these weights as random and use the 

jackknife method for variance estimation. Variance estimation for the constrained maximum 

likelihood estimator and for the maximum likelihood estimator, when the validation sample is 

selected by sub-sampling units from the main survey, also requires further investigation. 

In this final section, we describe some ongoing research as well as potential research that 

extends the methodology developed in this thesis. In Chapter 1 (Section 1.8.3), we described 

the UK 1991 Census Validation Survey (CVS) (Heady, Smith and Avery 1991). This survey 

had as its main target an evaluation of how prone to error Census questions were. Among the 
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questions that were tested was one asking about the labour force status of the respondents. 

Treating the CVS as an error free source of information and linking the CVS to the Census 

responses, one can estimate a misclassification matrix. However, the Census may contain 

more measurement error than the LFS. This is because the Census is a self-reported survey. 

Consequently, the misclassification matrix estimated by linking the CVS to the Census 

responses may overestimate the measurement error problem in the UK LFS. The question is 

how we can use the UK CVS in order to approximate the parameters of the misclassification 

mechanism in the UK LFS. Currently, we are investigating two alternative approaches. Under 

the first approach, the misclassification probabilities estimated by linking the CVS to the 

Census responses are employed in order to adjust the Census-based cross-sectional labour 

force distribution for misclassification. This initial adjustment can be achieved using for 

example the moment-type estimator described in Section 2.2.1.1. Recalling the notation from 

Chapter 2, one can then use the following identity that relates the observed, LFS-based, cross-

sectional labour force distribution to the adjusted. Census-based, cross-sectional labour force 

distribution. 

11 = f . (8.1) 
rxl 

We know 11 (i.e. the LFS-based observed cross-sectional labour force distribution) and P 

(i.e. the adjusted Census-based cross-sectional labour force distribution). The unknown 

quantity in (8.1) is Q(t). Unfortunately, the system of equations defined by (8.1) does not 

have a unique solution. Consequently, in order to solve this system of equations, we need to 

introduce additional constraints. One such constraint is offered by minimising the Euclidian 

distance between the CVS-based misclassification matrix and Q (t). This minimisation can 

be achieved using Lagrange multipliers. However, initial results have indicated that this 

approach can lead to negative misclassification probabilities. For this reason, we investigate a 

second approach. At the first step, the misclassification probabilities estimated by linking the 

CVS to the Census responses are employed in order to adjust the Census-based cross-

sectional labour force distribution for misclassification. In addition, from the LFS we derive 

an estimate of the observed cross-sectional labour force distribution. The margins of the 

matrix estimated by linking the CVS to the Census responses represent the cross-sectional 

observed and adjusted for misclassification labour force distributions. Consequently, one can 

use the EPF algorithm in order to rake this matrix to the information from LFS (observed 

cross-sectional labour force distribution) and to the Census-adjusted cross-sectional labour 
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force distribution. This approach provides another solution to the system of equations defined 

by (8.1). It remains to evaluate both methods in the context of the UK LPS. 

In Chapter 2 (Section 2.2.1.4), we parameterised the cross-sectional measurement error model 

in a quasi-likelihood framework. This needs to be extended by parameterisation of the 

longitudinal measurement error model in a quasi-likelihood framework. The advantage of the 

quasi-likelihood parameterisation is that it provides an easier approach to variance estimation 

(see Section 5.5). This is particularly important in a longitudinal framework where variance 

estimation for the adjusted maximum likelihood estimates is tedious both analytically and 

computationally. 

The measurement error model we presented in Chapter 3 adjusts implicitly for sampling 

attrition via the survey weights and the pseudo-maximum likelihood approach. However, due 

to the formulation of the measurement error model as a missing data problem, it will be 

interesting to examine whether a simultaneous modelling of the measurement error process 

and the sampling attrition process is feasible. Preliminary research has indicated that in order 

for the parameters of the simultaneous model to be identified, we need to impose fairly strong 

assumptions. Furthermore, the likelihood-based approach that we developed in Chapter 3 

opens the possibility of directly contrasting the modelling strategies that assume validation 

information with the modelling strategies that do not assume validation information for 

example, the latent class approach. 

It is also of some interest to identify other research areas where this methodology can be 

applied. For example, in demographic applications one of the most common problems is 

heaping. In reporting the age of death, heaping occurs when the respondents round the 

reporting age. A graphical representation of the frequency of deaths by age (grouped in 5-

year bands) will reveal peaks at 0 and 5 years. This problem is currently tackled using 

smoothing techniques (Benjamin and Pollard 1986). An alternative adjustment may be 

possible by viewing heaping as a misclassification problem. Validation data, regarding the 

year of birth, can be derived from administrative data sources and misclassification 

probabilities can be estimated by comparing the true to the reported age of death. 

Two additional areas of research in official statistics are related to the research conducted in 

this thesis. In statistical disclosure control, one way of protecting the data is by deliberately 

214 



misclassifying them and then providing the data analyst with the misclassified data and the 

misclassification probabilities (Van den Hout and Van der Heijden 2002). The basic 

difference between the approach utilised by the statistical disclosure control and our 

methodology is that in the former case the misclassification probabilities are treated as fixed 

and known whereas in the latter case the misclassification probabilities are unknown and are 

estimated from a validation survey. Nevertheless, the approach followed in statistical 

disclosure control shares many similarities with our approach. 

The second area of potential application regards adjustments in the Census. For example, the 

existence of inaccurate addresses can result in the erroneous estimation of the population size 

in an area. This problem can be modelled in a misclassification context, hi some countries, 

for example in Israel, there are administrative lists that provide information about the address 

of a population unit. Treating the Census as the main survey and the administrative list as the 

validation survey, one can employ a model that combines information from both sources to 

provide adjustments to the Census-based estimates. 
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Appendix I 

First and Second Order Derivatives Involved in the Application of 

the Missing Information Principle in a Cross-sectional Framework 
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Appendix II 
Tracing the Convergence of the EM Algorithm in Application 3.1 

LU UJ (L 

EM Iterations 

Figure 11,1: Tracing the convergence of the EM algorithm for 
the EE flow. Starting values close to the maximum likelihood 
point, convergence criterion 0.00001. 

a 
CL 

EM Iterations 

Figure 11.2: Tracing the convergence of the EM algorithm for 
the EE flow. Starting values further from the maximum 
likelihood point, convergence criterion 0.00001. 

217 



3 m 
CL 

3 111 CL 

20 4 0 60 

EM Iterations 

80 100 120 

Figure II.3: Tracing the convergence of the EM algorithm for 
the EU flow. Starting values close to the maximum likelihood 
point, convergence criterion 0.00001. 
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Figure II.4: Tracing the convergence of the EM algorithm for 
the EU flow. Starting values further from the maximum 
likelihood point, convergence criterion 0.00001. 
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Figure II.5: Tracing the convergence of the EM algorithm for 
the EN flow. Starting values close to the maximum likelihood 
point, convergence criterion 0.00001. 
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Figure II.6: Tracing the convergence of the EM algorithm for 
the EN flow. Starting values further from the maximum 
likelihood point, convergence criterion 0.00001. 
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Figure II.7: Tracing the convergence of the EM algorithm for 
the UE flow. Starting values close to the maximum likelihood 
point, convergence criterion 0.00001. 
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Figure II.8: Tracing the convergence of the EM algorithm for 
the UE flow. Starting values further from the maximum 
likelihood point, convergence criterion 0.00001. 
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Figure II.9: Tracing the convergence of the EM algorithm for 
the UU flow. Starting values close to the maximum likelihood 
point, convergence criterion 0.00001. 
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Figure 11.10: Tracing the convergence of the EM algorithm for 
the UU flow. Starting values further from the maximum 
likelihood point, convergence criterion 0.00001. 

221 



3 
CL 

EM Iterations 

Figure 11.11: Tracing the convergence of the EM algorithm 
for the UN flow. Starting values close to the maximum 
likelihood point, convergence criterion 0.00001. 

§ 

3 CL 

5 0 100 1 5 0 

EM Iterations 

Figure 11.12: Tracing the convergence of the EM algorithm for 
the UN flow. Starting values further from the maximum 
likelihood point, convergence criterion 0.00001. 
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Figure 11.13: Tracing the convergence of the EM algorithm 
for the NE flow. Starting values close to the maximum 
likelihood point, convergence criterion 0.00001. 

EM Iterations 

Figure 11.14: Tracing the convergence of the EM algorithm for 
the NE flow. Starting values further from the maximum 
likelihood point, convergence criterion 0.00001. 
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Figure 11.15: Tracing the convergence of the EM algorithm 
for the NU flow. Starting values close to the maximum 
likelihood point, convergence criterion 0.00001. 
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Figure 11.16: Tracing the convergence of the EM algorithm for 
the NU flow. Starting values further from the maximum 
likelihood point, convergence criterion 0.00001. 
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Appendix III 

First and Second Order Derivatives Involved in the Application of 

the Missing Information Principle in a Longitudinal Framework 
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The first and second order derivatives with respect to the misclassification parameters can be 

also computed analytically but due to the introduction of the ICE assumption this involves 

more complicated expressions. 
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Appendix IV 

Misclassification Probabilities Employed in Simulation Studies 

Matrix of Misclassification Probabilities Used in Simulation Studies I III and VIII 

E U N 

E 0.981 0.016 0XM6 

= U &008 0.950 0.023 

N 0.011 0.034 0.941 

Matrix of Misclassification Probabilities Used in Simulation Studies IV-V 

E U N 

E 0.99 0.01 a o i 5 

&004 0.97 0.015 

N 0.006 0.02 0.97 

Matrices of Misclassification Probabilities Used in Simulation Studies VI-VII 

E U N 

E 0.991 0.01 0.015 

= U 0.005 0.98 0.015 

N 0.004 0.01 0.97 

E 

= U 

N 

E U N 

0.981 0.01 aoo5 

0.004 0.97 0.005 

0.015 0.02 0.99 
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Table IV.l: Sets of misclassification probabilities at ^ +1 used in simulation studies I-III 

under the different scenarios for the longitudinal measurement error mechanism. The relaxed-

ICE scenarios are based on Kristiansson's (1983) proposal 

Misclassification Probability ICE Relaxed-ICE 1 Relaxed-ICE 2 

Ibebb 0.981 0.983 0.985 

Ieueb 0.008 (1007 OjW63 

0.011 0.010 0.0087 

Queeb 0.981 0.979 0^)76 

Quubb 0.008 0.0088 0.01 

Quneb 0.011 0.0122 0.014 

Inebb 0.981 0 j^9 0.976 

Qnubb 0.008 (10088 0.01 

0.011 0.0122 0.014 

Ibbuu 0.016 0.0166 0.0188 

Ieuuu 0.95 0.9444 0.9375 

^bnuu 0.034 0.039 0.0437 

lueuu 0.016 (10135 0.012 

luvuu 0.95 0.955 0.96 

lunuu 0.034 &0315 0188 

Imeuu 0.016 0.0166 0.0188 

Inuuv 0.95 0.9444 0.9375 

Imuu 0.034 0.039 0.0437 

Ieenn 0.036 0.041 (10463 

Ibunn &023 0.025 0.0287 

^ennn 0.941 0.934 0.9250 

O'KBAW 0.036 0.041 (10463 

0.023 0.025 (10287 

0.941 (1934 (19250 

Inenn 0.036 (1033 0.030 

Inunn 0.023 0.021 0.018 

0.941 0.946 0.952 
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Table IV.2: Sets of misclassification probabilities at r +1 used in simulation studies IV-V 

under the different scenarios for the longitudinal measurement error mechanism. The relaxed-

ICE scenario is based on Kristiansson's (1983) proposal 

Misclassification Probability ICE Relaxed-ICE 

Ibeeb 0.99 0.995 

Ibubb &004 0.0025 

Ieneb 0.006 0.0025 

%eeb 0.99 0.98 

luubb (1004 0.01 

luneb 0.006 0.01 

Ineeb 0.99 0.98 

Inueb 0.004 0.01 

Inneb &006 0.01 

Q.bbuv 0.01 0.015 

0.97 0.96 

0.02 0.025 

lueuu 0.01 0.01 

%uuu 0.97 0.98 

lunuu 0.02 0.01 

0.01 0.015 

Invuv 0.97 096 

Innuu 0.02 0/%5 

Ibenn 0.015 0.02 

ibum 0.015 0.02 

Ibnnn 0.97 0.96 

luenn 0.015 0.02 

luumn 0.015 0.02 

lunnn 0.97 0.96 

Inenn 0.015 0.01 

0.015 0.01 

Innnn 0.97 0.98 
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