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This thesis addresses the issue of functional form misspecification in models with 

nonstationary covariates. In particular we assume that the variables of the model are unit 

root processes. First we examine the asymptotic behaviour of the least squares estimator, 

under functional form misspecification, in regression models like those analysed by Park 

and Phillips (2001) in their recent paper in Econometrica. In contrast to the stationary 

case, we find that convergence to some pseudo-true value does not always hold. In some 

cases the estimator diverges. Whenever the estimator converges the order of consistency is 

usually slower and the limit distribution theory different than the one under correct speci-

fication. Moreover a conditional moment test for functional form is considered within the 

theoretical framework of Park and Phillips (2001). In contrast to the stationary case, un-

der nonstationarity the test may be two-sided. The asymptotic power of the test is derived 

against a set of alternatives where each alternative is characterised by the asymptotic order 

of the true specification. Moreover it is shown that the use of integrable weighting func-

tions in the construction of the test statistic improves asymptotic power against a set of 

alternatives. Next the test for functional form is extended to cointegrating relationships. 

Our framework allows for a fitted model that is possibly nonlinear in variables and in view 

of this the linear specifications commonly used in practice constitute a special case. The 

test is consistent under both functional form misspecification and no cointegration. So the 

functional form test can be also used as a cointegration test. In both cases the divergence 

rate attained equals n/M, with n and M being the sample size and the bandwidth used in 

the estimation of long-run covariance matrices respectively. 
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Chapter 1 
Introduction 

The issue of functional form misspecification in statistics and econometrics has been 

addressed as early as the 1960's (Ramsey (1969)). The properties of estimators under 

functional form misspecification (FFM) have been studied in detail (e.g. White (1981)) 

and several functional form tests have been proposed over time. These testing procedures 

have been developed for independent and identically data (i.i.d.) but can be extended to 

weakly dependent data (see Bierens, (1990)). The purpose of this dissertation will be to 

extend some of these results to models with nonstationary regressors. In particular we will 

assume that covariates are unit root processes. 

In order to address the issue of FFM, we need to depart from the standard linear 

specifications. Our theoretical framework is therefore naturally nonlinear, closely related 

to that of Park and Phillips (1999, 2001). However although the asymptotic properties 

of estimators for nonlinear models with stationary and weakly dependent data have been 

explored almost twenty years ago (e.g. Hansen (1981), White and Domowitz (1984)), no 

well developed limit distribution theory had been developed for nonlinear models with 

strongly dependent regressors until the recent development of Park and Phillips (1999, 

2001). Our aim is to use these theoretical developments to analyse misspecified, nonlinear 

models with nonstationary covariates. 

The thesis consists of three main chapters. Although they are related the focus of each 

chapter is different. The theoretical framework of the first two main chapters is the same. In 
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the first two main chapters we consider single covariate models nonlinear in parameters and 

in variable. In the third main chapter we consider multi-factor models linear in parameters 

but nonlinear in variables. The focus and findings of each chapter are summarised below. 

In the first main chapter (Chapter 2) we provide results for the asymptotic behaviour 

of the Nonlinear Least Squares (NLS) estimator in models with a single covariate. The the-

oretical framework is the same as that of Park and Phillips (2001), P&P hereafter. It is well 

known that for stationary models, under FFM, the NLS estimator has a well defined limit, 

referred to in the econometric literature as "pseudo-true" value. Moreover the NLS esti-

mator about the pseudo-true value and scaled by (n is the sample size) has a Gaussian 

limit distribution. So, in the stationary case under FFM, the NLS estimator has a well de-

fined limit, the limit distribution is still Gaussian (although the variance is larger), and the 

convergence rate is unaffected. 

We show that when the covariate is a unit root process, things may be quite different. 

First, when the parameter space is unbounded, convergence to some pseudo-true value 

does not always hold. In some cases the estimator is unbounded in probability. When the 

parameter space is bounded and the fitted model is of different asymptotic order than the 

true one, the estimator converges to a boundary point of the parameter space. In this case the 

limit objective function is not minimised at a turning point and therefore techniques used 

to obtain limit distribution results and convergence rates, when the limit is on a boundary 

(Andrews (1999), Phillips and Moon (2003)), are not applicable. When the true model is 

of the same order of magnitude as the fitted one, limit distribution results and convergence 

rates are obtained. When confined to the I-regular family, the limit distribution and the 
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convergence rates under FFM are the same as those under correct functional form. The limit 

distribution under FFM is still mixed normal but with larger variance. So this is analogous 

to the stationary case. If both the true and fitted models are //-regular, convergence rates are 

slower and the limit distribution is different than the one under correct specification. The 

limit distribution involves only functional of Brownian motion and not stochastic integrals. 

The second main chapter (Chapter 3) focuses on testing. A conditional moment test 

for functional form is considered. We derive the limit distribution of the test under the null 

hypothesis and the asymptotic power rates under the alternative hypothesis. The theoretical 

framework again is the same as the one of P&P. Three estimation procedures are consid-

ered; NLS, an Instrumental Variables (IV) kind of estimator and the Efficient Nonstationary 

NLS (EN-NLS) proposed by Chang, Park and Phillips (2001). The asymptotic power of 

the test is obtained against a set of alternatives with each alternative charecterised by the 

asymptotic order of the true specification. Moreover we show that the use of I-regular 

weighting functions in the construction of the test statistic improves asymtotic power in 

some cases. A potential application within this framework is Park's (2002) nonlinear non-

stationaiy stochastic volatility models. 

In the third main chapter (Chapter 4), the conditional moment test is considered when 

the fitted model is linear in parameters and involves more than one covariate. The frame-

work of Park and Phillips postulates that the regressors are exogenous. In order to make 

the test applicable to cointegrating relationships, the exogeneity assumption about the re-

gressors is relaxed. Endogeneity and dependence structure is introduced by assuming that 

the errors of the model and the errors that drive the unit root variables is a vector linear 
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process. We obtain limit distribution theory for sample moments under these conditions. 

From P&P we know that sample moment asymptotics (covariance) are determined by sto-

chastic integrals. In our case extra terms appear that involve long-run covariance matrices 

and functionals of Brownian motion. To induce a chi-squared limit distribution under the 

null, a correction term is introduced in the test statistic and the parameters are estimated 

by a Fully Modified Least Squares type of estimator. The test is consistent under FFM and 

no cointegration. So the functional form test can be also used as a cointegration test. We 

show that in both cases the test diverges at a rate of n/M, with M being the bandwidth of 

the kernel used for the estimation of long-run covariances. The rate attained under the al-

ternative is the same with the one of the CUSUM test for cointegration proposed by Xiao 

and Phillips (2002). 

Before we proceed to the next chapter, we will clarify some issues regarding the 

presentation of definitions, assumptions and results. Our technical results will be referred 

to as "Propositions". Results from other authors are clearly indicated as such. The proofs 

of all Propositions are given in the Appendix to the chapter where the Proposition is stated. 

Each main chapter is followed by an Appendix relating to the particular chapter. Moreover 

definitions, assumptions and results are numbered with respect to the section in which they 

are stated but not with respect to the relevant chapter. In each chapter numbering restarts. 



Chapter 2 
Consequences of Functional Form 

Misspecification in Regressions with 
Integrated Time Series 

2.1 Introduction 

In this chapter we examine the behaviour of the NLS estimator under functional form mis-

specification, when both the true and the fitted models involve nonstationary covariates. In 

particular we will assume that the covariates are unit root processes. This work relies heav-

ily on the developments made recently in a sequence of papers by Park and Phillips. Park 

and Phillips (1999) provide limit distribution theory for nonlinear transformations of a unit 

root process. Park and Phillips (2001) extend their earlier results to models which are non-

linear in parameters and Chang, Park and Phillips (2001) provide limit distribution theory 

for multiple regression models. 

Our theoretical framework is the same as the one of P&P. We assume that the func-

tional form of both the true and fitted models belongs to either the I-regular or H-regular 

family of transformations defined in P&P. One of our main findings is that convergence to 

a pseudo-true value does not always hold. In some cases the estimators diverge. We know 

from P&P that under correct functional form specification, the limit distribution theory is 

mixed normal for I-regular models and involves stochastic integrals for H-regular mod-

els. We will show that under functional form misspecification the limit distribution theory 

12 
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may be different. The convergence rates usually depend on the asymptotic order of the 

true model relative to that of the fitted model, and can be slower than the convergence rates 

attained under correct functional form specification. 

The results provided in this chapter are useful for the development of specification 

tests. The alternative hypothesis of testing procedures like those proposed by Ramsey 

(1969), White (1981) and Bierens (1990) is that the fitted model in incorrectly specified. 

So our analysis is useful in determining the asymptotic power properties of these testing 

procedures. 

The rest of this chapter is organised as follows: Section 2.2 briefly reviews the prop-

erties of the NLS estimator under functional form misspecification when the regressors are 

stationary. In Section 2.3 the theoretical framework is specified in detail and some useful 

results due to Park and Phillips (1999, 2001) and de Jong (2002) are provided. Section 2.4 

provides consistency and limit distribution results and Section 2.5 concludes. 

Before we proceed to the next section we introduce some notation. For a vector 

X = {xi) or a matrix A = (o^J, \x\ and \A\ denotes the vector and matrix respectively of 

the moduli of their elements. The maximum of the moduli is denoted as ||.||. Moreover ||.|| 

may denote the supremum of function (possibly vector-valued or matrix-valued) over some 

set K , say i.e. sup# | | / | | = ||/||j^- For a function gr: Rp —> R define the arrays 

\ j \ ^ 

which will be assumed to be vectors arranged by the lexicographic ordering of their indices. 

Sometimes is more convenient to express the second derivatives of g in matrix form i.e. 

G = d^g/dada'. Moreover 1{A} will denote the indicator function of a set A. 
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2.2 Functional Form Misspecification in the Stationary 
Framework 

As mentioned above, under incorrect functional form the N L S estimator converges to a 

well defined limit referred to in the literature as the "pseudo-true value". Moreover the NLS 

estimator has a Gaussian limit distribution around the pseudo-true value. In this section we 

briefly show how these results can be obtained. For easier exposition, in this section only 

we will confine ourselves to independent and identically distributed {i.i.d.) data. The same 

type of results can be obtained assuming weakly dependent data (see White (1984) and 

Bierens (1990)). 

Let the true model be 

Vt — f i ^ t ) "t" (1) 

where and are i.i.d. sets of random variables and the distribution function 

of {xt]t=i is F (x). The function / ( . ) : R —> R . Assume that the fitted model is: 

= (/(%;, (%) H-iUf (/2) 

where ^ : R x A —> R with A being a compact subset of R™'. Define the NLS estimator a 

as 

& = aTgminy^(?/f-p(a;(,a))^ (3) 
t=l 

Moreover let c{xt, a) = {yt — g{xt, a))^ and define Qn{a) as: 

t=l 

Convergence to pseudo-true value can be established from the following theorem due 

to Jennrich (1969); 
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THEOREM 2.1: (Jemirich (1969)) 

^ 0 ( a ) (o.g.) m o oj' M —» oo , a W Q(o) w coMfZM-

uous in a and has a unique minimum at a* a. s, then a a* in probability (a.s.). 

Theorem 2.1. is used by Jermrich (1969) to prove that the NLS estimator converges to 

the parameter of interest under correct functional form specification. The following result 

due White (1981) exploits Theorem 2.1 to establish convergence of the NLS estimator 

under incorrect functional form to a well defined limit: 

THEOREM 2.2: (White (1981)) 

Let the true and the fitted model be given by (1) and (2) respectively. Moreover assume 

that: 

(a) g{x, a) is a continuous fimction of a for each x in X and a in A. 

(b) (/(a;) — a))^ < m(z) ybr aZZ cc aW a m A, vy/zerg m(a;) w mfegroA/g w/fA 

respect to F (x) . 

(c) a* Q(o) = (/(3:) — 9(3;, a))^ d f (a;). 

77zg» o ^ o*, af 71 —> CX3. 

It is obvious from a simple application of the law of large numbers that 

1 M yoo 

- E (3/f - ^ / ( / W -

^ t=i "/-co 

pointwise in a. Conditions (a) and (b) in Theorem 2.2 together with the compactness as-

sumption ensure that the convergence is uniform over A. So under these conditions a is 

consistent for a*, the value that minimises the mean square error. 
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—Qn(o) 
n 

1 . 
(4) 

n 

Given the convergence of the NLS estimator, the limit distribution result can be ob-

tained by a mean value expansion of the first derivative of the objective function around the 

pseudo-true value. Qn{a) can be written as: 

Qn{^) = Qn{(^*) + ~ #*), 

where ||a — a*|| < ||a — a*||. Provided that Qn{a) is invertible the expression above can 

be written as: 

\/n{o, — a ) 

Under conditions similar to the conditions (a) and (b) of Theorem 2.2 it follows that the 

term: 

^ Q(G*) = E(c(2;t,a*)). (5) 

Because a* minimises E(c(xt, a)), under the extra assumptions that a* is an interior point 

of A and |c(x, a*)| < d(x) with d{x) being integrable with respect to F(x), it follows that 

E(c(zf, a*)) = 0. Hence from the Lindeberg-Levy central limit theorem: 

1 1 " 
^ ^ c(2;„ a*) A Ar(0, E(c(2:*, a*)') (6) 

From (4), (5) and (6) follows that ^/n{d — a*) A N{0, S ) , with 

S = E[c(zt, o*)]-^E[c(a;t, o*)c(3;^, 

which establishes the aforementioned result. 
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2.3 Definitions, Assumptions and Preliminary Results 

The models we consider are the same as those discussed in P&R We assume that the series 

{yt}t=i is generated by a model of the following form; 

(7) 

where xt is a unit root process, the function / ( . ) : R — R and ut is a martingale difference. 

Assume that the fitted model is: 

o) (8) 

where g{., a) is a transformation of the data "different from / ( . ) " . This is defined precisely 

in the next section. 

This section provides a set of definitions that specify the kind of models under con-

sideration. First we specify the process that generates the covariates. Secondly, we specify 

the kinds of functions that define the functional form of the model, and finally we give a 

precise definition for the error term. Our theoretical framework is very similar to the one 

of P&P so most of the definitions outlined here are the same as those in P&P. Some useful 

results due to Park and Phillips (1999, 2001), de Jong (2002a) and Jeganathan (2003) are 

also provided. 

We assume throughout that the sequence {xt}t=i is a unit root process generated by 

Xt = Xt-i + Vt, with xo = 0'. Vt is assumed to have an infinite moving average representa-

tion: 

This initial condition can be replaced by XQ = Op(l) (see P&P). 
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k=0 

with ip{l) ^ 0 and a sequence of independent and identically distributed random 

variables with zero mean. The following assumption will be made in the rest of this chapter: 

ASSUMPTIONS.!: 

(a) ^ ^ 0 ^ iV'tl < °o aW E(%)P < ooybr p > 2. 

(b) % has absolutely continuous distribution with respect to Lebesgue measure and 

its characteristic function (p{s) is such that lim^^oo s^(j){s) = 0 for some r > 0. 

Define the stochastic process: 

\nr] 

Vn{r) takes values in the set of cadlag functions on the interval [0,1]. Moreover define the 

partial sum process of the errors Ut of the model: 

^ [nr] 

We assume that the processes t/„(r) and Vn{r) satisfy the following assumption: 

ASSUMPTION 3.2: 

(a) ([/, V), ([/, y ) M a vgc/or /MOfzoM, 

(b) (lit, <3 /Mar/ZMgaZg fggwg»ce vy/fA = cr̂  _/br 

gVGAy ( = 1, ...72 < oo ybr g > 2, 

(c) Xt is adapted to Tn.t-ifor every t = 1, ...n. 



2.3 Definitions, Assumptions and Preliminary Results 19 

Note that condition (c) implies that = f(xt) a.s. Under Assumptions 3.1 and 

3.2, a strong approximation result holds for {Un{r), Vn{r)) (see Park and Phillips (1999) 

Lemmas 2.3 and 6.2). Our asymptotic results will involve embedding arguments, but to 

avoid the repetition of such arguments in the derivation of our results, convergence in prob-

ability will be interpreted as convergence in distribution unless the limit is non stochastic. 

Following P&P we restrict g and / to be members of two families of functions: /-

regular and H-regular functions. The I-regular family defined in P&P involves integrable 

functions. The transformations we consider are typically functions of two arguments. The 

first argument corresponds to some economic variable and the second to some parameter(s). 

In particular we say that / : R x n ^ R is I-regular on the parameter space 11 C R*" if 

the following condition is satisfied: 

DEFINITION 3.1: I-regular functions 

(a) For each -Ko E IT, there exists a neighborhood No of tTQ and T : R R that is 

bounded and integrable such that | | / (s , TT) — / ( s , TTO) || < |7r — TTOI T(S) for all tt E No 

(b) for some constants c > 0 and k > 6 / (p — 2) where p > 4: is as given in Assumption 

j . 7 ^ 11/(3;,7r) - /(2/, 7r)|| < c 7r E 11, 0/1 g a c A q / " f A e z r co/M/Mon 

support S~ U C R . 

Conditions (a) and (b) are smoothness conditions imposed on the function. The first one 

implies that for compact 11, sup^ren | / ( . , 7r)| is bounded and integrable, whilst the second 

one requires sufficient smoothness between the family members on each piece of their 

common support. P&P provide the following asymptotic results for I-regular functions: 
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THEOREM 3.1: (Park and Phillips (2001)) 

Let fbe I-regular on the compact space H. Then, as n oo 

(i) 1 / ^ /(a;*, 7r) A / (g , 7r)(^g^(l, 0) WMz/brm/y m vr; 

r 
( i i ) l / ^ ^ ; L i / ( a ; t , 7 r ) % i t - ^ j%/(5 ,7r )y(s ,7r ) ' ( faZ, ( l ,0) 1^(1), 

asn oo, where W{1) is a vector Brownian motion at point 1 and L( l , 0) is the Brownian 

motion (V) local time at the origin up to time 1. 

The (variance rescaled) local time of the Brownian motion V up to time 1 at the vicinity of 

the point s is defined as 

Z , ( l , 8 ) = l i m l / ( 2 e ) l { | y ( r ) - s | < € } d r . 

The reader is directed to Phillips and Park (1998) and P&P for further discussion about 

local times and their use in econometrics. Moreover, we will use the following result for 

"zero energy" transformations of unit root processes due to Jeganathan (2003); 

THEOREM 3.2: (Jeganathan (2003)) 

Let/ : R —^R be such that / , p are integrable, f{s)ds = 0 and | s / ( s ) | ds < oo. 

Then, as n oo 

- ( i n d 5 L { i . o ) y ' V ( i ) , 

where W{1) is a standard normal variate independent o /1 / (1 , 0). 

Before we define the H-regular family we need to introduce the concept of regularity 

proposed by P&P. 
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D e f i n i t i o n 3.2: Regular functions 

A transformation T(.) is said to be regular if and only if 

(a) T(.) is continuous in a neighborhood of infinity, and 

(b) for every compact set K C 'B., there exist for each e > 0 continuous functions 

Te, fe and Se > 0 such that T^{x) < T{y) < T^(x) for all \x — y\ < 5^ on K and 

(T^(x) — Te(x)) dx 0 as e 0. 

DEFINITIONS.]: 

A transformation T(.,tt) is said to be regular on IT if 

(a) T{.,7r) is regular for every vr G 11 and 

(b) for a// a: e R T{x,.) is equicontinuous in a neighborhood of x. 

P&P provide the following asymptotics for sums of regular transformations of normalised 

unit root processes: 

THEOREM 3.3: (Park and Phillips (2001)) 

IfT is regular on a compact set H and Assumption 2.1 holds then: 

(i) ^ E I L i 

and ifT is regular, then 

(ii) * E i . - f„T(V{,r),^)dU{,r) 

» OO. 

The conditions in Definition 3.2 are required to establish pointwise convergence of 

the sum in Theorem 3.3, while the equicontinuity requirement of Definition 3.3 establishes 

uniform convergence over the parameter space 11. 
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-11 

The family of H-regular transformations is defined as follows: 

DEFINITION 3.4: 

The transformation / ( s , tt) is H-regular on H if and only if 

/(Ag, 7r) = A;/(A, 7r)/i/(a, vr) + A;(A, s, 7r) 

where hf{s, n) is regular on 11, with tt G H, and Rf{X, s, ir) is such that: 

(i) |^/(A,a,7r)| < o(A,7r)f(s,7r) ||a(A,7r)A;y(A,7r) 

and P ( s , tt) locally integrable 

or 

(ii) |.R/(A, g,7r)| < 6(A,7r)Q(As,7r) Wfr/zlimsup^^^Q^sup^gn l|6(A,7r)A;/(A,7r)"'^|| = 

0(1 ) 0(Aa, 7r) aw/ vaM/fAmg a/ 

The functions A:/(A,7r) and hf{s,7r) are called the asymptotic order and the limit homo-

geneous function of / respectively. For notational brevity we may write the asymptotic 

order of f as kf{X) = kf and when that depends on some parameter e.g. a* we will write 

kf{X,a*) = k f . If the asymptotic order of / does not depend on a parameter, then / will be 

referred to as Ho-regular. Moreover for H-regular / , / the limit homogeneous functions 

and asymptotic orders of / , / will be written as h f , hf and k f , kf respectively. Examples 

of 1-regular and H-regular transformations will be provided later. 

The following asymptotic result for sums of regular transformations of unnormalised 

unit root processes is due to P&P: 
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THEOREM 3.4: (Park and Phillips (2001)) 

I f f is H-regular on a compact set 11 then: 

(i) 7r)-^ /(a;*, vr) /iy(y(r), 7r)dr m vr, 

and 

(zy M ^ CX3. 

The leading term in the sum of Theorem 3.4 (i) is regular and its limit behavior is 

given by Theorem 3.3. The regular family is a subset of the set of locally integrable func-

tions, i.e. functions integrable on any compact subset of R. Theorems 3.1 and 3.4 provide 

the essential asymptotic theory required for the derivation of limit distribution results for 

the NLS estimator under correct specification. The results of Theorem 3.1(i) and Theorem 

3.3(i) will be referred as sample mean asymptotics, while the results of Theorem 3.1(ii) and 

Theorem 3.3(ii) will be referred as sample covariance asymptotics. Under functional form 

misspecification, the sample covariance asymptotics of Theorem 3.1(ii) are not relevant. In 

this case the sample covariance asymptotics of Theorem 3.2 are relevant. 

Continuous and locally bounded monotone functions are regular. Functions with 

poles like: 

/ ( s ) = log |s| and f{s) = Isl"̂  with — 1 < c < 0, 

which are appealing for econometric modelling, are not regular, de Jong (2002a) however 

have shown, that under Assumption 3.1 the result of Theorem 3.2 holds for another family 

of functions which are not regular. This family is comprised of locally integrable functions 

that have finitely many poles and are continuous and monotone between the poles. Potscher 
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(2002) extends the result of Theorem 3.3(i) to all locally integrable transformations, under 

the condition that the normalised unit root process has bounded densities. For the purpose 

of this paper will follow the P&P and de Jong (2002a) exposition. Hereafter we will use 

the term regular to refer to functions that satisfy Definition 3.2 or belong to the family 

considered by de Jong (2002a). 

Transformations with poles such as 

f{s) — Isp™" withm > 1, (9) 

are not locally integrable. Although our theoretical framework is confined to transfor-

mations that are integrable or locally integrable (i.e. I-regular and H-regular), there are 

occasions in which the product of a locally integrable transformation with an integrable 

one involves components that are not locally integrable. The asymptotic behaviour of non-

locally integrable transformations is as yet unknown (see de Jong and Wang (2002)). 

P&P provide several examples of I-regular and H-regular regression functions. Some 

examples are given below: 

EXAMPLE 2.1: 

(a) I-regular functions: i) f{x, a, h) = with 0 = (a, 6) 6 0 C R x R+. 

ii) f{x, a, h) = a{l + hx^)~^, with 6' = (a, 6) G 6 C R x R,+ 

(b) H-regular functions: / ( x , a, h) = ax^, with 0 = (a, 6) G 0 C R x R+ is 

H-regular with limit homogenous function and asymptotic order: hf{x, a, b) = ax^ and 

k{a, b, A) = A .̂ 
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(c) Ho-regular functions: The asymptotic order of Ho-regular functions does not 

depend on the parameters. Hence Ho-regular functions are usually linear in parameter 

e.g. f{x, 9) ~ 6x, 6'In |a:|, 9 \x\'^ with c > —1 are Ho-regular with limit homogeneous 

function hf{x,9) = 9x, 9, 9\x\'^ and asymptotic order k{X) = A, 1 and A .̂ f{x,6) = 

x/{l + 9x)l{x > 0}, z f / ( l + 9x)l{x > 0}, ^ E 8 C R + are examples of Ho-regular 

functions non linear in parameter. The corresponding limit homogenous functions and the 

asymptotic orders are hf{x, 9) = x9~^ and k{X) = 1, A respectively. 

{d) Non-locally integrable functions: Consider f{x) = (1 + and g{x) = 

0 < c < 1 which are integrable. Now the product fg = (1 + 

involves non-locally integrable terms. 

Park and Phillips (1999) have developed asymptotic theory for another class of func-

tions. This class comprises functions that grow with exponential rate (E-regular). More-

over de Jong and Wang (2002) provide asymptotic theory for nearly non-locally integrable 

transformations. Some of our results could be extended also to these two families of func-

tions, however such development will not be attempted in this study. 

Before we consider the misspecified case we briefly consider the limit distribution of 

the NLS estimator under correct specification. Assume that the series, {yt}t=i^ is generated 

by the model 

6*0) + 
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with / : R X 0 ^ R with 6 being a compact subset of R^and 9o E 0 . Define the NLS 

estimator 

g = a r g m n ^ ( i / t -
t=l 

If f{x, 6) is I-regular or H-regular and under some regularity conditions P&P shown that 

9 is consistent for 6o- For I-regular f{x, 6) the following limit distribution result holds: 

f 2,(1,0) y / ( a , j M/(l) 

where f{x,6) is the first derivative of the regression function with respect to the argument 

9. We notice that the limit distribution is mixed normal and the convergence rate is 

which is smaller than the one obtained under stationary (^/n). For H-regular f{x, 9), P&P 

provide the following limit distribution result: 

where ^ / ( y ^ , 9o) is the asymptotic order (matrix) of / ( s , Oo). The limit distribution in-

volves a stochastic integral and functionals of Brownian motion. Mixed normal is obtained 

as special case when E(vtUt-i) = 0. The convergence rate is faster than ^/n whenever 

diverges. 

2.4 Consequences of Functional Form Misspecification 

In this section we investigate the behaviour of estimators when the fitted model is of wrong 

functional form. We assume that the time series {yt}t=i is generated by the model: 

#o) -F14 (!()) 
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where / : R —̂  R is either I-regular or H-regular^, Xt and Ut are the unit-root and 

martingale difference processes defined in section 2.2. Consider the fitted model; 

== a) -kiu, (11) 

where p : R x A —» R is either I-regular or H-regular with A a compact subset of R'". 

We will refer to the fitted model of being of correct functional form if 

/ ( . , — g(., ao),yb/' a WMzgrwe Oo E A 

Similarly we will say that the fitted model is of false functional form if 

/ (- , f eve/y a e A. 

The NLS estimator of a fitted model (equation (11)) is defined as: 

a = aTgminy^(%-^(a ; f ,o ) ) ' ^ . (12) 

When the fitted model is linear in parameter, the relevant estimation procedure is Ordi-

nary Least Squares (OLS) and the "pseudo-true parameter space" A is not required to be 

compact. The estimator for the fitted model in this instance is: 

a r g m i n ^ ( i / t - o p ( 3 : f ) ) ^ . (13) a 
t=i 

2.4.1 Misspecification under Stationarity VS Misspecification under 
Nonstationarity: Some Theoretical Considerations 

It is apparent from Theorems 2.1 and 2.3 that the asymptotics for unit root processes are 

quite different from the asymptotics for stationary data. The sample averages of unit root 

^ The parameter do in / could be suppressed; however we will keep it to highlight what the parameter of 
interest might be in some examples later. 
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processes converge to random quantities rather than fixed numbers, which is the case un-

der stationarity. Moreover the limits of the sample covariance expressions are different. 

Under stationarity, the limit distribution is Gaussian whilst under nonstationarity it is ei-

ther mixed normal or involves stochastic integrals. The most important difference though -

when it comes to functional form misspecification - is that different transformations of unit 

processes are of different asymptotic order, while transformations of stationary data are of 

the same asymptotic order. 

A transformation, say T{x), applied to a unit-root process may strengthen or under-

mine the signal produced by the process itself An I-regular transformation undermines the 

signal of the process. An H-regular transformation undermines the signal of the process if 

the asymptotic order A^(A) of T{x) converges. The signal of the process is strengthened 

if &^(A) diverges. This effect is apparent from Theorems 3.1 and 3.4. The sample aver-

age of a unit root transformation is of order Op{^/n), if the transformation is I-regular, and 

of order Op{kT{y/n)n) if the transformation is H-regular. By allowing the functional form 

of the true and the fitted model to be either in the I-regular or the H-regular family we ef-

fectively allow the true specification to be of different order than the fitted specification. 

As mentioned above, this kind of complication does not arise in the stationary framework. 

The relative asymptotic order of the fitted model to the one of the true model is of cen-

tral importance for the subsequent analysis. For convenience we introduce the following 

notation: 

(a) If the asymptotic order of the fitted model g{a) is the same as that of the true 

model / , for some a E A we denote this by p ?« / , 
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(b) If the fitted model g{a) is of higher (smaller) asymptotic order than the true model 

/ , or all a G v4 that will be denoted hy g f (g ~< f ) . 

Members of the H-regular family are of higher asymptotic order than members of the /-

regular family. Moreover, members of the I-regular family are of the same asymptotic 

order, while members of the H-regular family may be of different order. 

When the fitted model is nonlinear in parameters the estimation procedure under 

consideration is NLS. The NLS estimator, a, is defined as the minimiser of the objective 

function over a compact set, A (equation (12)). The compactness assumption is standard in 

problems that are non-linear in parameters for theoretical convenience. For (scalar parame-

ter) models that are linear in parameter the relevant procedure is OLS. The OLS estimator 

is defined as in (13). The OLS problem has a closed form solution so the compactness 

assumption is redundant. One may consider a "restricted" version of the OLS estimator 

defined as the minimiser of the objective function over a compact set: 

6 == -- o<?(z:t))2 (I'l) 
t=l 

Under correct functional form specification, there is no difference asymptotically between 

the estimator of (13) and the one of (14). Both estimators will be consistent for the parame-

ter of interest, provided the latter is contained within the specified parameter space. This 

is not the case though under functional form misspecification. Under functional form mis-

specification the two estimators may exhibit different asymptotic behaviour. For instance, 

as we are going to show later in this section, if the fitted model is of smaller asymptotic or-

der than the true one, there are occasions in which the OLS estimator as defined by (13) 

diverges in probability. This divergent behavior is not exhibited by the estimator of (14) 
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as in this case the estimator is defined over bounded interval. Actually in this instance, 

the "restricted" OLS estimator converges to a boundary point of the pseudo-true parameter 

space. 

2.4.2 Models Linear in Parameter 

We begin our analysis with models that are linear in parameter. The analysis of models 

that are nonlinear in parameter is left for section 2.4.3. The reason we treat the two types 

of models separately is twofold: first the techniques for the asymptotic analysis for mod-

els that are nonlinear in parameter are more involved, second, as was mentioned in the 

previous section, under functional form misspecification the OLS procedure is not directly 

comparable to the NLS procedure. Under the former procedure the interval on which the 

estimator is defined is unbounded, whilst under the latter procedure the estimator is defined 

on bounded set. So in principle the OLS procedure -in contrast to the NLS- can deliver 

estimators that diverge in probability. 

Our findings can be summarised as follows. The OLS estimator converges to a 

pseudo-true value whenever the fitted model is of asymptotic order at least as large as 

that of the true model. In particular the pseudo-true value is zero when g J and non zero 

when g ^ f . The OLS estimator diverges in probability whenever g -< f . An exception to 

the last case occurs when g is I-regular and / is H-regular but the product gf is I-regular. 

In this case although g -< f , the signal produced by / is neutralised and as result the OLS 

estimator converges to some pseudo-true value. 
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We first consider the case when the fitted model, g is I-regular We distinguish three 

cases: (a) the true model / is I-regular, (b) the true model / is H-regular and the product 

jg is I-regular and (c) the true model / is H-regular and the product fg is H-regular The 

properties of the OLS estimator for I-regular g are shown in Proposition 4.1: 

PROPOSITION 4.1: (p ArggM/ar) 

Let a = argmin XltLi iVt " g be I-regular. 

(i) If f is I-regular or H-regular such that gf is I-regular, then 

roo 

a a" — 

A W I/" |S'2:(5, A*)I (FS < OO, WAERE Z(5, O*) = / ( S , ^O)P(A)DG — FAEW 

(6 - O*) 

- 1 

X 

1 

with W{1) standard normal independent of L( l , 0) and W{1)} 

(ii) If f is H-regular such that gf is H-regular with limit homogeneous function hgf 

and asymptotic order kgf, then 

1 J 

and 

6 = OP(\/NA:GY(\/M)) oo 

af M ^ oo. 

This result has been suggested to me by Professor P. C. B. Phillips. 
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We can see from Proposition 4.1 that the OLS estimator converges to a pseudo-true value 

in two cases: when the true model is I-regular and when the true model is H-regular but 

the product of / and g give an I-regular transformation. If the product / and g give an H-

regular transformation, then the OLS estimator will diverge in probability. The divergence 

rate depends on the asymptotic order of fg. We note for the kind of misspecification in (i), 

the limit distribution is still mixed normal, but with larger variance than one attained under 

correct specification. 

Now we turn to the case when the fitted model is H-regular. The true model may 

belong to the I-regular or H-regular families. Although the members of the I-regular family 

are of the same asymptotic order, members of the H-regular family may be of different 

order. So whenever the true model is H-regular we distinguish three cases: (a) g ^ f , (b) 

g y f and (c) g -< f . The asymptotic properties of the OLS estimator for g H-regular are 

shown in Proposition 4.2: 

PROPOSITION 4.2: 

Zg/ & = argmin - 0^(2;^))^ a W ^ 

(i) If f is H-regular such that kg = kf and f{x, 9o) — a*g(x) = q{x, 60), q H-regular 

fwcA f/zaf (A) 00. TTzgM 

8 - ^ 0 * 

and 
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(ii) If f is H-regular such that {kfkg ^)(A) 0, then 

a = Op (gH)-"' 
and 

K ( ^ ) . a Slh,(V{r),e,)h,{V(T))dT 
-a 

(iii) If f is H-regular such that {kfkg ^)(A) oo, then 

(iv) If f is I-regular such that fg is I-regular, then 

CL — Op(l) 

AW/ I/" ^9 (A) 0 

' 

WAF/E, I/" ^@(^) OO 

JO 

(v) If f is I-regular such that fg is H-regular with limit homogeneous function hgf 

and asymptotic order kgf, then 

^ 9 ( V ^ ) . AGY(Y(R),GJO(R 

as n ^ oo. 
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Proposition 4.2 (i) considers the case when the true model, / can be represented as a sum of 

homogeneous components of different asymptotic orders and the fitted model agrees with 

the leading term of / . So effectively the fitted model is correctly specified up to a term that 

is of smaller order than kf. The limit distribution is quite different to the one under correct 

specification. It involves functional of Brownian motion but not a stochastic integral as 

opposed to the correctly specified case. The convergence rate is determined by the relative 

asymptotic order of the leading term of / to the one of the second leading term and is 

slower than the rate attained under correct specification. Whenever g y f , (Proposition 4.2 

(ii), (iv) and (v)) the OLS estimator converges to zero. The limit distribution is comparable 

to the one under correct specification only in the second case of Proposition 4.2 (iv). In all 

other cases the limit distribution is different than the one under correct specification and 

the convergence rates are slower. The OLS estimator diverges when g -< f (Proposition 4.2 

(iii)). The divergence rate is determined by the relative asymptotic order of the true model 

to the one of the fitted model. 

2.4.3 Models Nonlinear in Parameter 

Convergence to Pseudo-true Value 

We have seen that the OLS estimator may exhibit divergent behaviour when the fitted 

model is of smaller asymptotic order than the true one. This is not the case though when 

the relevant estimation procedure is NLS. An obvious explanation for this is that the NLS 

estimator is defined over a compact set. The compactness assumption about the parameter 

space may appear restrictive, as it implicitly requires that there are known bounds for the 
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parameter of interest. Nonetheless it is standard assumption for models nonlinear in para-

meter for theoretical convenience (see for example White (1981), Hansen (1982), Newey 

and McFadden (1994)). Moreover in practice, when it comes to fitting a model that is non-

linear in the parameter using a computer, one may effectively need to define an interval 

over which the computer minimises the objective function. As we are going to show later 

in this section, the NLS estimator converges to a boundary point of the pseudo parameter 

space A, whenever the true model is of different asymptotic order than the true specifica-

tion. The NLS estimator may converge to an interior point of A only when the true and the 

fitted models are of the same asymptotic order. 

Most of the consistency results provided follow from a Jennrich (1969) type of result. 

The Jennrich Theorem requires that the objective function, Qn(«), appropriately rescaled, 

converges uniformly to a function Q(a) that is continuous and has a unique minimum with 

respect to a. The objective function for most of the models we are dealing with, involves 

components of different orders. In particular it is often the case that the order of magnitude 

of components that depend on a is dominated by the order of components that do not 

depend on a. For this reason it is more convenient to consider a shifted version of the 

objective function: 

D„(a, a*) = Qn{o,) " Qn(o*), with a* G A 

rather the objective function itself Following P&P, we will establish consistency by veri-

fying the following condition (CNl): 
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CNl: 

Let Vn be a normalising sequence of real numbers. If v~^Dn{a, a*) D{a, a*) in proba-

bility uniformly in a as n ^ oo, and D{a, a*) is continuous in a and has a unique minimum 

at a* a.s. Then & —> a* in probability. 

Although CNl is applicable to I-regular and Ho-regular functions, is not applicable to 

general H-regular functions (see P&P), as these functions have different rates for different 

values of a. The following condition (CN2) due to Wu (1981) is more relevant when the 

model is given by a general H-regular function: 

CN2: 

If for any 5 > 0 , LIMINF„^OO INF|A_A.J>5 DN(A, A*) > 0 in probability then a a* in 

probability. 

The consistency results provided for general H-regular models follow from CN2. 

The asymptotic behaviour of the NLS estimator for 1-regular g is given in Proposi-

tions 4.3-4.5. and for g Ho-regular in Propositions 4.6-4.8. Assumption (c) in all propo-

sitions below is an identification condition. It ensures that the limit objective function has 

a unique minimum and hence in view of CNl is sufficient for the convergence of the NLS 

estimator to some pseudo-true value. Some examples of / and g functions for which con-

dition (c) is satisfied are also provided. 

P r o p o s i t i o n 4.3: {g l-regular, / I-regular) 

Let 

(a) 6 = argmiiiaeA (2/f " o))^ a W ^ AyegMZa/- A, 
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(b) / be I-regular, 

(c) a// a E A : G f a*. 

Then 

6 a*. 

In particular we have 

D ( O , A*) - ^ / [ / ( S , GO) - ^(A, - / [ / ( S , - P ( 5 , 1 , ( 1 , 0 ) 
\J—oo J—oo J 

with Vn = \fn. 

EXAMPLE 4.1: 

Let f{s,9o) = (1 + s^)~^ and g{s,a) = with A C R + . / is H-regular, g is /-

regular on A and gf is I-regular on A. Now condition (c) of Proposition 4.3 requires that 

J^[5'(s, a) — f{s, 9o)]'^ds has a unique minimum with respect to a. The integral does not 

have an analytical solution. From numerical integration we find that integral is minimised 

at a point close to zero. 

P r o p o s i t i o n 4.4: {g I-regular, / H-regular, gf I-regular) 

Let 

(a) & = arg miiiaeA (i/t - a))^ awf ^ 6e T-rggw/ar A, 

(b) / be H-regular and gf be I-regular on A, 

(C) - 2 / ( G , A)]D8 > - 2 / ( S , 

YBR A/Z A E A : A O*. 

Then 

& O*. 
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In particular we have 

D ( A , A*) = / [P(S, - 2 / ( 5 , I9O)P(G, - / [P(G, - 2 / ( A , I9O)G'(A, 1 , ( 1 , 0 ) 
\V—00 V—00 / 

with Vn = 

EXAMPLE 4.2: 

Let f{s, do) = OoS and g{s, a) = with A C R+. / is H-regular, g is I-regular on A 

and gf is I-regular on A. Now o)^ — 2f(s, 9o)g{s, a)]rfs = so condition (c) 

of Proposition 4.4 is satisfied with a* being the upper boundary point of A. 

P R O P O S I T I O N 4.5: (g I-regular, / H-regular, gf H-regular) 

Let 

(a) 6 = argmingeA IZILi (z/t - P 6^ T-regw/gr A, 

(b) / be Ho-regular and gf be H-regular on A with positive limit homogeneous func-

tion hgf and asymptotic order kgj, 

(c) ^ a.g. for all o € A : 

a a*. 

Then 

P * 
a ^ a . 

In particular we have 

\V —OO V —OO / 
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From the Propositions above we see that when / is of different order than g, the limit 

objective function D{a, a*) is not a "complete" quadratic form as in Proposition 4.3. In this 

case the limit objective function is minimised at a boundary point of the parameter space 

A . 

Next we consider the case when / is H-regular. 

P r o p o s i t i o n 4.6: {g H-regular, / H-regular) 

Let 

(a) & = arg minaevi (z/t - 5̂ (3:*, p A, 

(b) / be H-regular and with kf = kg, 

(c) ^o) - o.s. 

for all a £ A a ^ a*. 

Then 

6 A <3*. 

In particular we have 

D{a,a*) = f f [hf{s,do) — hg{s,a)]'^L{l,s)ds — f [hf(s, 9o) — hg{s, a*)]^L{l, s)ds 
\V—oo V—oo / 

with Vn = nkf{^/nY. 

EXAMPLE 4.4: 

Let f{s,6o) = 6oS^l{s > 0} and g{s, (a) = s^(l + a s ) ^ ^ l { s > 0} with A C R+. / is 

H-regular and g is Ho-regular on A. Condition (c) of Proposition 4.6 requires 

(00 - ^ JcT which holds whenever o* ^ 

e:^ 



2.4 Consequences of Functional Fonn Misspecification 40 

P r o p o s i t i o n 4.7: {g H-regular, / I-regular or H-regular with g >~ f ) 

Let 

(a) & = arg minoeA (z/f - ^ on A , 

(b) / be I-regular or H-regular with (kfkg^)(X) 0 as X oo, 

(c) g)d8 > s)da a.a. for all a E A : o ^ o* 

Then 

6 - ^ 0 * 

00 FOO 
2 R N / u t r. ^* \2 -

In particular we have 

D{a,a*)=[ I hg{s,aYL{l,s)ds - j hg{s, a*yL{l, s)ds 

EXAMPLE 4.5: 

Let / ( s , do) = OoS and g{s, a) = s^(l + > 0} with A C R+. / is H-regular 

and g is Ho-regular on A. Condition (c) of Proposition 4.6 requires s'^L{l, s)ds > 

/o°° 5)da a.s. which holds whenever a* is the upper boundary point of A. 

P r o p o s i t i o n 4.8: H-regular, / H-regular with g < f ) 

Let 

(a) a = afgminaeyi (z/t - a))^ a W p 6e 

(b) / be H-regular with {kfk~^){X) -yooasX-^oo 

o)Z,(l, 8)d5 < /iy(g, ^o)/tg(5, a*)Z/(l, g)(fs a.a.ybra/Za E 

A : a a*. 
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Then 

In particular we have 

D ( O , A*) = 2 / 
moo 

' —oo 
fOO 

- 2 / A / ( G , ^ O ) / I G ( G , O ) Z , ( L , G ) & 

E X A M P L E 4 . 6 ; 

Let / ( s , 60) = OoS^ and g{s, a) = s ( l + as)~^l{s > 0} with A C R+. / is H-regular 

and g is Ho-regular on A. Condition (c) of Proposition 4.7 requires ^ s^Z/(l, s)ds < 

^ s^L(l, s)ds a.s. which holds whenever a*is the lower boundary point of A. 

We notice that in all examples above the limit objective function D(a, a*) is strictly 

monotonic in a whenever / and g are of different orders. In this case the NLS estimator 

converges to boundary point of the pseudo-true parameter space. The NLS estimator may 

converge to value that is interior in A when / and g are of the same order. For instance 

in Example 4.3 the NLS estimator converges to point a* that is interior in A when is 

interior in A. 

Propositions 4.9 and 4.10 consider the case when the fitted model p is a general 

H-regular function. In this case the convergence of the NLS estimator is established by 

providing sufficient conditions for CN2. In Proposition 4.9 the fitted model is assumed to 

be correctly specified up some lower order H-regular component. This can be seen as a 

case of missing or redundant lower order components. 
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P R O P O S I T I O N 4.9: (g H-regular, / H-regular with g ^ f )) 

Let 

(a) 6 = arg iiiina6y4 ^ 0/7 vl, w/Z/z Ao/Mo-

geneous function and asymptotic order hg and kg{X, a) respectively 

(b) / be H-regular with asymptotic order kf such that f{x, 60) — g{x, a*) = q{x, a*) 

with kf{X) = kg{X, a*) and q{x, a) H-regular on A with asymptotic order kq{X, a) such 

F/ZAF A;G(A, A*)A;G(A, 0 . 

Then CN2 holds if: 

(i) for any a ^ a* and p, c > 0, there exist e > 0 and a neighborhood N of a such 

that as X ^ 00 

inf inf |pA;g(A, a) — cA;g(A, a*)| x A:g(A, a*) *\—1 0 0 : 

|P-P|<E 

(ii)ybr a// a E A aW (̂  > 0, > 0. 

E X A M P L E 4 . 7 : 

The conditions of Proposition 4.9 are satisfied for / ( s , 60) = s^°{l + s )"^l{s > 0} 

and g{s, a) = s ° l{s > 0} with 9o E A C R+ and a* = 60 — I. 

Proposition 4.10 considers the case when / -< 51 for all a e A. In this case the NLS 

estimator converges to a*, the lower boundary point of A. 
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P R O P O S I T I O N 4.10: (g H-regular, / H-regular with g >- / ) ) 

Let 

(a) a = argminaG^i {Vt — 9 a n d g be H-regular on A C R+ with limit 

homogeneous function hg and asymptotic order kg{X, a), 

(b) f be I-regular or H-regular with asymptotic order k f ( X ) 

(c) A;y(A)A;g(A, 0_/br aZ/ o 6 v4, 

(d) a* be the lower boundary point of A i.e. kg{\.,a*)kg{\^a)~^ 0 for all 

a E A : a ^ (z*. 

Then CN2 holds if: 

(i) for any a ^ a* and p,c > 0, there exist e > 0 and a neighborhood N of a such 

RAAF GJ A —^ OO 

ii^ inf |pA;g(A, a) — cA;g(A, a*)| x A;g(A, a*) oo: 
|c—c|<G o E N 
\p-p\<e 

(ii)ybr a/Z a E A J > 0, > 0. 

EXAMPLE 4.8: 

The conditions ofProposition 4.10 are satisfied for/(s,6 'o) = 6'oln5l{s > 0} andg{s,a) = 

s" l{s > 0} with a e A C R+. 

Limit distribution 

The limit distribution results provided cover the case when the true and fitted models 

are of the same asymptotic order. In particular when both models are H-regular we assume 
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that the fitted model is correctly specified up to some lower order term, i.e. 

f{s, 9o) — g{s, a*) = q{s, a*) for some a* e A 

where g i s a lower order (lower than / and g) component. This is the case considered in 

Propositions 4.6 and 4.9. Under this kind of misspecification the true and fitted models 

agree in order. Moreover we will assume that the pseudo-true value is an interior point in 

A. The limit distribution theory can be obtained in a similar fashion to the one in P&P. The 

examples in section 4.3 suggest that when the true and fitted models are of different orders 

the NLS estimator converges to boundary points in A. Andrews (1999) provides a general 

approach for obtaining limit distribution results for problems in which the parameter is a 

boundary point in the parameter space (see also Phillips and Moon (2003)). This approach 

is not applicable for the kind of problem under consideration, for the following reason. An-

drews (1999) considers only the case in which the minimum of the limit objective function 

D{a, a*) is a turning point. For the kind of misspecification under consideration, D{a*, a*) 

in CNl does not correspond to a turning point. 

The most common way of deriving a limit distribution result is based on an applica-

tion of the mean value theorem on the derivative of the objective function Qni^) around 

a*, the probability limit of a. This is the method used in section 2. We recall that 

Q n ( o ) = 0 n ( a * ) + Q n ( o ) ( a - a * ) , (15) 
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where ||a — a*|| < \\a — a*\\, A C R and a* interior in A. Now given (15) suppose the 

following hold: 

(16) 

where, is sequence of normalising matrices and s„ a normalising sequence of real num-

bers. Consider the following conditions: 

A 1 : ^ Q(O*) , AF M —» OO. 

A 2 : + OP(L),YB/'M ZORGE EMOWGA. 

A 3 : A J M —» OO. 

A 4 ; Q{a*) > 0 a.s. 

A 5 : Qn{a) = 0, with probability approaching one, as n ^ oo. 

A 6 : = OP(L), M ^ OO. 

A 7 a : s„ = 1. 
A 7 b : Sn oo, with | |s„f~^|| 0, as n oo. 

Conditions A1 — Ala are considered by P&P. They are standard assumptions for 

nonlinear models and are sufficient for (16). Given that a = a* + Op(l), these conditions 

can be easily verified for a variety of nonlinear problems. Condition Ah requires that the 

objective function satisfies a first order condition in the limit. Condition A7b requires that 

the "Score" be of smaller order than the "Hessian". For most problems s„ is equal to 

one, leading to the familiar Vn-consistency result for extremum estimators. For the kind 

of misspecification under consideration, Sn diverges. The score is of higher order than is 

under correct specification, and as result the order of consistency is compromised. 
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The conditions above can be easily checked under the kind of misspecification con-

sidered in Propositions 4.3 and 4.6 provided a* is interior in A. We recall that in Proposition 

4.3 the true and fitted models are I-regular. 

P r o p o s i t i o n 4.11: {g I-regular, / I-regular) 

Let f be I-regular and g I-regular on A C R'" with 

(a) a* as in Proposition 4.3, 

(b) o*)| dg < oo x/Wg z(s, a*) = ^(a, a*) ( / ( a , - ^(s, o*)), 

(C) ^ ( 5 , G ( 8 , O*) ( / ( S , - P (A , A ' ) ) > 0 . 

Then 

(A — &*) 

-1/2 X 

roo 

E"^Z(R, A*)DR 
1 + 

1 — (^(G) 

1/2 

(FG I : Y ( I ) + 

\ 1/2 

1 ^ ( 1 ) 
I / 

<3:̂  71 —^ 0 0 . 

In Proposition 4.6 the fitted model is Ho-regular and is of the same order as the true model. 

PROPOSITION 4.12: 

Let f be H-regular and g H-regular on A C R™' with asymptotic order kf{\) and kg{X) 

respectively. Moreover assume 

(a) A;/(A) = A;g(A), 

(b) / ( s , 9o) — g{s, a*) = q{s, a*) with q, g and g Ho-regular on A such that 

sup 
A 

- 1 

® ^9) ^9^9 < 0 0 , 
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(c) T'(a, o) = a) (/(a, o)) fz/c/z f W 

T'(AS, A) = A;G(A)^G(A)NI(G, A) + AG(A)A:G(A)^2(5, A) + 72(A, G, A) 

with kqkg{XY^ 0 and R of smaller order than kqk'g{\), 

(d) a* is as in Proposition 4.6such that Hi(s,a*) = 0, 

(e) a*)Ag(g, > 0 a / / J > 0. 

Then 

( 6 — A*) 
0 

-1 RL 

^ 2 ( Y ( R ) , O ' ) D R 
0 

AJ' M —> OO. 

The function T of condition (c) resembles the functional fo rm of the "score", Qn(«)- We 

assume that the («) can be represented as a sum of Ho-regular components of different 

orders with the leading term equal to zero at a* (condition (d)). So we are considering the 

case when the fitted model is correctly specified up to some lower order Ho-regular term 

(see also Proposition 4.2). The limit distribution is comparable with that of Proposition 4.2. 

Under misspecification the order of the score increases hy^/nkq{^/n). This translates to a 

direct reduction in the estimator's convergence rate by the same amount. 

EXAMPLE 4.9: 

Let f{s,6o) = 9os'^l{s > 0} and g{s,a) = s^(l + a s )~^ l{s > 0} with A C R+. / is 

H-regular with asymptotic order kf{y/n) = n and g is Hg-regular on A with asymptotic 

order kg^sjl^ = n. It follows from Proposition 4.6 that a ^ a* = which is interior in 

A provided is interior in A. Now 
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g{s, a) = — > 0} is Ho-regular on A with kg{^/n) = n, 

a) = (i+lg)31{5 > 0} is on A with = n, 

Hi{s, a) = -a~'^s^[6oS^ - a~^s^)l{s > 0} with Hi{s, a*) = 0, 

a) = - a ~ ^ s ^ l { s > 0} and kg{^/n) = ^/n, 

/i^(s, a*) = l{s > 0} which satisfies (d). 

It follows from Proposition 4.12 that: 

- 1 \ d 
— 1 f*00 

s^L(l, s)ds 

It is difficult to establish A6 for general H-regular functions as the order of these 

functions depends on a. Alternatively consider the following assumption: 

A 8 : There is a sequence //„ such that Q as n oo and 

SUP ( O N W - = OP(L), 

W W G JVRI = {A : - A*)| | < 1} . 

Assumption 8 requires the "Hessian" Qn(Q) to converge to Qn{ci*) unifromly over a shrink-

ing neibourhood of the value a*. The following result due to Wooldridge (1994). It is 

utilised by P&P to obtain limit distribution results for general H-regular models under cor-

rect specification. 

THEOREM 4.1: (Wooldridge (1994)) 

Assume Al — AA, Ala and A8 hold. Then as n —* oo 

F^(& — A*) —> —Q(O*) ^ Q ( O * ) . 
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Note that this approach of obtaining limit distribution results does not require a — a* = 

Op{l). Actually the convergence of a to a* follows from the limit distribution result itself 

Under functional form misspecification Alb holds instead of Ala. Theorem 4.1 can be 

extended under Alb. Redefine the set Nn of A8 as N* = {a : — a*)|| < 1} and 

consider the following modification of A8. 

A8* : There is a sequence jj.^ such that 0 as n oo and 

sup 
NEW: 

- 1 

Then Theorem 4.1 can be restated as follows. 

PROPOSITION 4.13: 

Assume A1 ~ yl4, v476 and A8* hold. Then 

AJ' 71 —^ OO. 

Before we present the limit distribution result for a we need to introduce the following 

notation. Define a neighborhood of a* by 

N ( E , A) = <^0 : A:G(A, O*)' (A — A*) 

Then the following result holds. 

< A' 
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P R O P O S I T I O N 4 . 1 4 : {g H-regular, / H-regular) 

Let f be H-regular and g H-regular on A C with asymptotic order kf{\) and kg{X, a) 

respectively. Moreover assume 

(a) there exists an interior point of A, a* such that k f ( X ) = kg{X, a*), 

(b) / (a , ^o) — p(5, o') = g(8, a*) g, p OM v4, 

(c) T'(s, o) = ^(a, o) ( / ( s , ^o) - p(g, a)) fwcA f W 

T'(Aa, a) = A;g(A, a)^g(A, o) + A;,(A, a)A;g(A, a)'^2(5, a) + ^(A, s, o) 

A—»oo 
wzrA jifi, ^2 /"egwZo/; A:g(A,o) E R, A;g(A, a)A;g(A, a) ^ ^ 

smaller order than kg, 

(d) Hi{s, a*) = 0, 

(e) a*)Ag(g, > 0ybr aZZ ^ > 0, 

(f) for any s > 0, there exists 6 > 0 such that as X ^ oo, 

I sup |p(Ag,a*)| 

0 for all a ^ A and R of 

A;,(A, o*) I A;g(a*) ig) 0, (17) 

A' A;g(A, o*) I A;g(o*) ig) A;g(G* ' sup sup (^(As,a)j 
|S|<SAGAF(E,A) 

0, (18) 

A" 

Then 

A;g(A, o*) g) ^g(o*) ® (A) ^ ( sup sup |]9 (As, a) 
^ > \s\<s a£N(£,\) 

0; (19) 

AG(Y(R), A*)AG(Y(R), 
L-'O 

- 1 /-i 

^2(Y(R) ,A*) (ZR 
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^ OO. 

Proposition 4.14 provides sufficient conditions for Proposition 4.13 to hold. Conditions 

(a)-(e) in Proposition 4.14 are similar to the conditions in Proposition 4.12, Condition (f) 

is sufficient for condition A8*. The limit distribution result is comparable with the one of 

Proposition 4.12. In this case the speed of convergence depends on the pseudo-true value 

O*. 

2.5 Conclusion 

The purpose of this chapter has been to examine the consequences of functional form mis-

specification when the data are strongly dependent. For this reason the theoretical frame-

work was kept simple. In particular we have considered regressions with just a single 

covariate. Some of the results provided here can be easily extended to multiple regressions 

with additively separable components along the lines of Chang, Park and Phillips (2001). 

A comprehensive generalisation of our results however, to a multiple regression context is 

a quite challenging task. The econometric techniques utilised by Chang, Park and Phillips 

(2001) to obtain consistency and limit distribution results for multivariate models, were de-

veloped for correctly specified models and unfortunately their applicability is limited in our 

framework. 

We have seen that in contrast to the stationary and the weakly dependent case, con-

vergence to a pseudo-true value does not always hold when the covariates are unit root 

processes. In particular when OLS is the relevant estimation procedure the estimator may 
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diverge in probability when the true model is of different order than the fitted model. This 

is not the case though when the NLS procedure is under consideration. The NLS estimator 

is defined on a compact set and as result it converges to boundary a point in the parame-

ter space when / and g are of different orders. When the pseudo-true value is a boundary 

point the standard techniques used to obtain limit distribution results (e.g. Andrews (1999), 

Phillips and Moon (2003)) are not applicable as the limit objective function does not attain 

its minimum at a turning point. When the pseudo-true value is an interior point, the rate 

of convergence is the same as that under correct specification (^^n) when both / and g are 

I-regular. In this case the limit distribution is mixed normal but with larger variance than 

the one attained under correct functional form. In almost any other case the convergence 

rate is slower. Moreover the limit distribution theory is different than the one under correct 

specification. 

The results provided here are not only interesting from a theoretical point of view. 

They are useful for the development of specification tests and model selection procedures. 

A convergence to pseudo-true value result is required to determine the asymptotic power 

of functional form testing procedures like the ones proposed by White (1981) and Newey 

(1985) (tests without specific alternative). Moreover knowledge about the estimator's con-

vergence rate under functional form misspecification is required for obtaining limit distri-

bution as well as asymptotic power results for testing procedures like the ones proposed 

by Cox (1961, 1962), Davidson and McKinnon (1981) and Voung (1989) (tests with spe-

cific alternative). The theory developed by Park and Phillips provides the applied worker 

with numerous specifications at his disposal. Given this wide range of models, the applied 
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worker is faced with problem of choosing the appropriate one. The next two chapters ad-

dress this problem. We develop a conditional test for functional form for regression models 

with unit roots. 
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2.6 Appendix to Chapter 2 

PROOF OF PROPOSITION 4.1: First note that the OLS estimator is 6 is 

- __ EILI f{xt)g{xt) . EFAL 

(i) We have from Theorem 3.1 

& = + O P K ' ) = + % ( ! ) ' 

Also 

^nia- a = r—F^n H 

In view of the fact that / ( . , 9o)g{) — a.*g{.)'^ is of zero energy, the result follows by Theo-

rems 3.1 and 3.2. 

(ii) We have from Theorems 3.1 and 3.3 that 

( V A Y / ( V 5 ) ) - ' A = 3 ^ | G G ^ + O , { N - I 4 . , ( V ^ ) - ' ) - + 

Op ( 1 ) . 

PROOF OF PROPOSITION 4.2: 

(i) We have 

+ O P L I J -

where the first equality holds from the assumption that f~a*g = q and the limit distribution 

result from Theorem 3.4. 
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(ii) We have 

OP (1 ) . 

(iii) The proof is the same as (ii) and therefore omitted. 

(iv) For A;g(A) 0 we have 

Op(l) 

where the last equality holds from Theorems 3.1 and 3.4. 

For kg(A) oo from Theorem 3.4 we have 

(v) Under the assumption Op{n~^kgf{^/nY^kg{^/n)) = Op{l) and Theorem 3.4 we 

have 

For the proof of Propositions 4.3-4.8 note that 

D » ( A , A * ) = Y ^ { [ ( / ( A ; F , G O ) - ^ ( 2 ; T , O ) ] ^ + [ ( / (A ;F ,GO) -P (A;T ,O) ] 'UT)} 

f=l 

N 

^ ^O) - A*)]^ + [(/(A;^, - ^(A^F, A*)] U*)} 

t=i 



2.6 Appendix to Chapter 2 56 

P R O O F O F P R O P O S I T I O N 4 . 3 : The objective function can be written as 

n 

1 1 
[(/(^i> ^o) — gi^t, q)]^ ^ ^ do) — g{xt, a*)f + Op{l) 

[/(.s, 6)0) - ^(a, - / [/(a, <9o) - (/(g, ) Z/(l, 0) + Op(l) 
) V—# / 

In view of the /-regularity of / and g the first equality holds by Lemma A7(b) in P&P and 

the second by Theorem 3.1 and Lemma A6(b) in P&P. The convergence holds uniformly in 

a E A and in view of condition (c) and Lemma A8(b) in P&P the requisite result follows.• 

P R O O F O F P R O P O S I T I O N 4 . 4 : The objective function can be written as 

" A N 

- 2 / (3 ;* , ^0)^(3;*, A) - ^ A*) 
t=l 

+Op{l) 

P ( 8 , A ) ^ - 2 / ( G , G O ) P ( A , A ) D S - / 1 ( 1 , 0 ) 

n 

1 

n 

— OO 

4-0P(L) 

In view of the /-regularity of g and gf the first equality holds by Lemma A7(b) in P&P and 

the second by Theorem 3.1 and Lemma A6(b) in P&P. The convergence holds uniformly in 

a e A and in view of condition (c) and Lemma A8(b) in P&P the requisite result fol lows.• 



2.6 Appendix to Chapter 2 57 

P R O O F O F P R O P O S I T I O N 4 . 5 : The objective function can be written as 

n 

1 \ 
, O*) - ^ 2/(A;F, , A) + OP(L) 

'9/ Z Y ^'''^9/ 

2/lg/(g, ^o,<2*)Z,(l,8)c(s- / 2/lgy(6,^o, a)I,(l ,a)(Zg)+Op(l) 

The first equality holds by conditions (a), (b) and Lemma A7(c) in P&P and the second by 

Theorem 3.3. The convergence holds uniformly in a G A and in view of condition (c) and 

Lemma A8(a) in P&P the requisite result fol lows.• 

P R O O F O F P R O P O S I T I O N 4 . 6 : The objective function can be written as 

n n 

= ^ Oo) — g{xt, O)]^ — ^ ^ ^O) — gi^t, A*)]^ + OP(L) 

f=l 

/ OO 
[hf{s, 60) — hg[s, a*)]'^L[l, s)ds 

•CO 

+Op(l) 

Given conditions (a) and (b) the first equality holds by Lemma A7(c) in P&P and the second 

by Theorem 3.3 and Lemma A6(c) in P&P. The convergence holds uniformly in a G A. In 

view of condition (c) and Lemma A8(a) in P&P the requisite result follows.® 
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P R O O F O F P R O P O S I T I O N 4.7: The objective function can be written as 

72/CG 
^(^(3;*, - 2/(3;*, (a) - ^ o*) 
t=i t=i 

kf 

+Op(l) 

The first equality holds by conditions (a), (b) and Lemma A7(c) in P&P and the second by 

Theorem 3.3 and Lemma A6(c) in P&P. The convergence holds uniformly in a G A. In 

view of condition (c) and Lemma A8(a) in P&P the requisite result fol lows.• 

P R O O F O F P R O P O S I T I O N 4 . 8 : The objective function can be written as 

1 

nknk 
-DN(O,O*) 

1 "• 1 "• f k 
A*) ^ A) + O, ' ^ 

2 /^ / (5 , ^ o ) / i g ( g , A * ) Z , ( L , 8 ) D S - / 2 / IY(A ,^o )AG(G,A) I , (L ,G)DAJ+Op (L ) 

The first equality holds by conditions (a), (b) and Lemma A7(c) in P&P and the second by 

Theorem 3.3. The convergence holds uniformly in a G A. In view of condition (c) and 

Lemma A8(a) in P&P the requisite result follows.B 
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PROOF OF PROPOSITION 4.9: Fix 6 > 0 and deMe = {|o - a*| > <̂ } C A. 

Let a be an arbitrary point in Ao and let TV be a neighborhood of a given in condition (i). 

Define 

O*) = ^ E I L I A) - , 

A ' ) = ^ A) - O*) 

CN(A, A*) = ^ « ) - ^(3:*, A''))G(ZT, A*). 

Given conditions (a) and (b) the objective function I?„(a, a*) can be expressed as 

n ^Dn{ci, a*) — An — 2i?„ — 2Cn. 

Now it follows from condition (i) and inequality (49) in P&P that 

^ OO ( 2 0 ) 

uniformly in N. Moreover since 

it follows from the Cauchy-Schwarz inequality and (20) that 

< ^ » ( G , O * ) - ' / " O P ( L ) = OP(L), ( 2 1 ) 
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uniformly in a E A. Now from (21) we have 

n ^Dn{a,a*) > An [l — 2A^^ \Bn\ — 2A^^ \C„ 

= A N ( L 4 - 0 P ( L ) ) ^ 0 0 , 

uniformly in N. Since Ao is compact and a an arbitrary point we have 

n ^ inf Dn{a,a*) oo 
d^Ao 

and the result follows. 

PROOF OF PROPOSITION 4.10: Fix > 0 and de6ne A, = {|a - a*| > (̂ } C A. 

Let a be an arbitrary point in Ao and let N he a neighborhood of a given in condition (i). 

We first show that condition (i) is not satisfied for a* that is not the lower boundary point 

in A. 

Suppose that a* is not the lower boundary point in A. Then we can choose a < a*. 

In that case the term in condition (i) is 

inf inf p/jgfA, a)A;g(A, o*) — c —̂  inf |c| < oo 
|P-P|<EAEW' I |C_C|<E 
Ic—c|<e 

as A —> oo. 

Now we prove that the condition in Theorem 4.1 holds. 

Define 

I E I L I (^(3;*, A) - O*))^ , 

Cn(a, o*, ^ o) - a*)) /(z*, 0^), 
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^ E I L I (^(3;*, A) - A*)) A*). 

and note that the objective function a*) is 

n ^Dn{a, a*) = An — 2Bn — 2Cn — '^En 

Now it follows from condition (i) and inequality (49) in P&P that 

(22) 

uniformly in N. Moreover since 

^ Z I L L = OP (A:Y(\/N, GO)^), 

^ E I L I = OP A ' ) ^ ) , 
71 

it follows from the Cauchy-Schwarz inequality and (22) that 

< V 4 , ( 0 , 0 * ) - ^ / " 0 P ( L ) = 0P(L), ( 2 3 ) 

< A ; / ( \ / M , ^ O ) A » ( A , A ' ) - ^ / ^ O P ( L ) = OP(L), 

< A : G ( \ / M , A * ) A ^ ( A , G * ) - ^ / ^ O P ( L ) = O P ( L ) , 

uniformly in a e A. Now from (23) we have that 

7 I - ^ D ^ ( A , O ' ) > A , ( 1 - | B ^ | - | C ^ | - | E J ) 

= v4n(l + Op(l)) 00, 

uniformly in N. Since Ao is compact and a an arbitrary point we have 

inf Dn{a,a*) 00 
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and the result follows. 

P R O O F O F P R O P O S I T I O N 4 .11: We establish conditions A1 — AQ. We start with 

Al. Note that z{s, a*) is of zero energy as a* is interior in A. Hence Al follows from 

Therems 3.1 and 3.2. A2 and A3 follow directly from Theorem 3.1 and Lemma A7(b) of 

P&P. Moreover 

Q ( A * ) = / - / G(G, O*) ( / ( S , - G(A, A*)) 

and therefore A4 follows from condition (c). A5 follows trivially from the assumption that 

a = a*+Op{l) with a* interior in A. Finally for A6 note that f rom Theorem 3.1 and Lemma 

A7(b) in P&P 

/'OO 
P G ( G , O ) ( / ( S , G O ) - ^ ( 8 , O ) ) 

V —OO V —OO 

uniformly in A and in view of the convergence of a to a* the result follows. • 

PROOF OF PROPOSITION 4.12: We establish conditions Al - A6. Under condi-

tion (c) A l — A3 follow directly by Theorem 3.4 and Lemma A7(c) in P&P. Also 

/•I poo 

and therefore AA follows from condition (e). Moreover A5 holds trivially under the as-

sumption that a = a* + Op(l). Now we check A6. Set Vg = n^^'^kg{y/n). It follows from 

Theorem 3.3 and Lemma A7(c) in P&P that 

T=I 
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^ I ^ 0, 
7% 

t=l 

uniformly in A. Also from condition (b) and Lemma A7(c) in P&P we have 

n 

("UG ® ^G) ^ ^ ^^9 IGI 
t=i 

uniformly in a E A. Hence it will suffice to show that 

A 

K ® o) ( / (zt , go) - a)) = Op(l) 
t=i 

which is what we will set out to do. Following P&P, let K = [smin — 1, Smax + 1] x A with 

gmin = miiio<r<i ^(r) , gmax ^ maxo<r<i ^(r) and consider 

< hr 

4 ) - y i ^ , 6*0) - P(3;T, A)) 
/ ^ F=I 

1 " 
- ^ ^ 1^(3;*, O*) - P(3;F, O) + G(A;F, A*) | 

A" M 
t=l 

4 
\ K 

where the second line is due to the local boundeness of hg (Lemma A3(b) of P&P). Now 

because the limit function is continuous in a (Lemma A8(a) of P&P) the result follows.• 

P R O O F O F P R O P O S I T I O N 4 . 1 3 : The proof is the same with the proof of Theorem 

8.1 in Wooldridge (1994) and therefore omitted.• 

PROOF OF PROPOSITION 4.14: We will show that A l - A4 and A8* hold. A1 

holds from Theorem 3.3 and conditions (c) and (d). To prove that A2 holds first define 

Now it follows from (19) that 

A % 

t=i 

< ^3 ® ) ( SUP O*) I 

t=i 
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and from (19) together with conditions (b), (c) and (d) it follows that 

t=i 

a*) igi (^8up a ' ) | 

A*) 

< 
. 6<S 

t=l 

0. 

which establishes A2. Given A2, A3 follows from Theorem 3.3 and Lemma A6(6) in P&P. 

Now we show A8*. Fix S such that 0 < ^ < e /3 , and define and Nn 

as in v48*. Following P&P we write 

Qn(<^) -~Qn(0'*) = ^-Di„(a) + Din(a)''j -h D2n(0') -h -Dsnia) + -D4n(a) + DsniO'*) + -Denif^), 

where 

Dln{o>^ 

D2n{o) 

Dsn{(^) 

D^ni^oj) 

t=l 

N 

o) - a*))(^(zt, a) - a*))', 
t=l 

7% 

t=l 

N 

- 0)9(37^,0*) 
t=l 

N 

1 

71 

{g^Xi, a) — G{xt, 

t=i 

O U I/T 

t=l 

and define 

CO] 
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For i = I , 6 . For all a 6 Nn, we have 

t~l 

^ 1 1 2 

t=i 

t=i 
n 

2 2 I I k ® / ^ e ) ^ 9 k ' 
t=i 

n 

wL(o) < 2Z| |k'^^9)"^^(^^'^)9(3:t ,a)) , (27) 
t=i 

n 

( ^ L K ) < 
t=i 
N 

W < 2 Z Ik? k ® //g ® )[/g) a) 1^1, (29) 

+ 

T=I 

where lla* — all < ||a* — all. Let s — maxfs m a x ; *^mm 1. For n large enough we have 

sup |^(zt,G)| < sup sup |p(\/Ma, a ) | , 
\s\<sa&Nn 

for all t = 1,..., n. Now from (24)-(29) we have 

35 ® |p(v^5, a)I 
\ / |A|<8 0€W,. 

(30) 

t=i 
a 

(^L((^) < M 4<; 
- 1 

(g) ) sup sup |p(V^g, o) I 
\ / |A|<AAE/FN 

(31) 
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36 
- 1 

/Cg ( I g ) ) sup sup |p(\/^s, o) I 
|A|<GAE/FT. 

1 " II . 

n ^^ II 

+ -
n 

t=i 

4<$ - 1 

A:* (^* (2) A*) sup sup |p(\/Mg, a) | 
\ / |3|<3AEN:i 

:^5N(A) < M 
2A 

- 1 

(g) A;* j sup sup |^(\/Mg, a)g(\ /^8, o)| 
|S|<S ASTVN 

26 
- 1 

S U P | ^ ( Y M 8 , 0 * ) | 
/ |a |<8 

1 " 

X - ^ / U * | G ( A ; F , O * ) | , 

T=I 

n 35 
- 1 

A:* (A;* (g (gi A;') sup sup IP (\/Ma, a) I 
\ / |A|<8AEW,. t=l 

(32) 

(33) 

(34) 

(35) 

Now from (30)-(35) together with (17)-(19) we have wf„(a) = Oa.g.(l), i = 1, •••, 5, uni-

formly in Nn which establishes A8* and the proof is completed.0 



Chapter 3 
Testing for Functional Form Under 

Nonstationarity 

3.1 Introduction 

Several specification tests for functional form have been developed over time (see for ex-

ample Ramsey (1969), White (1981), Bierens (1990)). The basis for these tests is to exploit 

moment conditions that hold when, and only when, the fitted model is of correct functional 

form (see Newey (1985)). They were originally developed for models with independent 

and identically distributed data and can be extended to models with weakly dependent data 

(see Bierens (1990)). In this chapter we examine how a conditional moment test for func-

tional form performs, when the data are are nonstationary. In particular we will assume as 

in Chapter 2 that the covariates are unit root processes. 

The theoretical framework in this chapter is exactly the same with one of Chapter 

2. We assume that the functional form of both the true and fitted models belongs to either 

the I-regular or H-regular family of transformations defined there. As we have seen, the 

kinds of models treated in P&P involve completely different limit distribution theory from 

that involving stationary covariates considered in the literature on functional form testing. 

The most important difference though - when it comes to functional form misspecification 

- is that different transformations of unit root processes are of different asymptotic order, 

while transformations of stationary data are of the same asymptotic order. By allowing 

67 
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the functional form of the true and the fitted model to be either in the I-regular or the H-

regular family we effectively allow the true specification to be of different order than the 

fitted specification. 

As mentioned above this kind of complication does not arise in the stationary frame-

work, and it has an impact on the behaviour of the test under the alternative (incorrect 

specification). One such effect is that whereas for stationary data, the functional form tests 

mentioned above are one-sided, in our case they can be two sided. For instance a typical 

statistic for the testing problem under consideration is of the form: 

where SMn is some sample moment and VNn is a variance normalisation term. For sta-

tionary data, under misspecification we have 

C'P^L J 

So we reject the null for large values of CM„. For unit root data the test can be two-sided. 

VNn is not necessarily bounded under misspecification. VNn may diverge, sometimes 

even faster than (SMn)'^. When this is the case the statistic converges to zero. If {SMnf ^ 

VNn the test is inconsistent. 

The asymptotic power of the test is derived for a set of alternatives where each alter-

native is characterised by the asymptotic order of the true specification. We show that in 

contrast to the stationary case, under nonstationarity there is not a single divergence rate 

under FFM. The divergence rate depends on the true model, the fitted model and the nature 

of any weighting functions employed. Moreover it shown that when integrable weight-
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ing functions are used in the construction of the test statistic, better asymptotic power is 

achieved against a set of alternatives. 

We use integrable weightings in two ways. First an integrable weighting may be 

used in the construction of the sample moment used in the test statistic. This is particularly 

beneficial when the true model is I-regular as it makes the test consistent. Secondly we 

use integrable weightings for the construction of bounded -under the alternative- variance 

estimators. The benefit of such variance estimators is more apparent if one is confined to 

the H-regular framework (i.e. both / and g are H-regular). We show that in this instance 

if a standard variance estimator is employed, the test under FFM diverges with the same 

rate attained under stationarity (n). On the other hand if a bounded variance estimator is 

employed instead, the test may attain higher divergence rates under incorrect specification. 

Finally we show that when an I-regular weighting is used in the sample moment of the 

statistic the test may become two sided. In this instance the divergence rate of the test under 

misspecification can be very large for some alternatives but very poor for some others. This 

problem is avoided if a bounded variance estimator is employed together with the I-regular 

weighting. The use of a bounded variance estimator in this case makes the test one-sided 

and results in a single divergence rate {^/n) under FFM. 

It is apparent from what is mentioned above, that we are not considering a single 

test but a family of tests. Each member of the family is characterised by the nature of the 

weighting function used in the construction of the sample moment of the statistic, by the 

nature of variance estimator employed and as we are going to see later by the method used 

to estimate the fitted model. 
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The rest of the chapter is organised as follows: In Section 2 the theoretical frame-

work is specified and some preliminary results are given. The main results are provided in 

Section 3 and Section 4 concludes. 

3.2 Theoretical Framework and Preliminary Results 

As in Chapter 2, the true model will be 

%/F = #O) 4- (1 ) 

where, / ( . ) ; R —>• R belongs either to the I-regular or H-regular family of transformations 

defined in P&P. Assume that the fitted model is: 

2/F == (/(ZF.IZ) C2) 

where g{., a) : R x A —̂  R is either I-regular or H-regular with A being a compact subset 

of R^ and a is some estimator. The variables Xt and Ut will be assumed to be as in Chapter 

2. Moreover "correct" and "incorrect" functional form should be understood as in Chapter 

2. 

RJSA/LAJRJC:).!: 

Given the measurability of Xt the following conditional moment conditions hold: 

Under correct functional form 

E {(pt — g(xt, Go)) = 0 a.s., for a unique ao G A. (3) 

Under incorrect functional form 

E {(Z/T - A)) F 0 A.G., /OR AZZ A E A . (4 ) 
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For the construction of the test statistics three estimators will be considered: NLS, 

an Instrumental Variables (IV) type of estimator and the Efficient Nonstationary-Nonlinear 

Least Squares (EN-NLS) proposed by Chang, Park and Phillips (2001) (CPP hereafter). 

Define the NLS estimator a as 

a = azgmiiiQn(o), (5) 

a^A 

where Qn{a) = iut — g{xt, o)Y. The Instrumental Variables (IV) estimator with an 

integrable instrument will be employed as well. Define the IV estimator a with instrument 
r . as 

A = <;);((!), (6 ) 

where Qn{a) = Yjt=i ^(^0 (% - 9{^t, o ) f and r(.) is 1-regular. This a special kind of 

IV estimator as the instrument used is the covariate itself The IV estimator is usually em-

ployed in situations where there is endogeneity bias. In such circumstances, the instrument 

is usually different than the regressors. Here we consider the IV estimator for a different 

reason. The choice of the particular instrument makes all the components of the objective 

function of the same order. As we will see later this is particularly beneficial when the true 

model is I-regular. In this instance the use of this particular IV estimator together with an 

integrable weighting in the sample moment of our test statistic makes the test consistent. 

The asymptotic properties of the IV estimator with an I-regular instrument are shown 

in Proposition 2.1 for correct functional form and Proposition 2.2 for incorrect functional 

form. 
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PROPOSITION 2.1: 

Let 

(a) g be of correct functional form, 

(b) g, g, g be l-regular or H-regular on A, 

(c) & = aj7gminoeyi%(o) wzfA r(.) T-regMZa/- fwcA f W r(.)p(.,a), r ( . ) / ( . ) are 7-

RGGZ/ZW. 

(d) Q(a) = i^(l, 0) r(5) (^(s, Oo) — p(g, a))^ c(g > 0 a.g.yor a// a ^ Oo m A. 

(E) R(8)P(A, AO)^(A, > 0 E.G. 

Then as n ^ oo, 

\fn{o, — do) —> 

/ ROO \ ~ L / POO \ 1/2 

R(G)^(S,AOM(A,AO)'(Z5J N R(A)^^(S,OO)^(G,OO)'(ZA)J 1 ^ ( 1 ) . 

REMARK 2.2: 

The convergence rate of the NLS estimator is and n^^'^k{^/n) for I-regular and H-

regular g respectively. The convergence rate of the IV estimator under consideration is 

^1/4 irrespective of g. Clearly this is due to the use of an l-regular instrument. 

PROPOSITION 2.2: 

Let 

(a) g be of incorrect functional form, 

(b) g, g and g be l-regular or H-regular on A, 

(c) a = argminoeA0r(a) r(.) T-rggM/ar j'wcA fAaf r(.)p(. ,a), r ( . ) / ( . ) are 7-

regular. 
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(d) a* Mferzor m A : 

I % R ( S ) ( / ( G ) - ^ ( S , O ) ) ^ D G - J % R ( G ) ( / ( A ) - P ( G , A * ) ) ^ D 5 >OA.&_/BR 

all a ^ a* in A, 

(G) J % O ( / ( 5 , ^O) - ^ (A, O * ) ) , 

( 0 1 % P ( 8 , A ' ) ' D S - J % G ( A , A*) ( / ( G , - ^ ( A , A*)) DG > 0 . 

Then as n ^ oo, 

(a - a*) A 

^ ( S , G ( G , A*) ( / ( G , ^O) - ^ ( G , A*) ) DS X [ 7 i M l ) + 7 2 ^ ( 1 ) ] , 

}I,WG A - n ^ 1 % , ^2 = ( n ^(8, O*)P(5, 

(j) and W{1) are the characteristic function and the Gaussian variable respectively defined 

in Chapter 2. 

1/2 

REMARK 2.3: 

In the previous chapter we have seen that, in some cases the NLS estimator converges to a 

boundary point of A. Under such circumstances standard techniques (e.g. Andrews (1999), 

Phillips and Moon (2003)) cannot provide any limit distribution or convergence rate results. 

This problem is avoided when the IV procedure is employed with I-regular instrument r(.), 

say. If the tails of r(.) converge faster than polynomial rates, then all the terms in the 

objective function, Qn(a), are of the same order and as a result the limit objective function, 
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Q{a) is minimised at a turning point. The "score" is a zero energy function in the limit i.e. 

OO 
/ R(A)^(A, A ' ) ( / ( G ) - A*)) 0 ) 

V —OO 

Z(8 , A*)DSZ,(L, 0 ) 

where z(a, = 0. 

As is mentioned in P&P as long as a^u = E (et+iUt) ^ 0, the covariance asymptotics 

for H-regular transformations are not mixed normal. As result the estimators are inefiicient 

and the usual t- and chi-squared tests do not have standard limits. This problem is avoided 

when EN-NLS procedure is employed instead of NLS. The procedure was developed by 

CPP and is in the spirit of the Fully Modified Least Squares (FM-LS) of Phillips and Hansen 

(1990). The EN-NLS estimator is defined as 

a = aigniinQ+(o) (7) 

where 

t=i 
71 N 

6 - ^ = ^ ^ , 
t=l t=l 

Ut comes from first step NLS estimation and sî t from the regression 

Vt = + ; •••J 

where I is allowed to to increase as n ^ oo at certain rates. For more details see CPP. 
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Moreover for the construction of the test statistic one needs an estimator for cr̂ , the 

variance of the error term Ut in (1). P&P have shown that under correct specification 

Alternatively consider 

<7̂  

where 

(i) = EILi (z/f -

(ii) w{.) is I-regular such that w{.)f{.) is I-regular and w{.)g{., a) is I-regular on A, 

(iii) Wn = EILi 

As shown in Proposition 2.3, can be used for consistent estimation of 

PROPOSITION 2.3: 

Let Assumptions 2.1 and 2.2 hold and g be of correct functional form. 

Then as n ^ oo 

^ A , / . 

The crucial difference between and a"̂  is that under incorrect functional form the former 

may diverge while the latter is bounded in probability. As we are going to see later the 

use of (T̂  instead of may result in better asymptotic power over certain alternatives. A 

bounded estimator will also be used in conduction with EN-NLS. Define 

where /wn- Then we have the following result: 
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PROPOSITION 2.4: 

Let Assumptions 2.1, 2.2 and Assumption 5.1 in CPP hold. Also let g be of correct func-

tional form. 

Then as n ^ oo 

<7^ A 

where 

3.3 Detection of Functional Form Misspecification 

The functional form test we will consider is based on conditional moment conditions which 

are valid under correct functional form (Bierens (1990)). Under the null hypothesis we 

have: 

- P(A;T,A)R(ZT)|JP^] = 0 , 

where a = plim a and r{xt) is a weighing function. A weighting function is employed in 

the Bierens test as well. Bierens (1990) suggests that the use of some weighting function 

may improve power under specific alternatives and in small samples. As we will explain 

later, in our framework the employment of some weighing function is necessary to make 

our test consistent when the true model is I-regular. Under the alternative hypothesis: 

The test is based on the following sample moment expression: 

V „ ^ — ' 4 = 1 
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where % is some normalising sequence. For stationary data Vn = In our framework, 

the normalising sequence Vn depends on the choice of the weighting function and the fitted 

model. In particular when r is I-regular. When both r and g are H-regular 

Vn = with kr the asymptotic order of r . When r is I-regular it will be chosen 

in a way such that f{.)r{.) and g{.)r(.) are I-regular irrespective of / and g. As we are 

going to see later, the use of an I-regular weighting function may improve the asymptotic 

power of the test in some cases. 

Five results are provided in this section. In terms of presentation the first three con-

sider the case where an integrable weighting function is used in the sample moment of the 

test, while the last two involve a homogeneous weighting functions. Moreover we will as-

sume that the estimator converges to some pseudo-true value under the alternative. When 

IV is used, this is established by Proposition 2.2. When NLS is the relevant procedure, 

sufficient conditions for convergence to some pseudo-true value are given in the previous 

chapter. We assume that the parameter space is compact and convergence to some pseudo-

true value will be taken for granted here. In the previous chapter we mentioned that when 

the fitted model is linear in parameter, the compactness assumption can be dropped. When 

the parameter space in not bounded and there is FFM, the estimator may not converge to a 

pseudo-true value. It turns out that most of the results provided below do not differ when 

the estimator is unbounded in probability. Whenever they do differ, it will be pointed out. 

Before we present the first result we introduce the following assumption: 
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ASSUMPTION 3.1: 

For g and r I-regular or H-regular define 

Bn = Yl^=i ^)9'{xi, a) and its inverse when it exists. 

Then for some normalising matrices vin, V2n, Vsn, 

A > 0, 

A g > 0. 

The test statistic when (2) is the fitted model is: 

[ I % I (Z/T - A) - C^) 
C M . 

E I L I A) - R(:RT) 

where a is some least squares estimator, is some variance estimator (e.g. a^), (% 

will be set equal to B"̂  or Bn and Cn is a correction term used to induce standard limit 

distribution. c„ will be set equal to zero unless otherwise specified. Moreover when r(.) 

is I-regular we will need the following regularity condition (RC) that ensures that the test 

diverges under the alternative. 

RC: 

(/(a, a*)) r(5)dg ^ 0. 



3.3 Detection of Functional Form Misspecification 79 

If RC does not hold, our statistic will be negligible in probability up to some order, rather 

than bounded up to some order. Clearly the choice of the weighting function r(.) is im-

portant. For inctance consider the following weihting function r{x) = exp[—(x)^] that 

resembles the Gaussian density. This function is centred around zero and threrefore em-

phasizes differences between / and g at the origin. Bierens (1990) develops a modified 

version of the conditional moment test we consider in order to ensure that the test is con-

sistent -in the stationary framework- when conditions like RC fail to hold (see also de Jong 

(1996) for an extension of Bierens test to weakly dependent data). This kind of develop-

ment will not be attempted here. 

We proceed to our first result. First we consider the case where the fitted model is 

I-regular. The asymptotic properties of the test are given in Proposition 3.1; 

PROPOSITIONS.!: 

Let 

(a) rj{.), g{., a) and g{., a) be I-regular with a e Ac R^, 

(b) a = argminagyi Qn,(o), = Bn, 

(c) Assumption 3.1 holds, 

Then under the null hypothesis, 

Under the alternative hypothesis provided that RC holds, 
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The statistic diverges with rate v}!"^ when the true model is I-regular. When the true 

model is H-regular the statistic diverges as long as the true model defines a transformation 

of asymptotic order, kf{^/n), smaller than For kf{^/n) ^ CMnj is bounded in 

probability and for kf{^/n) greater than converges to zero. 

In contrast to the stationary case, the estimator may exhibit divergent behaviour 

under incorrect functional form. Whenever diverges fast enough (i.e. at rate greater 

than the statistic converges to zero. The order of the test consistency may be quite 

small for a range of alternatives. For instance if the / is H-regular with kf{y/n) ~ n^, 

6 G (0,1/2) the order of consistency is smaller that that is attained for I-regular f . As 

we have seen earlier the test is inconsistent, when b = 1/4. 

REMARKS.1: 

Clearly the choice of the weighting function can improve the power of the test against 

specific alternatives. In our case an integrable weighting function is necessary for the test 

to be consistent. If a weighting is not included, the statistic would be bounded in probability 

under the alternative. To see this consider the following sample moment mentioned above 

without any weighting: 

\/n 

Under Ho this statistic has a Gaussian limit distribution. Under Hi the statistic is bounded 

in probability; 

1 
\/n ETh HL' « -̂ 7% 
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for / and g I-regular. The use of an integrable weighting function reduces the normalisation 

rate required, for the sample moment to converge to a standard distribution, under the null, 

from ^/n to -^n, and effectively induces a divergence rate of order ^ under the alternative 

hypothesis. 

Now we will consider the case when the fitted model is H-regular and the weighting 

function I-regular Under the alternative hypothesis, we distinguish two cases for H-regular 

f . First we consider the case the true and fitted models are of different asymptotic orders. 

Secondly we consider the case the fitted model is correctly specified up to some smaller 

order component q{xt, a*). The asymptotic properties of the test are given in Proposition 

12: 

PROPOSITION 3.2: 

Let 

(a) g, g and g be H-regular on A C R^, r I-regular such that rgg' is I-regular, 

(b) 6 = argminae^ Qn(G), = B; , 

(c) Assumption 3.1 holds, 

Then under the null hypothesis, 

C M , ^ 

Under the alternative hypothesis provided that RC holds, 

C M „ = | ] ' f " ' - } 
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We notice that the test is two sided for H-regular g as well. This occurs when diverges. 

The order of consistency varies for different alternatives. For instance if the / is H-regular 

with a*)} (A:/ ^ or a*)),(A;/ f A:g(a*)) Ti'', 6 E 

(0,1/2) the order of consistency is smaller that and larger than otherwise. 

REMARK 3.2: 

The use of an integrable weighting function together with IV enables us to use the covari-

ance asymptotics of P&P for integrable transformations. So although the fitted model is 

H-regular, the limit distribution is mixed normal, and the use of a more involved procedure 

like EN-NLS is avoided. 

We have seen that the variance estimator may diverge under incorrect specifi-

cation. As result higher consistency rates are attained for models of higher order. This 

however comes at the cost of poorer rates for alternatives of lower order and in particular 

for alternatives of order b G (0,1/2). For these particular alternatives better perfor-

mance could be expected if the estimator is employed instead. Actually if (T̂  were 

employed, then under incorrect functional form the test is of order for all alternatives 

under consideration. 

Now we will consider the same scenario as in of Proposition 3.2. with a bounded 

estimator for a^. The following result holds; 
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PROPOSITION 3.3: 

Let 

(a) g, g and g be either I-regular or H-regular on A C R^, r I-regular such that rgg' 

is I-regular, 

(b) o - argmin^eA f = B; , 

(c) Assumption 3.1 holds, 

Then under the null hypothesis, 

C M , 

Under the alternative hypothesis provided that RC holds, 

CMn = Op{\/n). 

We will now consider the case where the weighting function used is H-regular when 

the fitted model is H-regular as well. Two versions of the test will be examined. The 

first involves an unbounded (under the alternative) variance estimator and the second a 

bounded variance estimator. In both cases the limit distribution under the null is not mixed 

normal. To resolve this problem two actions are taken. First the fitted model is estimated 

by EN-NLS . Secondly the sample moment of the test is corrected by the term 

for the second version of the test). These modifications induce chi-squared 

limit distribution under the null. 

PROPOSITION 3.4: 

Let 

(a) g, g and g be H-regular on AdW and rj H-regular, 
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(b) & = argminaeA W , (% = ^Ez,t+i, 

(c) Assumption 3.1 holds, 

Then under the null hypothesis, 

C M N —> 

Under the alternative hypothesis, 

CM. = ^ O j n f l / coT ^ 
OP(N),YB/' / 

First we notice that the use of an H-regular weighting in the construction of the variance 

estimator makes the test one sided. Under the alternative, the divergence rate is smaller than 

n, when the true model is I-regular and the asymptotic order the fitted model is vanishing. 

In any other case the divergence rate of the test equals n which is the rate attained under 

stationarity. 

REMARK 3.3: 

In Proposition 3.4. we assume that hg{xt, a*) is bounded away from zero, when the true 

model is I-regular. When this does not hold and a* is on the boundary of A, then the power 

rate cannot be obtained as we do not have any result for the convergence rate of the estima-

tor. When the fitted model is linear in parameter and there is no compactness restriction on 

the parameter space (or at least the estimator is required to be bounded away from zero), 

then hg(xt, a*) = 0 and the test is inconsistent. This holds for the statistic considered in 

Proposition 3.5 below as well. This inconsistency problem however is avoided, when the 

weighting function r(.) is chosen to be I-regular. 
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The explosive behaviour of the variance estimator, when the models are H-regular, prevents 

any realisation of faster rates than those attained under stationarity. It turns out that faster 

rates can be attained when the bounded variance estimator is used instead. This is 

shown in Proposition 3.5. 

PROPOSITION 3.5: 

Let 

(a) g, g and g be H-regular on Ac. W and Vj H-regular, 

(b) & = argminaeA Qn (̂ z), 

(c) Assumption 3.1 holds, 

Then under the null hypothesis, 

C M , ^ %I. 

Under the alternative hypothesis, 

/ T-RGGW/W A*) ^ 0, 

From Proposition 3.5 we see that when a bounded estimator is employed, the divergence 

rate improves, as long as kg{a*) and kq{a*) increase as n —> oo. 

3.4 Conclusion 

A conditional moment test for functional form was considered in regressions with a unit 

root covariate. We have shown that under nonstationarity, the power properties of the test 

are quite different from those under stationarity. In contrast to the stationary case, under 
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nonstationarity there is no single divergence rate under the alternative. The divergence 

rate depends on the true model, the fitted model and the nature of any weighting functions 

employed. The use of an I-regular weighting in the sample moment of the statistic results 

in a consistent test. Nonetheless an I-regular weighting may result in a two-sided test. 

When the test is two sided, the statistic has good asymptotic power against higher order 

alternatives, but performs poorly against lower order alternatives. If a bounded variance 

estimator is employed together with an I-regular weighting the test becomes one-sided 

and attains a single divergence rate ( \ /n) under misspecification. The benefit from using 

a bounded variance estimator is more apparent when, both the true and fitted models are 

H-regular. The use of bounded estimator in this case may result in higher divergence rates 

than the one attained under stationarity (n). 

The bounded variance estimator was constructed in a very simple way. We weight 

the squares of the regression residuals u{xtY say, by an integrable function, w{xt), of 

the regression covariate. The term u{xt)^w(xt) is I-regular even if u{xtY contains H-

regular components. As result the variance estimator ^^^{u{xtYw{xt)) / is 

bounded under FFM. This approach will not work in multiple regression models. Sup-

pose for instance that our model involves H-regular functions of two unit root covariates 

zit and say. Then under FFM, (^(371*) + ^ 4-

^ ^ ^ where 

the last step is due to Lemma 2 of Hu and Phillips (2002). Whether a bounded variance 

estimator can be obtained in a multi-factor setting remains an open question. 
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The purpose of this chapter was to examine to what extent functional form testing 

is different under nonstationarity and to propose an effective testing procedure. For this 

reason our theoretical framework was kept simple. We have assumed that the regression 

model involves a single exogenous covariate. Although single factor models are used in 

financial theory e.g. Park's (2002) nonlinear nonstationary stochastic volatility models, 

most econometric applications, such as cointegration analysis, would require multi-factor 

endogenous models. An extension of the current framework in this direction is attempted 

in Chapter 4. 
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3.5 Appendix to Chapter 3 

We introduce some notation 

AXY(A))AG(Y(S) ,O*) (FG 

P R O O F O F P R O P O S I T I O N 2.1: We first show that a a^. From Theorem 3.1(i) in 

P&P we have n~^/^Q„(a) Q{a) uniformly in a, where 

/
OO 

r(s) (^(5, Go) -^(g ,a) )^( f3 
00 

Now Q(.) is continuous (Lemma 8(b) of P&P) a.s. and in view of condition (d) is uniquely 

minimised at tto- Hence 6 Now we show the limit distribution result. Following the 

same arguments as in P&P, from the first order condition and Mean Value Theorem (MVT) 

we have 
Qni^) ~ 

^ ( & - a o ) = ^ Q » W ) + Op(l) (where | | & - a | | < | | 6 - O o | | ) 

Now in view of Theorem 3.1 in P&P is straightforward to show that 

|- 11 /2 
Z , ( L , 0 ) J % R ^ ( S ) P ( S , A O ) ^ ( S , A O ) ( F S W ( L ) 

^ ^ ( 1 , 0 ) 1 % R(8)P(A, AO)P'(S, 

which establishes the result. 0 
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PROOF OF PROPOSITION 2.2: 

We first show that a ^ a*. The same arguments as those in the proof above give 

n A Q{a) uniformly in a, where 

Q(o) = i : ( l ,0) / 

Q{.) is continuous (Lemma 8(b) of P&P) a.s. and in view of condition (d) is uniquely 

minimised at a* Hence a ^ a*. From first order condition and Mean Value Theorem 

(MVT) we have 

% ( 6 ) = OXL) 

^ (A — A*) = ; ^ % ( A ) - ^ % ( A * ) + OP(L) 

(where ||a — a|| < ||a — a*\\) 

Using Theorem 3.1 in P&P the term 

W Z,(L, 0 ) R(A)P(8, 

Now the term 

^ E L I O*) (/(A;*) - ^(A;*, A * ) ) + ^ E I L I O*)?4 

Write the first term in the expression above 

E I L I R(3;F)P(A;T, A*) (/(A:*) - A*)) = Z(A;(, A*) 

1/2 
j _ roo 
2% J —OO 

^ ± ^ 1 ^ 5 ^ ( 1 , 0 ) ) ^ ( 1 ) 

(from Theorem 3.2 in Chapter 2) 

The second term 

and the result fol lows.• 

1/2 
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PROOF OF PROPOSITION 2.3: 

= n ^ (Z/T - 6 ) ) ' 

t=i 

n -1/2 ^ , GO) - 6 ) ) ^ 

t=i 

_j_2 ^ GO) - 6 ) ) 

n 

t=i 

-1/2 

/ WN + E - ( 
t=i 

t=l 
/"^n 4" ^piX) 

(from Lemma 7(a) and Theorem 3.2 in P&P, given the consistency of a) 

= 

n - 1 / 2 

E ' " ( - t}" 
<=1 

71 

£=1 

/Wn + M ^ W ( A ; F ) - (7^ 

T=I 

(Lemma 7(a) in P&P) 

<J^L{1,0) fg w{s)ds 
L{1,0) fg w(s)ds 

+ Op(l) = CT̂  as required.I 

PROOF OF PROPOSITION 2.4: 

^ ^ (7̂  - (o-ue)̂  OT̂ + Op(l) 

(from the previous result). 

Now a us = n 

= 

^IU(A;F) '&FE(,(+I /IU„ 

n -1/2 

Y I , DO) - ^/(A;T, 6 ) ) W(A;T)6F,F+I + ^ W(A;T)?/T6Z,F+I 
t=l t=l 

?L 7% 

y i (^(A;F, OO) - P(A;T, 6 ) ) W(A;T)6F+I + ^ 

t=l t=l 
(CPP proof of Theorem 5.2) 

n -1/2 Y^W(A;F)ITT6F+I 

t=l 

/ (1) 

(due to Theorem 3.2 in P&P, given the consistency of a) 
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n -1/2 - (7^^) 

t = l t = l 

n - 1 / 2 

(Lemma 7(a) in P&P) 

<7^.2(1,0) 

Hence 

a \ a \ as required.! 

t=i 

PROOF OF PROPOSITION 3.1: 

A. We first show the result under the null hypothesis: 

From MVT with a being an intermediate point we have 

C M , , 

- 1 / 2 {a—ao)' ^ ^^g{xt,a)r{xt)-'^y^j{xt)ut 

,-1/2 ^ j I ^ ^^g{xt,a)g{xt,a)' ] ^ ]g(zt,ao)uf-^^r(zf)ut 

(T̂N 1/2 23^1 [A'^Br, '^g{xt,a)-rj{xt)Y 

"^/^ ^ ](y4'''jB ^g{xt,ao)-r(xt)^ut +Op(l) 

( 7 2 1 , ( 1 , 0 ) B O ^A(A,AO)-R(A)) DA ^9(S,AO)-R(S)) DS+OP(L) 

(due to Theorem 2.2(i) and Corollary 5.4 in P&P) 

A = (W,(1)/,)^ (M/(l) ^ Ar(0. a ' ) ) 
@(A,AO)-R(A)) DA 

and the last result due to Theorem 2.2(ii) in P&P. 

B. Now we show the result under the alternative hypothesis: 

1-1/2 

C M . 

f{xt)-g(xt,a)+ y j{xt)ut -1/2 ^ ^ f{^t)-g{xt,a)+^ \{xt)ut 
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LL/2 1 ^ ^^(f{xt)-g(xt,a))r{xt)+n ^ \j(xt)ut 

^^^(1,0) FFL (^:'^7^A(A,A'')-R(3)) J3+OP(L) 

_ N^/^[Z,(L,0) /^(/(S)-FF(S,A*))R(S)DS+OP(L)+OP(N-L/^)]" 

in view of RC this gives 

NL/^[Z,(L,0)/F%^(/(3)-G(S,A'))R;(A)CK+OP(L)+OP(N-^/^)]^ 

0-2^(1,0)/^(A;BR^S(S,A*)-RJ(S))^DS 

for / I-regular or H-regular with kf{X) 0 

+ Op(l) 

and 

nl/^[j.(l,0) J^^(f{s)-g{s,a*))rj{s)ds+Op(n 
KF /Î (A)Z,(L,A)DA ^G(A,O*)-RJ(A)) JA+OP(KY(TIL/2)) 

A—*oo 
for / H-regular with k f ( X ) oo 

PROOF OF PROPOSITION 3.2: 

A. Under the null hypothesis: 

- 1 / 2 (a-aoY gixt,a)r{xt)-'^^r{xt)i 

(MVT) 

'^^{A'„Bn^g(xt,ao)rj{xt)-rj{xt))ut 

(722(1 ,0)^e(a ,ao)r(a) -r(a) ) ja+Op(l) 

n 1/2 ^g{xt,ao)r{xt)-r(xt)^ut + Op(l) 

^9(A,OO)R(A)-R(A)) JA 

Hence C M . i = (W(l)/af . 
s(a,Oo)r(a)-r(a)) da 

B. Under the alternative hypothesis: Similar arguments with ones of Proof 3.1 lead 

to 

"• a^L{l,0) J^^(^AiBl~^g{s,a*)r{s)-r(s)Yds+Op{l) 

hence the behaviour of the statistic is determined by the term 



3.5 Appendix to Chapter 3 93 

We consider the following cases for 

t=l f=l f=l 

(i) / I-regular with kg{y/n, a*) 0 : 

<7̂  = (7^ + OP(L) + OP(A;G(I/M, O*)^) + OP(A;G(\/M, O*)) = + OP(L) 

(ii) / I-regular with A;g(Y^, <%*) ex: : 

+ OP(L) + OP(A;G(Y^, 0*)^) + OP(/UG(I/M, O*)) = OP(A:G(\/M, O*)^) 

(iii) / H-regular with kf ^ kg{a*) : 

6-̂  = Op(A:y(yM)^) + o*)^) + Op(A;/(\/M)A;g(Y^, a*)) + .. 

= O P ( M A X { A ; / ( \ / ^ ^ ) , O P ( A ; G ( I / M , 

where the results above are due to Proposition 4.10 of Chapter 2 and Lemma 7 of P&P. 

(iv) / H-regular with kf = kg{a*), f - g{a*) = q{a*) : 

Now from an application of mean value theorem on {f{xt) — g{xt, a))^ around a* we have 

= cr^ + Op(l) + ^ G*) + (a — a*)'g{xt, a ) )^ + ^ ( ( a — a*)'g{xt^ tt)ut) 

t=l t=l 

= (^9((^*)) + OP (^9((' '*)) 

= Op (^kg{a*)) 

where the second equality above is due to Proposition 4.13 of Chapter 2 and Lemma 7 of 

P&P and this completes the proof • 

P R O O F O F P R O P O S I T I O N 3 . 3 : 

A. Under the null hypothesis similar arguments with the ones of Proposition 3.2 

together with Proposition 2.3 give the result. 

B. Under the alternative hypothesis along the same lines of Proposition 3.2 we have: 
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" a'^L{lfi) g{s,a*)r{s)-r{s)Y ds+Op{l) 

Now from Proposition 2.2 and using the same arguments as those in the proof of 2.3 we 

have 

a 2 _ 

^(1,0) !^oa{}{^)-9{s,a*)) w{s)ds+L{lfi)a'^ m(a)tis+Op(l) 
YF%O «;(A)(K+OP(L) 

VV u/̂ ayurO 2 , 
+ ( 7 + O P W 

which completes the proof. I 

PROOF OF PROPOSITION 3.4: 

A. Under the null hypothesis 

C M , 

{yt-g{xt,a)-Cn)r{xt) ^ {a-ao)' y ^g(xt,a)r{xt)-y r(z«) 

(MVT) 

<5-+ ^g{xt,a)+r(xt)]'^ 0^+;;^ ^g{xt,a)+r{xt)f 
t=i t=i 

n \ / ^ \ ^ 

''^^r{xt)g{xt,aykg~'^ | | ^'^^kg^g(xt,d)g{xt,dykg~^ J •^'^^kg^g{xt,ao)u+'^^k~^r{xt)i 

t=l 

n -1 2 

+ OP(L) 

t=l 

0-+ !o {A'oBo^hg{V{r),ao)-hr{V{r))Ydr 

Hence CAL ^ 

+ Op(l) 

where (& W ^ ) is a Brownian motion independent of y . 

B. Under the alternative hypothesis: 
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First we will determine the behaviour of a + (T — The behaviour of a is 

already given in the proof of 3.2. Now under misspecification cr~^ is not affected so we 

will concentrate on Gue- The arguments below show that ^ cr^. 

(i) / is I-regular; 
n, 

^ue = \ 
t=l 

N N N 

t=l t=l t=l 
?I ?I N 

~ i + n a ) e t + i + ^ + Op( l ) 

t=i T=I 

(CPP, proof of Theorem 5.2) 

= Op{n ^/^) + Op{kg{a*)) + 

t=i 

(Til 

(from P&P Lemma 7(c) and Proposition 4.10 of Chapter 2). 

R ^2 _ ^2 ^ - 2 
In view of the results in proof of 3.2(i) a \ O" - O-LO-E , FOR 4 (A* 

OP(A;^(A*)), FBRA;G(O* 

0 
OO 

Now the statistic 
lb — IL 10 IV 

'^^(y-g{xt,a)-Cn)r(xt) ^ y^Jf(xt)-g(xt,a))r(xt)+y~^^ r(xt)ut+a-us^^^ r(xt)ii,t+i 

t=l t^l 

y^(/(ZT)-A(IT,A))R(ZT)+;^ yir(A:F)ET+I 

(^^B-1 AG(Y(R),A')-KXY(R))) 
+ OP(L) 

For kg(a* 0, 

_[V"':@JO''S(^W''^'')'^R(Y(R))JR+OP(\/ETG)+J;^/:R(Y(R))D[/+(R)]^ L2\ 

For kg (a* CX3, 

C M ^ = 

_ [\/"*:GGRA+OP(\/NA:')+J|^ /:R(Y(R))II(/+(R)+OP(T;)<7R^ /:R(Y(R))D(^-L(L)Y(R))]° 

" AGGGG J;^(A:B:RLKG(Y(R),A.)-/,R(YW))^JR+OP(K2) 

4-Op(l) 
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[V^Grg+OpiV^)] _ ^ / \ 

(ii) / is H-regular with kf ^ kg{a*) : 

t=l 

— n + n '^9{^t,a)st+l + ^ ^Y^UtSt+l + Op(l) 

t=l t=l 
^ + OP(A;G(A*)) + 

Hence ^ Op(max {A;g(o*), A:y}). 

Now the statistic 

C A L = 
EV V A V > 

{y-g{xta)-Cn)r{xt) ^ / Jf(xt)-g(xt,d))r(xt)+/ ^r{xt)ut+»ueK^ / 

t=l t=l 

^-\/nkfGrf~\/^^gGrg~\~Op{^/^(^kj^-\-k*^ 
{(T;''GGG) + (K2G/Y)} Y;^(YL^G-IKA(Y(R),»')-/IR(Y(R))) DR+Op(T22+K2) 

= Op{n) 

where 

^ + OP(A;G(A*))} X L ) ^ W ) 

(iii) / is H-regular with kf = kg{a*) and / — g{a*) = q{a*) : 

0",, 

t=i 

^ + ^{a — a*y '^^g{x t , a )e t+ i + ^ '"^^UtSt+i + Op(l) 
t=i 

(from the mean value Theorem) 

= OP(M"^/^/U,(O*)) + OP(A;G(G*)) + (7UG 

(from P&P Lemma 7(c) and Proposition 4.13 of Chapter 2). 

Hence in view of proof 3.2(iv) we have ~ Op{kq{a*)). 

Now the test statistic 
V A 
/ ^{y-g{xt,a)-Cn)r{xt) 

C M ^ = 

^^[A^B„G(XT,A)+R(XT)]' 
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1 

OP(L) ( M V T ) 
t = l 

[•y/nfc* (Org—GrgĜ /Ggg)+-Rri.] 
(G„-2G;,GG;,^G,G+[G;,G;^GMI )+OP(T;2)+OP(^-IT;2) J J;^(AIB7"AG(Y,A')-/:R(N) 

OP(M) 

where 

&. = /„' iG',^Gr,%(V, a-) + h,{V, a')) dU(r)+ 

+ { 0 , ( n - " \ ) + <T-= [/„' (G',^Gr^h,(V(r),a-) - ft.(V(r))) <i (^ - ' ( l ) l / ( r ) ) ' 

PROOF OF PROPOSITION 3.5: 

A. For the null the result follows from Proposition 2.4 using the same arguments as 

in Proposition 3.4. 

B. First we will consider the behaviour of aue, <%+ under misspecification. 

n - 1 / 2 

t=l 

n -1/2 

n - 1 / 2 

Y I (/(A;T) - 6 ) ) W(2;T)GF+I + ^ 

i=l 
N 

t=l 

/Wn + Op(l) 

t=i 
/WN + OP(L) 

(P&P Lemma 7(a)) 

= CUE + OP(L) 

Hence given the proof of Proposition 3.3 we have 

Now the statistic 
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y yyt-g{xt,a)-Cn)r{xt) 

0-+ 'y^\A'^Bng{xt,a)-r{xt)f 
t=l 

YIR(ZT)E«+L 

(i) for H-regular / with kf ^ kg{a*) : 

Using similar arguments as those in the proof of 3.4(ii) we have 

+ Op(l) 

C A L = 

OP(MA;Y) + OP(MA;*^) 

where 

^ = J O ^ / ^ R M R ) ) D [ / + ( R ) + { O P ( M + OP(A;G(O*))}(TG^ 

(ii) for H-regular / with kf — kg{a*) and / — g{a*) = q{a*) : 

Using similar arguments as those in the proof of 3.4(iii) we have 

/-iT\/r _ [VNFC* (^Grq-G'^G^yGrg)+Op{Vnk*)+Rn\ 

" ~ ' !-ooU{s)-9(s,o.*))'^n,(s)d^ ^ _2 \ „ _ 1 

= OP(7IA:*^) 

+0'+j ^ h g { V { r ) , a * ) - h r ( V { r ) ) Y d r + O p { l ) 

where 

A . = f a (G',,G-/h,(V(r),a-) + h,(V(r), a')) dU(r)+ 

+ {Op(n- ' ^ 'k , ) + Op(k,)} a - ' /„' (G '^ f i~^hg(V{r ) , a ' ) + ft,.(l'(r))) d (i/'"'(l)V{r)) 



Chapter 4 
Detection of Functional Form Misspecification 

in Cointegrating Relationships 

4.1 Introduction 

In this chapter the conditional moment test for functional form is extended to cointegrating 

relationships. The only work that is close to ours, that we are aware of, is a paper by Hong 

and Phillips (2004). Hong and Phillips (2004) adapt the RESET test to cointgrating rela-

tionships. Their framework allows for fitted models that are linear with scalar covariates. 

Our framework includes multiple regression models nonlinear in variables. The theoretical 

framework of this chapter is confined to the H-regular family of transformations. The exo-

geneity assumption about the regressors is dropped. Moreover we introduce dependence in 

the error of the model. We assume that the error of the model and the errors that drive the 

unit root processes are a vector linear process. To induce a standard limit distribution un-

der the null, a semiparametric approach is followed similar to the one of Xiao and Phillips 

(2002). The fitted model is estimated by a Fully Modified-Least Squares (FM-LS) type of 

estimator and the sample moment of the test is corrected for endogeneity. We show that 

under the null hypothesis of correct functional form the test has a chi-squared distribution. 

Moreover, we examine the properties of the test under two kinds of misspecification. First 

we consider the case where cointegration exists (possible nonlinear) but the fitted model 

is of incorrect functional form. Secondly we examine the case where the dependent vari-

99 
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able of our fitted model does not cointegrate with independent variables of our model, i.e. 

when there is no cointegration at all (neither linear nor nonlinear). We show that the test 

is consistent under both functional form misspecification and no cointegration. The same 

divergence rate is attained under both kinds of misspecification and it depends on the band-

width term used in the estimation of long-run covariance matrices. 

The divergence rate of our statistic under misspecification is the same as the one 

attained by the CUSUM, the KPSS tests (see Xiao and Phillips (2002)) and the modified 

RESET test of Hong and Phillips (2004). As mentioned in Chapter 3 the statistic for the 

testing problem under consideration is of the form: 

C M 

where 5'M„ is some sample moment and VNn is a variance normalisation term. Under 

FFM or no cointegration the residuals of the fitted model will be dominated by some H-

regular term. Denote by k the asymptotic order of that term. Then our statistic under 

misspecification: 

provided the bandwidth parameter M is such that n/M oo as n —> oo. If M is set 

equal to a constant, the divergence rate of our test is the same (n) with that attained under 

stationarity (see also Proposition 3.4 of Chapter 3). The variance normalisation term we 

are using in the particular test statistic is unbounded, under misspecification, and therefore 

the divergence rate of our statistic cannot be better than that achieved under stationarity. 

The test we propose is a Bierens (1990) type of test for functional form. Other tests 

for functional form developed for stationary data. White's (1981) Hauseman-type test, for 
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example, could also be extended to our framework. Xiao and Phillips (2002) point out that 

the CUSUM test for structural change can be used as an alternative way of testing for coin-

tegration. It turns out that testing procedures originally developed for testing for functional 

form can be used as tests for cointegration as well. Traditional residual-based tests for coin-

tegration examine whether the regression residuals contain a unit root. Our procedure can 

detect absence of cointegration in a different way. Under correct specification, the sum of 

regression residuals order of magnitude is ^Jn. Under the alternative (no cointegration or 

incorrect functional form), the sum of residuals will be of higher order than ^/n hence the 

test statistic will diverge. As Xiao and Phillips suggest, this is also the rational behind the 

CUSUM test. In view of this it will not be surprising if the CUSUM test can be used as a 

test for functional form as well. 

The rest of this chapter is organised as follows. In Section 2 our theoretical frame-

work is specified and some preliminary results are provided. In Section 3 our testing pro-

cedure is presented and its properties are developed. Section 4 concludes. As usual for a 

function / : R ^ R, / will denote its first derivative with respect to its argument Finally 

for a vector or a matrix A say. A' will denote its transpose. 

4.2 Theoretical Framework and Preliminary Results 

We assume that the series {yt}t=i is generated by 

Ut = + T Ut (1) 
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or by 

3K == (2 ) 

where / ( . ) and s(.) belong to the //-regular family, the xn ' s and zt are unit root processes, 

and ut is an error term that will be specified in detail later. Our purpose is to examine the 

case of Functional Form Misspecification (FFM) and the case of no cointegration. For this 

purpose we will consider two possible data generating mechanisms for our dependent vari-

able. The model in (1) will be the true specification when there is cointegration (possibly 

nonlinear) between yt and the variables of interest xa. The specification (2) will be the data 

generating mechanism when there is no cointegrating relationship between yt and the vari-

ables of interest. When the latter is the case, it is usually assumed in the literature (e.g. 

Xiao and Phillips (2002)) that yt is a unit root process, Zt say, that is unrelated to the re-

gressors {xits). Here we will assume that yt is a possibly a nonlinear function of such a 

process. In this way we allow % to be of different order of magnitude than the Zt. Clearly 

when s(.) is linear, % is a unit root process. The fitted model will be given by 

Vt = •••,+^pgp{xpt) + ut (3) 

= Y ( Z J O + 

For notational brevity, the vectors f{xt) and g{xt) in (1) and (3) may be written as ft and 

gt respectively. 

DEFINITION 2.1: 

(i) We -will say that the fitted model (3) is of correct functional form, when gi{.) = /«(.) for 

alii = {1, .. ,p} and (1) holds. 



4.2 Theoretical Framework and Preliminary Results 103 

(ii) We will say that the fitted model (3) is of incorrect fiinctional form, when the true model 

GFVGM (%) A W ^ I ( . ) ^ 2 = {1 , . . , P } . 

(ii) We will say that there is no cointegration, when the fitted model is given by (3) and the 

true model by (2). 

Moreover when some component Qi of our fitted model is of incorrect functional form, we 

will assume that one of the following holds: 

(i) / i , 

(ii) ^ or 

(iii) with = % and X pi, / i . 

(The notation: >-, -<: and % and is defined in Chapter 2) 

We will rule out the possibility of having a second cointegrating raltionship between gi {xu),. 

Qpixpt). It is obvious from Definition 2.1 that our framework does not allow for omitted 

or redundant variables. An extension of our results in that direction is possible but will not 

be attempted here, as it would result in more complexity in our presentation. 

Next we will specify in detail the variables and the functions that appear in (1), (2) 

and (3). The variables = (x^, . . . , Xpt) and Zt are a unit root processes given by: 

ZT = A;*-! + A W + WF 

We will assume that e[ = (ut, v[,Wt) are linear processes given by: 

OO 

Ut — ^ ~ 
J = L 

OO 

i = i 
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and 

OO 

Wt = '^ TjCUt-j = r(Z,)wt, 
i = i 

with 0(1), ^(l),r(l) f < oowitha > 

1. Moreover Vt, Ut and Wt satisfy the following assumption: 

ASSUMPTION 2.1: 

(i) = (^f, ^t+i, ^ (C, —OO < s < t )} zf a oW grgo(^fc yworfm-

gale difference sequence with E | Tt-i] = S. 

(ii) The sequence is i.i.d. with E < oo for some r > 4 and its distribution is 

absolutely continuous with respect to Lebesgue measure and has characteristic function 

Y;(A) = odlAII""^) af A —̂  oo. 

For the purpose of our analysis we will need to comformably partition the covariance matrix 

E as follows: 

(^EE ^£77 ^eu! 

^Tje '^rjut 

0̂177 ^ujui 
For Vt, Ut and Wt define the usual partial sum processes 

[nr] 

Un{r) = 

[nr] 

V.(r) = 

and 

^ |nr| 

" T = L 
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with 0 < r < 1. Under assumption 2.1 it follows from a multivariate extension of the 

results of Phillips and Solo (1992) that 

( % M . K I M . W„(r)) A (U(r), V'(r), W{r)) 

with {U(r), V'{r), W{r)) being an {p + 2)-dimensional Brownian motion with covariance 

matrix f l conformably partitioned as 

( ^uu ^uv ^uw 
^vu ^vv ^vw 
^wu ^wv ^ww 

Under our assumptions, strong approximations hold for the vector {Un{r), V^(r), Wn{r)) 

that allow the use of embedding arguments. Such embedding arguments are extensively 

utilised by P&P and will be used here as well. So when we use convergence in probability 

arguments those should be interpreted as convergence in distribution unless the limit is 

nonstochastic. Moreover for our purposes we need to introduce the usual one-sided long-

run covariance matrices. Note that Q can be expressed as: 

n = E {e,e;+J 
k = — w 

and the one sided long-run covariance matrix, say A is: 

^UU ^uv P^UW 
^vu ^vv ^vw 
^wu ^wv •^ww k=0 

Next we specify the functions that appear in (1), (2) and (3). As mentioned earlier we will 

work within the iZ-regular family but due to the introduction of weak dependence in the 

error structure of the model, we will need to impose some smoothness on the first deriva-

tives of our functions. We will call our functions -regular with -regularity defined as 

follows: 
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DEFINITION 2.2: 

The transformation / : ^ R^, such that f'{x) = {fi{xi), ..,fp{xp)) will be called 

Hi-regular if: 

(i) /(Aa;) = A;/(A)Ay(a;) + A) wzfA 

(a) A)| < af{X)Pf{x), with l imsup;^^^ ||a/(A)A;J^(A)|| = 0 and Pf{.) lo-

cally integrable, or 

(b) |A/(3;,A)| < 6/(A)Q/(A2;), WAlim8up;^_^||6/(A)A;yX/\)|| < o o a w / 0 ; ( . ) 

locally integrable and vanishing at infinity. 

(ii) Xf(Xx) = kf{X)hf{x) + Rf{x, A) with hf{.) regular and 

(a) Rf{x,X) < df(X)Pf{x), with \\Xaf{X)kJ^{X)\\ = 0 and Pf{.) 

locally integrable, or 

(b) A) <6y(A)Qy(Aa;), A6y(A)A;yXA) < o o a W Q ; ( . ) 

locally integrable and vanishing at infinity. 

(iii) For any constant K and two sequences s„ and rUn such that s„ j 0 and rrin —> oo, as 

M ^ OO, 

lim sup ||m„v^A:/(A/ri) Ml sup sup f { V n x i ) — f{y/nx2) 
l|zi||<K ||ri—I2||<ST, 

As usual hf and kf will be called the limit homogenous functions and asymptotic order 

of / respectively. Moreover note that when / is a p-dimensional vector, kf and / will be 

{p X p) diagonal metrices. Condition (iii) in the definition above is the same smoothness 

condition employed by de Jong (2002b) 
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For linear models it is well known (e.g. Phillips (1986, 1988)) that when the errors 

of the model are weakly dependent, the covariance asymptotics involve extra terms. In 

the limit, apart from the stochastic integral, a long-run covariance matrix appears. For 

nonlinear models the long-run covariance matrix is weighted by functional of Brownian 

motion. This result was originally shown by de Jong (2002b), when the errors satisfy 

mixing conditions. Below we provide the same result for errors that are linear processes. 

PROPOSITION 2 .1 : 

Let f'{xt) = f{xpt)) be Hi-regular. Under Assumption 2.1 

and 

^ VO VO 

FL FL 

-/O -/O 

AJ M —» OO. 

Notice that the linear model that is commonly used in cointegrating relationships 

is -regular. Below we provide some examples for / and g which are covered by our 

theoretical framework. 

EXAMPLE 4.1: 

(i) Let the true model be yt = OoiXu + 002X21 \x2t\̂ '̂̂  + Ut and the fitted % = aiXu + 

^2X2t + Ut-

(ii) Let the true model be yt = OoiXit + 002x^1 + Ut and the fitted yt = aiXu \x2t\^^^ + 



4.2 Theoretical Framework and Preliminary Results 108 

(iii) Let the true model be % = OoXt exp (xj) (1 + e x p [xt]) ^ + ut and the fitted 

yt — ciXf -J- Uf. 

In practice functional form misspecification could arise f rom neglected lower order com-

ponents (lower order than the linear specification). Consider for instance the case where 

f{x) = X + and g(x) = x. Under this kind of misspecification we have shown in 

Chapter 3, that the conditional moment test will be consistent when the regression errors 

are martingale differences. Under the current framework however we are unable to obtain 

expilicit power rate results as the component is not Hi-regular. 

Saikkonen and Choi (2004) have recently analysed cointegrating Smooth Transition 

Regression (STR) models. Their specification is comprised by a linear component mul-

tiplied by a transition function. They explicitly consider a logistic function. Because the 

logistic function lacks identification when the covariates are unit root processes (see P&P), 

Saikkonen and Choi (2004) actually consider a model where the covariates are normalised 

by the square root of the sample size. In practice one might want to have a constistent test 

for functional form, when the transition function used is misspecified. Our framework does 

not cover fitted models of this kind because they are nonlinear in parameters. Moreover 

the fact that their model involves normalised variables creates an extra complication. We 

have assumed that if the fiitted model g, is of incorrect functional form and of the same or-

der as the true model / , then g{a*) and / agree up to some lower order component q{a*), 

say. Actually to the best of our knowledge, this has to be the case (when both / and g are 

H-regular). Now if the model involves normalised variables one can find examples of / , 

and g for which / and g{a*) do not agree at all, for example let f{x) = 1 {x/^/n > c} and 
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g{x, a) = exp (oa;/\/M) (1 + exp {ax/^/n)y^. An extension of our theoretical results to 

this kind of models could be possible given our results in Chapter 2, however a develop-

ment of a limit distribution result for locally integrable functions of zero energy would be 

required. 

4.3 A Conditional Moment Test for Functional Form 

The asymptotic behaviour of the LS estimator and the usual likelihood based tests and t-

tests is determined by sample covariances like those in Proposition 2.1. Because the limit 

distribution theory is not mixed normal, the aforementioned statistical tests do not have 

standard distributions under the null. In our case to induce a chi-squared distribution for 

our test statistic, the model is fitted by a FM-LS type of estimator and an endogeneity 

correction term is introduced in the statistic. To obtain our estimator and the correction 

term, kernel estimators for Vl^u, ^ w , ^vu, -̂ vu and are used: 

A ) Cuu{h), ^vv = J2h=-M ^ ( A ) Cvv{h), ^uu — l^h=- -M 
^vu — l^h=- -M 
^vu — l^h=0 K 1 

where k{.) is the lag window defined on [—1,1] such that K (0) = 1 and M is a band-

width such that M —» oo, n/M ^ 0 as n —!• co. Moreover Cuuih), C-uv{h), and Cyu{h) 

are sample covariances defined by Cuu{h) = n~'̂  Y^^UtUt+h, C^v{h) = 

and Cyu{h) = Y^^VtUt+h where is summation over 1 < t, t + h < n. Consis-

tency results for this kind of kernel estimators are provided by Andrews (1991), when the 

processes satisfy mixing conditions. Under the current framework consistency results are 

provided by Phillips (1995). 
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Our estimator closely resembles the original FM-LS estimator introduced by Phillips 

and Hansen (1990). Before we present the estimator we need to define the following quan-

tities: 

Vt Ut '^t^vv ^vu 3.nd ^vu ^vu 

The FM-LS estimator under consideration is: 

- 1 

a = 

t=i t=l 

with Qn = The following result holds: 

PROPOSITIONS.!: 

Under correct functional form 

(& - GO) 

- 1 r l 

AG ( Y ( R ) ) D [ / + ( R ) , 

n —̂  oo, wAgrg [/+(r) = [/(r) — y'(r)r2^Jri^u. 

Notice that the limit distribution of the estimator is mixed normal as V and are inde-

pendent. 

Now we can present the test statistic. First define the matrices An, Bn, A and B as 

follows: 

1 1 
— k ^An = -k ^ ̂  g{xt) A, 
n ^ n ^ 

t=i 
and 

= t " ' ^9 ^ ^ ^ G > 0 . 

t=i 
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The test statistic is: 

C M N = 
Z I L I (2 /^ - J Q , 

E I L I - 1 

2 ' 

PROPOSITION 3.2: 

Under the null hypothesis 

C M . 4 XL 

n — 0 0 . 

We will now examine the asymptotic power of the test. Note that under the alternative 

some of the kernel estimators mentioned earlier will be inconsistent. Before we consider 

their limit behaviour we need to introduce some notation. Define dt = ft — gt with ft, gt as 

in (1) and (3). Moreover let kg* and kd* be the asymptotic orders of the leading elements 

of gt and dt respectively. For the purpose of the subsequent analysis we will distinguish 

two cases, when the fitted model is of incorrect functional form. First ^ kg* and 

secondly kd* = kg*. In the second case the leading term of the fitted model is misspecified 

and dominates all the components of the true model. The first case takes into account all 

the other scenarios. Denote by a^s the least squares estimator corresponding to the fitted 

model. Moreover we will introduce some notation. 

D E F I N I T I O N S . ! : 

SO 
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(i) The p-dimensional vectors hf*{.), hg*{.), hd*{.) and the (p x p)-dimensional matrices 

^/*(")' by 

EILi JO^ ^ p* A Ag.(Y(R))(FR, 

E I L I ^ JO^ ( ^ (R) )DR, ^ ( 4 JO^ /ID-

(ii) The vectors Ci, C2 (3 are the following limits 

— ^O) CI, WW/G/" TTFMWAEM ^ 

\:^LS —^ C2' underFFMwhen kd* = kg*, 

jf^LS C35 under no cointegration. 

(iii) The vectors (i, (2, C3, hi, Ag, hs and the matrices Hi, H2, H3, Q, A 

Ci = (^o, —Ci), (2 = "(2), C3 = (1' —C3), 
^ (^d»' hg) , /i2 = {hf*, hg^ , — (/is, hg^ , 

m = (%., K ) , Hi = (h'f, % ) , Hi = (ft, , ft;), 

= (Vlyy], rZtl'u) , A = (̂ A.yyj, Aj,̂ , ) . 

Let ^ ( a ) = limTi_oo (27rM)"^ IZh i -M (/^/-^) ^ i ( ^ ) is its one-sided version. 

The limit behaviour of the kernel estimators under the alternative as M —> 00 , is given in 

the following proposition. 

PROPOSITION 3.3: 

Let Assumption 2.1 hold. Under incorrect functional form as n ^ 00 we have 

A 2i,K(0) /„' jy(r)h\(V(r)K, + n„„ H[{V(r))(;,dr, 

A 2x i f i (0 ) dl/(r)ft;(V{r))Ci + A.„ /„' H[{V(r))l^dr, 

j j i r f l . . i 2 r f { 0 ) £ C,'MV(r))K(V{r))l,dr, 

WAGM A;^. ^ A:^. A W 

Mkf 

-N„„ A 27RIF (0 ) / ; dV(r)K(V{r))(, + !2 ,„ / „ ' Hi{V(r)K,dr, 

* A „ „ I 27RIF,{0) / „ ' D V { R ) M V ( R ) ) L ^ + A™ / „ ' H^IV{R) )L^DR. 

A L R O . . - 2irK(0)S^l'MV(r))K(V(r))l^dr, 
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i 27rA-(0) /„' dy(T)h-^(W(Tl V{r)K, + tt /„' Hi (W(r), V(r)) l,dr 

I ^ A . . A 2 r f , ( 0 ) /„' dV{T)mW(r), V(r))l, + A H' {W{r), V{r)) (,dr 

- 2^K(0) Csifs (W(r), y ( r ) ) (W{r), V(r)) (,dr 

AF M OO. 

The behaviour of the statistic under the alternative is given by the following result: 

PROPOSITION 3.4: 

Under FFM or no cointegration we have 

CMn = Op (n/M). 

This result is consistent with the one in Proposition 3.4 of Chapter 3, where the same test 

was considered but with exogenous regressors. It was reported there that when both / and 

g are H-regular, the asymptotic power rate of the test under FFM is n, the same attained 

under stationarity. When the conditions of Proposition 3.4 hold, the power rate is smaller 

than n. Clearly the reduction in the divergence rate of the test in this case is due to the 

semiparametric approach followed. Moreover in Chapter 3 it was shown that the test will 

not be consistent, when the fitted model is H-regular and the true one 1-regular unless 

the estimator is bounded away from zero. It turns out that is the case under the current 

framework as well. 

From the simulation study of Xiao and Phillips (2002) it is obvious that when it 

comes to the choice of the bandwidth parameter there is a trade-off between size and power. 

Their simulation results seem to suggest that a choice of M ~ is a reasonable one. 

\ I / 3 
Andrews (1991) proposes an automatic bandwidth method where M = 1.447 ( 5 n j , 
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with 5 = 4p/ ( l — and p is the estimator from the residuals autoregression. Methods 

like this one are inappropriate in our case. As Xiao and Phillips (2002) point out these 

kind of procedures were developed for stationary processes. In our case the residuals are 

stationary only under the null. Under the alternative they are not stationary. When this type 

of bandwidth method is used the, CUSUM test has no power. Xiao and Phillips (2002) 

suggest that under the alternative of their test M ~ n. As the following proposition shows, 

this is true in our case as well. 

PROPOSITION 3.5: 

Let Assumption 2.1 hold and the derivatives of / , g and s be Hi-regular Then under FFM 

or no cointegration 

/V \ V 3 
i5nj =Op{n). 

4.4 Conclusion 

A conditional moment test for functional form was developed for cointegrating relation-

ships. The standard linear models used in practice are a special case in our theoretical 

framework. The test has a chi-squared limit distribution under correct functional form and 

is consistent under FFM or in the case where there is no cointegration. Following Xiao and 

Phillips (2002), a semiparametric approach was used to induce a standard limit distribu-

tion under the null. Under the alternative, the divergence rate is adversely affected by the 

magnitude of the bandwidth parameter. The divergence rate is the same as the one of the 

CUSUM test for cointegration and in the best case is as good as the rate attained under sta-
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tionarity. In Chapter 3 we have seen that for models with single and exogenous covariate, 

integrable weighting functions can improve the power rate of the test. We expect that this 

result can be easily extended to the current framework as long as the model has a single 

regressor. 
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4.5 Appendix to Chapter 4 

L E M M A A : 

Let Assumption 2.1 hold and f Hi-regular. Then for Q < h < M 

1 " F 1 
A / A / ( Y ( R ) ) / I } ( Y ( R ) ) C ( R , 1 < ( , T + < /I, 

^ Jo 

AF M ^ OO. 

PROOF OF LEMMA A: 

T / — _ 

\/n 
Let n = n - h and T4(r) = ZlilTi '"t- Now 

n 

t=i 

'\v^J 
(from the definition of Hi-regularity) 

^ CGR 

(FR, 

as n —> oo, from an application of the continuous mapping theorem since 

VO 
P 

^0 



4.5 Appendix to Chapter 4 117 

PROOF OF PROPOSITION 2 .1; 

We start with the proof of (i). From the Beveridge-Nelson (BN) decomposition we have 

1 

I "• 1 " 
- ^ ^ / ( Z J A S , , 

where A /iy(y(r))(^U'(r) 

from Theorem 3.3 in P&R The term 

n 1 " 

—j=kf ^ ( V ^ ) f{xt)/S.et = —7=zkf^{-\/n)f{xn)en -j=kf^[\/n) Y~] A / ( X F ) £ T - I 
V ^ V ^ V ^ 

1 " 

T=L 

where (-yi^,.., 3̂ ^̂ ) with E [ -1 ,1] . 

Set x t - i = Xt-i + JiVt, and Vn{r) = - ^ ZllHi %-i- First we will show that 

,i=l t=l 

0. 

\/n with Note that ||%,(r) - y (r ) | | < ||14(r) - y ( r ) | | + sup^gio i, 

the first term Oa.s.(l) from Lemma 2.3 in Park and Phillips (1999). Next, the second term 

is Oa.s.(l) as well, because for any 5 > 0 

00 , 

E^( 
n=l \ 

0 0 n 

max ||%|| > 5\/n 

/ II 11̂  \ 

n=l t=l n=l ^ ^ 

where the last inequality can be easily checked given Assumption 2.1. Hence sup^g[o,i] 11 ̂  (^) 

= Oa.a.(l). Similarly we can show that sup^^gQ ^X[nr\ — y ( r ) | | = Oa.s.(l). Also note that 

Y ( R 
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suPre[o,i] < K a.s. for some K > Q. Therefore for some sequences sin and S2r. 

that decrease to zero we have 

1 

, t=l t=l 

' " I %, + sup 
rG[0.1] 

W ) 

<mn\ /n \ \k j :^ \ \ sup sup 

+mnV^| |^/^| | sup sup 
LLXILL̂ IF ||XI-X2||<S2RA 

P. 

I f " II - II 

1 " 
/ ( -v /MZi) - X V ] 

1 "• 
/(\/Ma;i) - y(\/7ir2) x V ] 

RIM Z—J F=I 

0 as n, —oo, 

given condition (iii) of Definition 2.2 and the fact that E < oo that can be easily 

checked. 

Therefore we have shown that 

n \ ^ 

A:YXV^) = OP(L) 

t=l t=l 

But 

1; 

4 22 
^ t=i 

1 . " . 

^ f=l " f=l 
1 1 M 

^ ("Utet-i - E (t/tEf-i)) + Op(l). 
F=I 

In view of the fact E {vtSt-i) = ^vu it would suffice to show that the last term above 

is asymptotically negligible, to complete the proof of part (i). This is what we set out to do 
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next. Consider the term 

^ i=i 
^ n oo 

^ f=l j=0 

^ n oo oo 

t=l r=l j=0 

^ n oo oo 

+-kf ^{y/n) ^ f{xt-i) ^ ^ '^j+r-i^jVt-j-r^t-j-i 
R=L J=0 

• = hn + hn + I'. 3N' 

We will show that / i„, hn , and h n are asymptotically negligible. First define the lag 

polynomials A{L), A{L), Br{L), Br{L), Cr{L), Cr{L) w i t h r G N. by: 

A{L) = i(L) = 5^i^L' 
j—0 j=iO 

o o 

with Aj = and Aj = -^a, 

j=o j=0 

oo 

with. Br j = and By = ^ Brs, 
s=j + l 

and 

C X Z , ) = ^ C Y Z : ' , C X Z , ) = ^ C ' R ; Z ' " 

i=o j=o 

with Crj = and Crj = ^ C, 
s=j+l 

oo 
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Also define Q , Q and by 

Ctj — i ^rjej 

Ctj ~ 

^tj — V t - j - r + l ^ t - j - l -

We will apply BN decomposition to the lag polynomials A{L), Br{L), Cr{L): 

v4(Z/) = v4(l) — (1 — L) A.(L), 

and 

C X Z , ) = C X L ) - ( L - Z ' ) C R ( Z ' ) . 

We start with /i„. Define Q = YlT=o A Q - Then using BN on L 

_ 71 OO 

t=i j=0 

7%. 

1 , 
X \ / ^ ) ^ 

'' t=l 

Note that {(to, is a martingale difference sequence. Hence ^kJ^{^/n) f{xt-i)A{l)QQ 

Op{l/y/n) by Theorem 3.3 in P&P. The second term above 

1 . " . 

1 . 1 . 

= —kj ^{^/n)f{Xn-l)Cn ^(V^) 

^ ^ f=l 

1 . . 

^ t=l 
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Now given the Hi-regularity of / and the fact that E t-i < oo, using the same argu-

ments as above we can show that {^/n) = Op(l). Hence Iin 

Next will show the result for hn- First define ("f = Vt -SR(l)£t-R-i and (. 

J^JLo ^jrCtj- Hence an application of the BN decomposition on l2n gives 

B 

r~l j=0 t=l 

1 . . 1 . . 

^ F=I ^ F=I 

Note that (Cf , is a martingale difference sequence, therefore ^kj^ ^ {^/n) J2t=i 

= Op{l/\/n) by Theorem 3.3 in P&P. The second term above 

n 
t=i 

Now note that E CF-I 

O P ( I M -

< oo because, 

t=i 

iB 
T—1 YS T—1 • 

t=i 

E 

E 

cf- i 

r~l j=0 

AI 32 
< lim inf lim inf y~^ E 

31—»00 6 2 — ^ ^ 

OO OO oo 
< E | | c ; ; i i e E E r - ® - -

r=l j=0 5=j+l 
oo oo 

< E | | c « | | E E i i ^ « ' - i i 
r=l 8=1 

$ s+r 

r=l j=0 
oo oo 3 — 1 

= E | | C , I I E E E | | ^ A 

r=l s=l j=0 
/ oo 

8-L-R 

5 E I I Q I I E i i « » . i i | | E l l $ ' 
\ 3 = 1 . r=l 

< oo. 
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Therefore using the same arguments as before it follows that {-s/n) Ylt=i 

Op(l) as well, which establishes that fgn = Op{l). The proof that I^n is negligible is the 

same with the proof for fgn and therefore omitted. 

For part (ii) applying BN decomposition we have 

1 " 1 " 1 
J- -I _1 / /—\ X ^ /. / \ / J- , _i / t—\ V ^ „/ \ / T / / ̂  \ 1 

T=I 

with % = Y^=\ Now note that note that using similar arguments as 

above one can show that 

1 "• 1 "• 
+ OP(L) 

^ ^ F=I 

and hence f i^) ^ fo hf(V(r))dV'(r) from Theorem 3.3 in 

P&P. Using the same arguments as those in part (i) we have 

1 " 1 " . 

^ OP(L) - - E M - I ) ) 
f=l 'v'T' 

RL . 1 " 

= Op(l) - / /t/(y(r))c;rE ^ ( W - E 

Using the same line of argument with part (i) it can be shown that 

1 " 
X \ / ^ ) ( W - ^ = OP(L) 

T=I 

and in view of the fact that E the result follows. 
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PROOF OF PROPOSITION 3.1: 

Note that 

n 
- 1 
9 

t=l 

- 1 

K' 
n 

4=1 

Now 

1 " YI 

" i=l -̂ 0 

K' 
/n 
^ ^ / AG(Y(R))(FRAJ;, 

and 

L-L " L-L M JU-L M 

The first term 

1 rl rl 
^ /IA(T^W)C(RA^« + OP(L), 
n 

t=i 

(2) 

by Proposition 2.1 (i). The second term 

^ F=I 

1 YI . 
(̂ (?̂ )) G( + / Ag(y(r))c(rÂ n̂;;;̂ n̂ u + Op(l), 

0 JQ 

by Proposition 2.1 (ii). Hence 

^—1 " nl pi 
^ / I X ^ W ) ( ^ C / + ( R ) + / A G M R ) X R ( A , , - A _ N ; ; ; ^ N _ ) (3 ) 

VO VO 

In view of (1), (2) and (3) the result fo l lows.• 
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PROOF OF PROPOSITION 3.2: 

Note that 

{Quu — ^uv^vv^vu) Ylt=l -^'n^n^Qt ~ 1 

+ Op{l) 

(^uu — Ylt=l -^n^n ^9t ~ 1 

[ Z % 1 (^F (& — OO) — 'UF + 

1 2 

1 2 
{^uu — ̂ uv^vv^vu) Ylt=l ^'n^n ^9t ~ 1 

^ Z 7 = I % T ^ Z - 9 " A J ; , + 

(N^u — YITLL ^ 1 

Now consider the term 

&ZL,; 
1 - 1 

T,sd 
i=l 

y i 
J = 1 

1 \—^N 

2Z*=I ( ^ + 

1 " 

i=l 
E W - A ^ 
J = I 

1 
^ ^ ^ (^t ^ ^S^vv ^VTI) 

„ E , h,{V{T))dU*{r)- dU*{r) + o,{l) 
" J o JO 

= A ' G - ^ / A G ( Y ( R ) ) D [ / + ( R ) - / D(7+(R) + 0P(L) 

= / - 1] D[ /+ (R) + OP(L). 

The term 

1 I|JR— 

/.:-^t=l 72 
KB-^a{x,)-l = {A'B-^h,(V(r))-lfdr + o^{l) 
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Hence 

{SJ„„ - lA'B-^hi,{V(r)) - if dr 

and in view of the fact that V and are independent the result follows.• 

PROOF OF PROPOSITION 3.3: 

We start with the case of FFM and in particular when kd* ^ kg*. The arguments we use are 

similar to the ones of Phillips (1991). Under incorrect functional form 

- 1 

t=i t=l 

Hence 

— ^O) 

"I —1 

- 1 
g 

t=i t=i 

+ 
1 

t=i 
k ' j : 

T=I 

kn -1 

LVO 

1 

-1 rl 
( Y ( R ) ) G , D R + OP(L) 

1 

\/nkd* 

Wo 
( ^ ( ? ' ) ) ( ^ W ) 

" T 
-1 r l 

Ag (y(r) ) 

= CI + OP(L)-

Define the normalising matrix Nd*,n ^ ^ ^ ^ ^ ^ . In what follows the regression 

residuals (from OLS estimation) will be written in the following form: 

^ — /T^O — g't^ + Ut 

^O) + (4) 
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h=~M 

h=—M \ t=l 

Mkj.' "" 

= 2nK(0) iiy(r)(h'AV(r))e,-h',{V(T))Q 

+ 0 ^ 

1 

0 

/ k . (yW)GO - ^;(y(R))(J C F R + O ^ I ) 

JO L J 
^ 1 / 2 

/-L _ „L /2 

= 2 7 R K ( 0 ) / D Y ( R ) ^ ; ( Y ( R ) X I + N _ / ^ ( ( Y ( R ) ) ( , D R + - — F L _ + OP(L) 
JQ Jo IVlKd* 

Hence 

N . . = O , {^) + 0 , ( 1 ) ( 5 ) 

Now using similar arguments as above it turns out that 

„l/2 /•! _ „l/2 
j ^ k , „ = 2TTKM J dV{r)h[(V(r))(, + A„„J H[(V{r))(dr + —A„^ +o,{l) 

So 

A . „ = O , ( ^ ) (6) 
n 

Next we will find the order of Quu- Note that 

M / h \ 

^uu = ^ V M / 

and 
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E C ' . _L2 \ v"" "O/ J \ n. I '^t+h 
f=l 

^ E ( <+. a U ) ( in, 
^ \ - (A - 6*O) 

0/ 

"'d' t=l 
Ut+h nk% ^ \ ''''* ° ' \ 9t ^ 

Ut TG. 6 ( ''m sUh ) ( _ (& I G J ) "*=3- , . , 

('MV(r))h[iV{r))(,dr 

0 

(from Lemma A) 

1 / .L /•! + ^ 4 - I / ( ; A ] ( Y W ) D ! 7 ( R ) + / l[H,(V{T))dTK^{h) 
yfiKd* \jQ JO 

( i ' £ HliVirmidr 

So, 

1 
= 2%A'(0)I C>:(V(r))ft;(V(r))C,<;r-

+ 0 . ' ^ 

Hence under the assumption that h[(i(V(r))dr ^ 0" we have 

^uu = Op (AfAjj.) + Op = Op (7) 

Consequently under FFM (4) and (5) give 

0 P { A F 4 ) + 0 J ; 

Op when M/n —» 0 as n —* co. (8) 

The case where h\C,i{V{r))dr = 0 will be discussed later. 
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To obtain the result we have assumed that the term h{(V(r))(idr ^ 0. When 

this condition does not hold the line of argument used in the proof above shows that under 

FFM, the statistic is Op{n/M) rather than Op{n/M). The condition above does not hold 

when kd*, the order of the dominating element in dt is determined by some element of the 

vector Qt the condition above does not hold. To see this suppose that kd* = kg* and the first 

element of gt dominates the rest. In this case the FM-LS estimator 

(& -
t=l 

K-i 
n 

1 " 

(=1 

t=l 
71 

9 f=l 

L^O 

/o {V)dr 0 

/ ^LO \ 
0 

\ 0 Y 

Now consider the sum of residuals that appear in (9); 

- 0 \ 

0 

0 ... 0 / 

(9) 

— ^ ^ - ^O)) 

= Op(l) (&om (9)). 

/ \ 
0 

\ 0 / 

+ 0p( l ) 
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Hence JQ h[{V{r))Ci = 0 and therefore the numerator of the test statistic is of order 

Op {{nkd' f ) rather than Op {{nkd'Y) that is stated in (9). 

To obtain the requisite result in the case when kd* = kg* we use different expression 

for the regression residuals than the one of (4). First the LS estimator 

kf 
# 2 3 

- 1 

9 

t=l 

- 1 

k f . 
i=l 

-1 pi 
( ^ ( ^ ) ) + OP(L) 

Now the LS residuals 

1 
nkf* ^^t=i 

0 

n -<^4=1 

( ^ ( ^ ) ) ( ^ W ) + OP(L) 

1 

( ^ W ) + OP(L) 

Now similar arguments as those above give 

,1/2 fl n 
N^U = 2 7 R J I R ( 0 ) / ( F Y ( R ) A 2 ( Y ( R ) ) ( 2 + ^^ 

MKf JQ jq 

n 1/2 
vv I H2{V(r))C2d'i^+^^^^vu + Op{l), 

7)1/2 
A _ = 2 7 R ^ I ( 0 ) / (FY(R);^^(Y(R))C2 + A _ / A ; ( Y ( R ) ) C 2 D R + — A , ^ + OP(L) 

MA;/ 

and 

/* 

(10) 
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n 

When there is no cointegration we have 

1 / 1 
' — 

M 

E K, { H+h 9t+h ) 
t=l 

-a 

E " ( f ) ( s E ' " ( ' • + " ) ( A 
h=-M ^ \ t=l ^ 

27R;<:(0) - / ^ ; ( Y ( R ) ) C 3 ) 

/ /Z '6 (^W)C3(^R + 0P(L) 

= 27R;R(0) / 

+ 0 / ; F ; M R ) , Y ( R ) ) C 3 D R + 0P(L) 
Jo 

Now using the same arguments as above we have 

n 1/2 
. . . A„„ = 2^K,{0) / dV(r)h',{W{r), V{T))(, 
Mks Jo 

+A r (M/(r), y(r) ) + Op(l) 
Jo 

and 

(3^3 (W(r), y W ) (VK(r), y (r)) + Op(l) (11) 

and this completes the proof. I 

PROOF OF PROPOSITION 3.4: 

We start with the case of FFM and in particular with kd* ^ kg*. Note that the FM-LS 

estimator 

t=l 

- 1 

t=i 
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rearranging 

+ 
n 

i=l 

- 1 

t=l 

t=l 

n, 

t=i 

N,A;, 

1 

t=i 

CI + OP + 0% 

-k^^b A"*" 

' X ^ l + O , 

(' + (ya^) + (^) 

1 M K J . 
X 

n 
+ Op(l) 

where we have used the fact that A^„, = Op (equations (4),(5)). Recall that 

the test statistic is 

CMn = 
E I L I (%/^ -

- 1 

2 ' 

Consider first the numerator rescaled by {nkd*)^: 

M/UJ. 

1 

Ell 
E L { ( < 9=) 

l 2 

/ ^ I M R ) ) C I C ( R + A 

Oo 

(A — 9o) 
4̂  ("^t '^t^VV ^vu 

+ Or, (12) 
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with Nj. n = 
4 0 

0 7^ 
Now the the denominator rescaled by n 

1 
^UV^yu ^VuJ ^ ^ ^ 

= Op[Mkl^) (from equation (8)) 

In view of (12) and (13) the result follows. 

When kd* = kg* the FM-LS estimator 

t=i T=L 

t=l 

N 

- 1 

nkn 
t=\ 

~K'J2sa',K' 
t=l 

- 1 

^9 ^ 
t=l 

- 1 
9 

t=l 

h~^a A + 

— C2 + 
1 

+ o. 
1 

X + ON X 
n 

+ Op{l), 

Consider again the numerator of the statistic this time rescaled by (nkf*)'^: 

1 

TLA:;. 

1 

nkf' 

nki 

E , . i { ( v t - g(xt)'a) -

EL (/.' A) + [Ut — Vt^vv ^vu 

Z Z . j ( / ' 
K 

~ t (A - » . ) 
+ (UT — v'^Cl^^Qyu 

Uo 
h',{V(r)K,dr + 0,{^^^^ ^ ^ + O Y ^ 

0 3 ) 

(14) 
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with A /̂*,n 
4 0 , 

ko 1. Now the the denominator rescaled by n 0 

n _ o n - ^ n 

I ^UU ^UV^VV ^VU 

EFL ^ ^ 1 TI t—1 
•1 

[ A ' B - % ( Y ( R ) ) - L ] ' ( F R + OXL) 

= Op(Mk'j*) (from equation (10)) (15) 

in view of (14) and (15) this completes this part of the proof. 

Under no cointegration using the same arguments as before the numerator of the test 

statistic rescaled by {nks)"^ is 

E l l 
1 

1 

MA;., 

with ^ ^ ^ 

The denominator 

li{W{r),V{r)X,dr + 0,[^-^^ 

1 

O [ A ' G - ^ / ^ G ( Y ( R ) ) - L ] " ( F R + OP(L) 

Op {Mkf) (from equation (11)) 

(15) 

(16) 

and in view of (16) and (17) the result follows.I 
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PROOF OF PROPOSITION 3.5: 

We will show that the result under FFM when kd* ^ kg*. The proof for the other cases 

is similar and therefore omitted. Denote by u{xt) the regressions residuals from FM-LS es-

timation. From the proof of Proposition 3.4 (equation (12)) we have that {nkd*Y^ Ym=i 

Ai(y(r))(i( ir -I- Op(l) = /iu.(y(r))dr + Op(l). and similarly de&ie 

and flu- First consider 

^ { E L 2 (%F(A;T) + { E I L 2 

where the third line is due to the mean value Theorem and the Hi-regularity and the last 

one is due to Lemma A. Hence 

Consider the term 

N 

^T=2 
t=l 

-1 sr-^n / \ ' ( \ / / 1 \ P RL 
THEARSTTERM(YMA:D,A:J.) JO 
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-1 

The second 

t=2 
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t=l 

N 
= OP(L) -

t—l 
N 

- ^'u(z(_i)'(;^_ii((2;f_2)%_2 (with i2 diagonal) 
t = 2 

n 

= Op(l) - ]^'!i(2;t_2)''Uf_i?7L2'^(3:f-2)' 
t=2 

n p 

t - 2 

t=2 i=l 

. -1 
= Op(l) - ^ ? / ( Z f _ 2 ) ' E i/(a;f_2) 

t=2 

- Y^'U(A;T-2) ' ( 'UT-I^LZ " ^ (^;F_I77L2)) '^(3:F-2) 
t=2 

n p 

- ^ ' U X : C T _ 2 ) E ( ? ; I T - I % - 2 ) 
t=2 1=1 

?% p 

- ^ I I J ( A ; F _ 2 ) (2 ; IF- I%_2 - E ( ? ; IF_I%_2) ) 
t=2 i=\ 

Op(l)-/ A^.(y(r))A^A^.(y(r))dr-/ /iu*(y(r))^L?(^(r))A^r»c(r, 
V U I=L 

where vu- i , %_2 are the elements of Vt, % and uu, A^„.. the diagonal element of tit. 

and Ayy respectively. Hence 

k J ' IVO 

X y\„.{V{r))h'AV(r))dV{r)^ 

^ 1 / K-(V{r))Kvhu-{V{T))dT + ft„-(T^(r))5^A„.. (V(r))A„„„dr 
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Since ^ = \/n 

P" - 1 = OP(L/YI") 

Hence 

and therefore 

/ . \ V 3 
(STIJ OpyTlj 

as required. • 



Chapter 5 
Conclusion 

The aim of this thesis was to address the issue of functional form misspecification 

under nonstationarity. Much of our development relies on the work produced by Park and 

Phillips (1999, 2001). We tried to throw some light on two aspects of functional form 

misspecification. First we studied the large sample properties of the least squares estimator 

under nonstationarity (Chapter 2). Secondly we focused on specification testing (Chapter 

3 & 4 ^ 

With respect to the first area of study we find that the properties of the least squares 

estimator under nonstationarity are analogous to those under stationarity as long as one is 

confined to the I-regular family of transformations proposed by Park and Phillips (1999, 

2001). When the theoretical framework is restricted to the I-regular family, under func-

tional form misspecification the least squares estimator converges to some pseudo-true 

value, while the limit distribution and the convergence rates are the same as those under 

correct specification. The behaviour of the least squares estimator is quite different when 

the theoretical framework is extended to the H-regular family of transformations. When 

the true model is of different asymptotic order than the fitted one and the parameter space 

unbounded, the estimator may be unbounded in probability, while for compact parame-

ter space the estimator converges to a boundary point of the parameter space. In the latter 

case, techniques developed to obtain limit distribution results, when the parameter is on the 

boundary (e.g. Andrews (1999)), are not applicable as in our case the limit objective func-
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tion is not minimised at a turning point. Finally, when the true and the fitted models are of 

the same asymptotic order, the estimator converges to some pseudo-true value. The limit 

distribution is usually different and the convergence rates slower than those under correct 

specification. The theoretical framework of Chapter 2 was kept simple. We assumed that 

the true and fitted models involved a single covariate. Extensions of our results to multivari-

ate specifications is a quite challenging task. The applicability of econometric techniques 

for the asymptotic analysis of nonlinear models is limited in our case. These techniques 

were originally developed for correctly specified and stationary models. For instance as 

P&P point out the Jennrich (1969) approach for establishing consistency results is not ap-

plicable to general H-regular models even if they are correctly specified. The Wooldridge 

(1994) approach is utilised by Chang, Park and Phillips (2001) to establish asymptotic 

results for multivariate models under correct specification. This approach requires the pa-

rameter to be interior point in the parameter space. We have seen that in many cases this 

does not hold when there is functional form misspecification. 

The second area of our study is specification testing. In particular we considered a 

Bierens (1990) type of conditional moment test for functional form in two different theo-

retical frameworks. First in Chapter 3 the test was considered within the theoretical frame-

work of P&P. In contrast to the stationary case we find that there is not a single divergence 

rate under the alternative. The divergence rate depends on the nature of the fitted and the 

true models, the nature of any weighting functions used and the nature of the variance esti-

mator. While under stationarity the test is one-sided, under non-stationarity it may become 

two-sided when an integrable weighting function is used in the sample moment of the test 
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statistic. The use of an integrable weighting is particularly beneficial in the case the fit-

ted model is H-regular and the true one I-regular, as it makes the test consistent. The use 

of a bounded variance estimator may result in hyper divergence rates under the alterna-

tive as long as we are confined within the H-regular family. In Chapter 4 we attempted to 

make the test applicable to cointegrating relationships. A multiple regression model linear 

in parameters was considered. The endogeneity assumption of Chapter 3 was dropped and 

dependence in the errors of the model was introduced. A semiparametric approach similar 

to the one of Xiao and Phillips (2002) was followed in order to induce standard limit distri-

bution under the null. The test is consistent when there is functional form misspecification 

or no cointegration. The divergence rate attained under the alternative is the same as the 

one of the CUSUM test for cointegration proposed by Xiao and Phillips (2002). 

The specification test considered here is one of the many tests for functional form 

proposed over time. We expect that other functional form tests like White's (1981) Hause-

man type of test and information equality test can be extended to our framework. Apart 

from the specification tests mentioned above, model selection procedures have been devel-

oped over time e.g. Cox (1961, 1962), Davidson and McKinnon (1981), Voung (1989). 

In contrast to the usual specification tests, those procedures involve a specific alternative. 

Whether these model selection procedures can be extended to nonstationary models is an 

open question. We expect that it is easier to do so for the Davidson and McKinnon (1981) 

model selection procedure. This however may prove more difficult for the Voung (1989) 

procedure. Voung's procedure utilises the Kullback-Liebler distance to compare rival mod-

els. In the stationary framework, from an application of the law of large numbers, the 
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Kullback-Liebler distance appears as the limit of the likelihood ratio of two rival models. 

In our case the asymptotic theory is completely different and the Kullback-Liebler distance 

is not relevant. 
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