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MODELS FOR AGENT-BASED INFRASTRUCTURES 

by Ronald Ashri 

Computing environments are undergoing a drastic transformation with the introduction of di
verse devices with varying capabilities into networked environments and infrastructure that en
ables the exchange of information and the collaboration between devices in a number of modes. 
While it is becoming easier to connect practically any computing device through a network and 
embed computing devices unobtrusively in a wide range of real-world artifacts, it is becoming 
more difficult to develop software systems that can deal with the inherent dynamics and complex 
interactions of the resulting distributed computing environments. 

Agent-based systems have a key role to play in the effort to provide and support such appli
cations, since agents embody several of the required characteristics for effective and robust 
operation in dynamic and heterogenous computing environments. However, there are a num
ber of shortcomings relating to the use of the agent approach to application development. In 
particular, in this thesis we deal with the lack of clarity in existing agent models and address 
the need for models that can directly support practical application development. These are 
widely-accepted shortcomings that have been identified by a number of researchers in recent 
years [8, 32, 136, 189,227,231]. This thesis addresses these shortcomings with relation to the 
basic infrastructural concerns that are common to practically all significant agent-based applica
tions in dynamic, heterogeneous environments. We develop principled and reusable models in 
support of agent-based systems construction, dealing both within individual agent construction 
and support for relationship identification and characterisation. 

In this thesis we make three main contributions. Firstly, through an abstract agent model we 
enable the characterisation of the wide range of agent types that can exist within a heterogenous 
environment. This facilitates development by ensuring that the underlying theory adequately 
models the actual application environment and provides indications as to where designers must 
focus their efforts. Secondly, we develop a model for agent construction which links the ab
stract agent model to practical application concerns and enables the specification of a range of 
agent architectures while also facilitating their run-time reconfiguration. This bridges the gap 
between abstract models and practical implementation, allows developers to choose the type of 
agent architecture that best suits the application at hand, and provide the flexibility for adapting 
architectures to changing application needs. Finally, we develop a model of agent interaction 
and use it to comprehensively identify all the possible relationships between two agents, as well 
as to relate agent goals to the abilities of agents to achieve those goals given their individual 
capabilities. This enables the effective identification and characterisation of agent relationships 
in dynamic environments, so as to guide the choice of appropriate relationship management 
mechanisms. 
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Chapter 1 

Introduction 

"There is nothing like a dream to create the future." 

Victor Hugo (1802-1885); writer. 

1.1 The Need for Agent-Based Computing 

Continual advances in basic networking technologies, processing capabilities and device minia

turisation have, over recent years, allowed computing devices to pervade every aspect of society. 

Through unifying infrastructures such as the Internet, and the establishment of standards for ac

cess to, and presentation of, information such as HTTP [93], HTML [l08] and XML [34], 

devices as diverse as mobile phones, personal digital assistants (PDAs) and desktop computers 

can be interconnected to share information and services. The combination of these hardware and 

software advances has created an environment in which the ability to communicate and access 

online services using networked computing devices, at any time and irrespective of geographic 

location, is fast being realised. 

As a result, new opportunities for innovative applications are being created, but new challenges 

are also being posed relating to the appropriate development of tools that will enable us to 

best exploit the available technology. Because of the increasing drive for creating new kinds 

of applications for users, combining the underlying networking and processing capabilities 

with powerful software tools, concerns with issues of development are becoming correspond

ingly important. Examples of the kinds of applications envisaged are dynamic online environ

ments for providing e-services to users [187], the formation of virtual organisations through the 

dynamically-determined cooperation of existing organisations [159], the use of mobile devices 
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interacting with enterprise systems [149], more powerful and flexible mechanisms for scientific 

computation [68], and so on. 

All these applications share the need to support interaction between disparate components that 

typically operate independently of each other, in dynamic and heterogeneous environments. 

However, in order to facilitate such interactions, developers must address several issues such as 

the great variety in computing device capabilities, the range of operating systems and network 

protocols, users moving and accessing services through changing geographical locations while 

dealing with a number of different organisational domains, and the possible loss of power and 

network connectivity for mobile devices. 

In response to these challenges, agent-based computing has been suggested as a paradigm that 

can provide the conceptual grounding to enable application developers to effectively deal with 

the problems they raise [99, 120, 138, 140]. The basic concept of agents capable of individual, 

independent action, working towards their design goals, while at the same time able to interact 

with other agents through automated means in order to resolve issues relevant to individual or 

common goals, represents an intuitive and natural starting point for solutions. However, current 

work on agent-based computing has several shortcomings relating both to its foundations and 

to its use in the design of applications. This thesis aims to address some of these shortcomings 

by providing principled and reusable models for supporting the development and analysis of 

agent systems, focusing on the basic issues of individual agent construction and support for 

cooperation between agents. 

Before providing a more detailed description of our aims, we briefly examine the various tech

nological changes, and the new demands from users, that have driven the move towards adopt

ing an agent perspective in developing applications. Subsequently, we present arguments for 

the suitability of the agent paradigm and discuss its advantages and limitations. Based on this 

discussion, we introduce our aims and then, finally, the main contributions are presented. We 

conclude with an overview of the rest of the thesis. 

1.2 Emerging Computing Environments 

A defining characteristic of computing environments of the past ten years has been the level of 

interconnectedness between computers. More recent developments have broadened these char

acteristics to include the diversification of computing devices from powerful workstations to 
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mobile devices and embedded devices, and the improvement of wireless communications. Not 

only are we now able to interconnect computing devices, but we are able to do so with un

precedented flexibility. In this section, we examine how these developments affect the different 

spaces in which we as humans operate, and the challenges they place on application developers 

attempting to make the best use of these emerging computing environments. Throughout the 

discussion, we provide examples of suggested agent solutions, illustrating the suitability of the 

approach to these problems. 

1.2.1 Work Environments 

Large organisations, in both the private and public sector, have, predictably, been the first to build 

applications that take advantage of network technologies in an attempt to integrate their informa

tion processing systems. However, their use of computers over a relatively large number of years 

has resulted in an unavoidable reliance on older (legacy) systems which, for a number of reasons, 

cannot simply be replaced by new ones, but must be integrated into existing structures [39]. This 

integration of legacy systems with new infrastructure is one of the classic problems for which 

an agent-based approach has been suggested as an appropriate solution [100, 123]. 

Furthermore, the proliferation of desktop computers created the possibility, and subsequently 

the need, to network these computers in order to improve access to information and collabo

ration between individuals, in turn creating three basic requirements. Firstly, such networks 

need to be supported and administered in the face of increasing complexity and heterogeneity. 

Secondly, users require secure access to a number of different information sources and appli

cations. Finally, the users of these systems also require specific applications to support more 

direct modes of collaboration across networked computers that reflect the more global structure 

of organisations, with resources dispersed across a number of different locations and a need to 

access them at any time. This not only adds a new level of heterogeneity to the system but 

also challenges traditionally held ideas about software engineering for distributed systems. De

velopers can no longer abstract out location, reliability and bandwidth issues, since networks 

can no longer be administered as if they were a reliable, homogeneous collection of resources. 

Such challenges provide good application areas for illustrating how the agent paradigm can be 

used to aid in complex information management tasks and a number of agent-based solutions 

demonstrate this (e.g. [43,51,74, 167,211,226]). All these examples take advantage of the 

benefits of decentralised and loosely coupled systems, which can deal with changing operating 
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conditions. 

Finally, calls for enabling a more decentralised, team-based mode of operation between large, 

global organisations over the Internet are increasing [72, 147]. These types of organisations 

add yet another challenge to system design, since we now need to enable and control collabo

ration between domains that are likely to have very different ways of describing information as 

well as different administration policies. While basic networking capabilities can aid in form

ing such strategic collaborations between organisations [97], many have suggested that effective 

solutions can only come about through a significant shift from traditional object-oriented tech

niques for building distributed systems to the inclusion of artificial intelligence and agent-based 

approaches [1, 158, 183] that incorporate organisational and societal notions to regulate the 

interactions between the different parts of the organisation. 

1.2.2 Social and Home Environments 

Outside a purely commercial context, the Internet has enabled the creation of numerous online 

communities that share information and collaborate on issues of common interest, ranging from 

the development of open-source software to political and social movements. At home, we have 

managed to take advantage of the Internet through personal computers which, typically, use the 

telephone line to provide a connection. Broadband services that facilitate the flow of richer types 

of media are also, increasingly, entering homes. 

In addition, embedded devices are becoming networked-enabled I ,providing a new kind of con

nection to the Internet through means that are less obvious. New models of common domestic 

devices, such as the washing machine, the refrigerator and the television are being marketed 

as intelligent devices that can send information about their status to the manufacturer for main

tenance, or can allow us to control them remotely. The whole concept of the space in which 

we live is being reshaped into the notion of an intelligent or ambient environment in which ev

ery parameter, from the temperature to the decoration on walls, can be dynamically fine-tuned 

to suit our wishes. More significantly, we can also create intelligent environments that can 

provide assistance when it is required for health reasons through the dynamic interactions of 

devices that monitor the vital statistics of a patient, such as heart rate and blood pressure. In 

this context, agent-based approaches have been used to create a variety of such smart home 

lLarge consumer product manufacturers have already stated that their policy is to network-enable every device 
they produce as soon as possible.(Red Herring, March 1st, 2001) 
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services [110, 112, 180], since agents are well suited to acting as abstractions for the various 

devices in a home and managing their interactions with humans and other services outside the 

home. 

At the societal level, the integration of networking technologies into our homes could lead to 

dramatic changes in the provision of public services and the modalities of participation in pol

itics. Already, there is work being done on enabling voting in official elections to take place 

through mobile phones or the Internet [115], while the debate on the wider impact of the Inter

net on the way societies govern themselves is just beginning [46, 224]. In any case, it is clear 

that agent technologies will have a significant role to play in the development of applications at 

this level, as evidenced by some initial efforts [142]. 

1.2.3 Mobile Users 

The spread, and rise in influence, of wireless mobile devices enables us to maintain connections 

to other networks while on the move. This capability is beginning to have a profound impact 

on the concept of the work-space, since geographical location is losing importance while the 

virtual space is becoming more and more significant. Workers are increasingly tempted and, 

sometimes, even encouraged, to abandon the daily commute to the office in favour of a virtual 

connection. However, as mobile users change geographical locations, they very often also have 

to change service providers for access to online services, raising further problems of interoper

ability and security. Significant challenges are raised here in terms of accommodating the free 

flow of information and devices between different administration domains. In these scenarios, 

the combination of intelligent agents and techniques from mobile agent research are providing 

effective solutions [19, 111, 169, 192]. 

1.3 Enabling Infrastructures 

As should be apparent from the discussion above, the overarching feature of this changing land

scape of networked computing environments is that of heterogeneous networks of devices and 

users in which communication and collaboration takes place at many different levels, and infor

mation and services need to be available in a number of different modes to satisfy user needs. 

It is also clear that certain issues, such as the support of mobile users, collaboration between 
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organisations, and providing customer services over the Internet, are problems on a scale un

precedented in software engineering. They require global structures and the cooperation of a 

number of service providers in order to function. In turn, this requires distributed systems in 

which the communication and coordination between the disparate components is able to operate 

over, and adapt to, changing needs and changing resources. At the same time, these components 

require some level of individual control to be able to adapt to changes when reliable centralised 

control can no longer be taken for granted, or when it cannot be as effective as decentralised 

control. 

To develop these new types of systems, appropriate paradigms are required that will embrace 

the challenges set and deal with them directly. The scale and diversity of the challenges means 

that any paradigm needs to embrace a variety of different techniques in order to provide the 

appropriate set of tools for application development. Note that we do not aim to tackle all of 

these issues in the thesis but we discuss the relationships between them here so as to motivate 

the need for agent-based computing as the underlying paradigm that can provide a conceptual 

underpinning for applications that touch on all of these issues. We will discuss later on in the 

chapter which are the precise issues that we aim to tackle within the context of agent-based 

computing. 

At the most basic level, we must be able to construct dynamic networks that can handle con

tinuous changes in the number and types of devices available. Secondly, we need to deal with 

mobility, both of users and possibly of code. At the same time mobility in part, also creates 

the need for dynamic networking since the introduction or removal of devices inevitably causes 

changes to the configuration of a network.Finally, we require intelligent applications that are 

able to react to change and undertake tasks with a certain degree of independence from human 

guidance. These three basic issues are currently tackled in relative isolation, as research areas in 

their own right. However, the envisioned applications require all of them to operate in unison. 

We illustrate this in Figure 1.1, in which the Venn diagram illustrates the location of origin and 

the relationships between them.2 The overlaps between the issues of intelligence, mobility and 

dynamic networking indicate that there are sub-fields that are common to different areas, while 

the unison of all three can provide the required enabling infrastructure. A description of each 

follows . 

• Dynamic networking refers to technologies that allow the dynamic creation of communi-

2We note, however, that it is, of course, impossible to arrive at an organisation that is not contentious, and merely 
seek to indicate the diverse contribution to this area, 
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INTELLIGENCE 

reasoning 
negotiation 
argumentation 
norms 
trust 
ontologies 

interaction 
protocols 

resource control 
state capture 
code mobility 
device mobility 

MOBILITY 

DYNAMIC 
NETWORKING 

reflection 
discovery 
fau It-tolerance 
leasing 

FIGURE 1.1: Required capabilities for enabling infrastructures 

7 

ties of networked devices. Since we need to deal with environments in which devices and 

users may come and go at any time, it is essential first to provide mechanisms that allow 

devices to join network communities automatically, and second to develop techniques to 

administer their access to other devices within that community . 

• Mobility refers both to code and to user mobility. Code mobility aims to improve resource 

utilisation by moving code closer to the information it must process. Device mobility, 

enabled by wireless network technologies, allows users to access network resources while 

on the move. Although certain aspects of the problem are different, they share in common 

the need to address access control, authentication, security and privacy . 

• Intelligence refers to attempts to automate complex processes. In this respect, providing 

mechanisms for programs to reason about their environment, and negotiate with other 

parts of the system at a higher semantic level, is paramount if applications are to be able 

to adjust to changes and pursue tasks without guidance by users or detailed control by 

network administrators. 

A number of technologies have been developed to address some of these issues, especially 
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in relationship to dynamic networking and mobility. They range from new internet protocols 

(IPv6 [70], IPsec [131]), technologies enabling dynamic networks (Jini [5], UPnP [64]) and 

dynamic service discovery (Web Services [220], UDDI [23]) to higher-level standardisation 

efforts (RDF [85], Semantic Web [25], OWL-S [4]). Combined, these technologies can form 

a formidable toolkit, providing many of the pieces required for creating adaptive distributed 

systems. 

At the technological level, therefore, some degree of integration has been achieved (although 

clearly more is needed). At the conceptual level, however, the issues relevant to dynamic net

working, mobility and intelligence draw on diverse and distinct areas of research and develop

ment, and some overarching framework is necessary. For developers, this conceptual framework 

can make explicit the interconnections between the technologies described above. This is im

portant, for without it there is likely to be a redundancy of approach, with technologies and 

applications in one subfield being reproduced (in very different terms, and with different solu

tions) in another. In the worst case, this can also lead to poorly-designed systems that are then 

hard to maintain and upgrade. 

In our view, agent-based computing is well suited to provide this conceptual grounding. In the 

next section we examine the argument for its suitability and identify some of the challenges, both 

in general terms as well as with specific relevance to heterogeneous computing environments. 

1.4 Agent-Based Computing 

In Section 1.2, we mentioned several examples of agent-based applications that have already 

been developed in an attempt to tackle the problems posed by the emerging computing environ

ments. In part, this is proof of the appeal of the paradigm as a basis for systems involving the full 

range of concepts described in Figure 1.1. As Jennings [120] argues, agent-based approaches 

offer several qualitative advantages over conventional approaches for dealing with complex sys

tems.3 The main abstraction offered by this paradigm is that of an agent as an encapsulated 

computer system, situated in an environment and capable of independent problem-solving ac

tion [120]. It is largely agreed that the predominant distinguishing characteristics of intelligent 

agents are autonomy (agents having some form of control over their actions), social ability (the 

ability to interact with other agents or humans), pro-activity (goal-directed behaviour) and reac-

3Nevertheless, Jennings also acknowledges that there is no quantitative data to back the claim. 
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tivity (the ability to sense and react to the environment) [232]. Large, distributed systems can 

then be decomposed in terms of interacting agents, leading to multi-agent systems. The aim is 

to make as few assumptions as possible about the state of the environment in which agents will 

operate, and enable agents to dynamically interact with other agents as needs arise. As such, the 

organisation and relationships between individual components of the system can much better 

reflect the true nature of dynamic, heterogeneous environments, and are thus better able to cope 

in them. 

Despite its apparent suitability and limited adoption, agent-based computing has yet to mature 

as a mainstream paradigm on a par with object-oriented computing, which is now almost uni

versally accepted as the de-facto paradigm for software development. The reasons for this are 

multi-faceted, ranging from issues directly related to the maturity of the technology to issues 

relating to the difficulty of organisations changing their established development processes. In 

the next subsection we discuss some of the general challenges facing agent researchers as they 

have been identified in the relevant literature. 

1.4.1 Challenges for Agent-Based Development 

A central problem for agent development is the lack of clarity in defining the exact relationship 

between agent systems and other software paradigms, most importantly object-oriented develop

ment [231]. This makes it harder for developers to understand exactly what agent development 

brings to their application development toolbox that could not already be achieved through a 

purely object-oriented approach. Coupled to this problem is the lack of a well-defined agent 

methodology. Although there are a number of methodologies available [138], none have man

aged to be adopted in a convincing fashion by industry. The two issues are interrelated because, 

for a convincing methodology, and a satisfying account of the difference between agent-based 

development and other approaches, there should be some agreement on the basic building blocks 

of agent development [231]. Sabater et al [189] and Lind [136] also identify this as a problem 

and argue that more conceptual frameworks are required that directly support the practical de

velopment of agent systems. 

Wooldridge and Ciancarini argue that this lack of consensus may be further complicated by the 

use ofUML [185] as a modelling language that was intended for object-oriented systems. Inter

estingly, recent developments within the agent community related to the FIPA standards body4, 

4http://www.fipa.org/ 
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have led to more work on the use of UML for the design of agent systems5, while related work 

is examining a variety of alternative notations6 as well as meta-modelling notations 7 • However, 

such work is in its early stages and there is stiII a lively debate about the suitability of any single 

approach. 

Both from the above observations and from similar observations of Bradshaw et al. [32] and, 

more recently, Winikoff et al. [227], it appears that one of the key problems is a lack of clarity 

relating to how basic concepts are understood and realised in practical agent systems, through 

the development process and in the systems themselves. By basic concepts, we mean the con

cepts that underpin all agent systems, such as how agents and the relationships between them 

are modelled at an abstract level. Such models are necessary for understanding the relationships 

between agents and objects, for understanding the underlying principles of agent-based comput

ing, for providing methodologies and routes to implementation, and for offering well-founded 

development toolkits. 

Although there are several examples of agent-based applications, and several underlying models 

for use in agent systems, there is a general lack of connection between the two, since applica

tions are typically developed arbitrarily, providing mostly instance-specific knowledge. Without 

such links it becomes difficult to establish reusable models of agent systems, since there is no 

common foundation. Crucially, reusable models can act as a strong point of reference for the 

wider range of agent research, allowing developments in areas such as negotiation, coordination 

and intelligent reasoning to be built on top of them. 

1.4.2 New Challenges 

In addition to the problems described above, there is also a set of challenges relating to the devel

opment of agent-based systems in heterogeneous environments. These challenges are of a more 

practical nature, since they deal with issues of direct concern to any application development 

effort in such environments, irrespective of whether it adopts an agent approach. 

Dealing with such practical challenges is one of the key motivating principles of our work. In 

development environments in which the culture of rapid application development is overpower

ing, abstract models are often seen as a hindering rather than facilitating influence. Thus, while 

5http://www.auml.org/ 
6http://www.pa.icar.cnr.itlcossentino/FIPAmeth/ 
7http://www.fipa.org/activities/modeling.html 
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we do propose such abstract models for agent systems, we recognise that we must also provide a 

clear path from the models to implementation in a coherent and structured fashion. In particular, 

we aim to develop models that address the following issues, which we consider to be central in 

this context. 

• The wide variety of application domains, and the heterogeneity of operating platforms 

within any single application, creates the need for constructing a variety of different types 

of agents, each reflecting the particular application needs and operating environment con

straints. In order to deal with this variety, application developers are forced to adopt 

several approaches at the same time. For example, integrating agent development for both 

mobile and desktop devices is not currently supported at the conceptual level, even though 

it is technologically feasible. Mobile devices are not able to support continuous operation, 

and have limited computational power, which makes the ability to save state information 

on the device, for later use to resume operation, a challenge. The design of agents for 

such devices must deal directly with such challenges. 

• Dynamic environments and changing user demands create a need for applications to be 

able to easily adapt. This refers both to the need for reconfiguring individual agents and to 

the manner in which a multi-system as a whole operates. The ability to reconfigure agents 

at run-time should not remain just a possibility at an implementation level, but should also 

be supported at a conceptual level. 

• The large number of devices and their diverse capabilities will inevitably lead to several 

ways in which agents could cooperate to solve common problems as well as to several 

areas where conflicts may occur as each agent attempts to achieve their own goals. The 

challenging aspect is effectively identifying such opportunities or conflicts as the system 

develops, and applying management to ensure that conflicts are avoided or opportunities 

for cooperation are exploited. 

1.5 Research Aims 

The shortcomings described above cover a wide range of issues, from the construction of in

dividual agents to the way in which relationships between agents are modeled and understood. 

The unifying thread between them is that they can be characterised as issues relating to the in

frastructure, i.e. the basic building blocks, required to develop multi-agent systems. By this we 
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mean that they are not problems that occur only within a specific application, but are weaknesses 

inherent in many existing models of multi-agent systems that are developed in ad hoc ways. We 

argue that future development of agent systems can only progress the state-of-the-art if it builds 

on current work and is supported by a technical infrastructure that corresponds to principled 

theoretical models (or conceptual infrastructure). These theoretical models should provide the 

necessary abstractions to support agent-based systems development, as weI1 as explicating the 

relationships between models of individual agents and models of interaction between agents. 

Such conceptual infrastructure should be based on two overarching principles. Firstly, the mod

els developed should be applicable across a range of domains and the resulting artifacts should 

be reusable across application and domains. Not only does this enable alternative solutions to 

be described and contrasted through a common set of concepts, but it also benefits development, 

since experience gained during application development for one project can be transferred to 

other projects. Secondly, key to all models of multi-agent systems, and underpinning them is 

support for cooperation. The conceptual infrastructure should support the development of mech

anisms for cooperation between agents through models that enable them to describe and analyse 

the interactions between agents while taking into account the dynamism and heterogeneity of 

the environment. Given these overarching principles, this thesis aims to achieve the following 

distinct and clear goals. 

1. To provide conceptual infrastructure for building agent systems that is suitable for use in 

the conceptual elaboration and design of agent systems, and in the technical infrastructure 

for construction of agent systems. This facilitates both reasoning about agent systems and 

agent systems development. We can divide this aim into two parts. 

(a) To provide abstract models of agents that allow us to capture the wide range of 

different types of agents that exist in heterogenous environments. The ability to cap

ture the entire range is important because it means that the theoretical models are 

sufficient to model applications, ensuring they will not become irrelevant to devel

opment. 

(b) To develop a technical framework (which we might also consider to be a develop

ment or construction toolkit) that provides a clear illustration of how the conceptual 

framework can find practical implementation.8This technical framework should sat-

8We clarify that our aim is not to develop a methodology for agent-system development but simply illustrate 
through a practical implementation how the abstract concepts introduced can be implemented. 
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isfy the foIIowing aims. 

I. It should make use of the abstract models, and make explicit the links between 

the abstract models and their use within the technical framework. 

11. Similarly to the abstract models, it should provide a unifying way of specifying 

a range of agents architectures to suit the different domains and applications. 

2. Cooperation involves the participation of multiple agents in achieving some overarching 

objectives, and there are already many mechanisms to facilitate this. However, hand

in-hand with facilitating cooperation is the need to control agent behaviour to prevent 

undesirable interactions. Although there is a variety of mechanisms for achieving this, 

they typicaIIy focus on either just the technical means or on restricted cases where some 

strong assumptions about the types of agents can be made. They do not provide an analysis 

to determine when such cooperation or interference is likely given the current state of the 

environment and the agents within it. Thus, we aim to develop tools to enable the analysis 

of potentiaIIy cooperative or undesirable situations, and of the possible configurations that 

might achieve the desired results. This can also be divided into two parts, as follows. 

(a) To develop a model for interactions between agents and relate such a model to the 

goals of individual agents so as to be able to reason about relationships and how 

cooperative interactions or undesirable interactions may be identified. 

(b) To use this model, to provide a complete characterisation of the possible relation

ships between agents that can act as a guide for enabling: 

i. system design and analysis by designers; 

ii. and run-time identification of, and reasoning about, relationships between agents 

so that agents can better adjust their behaviour to deal with changing conditions 

without external intervention. 

3. As already mentioned, a central concern is that there must be clear links between abstract 

models and their practical implementation. Thus, throughout the thesis we aim to provide 

examples of the use of the models to sol ve practical problems so as to illustrate the utility 

these models have to offer application development in general. 
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1.6 Research Approach 

In order to meet our aims, it is important to establish an approach to the task at hand that will 

ensure, as far as is feasible, that the results remain relevant. In this respect, we recognise that 

there are several possible paths to follow in devising models for agent infrastructures. For exam

ple, current implementations of applications could be studied and common patterns identified, 

or a theory could be developed from scratch or adopted from existing work and then refined 

following its application to real world problems. 

In essence, our approach is a combination of those above. We begin with the belief that creat

ing new models from scratch, without basing them on any existing work, is probably counter

intuitive since agent research has reached a certain level of maturity, and ignoring existing work 

would simply add to the current proliferation of alternative models. Rather, we aim to adopt an 

existing approach, and refine it by identifying the points at which it does not address our needs 

as outlined above. The criteria to determine which approach to choose will be based on how 

closely it can be aligned with our aims. At the same time, the manner in which we proceed to 

introduce new concepts or refine existing ones is informed by the experience gained through the 

numerous agent applications and toolkits that are available (several of which are reviewed in 

Chapter 2). Finally, the resulting models are themselves implemented to demonstrate how one 

can arrive from the abstract models at their actual implementation. 

An overarching guideline for our work is that any attempt to provide abstract models of multi

agent systems must strike a careful balance between providing sufficiently practical models to 

aid implementation without, however, closing possible avenues in terms of agent architectures, 

communication and coordination mechanisms. 

1.7 Thesis Overview 

Our research is presented in 7 chapters, including this one, organised as follows. In Chapter 2 

we review existing work that can contribute to the discussion of appropriate models to support 

agent-based development. The review ranges from an examination of architectures for individ

ual agents, to issues central to multi-agent systems, such as models of interaction, discovery, 

and regulation. 

A detailed analysis of the SMART framework is provided in Chapter 3, since it underpins all 
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subsequent work in the thesis. We identify SMART'S shortcomings in relation to our aims, and 

outline how we extend and refine it to address them. As such, Chapter 3 sets the scene for the 

rest of the thesis. 

Construction of individual agents is dealt with in Chapter 4. We present an agent construction 

model (actS MART, which is based on the abstract agent model of SMART), and justify our design 

choices through a discussion of the criteria we believe any agent construction model should ful

fill in order to address our stated aims. In addition, we provide examples of the use of actS MART 

through the specification of an architecture for an agent participating in auctions, and generic 

architectures for negotiation and argumentation agents. 

The issue of relationship identification and characterisation is examined in Chapter 5, providing 

the underpinning for supporting cooperation in multi-agent systems. We present a model of 

agent interaction and use it to derive a typology that describes all possible relationships between 

two agents. Furthermore, we provide a typology of goals in relation to an agent's capabilities 

and explain how that can be used to further enhance relationship analysis. 

The work of Chapters 4 and 5 is evaluated in Chapter 6 through the development of an applica

tion based on a ubiquitous computing scenario. In order to support agent operation within such 

an application we develop architectures for middle agents performing capability brokering, as 

well as relationship analysis agents that make use of the tools of Chapter 5 to support coopera

tion between agents. We also provide examples of how actS MART enables architectures to adapt 

to their operating environment. Some of the details of the architecture specification developed 

in this context are provided in Appendix A. 

Finally, Chapter 7 provides a summary of the work and our conclusions, outlines our key con

tributions, discusses the limitations of the work and its potential to underpin further research. 





Chapter 2 

Models for Agent Infrastructures 

"The detennination of shared paradigms is not, however, 

the detennination of shared rules." 

Thomas S. Kuhn (1922-1996); Science philosopher and historian 

2.1 Introduction 

In this chapter we identify, review and relate work that can inform our stated aims of provid

ing reusable models for individual agent construction and for identifying and reasoning about 

relationships between agents. In order to achieve this, the review spans several fields that are tra

ditionally viewed separately. This is an inevitable side-effect of our attempt to provide a broad 

foundation for the subject of agent-based system construction that ranges, in breadth, from indi

vidual agent architectures to models of agent interaction and, in depth, from abstract theoretical 

concepts to practical implementations. 

As a result, our first task is to identify a suitable schema that connects the various issues so as 

to impose some order in the method through which we proceed with the review. The task is 

not trivial as the richness and variety of agent research often defies clear categorisations [137]. 

We recognise, therefore, that any classification is significant as far as it fulfills the purpose of 

ordering the presentation of work, rather than identifying true distinctions between different 

types of research. The schema we introduce attempts to relate issues both in breadth and in 

depth. The former is achieved by adopting a division of issues as suggested by Zambonelli et 

al. [236], who propose a tripartite division between intra-agent, inter-agent and organisational 

17 
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structures. The latter is done by clearly distinguishing between research that is based on abstract 

models and research that is based on empirical experience through practical implementation. 

With the schema in place, we then examine each aspect in turn and relate them, both within each 

division, as well as between divisions. We conclude by identifying the missing links between 

the different strands of research and discuss how our own work attempts to address some of 

these shortcomings. 

2.2 Review Schema 

As mentioned in Chapter 1, we view agent infrastructure as providing the basic building blocks 

required to enable an operational multi-agent system in a heterogeneous and dynamic computing 

environment. These building blocks refer both to abstract concepts, and to practical implemen

tations in existing computing environments. This section provides a classification of the various 

research issues that we view as relevant to providing such agent infrastructure within the limits 

of the aims of this thesis. 

We begin by defining the breadth of research issues through Zambonelli et al.'s [236] division 

of issues into three related constituents, as described below, and illustrated in Figure 2.1. 

Intra-agent At the intra-agent level the focus is on individual agents and their structure. We 

investigate the variety of proposals of how to characterise and construct agents, which 

range from specific agent architectures, such as the Belief-Desire-Intention architecture, 

to proposals relating to a more generalised understanding of agents, such as Luck and 

d'Inverno's SMART framework [82]. Both of these aspects inform the task of establishing 

the appropriate infrastructure for agent systems at this level. 

Inter-agent At the inter-agent level we examine models of interactions between agents and how 

they can facilitate reasoning about relationships. We do not focus on specific communica

tion or coordination mechanisms, as these go beyond the remit of this thesis and are issues 

that necessarily must be based on an underlying model of interaction, which should en

able developers to reason about what are the most appropriate coordination mechanisms. 

In addition, we also consider the discovery of agents within dynamic environments, as it 

forms a fundamental aspect of agent infrastructure for dynamic and heterogeneous envi

ronments. 
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FIGURE 2.1: Intra-agent, inter-agent and organisational levels 
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Organisational structures Finally, at the organisational level we review work that enables the 

definition of appropriate structures for the control of agent systems beyond individual 

agent architectures and the emerging agent interactions. These issues cover work on poli-

cies, institutions and norms. 

As indicated, the research contributions to these different areas range from abstract frameworks 

to practical tools. We distinguish abstract from practical approaches by the degree to which 

they are tied to, and arise from, the implementation of a particular system. Often the distinction 

is clear by the presentation of the work, where concepts from a practical implementation are 

described through a presentation of the implementation, while more abstract work is presented 

in isolation and, typically, with the aid of a formal mathematical language. Of course, there are 

some examples of work which offer both a formal presentation of the models used as well as a 

practical implementation. 

We primarily examine research that falls under the broad headings of agent theories, agent 

methodologies and agent toolkits attempting to extract from each the issues highlighted above. 

Furthermore, with direct reference to the organisational level we review work on institutions, 
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norms and policies, which deals with the development of appropriate regulatory frameworks for 

agent-based systems. 

Agent theory is considered to be anything that provides a conceptual model of agents and their 

operation that is clearly divorced from specific implementation technologies, such as program

ming languages, operating systems, and networking protocols. Relevant examples of such work 

are BDI-based agent models [177] or the SMART framework [81]. We consider agent method

ologies as dealing with formalising the process of moving from a problem specification to the 

design of a solution. Now, in order to do this an agent methodology must either adopt or define 

some notions of agents and their operations, since these are the first order components of the 

design. It is this aspect of agent methodologies that we investigate. Relevant examples are the 

Gaia methodology [233] or DESIRE [37]. Finally, toolkits are essentially software designed to 

accelerate the task of developing agent-based systems by providing a large portion of the re

quired lower-level infrastructural support, and in recent years, there has been significant work in 

this direction. 1 Although often not explicitly defined, most toolkits encompass some conceptual 

model relating to agent operation. As such, they are particularly relevant to our research since, 

by virtue of their purpose, they usually tackle a large portion of the issues we have highlighted 

in the introductory chapter as relevant to our research. 

2.3 Intra-Agent Issues: Models of agents 

In this section, we review work that can provide a suitable basis for the description and con

struction of single agents. We consider both abstract approaches and specific agent architec

tures, ranging from reactive to deliberative. We begin with a review of the work of Russel and 

Norvig [186] and Luck and d'Inverno [82], both of which take a broader view of the problem 

of modelling agents. Subsequently, we look at the BDI model and its various implementations, 

as it is one of the most influential approaches in agent design and a good example of delib

erative approaches to agent architecture. Then, Brook's Subsumption architecture provides an 

example of a reactive architecture, while TouringMachines [92] and INTERRRAP [96] provide 

examples of hybrid architectures. Subsequently, we review the work of Sabater et al. [189] on 

engineering agents, which makes use of multi-context logics, and DESIRE [37] as examples of 

component-based approaches to agent architecture design. Finally, we examine architectures 

from agent toolkits, so as to gain an understanding of the state of the art at the level of im-

I Agentlink.org lists, at least, 100 different toolkits. 
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FIGURE 2.2: Schema of agent models reviewed 

plemented systems. The various models reviewed can be categorised as shown in Figure 2.2. 

They are distinguished along the lines of architecturaIIy-neutral models (which do not constrain 

development to specific architecture types), deliberative architectures (which make use of and 

reason over explicit representations of the environment), reactive architectures (which do not 

depend on explicit representations of the two), and hybrid architectures (which make use of 

both reactive and deliberative approaches). 

2.3.1 Russel and Norvig 

In the textbook Artificial Intelligence: A Modern Approach, Russel and Norvig describe agents 

as "anything that can be viewed as perceiving its environment through sensors and acting on 

that environment through effectors" [186]. They also differentiate between autonomous and 

non-autonomous agents by stating that if an agent acts without paying attention to its percepts, 

then it lacks autonomy [186]. The justification behind this form of distinction is based on the un

derstanding that if an agent's actions are completely pre-determined by what Russel and Norvig 

caII "build-in knowledge", then there is no space for a deviation from the instructions of the 

designer. Russel and Norvig view this as transferring the ownership of intelligence to the de

signer and not to the agent itself. Although such a distinction is appealing in its simplicity, it 

is also naive in its conception, since based on the same rationale one could say that the wayan 

agent interprets environmental information depends on the rules placed by the designer within 

the agent, therefore enabling one to say that the inteIIigence always lies with the designer. 

In any case, Russel and Norvig go on to state that the task of building useful agents is seen as 

synonymous to building rational agents, where rationality is described as the attempt to "do the 

right thing" [186]. In order to evaluate the extend to which the "right thing" has been done, 

they introduce the notion of a perfonnance measure as the indicator of an agent's success in 

achieving a task. 
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With these basic principles in place, Russel and Norving, continue to define different types of 

agents, described below. 

• Reflex agents are those that simply map stimuli to responses. 

• Agents with state extend reflex agents by keeping a record of their actions. 

• Goal-based agents act towards achieving a desirable situation by reasoning about the state 

of the world and attempting to determine which actions will change that state to bring it 

closer to the desired state. 

• Finally, utility-based agents are able to determine which of a possible set of desirable 

goals would be more desirable based on a performance measure. 

Based on this model, Russel and Norvig map out the relationships between different aspects of 

artificial intelligence research (planning, knowledge, learning and communicating) and agent

based systems. In essence, agents are viewed as the software engineering paradigm for the 

application of artificial intelligence techniques. 

2.3.2 SMART 

Luck and d'Inverno [82] propose a conceptual model of agent-based systems that lies at a high 

level of abstraction, making very few assumptions about the internal structure of agents, prefer

ing to focus on providing means for describing different models within a common framework. 

SMART (Structured, Modular Agent Relationships and Types) provides an encompassing struc

ture that clearly differentiates between agent and non-agent entities in the environment, and 
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specifies agents in a compositional way. In essence, the framework proposes a four-tiered hier

archy that includes the generic and abstract notion of an entity from which objects, agents and 

autonomous agents are, in turn, derived. In Figure 3.3, the Venn diagram describes the different 

levels in the hierarchy, and outlines the ways in which they are related. Though we will not offer 

a detailed exposition of the framework, we review the key concepts below. 

Entities are defined in terms of sets of attributes, where attributes are describable features of 

the environment. Objects are then simply entities with sets of capabilities, where capabilities 

are actions that objects can perform to change the state of the environment. In turn, agents 

are objects with sets of goals, where goals are defined as desirable environmental states, and 

autonomous agents are those agents able to generate their own goals through the motivations 

that drive them. Here, motivations can be regarded as preferences or desires of an autonomous 

agent that cause it to produce goals and execute plans in an attempt to satisfy those desires. 

In addition to these basic levels, and in order to further explicate the consequences of their 

framework, Luck and d'Inverno introduce two additional refinements: neutral objects (Nob

jects) are objects that are not agents, and server agents (SAgents) are agents that are not au

tonomous [139]. The relationship between neutral objects and server agents is complementary, 

since neutral objects give rise to server agents when they are ascribed goals by other agents in 

the environment. Once these goals are achieved or they are no longer feasible, server agents 

revert back to neutral objects. 

Luck and d'Inverno have applied this model in a concerted effort to translate alternative ap

proaches to a common set of ideas [75, 79, 76, 77], giving a strong indication of the value of a 

common high-level approach as a means of consolidating different strands of work within agent 

research. 

2.3.3 Belief-Desire-Intention 

The Belief-Desire-Intention (BDI) model has found widespread acceptance within the agent 

research community, and its adoption and use by a large number of researchers make it the most 

widely studied model for agent architecture design. The approach underpinning the BDI model 

is based on the explicit representation of an agent's beliefs (knowledge about the world), desires 

(what it would like to achieve), and intentions (what it will try to achieve) as data structures that 

determine the operation of the agent. These data structures form the core around which the BDI 
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FIGURE 2.4: The IRMA agent architecture. (Based on [33]) 

architecture can be developed. The overarching goal of a BDI architecture can be summarised as 

connecting the data structures described above to appropriate decision-making algorithms that 

will determine which desires the agent will choose to achieve, transforming those desires into 

intentions, based on its beliefs. A BDI agent will attempt to achieve intentions until they are 

satisfied or they are no longer achievable [57]. Much work has gone into developing practical 

systems and formal models for BDI agents and in the following sections we briefly look at some 

of the most influential work in this area. 

IRMA 

Bratman et al. developed one of the first sophisticated examples of a BDI architecture, drawing 

from their work on intentions, plans and practical reasoning [33]. Their IRMA architecture (In

telligent Resource-bounded Machine Architecture), primarily deals with situations where agents 

may not always have the resources to make optimal decisions, and have to be able to choose sub

optimal ones. An overview of the IRMA architecture is shown in Figure 2.4. The operational 

cycle begins with perception of the environment and the update of Beliefs. The Opportunity 

Analyser then checks whether, based on the updated beliefs, any goals have been achieved, 
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whether it can still pursue existing intentions, or whether alternative plans can be proposed. The 

Means-End Reasoner, uses the Plan Library and the current beliefs to evaluate what plans can 

be adopted. Now, plans from both the Means-End Reasoner and the Opportunity Analyser pass 

through a filtering process which is made up of the Compatibility Filter and the Filter Override 

Mechanism. The former, checks whether any new plans are consistent with the existing inten

tions, while the latter is used in circumstances where although plans are not compatible they 

may fulfil certain properties that may necessitate that they do go to the Deliberation Process. 

The Deliberation Process determines how the current intention structure is affected by plans that 

have gone through the filtering process. Finally, the intentions structured into plans are what the 

agent should attempt to achieve through actions. 

The IRMA architecture provides several significant lessons in architecture design for agents. 

It illustrates the importance of ascertaining, through examination of beliefs, which intentions 

remain valid at each operational cycle and that certain overriding mechanisms, if chosen ap

propriately, can be very effective for agents in dynamic environments. The architecture was 

demonstrated and tested in a Tileworld simulation environment [168]. 

PRS, dMARS and AgentSpeak(L) 

Rao and Georgeff, have developed extensive formal models for BDI agents [176, 177, 178], 

based on intention logics, as well as gained experience from practical implementation of EDI 

architectures such as the Procedural Reasoning System [102] (PRS). The PRS system, illustrated 

in Figure 2.5, is based around beliefs, goals, plans and intentions. Goals correspond to the 

agent's desires. Plans prescribe courses of action that an agent can follow in order to achieve its 

intentions. Plans have triggers or invocation conditions that stipulate which beliefs and/or goals 
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must be active for a plan to be relevant. Furthermore, plans have a context that states what the 

agent must believe about the world Cas stated within an agent's beliefs) before a plan becomes 

applicable. Finally, the body of the plan prescribes which actions the agent should take. For 

example, a belief of hungry, may trigger a plan make sandwich, which is applicable under the 

conditions have toast and butter with a body indicating the action spread butter on toast. 

This work led to the more sophisticated dMARS [101] Cdistributed Multi-Agent Reasoning Sys

tem) implementation, which was used in a number of multi-agent systems applications [101]. 

D'Inverno et al. also provide a formal operational semantics for the dMARS systems, using the 

SMART framework [75]. 

Rao, went on to define AgentSpeakCL) [175], a programming language for BDI agents that aims 

to provide an operational and proof-theoretic semantics for a language that can be viewed as 

an abstraction of an implemented BDI system. AgentSpeakCL), is based on the experience of 

PRS and dMARS and was born out of a wish to provide a model for BDI agents that would 

unite theory and practice in the field. D'Inverno and Luck also provide a formalisation of this 

work, based on the SMART framework in [79]. Furthermore, Bordini et al. provide extensions 

to AgentSpeakCL), in order to enable the language to better deal with task scheduling in [29]. 

Other BDI-related work 

Several other research efforts have dealt with various aspects of agent-based systems based on 

the BDI paradigm. In [57], Cohen and Levesque, develop a theory of intention which acts 

as a departure point for many BDI systems. Singh expands on that work, criticising Cohen 

and Levesque in [198], and developing his own approach on the subject in [199]. Jennings, in 

[118], provides the specification and implementation of a BDI agent system. Shoham, in [194], 

presents the AGENTO programming language, which is one of the first agent programming 

languages and geared towards BDI agents. Wooldridge, in [230], presents a testbed for exper

imenting with agent-based systems, where agents are based on a BDI-paradigm, adopted from 

Shoham, and formally defined. Other systems for BDI agents are the JAM system [117] and 

the commercial JACK system [116, 44]. Finally, Kinny et al. suggest a methodology for BD! 

systems in [132] as do Padgham and Winikoff [163]. 
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2.3.4 Subsumption Architecture 

The Subsumption architecture, was proposed by Brooks [40], in an attempt to provide an agent 

architecture which did not depend on the explicit representation of the environment within the 

agent architecture. Deliberative approaches are criticised by Brooks [41] as not effective when 

having to deal with truly dynamic and complex environments, where the attempt to explicitly 

represent all the relevant information about the world within the agent architecture becomes an 

intractable task. Furthermore, based on his experience of development of mobile robots that 

need to react at real-time, Brooks identified three central requirements for agents [40]. 

1. Agents should be able to cope with multiple goals at the same time. Clearly, in a mobile 

robot scenario, where robots may need to navigate through a complex environment while 

trying to carry an object to a specific destination or while still being able to receive new 

instructions, the ability to deal with multiple, possibly conflicting goals is paramount. 

2. Agents should have multiple sensors to be able to receive the various kinds of information 

the environment provides. In a mobile robot setting these could be infra-red cameras, 

acoustic sensors, and so forth. In purely software-based setting this may be the ability to 

receive messages from other agents, sensors for measuring network bandwidth, available 

disk-space, and so forth. 
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3. Agents should be robust. When relatively unexpected events take place, such as the fail

ure of components or dramatic changes in the environment, the agent behaviour should 

degrade gracefully rather than bring about an abrupt general failure of the agent. 

As an alternative, Brook's suggests that we consider agents as embodied entities whose be

haviour is affected by the interactions of a series of, relatively, simple control layers, each one 

independent of the other and each one focusing on a specific task. The layers operate concur

rently and all have access to sensor information and actuators. Layers can access information 

from layers below them and can suppress the action of layers below them, but are unaware of 

layers above them. 

An example architecture using this approach is illustrated in Figure 2.6. Here, the different 

capabilities of a robot are decomposed into the layered structure, with more basic capabilities 

such as avoid objects or wander at the bottom of the layer stack, and more complex ones such 

as reason about behaviour of objects and plan changes to the world at the top. 

Starting from this basis Brooks and his team at the MIT Artificial Intelligence lab have devel

oped a series of robots that prove the claim that intelligent behaviour can exist without the use 

of internal representation [3]. One of the significant benefits of the approach is that each layer 

can be tested in isolation to the others, ensuring that it works appropriately before placing it 

within a more complex system. The agents produced are also robust since if complex layers fail, 

the more simple basic layers will still enable the robot to function. Nevertheless, this work has 

also shown that for certain types of actions, some level of internal representation is essential. 

For example, it is hard to see how long-term goal directed behaviour in a social environment, in 

which interaction with other agents can only take place through direct communication, can be 

achieved without some internal knowledge [66]. Furthermore, systems based on the subsump

tion architecture tend to be quite complex, and there are no clear guidelines of how layers should 

be stacked and the interaction between them managed. 

2.3.5 Hybrid Architectures 

The limitations of both deliberative and reactive approaches have led to the development of 

models that incorporate features from both, leading to hybrid designs. The basic tenants are 

very similar since agents are still considered as goal-directed entities that interact with the en

vironment via sensors and effectors. The innovation lies at the architecture of these agents, 
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where both reactive and deliberative elements are present. We examine two systems that act as 

exemplars for the alternative approaches to hybrid architectures. 

TouringMachines 

TouringMachines was proposed by Ferguson [92], as an architecture for autonomous agents 

situated in dynamic environments. Ferguson recognises that agents in such environments must 

be able to effectively monitor both expected and unexpected changes, and be able to deal with 

them in the short-term as well as reason about how they will affect long-term goals. 

As a response to these concerns, Ferguson proposes the TouringMachines architecture. It has 

three main layers, each handling one significant aspect of agent action. The reactive layer rep

resents the agent's direct responses to stimuli, the planning layer handles the generation and 

execution of plans while the modelling layer handles higher level societal aspects such as mod

elling other agents in the environment. These layers all have access to sensors and actuators and 

can communicate with each other. In addition, there is a set of context-sensitive rules imposed 

on all layers in order to solve conflicts between decisions of different layers. 

INTERRRAP 

INTERRRAP [96] takes a similar approach to TouringMachines by mixing deliberative and reac

tive components, but while TouringMachines is a horizontally layered architecture, since every 

layer can communicate with every other, INTERRRAP is a vertically layered architecture more 

similar to Brooks's Subsumption architecture. There are three levels of control starting from the 

behaviour layer, moving up to the plan-based component and finally a cooperation component. 

Each level communicates with the one above and below it, while each level also has access to 

a specific knowledge base (KB). The world model KB represents knowledge about the agent's 

specific situation and corresponds with the behaviour layer, the planning KB represents goals 

and plans communicating with the planning layer while the cooperation KB represents the so

cial knowledge, such as joint plans, and communicates with the cooperation layer. Actions are 

accessed via the behaviour layer while sensor information filters up from the world model KB. 
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2.3.6 Sabater et al. 

Sabater et al. [189] have developed a model for constructing agent architectures in response to 

what they identify as a lack of proposals of methodologies that relate designs to agent archi

tectures and their practical implementation. They attempt to address this problem within the 

context oflogic-based agents that make use of multi-context logic reasoning [104]. 

Their model allows for the modular composition of agent architectures, where each unit (or 

component) may use a different logic to encode the problem-solving knowledge of the agent. 

Logics in this sense are defined as declarative languages, each with a set of axioms and rules 

of inference. Units are connected by bridge rules that translate one logic-based representation 

to another. Units and bridge rules can be grouped together to form modules which provide a 

further level of abstraction that makes it easier to handle large numbers of units, and modules 

can also be connected via bridge rules. Modules communicate by multicasting bridge rules 

along a communication bus. 

This basic model is further refined with two control elements which are associated to bridge 

rules. The consuming element causes a rule to 'move' between units. This enables the modeling 

of changing state between units. The time-out element indicates that there is a delay between 

the instant where the conditions of a bridge rule are satisfied and the activation of the rule. The 

justification for this control element is that it increases the expressiveness of the construction 

model since it allows for rules not to be acted upon if the formulas are removed before the 

time-outs. 

The Sabater et al. construction model, through its modular approach and simplistic framework 

that enables modules to communicate goes someway towards providing a viable generic agent 

construction model. 

2.3.7 DESIRE 

DESIRE (DEsign and Specification of Interacting Reasoning Components) [35, 36, 37] aims to 

aid in the specification of complex software systems when viewed as interacting components. 

The process of system design involves task specification, identification of what information is 

exchanged, sequencing of tasks and definition of appropriate knowledge structures. 

Agent architectures are composed as sets of interacting processes that are expressed through 
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components. For each process the designer must identify the types of information used as input 

and resulting as output, which define the input and output interfaces of the components. Pro

cesses can be modeled at different abstraction levels and are implemented as abstraction/spe

cialisation relations between components, leading to components being composed of other com

ponents. The most primitive types of components are considered to be components performing 

tasks such as calculation, information retrieval, and so forth. Processes can then be composed to 

form an architecture, where composition is described by the relationships between components, 

the possibilities of information exchange between processes and the task control knowledge 

used to control processes and information exchange. 

Using this technique Brazier et al. then go on to define a number of possible agent architectures. 

In Figure 2.7 we illustrate the use of DESIRE to specify a generic BDI Agent. The main aspects 

of the BDI architecture (belief, desire and intention/commitment) are modelled as components 

with their inputs and outputs specified. These components can then be further refined; for ex

ample, the intention and commitment component is actually the result of the composition of a 

goal detennination and plan detennination component. 

2.3.8 Agent Architectures in Toolkits 

So far we have looked at abstract agent models and generic architectures, outside the context 

of any specific agent development environment. In this section we examine some of the most 

representative architectures developed within the context of practical agent toolkits and the un-
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derlying motivations for those architectures. The toolkits investigated where chosen for their 

maturity (in terms of years of development and breadth of application in a variety of domains), 

popularity (in terms of their prominence within agent research literature), and as exemplars of 

the variety of approaches. 

ZEUS 

The ZEUS agent development toolkit aims to provide both a development environment as well 

as a development methodology for multi-agent systems [155]. ZEUS is the result of experience 

gained while developing two real world multi-agent systems, one for business process engineer

ing [157] and the other for multimedia information management [211]. It abstracts the common 

features of these two systems based on a philosophy which calls for a separation between do

main specific problem solving and agent-level functionality, a friendly graphical interface for 

development, an open and extensible design and a strong support for standards. This last point 

is considered especially critical since without it they claim that industry wide uptake cannot be 

achieved. 

According to the ZEUS perspective, agents are deliberative, so they reason explicitly about 

which goals to select and which actions to perform. They are goal directed, so any action 

performed is in support of a specific goal. They are versatile, so they can perform a number of 

goals and engage in more than one task. They are truthful, so when dealing with other agents 
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they always state the true facts. Finally, agents are temporally continuous, so they have a notion 

of time and can synchronize based on a clock. 

Based on this approach, the ZEUS toolkit provides a set of components that represent spe

cific agent functionalities such as planning and scheduling algorithms, agent communication 

language capabilities (using the FIPA ACL) and communication protocol implementations, on

tology support and coordination. 

The assembly of these components readily leads to the construction of what is termed a generic 

ZEUS agent, illustrated in Figure 2.S. Agents can send and receive messages, through Mail

box and Message Handler components. A Resource Database component has a list of the re

sources available to the agent, with the possibility to directly interface with external databases. 

Through the Execution Monitor component, agents can interface with external systems such as 

legacy systems and also keep track of actions. The Coordination Engine component handles the 

agent's goals, deciding which to follow or abandon. It also handles interaction with other agents, 

based on the available interaction protocols. Information about other agents, such as name and 

abilities, is kept in an Acquaintance Database component. Finally, the Planner/Scheduler com

ponent has the task of producing plans and the timings for when actions defined in the plans 

should be performed in reference to specific goals, as requested by the Coordination Engine. 

This generic agent has all the rudimentary tools necessary to form the base of an agent func

tioning in a variety of domains. Although it is possible to provide different implementations for 

these building blocks, and therefore obtain different types of generic agents, it does not seem 

possible to deviate significantly from the organizational structure of the intercomponent rela

tionships. Nevertheless, since the code for each of these components is provided as part of the 

overall ZEUS package, it is possible to configure them in any manner desired or add or replace 

existing components. 

RETSINA 

RETSINA (Reusable Environment for Task Structured Intelligent Network Agents) is a multi

agent systems toolkit developed over a period of years, and at least since 1995, at the Intelligent 

Software Agents laboratory of Carnegie Mellon University's Robotic Institute. RETSINA has 

been used extensively in a range of applications, such as financial p0I1folio management [164] 

and eCommerce [213]. 
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The design of RETSINA is based on two central assumptions about agent applications develop

ment [206]. Firstly, multi-agent systems infrastructure should support complex social interac

tions between agents through the provision of services that are based on predefined conventions 

on how social interaction will take place. These predefined conventions refer, mainly, to the use 

of a common communication language, protocols and ontologies. From the perspective of the 

multi-agent system infrastructure, agents are seen as black boxes, but they are expected to be 

able to participate in social interactions based on these conventions. Secondly, agents in a multi

agent system engage in peer-to-peer relationships. Any societal structures, such as hierarchies, 

should emerge through these peer-to-peer interactions, and should not be imposed by a cen

tralized approach. This is in recognition of the need to avoid a reliance on centralized control, 

and allow for truly distributed structures to emerge. These assumptions for multi-agent sys

tems development lead to a very clear separation between individual agents and the supporting 

infrastructure. 

An agent in RETSINA is understood, in abstract terms, as a standalone survivable piece of code 

with communicative and intelligent behavior. In real terms, it is understood as any piece of 

software that is able to interact with other agents, and with the RETSINA multi-agent system 

infrastructure, following the conventions defined in RETSINA. 

All agents are derived from a BasicAgent class, which provides the main functions required for 

operation in a RETSINA multi-agent system, such as message handling, logging, visualization, 

and discovery of other agents. This agent-specific functionality is separated from operation 

within specific operating environments by placing agents in an AgentShell, which provides the 

necessary interfaces for interaction with the underlying operating system. The AgentShell also 
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provides basic management functionalities such as starting up or shutting down the agent and a 

timer module. 

The reasoning and planning for agents is handled by the RETSINA Agent architecture, shown 

in Figure 2.9. It is based around the interactions between a Communication module that handles 

messages from other agents, a Planner that derives plans based on a provided set of goals and 

a plan library, a Scheduler that uses the output from the Planner to schedule when tasks will 

be performed, and an Execution Monitor that handles the actual performance of actions. These 

modules are supported by appropriate knowledge and beliefs, which are divided into Objectives, 

Task Structures, Schedules, Current Actions and a Domain Facts and Beliefs Database. 

RETSINA divides agent functionality into four main classes that are built on top of the Ba

sicAgent and represent specializations of the basic architecture to deal with different types of 

functionalities. 

• Interface Agents interact with users by receiving inputs and displaying results. 

• Task Agents carry out the main problem-solving activities by formulating plans and exe

cuting them by coordinating and exchanging information with other agents. 

• Infonnation Agents interact with information sources such as databases or web pages. The 

task agents provide the queries, and the information agents are specialized in retrieving 

the required information by interfacing with databases, the web, and so on. 

• Middle Agents provide the infrastructural support for the discovery of services between 

agents. 

IMPACT 

The IMPACT (Interactive Maryland Platform for Agents Acting Together) system [203] is 

perhaps unique in the level of detail (both formally and informally) with which its respective 

components are presented and explained. From the very outset the developers of IMPACT 

state that it is essential to have a solid view of what an agent program is and how it can be 

distinguished from other programs. In addition, they believe that agent infrastructure should 

also provide a common set of services that the agents will need as well as the required structures 

that will enable interaction between the agents and the underlying infrastructure. 



36 Chapter 2 Models for Agent Infrastructures 

Security 

Message Box 

Metaknoweldge 

ActionBase 

Function Calls Action Code 

FIGURE 2.10: IMPACT agent architecture. 

Agents in IMPACT are divided into two parts: 

• the software code, which consists of data types and functions that can manipulate those 

data types; and 

• the wrapper, which provides the actual intelligent agent functionality. 

The software code could be any software program, and represents the actual interface to the 

environment through which the agent effects change in it. The wrapper represents the actual 

agent functionality that is able to manipulate the software code according to the behavior dictated 

by the wrapper's programming. This division is the IMPACT solution to the requirement for 

being able to agentify any program through a wrapper. 

The wrapper is further divided into a set of basic components that come together to provide 

the IMPACT agent architecture, illustrated in Figure 2.10. All actions are regulated by the 

Agent Program that specifies which actions an agent should or should not perform in specific 

situations; the Agent Program defines what IMPACT terms the agent's Operating Principles. 

The Agent Program itself is defined according to an Agent Program Language that allows for a 

wide set of regulatory modalities (Do, Obliged, Forbidden, Waived and Permitted). An Action 

Base component maintains descriptions of all the actions an agent can perform, along with the 

preconditions for the execution of actions. 
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It is important to stress that IMPACT takes a wider view of what represents an action than many 

others. Everything an agent does, including tasks that are traditionally taken for granted or 

considered an integral part of the architecture, such as planning or timing, are considered actions 

that must be explicitly defined within the Action Base. Actions can be performed concurrently, 

and are regulated by a Concurrent Action Mechanism component that decides, based on the 

current agent state and desired actions, whether a composite action can be defined to achieve 

the desired actions. Concurrency is also regulated by a set of Action Constraints that explicitly 

define when certain actions cannot be performed concurrently. A set of Integrity Constraints 

specify which agent states are legal in a given context and ensure that the agent does not perform 

any actions that may violate these constraints. A Heterogeneous Query Language component 

provides the interface with the software code part of the agent. Finally, an agent is equipped 

with Metaknowledge that includes descriptions of the services the agent is able to provide, and 

beliefs about other agents, and a Message Box component that handles communication with 

other agents. 

The most interesting feature of the IMPACT agent architecture, which clearly distinguishes 

it from other architectures, is the emphasis on ensuring that the agent operates within very 

well defined parameters. The agent architecture clearly stipulates the actions that are allowed, 

integrity constraints, action constraints, and so on. This provides a multilayered solution to the 

problem of being able to guarantee "correct" behavior. Furthermore, the development process of 

agents in IMPACT also includes several consistency checks that ensure there are no conflicting 

rules, such as both forbidding and perrrtitting an agent to do something. We will not elaborate 

the details of these consistency checks here, but the interested reader can refer to the extensive 

articles on IMPACT elsewhere (see, for example, [86,87,88]). 

JADE and LEAP 

The JADE (Java Agent Development Environment) toolkit provides a FIPA compliant agent 

platform and a package to develop Java agents. It is an open source project distributed by TILab 

(Telecom Italia Labs) that has been under development since 1999 at TILab and through contri

butions by its numerous users. At the time of writing, version 3.1 is available, which implements 

the FIPA2000 specifications. The platform has undergone successful interoperability tests for 

compliance with the FIPA specifications. LEAP (Lightweight Extensible Agent Platform) is 

the result of a research project airrting to provide an agent platform that is suitable for lirrtited 
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capability devices, such as PDAs and mobile phones [135]. 

The relationship between the two projects is that LEAP is a lightweight implementation of the 

core functionalities of the JADE FIPA platform, and can be used in conjunction with the JADE 

libraries for agent development. The latest release of JADE integrates LEAP so as to provide 

a unique toolkit that enables the development of FIPA compliant agent applications on devices 

ranging from limited capability mobile devices to desktop computers. 

The JADE toolkit facilitates the development of agents that can participate in FIPA compliant 

multi-agent systems. It does not define any specific agent architectures but provides a basic set 

of functionalities that are regarded as essential for an autonomous agent architecture [22, 20]. 

These are derived by interpreting the minimum concrete programming requirements for satisfy

ing the characteristics of autonomy and sociality. Autonomy is interpreted as an implementation 

of agents as active objects (that is, with their own thread of operation). The requirement for 

sociality leads to enabling agents to hold multiple conversations on a peer-to-peer basis through 

an asynchronous messaging protocol. 

This basic single agent infrastructure is provided through an Agent class, which developers then 

extend to provide their own implementations of agents. Programs extending the Agent class 

operate within JADE containers that manage the agent lifecycle. Agents can be started, stopped, 

removed, suspended and copied. Each agent has access to a private message queue, where 

messages are stored until the agent chooses to retrieve them, and access to a set of APIs that 

allow the formulation of FIPA ACL messages. An outline of the main aspects of the agent class 

are illustrated in Figure 2.11. 

Specific agent actions take place through a concurrent task model. Each task, or behavior as it is 

termed in JADE, is an extension of the Behavior class of the JADE toolkit. Each agent has a be

havior task list, and the Agent class provides methods for adding or removing behaviors. Once 
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an agent is placed within a container and set into operation, behaviors are executed based on 

a round non-pre-emptive scheduling policy. Of course, complex tasks require a more sophisti

cated scheduling of behaviors as well as the conditional execution of behaviors. JADE provides 

models that are divided along the lines of Simple behaviors, to address tasks not composed of 

subtasks, and Composite behaviors, to address tasks made up through the composition of several 

other tasks. There are also cyclic and one shot implementations of Simple behaviors, and paral

lel, sequential and finite state machine implementations for Composite behaviors. Development 

is further aided by the provision of specific implementations of Behavior to handle basic tasks 

such as receiving or sending messages, and support for the set of interaction protocols defined 

by FIPA. 

The LEAP core for JADE offers a lightweight version of the JADE container that can operate 

on PDAs. LEAP agents use a device specific Communicator module, which handles the spe

cific connectivity protocols of the device and network at hand. Agents for limited devices use 

the same task based model as JADE agents, within the limitations of the device's processing 

capabilities. 

Others 

Our review of agent architectures within the context of agent development toolkits is inevitably 

limited since it would not be practical to review every single approach. However, we judge the 

systems reviewed to be particularly representative of the field. 

Other significant efforts are: SoFAR [146], in which the focus has been on extensive support 

for integrating and managing ontologies within an agent-based system; CoABS [130], in which 

the aim was to provide infrastructure for accommodating the integration of agents developed 

using different agent toolkits; DECAF [l05], in which the focus has been to provide robust 

agent architectures that could deal with run-time scheduling of tasks; Sensible Agents [14], in 

which agent autonomy can be varied from command-drive, slave master and fully autonomous 

agents. Significant mobile agent systems such as D' Agents [106], Aglets [133], Mole [17] and 

SOMA [18] have not been reviewed because their focus is primarily on the underlying mobility 

mechanisms or the security mechanisms. Therefore they have very little to say about the nature 

of agenthood or the relationships between agents. 
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2.3.9 Discussion 

The review of agent models confirms the richness and variety that exists within agent research, 

but also highlights two important issues, described below . 

• Firstly, there is a variety of agent architectures but there are no clear attempts (with the 

possible exception of SMART) to describe diverse architectures using a common set of 

concepts, so that developers can adopt models that can better address the wide range 

of requirements that heterogeneous computing environments place, as we discussed in 

Chapter 1 . 

• Secondly, there are few links between the architectures used by agent development envi

ronments and more abstract agent models. This indicates that there is a general lack of 

continuity from theory into practise. 

Efforts dealing with the development of appropriate agent architectures can be divided along the 

lines of whether the focus is on deliberative (reasoning about the environment in order to reach a 

decision), reactive (simply matching environmental stimuli to responses), and hybrids of the two 

that mix reaction and deliberation. The arguments for the relative benefits and disadvantages for 

each are well rehearsed. Proponents of deliberation recognise that the execution of complex 

sophisticated tasks through a clear, long-term goal-directed behaviour requires some amount 

of internal reasoning, while the reaction group believes that a lot can be achieved through the 

interaction of basic components that will give rise to emergent intelligent behaviour. This is 

certainly an important debate but one that does not aid application developers directly. What is 

more significant from an application development point of view are ways of choosing between 

approaches and possibly mechanisms for mixing approaches so as to derive the best possible 

results. The more abstract models of the SMART framework [82] and Russell and Norvig [186], 

provide better guidelines for characterising the range of agent types. Notably, SMART does this 

through a clear and unambiguous, formally defined framework. 

The component-based agent models proposed, such as Sabater et a1. [189] and DESIRE [37], 

provide some redress for the need of linking abstract models to practical implementation con

cerns, through an approach that allows for the creation of agent architectures based on the modu

lar composition of diverse components, each one fulfilling a clearly defined functionality. How

ever, they are limited by the lack of an abstract agent model that provides some guidelines as 
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what are the implications of different configurations of architectures within the context of an 

agent-based approach. 

The toolkits discussed attempt to tackle a wide range of issues, but the lack of strong underlying 

theoretical principles leads to a confusion as how to go about providing solutions. In a sense, the 

requirements for such toolkits are too wide, ranging from defining agent models to providing 

guidance as to the route from problem to application design and finally providing appropriate 

technical implementations and lower-level middleware support. Toolkits would benefit from a 

clearer delineation between different concerns so as to better focus on either just specific agent 

issues or lower-level middleware issues [8]. Revealingly, although all toolkits provide some 

form of agent architecture only IMPACT goes so far as to formally define what constitutes an 

agent program. The only drawback of the IMPACT approach, however, is that the formalisms 

do not allow for alternative architectures to be defined but only apply to the IMPACT agent 

architecture. In other words their theory of agents in closely tied to the agent architecture making 

no allowance for a diversity of architectures within an application. 

Bryson and Stein [42] identified this general problem of a multiplicity of architectures but few 

means to choose between them and claim that in order to make progress in agent research it is 

necessary to find a way to describe different idioms of agent architectures in a common way so as 

to allow others to understand and utilize them. In addition, a clearer separation between concepts 

and implementation would provide developers with a greater choice for matching technologies 

to ideas so as to best suit their needs. 

Luck and d'Inverno have also recognised this lack of reconciliation between practice and re

search [80], as well as the difficulty in tracking progress [137] and SMART has been developed 

with exactly such concerns in mind. SMART makes no assumptions about agent architectures 

or about the underlying infrastructure but attempts to provide an appropriate ontology of agent 

types and relationships that will allow the description of a range of situations. Although this 

approach is both conceptually elegant and sound since it does manage to describe a wide range 

of situations through simple mechanisms its immediately apparent use is in describing existing 

systems. It does not, however, aid in building systems. 

In a way its strength, in that it lies at a very high conceptual level, is also its weakness since 

paths down to practical concerns are not clear. Nevertheless, we believe that SMART is an ideal 

candidate to act as a basis for our own work. A particularly useful aspect of SMART is that all 

concepts are formally presented through the Z specification language [201]. This leads to very 
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few doubts about the exact meaning of those concepts. Our aim is to provide these paths to 

implementation without losing any of the expressive powers SMART currently has. 

2.4 Inter-Agent Issues: Models of Agent Interaction 

Having discussed models for individual agents, we now turn our attention to the issue of sup

porting interactions between agents. At this level we examine general models for interaction 

between agents that can facilitate the identification and reasoning about relationships. We dis

cuss SMART [82] once more, since the framework also deals with agent relationships, as well as 

Social Power Theory [50], which provides a framework for characterising different types of de

pendencies between agents, and TuCSoN [162], which provides an interaction model in support 

of coordination and regulation of interactions. Subsequently, we examine interaction models 

stemming from research in agent methodologies [127, 160, 233]. Finally, we discuss the issue 

of run-time agent discovery, i.e. how can agents discover what other agents are present within 

an environment, which is key to enabling dynamic interactions between agents. 

2.4.1 SMART 

The SMART framework builds on its model for individual agents to describe relationships be

tween agents, and provides formal definitions for a multi-agent system. In SMART [82] a multi

agent system arises from the interaction between two or more agents where at least one is au

tonomous and where at least one relationship is created due to an entity satisfying a goal for 

another entity. An autonomous agent is required because only autonomous agents can generate 

their own goals, so without the presence of one a multi-agent system would never be set into 

motion. An autonomous agent cannot, however, be expected to satisfy all of its goals on its 

own so eventually it will have to seek assistance elsewhere. It is at this point that a relation

ship with another entity, with a view of satisfying a goal, is created and a multi-agent system is 

instantiated. 

The agent seeking to satisfy the goal, which in SMART is termed the viewing agent, must locate a 

target agent to adopt the goal. SMART defines relationships between agents and non-autonomous 

entities as engagement relationships and relationships between autonomous agents as coopera

tion relationships. This illustrates the different nature of the relationships between autonomous 
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agents since autonomous entities will only enter a relationship if it is in line with their moti

vations, while non-autonomous entities are considered to be predisposed towards satisfying the 

goals of any engaging entity. Finally, SMART uses the notion of an engagement chain to repre

sent the situation where a single goal generated by an autonomous agent leads to the creation of 

a series of relationships between server entities, resulting in a chain with the autonomous agent 

at the start of the chain and the goal that is being satisfied for that autonomous agent dependent 

on all members of the chain performing their task. In such engagement chains the engage

ment between an entity and the next link further down the chain is a direct engagement while 

the engagements between server agents that are removed more that one link apart are indirect 

engagements. 

2.4.2 Social Power Theory 

Social Power Theory attempts to provide a theory of agent interaction based on the analysis 

of the dependencies between agents [144]. Agents become dependent on other agents when 

they cannot achieve their goals individually, leading them to interact with others in order to 

obtain help. However, since agents may be autonomous entities with their own goals, it is 

necessary to influence other agents to adopt those goals. As a result, networks of dependencies 

and power between agents are created. Conte and Castelfranchi [59,61] argue that by allowing 

autonomous agents to perform reasoning about such networks different models of interaction 

such as cooperation, social exchange, coalitions, and so forth, may emerge. 

Individual agents are considered as having personal powers, determined by their capabilities, 

resources, skills, knowledge or motivations, which they use to satisfy their own goals [50]. 

When such powers can be used to satisfy goals of other agents or when these powers are not 

sufficient to satisfy the goals of the agent relationships of power and dependence, respectively, 

are created. Using this approach the different types of relationships are categorised as follows. 

• Mutual influence is a situation where two agents depend on each other for the same goal. 

• Reciprocal dependence occurs when two agents depend on each other, but for different 

goals. 

• Unilateral dependence occurs when one agent depends on another for its goals, but the 

other agent does not depend on it for any of its goals. 
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Using this typology of relationships agents can go on to reason about how they could influence 

other agents to adopt goals, for example through the promise of a price or through the threat 

of sanctions. According to the number of agents available to an agent to satisfy its goals it can 

be described as more or less dependent on the society, while according to whether an agent is 

required by a number of other agents to satisfy their goals it can be described as more or less 

useful to society. 

2.4.3 TuCSoN Coordination Model 

The TuCSON interaction and coordination model [162] is based around the notion of agents 

interacting through independent coordination media, called tuple centres, spread across Internet 

nodes. Each tuple centre is associated to a node and is identified by a name. Tuple centres are 

enhanced with a behaviour specification, which defines behaviour in response to communication 

events taking place at the tuple centre. These responses are termed reactions and are defined 

through a sequence of reaction goals. Reactions lead to changes in the state of the tuple centre. 

Agents exchange messages through tuple centres, with the implication being that the perceived 

result of a communication from one agent to the other is a combination of the communication 

primitive along with the changes caused to the tuple centre by the triggered reactions. Through 

these mechanisms coordination and regulation of agent interactions is decoupled from the agents 

themselves and made the responsibility of the individual tuple centres. 

2.4.4 Agent Methodologies 

As we discuss in Chapter 1, a prerequisite to the development of an effective methodology is the 

provision of agent abstractions that will form the main artifacts that support the process of design 

specification. In this section we examine the most prevalent methodologies which provide such 

abstractions. 

GAIA and ROADMAP 

GAIA is a methodology developed by Wooldridge et al. [233] and is motivated by the need 

for methodologies that are specific to agent systems as opposed to general object-oriented anal

ysis and design. GAIA was designed to deal with coarse-grained computational systems, to 
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maximize some global quality measure, and to handle heterogeneous agents independent of 

programming languages and agent architectures. It assumes static organizational structures and 

agents that have static abilities and services. ROADMAP extends GAIA by adding elements 

to deal with requirements analysis in more detail, by using use cases and by improving sup

port for handling open systems environments [127]. Moreover, it supports the specification of 

interactions based on AUML [16]. Here, we present a unified view of both methodologies. 

The highest level concept is that of a system as an organisation of interacting agents. Agents have 

roles, which are generic characterisations of specific types of behaviour, such as 'president' or 

'employee'. Roles are akin to classes in object-oriented design. Each role has an associated set 

of responsibilities, pemlissions, activities and protocols. Responsibilities are the functionalities 

that different roles should perform and are associated with safety and liveness attributes in or

der to better characterise their importance or priority. Permissions represent what an agent is 

allowed to do, typically what information sources it can access. Activities describe the sort of 

computations agents can perform and protocols the ways in which different roles can interact. 

ROADMAP extends GAIA by also considering an environment model. This model provides 

the basis for describing any environmental changes during the system execution. It consists 

of a tree hierarchy of zones in the environment (for example, the Internet, a local computer or 

the physical environment of a house) based on object-oriented inheritance and aggregation and 

zone schemas, characterized by a textual description of the zones. An environment may contain 

static objects (any entity in the environment known to some agent, but with no interaction), 

objects (any entity an agent interacts with), constraints, sources of uncertainty (which have to 

be analyzed), and assumptions made about the zones. 

SODA 

The SODA (Societies in Open and Distributed Agent Spaces) methodology departs from the 

premise that inter-agent issues are as important as intra-agent issues, and should be treated as 

such within the context of a methodology [160]. 

Agents in SODA are described by agent classes which specify the roles (one or more) that an 

agent can occupy, and can be further characterised with information such as cardinality (i.e. 

how many agents of one class can exists) or location (with respect to a predefined topological 

model). A role defines tasks that an agent occupying the role is responsible for. Tasks are either 
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individual (requiring well-defined competence and limited resources) or social (requiring access 

to several different resources). Social tasks are assigned to groups of agents with individual 

roles defining the responsibility of individual agents within the social task. Finally, interactions 

protocols are also associated to roles and define how agents may interact. 

Agent societies are characterised by the social tasks that must be undertaken, the set of permis

sions associated with behaviour in the society, the participating social roles and the interaction 

rules associated to groups. It is envisioned that societies are designed around coordination media 

(such as TuCSoN described above) that regulate the interactions between agents. 

Finally, SODA also uses an environment model where resources are mapped onto what are 

called infrastructure classes. These are characterised by the services, the access modes, the 

permissions granted to roles and groups, and the interaction protocols associated to resources. 

Others 

Similarly 10 agent toolkits there is also a wealth of agent methodologies, and the ones we 

have considered so far are exemplary of the general direction of research. We briefly discuss 

some other relevant methodologies below and just provide pointers to yet others, such as MES

SAGE [45], Prometheus [163], and PASSI [65]. 

MaSE MaSE (Multi-Agent Systems Engineering) [71] is based on UML notation [185], which 

it applies to the task of analysing, designing and implementing an agent-based system. 

A basic notion of MaSE is that of roles as an aggregation of system goals, where goals 

are functional requirements of the system. In order to derive roles MaSE begins by iden

tifying, analysing and decomposing the system goals. Use cases are then used to derive 

sequence diagrams that will reveal communication paths and interactions between differ

ent aspects of the system. With goals, use cases and sequence diagrams in place roles are 

derived. Roles are then decomposed in order to attach specific tasks that will achieve the 

required goals. 

Kinny et al. Kinny et a1. provide a methodology clearly directed at BDI agents that also takes 

into account object-based techniques. The resulting proposal [132] defines an approach 

based on developing three views of the system. An object model that describes the objects 

and their associated data structures, a dynamic model describing events, actions and inter-
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actions and a functional model that describes the flow of information in the system. Once 

more the ideas of roles is introduced and used in a similar manner as GAIA and MaSE. 

Tropos The Tropos methodology is also based on object-oriented techniques, offering pro

cesses for the application of UML mainly for the development of BD! agents [103, 150]. 

Tropos makes use of the i* concepts, such as actors (where actors can be agents or roles) 

and social dependencies between actors (including concepts such as goals, tasks and re

source dependencies) [235]. The use of i* provides clear definitions for basic concepts 

that underpin all phases of the methodology enabling the specification of actor and depen

dency models, goal and plan models, capability diagrams and agent interaction diagrams. 

2.4.5 Discussion 

The models for interaction reviewed here can be divided along two broad lines. On the one 

hand, models such as SMART and Social Power Theory, are prescriptive since they provide a 

framework for reasoning about and relating different types of interactions. On the other hand, 

practically all the models used within methodologies are descriptive, since they provide tools 

for describing relationships through roles and interaction protocols, but no means for reasoning 

about the implications of different types of relationships. The exception to this categorisation is 

TuCSoN, which is more concerned on how interactions can eventually be regulated. 

Now, for effective systems design both prescriptive and descriptive tools are required. The for

mer for facilitating reasoning about relationships and their implications to system design and the 

latter for specifying such relationships. However, while there is a wealth of descriptive tools, as 

evidenced by the wealth of methodologies, the prescriptive tools are not adequate. SMART only 

focuses on relationships that are a result of agents sharing a common goal. However, in practice 

there are other types of relationships such as conflicts that must be tackled. Social Power The

ory, overcomes this problem since it supports reasoning about both relationships where common 

goals are shared as well as other types of dependencies. However, Social Power Theory lacks an 

underlying abstract agent model and, in general, links to practical agent development that would 

enable us to use it within the context of practical agent infrastructure. In fact, SMART has been 

used to describe social dependency networks [82], and we shall return to compare it to our own 

work in Chapter 5. 

Finally, there is no support within the context of methodologies or the abstract agent models 
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discussed for identifying possible relationships at run-time. Such a capability is crucial for 

dynamic agent systems, where agents may enter or leave at any point. We aim to address this 

issue by building on the SMART abstract model, which will provide the necessary theoretical 

underpinning. 

2.4.6 Agent Discovery 

The problem of dealing with the run-time discovery of agent capabilities has been signalled 

relatively early through research into agent technologies [67], and comes under a number of 

headings such as capability brokering, matchmaking, or is simply considered as one aspect of 

the wider problem of agent coordination. Genesereth and Ketchpel divided the solutions into two 

broad categories [100]; direct coordination, where agents requiring services have to handle on 

their own the problem of finding a service provider, and assisted coordination, where agents rely 

on specialised programs that assist in the process. The direct approach, however, is only effective 

in situations where the number of agents is fixed, relatively small and communication with them 

can easily take place. In open, heterogeneous environments assistance in the discovery process 

is practically a necessity. Accordingly, the bulk of research has focused in creating appropriate 

mechanisms for providing assistance in the discovery process. 

The space of possible mechanisms, divided according to flows of information between clients, 

service providers and the facilitating programs has been comprehensively modeled by Decker 

et al. [69]. They call any program that facilitates the matchmaking process a middle agent, and 

define a space of nine alternative middle agent mechanisms based on what information each 

of the three agents in the process (client, middle agent and service provider) have available. 

The information consists of what service is requested and what services are provided. Within 

this space the most commonly used types are: brokers, which are aware of what services are 

available and what service requests are made and match clients to providers accordingly; match

makers, which provide a list of what services are available to clients that choose from the list 

who to contact (i.e. a yellow pages service); blackboards where service requests are posted and 

providers choose which client to contact. Wong and Sycara [228] extended this work by intro

ducing six dimensions of middle agents based on information held by a middle agent: who is the 

information provider; how is the information dealt with once received; how can the information 

be queried; how detailed are queries; and does the middle agent act as an intermediate between 

all transactions between the provider and the requester agents. 
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A prerequisite to matching a service request to a service provider is that the description of the 

service request and the available services is made in an appropriate format that can be under

stood by all the related parties. Furthermore, the agent communication language used needs to 

provide appropriate performatives that can deal with service requests. The latter issue is cov

ered by both KQML [95] and the FIPA ACL (www.fipa.org), which have perfomatives such as 

advertise, subscribe, recommend, and broker. The former issue has been addressed through the 

development of a number of alternative languages. The LARKS language (Language for Ad

vertisement and Request for Knowledge Sharing) [207], which is used within the context of the 

RETSINA toolkit [206], describes service requests and advertisements using the same structure, 

including information such as the context of the capability description, necessary inputs and out

puts and constraints to the service. Along with the LARKS description language its developers 

provide a number of matchmaking algorithms using both syntactical and semantical matchmak

ing. An alternative approach is taken by Cassandra et al. [47], which builds on their experience 

with the InfoSleuth system [152]. They criticise the LARKS approach as providing overly de

tailed descriptions and as a result may not scale well. They suggest a layered approach where 

capability description is divided into the conversation language used to communicate with the 

service, the interface to the service, the semantics of what the service does, and the domain the 

service operates over. Specific ontologies can be used for each of these aspects and the capabil

ity description framework allows all these descriptions to be composed into one advertisement. 

According to the developers this provides, at the same time, a more flexible approach to the 

problem that allows agents to take advantage of specific ontologies for describing different as

pects of their service and leads to a more uniform capability description. The IMPACT [203] 

toolkit uses a more simplified approach, with queries of the form sell:tickets( opera)?, but then 

employs powerful semantic matchmaking algorithms that draw relationships between concepts, 

for example between theatre and opera, based on a thesaurus that can be updated by each agent 

participating in the system. 

More recently, with efforts to standardise ontology languages through the Web Ontology Lan

guage [143], and initiatives such as Semantic Web Services [4], the research is coalescing around 

some well understood mechanisms for discovery [205]. As such, what is important within the 

context of our work is to demonstrate how agent discovery and agents that facilitate such dis

covery can be understood within a wider framework of models for agent-based infrastructure. 
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2.5 Organisational Issues: Regulating Agent Societies 

The review of models of agents and agent interaction covers the main concerns of our research. 

However, we also briefly consider organisational issues since we will attempt to relate such 

issues to our work within the context of implementation in Chapter 6. At this level we are 

concerned with work that attempts to impose structure upon and regulate agent societies. We 

briefly discuss the main proposals coming from the areas of distributed systems management 

policies, norms and electronic institutions. 

2.5.1 Distributed Systems Management Policies 

As distributed systems have grown in the number and complexity of different interacting com

ponents it has become necessary to introduce automated means for the management of the be

haviour of components. Policy-based network management addresses this need by separating 

the definition of management policies from their enforcement through automated policy man

agers [200]. 

Perhaps the most influential academic research in policy specification comes from the concep

tual grounding provided by Sloman [200]. Sloman defines policies as "one aspect oj inJomza

tion which influences the behaviour oj objects within the system". Policies are developed in the 

context of a subject influencing a target in a distributed environment. The basic construct for 

policies coming from Sloman's work is the notion of authorisation policies that define what is 

or is not permitted (positive or negative authorisation) and obligation policies that define what 

a manager must or must not do (positive or negative obligation). Obligations are subject to an 

interpretation from the manager and, as a result, can be disregarded while authorisations can

not be disregarded. This approach is extended to also cover issues such as role-based policy 

specification [141] where policies are defined based on the role of a manager in an organisation. 

The work of Sloman has been adopted by agent researchers, most notably Bradshaw et a1. [204] 

through KAoS, and combined with Semantic Web technologies so as to provide several of the 

required expressive constructs for defining authorisations and obligations and their delegation. 

This work also takes into account some of the issues relating to conflicting policies between 

different domains, and provides means for resolving them [216]. 

Kagal et aI., developed the Rei policy language [128], following a more decentralised and adap-
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tive model than KAoS. The dynamic modification of policies is supported using speech acts 

and the suggested deployment models for this work examine different scenarios, such as FIPA

compliant agent platforms 2, web pages and web services. 

2.5.2 Norms 

Norms, at their most basic, can be considered as a means of regulating behaviour between 

agents. However, unlike policies which are defined and imposed on agents, norms may emerge 

through a variety of means. Norms have been studied extensively within the fields of philos

ophy, sociology and law [184, 214, 215], with such research informing the development of 

frameworks of norms within agent-based systems. They are understood through a number of 

different perspectives, and we outline some of the main ones here. 

• One line of research [13, 28, 221] considers norms as patterns of behaviour that emerge 

from the interactions between agents without previous planning. It attempts to account 

for the choices agents make and the constrains society imposes through the interaction of 

autonomous entities. 

• Norms can also be considered as constrains on actions [38, 195]. This is perhaps the 

most similar view to policies, since norms specify which actions are forbidden or allowed 

within a particular context. 

• Social commitments represent agreements to do something between two or more agents [48, 

119]. Social commitments can also be considered as norms since they represent the obli

gation of agents to do something, and social pressure can be exerted to make agents fulfill 

them. 

• Finally, norms are also considered as mental states that may influence agent behaviour [60, 

59]. 

In addition to these alternative approaches to reasoning about norms a number of models have 

been developed to allow the specification of norms (e.g. [49,62,234]). 

2http://www.fipa.org/ 
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2.5.3 Electronic Institutions 

Electronic institutions attempt to make explicit the structure that should regulate the interactions 

between agents by providing specifications for what interactions are possible within a given 

context and what are the implications of interactions in terms of commitments created. The 

conventions that govern electronic institutions are typically divided into ontological and com

munication conventions [153], social conventions that govern collective interactions [181], and 

rules that normalise individual behaviour [182]. 

At the level of ontological and communication conventions an electronic institution makes ex

plicit what are the entities an institution deals with, such as the goods to be traded, the partici

pants and the roles they occupy as well as issues such as locations, time intervals, and so forth. 

Furthermore, the language for interaction is made explicit through access to a common dialog

ical framework [154]. A dialogical framework is composed of a communication language, a 

representation language for the domain content and an ontology. 

The social conventions are defined by making explicit the possible activities within an institu

tion as a composition of multiple, well-separated, and possibly concurrent, dialogical activities, 

each one involving different groups of agents that follow well-defined communication protocols. 

Such activities are termed scenes, while changes between scenes are defined by perfomwtive 

structures which establish links and traversal paths. 

Finally, rules are divided into intra-scene rules, which dictate foe each agent role within a scene, 

what can be said, by whom, to whom, and when, and extra-scene rules, which define what paths 

agents may follow between scenes depending on their roles. 

2.5.4 Discussion 

In this section we examined some of the different approaches to regulating heterogeneous and 

dynamic systems. While these issues are not the main focus of our research, the need for reg

ulation is one of the motivations behind our aim of providing an appropriate model of agent 

interaction. In order for developers to choose an appropriate regulatory mechanisms they should 

first be able to identify and characterise the types of relationships that may emerge. We will re

turn to examine the issue of regulation within the context of dynamic relationship identification 

and characterisation in Chapter 6. 
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2.6 Conclusions 

The review chapter highlights several shortcomings in existing research that are broadly related 

to the lack of principled approach to constructing both individual agents and the reasoning about 

interactions between agents, through abstract specification that is linked to practical implemen

tation. 

At the level of individual agents there is a wealth of alternative agent architectures, with each 

attempting to better address the issue of supporting complex behaviour in the face of a hetero

geneous environment. However, there is little work in providing overriding concepts, within the 

context of agent-based development, that can underpin such efforts so as to enable reuse across 

domains and effective comparison between alternative solutions. A notable exception is SMART 

that does provide such an abstract framework for describing a variety of agent types. However, 

SMART is limited in that its focus is primarily on the description of agents and does not provide 

links from those descriptions to agent construction. 

At the level of agent interaction, although there is a variety of frameworks, largely stemming 

from research in agent methodologies, that enable us to specify issues such as agent roles and 

interaction protocols, there are few models that allow us to reason about different types of rela

tionships and the implications such relationships may have on the overall system performance. 

In this respect Social Power Theory is particularly useful, however, it is limited by its lack of 

reference to a clear abstract agent model. The SMART framework offers support for a specific 

type of agent relationships (where agents share a common goal) but it does not address other 

types. 

In conclusion, principled, reusable models in support of agent construction and reasoning about 

agent relationships are key to enabling the construction of multi-agent systems in dynamic, 

heterogeneous environments. The review of existing work indicates that while there has been 

some effort to provide such models it is limited in its scope in that it only deals with individual 

agent construction or agent interactions or its applicability because of few links between abstract 

models and practical implementation concerns. 





Chapter 3 

SMART 

"Truth emerges more readily from error than from confusion." 

Francis Bacon (1561 - 1626); English scientist and philosopher 

3.1 Introduction 

Our overarching aim is to provide resuable models that will both support the construction of 

individual agents and enable reasoning about the relationships between agents, so as to facilitate 

the development of agent-based applications in heterogeneous and dynamic computing environ

ments. In Chapter 1 we indicated that a central task towards achieving this aim is the identifi

cation and, if possible, adoption of an existing conceptual framework that can provide some of 

the necessary abstraction to support agent development. As we have have already argued in that 

chapter, it is preferable to adopt an existing set of concepts and develop and refine them, rather 

than begin afresh. By building on an existing, well established, theoretical framework, we can 

avoid reinventing basic notions and adding to the existing multiplicity of different approaches, 

as well as benefit from the existing efforts in developing and refining that framework. In addi

tion, the exposition of our proposed models will gain from having to explain the reasons behind 

the need for change and progression within a well defined conceptual framework. 

However, in order to be able to effectively develop on the basis of an existing conceptual frame

work, it must be amenable to such further development and refinement along the lines of our 

research aims. As discussed in Chapter 2, SMART [82] goes some way towards fulfilling these 

basic needs by providing a theoretical underpinning that is clearly independent from specific 
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agent architectures and makes minimal assumptions about agent interactions. From the outset, 

it was developed with the aim of providing clear and unambiguous meanings for common terms 

and concepts so as to both enable alternative designs to be described on a common basis and 

to provide foundations for subsequent development [78]. It has been refined and used over a 

number of years, and its capabilities have been demonstrated to some extent through work de

scribing a number of alternative agent architectures and interaction mechanisms, such as BDI 

agents [75, 79] and the contract net protocol [77]. The comprehensive set of concepts that 

SMART provides, ranging from the description of individual agents up to the relationships be

tween agents, combined with its proven ability to describe a number of existing architectures and 

interaction protocols make it particularly suitable, and clearly in line with our aims of providing 

reusable models for agent systems. 

In this chapter we present a detailed account of the SMART framework [82], since it underpins 

all other work in the thesis, by introducing some of the most salient concepts together with 

the formal notation used to define them. In addition, we make clear the relationship between 

SMART and our specific aims, and thus set the scene for the rest of the thesis. At the same time, 

we highlight some of the shortcomings of SMART, within the context in which we aim to use it, 

and introduce some initial refinements with reference to the basic notions of agenthood. 

The chapter begins with a high-level overview of how the work presented in this thesis extends 

and refines SMART, following an identification of the main shortcomings of SMART with respect 

to supporting agent-based system construction in dynamic and heterogenous environments. We 

then discuss the use of the Z notation [201] within SMART and provide a brief overview of its 

main features. The presentation of Z allows us to proceed to the more detailed introduction and 

discussion of the foundational concepts of SMART. We begin with the concepts supporting the 

description of individual agents. We analyse the notion of agenthood to some extent and refine 

it so that it best suits the needs of practical construction. In particular, we distinguish between 

extremely simple agents and more complex types by combining SMART'S notion of agenthood 

with Wooldridge and Jenning's defining agent characteristics [232]. The resulting agent types 

can be more closely related to the types of agents encountered in practical agent design and 

construction, and are used to support the models of agent construction developed in Chapter 4. 

Subsequently, we introduce and discuss SMART'S approach to describing agent relationships and 

identify its shortcomings in this respect. We use these shortcomings to motivate the need for the 

work on agent relationships presented in Chapter 5 of the thesis. This chapter concludes with an 

overview of the main issues raised and how they will be addressed throughout the remainder of 
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the thesis. 

3.2 SMART, actsMART, and SMART+ 

The SMART framework acts as a central point of focus from which we depart to provide the 

necessary refinements and extensions so as to deal with our overarching aims presented in Chap

ter 1. Here we provide an overview of the relationship between SMART and the extensions to 

SMART that we introduce in the thesis. In order to justify these extensions, we also provide a 

brief introduction into the main shortcomings of SMART, while a more detailed analysis of the 

shortcomings is developed throughout the chapter. 

The SMART framework provides us with a set of abstract, formal models to support the spec

ification of individual agent architectures and multi-agent systems. However, although these 

models provide a good departure point for us, they are limited in two important ways . 

• Firstly, with regard to individual agents, there is no clear path from the abstract specifica

tion of agent architectures to their practical implementation. This constrains the applica

bility of SMART to the design and construction of agent systems. If we are to achieve our 

aim of providing theoretical models in support of practical development we must provide 

a clear path from the abstract concepts of SMART to their implementation . 

• Secondly, with regard to multi-agent systems, the models are restricted to representing 

agent relationships only in those cases where the agents share a common goal. However, 

in the types of open multi-agent systems that we aim to support, it is also necessary 

to model possible conflicts between agents, and identify opportunities for cooperation 

between them (as discussed in Chapter 1). 

In addressing these shortcomings, we extend and refine SMART in two directions by providing 

both more practical models and adding to the abstract concepts already there, as illustrated in 

Figure 3.1. In the figure we represent three different levels of abstraction. Firstly, the conceptual 

infrastructure defines the models that we can use to specify an agent system. Secondly, the 

specification artifacts represent specific instantiations of those models in order to design an 

agent system. Finally, the design and practical implementation represents the resulting multi

agent systems developed using the specification artifacts from the level above. At each of these 

three levels we describe what is provided by SMART and what specific extensions we add to it. 
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Multi -Agent Systems Models 

Multi -Agent Systems Implementation in dynamic and heterogeneous erironments 

FIGURE 3.1: The relationships between actSMART, SMART, SMART+ 

The SMART framework provides the conceptual infrastructure for describing agents and goal

based agent relationships. These models enable the specification of agent architectures and 

multi-agent systems, respectively. 

Now, we also require appropriate practical models for agent construction that will provide a 

clear path from the abstract agent models of SMART to their implementation. We therefore need 

to extend SMART in a more practical direction, while basing this extension on the abstract agent 

models already there. In the figure, this extension is under the heading of actSMART, (Agent 

Construction Toolkit for SMART). At the conceptual infrastructure level, actS MART provides a 

model for constructing agents which, at the specification artifact level, can enable the specifica

tion of agent architectures that can then find practical implementation at the lowest level. The 

shading of the actSMART boxes indicates that it lies at a more practical level that is closer to 

implementation, rather than SMART'S abstract level. 

In addition, we also extend the abstract conceptual infrastructure of SMART through a more 

general model of agent interaction that enables the identification and characterisation of a wider 

variety of agent relationships. We include these concepts under the heading of SMART+, since 

they lie at the same level of abstraction as SMART. 

If we are concerned with the development of multi-agent systems operating in dynamic and 

heterogeneous environments then we must ensure that, when combined, actS MART, SMART and 

SMART+ provide appropriate models and specification artifacts to support design and imple-

mentation. 

Before considering this further, however, we must introduce the notation used in the remainder 
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of this thesis. 

3.3 The Z Specification Language 

Formal methods are increasingly being used in a variety of subfields of computer science, as 

well as gaining ground in industry [217]. In particular, many formal methods have been con

structed for use in the delivery of greater precision and clarity when defining systems and ap

plications, and a large body of computing research has focused on their elaboration and devel

opment [31, 113,212]. These include various kinds of temporal and modal logics [54], and 

specification languages such as Z [201],VDM [124], B [134] and CSP [114], the majority of 

which are supported by a range of software tools that facilitate their use and, in some cases, 

can even automatically generate software code. As well as specifying systems, and providing a 

means for mechanical checking of correctness, type correctness, etc, to reveal inconsistencies, 

ambiguities and other problems [56], formal specifications can also be used to specify abstract 

concepts to aid in their representation and reasoning about them. 

In order to make the presentation of concepts of the SMART framework as unambiguous as pos

sible, and to ensure consistency in the re-use of concepts throughout the framework, Luck and 

d'Inverno use the Z specification language [201]. Z enjoys wide recognition, both in industry 

and academia, as a powerful means for specification, and is supported by several text books 

(e.g., [30, 170,229]), articles (e.g., [26,27]), and industrial case studies (e.g., [2,58]). 

The specific benefits offered as justification for the use of Z in specifying SMART are briefly 

outlined below. 

• Z is more accessible that many other formalisms, since it is based on existing elementary 

components such as set theory and first order predicate calculus. This ensures that it is 

generally accessible, requiring no special expertise, and reduces the learning curve for 

anyone aiming to use the framework . 

• Z is sufficiently expressive, allowing for a consistent, unified and structured account of a 

computer system and its associated operations. 
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3.3.1 Z notation 

A Z specification is made up of formal mathematical statements, which are typically combined 

with informal explanatory text to complement the formal statements. Providing both formal and 

informal descriptions is especially useful since the informal description provides direct access 

to the concepts, while the formal presentation ensures that any ambiguities are avoided. 

Schemata 

Z is based on set theory and first order predicate logic, and its basic unit is the Z schema, 

which allows specifications to be structured into manageable modular components. Schemas 

are divided into a declarative part that defines variables and their types, and a predicate part that 

defines relationships between, and restrictions on, variables. For example, the schema below 

defines a Pair to consist of two variables, first and second, with the predicate part declaring that 

first should be smaller than or equal to second. 

Pair ________________________________________________________ _ 

~
first: N 
second: N 

first::; second 

Modularity and decomposition are facilitated through schema inclusion, by which one schema 

can be included in another. We can access variables in a schema through the notation 

schema.J1ame. variablcname so that, for example, Pairfirst refers to the variable first in the Pair 

schema. 

Operations 

In essence, schemas describe the admissible states and the operations of a system, which are 

defined in terms of changes to the state. Specifically, an operation relates variables of the state 

after the operation (denoted by dashed variables) to the value of the variables before the oper

ation (denoted by undashed variables). Operations may also have inputs (denoted by variables 

with question marks), outputs (exclamation marks) and preconditions. In the GettingCloser 

schema below, there is an operation with an input variable, new?; if new? lies between the 
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variables first and second, then the value of first is replaced with the value of new? The value 

of second does not change, and the output old! is equal to the value of the variable first as it 

was before the operation occurs. The b.Pair symbol is an abbreviation for Pair 1\ Pair' and, 

as such, includes in this operation schema all the variables and predicates of the Pair schema 

before and after the operation. 

GettingCloser _______________________ _ 

new?: N 
b.Pair 
old! : N 

first::; new? 
new? ::; second 
first' = new? 
second' = second 
old! = first 

Relations and Functions 

To introduce a type in Z when no information about the elements within that type is specified, 

a given set is used. This is an important abstraction mechanism that allows us to model things 

at the highest possible level. For example, we can write [T REEl to represent the set of all trees 

without stating anything about the nature of the individual elements within the type. If we wish 

to state that a variable takes on a value, a set of values, or an ordered pair of values of this 

type, we write x : TREE, x : JID TREE and x : TREE x TREE, respectivelly. If we have 

xs : TREE x TREE, then the expressions first xs and second xs denote the first and second 

elements of the ordered pair xs. 

Perhaps the most important type is the relation type, expressing a mapping between source and 

target sets. The type of a relation with source X and target Y is J1D(X x Y), and any element of 

this type (or relation) is simply a set of ordered pairs. 

The definition of functions is also standard: relations are functions if no element from the source 

is related to more than one element in the target set. If every element in the source set is related 

to one in the target, then the function is total (denoted by ----4); partial functions (+7) do not 

relate every source set element. If no two elements in the source relate to the same element 

in the target set then the function is injective (>----7). Further, if all elements in the target set are 

related then the function is surjective (--). 
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Definitions and declarations Relations 
a,b Identifiers A ..... B Relation 
p, q Predicates domR Relation Domain 
S, t Sequences ranR Relation Range 
x,y Expressions Functions 
A,B Sets A-++B Partial function 
R,S Relations A-+B Total function 
d; e Declarations Schema notation 
a == x Abbreviated definition 
[aJ Given set 

E A ::= b((B)) Schema 
I c(( C)) Free type declaration 

f-Ld I P Definite description 
leta == x Local variable definition Axiomatic def 

Logic 

[[ -,p Logical negation 
pl\q Logical conjunction Inclusion 
pVq Logical disjunction 
p=?q Logical implication 
p<r}q Logical equivalence 
YX e q Universal quantification 

[~s ::JX e q Existential quantification Operation 

Sets S' 
xEy Set membership z.a Component 
{} Empty set Conventions 
A~B Set inclusion a? Input to an operation 
{x, y, ... } Set of elements a State component 
(x, y, ... ) Ordered tuple before operation 
A x B x ... Cartesian product a' State component 
IP'A Power set after operation 
IP'IA Non-empty power set S State schema 
AnB Set intersection before operation 
AuB Set union S' State schema 
A\B Set difference after operation 
UA Generalized union [::"S Change of state (S 1\ S') 
#A Size of a finite set 5S No change of state 
{d; e ... lpex} Set Comprehension OP19 OP2 Operation composition 

FIGURE 3.2: Summary ofZ notation (taken from [81]) 

The domain (dom) of a relation or function is the set of source elements, while the range (ran) 

is the set of target set elements. Examples of these operators can be seen below. 

domFunl = {treel, tree2, tree3} 
ran Funl = {tree2, tree3} 

A summary of the Z notation is shown in Figure 3.2. We will not discuss further details of the 

language here but instead provide references to some of the many textbooks on the subject [30, 
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170]. 

3.4 SMART Agents 

With the brief overview of the Z notation in place, we can now present the conceptual infras

tructure of SMART, beginning with a discussion of the support provided for the specification of 

individual agents. The modular approach used throughout SMART means that these concepts 

form the foundation for all subsequent definitions, including agent relationships. This is partic

ularly useful because it is directly inline with our aim of supporting reusable agent models. We 

begin with a detailed presentation of these foundational concepts that define the different types 

of entities and their relationship to the environment. Subsequently, we discuss SMART'S notion 

of agenthood and introduce a refinement that provides more granularity in the different types 

of agents that we can define. This refinement is particularly useful for addressing the needs of 

practical construction, and its used in Chapter 4 to ground the abstract notions of SMART to 

specific agent constructions. 

3.4.1 Foundational Concepts 

Through SMART, Luck and d'!nvemo set out to address the lack of an unambiguous agent theory 

that could be used to describe and relate existing work in the field, as well as act as the basis 

through which to develop new work. The use of Z serves to make the work as precise as possible, 

but the main advantage of SMART is that it has steered clear from dependencies on any specific 

agent architecture and from making any limiting assumptions about the environment or agent 

societies. This is particularly useful for our work, since we aim to accommodate heterogeneous 

agent societies, in which a variety of agent architectures, and dynamic environments need to be 

supported. 

At the base of SMART is a view of agents as entities attempting to satisfy goals, where goals 

are desirable states of affairs. Entities are hierarchically organised in four different types, with 

each type refining the previous one. These entity types are described using three primitive 

types, attributes, actions and motivations, which are formally represented as given sets with 

no restrictions on how they could be manifest in a particular system instantiation. A short 

description of the primitive types follows, before we go on to describe the different entity types. 
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Primitives 

Attributes are perceivable features of the environment and through them, entities and the en

vironment in which they are situated can be described. For example, if we consider a mobile 

device as an entity, then some of the attributes that can be used to describe it are the name of the 

owner of the device, the location of the device, and so forth. 

[Attribute] 

An environment can then be defined as a non-empty set of attributes. 

Environment == 11\ Attribute 

Actions are discrete events that can change the state of the environment. For example, a mobile 

device can perform actions such as communicating with other devices, storing information, and 

retrieving online documents. 

[Action] 

A goal is a desirable state of affairs in the environment, which is described by a non-empty set 

of attributes. For example, a goal to find a particular online document can be described as a state 

of affairs in which the location of the document is known. 

Goal == lP'1 Attribute 

Finally, a motivation is any desire or preference that drives an agent to set its own agenda, as 

opposed to having goals dictated to it by a user or other agents. It is defined as a given set. 

[Motivation] 

Entities 

The four different entities can now be considered using these primitive types. The Entity schema 

below defines an entity to have a set of attributes, a set of actions (their capabilities), a set of 

goals and a set of motivations. The only restriction for something to be of type Entity is that it 
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must have a non-empty set of attributes, as stated in the predicate part of the schema. 

Entity _________________________ _ 

attributes: JlD Attribute 
capabilities: JlD Action 
goals: JlD Goal 
motivations: JlD Motivation 

attributes -::J { } 

Objects are entities that have some capabilities, making it possible for them to perform actions 

that can change the environment. Thus, the Object schema includes the Entity schema, and 

further restricts it by requiring that the set of capabilities is non-empty. 

Object ________________________ _ 

FEntity 

Agents are objects that are attempting to achieve goals. This means that there is a desirable state 

of affairs in the environment that they are attempting to bring about. Correspondingly, the Agent 

schema includes the Object schema and constrains the set of goals to be non-empty. Agents can 

have or be ascribed goals that they retain over any instantiation or lifetime. In Sections 3.4.2 

and 3.5, we discuss in more detail the issue of how goals can be adopted by, or ascribed to, 

agents. 

Agent __________________________ __ F Object 

The definition of agents given above relies on the existence of other agents to provide the agent's 

goals or ascribe goals to the agent. This means that some other entity is always required to 

provide or ascribe the goals. In order to ground the entity hierarchy, therefore, entities are 

required that can generate their own goals. These agents are defined as autonomous since they 

are not dependent on the goals of others, and possess goals that are generated/rom within rather 

than adopted from or ascribed by other agents. Such goals are generated by motivations, which 

drive an autonomous agent to generate its own goals and guide it in choosing the goals to adopt 
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when interacting with other agents. Formally, the AutollomousAgent schema below requires the 

set of motivations to be non-empty. We will not discuss the generation of goals by motivated 

agents, but an extensive analysis is available elsewhere [82]. 

[ A utonomousAgcni 
Agent 

motivations -I- { } 

In this way, a clear distinction is made between the notions of agents and autonomous agents. 

Agenthood is ascribed to any entity that acts in order to satisfy some goal, and motivations are 

required to support the self-generation of goals by agents. The ability of an agent to generate its 

own goals is what defines it as autonomous. We return to the distinctions between agents and 

autonomous agents in Section 3.5. 

3.4.2 Neutral Objects and Server Agents 

The basic framework described above provides the foundational definitions for entities from 

SMART'S point of view. Now, in addition to these basic concepts, SMART also considers how 

agents, which are not autonomous, are created. In order to achieve this, the basic framework is 

further refined to accommodate more sophisticated analyses of agent interaction by introducing 

additional definitions of neutral objects as those objects that are not agents, and server agents 

as those agents that are not autonomous. 

The relationship between neutral objects and server agents is complementary and dynamic. Neu

tral objects become server agents when they are given or ascribed goals. Thus, once these goals 

are achieved, or pursuing them is no longer feasible, the server agent reverts back to a neutral 

object. This is a significant characteristic of the framework, since it deals with the fundamental 

issue of instantiating agent entities, and we will focus on it later, when we investigate how it can 

help to characterise entities within a dynamic and heterogeneous environment. The schemas 

below formalise these concepts. A NeutralObject is an Object with empty sets of goals and 

motivations while a ServerAgent is an Agent with an empty set of motivations. 
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The relationships between all the different entity types are illustrated in Figure 3.3, in which 

they are shown as a Venn diagram. As indicated, the most general notion of entity subsumes 

all other notions, while neutral objects (NObjects) and server agents (SAgents) lie in the space 

between objects and agents, and between agents and autonomous agents, respectively. 

3.4.3 The Utility of the SMART Agent Models 

Having presented the basic SMART agent models for supporting the description of agents, we 

now discuss how these models can aid in agent development for dynamic and heterogeneous 

agent environments. We do this through an example that brings the abstract notions described 

in Section 3.4.1 and 3.4.2 closer to more practical concerns. 

Suppose that you want a train ticket to visit London this weekend, according to some preferences 

about the trip and ticket price, and are equipped with a personal agent (PA) on your mobile 

phone that is able to perform the task of finding an appropriate ticket. Now, your PA is an 

autonomous agent with motivations such as minimising on-line connection time (saving network 

connection costs), minimising cost for tickets, and providing comfort. Given this task and the 
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set of motivations that drive its choice over which goals to achieve, it begins the process of 

accomplishing what is required. The first goal generated is to get a list of all the travel agencies 

that are able to provide train tickets to London for the weekend. This is achieved by locating a 

service in the environment with the capability of providing updated lists of such agencies. Now, 

such services can range from sophisticated brokers to simple registries. For the purposes of 

this example, we assume that the service is a simple registry, which provides just a basic query

response functionality for agents requiring a list of travel agents and a basic register functionality 

for travel agents wishing to advertise. Within the SMART framework, such a simple service can 

be modeled as a neutral object which, when engaged by the PA, instantiates a server agent with 

the goal of providing the required list of travel agents. Once the goal is satisfied, the service 

reverts to a neutral object if it is not being engaged by any other entity. 

Having received the list, the PA attempts to contact the travel agencies. The travel agencies 

themselves can also be a mixture of sophisticated autonomous agents, with motivations, to sim

ple agents that can only identify whether a ticket is available and provide it if the price is paid. 

Those behaving as neutral objects can be accessed directly to instantiate server agents, while 

for those which are autonomous agents the PA cannot directly access them, but must come to 

an agreement with them with regard to travel requirements and price. Having achieved the goal 

(limiting the number of calls so as to satisfy the motivation of minimising on-line time, and 

purchasing a cheaper ticket according to the other motivations), the PA reports the results and 

waits for further instructions. 

This example illustrates some key points of the SMART framework. 

• In heterogeneous computing environments, not all entities are sophisticated agents, and 

some provide very basic services, such as the registry service. When attempting to model 

such basic services within the context of a multi-agent application, we require abstractions 

that will not limit us with regard to the types of agents that we can model. Neutral objects 

and server agents offer just this capability. By considering a basic service as a server agent 

just when it is engaged to achieve a goal, we are reusing the concepts of agents, goals and 

relationships between agents, thus retaining the analysis of the system within the SMART 

framework. Such a capability is key in supporting our aim of reusable models for agent 

infrastructure . 

• Similarly, the types of interactions between entities can also take different forms. They 

could involve one agent having complete control over another, or cooperation between 
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two autonomous agents. The different forms of interactions and the resulting relation

ships that can be formed in a multi-agent system are discussed by Luck and d'Inverno 

in [82] and we review them in section 3.6.2. Once more, being able to have these distinc

tions is crucial in a heterogeneous environment, since these distinctions allow us to more 

accurately capture the variety of situations that may arise . 

• Finally, through motivations, SMART allows us to clearly model the difference between 

agents that are able to generate and choose their own goals and those that simply attempt 

to achieve those goals assigned or ascribed to them. This too, allows us to better model 

the range of situations that can arise, as we have seen in the example. 

3.5 Refining SMART: Types for construction 

Although SMART provides clear definitions for agents, it does not do so with the required level 

of granularity to distinguish between extremely simply entities and more complex ones that are 

not autonomous. However, this granularity is required to provide clear guidelines for develop

ers attempting to model the variety of entities encountered in the types of applications we wish 

to support. In this section we address this issues by analysing the notion of agenthood within 

SMART, identifying its shortcomings, and contrasting it with the characteristics of agents identi

fied by Wooldridge and Jennings [232] that is widely used within agent literature. Through the 

analysis, we indicate the shortcomings of both approaches when taken in isolation, and attempt 

to provide an explanation that combines the two. We argue that the combined explanation offers 

a better guide for agent developers, providing a clear understanding of agenthood which, as ar

gued in Chapter 1, is one of the essential stepping stones towards reusable abstractions for agent 

construction. 

3.5.1 Agenthood 

SMART aids in describing agent systems by providing a conceptual framework of agent types 

based on the premise that the defining characteristic of agenthood is the "doing for someone". 

Here, as long as an entity is fulfilling a goal for another agent, then that entity can be considered 

as an agent. The advantage of this approach is that it covers any situation because of the clarity 

of the rule. It is enough to identify whether an entity is satisfying some goal in order to declare 

it an agent. In fact, Luck and d'Inverno state that it is necessary for "a viewing agent to analyse 
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both the server agent and the agents engaging it in order to avoid conflict" ([81], p.4S). When 

a goal is ascribed to an entity, SMART does not require that goal to be explicitly represented 

within the entity actually fulfilling the goal but, rather, "the agentness of the object depends on 

who is currently viewing the object"([81], p.2S). The implication is that any entity, irrespective 

of its structure, can potentially be seen as an agent as long as some other agent views it as 

fulfilling some purpose. Although this helps in analysing the relationships between agents and 

in allowing agents to reason about other agents, it does not help in constructing agents, since it 

says little about the internal structure of agents, other than implying that they must be able to 

perform their stated capabilities through appropriate mechanisms. 

The difficulty of addressing agent construction within the SMART framework is that agenthood 

does not just depend on structural features, but also on the relationships with other agents. In 

contrast, the widely accepted Wooldridge and Jennings characterisation [232], takes an actioll

based view of agenthood, nominating anything that presents the characteristics of autonomy, 

pro-activity, reactivity and social ability as an agent. This presents its own problems since the 

interpretation of these characteristics is left open. For example, autonomy can be interpreted 

both as the ability of an agent to choose and generate its own goals as well as its ability to 

independently decide which actions to perform towards achieving a specific goal. 

Neither the action-based view nor the weak structural-based and strong relationship-based views 

of SMART are sufficient on their own. What we require is an account of agenthood that combines 

the two, to provide a clearer understanding of the artifacts to be developed when using an agent

oriented approach. Next, we introduce a possible means to combine these views that will provide 

the necessary understanding of the basic notion of agenthood to enable us to develop an agent 

construction model. 

The first step towards reconciling the two approaches is to clarify SMART'S view of agenthood 

as the "doing for someone". This view of agenthood is not itself a problem, but it is not supple

mented by a clear account of the differences, in actual internal structural elements, between very 

simple objects (with absolutely no reasoning capabilities) satisfying goals, and objects perform

ing more complicated tasks, but with no goal-generation mechanisms of their own. Being able 

to differentiate between the two at a structural level can provide clarity necessary for a construc

tion model. In this following subsection we distinguish between passive agents, which have no 

reasoning capabilities, and active agents. In Chapter 4 we map these concepts to the agent con

struction model, illustrating how these abstractions are related to the practical construction of 
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agents. Here, we begin by looking at very simple objects and explain how we can differenentiate 

them from more complex objects which are not yet autonomous agents. 

3.5.2 Passive Agents 

Luck and d'Invemo use the extreme example of a teacup acting as an agent for someone who is 

using it to contain their tea to illustrate the point that even the simplest entity can be considered 

an agent as long as it is serving a purpose. When a person uses a teacup to hold their tea, 

the teacup is serving a purpose for its user. In analytical terms, the argument goes, the user 

has ascribed or imposed agenthood on the teacup. If someone else passes by and picks up the 

teacup (e.g., a waiter cleaning tables), the relationship between the teacup and its user is broken 

and the user's goal can no longer be satisfied. The waiter, on the other hand, does not view 

the teacup as serving any purpose until he or she is notified by the teacup's user that they have 

inadvertently interfered with the user's goal. The waiter can then also ascribe agenthood to the 

teacup since it is serving the purpose of fulfilling a customer's goal (the original user of the 

teacup). By ascribing agenthood, therefore, relationships can be better understood and formally 

analysed within a coherent agent-based view. 

However, in this scenario, the teacup is completely passive. It is simply containing the tea 

because of its physical make-up, which enables it to contain fluids. The cup is in no way aware 

of the fact that it is satisfying a goal and the cup has no choice as to whether or how it should 

fulfill the goal. In fact, the greatest part of the job of fulfilling the goal of containing the tea is 

done by the cup's user. The user identifies that the cup is able to contain fluids, takes care in 

placing the tea in the teacup and makes sure that the teacup is upright so that the tea does not 

spill. 

3.5.3 Active Agents 

A more interesting class of agents includes those that actively take part in the achievement of 

goals. To illustrate this situation we develop a scenario in which both a passive and an active 

entity are used to achieve similar goals. Imagine that Luc wants to notify a colleague, Mike, 

about a meeting. Luc uses his wireless device to send a message to Mike about the time and 

place of the meeting. 

In one scenario, illustrated in Figure 3.4, Mike has a relatively simple, limited capability, mobile 
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phone. The mobile phone can only receive messages and display them on the screen. Once the 

message has reached the mobile phone, Luc's device ascribes to the mobile phone the goal of 

getting the message to Mike. The mobile phone, however, is not aware of this. It simply receives 

a message and displays it. If Mike happens to see it, then the goal will be accomplished. Thus the 

mobile phone is acting as a passive agent since it is not actively taking part in the achievement 

of the goal. 

In a second scenario, Mike is equipped with a much more sophisticated wireless Personal Digital 

Assistant (PDA). Once the PDA receives a notification message from Luc's agent, it is not only 

ascribed a goal by Luc but it actively takes it upon itself to accomplish the task in a manner it 

deems appropriate. As shown in Figure 3.5, this may include analysing the message and acting 

upon it by updating Mike's agenda or taking care to attempt to inform Mike through alternative 

means such as sending an e-mail to him as well. In other words, the PDA takes some external 
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description of a goal (notify Mike about the meeting) and translates it into a series of actions 

based on some in-built knowledge and the current state of affairs in the environment, such as 

Mike's preferences and position. The PDA is an active member in the chain of events that cause 

Luc's goal to be satisfied. 

3.5.4 Self-Direction and Autonomy 

Both the mobile phone and the PDA are similar in that they have no explicit internal represen

tation of who provided the goal nor that they are in fact satisfying a goal. The crucial difference 

between them lies at the level of interference from the part of the device towards the achievement 

of the goal. Although both entities can be considered as agents from the users' perspectives (in 

our case Luc and Mike) since they are satisfying a goal, we must recognize that their contri

bution to the goal is very different and thus deserves a distinction at the system design level. 

Furthermore, we should also recognise that the second example represents just one point on a 

scale of complex behaviour. 

In order to distinguish the different types of behaviour, we introduce the term self-direction, 

which implies that an entity can, to a certain extent, direct its actions on its own. A self-directed 

agent is one which, given a goal, uses reasoning capabilities, built-in knowledge, and infor

mation about the environment in order to achieve that goal. Note that this is distinct from an 

autonomous agent since the latter is able to generate its own goals and decide whether or not 

to adopt a goal on its own. Of course, once an autonomous agent has decided which goal to 

achieve, we can discuss the extent to which it is able to take decisions about which actions to 

perform to achieve that goal. Therefore, an autonomous agent can be self-directed but a self

directed agent is not necessarily autonomous. In their characterisation, Wooldridge and Jennings 

do not make such distinctions between self-direction and autonomy, but choose to use the notion 

of autonomy without qualifying it further. 

Interestingly, both self-direction and autonomy can be understood in terms of the degree to 

which an agent exhibits the other characteristics, namely reactivity, proactivity and social abil

ity. These distinctions are important in that they allow us to better characterise the different 

types of agent entities that we construct, something that is particularly useful when attempting 

to construct agents and analyse the resulting systems. We describe the relationships between 

reactivity, proactivity and social ability, and self-direction and autonomy below. 
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Passive Agent Active (Self-Directed) Agent Autonomous Agent 

No inherent reactivity. proactivity or social Reactive in adj.Jsting actions to changes Can exhibit all the characteristics of an 
ability. in environment. \lith regards to goals active agent. 

being pursued. 
Goals ascribed to them. Reactive in adjusting motivations to 

Proactive in generating subgoals or changes in the environment. 
Agent status depends on choosing actions in order to achieve goal. 
viewing agent. Socially able to contact other agents 

Socially able in contacting other agents in based on goals generated through 
order to achieve its goals. motivations. 

Goals assigned to them. Goals adopted or generated by agent. 
Agent status can be verified both through 
extemal and intemal examination of 
behaviour. 

FIGURE 3.6: Agent characteristics 

Self-Direction For self-direction, reactivity can be understood as the ability of an agent to react 

to changes in the environment while attempting to achieve its goal. For example, Mike's 

PDA should stop trying to notify Mike about the meeting through different means once it 

is aware that Mike has read an e-mail about the meeting. Pro activity is the extent to which 

an agent is able to choose actions and work towards achieving them in order to achieve 

a primary goal. For example, Mike's PDA is proactive in as much as it performed the 

actions of updating Mike's agenda, sending an e-mail to Mike, etc. Finally, social ability 

is the extent to which an agent is able to take advantage of other agents in order to achieve 

its goals. 

Autonomy For autonomy, reactivity can be understood as an agent's ability to adjust its moti

vations, which may very well lead to alternative decisions about which goals to follow, 

based on changes in the environment. Proactivity can be understood as an agent's ability 

to generate goals to satisfy its motivations. Finally, social ability can be seen as an agent's 

ability to contact and cooperate with other agents in line with its motivations. 

Given this interpretation, we can construct a table, as illustrated in Figure 3.6, in which the 

characteristics of each type of agent entity are listed. It can be used to identify self-directed en

tities by investigating to what extent they display any of the three components of self-direction, 

recognising, however, that there cannot be an overriding function, suitable for every case, that 

will provide the degree of self-direction of an entity. For example, if we consider the mobile 

phone, one could raise the argument that the mobile phone is indeed actively participating in the 

achievement of the goal since the message has to go through several stages in being changed 

from signals received on a radio frequency to text on the screen. The point, however, is not 

to exhaustively analyse each action an entity performs, but rather to find the appropriate level 
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of abstraction for the application at hand. The mobile phone engineer will certainly not gain 

anything by saying that the mobile phone is a passive entity. The designer of an agent-based 

system, however, of which one participating entity is the mobile phone, would be able to better 

understand the participation of the mobile phone in the overall system design by considering it 

as an essentially passive entity. 

In conclusion, our aim is not to provide a quantitative measure of self-direction but rather to 

provide a guide to distinguish between passive, self-directed and autonomous agents. This dis

tinction allows us to better reason about the system as a whole and identify aspects that require 

more attention or are perhaps more prone to fault. For example, when analysing a situation in 

which both passive and active entities agents take part, a developer could first focus on the active 

entities and make sure they perform the right tasks. We return to discuss these issues in the next 

chapter, in which the an agent construction model is introduced, and its relevance to the notion 

of self-direction is discussed. 

3.6 Relationships: SMART to SMART+ 

Having discussed how SMART describes single agents, we now turn our attention to what SMART 

has to say about relationships between agents. The ability to model relationships is, of course, 

crucial for multi-agent systems. While the task is challenging even when dealing with static 

multi-agent systems, where the number of agents and the relationships between them do not 

change very often, it is even more important in heterogeneous and dynamic environments where 

the number and type of relationships should be expected to be in continuous flux. 

The SMART framework focuses on modeling relationships between agents that arise when one 

agent seeks aid from another to achieve a goal. Starting from this premise, SMART then provides 

abstractions for describing the differences between relationships that include a server agent and 

relationships between autonomous agents. We examine these abstractions here, starting from the 

definition a multi-agent system and then go on to justify the need for describing relationships 

that are not the result of one agent aiding another, something that SMART does not adequately 

handle and which we address through SMART+ in Chapter 5. 
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3.6.1 SMART Relationships 

Foundational Concepts 

According to SMART, a multi-agent system arises from the interaction between two or more 

agents when at least one is autonomous and is interacting with at least one other agent that 

is satisfying a goal for the first agent. The MultiAgentSystem schema below formalises this 

definition. A multi-agent system can contain any number and type of entities, with the constraint 

that at least one is autonomous and there is at least one other entity such that there is some 

overlap between the goals of the two entities. 

MultiAgentSystem ____________________ _ 

entities : JPl Entity 
objects : JPl Object 
agents : JPl Agent 
autonomous agents : JPl A utonomousAgent 
neutralobjects : JPl NeutralObject 
serveragents : JPl ServerAgent 

autonomousagents ~ agents ~ obJ·ects ~ entities 
agents = autonomous agents U serveragents 
objects = agents U neutralobjects 
#agents ;:::: 2 
#autonomousagents ;:::: 1 
:3 aal, aa2 : agents. aal.goals n aa2.goals i- { } 

An autonomous agent is required because only autonomous agents can generate their own goals, 

and without the presence of one of them, a multi-agent system would never corne into existence. 

An autonomous agent may not, however, be able to satisfy all of its goals alone and may have 

to seek assistance elsewhere. It is at this point that it interacts with another entity, with the aim 

of satisfying a goal, and a multi-agent system is instantiated. The agent seeking other agents to 

satisfy a goal, the viewing agent, must locate a target agent to adopt the goal. Through SMART'S 

entity hierarchy, three distinct possibilities arise that are explained below and illustrated in Fig

ure 3.7 . 

• If the target entity is a neutral object, then the viewing agent can transfer its goal to the 

neutral object, thus instantiating a server agent. 

• If the target entity is a server agent, this implies that it is already satisfying a goal for some 
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-----------------.. 
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FIGURE 3.7: Goal adoption by neutral objects, server agents and autonomous agents 

other entity. The viewing entity must, therefore, analyse both the target entity as well as 

the agents it is serving before attempting to engage it. 

• If the target entity is an autonomous agent, the viewing entity must persuade the au

tonomous agent to adopt its goal. Furthermore, the goal will only be satisfied if it is 

consistent with the motivations of the agent, which will ultimately determine which goals 

an autonomous agent can generate. 

Engagements and Cooperations 

SMART defines interactions between agents and non-autonomous entities as engagements, and 

interactions between autonomous agents as cooperations. The difference in terminology il-

lustrates the different nature of the interaction between autonomous agents, since autonomous 

agents will not interact unless the goal in question is consistent with their motivations, while 

non-autonomous entities are considered to be predisposed towards satisfying the goals of any 

engaging entity. 

A direct engagement is defined to be an engagement between a client and a server agent with 

respect to a goal., as defined by the DirectEngagement schema. 

DirectEngagernent ____________________________________________ __ 

client: Agent 
server: ServerAgent 
goal: Goal 

client of- server 
goal E (client.goals n server.goals) 



78 Chapter 3 SMART 

In addition, SMART uses the notion of an engagement chain to represent the situation in which 

a single goal generated by an autonomous agent leads to the creation of a series of dependent 

interactions between server entities, resulting in a chain with the autonomous agent at the head 

of the chain, and the goal that is being satisfied for that autonomous agent dependent on all 

members of the chain performing their task. In such engagement chains, the direct engagement 

between an entity and the next entity further down the chain is a direct engagement, while the 

engagements between server agents that are more than one link apart are indirect engagements. l 

Engagement chains allow a more refined categorisation of the different kinds of relationships 

between agents. For example, in order to represent the situation in which one agent has complete 

control over another, SMART defines an ownership relationship as one in which an agent, c, 

owns another agent, s, if, for every sequence of server-agents in an engagement chain in which 

s appears, c precedes it, or c is the autonomous client that initiated the chain. This definition is 

then specialised into direct ownership (when an agent owns another and it directly engages it, 

unique ownership (when an agent directly owns an agent and no other agent is engaging it) and 

specific ownership (when an agent owns another and the owned agent has only one goal). 

A cooperation between autonomous agents is modeled as a goal, the autonomous agent that 

generated the goal, generatingagent, and the non-empty set of autonomous agents that adopted 

the goal, cooperatingagents. 

Cooperation __________________________ _ 

goal: Goal 
generatingagent : A utonomousAgent 
cooperatingagents : lP 1 A utonomousAgents 

goal 3 generatingagent.goals 
Vaa : cooperatingagents • goal E aa.goals 
generatingagents qt cooperatingagents 

Using the definitions provided by SMART for describing relationships between agents we can de

scribe a wide range of interaction scenarios. The notion of engagements facilitates the descrip

tion of scenarios that involve neutral objects while cooperations describe interactions between 

autonomous agents. Finally, engagement chains allow us to describe the interactions between 

entities that arise as a result of a goal generated by an autonomous agents. 

I Note that we do not present all formal definitions here, but direct the interested reader to [82], where all formal 
definitions are presented. 
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Despite its current expressive capabilities the framework is still limited when attempting to deal 

with the range of situations that may occur in dynamic, heterogeneous environments. Below, we 

discuss the problems this limitation creates and how they can be overcome. 

3.6.2 Refining SMART Relationships 

SMART provides a good starting point for the analysis of interactions between agents that builds 

upon the basic concepts of entities and goals. As opposed to the issue of agents, where some 

of the concepts require clarification to suit our purpose at this level there does not seem to be 

a need for further clarification of existing concepts. However, there are some issues which are 

not covered by SMART, relating to a broader understanding of multi-agent systems within the 

context of dynamic, heterogeneous agent systems. It is on these issues that we will focus later 

on in the thesis, but we discuss the limitations of SMART in relation to these here. 

The main shortcoming of SMART is that relationships are defined based on agents engaging 

other agents in order to achieve a goal. The adoption of a goal by an autonomous agent or the 

ascription of a goal to a neutral object is what leads to a relationship and, as a result, gives rise to 

a multi-agent system. However, a more complete understanding of relationships should take into 

account relationships that are not the result of agents cooperating to achieve goals. For example, 

when an agent queries another agent about its capabilities the agents are interacting but they are 

not sharing a common goal. Furthermore, every act of an entity within an environment will, in 

most cases, lead to the consumption of resources thus affecting other entities in the environment. 

This can be thought of as a relationship of agents through the environment. All these aspects of 

interactions between agents are not currently handled in SMART and our aim will be to address 

them by defining appropriate models for identifying when such relationships may occur and then 

characterising such relationships. We examine these issues in Chapter 5. 

3.7 Conclusions 

This chapter sets the scene for the rest of the work described in the thesis by identifying the 

relationships between the SMART framework, whose concepts underpin all other work presented, 

and the extensions to SMART we aim to introduce. SMART is particularly suitable because it 

enables us to model both a wide range of different types of agents, a feature inherent to the kind 
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of domains for which we wish to support application development, and a variety of ways that 

these agents can interact with each other based on their types. 

At the same time, SMART does not address all our concerns, and we have identified in this 

chapter where it falls short of our aims. This analysis was divided along the lines of support for 

describing individual agents and support for describing agent relationships. 

With respect to individual agents, SMART does not adequately address the issue of agent con

struction so as to support practical development. We aim to address this by an extension of 

SMART towards a more practical direction in Chapter 4. Furthermore, we argue that some fur

ther clarification of the basic agent concepts is required in order to make clear the distinctions 

between extremely simple entities and more complicated entities that are not autonomous agents. 

As a result, we introduced the notion of self-direction, which indicates that agents have some 

degree of freedom in choosing how to achieve a goal, as distinct from the notion of autonomy, 

which indicates that agents have some degree of freedom in choosing which goal to achieve. 

Using this notion we defined passive agents as those agents with no self-direction and active 

agents as those agents with some degree of self-direction. These clarifications can aid the devel

opment process by enabling the representation of the range of entities that may be encountered 

and providing indications as to where designers must focus their efforts. 

With respect to agent relationships, SMART only addresses the issue of modeling agent rela

tionships that arise as a result of the transfer of a goal or the adoption of a goal. However, in 

dynamic heterogeneous environments we must be able to model relationships where no goal is 

shared between the agents, such as the case where one agent interferes with the goal of another 

agent. We aim to address this by an extension of SMART that introduces a more generalised 

model of agent interaction, which complements the existing abstract models in Chapter 5. 

Finally, this chapter demonstrates the utility of adopting existing work of possible, since SMART 

provides a rich set of concepts to build upon, allowing us to benefit from prior effort, and at 

the same time the justification for changes or extensions to SMART had to be based on a clear 

identification and expositions of shortcomings, providing us with a clear argument for the need 

of further development. 



Chapter 4 

actSMART : Agent Construction Model 

"Deliberate before you begin; but, having carefully done so, execute with vigour." 

Caius Sallustius Crispus (86BC-35BC); Roman historian 

4.1 Introduction 

In this chapter we introduce actS MART, an agent construction model that allows us to create 

specifications of agent architectures. The aim is to provide a clear link between the abstractions 

discussed in the previous chapter and their use in creating reusable models of agents that can be 

implemented in a practical setting. 

Central to the development of agent systems is the architecture of the individual agents them

selves. Not surprisingly, a significant amount of effort has gone into developing agent architec

tures based on a variety of paradigms such as deliberative architectures, reactive architectures 

and hybrids of the two. However, as discussed in Chapter 1, recent changes in computing envi

ronments complicate the task of designing agent architectures, since we need to enable agents 

to operate in a variety of different environments that may place different and varying demands 

and limitations on them. This also leads to the need to develop and support a range of different 

agent architectures within a single application, as well as to modify an architecture as demands 

change. Such modifications may need to take place both offline as well as dynamically at run

time, raising three important issues, outlined below . 

• First, having to deal with a number of different architectures for a single application can 

81 
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pose considerable difficulties for application developers. It inevitably increases the com

plexity of any design, since different architectures may require different types of analysis, 

and makes it harder to obtain a consistent and coherent view of the system using the same 

abstractions throughout. For this reason we argue that developers should have access to 

tools that allow the same types of analysis throughout the application, irrespective of the 

type of architecture. 

• Second, without a consistent way of describing and constructing agent architectures, com

parison between them is not facilitated, making it harder to decide which is more suited 

to a specific task. This has an impact both at the practical application development level 

as well as at the more general research level. In fact, SMART was in part developed to 

address this. We aim to extend this analytical capability beyond the level provided by 

SMART, to focus on the actual construction of agents . 

• Finally, since we aim to deal with heterogeneous environments, the ability to reuse solu

tions becomes increasingly important if we are to simplify the task of application devel

opment for such environments. The reusability of architectural solutions across domains 

can be facilitated through a common means of describing and constructing them. 

In this chapter, we address just these issues by presenting a model for agent construction that 

is conceptually grounded and architecturally neutral. It is conceptually grounded by the un

derstanding of agent systems provided through SMART, and it is architecturally neutral because 

several different agent architectures can be expressed through the constructs provided. In pro

ducing such an agent construction model, we also aim to reconcile research in agent architec

tures (traditionally situated within the intelligent agent research community) with the demands 

of software engineers who require flexibility in implementation, coupled with a sound under

standing of the underlying principles of agent-based systems. Thus, we enable agent systems 

application development to adopt a consistent way of constructing a variety of agent architec

tures. 

We begin by outlining the design approach for the development of the agent construction model. 

The approach is formulated by first defining and justifying the need for four key features that 

the model should support. In particular, we argue for the need of supporting an abstract agent 

model, architectural-neutrality, modularity, and the ability to reconfigure at run-time. The ab

stract agent model and architectural-neutrality are, in part, inherently supported by the existing 

concepts of SMART and the refinements we introduced in Chapter 3. In order to also support 
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modularity and reconfigurability we, firstly, introduce a distinction between an agent's charac

teristics (attributes, capabilities, goals, and motivations), structure and behaviour, which enables 

us to access and modify each separately, and, secondly, use a component-based approach to 

agent construction. Finally, before presenting actS MART in detail we also discuss the relation 

between actS MART, SMART and application development. 

With a discussion of our design approach in place, we then provide a detailed description of 

the agent construction model. In essence, an agent architecture is specified through an agent's 

attributes, capabilities, goals and motivations (characteristics), the components that make up 

the architecture (structure), and information and control flow between components (behaviour). 

These different aspects are managed by an agent shell, which allows the developer access to 

each aspect. 

Throughout the discussion, we illustrate various issues by examples. However, we realise that it 

is difficult to illustrate the totality of the approach without substantial examples, so we provide 

two more extensive examples in the final section of this chapter. The first example presents 

a basic architecture for an agent participating in on-line auctions, providing a quick overview 

of actS MART in use. The second example begins with the definition of a negotiating agent 

architecture, which we then expand to also deal with argumentation. This example illustrates 

how actS MART enables us to reuse architecture designs. 

4.2 Design Approach 

4.2.1 Desiderata for an Agent Construction Model 

In order to address the concerns raised above and provide some statement of requirements for 

the development of the agent construction model, we identify four desiderata. Although the set 

is not exhaustive, we consider it to be the minimum necessary set of of requirements. 

Abstract Agent Model An agent construction model must be based on some understanding of 

how we can model agents in a manner that is independent of the agent architecture. This 

allows the comparison of alternative architectures at this more abstract level, ultimately 

providing application developers with more informed choices as to which architecture is 

suitable for the domain in question. In our case, the SMART framework provides such an 

abstract agent model (as discussed in Chapter 3). 
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Architecturally neutral The construction model should not lead to the construction of only a 

limited range of agent types, but should allow the widest possible range of architectures 

to be defined using the same basic concepts. In order to achieve this, there are two possi

ble avenues to explore. One option is to define a generic agent architecture and describe 

other architectures in terms of this generic architecture. I Apart from the inherent dif

ficulty in constructing any general, all inclusive model, the drawback of this approach 

is that there may be features of other architectures that cannot directly be translated to 

the generic one. The second option is to provide an architecturally-neutral model, so as 

to avoid this translation problem. Here, the challenge is to provide a model that is spe

cific enough so that it actually offers something to the construction of agents, but general 

enough to support the development of a wide range of architectures. Through an appro

priate architecturally-neutral model, we can consider a range of architectures based on a 

common set of agent-related abstractions and without losing expressive capability. 

Modularity The model should allow for modular construction of agents. This is necessary 

both in order to meet general software engineering concerns and to delineate clearly the 

different aspects of an architecture. As discussed in the next section, our approach calls 

for a separation between describing agents in terms of their characteristics, their structure 

and their behaviour. Such a fine-grained approach can lead to a better understanding of 

the overall functioning of the agent as well as how it can be altered, since the different 

aspects of the architecture are clearly identified and the relationships between them made 

explicit. 

Run-time reconfiguration The reality of current computing environments is that changes are 

often required as the system is running. With large systems that can contain dynamic, 

complex dependencies between various parts, it is crucial to be able to reconfigure agents 

at run-time. Reconfiguration may mean providing more functionality to an agent or chang

ing the way it behaves in order to better meet application requirements. 

4.2.2 Description, Structure and Behaviour 

In the previous chapter, we indicated that while SMART is suitable for describing agents, it 

lacked the necessary features for constructing agents. For the purposes of SMART, this was not 

a problem since the aim was to provide a theoretical framework that would allow the description 

1 Based on Bryson's suggestions, as discussed in Chapter 2. 
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of a number of different agent systems. However, for our purposes it is crucial to be able to 

provide tools that facilitate the construction of agent architectures. Nevertheless, we do not want 

to replace the descriptive capabilities of SMART. Rather, we complement them with additional 

aspects, which are identified below. 

SMART allows systems to be specified from an observer's point of view. Agents are described 

in terms of their attributes, goals and actions, not in terms of how they are built or how they 

behave. In other words, the focus is on the what and not the why or how. We call this a descrip

tive specification, since it essentially describes a situation without analysing its causes nor the 

underlying structures that sustain that situation. For example, if we return to the issue of neu

tral objects becoming server agents when engaged, we can see that SMART says nothing about 

what happens structurally within the entity that has changed status, nor how the mechanisms 

controlling its behaviour have brought about this change. These are the types of issues we need 

to address within a construction model. Therefore, along with the descriptive specification we 

need to have the ability to specify systems based on their structure, i.e. the individual building 

blocks that make up agents, as well as their behaviour. We call these other views the structural 

specification and the behavioural specification, respectively. 

The structural specification enables the identification of the relevant building blocks or compo

nents of an agent architecture. Different sets of building blocks and different ways of connecting 

them can enable the instantiation of different agent types. By contrast, the behavioural speci

fication of an agent addresses the process through which the agent arrives at such decisions as 

which actions to perform. Along with the descriptive specification, these specifications provide 

a more complete picture of the system from different perspectives. It is interesting to note that 

it is possible to begin from anyone of these views and derive the remaining two, but the cor

respondence is not one-to-one. Several behavioural and structural specifications could satisfy a 

single descriptive specification and vice-versa. 

For example, let us consider an agent that is designed with the purpose of participating in auc

tions in order to buy a specific item. A descriptive specification of such an agent may state that 

the agent belongs to a user, has certain rights with regard to buying items from auctions, is able 

to keep track of the progress of auctions, has the goal to buy an item of certain quality and at 

a certain price, and so forth. A behavioural specification may state that this agent begins its 

operation by collecting information about active auctions, then searches for those auctions that 

have items that fit its specification, and decides which is the more appropriate item before finally 
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Descriptive Specification Behavioural Specification Structural Specification 

Attributes: Step 1 : Adive Auction Information Collection 
Agent ONner = Ronald Ashri Collect info on active auctions 
Allowed to 6.Jy = True Step 2: Auction Bid Status Component 

Search for latest Fear! Jam CD 
Capabilites: Step 3: Auction Btaluation Component 
Search auction sites Evaluate Auctions 
Buy Items Step 4: Bid Placement Component 

Place Bids 
Goals: Step 5: Payment Component 
Get latest Peal Jam CD at Buy CD 
lowest possible price 

FIGURE 4.1: Distinguishing between description, structure and behaviour 

placing a bid. A structural specification may state that the agent has different components, each 

able to handle specific functionalities such as searching for auctions, paying, and so forth. The 

different aspects are illustrated in Figure 4.1. Alternatively, the structural specification may state 

that the entire functionality is contained within one tightly integrated control loop. Similarly, the 

behavioural specification could change to state that the agent searches through auctions and buys 

the first item that fits the requirements. In both instances, the descriptive specification remains 

the same, but the structure and behaviour of the agent that fulfill that descriptive specification 

change. 

The agent construction model reflects these levels by allowing direct access to these different 

aspects of agents, based on a clear decoupling at the architectural level. 

4.2.3 Component-Based Construction 

In order to support the division of an architecture's different aspects as described above, and to 

satisfy the requirement for modularity and re-configurability, we take a component-based view 

of agent architectures. 

Component-based software engineering is a relatively new trend in software engineering [53, 

83]. Separate developments within the fields of object-oriented computing, re-usable software 

code, formal methods and modeling languages have all steered research towards a component

based approach [202]. Components are understood as units of composition that can be deployed 

independently from each other, through a third-party that coordinates their interactions [208]. 

Interaction with a component takes place through a well-defined interface, which allows the 

implementation of the component to vary independently of other aspects of the system. 

The are several benefits of decomposition through a component-based approach, in line with our 
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FIGURE 4.2: From SMART to applications 
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• Describing an agent architecture through the composition of components promotes a 

clearer identification of the different functionalities, and aIIows for their reuse in aIter-

native contexts. 

• Different types of components can be composed in a variety of ways to achieve the best 

results for the architecture at hand. 

• By connecting the abstract agent model of SMART to component-based software engineer

ing, we bring it much closer to practical development concerns within a paradigm that is 

not foreign to developers. 

4.2.4 From SMART to Applications 

Before proceeding with the description of actS MART, we clarify the relationships between 

actSMART, SMART, and the application level. These clarifications serve to indicate how the 

work presented here can be used within the context of the agent development process. 

The relationships are illustrated in Figure 4.2. At the most abstract level lies SMART. Then, 

actSMART represents an extension of SMART to deal with the construction of agents. The 

actS MART model makes direct use of the notions of attributes and capabilities from SMART, 

but to a large extent the notions of components could be used with a different abstract agent 

model. More direct links between actS MART and SMART are made in Section 4.6, where we use 

actS MART to describe the different types of SMART agents possible, as discussed in Chapter 3. 

Architectures for agents, which can range from application-independent architectures, such 

as BDl, to application-specific architectures, can thus be designed using the framework pro

vided by actS MART, and based on the concepts provided by SMART. We should note that such 

application-independent architectures are not always required and may not always be advisable. 
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FIGURE 4.3: Agent construction model overview 

Description 

For example, an agent dedicated to dealing with requests for quotes on fast-changing finan

cial information, where performance optimisation is crucial, would benefit from an application

specific architecture tailored to that situation. Conversely, agents expected to deal with a variety 

of changing tasks and complex interactions with other agents, such as sophisticated negotia

tions, might benefit from a more generic and sophisticated deliberative architecture. One of the 

benefits of our approach is that while it distinguishes between the different cases, it can still 

consider them within the same conceptual and practical framework. 

The next level is domain-specific support, which involves appropriate middleware to support 

agent discovery and interactions between agents in the specific distributed environments in 

which the applications operate, as well as other components that could supplement agent ca

pabilities. Finally, specific applications can be built, making use of all the layers below. 

4.3 Overview of the Agent Construction Model 

In this section, we provide a brief overview of the agent construction model, while in Sections 

4.4 and 4.5 we provide a more detailed description of the different aspects within it. 

The aim of the agent construction model is to embody all of the design principles discussed 

above, so as to provide a direct route to implementation. Central to these concerns is the dis

tinction between the structural, behavioural and descriptive specification and a modular, recon

figurable approach. The main concepts and the relationships between them are illustrated in 



Chapter 4 acts MART : Agent Construction Model 89 

Figure 4.3, in which the central artifact is the shell that manages an agent architecture, with 

the architecture being made up of components. Components are placed within this shell and 

the links for data-flow between components are defined through the shell. In addition, the ex

ecution sequence of components is defined by the shell. The components form the structural 

specification of the agent, while the links and execution sequence define the behavioural speci

fication. Finally, a description of the overall agent is also stored within the shell to complete the 

descriptive specification of the agent. These features provide for a modular architecture with 

clear distinctions between the different aspects of the architecture. 

Now, since individual components are independent of the existence of other components, and all 

links between them are managed by the shell, we can more easily replace components or change 

data-flow between components in the shell, as well as alter the execution sequence. These fea

tures allow us to reconfigure the architecture in response to changing application requirements 

or changing environmental needs. 

Throughout, the main concepts that underpin the development of agent architectures are the 

abstract agent model provided by SMART, and a functional separation of components into four 

generic types, described below. The different component types allows us to define architectures 

without needing to specify the intemal behaviour of components in great detail. These features 

support the need for an architecturally-neutral model that can be applied in a wide range of 

situations. 

4.4 Components 

Components are the basic buildings blocks for an agent, they can be considered as the structural 

representations of one or more related agent functionalities, which are considered at two differ

ent levels. At an abstract level, the functionality is described in generic terms, which we will 

present shortly. At the implementation level, the abstract functionality is instantiated through the 

actual computational mechanisms that support it. The reason for distinguishing between these 

different levels is so that we can use generic component types to specify an agent architecture 

at a high level of abstraction without making direct reference to the detailed behaviour of each 

component. This allows us to move between the different levels while retaining a good under

standing of the overall architecture, and identifying which specific components best suit each of 

the generic functionalities. 
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4.4.1 Generic Component Types 

From here on, we set out the terms that can be used to describe components at an abstract 

level. We begin by dividing components into four generic types, each representing a class of 

functionality for the agent. 

We use the example architecture illustrated in Figure 4.4 to explain each generic component 

type. The diagram presents a hypothetical architecture for an agent dealing with auctions. In

formation about ongoing auctions is collected by the Active Auction lnfonnation Collection 

component, while the Auction Bid Status component provides information about the current 

state of our bids. All this information is stored in the Auction lnfonnation Database component, 

and is processed by the Auction Mechanism component to decide where and what bid to place. 

Bids are placed through the Bid Placement component and, eventually, payments can be made 

through the Payment component. The generic functionality of the components can be divided 

into information collection (sensors), information storage (infostores), decision-making (con

trollers) and finally those directly able to effect change in the environment (actuators). These 

four generic types of components, described in more detail below, can be used to describe a very 

wide range of agent architectures, and we will present several examples later on . 

• Controllers are the main decision-making components in an agent. They analyse informa

tion, reach decisions as to what action an agent should perform, and delegate those actions 

to other components. Controllers are stateless, since each decision is taken depending just 

on information provided through statements at any given execution, and not on previous 

decisions that a controller has taken. Information that may affect decisions over time 

should be stored in infostores so that it can be provided to controllers as required . 

• Sensors are able to sense environmental attributes, such as signals from the user or mes-
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sages received from other agents. They provide the means through which the agent gains 

information from the environment. Similarly to controllers, sensors are stateless . 

• Actuators cause changes in environmental attributes by performing actions. Actuators are 

also stateless, since every action they perform is not influenced by previous actions. 

• Infostores are components whose main task is that of storing information. Such informa

tion could be anything from the beliefs of an agent about the world, to plans, to simply a 

history of the actions an agent has performed, or a representation of its current relation

ships with others. In contrast to the other components, info stores are not stateless. The 

information they store represents their current state, and the manner in which information 

changes will be a result of the manner in which the infostore manipulates and updates 

information. For example, in the case of a BDI architecture, there may be various ways 

of representing and updating beliefs, such as dealing only with beliefs referring to the 

current state of the environment [179]. 

In conclusion, the main differences between component types are two. Firstly, controllers, sen

sors and actuators are stateless, while infostores have state. Secondly, only actuators and sensors 

deal with interaction with the external environment, with actuators affecting changes and sen

sors retrieving information. Finally, we note that while these four types are judged necessary for 

describing any significant architecture we have not encountered an example of an architecture 

that required more than these four types of components, indicating that they are also sufficient 

for describing the majority of cases. 

4.4.2 Component Statements 

The internal operation and structuring of components, irrespective of their type, is divided into 

a functionally-specific part and a generic part. In this subsection, we describe the generic part 

that is common to all components, and outline the types of information that components can 

exchange. 

Each component accepts a predefined set of inputs and produces a predefined set of outputs. A 

component generates an output either as a direct response to an input from another component, 

a signal from the environment or an internal event. For example, a sensor component attached to 

a thermometer may produce an output every five minutes (based on an internal clock), or when 
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the temperature exceeds a certain level (an external signal), or when requested from another 

component (as a response to the other component). 

In actS MART, inputs and outputs share a common structure; they are statements, which have a 

type and a body. The body carries the main information (e.g., an update from a sensor), while 

the type indicates how the information in the main body should be treated. We make use of three 

types of statements, described below. 

• INFORM-type statements are used when one component simply passes information to an

other component. In order for one component to inform another of something, it must 

be able to produce the INFORM-type statement as an output and the other must be able to 

accept it as an input. Returning to the example auction agent architecture, the Auctioll

BidStatus sensor would create INFORM statements to be sent to the Auctionlnfonnation

Database infostore. 

• REQUEST-type statements are used when one component requires a reply from another 

component. In this case, the receiving component processes the REQUEST and produces 

an INFORM statement that is sent to the requesting component. The mechanisms through 

which statements are transmitted from one component to an other are introduced in Sec

tion 4.5. Once more referring to the auction agent architecture, the Auction Mecha

nisms controller could produce REQUEST statements to be sent to the Auction lnfonnatioll 

Database infostore, which can then reply with an INFORM statement. 

• EXECUTE-type statements are used to instruct another component to execute a specific 

action. Typically, controller components send such statements to actuators so that changes 

can be effected in the environment. In the auction agent example, the Auction Mechanism 

controller could create EXECUTE statements to be sent to the Payment actuator, instructing 

it to pay for an item won in the auction. 

It should be noted that this list of statement types is not exhaustive, and they are simply rep

resentative of the needs of most applications due to their generic nature. Some domains may 

benefit from more specific statement types. We should also add that message-passing between 

components at this level should not be compared with message exchange as defined in high

level agent languages such as KQMLIFIPA [95]. Typing statements simply provides additional 

information to aid control of component behaviour. 
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The information within a statement's body is, in its most general form, described through at

tributes, as per the definitions given in Section 3.4.1. For the purpose of practicality we di

vide attributes along the lines of architecture-specific attributes and domain-specific attributes. 

Architecture-specific attributes are attributes that are only relevant within the internal scope of 

an agent architecture. For example, a BDI-based architecture could define attributes such as 

plans, beliefs, intentions and so forth. 2 Architecture-specific attributes can be considered as 

defining the internal environment of an agent. Domain-specific attributes define features that 

are relevant to the environment within which the agent is operating. So, in the case of the agent 

example above, these attributes may include features such as auction-house name, item, and so 

forth. Application-independent agent architectures, such as BDI-based architectures, typically 

make use of both types of attributes, including domain specific attributes within the architecture

specific attributes. Thus, a plan may prescribe an action to contact a service, as identified by its 

service name. The components of an AgentSpeak(L) [79] architecture, for example, could then 

manipulate plans and beliefs, and have some generic way of manipulating the domain-specific 

attributes. However, a developer may also choose to develop an agent that has no architecture

specific attributes, creating components that can directly manipulate domain-specific attributes. 

We return to examine this issue in Chapter 6. Below, we describe a typical operation cycle for a 

component to explain how the different types of statements are handled. 

4.4.3 Component Operation 

An outline of the component operation is shown in Figure 4.5. Components begin their operation 

in an inactive state within the shell. In this state they do not receive or send statements. Once 

activated by the shell, components perform any relevant initialisation procedures and then can 

enter one of two possible types of operation. The default type is to receive statements until the 

shell calls them to enter their execution phase. An alternative behaviour is for the receipt of a 

statement to trigger their execution phase. Below we consider the default operation first, before 

discussing the alternative behaviour. 

When a statement is received, it is typically stored within the component until the component 

enters its component-execution phase. Once the shell directs the component to enter its exe

cution phase, all statements received by a component are processed. According to the type of 

statements received, the component will do one of three actions, described below. 

2This approach was followed by d'Inverno and Luck when formal ising AgentSpeak(L) [79] 
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FIGURE 4.5: Component Lifecyc1e 

INFORM An INFORM statement simply causes the component to update any relevant attributes, 

based on the information contained within the statement. 

EXECUTE An EXECUTE statement is placed on an execution stack. Once the processing of all 

received statements is completed, the EXECUTE statements are retrieved and the compo

nent performs the actions described within the statement. 

REQUEST A REQUEST statement causes the component to attempt to retrieve the information 

requested and create an INFORM statement that contains that information. This INFORM 

statement is then placed in an outbound stack that stores all statements to be sent out. All 

outbound statements are sent once the processing of all received statements has finished 

and the actions prescribed by EXECUTE statements have been performed. 

The entire process continues until a component is deactivated. Note that while a component is 

executing it cannot receive any statements. If statements are still arriving at the component, it is 

the task to the shell to manage those statements until the component is able to receive them. 

The alternative behaviour for the component is to process every statement as it arrives, using 

the same process we described above for the different types of statements. This event-based be

haviour is especially useful for infostores which are typically queried with REQUEST statements 

for information, so that they can provide the response immediately. Through the implementation 

of actS MART in Chapter 6, we will see some examples of combining components that execute 
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whenever they receive a statement and components that await the command to execute by the 

shell. 

At any given time, the state of a component in terms of the information to be manipulated, 

is given by the set of statements that have not yet been processed, the set of statements in the 

execution stack, the set of statements in the outbound stack and any attributes that the component 

manipulates. Depending on the specific implementation of a component, it may be possible to 

interrogate components for their individual states. 

With components, we are able to differentiate between the different tasks an agent architecture 

needs to perform, from a structural perspective. In contrast, the composition of components and 

the control of the flow of information between them provides the behavioural specification. In 

the next section, we see how this is managed. 

4.5 Shell 

As discussed in Section 4.2.3, the basic principles of a component-based approach is that com

ponents should be independent of each other, and the coordination between them should be 

handled by a third-party. As we have seen from the description of components in Section 4.4, 

communication between components takes place through the exchange of statements. Individual 

components are not aware of the origin of received statements nor the destination of statements 

they produce, ensuring that components are independent of each other. Third-party coordination 

is achieved by placing components within a shell, which acts as the third party that manages the 

sequence in which components execute and the flow of information between components. This 

management takes place by defining links between components and the execution sequence of 
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components. The basic aspects of a shell are illustrated in Figure 4.6. From this point on, we will 

use different representations for the different types of components in order to aid the illustration 

of agent architectures. Sensors are dashed rectangles, infostores are rounded corner rectangles, 

actuators are continuous line rectangles, and controllers are accented rounded corner rectan

gles. Components are placed within a shell, links are created between components to allow the 

flow of statements, and an execution sequence is defined. In addition, the shell can be used to 

maintain descriptions of agents in terms of attributes, capabilities and goals. We consider each 

of these aspects in more detail below. 

4.5.1 Links 

Information flows through links that the shell establishes between components. Each link con

tains paths from a statement-producing component to the statement-receiving components. Each 

component that produces statements has a link associated to it that defines the components that 

should receive those statements. Links also ensure that, in the case of a REQUEST statement, 

the reply is sent to the component that produced the request. Thus, links manage paths, which 

are one-to-one relationships between components. They are usually unidirectional, except in the 

case of a REQUEST statement, for which an INFORM may be returned in the opposite direction. 

The shell then uses the information within links to coordinate the flow of statements between 

components. Ultimately, this coordination depends on the choices that a developer makes, since 

it requires knowledge of each component and how they can be composed. 

By decoupling the handling of statements between components from the components them

selves, we gain considerable flexibility. We can manage the composition of components and the 

flow of information without the components themselves needing to be aware of each other. It is 

the architecture developer's task to ensure that the appropriate links are in place. At the same 

time, we have flexibility in altering links, and it becomes easier to introduce new components. 

Furthermore, basic transformations can be performed on a statement from one component to the 

other to ensure compatibility if the output of one component does not exactly match the required 

input for another. For example, if a sensor component provides information from a thermome

ter based on the Celsius scale, while a controller that uses that information makes use of the 

Fahrenheit scale, the link can be programmed to perform the necessary transformation. These 

features satisfy our requirement for facilitating the reconfiguration of architectures. 
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4.5.2 Execution Sequence 

Apart from the management of the flow of information, we also need to consider the execution of 

components for a complete view of agent behaviour. This is defined via an execution sequence 

that is managed by the shell. Execution of a component includes the processing of statements 

received, the dispatch of statements, and the performance of any other actions that are required. 

The execution sequence is an essential part of most agent architectures and, by placing the 

responsibility of managing the sequence within the shell, we can easily reconfigure it at any 

point during the operation of the agent. For many architectures this may be purely sequential, 

but there are cases in which concurrent execution of components is desired (e.g., the DECAF 

architecture is based on a fully concurrent execution of all components [105]). In general, the 

issue of supporting complex execution sequence constructs, such as conditional paths and loops, 

is considered to be an issue that goes beyond the scope of this research, and there is a wealth of 

existing research that can be accessed to address this need. For example, recent developments 

within the field of Semantic Web Services provides a process model language for describing the 

operation of a web service [4]. Nevertheless, through our proposed mechanisms, we facilitate 

the necessary separation of concerns to enable the integration of such work within the scope of 

agent architecture development. The architectures developed in this thesis do not make any use 

of concurrent execution of components. 

4.5.3 Agent Description 

The description of the agent as a whole can be maintained by the shell or explicitly within the 

agent architecture, with components dedicated to the task, depending on the capabilities and 

needs of the architecture. In the former case, the shell can store a number of attributes that 

describe the agent owner, its location, user preferences, etc. The level of detail covered by this 

description is mostly an application-specific issue, and this information can either be provided 

directly to the shell by the developer, or collected from the various components. The shell could 

query a component that is able to provide information about the current location, for example, 

and add that to the description of the whole agent. Likewise, it may keep a record of the current 

goal an agent is trying to satisfy, or the plan it is pursuing. The capability to collect and provide 

attributes describing the agent within the shell may be particularly useful in a situation in which a 

developer wants to export a view of the agent for debugging purposes, or when some information 

needs to be advertised, to facilitate discovery by other agents. 
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4.5.4 Agent Design 

With the main aspects of the agent construction model in place, we now briefly describe the 

agent design process. Agent design begins with an empty shell. We could envisage implemen

tations of shells being provided by environment owners, which would ensure compatibility with 

their environment, while allowing the agent developer relative freedom as to the structure and 

behaviour of the agent within the confines of the shell. Then, based on the purpose of the agent, 

the necessary components for sensing, acting, decision-making (controllers) and information 

storage can be identified. If such components already exist, the main task of the developer is to 

decide on the desired behaviour, in terms of execution sequence and flow of information, and 

whether any of the outputs of components need to be transformed in order to be aligned with the 

input needs of other components. 

The components are then loaded into the shell, and links, as well as an execution sequence, can 

be defined. With the execution sequence in place, the operational cycle of the agent can begin. 

Agent operation can be suspended or stopped by stopping the execution sequence. This opera

tional cycle can be modified by altering the execution sequence, and modifying links between 

components. 

4.6 Linking actsMART to SMART 

With actS MART we can describe several agent architectures through a component-based ap

proach, since it provides a sufficient level of detail to support the implementation of arbitrary 

architectures. This allows us to describe architectures at a level that is close to implementation, 

while retaining the ability to abstract out some of the details, such as the specific operation of 

each component. 

However, up to this point we have made no direct connections between actS MART and SMART. 

To a certain extent, the connections are implicit, since the notions of sensors and actuators clearly 

model the view of an agent as an entity interacting with the environment. In addition, the units 

of information within an agent architecture are attributes, as defined by SMART. Nevertheless, 

beyond these notions, actS MART could be used without reference to the abstract agent model 

provided by SMART. In this section, we explicate the correspondence between the two, to illus

trate both the utility of an abstract agent model as well as the ability to refer to the construction 
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of agents. We do this by using the agent construction model to provide an alternative view of 

the SMART entity hierarchy, which combines description with structure and behaviour, defining 

minimal architectures for the different types of entities in the entity hierarchy. 

Recall that the entity hierarchy is made up of four basic types: entities, which are described by 

attributes; objects, which are entities that are able to perform actions; agents, which are objects 

with goals; and, finally, autonomous agents, which are agents able to generate their own goals. 

In addition, neutral objects are those objects that are not agents, while server agents are those 

agents that are not autonomous. Finally, we refine this hierarchy by introducing passive agents 

as those agents with no self-direction, and active agents as those agents with self-direction. 

An agent application may contain entities that are only a set of attributes, with no capabilities 

or goals. However, from a combined structural-behavioural perspective it only makes sense 

to describe minimal architectures from the level of neutral objects onwards, which is the level 

where objects can actually perform actions and therefore have some well-defined structure and 

behaviour. Now, depending on the type of neutral object, its instantiation may lead to either a 

passive or active agent, and we provide minimal architectures for those as well. The combined 
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structural-behavioural perspective allow us to more clearly define the notion of self-direction 

since we can ground it to the existence or not of specific types of components. In addition, we 

also discuss the difference between agent architectures that makes use of an infostore. Finally, 

we provide a minimal architecture for an autonomous agent. Figure 4.7 illustrates the different 

architectures as well as the relationships between them. We describe each agent type, in turn, 

below. 

Neutral Object All of the components of a neutral object are deactivated, except sensors. Sen

sors are required to receive information from the environment, so that a neutral object can 

respond to any requests. It is important to note that neutral objects can only perform an 

action if another agent sends a message for an action to be performed, or if the sensor is 

somehow activated by changes in the environment to cause an action to take place. 

Passive Server Agent If a neutral object performs an action due to a message that comes 

through the sensor and directly causes an actuator to execute, the neutral object behaves 

as a passive server agent. In other words it has no self-direction. As a result, the minimal 

architecture for a passive server agent must include at least one sensor component and one 

actuator component with a link between them, where the output statement of the sensor is 

an EXECUTE statement for the actuator. 

Active Server Agent When information from the environment is passed through a controller, 

which analyses and takes decisions based on it, the entity is behaving as a active server 

agent. This agent has some degree of self-direction, which is expressed through the con

troller. Therefore, a minimal architecture for an active server agent must include at least 

one sensor, one actuator and one controller. 

Active Server Agent (HistorylRelationships) The minimal architecture for an active server 

agent described above did not make any use of infostores. However, an important type of 

agents, discussed both by Luck and d'Inverno [81] and by Russel and Norvig [186], relates 

to agents that store information about their past actions, the environment or relationships 

with other agents. Such agents are necessary to be able to perform long-term reasoning. 

In actS MART a minimal architecture for such an agent simply requires all four types of 

components. 

Autonomous Agents Finally, autonomous agents must also have all four types of components 

in order to operate. Autonomous agents generate their own goals based on motivations, 
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FIGURE 4.8: Example auction agent architecture 

but in order to do that they need to have some understanding of how a goal benefits a 

motivation. This means that they need to be able to reason about the current environmental 

state and how it can be changed to achieve a goal that is in line with their motivations. As a 

result, they must be able to store information about the environment so that the controller 

can make use of it. 

Through these distinctions, we can see that the main difference between passive and active 

agents is the use of controllers to take decisions. From this perspective, controllers can be said 

to encapsulate the self-direction abilities of the entity as a whole. 

In the next sections we present two examples, of increasing complexity, that illustrate the use of 

actS MART. 

4.7 Example Architecture: Auction Agent 

The architecture illustrated in Figure 4.8 provides a straightforward example of how the agent 

construction model can be used, and at the same time illustrates how access to an underlying 

abstract model can be beneficial when dealing with architectures that do not have explicit rep

resentations for goals. The architecture represents an agent exclusively aiming to participate in 

auctions. 

First, the components are linked as illustrated in Figure 4.8. The sensors wrap their information 
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within INFORM statements so as to send them to the infostore, which analyses them to decide 

how the information should be stored. For example, the attributes within the statement could 

indicate that the auction status should not be considered reliable after a certain time period has 

elapsed, or that the level of reliability of the information source is poor. The Auction Mechanism 

is then informed of the current situation as perceived by the sensors and by the Auction Infonna

tion Database. Based on this information, the Auction Mechanism controller sends EXECUTE 

statements to the actuators, indicating which action to perform, and under which conditions that 

action should be performed. For example, if an actuator fails to place a bid before a certain time 

period, it should quit. 

Note that there are no explicit references to goals in this architecture. However, at the level 

of SMART we can reason about the goals of achieving an appropriate price given the mecha

nisms defined within the Action Mechanism controller. We can also identify and reason about 

the agent's attributes (contained within individual components) and capabilities (as expressed 

through individual components) at this level and compare it with other agents. This is one of 

the benefits of having access to an abstract agent model. Further benefits come when placing 

this agent in the context of a multi-agent system whithin which we are able to reason about 

relationships with other agents based on the different agent types that SMART defines [139]. 

4.8 Example Architectures: Negotiating Agents 

In this section we present a more complex example, investigating the suitability of our model 

for specifying flexible negotiating agent architectures. This is a class of agent architectures 

that is gaining increasing importance for a variety of application settings. We briefly discuss 

negotiating agents below. 

4.8.1 Negotiating Agents 

In multi-agent environments, agents often need to interact in order to achieve their objectives 

or improve their performance. One type of interaction that is gaining increasing interest is 

negotiation. We adopt the following definition of negotiation that reconciles views proposed 

by [121] and [222], which we believe is a reasonable generalisation of both the explicit and 

implicit definitions in the literature. 
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Negotiation is a fonn of interaction in which a group of agents, with conflicting 

interests and a desire to cooperate, try to come to a mutually acceptable agreement 

on the division of scarce resources. 
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Agents typically have conflicting interests when they have competing claims on scarce re

sources, which means that their claims cannot be simultaneously satisfied. Resources here are 

taken to be very general; they can be commodities, services, time, and so forth, that are needed 

to achieve something. 

To resolve such conflicting interests, a number of interaction and decision mechanisms have 

been developed [121], and there has been extensive work on implementing frameworks of ne

gotiation, based on auction mechanisms (as evident, for example, in the Trading Agent Compe

tition [209]) and frameworks that adopt heuristic-based bilateral offer exchange (e.g. [90, 91]). 

Although recently, argumentation-based approaches [122, 166, 172] have also been gaining in

terest, there are as yet very few implemented systems that cater for argumentative agents. One 

of the reasons for this is that many of these frameworks involve complex systems of reason

ing, based on logical theories of argumentation, for which there are still many open research 

questions [171]. Another reason is that there are no software engineering methodologies that 

structure the process of designing and implementing such systems. This is why, in most cases, 

these systems are implemented in an ad hoc fashion. 

Our aim is to address the software engineering issues related to the development of architectures 

for negotiating agents, ranging from simple classical agents to more complex argumentative 

negotiators. We use actS MART in conjunction with a general negotiation framework to design 

and describe the architectures of two generic classes of negotiating agents: simple negotiators 

and argumentative negotiators. Through this, we demonstrate how a generic architecture for 

argumentative negotiators can be achieved by extending the simple negotiator architecture and 

reusing its components, and show how this modularity is facilitated by the construction model. 

4.8.2 Negotiation protocol 

Before we start describing negotiating agents, however, we discuss the main components of 

a negotiation framework. In addition to the negotiating agents, a negotiation framework usu

ally includes a communication language and an interaction protocol. For example, a nego

tiation framework based on a simple English Auction protocol would need a communication 
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language locution (or performative), say propose(.), that can express bids. The protocol is the 

set of rules that specify, at each stage of the interaction, which locutions can be made, and by 

whom. In addition, the framework needs a language for representing information about the 

world, such as agents, agreements, arguments, and so on. This information is used within the 

communication language locutions to form utterances. For example, a bid might be presented 

as propose ( a, b, {toyota, $10K}), where a and b are the sending and receiving agents, and 

{toyota, $10K} is the specification of the proposal. Finally, a negotiation framework usually 

includes several information stores needed to keep track of various information during the in

teraction. This information may include proposals made by different agents, concessions they 

have committed to [222], and so on. Finally, the framework also needs a set of additional non

protocol rules, such as those that identify the winner in a particular negotiation, or those that 

specify that agents cannot retract their previous proposals, and so on. 

Here, we focus our attention on the construction of the agents within the framework. We do 

not address, for example, how protocols can be specified in a modular fashion (which has been 

investigated in [15] for example), or how the locutions can be verified. We assume that develop

ers have at their disposal definitions of the appropriate negotiating protocols, domain ontologies 

and communication languages, and instead deal with the problem of framing such mechanisms 

within an appropriate agent architecture. Note that we do not claim to have specified the only 

way of describing negotiating agents. Instead, we attempt to illustrate how actS MART can be 

used to capture a variety of negotiators. 

4.8.3 Basic Negotiating Agent 

Basic negotiating agents include those participating in auctions or those engaged in bilateral 

offer exchanges. The common aspect of these agents is that they engage in interactions in 

which the primary type of information exchanged between agents is proposals (i.e., potential 

agreements). We call the agents basic in order to distinguish them from agents that can engage 

in more sophisticated forms of negotiation that allow the exchange of meta-information (or 

arguments). 

Now, in order to illustrate the use of actS MART for designing such an agent we present the design 

through a two-step process. In the first step, we define high-level descriptive, behavioural and 

structural specifications with the emphasis on the descriptive specification. Using these, we then 

proceed to identify, in the second step, the precise components, links and execution sequence 
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Descriptive Specification Behavioural Specification Structural Specification 

Attributes Receive Proposal Message Interpretation 

Domain-SpecificAttributes: Analyse proposal against Negotiation protocol analysis 
protocol 

Negotiation Protocols Handled Proposal content analysis 
Negotiation Issues Analyse proposal content 
Agent (Miner Environment model infostore 
Ontologies Used Update beliefs 

Architecture-Specific Attributes: Generate counter-proposal 
Opponent model infostore 

Mental attidute infostore 
Proposals 
Protocol Rules Response generation 
Mental Attitudes 
Opponent Model 
Environment Model 

Capabilities 

Interpret proposals 
Interpret negotiation protocols 
Maintain beliefs 
Create counter-proposals 

Goals 

Achieve desired negotiation 
outcome 

FIGURE 4.9: Initial specification of basic negotiation agent 

that we require. 

Basic Negotiating Agent: Initial Design 

An overview of the initial design of the agent is discussed below, and summarised in Figure 4.9. 

Descriptive Specification Recall that the descriptive specification of an agent is based on its 

attributes, capabilities, goals and motivations. 

Domain-specific attributes The domain-specific attributes of the agent include the types 

of negotiation protocols in which the agent can participate, the types of issues over 

which it can negotiate (e.g. if it is a seller, the goods it can sell and whether it can 

negotiate over the price or other features of the goods), information about the owner 

of the agent, the types of ontologies it uses to describe issues, and so forth. All this 

is information that other agents can use to decide whether and how to interact with 

this agent. 

Now, a developer can decide to make this information explicit within the agent archi

tecture (by providing components that can directly manipulate the information). Al

ternatively, it may simply provide the information as additional descriptions through 
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the shell, while it is implicit within the architecture in the way components are im

plemented. The choice between them depends on whether the agent architecture 

actually needs to manipulate this information directly or not. For example, the ap

plication may require that the agent should be able to take some decisions about the 

type of information it provides about itself to other agents based on changes in the 

environment, and that such decisions should be made within the components that 

make up the agent architecture. In our case, we design an agent that does not ma

nipulate this information explicitly, so it is simply provided in the agent shell. The 

implication is that we do not require components that are dedicated to just handling 

this information. 

Architecture-specific attributes The architecture-specific attributes represent the types 

of information that the agent architecture components manipulate and use within 

statements transferred between components. In our case, this includes: proposals 

from other agents; protocol rules to enable the agent to decide on the valid responses; 

beliefs relating to the opponent; the agent's mental attitudes and the environment; 

proposal content; and proposal evaluation. 

Capabilities The capabilities of the agent should include the ability to: interpret propos

als from other agents; analyse those proposals based on a set of protocol rules and 

the beliefs it has about its mental attitudes, its opponent and the environment; main

tain and update beliefs based on the interactions it has with opponents; and, finally, 

create responses to proposals. 

Goals The goals of the agent - i.e. the desired negotiation outcomes - are in part in

fluenced by the mental attitudes of the agent. However, the architecture does not 

require explicit representation of agent goals. Within the descriptive specification, 

we can consider that the overarching goal of the agent is the achievement of the 

environmental state that represents the desired negotiation outcome for the agent. 

This desired state is determined by the mechanisms used to evaluate proposals and 

generate responses, which ultimately decide when this environmental state has been 

reached. Here we see, once more, how access to a general, architecturally-neutral 

agent model allows us to reason about such things as goals even though they find no 

explicit representation in the architecture. 

Structural Specification The structural specification of the agent should include components 

for: handling the interpretation of messages; analysis of negotiation protocols; analysis of 



Chapter 4 acts MART : Agent Construction Model 

proposal 
history 

(---------------
- Illocution I incoming 

~-----j)roposal----'I Interpretation I locutions 
'------r--...../ 1.--------------

Negotiation 
Protocols 

Opponent Model 

Mental Attitudes 

Environment 
Model 

evaluatio 

opponent 
model 

response 

FIGURE 4_10: Basic negotiating agent architecture 

outgoing 

locutions 

107 

proposal content; maintenance and updating of environmental models; opponent models 

and the mental attitudes of the agent; and the creation of counter-proposal messages. 

Behavioural Specification The behavioural specification of the agent begins with the agent 

receiving some proposal from another agent. Then, the agent needs to analyse the proposal 

in order to determine whether it is valid given the interaction protocol that is being used 

for the negotiation. If it is valid, the agent can consider the actual content of the proposal 

and evaluate it given its own set of requirements for the negotiation outcome. With this 

evaluation it can then attempt to generate a response, within the constrains of the responses 

that are allowed given the interaction protocol, and finally sent out a message with the 

response. 

Basic Negotiating Agent: Detailed Design 

Using the initial specification provided above, we can now present a more detailed design for 

the agent, focusing in particular on the behavioural and structural specification. 

The proposed architecture for basic negotiation agents is illustrated in Figure 4.10, in which we 

follow the conventions described earlier for illustrating the different types of components; the 

connecting arrows illustrate the flow of statements. The structural and behavioural specifications 

are detailed below. 

Structural Specification The structural specification is divided into the four types of compo-

nents. 
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Sensors The architecture has just one sensor to receive messages from other agents. The 

Illocution Interpretation sensor is responsible for interfacing with lower-level com

munication middleware, ensuring that incoming messages adhere to basic syntactic 

validity and extracting the actual proposal from the message. It can create INFORM 

statements with the proposal to provide to other components. 

Actuators Only one actuator is needed for the architecture to handle the expedition of 

messages to other agents. Similarly to the Illocution Interpretation component, the 

Locution Generation component is responsible for interfacing with communication 

middleware and packaging proposals appropriately. The component is able to accept 

EXECUTE statements, with the content being the response it should send to other 

agents. 

Infostores There are five infostores defined for the basic negotiating agent architecture. 

We examine each in turn below. 

Proposals History The Proposals History component maintains a history of pro

posals. It can accept INFORM statements with proposals it should store and 

it can reply to REQUEST statements for providing proposals to components. 

The REQUEST statement defines which proposals the component should retrieve 

based on the opponent's identity and the number of previous proposals that are 

required. 

Opponent Model The Opponent Model maintains models of the opponents the 

agent interacts with. It can accept INFORM statements to update models, and 

reply to REQUEST statements to provide information about opponents. 

Mental Attitudes The Mental Attitudes component maintains information about 

the mental attitudes of the agent, which ultimately influence the agent's evalu

ation of, and response to, proposals. This infostore can accept INFORM state

ments to update its mental attitudes and can reply to REQUEST statements to 

provide information about them. 

Environment Model The Environment Model component maintains information 

about the state of the environment as a whole. Similarly to the other info store 

components, it updates this information via INFORM statements and provides 

information via REQUEST statements. 

Negotiation Protocols The Negotiation Protocols component maintains informa

tion about the various negotiation protocols that the agent can participate in. 
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The component can reply to REQUEST statements in order to provide informa

tion about a protocol. 

Controllers The architecture uses three controllers, described below. 

Protocol Reasoner The Protocol Reasoner component reasons about the validity 

of incoming proposals against a negotiation protocol and identifies the valid re

sponses given the current proposal. Furthermore, the component can dissect a 

proposal to extract information such as the originator of the proposal. The com

ponent can accept two types of statements: INFORM statements with a proposal 

for evaluation; and REQUEST statements to provide specific information about 

the current proposal. It can generate REQUEST statements to retrieve informa

tion about negotiation protocols and EXECUTE statements that can provide the 

direct another component to evaluate the proposal content. 

Proposal Evaluator The Proposal Evaluator component evaluates proposals using 

information about the proposal history, the opponent, the agent's own mental at

titudes and the environment in general. Based on this evaluation, it can provide 

a recommendation as to the suitability of the proposal given the requirements 

of the agent, as described within its mental attitudes. The component can gen

erate REQUEST statements to get information about the history, the opponent, 

the agent's mental attitudes and the environment. It can also generate INFORM 

statements to update the models of opponents and the environment based on 

the evaluation of the proposal, and INFORM statements to provide its evaluation 

of the proposal. It can accept EXECUTE statements with a proposal it should 

evaluate. 

Response Generator The Response Generator component generates a response to 

the opponent's proposal, based on the evaluation of that proposal and infor

mation about the opponent, the environment and the agent's mental attitudes. 

The component can generate REQUEST statements to get the required informa

tion about the opponent, the environment, the mental attitudes, and the possi

ble responses given the current state of the negotiation protocol. It accepts an 

INFORM statement with the evaluation of the proposal. Finally, it generates an 

EXECUTE statement that requests the generation of an appropriate message with 

the response within it. 

Behavioural Specification The steps for the execution sequence of the component and 
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the flow of statements between them is described here. Note that what is described 

here is a purely sequential execution of components. 

1. The operation of the agent begins with the agent accepting a message at the Illo

cution Interpretation sensor. This component analyses the message and informs 

the Proposals History infostore. 

2. The Proposals History component executes and provides the information about 

the current proposal to the Protocol Reasoner. 

3. The Protocol Reasoner controller executes and requests information from the 

Negotiation Protocols infostore. 

4. The Negotiation Protocols infostore executes, providing the reply to the Proto

col Reasoner. 

S. The Protocol Reasoner is called to execute once more. It now uses the informa

tion from the Negotiation Protocol to reason about the validity of the proposal 

and informs the Opponent Model about the opponent identity and the Proposal 

Evaluator about the content of the proposal. 

6. The Proposal Evaluator controller then executes, requesting information about 

the opponent, the environment, the agent's mental attitudes and the history of 

proposals. 

7. The components Opponent Model, Mental Attitudes, Environment Model, and 

Proposals History components execute, providing the required information to 

the Proposal Evaluator. 

8. The Proposal Evaluator component executes once more, evaluating the infor

mation provided from the previous step, and generating an evaluation for the 

Response Generator. In addition, it may inform the Opponent Model, and En

vironment Model of required updates to their models. 

9. The Response Generator component executes, requesting the required informa

tion from the Opponent Model, Mental Attitudes, and Environment Model, as 

weII as from the Protocol Reasoner. 

10. The Opponent Model, Mental Attitudes, and Environment Model components 

execute to provide the responses and the Response Generator. 

11. The Response Generator executes again, and generates the response based on 

the information provided. 
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12. Finally, the Locution Generation actuator executes to send the required mes

sage. 

4.8.4 Argumentative Negotiating Agent 

Here, we instantiate the architecture of the basic negotiating agent in order to provide a generic 

description of agents capable of conducting argumentation-based negotiation (ABN). An argu

mentative negotiator shares many components with the basic negotiator. For example, it also 

needs to be able to evaluate proposals, generate proposals and so on. What makes argumenta

tive agents different is that they can exchange meta-information (or arguments) in addition to the 

simple proposal, acceptance, and rejection utterances. These arguments can potentially allow an 

agent to (i) justify their negotiation stance; or (ii) influence the counterparty's negotiation stance 

[122]. This may lead to a better chance of reaching agreement and/or higher-quality agreements. 

In ABN, influencing the counterparty's negotiation stance takes place as a result of providing it 

with new information, which may influence its mental attitudes (e.g., its beliefs, desires, inten

tions, goals, and so on). This might entice (or force) the agent to accept a particular proposal, 

or concede on a difficult issue. Arguments can range from threats and promises (e.g. [197]) to 

logical discussion of the agent's beliefs (e.g. [166]) or underlying interests [172]. 

In order to facilitate ABN, the logical and communication language usually needs to be capable 

of expressing a wider range of concepts. For example, the proposal might instead be represented 

as propose ( a, b, P, A) where a and b are agents, P is a proposal, and A is a supporting argument 

denoting why the recipient should accept that proposal. ABN frameworks may also allow agents 

to explicitly request information from one another. This may be done, for example, by posing 

direct questions about an agent's preferences or beliefs, or by challenging certain assumptions 

the agent adopts. Since in this chapter we are more interested in the abstract structures within 

the agents, we shall not discuss these issues in more detail. 

In order to be capable of engaging in ABN, an agent needs the following additional capabilities: 

1. Argument Evaluation encompasses the ability of the agent to assess an argument pre

sented by another, which may cause updates to its mental state. It is the fundamental 

component that allows negotiators' positions to change. 

2. Argument Generation allows the agent to generate possible arguments, either to support 
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FIGURE 4.11: Argumentation-based negotiation agent architecture 

a proposal, or as an individual piece of meta-information. The locution generated may 

also be a question to present to the opponent. 

3. Argument Selection chooses between the number of possible arguments to present. For 

example, an agent might be able to make either a promise or a threat to its opponent. A 

separate component is needed to allow the agent to choose the most preferred argument. 

Selection might be based on some analysis of the expected influence of the argument, or 

on the commitments it ties the utterer to. 

Figure 4.11 shows the specification of an argumentative agent using our construction model. All 

components from the basic negotiating agent have been used, complemented by the additional 

capabilities needed for ABN. Note that the diagram has been simplified for clarity, with the link 

from Negotiation Protocol to Response Generator and Argument Generator has been omitted 

although it is, of course, necessary. Below we show how the descriptive and behavioural speci

fication are changed. The structural specification changes by adding the three new components 

that deal with ABN. 

Descriptive Specification A crucial difference between the simple negotiation agent and the 

ABN agent is that arguments from opponents can change the agent's mental attitudes so that 

the agent's goals or motivations may change based on the new information obtained. As a 



Chapter 4 actS MART : Agent Construction Model 113 

result, even this aspect of the descriptive specification is dynamic, and the ability to refer to this 

changing descriptive specification directly, at run-time, by extracting the relevant attributes is 

crucial. The descriptive specification must also include the new decision-making capabilities of 

the agent. 

Behavioural Specification Here, the flexibility provided by the agent construction model is par

ticularly evident. The agent essentially has the same links and information flows. It is simply 

extended with links to the new controllers, and is refined through changes to the execution se

quence. The opponent model, mental attitudes and environment model are now updated by the 

evaluation of the argument received before the proposal is evaluated. The response is not sent 

directly to the opponent but arguments may be attached to the proposal by the Argument Gener

ator and Argument Selector components. Finally, both the Response Generator and Argument 

Generator use the negotiation rules in order to determine what type of responses are possible. 

4.8.5 Discussion 

The examples of the auction agent architecture and negotiating agent architecture serve as a 

means to illustrate the application of the actS MART model in the development of both basic and 

more elaborate agent architectures. Here we highlight some of the benefits of the approach and 

link them back to the desiderata mentioned in Section 4.2.1. 

• Access to an abstract agent model, in our case SMART, allows us to describe issues such 

as goals without having to represent them explicitly within the agent architecture. Goals 

can be defined in the descriptive specification of the architecture, and as such made clear. 

However, if there is no need for them to be made explicit within the architecture, then no 

implementation of goals is required in the structural and behavioural specifications. This 

provides more flexibility to the developer to provide a solution tailored to the problem at 

hand. 

• The architectures for the auction agent and the negotiating agents are very different, since 

each is focused on solving the problem at hand. However, we can reason about both 

architectures using the same concepts, both at the abstract level through SMART and at the 

specification level through actS MART. This illustrates the benefit of an architecturally

neutral approach to agent construction, since it enables us to reason about a range of 
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different architectures through a consistent approach, thus minimising the learning effort 

for agent developers . 

• Finally, modularity is achieved through the component-based approach that enables us to 

clearly separate the functionalities of the agent architecture. This, coupled with the dis

tinction along the lines of description, structure and behaviour, allows us to re-configure 

architectures as illustrated by the move from the negotiating agent architecture to the ar

gumentative negotiating agent architecture. 

4.9 Conclusions 

4.9.1 Related Work 

Although a number of agent construction toolkits claim to make use of a component-based archi

tecture (e.g., ZEUS [155], RETSINA [206], the majority do not do this through any consistent 

component model and do not provide the ability to reconfigure the architecture. However, as we 

have argued, it is necessary to have a consistent view of architecture construction and to support 

modularity and reconfigurability. In this section, we compare and contrast our work with exist

ing work which we consider to have some related features, and which has attempted to achieve 

similar aims. 

DESIRE 

The DESIRE methodology [35, 36] is perhaps the closest work to our own since they take a very 

strong component-based approach and use it to define a variety of agent architectures, including 

some used by existing toolkits. However, DESIRE views both individual agents and multi

agent systems as a compositional architecture in which all functionality is designed as a series 

of interacting, task-based, hierarchically structured components. Other than at the lowest level 

components are seen as encapsulating processes, and composition of components is, therefore, 

a composition of processes. Communication between components is also supported through the 

notion of infonnatiolZ links. 

However, our approach differs in two important ways. 
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• Firstly, through actS MART, we aim to provide specific support for individual agent design 

rather than general support for an entire multi-agent system. As such, the approach is 

more lightweight and follows a far more specific route in the nature of components and the 

ways in which they can communicate. We introduce component types such as sensors and 

actuators to specifically model agent functionality and define specific types of statements 

that components can exchange. 

As a result, actSMART provides abstractions that developers can make immediate use of 

when attempting to design an agent architecture. With DESIRE, on the other hand, such 

abstractions would still need to be added to the existing concepts in support of component

based design since they do not provide any specific support for individual agent architec

tures. Beyond the increased development effort, the disadvantage is that there are no 

guarantees of a consistent view across agent architectures .. 

• Secondly, in the context of its aim to support reuse, actS MART provides some specific 

improvements over DESIRE. We base our construction model on a well-established ab

stract agent model, distinguish between different aspects of agent architectures through 

the descriptive, structural and behavioural specifications, and support the re-configuration 

of the architecture. All these features make actS MART particularly well suited to the het

erogeneous, dynamic application domains we wish to support, and improve what can be 

accomplished with DESIRE. 

Agent specification using multi-context systems 

The work by Sabater et al. [189] and Parsons et al. [165] on agent specification using multi

context systems also has some similarities. Their basic model calls for agents to be constructed 

using units, which represent the main components of the architecture, and bridge rules that 

relate formulae in different units. In addition, they use modules to encapsulate related units 

that provide a specific functionality such as planning. Finally, they also support two types of 

messages; ask and answer. Units generate bridge rules that are multicast across either an inter

module bus or an intra-module bus. Components must examine the message to determine who 

they are intended for, before processing them. 

Beyond the fact that the emphasis of the work is on handling different types of logics within 

a single architecture, rather than dealing with practical, implementation issues there are some 

significant differences at the level of specifying architectures. Firstly, in actSMART, we specify 
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types of components in order to aid design. Secondly, we provide a more flexible and cost

effective means of managing information-flow between components since we avoid multicasting 

messages to all components. At the same time, we still allow for reconfigurable information

flows, which was the justification for the use of a multicast technique by Sabater et al. Finally, 

as already stated above, actS MART benefits from its grounding in an abstract agent model that 

aids consistency across different architectures. 

In general, actSMART and agent specification using multi-context systems could be considered 

as complementary since actS MART can inform the practical implementation of multi-context 

systems specification, while multi-context system specification can inform the development of 

actS MART to handle the use of different logics within an agent architecture. 

JADE 

The JADE (Java Agent Development Environment) toolkit is one of the few toolkits for agent 

development that does not restrict the developer to the use of any specific architecture [22]. It 

offers support for a number of behaviour types (which are akin to our notion of an execution 

sequence) that can be composed to define the control-flow of architectures, such as sequence, 

parallel, and so forth. Components can then be linked to such behaviour types, and the JADE 

infrastructure handles their execution. However, there is no underlying conceptual support for 

agent architectures nor any other concepts to facilitate the process from design to practical im

plementation. 

Once more, JADE and actSMART can be considered as essentially complementary technolo

gies. JADE offers the required underlying functionality to develop FIPA-compliant agent sys

tems [22], and also offers some support for defining behaviours for agent components. These 

behaviours can be considered as equivalent to the execution sequences in actS MART, which also 

provides extensive support for specifying and implementing agent architectures. 

4.9.2 Discussion and Contributions 

As mentioned earlier, there are several systems that claim to provide (and in some cases do 

provide) a component-based approach to agent development. Of these, only a small number 

aim to support a range of agent architectures as discussed above. The agent construction model 
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described here complements and advances such work and, in particular, the work provides the 

following advances . 

• Through actS MART we support the specification of a range of agent architectures, which 

can all be considered through a consistent conceptual model. This addresses a real need 

for support of agent development in heterogenous and dynamic environments, where the 

ability to tailor architectures to address specific application demands is important. At 

the same time, we allow for architectures to be easily reconfigured through a modular, 

component-based approach and provide a distinction between the descriptive, structural 

and behavioural specifications of an agent architecture which provides a developer with a 

clear distinction between different points of view and the ability to move between them 

while refining the design of an agent architecture. In addition, the development of the 

model leads to the following related contributions which can be used to inform the devel

opment of other agent construction models. 

- We categorise components into four generic types that allow us to specify abstract 

architectures before needing to focus on the internal behaviour of components. 

- We develop a graphical notation to represent such architectures. 

- We provide a well-defined notion of shell as the manager of the control-flow and 

information-flow between components, through the definition of an execution se

quence and links, respectively . 

• Through actS MART we also improve the suitability of a well-established theoretical model 

to application development since we provide a clear path for the practical construction of 

agents, based on the abstract agent models provided by SMART. 

The two examples presented in this chapter provide a direct indication of how actS MART can 

be used to create agent architecture specifications. They highlight how the use of component 

types allows us to focus on the high-level specification without having to deal with the de

tailed operation of each component. This suggests that the development of agent architectures 

can be separated from the algorithms that, for example, deal with specific types of negotiation 

protocols, enabling overall design to proceed in a parallel manner while still allowing specific 

techniques to be incorporated within agent architectures at any stage. Furthermore, the negoti

ating agent example indicates how the specification of an architecture can be developed through 
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a process of refinement. In the specific case of the example, the design moved through two 

iterations. In the first, we provide a detailed descriptive specification but less clear structural 

and behavioural specifications, while in the second we further develop the structural and be

havioural specifications using the descriptive specification as a statement of requirements that 

the other specifications should fulfill. 

In conclusion, the agent construction model represents an important step towards our aim of 

providing principled and reusable models for agent-based development. In this chapter we have 

presented the main concepts of the model and examples of how it can be used to specify agent 

architectures. In Chapter 6 we present the application of this model for use within the context of 

architecture development for ubiquitous computing devices, and also discuss its implementation 

within a specific programming language. 



Chapter 5 

SMART+ : Relationship Identification 

and Characterisation 

5.1 Introduction 

In the previous chapter we examined the construction of individual agents and how we can 

design a wide range of agent architectures based on a common set of concepts that can be 

tailored to their operational environment. We now tum our attention to multi-agent systems, 

in which the interactions between agents are the central concern. Such interactions take place 

whenever one agent performs an action which, intentionally or otherwise, affects one or more 

other agents. When agents interact we can say that they are related by virtue of the fact that they 

are affecting each other. Interactions, and the resulting relationships formed between agents, 

are of critical importance to the overall system functioning, since they can have both beneficial 

and adverse effects. It is interactions that enable agents to coordinate (by which agents arrange 

their individual activities in a coherent manner), collaborate (by which agents work together 

to achieve a common objective) or compete (by which agents contend for access to common 

resources), and so on. 

In this respect, a system designer has two overarching challenges to face. On the one hand, 

the system designer must ensure that the interactions that are necessary for achieving system

wide goals take place. For example, if agents require assistance to achieve their goals, they 

must be provided with mechanisms for discovering other agents able to assist them. On the 

other hand, the designer must also ensure that undesirable interactions do not take place. For 
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example, if a number of agents depend on a limited resource, the system must provide ways 

to control access to that resource. These challenges are compounded by the fact that in open 

or simply large agent systems, the possible interactions between agents cannot all be explicitly 

specified at design-time. This is especially true when dealing with autonomous agents operating 

in heterogeneous environments in which agents may join or leave the system at any time, and 

no assumptions are made about agent behaviour. 

Given the above, it is clear that system designers require relationship management mechanisms 

that can constrain or empower agents to form only the kinds of relationships that are beneficial 

for the overall system. For example, agents could be forced to adhere to specific regulations 

which indicate whether they are allowed or not to perform an action in a specific context. How

ever, such mechanisms cannot be applied to agent systems unless there is a clear understanding 

of what relationships may arise in a multi-agent system, or which regulations are required to lead 

to only effective relationships. Even if we could assume that for closed, static agent systems, 

such an understanding can be achieved, the same cannot be said for open, dynamic multi-agent 

systems since relationships, and by consequence the appropriate regulations to manage them, 

can change at any time. Therefore, there must be some method for systematically identifying 

the relationships that can arise, and only then addressing the problem of defining the necessary 

regulation or coordination mechanisms. 

The need for some form of control over the behaviour of agents was identified long ago [63], and 

there has been a wealth of research on the subject since. The review of existing work on the issue 

of regulatory structures for controIIing behaviour in multi-agent systems in Chapter 2 reveals that 

the focus of others has been more on relationship management than on relationship identification 

and characterisation. Currently, the former is largely achieved through the use of regulatory 

frameworks, stemming from work on policies (e.g. [84, 204, 128]), institutions (e.g. [89, 218]) 

and norms (e.g. [234,49, 73]). In addition, there is significant work on coordinating middleware 

to enhance agent infrastructure [55, 161]. 

Our aim in this chapter is to focus on the latter, insufficiently addressed, issue of relationship 

identification. Of course, once a relationship has been identified we must be able to interpret that 

information is some useful fashion so as to determine how the identified relationships may im

pact on individual agent operation and the system as a whole. Thus, we also require a principled 

and comprehensive means of characterising agent relationships. 

In order to identify the relationships that may be formed between agents, we introduce a model 
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of interaction of an agent with the environment. The model makes minimal assumptions about 

the agents themselves, considering only an agent's sensor and actuator capabilities. Based on 

these sensory and actuator capabilities, we identify which environmental attributes an agent can 

sense or affect respectively. This leads to two sets of attributes, one defining a region of the 

environment an agent can view and the other a region of the environment an agent can affect. 

By comparing this information between different agents we can identify which environmental 

attributes agents can sense or affect that are in common between them, and by consequence 

identify how two agents may be related. This technique can also be used in a more generic 

sense so as to provide generic relationships types based on the types of overlap between the en

vironmental regions. We make use of this approach to identify and characterise all the possible 

relationships between two agents. This typology allows us to reason about relationships between 

agents at an abstract level, without needing to ground relationships to specific domain informa

tion. In turn, this enables us to define when a particular relationships management technique 

(such as a regulation) is applicable based on the identification of a generic relationship type. 

This is especially useful in environments where agent capabilities can constantly change. By 

basing the definition of regulations on generic relationship types we can ensure that regulations 

are enforced irrespective of the specific capabilities of individual agents. 

Of course, agents may not make use of all their sensory or actuator capabilities, since what 

ultimately determines the specific actions an agent decides to perform are the agent's goals. 

Therefore, we also relate goals to the model of agent interaction with the environment and 

discuss how such information can allow us to reduce or expand the set of possible relationships 

that may be formed between agents. 

Overall, the ability to identify and characterise agent relationships can be beneficial for the 

following reasons. 

• It can guide the choice and design of regulatory frameworks to prevent malicious be

haviour or interference between agents. 

• Potentially missed opportunities for better cooperation between agents can be identified. 

• It can provide a template of generic relationship types for coordinating agents at run-time, 

without having prior knowledge of their capabilities. 

The next section introduces the model of agent interaction with the environment and provides 

formal definitions for the sets of attributes agents can possibly sense or affect. We provide some 
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examples of how the model can be used and discuss the assumptions underpinning the model. 

Subsequently, we develop the typology of agent relationships, which provides definitions for the 

most salient relationship types that can then be used to define other more specific types. Next, 

we discuss how knowledge about an agent's goals can allow us to narrow or expand the space of 

possible relationships, providing an example of the use of such information. Finally, by means 

of an example, we use the relationship typology and knowledge about an agent's goals to define 

a particularly interesting set of relationships, where agent's can interfere with each other. 

5.2 Model of Agent Interaction 

A number of different and interrelated issues determine the resulting relationships between 

agents. Some relationships are built-in by the system designer at design-time. For example, 

in the ZEUS system [155], agents must communicate with the root agent name service agent be

fore doing anything else. 1 Alternatively, relationships may develop opportunistically as agents 

seek assistance in order to achieve goals, or unintentionally as agents perform actions that affect 

the environment that other agents aim to affect or sense. For example, in the RETSINA sys

tem [206], discovery of middle agents takes place dynamicaIly, and only if the agent requires 

assistance in achieving a goal. 

Our basic understanding of agents, as set out in Chapter 3 and Chapter 4, is that agents perform 

actions, which may change the environment, whilst pursuing goals. Actions can be divided 

into those that provide agents with information about the environment (sensors) and those that 

change attributes about the environment (actuators). Intuitively, we can think of each agent as 

able to create a view of some region of the environment, by its ability to retrieve the attributes 

that define that region. In addition, each agent is able to directly influence some region of the 

environment, by manipulating attributes that define that region. Drawing on this, we can say 

that when one agent is able to influence what another agent views or what another agent is able 

to influence, the two agents are related. The different ways in which this influence can emerge 

leads to different types of relationships. 

Our aim is to produce analytical tools to enable the identification of relationships, building on 

just these basic notions. The emphasis is on being able to identify relationships that may not 

have been foreseen by the system designer both at system design-time as well as during run-

IThe root agent name service keeps a register of all active agents in a ZEUS-based application. 
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time, something particularly relevant in open agent systems. In order to achieve this, we begin 

by introducing some basic but necessary formal concepts that build on the models of agents 

already introduced in Chapter 3. 

Firstly, we develop models that can allow us to relate the sensory and actuator capabilities of an 

agent to the regions of the environment that an agent is able to sense or affect. In Section 5.3, 

we use these models to derive some generic relationship types that can be used to describe any 

relationship between two agents. 

S.2.1 Agent Perception and Action 

Agent actions are divided into those that retrieve specific attributes of the environment, repre

senting the agent's sensor capabilities, and those that attempt to change attributes of the envi

ronment, representing the agent's actuator capabilities. The former define what an agent can 

perceive in the environment, and the latter what an agent can change. These actions are the 

only aspects of the agent's architecture that concern us at this point, as they form the interface 

between the agent and its external environment. So as not to restrict the models to any specific 

agent architectures, we do not concern ourselves with the internal state or decision-making ca

pabilities (represented by an agent's infostores and controllers) of an agent. Nevertheless, as we 

will see later on, knowledge of the exact goals an agent is pursuing, although not strictly neces

sary, can enable a deeper analysis of interactions since it can lead to a better understanding of 

the reasons behind the manifest actions and limit the space of possible emerging relationships. 

Agent Perception 

The environmental attributes that an agent is able to perceive depend on the sensory capabilities 

the agent is equipped with. The set of capabilities can be divided into those that an agent is 

actually using at any particular moment and those it is not using. However, for the purposes of 

relationship identification, we need to represent the entire set of environmental attributes that 

an agent may attempt to view, irrespective of whether the agent is actually using them at any 

particular moment. This allows us to capture the widest possible set of relationships an agent 

may have with other agents and is in line with the aim to avoid any attempt to model the internal 

operation of an agent. 

In addition, we do not model the fact that although two agents may attempt to view the same 



124 Chapter 5 SMART+ : Relationship Identification and Characterisation 

aspects of the environment there is no guarantee that their sensory capabilities will produce the 

same results, since they may both sense and interpret the environment in a variety of different 

ways and it is not possible to assume that across different agents we will encounter consistent 

models of the environment. In other words, even if two agents have the same sensory capabili

ties, there is no guarantee that they actually have the same mental models of those aspect of the 

environment. This is a distinction that SMART makes, but which we purposely avoid making, 

since it necessarily requires a model of the internal operation of the agent architecture. 

With these clarifications in place, we can now present a formal definition for the possible per

cepts of an agent, through the PossibleAgentPerception schema. It includes the Agent schema 

and is further refined by introducing the set, perceivingactions, which is the subset of the capa

bilities of the agent that are concerned with perceptions, and the function, canperceive, which 

determines the attributes of the environment that are potentially available to an agent through its 

perception capabilities. 

PossibleAgentPerception ___________________ _ 

Agent 
perceivingactions : lP' Action 
canperceive : Environment -+ lP' Action -H Environment 

perceivingactions <;;; capabilities 
If env : Environment; as : lP' Actions. 

as E dom( canperceive env) =? as = perceivingactions 

Agent Action 

Similarly to agent perception, we can define the set of possible actions. Again, we are not 

interested in those actions that the agent will actually perform because of its current goals, but 

all the actions that agents could potentially perform. The PossibleAgentActions schema defines 

the set of actions that can influence the environment as the effecting actions , and the function 

returns the set of attributes these actions can influence as caneffect. 

PossibleAgentAction ____________________ _ 

Agent 
effectingactions : lP' Action 
caneffect : Environment -+ lP' Action --t-7 Environment 

effectingactions <;;; capabilities 
If env : Environment; es : lP' Actions. 

es E dom( caneffect env) =? es = effectingactions 
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Agent Influence State 

Using the PossibleAgentPerception and PossibleAgentAction schemata, we can now define an 

agent influence state as all that an agent is able to potentially view and affect at any given 

moment. This notion is formalised in the AgentlnfluenceState schema, which includes the Agent, 

PossibleAgentPerception and PossibleAgentAction schemata. 

AgentlnfiuenceState ________________________________________ __ 

Agent 
PossibleAgentPerception 
PossibleAgentAction 

Finally, the influence state of an entire multi-agent system is given by the environment and the 

influence states of each individual agent in that environment. The predicates of the MAlnflu

enceState schema state that for all the agents in the system, all their attributes and their situation 

in the environment are a subset of the environment. Furthermore, the possible percepts of all 

agents are a subset of the environment, and what they can affect is also a subset of the environ-

ment. 

A1AlnfiuenceState ________________________________________ __ 

environment : lP' Attribute 
agents : lP' AgentInfiuenceState 

Va: agents. a.attributes C environment 
Va: agents. a.possiblepercepts <:;: environment 
Va: agents. a.caneffect <:;: environment 

5.2.2 Viewable Environment and Region of Influence 

The schemata introduced so far have set the scene by defining how we can model what attributes 

an agent can possibly perceive or effect. Using these models, we now introduce two new con

cepts, which directly define the regions of the environment that we are interested in. A region is 

defined as a set of attributes in the external environment of the agent. 

Viewable Environment An agent's Viewable Environment depends on its sensory capabilities, 

the environment it is situated in, and the other agents in the system, which also form pmt 

of the environment. Agents sense the environment in order to take decisions about which 

goals to perform or to verify the results of actions taken. The set of attributes they can 
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Environement 
L_I 

FIGURE 5.1: Viewable Environment and Region of Influence 

potentially perceive within a particular environment, without recourse to aid from other 

agents, defines a Viewable Environment. The ViewableEnvironment schema formalises 

this notion. It includes the MAInjluenceState schema, and defines the viewable function 

as a partial function, which takes AgentInjluenceState as an argument and returns a set of 

attributes. The predicates state that the domain of viewable is the set of agents, while the 

range of viewable is a subset of the environment. 

ViewableEnvironment __________________ _ 

MAlnfiuenceState 
viewable: AgentInfiuenceState -H J!D Attribute 

dom viewable = agents 
Va: agents. viewable a ~ environment 

Region of influence Agents can affect the environment by changing attributes in it. Those 

attributes they can change on their own, through their actuator capabilities, define a Region 

of Influence. 2 This notion is formalised in the RegionOflnjluence schema which, once 

more, includes the MAInjluenceState schema. The regionojinjluence function provides a 

set of attributes, the domain of which is the set of agents in the system, while the resulting 

attributes are a subset of the environment. 

RegionOflnfiuence ______________________ _ 

MAlnfiuenceState 
regionofinfiuence : AgentlnfiuenceState -H J!D Attribute 

dom regionofinfiuence = agents 
Va: agents. regionofinfiuence a ~ environment 

2Similarly to the Viewable Envirollment, the Region of Influence can be partially defined through knowledge of 
the individual capabilities of each actuator component of the agent. 
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Environment 

FIGURE 5.2: Region of Influence affects Viewable Environment 

The Viewable Environment and the Region of Influence of an agent provide us with a model 

that relates an agent and its individual capabilities to the environment, within a particular multi

agent system. It provides us with information on those aspects of the environment that an agent 

could potentially affect and view. This model makes no assumptions about the agent itself nor 

its internal decision-making capabilities. Thus it can be considered to be architecturally-neutral 

and applicable to the widest possible range of agent types. Crucially, the utility of the model 

is evident when we represent one agent's Viewable Environment and Region of Influence in 

comparison to another agent's Viewable Environment and Region of Influence. Now, the different 

ways in which the Viewable Environments and Regions of Influence between two agents can 

overlap defines a space of possible interactions. In Figure 5.1, these concepts are illustrated 

by using an ellipse to represent the Viewable Environment, and a pentagon for the Region of 

Influence. We use this notation throughout when illustrating different situations. In order to 

better illustrate how relationship identification can be achieved using this model, we present 

some generic examples below. 

5.2.3 Generic Relationships Identification Examples 

As mentioned earlier, in order to analyse the kinds of relationships that emerge from the in

teractions between agents, we need to consider the overlaps between their respective Viewable 

Environments and Regions of Influence. It is within these overlaps that interactions are likely to 

emerge, since they represent the only points at which agents may influence each other. 

In Figure 5.2, we illustrate these concepts. Here, we have a situation in which Agent A's Re

gion of Influence overlaps with Agent B's Viewable Environment, and both agents' Viewable 

Environments overlap. Given this information, we can infer that Agent A and Agent B could be 
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Environment 

FIGURE 5.3: Regions of Influence overlap 

related, with A able to directly affect the Viewable Environment of B, since it partly falls under 

A's Region of Influence. In other words, B can be influenced by the actions of A. Agent A, on 

the other hand, cannot be influenced by B. Crucially, A cannot directly affect the results of an 

action of B because it has no influence in the Region of Influence of B. 

For example, consider a situation in which we wish to develop an agent-based infrastructure 

to support the collaboration and sharing of information between researchers participating at a 

conference. Each researcher is to be represented by a personal agent that will make public their 

personal profile (interests, publications, and availability) as well as research material (links to 

online material, presentations, software, etc) that they have stored locally. 

A situation such as the one in Figure 5.2 could occur if the overlap between the Viewable Envi

ronments represented research papers that Agent A made available to other agents. With the goal 

of reporting to other agents on all documents of a specific type (for example, research papers on 

multi-agent systems), Agent B could periodically view the documents stored by A (i.e. sample 

the environment) while waiting for a relevant document to appear before informing other agents 

of its existence. So, whenever A performs an action that adds a relevant document to its public 

document store, it will eventually influence B's actions, since B must now inform interested 

parties about this addition. 

The illustrated situation can also be interpreted as the ability of B to observe the results of 

actions performed by A. If the document store was not public, then some steps should be taken 

to prevent B from observing what documents were placed within it. 

By contrast, in Figure 5.3, the situation is one in which the Regions of Influence overlap. This 

means that both agents can have a direct impact on the actions of each other. Thus, an action 
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from either agent could affect the environment in such a way that a goal of the other agent is 

constrained or aided. For example, this could happen if the two agents were both attempting to 

retrieve a document from a public document store that sets a limit on the number of documents 

retrieved. 

5.2.4 Basic Assumptions 

Before presenting a more formal characterisation of the different types of relationships that can 

be identified, we explicitly present below a number of assumptions that we make about the 

agents themselves that hold throughout our analysis. 

1. The Viewable Environment and the Region of Influence are nat necessarily well-defined 

continuous areas of the environment as the diagrams may suggest. However, representing 

them like this helps to provide a clear exposition. 

2. There is no requirement for the Viewable Environment and the Region af Influence of 

an agent to overlap at all. If the Region of Influence of an agent does not fall under its 

Viewable Environment, then it will not be able to view the results of its actions, a situation 

that is not improbable. The more usual case is when only part the Region of Influence of 

an agent falls under the Viewable Environment. In other words, the agent is not fully aware 

of all the implications of its actions. 

3. We do not assume that the Viewable Environment is the only kind of information that 

an agent can model. The Viewable Environment is simply the information that the agent 

can gain about the environment without recourse to other agents. Information about the 

environment provided by other agents is an issue we will examine later on. 

4. We do not assume that when an agent acts in its Region af Influence it can be certain 

that those actions are realised. The only way to verify this is by sensing the affected 

environment, either through its own sensing capabilities or through other agents. 

5.3 Relationship Typology 

Having presented a model for agent interaction, and some examples of how it can be used to 

characterise possible relationships between agents, we now take a more systematic look at the 
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FIGURE 5.4: All possible relationships between two agents 

entire space of possible overlaps. We develop a comprehensive typology of interactions that 

can provide the building blocks for defining a wide range of different relationships. However, 

before presenting the typology, we consider how the complete set of potential relationships may 

be examined comprehensively, and show that our analysis is complete. 

The entire space of overlaps depends on the ways in which the four sets of regions (one for each 

agent's Viewable Environment and one for each agent's Region of Influence) can be combined. 

There are sixteen possibilities, which are illustrated by the Venn diagram in Figure 5.4. The 

Venn diagram uses Venn's construction for illustrating the possible combinations between four 

sets [219] and the resulting regions created (sixteen possibilities in all). 

Now, of the fifteen regions enumerated in the diagram (the sixteenth being the region outside all 

the sets), we only consider those that involve intersections between two sets, ignoring regions 

Rl, R5, R7 and R15. We can divide the remaining regions into three cases, which can be 

combined to produce other cases. These three cases are divided along the lines of whether the 

Viewable Environments of the two agents overlap, whether their Regions of Influence overlap, 

and whether a Viewable Environment overlaps with an Region of Influence. 

Mutually Viewable Environment A mutually viewable environment occurs where the View-



Chapter 5 SMART+ : Relationship Identification and Characterisation 131 

Environment 

FIGURE 5.5: Mutually Viewable Environment 

able Environments of both agents overlap. In the diagram this is made up of the areas 

defined by regions R3, R4, RIO, and RIl. These four regions are grouped according to 

whether both or one or neither of the Regions of Influenceof the agents overlap with the 

mutually viewable environment. 

Mutual Influence The mutual influence region is where the Regions of Influence of both agents 

overlap. As above, this region is also subdivided into four regions: R9, RIO, RI3 and 

R14. The differences between the four regions indicate whether the region of mutual 

influence overlaps with the Viewable Environmentsof one, both or neither of the agents. 

Observable Actions A region of observable actions is one where a Region of Influence overlaps 

with a Viewable Environment, indicating that an agent can observe the actions taking place 

in that overlap. In the figure, this occurs in regions R2, R3, R6, R8, R9, RIO,Rll, R12, 

and R13. The type of observable action changes according to whether an agent is able to 

observe the actions it perform or the actions the other agent is able to perform. 

Now, given these three basic types, and knowledge of all the possible relationships, we proceed 

to construct a typology by beginning with the simplest case where only the Viewable Environ

ments of two agents overlap, and moving to consider the possible types of interaction when 

actions of other agents can be observed. Finally, we consider the possibilities when actions can 

be directly influenced by other agents due to overlapping Regions of Influence and combine that 

with the results on observability of actions. 

5.3.1 Mutually Viewable Environment 

We begin by examining the Viewable Environments of agents, irrespective of the Regions of 

Influence. The only possibility in this case is that they overlap, as illustrated in Figure 5.5. 
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FIGURE 5.6: Observable and Invisible actions 

This means that both agents are able to sense common regions of the environment. This sit

uation is captured by the MutuallyViewableEnvironment schema, in which the function MVE 

accepts as arguments the relationships between the agent states of both agents, and returns a 

set of attributes, where those attributes are given by the intersection of A's and B's Viewable 

Environments. 

Mutually ViewableEnvironment _________________ _ 

ViewableEnvironment 
MVE : (AgentState x AgentState) -7 TID Attribute 

Va, b : AgentState; e : Environment. 
MVE ( a, b) = viewable a n viewable b 

Although such a situation cannot directly identify any relationship between the agents, it may be 

particularly important in certain environments. For example, knowing that two stock investors, 

which are seemingly unrelated, share a common Viewable Environment, may explain why they 

behave in a similar manner. A more practical example to illustrate the case of a mutually view

able environment is the ability of both agents to observe what files are added or removed from 

a filestore. We will use the example of actions with regard to a filestore to illustrate the various 

cases throughout. 

5.3.2 Influenced Viewable Environment 

The next step is to introduce the Region of Influence. However, we only do this for Agent B, as 

illustrated in Figure 5.6 in which, from A's point of view, there are two clear distinct possibilities, 

and two further refinements for each. Firstly, in Regions 1 and 2, the results of the actions of B 
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are visible to A since they fall within A's Viewable Environment. Of course, at the same time we 

can say that B is able to influence the Viewable Environment of A. Secondly, in Regions 3 and 

4, the results of B's actions are not visible to A. We define these general cases before going on 

to specialise them further. 

The ObservableActions schema defines the appropriate function for the first case. It states that 

the observable actions of B are those actions of B whose Region of Influence is within A's 

Viewable Environment. 

ObservableActions _____________________ _ 

ViewableEnvironment 
RegionOflnfiuence 
observableactions : (AgentState x AgentState) ----+ JPl Attribute 

Va, b : AgentState • 
observableactions (a, b) = viewable a n regionofinfiuence b 

If we consider that Agent A is only able to monitor actions that are performed with regard to 

adding and removing files from the filestore then we can state that the Viewable Environment of 

A intersects with the Region of Influence of B in the region of the environment referring to the 

filestore. 

Similarly, the InvisibleActions schema states that invisible actions of B with reference to A are 

those that are not within A's Viewable Environment. 

InvisibleActions _______________________ _ 

ViewableEnvironment 
RegionOflnfiuence 
invisibleactions : (AgentState x AgentState) ----+ (JPl Attribute) 

Va, b : AgentState • 
invisibleactions(a, b) = regionofinfiuence b \ viewable a 

Returning to the example mentioned above, those actions of B that are not related to adding or 

removing files from the filestore that A is able to monitor are invisible to A. 

Based on these definitions, we can now describe more restricted cases. We begin with the 

situation in which both agents can observe some actions of B, which would lie in Region 2 in 

Figure 5.6. The BilaterallyObservableActiol1s schema defines this situation in which actions are 

bilaterally observable, and are given by the intersection of the observable actions for A on B 
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and for B on itself. 

BilaterallyObservableActions _________________ _ 

ObservableActions 
bilaterallyobservableactions : (AgentState x AgentState) ----+ lP Attribute 

Va, b : AgentState • 
bilaterallyobservableactions ( a, b) = 

observableactions ( a, b) n observableactions (b, b) 

Knowledge of the possibility of bilaterally observable actions can be relevant for those agents 

that require confirmation of their actions by another party, or for those agents that are concerned 

about the observability of their actions and would perhaps prefer to prevent it. With reference 

to the filestore example, we could use knowledge of bilateral observability to confirm that a file 

has been appropriately saved since A can provide further confirmation. Alternatively, B could 

decide not to store a file because A would be able to monitor that action. 

Now, unilaterally observable actions are those actions of B that A can observe but B cannot 

(shown as Region 1). In this case, there is perhaps a stronger incentive for B to exploit the 

situation by cooperating with A so as to gain confirmation of the results of actions. The schema 

UnilaterallyObservableActions describes this. 

UnilaterallyObservableActions ________________ _ 

ObservableActions 
InvisibleActions 
unilaterallyobservableactions : (AgentState x AgentState) ----+ lP Attribute 

Va, b : AgentState • 
unilaterallyobservableactions( a, b) = 

observableactions( a, b) n invisibleactions( b, b) 

In this case ollly A can confirm whether a file has been stored in the filestore, which in turn 

may make B's reliance on A greater if some form of confirmation of the result of the action is 

required. 

Bilaterally invisible actions, represented by the BilaterallylnvisibleActions schema are those 

actions of B that both A and B cannot observe (shown as Region 4). 
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FIGURE 5.7: Mutually Influenced Actions 

BilaterallylnvisibleActions __________________ _ 

InvisibleActions 
bilaterallyinvisibleactions : (AgentState x AgentState) ---'> lP' Attribute 

Va, b : AgentState • 
bilaterallyinvisibleactions ( a, b) = 

invisibleactions ( a, b) n invisibleactions ( b, b) 

135 

Finally, for the sake of completeness, we can also define unilaterally invisible actions (in Region 

3), as those actions of B that A cannot see but B can. The schema UnilaterallyInvisibleActions 

captures this. 

UnilaterallylnvisibleActions _________________ _ 

InvisibleActions 
unilaterallyinvisibleactions : (AgentState x AgentState) ---'> lP' Attribute 

Va, b : AgentState • 
unilaterallyinvisibleactions( a, b) = 

invisibleactions (a, b) n observableactions (b, b) 

5.3.3 Mutual Influence 

Up to this point, we have only dealt with the issue of observability of actions. We now move 

on to examine the situations in which agents can influence each other's actions, by introducing 

Regions of Influence for both agents. In the first instance, as illustrated in Figure 5.7, we can 

say that two agents are able to directly influence each other if their Regions of Influence overlap 

(shown as the grey shaded area). The function for determining this is defined below, in the 

schema MutualInfluence. 
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MutualInfiuence ______________________ _ 

ViewableEnvironment 
RegionOflnfiuence 
mutualinfiuence: (AgentState x AgentState) ----) (lP Attribute) 

Va, b : AgentState • 
mutualinfiuence( a, b) = regionofinfiuence an regionofinfiuence b 

Returning to the filestore example, mutual influence would occur when A is also able to add or 

remove files in the filestore that B may have added or removed. 

Now, when a mutual influence relationship occurs (i.e. a non-empty set is returned), it is impor

tant to be able to model whether the two agents can observe the results of actions taking place in 

this region of the environment. We can use the previous definitions of observability of actions 

in Section 5.3.1 to model this. 

First, we define the relationship by which Agent A can observe the region of mutual influence 

in the ObservableMutualInfluence schema, which includes the MutualInjluence schema, and 

states that this area is the intersection of the Viewable Environment of A and the area of mutual 

influence between A and B. 

ObservableMutualInfiuence __________________ _ 

MutualInfiuence 
observablemutualinfiuence : (AgentState x AgentState) ----) (lP Attribute) 

Va, b : AgentState • 
observablemutualinfiuence( a, b) = viewable an (mutualinfiuence (a, b)) 

In this case, A is able to both influence and monitor the actions of B with regard to the filestore. 

Similarly, Agent A may not be able to observe this region of mutual influence. We define the 

case of invisible mutual influence in the schema InvisibleMutualInfluence. 

InvisibleMutualInfiuence __________________ _ 

MutualInfiuence 
invisiblemutualinfiuence : (AgentState x AgentState) ----) (lP Attribute) 

Va, b : AgentState • 
invisiblemutualinfiuence(a, b) = (mutualinfiuence (a, b)) \ viewable a 
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With regard to the filestore example, a case of invisible mutual influence would mean that while 

A is also able to add or remove files it is not able to view the results of those actions. 

Having provided definitions from one agent's perspective, we consider the situation in which 

both agents' Viewable Environments are taken into account. The first case is bilaterally ob

servable mutual influence, in which both agents can observe the mutual influence region, as 

illustrated in Figure 5.S. The region in question is where both agents' Regions o/Injluence over

lap as well as their Viewable Environments. The schema BilaterallyObservableMutualInjluence 

formalises this. 

BilaterallyObservableMutualInfiuence _____________ _ 

ObservableMutualInfiuence 
bilaterallyobservablemutualinfiuence : 

(AgentState x AgentState) ----+ lP Attribute 

Va, b : AgentState • 
bilaterallyobservablemutualinfiuence( a, b) = 

observablemutualinfiuence( a, b) n observablemutualinfiuence( b, a) 

In this case, both A and B can add or remove files and observe each other's addition or removal 

of files. 

The BilaterallyInvisibleMutualInjluence schema provides the necessary functions for the mutual 

influence being bilaterally invisible. 
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BilaterallylnvisibleMutualInfluence ______________ _ 

InvisibleMutualInfluence 
bilaterallyinvisiblemutualInfluence : 

(AgentState x AgentState) ------ lP' Attribute 

Va, b : AgentState • 
bilaterallyinvisiblemutualinfluence (a, b) = 

invisiblemutualinfluence( a, b) n invisiblemutualinfluence( b, a) 

In this case, neither of the two agents can observe the results of their actions with regard to the 

filestore, although they could both upset each other's actions. In such a situation, it may be 

necessary to introduce some form of control, possibly by a third party, that can ensure that the 

actions of the agents are appropriately coordinated. 

Finally, we define the situation in which one agent unilaterally observes the region of mutual 

influence in the UnilaterallyObservableMutualInjiuence schema. 

UnilaterallyObservableMutuallnfluence _____________ _ 

ObservableMutualInfluence 
unilaterallyobservablemutualinfluence : 

(AgentState x AgentState) ------ lP' Attribute 

Va, b : AgentState • 
unilaterallyobservablemutualinfluence( a, b) = 

(observablemutualinfluence (a, b) \ observablemutualinfluence (b, a)) 

In this case, we know that only A can observe the results of actions on the filestore, while both 

A and B can affect changes. 

These types of possible relationships are particularly relevant for agents that wish to better coor

dinate their actions. For example, knowledge of a possible bilaterally invisible mutual influence 

can indicate that agents should be particularly careful when performing actions in that region, 

since not only are they unable to observe the results of their own actions, but they can also 

constrain the actions of another agent that is also unable to observe the results. A situation of 

unilaterally observable mutual influence could give one agent an advantage, since only one of 

them is able to observe the results of its and the other's actions in that region. 
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5.4 Goal Typology 

Knowledge of the sensor and actuator capabilities of agents can provide us with enough infor

mation to identify a significant number of possible relationships and categorise them along the 

lines of the typology introduced above. Nevertheless, not all the possible relationships identified 

will actually be instantiated, and there may still be instantiated relationships that have not been 

identified. The reason for this is that the goals agents decide to pursue play an important role in 

determining which of all possible relationships agents choose to instantiate. With the additional 

knowledge of what goals an agent may actually pursue, we can narrow or expand the space of 

possible relationships by identifying interactions that an agent may pursue that are beyond its 

range in terms of its Region of Influence or its Viewable Environment, or by excluding those 

within its Viewable Environment and Region of Influence that it will not pursue. Therefore, a 

more focused analysis of relationships between agents could take place if we can incorporate 

knowledge of which regions of the environment an agent's goals refer to into the model of agent 

interaction with the environment. In order to achieve this, we provide a typology of agent goals 

with reference to an agent's Viewable Environment and Region of Influence. However, before 

we do that we need to differentiate between different types of goals according to whether the 

goal is to retrieve information from the environment or change it. 

5.4.1 Query and Achievement Goals 

In the broadest sense agents can have only two types of goals. On the one hand, they may want 

to effect some change in the environment, which implies changing attributes of the environment, 

while on the other hand, they may just want some infonnation about the environment, which 

does not lead to any direct changes in the environment. Distinguishing between these two types 

of goals is important since the latter can only be achieved directly by an agent if that goal is in 

the Region of Influence of the agent, while the former can only be achieved if the goal is in the 

Viewable Environment of the agent. 

We distinguish between these two types of goals by using the same terminology as the dMARS 

agent system, which is formalised in [75] using the SMART framework. Essentially, a query goal 

is one for which an agent tries to elicit some information, either from its internal beliefs or from 

the environment. As such, it can be satisfied if it falls within an agent's Viewable Environment. 

Conversely, an achievement goal may require that the agent performs certain actions in order to 
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change the environment, if the environment is not already in the desired goal state. Thus, an 

achievement goal can be satisfied if it lies within an agent's Region of Influence. 

5.4.2 Goal Regions 

We categorise goals according to where within the Viewable Environment and Region of Influ

ence they occur. The different types are shown in Figure 5.9, where goals, represented with a 

square labelled by a capital G, are overlayed across the Viewable Environment and Region of 

Influence of an agent. The different situations are described below. 

No control- G1 The agent has a goal that describes an environmental state falling outside 

of both the agent's Viewable Environment and its Region of Influence. As a result, this 

agent has no control over satisfying that goal, irrespective of whether it is a query or 

achievement goal. Some form of cooperation with another agent is essential in this case. 

View control - G2 In this case, the agent can satisfy a query goal but not an achievement goal, 

since the goal is within the agent's Viewable Environment. 

Total control- G3 A total control goal is one that lies within both the agent's Viewable En

vironment and its Region of Influence. As a result, regardless of whether it is a query or 

achievement goal, the agent can satisfy it. 

Blind Control- G4 In this case, the goal falls within the agent's Region of Influence but not 

within its Viewable Environment. As a result, the agent is able to satisfy it if it is an 

achievement goal but not if it is a query goal. However, the agent is not able to verify the 

results of its actions. 
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Partial Control- Gs Finally, a goal may fall in a region that is partially under the agent's 

Viewable Environment or the agent's Region of Influence. In this case, the agent will have 

some combination of control based on the four types described above. 

The AgentGoals schema formalises the four main cases above. It includes the AgentState, View

able Environment and RegionOflnfluence schemata, and uses the viewable and regionofinfluence 

functions from them. 

AgentGoals ______________________________________________ _ 

AgentState 
ViewableEnvironment 
RegionOflnfiuence 
canview, caninf : lP' Attribute 
none, blind, total, view: lP' Goal 

canview = viewable (e AgentState) 
caninf = regionofinfiuence (eAgentState) 
none = {g : goals I --, g ~ (can view U caninI)} 
blind = {g : goals I g ~ (caninf \ canview)} 
view = {g : goals I g ~ (canview \ can in I) } 
total = {g : goals I g ~ (canview n caninI)} 

With the goal typology in place, as well as the interaction typology, we have two significant 

analytical tools for identifying and characterising possible relationships between agents. 

5.4.3 Example Analysis 

In this section we present an example that makes use of both the relationship typology and the 

goal typology to coordinate agents at run-time with limited domain information. This example 

simply serves to illustrate the main concepts described here, and to provide an indication of 

how they can be used in a practical application development environment. More detailed exam

ples are developed in Chapter 6, in which the implementation of the ideas in a more extensive 

application is described. 

The aim of the example scenario is similar to the one described in Section 5.2.3, supporting a 

user to collaborate with other users by sharing information through personal agents. However, 

the domain is now a computer research lab and the focus is on supporting users with their day

to-day tasks. 
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An initial analysis of the domain reveals that researchers typically use at least two devices in the 

lab to achieve their day-to-day tasks, including one relatively powerful desktop or laptop com

puter, as well as a more limited mobile device, such as a PDA. In order to effectively support the 

users, the application should allow use of the agent-based system through all user devices, re

quiring agents to be installed on each device. Furthermore, agents serving the same user through 

different devices should cooperate closely. Each agent is to take advantage of the connectivity, 

storage and computing capabilities of their device so as to more effectively support the user. 

Given this, there are two main problems to solve from the perspective of enabling the coopera

tion between a user's devices . 

• Firstly, how can coordination and cooperation be effectively supported if there is no clear 

knowledge, at design time, of the exact capabilities of each of the devices or the exact 

tasks that they may attempt to carry out, since this depends on the equipment of each user 

and their individual choices as to how they want to use the system. 

• Secondly, how can the infrastructure deal with changes in devices and possible changes 

in the application requirements as the system develops. 

These two problems make it practically impossible to define coordination using any detailed 

application-specific knowledge, such as the connectivity capabilities of a device, since this in

formation is discovered at run-time, and the type of coordination based on the discovered infor

mation must also be decided at run-time. 

In this case, the ability to define coordination based on generic relationship types is valuable. 

The agents belonging to a single user are instructed to communicate, whenever possible, so as to 

share information on their capabilities and the current user goals. This allows the modelling both 

of the relationship between them and of the goals that must be satisfied. With such knowledge 

in place, we can attempt to guide coordination, at run-time, by defining generic rules such as the 

ones presented below . 

• If there exists a goal of type total control for only one device, then that device should 

attempt to achieve the goal, since it is the only one that can both attempt the actions and 

verify the results. For example, if the user wishes to send a short message to a colleague 

as a reminder for an impending meeting, and the only device belonging to the colleague 
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in question is a Bluetooth-enabled PDA, then only the user's PDA is able to achieve the 

goal. 

• If two devices are attempting to achieve the same goal, and that goal lies in a region 

where they are related through Bilaterally Observable Mutual Influence (i.e. where their 

Regions of Influence and Viewable Environments overlap) then they could both attempt to 

achieve the common goal. In this case, we could assign the goal to one of the devices 

at random. Alternatively, we could use some form of priority that would identify the 

workstation as having a higher priority for achieving such common goals, since we can 

make the assumption that its resources will be more readily available and not limited by 

battery concerns or unreliable connections due to just wireless access. Returning to the 

example of contacting a colleague, if both of the user's devices are Bluetooth-enabled, 

the desktop computer could undertake the task so as to avoid consumption of the limited 

battery life of the user's PDA. 

• If a goal is of type view control for one device, and blind control for the other, which 

implies that there is some region of the environment in which they are in a relationship 

of Unilaterally Observable Actions, the agents should cooperate, with one performing the 

actions and the other verifying the results or with one identifying the current state of the 

environment and the other acting accordingly. For example, the user's PDA may be able 

to identify dynamically through the Bluetooth protocol which devices are able to provide 

information on their owners, and are able to provide that information through the 802.11 b 

wireless protocol. The workstation can then use 802.11 b to retrieve the profiles. The 

workstation has blind control since it can retrieve profiles but cannot discover the devices, 

while the PDA has view control since it can discover the devices by exploiting Bluetooth 

but cannot download the profiles due to a lack of storage on the PDA. 

For example, while attending a presentation, a user requests that the personal agent on a Bluetooth

enabled device collects all information on the topic of the meeting that is available through other 

researchers in the lab and downloads any relevant publications. The user then switches off the 

device, because the battery is running out. Once back at the desk and at the workstation, the 

mobile device is switched on and communicates wirelessly, or through the usual synchronisa

tion mechanisms, with the workstation. The information on goals and capabilities is exchanged 

and the two agents identify that while they can both access information on other users, for the 

PDA-based agent the Viewable Environment is limited to just those users whose information is 
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accessible via Bluetooth-enabled devices that are in range. On the other hand, the workstation 

is able to access all relevant users through their workstation agents, so it adopts the goal. 

Through this basic example, we see how access to a relationship analysis tool that can identify 

generic relationship types can playa valuable role in facilitating coordination between agents at 

run-time. Given the emerging landscape of computing environments in which constant change 

and heterogeneity become permanent features, such tools will become increasingly important. 

5.5 Describing Interfering Relationships 

The types of relationships defined in Section 5.3 provide a generic view of relationships where 

the intention of agents is not considered. In other words, they are generic types considered 

outside of any specific application context. In this section, we illustrate how these definitions 

can be reused to define a set of relationships given such a specific context, by examining the 

cases where one agent can interfere with the activities of another agent. This analysis serves 

two purposes. Firstly, it defines a set of relationship that are particularly useful when attempting 

to define regulatory mechanisms to prevent or to control the interference. Secondly, it illustrates 

how the generic types defined above can be applied to specific contexts. 

Weak influence A weak influence relationship occurs when an agent is able to affect aspects of 

the environment that another agent uses to decide what actions to perform (i.e. aspects of 

the environment the agent can perceive). Although a weak influence relationship can lead 

to a different outcome for the influenced agent's goal, it cannot directly affect actions of 

that agent. 

Agent B is weakly influenced by Agent A if and only if (i) both agents are able to observe 

the actions of Agent A, and (ii) there is no mutual influence between the two agents. 

The schema below formalises this by including the BilaterallyObservableActions and Mu

tualInfluence schemata. In the predicate section, we state that for Weaklnfluence to exist, 

the bilaterallyobservableactions functions must return a non-empty set of attributes, and 

the l1lutualinfluence function must return an empty set of attributes. 
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VVeaklnfiuence ________________________________________ __ 

BilaterallyObservableActions 
MutualInfiuence 
weakinfiuenced : AgentState f-7 AgentState 

Va, b : AgentState I a =1= b • 
(b, a) E weakinfiuenced {:} 

bilaterallyobservableactions =1= {} 1\ 

mutualinfiuence = {} 
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Strong influence A strong influence relationship occurs when an agent is able to affect both 

the Viewable Environment of another agent as well as its Region of Influence. In this case 

an agent can directly affect the goals of another agent because it can act on exactly those 

aspects of the environment that may represent desirable environmental states for the other 

agent. 

Agent B is strongly influenced by Agent A if and only if both A and B can observe the 

actions of each other. 

This situation is covered by the case of bilaterally observable mutual influence, so we 

simply need to include the BilaterallyObservableMutualInfluence schema in the Strong

Influence schema, and in the predicate section specify that the function bilaterallyobserv

ablemutualinfluence should not be equal to the empty set. 

Stronglnfiuence __________________________________________ _ 

BilaterallyObservableMutualInfiuence 
stronginfiuenced : AgentState f-7 AgentState 

Va, b : AgentState I a =1= b • 
( b, a) E stronginfiuenced {:} 

bilaterallyobservablem utualinfiuence =1= {} 

Sneaky influence A sneaky influence relationship occurs when an agent is able to affect the 

Region of Influence of another agent but not the Viewable Environment. This, of course, 

implies that the influenced agent cannot view the results of its actions, so cannot be aware 

that some other agent is affecting those results. 

Agent B is sneakily influenced by Agent A if and only if there is a relationship of unilat

erally observable mutual influence. 
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Sneakylnfiuence ______________________________________ ___ 

UnilaterallyObservableMutualInfiuence 
sneakyinfiuenced : AgentState t-+ AgentState 

Va, b : AgentState I a =I b. 
( b, a) E sneakyinfiuenced <=? 

unilaterallyobservablemutualinfiuence =I {} 

No influence Finally, when an agent cannot affect the Viewable Environment or the Region of 

Influence of another agent, no direct relationship can develop between them. 

Agent B is not influenced by Agent A if and only if (i) there are no observable actions 

between A and B, and (ii) there is no mutual influence between A and B. 

Nolnfiuence __________________________________________ __ 

ObservableActions 
MutualInfiuence 
notinfiuenced : AgentState t-+ AgentState 

Va, b : AgentState I a =I b • 
(b, a) E notinfiuenced <=? 

observableactions = {} 1\ 

mutualinfiuence = {} 

These four types of influence can now, in turn, act as a guide to characterise a range of specific 

kinds of relationships. For example, a competitive relationship for access to common resources 

can only take place if both agents can strongly influence each other, i.e. if their Regions of 

Influence and Viewable Environments overlap. A supervisor-student relationship is one in which 

the supervisor can strongly influence the student (e.g. by providing direct guidance on what 

research the student should do), and the student can weakly influence the supervisor (e.g. by 

generating new results that may convince the supervisor to change research direction). 

5.5.1 Effect of Influence on Actions and Goals 

In order to have a clearer understanding of exactly how one agent could affect the goals or 

actions of another in the context of these four types of relationships, we provide an analysis of 

the different cases. The analysis is based on the assumptions that the goals agents are trying to 

achieve are of type total control, i.e. they are within an agent's Region of Influence and Viewable 

Environment. 
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Having made such an assumption, it is sensible to define the relationships that evolve through 

the interactions between agents in terms of the contribution that such interactions have towards 

the achievement of their goals. 3 

Weak influence relationships 

When only weak influence relationships occur, the influencing agent cannot directly impact 

goals. Nevertheless, it can still have a significant effect on the way the influenced agent achieves 

a goal, or whether the goal can be achieved at all. In essence, an agent could either be influenced 

so as to change its actions in order to achieve a goal or to change the goal completely. Below, 

we outline the different scenarios. 

Goal does not change In the first type of case, the goal of the agent does not change as a 

result of the influencing agent. However, the actions performed to achieve the goal might 

change, as might the exact results of the actions, because of the goal. 

No effect The influencing agent has no impact on the outcome of the goal because the 

attributes of the environment that are affected by the influencing agent are not taken 

into account for the execution of an action by the influenced agent. 

Outcome of action changes Here, the influencing agent affects the environment in such 

a way that the outcome of the action performed by the influenced agent changes. 

However, the goal of the influenced agent does not change. For example, consider 

an agent with the goal of compiling a list of all researchers with an interest in the 

subject of argumentation. The goal is satisfied as long as such a list exists. The 

agent compiles the list by asking other agents to declare their interest or lack of it 

in the subject. The queried agents influence the outcome of the action by providing 

an answer. In any case, the goal is eventually achieved. However, the exact values 

described in the list have been influenced by others. 

Action changes Agents may influence another agent to such an extent that the later needs 

to change its planned actions in order to achieve the goal. For example, if some 

agents refuse to declare whether they are interested in the topic of argumentation, 

3 Note that, if an agent's goal cannot be achieved within that agent's Region of Influence, then the agent must seek 
assistance from another agent that has access to the region of the environment within which the goal can be achieved. 
In this section, we do not consider those situations. 
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the agent of the example above may need to follow an alternative route, such as 

looking at their list of publications for evidence of an interest in the subject. 

Goal changes The second type of scenario is when the influencing agent may change the en

vironment in such a way that the influenced agent has to change its goal entirely. For 

example, let us assume that Agent A has two goals. The first goal, of primary importance, 

is to discover any paper on negotiation, and the second goal, of secondary importance, is 

to discover papers relating to middleware. If A is pursuing the secondary goal and dis

covers that new papers relating to the primary goal have been posted by B, A must then 

change goals to reflect the change in the environment. Thus, B has sufficiently influenced 

A, through actions that impacted on just A's viewable environment, so that A changed its 

goal. 

Strong and Sneaky Influence 

Strong and sneaky influence relationships can impact on a goal in a more immediate way since 

agents could change exactly those attributes that represent a goal for another agent. We identify 

three main cases below. 

No change In the first case, the actions of Agent A do not affect the goal of Agent B. This 

means that although A is able to act in the Region of lnjluenceof B, it does not perform 

actions that hamper the goal for B. 

Goal constrained An agent can perform an action that changes the environment in such a way 

that a goal of another agent is constrained. For example, one agent may wish to access 

a document but cannot do so because another agent is already accessing it or has placed 

restrictions on its access. 

Goal aided Alternatively, an agent can perform an action that helps towards creating the goal 

state of another agent. Such actions may have been intentional or may occur unintention

ally. For example, if an agent has the goal of discovering a paper on auctions and another 

posts that paper, it inadvertentently aids the second one in achieving its goal. 
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5.6 Conclusions 

In this chapter we introduced a typology of relationships in support of coordination and reg

ulation, building on a basic model of interaction between agents and the environment. Each 

relationship type was associated with the goals of an agent, by defining goal regions to provide 

a useful tool for identifying possibilities for coordination between agents, especially in situa

tions in which we cannot predefine coordination because of incomplete information about an 

agent's capabilities and goals. The same tools can also be used to identify how a multi-agent 

system should be regulated to avoid conflicts, as illustrated through the definition of interfering 

relationships. 

5.6.1 Related Work 

The issue of relationship analysis has not in general been sufficiently addressed by existing 

research. Initial attempts such the ISAAC automated team analyst [151] take a different ap

proach, since the analysis tools are geared towards learning about agent behaviour, and are 

focused on analysing teams of agents. Although there is also a wider body of work on con

flict management (a representative collection can be found in [210]), once more the relationship 

identification issue is not addressed. Our work also has some similarities with social depen

dence networks [50, 196], which were also modeled using SMART [76]. However, our approach 

differs, since we make minimal assumptions about other agents, basing our models solely on 

agent interaction with the environment and the observability of actions. In the next sections we 

compare more closely the ISAAC automated team analyst to our work and social dependence 

networks. 

ISAAC 

ISAAC is a system developed to analyse the interactions between agents in a team. It performs 

the analysis by examining data-traces produced during the execution of a system (typically a 

game between two teams of agents in the context of ROBOCUP), considering individual actions, 

patterns of interaction and statistics of engagement between teams. ISAAC attempts to create 

models of agents by learning from the traces of their actions, highlighting positive or negative 

actions with reference to an overarching goal. Developers can then analyse the resulting models 
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to identify relevant patterns and perform "what-if" analyses to determine the performance of the 

team. 

The main difference between ISAAC and SMART+ is that while our analysis is based on a pre

defined abstract agent model and an interaction model that provides generic relationship types 

which are then related to real-world situations, ISAAC attempts to learn the agent models after 

agent interactions have taken place in order to then inform subsequent refinements to behaviour. 

Furthermore, ISAAC is geared towards analysis of team behaviour, and particularly improving 

one team's performance against another, while we focus on interactions between two agents and 

are concerned with improving the overall performance of an agent system. 

Overall, although both techniques are aimed at facilitating relationship analysis, they clearly 

fulfill different roles. ISAAC is particularly well suited for analysing interactions once they 

have taken place, while our aim is to inform both design from the very first stage and the run

time coordination of agents. 

Social Dependence Networks 

Social dependence networks [196] underpin the computation model for social power theory, as 

proposed by Castelfranchi [50]. These are taxonomies of social relationships in which relation

ships are characterised by the power that one agent has over another. They facilitate reasoning 

about relationships so that agents can reason about inter-dependencies between them. Com

paring social dependence networks to our own relationship analysis techniques is particularly 

interesting, since both are expressed using SMART [82]. This provides a further illustration of 

the benefit of having access to a common set of concepts, since we can be sure that we are 

comparing like with like. 

The taxonomy of relationships is based on whether an Agent A depends on another Agent B to 

achieve a goal with respect to: B being able to perform an action A cannot perform; B having 

access to an agent A does not have access to; or both. The dependence network is then defined 

by the combinations of distinct dependence situations. These situations between agents are: 

mutually dependency (both depend on each other for the same goal), reciprocal dependency 

(agents depend on each other, but for different goals), unilateral dependency Gust one agent is 

dependent on the other), and independence (an agent does not depend on anyone else). However, 

in order for such dependencies to be identified, we must have access to both the goals and plans 
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that an agent has to achieve those goals. It is the plans that indicate which actions or which 

other agents are required to achieve goals. This means that we must make assumptions about 

the intemal operation of agents, namely that agents operate based on plans and that we have 

access to those plans. 

Our relationship analysis models base their analysis on the Viewable Environment and Region 

of Influence of an agent, making it possible to make useful inferences without any reference to 

the internal structure of an agent. Furthermore, the goal typology is also based on where a goal 

lies within the Viewable Environment and Region of Influence, rather than what a plan explicitly 

defines as the necessary actions. As a result, the approach is more flexible and more widely 

applicable. 

5.6.2 Discussion 

The relationship analysis tools presented here can play an important role in managing dynamic 

and heterogeneous computing environments. At design-time they can aid developers in deter

mining the most appropriate configurations of agents and how they can facilitate cooperation 

between them. At run-time they can enable agents themselves to reason about relationships be

tween agents and adjust behaviour accordingly. This can be achieved both by specialised agents 

that are dedicated to the task of relationship analysis (we specify such an agent in Chapter 6), 

and by individual agents maldng use of the relationship analysis techniques. 

Finally, these tools also demonstrate the utility of the earlier models as an enabling conceptual 

infrastructure for dealing with heterogeneous agent systems. The clear definitions of concepts 

such as attributes, goals and capabilities enable the formal definition of the intuitive notion 

of regions of the environment that agents can view and influence, based on models of agent 

perception and action. 





Chapter 6 

Applying actsMART, SMART and 

SMART+ 

"You cannot create experience. You must undergo it." 

Albert Camus (1913-1960); French writer and philosopher 

6.1 Introduction 

With the work presented in Chapters 3, 4, and 5 on models of individual agents and the rela

tionships between agents, and with the underpinnings provided by SMART [82], we have access 

to a considerable base of conceptual infrastructure to facilitate the implementation of a muIti

agent application. Throughout the thesis we have provided several isolated examples of how 

such infrastructure can be used in a practical application setting, but we have not provided a 

comprehensive view of all the models operating together, something that is necessary to provide 

a more complete evaluation of the work. This chapter addresses this through the development 

of a demonstration application, where we make use of both actS MART to define architectures 

for the various agents in the application, and SMART+ to reason about the relationships between 

agents. 

In particular, we develop a demonstration application inspired by the vision of ubiquitous com

puting, which refers to attempts to develop applications in which the use of computing technolo

gies providing complex, integrated services is hidden as much as possible from the user. Weiser, 

who coined the term, described ubiquitous computing as technologies that "weave themselves 

153 
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into the fabric of everyday life until they are indistinguishable from it" [223]. In practice, ubiqui

tous computing can be described as the exploitation of limited capability devices such as mobile 

phones and PDAs, along with computing capabilities embedded in devices such as printers, to 

provide services to the user that are tailored in relation to information such as the location of the 

user or the context of use. 

With the most recent advances in computing and networking technologies, this vision is be

coming increasingly viable [191] and, as a result, there are several efforts to develop models 

to support the vision of ubiquitous computing within the context of existing IT infrastructure 

(e.g. [109, 145, 173]). 

The domain of ubiquitous computing provides a natural setting for the application of agent-based 

computing, and a realistic challenge to test the viability of the paradigm, since the environment 

is inherently heterogeneous and dynamic due to the inevitable continuous movement of users 

and devices within the environment. Indeed, this is demonstrated by the fact that there have also 

been several efforts attempting to address the challenges raised by ubiquitous computing using 

agent-based methods (e.g. [24,52,94,98, 125, 126, 190, 193]). 

Of course, our aim is not to provide answers to all the questions that ubiquitous computing 

raises. However, through a limited demonstration within the context of ubiquitous computing, 

we illustrate how our models can practically contribute towards both agent construction and 

the management of relationships between agents. The application scenario revolves around the 

provision of services to delegates attending a conference and support for collaboration between 

delegates through the exchange of personal information and resources such as papers and pre

sentation material. We assume that delegates are on site at a conference venue, with various 

rooms for presentations, and public spaces for interaction with other delegates. The services 

provided to users are either access to physical devices, such as printers and projectors, or ac

cess to services that can provide information about local restaurants and accommodation. Users 

are represented by dedicated user agents operating on their devices, and the services provided 

are accessed through appropriate agents for each type of service. Furthermore, the system is 

supported with infrastructure agents whose aim is to facilitate cooperation and coordination be

tween user and service agents. In particular we examine, through the application of our models, 

the following specific aspects of development and support for agent-based systems. 

1. Firstly, we investigate and contrast the operation of infrastructure agents, whose sole pur

pose is to facilitate the run-time discovery of information about other agents and the oper-
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ating environment in general. This information can then be used to promote coordination 

and cooperation between agents, through the enforcement of regulations or the support 

for direct interactions between agents in order to achieve their goals. These capabilities 

are crucial for the effective operation of a multi-agent system and, not surprisingly, almost 

all major toolkits provide agents to support this. 

We term such agents infrastructure agents and treat them as distinct from application 

agents, with the latter achieving particular application-specific tasks. In particular, we 

investigate two types of such infrastructure agents: 

• middle agents, which perform capability brokering, with their specification based on 

existing research on such agents, as discussed in Chapter 2; 

• and, relationship analysis (RA) agents, which perform relationship analysis and 

management using the techniques developed in Chapter 5. 

Note that while middle agents have been widely studied and are widely used, RA agents 

are only made possible because of the work in this thesis and as such represent a new type 

of infrastructure agent. Through their comparison we can determine the benefits that each 

brings to an agent-based application. 

2. Secondly, we discuss in some detail the development of application-specific agents, touch

ing on issues such as the practical implementation of abstract concepts like attributes, and 

how architectures can be reconfigured at run-time. 

3. Finally, we describe our implementation of actS MART as a set of application programming 

interfaces, which enables the practical construction of agent architectures. 

The application is simulated, in the sense that we do not make use of actual mobile devices and 

devices with embedded computing capabilities. The communication between agents and the use 

of different underlying communication protocols such as Bluetooth or S02.llb are also simu

lated. However, the agents operate as independent entities within the simulation environment 

and the tools used to develop agents are the same tools that would be used for the development 

of applications for mobile devices. We have also tested some of the agent implementations, 

without the communication capabilities, on low-end and high-end PDAs, so as to verify that the 

implementation was operational on actual devices. 

The chapter begins with a discussion on middle agents as the first type of infrastructure agents 

we investigate. We introduce Decker et al.'s [69] model for middle agents, and adapt it for use 
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within SMART, before developing a specific architecture for a broker. Subsequently, we discuss 

relationship analysis and develop a specific architecture for an RA agent. The two architectures 

are then contrasted, enabling us to identify some of the main differences between the two types 

of infrastructure agents as well as where each would be most suitable. With the infrastructure 

agent architectures in place, we proceed to develop the application scenario, discussing how 

the different types of agents are related and how we can characterise them given the entity 

hierarchy of SMART, and our refinements of it with active and passive agents. We then develop 

the architecture for the user agent 1 to provide a clear example of the use of actS MART in 

architecture development and the capabilities it affords us to reconfigure architectures. With the 

user agent architecture in place, we then discuss the use of RA agents to facilitate cooperation 

between user agents. Finally, we outline the actual implementation of actS MART in Java and 

conclude. 

6.2 Middle Agents 

The need for obtaining run-time information about a multi-agent system has long been recog

nised and was initially characterised as the "connection problem" [67]; namely, how agents can 

find out about other agents and capabilities they may offer. There is already a wide range of solu

tions to this problem, centring around the use of middle agents for capability brokering, defined 

as "the task of finding an agent which has a capability that can be used to address a given prob

lem" [225]. More specifically, Decker et a1. [69], define middle agents as those agents that act 

neither as providers nor as requesters of information, nor perform any other actions, and instead 

act as the 'connectors' between providers and requesters by managing information required to 

enable one agent to access another or cause the other to perform an action. As discussed in 

Chapter 2, toolkits for agent development provide a variety of alternative middle agents de

signs, and there are also several description languages for agent capabilities and protocols for 

the advertisement of those capabilities. 

We clearly need to support the development of middle agents within the context of actS MART, 

SMART and SMART+ since, as we discussed above, they fulfill a crucial task as part of a multi

agent system. However, since there is already a wealth of existing work, we do not aim to 

develop yet another model for middle agents but instead choose to adopt a well-established and 

1 Note that some aspects of the architecture specifications are only outlined in this chapter, with more extensive 
descriptions in Appendix A. 
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widely-used existing model, developed by Decker et al. [69], and illustrate how it can inform 

the specification of an agent architecture using actS MART. 

Decker et al. describe discovery as the process of matching a set of preferences, as defined by a 

requester, against a set of capabilities that a provider offers. The task of the middle agent is to 

perform this matching between requesters and providers. 

In their work, they provide a comprehensive categorisation of such middle agents according 

to the information that providers, requesters and middle agents have available about services 

requested and available capabilities. The three most significant types are: a broadcaster where 

capabilities and preferences are made available for all to see; a matchmaker or yeIlow pages 

service where capabilities are known by all but preferences are only known by the requester; 

and a broker where only the middle agent has knowledge of both capabilities and preferences. 

We adapt this model to the SMART framework by replacing the generalised notion of preferences 

with a description of an agent using attributes, capabilities, goals and motivations, and we caIl 

this a profile. Agents can either provide a middle agent with a wanted profile, which describes 

the type of agent they are attempting to discover, or a provider profile, which describes the 

services provided. Below, we provide a detailed account of the structure of a profile and outline 

examples of the types of requests it can be used to describe. 

6.2.1 Agent Profile 

We examine each aspect of an agent in turn, so as to determine both what is required to define a 

wanted or provider profile as weIl as what is afforded by the expressive capabilities of SMART. 

The aim is to capture what an agent is able to query with reference to other agents or, say, 

about itself, starting from the basic understanding of agents as entities described by attributes, 

capabilities, goals and motivations. 

Attributes Attributes describe the observable features of the environment in general. In the 

context of the profile of a specific agent, the attributes contained should relate just to 

that agent. These attributes can be of two distinct types, since they can either describe 

the agent directly or the agent's situation in the environment. The distinction is useful 

since it enables the modeling of more subtle profiles, such as that an agent belongs to a 

specific person and is currently in a particular location in a particular building. The first 
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requirement refers to an attribute specific to the agent, while the last two refer to attributes 

that are a result of the agent's situation. Attributes within a wanted profile indicate that 

an agent requires another agent matching those attributes, while within a provider profile 

they indicate the attributes of the provider. 

Capabilities Capabilites describe the actions an agent is able to perform and, as such, are the 

most typically requested type of information about other agents, since it is the capabilities 

of an agent that determine, above anything else, whether the agent can help to achieve a 

goal. Once more a wanted profile specifies required capabilities while a provider profile 

specifies offered capabilities. 

Goals Goals describe a desirable state of affairs that an agent wishes to achieve. A wanted 

profile containing goals indicates that an agent requires assistance to achieve those goals, 

while a provider profile indicates that the agent is able to achieve the goals specified. 

Matchmaking based on an agent's goals is generally not addressed in agent toolkits, since 

the focus is on matching capabilities. However, the ability to match by goals can be very 

useful in cases in which an agent knows the environmental state it wishes to bring about 

but does not know what capabilities of other agents are necessary to achieve that. 

Motivations Finally, an agent can also include a description of its motivations within a profile. 

Such information can be used to select agents that are more likely to behave in a certain 

way. For example, we may specify in a wanted profile that a provider agent should be 

motivated to cooperate as much as possible, so as to benefit from the greater possibility 

of forming closer relationships. 

Although each of the information types described above can be used in isolation to form a 

useful query, the real benefits come from combining them to create more complex queries. For 

example, an agent may wish to discover an agent that is currently in the same location and has 

the capability to use the printing devices that are close to that location. 

Finally, agents can also indicate the type of entity they wish to discover in terms of passive, 

active and autonomous agents. It is entirely possible that both an autonomous and an active 

or passive agent are able to offer the same services. It is therefore useful to specify that, for 

example, an agent does not wish to interact with an autonomous agent that could refuse service 

provision or could provide less control as to how the goal will be achieved. Engagement of 

a passive agent would guarantee that the engaging agent would have absolute control over the 
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Descriptive Specification Behavioural Specification Structural Specification 

Attributes Register Wanted or Provider Service Registration ~ensor) 
Profiles 

Middle Agent Type Incoming Queries (Sensor) 
Service Type Handled Match Profiles 
Location Handled RegistrationManager (Q:mtroller) 
Wanted Profiles Notify Service Requestors of 
Provider Profiles Match Provided Services (Infostore) 

Periodically check for expiration Wanted Services (Infostore) 
Capabilities of profile registration 

Register Wanted and Provider 
QueryManager (Controller) 

Notify agents of expiration 
Profiles RegistrationMessages (Actuator 
De-register Wanted and Provider 
Profiles QueryReplies (Actuator) 
Match Profiles 
Notify Agents of Match 

Goals 

Match Wanted to Provider 
Profiles 
Notify Service Req.Jestors of 
Match 
Notify of Profile Registration 
Explralion 

FIGURE 6.1: Broker specification 

actions performed by the service provider, while engagement of an active agent would provide 

guarantees that the engaged agent would attempt to achieve just that goal and would not change 

goals because of influences such as motivations. 

6.2.2 Broker Architecture 

Following the general discussion on agent profiles, we present here a specific architecture, which 

is aimed at supporting agent discovery. The architecture is for a broker, so only it has knowledge 

of both wanted and provider profiles. The description of the architecture is divided, as usual, into 

the descriptive, structural and behavioural specification, with an overview of all three aspects in 

Figure 6.1. Here we provide just the descriptive specification and a view of the architecture in 

Figure 6.2, while the structural and behavioural specifications are presented in A.2. 

Descriptive Specification 

Recall that the descriptive specification of an agent provides first a description of the attributes 

used by an agent and second a description of the agent, the agent's capabilities, goals and, if 

they exist, motivations. 

Attributes The attributes describing a middle agent indicate the type of middle agent, such as 
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FIGURE 6.2: Broker architecture 
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broadcaster, matchmaker or broker (in our case this attribute indicates that it is a bro-

ker). If required by a specific domain, we could also describe the category of services that 

can be registered with the middle agent. For example, in our ubiquitous computing sce

nario, we have different middle agents for different locations or different types of devices. 

Finally, profiles are used as discussed earlier, and are supplemented with an additional 

attribute indicating the time period for which a profile should remain registered with the 

middle agent. 

Capabilities Our broker has the capability to both register and de-register provider or wanted 

profiles, and to accept queries for provider services. In addition, the broker notifies agents 

whenever their provider or wanted profile registration period has expired, to give them the 

chance to renew it. Finally, it notifies agents of matches between profiles. 

Goals The three main goals of the agent are to register the profiles corresponding to wanted 

and provided services (for a defined time-period after which registrations are removed), 

to match those profiles, and to notify first, service requestors of a match, and second both 

service requesters and providers that their registration will be removed unless renewed. 

6.2.3 Discussion 

Even though the broker described here allows us to perform only very basic capability match

ing, it provides a clear example of how such agents can be implemented and specified using 

SMART and actSMART. While such agents exist within the majority of agent toolkits, such as 

ZEUS [155] or RETSINA [206], their architectures are typically not made explicit and are in

consistent with the approach used to develop architectures for other agents in the system, which 

makes their design opaque to application developers and harder to reuse in other settings. 



Chapter 6 Applying acts MART, SMART and SMART+ 161 

6.3 Relationship Analysis Agent 

In Chapter 5, we indicated that the relationship analysis tools developed there could be used 

both at design-time by the designer of a system and at run-time by agents. Here, we develop an 

architecture for an agent dedicated just to the task of relationship analysis that complements the 

functionality of the middle agent. 

The task of the RA agent is to identify situations in which there may be a conflict between agents, 

or where there may be possibilities for cooperation. Before we present the detailed architecture, 

we consider exactly what information is required from agents in order to perform the analysis, 

how the RA agent performs this analysis, and what management can be applied based on the 

analysis. 

6.3.1 Identifying Agent Relationships 

Required Information for Analysis 

In order for the RA agent to identify the possible relationships an agent may have with others, it 

requires information about an agent's capabilities and attributes. The agent's capabilities define 

the Viewable Environment and Region of Influence of an agent, while the agent's attributes are 

required because they may provide relevant information about the current situation of the agent 

within the environment, such as its location. This information may, in tum, also impact on the 

agent's Viewable Environment or Region of Influence. For example, the short-range BIuetooth 

communication protocol only allows an agent to access devices that are in close proximity with 

it. Thus, in order to determine whether an agent can interact with Bluetooth devices, we need 

to know both that it has a BIuetooth capability and its location to determine which other devices 

may be in range. 

Clearly each agent must provide this information and there are two ways in which it can do so. 

On the one hand, it can simply provide an agent profile, as discussed for middle agents above, 

and the RA agent can then infer (based on information about the domain) which attributes the 

agent can influence or view. On the other hand, agents can directly provide the sets of attributes 

that they can influence or view. In our case, we adopt the former approach since we assume 

that individual agents may not be able to define their own Region of Influence and Viewable 

Environment. Individual agents could either explicitly construct the profile themselves by having 
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appropriate controllers as part of their architecture, or the task can be delegated to the agent shell, 

as discussed in Chapter 4. The RA agent makes use of domain specific information that maps 

capabilities to the attributes they can influence or view. Finally, we note that the profile may 

also contain information about an agent's goals, which, as discussed in Chapter 5, can be used 

to better determine the relationships that may actually take place. 

Now, since changing goals and changing attributes may impact on the resulting relationships, 

the RA agent updates profiles from agents. For some types of agents, the information about 

goals is likely to change frequently, while other information remains relatively static. The only 

instance in which information about capabilities and attributes would need to be updated is if an 

agent has undergone reconfiguration of its architecture, or if some of the relevant attributes have 

changed significantly. For example, in our application, an agent's location is simply determined 

by the room within the conference venue in which the agent is currently situated. However, other 

applications may demand a finer-grained approach to the problem, which would require agents 

to frequently update their location attribute information or the RA agent to be more proactive in 

gaining such information through other means, such as dedicated services for determining the 

location of agents. 

Relationship Analysis 

With the required information in place, we can proceed to identify the relationships between 

agents. The aim is to produce a table, as shown in Figure 6.3, that lists all the agents related to 

a specific agent according to the type of relationship. In Figure 6.3, Agent A is related to two 

agents, Band C. With B the relationship is one of ObservableActions, which means that an agent 

can observe the actions of another. In fact, in this case it is BilatterallyObselllableActions, which 

means that both agents can observe the relevant Region of Influence. With C the relationship is 

one of MutualInfluence and, more specifically, UnilaterallyObservableMutualInfluence, which 

means that just B is able to observe the region of MutualInfluence. The process through which 

we arrive at such results is described below. 

1. The first step is to identify the Region of Influence and Viewable Environment for the agent 

in question. This is achieved through an analysis of the agent's capabilities, attributes and 

the use of domain-specific information. 

2. Then, we match this Region of Influence and Viewable Environment for each other agent 
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Agent identification: Agent A 

Relationship Type Related Agents 

MutuallyViewableEnvironment 

ObservableActions AgentS 

InvisibleActions 

BilaterallyObservableActions Agent S 

UniiaterallyObservableActions 

BilaterallylnvisibleActions 

UniiaterallylnvisibleActions 

Mutuallnnuence Agent C 

ObservableMutuallnfluence 

InvisibleMutuallnfluence 

BiiaterallyObservableMutuallnfluence 

BiiaterallylnvisibleMutuallnfluence 

.... . .. . .. 
unilalerallyOoservableMutualinfluence I Agent C 

FIGURE 6.3: Relationship table for a single agent 

for which the RA agent has the required information. A match occurs when one of the 

conditions for a relationship to exist is met. The conditions for a relationship to exist are 

all described in Chapter 5. 

3. Finally, the table is stored for later reference and updated whenever relevant attributes or 

capabilities change. 

6.3.2 Managing Relationships through Regulations 

Having constructed tables of relationships between agents as discussed above, the RA agent 

must then identify which relationships indicate that some form of relationship management 

is required and apply appropriate management. In our case management is applied through 

regulations, which will allow us to describe what behaviour agents should exhibit once the need 

for management is identified. Below we provide an outline of the structure of a regulation, 

which is based on largely accepted notions of regulations as reviewed in Chapter 2. 

Environmental Activation Criteria Environment activation criteria stipulate when a regula

tion is applicable by defining a set of attributes. In our case, the activation criteria are 

based on just the existence of particular types of relationships between agents. 

Agent Activation In order to also deal with the activation of a regulation that depends on an 
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agent profile, rather than just the relationships the agent has with others, we introduce an 

agent activation component to the regulation. This is described through a profile, allowing 

the specification of agent attributes, capabilities, goals and motivations. 

Forbidden and Mandatory Goals Finally, the regulation defines which goals are not permit

ted and which must be achieved by the agents that fall under the scope of the regulation. 

In essence, this provides goals that the agents should not pursue and goals that they should 

achieve given the regulation. 

A regulation is applicable when the relevant relationships, defined in the environment criteria 

section, are identified and the agents participating in the relationship match the profile in the 

agent activation criteria. If no environmental activation criteria are defined, but only an agent 

profile then any agent matching that profile falls under the scope of the regulation. Similarly, if 

we do not define a profile but just the environmental activation criteria, then all agents identified 

to be in the specified relationships fall under the scope of the regulation. 

The RA agent manages relationships between agents by determining which regulations apply to 

a specific identified relationship and informing the agents of those regulations. For the purposes 

of the demonstration we use two types of regulations: mandatory regulations that are typically 

used to prevent conflict, and optional regulations that are typically suggested where there is the 

possibility of cooperation between agents. Note that this notion of regulation is by no means 

complete but is adequate to demonstrate how RA agents can be used to manage relationships. 

6.3.3 Relationship Analysis Agent Architecture 

In this section we develop the specification for the RA agent architecture, using actS MART. 

As usual an overview of the descriptive, structural and behavioural specification is available in 

Figure 6.4, while a view of the architecture is provided in Figure 6.5. Once more we only provide 

the descriptive specification here, with the structural and behavioural specifications in A.3. 

Descriptive Specification 

Attributes The RA agent is described by the location within which it operates and the types of 

agents it analyses relationships between. For the purposes of this chapter, and our demon

stration application, we focus on the relationships between user agents at the conference 
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Descriptive Specification Behavioural Specification Structural Specification 

Attributes Accept an agent profile AgentRegistration ~ensor) 

Location Handled Analyse profile to identify Update Information (Sensor) 
Agent Types Analysed RegionOfinfluence and 
Agent Profiles Viewable Environment Regionldentification (Controller) 
Regulations 

Identify relationships betwJen GoalCategorisation (Controller) 
Capabilities agents 

RelationshipAnalyser (Controller) 
Accept Agent Profiles Notify agents of regulations 
Update Agent Profiles Conflict Analyser (Controller) 
Analyse Profiles If required update agent profiles 
Identify Relationslips and adjust identified relationship CooperationAnalyser (Controller) 
Notify Agents arout Regulations information 

MotivationEvaluation (Controller) 

Goals Domainlnformation (Infostore) 

Analyse information to identify RegionStore (Infostore) 
relationships 
Notify agents of relelBnt RelationshipStore (Infostore) 
regulations 

Motivations 
GoaiSiore (inrosiore) 

SupportCooperation 
Regulationlnformation (Infostore) 

ReduceConflict RegulationsNotification (Actuator) 
FosterRelationships 

FIGURE 6.4: Relationship analysis agent specification 
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venue, with each RA agent operating within a specific room. The architecture manipu

lates profiles, which contain agent attributes, capabilities and goals, and regulations, as 

described above. 

Capabilities The RA agent is able to accept agent profiles, either when an agent is registering, 

or when providing an updated profile. This information is analysed, and agents are notified 

of relevant regulations. 

Goal The goals of the RA agent are to analyse the information provided and, if relevant, to 

notify agents about any regulations they should adhere to. The exact goals at each moment 

are determined by the motivations of the RA agent, as discussed next. 

Motivations Based on its motivations the RA agent chooses which agents to notify about what 

regulations. In an abstract sense, motivations are understood as desires that an agent 

attempts to satisfy by generating relevant goals. In our specific case, motivations are 

satisfied if an agent performs a goal that contributes some utility towards a motivation. 

We define utilities as simple numerical values attached to regulations to indicate how 

much a specific regulation (and, by consequence, the act of informing an agent about that 

regulation) contributes towards a motivation.2 For example, if the RA agent is motivated to 

support cooperation that motivation is satisfied if the relationship analysis agent generates 

goals that inform agents about regulations in which the goals will lead them to cooperate. 

Regulations may contribute towards several motivations at the same time, so there is a 

process of selection to choose those with the highest overall utility at any given time. 

For the purposes of the demonstration application, the RA agent has three motivations, 

described below. 

• The SupportCooperation motivation leads the RA agent to choose regulations that 

require agents to attempt to cooperate in order to collectively achieve their goals. 

For example, in the previous example of the table of relationships between agents 

A and agents Band C, the RA agent identified that A and C are in a relationship 

of UnilaterallyObservableMutualInjluence. This means that C is able to observe 

the results of actions in that region but A cannot, although they can both perform 

actions there. Therefore, C could aid A by verifying the results of actions taken in 

that region, and informing A of them. 

2In our case these values are defined at design time and remain static throughout the operation of the RA, unless 
the designer updates them. Note that more sophisticated frameworks supporting motivated agents, based on the 
SMART framework have been developed and could be used to inform application development [148]. 
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• The ReduceConftict motivation leads the RA agent to choose regulations that pre

vent possible conflicts between agents. 

• The FosterRelationships motivation leads the agent to choose regulations that foster 

relationships between researchers by exchanging their personal profiles. 

6.4 Middle Agents and Relationship Analysis Agents 

We have described architectures both for a broker, which makes use of well established tech

niques adapted to SMART, and for an RA agent, which makes use of the tools described in 

Chapter 5. There is clearly some overlap of functionality between the two types of agents since 

they both aid better coordination and cooperation. However, it is important to clearly identify 

how the agents differ in order to better inform the choice between them . 

• Middle agents are essentially reactive, since they only reply when given a specific request 

by agents with some knowledge of what they are seeking. Relationship analysis agents, 

on the other hand, are proactive since they notify agents of opportunities for cooperation 

and attempt to prevent conflicts. 

• Middle agents only make use of profiles to match service providers to service requesters. 

As a result, the functionality they can offer is limited to determining whether two profiles 

match. RA agents make use of the relationship and goal typologies, and can use more 

generic rules relating to types of relationships between agents, or types of relationships 

and goals. 

Based on these differences, it is apparent that middle agents should be used when agents can 

identify their service requirements and can proactively communicate with middle agents in order 

to request a suitable match. RA agents should be used to proactively identify opportunities that 

individual agents may not have known were possible. 

Furthermore, RA agents can promote an overall type of behaviour within a multi-agent system 

by focusing on issues such as increased cooperation. The use of motivations to make the agent 

autonomous with regard to what regulation to apply means that the type of motivations the RA 

agent has may significantly influence the resulting behaviour of the system. For example, an 

RA agent seeking to avoid conflict above all other costs but with little regards to promoting 
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cooperation will have a different impact to one that pays equal attention to both motivations. 

Therefore, different types of RA agents, in terms of their motivations and the way regulations are 

judged to satisfy those motivations, can lead to significantly different types of system behaviour. 

6.5 Application Overview 

So far we have introduced, in some detail, the architectures of agents providing some of the 

required supporting inJrastructural services. The broker agent enables agents to discover suit

able service providers, while the RA agent supports better coordination and cooperation between 

agents. We now turn our attention to the specific application scenario of supporting delegates at

tending a conference, discussing the nature of the other agents, and in particular the user agents, 

and the relationships between different types of agents. 

As we mentioned previously, the services available to delegates at the conference venue are 

divided into two broad categories, as described below. 

Information services provide information relevant to the conference, such as times of presen

tation, local restaurants and accommodation, and transport facilities. Information services 

are accessible from anywhere within the conference venue. 

Physical services represent those services that are more tangible, such as fax machines, projec

tors, printers, and so forth. These are devices for use at the conference venue to accom

plish specific tasks. Physical services can only be available at specific locations within the 

venue. 

In the application domain, delegates are equipped with a range of different types of device, from 

limited capability mobile phones to more powerful laptop computers. Agents are installed on 

the devices that attempt to make the best possible use of the capabilities of the devices in order to 

provide access to as many services as the user requires. In addition to facilitating access to the 

services provided at the conference, agents can establish contact with other delegates' agents 

through the exchange of information such as research profiles, publications, or presentation 

material. 

Finally, we assume that there are several lower-level network communication protocols ranging 

from the short-range Bluetooth protocol to 802.11g wireless connectivity and wired ethemet 
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connectivity, with devices being able to use some or all of these protocols. 

Now, a typical usage scenario within the conference venue could develop as follows. A user 

arrives with a PDA with Bluetooth capabilities and an agent installed on it. The PDA is identified 

by a Bluetooth-enabled desktop computer, which is dedicated to the task of registering agents 

upon their arrival. Once registered, agents can identify themselves to other agents and use the 

available services. These other agents and services can be discovered dynamically, by taking 

advantage of any supporting middleware infrastructure, through the use of brokers, or based on 

direction from RA agents. 

Next, the user provides its agent with the goal of retrieving information about suitable accom

modation for that night, based on their preferences. In response, the agent attempts to locate 

a broker and request a relevant service. Once a suitable information service is identified, it is 

engaged by the agent and the required information is retrieved. 

Subsequently, the user enters the main meeting room at the conference venue, at which point the 

user's presence is registered with an RA agent. The description of the agent is matched against 

those of other agents at that location so as to identify any possible conflicts or possibilities for 

cooperation. The analysis by the RA identifies that the user's presentation for a workshop the 

user is attending is within the Viewable Environment of others and a regulation is activated to 

limit access only to those delegates who are attending the same workshop, so as not to overload 

the user's PDA with requests for the presentation. 

Finally, the agent may request the profiles for any participants matching the research interests of 

the user, and attempt to locate them or notify the user when they are identified in the same room 

as the user. 

6.6 Application Entities 

In this section we provide an overview of all the entities within the demonstration application, 

discuss their type based on the abstract agent model, and the possible relationships between 

them. A more detailed explanation of the supporting infrastructure for all agents is given in A.l. 

The central conceptual artifacts of the SMART and SMART+ framework are entities and the 

attributes used to describe those entities. In turn, such things as capabilities and goals from 

SMART, and Region of Influence and Viewable Environment from SMART+, are defined by their 
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FIGURE 6.6: Entities within the conference application 

relationship to entities and attributes. For example, capabilities can change or retrieve the values 

of attributes, and goals are defined as a set of attributes representing a desirable state of affairs, 

while Regions of Influence and Viewable Environments represent the sets of attributes that agents 

can change or sense. It is therefore natural, when attempting to develop an application using 

SMART and SMART+, to begin by defining a model of the application through the entities that 

are contained within the application and the attributes that can describe those entities. We then 

refer to this model when describing the capabilities of individual agents, defining how they can 

affect or retrieve information about other entities in the environment. 

All the types of entities we consider are shown in Figure 6.6, in which the connecting lines 

between entities indicate possible interactions between the different types of agents. Interaction 

between agents takes place through the exchange of messages along a communication channel. 

Although the communication channel could be explicitly modelled as another entity within the 

application we have chosen not to do so, since communication protocols are considered to lie at 

a lower infrastructurallevel. Instead, the ability to communicate, and access to communication 

channels, is implicit in the actuator and sensor capabilities of agents. For example, if a device is 

only able to communicate using Bluetooth, then in order for agents to use it they must have an 

actuator able to interact using the Bluetooth communication protocol. 

As mentioned earlier, each of the entities in Figure 6.6 is described by a set of attributes. Note 

that we also model non-computational entities, over which we have no control such as the user 

and physical devices, which are represented by user agents and physical device agents. However, 

from the perspective of system description, the distinction between the two is required so that 

we can identify which attributes are associated with the user or physical device, and which are 

associated with the agent representing them. 

User The user is described by a user name, affiliation to an institution, and research interests. If 

the user is presenting a paper at the conference, they may also have information about the 
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time and location of the presentation. Users are considered as autonomous agent entities 

within this application, since they kickstart the operation of the system by generating goals 

and providing them to the user agents. 

User Agent The user agent is described by its user identification, which provides the user name, 

affiliation and a conference registration number. In addition, the user agent may have 

a location, resources such as papers, presentation slides stored on the device, or URL 

links to online resources. Finally, user agents have regulations that define the goals they 

are allowed or prohibited from performing within a specific context.3 User agents are 

considered always to be active server agents, since they are always engaged by the user. 

Brokers Brokers have an identification and a specialisation. Their specialisation simply de

scribes the kind of service they can offer agents. For example, they may provide bro

kering just for information services dealing with accommodation. Brokers are neutral 

objects which, once engaged by an agent, can become either passive server agents or ac

tive server agents according to their individual architecture. In our case, once activated, 

the broker becomes an active server agent, since it applies its own matching algorithm 

through a controller. A different type of middle agent may be best represented as either 

an autonomous agent or a passive agent. For example, a broadcaster would be best rep

resented as a passive agent since it simply makes available information without matching 

services to requests within its architecture. 

User Registration Agent The User Registration agent performs the very basic role of simply 

providing a user agent with a conference registration number upon the user's registration 

with the conference. In our implementation, once engaged the user registration agent 

behaves as a passive server agent. 

Relationship Analysis Agents Like brokers, RA agents have an identification and a speciali

sation. In addition, they also have a location, and perform relationship analysis only for 

agents which are in the same location. RA agents are autonomous agents, and their moti

vations dictate the types of goals they generate in response to the identification of different 

types of relationships and the relevant regulations. 

Information Services Information services are described by the services they offer, such as 

Accommodation Service or Food Service. Information services may vary, according to 

3 Agents are simply expected to adhere to any regulations of which they are notified. The enforcement of regula
tions is beyond the scope of this demonstration application. 
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their individual capabilities, from passive agents to autonomous agents. 

Physical Devices The attributes used to describe physical devices depend on the physical device 

itself. For example, if the device in question is a printer, then we may use attributes such 

as laser or inkjet, pages per minute, and so forth. Physical devices are regarded as passive 

server agents, since they only react to commands provided to them through the physical 

device agent. 

Physical Device Agent Physical device agents are described by the profile of the device they 

represent. They are passive server agents if they simply act as a proxies providing ac

cess for other agents to the physical device's capabilities. However, if they reason about 

how other agents are manipulating the device, and intervene when appropriate, they may 

then act as either active server agents or autonomous agents, depending on the level of 

intervention and the existence of goal generation capabilities. 

Location Agent The location agent simply broadcasts a location identifier so that user agents, 

RA agents and physical device agents can set their own location attributes. 

In this section we gave a broad overview of the application and the different types of agents 

within it. In the next section we discuss the user agent architecture so as to give a clearer idea of 

the relevant implementation details and how abstract concepts such as attributes find practical 

implementation. 

6.7 The conference user agent 

Following the broad overview of the SMART conference environment and the agents performing 

the supporting infrastructural tasks we now discuss how actS MART is used to provide an imple

mentation for the basic user agent architecture. Note that here we only briefly discuss the user 

agent architecture, with a more extensive description, including a discussion of representing 

agent attributes using OWL [143], is provided in A.4. 

The user agent architecture is illustrated in Figure 6.7. The components that make up the struc

tural specification of the architecture have been grouped according to the overall functionality 

they cater of. Sensor components receive information through either Bluetooth, WiFi, or the 

owner interacting through the screen of the device. Information and reasoning about the owner 
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and the owner's goals is handled by the Owner Components, while the Delegate Components 

handle reasoning and information about other delegates and the conference. The Situation Com

ponents handle information relating to the current context of the agent user, the agent profile, 

and the regulations that apply to the agent. Service Components handle interaction with services, 

both information services and devices services. Actuators manage outgoing information, and 

essentially mirror the sensors. Finally, the MessageManager component handles the routing of 

incoming messages to appropriate components within the architecture. 

6.7.1 Managing the user agent architecture 

In order to illustrate some of the benefits of developing and managing the architecture using 

actSMART, we provide here some concrete examples of how we can manage the agent architec

ture to achieve better results. 
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Adapting to changes in the environment 

Mobile devices are inevitably limited in their capabilities. However, ubiquitous environments 

present a constantly changing set of devices and services to interact with, as well as different 

modes of interaction. For example, a device may be able to communicate with other devices 

through a variety of low-level protocols such as 802.11 b, Bluetooth as well as higher level agent 

language communication protocols. By using dedicated sensor components to deal with differ

ent types of interaction we can change the methods used at run-time based on device capabilities. 

For example, on initialisation of an agent, the agent shell can determine if its host device sup

ports Bluetooth communication and accordingly activate and link the Bluetooth-enabled sensor 

component. Similarly, an agent shell can determine that a certain protocol, although supported 

by the host device, is not supported by anything else in the environment and, in consequence, 

the relevant component is unlinked and deactivated by the shell, thus minimising the load the 

agent places on the host device. 

Suspending operation 

A particularly useful feature of actS MART is the easy access it provides to the state of individual 

components and the agent as a whole. This, when combined with the ability to store that infor

mation to the persistent record store of devices [107], allows us to suspend the operation of the 

agent either through a user command or when the device is interrupted (e.g. by a phone call). 

This feature can also be used to periodically save data in order to be able to recover operation if 

the device unexpectedly switches off. 

Modifying the architecture 

Finally, through the mechanisms provided by Java mobile device technologies, and particularly, 

over-the-air provisioning of applications [107], we can take advantage of the flexibility afforded 

by actS MART to replace existing architectures with modified versions that can support greater 

functionality. For example, the architecture described above only has support for dealing with 

delegate profiles, but not their resources. The component-based nature of the architecture can 

easily allow us to provide this functionality by performing the following changes . 

• Replace Userlnput and UserNotification components to allow the user to define such goals 
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and retrieve the resulting information . 

• Replace the MessageManager and GoalsManager components to handle the new mes

sages and goals . 

• Add a DelegateResourceManager controller and a DelegateResources infostore to handle 

the incoming resources. 

The remainder of the architecture is identical since the additional functionality does not impact 

on the behaviour of any other components. 

6.S Using Relationship Analysis Agents 

In the previous section we have discussed how actS MART can be used to define a relatively com

plex architecture, and how we can then take advantage of the flexibility afforded by actSMART to 

modify this architecture. We now examine how the use of RA agents, as described in Section 6.3 

can aid in improving cooperation and coordination within the system. We do this by providing 

some examples of the types of relationships they can identify in the conference scenario. We 

recall that throughout the examples we assume that RA agents are location-specific agents (i.e. 

they operate within a specific room) and are able to communicate using both S02.11 band BIue

tooth. We also assume that agents are willing to provide information to the RA agents, and do 

so upon entering a new location, but we realise that such assumptions would not be valid in a 

real environment. However, the development of appropriate mechanisms to provide incentives 

for agents to be truthful and willing to cooperate goes beyond the remit of this thesis. 

Aiding agents to achieve goals 

The first example is illustrated in Figure 6.S, in which Agent A is equipped with sensors for 

communication with both S02.lIb-capable devices as well BIuetooth devices, while Agent B 

can only communicate with Bluetooth devices. This means that the agents share a Mutually 

Viewable Environment, enabling them to communicate, but at the same time A can view other 

aspects of the environment that B cannot. Now, assume B has the goal of locating an infor

mation service that can provide information about local restaurants. In order to achieve this, it 

must first find a broker able to match the required service profile to existing services. However, 
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FIGURE 6.8: Aiding agent to achieve query goal 

since neither brokers nor the information service are Bluetooth-enabled, B has a query goal that 

is outside its own Viewable Environment. Agent A, on the other hand, is able to communicate 

with a broker, so the relationship analysis agent can request that A adopts B's goals and per

forms the required actions for it. Identifying such a situation, the relationship analysis agent can 

generate an optional regulation, with the goals of locating a broker, querying it about available 

information services and providing the results to B. 

Controlling access to devices 

In a room in which presentations take place, we would like that any device the presenter is 

using at the time (projector, printer, laptop) of the presentation is not used by anyone else at that 

location, so as to ensure that the presentation is not interrupted in any way. The RA agent must 

therefore identify all agents that have a Mutuallnfluence relationship with the presenter's agent 

and create a regulation preventing access to any devices within that Region of Influence. We 

point out that the generality of this rule means that we do not need to define the exact devices in 

question, since this may change from location to location. 

6.9 Agent Construction 

The discussion in this chapter of infrastructure agents and the specific application scenario has 

not dealt with the low-level implementation details in any real depth. However, the architectures 

described have been developed using an implementation of actSMART in Java, and here we 

describe some of the implementation's more salient features. The toolkit consists of a set of 
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FIGURE 6.9: actSMART implementation 

applications programming interfaces (APIs), that provide access to the basic code required for 

defining a shell, components and links between components. These APIs are separated into three 

different packages, as shown in Figure 6.9, and the actsmart . core packages are described 

below. 

Shell The shell package contains the main Shell class, which implements the functionality 

for adding and removing components, as well as defining the links between components 

and the execution sequence of components. The other significant classes in this package 

are the Link class and the Execu tionSequence class, each defining the required 

methods for handling links and the execution sequence. 

Component The main class within the component package is the Component class, which 

is the base class that all components must extent to implement their specific functional

ity. It defines the methods that each component should implement, so that they can all 

be manipulated in the same way by the shell. In addition, it provides some function

ality for storing, providing and accepting statements when called to do so. Finally, the 

Statement class defines methods through which statements can be manipulated and 

extensions for the three different types of statements that we support. 

This core set of APIs has been programmed using only classes supported within the Mobile In

formation Device Profile (MIDP) of the Java 2 Micro Edition [107]. Thus, the implementation 

of actS MART and, by consequence, the way developers access and make use of its basic con

cepts, remains the same, irrespective of whether development is targeted towards workstations 

or limited-capability mobile phones. This is in line with our aim of providing both a clear path 
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from abstract concepts to implementation, and a consistent set of ideas to support development 

for a variety of agent architectures and operating environments. 

This actsmart. core package is then extended with more specialised implementations for 

the devices at hand. In our case, we provide two broad extensions, as iIlustrated in Figure 6.9, 

for workstations (actsmart. desk) and for mobile devices (actsmart. mobile). The 

actsmart. desk extension is aimed for use on typical workstations that can also take advan

tage of the more extensive capabilities afforded by the Java 2 Standard Edition. The function

ality we added through extension is mainly geared towards enabling the debugging of architec

tures and their manipulation through a basic graphical environment (discussed in Section 6.9.1). 

The actsmart . mobile extension provides some rudimentary debugging capabilities and a 

set of components that enable agents to perform basic tasks such as making use of data stor

age facilities on a mobile device. In the next section, we describe in some more detail the 

actsmart. desk extension. 

6.9.1 actSMART Development Environment 

The extension of the core actS MART implementation for desktop computers and, in general, 

more powerful devices, takes advantage of the extensive functionality provided by the Java 2 

Standard Edition APIs, as opposed to the limited capabilities of J2ME. This additional func

tionality is, of course, particularly useful for developing powerful and generic components that 

handle issues cutting across different application domains such as communication or planning. 

However, our main focus has been the extension of the core actS MART APIs to provide features 

that are useful in the development phase of agent construction by aIlowing easier access to the 

underlying features of actSMART. These extensions can be accessed either directly through the 

APIs or through a basic graphical user interface development environment. A description of the 

features we have built on top of the core APIs foIlows. 

• Components can be loaded into the sheIl at run-time and the links between components 

can be defined dynamicaIly. This aIlows developers to easily test different configurations 

of architectures in order to identify the best suited for the application at hand . 

• The developer can instantiate just parts of the architecture, which enables them to focus 

on the interactions between a smaIl number of specific components. 
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• Developers can step through the execution sequence of an agent, monitoring at each point 

the exchanges of statements between components. This allows developers to identify 

where problems within the architecture may occur. 

• The development environment can also produce an XML file detailing the components 

that make up the architecture as well as the links between components and the execution 

sequence of the components. Furthermore, such descriptions can then be loaded back into 

the development environment to quickly instantiate architectures. This enables developers 

to save and catalogue different types of configurations for reuse. 

These basic features are particularly useful for debugging an agent architecture, and illustrate 

what is possible when a principled approach to agent development is followed, which enables 

us to generalise the manner in which architectures are constructed and debugged. 

In order to provide some more details on the implementation of the system, we provide below 

a description of the implementation of the main concepts of attributes, components, statements, 

links, and the shell. 

6.9.2 Attributes 

The implementation of attributes required a structure that is specific enough to actually be of 

use while maintaining the required flexibility that would allow it to be used in any type of situ

ation. This concern leads to the specification of an Attribute interface that defines the methods 

necessary for manipulating attributes with minimal knowledge of their specific implementation 

in the context of an application domain. 

The suggested way of using the Attribute interface is shown in the UML diagram of Figure 
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6.10. The interface can be implemented at either the architecture or application level (or both) 

and then extended with specific types of attributes. 

In actS MART, attributes have an AbstractType and a Type. The abstract type refers to the 

general type of attribute (e.g., a Location or a Profile) while the type refers to the specific in

stantiation of an abstract type (e.g., CurrentLocation or Mike~rofile). The actual information 

stored within attributes is implementation-specific and may depend on arbitrarily complex data 

structures. Therefore, for them to be manipulated and changed, knowledge is required about 

the data structures that represent them. Nevertheless, some standard functions can be performed 

without such knowledge. Thus, the Attribute interface stipulates that the following func

tionalities should be provided by an implementation: testing attributes for equality through the 

isEqual () method4 ; copying attributes through a copy () methodS; and, supporting pre

sentation through the valueToString () method that converts the value of an attribute to a 

textual representation. 

6.9.3 Components 

As with attributes, the essential methods that components should implement are described in a 

Component interface. However, in addition to an interface definition, we also provide a skeleton 

4Java provides an equals () method which all objects inherit, but for our purposes the semantics of equality 
are usually more demanding. Two attributes are not equal if they simply refer to the same object but if the values in 
their data structures are equal. 

50nce more the semantics are different to the clone () method Java provides. A copy of an attribute is a copy 
of all the data referred within that object as well. 
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implementation of the interface so that developers only need to define the methods carrying the 

specific functionality of the components. The implemented functionality provides the ability 

to store and manage incoming and outgoing statements, and to provide access to statements 

currently being processed by the component. 

The generic activity of components is shown in Figure 6.1l. The main states of a component 

are active, processing and deactivated. In the active state, the component is simply listening 

for statements. Once a statement is received, a component can either store it and react to it 

later, or react to it immediately. The choice between the two types of behaviour depends on the 

application requirements as discussed throughout the various architecture examples presented 

in this chapter and in Chapter 4. For example, if tight control of component scheduling is 

desired, all statements should be stored upon receipt and acted upon in the processing state. 

This state is where the component does the bulk of the work by stepping through statements 

and deciding how to deal with each one. The choices, which do not exclude each other, are to 

produce a statement in response, perform an action or, in the case of an infostore, update stored 

attributes. Finally, the component may be called to enter its deactivated state. At this point, the 

component implementation should perform any operations required to ensure that deactivation 

is handled gracefully. Here, the component will still receive statements, unless the links with 

other components have been severed, but it will not act on them nor store them. 

Statements stored within components are placed in a typical Vector object, which also has the 

capability of notifying a listener to changes to the vector. This functionality is used to facilitate 

debugging, since the developer can monitor statements being processed by a component through 

the graphical interface. Since these statements represent the state of the components, it means 

that this state can also be stored for transfer to a different entity configuration or can be used to 

synchronise entities between desktop and mobile environments. 

6.9.4 Statements 

Statements are implemented in actS MART through a generic Statement class that is then ex

tended to provide specific types of statements, such as those described in Chapter 4. In order 

to add more flexibility to the framework, and to allow for its easy extension to include more 

statement types, statements are created through a Sta tementFactory that can also perform 

checks on the validity of the requested argument structures. Currently, the SmartS ta temen t

Factory supports the creation of statements for INFORM, REQUEST and EXECUTE. Ap-
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plications needing more specialised statement types can define their own factories or extend the 

existing factory. 

6.9.5 Links 

In our implementation of actS MART, a Link class is provided for each component that produces 

statements. This class holds paths between the sender and the receiver of a statement. The Pa th 

class defines a sender of a statement, a receiver and the statement to be sent. 

The Link class is where information is stored about where statements produced by a component 

should be routed. Therefore, this information is completely decoupled from the components 

themselves, and can be managed by the shell. 

6.9.6 Shell 

The shell manages components, the links between them and the execution sequence. It can 

also hold attributes that have an entity-wide scope. Components in a shell are held in a vec

tor structure and each component is accessible via a componentID and can be observed 

through the graphical interface (similarly to statements within components). The shell links 

components by creating a new Path object and placing it within the Link object of the 

statement-producing component. The components are executed in the sequence defined in the 

Execu tionSequence object, which is configured by the developer. As we mentioned in 

Chapter 4, currently we only support a sequential execution sequence, so the Execution

Sequence object implementation is relatively simple. However, an alternative implementation 

of this class following a more sophisticated control-flow mechanism is possible, since the class 

is decoupled form the rest of the implementation of actS MART. 

The object relationships diagram in Figure 6.12 provides an overview of the relationships be

tween the key classes in our implementation of actSMART. The Shell manages Link and 

Componen t objects and refers to an Execu ti onSequence object. The Componen t object 

produces Statement objects, which contain At tribute objects. A Link object refers to a 

Component object and contains Path objects. Finally, Path objects relate two Component 

objects to a Statement. 
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6.10 Conclusions 

In this chapter we have provided a view of all the models introduced in the thesis working to

gether to support the development of an agent-based application. The main aim is to demonstrate 

that the models can provide real benefits to application development and that translation from 

abstract models to practical implementation is possible. 

The implementation of several architectures in actSMART has provided useful experience as to 

the suitability of the model for agent construction within a practical application setting. Al

though the implementation of interactions with other sources was based on a simulation of the 

environment, the APIs used are those directly supported by the majority of high-end mobile 

phone devices. 

The fine-grained control over every aspect of the agent aids significantly in testing and debug

ging, since components can be tested individually and, more importantly, they can be tested in 

connection with other components without requiring an instantiation of the entire architecture. 

Moreover, the state of each component, and the agent as a whole, is clearly defined, and changes 

to individual components and to the overall architecture are easy to achieve. 

One of the central concerns has been that the model might place too many demands on a device, 

since a component-based approach is inevitably more expensive in processing requirements that 

more tightly-integrated implementations. Although more work is needed, both analytical and 
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experimental (or developmental), our tests on PCs and low-end PDAs indicate that the difference 

is not significant, especially when seen within the context of our ability to adapt architectures to 

the capabilities of devices. 

From the multi-agent point of view, access to a consistent set of concepts has proven useful 

in enabling us to accurately model the different types of entities in an environment, and even 

facilitate run-time agent discovery based on such application-independent types. Furthermore, 

the relationship analysis agent represents a new type of infrastructure agent that can play an 

effective role in managing dynamic and heterogeneous multi-agent systems. 

Compared to existing work on developing appropriate infrastructure for supporting ubiquitous 

computing (e.g. [190, 52], the two main benefits of our approach has to offer are a principled 

means for designing and describing agents, and extensive support for analysis of interactions 

between agents. 



Chapter 7 

Conclusions 

"Education is a progressive discovery of our own ignorance." 

Will Durant (1885 - 1981); US historian. 

7.1 Introduction 

The technological advances in device miniaturisation, increased processing power, and network

ing capabilities can support increasingly more complex and heterogeneous computing environ

ments, where a range of devices can potentially communicate with and make use of services 

provided by others. In line with this profile, there is also an increasing demand for integrating 

the various different kinds of such devices in order to provide an environment in which access to 

information and services is available in a seamless manner, while transcending physical location 

and computing platform. However, application development for such environments poses two 

significant challenges. Firstly, developers must deal with a range of operating environments, 

requiring individual application components to be tailored to the demands and capabilities of 

individual devices, which inevitably increases the complexity of the design and development 

process, and makes the need for a consistent approach throughout essential. Secondly, develop

ers must build systems in which disparate components are able to cooperate effectively and cope 

with changing application needs according to the state of the environment, creating the need for 

applications that can adapt dynamically at run-time. 

Agent-based systems have a key role to play in the effort to provide and support such appli

cations, since agents embody several of the required characteristics for effective and robust 
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operation in dynamic and heterogenous computing environments. However, there is a num

ber of shortcomings relating to the use of the agent approach to application development. In 

particular, in this thesis we deal with the lack of clarity in existing agent models and address 

the need for models that can directly support practical application development. These are 

widely-accepted shortcomings that have been identified by a number of researchers in recent 

years (231, 189, 136,32,227]. Both issues are central to the effective application development 

in heterogeneous environments. The lack of clarity of conceptual models hinders the application 

development process, forcing developers to resort to ad-hoc methods, and constraints the ability 

of developers to have a consistent view of the entire system so as to better address problems 

when they arise. In addition, it makes the reuse of solutions across different applications harder, 

since there is no consistent way of describing such solutions. However, a conceptual model can 

only be useful if there is a clear path from that model to its practical implementation, providing 

true value for developers, who need to ensure that an abstract specification can be translated to 

practical, realisable systems. 

In direct response to these challenges we have addressed the following specific issues in this 

thesis. 

• Provide abstractions in support of the construction of individual agents, that can be used 

both during the conceptual elaboration and design of agent systems and during their prac

tical implementation . 

• Provide support for cooperation between agents through a model that enables us to firstly 

identify and subsequently reason about the relationships between agents. 

An overarching aim of this is that any work developed should be resuable across a wide range 

of applications to support the transfer of knowledge across domains and reduce the development 

effort. 

In this chapter we provide a summary of this work, highlight the specific contributions we be

lieve we make in this thesis and, subsequently, discuss the limitations of the work along with the 

possible avenues for further work. 
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7.2 Summary 

At the centre of the work presented in this thesis lies SMART, a conceptual framework adopted 

with the aim of refining and expanding it to achieve our aims. SMART provides us with the 

basic abstractions required to underpin development in agent systems, enabling us to describe 

both individual agents, without reference to specific agent architectures, and the relationships 

between agents. 

However, SMART is lacking in two important aspects. Firstly, although the abstractions provided 

for describing individual agents are well-suited to our aims because they restrict us to specific 

architectures, they do not explicitly address the entire range of agent types we need to deal with 

for development and no paths are provided from those abstractions to the practical implemen

tation of agents. Secondly, the abstractions in support of agent relationships are restricted to a 

particular class of relationships that are centred around agents attempting to achieve a common 

goal. Although such relationships play an important role in multi-agent systems, we also need 

to support the representation and reasoning about a wider range of relationships. 

In response to these shortcomings, we have shaped the work in the thesis around a clearly de

fined plan of expanding and refining SMART, in order to align it with our aims. An overview of 

the extensions developed in this thesis is illustrated in Figure 7.1 (reproduced from Chapter 3). 

On the one hand, the agent construction model (actS MART) enables us to define specifications of 

architectures that can be directly implemented, and provides the required links between the ab

stract agent model and its practical implementation. This is also suppo11ed by the translation of 

actS MART into a set of APIs that can be used to support development. Throughout the thesis we 
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developed several examples of the use of actS MART to define a variety of architectures, ranging 

from a basic agent for auctions to agents performing negotiation and argumentation, infrastruc

ture agents, and agents supporting users within a ubiquitous computing application scenario. 

On the other hand, SMART+ refines and extends the existing SMART models for agent relation

ships by introducing a more generalised model of interactions. This general model enables us 

to identify and characterise different types of relationships, both at design-time and at run-time, 

and we provided a generic typology of relationships so as to facilitate this characterisation. In 

addition, the interaction model also enables the characterisation of an agent's goals, allowing 

us to consider goals in relation to an agent's capabilities and other agents in the environment. 

We have illustrated the use of SMART+ through the definition of interfering relationships and 

the specification of an agent dedicated to relationship analysis in the context of a ubiquitous 

application scenario. 

Underpinning this work was a careful consideration of the notion of agents as defined by SMART 

and a refinement to more closely describe the types of entities we are likely to encounter within 

a realistic application scenario. Below, we outline these refinements, before going on to discuss 

actS MART and SMART+. 

7.2.1 Refining the Abstract Agent Model 

For developers to be able to adopt an agent-oriented paradigm, there must be an unambiguous 

understanding of what constitutes an agent and, especially within the context of heterogenous 

application environments, an ability to differentiate between and relate types of agents. Al

though SMART offers clear definitions, it does not provide the level of granularity required to 

accommodate the different types of agents that may be encountered during application develop

ment. 

We refined SMART'S basic notions, and reconciled them with Wooldridge and Jennings's widely 

used agent characteristics [232], gaining the required level of granularity through the introduc

tion of the notion of self-direction as distinct from the notion of autonomy. Self-direction is the 

ability to choose what actions to perform in order to achieve a given goal, while autonomy is the 

ability of an agent to generate its own goals. Agents that exhibit self-direction actively attempt 

to achieve goals, while agents that do not are passive agents, since their actions are entirely 

defined by the way they are manipulated. 
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7.2.2 acts MART: Agent Construction Model 

The basic abstractions relating to individual agents, coming from SMART and our refinement of 

SMART, outlined above, support the definition of the agent construction model that allows us 

to develop specifications of agent architectures. The agent construction model (actS MART) was 

developed with the aim of addressing the need to construct agents for heterogeneous environ

ments, where it is not realistic to assume that all agents will use the same type of architecture. 

Rather, the conceptual infrastructure should allow developers to create the most suitable archi

tecture for the task at hand while providing consistency across architectures through a common 

set of underlying concepts. In addition, actSMART also enables architectures to adapt to chang

ing needs, in line with the varying demands that heterogeneous and dynamic environments place 

on applications. 

actSMART takes a component-based approach to agent development. Components represent dif

ferent types of functionality within the agent architecture (sensing, acting, information storage, 

and decision-making) and are placed within a shell that manages the communication between 

them, and the sequence in which components execute. This approach enables us to distinguish 

between the descriptive specification of an agent using the SMART concepts of attributes, capa

bilities, goals and motivations, the structural specification of the agent as expressed through the 

different types of components that comprise the agent architecture, and the behavioural specifi

cation of the agent as defined by the ways in which the components interact. 

In addition to enabling the comparison of agent architectures from different viewpoints, these 

distinctions allow us to reconfigure the agent architecture through the shell. Since components 

are independent of each other, we can change components and the wayan agent architecture 

executes through the shell at run-time. 

The use of actS MART is illustrated in Chapter 4 through several examples while some actual 

implementations of architectures are discussed in Chapter 6. 

7.2.3 SMART+: Relationship Identification and Characterisation 

Just as the agent construction model underpins the specification and development of individ

ual agents, the interaction model underpins the development of multi-agent systems. Starting 

from the premise that in dynamic and heterogeneous systems we can never be sure that the only 
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relationships that are instantiated are those explicitly considered at design time, we have fo

cused on developing a systematic means for identifying relationships, both at design-time and at 

run-time, and characterising those relationships in order to facilitate the choice of relationship 

management techniques. 

The model of interaction of an individual agent with the environment only makes use of knowl

edge of an agent's actuator and sensor capabilities. This allows us to apply the model to a wide 

range of agents, since we make no assumption about their internal operation. The interaction 

model leads to the definition of regions of the environment that an agent is able to view (View

able Environment) or affect (Region of Influence). 

Using this interaction model we can investigate all possible relationships between two agents by 

examining how their individual Regions of Influence and Viewable Environments overlap. More 

specifically, these overlaps enable the creation of a typology of agent relationships to identify 

when two agents are able to view the same regions of the environment (mutually viewable en

vironment), each other actions (observable actions), and when they are able to change the same 

regions of the environment (mutual influence). 

Knowledge of all possible relationships between two agents is further enhanced by including 

in the model knowledge of an agent's goals. It is the agent's goals that ultimately determine 

which of all the possible relationships will be instantiated, enabling us to expand or restrict the 

possible relationships between agents, since we have an indication of the exact regions of the 

environment that agents can seek to influence. Thus, we have developed a typology of agent 

goals, relating goals to the Region of Influence and Viewable Environment of an agent. 

These relationship analysis tools are illustrated through the definitions of particular types of 

relationships, such as interfering relationships and the development of a dedicated relationship 

analysis agent. 

7.2.4 Implementation and Evaluation 

The models for agent construction and relationship analysis were evaluated through a simulation 

of a ubiquitous computing application. The application includes middle agents for capability 

matching, and agents that are able to perform relationship analysis using the models developed 

in Chapter 5. Architectures for both agents have been specified using actSMART. We have 

provided examples of how relationship analysis agents can be used to identify relationships 
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between devices at particular locations and consequently generate rules to regulate interactions 

or inform agents of the possibilities for cooperation. 

The evaluation is supported by the implementation of actS MART, which acted as the core of 

a desktop-based development tool that enables developers to modify the agent architecture by 

dynamically loading components and changing the execution sequence of the components. This 

also allows us to test specific aspects of the architecture, by instantiating just those components 

that we wished to check and also check the operation of the architecture by stepping-through 

the execution sequence. 

7.3 Contributions 

In this section we identify specific contributions that we have made through the work developed 

in this thesis. Several of these contributions have been described in a number of publications 

that have been presented in international workshops and conferences [7, 8,9, 10, 11, 12]. 

7.3.1 Abstract Agent Model 

We have refined SMART'S model of agents which, although providing definitions for different 

types of agents, does not have the required level of granularity nor support for translating those 

definitions into structural and behavioural models of agents. We introduced the notion of self

direction, as distinct from the notion of autonomy. At the risk of repetition, self-direction refers 

to an agent's ability to choose how to achieve a goal, while autonomy refers to an agent's ability 

to choose a goal. In addition, through actS MART we provide a clear path from the specification 

of different entity types at an abstract level to the way such entities can be constructed at a 

practical implementation level. 

This enables developers to proceed with system design with a clear understanding of what the 

concepts used imply for both design and implementation. Such clarity supports the reuse of 

solutions across domains and applications, which can eventually lead to reduced development 

costs. 
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7.3.2 Agent Construction Model 

We have developed a conceptually grounded and architecturally-neutral model of agent con

struction, that enables the specification and development of modular and reconfigurable agents. 

The model is conceptually grounded through the abstract model of agents, discussed above, and 

is architecturally neutral since it does not restrict agents to any single architecture. 

In order for agents to operate effectively in heterogeneous environments, their architectures must 

be tailored both to the demands of the application and to the demands and limitations the en

vironment places on the application. This means that developers must deal with a number of 

different agent architectures for a single application, increasing the complexity of application 

design. Our agent construction model provides a consistent manner in which to specify and 

construct a range of architectures so as to reduce development effort, avoid the use of ad-hoc de

velopment methods, and enable reuse of solutions across applications. Furthermore, actS MART 

is equally relevant to development for both limited-capability devices as well as more powerful 

ones, providing the necessary consistency across the application domain. 

Finally, actS MART provides the following secondary contributions. 

Shell, component types, links and execution sequence The agent construction model makes 

use of: a shell as a manager of agent components; distinct components types as a means 

of encapsulating different types of agent functionality (reasoning, sensing, acting, infor

mation storage); links between components to support information-flow; and an execution 

sequence to define the order of execution of components. Each of these issues can be con

sidered as an engineering construct to be reused in different contexts, supporting an agent 

construction model that can be based on several different abstract agent models, not just 

SMART. They are constructs that enable modular and reconfigurable agent architectures, 

regardless of the underlying agent model supporting construction. 

Graphical Notation We have developed a graphical notation for describing agent architectures 

that enables us to illustrate the different types of components within the architecture and 

the information-flow between components. 
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7.3.3 Description, Structure and Behaviour 

In support of the agent construction model we have provided a three-dimensional view of an 

agent, distinguishing between the descriptive specification of agents, in terms of their attributes, 

capabilities, goals and motivations, and the structural and behavioural specifications, providing 

benefits both at the design and at the implementation stage of agent architecture development. 

At the design stage, it provides significant flexibility since it provides a developer different 

perspectives and the ability to move between them while refining the design of an agent ar

chitecture. We have illustrated this process through examples, such as the architectures for 

negotiating agents in Chapter 4. There we show how to move from a detailed descriptive specifi

cation which, in essence, provides a set of requirements for the agent, to more detailed structural 

and behavioural specifications which indicate how those requirements can be met and specified 

through actSMART. 

At the implementation stage, it enables us to experiment with different structural and behavioural 

specifications by manipulating components and the links between them, as well as the execution 

sequence. 

7.3.4 Linking Theory to Practice 

The development of actS MART also makes an important contribution from a purely research

level perspective since it provides an example of the clear path from the abstract specification 

of agents in SMART to the elaboration of that specification to construct agents. We have demon

strated how a well-established theoretical model can be made more relevant to application devel

opment, while still providing access to the concepts of the abstract framework. Well-understood 

software engineering concepts such as components, and the refinement of components into com

ponent types, have shown how to use these concepts at the design stage to provide specifications 

for agent architectures without concern for the specific implementations of computational mech

anisms to achieve the functionality of components. 

7.3.5 Model of agent interaction 

We have developed a model of agent interaction that is widely applicable, since it makes minimal 

assumptions about the internal structure of agents, focusing instead on the abilities of agents to 
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affect change or retrieve attributes from the environment. The interaction model makes use of 

SMART, and can be directly translated to a practical tool that agents can use at run-time, since 

we already have a clear path between the concepts of SMART and their practical implementation 

through actSMART. 

The interaction model is a key contribution towards supporting cooperation between agents, 

since it enables us to model the possible interactions between agents in order to gain a bet

ter picture of the system and arrive at appropriate decisions about the best models to support 

cooperation. Such an analysis is important at design time, by revealing issues not considered 

explicitly, and also at run-time since, in heterogeneous and dynamic environments, agents may 

enter and leave the environment at any time. 

In developing the model of agent interaction we also make the following secondary contribution. 

Viewable Environment and Region of Influence We have introduced and formally defined the 

notion of Viewable Environment as the region of the environment an agent is able to view, 

and the notion of Region of Influence as the region of the environment as agent is able to 

affect. 

7.3.6 Typology of Relationships 

Using the model of agent interaction we have comprehensively characterised all the possible 

interactions between two agents through a typology of relationships, which allows us to take 

decisions about how to deal with different types of situations. It is especially useful for au

tomating the reasoning about relationships, since the typology can be used directly by agents or 

by systems management tools at run-time to facilitate the application of relationship manage

ment based on the identified types of relationships. 

7.3.7 Typology of Goals 

The relationship typology is also supplemented with a typology of goals, which relates goals 

to their location within an agent's Viewable Environment and Region of Influence. Knowledge 

of an agent's goals enables us to expand or constrain the possible relationships between agents, 

since it indicates the exact regions of the environment that an agent will either attempt to sense 

or affect. 
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7.4 Limits and Further Work 

The work presented in this thesis represents a significant step towards providing truly reusable 

models in support of agent-based systems development, both with respect to the construction of 

individual agents, and with respect to supporting cooperation in multi-agent systems. In fact, 

it is precisely this comprehensive aspect of the work that is key to its utility. The same set 

of concepts is used throughout, providing the necessary consistency in development that can 

ensure both reusability between applications and the ability to contrast alternative solutions, and 

facilitating progress towards robust application development. 

From a research perspective the work is one of the few examples that adopts an existing concep

tual framework and refines and extends it, providing a clear path from abstraction to construc

tion. As such the work represents a clear progression from the current state-of-the-art. 

Inevitably, there are limitations, relating both to the inherent difficulty of evaluation and to 

the multiple facets of agent development, ranging from methodologies to development toolkits. 

More importantly, the work provides promising avenues for further research that seem able to 

lead to further useful results. We discuss both limitations and possibilities for further work 

below. 

7.4.1 ~innits 

Lack of methodology If our overarching aim is to support the development of agent-based ap

plications, then perhaps the most serious limitation of this work is that it is not coupled 

to a principled development methodology. A methodology describes the steps developers 

should take to move from the definition of a problem to the specification and implemen

tation of an agent-based application addressing the problem. Nevertheless, we recognise 

that a prerequisite to a methodology is a principled account of the models that form the 

space of discourse for the methodology. The work in this thesis provides such models and 

thus creates the necessary preconditions for developing a methodology. 

Evaluation across domains Throughout the thesis we have provided several examples of the 

application of the models. However, more examples and more extensive evaluation across 

different domains would undoubtedly strengthen the arguments for the validity of the 

work. Unfortunately, the limited resources of development within the context of the thesis 

have meant that we attempted to focus effort on several key examples as best as possible. 
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Scalability of relationships models The relationship models presented provide a means to anal

yse relationships between agents and use that information to manage agent-based systems. 

However, we have not dealt with the implications of dealing with thousands or even hun

dreds of thousands of agents. In the context of the design for the relationship analysis 

agent presented in Chapter 6, the problems faced are similar to those faced by middle 

agents, where some results on scalability are available [129], but a closer analysis of the 

particular issues concerning relationship analysis and scalability are necessary. 

Trust and security Application development in the context of heterogeneous and dynamic en

vironments inevitably raises the need to ensure that any attempt to act maliciously is 

effectively controlled. Within the context of the work presented here such issues are par

ticularly relevant, since when dealing with relationship analysis agents are required to 

share information about their capabilities and decisions are taken based on that informa

tion. An account of the implications of doing so within environments in which agents 

may be willing to deceive would enhance this work. 

7.4.2 Further Work 

Necessarily, the limitations discussed above must also act as pointers for further work. However, 

beyond work directed to addressing such limitations, further work is possible to extend and 

expand the relevance of the work both at the level of abstract models as well as at a practical 

implementation level. 

Systematic comparison and evaluation techniques It would be useful to take advantage of 

the ability to describe, through SMART, actSMART and SMART+, a range of agent archi

tectures and interactions across different domains in order to systematically analyse and 

compare different approaches. From a research perspective this can provide a better means 

for identifying progress, while from a development perspective it can provide guidelines 

in the form of construction patterns for individual agent architectures and multi-agent 

systems. 

Analysis of multi-agent systems The relationship analysis and identification tools can allow 

us to analyse an entire multi-agent system, identifying the level of potential cooperation 

or interference between agents according to the types of relationships that are prevalent 

within the system. This could enable us to characterise different types of agent societies, 
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or identify particular agents within a system that are heavily relied upon or which are 

particularly damaging to the society as a whole, akin to the concepts discussed in the 

contexts of social dependence networks, but without the reliance on knowledge of plans, 

as discussed in Chapter 5. 

Application of relationship analysis tools across domains The agent interaction model and 

the resulting relationship typology can find application in a number of areas. For ex

ample, within a market domain, relationship analysis can be used by agents to analyse 

the relationships between other agents, identifying situations that may indicate that two 

agents are either competing, collaborating or colluding. Using such information we can 

then make inferences about the trustworthiness of different agents. For example, if two 

agents are related by virtue of the fact that they are selling in the same market (common 

Region of Influence) and they belong in the same organisation, we could assume that they 

share their Viewable Environment as well, since they belong to the same organisation, 

and may attempt to collude to enhance their standing within the market. This line of re

search has been taken up by Sabater and Ramchurn, building on existing work on trust 

and reputation [174,188]. 

Supporting service composition A topic of particular relevance in recent years has been the 

use of technologies to provide semantically-annotated descriptions of services to support 

service composition [205]. The combination of our relationship analysis techniques with 

such semantically-annotated services could provide an important tool to support develop

ment in this direction, since it could indicate some of the effects of composing different 

types of services offered by agents. 

Integration with existing agent development tools The integration of the agent construction 

model within existing agent development tools, such as JADE [21], could prove a rel

atively cost-effective means of providing direct access to the models presented in this 

thesis in the context of a wider infrastructure supporting the development of multi-agent 

systems. 

7.5 Conclusions 

Any advances in agent research must be done with the recognition that existing work has reached 

a certain level of maturity, and there is a wealth of alternative proposals available. By basing 
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our work on an established existing model and clearly identifying its limitations and needs for 

refinement in order to better deal with dynamic, heterogeneous computing environments we 

hope to have ensured the relevance of the work to the state-of-the-art. 

Agent-based development has an important role to play in shaping the way in which applications 

for distributed, heterogeneous environments are, and wiII be, developed and managed. However, 

for the paradigm to find wide application and become as mainstream as object-oriented develop

ment, we must ensure that our abstractions are presented in a clear manner, provide real utility 

to developers, and are related to practical implementation issues. In this thesis we have done just 

that, through the development of principled, reusable models for agent construction, in support 

of multi-agent systems. 
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A.1 Supporting Infrastructure for Individual Agents 

In order to gain a better understanding of the operation of agents within the demonstration 

application of Chapter 6, we describe here, in broad terms, the technical infrastructure in support 

of individual agents. 

Irrespective of its specific functionality within an application, every agent is assumed to operate 

within the overall technological framework illustrated in Figure A.I. At the lowest level, an 

agent is considered to function through the support of a specific operating system that provides 
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low-level access to the network capabilities of the device hosting the agent, processing power, 

memory, and so forth. Agents are developed in a specific programming language, according 

to the support available on the device. In our case, this is always Java, since we take advan

tage of Java 2 Micro Edition, which is supported by the widest range of mobile devices. In 

addition, agents may benefit from access to specific middleware technologies such as Jini [5] 

or JXTA [156] to facilitate the discovery of other services and the exchange of messages. As 

mentioned earlier, we abstract out such details, and assume very basic middleware support for 

the exchange of messages. I The agents are contained within an agent execution environment, 

which provides some administration capabilities that are not dealt with directly by the agent 

architecture, such as logging of actions and administration of the agent lifecycle. Finally, the 

agent capabilities are the ones that make up the actual agent architecture. In our case the agent 

execution environment, the infrastructure support capabilities and the agent capabilities are all 

modeled through actS MART and are supported by our implementation of actS MART in Java. 

Infrastructure support capabilities are mainly those that enable the agent to interact with other 

agents in the environment through the use of specific communication protocols such as Blue

tooth or 802.11 b. Once more we point out that the application is simulated so the existence of 

different protocols is simply represented by different types of sensors or actuators representing 

different modes of interacting with other agents. 

A.2 Broker Agent 

A.2.1 Structural Specification 

In the structural specification we provide a description of the components that make up the agent 

architecture, without referring to how the components interact together to provide the required 

behaviour for the agent. 

The broker architecture has two sensors, which accept different types of messages from agents. 

The SenJiceRegistration sensor is able to accept messages from agents wishing to register wanted 

or provider profiles. It produces INFORM statements that contain the profile to be registered. The 

incomingQueries sensor is able to accept messages relating to queries about existing provider 

profiles. It produces appropriate INFORM statements with this information. 

1 The reader interested in the specifics of appying the SMART model in the context of middleware such as Jini can 
refer to our previous work on the subject [6, 8]. 
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The infostores for the architecture simply maintain wanted and provider profiles. The Pro

videdServices infostore contains all the provider profiles currently registered with the broker. 

It can reply to REQUEST statements for specific types of provider profile and accept INFORM 

statements to update the list of provider profiles. The WantedServices infostore contains all the 

wanted profiles currently registered with the broker. It can reply to REQUEST statements for 

specific types of wanted profiles and accept INFORM statements to update the list of wanted 

profiles. 

The controllers manage the registration of profiles with the agent and match wanted to provider 

profiles. The RegistrationManager controller handles the maintenance and updating of reg

istered profiles. It contains the necessary logic for parsing agent profiles to determine their 

validity, as well as ensuring that agents are notified when their profiles can no longer remain 

registered with the broker. It can produce REQUEST messages for provider or wanted profiles; 

accept INFORM statements with profiles to register; and produce EXECUTE statements for mes

sages to be sent to registered agents. The QueryManager controller handles queries from agents. 

It contains the matching algorithm that is used to match wanted profiles against provider pro

files. A profile is matched against a query if every attribute, capability, goal, and motivation 

in the profile submitted by the querying agent is found in a registered profile. The first profile 

that matches is returned. This is of course a very basic matching algorithm but sufficient for the 

purposes of our demonstration application. The component can produce REQUEST messages 

for provider or wanted profiles; accept INFORM statements with queries; and produce EXECUTE 

statements with replies to queries. 

Finally, the actuators send messages to agents, informing them of either a match to their query 

or of the expiration of their registration. The RegistrationMessages actuator is used to send out 

messages relating to the administration of registrations of profiles by the broker. For example, 

an agent may be warned that its registration has expired and will be removed. It can accept 

EXECUTE statements with the message it should send to agents. The QueryReplies actuator is 

used to send out messages relating to replies to queries from agents. It can accept EXECUTE 

statements with the replies it should send to querying agents. 

A.2.2 Behavioural Specification 

The overall architecture of the broker is shown in Figure A.2. Messages for registering services 

arrive at the ServicesRegistration sensor, where they are parsed for syntactic validity and passed 
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FIGURE A.2: Broker architecture 

on to the RegistrationManager. The RegistrationManager queries the ProvidedServices infos

tore to ensure that registrations are not duplicated, and subsequently updates it appropriately. 

Messages relating to queries from other agents about registered services arrive at the Incoming

Queries sensor. They are then passed on to the QueryManager which, according to the query, 

attempts to match the wanted profile with the registered profiles. If no match is found, the 

request is stored in the WantedServices, which the QueryManager periodically checks against 

provider profiles to determine whether a match is available. If a match is found, a reply is sent 

to the requesting agent via the QueryReplies actuator. Both wanted and provider profiles are 

removed from the infostore once their registration time period expires. 

The execution sequence for this architecture combines both an event-driven and a sequential 

model. When a service registration or a query for a service arrives, it generates an event that 

causes a cycle of execution to commence. At the same time, the shell periodically causes first 

the RegistrationManager controller to execute so as to check that registrations have not expired, 

and second the QueryManager to check new provided services that may satisfy wanted services. 

A.3 Relationship Analysis Agents 

A.3.t Structural Specification 

The sensors of the RA agent simply allow it register agents and accept profiles or updates to 

profiles. The AgentRegistration sensor accepts agent profiles from agents registering with the 
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RA agent. It produces INFORM statements with the received profiles. The UpdateInfomzation 

sensor accepts profiles containing just the current attributes and goals of an agent. It produces 

INFORM statements with this information. 

The agent's infostores store the various types of information relating to information about the 

agents being analysed, domain information and regulation information. The RegionStore info

store maintains information about an agent's Viewable Environment and Region of Influence. 

It can reply to REQUEST statements to provide information, and accept INFORM statements to 

update information. The GoalStore infostore maintains information about the goals of an agent 

categorised along the lines of the goal typology. It can reply to REQUEST statements to pro

vide goal information about a specific agent, and it can accept INFORM statements to update 

the information stored. The DomainInfomwtion store maintains information that maps capabil

ities to the attributes they can influence or view in an environment. It can reply to REQUEST 

statements to provide information about a specific capability. Domain information is supplied 

at design-time, although more dynamic ways of updating and maintaining such information are 

possible. 

The controllers deal with relationship identification and analysis. The RegionIdentification com

ponent can analyse an agent profile in order to identify the set of attributes that form an agent's 

Viewable Environment and Region of Influence. It can accept INFORM statements with an agent 

profile and produce REQUEST statements for domain information relating to capabilities. It can 

produce INFORM statements with the sets of attributes that define the Viewable Environment and 

Region of Illfluellce for an agent, along with an identification of that agent. The GoalCategori

sation controller can analyse an agent profile containing goals of an agent and make use of 

information about that agent's Region of Influence and Viewable Environment in order to cate

gorise goals according to the goal typology of Chapter 5. It can accept INFORM statements with 

an agent profile containing information about current goals and attributes; produce REQUEST 

statements requesting information about the agent's Region of Injluence and Viewable Environ

ment; and produce INFORM statements with the goal categories and the identification of the 

agent in question. The RelationshipAnalyser compares the Viewable Environment and Region 

of Illfluence of an agent against those of other agents and produces the relationship table. It can 

produce REQUEST statements to request information about an agent's regions and produce IN

FORM statements containing the relationship table. The ConjlictAnalyser controller can identify 

conflicts between agents and accordingly identify whether any regulations apply to the situation. 

It makes use of the relationship table for the agent under analysis and any relevant goal infor-
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FIGURE A_3: Relationship analysis agent architecture 
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mation about the agent. The component can produce REQUEST statements for the relationship 

table, goal and regulation information; and, INFORM statements with the relevant regulations. 

The CooperationAnalyser uses the same types of information as the ConjlictAnalyser, but with 

the aim of identifying possibilities for cooperation. It produces the required REQUEST state

ments to get information about regulations and INFORM statements with the regulations that 

apply to the situation under consideration. Finally, the MotivationEvaluation controller evalu

ates the regulations to determine which would offer the greatest utility to the agent. It accepts 

INFORM statements with the relevant regulations and produces EXECUTE statements with the 

regulations to be sent to agents. 

The only actuator for the RA agent is the RegulationsNotification actuator that accepts EXECUTE 

statements and sends messages to agents for which relevant regulations have been identified. 

A.3.2 Behavioural Specification 

The links between components and the overall architecture are shown in Figure A.3. The exe

cution sequence for this agent is a combination of a sequential and an event-based model. Each 

component is called to execute whenever it receives a statement from another component. This 

means that the agent first begins operation when a profile arrives at the AgentRegistration sensor. 

This sensor then notifies the Regionldentification controller which in turn sends statements and 
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causes the activation of the other components it is connected to, and so on. The event-based 

execution sequence drives this architecture, since registrations arrive at irregular times and the 

agent might constantly cycle through execution sequence otherwise. In addition, at regular in

tervals the architecture cycles through an execution of the controllers (to which info stores may 

respond) to deal with any new information. 

A.4 User Agent Architecture 

A.4.1 Descriptive Specification 

Attributes 

The attributes describing the user agent represent features such as the name of the owner, the 

user agent's current location, the research interests of the owner, and so on. Now, it is necessary 

to make clear exactly how can attributes be represented at the implementation level so as to make 

clear the correspondence between the abstract notion of attributes in SMART and their technical 
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realisation. To this end, we adopt the approach provided by OWL [143] for describing concepts. 

In essence, OWL is an extension of RDF [85] to provide the capability to specify ontologies 

composed of taxonomies of classes and inference rules. 

Attributes in SMART are mapped to the notion of individuals in OWL, where an individual 

represents a describable thing in the domain we are interested in. For example, the attribute 

RonaldAshri is an individual. Individuals, can be related through properties, which are binary 

relations between individuals. Therefore we could say that the property hasResearchlnterest 

links the individual RonaldAshri to an individual AgentModels. Now, individuals can be grouped 

within classes which can state precisely the requirements for membership to a class. We could, 

for example, define a class OwnerName and indicate that RonaldAshri belongs to that class. 

Classes, therefore, enable us to define concepts which individuals can then instantiate. 

Furthermore, we can define the OwnerProfile class to have a property hasResearchInterest, 

which refers to the Researchlnterest class. An instantiation of these classes with specific in

dividuals, such as RonProfile-hasResearchlnterest-AgentModels would define an attribute as 

understood in SMART. 

All the classes used to define attributes and the relationships between them are illustrated in 

Figure AA. Note that we can also place restrictions on the cardinality of the attributes that can 

be referred to by a property. For example, in the case of OwnerProfile, the property hasName 

is restricted by the fact that one and only one name must exist for that attribute to be valid. If 

a cardinality is not defined, then any number of instances of an attribute could be defined and 

related through the property. Note that we use only a very limited set of the capabilities of OWL, 

since our aim is simply to illustrate that such a technology has an important role to play in aiding 

the specification of multi-agent systems and facilitating run-time operation. Below, we provide 

a short explanation of each attribute, along with some simplifying assumptions we make about 

how such information is treated within the context of the application. 

Affiliation The Affiliation attribute refers to the organisation, such as University of Southamp

ton, that the agent is affiliated with. 

Conference Registration Number The ConferenceRegistrationNumber attribute is an identi

fying number issued by the conference site at the moment that the user registers at the 

site. 

OwnerName The OwnerName is simply the name of the owner of the agent. 
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ResearchInterest The Researchlnterest attribute refers to the research interests of the owner of 

the agent. 

Resource The Resource attribute describes resources that are available through the agent. There 

are three types of resources in our case. The Link attribute represents URLs that a user 

may wish to make available to other users. The Paper attribute refers to publications that 

the agent can make directly available from the device it is operating. Finally, the Slides 

attribute refers to slides of presentations that the agent can make available. Clearly, all 

these attributes could be further elaborated to provide more information about the exact 

content of the resources. However, such a level of detail in not required for the purposes 

of our demonstration application. 

Location The Location attribute refers to the current location of the agent. Once more, we do 

not attempt to provide detailed information about the location of the agent. The value of 

the Location attribute changes as the user changes rooms within the conference site, as 

long as there are devices within the room that can provide the agent with its new location, 

and the agent itself is able to communicate with such devices. In the case where the 

location cannot be ascertained, the value of the attribute should simply be the name of the 

entire conference site, set upon registration with the conference. 

Time The Time attribute is simply a reference to a point in time providing the day, month, year 

and and time of day. 

Ownerldentification The Ownerldentification attribute is a composite attribute whose purpose 

is to identify the owner of the agent. The attribute has three properties: the hasAffilia

tion property refers to one Affiliation attribute; the hasName property refers to one Name 

attribute; and, the hasRegNumber property refers to one RegistrationNumber property. 

Presentation The Presentation attribute refers to a presentation that the owner may be giving 

during the conference. The attribute is composite and has the following properties: the 

refersToSlides property can be used to describe the slides that will be used at the presen

tation through the Slides attribute; the presentedBy property can be used to refer to the 

owner name through the OwnerNal71e attribute; the atTime property can provide the time 

of the presentation through the Time attribute; and, the Location property can be used to 

provide the location of the presentation through the Location attribute. 

OwnerProfile The OwnerProfile attribute is used to provide a description of the owner, includ-
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ing research interests and resources that the owner has on the device. It is a composite 

attribute with properties for the name of the owner, their affiliation, their research interests 

and resources. 

Regulations Finally, the Regulations attribute describes what the agent is allowed or not al

lowed to do with respect to interacting with other agents and services within the con

ference site. Each regulation has a set of mandatory goals and forbidden goals within a 

specific context. The hasContext simply refers to the location within which the regulation 

is applicable, since relationship analysis agents operate within specific locations. 

Capabilities 

The capabilities of the agent can broadly be divided into the discovery and access to physical 

devices and information services and the provision and access to information and resources 

from other agents. We avoid here a lengthy description since we have discussed these issues 

throughout Chapter 6 and will touch upon them later on. 

Goals 

The goals of the agent can also broadly be described as assisting the user in discovering and 

employing physical devices and information services, and handling the interaction with other 

user agents by exchanging information and resources. 

A.4.2 Structural Specification 

The components that make up the agent architecture for the user agent are shown in Figure A.S. 

The links between components are not drawn since they would overly complicate the figure, 

and components are grouped according to the functionality they collectively offer the agent. We 

avoid here a lengthy description of each individual component, but rather describe the broad 

functionality offered by sets of components as indicated by their divisions within squares in the 

figure. 

Sensors There are four sensors for the user agent: the Userlnput sensor transmits the informa

tion provided by the user; the WiFiDevicelncomingMessages sensor can accept messages 
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from devices using the 802.11 b wireless protocol; the BluetoothDevicelncomingMessages 

sensor accepts messages from Bluetooth devices; and the BluetoothDevicesDiscovery sen

sor handles and reports on the discovery of Bluetooth devices. 

Actuators The actuators of the user agent essentially mirror the sensors. The BluetoothDevice

OutgoingMessages actuator is used to send messages to Bluetooth devices, the WiFiDe

viceOutgoingMessages actuator is used for communication with 802.11b devices, while 

UserNotification actuator is used to send messages to the user through the device screen. 

Owner Components The owner components handle information about the owner and the input 

from the owner. The OwnerResources infostore stores resources such as papers, slides 

and links; The OwnerProfile infostore stores information about the owner such as their 

affiliation and research interes; the OwnerGoals infostore stores the user's goals based on 

the user input; and, finally, the UserlnputEvaluation controller evaluates input from the 

user and updates the relevant information stores, while the OwnerlnfoManager controller 
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manages the updating of the owner profile and owner goals. 

Situation Components The situation components manage information relating to the current 

context of the user agent, the agent profile, and the regulations that apply to that agent. 

The context is defined as simply the location of the agent, and the current time. The agent 

profile defines the information that can be sent to a middle agent to indicate the services 

offered by the agent. Finally, regulations indicate what goals are mandated and prohibited 

in a specific context. The RegulationsManager and ContextManager controllers update 

this information. 

Service Components The service components are dedicated to handling the interactions with 

either physical devices or information services: the DeviceEvaluation and InfoServiceE

valuation controllers evaluate descriptions of information services against the required 

devices; the DeviceRegister and InfoServiceRegister infostores store descriptions of ser

vices; and, finally, the DeviceManager and InfoServiceManager controllers handle inter

actions with the registered services. 

Delegate Components The delegate components simply store profiles provided by other user 

agents. The DelegatelnfoManager is provided with such profiles and updates the Dele

gateProfiles infostore. 

Goal Management The goal management components coordinate the execution of other com

ponents based on the agent's current goals. They also control interaction with middle 

agents when use of other agents is required. The AgentGoals infostore contains the agent's 

current goals, while the GoalManager controller uses information on current goals and 

sends appropriate statements to other components in order to achieve those goals. The 

MiddleAgentManager controller creates appropriate messages to request information on 

services from the middle agent. 

MessageManager Finally, the MessageManager controller handles the routing of incoming 

messages to appropriate components within the architecture. It uses a set of basic rules 

that define which controller should first handle a message based on where the message is 

coming from. 
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A.4.3 Behavioural Specification 

The execution sequence of the agent is a combination of a periodic execution of certain com

ponents, along with an event-based execution of components. The event-based behaviour is 

mainly used to handle interaction that is initiated by other agents or the user. For example, a 

user can enter information at any time, which may cause the owner profile, resources or owner 

goals to be updated. Similarly, Bluetooth devices may be discovered at any time as the agent 

changes locations, and any relevant information is registered at the DeviceRegister. In addition, 

all infostores execute as soon as they receive a statement. 

The GoalManager periodically executes to check whether there are any goals within the OWller

Goals infostore. If there are, then they are retrieved and placed within the AgentGoals infostore, 

indicating that they are now active goals that the agent will attempt to achieve. If the goal re

lates to the use of a physical device or an information service, the GoalManager queries the 

DeviceRegister or InfoServiceRegister in order to identify whether the agent has access to a de

vice or service able to satisfy the goal. If such a device does not exist, then the GoalManager 

makes use of the MiddleAgentManager to submit a query for the required service. Once a re

ply is received, it is directed, through the MessageManager to the middle agent, which informs 

the DeviceEvaluation controller, in turn updating the DeviceRegister. When the Goalmanager 

executes once more, it identifies whether an appropriate device has been found and instructs the 

DeviceManager to interact with the device requesting the appropriate action to be taken. In the 

case of information services, the replies from the queries are then sent through the UserNotifi

cation component to the user's screen. 

If the goal relates to collecting information about specific types of users, such as all users with 

the same interests as the owner, then the DelegatelnfoManager component and the MiddleAgent

Manager are used to gain that information. 

Interaction with other user agents can take place when a user agent directly contacts another user 

agent, or whenever a user agent is notified about other user agents. The OwnerlnfoManager con

troller handles request for information about the agent's owner, while the DelegatelnfoManager 

controller handles messages providing information about other agents. 
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