
UNIVERSITY OF SOUTHAMPTON

Models for Agent-Based Infrastructures

by
Ronald Ashri

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
School of Electronics and Computer Science

September 2004

ii

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

MODELS FOR AGENT-BASED INFRASTRUCTURES

by Ronald Ashri

Computing environments are undergoing a drastic transformation with the introduction of di
verse devices with varying capabilities into networked environments and infrastructure that en
ables the exchange of information and the collaboration between devices in a number of modes.
While it is becoming easier to connect practically any computing device through a network and
embed computing devices unobtrusively in a wide range of real-world artifacts, it is becoming
more difficult to develop software systems that can deal with the inherent dynamics and complex
interactions of the resulting distributed computing environments.

Agent-based systems have a key role to play in the effort to provide and support such appli
cations, since agents embody several of the required characteristics for effective and robust
operation in dynamic and heterogenous computing environments. However, there are a num
ber of shortcomings relating to the use of the agent approach to application development. In
particular, in this thesis we deal with the lack of clarity in existing agent models and address
the need for models that can directly support practical application development. These are
widely-accepted shortcomings that have been identified by a number of researchers in recent
years [8, 32, 136, 189,227,231]. This thesis addresses these shortcomings with relation to the
basic infrastructural concerns that are common to practically all significant agent-based applica
tions in dynamic, heterogeneous environments. We develop principled and reusable models in
support of agent-based systems construction, dealing both within individual agent construction
and support for relationship identification and characterisation.

In this thesis we make three main contributions. Firstly, through an abstract agent model we
enable the characterisation of the wide range of agent types that can exist within a heterogenous
environment. This facilitates development by ensuring that the underlying theory adequately
models the actual application environment and provides indications as to where designers must
focus their efforts. Secondly, we develop a model for agent construction which links the ab
stract agent model to practical application concerns and enables the specification of a range of
agent architectures while also facilitating their run-time reconfiguration. This bridges the gap
between abstract models and practical implementation, allows developers to choose the type of
agent architecture that best suits the application at hand, and provide the flexibility for adapting
architectures to changing application needs. Finally, we develop a model of agent interaction
and use it to comprehensively identify all the possible relationships between two agents, as well
as to relate agent goals to the abilities of agents to achieve those goals given their individual
capabilities. This enables the effective identification and characterisation of agent relationships
in dynamic environments, so as to guide the choice of appropriate relationship management
mechanisms.

Contents

Acknowledgements

1 Introduction

1.1 The Need for Agent-Based Computing.

1.2 Emerging Computing Environments . .

1.2.1 Work Environments

1.2.2 Social and Home Environments

1.2.3 Mobile Users ..

1.3 Enabling Infrastructures.

1.4 Agent-Based Computing

1.4.1 Challenges for Agent-Based Development.

1.4.2 New Challenges

1.5 Research Aims ..

1.6 Research Approach

1.7 Thesis Overview

2 Models for Agent Infrastructures
2.1 Introduction..........

2.2 Review Schema

2.3 Intra-Agent Issues: Models of agents.

2.3.1 Russel and Norvig .. .

2.3.2 SMART

2.3.3 Belief-Desire-Intention ..

Subsumption Architecture

Hybrid Architectures

Sabater et al.

DESIRE

2.3.4

2.3.5

2.3.6

2.3.7

2.3.8 Agent Architectures in Toolkits

2.3.9 Discussion

2.4 Inter-Agent Issues: Models of Agent Interaction.

2.4.1 SMART

2.4.2 Social Power Theory

2.4.3 TuCSoN Coordination Model

2.4.4 Agent Methodologies .

2.4.5 Discussion

2.4.6 Agent Discovery

2.5 Organisational Issues: Regulating Agent Societies .

III

ix

1

1

2

3
4
5

5

8

9

10

11

14

14

17

17

18

20
21

22

23

27

28

30

30

31

40
42

42

43

44
44
47

48

50

IV

2.5.1 Distributed Systems Management Policies.

2.5.2 Norms

2.5.3 Electronic Institutions

2.5.4 Discussion

2.6 Conclusions

3 SMART

3.1 Introduction

3.2 SMART, actS MART, and SMART+ .

3.3 The Z Specification Language

3.3.1 Z notation

3.4 SMART Agents

3.4.1 Foundational Concepts

3.4.2 Neutral Objects and Server Agents.

3.4.3 The Utility of the SMART Agent Models .

3.5 Refining SMART: Types for construction

3.5.1 Agenthood ..

3.5.2 Passive Agents

3.5.3 Active Agents

3.5.4 Self-Direction and Autonomy

3.6 Relationships: SMART to SMART+ ..

3.6.1 SMART Relationships

3.6.2 Refining SMART Relationships .

3.7 Conclusions

4 acts MART : Agent Construction Model
4.1 Introduction......................

4.2 Design Approach

4.2.1 Desiderata for an Agent Construction Model

4.2.2 Description, Structure and Behaviour

4.2.3 Component-Based Construction ..

4.2.4 From SMART to Applications ...

4.3 Overview of the Agent Construction Model

4.4 Components............

4.5

4.4.1 Generic Component Types

4.4.2 Component Statements .

4.4.3

Shell .

4.5.1

Component Operation

Links

4.5.2 Execution Sequence

4.5.3 Agent Description .

4.5.4 Agent Design

4.6 Linking actS MART to SMART.

4.7 Example Architecture: Auction Agent

4.8 Example Architectures: Negotiating Agents

4.8.1 Negotiating Agents .

4.8.2 Negotiation protocol

CONTENTS

50
51

52

52

53

55

55
57
59
60

63

63

66

67

69
69
71

71

73

75
76

79

79

81
81

83
83
84

86
87

88

89
90
91

93

95
96
97

97

98
98

101

102

102

103

CONTENTS

4.8.3 Basic Negotiating Agent

4.8.4 Argumentative Negotiating Agent

4.8.5 Discussion

4.9 Conclusions.........

4.9.1 Related Work

4.9.2 Discussion and Contributions

5 SMART+: Relationship Identification and Characterisation
5.1 Introduction

5.2 Model of Agent Interaction

5.2.1 Agent Perception and Action

5.2.2 Viewable Environment and Region of Influence

5.2.3 Generic Relationships Identification Examples

5.2.4 Basic Assumptions

5.3 Relationship Typology

5.3.1 Mutually Viewable Environment.

5.3.2 Influenced Viewable Environment

5.3.3 Mutual Influence

5.4 Goal Typology

5.4.1 Query and Achievement Goals.

5.4.2 Goal Regions

5.4.3 Example Analysis

5.5 Describing Interfering Relationships ..

5.5.1 Effect ofInfluence on Actions and Goals

5.6 Conclusions

5.6.1 Related Work

5.6.2 Discussion

6 Applying acts MART, SMART and SMART+

6.1 Introduction.....

6.2 Middle Agents

6.2.1 Agent Profile

6.2.2 Broker Architecture

6.2.3 Discussion

6.3 Relationship Analysis Agent

6.3.1 Identifying Agent Relationships

6.3.2 Managing Relationships through Regulations

6.3.3 Relationship Analysis Agent Architecture

6.4 Middle Agents and Relationship Analysis Agents

6.5 Application Overview. . .

6.6 Application Entities

6.7 The conference user agent

6.7.1 Managing the user agent architecture

6.8 Using Relationship Analysis Agents

6.9 Agent Construction

6.9.1 actS MART Development Environment

6.9.2 Attributes

v

104

111

113

114

114

116

119
119

122

123

125

127

129

129

131

132

135

139

139

140

141

144

146

149

149

151

153
153

156

157

159

160

161

161

163

164

167

168

169

172

173

175

176

178

179

VI

6.9.3 Components
6.9.4 Statements
6.9.5 Links
6.9.6 Shell

6.10 Conclusions

7 Conclusions
7.1 Introducti on
7.2 Summary

7.2.1 Refining the Abstract Agent Model
7.2.2 actS MART: Agent Construction Model.
7.2.3 SMART+: Relationship Identification and Characterisation
7.2.4 Implementation and Evaluation

7.3 Contributions
7.3.1 Abstract Agent Model
7.3.2 Agent Construction Model .. .
7.3.3 Description, Structure and Behaviour
7.3.4 Linking Theory to Practice.
7.3.5 Model of agent interaction
7.3.6 Typology of Relationships
7.3.7 Typology of Goals

7.4 Limits and Further Work
7.4.1 Limits
7.4.2 Further Work

7.5 Conclusions

A Agent Architectures for the Demonstration Application
A.1 Supporting Infrastructure for Individual Agents
A.2 Broker Agent

A.2.1 Structural Specification . .
A.2.2 Behavioural Specification

A.3 Relationship Analysis Agents ...
A.3.1 Structural Specification ..
A.3.2 Behavioural Specification

A.4 User Agent Architecture
A.4.1 Descriptive Specification .
A.4.2 Structural Specification . .
A.4.3 Behavioural Specification

Bibliography

CONTENTS

180
181
182
182

183

185

185
187
188
189
189
190
191
191
192

193
193
193
194
194
195
195
196
197

199
199
200
200
201
202
202
204

205
205
208
211

212

List of Figures

1.1 Required capabilities for enabling infrastructures

2.1 Intra-agent, inter-agent and organisational levels .

2.2 Schema of agent models reviewed

2.3 The entity hierarchy

2.4 The IRMA agent architecture. (Based on [33])

2.5 The PRS agent architecture

2.6 The Subsumption architecture

2.7 Generic BDI agent in DESIRE (taken from [36])

2.8 Generic ZEUS agent architecture.

2.9 Retsina agent architecture. .

2.10 IMPACT agent architecture.

2.11 Jade agent components

3.1 The relationships between actS MART, SMART, SMART+ .

3.2 Summary of Z notation (taken from [81])

3.3 The entity hierarchy .

3.4 Passive agent

3.5 Active agent

3.6 Agent characteristics

3.7 Goal adoption by neutral objects, server agents and autonomous agents

4.1 Distinguishing between description, structure and behaviour

4.2 From SMART to applications

4.3 Agent construction model overview

4.4 Example Agent Architecture

4.5 Component Lifecycle

4.6 Agent shell

4.7 Entity hierarchy integrating structural and behavioural elements

4.8 Example auction agent architecture

4.9 Initial specification of basic negotiation agent

4.10 Basic negotiating agent architecture

4.11 Argumentation-based negotiation agent architecture .

5.1 Viewable Environment and Region of Influence ..

5.2 Region of Influence affects Viewable Environment

5.3 Regions of Influence overlap

5.4 All possible relationships between two agents

5.5 Mutually Viewable Environment .

vii

7

19

21

22

24

25

27

31

32

34

36

38

58
62

67
72

72

74

77

86

87

88
90

94

95
99

101

105

107

112

126

127

128

130

131

Vlll

5.6 Observable and Invisible actions

5.7 Mutually Influenced Actions
5.8 Mutual Influence and Observable Actions
5.9 Types of goals

6.1 Broker specification .

6.2 Broker architecture .

6.3 Relationship table for a single agent

6.4 Relationship analysis agent specification

6.5 Relationship analysis agent architecture

6.6 Entities within the conference application
6.7 User Agent Architecture

6.8 Aiding agent to achieve query goal
6.9 actS MART implementation
6.10 Attribute implementation

6.11 Component Activity
6.12 actS MART implementation class overview

7.1 Overview

A.l Technological framework for conference agents.
A.2 Broker architecture

A.3 Relationship analysis agent architecture
A.4 actS MART Implementation
A.5 User Agent Architecture

LIST OF FIGURES

132
135
137
140

159

160
163
165

165

170
173

176
177

179

180
183

187

199
202
204
205
209

Acknowledgements

Writing a PhD is an unforgivably solitary task, which makes the people that supported me
throughout the period all the more important.

Firstly, a big thanks to Michael Luck who more than being an excellent supervisor throughout
the process, is a true mentor and friend. His dedication to his work and, more importantly, to
the people he works with sets an example that I can only hope to be able to live up to.

My many thanks also to Mark d'Inverno - when things just seemed to stall he was always there
to plant the seed for another idea.

The work in this thesis would not have been possible without a grant from BT Exact - my thanks
to Simon Thompson for handling the relationship with BT Exact.

A big salute, salud, a votre sante, cheers, prosit, l' chaim, jisehatak and eis igeian to the many
friends at Southampton and all over the world which I made during the years of the PhD: Steve,
Serena, Claudia, Fabiola, Iyad, Gopal, Raj, Jordi, Vijay, Martina, Georgia, Cora and Alejandro,
Marco and Fariba, Grit, Jorge, Arturo, Roxana, Darren, Talal and Shaza, Craig, Colm. My
thanks also to Alex, Christos, Nikolas, Olivia, Richard, Sergio, Lorenzo, Demetris, my brother
Daniel, and to the ever so wonderful Carla and Titta (and a ginger dog named Lilly, who sat for
countless hours next to me wondering why I was staring at a screen instead of taking her out for
walk).

Finally, my love and thanks to Katia. No words can express how important her support has been.
Having shared the journey of both working for a PhD we decided somewhere along the way to
share the journey of the rest of our lives.

ix

To my parents, Andreas and Photini.

x

Chapter 1

Introduction

"There is nothing like a dream to create the future."

Victor Hugo (1802-1885); writer.

1.1 The Need for Agent-Based Computing

Continual advances in basic networking technologies, processing capabilities and device minia

turisation have, over recent years, allowed computing devices to pervade every aspect of society.

Through unifying infrastructures such as the Internet, and the establishment of standards for ac

cess to, and presentation of, information such as HTTP [93], HTML [l08] and XML [34],

devices as diverse as mobile phones, personal digital assistants (PDAs) and desktop computers

can be interconnected to share information and services. The combination of these hardware and

software advances has created an environment in which the ability to communicate and access

online services using networked computing devices, at any time and irrespective of geographic

location, is fast being realised.

As a result, new opportunities for innovative applications are being created, but new challenges

are also being posed relating to the appropriate development of tools that will enable us to

best exploit the available technology. Because of the increasing drive for creating new kinds

of applications for users, combining the underlying networking and processing capabilities

with powerful software tools, concerns with issues of development are becoming correspond

ingly important. Examples of the kinds of applications envisaged are dynamic online environ

ments for providing e-services to users [187], the formation of virtual organisations through the

dynamically-determined cooperation of existing organisations [159], the use of mobile devices

2 Chapter 1 Introduction

interacting with enterprise systems [149], more powerful and flexible mechanisms for scientific

computation [68], and so on.

All these applications share the need to support interaction between disparate components that

typically operate independently of each other, in dynamic and heterogeneous environments.

However, in order to facilitate such interactions, developers must address several issues such as

the great variety in computing device capabilities, the range of operating systems and network

protocols, users moving and accessing services through changing geographical locations while

dealing with a number of different organisational domains, and the possible loss of power and

network connectivity for mobile devices.

In response to these challenges, agent-based computing has been suggested as a paradigm that

can provide the conceptual grounding to enable application developers to effectively deal with

the problems they raise [99, 120, 138, 140]. The basic concept of agents capable of individual,

independent action, working towards their design goals, while at the same time able to interact

with other agents through automated means in order to resolve issues relevant to individual or

common goals, represents an intuitive and natural starting point for solutions. However, current

work on agent-based computing has several shortcomings relating both to its foundations and

to its use in the design of applications. This thesis aims to address some of these shortcomings

by providing principled and reusable models for supporting the development and analysis of

agent systems, focusing on the basic issues of individual agent construction and support for

cooperation between agents.

Before providing a more detailed description of our aims, we briefly examine the various tech

nological changes, and the new demands from users, that have driven the move towards adopt

ing an agent perspective in developing applications. Subsequently, we present arguments for

the suitability of the agent paradigm and discuss its advantages and limitations. Based on this

discussion, we introduce our aims and then, finally, the main contributions are presented. We

conclude with an overview of the rest of the thesis.

1.2 Emerging Computing Environments

A defining characteristic of computing environments of the past ten years has been the level of

interconnectedness between computers. More recent developments have broadened these char

acteristics to include the diversification of computing devices from powerful workstations to

Chapter 1 Introduction 3

mobile devices and embedded devices, and the improvement of wireless communications. Not

only are we now able to interconnect computing devices, but we are able to do so with un

precedented flexibility. In this section, we examine how these developments affect the different

spaces in which we as humans operate, and the challenges they place on application developers

attempting to make the best use of these emerging computing environments. Throughout the

discussion, we provide examples of suggested agent solutions, illustrating the suitability of the

approach to these problems.

1.2.1 Work Environments

Large organisations, in both the private and public sector, have, predictably, been the first to build

applications that take advantage of network technologies in an attempt to integrate their informa

tion processing systems. However, their use of computers over a relatively large number of years

has resulted in an unavoidable reliance on older (legacy) systems which, for a number of reasons,

cannot simply be replaced by new ones, but must be integrated into existing structures [39]. This

integration of legacy systems with new infrastructure is one of the classic problems for which

an agent-based approach has been suggested as an appropriate solution [100, 123].

Furthermore, the proliferation of desktop computers created the possibility, and subsequently

the need, to network these computers in order to improve access to information and collabo

ration between individuals, in turn creating three basic requirements. Firstly, such networks

need to be supported and administered in the face of increasing complexity and heterogeneity.

Secondly, users require secure access to a number of different information sources and appli

cations. Finally, the users of these systems also require specific applications to support more

direct modes of collaboration across networked computers that reflect the more global structure

of organisations, with resources dispersed across a number of different locations and a need to

access them at any time. This not only adds a new level of heterogeneity to the system but

also challenges traditionally held ideas about software engineering for distributed systems. De

velopers can no longer abstract out location, reliability and bandwidth issues, since networks

can no longer be administered as if they were a reliable, homogeneous collection of resources.

Such challenges provide good application areas for illustrating how the agent paradigm can be

used to aid in complex information management tasks and a number of agent-based solutions

demonstrate this (e.g. [43,51,74, 167,211,226]). All these examples take advantage of the

benefits of decentralised and loosely coupled systems, which can deal with changing operating

4 Chapter 1 Introduction

conditions.

Finally, calls for enabling a more decentralised, team-based mode of operation between large,

global organisations over the Internet are increasing [72, 147]. These types of organisations

add yet another challenge to system design, since we now need to enable and control collabo

ration between domains that are likely to have very different ways of describing information as

well as different administration policies. While basic networking capabilities can aid in form

ing such strategic collaborations between organisations [97], many have suggested that effective

solutions can only come about through a significant shift from traditional object-oriented tech

niques for building distributed systems to the inclusion of artificial intelligence and agent-based

approaches [1, 158, 183] that incorporate organisational and societal notions to regulate the

interactions between the different parts of the organisation.

1.2.2 Social and Home Environments

Outside a purely commercial context, the Internet has enabled the creation of numerous online

communities that share information and collaborate on issues of common interest, ranging from

the development of open-source software to political and social movements. At home, we have

managed to take advantage of the Internet through personal computers which, typically, use the

telephone line to provide a connection. Broadband services that facilitate the flow of richer types

of media are also, increasingly, entering homes.

In addition, embedded devices are becoming networked-enabled I ,providing a new kind of con

nection to the Internet through means that are less obvious. New models of common domestic

devices, such as the washing machine, the refrigerator and the television are being marketed

as intelligent devices that can send information about their status to the manufacturer for main

tenance, or can allow us to control them remotely. The whole concept of the space in which

we live is being reshaped into the notion of an intelligent or ambient environment in which ev

ery parameter, from the temperature to the decoration on walls, can be dynamically fine-tuned

to suit our wishes. More significantly, we can also create intelligent environments that can

provide assistance when it is required for health reasons through the dynamic interactions of

devices that monitor the vital statistics of a patient, such as heart rate and blood pressure. In

this context, agent-based approaches have been used to create a variety of such smart home

lLarge consumer product manufacturers have already stated that their policy is to network-enable every device
they produce as soon as possible.(Red Herring, March 1st, 2001)

Chapter 1 Introduction 5

services [110, 112, 180], since agents are well suited to acting as abstractions for the various

devices in a home and managing their interactions with humans and other services outside the

home.

At the societal level, the integration of networking technologies into our homes could lead to

dramatic changes in the provision of public services and the modalities of participation in pol

itics. Already, there is work being done on enabling voting in official elections to take place

through mobile phones or the Internet [115], while the debate on the wider impact of the Inter

net on the way societies govern themselves is just beginning [46, 224]. In any case, it is clear

that agent technologies will have a significant role to play in the development of applications at

this level, as evidenced by some initial efforts [142].

1.2.3 Mobile Users

The spread, and rise in influence, of wireless mobile devices enables us to maintain connections

to other networks while on the move. This capability is beginning to have a profound impact

on the concept of the work-space, since geographical location is losing importance while the

virtual space is becoming more and more significant. Workers are increasingly tempted and,

sometimes, even encouraged, to abandon the daily commute to the office in favour of a virtual

connection. However, as mobile users change geographical locations, they very often also have

to change service providers for access to online services, raising further problems of interoper

ability and security. Significant challenges are raised here in terms of accommodating the free

flow of information and devices between different administration domains. In these scenarios,

the combination of intelligent agents and techniques from mobile agent research are providing

effective solutions [19, 111, 169, 192].

1.3 Enabling Infrastructures

As should be apparent from the discussion above, the overarching feature of this changing land

scape of networked computing environments is that of heterogeneous networks of devices and

users in which communication and collaboration takes place at many different levels, and infor

mation and services need to be available in a number of different modes to satisfy user needs.

It is also clear that certain issues, such as the support of mobile users, collaboration between

6 Chapter 1 Introduction

organisations, and providing customer services over the Internet, are problems on a scale un

precedented in software engineering. They require global structures and the cooperation of a

number of service providers in order to function. In turn, this requires distributed systems in

which the communication and coordination between the disparate components is able to operate

over, and adapt to, changing needs and changing resources. At the same time, these components

require some level of individual control to be able to adapt to changes when reliable centralised

control can no longer be taken for granted, or when it cannot be as effective as decentralised

control.

To develop these new types of systems, appropriate paradigms are required that will embrace

the challenges set and deal with them directly. The scale and diversity of the challenges means

that any paradigm needs to embrace a variety of different techniques in order to provide the

appropriate set of tools for application development. Note that we do not aim to tackle all of

these issues in the thesis but we discuss the relationships between them here so as to motivate

the need for agent-based computing as the underlying paradigm that can provide a conceptual

underpinning for applications that touch on all of these issues. We will discuss later on in the

chapter which are the precise issues that we aim to tackle within the context of agent-based

computing.

At the most basic level, we must be able to construct dynamic networks that can handle con

tinuous changes in the number and types of devices available. Secondly, we need to deal with

mobility, both of users and possibly of code. At the same time mobility in part, also creates

the need for dynamic networking since the introduction or removal of devices inevitably causes

changes to the configuration of a network.Finally, we require intelligent applications that are

able to react to change and undertake tasks with a certain degree of independence from human

guidance. These three basic issues are currently tackled in relative isolation, as research areas in

their own right. However, the envisioned applications require all of them to operate in unison.

We illustrate this in Figure 1.1, in which the Venn diagram illustrates the location of origin and

the relationships between them.2 The overlaps between the issues of intelligence, mobility and

dynamic networking indicate that there are sub-fields that are common to different areas, while

the unison of all three can provide the required enabling infrastructure. A description of each

follows .

• Dynamic networking refers to technologies that allow the dynamic creation of communi-

2We note, however, that it is, of course, impossible to arrive at an organisation that is not contentious, and merely
seek to indicate the diverse contribution to this area,

Chapter 1 Introduction

INTELLIGENCE

reasoning
negotiation
argumentation
norms
trust
ontologies

interaction
protocols

resource control
state capture
code mobility
device mobility

MOBILITY

DYNAMIC
NETWORKING

reflection
discovery
fau It-tolerance
leasing

FIGURE 1.1: Required capabilities for enabling infrastructures

7

ties of networked devices. Since we need to deal with environments in which devices and

users may come and go at any time, it is essential first to provide mechanisms that allow

devices to join network communities automatically, and second to develop techniques to

administer their access to other devices within that community .

• Mobility refers both to code and to user mobility. Code mobility aims to improve resource

utilisation by moving code closer to the information it must process. Device mobility,

enabled by wireless network technologies, allows users to access network resources while

on the move. Although certain aspects of the problem are different, they share in common

the need to address access control, authentication, security and privacy .

• Intelligence refers to attempts to automate complex processes. In this respect, providing

mechanisms for programs to reason about their environment, and negotiate with other

parts of the system at a higher semantic level, is paramount if applications are to be able

to adjust to changes and pursue tasks without guidance by users or detailed control by

network administrators.

A number of technologies have been developed to address some of these issues, especially

8 Chapter 1 Introduction

in relationship to dynamic networking and mobility. They range from new internet protocols

(IPv6 [70], IPsec [131]), technologies enabling dynamic networks (Jini [5], UPnP [64]) and

dynamic service discovery (Web Services [220], UDDI [23]) to higher-level standardisation

efforts (RDF [85], Semantic Web [25], OWL-S [4]). Combined, these technologies can form

a formidable toolkit, providing many of the pieces required for creating adaptive distributed

systems.

At the technological level, therefore, some degree of integration has been achieved (although

clearly more is needed). At the conceptual level, however, the issues relevant to dynamic net

working, mobility and intelligence draw on diverse and distinct areas of research and develop

ment, and some overarching framework is necessary. For developers, this conceptual framework

can make explicit the interconnections between the technologies described above. This is im

portant, for without it there is likely to be a redundancy of approach, with technologies and

applications in one subfield being reproduced (in very different terms, and with different solu

tions) in another. In the worst case, this can also lead to poorly-designed systems that are then

hard to maintain and upgrade.

In our view, agent-based computing is well suited to provide this conceptual grounding. In the

next section we examine the argument for its suitability and identify some of the challenges, both

in general terms as well as with specific relevance to heterogeneous computing environments.

1.4 Agent-Based Computing

In Section 1.2, we mentioned several examples of agent-based applications that have already

been developed in an attempt to tackle the problems posed by the emerging computing environ

ments. In part, this is proof of the appeal of the paradigm as a basis for systems involving the full

range of concepts described in Figure 1.1. As Jennings [120] argues, agent-based approaches

offer several qualitative advantages over conventional approaches for dealing with complex sys

tems.3 The main abstraction offered by this paradigm is that of an agent as an encapsulated

computer system, situated in an environment and capable of independent problem-solving ac

tion [120]. It is largely agreed that the predominant distinguishing characteristics of intelligent

agents are autonomy (agents having some form of control over their actions), social ability (the

ability to interact with other agents or humans), pro-activity (goal-directed behaviour) and reac-

3Nevertheless, Jennings also acknowledges that there is no quantitative data to back the claim.

Chapter 1 Introduction 9

tivity (the ability to sense and react to the environment) [232]. Large, distributed systems can

then be decomposed in terms of interacting agents, leading to multi-agent systems. The aim is

to make as few assumptions as possible about the state of the environment in which agents will

operate, and enable agents to dynamically interact with other agents as needs arise. As such, the

organisation and relationships between individual components of the system can much better

reflect the true nature of dynamic, heterogeneous environments, and are thus better able to cope

in them.

Despite its apparent suitability and limited adoption, agent-based computing has yet to mature

as a mainstream paradigm on a par with object-oriented computing, which is now almost uni

versally accepted as the de-facto paradigm for software development. The reasons for this are

multi-faceted, ranging from issues directly related to the maturity of the technology to issues

relating to the difficulty of organisations changing their established development processes. In

the next subsection we discuss some of the general challenges facing agent researchers as they

have been identified in the relevant literature.

1.4.1 Challenges for Agent-Based Development

A central problem for agent development is the lack of clarity in defining the exact relationship

between agent systems and other software paradigms, most importantly object-oriented develop

ment [231]. This makes it harder for developers to understand exactly what agent development

brings to their application development toolbox that could not already be achieved through a

purely object-oriented approach. Coupled to this problem is the lack of a well-defined agent

methodology. Although there are a number of methodologies available [138], none have man

aged to be adopted in a convincing fashion by industry. The two issues are interrelated because,

for a convincing methodology, and a satisfying account of the difference between agent-based

development and other approaches, there should be some agreement on the basic building blocks

of agent development [231]. Sabater et al [189] and Lind [136] also identify this as a problem

and argue that more conceptual frameworks are required that directly support the practical de

velopment of agent systems.

Wooldridge and Ciancarini argue that this lack of consensus may be further complicated by the

use ofUML [185] as a modelling language that was intended for object-oriented systems. Inter

estingly, recent developments within the agent community related to the FIPA standards body4,

4http://www.fipa.org/

10 Chapter 1 Introduction

have led to more work on the use of UML for the design of agent systems5, while related work

is examining a variety of alternative notations6 as well as meta-modelling notations 7 • However,

such work is in its early stages and there is stiII a lively debate about the suitability of any single

approach.

Both from the above observations and from similar observations of Bradshaw et al. [32] and,

more recently, Winikoff et al. [227], it appears that one of the key problems is a lack of clarity

relating to how basic concepts are understood and realised in practical agent systems, through

the development process and in the systems themselves. By basic concepts, we mean the con

cepts that underpin all agent systems, such as how agents and the relationships between them

are modelled at an abstract level. Such models are necessary for understanding the relationships

between agents and objects, for understanding the underlying principles of agent-based comput

ing, for providing methodologies and routes to implementation, and for offering well-founded

development toolkits.

Although there are several examples of agent-based applications, and several underlying models

for use in agent systems, there is a general lack of connection between the two, since applica

tions are typically developed arbitrarily, providing mostly instance-specific knowledge. Without

such links it becomes difficult to establish reusable models of agent systems, since there is no

common foundation. Crucially, reusable models can act as a strong point of reference for the

wider range of agent research, allowing developments in areas such as negotiation, coordination

and intelligent reasoning to be built on top of them.

1.4.2 New Challenges

In addition to the problems described above, there is also a set of challenges relating to the devel

opment of agent-based systems in heterogeneous environments. These challenges are of a more

practical nature, since they deal with issues of direct concern to any application development

effort in such environments, irrespective of whether it adopts an agent approach.

Dealing with such practical challenges is one of the key motivating principles of our work. In

development environments in which the culture of rapid application development is overpower

ing, abstract models are often seen as a hindering rather than facilitating influence. Thus, while

5http://www.auml.org/
6http://www.pa.icar.cnr.itlcossentino/FIPAmeth/
7http://www.fipa.org/activities/modeling.html

Chapter 1 Introduction 11

we do propose such abstract models for agent systems, we recognise that we must also provide a

clear path from the models to implementation in a coherent and structured fashion. In particular,

we aim to develop models that address the following issues, which we consider to be central in

this context.

• The wide variety of application domains, and the heterogeneity of operating platforms

within any single application, creates the need for constructing a variety of different types

of agents, each reflecting the particular application needs and operating environment con

straints. In order to deal with this variety, application developers are forced to adopt

several approaches at the same time. For example, integrating agent development for both

mobile and desktop devices is not currently supported at the conceptual level, even though

it is technologically feasible. Mobile devices are not able to support continuous operation,

and have limited computational power, which makes the ability to save state information

on the device, for later use to resume operation, a challenge. The design of agents for

such devices must deal directly with such challenges.

• Dynamic environments and changing user demands create a need for applications to be

able to easily adapt. This refers both to the need for reconfiguring individual agents and to

the manner in which a multi-system as a whole operates. The ability to reconfigure agents

at run-time should not remain just a possibility at an implementation level, but should also

be supported at a conceptual level.

• The large number of devices and their diverse capabilities will inevitably lead to several

ways in which agents could cooperate to solve common problems as well as to several

areas where conflicts may occur as each agent attempts to achieve their own goals. The

challenging aspect is effectively identifying such opportunities or conflicts as the system

develops, and applying management to ensure that conflicts are avoided or opportunities

for cooperation are exploited.

1.5 Research Aims

The shortcomings described above cover a wide range of issues, from the construction of in

dividual agents to the way in which relationships between agents are modeled and understood.

The unifying thread between them is that they can be characterised as issues relating to the in

frastructure, i.e. the basic building blocks, required to develop multi-agent systems. By this we

12 Chapter 1 Introduction

mean that they are not problems that occur only within a specific application, but are weaknesses

inherent in many existing models of multi-agent systems that are developed in ad hoc ways. We

argue that future development of agent systems can only progress the state-of-the-art if it builds

on current work and is supported by a technical infrastructure that corresponds to principled

theoretical models (or conceptual infrastructure). These theoretical models should provide the

necessary abstractions to support agent-based systems development, as weI1 as explicating the

relationships between models of individual agents and models of interaction between agents.

Such conceptual infrastructure should be based on two overarching principles. Firstly, the mod

els developed should be applicable across a range of domains and the resulting artifacts should

be reusable across application and domains. Not only does this enable alternative solutions to

be described and contrasted through a common set of concepts, but it also benefits development,

since experience gained during application development for one project can be transferred to

other projects. Secondly, key to all models of multi-agent systems, and underpinning them is

support for cooperation. The conceptual infrastructure should support the development of mech

anisms for cooperation between agents through models that enable them to describe and analyse

the interactions between agents while taking into account the dynamism and heterogeneity of

the environment. Given these overarching principles, this thesis aims to achieve the following

distinct and clear goals.

1. To provide conceptual infrastructure for building agent systems that is suitable for use in

the conceptual elaboration and design of agent systems, and in the technical infrastructure

for construction of agent systems. This facilitates both reasoning about agent systems and

agent systems development. We can divide this aim into two parts.

(a) To provide abstract models of agents that allow us to capture the wide range of

different types of agents that exist in heterogenous environments. The ability to cap

ture the entire range is important because it means that the theoretical models are

sufficient to model applications, ensuring they will not become irrelevant to devel

opment.

(b) To develop a technical framework (which we might also consider to be a develop

ment or construction toolkit) that provides a clear illustration of how the conceptual

framework can find practical implementation.8This technical framework should sat-

8We clarify that our aim is not to develop a methodology for agent-system development but simply illustrate
through a practical implementation how the abstract concepts introduced can be implemented.

Chapter 1 Introduction 13

isfy the foIIowing aims.

I. It should make use of the abstract models, and make explicit the links between

the abstract models and their use within the technical framework.

11. Similarly to the abstract models, it should provide a unifying way of specifying

a range of agents architectures to suit the different domains and applications.

2. Cooperation involves the participation of multiple agents in achieving some overarching

objectives, and there are already many mechanisms to facilitate this. However, hand

in-hand with facilitating cooperation is the need to control agent behaviour to prevent

undesirable interactions. Although there is a variety of mechanisms for achieving this,

they typicaIIy focus on either just the technical means or on restricted cases where some

strong assumptions about the types of agents can be made. They do not provide an analysis

to determine when such cooperation or interference is likely given the current state of the

environment and the agents within it. Thus, we aim to develop tools to enable the analysis

of potentiaIIy cooperative or undesirable situations, and of the possible configurations that

might achieve the desired results. This can also be divided into two parts, as follows.

(a) To develop a model for interactions between agents and relate such a model to the

goals of individual agents so as to be able to reason about relationships and how

cooperative interactions or undesirable interactions may be identified.

(b) To use this model, to provide a complete characterisation of the possible relation

ships between agents that can act as a guide for enabling:

i. system design and analysis by designers;

ii. and run-time identification of, and reasoning about, relationships between agents

so that agents can better adjust their behaviour to deal with changing conditions

without external intervention.

3. As already mentioned, a central concern is that there must be clear links between abstract

models and their practical implementation. Thus, throughout the thesis we aim to provide

examples of the use of the models to sol ve practical problems so as to illustrate the utility

these models have to offer application development in general.

14 Chapter 1 Introduction

1.6 Research Approach

In order to meet our aims, it is important to establish an approach to the task at hand that will

ensure, as far as is feasible, that the results remain relevant. In this respect, we recognise that

there are several possible paths to follow in devising models for agent infrastructures. For exam

ple, current implementations of applications could be studied and common patterns identified,

or a theory could be developed from scratch or adopted from existing work and then refined

following its application to real world problems.

In essence, our approach is a combination of those above. We begin with the belief that creat

ing new models from scratch, without basing them on any existing work, is probably counter

intuitive since agent research has reached a certain level of maturity, and ignoring existing work

would simply add to the current proliferation of alternative models. Rather, we aim to adopt an

existing approach, and refine it by identifying the points at which it does not address our needs

as outlined above. The criteria to determine which approach to choose will be based on how

closely it can be aligned with our aims. At the same time, the manner in which we proceed to

introduce new concepts or refine existing ones is informed by the experience gained through the

numerous agent applications and toolkits that are available (several of which are reviewed in

Chapter 2). Finally, the resulting models are themselves implemented to demonstrate how one

can arrive from the abstract models at their actual implementation.

An overarching guideline for our work is that any attempt to provide abstract models of multi

agent systems must strike a careful balance between providing sufficiently practical models to

aid implementation without, however, closing possible avenues in terms of agent architectures,

communication and coordination mechanisms.

1.7 Thesis Overview

Our research is presented in 7 chapters, including this one, organised as follows. In Chapter 2

we review existing work that can contribute to the discussion of appropriate models to support

agent-based development. The review ranges from an examination of architectures for individ

ual agents, to issues central to multi-agent systems, such as models of interaction, discovery,

and regulation.

A detailed analysis of the SMART framework is provided in Chapter 3, since it underpins all

Chapter 1 Introduction 15

subsequent work in the thesis. We identify SMART'S shortcomings in relation to our aims, and

outline how we extend and refine it to address them. As such, Chapter 3 sets the scene for the

rest of the thesis.

Construction of individual agents is dealt with in Chapter 4. We present an agent construction

model (actS MART, which is based on the abstract agent model of SMART), and justify our design

choices through a discussion of the criteria we believe any agent construction model should ful

fill in order to address our stated aims. In addition, we provide examples of the use of actS MART

through the specification of an architecture for an agent participating in auctions, and generic

architectures for negotiation and argumentation agents.

The issue of relationship identification and characterisation is examined in Chapter 5, providing

the underpinning for supporting cooperation in multi-agent systems. We present a model of

agent interaction and use it to derive a typology that describes all possible relationships between

two agents. Furthermore, we provide a typology of goals in relation to an agent's capabilities

and explain how that can be used to further enhance relationship analysis.

The work of Chapters 4 and 5 is evaluated in Chapter 6 through the development of an applica

tion based on a ubiquitous computing scenario. In order to support agent operation within such

an application we develop architectures for middle agents performing capability brokering, as

well as relationship analysis agents that make use of the tools of Chapter 5 to support coopera

tion between agents. We also provide examples of how actS MART enables architectures to adapt

to their operating environment. Some of the details of the architecture specification developed

in this context are provided in Appendix A.

Finally, Chapter 7 provides a summary of the work and our conclusions, outlines our key con

tributions, discusses the limitations of the work and its potential to underpin further research.

Chapter 2

Models for Agent Infrastructures

"The detennination of shared paradigms is not, however,

the detennination of shared rules."

Thomas S. Kuhn (1922-1996); Science philosopher and historian

2.1 Introduction

In this chapter we identify, review and relate work that can inform our stated aims of provid

ing reusable models for individual agent construction and for identifying and reasoning about

relationships between agents. In order to achieve this, the review spans several fields that are tra

ditionally viewed separately. This is an inevitable side-effect of our attempt to provide a broad

foundation for the subject of agent-based system construction that ranges, in breadth, from indi

vidual agent architectures to models of agent interaction and, in depth, from abstract theoretical

concepts to practical implementations.

As a result, our first task is to identify a suitable schema that connects the various issues so as

to impose some order in the method through which we proceed with the review. The task is

not trivial as the richness and variety of agent research often defies clear categorisations [137].

We recognise, therefore, that any classification is significant as far as it fulfills the purpose of

ordering the presentation of work, rather than identifying true distinctions between different

types of research. The schema we introduce attempts to relate issues both in breadth and in

depth. The former is achieved by adopting a division of issues as suggested by Zambonelli et

al. [236], who propose a tripartite division between intra-agent, inter-agent and organisational

17

18 Chapter 2 Models for Agent Infrastructures

structures. The latter is done by clearly distinguishing between research that is based on abstract

models and research that is based on empirical experience through practical implementation.

With the schema in place, we then examine each aspect in turn and relate them, both within each

division, as well as between divisions. We conclude by identifying the missing links between

the different strands of research and discuss how our own work attempts to address some of

these shortcomings.

2.2 Review Schema

As mentioned in Chapter 1, we view agent infrastructure as providing the basic building blocks

required to enable an operational multi-agent system in a heterogeneous and dynamic computing

environment. These building blocks refer both to abstract concepts, and to practical implemen

tations in existing computing environments. This section provides a classification of the various

research issues that we view as relevant to providing such agent infrastructure within the limits

of the aims of this thesis.

We begin by defining the breadth of research issues through Zambonelli et al.'s [236] division

of issues into three related constituents, as described below, and illustrated in Figure 2.1.

Intra-agent At the intra-agent level the focus is on individual agents and their structure. We

investigate the variety of proposals of how to characterise and construct agents, which

range from specific agent architectures, such as the Belief-Desire-Intention architecture,

to proposals relating to a more generalised understanding of agents, such as Luck and

d'Inverno's SMART framework [82]. Both of these aspects inform the task of establishing

the appropriate infrastructure for agent systems at this level.

Inter-agent At the inter-agent level we examine models of interactions between agents and how

they can facilitate reasoning about relationships. We do not focus on specific communica

tion or coordination mechanisms, as these go beyond the remit of this thesis and are issues

that necessarily must be based on an underlying model of interaction, which should en

able developers to reason about what are the most appropriate coordination mechanisms.

In addition, we also consider the discovery of agents within dynamic environments, as it

forms a fundamental aspect of agent infrastructure for dynamic and heterogeneous envi

ronments.

Chapter 2 Models for Agent Infrastructures

Intra-Agent Level
Agent Architecture

Inter-Agent Level

Organisational Level

Environment

Environment

FIGURE 2.1: Intra-agent, inter-agent and organisational levels

19

Organisational structures Finally, at the organisational level we review work that enables the

definition of appropriate structures for the control of agent systems beyond individual

agent architectures and the emerging agent interactions. These issues cover work on poli-

cies, institutions and norms.

As indicated, the research contributions to these different areas range from abstract frameworks

to practical tools. We distinguish abstract from practical approaches by the degree to which

they are tied to, and arise from, the implementation of a particular system. Often the distinction

is clear by the presentation of the work, where concepts from a practical implementation are

described through a presentation of the implementation, while more abstract work is presented

in isolation and, typically, with the aid of a formal mathematical language. Of course, there are

some examples of work which offer both a formal presentation of the models used as well as a

practical implementation.

We primarily examine research that falls under the broad headings of agent theories, agent

methodologies and agent toolkits attempting to extract from each the issues highlighted above.

Furthermore, with direct reference to the organisational level we review work on institutions,

20 Chapter 2 Models for Agent Infrastructures

norms and policies, which deals with the development of appropriate regulatory frameworks for

agent-based systems.

Agent theory is considered to be anything that provides a conceptual model of agents and their

operation that is clearly divorced from specific implementation technologies, such as program

ming languages, operating systems, and networking protocols. Relevant examples of such work

are BDI-based agent models [177] or the SMART framework [81]. We consider agent method

ologies as dealing with formalising the process of moving from a problem specification to the

design of a solution. Now, in order to do this an agent methodology must either adopt or define

some notions of agents and their operations, since these are the first order components of the

design. It is this aspect of agent methodologies that we investigate. Relevant examples are the

Gaia methodology [233] or DESIRE [37]. Finally, toolkits are essentially software designed to

accelerate the task of developing agent-based systems by providing a large portion of the re

quired lower-level infrastructural support, and in recent years, there has been significant work in

this direction. 1 Although often not explicitly defined, most toolkits encompass some conceptual

model relating to agent operation. As such, they are particularly relevant to our research since,

by virtue of their purpose, they usually tackle a large portion of the issues we have highlighted

in the introductory chapter as relevant to our research.

2.3 Intra-Agent Issues: Models of agents

In this section, we review work that can provide a suitable basis for the description and con

struction of single agents. We consider both abstract approaches and specific agent architec

tures, ranging from reactive to deliberative. We begin with a review of the work of Russel and

Norvig [186] and Luck and d'Inverno [82], both of which take a broader view of the problem

of modelling agents. Subsequently, we look at the BDI model and its various implementations,

as it is one of the most influential approaches in agent design and a good example of delib

erative approaches to agent architecture. Then, Brook's Subsumption architecture provides an

example of a reactive architecture, while TouringMachines [92] and INTERRRAP [96] provide

examples of hybrid architectures. Subsequently, we review the work of Sabater et al. [189] on

engineering agents, which makes use of multi-context logics, and DESIRE [37] as examples of

component-based approaches to agent architecture design. Finally, we examine architectures

from agent toolkits, so as to gain an understanding of the state of the art at the level of im-

I Agentlink.org lists, at least, 100 different toolkits.

Chapter 2 Models for Agent Infrastructures 21

Architecturally-Neutral Deliberative Reactive Hybrid

Rusell&Norvig IRMA SubsurTlltion TouringMachines
SMART PRS Architecture InterRRaP
Sabater et al. dMARS
DESIRE AgentSpeak(L)
JADE ZEUS

RETSINA
IMPACT

FIGURE 2.2: Schema of agent models reviewed

plemented systems. The various models reviewed can be categorised as shown in Figure 2.2.

They are distinguished along the lines of architecturaIIy-neutral models (which do not constrain

development to specific architecture types), deliberative architectures (which make use of and

reason over explicit representations of the environment), reactive architectures (which do not

depend on explicit representations of the two), and hybrid architectures (which make use of

both reactive and deliberative approaches).

2.3.1 Russel and Norvig

In the textbook Artificial Intelligence: A Modern Approach, Russel and Norvig describe agents

as "anything that can be viewed as perceiving its environment through sensors and acting on

that environment through effectors" [186]. They also differentiate between autonomous and

non-autonomous agents by stating that if an agent acts without paying attention to its percepts,

then it lacks autonomy [186]. The justification behind this form of distinction is based on the un

derstanding that if an agent's actions are completely pre-determined by what Russel and Norvig

caII "build-in knowledge", then there is no space for a deviation from the instructions of the

designer. Russel and Norvig view this as transferring the ownership of intelligence to the de

signer and not to the agent itself. Although such a distinction is appealing in its simplicity, it

is also naive in its conception, since based on the same rationale one could say that the wayan

agent interprets environmental information depends on the rules placed by the designer within

the agent, therefore enabling one to say that the inteIIigence always lies with the designer.

In any case, Russel and Norvig go on to state that the task of building useful agents is seen as

synonymous to building rational agents, where rationality is described as the attempt to "do the

right thing" [186]. In order to evaluate the extend to which the "right thing" has been done,

they introduce the notion of a perfonnance measure as the indicator of an agent's success in

achieving a task.

22 Chapter 2 Models for Agent Infrastructures

Autonomous
Agents

SAgents

NObjects
Entities

FIGURE 2.3: The entity hierarchy

With these basic principles in place, Russel and Norving, continue to define different types of

agents, described below.

• Reflex agents are those that simply map stimuli to responses.

• Agents with state extend reflex agents by keeping a record of their actions.

• Goal-based agents act towards achieving a desirable situation by reasoning about the state

of the world and attempting to determine which actions will change that state to bring it

closer to the desired state.

• Finally, utility-based agents are able to determine which of a possible set of desirable

goals would be more desirable based on a performance measure.

Based on this model, Russel and Norvig map out the relationships between different aspects of

artificial intelligence research (planning, knowledge, learning and communicating) and agent

based systems. In essence, agents are viewed as the software engineering paradigm for the

application of artificial intelligence techniques.

2.3.2 SMART

Luck and d'Inverno [82] propose a conceptual model of agent-based systems that lies at a high

level of abstraction, making very few assumptions about the internal structure of agents, prefer

ing to focus on providing means for describing different models within a common framework.

SMART (Structured, Modular Agent Relationships and Types) provides an encompassing struc

ture that clearly differentiates between agent and non-agent entities in the environment, and

Chapter 2 Models for Agent Infrastructures 23

specifies agents in a compositional way. In essence, the framework proposes a four-tiered hier

archy that includes the generic and abstract notion of an entity from which objects, agents and

autonomous agents are, in turn, derived. In Figure 3.3, the Venn diagram describes the different

levels in the hierarchy, and outlines the ways in which they are related. Though we will not offer

a detailed exposition of the framework, we review the key concepts below.

Entities are defined in terms of sets of attributes, where attributes are describable features of

the environment. Objects are then simply entities with sets of capabilities, where capabilities

are actions that objects can perform to change the state of the environment. In turn, agents

are objects with sets of goals, where goals are defined as desirable environmental states, and

autonomous agents are those agents able to generate their own goals through the motivations

that drive them. Here, motivations can be regarded as preferences or desires of an autonomous

agent that cause it to produce goals and execute plans in an attempt to satisfy those desires.

In addition to these basic levels, and in order to further explicate the consequences of their

framework, Luck and d'Inverno introduce two additional refinements: neutral objects (Nob

jects) are objects that are not agents, and server agents (SAgents) are agents that are not au

tonomous [139]. The relationship between neutral objects and server agents is complementary,

since neutral objects give rise to server agents when they are ascribed goals by other agents in

the environment. Once these goals are achieved or they are no longer feasible, server agents

revert back to neutral objects.

Luck and d'Inverno have applied this model in a concerted effort to translate alternative ap

proaches to a common set of ideas [75, 79, 76, 77], giving a strong indication of the value of a

common high-level approach as a means of consolidating different strands of work within agent

research.

2.3.3 Belief-Desire-Intention

The Belief-Desire-Intention (BDI) model has found widespread acceptance within the agent

research community, and its adoption and use by a large number of researchers make it the most

widely studied model for agent architecture design. The approach underpinning the BDI model

is based on the explicit representation of an agent's beliefs (knowledge about the world), desires

(what it would like to achieve), and intentions (what it will try to achieve) as data structures that

determine the operation of the agent. These data structures form the core around which the BDI

24

actions

1

Chapter 2 Models for Agent Infrastructures

Deliberation
Process

options

opportunity
Analyser

FIGURE 2.4: The IRMA agent architecture. (Based on [33])

architecture can be developed. The overarching goal of a BDI architecture can be summarised as

connecting the data structures described above to appropriate decision-making algorithms that

will determine which desires the agent will choose to achieve, transforming those desires into

intentions, based on its beliefs. A BDI agent will attempt to achieve intentions until they are

satisfied or they are no longer achievable [57]. Much work has gone into developing practical

systems and formal models for BDI agents and in the following sections we briefly look at some

of the most influential work in this area.

IRMA

Bratman et al. developed one of the first sophisticated examples of a BDI architecture, drawing

from their work on intentions, plans and practical reasoning [33]. Their IRMA architecture (In

telligent Resource-bounded Machine Architecture), primarily deals with situations where agents

may not always have the resources to make optimal decisions, and have to be able to choose sub

optimal ones. An overview of the IRMA architecture is shown in Figure 2.4. The operational

cycle begins with perception of the environment and the update of Beliefs. The Opportunity

Analyser then checks whether, based on the updated beliefs, any goals have been achieved,

Chapter 2 Models for Agent Infrastructures 25

Beliefs

-sensor input Interpreter

Goals

FIGURE 2.5: The PRS agent architecture

whether it can still pursue existing intentions, or whether alternative plans can be proposed. The

Means-End Reasoner, uses the Plan Library and the current beliefs to evaluate what plans can

be adopted. Now, plans from both the Means-End Reasoner and the Opportunity Analyser pass

through a filtering process which is made up of the Compatibility Filter and the Filter Override

Mechanism. The former, checks whether any new plans are consistent with the existing inten

tions, while the latter is used in circumstances where although plans are not compatible they

may fulfil certain properties that may necessitate that they do go to the Deliberation Process.

The Deliberation Process determines how the current intention structure is affected by plans that

have gone through the filtering process. Finally, the intentions structured into plans are what the

agent should attempt to achieve through actions.

The IRMA architecture provides several significant lessons in architecture design for agents.

It illustrates the importance of ascertaining, through examination of beliefs, which intentions

remain valid at each operational cycle and that certain overriding mechanisms, if chosen ap

propriately, can be very effective for agents in dynamic environments. The architecture was

demonstrated and tested in a Tileworld simulation environment [168].

PRS, dMARS and AgentSpeak(L)

Rao and Georgeff, have developed extensive formal models for BDI agents [176, 177, 178],

based on intention logics, as well as gained experience from practical implementation of EDI

architectures such as the Procedural Reasoning System [102] (PRS). The PRS system, illustrated

in Figure 2.5, is based around beliefs, goals, plans and intentions. Goals correspond to the

agent's desires. Plans prescribe courses of action that an agent can follow in order to achieve its

intentions. Plans have triggers or invocation conditions that stipulate which beliefs and/or goals

26 Chapter 2 Models for Agent Infrastructures

must be active for a plan to be relevant. Furthermore, plans have a context that states what the

agent must believe about the world Cas stated within an agent's beliefs) before a plan becomes

applicable. Finally, the body of the plan prescribes which actions the agent should take. For

example, a belief of hungry, may trigger a plan make sandwich, which is applicable under the

conditions have toast and butter with a body indicating the action spread butter on toast.

This work led to the more sophisticated dMARS [101] Cdistributed Multi-Agent Reasoning Sys

tem) implementation, which was used in a number of multi-agent systems applications [101].

D'Inverno et al. also provide a formal operational semantics for the dMARS systems, using the

SMART framework [75].

Rao, went on to define AgentSpeakCL) [175], a programming language for BDI agents that aims

to provide an operational and proof-theoretic semantics for a language that can be viewed as

an abstraction of an implemented BDI system. AgentSpeakCL), is based on the experience of

PRS and dMARS and was born out of a wish to provide a model for BDI agents that would

unite theory and practice in the field. D'Inverno and Luck also provide a formalisation of this

work, based on the SMART framework in [79]. Furthermore, Bordini et al. provide extensions

to AgentSpeakCL), in order to enable the language to better deal with task scheduling in [29].

Other BDI-related work

Several other research efforts have dealt with various aspects of agent-based systems based on

the BDI paradigm. In [57], Cohen and Levesque, develop a theory of intention which acts

as a departure point for many BDI systems. Singh expands on that work, criticising Cohen

and Levesque in [198], and developing his own approach on the subject in [199]. Jennings, in

[118], provides the specification and implementation of a BDI agent system. Shoham, in [194],

presents the AGENTO programming language, which is one of the first agent programming

languages and geared towards BDI agents. Wooldridge, in [230], presents a testbed for exper

imenting with agent-based systems, where agents are based on a BDI-paradigm, adopted from

Shoham, and formally defined. Other systems for BDI agents are the JAM system [117] and

the commercial JACK system [116, 44]. Finally, Kinny et al. suggest a methodology for BD!

systems in [132] as do Padgham and Winikoff [163].

Chapter 2 Models for Agent Infrastructures 27

Sensors Actuators

FIGURE 2.6: The Subsumption architecture

2.3.4 Subsumption Architecture

The Subsumption architecture, was proposed by Brooks [40], in an attempt to provide an agent

architecture which did not depend on the explicit representation of the environment within the

agent architecture. Deliberative approaches are criticised by Brooks [41] as not effective when

having to deal with truly dynamic and complex environments, where the attempt to explicitly

represent all the relevant information about the world within the agent architecture becomes an

intractable task. Furthermore, based on his experience of development of mobile robots that

need to react at real-time, Brooks identified three central requirements for agents [40].

1. Agents should be able to cope with multiple goals at the same time. Clearly, in a mobile

robot scenario, where robots may need to navigate through a complex environment while

trying to carry an object to a specific destination or while still being able to receive new

instructions, the ability to deal with multiple, possibly conflicting goals is paramount.

2. Agents should have multiple sensors to be able to receive the various kinds of information

the environment provides. In a mobile robot setting these could be infra-red cameras,

acoustic sensors, and so forth. In purely software-based setting this may be the ability to

receive messages from other agents, sensors for measuring network bandwidth, available

disk-space, and so forth.

28 Chapter 2 Models for Agent Infrastructures

3. Agents should be robust. When relatively unexpected events take place, such as the fail

ure of components or dramatic changes in the environment, the agent behaviour should

degrade gracefully rather than bring about an abrupt general failure of the agent.

As an alternative, Brook's suggests that we consider agents as embodied entities whose be

haviour is affected by the interactions of a series of, relatively, simple control layers, each one

independent of the other and each one focusing on a specific task. The layers operate concur

rently and all have access to sensor information and actuators. Layers can access information

from layers below them and can suppress the action of layers below them, but are unaware of

layers above them.

An example architecture using this approach is illustrated in Figure 2.6. Here, the different

capabilities of a robot are decomposed into the layered structure, with more basic capabilities

such as avoid objects or wander at the bottom of the layer stack, and more complex ones such

as reason about behaviour of objects and plan changes to the world at the top.

Starting from this basis Brooks and his team at the MIT Artificial Intelligence lab have devel

oped a series of robots that prove the claim that intelligent behaviour can exist without the use

of internal representation [3]. One of the significant benefits of the approach is that each layer

can be tested in isolation to the others, ensuring that it works appropriately before placing it

within a more complex system. The agents produced are also robust since if complex layers fail,

the more simple basic layers will still enable the robot to function. Nevertheless, this work has

also shown that for certain types of actions, some level of internal representation is essential.

For example, it is hard to see how long-term goal directed behaviour in a social environment, in

which interaction with other agents can only take place through direct communication, can be

achieved without some internal knowledge [66]. Furthermore, systems based on the subsump

tion architecture tend to be quite complex, and there are no clear guidelines of how layers should

be stacked and the interaction between them managed.

2.3.5 Hybrid Architectures

The limitations of both deliberative and reactive approaches have led to the development of

models that incorporate features from both, leading to hybrid designs. The basic tenants are

very similar since agents are still considered as goal-directed entities that interact with the en

vironment via sensors and effectors. The innovation lies at the architecture of these agents,

Chapter 2 Models for Agent Infrastructures 29

where both reactive and deliberative elements are present. We examine two systems that act as

exemplars for the alternative approaches to hybrid architectures.

TouringMachines

TouringMachines was proposed by Ferguson [92], as an architecture for autonomous agents

situated in dynamic environments. Ferguson recognises that agents in such environments must

be able to effectively monitor both expected and unexpected changes, and be able to deal with

them in the short-term as well as reason about how they will affect long-term goals.

As a response to these concerns, Ferguson proposes the TouringMachines architecture. It has

three main layers, each handling one significant aspect of agent action. The reactive layer rep

resents the agent's direct responses to stimuli, the planning layer handles the generation and

execution of plans while the modelling layer handles higher level societal aspects such as mod

elling other agents in the environment. These layers all have access to sensors and actuators and

can communicate with each other. In addition, there is a set of context-sensitive rules imposed

on all layers in order to solve conflicts between decisions of different layers.

INTERRRAP

INTERRRAP [96] takes a similar approach to TouringMachines by mixing deliberative and reac

tive components, but while TouringMachines is a horizontally layered architecture, since every

layer can communicate with every other, INTERRRAP is a vertically layered architecture more

similar to Brooks's Subsumption architecture. There are three levels of control starting from the

behaviour layer, moving up to the plan-based component and finally a cooperation component.

Each level communicates with the one above and below it, while each level also has access to

a specific knowledge base (KB). The world model KB represents knowledge about the agent's

specific situation and corresponds with the behaviour layer, the planning KB represents goals

and plans communicating with the planning layer while the cooperation KB represents the so

cial knowledge, such as joint plans, and communicates with the cooperation layer. Actions are

accessed via the behaviour layer while sensor information filters up from the world model KB.

30 Chapter 2 Models for Agent Infrastructures

2.3.6 Sabater et al.

Sabater et al. [189] have developed a model for constructing agent architectures in response to

what they identify as a lack of proposals of methodologies that relate designs to agent archi

tectures and their practical implementation. They attempt to address this problem within the

context oflogic-based agents that make use of multi-context logic reasoning [104].

Their model allows for the modular composition of agent architectures, where each unit (or

component) may use a different logic to encode the problem-solving knowledge of the agent.

Logics in this sense are defined as declarative languages, each with a set of axioms and rules

of inference. Units are connected by bridge rules that translate one logic-based representation

to another. Units and bridge rules can be grouped together to form modules which provide a

further level of abstraction that makes it easier to handle large numbers of units, and modules

can also be connected via bridge rules. Modules communicate by multicasting bridge rules

along a communication bus.

This basic model is further refined with two control elements which are associated to bridge

rules. The consuming element causes a rule to 'move' between units. This enables the modeling

of changing state between units. The time-out element indicates that there is a delay between

the instant where the conditions of a bridge rule are satisfied and the activation of the rule. The

justification for this control element is that it increases the expressiveness of the construction

model since it allows for rules not to be acted upon if the formulas are removed before the

time-outs.

The Sabater et al. construction model, through its modular approach and simplistic framework

that enables modules to communicate goes someway towards providing a viable generic agent

construction model.

2.3.7 DESIRE

DESIRE (DEsign and Specification of Interacting Reasoning Components) [35, 36, 37] aims to

aid in the specification of complex software systems when viewed as interacting components.

The process of system design involves task specification, identification of what information is

exchanged, sequencing of tasks and definition of appropriate knowledge structures.

Agent architectures are composed as sets of interacting processes that are expressed through

Chapter 2 Models for Agent Infrastructures

transferv.orld
and agent info

(own process control task control)

transfer desire
info for belief
determination --------------~

belief
determination

transfer belief
info for desire
determination

C transfer desire info for
-'1'---- intention determination

tra~~~~rfO~lief L-__________ _

CO~~~:~~~~~:~O~O~~~lief ______ ---1

determination

transfer
commitment
goal and pan

info

transfer
belief info

FIGURE 2.7: Generic BDI agent in DESIRE (taken from [36])

31

components. For each process the designer must identify the types of information used as input

and resulting as output, which define the input and output interfaces of the components. Pro

cesses can be modeled at different abstraction levels and are implemented as abstraction/spe

cialisation relations between components, leading to components being composed of other com

ponents. The most primitive types of components are considered to be components performing

tasks such as calculation, information retrieval, and so forth. Processes can then be composed to

form an architecture, where composition is described by the relationships between components,

the possibilities of information exchange between processes and the task control knowledge

used to control processes and information exchange.

Using this technique Brazier et al. then go on to define a number of possible agent architectures.

In Figure 2.7 we illustrate the use of DESIRE to specify a generic BDI Agent. The main aspects

of the BDI architecture (belief, desire and intention/commitment) are modelled as components

with their inputs and outputs specified. These components can then be further refined; for ex

ample, the intention and commitment component is actually the result of the composition of a

goal detennination and plan detennination component.

2.3.8 Agent Architectures in Toolkits

So far we have looked at abstract agent models and generic architectures, outside the context

of any specific agent development environment. In this section we examine some of the most

representative architectures developed within the context of practical agent toolkits and the un-

32

External Systems

Chapter 2 Models for Agent Infrastructures

incoming/outgoing
messages

Generic Agent Architecture

Acquaintance
Database

FIGURE 2.8: Generic ZEUS agent architecture.

External

Databases

derlying motivations for those architectures. The toolkits investigated where chosen for their

maturity (in terms of years of development and breadth of application in a variety of domains),

popularity (in terms of their prominence within agent research literature), and as exemplars of

the variety of approaches.

ZEUS

The ZEUS agent development toolkit aims to provide both a development environment as well

as a development methodology for multi-agent systems [155]. ZEUS is the result of experience

gained while developing two real world multi-agent systems, one for business process engineer

ing [157] and the other for multimedia information management [211]. It abstracts the common

features of these two systems based on a philosophy which calls for a separation between do

main specific problem solving and agent-level functionality, a friendly graphical interface for

development, an open and extensible design and a strong support for standards. This last point

is considered especially critical since without it they claim that industry wide uptake cannot be

achieved.

According to the ZEUS perspective, agents are deliberative, so they reason explicitly about

which goals to select and which actions to perform. They are goal directed, so any action

performed is in support of a specific goal. They are versatile, so they can perform a number of

goals and engage in more than one task. They are truthful, so when dealing with other agents

Chapter 2 Models for Agent Infrastructures 33

they always state the true facts. Finally, agents are temporally continuous, so they have a notion

of time and can synchronize based on a clock.

Based on this approach, the ZEUS toolkit provides a set of components that represent spe

cific agent functionalities such as planning and scheduling algorithms, agent communication

language capabilities (using the FIPA ACL) and communication protocol implementations, on

tology support and coordination.

The assembly of these components readily leads to the construction of what is termed a generic

ZEUS agent, illustrated in Figure 2.S. Agents can send and receive messages, through Mail

box and Message Handler components. A Resource Database component has a list of the re

sources available to the agent, with the possibility to directly interface with external databases.

Through the Execution Monitor component, agents can interface with external systems such as

legacy systems and also keep track of actions. The Coordination Engine component handles the

agent's goals, deciding which to follow or abandon. It also handles interaction with other agents,

based on the available interaction protocols. Information about other agents, such as name and

abilities, is kept in an Acquaintance Database component. Finally, the Planner/Scheduler com

ponent has the task of producing plans and the timings for when actions defined in the plans

should be performed in reference to specific goals, as requested by the Coordination Engine.

This generic agent has all the rudimentary tools necessary to form the base of an agent func

tioning in a variety of domains. Although it is possible to provide different implementations for

these building blocks, and therefore obtain different types of generic agents, it does not seem

possible to deviate significantly from the organizational structure of the intercomponent rela

tionships. Nevertheless, since the code for each of these components is provided as part of the

overall ZEUS package, it is possible to configure them in any manner desired or add or replace

existing components.

RETSINA

RETSINA (Reusable Environment for Task Structured Intelligent Network Agents) is a multi

agent systems toolkit developed over a period of years, and at least since 1995, at the Intelligent

Software Agents laboratory of Carnegie Mellon University's Robotic Institute. RETSINA has

been used extensively in a range of applications, such as financial p0I1folio management [164]

and eCommerce [213].

34 Chapter 2 Models for Agent Infrastructures

I S'h:"[Task Current , , Domain Facts and
Objectives ---

Structures Action , , Beliefs Database

,-; .. , , ' , ',' , ' , , , , ' , , , I , , , I , , , I , , , , , , . , . , , ., ,
:: Communications Planner Scheduler

Execution I , Monitor

• ,
I' I
I
I

--control flow ~

Plan Library • - - - - data flow - - - .; >

FIGURE 2.9: Retsina agent architecture.

The design of RETSINA is based on two central assumptions about agent applications develop

ment [206]. Firstly, multi-agent systems infrastructure should support complex social interac

tions between agents through the provision of services that are based on predefined conventions

on how social interaction will take place. These predefined conventions refer, mainly, to the use

of a common communication language, protocols and ontologies. From the perspective of the

multi-agent system infrastructure, agents are seen as black boxes, but they are expected to be

able to participate in social interactions based on these conventions. Secondly, agents in a multi

agent system engage in peer-to-peer relationships. Any societal structures, such as hierarchies,

should emerge through these peer-to-peer interactions, and should not be imposed by a cen

tralized approach. This is in recognition of the need to avoid a reliance on centralized control,

and allow for truly distributed structures to emerge. These assumptions for multi-agent sys

tems development lead to a very clear separation between individual agents and the supporting

infrastructure.

An agent in RETSINA is understood, in abstract terms, as a standalone survivable piece of code

with communicative and intelligent behavior. In real terms, it is understood as any piece of

software that is able to interact with other agents, and with the RETSINA multi-agent system

infrastructure, following the conventions defined in RETSINA.

All agents are derived from a BasicAgent class, which provides the main functions required for

operation in a RETSINA multi-agent system, such as message handling, logging, visualization,

and discovery of other agents. This agent-specific functionality is separated from operation

within specific operating environments by placing agents in an AgentShell, which provides the

necessary interfaces for interaction with the underlying operating system. The AgentShell also

Chapter 2 Models for Agent Infrastructures 35

provides basic management functionalities such as starting up or shutting down the agent and a

timer module.

The reasoning and planning for agents is handled by the RETSINA Agent architecture, shown

in Figure 2.9. It is based around the interactions between a Communication module that handles

messages from other agents, a Planner that derives plans based on a provided set of goals and

a plan library, a Scheduler that uses the output from the Planner to schedule when tasks will

be performed, and an Execution Monitor that handles the actual performance of actions. These

modules are supported by appropriate knowledge and beliefs, which are divided into Objectives,

Task Structures, Schedules, Current Actions and a Domain Facts and Beliefs Database.

RETSINA divides agent functionality into four main classes that are built on top of the Ba

sicAgent and represent specializations of the basic architecture to deal with different types of

functionalities.

• Interface Agents interact with users by receiving inputs and displaying results.

• Task Agents carry out the main problem-solving activities by formulating plans and exe

cuting them by coordinating and exchanging information with other agents.

• Infonnation Agents interact with information sources such as databases or web pages. The

task agents provide the queries, and the information agents are specialized in retrieving

the required information by interfacing with databases, the web, and so on.

• Middle Agents provide the infrastructural support for the discovery of services between

agents.

IMPACT

The IMPACT (Interactive Maryland Platform for Agents Acting Together) system [203] is

perhaps unique in the level of detail (both formally and informally) with which its respective

components are presented and explained. From the very outset the developers of IMPACT

state that it is essential to have a solid view of what an agent program is and how it can be

distinguished from other programs. In addition, they believe that agent infrastructure should

also provide a common set of services that the agents will need as well as the required structures

that will enable interaction between the agents and the underlying infrastructure.

36 Chapter 2 Models for Agent Infrastructures

Security

Message Box

Metaknoweldge

ActionBase

Function Calls Action Code

FIGURE 2.10: IMPACT agent architecture.

Agents in IMPACT are divided into two parts:

• the software code, which consists of data types and functions that can manipulate those

data types; and

• the wrapper, which provides the actual intelligent agent functionality.

The software code could be any software program, and represents the actual interface to the

environment through which the agent effects change in it. The wrapper represents the actual

agent functionality that is able to manipulate the software code according to the behavior dictated

by the wrapper's programming. This division is the IMPACT solution to the requirement for

being able to agentify any program through a wrapper.

The wrapper is further divided into a set of basic components that come together to provide

the IMPACT agent architecture, illustrated in Figure 2.10. All actions are regulated by the

Agent Program that specifies which actions an agent should or should not perform in specific

situations; the Agent Program defines what IMPACT terms the agent's Operating Principles.

The Agent Program itself is defined according to an Agent Program Language that allows for a

wide set of regulatory modalities (Do, Obliged, Forbidden, Waived and Permitted). An Action

Base component maintains descriptions of all the actions an agent can perform, along with the

preconditions for the execution of actions.

Chapter 2 Models for Agent Infrastructures 37

It is important to stress that IMPACT takes a wider view of what represents an action than many

others. Everything an agent does, including tasks that are traditionally taken for granted or

considered an integral part of the architecture, such as planning or timing, are considered actions

that must be explicitly defined within the Action Base. Actions can be performed concurrently,

and are regulated by a Concurrent Action Mechanism component that decides, based on the

current agent state and desired actions, whether a composite action can be defined to achieve

the desired actions. Concurrency is also regulated by a set of Action Constraints that explicitly

define when certain actions cannot be performed concurrently. A set of Integrity Constraints

specify which agent states are legal in a given context and ensure that the agent does not perform

any actions that may violate these constraints. A Heterogeneous Query Language component

provides the interface with the software code part of the agent. Finally, an agent is equipped

with Metaknowledge that includes descriptions of the services the agent is able to provide, and

beliefs about other agents, and a Message Box component that handles communication with

other agents.

The most interesting feature of the IMPACT agent architecture, which clearly distinguishes

it from other architectures, is the emphasis on ensuring that the agent operates within very

well defined parameters. The agent architecture clearly stipulates the actions that are allowed,

integrity constraints, action constraints, and so on. This provides a multilayered solution to the

problem of being able to guarantee "correct" behavior. Furthermore, the development process of

agents in IMPACT also includes several consistency checks that ensure there are no conflicting

rules, such as both forbidding and perrrtitting an agent to do something. We will not elaborate

the details of these consistency checks here, but the interested reader can refer to the extensive

articles on IMPACT elsewhere (see, for example, [86,87,88]).

JADE and LEAP

The JADE (Java Agent Development Environment) toolkit provides a FIPA compliant agent

platform and a package to develop Java agents. It is an open source project distributed by TILab

(Telecom Italia Labs) that has been under development since 1999 at TILab and through contri

butions by its numerous users. At the time of writing, version 3.1 is available, which implements

the FIPA2000 specifications. The platform has undergone successful interoperability tests for

compliance with the FIPA specifications. LEAP (Lightweight Extensible Agent Platform) is

the result of a research project airrting to provide an agent platform that is suitable for lirrtited

38 Chapter 2 Models for Agent Infrastructures

II I
Beliefs

Behavior I I , .. I I Behavior n I Capabilities

Application-

I Inbox of ACL I I Behavior I I LifeCycle I
dependent
resources

Messages Scheduler Manager

FIGURE 2.11: Jade agent components.

capability devices, such as PDAs and mobile phones [135].

The relationship between the two projects is that LEAP is a lightweight implementation of the

core functionalities of the JADE FIPA platform, and can be used in conjunction with the JADE

libraries for agent development. The latest release of JADE integrates LEAP so as to provide

a unique toolkit that enables the development of FIPA compliant agent applications on devices

ranging from limited capability mobile devices to desktop computers.

The JADE toolkit facilitates the development of agents that can participate in FIPA compliant

multi-agent systems. It does not define any specific agent architectures but provides a basic set

of functionalities that are regarded as essential for an autonomous agent architecture [22, 20].

These are derived by interpreting the minimum concrete programming requirements for satisfy

ing the characteristics of autonomy and sociality. Autonomy is interpreted as an implementation

of agents as active objects (that is, with their own thread of operation). The requirement for

sociality leads to enabling agents to hold multiple conversations on a peer-to-peer basis through

an asynchronous messaging protocol.

This basic single agent infrastructure is provided through an Agent class, which developers then

extend to provide their own implementations of agents. Programs extending the Agent class

operate within JADE containers that manage the agent lifecycle. Agents can be started, stopped,

removed, suspended and copied. Each agent has access to a private message queue, where

messages are stored until the agent chooses to retrieve them, and access to a set of APIs that

allow the formulation of FIPA ACL messages. An outline of the main aspects of the agent class

are illustrated in Figure 2.11.

Specific agent actions take place through a concurrent task model. Each task, or behavior as it is

termed in JADE, is an extension of the Behavior class of the JADE toolkit. Each agent has a be

havior task list, and the Agent class provides methods for adding or removing behaviors. Once

Chapter 2 Models for Agent Infrastructures 39

an agent is placed within a container and set into operation, behaviors are executed based on

a round non-pre-emptive scheduling policy. Of course, complex tasks require a more sophisti

cated scheduling of behaviors as well as the conditional execution of behaviors. JADE provides

models that are divided along the lines of Simple behaviors, to address tasks not composed of

subtasks, and Composite behaviors, to address tasks made up through the composition of several

other tasks. There are also cyclic and one shot implementations of Simple behaviors, and paral

lel, sequential and finite state machine implementations for Composite behaviors. Development

is further aided by the provision of specific implementations of Behavior to handle basic tasks

such as receiving or sending messages, and support for the set of interaction protocols defined

by FIPA.

The LEAP core for JADE offers a lightweight version of the JADE container that can operate

on PDAs. LEAP agents use a device specific Communicator module, which handles the spe

cific connectivity protocols of the device and network at hand. Agents for limited devices use

the same task based model as JADE agents, within the limitations of the device's processing

capabilities.

Others

Our review of agent architectures within the context of agent development toolkits is inevitably

limited since it would not be practical to review every single approach. However, we judge the

systems reviewed to be particularly representative of the field.

Other significant efforts are: SoFAR [146], in which the focus has been on extensive support

for integrating and managing ontologies within an agent-based system; CoABS [130], in which

the aim was to provide infrastructure for accommodating the integration of agents developed

using different agent toolkits; DECAF [l05], in which the focus has been to provide robust

agent architectures that could deal with run-time scheduling of tasks; Sensible Agents [14], in

which agent autonomy can be varied from command-drive, slave master and fully autonomous

agents. Significant mobile agent systems such as D' Agents [106], Aglets [133], Mole [17] and

SOMA [18] have not been reviewed because their focus is primarily on the underlying mobility

mechanisms or the security mechanisms. Therefore they have very little to say about the nature

of agenthood or the relationships between agents.

40 Chapter 2 Models for Agent Infrastructures

2.3.9 Discussion

The review of agent models confirms the richness and variety that exists within agent research,

but also highlights two important issues, described below .

• Firstly, there is a variety of agent architectures but there are no clear attempts (with the

possible exception of SMART) to describe diverse architectures using a common set of

concepts, so that developers can adopt models that can better address the wide range

of requirements that heterogeneous computing environments place, as we discussed in

Chapter 1 .

• Secondly, there are few links between the architectures used by agent development envi

ronments and more abstract agent models. This indicates that there is a general lack of

continuity from theory into practise.

Efforts dealing with the development of appropriate agent architectures can be divided along the

lines of whether the focus is on deliberative (reasoning about the environment in order to reach a

decision), reactive (simply matching environmental stimuli to responses), and hybrids of the two

that mix reaction and deliberation. The arguments for the relative benefits and disadvantages for

each are well rehearsed. Proponents of deliberation recognise that the execution of complex

sophisticated tasks through a clear, long-term goal-directed behaviour requires some amount

of internal reasoning, while the reaction group believes that a lot can be achieved through the

interaction of basic components that will give rise to emergent intelligent behaviour. This is

certainly an important debate but one that does not aid application developers directly. What is

more significant from an application development point of view are ways of choosing between

approaches and possibly mechanisms for mixing approaches so as to derive the best possible

results. The more abstract models of the SMART framework [82] and Russell and Norvig [186],

provide better guidelines for characterising the range of agent types. Notably, SMART does this

through a clear and unambiguous, formally defined framework.

The component-based agent models proposed, such as Sabater et a1. [189] and DESIRE [37],

provide some redress for the need of linking abstract models to practical implementation con

cerns, through an approach that allows for the creation of agent architectures based on the modu

lar composition of diverse components, each one fulfilling a clearly defined functionality. How

ever, they are limited by the lack of an abstract agent model that provides some guidelines as

Chapter 2 Models for Agent Infrastructures 41

what are the implications of different configurations of architectures within the context of an

agent-based approach.

The toolkits discussed attempt to tackle a wide range of issues, but the lack of strong underlying

theoretical principles leads to a confusion as how to go about providing solutions. In a sense, the

requirements for such toolkits are too wide, ranging from defining agent models to providing

guidance as to the route from problem to application design and finally providing appropriate

technical implementations and lower-level middleware support. Toolkits would benefit from a

clearer delineation between different concerns so as to better focus on either just specific agent

issues or lower-level middleware issues [8]. Revealingly, although all toolkits provide some

form of agent architecture only IMPACT goes so far as to formally define what constitutes an

agent program. The only drawback of the IMPACT approach, however, is that the formalisms

do not allow for alternative architectures to be defined but only apply to the IMPACT agent

architecture. In other words their theory of agents in closely tied to the agent architecture making

no allowance for a diversity of architectures within an application.

Bryson and Stein [42] identified this general problem of a multiplicity of architectures but few

means to choose between them and claim that in order to make progress in agent research it is

necessary to find a way to describe different idioms of agent architectures in a common way so as

to allow others to understand and utilize them. In addition, a clearer separation between concepts

and implementation would provide developers with a greater choice for matching technologies

to ideas so as to best suit their needs.

Luck and d'Inverno have also recognised this lack of reconciliation between practice and re

search [80], as well as the difficulty in tracking progress [137] and SMART has been developed

with exactly such concerns in mind. SMART makes no assumptions about agent architectures

or about the underlying infrastructure but attempts to provide an appropriate ontology of agent

types and relationships that will allow the description of a range of situations. Although this

approach is both conceptually elegant and sound since it does manage to describe a wide range

of situations through simple mechanisms its immediately apparent use is in describing existing

systems. It does not, however, aid in building systems.

In a way its strength, in that it lies at a very high conceptual level, is also its weakness since

paths down to practical concerns are not clear. Nevertheless, we believe that SMART is an ideal

candidate to act as a basis for our own work. A particularly useful aspect of SMART is that all

concepts are formally presented through the Z specification language [201]. This leads to very

42 Chapter 2 Models for Agent Infrastructures

few doubts about the exact meaning of those concepts. Our aim is to provide these paths to

implementation without losing any of the expressive powers SMART currently has.

2.4 Inter-Agent Issues: Models of Agent Interaction

Having discussed models for individual agents, we now turn our attention to the issue of sup

porting interactions between agents. At this level we examine general models for interaction

between agents that can facilitate the identification and reasoning about relationships. We dis

cuss SMART [82] once more, since the framework also deals with agent relationships, as well as

Social Power Theory [50], which provides a framework for characterising different types of de

pendencies between agents, and TuCSoN [162], which provides an interaction model in support

of coordination and regulation of interactions. Subsequently, we examine interaction models

stemming from research in agent methodologies [127, 160, 233]. Finally, we discuss the issue

of run-time agent discovery, i.e. how can agents discover what other agents are present within

an environment, which is key to enabling dynamic interactions between agents.

2.4.1 SMART

The SMART framework builds on its model for individual agents to describe relationships be

tween agents, and provides formal definitions for a multi-agent system. In SMART [82] a multi

agent system arises from the interaction between two or more agents where at least one is au

tonomous and where at least one relationship is created due to an entity satisfying a goal for

another entity. An autonomous agent is required because only autonomous agents can generate

their own goals, so without the presence of one a multi-agent system would never be set into

motion. An autonomous agent cannot, however, be expected to satisfy all of its goals on its

own so eventually it will have to seek assistance elsewhere. It is at this point that a relation

ship with another entity, with a view of satisfying a goal, is created and a multi-agent system is

instantiated.

The agent seeking to satisfy the goal, which in SMART is termed the viewing agent, must locate a

target agent to adopt the goal. SMART defines relationships between agents and non-autonomous

entities as engagement relationships and relationships between autonomous agents as coopera

tion relationships. This illustrates the different nature of the relationships between autonomous

Chapter 2 Models for Agent Infrastructures 43

agents since autonomous entities will only enter a relationship if it is in line with their moti

vations, while non-autonomous entities are considered to be predisposed towards satisfying the

goals of any engaging entity. Finally, SMART uses the notion of an engagement chain to repre

sent the situation where a single goal generated by an autonomous agent leads to the creation of

a series of relationships between server entities, resulting in a chain with the autonomous agent

at the start of the chain and the goal that is being satisfied for that autonomous agent dependent

on all members of the chain performing their task. In such engagement chains the engage

ment between an entity and the next link further down the chain is a direct engagement while

the engagements between server agents that are removed more that one link apart are indirect

engagements.

2.4.2 Social Power Theory

Social Power Theory attempts to provide a theory of agent interaction based on the analysis

of the dependencies between agents [144]. Agents become dependent on other agents when

they cannot achieve their goals individually, leading them to interact with others in order to

obtain help. However, since agents may be autonomous entities with their own goals, it is

necessary to influence other agents to adopt those goals. As a result, networks of dependencies

and power between agents are created. Conte and Castelfranchi [59,61] argue that by allowing

autonomous agents to perform reasoning about such networks different models of interaction

such as cooperation, social exchange, coalitions, and so forth, may emerge.

Individual agents are considered as having personal powers, determined by their capabilities,

resources, skills, knowledge or motivations, which they use to satisfy their own goals [50].

When such powers can be used to satisfy goals of other agents or when these powers are not

sufficient to satisfy the goals of the agent relationships of power and dependence, respectively,

are created. Using this approach the different types of relationships are categorised as follows.

• Mutual influence is a situation where two agents depend on each other for the same goal.

• Reciprocal dependence occurs when two agents depend on each other, but for different

goals.

• Unilateral dependence occurs when one agent depends on another for its goals, but the

other agent does not depend on it for any of its goals.

44 Chapter 2 Models for Agent Infrastructures

Using this typology of relationships agents can go on to reason about how they could influence

other agents to adopt goals, for example through the promise of a price or through the threat

of sanctions. According to the number of agents available to an agent to satisfy its goals it can

be described as more or less dependent on the society, while according to whether an agent is

required by a number of other agents to satisfy their goals it can be described as more or less

useful to society.

2.4.3 TuCSoN Coordination Model

The TuCSON interaction and coordination model [162] is based around the notion of agents

interacting through independent coordination media, called tuple centres, spread across Internet

nodes. Each tuple centre is associated to a node and is identified by a name. Tuple centres are

enhanced with a behaviour specification, which defines behaviour in response to communication

events taking place at the tuple centre. These responses are termed reactions and are defined

through a sequence of reaction goals. Reactions lead to changes in the state of the tuple centre.

Agents exchange messages through tuple centres, with the implication being that the perceived

result of a communication from one agent to the other is a combination of the communication

primitive along with the changes caused to the tuple centre by the triggered reactions. Through

these mechanisms coordination and regulation of agent interactions is decoupled from the agents

themselves and made the responsibility of the individual tuple centres.

2.4.4 Agent Methodologies

As we discuss in Chapter 1, a prerequisite to the development of an effective methodology is the

provision of agent abstractions that will form the main artifacts that support the process of design

specification. In this section we examine the most prevalent methodologies which provide such

abstractions.

GAIA and ROADMAP

GAIA is a methodology developed by Wooldridge et al. [233] and is motivated by the need

for methodologies that are specific to agent systems as opposed to general object-oriented anal

ysis and design. GAIA was designed to deal with coarse-grained computational systems, to

Chapter 2 Models for Agent Infrastructures 45

maximize some global quality measure, and to handle heterogeneous agents independent of

programming languages and agent architectures. It assumes static organizational structures and

agents that have static abilities and services. ROADMAP extends GAIA by adding elements

to deal with requirements analysis in more detail, by using use cases and by improving sup

port for handling open systems environments [127]. Moreover, it supports the specification of

interactions based on AUML [16]. Here, we present a unified view of both methodologies.

The highest level concept is that of a system as an organisation of interacting agents. Agents have

roles, which are generic characterisations of specific types of behaviour, such as 'president' or

'employee'. Roles are akin to classes in object-oriented design. Each role has an associated set

of responsibilities, pemlissions, activities and protocols. Responsibilities are the functionalities

that different roles should perform and are associated with safety and liveness attributes in or

der to better characterise their importance or priority. Permissions represent what an agent is

allowed to do, typically what information sources it can access. Activities describe the sort of

computations agents can perform and protocols the ways in which different roles can interact.

ROADMAP extends GAIA by also considering an environment model. This model provides

the basis for describing any environmental changes during the system execution. It consists

of a tree hierarchy of zones in the environment (for example, the Internet, a local computer or

the physical environment of a house) based on object-oriented inheritance and aggregation and

zone schemas, characterized by a textual description of the zones. An environment may contain

static objects (any entity in the environment known to some agent, but with no interaction),

objects (any entity an agent interacts with), constraints, sources of uncertainty (which have to

be analyzed), and assumptions made about the zones.

SODA

The SODA (Societies in Open and Distributed Agent Spaces) methodology departs from the

premise that inter-agent issues are as important as intra-agent issues, and should be treated as

such within the context of a methodology [160].

Agents in SODA are described by agent classes which specify the roles (one or more) that an

agent can occupy, and can be further characterised with information such as cardinality (i.e.

how many agents of one class can exists) or location (with respect to a predefined topological

model). A role defines tasks that an agent occupying the role is responsible for. Tasks are either

46 Chapter 2 Models for Agent Infrastructures

individual (requiring well-defined competence and limited resources) or social (requiring access

to several different resources). Social tasks are assigned to groups of agents with individual

roles defining the responsibility of individual agents within the social task. Finally, interactions

protocols are also associated to roles and define how agents may interact.

Agent societies are characterised by the social tasks that must be undertaken, the set of permis

sions associated with behaviour in the society, the participating social roles and the interaction

rules associated to groups. It is envisioned that societies are designed around coordination media

(such as TuCSoN described above) that regulate the interactions between agents.

Finally, SODA also uses an environment model where resources are mapped onto what are

called infrastructure classes. These are characterised by the services, the access modes, the

permissions granted to roles and groups, and the interaction protocols associated to resources.

Others

Similarly 10 agent toolkits there is also a wealth of agent methodologies, and the ones we

have considered so far are exemplary of the general direction of research. We briefly discuss

some other relevant methodologies below and just provide pointers to yet others, such as MES

SAGE [45], Prometheus [163], and PASSI [65].

MaSE MaSE (Multi-Agent Systems Engineering) [71] is based on UML notation [185], which

it applies to the task of analysing, designing and implementing an agent-based system.

A basic notion of MaSE is that of roles as an aggregation of system goals, where goals

are functional requirements of the system. In order to derive roles MaSE begins by iden

tifying, analysing and decomposing the system goals. Use cases are then used to derive

sequence diagrams that will reveal communication paths and interactions between differ

ent aspects of the system. With goals, use cases and sequence diagrams in place roles are

derived. Roles are then decomposed in order to attach specific tasks that will achieve the

required goals.

Kinny et al. Kinny et a1. provide a methodology clearly directed at BDI agents that also takes

into account object-based techniques. The resulting proposal [132] defines an approach

based on developing three views of the system. An object model that describes the objects

and their associated data structures, a dynamic model describing events, actions and inter-

Chapter 2 Models for Agent Infrastructures 47

actions and a functional model that describes the flow of information in the system. Once

more the ideas of roles is introduced and used in a similar manner as GAIA and MaSE.

Tropos The Tropos methodology is also based on object-oriented techniques, offering pro

cesses for the application of UML mainly for the development of BD! agents [103, 150].

Tropos makes use of the i* concepts, such as actors (where actors can be agents or roles)

and social dependencies between actors (including concepts such as goals, tasks and re

source dependencies) [235]. The use of i* provides clear definitions for basic concepts

that underpin all phases of the methodology enabling the specification of actor and depen

dency models, goal and plan models, capability diagrams and agent interaction diagrams.

2.4.5 Discussion

The models for interaction reviewed here can be divided along two broad lines. On the one

hand, models such as SMART and Social Power Theory, are prescriptive since they provide a

framework for reasoning about and relating different types of interactions. On the other hand,

practically all the models used within methodologies are descriptive, since they provide tools

for describing relationships through roles and interaction protocols, but no means for reasoning

about the implications of different types of relationships. The exception to this categorisation is

TuCSoN, which is more concerned on how interactions can eventually be regulated.

Now, for effective systems design both prescriptive and descriptive tools are required. The for

mer for facilitating reasoning about relationships and their implications to system design and the

latter for specifying such relationships. However, while there is a wealth of descriptive tools, as

evidenced by the wealth of methodologies, the prescriptive tools are not adequate. SMART only

focuses on relationships that are a result of agents sharing a common goal. However, in practice

there are other types of relationships such as conflicts that must be tackled. Social Power The

ory, overcomes this problem since it supports reasoning about both relationships where common

goals are shared as well as other types of dependencies. However, Social Power Theory lacks an

underlying abstract agent model and, in general, links to practical agent development that would

enable us to use it within the context of practical agent infrastructure. In fact, SMART has been

used to describe social dependency networks [82], and we shall return to compare it to our own

work in Chapter 5.

Finally, there is no support within the context of methodologies or the abstract agent models

48 Chapter 2 Models for Agent Infrastructures

discussed for identifying possible relationships at run-time. Such a capability is crucial for

dynamic agent systems, where agents may enter or leave at any point. We aim to address this

issue by building on the SMART abstract model, which will provide the necessary theoretical

underpinning.

2.4.6 Agent Discovery

The problem of dealing with the run-time discovery of agent capabilities has been signalled

relatively early through research into agent technologies [67], and comes under a number of

headings such as capability brokering, matchmaking, or is simply considered as one aspect of

the wider problem of agent coordination. Genesereth and Ketchpel divided the solutions into two

broad categories [100]; direct coordination, where agents requiring services have to handle on

their own the problem of finding a service provider, and assisted coordination, where agents rely

on specialised programs that assist in the process. The direct approach, however, is only effective

in situations where the number of agents is fixed, relatively small and communication with them

can easily take place. In open, heterogeneous environments assistance in the discovery process

is practically a necessity. Accordingly, the bulk of research has focused in creating appropriate

mechanisms for providing assistance in the discovery process.

The space of possible mechanisms, divided according to flows of information between clients,

service providers and the facilitating programs has been comprehensively modeled by Decker

et al. [69]. They call any program that facilitates the matchmaking process a middle agent, and

define a space of nine alternative middle agent mechanisms based on what information each

of the three agents in the process (client, middle agent and service provider) have available.

The information consists of what service is requested and what services are provided. Within

this space the most commonly used types are: brokers, which are aware of what services are

available and what service requests are made and match clients to providers accordingly; match

makers, which provide a list of what services are available to clients that choose from the list

who to contact (i.e. a yellow pages service); blackboards where service requests are posted and

providers choose which client to contact. Wong and Sycara [228] extended this work by intro

ducing six dimensions of middle agents based on information held by a middle agent: who is the

information provider; how is the information dealt with once received; how can the information

be queried; how detailed are queries; and does the middle agent act as an intermediate between

all transactions between the provider and the requester agents.

Chapter 2 Models for Agent Infrastructures 49

A prerequisite to matching a service request to a service provider is that the description of the

service request and the available services is made in an appropriate format that can be under

stood by all the related parties. Furthermore, the agent communication language used needs to

provide appropriate performatives that can deal with service requests. The latter issue is cov

ered by both KQML [95] and the FIPA ACL (www.fipa.org), which have perfomatives such as

advertise, subscribe, recommend, and broker. The former issue has been addressed through the

development of a number of alternative languages. The LARKS language (Language for Ad

vertisement and Request for Knowledge Sharing) [207], which is used within the context of the

RETSINA toolkit [206], describes service requests and advertisements using the same structure,

including information such as the context of the capability description, necessary inputs and out

puts and constraints to the service. Along with the LARKS description language its developers

provide a number of matchmaking algorithms using both syntactical and semantical matchmak

ing. An alternative approach is taken by Cassandra et al. [47], which builds on their experience

with the InfoSleuth system [152]. They criticise the LARKS approach as providing overly de

tailed descriptions and as a result may not scale well. They suggest a layered approach where

capability description is divided into the conversation language used to communicate with the

service, the interface to the service, the semantics of what the service does, and the domain the

service operates over. Specific ontologies can be used for each of these aspects and the capabil

ity description framework allows all these descriptions to be composed into one advertisement.

According to the developers this provides, at the same time, a more flexible approach to the

problem that allows agents to take advantage of specific ontologies for describing different as

pects of their service and leads to a more uniform capability description. The IMPACT [203]

toolkit uses a more simplified approach, with queries of the form sell:tickets(opera)?, but then

employs powerful semantic matchmaking algorithms that draw relationships between concepts,

for example between theatre and opera, based on a thesaurus that can be updated by each agent

participating in the system.

More recently, with efforts to standardise ontology languages through the Web Ontology Lan

guage [143], and initiatives such as Semantic Web Services [4], the research is coalescing around

some well understood mechanisms for discovery [205]. As such, what is important within the

context of our work is to demonstrate how agent discovery and agents that facilitate such dis

covery can be understood within a wider framework of models for agent-based infrastructure.

50 Chapter 2 Models for Agent Infi'astructures

2.5 Organisational Issues: Regulating Agent Societies

The review of models of agents and agent interaction covers the main concerns of our research.

However, we also briefly consider organisational issues since we will attempt to relate such

issues to our work within the context of implementation in Chapter 6. At this level we are

concerned with work that attempts to impose structure upon and regulate agent societies. We

briefly discuss the main proposals coming from the areas of distributed systems management

policies, norms and electronic institutions.

2.5.1 Distributed Systems Management Policies

As distributed systems have grown in the number and complexity of different interacting com

ponents it has become necessary to introduce automated means for the management of the be

haviour of components. Policy-based network management addresses this need by separating

the definition of management policies from their enforcement through automated policy man

agers [200].

Perhaps the most influential academic research in policy specification comes from the concep

tual grounding provided by Sloman [200]. Sloman defines policies as "one aspect oj inJomza

tion which influences the behaviour oj objects within the system". Policies are developed in the

context of a subject influencing a target in a distributed environment. The basic construct for

policies coming from Sloman's work is the notion of authorisation policies that define what is

or is not permitted (positive or negative authorisation) and obligation policies that define what

a manager must or must not do (positive or negative obligation). Obligations are subject to an

interpretation from the manager and, as a result, can be disregarded while authorisations can

not be disregarded. This approach is extended to also cover issues such as role-based policy

specification [141] where policies are defined based on the role of a manager in an organisation.

The work of Sloman has been adopted by agent researchers, most notably Bradshaw et a1. [204]

through KAoS, and combined with Semantic Web technologies so as to provide several of the

required expressive constructs for defining authorisations and obligations and their delegation.

This work also takes into account some of the issues relating to conflicting policies between

different domains, and provides means for resolving them [216].

Kagal et aI., developed the Rei policy language [128], following a more decentralised and adap-

Chapter 2 Models for Agent Infrastructures 51

tive model than KAoS. The dynamic modification of policies is supported using speech acts

and the suggested deployment models for this work examine different scenarios, such as FIPA

compliant agent platforms 2, web pages and web services.

2.5.2 Norms

Norms, at their most basic, can be considered as a means of regulating behaviour between

agents. However, unlike policies which are defined and imposed on agents, norms may emerge

through a variety of means. Norms have been studied extensively within the fields of philos

ophy, sociology and law [184, 214, 215], with such research informing the development of

frameworks of norms within agent-based systems. They are understood through a number of

different perspectives, and we outline some of the main ones here.

• One line of research [13, 28, 221] considers norms as patterns of behaviour that emerge

from the interactions between agents without previous planning. It attempts to account

for the choices agents make and the constrains society imposes through the interaction of

autonomous entities.

• Norms can also be considered as constrains on actions [38, 195]. This is perhaps the

most similar view to policies, since norms specify which actions are forbidden or allowed

within a particular context.

• Social commitments represent agreements to do something between two or more agents [48,

119]. Social commitments can also be considered as norms since they represent the obli

gation of agents to do something, and social pressure can be exerted to make agents fulfill

them.

• Finally, norms are also considered as mental states that may influence agent behaviour [60,

59].

In addition to these alternative approaches to reasoning about norms a number of models have

been developed to allow the specification of norms (e.g. [49,62,234]).

2http://www.fipa.org/

52 Chapter 2 Models for Agent Infrastructures

2.5.3 Electronic Institutions

Electronic institutions attempt to make explicit the structure that should regulate the interactions

between agents by providing specifications for what interactions are possible within a given

context and what are the implications of interactions in terms of commitments created. The

conventions that govern electronic institutions are typically divided into ontological and com

munication conventions [153], social conventions that govern collective interactions [181], and

rules that normalise individual behaviour [182].

At the level of ontological and communication conventions an electronic institution makes ex

plicit what are the entities an institution deals with, such as the goods to be traded, the partici

pants and the roles they occupy as well as issues such as locations, time intervals, and so forth.

Furthermore, the language for interaction is made explicit through access to a common dialog

ical framework [154]. A dialogical framework is composed of a communication language, a

representation language for the domain content and an ontology.

The social conventions are defined by making explicit the possible activities within an institu

tion as a composition of multiple, well-separated, and possibly concurrent, dialogical activities,

each one involving different groups of agents that follow well-defined communication protocols.

Such activities are termed scenes, while changes between scenes are defined by perfomwtive

structures which establish links and traversal paths.

Finally, rules are divided into intra-scene rules, which dictate foe each agent role within a scene,

what can be said, by whom, to whom, and when, and extra-scene rules, which define what paths

agents may follow between scenes depending on their roles.

2.5.4 Discussion

In this section we examined some of the different approaches to regulating heterogeneous and

dynamic systems. While these issues are not the main focus of our research, the need for reg

ulation is one of the motivations behind our aim of providing an appropriate model of agent

interaction. In order for developers to choose an appropriate regulatory mechanisms they should

first be able to identify and characterise the types of relationships that may emerge. We will re

turn to examine the issue of regulation within the context of dynamic relationship identification

and characterisation in Chapter 6.

Chapter 2 Models for Agent Infrastructures 53

2.6 Conclusions

The review chapter highlights several shortcomings in existing research that are broadly related

to the lack of principled approach to constructing both individual agents and the reasoning about

interactions between agents, through abstract specification that is linked to practical implemen

tation.

At the level of individual agents there is a wealth of alternative agent architectures, with each

attempting to better address the issue of supporting complex behaviour in the face of a hetero

geneous environment. However, there is little work in providing overriding concepts, within the

context of agent-based development, that can underpin such efforts so as to enable reuse across

domains and effective comparison between alternative solutions. A notable exception is SMART

that does provide such an abstract framework for describing a variety of agent types. However,

SMART is limited in that its focus is primarily on the description of agents and does not provide

links from those descriptions to agent construction.

At the level of agent interaction, although there is a variety of frameworks, largely stemming

from research in agent methodologies, that enable us to specify issues such as agent roles and

interaction protocols, there are few models that allow us to reason about different types of rela

tionships and the implications such relationships may have on the overall system performance.

In this respect Social Power Theory is particularly useful, however, it is limited by its lack of

reference to a clear abstract agent model. The SMART framework offers support for a specific

type of agent relationships (where agents share a common goal) but it does not address other

types.

In conclusion, principled, reusable models in support of agent construction and reasoning about

agent relationships are key to enabling the construction of multi-agent systems in dynamic,

heterogeneous environments. The review of existing work indicates that while there has been

some effort to provide such models it is limited in its scope in that it only deals with individual

agent construction or agent interactions or its applicability because of few links between abstract

models and practical implementation concerns.

Chapter 3

SMART

"Truth emerges more readily from error than from confusion."

Francis Bacon (1561 - 1626); English scientist and philosopher

3.1 Introduction

Our overarching aim is to provide resuable models that will both support the construction of

individual agents and enable reasoning about the relationships between agents, so as to facilitate

the development of agent-based applications in heterogeneous and dynamic computing environ

ments. In Chapter 1 we indicated that a central task towards achieving this aim is the identifi

cation and, if possible, adoption of an existing conceptual framework that can provide some of

the necessary abstraction to support agent development. As we have have already argued in that

chapter, it is preferable to adopt an existing set of concepts and develop and refine them, rather

than begin afresh. By building on an existing, well established, theoretical framework, we can

avoid reinventing basic notions and adding to the existing multiplicity of different approaches,

as well as benefit from the existing efforts in developing and refining that framework. In addi

tion, the exposition of our proposed models will gain from having to explain the reasons behind

the need for change and progression within a well defined conceptual framework.

However, in order to be able to effectively develop on the basis of an existing conceptual frame

work, it must be amenable to such further development and refinement along the lines of our

research aims. As discussed in Chapter 2, SMART [82] goes some way towards fulfilling these

basic needs by providing a theoretical underpinning that is clearly independent from specific

55

56 Chapter 3 SMART

agent architectures and makes minimal assumptions about agent interactions. From the outset,

it was developed with the aim of providing clear and unambiguous meanings for common terms

and concepts so as to both enable alternative designs to be described on a common basis and

to provide foundations for subsequent development [78]. It has been refined and used over a

number of years, and its capabilities have been demonstrated to some extent through work de

scribing a number of alternative agent architectures and interaction mechanisms, such as BDI

agents [75, 79] and the contract net protocol [77]. The comprehensive set of concepts that

SMART provides, ranging from the description of individual agents up to the relationships be

tween agents, combined with its proven ability to describe a number of existing architectures and

interaction protocols make it particularly suitable, and clearly in line with our aims of providing

reusable models for agent systems.

In this chapter we present a detailed account of the SMART framework [82], since it underpins

all other work in the thesis, by introducing some of the most salient concepts together with

the formal notation used to define them. In addition, we make clear the relationship between

SMART and our specific aims, and thus set the scene for the rest of the thesis. At the same time,

we highlight some of the shortcomings of SMART, within the context in which we aim to use it,

and introduce some initial refinements with reference to the basic notions of agenthood.

The chapter begins with a high-level overview of how the work presented in this thesis extends

and refines SMART, following an identification of the main shortcomings of SMART with respect

to supporting agent-based system construction in dynamic and heterogenous environments. We

then discuss the use of the Z notation [201] within SMART and provide a brief overview of its

main features. The presentation of Z allows us to proceed to the more detailed introduction and

discussion of the foundational concepts of SMART. We begin with the concepts supporting the

description of individual agents. We analyse the notion of agenthood to some extent and refine

it so that it best suits the needs of practical construction. In particular, we distinguish between

extremely simple agents and more complex types by combining SMART'S notion of agenthood

with Wooldridge and Jenning's defining agent characteristics [232]. The resulting agent types

can be more closely related to the types of agents encountered in practical agent design and

construction, and are used to support the models of agent construction developed in Chapter 4.

Subsequently, we introduce and discuss SMART'S approach to describing agent relationships and

identify its shortcomings in this respect. We use these shortcomings to motivate the need for the

work on agent relationships presented in Chapter 5 of the thesis. This chapter concludes with an

overview of the main issues raised and how they will be addressed throughout the remainder of

Chapter 3 SMART 57

the thesis.

3.2 SMART, actsMART, and SMART+

The SMART framework acts as a central point of focus from which we depart to provide the

necessary refinements and extensions so as to deal with our overarching aims presented in Chap

ter 1. Here we provide an overview of the relationship between SMART and the extensions to

SMART that we introduce in the thesis. In order to justify these extensions, we also provide a

brief introduction into the main shortcomings of SMART, while a more detailed analysis of the

shortcomings is developed throughout the chapter.

The SMART framework provides us with a set of abstract, formal models to support the spec

ification of individual agent architectures and multi-agent systems. However, although these

models provide a good departure point for us, they are limited in two important ways .

• Firstly, with regard to individual agents, there is no clear path from the abstract specifica

tion of agent architectures to their practical implementation. This constrains the applica

bility of SMART to the design and construction of agent systems. If we are to achieve our

aim of providing theoretical models in support of practical development we must provide

a clear path from the abstract concepts of SMART to their implementation .

• Secondly, with regard to multi-agent systems, the models are restricted to representing

agent relationships only in those cases where the agents share a common goal. However,

in the types of open multi-agent systems that we aim to support, it is also necessary

to model possible conflicts between agents, and identify opportunities for cooperation

between them (as discussed in Chapter 1).

In addressing these shortcomings, we extend and refine SMART in two directions by providing

both more practical models and adding to the abstract concepts already there, as illustrated in

Figure 3.1. In the figure we represent three different levels of abstraction. Firstly, the conceptual

infrastructure defines the models that we can use to specify an agent system. Secondly, the

specification artifacts represent specific instantiations of those models in order to design an

agent system. Finally, the design and practical implementation represents the resulting multi

agent systems developed using the specification artifacts from the level above. At each of these

three levels we describe what is provided by SMART and what specific extensions we add to it.

58

Conceptual
Infrastructure

j
Specification

Artifacts

1
Design and

Practical
Implementation

Chapter 3 SMART

actS MART SMART SMART+

1-----· 1-----·
I Agent Construction I Goal-Based I General Agent I Agent Models Agent Relationship I Model I Models I Interaction Model I
'- _____ 1 '- _____ 1

1-----· 1-----·
I Agent Architecture I Agent An::hitecture Mu~i-Agent S)Stem Relationship I
I Specification I Specification Specification I Identification and I

I Characterisation
'- _____ 1 '- _____ 1

Multi -Agent Systems Models

Multi -Agent Systems Implementation in dynamic and heterogeneous erironments

FIGURE 3.1: The relationships between actSMART, SMART, SMART+

The SMART framework provides the conceptual infrastructure for describing agents and goal

based agent relationships. These models enable the specification of agent architectures and

multi-agent systems, respectively.

Now, we also require appropriate practical models for agent construction that will provide a

clear path from the abstract agent models of SMART to their implementation. We therefore need

to extend SMART in a more practical direction, while basing this extension on the abstract agent

models already there. In the figure, this extension is under the heading of actSMART, (Agent

Construction Toolkit for SMART). At the conceptual infrastructure level, actS MART provides a

model for constructing agents which, at the specification artifact level, can enable the specifica

tion of agent architectures that can then find practical implementation at the lowest level. The

shading of the actSMART boxes indicates that it lies at a more practical level that is closer to

implementation, rather than SMART'S abstract level.

In addition, we also extend the abstract conceptual infrastructure of SMART through a more

general model of agent interaction that enables the identification and characterisation of a wider

variety of agent relationships. We include these concepts under the heading of SMART+, since

they lie at the same level of abstraction as SMART.

If we are concerned with the development of multi-agent systems operating in dynamic and

heterogeneous environments then we must ensure that, when combined, actS MART, SMART and

SMART+ provide appropriate models and specification artifacts to support design and imple-

mentation.

Before considering this further, however, we must introduce the notation used in the remainder

Chapter 3 SMART 59

of this thesis.

3.3 The Z Specification Language

Formal methods are increasingly being used in a variety of subfields of computer science, as

well as gaining ground in industry [217]. In particular, many formal methods have been con

structed for use in the delivery of greater precision and clarity when defining systems and ap

plications, and a large body of computing research has focused on their elaboration and devel

opment [31, 113,212]. These include various kinds of temporal and modal logics [54], and

specification languages such as Z [201],VDM [124], B [134] and CSP [114], the majority of

which are supported by a range of software tools that facilitate their use and, in some cases,

can even automatically generate software code. As well as specifying systems, and providing a

means for mechanical checking of correctness, type correctness, etc, to reveal inconsistencies,

ambiguities and other problems [56], formal specifications can also be used to specify abstract

concepts to aid in their representation and reasoning about them.

In order to make the presentation of concepts of the SMART framework as unambiguous as pos

sible, and to ensure consistency in the re-use of concepts throughout the framework, Luck and

d'Inverno use the Z specification language [201]. Z enjoys wide recognition, both in industry

and academia, as a powerful means for specification, and is supported by several text books

(e.g., [30, 170,229]), articles (e.g., [26,27]), and industrial case studies (e.g., [2,58]).

The specific benefits offered as justification for the use of Z in specifying SMART are briefly

outlined below.

• Z is more accessible that many other formalisms, since it is based on existing elementary

components such as set theory and first order predicate calculus. This ensures that it is

generally accessible, requiring no special expertise, and reduces the learning curve for

anyone aiming to use the framework .

• Z is sufficiently expressive, allowing for a consistent, unified and structured account of a

computer system and its associated operations.

60 Chapter 3 SMART

3.3.1 Z notation

A Z specification is made up of formal mathematical statements, which are typically combined

with informal explanatory text to complement the formal statements. Providing both formal and

informal descriptions is especially useful since the informal description provides direct access

to the concepts, while the formal presentation ensures that any ambiguities are avoided.

Schemata

Z is based on set theory and first order predicate logic, and its basic unit is the Z schema,

which allows specifications to be structured into manageable modular components. Schemas

are divided into a declarative part that defines variables and their types, and a predicate part that

defines relationships between, and restrictions on, variables. For example, the schema below

defines a Pair to consist of two variables, first and second, with the predicate part declaring that

first should be smaller than or equal to second.

Pair __ _

~
first: N
second: N

first::; second

Modularity and decomposition are facilitated through schema inclusion, by which one schema

can be included in another. We can access variables in a schema through the notation

schema.J1ame. variablcname so that, for example, Pairfirst refers to the variable first in the Pair

schema.

Operations

In essence, schemas describe the admissible states and the operations of a system, which are

defined in terms of changes to the state. Specifically, an operation relates variables of the state

after the operation (denoted by dashed variables) to the value of the variables before the oper

ation (denoted by undashed variables). Operations may also have inputs (denoted by variables

with question marks), outputs (exclamation marks) and preconditions. In the GettingCloser

schema below, there is an operation with an input variable, new?; if new? lies between the

Chapter 3 SMART 61

variables first and second, then the value of first is replaced with the value of new? The value

of second does not change, and the output old! is equal to the value of the variable first as it

was before the operation occurs. The b.Pair symbol is an abbreviation for Pair 1\ Pair' and,

as such, includes in this operation schema all the variables and predicates of the Pair schema

before and after the operation.

GettingCloser _______________________ _

new?: N
b.Pair
old! : N

first::; new?
new? ::; second
first' = new?
second' = second
old! = first

Relations and Functions

To introduce a type in Z when no information about the elements within that type is specified,

a given set is used. This is an important abstraction mechanism that allows us to model things

at the highest possible level. For example, we can write [T REEl to represent the set of all trees

without stating anything about the nature of the individual elements within the type. If we wish

to state that a variable takes on a value, a set of values, or an ordered pair of values of this

type, we write x : TREE, x : JID TREE and x : TREE x TREE, respectivelly. If we have

xs : TREE x TREE, then the expressions first xs and second xs denote the first and second

elements of the ordered pair xs.

Perhaps the most important type is the relation type, expressing a mapping between source and

target sets. The type of a relation with source X and target Y is J1D(X x Y), and any element of

this type (or relation) is simply a set of ordered pairs.

The definition of functions is also standard: relations are functions if no element from the source

is related to more than one element in the target set. If every element in the source set is related

to one in the target, then the function is total (denoted by ----4); partial functions (+7) do not

relate every source set element. If no two elements in the source relate to the same element

in the target set then the function is injective (>----7). Further, if all elements in the target set are

related then the function is surjective (--).

62 Chapter 3 SMART

Definitions and declarations Relations
a,b Identifiers A B Relation
p, q Predicates domR Relation Domain
S, t Sequences ranR Relation Range
x,y Expressions Functions
A,B Sets A-++B Partial function
R,S Relations A-+B Total function
d; e Declarations Schema notation
a == x Abbreviated definition
[aJ Given set

E A ::= b((B)) Schema
I c((C)) Free type declaration

f-Ld I P Definite description
leta == x Local variable definition Axiomatic def

Logic

[[-,p Logical negation
pl\q Logical conjunction Inclusion
pVq Logical disjunction
p=?q Logical implication
p<r}q Logical equivalence
YX e q Universal quantification

[~s ::JX e q Existential quantification Operation

Sets S'
xEy Set membership z.a Component
{} Empty set Conventions
A~B Set inclusion a? Input to an operation
{x, y, ... } Set of elements a State component
(x, y, ...) Ordered tuple before operation
A x B x ... Cartesian product a' State component
IP'A Power set after operation
IP'IA Non-empty power set S State schema
AnB Set intersection before operation
AuB Set union S' State schema
A\B Set difference after operation
UA Generalized union [::"S Change of state (S 1\ S')
#A Size of a finite set 5S No change of state
{d; e ... lpex} Set Comprehension OP19 OP2 Operation composition

FIGURE 3.2: Summary ofZ notation (taken from [81])

The domain (dom) of a relation or function is the set of source elements, while the range (ran)

is the set of target set elements. Examples of these operators can be seen below.

domFunl = {treel, tree2, tree3}
ran Funl = {tree2, tree3}

A summary of the Z notation is shown in Figure 3.2. We will not discuss further details of the

language here but instead provide references to some of the many textbooks on the subject [30,

Chapter 3 SMART 63

170].

3.4 SMART Agents

With the brief overview of the Z notation in place, we can now present the conceptual infras

tructure of SMART, beginning with a discussion of the support provided for the specification of

individual agents. The modular approach used throughout SMART means that these concepts

form the foundation for all subsequent definitions, including agent relationships. This is partic

ularly useful because it is directly inline with our aim of supporting reusable agent models. We

begin with a detailed presentation of these foundational concepts that define the different types

of entities and their relationship to the environment. Subsequently, we discuss SMART'S notion

of agenthood and introduce a refinement that provides more granularity in the different types

of agents that we can define. This refinement is particularly useful for addressing the needs of

practical construction, and its used in Chapter 4 to ground the abstract notions of SMART to

specific agent constructions.

3.4.1 Foundational Concepts

Through SMART, Luck and d'!nvemo set out to address the lack of an unambiguous agent theory

that could be used to describe and relate existing work in the field, as well as act as the basis

through which to develop new work. The use of Z serves to make the work as precise as possible,

but the main advantage of SMART is that it has steered clear from dependencies on any specific

agent architecture and from making any limiting assumptions about the environment or agent

societies. This is particularly useful for our work, since we aim to accommodate heterogeneous

agent societies, in which a variety of agent architectures, and dynamic environments need to be

supported.

At the base of SMART is a view of agents as entities attempting to satisfy goals, where goals

are desirable states of affairs. Entities are hierarchically organised in four different types, with

each type refining the previous one. These entity types are described using three primitive

types, attributes, actions and motivations, which are formally represented as given sets with

no restrictions on how they could be manifest in a particular system instantiation. A short

description of the primitive types follows, before we go on to describe the different entity types.

64 Chapter 3 SMART

Primitives

Attributes are perceivable features of the environment and through them, entities and the en

vironment in which they are situated can be described. For example, if we consider a mobile

device as an entity, then some of the attributes that can be used to describe it are the name of the

owner of the device, the location of the device, and so forth.

[Attribute]

An environment can then be defined as a non-empty set of attributes.

Environment == 11\ Attribute

Actions are discrete events that can change the state of the environment. For example, a mobile

device can perform actions such as communicating with other devices, storing information, and

retrieving online documents.

[Action]

A goal is a desirable state of affairs in the environment, which is described by a non-empty set

of attributes. For example, a goal to find a particular online document can be described as a state

of affairs in which the location of the document is known.

Goal == lP'1 Attribute

Finally, a motivation is any desire or preference that drives an agent to set its own agenda, as

opposed to having goals dictated to it by a user or other agents. It is defined as a given set.

[Motivation]

Entities

The four different entities can now be considered using these primitive types. The Entity schema

below defines an entity to have a set of attributes, a set of actions (their capabilities), a set of

goals and a set of motivations. The only restriction for something to be of type Entity is that it

Chapter 3 SMART 65

must have a non-empty set of attributes, as stated in the predicate part of the schema.

Entity _________________________ _

attributes: JlD Attribute
capabilities: JlD Action
goals: JlD Goal
motivations: JlD Motivation

attributes -::J { }

Objects are entities that have some capabilities, making it possible for them to perform actions

that can change the environment. Thus, the Object schema includes the Entity schema, and

further restricts it by requiring that the set of capabilities is non-empty.

Object ________________________ _

FEntity

Agents are objects that are attempting to achieve goals. This means that there is a desirable state

of affairs in the environment that they are attempting to bring about. Correspondingly, the Agent

schema includes the Object schema and constrains the set of goals to be non-empty. Agents can

have or be ascribed goals that they retain over any instantiation or lifetime. In Sections 3.4.2

and 3.5, we discuss in more detail the issue of how goals can be adopted by, or ascribed to,

agents.

Agent __________________________ __ F Object

The definition of agents given above relies on the existence of other agents to provide the agent's

goals or ascribe goals to the agent. This means that some other entity is always required to

provide or ascribe the goals. In order to ground the entity hierarchy, therefore, entities are

required that can generate their own goals. These agents are defined as autonomous since they

are not dependent on the goals of others, and possess goals that are generated/rom within rather

than adopted from or ascribed by other agents. Such goals are generated by motivations, which

drive an autonomous agent to generate its own goals and guide it in choosing the goals to adopt

66 Chapter 3 SMART

when interacting with other agents. Formally, the AutollomousAgent schema below requires the

set of motivations to be non-empty. We will not discuss the generation of goals by motivated

agents, but an extensive analysis is available elsewhere [82].

[A utonomousAgcni
Agent

motivations -I- { }

In this way, a clear distinction is made between the notions of agents and autonomous agents.

Agenthood is ascribed to any entity that acts in order to satisfy some goal, and motivations are

required to support the self-generation of goals by agents. The ability of an agent to generate its

own goals is what defines it as autonomous. We return to the distinctions between agents and

autonomous agents in Section 3.5.

3.4.2 Neutral Objects and Server Agents

The basic framework described above provides the foundational definitions for entities from

SMART'S point of view. Now, in addition to these basic concepts, SMART also considers how

agents, which are not autonomous, are created. In order to achieve this, the basic framework is

further refined to accommodate more sophisticated analyses of agent interaction by introducing

additional definitions of neutral objects as those objects that are not agents, and server agents

as those agents that are not autonomous.

The relationship between neutral objects and server agents is complementary and dynamic. Neu

tral objects become server agents when they are given or ascribed goals. Thus, once these goals

are achieved, or pursuing them is no longer feasible, the server agent reverts back to a neutral

object. This is a significant characteristic of the framework, since it deals with the fundamental

issue of instantiating agent entities, and we will focus on it later, when we investigate how it can

help to characterise entities within a dynamic and heterogeneous environment. The schemas

below formalise these concepts. A NeutralObject is an Object with empty sets of goals and

motivations while a ServerAgent is an Agent with an empty set of motivations.

Chapter 3 SMART

Autonomous
Agents

SAgents

NObjects
Entities

FIGURE 3.3: The entity hierarchy

NeutmlObject _______________________ _

fOb)ed

ServerAgent __ ___

FAgent

67

The relationships between all the different entity types are illustrated in Figure 3.3, in which

they are shown as a Venn diagram. As indicated, the most general notion of entity subsumes

all other notions, while neutral objects (NObjects) and server agents (SAgents) lie in the space

between objects and agents, and between agents and autonomous agents, respectively.

3.4.3 The Utility of the SMART Agent Models

Having presented the basic SMART agent models for supporting the description of agents, we

now discuss how these models can aid in agent development for dynamic and heterogeneous

agent environments. We do this through an example that brings the abstract notions described

in Section 3.4.1 and 3.4.2 closer to more practical concerns.

Suppose that you want a train ticket to visit London this weekend, according to some preferences

about the trip and ticket price, and are equipped with a personal agent (PA) on your mobile

phone that is able to perform the task of finding an appropriate ticket. Now, your PA is an

autonomous agent with motivations such as minimising on-line connection time (saving network

connection costs), minimising cost for tickets, and providing comfort. Given this task and the

68 Chapter 3 SMART

set of motivations that drive its choice over which goals to achieve, it begins the process of

accomplishing what is required. The first goal generated is to get a list of all the travel agencies

that are able to provide train tickets to London for the weekend. This is achieved by locating a

service in the environment with the capability of providing updated lists of such agencies. Now,

such services can range from sophisticated brokers to simple registries. For the purposes of

this example, we assume that the service is a simple registry, which provides just a basic query

response functionality for agents requiring a list of travel agents and a basic register functionality

for travel agents wishing to advertise. Within the SMART framework, such a simple service can

be modeled as a neutral object which, when engaged by the PA, instantiates a server agent with

the goal of providing the required list of travel agents. Once the goal is satisfied, the service

reverts to a neutral object if it is not being engaged by any other entity.

Having received the list, the PA attempts to contact the travel agencies. The travel agencies

themselves can also be a mixture of sophisticated autonomous agents, with motivations, to sim

ple agents that can only identify whether a ticket is available and provide it if the price is paid.

Those behaving as neutral objects can be accessed directly to instantiate server agents, while

for those which are autonomous agents the PA cannot directly access them, but must come to

an agreement with them with regard to travel requirements and price. Having achieved the goal

(limiting the number of calls so as to satisfy the motivation of minimising on-line time, and

purchasing a cheaper ticket according to the other motivations), the PA reports the results and

waits for further instructions.

This example illustrates some key points of the SMART framework.

• In heterogeneous computing environments, not all entities are sophisticated agents, and

some provide very basic services, such as the registry service. When attempting to model

such basic services within the context of a multi-agent application, we require abstractions

that will not limit us with regard to the types of agents that we can model. Neutral objects

and server agents offer just this capability. By considering a basic service as a server agent

just when it is engaged to achieve a goal, we are reusing the concepts of agents, goals and

relationships between agents, thus retaining the analysis of the system within the SMART

framework. Such a capability is key in supporting our aim of reusable models for agent

infrastructure .

• Similarly, the types of interactions between entities can also take different forms. They

could involve one agent having complete control over another, or cooperation between

Chapter 3 SMART 69

two autonomous agents. The different forms of interactions and the resulting relation

ships that can be formed in a multi-agent system are discussed by Luck and d'Inverno

in [82] and we review them in section 3.6.2. Once more, being able to have these distinc

tions is crucial in a heterogeneous environment, since these distinctions allow us to more

accurately capture the variety of situations that may arise .

• Finally, through motivations, SMART allows us to clearly model the difference between

agents that are able to generate and choose their own goals and those that simply attempt

to achieve those goals assigned or ascribed to them. This too, allows us to better model

the range of situations that can arise, as we have seen in the example.

3.5 Refining SMART: Types for construction

Although SMART provides clear definitions for agents, it does not do so with the required level

of granularity to distinguish between extremely simply entities and more complex ones that are

not autonomous. However, this granularity is required to provide clear guidelines for develop

ers attempting to model the variety of entities encountered in the types of applications we wish

to support. In this section we address this issues by analysing the notion of agenthood within

SMART, identifying its shortcomings, and contrasting it with the characteristics of agents identi

fied by Wooldridge and Jennings [232] that is widely used within agent literature. Through the

analysis, we indicate the shortcomings of both approaches when taken in isolation, and attempt

to provide an explanation that combines the two. We argue that the combined explanation offers

a better guide for agent developers, providing a clear understanding of agenthood which, as ar

gued in Chapter 1, is one of the essential stepping stones towards reusable abstractions for agent

construction.

3.5.1 Agenthood

SMART aids in describing agent systems by providing a conceptual framework of agent types

based on the premise that the defining characteristic of agenthood is the "doing for someone".

Here, as long as an entity is fulfilling a goal for another agent, then that entity can be considered

as an agent. The advantage of this approach is that it covers any situation because of the clarity

of the rule. It is enough to identify whether an entity is satisfying some goal in order to declare

it an agent. In fact, Luck and d'Inverno state that it is necessary for "a viewing agent to analyse

70 Chapter 3 SMART

both the server agent and the agents engaging it in order to avoid conflict" ([81], p.4S). When

a goal is ascribed to an entity, SMART does not require that goal to be explicitly represented

within the entity actually fulfilling the goal but, rather, "the agentness of the object depends on

who is currently viewing the object"([81], p.2S). The implication is that any entity, irrespective

of its structure, can potentially be seen as an agent as long as some other agent views it as

fulfilling some purpose. Although this helps in analysing the relationships between agents and

in allowing agents to reason about other agents, it does not help in constructing agents, since it

says little about the internal structure of agents, other than implying that they must be able to

perform their stated capabilities through appropriate mechanisms.

The difficulty of addressing agent construction within the SMART framework is that agenthood

does not just depend on structural features, but also on the relationships with other agents. In

contrast, the widely accepted Wooldridge and Jennings characterisation [232], takes an actioll

based view of agenthood, nominating anything that presents the characteristics of autonomy,

pro-activity, reactivity and social ability as an agent. This presents its own problems since the

interpretation of these characteristics is left open. For example, autonomy can be interpreted

both as the ability of an agent to choose and generate its own goals as well as its ability to

independently decide which actions to perform towards achieving a specific goal.

Neither the action-based view nor the weak structural-based and strong relationship-based views

of SMART are sufficient on their own. What we require is an account of agenthood that combines

the two, to provide a clearer understanding of the artifacts to be developed when using an agent

oriented approach. Next, we introduce a possible means to combine these views that will provide

the necessary understanding of the basic notion of agenthood to enable us to develop an agent

construction model.

The first step towards reconciling the two approaches is to clarify SMART'S view of agenthood

as the "doing for someone". This view of agenthood is not itself a problem, but it is not supple

mented by a clear account of the differences, in actual internal structural elements, between very

simple objects (with absolutely no reasoning capabilities) satisfying goals, and objects perform

ing more complicated tasks, but with no goal-generation mechanisms of their own. Being able

to differentiate between the two at a structural level can provide clarity necessary for a construc

tion model. In this following subsection we distinguish between passive agents, which have no

reasoning capabilities, and active agents. In Chapter 4 we map these concepts to the agent con

struction model, illustrating how these abstractions are related to the practical construction of

Chapter 3 SMART 71

agents. Here, we begin by looking at very simple objects and explain how we can differenentiate

them from more complex objects which are not yet autonomous agents.

3.5.2 Passive Agents

Luck and d'Invemo use the extreme example of a teacup acting as an agent for someone who is

using it to contain their tea to illustrate the point that even the simplest entity can be considered

an agent as long as it is serving a purpose. When a person uses a teacup to hold their tea,

the teacup is serving a purpose for its user. In analytical terms, the argument goes, the user

has ascribed or imposed agenthood on the teacup. If someone else passes by and picks up the

teacup (e.g., a waiter cleaning tables), the relationship between the teacup and its user is broken

and the user's goal can no longer be satisfied. The waiter, on the other hand, does not view

the teacup as serving any purpose until he or she is notified by the teacup's user that they have

inadvertently interfered with the user's goal. The waiter can then also ascribe agenthood to the

teacup since it is serving the purpose of fulfilling a customer's goal (the original user of the

teacup). By ascribing agenthood, therefore, relationships can be better understood and formally

analysed within a coherent agent-based view.

However, in this scenario, the teacup is completely passive. It is simply containing the tea

because of its physical make-up, which enables it to contain fluids. The cup is in no way aware

of the fact that it is satisfying a goal and the cup has no choice as to whether or how it should

fulfill the goal. In fact, the greatest part of the job of fulfilling the goal of containing the tea is

done by the cup's user. The user identifies that the cup is able to contain fluids, takes care in

placing the tea in the teacup and makes sure that the teacup is upright so that the tea does not

spill.

3.5.3 Active Agents

A more interesting class of agents includes those that actively take part in the achievement of

goals. To illustrate this situation we develop a scenario in which both a passive and an active

entity are used to achieve similar goals. Imagine that Luc wants to notify a colleague, Mike,

about a meeting. Luc uses his wireless device to send a message to Mike about the time and

place of the meeting.

In one scenario, illustrated in Figure 3.4, Mike has a relatively simple, limited capability, mobile

72

~
1. Luc sends message to Mike:
"Meeting at 15)0 in Seminar Room 1"
~

Luc

Mobile Phone (Passive Agent)

2. Mobile ~one displays
message on screen

FIGURE 3.4: Passive agent

Incoming
Message Sensor

User Notification

Chapter 3 SMART

1. Luc send message Agent Arcntecture----_

Luc

to Mike: "Meeting at 15)0
in Seminar Room 1"

PDA

2. PDA displays message on
screen, updates agenda and
forwards message as e-mail to
Mike.

Incoming
Message
Sensor

t
Message
Mailbox

User
Notification

Function

FIGURE 3.5: Active agent

User's
Preference

V Filter

t
Message
Analysis ,
Agenda
Update
Function

phone. The mobile phone can only receive messages and display them on the screen. Once the

message has reached the mobile phone, Luc's device ascribes to the mobile phone the goal of

getting the message to Mike. The mobile phone, however, is not aware of this. It simply receives

a message and displays it. If Mike happens to see it, then the goal will be accomplished. Thus the

mobile phone is acting as a passive agent since it is not actively taking part in the achievement

of the goal.

In a second scenario, Mike is equipped with a much more sophisticated wireless Personal Digital

Assistant (PDA). Once the PDA receives a notification message from Luc's agent, it is not only

ascribed a goal by Luc but it actively takes it upon itself to accomplish the task in a manner it

deems appropriate. As shown in Figure 3.5, this may include analysing the message and acting

upon it by updating Mike's agenda or taking care to attempt to inform Mike through alternative

means such as sending an e-mail to him as well. In other words, the PDA takes some external

Chapter 3 SMART 73

description of a goal (notify Mike about the meeting) and translates it into a series of actions

based on some in-built knowledge and the current state of affairs in the environment, such as

Mike's preferences and position. The PDA is an active member in the chain of events that cause

Luc's goal to be satisfied.

3.5.4 Self-Direction and Autonomy

Both the mobile phone and the PDA are similar in that they have no explicit internal represen

tation of who provided the goal nor that they are in fact satisfying a goal. The crucial difference

between them lies at the level of interference from the part of the device towards the achievement

of the goal. Although both entities can be considered as agents from the users' perspectives (in

our case Luc and Mike) since they are satisfying a goal, we must recognize that their contri

bution to the goal is very different and thus deserves a distinction at the system design level.

Furthermore, we should also recognise that the second example represents just one point on a

scale of complex behaviour.

In order to distinguish the different types of behaviour, we introduce the term self-direction,

which implies that an entity can, to a certain extent, direct its actions on its own. A self-directed

agent is one which, given a goal, uses reasoning capabilities, built-in knowledge, and infor

mation about the environment in order to achieve that goal. Note that this is distinct from an

autonomous agent since the latter is able to generate its own goals and decide whether or not

to adopt a goal on its own. Of course, once an autonomous agent has decided which goal to

achieve, we can discuss the extent to which it is able to take decisions about which actions to

perform to achieve that goal. Therefore, an autonomous agent can be self-directed but a self

directed agent is not necessarily autonomous. In their characterisation, Wooldridge and Jennings

do not make such distinctions between self-direction and autonomy, but choose to use the notion

of autonomy without qualifying it further.

Interestingly, both self-direction and autonomy can be understood in terms of the degree to

which an agent exhibits the other characteristics, namely reactivity, proactivity and social abil

ity. These distinctions are important in that they allow us to better characterise the different

types of agent entities that we construct, something that is particularly useful when attempting

to construct agents and analyse the resulting systems. We describe the relationships between

reactivity, proactivity and social ability, and self-direction and autonomy below.

74 Chapter 3 SMART

Passive Agent Active (Self-Directed) Agent Autonomous Agent

No inherent reactivity. proactivity or social Reactive in adj.Jsting actions to changes Can exhibit all the characteristics of an
ability. in environment. \lith regards to goals active agent.

being pursued.
Goals ascribed to them. Reactive in adjusting motivations to

Proactive in generating subgoals or changes in the environment.
Agent status depends on choosing actions in order to achieve goal.
viewing agent. Socially able to contact other agents

Socially able in contacting other agents in based on goals generated through
order to achieve its goals. motivations.

Goals assigned to them. Goals adopted or generated by agent.
Agent status can be verified both through
extemal and intemal examination of
behaviour.

FIGURE 3.6: Agent characteristics

Self-Direction For self-direction, reactivity can be understood as the ability of an agent to react

to changes in the environment while attempting to achieve its goal. For example, Mike's

PDA should stop trying to notify Mike about the meeting through different means once it

is aware that Mike has read an e-mail about the meeting. Pro activity is the extent to which

an agent is able to choose actions and work towards achieving them in order to achieve

a primary goal. For example, Mike's PDA is proactive in as much as it performed the

actions of updating Mike's agenda, sending an e-mail to Mike, etc. Finally, social ability

is the extent to which an agent is able to take advantage of other agents in order to achieve

its goals.

Autonomy For autonomy, reactivity can be understood as an agent's ability to adjust its moti

vations, which may very well lead to alternative decisions about which goals to follow,

based on changes in the environment. Proactivity can be understood as an agent's ability

to generate goals to satisfy its motivations. Finally, social ability can be seen as an agent's

ability to contact and cooperate with other agents in line with its motivations.

Given this interpretation, we can construct a table, as illustrated in Figure 3.6, in which the

characteristics of each type of agent entity are listed. It can be used to identify self-directed en

tities by investigating to what extent they display any of the three components of self-direction,

recognising, however, that there cannot be an overriding function, suitable for every case, that

will provide the degree of self-direction of an entity. For example, if we consider the mobile

phone, one could raise the argument that the mobile phone is indeed actively participating in the

achievement of the goal since the message has to go through several stages in being changed

from signals received on a radio frequency to text on the screen. The point, however, is not

to exhaustively analyse each action an entity performs, but rather to find the appropriate level

Chapter 3 SMART 75

of abstraction for the application at hand. The mobile phone engineer will certainly not gain

anything by saying that the mobile phone is a passive entity. The designer of an agent-based

system, however, of which one participating entity is the mobile phone, would be able to better

understand the participation of the mobile phone in the overall system design by considering it

as an essentially passive entity.

In conclusion, our aim is not to provide a quantitative measure of self-direction but rather to

provide a guide to distinguish between passive, self-directed and autonomous agents. This dis

tinction allows us to better reason about the system as a whole and identify aspects that require

more attention or are perhaps more prone to fault. For example, when analysing a situation in

which both passive and active entities agents take part, a developer could first focus on the active

entities and make sure they perform the right tasks. We return to discuss these issues in the next

chapter, in which the an agent construction model is introduced, and its relevance to the notion

of self-direction is discussed.

3.6 Relationships: SMART to SMART+

Having discussed how SMART describes single agents, we now turn our attention to what SMART

has to say about relationships between agents. The ability to model relationships is, of course,

crucial for multi-agent systems. While the task is challenging even when dealing with static

multi-agent systems, where the number of agents and the relationships between them do not

change very often, it is even more important in heterogeneous and dynamic environments where

the number and type of relationships should be expected to be in continuous flux.

The SMART framework focuses on modeling relationships between agents that arise when one

agent seeks aid from another to achieve a goal. Starting from this premise, SMART then provides

abstractions for describing the differences between relationships that include a server agent and

relationships between autonomous agents. We examine these abstractions here, starting from the

definition a multi-agent system and then go on to justify the need for describing relationships

that are not the result of one agent aiding another, something that SMART does not adequately

handle and which we address through SMART+ in Chapter 5.

76 Chapter 3 SMART

3.6.1 SMART Relationships

Foundational Concepts

According to SMART, a multi-agent system arises from the interaction between two or more

agents when at least one is autonomous and is interacting with at least one other agent that

is satisfying a goal for the first agent. The MultiAgentSystem schema below formalises this

definition. A multi-agent system can contain any number and type of entities, with the constraint

that at least one is autonomous and there is at least one other entity such that there is some

overlap between the goals of the two entities.

MultiAgentSystem ____________________ _

entities : JPl Entity
objects : JPl Object
agents : JPl Agent
autonomous agents : JPl A utonomousAgent
neutralobjects : JPl NeutralObject
serveragents : JPl ServerAgent

autonomousagents ~ agents ~ obJ·ects ~ entities
agents = autonomous agents U serveragents
objects = agents U neutralobjects
#agents ;:::: 2
#autonomousagents ;:::: 1
:3 aal, aa2 : agents. aal.goals n aa2.goals i- { }

An autonomous agent is required because only autonomous agents can generate their own goals,

and without the presence of one of them, a multi-agent system would never corne into existence.

An autonomous agent may not, however, be able to satisfy all of its goals alone and may have

to seek assistance elsewhere. It is at this point that it interacts with another entity, with the aim

of satisfying a goal, and a multi-agent system is instantiated. The agent seeking other agents to

satisfy a goal, the viewing agent, must locate a target agent to adopt the goal. Through SMART'S

entity hierarchy, three distinct possibilities arise that are explained below and illustrated in Fig

ure 3.7 .

• If the target entity is a neutral object, then the viewing agent can transfer its goal to the

neutral object, thus instantiating a server agent.

• If the target entity is a server agent, this implies that it is already satisfying a goal for some

Chapter 3 SMART 77

/

Target
Neutral
Object

t L~

Viewing
Agent

Disengaged
Neutral
Object

Viewing
Agent

Engaged
Server
Agent

Engaging
Agent

Engaging
Agent

Viewing
Agent

Autonomous
Agent

---I>
Goal transfer

-----------------..
Agent Analysis

Agent Engagement

FIGURE 3.7: Goal adoption by neutral objects, server agents and autonomous agents

other entity. The viewing entity must, therefore, analyse both the target entity as well as

the agents it is serving before attempting to engage it.

• If the target entity is an autonomous agent, the viewing entity must persuade the au

tonomous agent to adopt its goal. Furthermore, the goal will only be satisfied if it is

consistent with the motivations of the agent, which will ultimately determine which goals

an autonomous agent can generate.

Engagements and Cooperations

SMART defines interactions between agents and non-autonomous entities as engagements, and

interactions between autonomous agents as cooperations. The difference in terminology il-

lustrates the different nature of the interaction between autonomous agents, since autonomous

agents will not interact unless the goal in question is consistent with their motivations, while

non-autonomous entities are considered to be predisposed towards satisfying the goals of any

engaging entity.

A direct engagement is defined to be an engagement between a client and a server agent with

respect to a goal., as defined by the DirectEngagement schema.

DirectEngagernent __ __

client: Agent
server: ServerAgent
goal: Goal

client of- server
goal E (client.goals n server.goals)

78 Chapter 3 SMART

In addition, SMART uses the notion of an engagement chain to represent the situation in which

a single goal generated by an autonomous agent leads to the creation of a series of dependent

interactions between server entities, resulting in a chain with the autonomous agent at the head

of the chain, and the goal that is being satisfied for that autonomous agent dependent on all

members of the chain performing their task. In such engagement chains, the direct engagement

between an entity and the next entity further down the chain is a direct engagement, while the

engagements between server agents that are more than one link apart are indirect engagements. l

Engagement chains allow a more refined categorisation of the different kinds of relationships

between agents. For example, in order to represent the situation in which one agent has complete

control over another, SMART defines an ownership relationship as one in which an agent, c,

owns another agent, s, if, for every sequence of server-agents in an engagement chain in which

s appears, c precedes it, or c is the autonomous client that initiated the chain. This definition is

then specialised into direct ownership (when an agent owns another and it directly engages it,

unique ownership (when an agent directly owns an agent and no other agent is engaging it) and

specific ownership (when an agent owns another and the owned agent has only one goal).

A cooperation between autonomous agents is modeled as a goal, the autonomous agent that

generated the goal, generatingagent, and the non-empty set of autonomous agents that adopted

the goal, cooperatingagents.

Cooperation __________________________ _

goal: Goal
generatingagent : A utonomousAgent
cooperatingagents : lP 1 A utonomousAgents

goal 3 generatingagent.goals
Vaa : cooperatingagents • goal E aa.goals
generatingagents qt cooperatingagents

Using the definitions provided by SMART for describing relationships between agents we can de

scribe a wide range of interaction scenarios. The notion of engagements facilitates the descrip

tion of scenarios that involve neutral objects while cooperations describe interactions between

autonomous agents. Finally, engagement chains allow us to describe the interactions between

entities that arise as a result of a goal generated by an autonomous agents.

I Note that we do not present all formal definitions here, but direct the interested reader to [82], where all formal
definitions are presented.

Chapter 3 SMART 79

Despite its current expressive capabilities the framework is still limited when attempting to deal

with the range of situations that may occur in dynamic, heterogeneous environments. Below, we

discuss the problems this limitation creates and how they can be overcome.

3.6.2 Refining SMART Relationships

SMART provides a good starting point for the analysis of interactions between agents that builds

upon the basic concepts of entities and goals. As opposed to the issue of agents, where some

of the concepts require clarification to suit our purpose at this level there does not seem to be

a need for further clarification of existing concepts. However, there are some issues which are

not covered by SMART, relating to a broader understanding of multi-agent systems within the

context of dynamic, heterogeneous agent systems. It is on these issues that we will focus later

on in the thesis, but we discuss the limitations of SMART in relation to these here.

The main shortcoming of SMART is that relationships are defined based on agents engaging

other agents in order to achieve a goal. The adoption of a goal by an autonomous agent or the

ascription of a goal to a neutral object is what leads to a relationship and, as a result, gives rise to

a multi-agent system. However, a more complete understanding of relationships should take into

account relationships that are not the result of agents cooperating to achieve goals. For example,

when an agent queries another agent about its capabilities the agents are interacting but they are

not sharing a common goal. Furthermore, every act of an entity within an environment will, in

most cases, lead to the consumption of resources thus affecting other entities in the environment.

This can be thought of as a relationship of agents through the environment. All these aspects of

interactions between agents are not currently handled in SMART and our aim will be to address

them by defining appropriate models for identifying when such relationships may occur and then

characterising such relationships. We examine these issues in Chapter 5.

3.7 Conclusions

This chapter sets the scene for the rest of the work described in the thesis by identifying the

relationships between the SMART framework, whose concepts underpin all other work presented,

and the extensions to SMART we aim to introduce. SMART is particularly suitable because it

enables us to model both a wide range of different types of agents, a feature inherent to the kind

80 Chapter 3 SMART

of domains for which we wish to support application development, and a variety of ways that

these agents can interact with each other based on their types.

At the same time, SMART does not address all our concerns, and we have identified in this

chapter where it falls short of our aims. This analysis was divided along the lines of support for

describing individual agents and support for describing agent relationships.

With respect to individual agents, SMART does not adequately address the issue of agent con

struction so as to support practical development. We aim to address this by an extension of

SMART towards a more practical direction in Chapter 4. Furthermore, we argue that some fur

ther clarification of the basic agent concepts is required in order to make clear the distinctions

between extremely simple entities and more complicated entities that are not autonomous agents.

As a result, we introduced the notion of self-direction, which indicates that agents have some

degree of freedom in choosing how to achieve a goal, as distinct from the notion of autonomy,

which indicates that agents have some degree of freedom in choosing which goal to achieve.

Using this notion we defined passive agents as those agents with no self-direction and active

agents as those agents with some degree of self-direction. These clarifications can aid the devel

opment process by enabling the representation of the range of entities that may be encountered

and providing indications as to where designers must focus their efforts.

With respect to agent relationships, SMART only addresses the issue of modeling agent rela

tionships that arise as a result of the transfer of a goal or the adoption of a goal. However, in

dynamic heterogeneous environments we must be able to model relationships where no goal is

shared between the agents, such as the case where one agent interferes with the goal of another

agent. We aim to address this by an extension of SMART that introduces a more generalised

model of agent interaction, which complements the existing abstract models in Chapter 5.

Finally, this chapter demonstrates the utility of adopting existing work of possible, since SMART

provides a rich set of concepts to build upon, allowing us to benefit from prior effort, and at

the same time the justification for changes or extensions to SMART had to be based on a clear

identification and expositions of shortcomings, providing us with a clear argument for the need

of further development.

Chapter 4

actSMART : Agent Construction Model

"Deliberate before you begin; but, having carefully done so, execute with vigour."

Caius Sallustius Crispus (86BC-35BC); Roman historian

4.1 Introduction

In this chapter we introduce actS MART, an agent construction model that allows us to create

specifications of agent architectures. The aim is to provide a clear link between the abstractions

discussed in the previous chapter and their use in creating reusable models of agents that can be

implemented in a practical setting.

Central to the development of agent systems is the architecture of the individual agents them

selves. Not surprisingly, a significant amount of effort has gone into developing agent architec

tures based on a variety of paradigms such as deliberative architectures, reactive architectures

and hybrids of the two. However, as discussed in Chapter 1, recent changes in computing envi

ronments complicate the task of designing agent architectures, since we need to enable agents

to operate in a variety of different environments that may place different and varying demands

and limitations on them. This also leads to the need to develop and support a range of different

agent architectures within a single application, as well as to modify an architecture as demands

change. Such modifications may need to take place both offline as well as dynamically at run

time, raising three important issues, outlined below .

• First, having to deal with a number of different architectures for a single application can

81

82 Chapter 4 actS MART : Agent Construction Model

pose considerable difficulties for application developers. It inevitably increases the com

plexity of any design, since different architectures may require different types of analysis,

and makes it harder to obtain a consistent and coherent view of the system using the same

abstractions throughout. For this reason we argue that developers should have access to

tools that allow the same types of analysis throughout the application, irrespective of the

type of architecture.

• Second, without a consistent way of describing and constructing agent architectures, com

parison between them is not facilitated, making it harder to decide which is more suited

to a specific task. This has an impact both at the practical application development level

as well as at the more general research level. In fact, SMART was in part developed to

address this. We aim to extend this analytical capability beyond the level provided by

SMART, to focus on the actual construction of agents .

• Finally, since we aim to deal with heterogeneous environments, the ability to reuse solu

tions becomes increasingly important if we are to simplify the task of application devel

opment for such environments. The reusability of architectural solutions across domains

can be facilitated through a common means of describing and constructing them.

In this chapter, we address just these issues by presenting a model for agent construction that

is conceptually grounded and architecturally neutral. It is conceptually grounded by the un

derstanding of agent systems provided through SMART, and it is architecturally neutral because

several different agent architectures can be expressed through the constructs provided. In pro

ducing such an agent construction model, we also aim to reconcile research in agent architec

tures (traditionally situated within the intelligent agent research community) with the demands

of software engineers who require flexibility in implementation, coupled with a sound under

standing of the underlying principles of agent-based systems. Thus, we enable agent systems

application development to adopt a consistent way of constructing a variety of agent architec

tures.

We begin by outlining the design approach for the development of the agent construction model.

The approach is formulated by first defining and justifying the need for four key features that

the model should support. In particular, we argue for the need of supporting an abstract agent

model, architectural-neutrality, modularity, and the ability to reconfigure at run-time. The ab

stract agent model and architectural-neutrality are, in part, inherently supported by the existing

concepts of SMART and the refinements we introduced in Chapter 3. In order to also support

Chapter 4 actSMART : Agent Construction Model 83

modularity and reconfigurability we, firstly, introduce a distinction between an agent's charac

teristics (attributes, capabilities, goals, and motivations), structure and behaviour, which enables

us to access and modify each separately, and, secondly, use a component-based approach to

agent construction. Finally, before presenting actS MART in detail we also discuss the relation

between actS MART, SMART and application development.

With a discussion of our design approach in place, we then provide a detailed description of

the agent construction model. In essence, an agent architecture is specified through an agent's

attributes, capabilities, goals and motivations (characteristics), the components that make up

the architecture (structure), and information and control flow between components (behaviour).

These different aspects are managed by an agent shell, which allows the developer access to

each aspect.

Throughout the discussion, we illustrate various issues by examples. However, we realise that it

is difficult to illustrate the totality of the approach without substantial examples, so we provide

two more extensive examples in the final section of this chapter. The first example presents

a basic architecture for an agent participating in on-line auctions, providing a quick overview

of actS MART in use. The second example begins with the definition of a negotiating agent

architecture, which we then expand to also deal with argumentation. This example illustrates

how actS MART enables us to reuse architecture designs.

4.2 Design Approach

4.2.1 Desiderata for an Agent Construction Model

In order to address the concerns raised above and provide some statement of requirements for

the development of the agent construction model, we identify four desiderata. Although the set

is not exhaustive, we consider it to be the minimum necessary set of of requirements.

Abstract Agent Model An agent construction model must be based on some understanding of

how we can model agents in a manner that is independent of the agent architecture. This

allows the comparison of alternative architectures at this more abstract level, ultimately

providing application developers with more informed choices as to which architecture is

suitable for the domain in question. In our case, the SMART framework provides such an

abstract agent model (as discussed in Chapter 3).

84 Chapter 4 actS MART : Agent Construction Model

Architecturally neutral The construction model should not lead to the construction of only a

limited range of agent types, but should allow the widest possible range of architectures

to be defined using the same basic concepts. In order to achieve this, there are two possi

ble avenues to explore. One option is to define a generic agent architecture and describe

other architectures in terms of this generic architecture. I Apart from the inherent dif

ficulty in constructing any general, all inclusive model, the drawback of this approach

is that there may be features of other architectures that cannot directly be translated to

the generic one. The second option is to provide an architecturally-neutral model, so as

to avoid this translation problem. Here, the challenge is to provide a model that is spe

cific enough so that it actually offers something to the construction of agents, but general

enough to support the development of a wide range of architectures. Through an appro

priate architecturally-neutral model, we can consider a range of architectures based on a

common set of agent-related abstractions and without losing expressive capability.

Modularity The model should allow for modular construction of agents. This is necessary

both in order to meet general software engineering concerns and to delineate clearly the

different aspects of an architecture. As discussed in the next section, our approach calls

for a separation between describing agents in terms of their characteristics, their structure

and their behaviour. Such a fine-grained approach can lead to a better understanding of

the overall functioning of the agent as well as how it can be altered, since the different

aspects of the architecture are clearly identified and the relationships between them made

explicit.

Run-time reconfiguration The reality of current computing environments is that changes are

often required as the system is running. With large systems that can contain dynamic,

complex dependencies between various parts, it is crucial to be able to reconfigure agents

at run-time. Reconfiguration may mean providing more functionality to an agent or chang

ing the way it behaves in order to better meet application requirements.

4.2.2 Description, Structure and Behaviour

In the previous chapter, we indicated that while SMART is suitable for describing agents, it

lacked the necessary features for constructing agents. For the purposes of SMART, this was not

a problem since the aim was to provide a theoretical framework that would allow the description

1 Based on Bryson's suggestions, as discussed in Chapter 2.

Chapter 4 acts MART : Agent Construction Model 85

of a number of different agent systems. However, for our purposes it is crucial to be able to

provide tools that facilitate the construction of agent architectures. Nevertheless, we do not want

to replace the descriptive capabilities of SMART. Rather, we complement them with additional

aspects, which are identified below.

SMART allows systems to be specified from an observer's point of view. Agents are described

in terms of their attributes, goals and actions, not in terms of how they are built or how they

behave. In other words, the focus is on the what and not the why or how. We call this a descrip

tive specification, since it essentially describes a situation without analysing its causes nor the

underlying structures that sustain that situation. For example, if we return to the issue of neu

tral objects becoming server agents when engaged, we can see that SMART says nothing about

what happens structurally within the entity that has changed status, nor how the mechanisms

controlling its behaviour have brought about this change. These are the types of issues we need

to address within a construction model. Therefore, along with the descriptive specification we

need to have the ability to specify systems based on their structure, i.e. the individual building

blocks that make up agents, as well as their behaviour. We call these other views the structural

specification and the behavioural specification, respectively.

The structural specification enables the identification of the relevant building blocks or compo

nents of an agent architecture. Different sets of building blocks and different ways of connecting

them can enable the instantiation of different agent types. By contrast, the behavioural speci

fication of an agent addresses the process through which the agent arrives at such decisions as

which actions to perform. Along with the descriptive specification, these specifications provide

a more complete picture of the system from different perspectives. It is interesting to note that

it is possible to begin from anyone of these views and derive the remaining two, but the cor

respondence is not one-to-one. Several behavioural and structural specifications could satisfy a

single descriptive specification and vice-versa.

For example, let us consider an agent that is designed with the purpose of participating in auc

tions in order to buy a specific item. A descriptive specification of such an agent may state that

the agent belongs to a user, has certain rights with regard to buying items from auctions, is able

to keep track of the progress of auctions, has the goal to buy an item of certain quality and at

a certain price, and so forth. A behavioural specification may state that this agent begins its

operation by collecting information about active auctions, then searches for those auctions that

have items that fit its specification, and decides which is the more appropriate item before finally

86 Chapter 4 acts MART : Agent Construction Model

Descriptive Specification Behavioural Specification Structural Specification

Attributes: Step 1 : Adive Auction Information Collection
Agent ONner = Ronald Ashri Collect info on active auctions
Allowed to 6.Jy = True Step 2: Auction Bid Status Component

Search for latest Fear! Jam CD
Capabilites: Step 3: Auction Btaluation Component
Search auction sites Evaluate Auctions
Buy Items Step 4: Bid Placement Component

Place Bids
Goals: Step 5: Payment Component
Get latest Peal Jam CD at Buy CD
lowest possible price

FIGURE 4.1: Distinguishing between description, structure and behaviour

placing a bid. A structural specification may state that the agent has different components, each

able to handle specific functionalities such as searching for auctions, paying, and so forth. The

different aspects are illustrated in Figure 4.1. Alternatively, the structural specification may state

that the entire functionality is contained within one tightly integrated control loop. Similarly, the

behavioural specification could change to state that the agent searches through auctions and buys

the first item that fits the requirements. In both instances, the descriptive specification remains

the same, but the structure and behaviour of the agent that fulfill that descriptive specification

change.

The agent construction model reflects these levels by allowing direct access to these different

aspects of agents, based on a clear decoupling at the architectural level.

4.2.3 Component-Based Construction

In order to support the division of an architecture's different aspects as described above, and to

satisfy the requirement for modularity and re-configurability, we take a component-based view

of agent architectures.

Component-based software engineering is a relatively new trend in software engineering [53,

83]. Separate developments within the fields of object-oriented computing, re-usable software

code, formal methods and modeling languages have all steered research towards a component

based approach [202]. Components are understood as units of composition that can be deployed

independently from each other, through a third-party that coordinates their interactions [208].

Interaction with a component takes place through a well-defined interface, which allows the

implementation of the component to vary independently of other aspects of the system.

The are several benefits of decomposition through a component-based approach, in line with our

Chapter 4 actS MART : Agent Construction Model

aims.

Applications

Domain Support increasing
abstraction

Architectures +
actSMART

/---~

SMART

FIGURE 4.2: From SMART to applications

87

• Describing an agent architecture through the composition of components promotes a

clearer identification of the different functionalities, and aIIows for their reuse in aIter-

native contexts.

• Different types of components can be composed in a variety of ways to achieve the best

results for the architecture at hand.

• By connecting the abstract agent model of SMART to component-based software engineer

ing, we bring it much closer to practical development concerns within a paradigm that is

not foreign to developers.

4.2.4 From SMART to Applications

Before proceeding with the description of actS MART, we clarify the relationships between

actSMART, SMART, and the application level. These clarifications serve to indicate how the

work presented here can be used within the context of the agent development process.

The relationships are illustrated in Figure 4.2. At the most abstract level lies SMART. Then,

actSMART represents an extension of SMART to deal with the construction of agents. The

actS MART model makes direct use of the notions of attributes and capabilities from SMART,

but to a large extent the notions of components could be used with a different abstract agent

model. More direct links between actS MART and SMART are made in Section 4.6, where we use

actS MART to describe the different types of SMART agents possible, as discussed in Chapter 3.

Architectures for agents, which can range from application-independent architectures, such

as BDl, to application-specific architectures, can thus be designed using the framework pro

vided by actS MART, and based on the concepts provided by SMART. We should note that such

application-independent architectures are not always required and may not always be advisable.

88 Chapter 4 acts MART : Agent Construction Model

Components
(Structure)

Execution Sequence
and Component Unks

(Behaviour)

Shell

FIGURE 4.3: Agent construction model overview

Description

For example, an agent dedicated to dealing with requests for quotes on fast-changing finan

cial information, where performance optimisation is crucial, would benefit from an application

specific architecture tailored to that situation. Conversely, agents expected to deal with a variety

of changing tasks and complex interactions with other agents, such as sophisticated negotia

tions, might benefit from a more generic and sophisticated deliberative architecture. One of the

benefits of our approach is that while it distinguishes between the different cases, it can still

consider them within the same conceptual and practical framework.

The next level is domain-specific support, which involves appropriate middleware to support

agent discovery and interactions between agents in the specific distributed environments in

which the applications operate, as well as other components that could supplement agent ca

pabilities. Finally, specific applications can be built, making use of all the layers below.

4.3 Overview of the Agent Construction Model

In this section, we provide a brief overview of the agent construction model, while in Sections

4.4 and 4.5 we provide a more detailed description of the different aspects within it.

The aim of the agent construction model is to embody all of the design principles discussed

above, so as to provide a direct route to implementation. Central to these concerns is the dis

tinction between the structural, behavioural and descriptive specification and a modular, recon

figurable approach. The main concepts and the relationships between them are illustrated in

Chapter 4 acts MART : Agent Construction Model 89

Figure 4.3, in which the central artifact is the shell that manages an agent architecture, with

the architecture being made up of components. Components are placed within this shell and

the links for data-flow between components are defined through the shell. In addition, the ex

ecution sequence of components is defined by the shell. The components form the structural

specification of the agent, while the links and execution sequence define the behavioural speci

fication. Finally, a description of the overall agent is also stored within the shell to complete the

descriptive specification of the agent. These features provide for a modular architecture with

clear distinctions between the different aspects of the architecture.

Now, since individual components are independent of the existence of other components, and all

links between them are managed by the shell, we can more easily replace components or change

data-flow between components in the shell, as well as alter the execution sequence. These fea

tures allow us to reconfigure the architecture in response to changing application requirements

or changing environmental needs.

Throughout, the main concepts that underpin the development of agent architectures are the

abstract agent model provided by SMART, and a functional separation of components into four

generic types, described below. The different component types allows us to define architectures

without needing to specify the intemal behaviour of components in great detail. These features

support the need for an architecturally-neutral model that can be applied in a wide range of

situations.

4.4 Components

Components are the basic buildings blocks for an agent, they can be considered as the structural

representations of one or more related agent functionalities, which are considered at two differ

ent levels. At an abstract level, the functionality is described in generic terms, which we will

present shortly. At the implementation level, the abstract functionality is instantiated through the

actual computational mechanisms that support it. The reason for distinguishing between these

different levels is so that we can use generic component types to specify an agent architecture

at a high level of abstraction without making direct reference to the detailed behaviour of each

component. This allows us to move between the different levels while retaining a good under

standing of the overall architecture, and identifying which specific components best suit each of

the generic functionalities.

90 Chapter 4 actS MART : Agent Construction Model

AuctionAgenl

ActiveAucUon , I ... Information Collection Payment
(Sensor) I 1 I (Actuator)

......

Auction Auction
Information catabase f---+ Mechanism

(Infostore) (Controller)

Auction f I Bid Status Bid Placement
(Sensor) (Actuator) --.....

FIGURE 4.4: Example Agent Architecture

4.4.1 Generic Component Types

From here on, we set out the terms that can be used to describe components at an abstract

level. We begin by dividing components into four generic types, each representing a class of

functionality for the agent.

We use the example architecture illustrated in Figure 4.4 to explain each generic component

type. The diagram presents a hypothetical architecture for an agent dealing with auctions. In

formation about ongoing auctions is collected by the Active Auction lnfonnation Collection

component, while the Auction Bid Status component provides information about the current

state of our bids. All this information is stored in the Auction lnfonnation Database component,

and is processed by the Auction Mechanism component to decide where and what bid to place.

Bids are placed through the Bid Placement component and, eventually, payments can be made

through the Payment component. The generic functionality of the components can be divided

into information collection (sensors), information storage (infostores), decision-making (con

trollers) and finally those directly able to effect change in the environment (actuators). These

four generic types of components, described in more detail below, can be used to describe a very

wide range of agent architectures, and we will present several examples later on .

• Controllers are the main decision-making components in an agent. They analyse informa

tion, reach decisions as to what action an agent should perform, and delegate those actions

to other components. Controllers are stateless, since each decision is taken depending just

on information provided through statements at any given execution, and not on previous

decisions that a controller has taken. Information that may affect decisions over time

should be stored in infostores so that it can be provided to controllers as required .

• Sensors are able to sense environmental attributes, such as signals from the user or mes-

Chapter 4 acts MART : Agent Construction Model 91

sages received from other agents. They provide the means through which the agent gains

information from the environment. Similarly to controllers, sensors are stateless .

• Actuators cause changes in environmental attributes by performing actions. Actuators are

also stateless, since every action they perform is not influenced by previous actions.

• Infostores are components whose main task is that of storing information. Such informa

tion could be anything from the beliefs of an agent about the world, to plans, to simply a

history of the actions an agent has performed, or a representation of its current relation

ships with others. In contrast to the other components, info stores are not stateless. The

information they store represents their current state, and the manner in which information

changes will be a result of the manner in which the infostore manipulates and updates

information. For example, in the case of a BDI architecture, there may be various ways

of representing and updating beliefs, such as dealing only with beliefs referring to the

current state of the environment [179].

In conclusion, the main differences between component types are two. Firstly, controllers, sen

sors and actuators are stateless, while infostores have state. Secondly, only actuators and sensors

deal with interaction with the external environment, with actuators affecting changes and sen

sors retrieving information. Finally, we note that while these four types are judged necessary for

describing any significant architecture we have not encountered an example of an architecture

that required more than these four types of components, indicating that they are also sufficient

for describing the majority of cases.

4.4.2 Component Statements

The internal operation and structuring of components, irrespective of their type, is divided into

a functionally-specific part and a generic part. In this subsection, we describe the generic part

that is common to all components, and outline the types of information that components can

exchange.

Each component accepts a predefined set of inputs and produces a predefined set of outputs. A

component generates an output either as a direct response to an input from another component,

a signal from the environment or an internal event. For example, a sensor component attached to

a thermometer may produce an output every five minutes (based on an internal clock), or when

92 Chapter 4 acts MART : Agent Construction Model

the temperature exceeds a certain level (an external signal), or when requested from another

component (as a response to the other component).

In actS MART, inputs and outputs share a common structure; they are statements, which have a

type and a body. The body carries the main information (e.g., an update from a sensor), while

the type indicates how the information in the main body should be treated. We make use of three

types of statements, described below.

• INFORM-type statements are used when one component simply passes information to an

other component. In order for one component to inform another of something, it must

be able to produce the INFORM-type statement as an output and the other must be able to

accept it as an input. Returning to the example auction agent architecture, the Auctioll

BidStatus sensor would create INFORM statements to be sent to the Auctionlnfonnation

Database infostore.

• REQUEST-type statements are used when one component requires a reply from another

component. In this case, the receiving component processes the REQUEST and produces

an INFORM statement that is sent to the requesting component. The mechanisms through

which statements are transmitted from one component to an other are introduced in Sec

tion 4.5. Once more referring to the auction agent architecture, the Auction Mecha

nisms controller could produce REQUEST statements to be sent to the Auction lnfonnatioll

Database infostore, which can then reply with an INFORM statement.

• EXECUTE-type statements are used to instruct another component to execute a specific

action. Typically, controller components send such statements to actuators so that changes

can be effected in the environment. In the auction agent example, the Auction Mechanism

controller could create EXECUTE statements to be sent to the Payment actuator, instructing

it to pay for an item won in the auction.

It should be noted that this list of statement types is not exhaustive, and they are simply rep

resentative of the needs of most applications due to their generic nature. Some domains may

benefit from more specific statement types. We should also add that message-passing between

components at this level should not be compared with message exchange as defined in high

level agent languages such as KQMLIFIPA [95]. Typing statements simply provides additional

information to aid control of component behaviour.

Chapter 4 acts MART : Agent Construction Model 93

The information within a statement's body is, in its most general form, described through at

tributes, as per the definitions given in Section 3.4.1. For the purpose of practicality we di

vide attributes along the lines of architecture-specific attributes and domain-specific attributes.

Architecture-specific attributes are attributes that are only relevant within the internal scope of

an agent architecture. For example, a BDI-based architecture could define attributes such as

plans, beliefs, intentions and so forth. 2 Architecture-specific attributes can be considered as

defining the internal environment of an agent. Domain-specific attributes define features that

are relevant to the environment within which the agent is operating. So, in the case of the agent

example above, these attributes may include features such as auction-house name, item, and so

forth. Application-independent agent architectures, such as BDI-based architectures, typically

make use of both types of attributes, including domain specific attributes within the architecture

specific attributes. Thus, a plan may prescribe an action to contact a service, as identified by its

service name. The components of an AgentSpeak(L) [79] architecture, for example, could then

manipulate plans and beliefs, and have some generic way of manipulating the domain-specific

attributes. However, a developer may also choose to develop an agent that has no architecture

specific attributes, creating components that can directly manipulate domain-specific attributes.

We return to examine this issue in Chapter 6. Below, we describe a typical operation cycle for a

component to explain how the different types of statements are handled.

4.4.3 Component Operation

An outline of the component operation is shown in Figure 4.5. Components begin their operation

in an inactive state within the shell. In this state they do not receive or send statements. Once

activated by the shell, components perform any relevant initialisation procedures and then can

enter one of two possible types of operation. The default type is to receive statements until the

shell calls them to enter their execution phase. An alternative behaviour is for the receipt of a

statement to trigger their execution phase. Below we consider the default operation first, before

discussing the alternative behaviour.

When a statement is received, it is typically stored within the component until the component

enters its component-execution phase. Once the shell directs the component to enter its exe

cution phase, all statements received by a component are processed. According to the type of

statements received, the component will do one of three actions, described below.

2This approach was followed by d'Inverno and Luck when formal ising AgentSpeak(L) [79]

94 Chapter 4 acts MART : Agent Construction Model

while active and not executing do
listen for statements

if statements receivedthen
store statements

if call to execute then
retrieve stored statements

while stored statements not empy do
if INFORM then

update relevant attrirutes
if REQUEST then

retrieve relevant attributes
create INFORM statement
push statement to outbound stack

if EXECUTE then
push statement to execution stack

pop statements from execution stack and perform action

send statements to otter components

FIGURE 4.5: Component Lifecyc1e

INFORM An INFORM statement simply causes the component to update any relevant attributes,

based on the information contained within the statement.

EXECUTE An EXECUTE statement is placed on an execution stack. Once the processing of all

received statements is completed, the EXECUTE statements are retrieved and the compo

nent performs the actions described within the statement.

REQUEST A REQUEST statement causes the component to attempt to retrieve the information

requested and create an INFORM statement that contains that information. This INFORM

statement is then placed in an outbound stack that stores all statements to be sent out. All

outbound statements are sent once the processing of all received statements has finished

and the actions prescribed by EXECUTE statements have been performed.

The entire process continues until a component is deactivated. Note that while a component is

executing it cannot receive any statements. If statements are still arriving at the component, it is

the task to the shell to manage those statements until the component is able to receive them.

The alternative behaviour for the component is to process every statement as it arrives, using

the same process we described above for the different types of statements. This event-based be

haviour is especially useful for infostores which are typically queried with REQUEST statements

for information, so that they can provide the response immediately. Through the implementation

of actS MART in Chapter 6, we will see some examples of combining components that execute

Chapter 4 acts MART : Agent Construction Model

Agent Shell -------------------....

Infostore

r--- ----, r_

i' Sensor -, ,-
i. ':.... ,-_' -_. ,-'-: .-:..::.J

Execution Sequence

Link Management

Actuator Agent Description

FIGURE 4.6: Agent shell

95

whenever they receive a statement and components that await the command to execute by the

shell.

At any given time, the state of a component in terms of the information to be manipulated,

is given by the set of statements that have not yet been processed, the set of statements in the

execution stack, the set of statements in the outbound stack and any attributes that the component

manipulates. Depending on the specific implementation of a component, it may be possible to

interrogate components for their individual states.

With components, we are able to differentiate between the different tasks an agent architecture

needs to perform, from a structural perspective. In contrast, the composition of components and

the control of the flow of information between them provides the behavioural specification. In

the next section, we see how this is managed.

4.5 Shell

As discussed in Section 4.2.3, the basic principles of a component-based approach is that com

ponents should be independent of each other, and the coordination between them should be

handled by a third-party. As we have seen from the description of components in Section 4.4,

communication between components takes place through the exchange of statements. Individual

components are not aware of the origin of received statements nor the destination of statements

they produce, ensuring that components are independent of each other. Third-party coordination

is achieved by placing components within a shell, which acts as the third party that manages the

sequence in which components execute and the flow of information between components. This

management takes place by defining links between components and the execution sequence of

96 Chapter 4 acts MART : Agent Construction Model

components. The basic aspects of a shell are illustrated in Figure 4.6. From this point on, we will

use different representations for the different types of components in order to aid the illustration

of agent architectures. Sensors are dashed rectangles, infostores are rounded corner rectangles,

actuators are continuous line rectangles, and controllers are accented rounded corner rectan

gles. Components are placed within a shell, links are created between components to allow the

flow of statements, and an execution sequence is defined. In addition, the shell can be used to

maintain descriptions of agents in terms of attributes, capabilities and goals. We consider each

of these aspects in more detail below.

4.5.1 Links

Information flows through links that the shell establishes between components. Each link con

tains paths from a statement-producing component to the statement-receiving components. Each

component that produces statements has a link associated to it that defines the components that

should receive those statements. Links also ensure that, in the case of a REQUEST statement,

the reply is sent to the component that produced the request. Thus, links manage paths, which

are one-to-one relationships between components. They are usually unidirectional, except in the

case of a REQUEST statement, for which an INFORM may be returned in the opposite direction.

The shell then uses the information within links to coordinate the flow of statements between

components. Ultimately, this coordination depends on the choices that a developer makes, since

it requires knowledge of each component and how they can be composed.

By decoupling the handling of statements between components from the components them

selves, we gain considerable flexibility. We can manage the composition of components and the

flow of information without the components themselves needing to be aware of each other. It is

the architecture developer's task to ensure that the appropriate links are in place. At the same

time, we have flexibility in altering links, and it becomes easier to introduce new components.

Furthermore, basic transformations can be performed on a statement from one component to the

other to ensure compatibility if the output of one component does not exactly match the required

input for another. For example, if a sensor component provides information from a thermome

ter based on the Celsius scale, while a controller that uses that information makes use of the

Fahrenheit scale, the link can be programmed to perform the necessary transformation. These

features satisfy our requirement for facilitating the reconfiguration of architectures.

Chapter 4 acts MART : Agent Construction Model 97

4.5.2 Execution Sequence

Apart from the management of the flow of information, we also need to consider the execution of

components for a complete view of agent behaviour. This is defined via an execution sequence

that is managed by the shell. Execution of a component includes the processing of statements

received, the dispatch of statements, and the performance of any other actions that are required.

The execution sequence is an essential part of most agent architectures and, by placing the

responsibility of managing the sequence within the shell, we can easily reconfigure it at any

point during the operation of the agent. For many architectures this may be purely sequential,

but there are cases in which concurrent execution of components is desired (e.g., the DECAF

architecture is based on a fully concurrent execution of all components [105]). In general, the

issue of supporting complex execution sequence constructs, such as conditional paths and loops,

is considered to be an issue that goes beyond the scope of this research, and there is a wealth of

existing research that can be accessed to address this need. For example, recent developments

within the field of Semantic Web Services provides a process model language for describing the

operation of a web service [4]. Nevertheless, through our proposed mechanisms, we facilitate

the necessary separation of concerns to enable the integration of such work within the scope of

agent architecture development. The architectures developed in this thesis do not make any use

of concurrent execution of components.

4.5.3 Agent Description

The description of the agent as a whole can be maintained by the shell or explicitly within the

agent architecture, with components dedicated to the task, depending on the capabilities and

needs of the architecture. In the former case, the shell can store a number of attributes that

describe the agent owner, its location, user preferences, etc. The level of detail covered by this

description is mostly an application-specific issue, and this information can either be provided

directly to the shell by the developer, or collected from the various components. The shell could

query a component that is able to provide information about the current location, for example,

and add that to the description of the whole agent. Likewise, it may keep a record of the current

goal an agent is trying to satisfy, or the plan it is pursuing. The capability to collect and provide

attributes describing the agent within the shell may be particularly useful in a situation in which a

developer wants to export a view of the agent for debugging purposes, or when some information

needs to be advertised, to facilitate discovery by other agents.

98 Chapter 4 acts MART : Agent Construction Model

4.5.4 Agent Design

With the main aspects of the agent construction model in place, we now briefly describe the

agent design process. Agent design begins with an empty shell. We could envisage implemen

tations of shells being provided by environment owners, which would ensure compatibility with

their environment, while allowing the agent developer relative freedom as to the structure and

behaviour of the agent within the confines of the shell. Then, based on the purpose of the agent,

the necessary components for sensing, acting, decision-making (controllers) and information

storage can be identified. If such components already exist, the main task of the developer is to

decide on the desired behaviour, in terms of execution sequence and flow of information, and

whether any of the outputs of components need to be transformed in order to be aligned with the

input needs of other components.

The components are then loaded into the shell, and links, as well as an execution sequence, can

be defined. With the execution sequence in place, the operational cycle of the agent can begin.

Agent operation can be suspended or stopped by stopping the execution sequence. This opera

tional cycle can be modified by altering the execution sequence, and modifying links between

components.

4.6 Linking actsMART to SMART

With actS MART we can describe several agent architectures through a component-based ap

proach, since it provides a sufficient level of detail to support the implementation of arbitrary

architectures. This allows us to describe architectures at a level that is close to implementation,

while retaining the ability to abstract out some of the details, such as the specific operation of

each component.

However, up to this point we have made no direct connections between actS MART and SMART.

To a certain extent, the connections are implicit, since the notions of sensors and actuators clearly

model the view of an agent as an entity interacting with the environment. In addition, the units

of information within an agent architecture are attributes, as defined by SMART. Nevertheless,

beyond these notions, actS MART could be used without reference to the abstract agent model

provided by SMART. In this section, we explicate the correspondence between the two, to illus

trate both the utility of an abstract agent model as well as the ability to refer to the construction

Chapter 4 acts MART : Agent Construction Model

NeutraIObject-------..,.

1-'-'- -.
. Sensor I
I._._._.~

I no reasoning before actio

Passive Server Agent

agent reasons before actng,

Active ServerAgent---,

1-'-'-'-'
. Sensor
1._._._;

agent stores
history/relationship information

I
Agent Server Agent

(History/Relationships

FIGURE 4.7: Entity hierarchy integrating structural and behavioural elements

99

of agents. We do this by using the agent construction model to provide an alternative view of

the SMART entity hierarchy, which combines description with structure and behaviour, defining

minimal architectures for the different types of entities in the entity hierarchy.

Recall that the entity hierarchy is made up of four basic types: entities, which are described by

attributes; objects, which are entities that are able to perform actions; agents, which are objects

with goals; and, finally, autonomous agents, which are agents able to generate their own goals.

In addition, neutral objects are those objects that are not agents, while server agents are those

agents that are not autonomous. Finally, we refine this hierarchy by introducing passive agents

as those agents with no self-direction, and active agents as those agents with self-direction.

An agent application may contain entities that are only a set of attributes, with no capabilities

or goals. However, from a combined structural-behavioural perspective it only makes sense

to describe minimal architectures from the level of neutral objects onwards, which is the level

where objects can actually perform actions and therefore have some well-defined structure and

behaviour. Now, depending on the type of neutral object, its instantiation may lead to either a

passive or active agent, and we provide minimal architectures for those as well. The combined

100 Chapter 4 acts MART : Agent Construction Model

structural-behavioural perspective allow us to more clearly define the notion of self-direction

since we can ground it to the existence or not of specific types of components. In addition, we

also discuss the difference between agent architectures that makes use of an infostore. Finally,

we provide a minimal architecture for an autonomous agent. Figure 4.7 illustrates the different

architectures as well as the relationships between them. We describe each agent type, in turn,

below.

Neutral Object All of the components of a neutral object are deactivated, except sensors. Sen

sors are required to receive information from the environment, so that a neutral object can

respond to any requests. It is important to note that neutral objects can only perform an

action if another agent sends a message for an action to be performed, or if the sensor is

somehow activated by changes in the environment to cause an action to take place.

Passive Server Agent If a neutral object performs an action due to a message that comes

through the sensor and directly causes an actuator to execute, the neutral object behaves

as a passive server agent. In other words it has no self-direction. As a result, the minimal

architecture for a passive server agent must include at least one sensor component and one

actuator component with a link between them, where the output statement of the sensor is

an EXECUTE statement for the actuator.

Active Server Agent When information from the environment is passed through a controller,

which analyses and takes decisions based on it, the entity is behaving as a active server

agent. This agent has some degree of self-direction, which is expressed through the con

troller. Therefore, a minimal architecture for an active server agent must include at least

one sensor, one actuator and one controller.

Active Server Agent (HistorylRelationships) The minimal architecture for an active server

agent described above did not make any use of infostores. However, an important type of

agents, discussed both by Luck and d'Inverno [81] and by Russel and Norvig [186], relates

to agents that store information about their past actions, the environment or relationships

with other agents. Such agents are necessary to be able to perform long-term reasoning.

In actS MART a minimal architecture for such an agent simply requires all four types of

components.

Autonomous Agents Finally, autonomous agents must also have all four types of components

in order to operate. Autonomous agents generate their own goals based on motivations,

Chapter 4 actS MART : Agent Construction Model 101

A rAt Sh II uClon gen e ,._._._.,
. Active .

..I Auction I
Payment i Information ;

) { (Actuator)
. Collection i
I (Sensor) .
.._._.J I ""\

Auction Auction
Information f---- Mechanism
Database
(Sensor)

(Controller)

"- .I , _._._. ,
) l Auction I I Bid Bid

Status Placemen

I (Sensor) I (Actuator)
.._.- J

I Execution Seq . .Jence I I Link Management I I Agent-specific I
Attributes

FIGURE 4.8: Example auction agent architecture

but in order to do that they need to have some understanding of how a goal benefits a

motivation. This means that they need to be able to reason about the current environmental

state and how it can be changed to achieve a goal that is in line with their motivations. As a

result, they must be able to store information about the environment so that the controller

can make use of it.

Through these distinctions, we can see that the main difference between passive and active

agents is the use of controllers to take decisions. From this perspective, controllers can be said

to encapsulate the self-direction abilities of the entity as a whole.

In the next sections we present two examples, of increasing complexity, that illustrate the use of

actS MART.

4.7 Example Architecture: Auction Agent

The architecture illustrated in Figure 4.8 provides a straightforward example of how the agent

construction model can be used, and at the same time illustrates how access to an underlying

abstract model can be beneficial when dealing with architectures that do not have explicit rep

resentations for goals. The architecture represents an agent exclusively aiming to participate in

auctions.

First, the components are linked as illustrated in Figure 4.8. The sensors wrap their information

102 Chapter 4 actS MART : Agent Construction Model

within INFORM statements so as to send them to the infostore, which analyses them to decide

how the information should be stored. For example, the attributes within the statement could

indicate that the auction status should not be considered reliable after a certain time period has

elapsed, or that the level of reliability of the information source is poor. The Auction Mechanism

is then informed of the current situation as perceived by the sensors and by the Auction Infonna

tion Database. Based on this information, the Auction Mechanism controller sends EXECUTE

statements to the actuators, indicating which action to perform, and under which conditions that

action should be performed. For example, if an actuator fails to place a bid before a certain time

period, it should quit.

Note that there are no explicit references to goals in this architecture. However, at the level

of SMART we can reason about the goals of achieving an appropriate price given the mecha

nisms defined within the Action Mechanism controller. We can also identify and reason about

the agent's attributes (contained within individual components) and capabilities (as expressed

through individual components) at this level and compare it with other agents. This is one of

the benefits of having access to an abstract agent model. Further benefits come when placing

this agent in the context of a multi-agent system whithin which we are able to reason about

relationships with other agents based on the different agent types that SMART defines [139].

4.8 Example Architectures: Negotiating Agents

In this section we present a more complex example, investigating the suitability of our model

for specifying flexible negotiating agent architectures. This is a class of agent architectures

that is gaining increasing importance for a variety of application settings. We briefly discuss

negotiating agents below.

4.8.1 Negotiating Agents

In multi-agent environments, agents often need to interact in order to achieve their objectives

or improve their performance. One type of interaction that is gaining increasing interest is

negotiation. We adopt the following definition of negotiation that reconciles views proposed

by [121] and [222], which we believe is a reasonable generalisation of both the explicit and

implicit definitions in the literature.

Chapter 4 acts MART : Agent Construction Model

Negotiation is a fonn of interaction in which a group of agents, with conflicting

interests and a desire to cooperate, try to come to a mutually acceptable agreement

on the division of scarce resources.

103

Agents typically have conflicting interests when they have competing claims on scarce re

sources, which means that their claims cannot be simultaneously satisfied. Resources here are

taken to be very general; they can be commodities, services, time, and so forth, that are needed

to achieve something.

To resolve such conflicting interests, a number of interaction and decision mechanisms have

been developed [121], and there has been extensive work on implementing frameworks of ne

gotiation, based on auction mechanisms (as evident, for example, in the Trading Agent Compe

tition [209]) and frameworks that adopt heuristic-based bilateral offer exchange (e.g. [90, 91]).

Although recently, argumentation-based approaches [122, 166, 172] have also been gaining in

terest, there are as yet very few implemented systems that cater for argumentative agents. One

of the reasons for this is that many of these frameworks involve complex systems of reason

ing, based on logical theories of argumentation, for which there are still many open research

questions [171]. Another reason is that there are no software engineering methodologies that

structure the process of designing and implementing such systems. This is why, in most cases,

these systems are implemented in an ad hoc fashion.

Our aim is to address the software engineering issues related to the development of architectures

for negotiating agents, ranging from simple classical agents to more complex argumentative

negotiators. We use actS MART in conjunction with a general negotiation framework to design

and describe the architectures of two generic classes of negotiating agents: simple negotiators

and argumentative negotiators. Through this, we demonstrate how a generic architecture for

argumentative negotiators can be achieved by extending the simple negotiator architecture and

reusing its components, and show how this modularity is facilitated by the construction model.

4.8.2 Negotiation protocol

Before we start describing negotiating agents, however, we discuss the main components of

a negotiation framework. In addition to the negotiating agents, a negotiation framework usu

ally includes a communication language and an interaction protocol. For example, a nego

tiation framework based on a simple English Auction protocol would need a communication

104 Chapter 4 acts MART : Agent Construction Model

language locution (or performative), say propose(.), that can express bids. The protocol is the

set of rules that specify, at each stage of the interaction, which locutions can be made, and by

whom. In addition, the framework needs a language for representing information about the

world, such as agents, agreements, arguments, and so on. This information is used within the

communication language locutions to form utterances. For example, a bid might be presented

as propose (a, b, {toyota, $10K}), where a and b are the sending and receiving agents, and

{toyota, $10K} is the specification of the proposal. Finally, a negotiation framework usually

includes several information stores needed to keep track of various information during the in

teraction. This information may include proposals made by different agents, concessions they

have committed to [222], and so on. Finally, the framework also needs a set of additional non

protocol rules, such as those that identify the winner in a particular negotiation, or those that

specify that agents cannot retract their previous proposals, and so on.

Here, we focus our attention on the construction of the agents within the framework. We do

not address, for example, how protocols can be specified in a modular fashion (which has been

investigated in [15] for example), or how the locutions can be verified. We assume that develop

ers have at their disposal definitions of the appropriate negotiating protocols, domain ontologies

and communication languages, and instead deal with the problem of framing such mechanisms

within an appropriate agent architecture. Note that we do not claim to have specified the only

way of describing negotiating agents. Instead, we attempt to illustrate how actS MART can be

used to capture a variety of negotiators.

4.8.3 Basic Negotiating Agent

Basic negotiating agents include those participating in auctions or those engaged in bilateral

offer exchanges. The common aspect of these agents is that they engage in interactions in

which the primary type of information exchanged between agents is proposals (i.e., potential

agreements). We call the agents basic in order to distinguish them from agents that can engage

in more sophisticated forms of negotiation that allow the exchange of meta-information (or

arguments).

Now, in order to illustrate the use of actS MART for designing such an agent we present the design

through a two-step process. In the first step, we define high-level descriptive, behavioural and

structural specifications with the emphasis on the descriptive specification. Using these, we then

proceed to identify, in the second step, the precise components, links and execution sequence

Chapter 4 actS MART : Agent Construction Model 105

Descriptive Specification Behavioural Specification Structural Specification

Attributes Receive Proposal Message Interpretation

Domain-SpecificAttributes: Analyse proposal against Negotiation protocol analysis
protocol

Negotiation Protocols Handled Proposal content analysis
Negotiation Issues Analyse proposal content
Agent (Miner Environment model infostore
Ontologies Used Update beliefs

Architecture-Specific Attributes: Generate counter-proposal
Opponent model infostore

Mental attidute infostore
Proposals
Protocol Rules Response generation
Mental Attitudes
Opponent Model
Environment Model

Capabilities

Interpret proposals
Interpret negotiation protocols
Maintain beliefs
Create counter-proposals

Goals

Achieve desired negotiation
outcome

FIGURE 4.9: Initial specification of basic negotiation agent

that we require.

Basic Negotiating Agent: Initial Design

An overview of the initial design of the agent is discussed below, and summarised in Figure 4.9.

Descriptive Specification Recall that the descriptive specification of an agent is based on its

attributes, capabilities, goals and motivations.

Domain-specific attributes The domain-specific attributes of the agent include the types

of negotiation protocols in which the agent can participate, the types of issues over

which it can negotiate (e.g. if it is a seller, the goods it can sell and whether it can

negotiate over the price or other features of the goods), information about the owner

of the agent, the types of ontologies it uses to describe issues, and so forth. All this

is information that other agents can use to decide whether and how to interact with

this agent.

Now, a developer can decide to make this information explicit within the agent archi

tecture (by providing components that can directly manipulate the information). Al

ternatively, it may simply provide the information as additional descriptions through

106 Chapter 4 actS MART : Agent Construction Model

the shell, while it is implicit within the architecture in the way components are im

plemented. The choice between them depends on whether the agent architecture

actually needs to manipulate this information directly or not. For example, the ap

plication may require that the agent should be able to take some decisions about the

type of information it provides about itself to other agents based on changes in the

environment, and that such decisions should be made within the components that

make up the agent architecture. In our case, we design an agent that does not ma

nipulate this information explicitly, so it is simply provided in the agent shell. The

implication is that we do not require components that are dedicated to just handling

this information.

Architecture-specific attributes The architecture-specific attributes represent the types

of information that the agent architecture components manipulate and use within

statements transferred between components. In our case, this includes: proposals

from other agents; protocol rules to enable the agent to decide on the valid responses;

beliefs relating to the opponent; the agent's mental attitudes and the environment;

proposal content; and proposal evaluation.

Capabilities The capabilities of the agent should include the ability to: interpret propos

als from other agents; analyse those proposals based on a set of protocol rules and

the beliefs it has about its mental attitudes, its opponent and the environment; main

tain and update beliefs based on the interactions it has with opponents; and, finally,

create responses to proposals.

Goals The goals of the agent - i.e. the desired negotiation outcomes - are in part in

fluenced by the mental attitudes of the agent. However, the architecture does not

require explicit representation of agent goals. Within the descriptive specification,

we can consider that the overarching goal of the agent is the achievement of the

environmental state that represents the desired negotiation outcome for the agent.

This desired state is determined by the mechanisms used to evaluate proposals and

generate responses, which ultimately decide when this environmental state has been

reached. Here we see, once more, how access to a general, architecturally-neutral

agent model allows us to reason about such things as goals even though they find no

explicit representation in the architecture.

Structural Specification The structural specification of the agent should include components

for: handling the interpretation of messages; analysis of negotiation protocols; analysis of

Chapter 4 acts MART : Agent Construction Model

proposal
history

(---------------
- Illocution I incoming

~-----j)roposal----'I Interpretation I locutions
'------r--...../ 1.--------------

Negotiation
Protocols

Opponent Model

Mental Attitudes

Environment
Model

evaluatio

opponent
model

response

FIGURE 4_10: Basic negotiating agent architecture

outgoing

locutions

107

proposal content; maintenance and updating of environmental models; opponent models

and the mental attitudes of the agent; and the creation of counter-proposal messages.

Behavioural Specification The behavioural specification of the agent begins with the agent

receiving some proposal from another agent. Then, the agent needs to analyse the proposal

in order to determine whether it is valid given the interaction protocol that is being used

for the negotiation. If it is valid, the agent can consider the actual content of the proposal

and evaluate it given its own set of requirements for the negotiation outcome. With this

evaluation it can then attempt to generate a response, within the constrains of the responses

that are allowed given the interaction protocol, and finally sent out a message with the

response.

Basic Negotiating Agent: Detailed Design

Using the initial specification provided above, we can now present a more detailed design for

the agent, focusing in particular on the behavioural and structural specification.

The proposed architecture for basic negotiation agents is illustrated in Figure 4.10, in which we

follow the conventions described earlier for illustrating the different types of components; the

connecting arrows illustrate the flow of statements. The structural and behavioural specifications

are detailed below.

Structural Specification The structural specification is divided into the four types of compo-

nents.

108 Chapter 4 actS MART : Agent Construction Model

Sensors The architecture has just one sensor to receive messages from other agents. The

Illocution Interpretation sensor is responsible for interfacing with lower-level com

munication middleware, ensuring that incoming messages adhere to basic syntactic

validity and extracting the actual proposal from the message. It can create INFORM

statements with the proposal to provide to other components.

Actuators Only one actuator is needed for the architecture to handle the expedition of

messages to other agents. Similarly to the Illocution Interpretation component, the

Locution Generation component is responsible for interfacing with communication

middleware and packaging proposals appropriately. The component is able to accept

EXECUTE statements, with the content being the response it should send to other

agents.

Infostores There are five infostores defined for the basic negotiating agent architecture.

We examine each in turn below.

Proposals History The Proposals History component maintains a history of pro

posals. It can accept INFORM statements with proposals it should store and

it can reply to REQUEST statements for providing proposals to components.

The REQUEST statement defines which proposals the component should retrieve

based on the opponent's identity and the number of previous proposals that are

required.

Opponent Model The Opponent Model maintains models of the opponents the

agent interacts with. It can accept INFORM statements to update models, and

reply to REQUEST statements to provide information about opponents.

Mental Attitudes The Mental Attitudes component maintains information about

the mental attitudes of the agent, which ultimately influence the agent's evalu

ation of, and response to, proposals. This infostore can accept INFORM state

ments to update its mental attitudes and can reply to REQUEST statements to

provide information about them.

Environment Model The Environment Model component maintains information

about the state of the environment as a whole. Similarly to the other info store

components, it updates this information via INFORM statements and provides

information via REQUEST statements.

Negotiation Protocols The Negotiation Protocols component maintains informa

tion about the various negotiation protocols that the agent can participate in.

Chapter 4 actS MART : Agent Construction Model 109

The component can reply to REQUEST statements in order to provide informa

tion about a protocol.

Controllers The architecture uses three controllers, described below.

Protocol Reasoner The Protocol Reasoner component reasons about the validity

of incoming proposals against a negotiation protocol and identifies the valid re

sponses given the current proposal. Furthermore, the component can dissect a

proposal to extract information such as the originator of the proposal. The com

ponent can accept two types of statements: INFORM statements with a proposal

for evaluation; and REQUEST statements to provide specific information about

the current proposal. It can generate REQUEST statements to retrieve informa

tion about negotiation protocols and EXECUTE statements that can provide the

direct another component to evaluate the proposal content.

Proposal Evaluator The Proposal Evaluator component evaluates proposals using

information about the proposal history, the opponent, the agent's own mental at

titudes and the environment in general. Based on this evaluation, it can provide

a recommendation as to the suitability of the proposal given the requirements

of the agent, as described within its mental attitudes. The component can gen

erate REQUEST statements to get information about the history, the opponent,

the agent's mental attitudes and the environment. It can also generate INFORM

statements to update the models of opponents and the environment based on

the evaluation of the proposal, and INFORM statements to provide its evaluation

of the proposal. It can accept EXECUTE statements with a proposal it should

evaluate.

Response Generator The Response Generator component generates a response to

the opponent's proposal, based on the evaluation of that proposal and infor

mation about the opponent, the environment and the agent's mental attitudes.

The component can generate REQUEST statements to get the required informa

tion about the opponent, the environment, the mental attitudes, and the possi

ble responses given the current state of the negotiation protocol. It accepts an

INFORM statement with the evaluation of the proposal. Finally, it generates an

EXECUTE statement that requests the generation of an appropriate message with

the response within it.

Behavioural Specification The steps for the execution sequence of the component and

110 Chapter 4 actS MART : Agent Construction Model

the flow of statements between them is described here. Note that what is described

here is a purely sequential execution of components.

1. The operation of the agent begins with the agent accepting a message at the Illo

cution Interpretation sensor. This component analyses the message and informs

the Proposals History infostore.

2. The Proposals History component executes and provides the information about

the current proposal to the Protocol Reasoner.

3. The Protocol Reasoner controller executes and requests information from the

Negotiation Protocols infostore.

4. The Negotiation Protocols infostore executes, providing the reply to the Proto

col Reasoner.

S. The Protocol Reasoner is called to execute once more. It now uses the informa

tion from the Negotiation Protocol to reason about the validity of the proposal

and informs the Opponent Model about the opponent identity and the Proposal

Evaluator about the content of the proposal.

6. The Proposal Evaluator controller then executes, requesting information about

the opponent, the environment, the agent's mental attitudes and the history of

proposals.

7. The components Opponent Model, Mental Attitudes, Environment Model, and

Proposals History components execute, providing the required information to

the Proposal Evaluator.

8. The Proposal Evaluator component executes once more, evaluating the infor

mation provided from the previous step, and generating an evaluation for the

Response Generator. In addition, it may inform the Opponent Model, and En

vironment Model of required updates to their models.

9. The Response Generator component executes, requesting the required informa

tion from the Opponent Model, Mental Attitudes, and Environment Model, as

weII as from the Protocol Reasoner.

10. The Opponent Model, Mental Attitudes, and Environment Model components

execute to provide the responses and the Response Generator.

11. The Response Generator executes again, and generates the response based on

the information provided.

Chapter 4 acts MART : Agent Construction Model 111

12. Finally, the Locution Generation actuator executes to send the required mes

sage.

4.8.4 Argumentative Negotiating Agent

Here, we instantiate the architecture of the basic negotiating agent in order to provide a generic

description of agents capable of conducting argumentation-based negotiation (ABN). An argu

mentative negotiator shares many components with the basic negotiator. For example, it also

needs to be able to evaluate proposals, generate proposals and so on. What makes argumenta

tive agents different is that they can exchange meta-information (or arguments) in addition to the

simple proposal, acceptance, and rejection utterances. These arguments can potentially allow an

agent to (i) justify their negotiation stance; or (ii) influence the counterparty's negotiation stance

[122]. This may lead to a better chance of reaching agreement and/or higher-quality agreements.

In ABN, influencing the counterparty's negotiation stance takes place as a result of providing it

with new information, which may influence its mental attitudes (e.g., its beliefs, desires, inten

tions, goals, and so on). This might entice (or force) the agent to accept a particular proposal,

or concede on a difficult issue. Arguments can range from threats and promises (e.g. [197]) to

logical discussion of the agent's beliefs (e.g. [166]) or underlying interests [172].

In order to facilitate ABN, the logical and communication language usually needs to be capable

of expressing a wider range of concepts. For example, the proposal might instead be represented

as propose (a, b, P, A) where a and b are agents, P is a proposal, and A is a supporting argument

denoting why the recipient should accept that proposal. ABN frameworks may also allow agents

to explicitly request information from one another. This may be done, for example, by posing

direct questions about an agent's preferences or beliefs, or by challenging certain assumptions

the agent adopts. Since in this chapter we are more interested in the abstract structures within

the agents, we shall not discuss these issues in more detail.

In order to be capable of engaging in ABN, an agent needs the following additional capabilities:

1. Argument Evaluation encompasses the ability of the agent to assess an argument pre

sented by another, which may cause updates to its mental state. It is the fundamental

component that allows negotiators' positions to change.

2. Argument Generation allows the agent to generate possible arguments, either to support

112 Chapter 4 acts MART : Agent Construction Model

Argumentative Negotiating Agent-----------------..

proposal
history

(._. -.-. -. _._.-:
____ --'i lIIocutio~ .. I ~..:.:in.:::c~o::.:m.:::in~gL--

~---proposal . Interpretation I locutions
'-__ -,-__ -' 1.- _._._._._._.

protocol
proposal rules

I

opponent
proposal identity
content

opponent
model

I

Negotiation
Protocols

opponent
model!

mental atlidutes!
environment

I

Environment
Model

Locution
Generation

'--------evaluation--------./

utgoing
ocutions

FIGURE 4.11: Argumentation-based negotiation agent architecture

a proposal, or as an individual piece of meta-information. The locution generated may

also be a question to present to the opponent.

3. Argument Selection chooses between the number of possible arguments to present. For

example, an agent might be able to make either a promise or a threat to its opponent. A

separate component is needed to allow the agent to choose the most preferred argument.

Selection might be based on some analysis of the expected influence of the argument, or

on the commitments it ties the utterer to.

Figure 4.11 shows the specification of an argumentative agent using our construction model. All

components from the basic negotiating agent have been used, complemented by the additional

capabilities needed for ABN. Note that the diagram has been simplified for clarity, with the link

from Negotiation Protocol to Response Generator and Argument Generator has been omitted

although it is, of course, necessary. Below we show how the descriptive and behavioural speci

fication are changed. The structural specification changes by adding the three new components

that deal with ABN.

Descriptive Specification A crucial difference between the simple negotiation agent and the

ABN agent is that arguments from opponents can change the agent's mental attitudes so that

the agent's goals or motivations may change based on the new information obtained. As a

Chapter 4 actS MART : Agent Construction Model 113

result, even this aspect of the descriptive specification is dynamic, and the ability to refer to this

changing descriptive specification directly, at run-time, by extracting the relevant attributes is

crucial. The descriptive specification must also include the new decision-making capabilities of

the agent.

Behavioural Specification Here, the flexibility provided by the agent construction model is par

ticularly evident. The agent essentially has the same links and information flows. It is simply

extended with links to the new controllers, and is refined through changes to the execution se

quence. The opponent model, mental attitudes and environment model are now updated by the

evaluation of the argument received before the proposal is evaluated. The response is not sent

directly to the opponent but arguments may be attached to the proposal by the Argument Gener

ator and Argument Selector components. Finally, both the Response Generator and Argument

Generator use the negotiation rules in order to determine what type of responses are possible.

4.8.5 Discussion

The examples of the auction agent architecture and negotiating agent architecture serve as a

means to illustrate the application of the actS MART model in the development of both basic and

more elaborate agent architectures. Here we highlight some of the benefits of the approach and

link them back to the desiderata mentioned in Section 4.2.1.

• Access to an abstract agent model, in our case SMART, allows us to describe issues such

as goals without having to represent them explicitly within the agent architecture. Goals

can be defined in the descriptive specification of the architecture, and as such made clear.

However, if there is no need for them to be made explicit within the architecture, then no

implementation of goals is required in the structural and behavioural specifications. This

provides more flexibility to the developer to provide a solution tailored to the problem at

hand.

• The architectures for the auction agent and the negotiating agents are very different, since

each is focused on solving the problem at hand. However, we can reason about both

architectures using the same concepts, both at the abstract level through SMART and at the

specification level through actS MART. This illustrates the benefit of an architecturally

neutral approach to agent construction, since it enables us to reason about a range of

114 Chapter 4 actS MART : Agent Construction Model

different architectures through a consistent approach, thus minimising the learning effort

for agent developers .

• Finally, modularity is achieved through the component-based approach that enables us to

clearly separate the functionalities of the agent architecture. This, coupled with the dis

tinction along the lines of description, structure and behaviour, allows us to re-configure

architectures as illustrated by the move from the negotiating agent architecture to the ar

gumentative negotiating agent architecture.

4.9 Conclusions

4.9.1 Related Work

Although a number of agent construction toolkits claim to make use of a component-based archi

tecture (e.g., ZEUS [155], RETSINA [206], the majority do not do this through any consistent

component model and do not provide the ability to reconfigure the architecture. However, as we

have argued, it is necessary to have a consistent view of architecture construction and to support

modularity and reconfigurability. In this section, we compare and contrast our work with exist

ing work which we consider to have some related features, and which has attempted to achieve

similar aims.

DESIRE

The DESIRE methodology [35, 36] is perhaps the closest work to our own since they take a very

strong component-based approach and use it to define a variety of agent architectures, including

some used by existing toolkits. However, DESIRE views both individual agents and multi

agent systems as a compositional architecture in which all functionality is designed as a series

of interacting, task-based, hierarchically structured components. Other than at the lowest level

components are seen as encapsulating processes, and composition of components is, therefore,

a composition of processes. Communication between components is also supported through the

notion of infonnatiolZ links.

However, our approach differs in two important ways.

Chapter 4 actsMART : Agent Construction Model 115

• Firstly, through actS MART, we aim to provide specific support for individual agent design

rather than general support for an entire multi-agent system. As such, the approach is

more lightweight and follows a far more specific route in the nature of components and the

ways in which they can communicate. We introduce component types such as sensors and

actuators to specifically model agent functionality and define specific types of statements

that components can exchange.

As a result, actSMART provides abstractions that developers can make immediate use of

when attempting to design an agent architecture. With DESIRE, on the other hand, such

abstractions would still need to be added to the existing concepts in support of component

based design since they do not provide any specific support for individual agent architec

tures. Beyond the increased development effort, the disadvantage is that there are no

guarantees of a consistent view across agent architectures ..

• Secondly, in the context of its aim to support reuse, actS MART provides some specific

improvements over DESIRE. We base our construction model on a well-established ab

stract agent model, distinguish between different aspects of agent architectures through

the descriptive, structural and behavioural specifications, and support the re-configuration

of the architecture. All these features make actS MART particularly well suited to the het

erogeneous, dynamic application domains we wish to support, and improve what can be

accomplished with DESIRE.

Agent specification using multi-context systems

The work by Sabater et al. [189] and Parsons et al. [165] on agent specification using multi

context systems also has some similarities. Their basic model calls for agents to be constructed

using units, which represent the main components of the architecture, and bridge rules that

relate formulae in different units. In addition, they use modules to encapsulate related units

that provide a specific functionality such as planning. Finally, they also support two types of

messages; ask and answer. Units generate bridge rules that are multicast across either an inter

module bus or an intra-module bus. Components must examine the message to determine who

they are intended for, before processing them.

Beyond the fact that the emphasis of the work is on handling different types of logics within

a single architecture, rather than dealing with practical, implementation issues there are some

significant differences at the level of specifying architectures. Firstly, in actSMART, we specify

116 Chapter 4 acts MART : Agent Construction Model

types of components in order to aid design. Secondly, we provide a more flexible and cost

effective means of managing information-flow between components since we avoid multicasting

messages to all components. At the same time, we still allow for reconfigurable information

flows, which was the justification for the use of a multicast technique by Sabater et al. Finally,

as already stated above, actS MART benefits from its grounding in an abstract agent model that

aids consistency across different architectures.

In general, actSMART and agent specification using multi-context systems could be considered

as complementary since actS MART can inform the practical implementation of multi-context

systems specification, while multi-context system specification can inform the development of

actS MART to handle the use of different logics within an agent architecture.

JADE

The JADE (Java Agent Development Environment) toolkit is one of the few toolkits for agent

development that does not restrict the developer to the use of any specific architecture [22]. It

offers support for a number of behaviour types (which are akin to our notion of an execution

sequence) that can be composed to define the control-flow of architectures, such as sequence,

parallel, and so forth. Components can then be linked to such behaviour types, and the JADE

infrastructure handles their execution. However, there is no underlying conceptual support for

agent architectures nor any other concepts to facilitate the process from design to practical im

plementation.

Once more, JADE and actSMART can be considered as essentially complementary technolo

gies. JADE offers the required underlying functionality to develop FIPA-compliant agent sys

tems [22], and also offers some support for defining behaviours for agent components. These

behaviours can be considered as equivalent to the execution sequences in actS MART, which also

provides extensive support for specifying and implementing agent architectures.

4.9.2 Discussion and Contributions

As mentioned earlier, there are several systems that claim to provide (and in some cases do

provide) a component-based approach to agent development. Of these, only a small number

aim to support a range of agent architectures as discussed above. The agent construction model

Chapter 4 actS MART : Agent Construction Model 117

described here complements and advances such work and, in particular, the work provides the

following advances .

• Through actS MART we support the specification of a range of agent architectures, which

can all be considered through a consistent conceptual model. This addresses a real need

for support of agent development in heterogenous and dynamic environments, where the

ability to tailor architectures to address specific application demands is important. At

the same time, we allow for architectures to be easily reconfigured through a modular,

component-based approach and provide a distinction between the descriptive, structural

and behavioural specifications of an agent architecture which provides a developer with a

clear distinction between different points of view and the ability to move between them

while refining the design of an agent architecture. In addition, the development of the

model leads to the following related contributions which can be used to inform the devel

opment of other agent construction models.

- We categorise components into four generic types that allow us to specify abstract

architectures before needing to focus on the internal behaviour of components.

- We develop a graphical notation to represent such architectures.

- We provide a well-defined notion of shell as the manager of the control-flow and

information-flow between components, through the definition of an execution se

quence and links, respectively .

• Through actS MART we also improve the suitability of a well-established theoretical model

to application development since we provide a clear path for the practical construction of

agents, based on the abstract agent models provided by SMART.

The two examples presented in this chapter provide a direct indication of how actS MART can

be used to create agent architecture specifications. They highlight how the use of component

types allows us to focus on the high-level specification without having to deal with the de

tailed operation of each component. This suggests that the development of agent architectures

can be separated from the algorithms that, for example, deal with specific types of negotiation

protocols, enabling overall design to proceed in a parallel manner while still allowing specific

techniques to be incorporated within agent architectures at any stage. Furthermore, the negoti

ating agent example indicates how the specification of an architecture can be developed through

118 Chapter 4 acts MART : Agent Construction Model

a process of refinement. In the specific case of the example, the design moved through two

iterations. In the first, we provide a detailed descriptive specification but less clear structural

and behavioural specifications, while in the second we further develop the structural and be

havioural specifications using the descriptive specification as a statement of requirements that

the other specifications should fulfill.

In conclusion, the agent construction model represents an important step towards our aim of

providing principled and reusable models for agent-based development. In this chapter we have

presented the main concepts of the model and examples of how it can be used to specify agent

architectures. In Chapter 6 we present the application of this model for use within the context of

architecture development for ubiquitous computing devices, and also discuss its implementation

within a specific programming language.

Chapter 5

SMART+ : Relationship Identification

and Characterisation

5.1 Introduction

In the previous chapter we examined the construction of individual agents and how we can

design a wide range of agent architectures based on a common set of concepts that can be

tailored to their operational environment. We now tum our attention to multi-agent systems,

in which the interactions between agents are the central concern. Such interactions take place

whenever one agent performs an action which, intentionally or otherwise, affects one or more

other agents. When agents interact we can say that they are related by virtue of the fact that they

are affecting each other. Interactions, and the resulting relationships formed between agents,

are of critical importance to the overall system functioning, since they can have both beneficial

and adverse effects. It is interactions that enable agents to coordinate (by which agents arrange

their individual activities in a coherent manner), collaborate (by which agents work together

to achieve a common objective) or compete (by which agents contend for access to common

resources), and so on.

In this respect, a system designer has two overarching challenges to face. On the one hand,

the system designer must ensure that the interactions that are necessary for achieving system

wide goals take place. For example, if agents require assistance to achieve their goals, they

must be provided with mechanisms for discovering other agents able to assist them. On the

other hand, the designer must also ensure that undesirable interactions do not take place. For

119

120 Chapter 5 SMART+ : Relationship Identification and Characterisation

example, if a number of agents depend on a limited resource, the system must provide ways

to control access to that resource. These challenges are compounded by the fact that in open

or simply large agent systems, the possible interactions between agents cannot all be explicitly

specified at design-time. This is especially true when dealing with autonomous agents operating

in heterogeneous environments in which agents may join or leave the system at any time, and

no assumptions are made about agent behaviour.

Given the above, it is clear that system designers require relationship management mechanisms

that can constrain or empower agents to form only the kinds of relationships that are beneficial

for the overall system. For example, agents could be forced to adhere to specific regulations

which indicate whether they are allowed or not to perform an action in a specific context. How

ever, such mechanisms cannot be applied to agent systems unless there is a clear understanding

of what relationships may arise in a multi-agent system, or which regulations are required to lead

to only effective relationships. Even if we could assume that for closed, static agent systems,

such an understanding can be achieved, the same cannot be said for open, dynamic multi-agent

systems since relationships, and by consequence the appropriate regulations to manage them,

can change at any time. Therefore, there must be some method for systematically identifying

the relationships that can arise, and only then addressing the problem of defining the necessary

regulation or coordination mechanisms.

The need for some form of control over the behaviour of agents was identified long ago [63], and

there has been a wealth of research on the subject since. The review of existing work on the issue

of regulatory structures for controIIing behaviour in multi-agent systems in Chapter 2 reveals that

the focus of others has been more on relationship management than on relationship identification

and characterisation. Currently, the former is largely achieved through the use of regulatory

frameworks, stemming from work on policies (e.g. [84, 204, 128]), institutions (e.g. [89, 218])

and norms (e.g. [234,49, 73]). In addition, there is significant work on coordinating middleware

to enhance agent infrastructure [55, 161].

Our aim in this chapter is to focus on the latter, insufficiently addressed, issue of relationship

identification. Of course, once a relationship has been identified we must be able to interpret that

information is some useful fashion so as to determine how the identified relationships may im

pact on individual agent operation and the system as a whole. Thus, we also require a principled

and comprehensive means of characterising agent relationships.

In order to identify the relationships that may be formed between agents, we introduce a model

Chapter 5 SMART+ : Relationship Identification and Characterisation 121

of interaction of an agent with the environment. The model makes minimal assumptions about

the agents themselves, considering only an agent's sensor and actuator capabilities. Based on

these sensory and actuator capabilities, we identify which environmental attributes an agent can

sense or affect respectively. This leads to two sets of attributes, one defining a region of the

environment an agent can view and the other a region of the environment an agent can affect.

By comparing this information between different agents we can identify which environmental

attributes agents can sense or affect that are in common between them, and by consequence

identify how two agents may be related. This technique can also be used in a more generic

sense so as to provide generic relationships types based on the types of overlap between the en

vironmental regions. We make use of this approach to identify and characterise all the possible

relationships between two agents. This typology allows us to reason about relationships between

agents at an abstract level, without needing to ground relationships to specific domain informa

tion. In turn, this enables us to define when a particular relationships management technique

(such as a regulation) is applicable based on the identification of a generic relationship type.

This is especially useful in environments where agent capabilities can constantly change. By

basing the definition of regulations on generic relationship types we can ensure that regulations

are enforced irrespective of the specific capabilities of individual agents.

Of course, agents may not make use of all their sensory or actuator capabilities, since what

ultimately determines the specific actions an agent decides to perform are the agent's goals.

Therefore, we also relate goals to the model of agent interaction with the environment and

discuss how such information can allow us to reduce or expand the set of possible relationships

that may be formed between agents.

Overall, the ability to identify and characterise agent relationships can be beneficial for the

following reasons.

• It can guide the choice and design of regulatory frameworks to prevent malicious be

haviour or interference between agents.

• Potentially missed opportunities for better cooperation between agents can be identified.

• It can provide a template of generic relationship types for coordinating agents at run-time,

without having prior knowledge of their capabilities.

The next section introduces the model of agent interaction with the environment and provides

formal definitions for the sets of attributes agents can possibly sense or affect. We provide some

122 Chapter 5 SMART+ : Relationship Identification and Characterisation

examples of how the model can be used and discuss the assumptions underpinning the model.

Subsequently, we develop the typology of agent relationships, which provides definitions for the

most salient relationship types that can then be used to define other more specific types. Next,

we discuss how knowledge about an agent's goals can allow us to narrow or expand the space of

possible relationships, providing an example of the use of such information. Finally, by means

of an example, we use the relationship typology and knowledge about an agent's goals to define

a particularly interesting set of relationships, where agent's can interfere with each other.

5.2 Model of Agent Interaction

A number of different and interrelated issues determine the resulting relationships between

agents. Some relationships are built-in by the system designer at design-time. For example,

in the ZEUS system [155], agents must communicate with the root agent name service agent be

fore doing anything else. 1 Alternatively, relationships may develop opportunistically as agents

seek assistance in order to achieve goals, or unintentionally as agents perform actions that affect

the environment that other agents aim to affect or sense. For example, in the RETSINA sys

tem [206], discovery of middle agents takes place dynamicaIly, and only if the agent requires

assistance in achieving a goal.

Our basic understanding of agents, as set out in Chapter 3 and Chapter 4, is that agents perform

actions, which may change the environment, whilst pursuing goals. Actions can be divided

into those that provide agents with information about the environment (sensors) and those that

change attributes about the environment (actuators). Intuitively, we can think of each agent as

able to create a view of some region of the environment, by its ability to retrieve the attributes

that define that region. In addition, each agent is able to directly influence some region of the

environment, by manipulating attributes that define that region. Drawing on this, we can say

that when one agent is able to influence what another agent views or what another agent is able

to influence, the two agents are related. The different ways in which this influence can emerge

leads to different types of relationships.

Our aim is to produce analytical tools to enable the identification of relationships, building on

just these basic notions. The emphasis is on being able to identify relationships that may not

have been foreseen by the system designer both at system design-time as well as during run-

IThe root agent name service keeps a register of all active agents in a ZEUS-based application.

Chapter 5 SMART+ : Relationship Identification and Characterisation 123

time, something particularly relevant in open agent systems. In order to achieve this, we begin

by introducing some basic but necessary formal concepts that build on the models of agents

already introduced in Chapter 3.

Firstly, we develop models that can allow us to relate the sensory and actuator capabilities of an

agent to the regions of the environment that an agent is able to sense or affect. In Section 5.3,

we use these models to derive some generic relationship types that can be used to describe any

relationship between two agents.

S.2.1 Agent Perception and Action

Agent actions are divided into those that retrieve specific attributes of the environment, repre

senting the agent's sensor capabilities, and those that attempt to change attributes of the envi

ronment, representing the agent's actuator capabilities. The former define what an agent can

perceive in the environment, and the latter what an agent can change. These actions are the

only aspects of the agent's architecture that concern us at this point, as they form the interface

between the agent and its external environment. So as not to restrict the models to any specific

agent architectures, we do not concern ourselves with the internal state or decision-making ca

pabilities (represented by an agent's infostores and controllers) of an agent. Nevertheless, as we

will see later on, knowledge of the exact goals an agent is pursuing, although not strictly neces

sary, can enable a deeper analysis of interactions since it can lead to a better understanding of

the reasons behind the manifest actions and limit the space of possible emerging relationships.

Agent Perception

The environmental attributes that an agent is able to perceive depend on the sensory capabilities

the agent is equipped with. The set of capabilities can be divided into those that an agent is

actually using at any particular moment and those it is not using. However, for the purposes of

relationship identification, we need to represent the entire set of environmental attributes that

an agent may attempt to view, irrespective of whether the agent is actually using them at any

particular moment. This allows us to capture the widest possible set of relationships an agent

may have with other agents and is in line with the aim to avoid any attempt to model the internal

operation of an agent.

In addition, we do not model the fact that although two agents may attempt to view the same

124 Chapter 5 SMART+ : Relationship Identification and Characterisation

aspects of the environment there is no guarantee that their sensory capabilities will produce the

same results, since they may both sense and interpret the environment in a variety of different

ways and it is not possible to assume that across different agents we will encounter consistent

models of the environment. In other words, even if two agents have the same sensory capabili

ties, there is no guarantee that they actually have the same mental models of those aspect of the

environment. This is a distinction that SMART makes, but which we purposely avoid making,

since it necessarily requires a model of the internal operation of the agent architecture.

With these clarifications in place, we can now present a formal definition for the possible per

cepts of an agent, through the PossibleAgentPerception schema. It includes the Agent schema

and is further refined by introducing the set, perceivingactions, which is the subset of the capa

bilities of the agent that are concerned with perceptions, and the function, canperceive, which

determines the attributes of the environment that are potentially available to an agent through its

perception capabilities.

PossibleAgentPerception ___________________ _

Agent
perceivingactions : lP' Action
canperceive : Environment -+ lP' Action -H Environment

perceivingactions <;;; capabilities
If env : Environment; as : lP' Actions.

as E dom(canperceive env) =? as = perceivingactions

Agent Action

Similarly to agent perception, we can define the set of possible actions. Again, we are not

interested in those actions that the agent will actually perform because of its current goals, but

all the actions that agents could potentially perform. The PossibleAgentActions schema defines

the set of actions that can influence the environment as the effecting actions , and the function

returns the set of attributes these actions can influence as caneffect.

PossibleAgentAction ____________________ _

Agent
effectingactions : lP' Action
caneffect : Environment -+ lP' Action --t-7 Environment

effectingactions <;;; capabilities
If env : Environment; es : lP' Actions.

es E dom(caneffect env) =? es = effectingactions

Chapter 5 SMART+ : Relationship Identification and Characterisation 125

Agent Influence State

Using the PossibleAgentPerception and PossibleAgentAction schemata, we can now define an

agent influence state as all that an agent is able to potentially view and affect at any given

moment. This notion is formalised in the AgentlnfluenceState schema, which includes the Agent,

PossibleAgentPerception and PossibleAgentAction schemata.

AgentlnfiuenceState __ __

Agent
PossibleAgentPerception
PossibleAgentAction

Finally, the influence state of an entire multi-agent system is given by the environment and the

influence states of each individual agent in that environment. The predicates of the MAlnflu

enceState schema state that for all the agents in the system, all their attributes and their situation

in the environment are a subset of the environment. Furthermore, the possible percepts of all

agents are a subset of the environment, and what they can affect is also a subset of the environ-

ment.

A1AlnfiuenceState __ __

environment : lP' Attribute
agents : lP' AgentInfiuenceState

Va: agents. a.attributes C environment
Va: agents. a.possiblepercepts <:;: environment
Va: agents. a.caneffect <:;: environment

5.2.2 Viewable Environment and Region of Influence

The schemata introduced so far have set the scene by defining how we can model what attributes

an agent can possibly perceive or effect. Using these models, we now introduce two new con

cepts, which directly define the regions of the environment that we are interested in. A region is

defined as a set of attributes in the external environment of the agent.

Viewable Environment An agent's Viewable Environment depends on its sensory capabilities,

the environment it is situated in, and the other agents in the system, which also form pmt

of the environment. Agents sense the environment in order to take decisions about which

goals to perform or to verify the results of actions taken. The set of attributes they can

126 Chapter 5 SMART+ : Relationship Identification and Characterisation

Environement
L_I

FIGURE 5.1: Viewable Environment and Region of Influence

potentially perceive within a particular environment, without recourse to aid from other

agents, defines a Viewable Environment. The ViewableEnvironment schema formalises

this notion. It includes the MAInjluenceState schema, and defines the viewable function

as a partial function, which takes AgentInjluenceState as an argument and returns a set of

attributes. The predicates state that the domain of viewable is the set of agents, while the

range of viewable is a subset of the environment.

ViewableEnvironment __________________ _

MAlnfiuenceState
viewable: AgentInfiuenceState -H J!D Attribute

dom viewable = agents
Va: agents. viewable a ~ environment

Region of influence Agents can affect the environment by changing attributes in it. Those

attributes they can change on their own, through their actuator capabilities, define a Region

of Influence. 2 This notion is formalised in the RegionOflnjluence schema which, once

more, includes the MAInjluenceState schema. The regionojinjluence function provides a

set of attributes, the domain of which is the set of agents in the system, while the resulting

attributes are a subset of the environment.

RegionOflnfiuence ______________________ _

MAlnfiuenceState
regionofinfiuence : AgentlnfiuenceState -H J!D Attribute

dom regionofinfiuence = agents
Va: agents. regionofinfiuence a ~ environment

2Similarly to the Viewable Envirollment, the Region of Influence can be partially defined through knowledge of
the individual capabilities of each actuator component of the agent.

Chapter 5 SMART+ : Relationship Identification and Characterisation 127

Environment

FIGURE 5.2: Region of Influence affects Viewable Environment

The Viewable Environment and the Region of Influence of an agent provide us with a model

that relates an agent and its individual capabilities to the environment, within a particular multi

agent system. It provides us with information on those aspects of the environment that an agent

could potentially affect and view. This model makes no assumptions about the agent itself nor

its internal decision-making capabilities. Thus it can be considered to be architecturally-neutral

and applicable to the widest possible range of agent types. Crucially, the utility of the model

is evident when we represent one agent's Viewable Environment and Region of Influence in

comparison to another agent's Viewable Environment and Region of Influence. Now, the different

ways in which the Viewable Environments and Regions of Influence between two agents can

overlap defines a space of possible interactions. In Figure 5.1, these concepts are illustrated

by using an ellipse to represent the Viewable Environment, and a pentagon for the Region of

Influence. We use this notation throughout when illustrating different situations. In order to

better illustrate how relationship identification can be achieved using this model, we present

some generic examples below.

5.2.3 Generic Relationships Identification Examples

As mentioned earlier, in order to analyse the kinds of relationships that emerge from the in

teractions between agents, we need to consider the overlaps between their respective Viewable

Environments and Regions of Influence. It is within these overlaps that interactions are likely to

emerge, since they represent the only points at which agents may influence each other.

In Figure 5.2, we illustrate these concepts. Here, we have a situation in which Agent A's Re

gion of Influence overlaps with Agent B's Viewable Environment, and both agents' Viewable

Environments overlap. Given this information, we can infer that Agent A and Agent B could be

128 Chapter 5 SMART+ : Relationship Identification and Characterisation

Environment

FIGURE 5.3: Regions of Influence overlap

related, with A able to directly affect the Viewable Environment of B, since it partly falls under

A's Region of Influence. In other words, B can be influenced by the actions of A. Agent A, on

the other hand, cannot be influenced by B. Crucially, A cannot directly affect the results of an

action of B because it has no influence in the Region of Influence of B.

For example, consider a situation in which we wish to develop an agent-based infrastructure

to support the collaboration and sharing of information between researchers participating at a

conference. Each researcher is to be represented by a personal agent that will make public their

personal profile (interests, publications, and availability) as well as research material (links to

online material, presentations, software, etc) that they have stored locally.

A situation such as the one in Figure 5.2 could occur if the overlap between the Viewable Envi

ronments represented research papers that Agent A made available to other agents. With the goal

of reporting to other agents on all documents of a specific type (for example, research papers on

multi-agent systems), Agent B could periodically view the documents stored by A (i.e. sample

the environment) while waiting for a relevant document to appear before informing other agents

of its existence. So, whenever A performs an action that adds a relevant document to its public

document store, it will eventually influence B's actions, since B must now inform interested

parties about this addition.

The illustrated situation can also be interpreted as the ability of B to observe the results of

actions performed by A. If the document store was not public, then some steps should be taken

to prevent B from observing what documents were placed within it.

By contrast, in Figure 5.3, the situation is one in which the Regions of Influence overlap. This

means that both agents can have a direct impact on the actions of each other. Thus, an action

Chapter 5 SMART+ : Relationship Identification and Characterisation 129

from either agent could affect the environment in such a way that a goal of the other agent is

constrained or aided. For example, this could happen if the two agents were both attempting to

retrieve a document from a public document store that sets a limit on the number of documents

retrieved.

5.2.4 Basic Assumptions

Before presenting a more formal characterisation of the different types of relationships that can

be identified, we explicitly present below a number of assumptions that we make about the

agents themselves that hold throughout our analysis.

1. The Viewable Environment and the Region of Influence are nat necessarily well-defined

continuous areas of the environment as the diagrams may suggest. However, representing

them like this helps to provide a clear exposition.

2. There is no requirement for the Viewable Environment and the Region af Influence of

an agent to overlap at all. If the Region of Influence of an agent does not fall under its

Viewable Environment, then it will not be able to view the results of its actions, a situation

that is not improbable. The more usual case is when only part the Region of Influence of

an agent falls under the Viewable Environment. In other words, the agent is not fully aware

of all the implications of its actions.

3. We do not assume that the Viewable Environment is the only kind of information that

an agent can model. The Viewable Environment is simply the information that the agent

can gain about the environment without recourse to other agents. Information about the

environment provided by other agents is an issue we will examine later on.

4. We do not assume that when an agent acts in its Region af Influence it can be certain

that those actions are realised. The only way to verify this is by sensing the affected

environment, either through its own sensing capabilities or through other agents.

5.3 Relationship Typology

Having presented a model for agent interaction, and some examples of how it can be used to

characterise possible relationships between agents, we now take a more systematic look at the

130 Chapter 5 SMART+ : Relationship Identification and Characterisation

FIGURE 5.4: All possible relationships between two agents

entire space of possible overlaps. We develop a comprehensive typology of interactions that

can provide the building blocks for defining a wide range of different relationships. However,

before presenting the typology, we consider how the complete set of potential relationships may

be examined comprehensively, and show that our analysis is complete.

The entire space of overlaps depends on the ways in which the four sets of regions (one for each

agent's Viewable Environment and one for each agent's Region of Influence) can be combined.

There are sixteen possibilities, which are illustrated by the Venn diagram in Figure 5.4. The

Venn diagram uses Venn's construction for illustrating the possible combinations between four

sets [219] and the resulting regions created (sixteen possibilities in all).

Now, of the fifteen regions enumerated in the diagram (the sixteenth being the region outside all

the sets), we only consider those that involve intersections between two sets, ignoring regions

Rl, R5, R7 and R15. We can divide the remaining regions into three cases, which can be

combined to produce other cases. These three cases are divided along the lines of whether the

Viewable Environments of the two agents overlap, whether their Regions of Influence overlap,

and whether a Viewable Environment overlaps with an Region of Influence.

Mutually Viewable Environment A mutually viewable environment occurs where the View-

Chapter 5 SMART+ : Relationship Identification and Characterisation 131

Environment

FIGURE 5.5: Mutually Viewable Environment

able Environments of both agents overlap. In the diagram this is made up of the areas

defined by regions R3, R4, RIO, and RIl. These four regions are grouped according to

whether both or one or neither of the Regions of Influenceof the agents overlap with the

mutually viewable environment.

Mutual Influence The mutual influence region is where the Regions of Influence of both agents

overlap. As above, this region is also subdivided into four regions: R9, RIO, RI3 and

R14. The differences between the four regions indicate whether the region of mutual

influence overlaps with the Viewable Environmentsof one, both or neither of the agents.

Observable Actions A region of observable actions is one where a Region of Influence overlaps

with a Viewable Environment, indicating that an agent can observe the actions taking place

in that overlap. In the figure, this occurs in regions R2, R3, R6, R8, R9, RIO,Rll, R12,

and R13. The type of observable action changes according to whether an agent is able to

observe the actions it perform or the actions the other agent is able to perform.

Now, given these three basic types, and knowledge of all the possible relationships, we proceed

to construct a typology by beginning with the simplest case where only the Viewable Environ

ments of two agents overlap, and moving to consider the possible types of interaction when

actions of other agents can be observed. Finally, we consider the possibilities when actions can

be directly influenced by other agents due to overlapping Regions of Influence and combine that

with the results on observability of actions.

5.3.1 Mutually Viewable Environment

We begin by examining the Viewable Environments of agents, irrespective of the Regions of

Influence. The only possibility in this case is that they overlap, as illustrated in Figure 5.5.

132 Chapter 5 SMART+ : Relationship Identification and Characterisation

Environment

./
./ ./-

'Region 1

'\ Region 4
--_-./

FIGURE 5.6: Observable and Invisible actions

This means that both agents are able to sense common regions of the environment. This sit

uation is captured by the MutuallyViewableEnvironment schema, in which the function MVE

accepts as arguments the relationships between the agent states of both agents, and returns a

set of attributes, where those attributes are given by the intersection of A's and B's Viewable

Environments.

Mutually ViewableEnvironment _________________ _

ViewableEnvironment
MVE : (AgentState x AgentState) -7 TID Attribute

Va, b : AgentState; e : Environment.
MVE (a, b) = viewable a n viewable b

Although such a situation cannot directly identify any relationship between the agents, it may be

particularly important in certain environments. For example, knowing that two stock investors,

which are seemingly unrelated, share a common Viewable Environment, may explain why they

behave in a similar manner. A more practical example to illustrate the case of a mutually view

able environment is the ability of both agents to observe what files are added or removed from

a filestore. We will use the example of actions with regard to a filestore to illustrate the various

cases throughout.

5.3.2 Influenced Viewable Environment

The next step is to introduce the Region of Influence. However, we only do this for Agent B, as

illustrated in Figure 5.6 in which, from A's point of view, there are two clear distinct possibilities,

and two further refinements for each. Firstly, in Regions 1 and 2, the results of the actions of B

Chapter 5 SMART+ : Relationship Identification and Characterisation 133

are visible to A since they fall within A's Viewable Environment. Of course, at the same time we

can say that B is able to influence the Viewable Environment of A. Secondly, in Regions 3 and

4, the results of B's actions are not visible to A. We define these general cases before going on

to specialise them further.

The ObservableActions schema defines the appropriate function for the first case. It states that

the observable actions of B are those actions of B whose Region of Influence is within A's

Viewable Environment.

ObservableActions _____________________ _

ViewableEnvironment
RegionOflnfiuence
observableactions : (AgentState x AgentState) ----+ JPl Attribute

Va, b : AgentState •
observableactions (a, b) = viewable a n regionofinfiuence b

If we consider that Agent A is only able to monitor actions that are performed with regard to

adding and removing files from the filestore then we can state that the Viewable Environment of

A intersects with the Region of Influence of B in the region of the environment referring to the

filestore.

Similarly, the InvisibleActions schema states that invisible actions of B with reference to A are

those that are not within A's Viewable Environment.

InvisibleActions _______________________ _

ViewableEnvironment
RegionOflnfiuence
invisibleactions : (AgentState x AgentState) ----+ (JPl Attribute)

Va, b : AgentState •
invisibleactions(a, b) = regionofinfiuence b \ viewable a

Returning to the example mentioned above, those actions of B that are not related to adding or

removing files from the filestore that A is able to monitor are invisible to A.

Based on these definitions, we can now describe more restricted cases. We begin with the

situation in which both agents can observe some actions of B, which would lie in Region 2 in

Figure 5.6. The BilaterallyObservableActiol1s schema defines this situation in which actions are

bilaterally observable, and are given by the intersection of the observable actions for A on B

134 Chapter 5 SMART+ : Relationship Identification and Characterisation

and for B on itself.

BilaterallyObservableActions _________________ _

ObservableActions
bilaterallyobservableactions : (AgentState x AgentState) ----+ lP Attribute

Va, b : AgentState •
bilaterallyobservableactions (a, b) =

observableactions (a, b) n observableactions (b, b)

Knowledge of the possibility of bilaterally observable actions can be relevant for those agents

that require confirmation of their actions by another party, or for those agents that are concerned

about the observability of their actions and would perhaps prefer to prevent it. With reference

to the filestore example, we could use knowledge of bilateral observability to confirm that a file

has been appropriately saved since A can provide further confirmation. Alternatively, B could

decide not to store a file because A would be able to monitor that action.

Now, unilaterally observable actions are those actions of B that A can observe but B cannot

(shown as Region 1). In this case, there is perhaps a stronger incentive for B to exploit the

situation by cooperating with A so as to gain confirmation of the results of actions. The schema

UnilaterallyObservableActions describes this.

UnilaterallyObservableActions ________________ _

ObservableActions
InvisibleActions
unilaterallyobservableactions : (AgentState x AgentState) ----+ lP Attribute

Va, b : AgentState •
unilaterallyobservableactions(a, b) =

observableactions(a, b) n invisibleactions(b, b)

In this case ollly A can confirm whether a file has been stored in the filestore, which in turn

may make B's reliance on A greater if some form of confirmation of the result of the action is

required.

Bilaterally invisible actions, represented by the BilaterallylnvisibleActions schema are those

actions of B that both A and B cannot observe (shown as Region 4).

Chapter 5 SMART+ : Relationship Identification and Characterisation

~ ---,
\ AgentA ~
\- - -- \ , \

~---,

) Agent B I!
I" - --{-

I I
/ /

, \ I I

,->- > /~ II
" -" 'I ~ I '-

\ \ /
-J_~

Environment

FIGURE 5.7: Mutually Influenced Actions

BilaterallylnvisibleActions __________________ _

InvisibleActions
bilaterallyinvisibleactions : (AgentState x AgentState) ---'> lP' Attribute

Va, b : AgentState •
bilaterallyinvisibleactions (a, b) =

invisibleactions (a, b) n invisibleactions (b, b)

135

Finally, for the sake of completeness, we can also define unilaterally invisible actions (in Region

3), as those actions of B that A cannot see but B can. The schema UnilaterallyInvisibleActions

captures this.

UnilaterallylnvisibleActions _________________ _

InvisibleActions
unilaterallyinvisibleactions : (AgentState x AgentState) ---'> lP' Attribute

Va, b : AgentState •
unilaterallyinvisibleactions(a, b) =

invisibleactions (a, b) n observableactions (b, b)

5.3.3 Mutual Influence

Up to this point, we have only dealt with the issue of observability of actions. We now move

on to examine the situations in which agents can influence each other's actions, by introducing

Regions of Influence for both agents. In the first instance, as illustrated in Figure 5.7, we can

say that two agents are able to directly influence each other if their Regions of Influence overlap

(shown as the grey shaded area). The function for determining this is defined below, in the

schema MutualInfluence.

136 Chapter 5 SMART+ : Relationship Identification and Characterisation

MutualInfiuence ______________________ _

ViewableEnvironment
RegionOflnfiuence
mutualinfiuence: (AgentState x AgentState) ----) (lP Attribute)

Va, b : AgentState •
mutualinfiuence(a, b) = regionofinfiuence an regionofinfiuence b

Returning to the filestore example, mutual influence would occur when A is also able to add or

remove files in the filestore that B may have added or removed.

Now, when a mutual influence relationship occurs (i.e. a non-empty set is returned), it is impor

tant to be able to model whether the two agents can observe the results of actions taking place in

this region of the environment. We can use the previous definitions of observability of actions

in Section 5.3.1 to model this.

First, we define the relationship by which Agent A can observe the region of mutual influence

in the ObservableMutualInfluence schema, which includes the MutualInjluence schema, and

states that this area is the intersection of the Viewable Environment of A and the area of mutual

influence between A and B.

ObservableMutualInfiuence __________________ _

MutualInfiuence
observablemutualinfiuence : (AgentState x AgentState) ----) (lP Attribute)

Va, b : AgentState •
observablemutualinfiuence(a, b) = viewable an (mutualinfiuence (a, b))

In this case, A is able to both influence and monitor the actions of B with regard to the filestore.

Similarly, Agent A may not be able to observe this region of mutual influence. We define the

case of invisible mutual influence in the schema InvisibleMutualInfluence.

InvisibleMutualInfiuence __________________ _

MutualInfiuence
invisiblemutualinfiuence : (AgentState x AgentState) ----) (lP Attribute)

Va, b : AgentState •
invisiblemutualinfiuence(a, b) = (mutualinfiuence (a, b)) \ viewable a

Chapter 5 SMART+ : Relationship Identification and Characterisation 137

\

Bilnv
\ Mullnf

----L.....J
Environment

FIGURE 5.8: Mutual Influence and Observable Actions

With regard to the filestore example, a case of invisible mutual influence would mean that while

A is also able to add or remove files it is not able to view the results of those actions.

Having provided definitions from one agent's perspective, we consider the situation in which

both agents' Viewable Environments are taken into account. The first case is bilaterally ob

servable mutual influence, in which both agents can observe the mutual influence region, as

illustrated in Figure 5.S. The region in question is where both agents' Regions o/Injluence over

lap as well as their Viewable Environments. The schema BilaterallyObservableMutualInjluence

formalises this.

BilaterallyObservableMutualInfiuence _____________ _

ObservableMutualInfiuence
bilaterallyobservablemutualinfiuence :

(AgentState x AgentState) ----+ lP Attribute

Va, b : AgentState •
bilaterallyobservablemutualinfiuence(a, b) =

observablemutualinfiuence(a, b) n observablemutualinfiuence(b, a)

In this case, both A and B can add or remove files and observe each other's addition or removal

of files.

The BilaterallyInvisibleMutualInjluence schema provides the necessary functions for the mutual

influence being bilaterally invisible.

138 Chapter 5 SMART+ : Relationship Identification and Characterisation

BilaterallylnvisibleMutualInfluence ______________ _

InvisibleMutualInfluence
bilaterallyinvisiblemutualInfluence :

(AgentState x AgentState) ------ lP' Attribute

Va, b : AgentState •
bilaterallyinvisiblemutualinfluence (a, b) =

invisiblemutualinfluence(a, b) n invisiblemutualinfluence(b, a)

In this case, neither of the two agents can observe the results of their actions with regard to the

filestore, although they could both upset each other's actions. In such a situation, it may be

necessary to introduce some form of control, possibly by a third party, that can ensure that the

actions of the agents are appropriately coordinated.

Finally, we define the situation in which one agent unilaterally observes the region of mutual

influence in the UnilaterallyObservableMutualInjiuence schema.

UnilaterallyObservableMutuallnfluence _____________ _

ObservableMutualInfluence
unilaterallyobservablemutualinfluence :

(AgentState x AgentState) ------ lP' Attribute

Va, b : AgentState •
unilaterallyobservablemutualinfluence(a, b) =

(observablemutualinfluence (a, b) \ observablemutualinfluence (b, a))

In this case, we know that only A can observe the results of actions on the filestore, while both

A and B can affect changes.

These types of possible relationships are particularly relevant for agents that wish to better coor

dinate their actions. For example, knowledge of a possible bilaterally invisible mutual influence

can indicate that agents should be particularly careful when performing actions in that region,

since not only are they unable to observe the results of their own actions, but they can also

constrain the actions of another agent that is also unable to observe the results. A situation of

unilaterally observable mutual influence could give one agent an advantage, since only one of

them is able to observe the results of its and the other's actions in that region.

Chapter 5 SMART+ : Relationship Identification and Characterisation 139

5.4 Goal Typology

Knowledge of the sensor and actuator capabilities of agents can provide us with enough infor

mation to identify a significant number of possible relationships and categorise them along the

lines of the typology introduced above. Nevertheless, not all the possible relationships identified

will actually be instantiated, and there may still be instantiated relationships that have not been

identified. The reason for this is that the goals agents decide to pursue play an important role in

determining which of all possible relationships agents choose to instantiate. With the additional

knowledge of what goals an agent may actually pursue, we can narrow or expand the space of

possible relationships by identifying interactions that an agent may pursue that are beyond its

range in terms of its Region of Influence or its Viewable Environment, or by excluding those

within its Viewable Environment and Region of Influence that it will not pursue. Therefore, a

more focused analysis of relationships between agents could take place if we can incorporate

knowledge of which regions of the environment an agent's goals refer to into the model of agent

interaction with the environment. In order to achieve this, we provide a typology of agent goals

with reference to an agent's Viewable Environment and Region of Influence. However, before

we do that we need to differentiate between different types of goals according to whether the

goal is to retrieve information from the environment or change it.

5.4.1 Query and Achievement Goals

In the broadest sense agents can have only two types of goals. On the one hand, they may want

to effect some change in the environment, which implies changing attributes of the environment,

while on the other hand, they may just want some infonnation about the environment, which

does not lead to any direct changes in the environment. Distinguishing between these two types

of goals is important since the latter can only be achieved directly by an agent if that goal is in

the Region of Influence of the agent, while the former can only be achieved if the goal is in the

Viewable Environment of the agent.

We distinguish between these two types of goals by using the same terminology as the dMARS

agent system, which is formalised in [75] using the SMART framework. Essentially, a query goal

is one for which an agent tries to elicit some information, either from its internal beliefs or from

the environment. As such, it can be satisfied if it falls within an agent's Viewable Environment.

Conversely, an achievement goal may require that the agent performs certain actions in order to

140 Chapter 5 SMART+ : Relationship Identification and Characterisation

"
I(;ll
~I

Rol

Environment

FIGURE 5.9: Types of goals

change the environment, if the environment is not already in the desired goal state. Thus, an

achievement goal can be satisfied if it lies within an agent's Region of Influence.

5.4.2 Goal Regions

We categorise goals according to where within the Viewable Environment and Region of Influ

ence they occur. The different types are shown in Figure 5.9, where goals, represented with a

square labelled by a capital G, are overlayed across the Viewable Environment and Region of

Influence of an agent. The different situations are described below.

No control- G1 The agent has a goal that describes an environmental state falling outside

of both the agent's Viewable Environment and its Region of Influence. As a result, this

agent has no control over satisfying that goal, irrespective of whether it is a query or

achievement goal. Some form of cooperation with another agent is essential in this case.

View control - G2 In this case, the agent can satisfy a query goal but not an achievement goal,

since the goal is within the agent's Viewable Environment.

Total control- G3 A total control goal is one that lies within both the agent's Viewable En

vironment and its Region of Influence. As a result, regardless of whether it is a query or

achievement goal, the agent can satisfy it.

Blind Control- G4 In this case, the goal falls within the agent's Region of Influence but not

within its Viewable Environment. As a result, the agent is able to satisfy it if it is an

achievement goal but not if it is a query goal. However, the agent is not able to verify the

results of its actions.

Chapter 5 SMART+ : Relationship Identification and Characterisation 141

Partial Control- Gs Finally, a goal may fall in a region that is partially under the agent's

Viewable Environment or the agent's Region of Influence. In this case, the agent will have

some combination of control based on the four types described above.

The AgentGoals schema formalises the four main cases above. It includes the AgentState, View

able Environment and RegionOflnfluence schemata, and uses the viewable and regionofinfluence

functions from them.

AgentGoals __ _

AgentState
ViewableEnvironment
RegionOflnfiuence
canview, caninf : lP' Attribute
none, blind, total, view: lP' Goal

canview = viewable (e AgentState)
caninf = regionofinfiuence (eAgentState)
none = {g : goals I --, g ~ (can view U caninI)}
blind = {g : goals I g ~ (caninf \ canview)}
view = {g : goals I g ~ (canview \ can in I) }
total = {g : goals I g ~ (canview n caninI)}

With the goal typology in place, as well as the interaction typology, we have two significant

analytical tools for identifying and characterising possible relationships between agents.

5.4.3 Example Analysis

In this section we present an example that makes use of both the relationship typology and the

goal typology to coordinate agents at run-time with limited domain information. This example

simply serves to illustrate the main concepts described here, and to provide an indication of

how they can be used in a practical application development environment. More detailed exam

ples are developed in Chapter 6, in which the implementation of the ideas in a more extensive

application is described.

The aim of the example scenario is similar to the one described in Section 5.2.3, supporting a

user to collaborate with other users by sharing information through personal agents. However,

the domain is now a computer research lab and the focus is on supporting users with their day

to-day tasks.

142 Chapter 5 SMART+ : Relationship Identification and Characterisation

An initial analysis of the domain reveals that researchers typically use at least two devices in the

lab to achieve their day-to-day tasks, including one relatively powerful desktop or laptop com

puter, as well as a more limited mobile device, such as a PDA. In order to effectively support the

users, the application should allow use of the agent-based system through all user devices, re

quiring agents to be installed on each device. Furthermore, agents serving the same user through

different devices should cooperate closely. Each agent is to take advantage of the connectivity,

storage and computing capabilities of their device so as to more effectively support the user.

Given this, there are two main problems to solve from the perspective of enabling the coopera

tion between a user's devices .

• Firstly, how can coordination and cooperation be effectively supported if there is no clear

knowledge, at design time, of the exact capabilities of each of the devices or the exact

tasks that they may attempt to carry out, since this depends on the equipment of each user

and their individual choices as to how they want to use the system.

• Secondly, how can the infrastructure deal with changes in devices and possible changes

in the application requirements as the system develops.

These two problems make it practically impossible to define coordination using any detailed

application-specific knowledge, such as the connectivity capabilities of a device, since this in

formation is discovered at run-time, and the type of coordination based on the discovered infor

mation must also be decided at run-time.

In this case, the ability to define coordination based on generic relationship types is valuable.

The agents belonging to a single user are instructed to communicate, whenever possible, so as to

share information on their capabilities and the current user goals. This allows the modelling both

of the relationship between them and of the goals that must be satisfied. With such knowledge

in place, we can attempt to guide coordination, at run-time, by defining generic rules such as the

ones presented below .

• If there exists a goal of type total control for only one device, then that device should

attempt to achieve the goal, since it is the only one that can both attempt the actions and

verify the results. For example, if the user wishes to send a short message to a colleague

as a reminder for an impending meeting, and the only device belonging to the colleague

Chapter 5 SMART+ : Relationship Identification and Characterisation 143

in question is a Bluetooth-enabled PDA, then only the user's PDA is able to achieve the

goal.

• If two devices are attempting to achieve the same goal, and that goal lies in a region

where they are related through Bilaterally Observable Mutual Influence (i.e. where their

Regions of Influence and Viewable Environments overlap) then they could both attempt to

achieve the common goal. In this case, we could assign the goal to one of the devices

at random. Alternatively, we could use some form of priority that would identify the

workstation as having a higher priority for achieving such common goals, since we can

make the assumption that its resources will be more readily available and not limited by

battery concerns or unreliable connections due to just wireless access. Returning to the

example of contacting a colleague, if both of the user's devices are Bluetooth-enabled,

the desktop computer could undertake the task so as to avoid consumption of the limited

battery life of the user's PDA.

• If a goal is of type view control for one device, and blind control for the other, which

implies that there is some region of the environment in which they are in a relationship

of Unilaterally Observable Actions, the agents should cooperate, with one performing the

actions and the other verifying the results or with one identifying the current state of the

environment and the other acting accordingly. For example, the user's PDA may be able

to identify dynamically through the Bluetooth protocol which devices are able to provide

information on their owners, and are able to provide that information through the 802.11 b

wireless protocol. The workstation can then use 802.11 b to retrieve the profiles. The

workstation has blind control since it can retrieve profiles but cannot discover the devices,

while the PDA has view control since it can discover the devices by exploiting Bluetooth

but cannot download the profiles due to a lack of storage on the PDA.

For example, while attending a presentation, a user requests that the personal agent on a Bluetooth

enabled device collects all information on the topic of the meeting that is available through other

researchers in the lab and downloads any relevant publications. The user then switches off the

device, because the battery is running out. Once back at the desk and at the workstation, the

mobile device is switched on and communicates wirelessly, or through the usual synchronisa

tion mechanisms, with the workstation. The information on goals and capabilities is exchanged

and the two agents identify that while they can both access information on other users, for the

PDA-based agent the Viewable Environment is limited to just those users whose information is

144 Chapter 5 SMART+ : Relationship Identification and Characterisation

accessible via Bluetooth-enabled devices that are in range. On the other hand, the workstation

is able to access all relevant users through their workstation agents, so it adopts the goal.

Through this basic example, we see how access to a relationship analysis tool that can identify

generic relationship types can playa valuable role in facilitating coordination between agents at

run-time. Given the emerging landscape of computing environments in which constant change

and heterogeneity become permanent features, such tools will become increasingly important.

5.5 Describing Interfering Relationships

The types of relationships defined in Section 5.3 provide a generic view of relationships where

the intention of agents is not considered. In other words, they are generic types considered

outside of any specific application context. In this section, we illustrate how these definitions

can be reused to define a set of relationships given such a specific context, by examining the

cases where one agent can interfere with the activities of another agent. This analysis serves

two purposes. Firstly, it defines a set of relationship that are particularly useful when attempting

to define regulatory mechanisms to prevent or to control the interference. Secondly, it illustrates

how the generic types defined above can be applied to specific contexts.

Weak influence A weak influence relationship occurs when an agent is able to affect aspects of

the environment that another agent uses to decide what actions to perform (i.e. aspects of

the environment the agent can perceive). Although a weak influence relationship can lead

to a different outcome for the influenced agent's goal, it cannot directly affect actions of

that agent.

Agent B is weakly influenced by Agent A if and only if (i) both agents are able to observe

the actions of Agent A, and (ii) there is no mutual influence between the two agents.

The schema below formalises this by including the BilaterallyObservableActions and Mu

tualInfluence schemata. In the predicate section, we state that for Weaklnfluence to exist,

the bilaterallyobservableactions functions must return a non-empty set of attributes, and

the l1lutualinfluence function must return an empty set of attributes.

Chapter 5 SMART+ : Relationship Identification and Characterisation

VVeaklnfiuence __ __

BilaterallyObservableActions
MutualInfiuence
weakinfiuenced : AgentState f-7 AgentState

Va, b : AgentState I a =1= b •
(b, a) E weakinfiuenced {:}

bilaterallyobservableactions =1= {} 1\

mutualinfiuence = {}

145

Strong influence A strong influence relationship occurs when an agent is able to affect both

the Viewable Environment of another agent as well as its Region of Influence. In this case

an agent can directly affect the goals of another agent because it can act on exactly those

aspects of the environment that may represent desirable environmental states for the other

agent.

Agent B is strongly influenced by Agent A if and only if both A and B can observe the

actions of each other.

This situation is covered by the case of bilaterally observable mutual influence, so we

simply need to include the BilaterallyObservableMutualInfluence schema in the Strong

Influence schema, and in the predicate section specify that the function bilaterallyobserv

ablemutualinfluence should not be equal to the empty set.

Stronglnfiuence __ _

BilaterallyObservableMutualInfiuence
stronginfiuenced : AgentState f-7 AgentState

Va, b : AgentState I a =1= b •
(b, a) E stronginfiuenced {:}

bilaterallyobservablem utualinfiuence =1= {}

Sneaky influence A sneaky influence relationship occurs when an agent is able to affect the

Region of Influence of another agent but not the Viewable Environment. This, of course,

implies that the influenced agent cannot view the results of its actions, so cannot be aware

that some other agent is affecting those results.

Agent B is sneakily influenced by Agent A if and only if there is a relationship of unilat

erally observable mutual influence.

146 Chapter 5 SMART+ : Relationship Identification and Characterisation

Sneakylnfiuence ______________________________________ ___

UnilaterallyObservableMutualInfiuence
sneakyinfiuenced : AgentState t-+ AgentState

Va, b : AgentState I a =I b.
(b, a) E sneakyinfiuenced <=?

unilaterallyobservablemutualinfiuence =I {}

No influence Finally, when an agent cannot affect the Viewable Environment or the Region of

Influence of another agent, no direct relationship can develop between them.

Agent B is not influenced by Agent A if and only if (i) there are no observable actions

between A and B, and (ii) there is no mutual influence between A and B.

Nolnfiuence __ __

ObservableActions
MutualInfiuence
notinfiuenced : AgentState t-+ AgentState

Va, b : AgentState I a =I b •
(b, a) E notinfiuenced <=?

observableactions = {} 1\

mutualinfiuence = {}

These four types of influence can now, in turn, act as a guide to characterise a range of specific

kinds of relationships. For example, a competitive relationship for access to common resources

can only take place if both agents can strongly influence each other, i.e. if their Regions of

Influence and Viewable Environments overlap. A supervisor-student relationship is one in which

the supervisor can strongly influence the student (e.g. by providing direct guidance on what

research the student should do), and the student can weakly influence the supervisor (e.g. by

generating new results that may convince the supervisor to change research direction).

5.5.1 Effect of Influence on Actions and Goals

In order to have a clearer understanding of exactly how one agent could affect the goals or

actions of another in the context of these four types of relationships, we provide an analysis of

the different cases. The analysis is based on the assumptions that the goals agents are trying to

achieve are of type total control, i.e. they are within an agent's Region of Influence and Viewable

Environment.

Chapter 5 SMART+ : Relationship Identification and Characterisation 147

Having made such an assumption, it is sensible to define the relationships that evolve through

the interactions between agents in terms of the contribution that such interactions have towards

the achievement of their goals. 3

Weak influence relationships

When only weak influence relationships occur, the influencing agent cannot directly impact

goals. Nevertheless, it can still have a significant effect on the way the influenced agent achieves

a goal, or whether the goal can be achieved at all. In essence, an agent could either be influenced

so as to change its actions in order to achieve a goal or to change the goal completely. Below,

we outline the different scenarios.

Goal does not change In the first type of case, the goal of the agent does not change as a

result of the influencing agent. However, the actions performed to achieve the goal might

change, as might the exact results of the actions, because of the goal.

No effect The influencing agent has no impact on the outcome of the goal because the

attributes of the environment that are affected by the influencing agent are not taken

into account for the execution of an action by the influenced agent.

Outcome of action changes Here, the influencing agent affects the environment in such

a way that the outcome of the action performed by the influenced agent changes.

However, the goal of the influenced agent does not change. For example, consider

an agent with the goal of compiling a list of all researchers with an interest in the

subject of argumentation. The goal is satisfied as long as such a list exists. The

agent compiles the list by asking other agents to declare their interest or lack of it

in the subject. The queried agents influence the outcome of the action by providing

an answer. In any case, the goal is eventually achieved. However, the exact values

described in the list have been influenced by others.

Action changes Agents may influence another agent to such an extent that the later needs

to change its planned actions in order to achieve the goal. For example, if some

agents refuse to declare whether they are interested in the topic of argumentation,

3 Note that, if an agent's goal cannot be achieved within that agent's Region of Influence, then the agent must seek
assistance from another agent that has access to the region of the environment within which the goal can be achieved.
In this section, we do not consider those situations.

148 Chapter 5 SMART+ : Relationship Identification and Characterisation

the agent of the example above may need to follow an alternative route, such as

looking at their list of publications for evidence of an interest in the subject.

Goal changes The second type of scenario is when the influencing agent may change the en

vironment in such a way that the influenced agent has to change its goal entirely. For

example, let us assume that Agent A has two goals. The first goal, of primary importance,

is to discover any paper on negotiation, and the second goal, of secondary importance, is

to discover papers relating to middleware. If A is pursuing the secondary goal and dis

covers that new papers relating to the primary goal have been posted by B, A must then

change goals to reflect the change in the environment. Thus, B has sufficiently influenced

A, through actions that impacted on just A's viewable environment, so that A changed its

goal.

Strong and Sneaky Influence

Strong and sneaky influence relationships can impact on a goal in a more immediate way since

agents could change exactly those attributes that represent a goal for another agent. We identify

three main cases below.

No change In the first case, the actions of Agent A do not affect the goal of Agent B. This

means that although A is able to act in the Region of lnjluenceof B, it does not perform

actions that hamper the goal for B.

Goal constrained An agent can perform an action that changes the environment in such a way

that a goal of another agent is constrained. For example, one agent may wish to access

a document but cannot do so because another agent is already accessing it or has placed

restrictions on its access.

Goal aided Alternatively, an agent can perform an action that helps towards creating the goal

state of another agent. Such actions may have been intentional or may occur unintention

ally. For example, if an agent has the goal of discovering a paper on auctions and another

posts that paper, it inadvertentently aids the second one in achieving its goal.

Chapter 5 SMART+ : Relationship Identification and Characterisation 149

5.6 Conclusions

In this chapter we introduced a typology of relationships in support of coordination and reg

ulation, building on a basic model of interaction between agents and the environment. Each

relationship type was associated with the goals of an agent, by defining goal regions to provide

a useful tool for identifying possibilities for coordination between agents, especially in situa

tions in which we cannot predefine coordination because of incomplete information about an

agent's capabilities and goals. The same tools can also be used to identify how a multi-agent

system should be regulated to avoid conflicts, as illustrated through the definition of interfering

relationships.

5.6.1 Related Work

The issue of relationship analysis has not in general been sufficiently addressed by existing

research. Initial attempts such the ISAAC automated team analyst [151] take a different ap

proach, since the analysis tools are geared towards learning about agent behaviour, and are

focused on analysing teams of agents. Although there is also a wider body of work on con

flict management (a representative collection can be found in [210]), once more the relationship

identification issue is not addressed. Our work also has some similarities with social depen

dence networks [50, 196], which were also modeled using SMART [76]. However, our approach

differs, since we make minimal assumptions about other agents, basing our models solely on

agent interaction with the environment and the observability of actions. In the next sections we

compare more closely the ISAAC automated team analyst to our work and social dependence

networks.

ISAAC

ISAAC is a system developed to analyse the interactions between agents in a team. It performs

the analysis by examining data-traces produced during the execution of a system (typically a

game between two teams of agents in the context of ROBOCUP), considering individual actions,

patterns of interaction and statistics of engagement between teams. ISAAC attempts to create

models of agents by learning from the traces of their actions, highlighting positive or negative

actions with reference to an overarching goal. Developers can then analyse the resulting models

150 Chapter 5 SMART+ : Relationship Identification and Characterisation

to identify relevant patterns and perform "what-if" analyses to determine the performance of the

team.

The main difference between ISAAC and SMART+ is that while our analysis is based on a pre

defined abstract agent model and an interaction model that provides generic relationship types

which are then related to real-world situations, ISAAC attempts to learn the agent models after

agent interactions have taken place in order to then inform subsequent refinements to behaviour.

Furthermore, ISAAC is geared towards analysis of team behaviour, and particularly improving

one team's performance against another, while we focus on interactions between two agents and

are concerned with improving the overall performance of an agent system.

Overall, although both techniques are aimed at facilitating relationship analysis, they clearly

fulfill different roles. ISAAC is particularly well suited for analysing interactions once they

have taken place, while our aim is to inform both design from the very first stage and the run

time coordination of agents.

Social Dependence Networks

Social dependence networks [196] underpin the computation model for social power theory, as

proposed by Castelfranchi [50]. These are taxonomies of social relationships in which relation

ships are characterised by the power that one agent has over another. They facilitate reasoning

about relationships so that agents can reason about inter-dependencies between them. Com

paring social dependence networks to our own relationship analysis techniques is particularly

interesting, since both are expressed using SMART [82]. This provides a further illustration of

the benefit of having access to a common set of concepts, since we can be sure that we are

comparing like with like.

The taxonomy of relationships is based on whether an Agent A depends on another Agent B to

achieve a goal with respect to: B being able to perform an action A cannot perform; B having

access to an agent A does not have access to; or both. The dependence network is then defined

by the combinations of distinct dependence situations. These situations between agents are:

mutually dependency (both depend on each other for the same goal), reciprocal dependency

(agents depend on each other, but for different goals), unilateral dependency Gust one agent is

dependent on the other), and independence (an agent does not depend on anyone else). However,

in order for such dependencies to be identified, we must have access to both the goals and plans

Chapter 5 SMART+ : Relationship Identification and Characterisation 151

that an agent has to achieve those goals. It is the plans that indicate which actions or which

other agents are required to achieve goals. This means that we must make assumptions about

the intemal operation of agents, namely that agents operate based on plans and that we have

access to those plans.

Our relationship analysis models base their analysis on the Viewable Environment and Region

of Influence of an agent, making it possible to make useful inferences without any reference to

the internal structure of an agent. Furthermore, the goal typology is also based on where a goal

lies within the Viewable Environment and Region of Influence, rather than what a plan explicitly

defines as the necessary actions. As a result, the approach is more flexible and more widely

applicable.

5.6.2 Discussion

The relationship analysis tools presented here can play an important role in managing dynamic

and heterogeneous computing environments. At design-time they can aid developers in deter

mining the most appropriate configurations of agents and how they can facilitate cooperation

between them. At run-time they can enable agents themselves to reason about relationships be

tween agents and adjust behaviour accordingly. This can be achieved both by specialised agents

that are dedicated to the task of relationship analysis (we specify such an agent in Chapter 6),

and by individual agents maldng use of the relationship analysis techniques.

Finally, these tools also demonstrate the utility of the earlier models as an enabling conceptual

infrastructure for dealing with heterogeneous agent systems. The clear definitions of concepts

such as attributes, goals and capabilities enable the formal definition of the intuitive notion

of regions of the environment that agents can view and influence, based on models of agent

perception and action.

Chapter 6

Applying actsMART, SMART and

SMART+

"You cannot create experience. You must undergo it."

Albert Camus (1913-1960); French writer and philosopher

6.1 Introduction

With the work presented in Chapters 3, 4, and 5 on models of individual agents and the rela

tionships between agents, and with the underpinnings provided by SMART [82], we have access

to a considerable base of conceptual infrastructure to facilitate the implementation of a muIti

agent application. Throughout the thesis we have provided several isolated examples of how

such infrastructure can be used in a practical application setting, but we have not provided a

comprehensive view of all the models operating together, something that is necessary to provide

a more complete evaluation of the work. This chapter addresses this through the development

of a demonstration application, where we make use of both actS MART to define architectures

for the various agents in the application, and SMART+ to reason about the relationships between

agents.

In particular, we develop a demonstration application inspired by the vision of ubiquitous com

puting, which refers to attempts to develop applications in which the use of computing technolo

gies providing complex, integrated services is hidden as much as possible from the user. Weiser,

who coined the term, described ubiquitous computing as technologies that "weave themselves

153

154 Chapter 6 Applying actS MART, SMART and SMART+

into the fabric of everyday life until they are indistinguishable from it" [223]. In practice, ubiqui

tous computing can be described as the exploitation of limited capability devices such as mobile

phones and PDAs, along with computing capabilities embedded in devices such as printers, to

provide services to the user that are tailored in relation to information such as the location of the

user or the context of use.

With the most recent advances in computing and networking technologies, this vision is be

coming increasingly viable [191] and, as a result, there are several efforts to develop models

to support the vision of ubiquitous computing within the context of existing IT infrastructure

(e.g. [109, 145, 173]).

The domain of ubiquitous computing provides a natural setting for the application of agent-based

computing, and a realistic challenge to test the viability of the paradigm, since the environment

is inherently heterogeneous and dynamic due to the inevitable continuous movement of users

and devices within the environment. Indeed, this is demonstrated by the fact that there have also

been several efforts attempting to address the challenges raised by ubiquitous computing using

agent-based methods (e.g. [24,52,94,98, 125, 126, 190, 193]).

Of course, our aim is not to provide answers to all the questions that ubiquitous computing

raises. However, through a limited demonstration within the context of ubiquitous computing,

we illustrate how our models can practically contribute towards both agent construction and

the management of relationships between agents. The application scenario revolves around the

provision of services to delegates attending a conference and support for collaboration between

delegates through the exchange of personal information and resources such as papers and pre

sentation material. We assume that delegates are on site at a conference venue, with various

rooms for presentations, and public spaces for interaction with other delegates. The services

provided to users are either access to physical devices, such as printers and projectors, or ac

cess to services that can provide information about local restaurants and accommodation. Users

are represented by dedicated user agents operating on their devices, and the services provided

are accessed through appropriate agents for each type of service. Furthermore, the system is

supported with infrastructure agents whose aim is to facilitate cooperation and coordination be

tween user and service agents. In particular we examine, through the application of our models,

the following specific aspects of development and support for agent-based systems.

1. Firstly, we investigate and contrast the operation of infrastructure agents, whose sole pur

pose is to facilitate the run-time discovery of information about other agents and the oper-

Chapter 6 Applying acts MART, SMART and SMART+ 155

ating environment in general. This information can then be used to promote coordination

and cooperation between agents, through the enforcement of regulations or the support

for direct interactions between agents in order to achieve their goals. These capabilities

are crucial for the effective operation of a multi-agent system and, not surprisingly, almost

all major toolkits provide agents to support this.

We term such agents infrastructure agents and treat them as distinct from application

agents, with the latter achieving particular application-specific tasks. In particular, we

investigate two types of such infrastructure agents:

• middle agents, which perform capability brokering, with their specification based on

existing research on such agents, as discussed in Chapter 2;

• and, relationship analysis (RA) agents, which perform relationship analysis and

management using the techniques developed in Chapter 5.

Note that while middle agents have been widely studied and are widely used, RA agents

are only made possible because of the work in this thesis and as such represent a new type

of infrastructure agent. Through their comparison we can determine the benefits that each

brings to an agent-based application.

2. Secondly, we discuss in some detail the development of application-specific agents, touch

ing on issues such as the practical implementation of abstract concepts like attributes, and

how architectures can be reconfigured at run-time.

3. Finally, we describe our implementation of actS MART as a set of application programming

interfaces, which enables the practical construction of agent architectures.

The application is simulated, in the sense that we do not make use of actual mobile devices and

devices with embedded computing capabilities. The communication between agents and the use

of different underlying communication protocols such as Bluetooth or S02.llb are also simu

lated. However, the agents operate as independent entities within the simulation environment

and the tools used to develop agents are the same tools that would be used for the development

of applications for mobile devices. We have also tested some of the agent implementations,

without the communication capabilities, on low-end and high-end PDAs, so as to verify that the

implementation was operational on actual devices.

The chapter begins with a discussion on middle agents as the first type of infrastructure agents

we investigate. We introduce Decker et al.'s [69] model for middle agents, and adapt it for use

156 Chapter 6 Applying actS MART, SMART and SMART+

within SMART, before developing a specific architecture for a broker. Subsequently, we discuss

relationship analysis and develop a specific architecture for an RA agent. The two architectures

are then contrasted, enabling us to identify some of the main differences between the two types

of infrastructure agents as well as where each would be most suitable. With the infrastructure

agent architectures in place, we proceed to develop the application scenario, discussing how

the different types of agents are related and how we can characterise them given the entity

hierarchy of SMART, and our refinements of it with active and passive agents. We then develop

the architecture for the user agent 1 to provide a clear example of the use of actS MART in

architecture development and the capabilities it affords us to reconfigure architectures. With the

user agent architecture in place, we then discuss the use of RA agents to facilitate cooperation

between user agents. Finally, we outline the actual implementation of actS MART in Java and

conclude.

6.2 Middle Agents

The need for obtaining run-time information about a multi-agent system has long been recog

nised and was initially characterised as the "connection problem" [67]; namely, how agents can

find out about other agents and capabilities they may offer. There is already a wide range of solu

tions to this problem, centring around the use of middle agents for capability brokering, defined

as "the task of finding an agent which has a capability that can be used to address a given prob

lem" [225]. More specifically, Decker et a1. [69], define middle agents as those agents that act

neither as providers nor as requesters of information, nor perform any other actions, and instead

act as the 'connectors' between providers and requesters by managing information required to

enable one agent to access another or cause the other to perform an action. As discussed in

Chapter 2, toolkits for agent development provide a variety of alternative middle agents de

signs, and there are also several description languages for agent capabilities and protocols for

the advertisement of those capabilities.

We clearly need to support the development of middle agents within the context of actS MART,

SMART and SMART+ since, as we discussed above, they fulfill a crucial task as part of a multi

agent system. However, since there is already a wealth of existing work, we do not aim to

develop yet another model for middle agents but instead choose to adopt a well-established and

1 Note that some aspects of the architecture specifications are only outlined in this chapter, with more extensive
descriptions in Appendix A.

Chapter 6 Applying acts MART, SMART and SMART+ 157

widely-used existing model, developed by Decker et al. [69], and illustrate how it can inform

the specification of an agent architecture using actS MART.

Decker et al. describe discovery as the process of matching a set of preferences, as defined by a

requester, against a set of capabilities that a provider offers. The task of the middle agent is to

perform this matching between requesters and providers.

In their work, they provide a comprehensive categorisation of such middle agents according

to the information that providers, requesters and middle agents have available about services

requested and available capabilities. The three most significant types are: a broadcaster where

capabilities and preferences are made available for all to see; a matchmaker or yeIlow pages

service where capabilities are known by all but preferences are only known by the requester;

and a broker where only the middle agent has knowledge of both capabilities and preferences.

We adapt this model to the SMART framework by replacing the generalised notion of preferences

with a description of an agent using attributes, capabilities, goals and motivations, and we caIl

this a profile. Agents can either provide a middle agent with a wanted profile, which describes

the type of agent they are attempting to discover, or a provider profile, which describes the

services provided. Below, we provide a detailed account of the structure of a profile and outline

examples of the types of requests it can be used to describe.

6.2.1 Agent Profile

We examine each aspect of an agent in turn, so as to determine both what is required to define a

wanted or provider profile as weIl as what is afforded by the expressive capabilities of SMART.

The aim is to capture what an agent is able to query with reference to other agents or, say,

about itself, starting from the basic understanding of agents as entities described by attributes,

capabilities, goals and motivations.

Attributes Attributes describe the observable features of the environment in general. In the

context of the profile of a specific agent, the attributes contained should relate just to

that agent. These attributes can be of two distinct types, since they can either describe

the agent directly or the agent's situation in the environment. The distinction is useful

since it enables the modeling of more subtle profiles, such as that an agent belongs to a

specific person and is currently in a particular location in a particular building. The first

158 Chapter 6 Applying actS MART, SMART and SMART+

requirement refers to an attribute specific to the agent, while the last two refer to attributes

that are a result of the agent's situation. Attributes within a wanted profile indicate that

an agent requires another agent matching those attributes, while within a provider profile

they indicate the attributes of the provider.

Capabilities Capabilites describe the actions an agent is able to perform and, as such, are the

most typically requested type of information about other agents, since it is the capabilities

of an agent that determine, above anything else, whether the agent can help to achieve a

goal. Once more a wanted profile specifies required capabilities while a provider profile

specifies offered capabilities.

Goals Goals describe a desirable state of affairs that an agent wishes to achieve. A wanted

profile containing goals indicates that an agent requires assistance to achieve those goals,

while a provider profile indicates that the agent is able to achieve the goals specified.

Matchmaking based on an agent's goals is generally not addressed in agent toolkits, since

the focus is on matching capabilities. However, the ability to match by goals can be very

useful in cases in which an agent knows the environmental state it wishes to bring about

but does not know what capabilities of other agents are necessary to achieve that.

Motivations Finally, an agent can also include a description of its motivations within a profile.

Such information can be used to select agents that are more likely to behave in a certain

way. For example, we may specify in a wanted profile that a provider agent should be

motivated to cooperate as much as possible, so as to benefit from the greater possibility

of forming closer relationships.

Although each of the information types described above can be used in isolation to form a

useful query, the real benefits come from combining them to create more complex queries. For

example, an agent may wish to discover an agent that is currently in the same location and has

the capability to use the printing devices that are close to that location.

Finally, agents can also indicate the type of entity they wish to discover in terms of passive,

active and autonomous agents. It is entirely possible that both an autonomous and an active

or passive agent are able to offer the same services. It is therefore useful to specify that, for

example, an agent does not wish to interact with an autonomous agent that could refuse service

provision or could provide less control as to how the goal will be achieved. Engagement of

a passive agent would guarantee that the engaging agent would have absolute control over the

Chapter 6 Applying acts MART, SMART and SMART+ 159

Descriptive Specification Behavioural Specification Structural Specification

Attributes Register Wanted or Provider Service Registration ~ensor)
Profiles

Middle Agent Type Incoming Queries (Sensor)
Service Type Handled Match Profiles
Location Handled RegistrationManager (Q:mtroller)
Wanted Profiles Notify Service Requestors of
Provider Profiles Match Provided Services (Infostore)

Periodically check for expiration Wanted Services (Infostore)
Capabilities of profile registration

Register Wanted and Provider
QueryManager (Controller)

Notify agents of expiration
Profiles RegistrationMessages (Actuator
De-register Wanted and Provider
Profiles QueryReplies (Actuator)
Match Profiles
Notify Agents of Match

Goals

Match Wanted to Provider
Profiles
Notify Service Req.Jestors of
Match
Notify of Profile Registration
Explralion

FIGURE 6.1: Broker specification

actions performed by the service provider, while engagement of an active agent would provide

guarantees that the engaged agent would attempt to achieve just that goal and would not change

goals because of influences such as motivations.

6.2.2 Broker Architecture

Following the general discussion on agent profiles, we present here a specific architecture, which

is aimed at supporting agent discovery. The architecture is for a broker, so only it has knowledge

of both wanted and provider profiles. The description of the architecture is divided, as usual, into

the descriptive, structural and behavioural specification, with an overview of all three aspects in

Figure 6.1. Here we provide just the descriptive specification and a view of the architecture in

Figure 6.2, while the structural and behavioural specifications are presented in A.2.

Descriptive Specification

Recall that the descriptive specification of an agent provides first a description of the attributes

used by an agent and second a description of the agent, the agent's capabilities, goals and, if

they exist, motivations.

Attributes The attributes describing a middle agent indicate the type of middle agent, such as

160 Chapter 6 Applying actS MART, SMART and SMART+

BrokerAgenl~----------------------------------~

, _.-s;~~;·-·,
I Registration '-i ----+I
1._---_._-_._. '-,-__ -('

,_._._._._._-,
- Incoming .
I Queries i'------+I
1._._._._._._. '--__ ./

FIGURE 6.2: Broker architecture

Registration
Messages

Query
Replies

broadcaster, matchmaker or broker (in our case this attribute indicates that it is a bro-

ker). If required by a specific domain, we could also describe the category of services that

can be registered with the middle agent. For example, in our ubiquitous computing sce

nario, we have different middle agents for different locations or different types of devices.

Finally, profiles are used as discussed earlier, and are supplemented with an additional

attribute indicating the time period for which a profile should remain registered with the

middle agent.

Capabilities Our broker has the capability to both register and de-register provider or wanted

profiles, and to accept queries for provider services. In addition, the broker notifies agents

whenever their provider or wanted profile registration period has expired, to give them the

chance to renew it. Finally, it notifies agents of matches between profiles.

Goals The three main goals of the agent are to register the profiles corresponding to wanted

and provided services (for a defined time-period after which registrations are removed),

to match those profiles, and to notify first, service requestors of a match, and second both

service requesters and providers that their registration will be removed unless renewed.

6.2.3 Discussion

Even though the broker described here allows us to perform only very basic capability match

ing, it provides a clear example of how such agents can be implemented and specified using

SMART and actSMART. While such agents exist within the majority of agent toolkits, such as

ZEUS [155] or RETSINA [206], their architectures are typically not made explicit and are in

consistent with the approach used to develop architectures for other agents in the system, which

makes their design opaque to application developers and harder to reuse in other settings.

Chapter 6 Applying acts MART, SMART and SMART+ 161

6.3 Relationship Analysis Agent

In Chapter 5, we indicated that the relationship analysis tools developed there could be used

both at design-time by the designer of a system and at run-time by agents. Here, we develop an

architecture for an agent dedicated just to the task of relationship analysis that complements the

functionality of the middle agent.

The task of the RA agent is to identify situations in which there may be a conflict between agents,

or where there may be possibilities for cooperation. Before we present the detailed architecture,

we consider exactly what information is required from agents in order to perform the analysis,

how the RA agent performs this analysis, and what management can be applied based on the

analysis.

6.3.1 Identifying Agent Relationships

Required Information for Analysis

In order for the RA agent to identify the possible relationships an agent may have with others, it

requires information about an agent's capabilities and attributes. The agent's capabilities define

the Viewable Environment and Region of Influence of an agent, while the agent's attributes are

required because they may provide relevant information about the current situation of the agent

within the environment, such as its location. This information may, in tum, also impact on the

agent's Viewable Environment or Region of Influence. For example, the short-range BIuetooth

communication protocol only allows an agent to access devices that are in close proximity with

it. Thus, in order to determine whether an agent can interact with Bluetooth devices, we need

to know both that it has a BIuetooth capability and its location to determine which other devices

may be in range.

Clearly each agent must provide this information and there are two ways in which it can do so.

On the one hand, it can simply provide an agent profile, as discussed for middle agents above,

and the RA agent can then infer (based on information about the domain) which attributes the

agent can influence or view. On the other hand, agents can directly provide the sets of attributes

that they can influence or view. In our case, we adopt the former approach since we assume

that individual agents may not be able to define their own Region of Influence and Viewable

Environment. Individual agents could either explicitly construct the profile themselves by having

162 Chapter 6 Applying actS MART, SMART and SMART+

appropriate controllers as part of their architecture, or the task can be delegated to the agent shell,

as discussed in Chapter 4. The RA agent makes use of domain specific information that maps

capabilities to the attributes they can influence or view. Finally, we note that the profile may

also contain information about an agent's goals, which, as discussed in Chapter 5, can be used

to better determine the relationships that may actually take place.

Now, since changing goals and changing attributes may impact on the resulting relationships,

the RA agent updates profiles from agents. For some types of agents, the information about

goals is likely to change frequently, while other information remains relatively static. The only

instance in which information about capabilities and attributes would need to be updated is if an

agent has undergone reconfiguration of its architecture, or if some of the relevant attributes have

changed significantly. For example, in our application, an agent's location is simply determined

by the room within the conference venue in which the agent is currently situated. However, other

applications may demand a finer-grained approach to the problem, which would require agents

to frequently update their location attribute information or the RA agent to be more proactive in

gaining such information through other means, such as dedicated services for determining the

location of agents.

Relationship Analysis

With the required information in place, we can proceed to identify the relationships between

agents. The aim is to produce a table, as shown in Figure 6.3, that lists all the agents related to

a specific agent according to the type of relationship. In Figure 6.3, Agent A is related to two

agents, Band C. With B the relationship is one of ObservableActions, which means that an agent

can observe the actions of another. In fact, in this case it is BilatterallyObselllableActions, which

means that both agents can observe the relevant Region of Influence. With C the relationship is

one of MutualInfluence and, more specifically, UnilaterallyObservableMutualInfluence, which

means that just B is able to observe the region of MutualInfluence. The process through which

we arrive at such results is described below.

1. The first step is to identify the Region of Influence and Viewable Environment for the agent

in question. This is achieved through an analysis of the agent's capabilities, attributes and

the use of domain-specific information.

2. Then, we match this Region of Influence and Viewable Environment for each other agent

Chapter 6 Applying acts MART, SMART and SMART+ 163

Agent identification: Agent A

Relationship Type Related Agents

MutuallyViewableEnvironment

ObservableActions AgentS

InvisibleActions

BilaterallyObservableActions Agent S

UniiaterallyObservableActions

BilaterallylnvisibleActions

UniiaterallylnvisibleActions

Mutuallnnuence Agent C

ObservableMutuallnfluence

InvisibleMutuallnfluence

BiiaterallyObservableMutuallnfluence

BiiaterallylnvisibleMutuallnfluence

....
unilalerallyOoservableMutualinfluence I Agent C

FIGURE 6.3: Relationship table for a single agent

for which the RA agent has the required information. A match occurs when one of the

conditions for a relationship to exist is met. The conditions for a relationship to exist are

all described in Chapter 5.

3. Finally, the table is stored for later reference and updated whenever relevant attributes or

capabilities change.

6.3.2 Managing Relationships through Regulations

Having constructed tables of relationships between agents as discussed above, the RA agent

must then identify which relationships indicate that some form of relationship management

is required and apply appropriate management. In our case management is applied through

regulations, which will allow us to describe what behaviour agents should exhibit once the need

for management is identified. Below we provide an outline of the structure of a regulation,

which is based on largely accepted notions of regulations as reviewed in Chapter 2.

Environmental Activation Criteria Environment activation criteria stipulate when a regula

tion is applicable by defining a set of attributes. In our case, the activation criteria are

based on just the existence of particular types of relationships between agents.

Agent Activation In order to also deal with the activation of a regulation that depends on an

164 Chapter 6 Applying acts MART, SMART and SMART+

agent profile, rather than just the relationships the agent has with others, we introduce an

agent activation component to the regulation. This is described through a profile, allowing

the specification of agent attributes, capabilities, goals and motivations.

Forbidden and Mandatory Goals Finally, the regulation defines which goals are not permit

ted and which must be achieved by the agents that fall under the scope of the regulation.

In essence, this provides goals that the agents should not pursue and goals that they should

achieve given the regulation.

A regulation is applicable when the relevant relationships, defined in the environment criteria

section, are identified and the agents participating in the relationship match the profile in the

agent activation criteria. If no environmental activation criteria are defined, but only an agent

profile then any agent matching that profile falls under the scope of the regulation. Similarly, if

we do not define a profile but just the environmental activation criteria, then all agents identified

to be in the specified relationships fall under the scope of the regulation.

The RA agent manages relationships between agents by determining which regulations apply to

a specific identified relationship and informing the agents of those regulations. For the purposes

of the demonstration we use two types of regulations: mandatory regulations that are typically

used to prevent conflict, and optional regulations that are typically suggested where there is the

possibility of cooperation between agents. Note that this notion of regulation is by no means

complete but is adequate to demonstrate how RA agents can be used to manage relationships.

6.3.3 Relationship Analysis Agent Architecture

In this section we develop the specification for the RA agent architecture, using actS MART.

As usual an overview of the descriptive, structural and behavioural specification is available in

Figure 6.4, while a view of the architecture is provided in Figure 6.5. Once more we only provide

the descriptive specification here, with the structural and behavioural specifications in A.3.

Descriptive Specification

Attributes The RA agent is described by the location within which it operates and the types of

agents it analyses relationships between. For the purposes of this chapter, and our demon

stration application, we focus on the relationships between user agents at the conference

Chapter 6 Applying actSMART, SMART and SMART+ 165

Descriptive Specification Behavioural Specification Structural Specification

Attributes Accept an agent profile AgentRegistration ~ensor)

Location Handled Analyse profile to identify Update Information (Sensor)
Agent Types Analysed RegionOfinfluence and
Agent Profiles Viewable Environment Regionldentification (Controller)
Regulations

Identify relationships betwJen GoalCategorisation (Controller)
Capabilities agents

RelationshipAnalyser (Controller)
Accept Agent Profiles Notify agents of regulations
Update Agent Profiles Conflict Analyser (Controller)
Analyse Profiles If required update agent profiles
Identify Relationslips and adjust identified relationship CooperationAnalyser (Controller)
Notify Agents arout Regulations information

MotivationEvaluation (Controller)

Goals Domainlnformation (Infostore)

Analyse information to identify RegionStore (Infostore)
relationships
Notify agents of relelBnt RelationshipStore (Infostore)
regulations

Motivations
GoaiSiore (inrosiore)

SupportCooperation
Regulationlnformation (Infostore)

ReduceConflict RegulationsNotification (Actuator)
FosterRelationships

FIGURE 6.4: Relationship analysis agent specification

RelationshipAnalystt----------------------______

r-'-'-'-'-'-'1
. Agent i
I Registration i 1._._._._._._.

r-'-'-'-'-'-'1
. Update i
I Information i
1._.-._._._.-.

Domain
Information

FIGURE 6.5: Relationship analysis agent architecture

Regulations
Notification

166 Chapter 6 Applying actS MART, SMART and SMART+

venue, with each RA agent operating within a specific room. The architecture manipu

lates profiles, which contain agent attributes, capabilities and goals, and regulations, as

described above.

Capabilities The RA agent is able to accept agent profiles, either when an agent is registering,

or when providing an updated profile. This information is analysed, and agents are notified

of relevant regulations.

Goal The goals of the RA agent are to analyse the information provided and, if relevant, to

notify agents about any regulations they should adhere to. The exact goals at each moment

are determined by the motivations of the RA agent, as discussed next.

Motivations Based on its motivations the RA agent chooses which agents to notify about what

regulations. In an abstract sense, motivations are understood as desires that an agent

attempts to satisfy by generating relevant goals. In our specific case, motivations are

satisfied if an agent performs a goal that contributes some utility towards a motivation.

We define utilities as simple numerical values attached to regulations to indicate how

much a specific regulation (and, by consequence, the act of informing an agent about that

regulation) contributes towards a motivation.2 For example, if the RA agent is motivated to

support cooperation that motivation is satisfied if the relationship analysis agent generates

goals that inform agents about regulations in which the goals will lead them to cooperate.

Regulations may contribute towards several motivations at the same time, so there is a

process of selection to choose those with the highest overall utility at any given time.

For the purposes of the demonstration application, the RA agent has three motivations,

described below.

• The SupportCooperation motivation leads the RA agent to choose regulations that

require agents to attempt to cooperate in order to collectively achieve their goals.

For example, in the previous example of the table of relationships between agents

A and agents Band C, the RA agent identified that A and C are in a relationship

of UnilaterallyObservableMutualInjluence. This means that C is able to observe

the results of actions in that region but A cannot, although they can both perform

actions there. Therefore, C could aid A by verifying the results of actions taken in

that region, and informing A of them.

2In our case these values are defined at design time and remain static throughout the operation of the RA, unless
the designer updates them. Note that more sophisticated frameworks supporting motivated agents, based on the
SMART framework have been developed and could be used to inform application development [148].

Chapter 6 Applying actS MART, SMART and SMART+ 167

• The ReduceConftict motivation leads the RA agent to choose regulations that pre

vent possible conflicts between agents.

• The FosterRelationships motivation leads the agent to choose regulations that foster

relationships between researchers by exchanging their personal profiles.

6.4 Middle Agents and Relationship Analysis Agents

We have described architectures both for a broker, which makes use of well established tech

niques adapted to SMART, and for an RA agent, which makes use of the tools described in

Chapter 5. There is clearly some overlap of functionality between the two types of agents since

they both aid better coordination and cooperation. However, it is important to clearly identify

how the agents differ in order to better inform the choice between them .

• Middle agents are essentially reactive, since they only reply when given a specific request

by agents with some knowledge of what they are seeking. Relationship analysis agents,

on the other hand, are proactive since they notify agents of opportunities for cooperation

and attempt to prevent conflicts.

• Middle agents only make use of profiles to match service providers to service requesters.

As a result, the functionality they can offer is limited to determining whether two profiles

match. RA agents make use of the relationship and goal typologies, and can use more

generic rules relating to types of relationships between agents, or types of relationships

and goals.

Based on these differences, it is apparent that middle agents should be used when agents can

identify their service requirements and can proactively communicate with middle agents in order

to request a suitable match. RA agents should be used to proactively identify opportunities that

individual agents may not have known were possible.

Furthermore, RA agents can promote an overall type of behaviour within a multi-agent system

by focusing on issues such as increased cooperation. The use of motivations to make the agent

autonomous with regard to what regulation to apply means that the type of motivations the RA

agent has may significantly influence the resulting behaviour of the system. For example, an

RA agent seeking to avoid conflict above all other costs but with little regards to promoting

168 Chapter 6 Applying actsMART, SMART and SMART+

cooperation will have a different impact to one that pays equal attention to both motivations.

Therefore, different types of RA agents, in terms of their motivations and the way regulations are

judged to satisfy those motivations, can lead to significantly different types of system behaviour.

6.5 Application Overview

So far we have introduced, in some detail, the architectures of agents providing some of the

required supporting inJrastructural services. The broker agent enables agents to discover suit

able service providers, while the RA agent supports better coordination and cooperation between

agents. We now turn our attention to the specific application scenario of supporting delegates at

tending a conference, discussing the nature of the other agents, and in particular the user agents,

and the relationships between different types of agents.

As we mentioned previously, the services available to delegates at the conference venue are

divided into two broad categories, as described below.

Information services provide information relevant to the conference, such as times of presen

tation, local restaurants and accommodation, and transport facilities. Information services

are accessible from anywhere within the conference venue.

Physical services represent those services that are more tangible, such as fax machines, projec

tors, printers, and so forth. These are devices for use at the conference venue to accom

plish specific tasks. Physical services can only be available at specific locations within the

venue.

In the application domain, delegates are equipped with a range of different types of device, from

limited capability mobile phones to more powerful laptop computers. Agents are installed on

the devices that attempt to make the best possible use of the capabilities of the devices in order to

provide access to as many services as the user requires. In addition to facilitating access to the

services provided at the conference, agents can establish contact with other delegates' agents

through the exchange of information such as research profiles, publications, or presentation

material.

Finally, we assume that there are several lower-level network communication protocols ranging

from the short-range Bluetooth protocol to 802.11g wireless connectivity and wired ethemet

Chapter 6 Applying acts MART, SMART and SMART+ 169

connectivity, with devices being able to use some or all of these protocols.

Now, a typical usage scenario within the conference venue could develop as follows. A user

arrives with a PDA with Bluetooth capabilities and an agent installed on it. The PDA is identified

by a Bluetooth-enabled desktop computer, which is dedicated to the task of registering agents

upon their arrival. Once registered, agents can identify themselves to other agents and use the

available services. These other agents and services can be discovered dynamically, by taking

advantage of any supporting middleware infrastructure, through the use of brokers, or based on

direction from RA agents.

Next, the user provides its agent with the goal of retrieving information about suitable accom

modation for that night, based on their preferences. In response, the agent attempts to locate

a broker and request a relevant service. Once a suitable information service is identified, it is

engaged by the agent and the required information is retrieved.

Subsequently, the user enters the main meeting room at the conference venue, at which point the

user's presence is registered with an RA agent. The description of the agent is matched against

those of other agents at that location so as to identify any possible conflicts or possibilities for

cooperation. The analysis by the RA identifies that the user's presentation for a workshop the

user is attending is within the Viewable Environment of others and a regulation is activated to

limit access only to those delegates who are attending the same workshop, so as not to overload

the user's PDA with requests for the presentation.

Finally, the agent may request the profiles for any participants matching the research interests of

the user, and attempt to locate them or notify the user when they are identified in the same room

as the user.

6.6 Application Entities

In this section we provide an overview of all the entities within the demonstration application,

discuss their type based on the abstract agent model, and the possible relationships between

them. A more detailed explanation of the supporting infrastructure for all agents is given in A.l.

The central conceptual artifacts of the SMART and SMART+ framework are entities and the

attributes used to describe those entities. In turn, such things as capabilities and goals from

SMART, and Region of Influence and Viewable Environment from SMART+, are defined by their

170 Chapter 6 Applying acts MART, SMART and SMART+

FIGURE 6.6: Entities within the conference application

relationship to entities and attributes. For example, capabilities can change or retrieve the values

of attributes, and goals are defined as a set of attributes representing a desirable state of affairs,

while Regions of Influence and Viewable Environments represent the sets of attributes that agents

can change or sense. It is therefore natural, when attempting to develop an application using

SMART and SMART+, to begin by defining a model of the application through the entities that

are contained within the application and the attributes that can describe those entities. We then

refer to this model when describing the capabilities of individual agents, defining how they can

affect or retrieve information about other entities in the environment.

All the types of entities we consider are shown in Figure 6.6, in which the connecting lines

between entities indicate possible interactions between the different types of agents. Interaction

between agents takes place through the exchange of messages along a communication channel.

Although the communication channel could be explicitly modelled as another entity within the

application we have chosen not to do so, since communication protocols are considered to lie at

a lower infrastructurallevel. Instead, the ability to communicate, and access to communication

channels, is implicit in the actuator and sensor capabilities of agents. For example, if a device is

only able to communicate using Bluetooth, then in order for agents to use it they must have an

actuator able to interact using the Bluetooth communication protocol.

As mentioned earlier, each of the entities in Figure 6.6 is described by a set of attributes. Note

that we also model non-computational entities, over which we have no control such as the user

and physical devices, which are represented by user agents and physical device agents. However,

from the perspective of system description, the distinction between the two is required so that

we can identify which attributes are associated with the user or physical device, and which are

associated with the agent representing them.

User The user is described by a user name, affiliation to an institution, and research interests. If

the user is presenting a paper at the conference, they may also have information about the

Chapter 6 Applying actS MART, SMART and SMART+ 171

time and location of the presentation. Users are considered as autonomous agent entities

within this application, since they kickstart the operation of the system by generating goals

and providing them to the user agents.

User Agent The user agent is described by its user identification, which provides the user name,

affiliation and a conference registration number. In addition, the user agent may have

a location, resources such as papers, presentation slides stored on the device, or URL

links to online resources. Finally, user agents have regulations that define the goals they

are allowed or prohibited from performing within a specific context.3 User agents are

considered always to be active server agents, since they are always engaged by the user.

Brokers Brokers have an identification and a specialisation. Their specialisation simply de

scribes the kind of service they can offer agents. For example, they may provide bro

kering just for information services dealing with accommodation. Brokers are neutral

objects which, once engaged by an agent, can become either passive server agents or ac

tive server agents according to their individual architecture. In our case, once activated,

the broker becomes an active server agent, since it applies its own matching algorithm

through a controller. A different type of middle agent may be best represented as either

an autonomous agent or a passive agent. For example, a broadcaster would be best rep

resented as a passive agent since it simply makes available information without matching

services to requests within its architecture.

User Registration Agent The User Registration agent performs the very basic role of simply

providing a user agent with a conference registration number upon the user's registration

with the conference. In our implementation, once engaged the user registration agent

behaves as a passive server agent.

Relationship Analysis Agents Like brokers, RA agents have an identification and a speciali

sation. In addition, they also have a location, and perform relationship analysis only for

agents which are in the same location. RA agents are autonomous agents, and their moti

vations dictate the types of goals they generate in response to the identification of different

types of relationships and the relevant regulations.

Information Services Information services are described by the services they offer, such as

Accommodation Service or Food Service. Information services may vary, according to

3 Agents are simply expected to adhere to any regulations of which they are notified. The enforcement of regula
tions is beyond the scope of this demonstration application.

172 Chapter 6 Applying actS MART, SMART and SMART+

their individual capabilities, from passive agents to autonomous agents.

Physical Devices The attributes used to describe physical devices depend on the physical device

itself. For example, if the device in question is a printer, then we may use attributes such

as laser or inkjet, pages per minute, and so forth. Physical devices are regarded as passive

server agents, since they only react to commands provided to them through the physical

device agent.

Physical Device Agent Physical device agents are described by the profile of the device they

represent. They are passive server agents if they simply act as a proxies providing ac

cess for other agents to the physical device's capabilities. However, if they reason about

how other agents are manipulating the device, and intervene when appropriate, they may

then act as either active server agents or autonomous agents, depending on the level of

intervention and the existence of goal generation capabilities.

Location Agent The location agent simply broadcasts a location identifier so that user agents,

RA agents and physical device agents can set their own location attributes.

In this section we gave a broad overview of the application and the different types of agents

within it. In the next section we discuss the user agent architecture so as to give a clearer idea of

the relevant implementation details and how abstract concepts such as attributes find practical

implementation.

6.7 The conference user agent

Following the broad overview of the SMART conference environment and the agents performing

the supporting infrastructural tasks we now discuss how actS MART is used to provide an imple

mentation for the basic user agent architecture. Note that here we only briefly discuss the user

agent architecture, with a more extensive description, including a discussion of representing

agent attributes using OWL [143], is provided in A.4.

The user agent architecture is illustrated in Figure 6.7. The components that make up the struc

tural specification of the architecture have been grouped according to the overall functionality

they cater of. Sensor components receive information through either Bluetooth, WiFi, or the

owner interacting through the screen of the device. Information and reasoning about the owner

Chapter 6 Applying acts MART, SMART and SMART+ 173

UserAgent~--~

r-'-'-'-'-'-'-'
. Bluetooth 1
1 DevicesDiscovery i
1._._._._._._;

r-·-·-·-·-·-·-·
. BluetoothDevice 1

1 IncomingMessages i
1.-.. _._._._ . .-:

1'-'-'-'-'-'-'-·
· WifiDevice 1
1 IncomingMessages i
1.-. _ ._._._ ._._.

1'-'-'-'-'-'-'-·
• 1
1 Userlnput .
• 1
1.-._._._._._:

Sensors

BluetoothDevice
OutgoingMessages

WiFiDevice
OutoingMessages

UserNotification

Actuators

ServiceComponents

OwnerComponents

Situation
Components

FIGURE 6.7: User Agent Architecture

Delegate
Components

Goal
Management

and the owner's goals is handled by the Owner Components, while the Delegate Components

handle reasoning and information about other delegates and the conference. The Situation Com

ponents handle information relating to the current context of the agent user, the agent profile,

and the regulations that apply to the agent. Service Components handle interaction with services,

both information services and devices services. Actuators manage outgoing information, and

essentially mirror the sensors. Finally, the MessageManager component handles the routing of

incoming messages to appropriate components within the architecture.

6.7.1 Managing the user agent architecture

In order to illustrate some of the benefits of developing and managing the architecture using

actSMART, we provide here some concrete examples of how we can manage the agent architec

ture to achieve better results.

174 Chapter 6 Applying actS MART, SMART and SMART+

Adapting to changes in the environment

Mobile devices are inevitably limited in their capabilities. However, ubiquitous environments

present a constantly changing set of devices and services to interact with, as well as different

modes of interaction. For example, a device may be able to communicate with other devices

through a variety of low-level protocols such as 802.11 b, Bluetooth as well as higher level agent

language communication protocols. By using dedicated sensor components to deal with differ

ent types of interaction we can change the methods used at run-time based on device capabilities.

For example, on initialisation of an agent, the agent shell can determine if its host device sup

ports Bluetooth communication and accordingly activate and link the Bluetooth-enabled sensor

component. Similarly, an agent shell can determine that a certain protocol, although supported

by the host device, is not supported by anything else in the environment and, in consequence,

the relevant component is unlinked and deactivated by the shell, thus minimising the load the

agent places on the host device.

Suspending operation

A particularly useful feature of actS MART is the easy access it provides to the state of individual

components and the agent as a whole. This, when combined with the ability to store that infor

mation to the persistent record store of devices [107], allows us to suspend the operation of the

agent either through a user command or when the device is interrupted (e.g. by a phone call).

This feature can also be used to periodically save data in order to be able to recover operation if

the device unexpectedly switches off.

Modifying the architecture

Finally, through the mechanisms provided by Java mobile device technologies, and particularly,

over-the-air provisioning of applications [107], we can take advantage of the flexibility afforded

by actS MART to replace existing architectures with modified versions that can support greater

functionality. For example, the architecture described above only has support for dealing with

delegate profiles, but not their resources. The component-based nature of the architecture can

easily allow us to provide this functionality by performing the following changes .

• Replace Userlnput and UserNotification components to allow the user to define such goals

Chapter 6 Applying acts MART, SMART and SMART+ 175

and retrieve the resulting information .

• Replace the MessageManager and GoalsManager components to handle the new mes

sages and goals .

• Add a DelegateResourceManager controller and a DelegateResources infostore to handle

the incoming resources.

The remainder of the architecture is identical since the additional functionality does not impact

on the behaviour of any other components.

6.S Using Relationship Analysis Agents

In the previous section we have discussed how actS MART can be used to define a relatively com

plex architecture, and how we can then take advantage of the flexibility afforded by actSMART to

modify this architecture. We now examine how the use of RA agents, as described in Section 6.3

can aid in improving cooperation and coordination within the system. We do this by providing

some examples of the types of relationships they can identify in the conference scenario. We

recall that throughout the examples we assume that RA agents are location-specific agents (i.e.

they operate within a specific room) and are able to communicate using both S02.11 band BIue

tooth. We also assume that agents are willing to provide information to the RA agents, and do

so upon entering a new location, but we realise that such assumptions would not be valid in a

real environment. However, the development of appropriate mechanisms to provide incentives

for agents to be truthful and willing to cooperate goes beyond the remit of this thesis.

Aiding agents to achieve goals

The first example is illustrated in Figure 6.S, in which Agent A is equipped with sensors for

communication with both S02.lIb-capable devices as well BIuetooth devices, while Agent B

can only communicate with Bluetooth devices. This means that the agents share a Mutually

Viewable Environment, enabling them to communicate, but at the same time A can view other

aspects of the environment that B cannot. Now, assume B has the goal of locating an infor

mation service that can provide information about local restaurants. In order to achieve this, it

must first find a broker able to match the required service profile to existing services. However,

176 Chapter 6 Applying actS MART, SMART and SMART+

WiFi Capability
Bluetooth Capability Bluetooth Capability

Environment

FIGURE 6.8: Aiding agent to achieve query goal

since neither brokers nor the information service are Bluetooth-enabled, B has a query goal that

is outside its own Viewable Environment. Agent A, on the other hand, is able to communicate

with a broker, so the relationship analysis agent can request that A adopts B's goals and per

forms the required actions for it. Identifying such a situation, the relationship analysis agent can

generate an optional regulation, with the goals of locating a broker, querying it about available

information services and providing the results to B.

Controlling access to devices

In a room in which presentations take place, we would like that any device the presenter is

using at the time (projector, printer, laptop) of the presentation is not used by anyone else at that

location, so as to ensure that the presentation is not interrupted in any way. The RA agent must

therefore identify all agents that have a Mutuallnfluence relationship with the presenter's agent

and create a regulation preventing access to any devices within that Region of Influence. We

point out that the generality of this rule means that we do not need to define the exact devices in

question, since this may change from location to location.

6.9 Agent Construction

The discussion in this chapter of infrastructure agents and the specific application scenario has

not dealt with the low-level implementation details in any real depth. However, the architectures

described have been developed using an implementation of actSMART in Java, and here we

describe some of the implementation's more salient features. The toolkit consists of a set of

Chapter 6 Applying actSMART, SMART and SMART+ 177

actsmart.desk actsmart.motile

8/T~dmi" D,:
E

i k/

_ ui r-----
'---------'

,
""" "./.// ..

actsmart.core

E shell I---r=:mponent I

FIGURE 6.9: actSMART implementation

applications programming interfaces (APIs), that provide access to the basic code required for

defining a shell, components and links between components. These APIs are separated into three

different packages, as shown in Figure 6.9, and the actsmart . core packages are described

below.

Shell The shell package contains the main Shell class, which implements the functionality

for adding and removing components, as well as defining the links between components

and the execution sequence of components. The other significant classes in this package

are the Link class and the Execu tionSequence class, each defining the required

methods for handling links and the execution sequence.

Component The main class within the component package is the Component class, which

is the base class that all components must extent to implement their specific functional

ity. It defines the methods that each component should implement, so that they can all

be manipulated in the same way by the shell. In addition, it provides some function

ality for storing, providing and accepting statements when called to do so. Finally, the

Statement class defines methods through which statements can be manipulated and

extensions for the three different types of statements that we support.

This core set of APIs has been programmed using only classes supported within the Mobile In

formation Device Profile (MIDP) of the Java 2 Micro Edition [107]. Thus, the implementation

of actS MART and, by consequence, the way developers access and make use of its basic con

cepts, remains the same, irrespective of whether development is targeted towards workstations

or limited-capability mobile phones. This is in line with our aim of providing both a clear path

178 Chapter 6 Applying acts MART, SMART and SMART+

from abstract concepts to implementation, and a consistent set of ideas to support development

for a variety of agent architectures and operating environments.

This actsmart. core package is then extended with more specialised implementations for

the devices at hand. In our case, we provide two broad extensions, as iIlustrated in Figure 6.9,

for workstations (actsmart. desk) and for mobile devices (actsmart. mobile). The

actsmart. desk extension is aimed for use on typical workstations that can also take advan

tage of the more extensive capabilities afforded by the Java 2 Standard Edition. The function

ality we added through extension is mainly geared towards enabling the debugging of architec

tures and their manipulation through a basic graphical environment (discussed in Section 6.9.1).

The actsmart . mobile extension provides some rudimentary debugging capabilities and a

set of components that enable agents to perform basic tasks such as making use of data stor

age facilities on a mobile device. In the next section, we describe in some more detail the

actsmart. desk extension.

6.9.1 actSMART Development Environment

The extension of the core actS MART implementation for desktop computers and, in general,

more powerful devices, takes advantage of the extensive functionality provided by the Java 2

Standard Edition APIs, as opposed to the limited capabilities of J2ME. This additional func

tionality is, of course, particularly useful for developing powerful and generic components that

handle issues cutting across different application domains such as communication or planning.

However, our main focus has been the extension of the core actS MART APIs to provide features

that are useful in the development phase of agent construction by aIlowing easier access to the

underlying features of actSMART. These extensions can be accessed either directly through the

APIs or through a basic graphical user interface development environment. A description of the

features we have built on top of the core APIs foIlows.

• Components can be loaded into the sheIl at run-time and the links between components

can be defined dynamicaIly. This aIlows developers to easily test different configurations

of architectures in order to identify the best suited for the application at hand .

• The developer can instantiate just parts of the architecture, which enables them to focus

on the interactions between a smaIl number of specific components.

Chapter 6 Applying acts MART, SMART and SMART+

«interface»
Attribute «uses»

+getAbstractTypeO: String ~ - - - - - - - -
+setAbstractTypeO
+getTypeO: String
+setTypeO
+value ToStringO: String
+getinputFormatO: String
+copy():Attribute
+isEqual():Boolean

AbstractApplicationAttribut

I
ConcreteAttribub

FIGURE 6.10: Attribute implementation

179

• Developers can step through the execution sequence of an agent, monitoring at each point

the exchanges of statements between components. This allows developers to identify

where problems within the architecture may occur.

• The development environment can also produce an XML file detailing the components

that make up the architecture as well as the links between components and the execution

sequence of the components. Furthermore, such descriptions can then be loaded back into

the development environment to quickly instantiate architectures. This enables developers

to save and catalogue different types of configurations for reuse.

These basic features are particularly useful for debugging an agent architecture, and illustrate

what is possible when a principled approach to agent development is followed, which enables

us to generalise the manner in which architectures are constructed and debugged.

In order to provide some more details on the implementation of the system, we provide below

a description of the implementation of the main concepts of attributes, components, statements,

links, and the shell.

6.9.2 Attributes

The implementation of attributes required a structure that is specific enough to actually be of

use while maintaining the required flexibility that would allow it to be used in any type of situ

ation. This concern leads to the specification of an Attribute interface that defines the methods

necessary for manipulating attributes with minimal knowledge of their specific implementation

in the context of an application domain.

The suggested way of using the Attribute interface is shown in the UML diagram of Figure

180 Chapter 6 Applying actSMART, SMART and SMART+

COMPONENT

deactivate

f-;,--"'-'-~-71 Processing

FIGURE 6.11: Component Activity

6.10. The interface can be implemented at either the architecture or application level (or both)

and then extended with specific types of attributes.

In actS MART, attributes have an AbstractType and a Type. The abstract type refers to the

general type of attribute (e.g., a Location or a Profile) while the type refers to the specific in

stantiation of an abstract type (e.g., CurrentLocation or Mike~rofile). The actual information

stored within attributes is implementation-specific and may depend on arbitrarily complex data

structures. Therefore, for them to be manipulated and changed, knowledge is required about

the data structures that represent them. Nevertheless, some standard functions can be performed

without such knowledge. Thus, the Attribute interface stipulates that the following func

tionalities should be provided by an implementation: testing attributes for equality through the

isEqual () method4 ; copying attributes through a copy () methodS; and, supporting pre

sentation through the valueToString () method that converts the value of an attribute to a

textual representation.

6.9.3 Components

As with attributes, the essential methods that components should implement are described in a

Component interface. However, in addition to an interface definition, we also provide a skeleton

4Java provides an equals () method which all objects inherit, but for our purposes the semantics of equality
are usually more demanding. Two attributes are not equal if they simply refer to the same object but if the values in
their data structures are equal.

50nce more the semantics are different to the clone () method Java provides. A copy of an attribute is a copy
of all the data referred within that object as well.

Chapter 6 Applying acts MART, SMART and SMART+ 181

implementation of the interface so that developers only need to define the methods carrying the

specific functionality of the components. The implemented functionality provides the ability

to store and manage incoming and outgoing statements, and to provide access to statements

currently being processed by the component.

The generic activity of components is shown in Figure 6.1l. The main states of a component

are active, processing and deactivated. In the active state, the component is simply listening

for statements. Once a statement is received, a component can either store it and react to it

later, or react to it immediately. The choice between the two types of behaviour depends on the

application requirements as discussed throughout the various architecture examples presented

in this chapter and in Chapter 4. For example, if tight control of component scheduling is

desired, all statements should be stored upon receipt and acted upon in the processing state.

This state is where the component does the bulk of the work by stepping through statements

and deciding how to deal with each one. The choices, which do not exclude each other, are to

produce a statement in response, perform an action or, in the case of an infostore, update stored

attributes. Finally, the component may be called to enter its deactivated state. At this point, the

component implementation should perform any operations required to ensure that deactivation

is handled gracefully. Here, the component will still receive statements, unless the links with

other components have been severed, but it will not act on them nor store them.

Statements stored within components are placed in a typical Vector object, which also has the

capability of notifying a listener to changes to the vector. This functionality is used to facilitate

debugging, since the developer can monitor statements being processed by a component through

the graphical interface. Since these statements represent the state of the components, it means

that this state can also be stored for transfer to a different entity configuration or can be used to

synchronise entities between desktop and mobile environments.

6.9.4 Statements

Statements are implemented in actS MART through a generic Statement class that is then ex

tended to provide specific types of statements, such as those described in Chapter 4. In order

to add more flexibility to the framework, and to allow for its easy extension to include more

statement types, statements are created through a Sta tementFactory that can also perform

checks on the validity of the requested argument structures. Currently, the SmartS ta temen t

Factory supports the creation of statements for INFORM, REQUEST and EXECUTE. Ap-

182 Chapter 6 Applying actS MART, SMART and SMART+

plications needing more specialised statement types can define their own factories or extend the

existing factory.

6.9.5 Links

In our implementation of actS MART, a Link class is provided for each component that produces

statements. This class holds paths between the sender and the receiver of a statement. The Pa th

class defines a sender of a statement, a receiver and the statement to be sent.

The Link class is where information is stored about where statements produced by a component

should be routed. Therefore, this information is completely decoupled from the components

themselves, and can be managed by the shell.

6.9.6 Shell

The shell manages components, the links between them and the execution sequence. It can

also hold attributes that have an entity-wide scope. Components in a shell are held in a vec

tor structure and each component is accessible via a componentID and can be observed

through the graphical interface (similarly to statements within components). The shell links

components by creating a new Path object and placing it within the Link object of the

statement-producing component. The components are executed in the sequence defined in the

Execu tionSequence object, which is configured by the developer. As we mentioned in

Chapter 4, currently we only support a sequential execution sequence, so the Execution

Sequence object implementation is relatively simple. However, an alternative implementation

of this class following a more sophisticated control-flow mechanism is possible, since the class

is decoupled form the rest of the implementation of actS MART.

The object relationships diagram in Figure 6.12 provides an overview of the relationships be

tween the key classes in our implementation of actSMART. The Shell manages Link and

Componen t objects and refers to an Execu ti onSequence object. The Componen t object

produces Statement objects, which contain At tribute objects. A Link object refers to a

Component object and contains Path objects. Finally, Path objects relate two Component

objects to a Statement.

Chapter 6 Applying acts MART, SMART and SMART+ 183

l Attribute I I EX!;l!<!.llionS!;lW!;lnQ!;l1

rl I I I
1.,*

con
1

1
manages~ 1.,* 1

I I
produces~

Statement I Shell ComQonent

I I I 1 * I I
1

1 1 1

manages' refersTo!

1
relates!

1

I Link I contains~ I Path I
I

1.,* 1.,*

FIGURE 6.12: actSMART implementation class overview

6.10 Conclusions

In this chapter we have provided a view of all the models introduced in the thesis working to

gether to support the development of an agent-based application. The main aim is to demonstrate

that the models can provide real benefits to application development and that translation from

abstract models to practical implementation is possible.

The implementation of several architectures in actSMART has provided useful experience as to

the suitability of the model for agent construction within a practical application setting. Al

though the implementation of interactions with other sources was based on a simulation of the

environment, the APIs used are those directly supported by the majority of high-end mobile

phone devices.

The fine-grained control over every aspect of the agent aids significantly in testing and debug

ging, since components can be tested individually and, more importantly, they can be tested in

connection with other components without requiring an instantiation of the entire architecture.

Moreover, the state of each component, and the agent as a whole, is clearly defined, and changes

to individual components and to the overall architecture are easy to achieve.

One of the central concerns has been that the model might place too many demands on a device,

since a component-based approach is inevitably more expensive in processing requirements that

more tightly-integrated implementations. Although more work is needed, both analytical and

184 Chapter 6 Applying acts MART, SMART and SMART+

experimental (or developmental), our tests on PCs and low-end PDAs indicate that the difference

is not significant, especially when seen within the context of our ability to adapt architectures to

the capabilities of devices.

From the multi-agent point of view, access to a consistent set of concepts has proven useful

in enabling us to accurately model the different types of entities in an environment, and even

facilitate run-time agent discovery based on such application-independent types. Furthermore,

the relationship analysis agent represents a new type of infrastructure agent that can play an

effective role in managing dynamic and heterogeneous multi-agent systems.

Compared to existing work on developing appropriate infrastructure for supporting ubiquitous

computing (e.g. [190, 52], the two main benefits of our approach has to offer are a principled

means for designing and describing agents, and extensive support for analysis of interactions

between agents.

Chapter 7

Conclusions

"Education is a progressive discovery of our own ignorance."

Will Durant (1885 - 1981); US historian.

7.1 Introduction

The technological advances in device miniaturisation, increased processing power, and network

ing capabilities can support increasingly more complex and heterogeneous computing environ

ments, where a range of devices can potentially communicate with and make use of services

provided by others. In line with this profile, there is also an increasing demand for integrating

the various different kinds of such devices in order to provide an environment in which access to

information and services is available in a seamless manner, while transcending physical location

and computing platform. However, application development for such environments poses two

significant challenges. Firstly, developers must deal with a range of operating environments,

requiring individual application components to be tailored to the demands and capabilities of

individual devices, which inevitably increases the complexity of the design and development

process, and makes the need for a consistent approach throughout essential. Secondly, develop

ers must build systems in which disparate components are able to cooperate effectively and cope

with changing application needs according to the state of the environment, creating the need for

applications that can adapt dynamically at run-time.

Agent-based systems have a key role to play in the effort to provide and support such appli

cations, since agents embody several of the required characteristics for effective and robust

185

186 Chapter 7 Conclusions

operation in dynamic and heterogenous computing environments. However, there is a num

ber of shortcomings relating to the use of the agent approach to application development. In

particular, in this thesis we deal with the lack of clarity in existing agent models and address

the need for models that can directly support practical application development. These are

widely-accepted shortcomings that have been identified by a number of researchers in recent

years (231, 189, 136,32,227]. Both issues are central to the effective application development

in heterogeneous environments. The lack of clarity of conceptual models hinders the application

development process, forcing developers to resort to ad-hoc methods, and constraints the ability

of developers to have a consistent view of the entire system so as to better address problems

when they arise. In addition, it makes the reuse of solutions across different applications harder,

since there is no consistent way of describing such solutions. However, a conceptual model can

only be useful if there is a clear path from that model to its practical implementation, providing

true value for developers, who need to ensure that an abstract specification can be translated to

practical, realisable systems.

In direct response to these challenges we have addressed the following specific issues in this

thesis.

• Provide abstractions in support of the construction of individual agents, that can be used

both during the conceptual elaboration and design of agent systems and during their prac

tical implementation .

• Provide support for cooperation between agents through a model that enables us to firstly

identify and subsequently reason about the relationships between agents.

An overarching aim of this is that any work developed should be resuable across a wide range

of applications to support the transfer of knowledge across domains and reduce the development

effort.

In this chapter we provide a summary of this work, highlight the specific contributions we be

lieve we make in this thesis and, subsequently, discuss the limitations of the work along with the

possible avenues for further work.

Chapter 7 Conclusions

Conceptual
Infrastructure

1
Specification

Artifacts

1
Design and

Practical

actSMART

1------,
I Agent Construction 1
I Model I
L _____ I

1------,
I Agent Architecture I
I Specification I
L _____ I

187

SMART SMART+

1------,
Goal.aased I General Agent 1

Agent Models Agent Relationship
Models I Interaction Model I

L _____ I

1------,
Agent Architecture Multi-Agent S)Stem Relationship I

Specification Specification I Identification and I
I Characterisation
L _____ I

Multi -Agent Systems Models

Implementation r--------------------------------..,
Multi -Agent Systems Implementation in dynamic and heterogeneous erilOnments

FIGURE 7.1: Overview

7.2 Summary

At the centre of the work presented in this thesis lies SMART, a conceptual framework adopted

with the aim of refining and expanding it to achieve our aims. SMART provides us with the

basic abstractions required to underpin development in agent systems, enabling us to describe

both individual agents, without reference to specific agent architectures, and the relationships

between agents.

However, SMART is lacking in two important aspects. Firstly, although the abstractions provided

for describing individual agents are well-suited to our aims because they restrict us to specific

architectures, they do not explicitly address the entire range of agent types we need to deal with

for development and no paths are provided from those abstractions to the practical implemen

tation of agents. Secondly, the abstractions in support of agent relationships are restricted to a

particular class of relationships that are centred around agents attempting to achieve a common

goal. Although such relationships play an important role in multi-agent systems, we also need

to support the representation and reasoning about a wider range of relationships.

In response to these shortcomings, we have shaped the work in the thesis around a clearly de

fined plan of expanding and refining SMART, in order to align it with our aims. An overview of

the extensions developed in this thesis is illustrated in Figure 7.1 (reproduced from Chapter 3).

On the one hand, the agent construction model (actS MART) enables us to define specifications of

architectures that can be directly implemented, and provides the required links between the ab

stract agent model and its practical implementation. This is also suppo11ed by the translation of

actS MART into a set of APIs that can be used to support development. Throughout the thesis we

188 Chapter 7 Conclusions

developed several examples of the use of actS MART to define a variety of architectures, ranging

from a basic agent for auctions to agents performing negotiation and argumentation, infrastruc

ture agents, and agents supporting users within a ubiquitous computing application scenario.

On the other hand, SMART+ refines and extends the existing SMART models for agent relation

ships by introducing a more generalised model of interactions. This general model enables us

to identify and characterise different types of relationships, both at design-time and at run-time,

and we provided a generic typology of relationships so as to facilitate this characterisation. In

addition, the interaction model also enables the characterisation of an agent's goals, allowing

us to consider goals in relation to an agent's capabilities and other agents in the environment.

We have illustrated the use of SMART+ through the definition of interfering relationships and

the specification of an agent dedicated to relationship analysis in the context of a ubiquitous

application scenario.

Underpinning this work was a careful consideration of the notion of agents as defined by SMART

and a refinement to more closely describe the types of entities we are likely to encounter within

a realistic application scenario. Below, we outline these refinements, before going on to discuss

actS MART and SMART+.

7.2.1 Refining the Abstract Agent Model

For developers to be able to adopt an agent-oriented paradigm, there must be an unambiguous

understanding of what constitutes an agent and, especially within the context of heterogenous

application environments, an ability to differentiate between and relate types of agents. Al

though SMART offers clear definitions, it does not provide the level of granularity required to

accommodate the different types of agents that may be encountered during application develop

ment.

We refined SMART'S basic notions, and reconciled them with Wooldridge and Jennings's widely

used agent characteristics [232], gaining the required level of granularity through the introduc

tion of the notion of self-direction as distinct from the notion of autonomy. Self-direction is the

ability to choose what actions to perform in order to achieve a given goal, while autonomy is the

ability of an agent to generate its own goals. Agents that exhibit self-direction actively attempt

to achieve goals, while agents that do not are passive agents, since their actions are entirely

defined by the way they are manipulated.

Chapter 7 Conclusions 189

7.2.2 acts MART: Agent Construction Model

The basic abstractions relating to individual agents, coming from SMART and our refinement of

SMART, outlined above, support the definition of the agent construction model that allows us

to develop specifications of agent architectures. The agent construction model (actS MART) was

developed with the aim of addressing the need to construct agents for heterogeneous environ

ments, where it is not realistic to assume that all agents will use the same type of architecture.

Rather, the conceptual infrastructure should allow developers to create the most suitable archi

tecture for the task at hand while providing consistency across architectures through a common

set of underlying concepts. In addition, actSMART also enables architectures to adapt to chang

ing needs, in line with the varying demands that heterogeneous and dynamic environments place

on applications.

actSMART takes a component-based approach to agent development. Components represent dif

ferent types of functionality within the agent architecture (sensing, acting, information storage,

and decision-making) and are placed within a shell that manages the communication between

them, and the sequence in which components execute. This approach enables us to distinguish

between the descriptive specification of an agent using the SMART concepts of attributes, capa

bilities, goals and motivations, the structural specification of the agent as expressed through the

different types of components that comprise the agent architecture, and the behavioural specifi

cation of the agent as defined by the ways in which the components interact.

In addition to enabling the comparison of agent architectures from different viewpoints, these

distinctions allow us to reconfigure the agent architecture through the shell. Since components

are independent of each other, we can change components and the wayan agent architecture

executes through the shell at run-time.

The use of actS MART is illustrated in Chapter 4 through several examples while some actual

implementations of architectures are discussed in Chapter 6.

7.2.3 SMART+: Relationship Identification and Characterisation

Just as the agent construction model underpins the specification and development of individ

ual agents, the interaction model underpins the development of multi-agent systems. Starting

from the premise that in dynamic and heterogeneous systems we can never be sure that the only

190 Chapter 7 Conclusions

relationships that are instantiated are those explicitly considered at design time, we have fo

cused on developing a systematic means for identifying relationships, both at design-time and at

run-time, and characterising those relationships in order to facilitate the choice of relationship

management techniques.

The model of interaction of an individual agent with the environment only makes use of knowl

edge of an agent's actuator and sensor capabilities. This allows us to apply the model to a wide

range of agents, since we make no assumption about their internal operation. The interaction

model leads to the definition of regions of the environment that an agent is able to view (View

able Environment) or affect (Region of Influence).

Using this interaction model we can investigate all possible relationships between two agents by

examining how their individual Regions of Influence and Viewable Environments overlap. More

specifically, these overlaps enable the creation of a typology of agent relationships to identify

when two agents are able to view the same regions of the environment (mutually viewable en

vironment), each other actions (observable actions), and when they are able to change the same

regions of the environment (mutual influence).

Knowledge of all possible relationships between two agents is further enhanced by including

in the model knowledge of an agent's goals. It is the agent's goals that ultimately determine

which of all the possible relationships will be instantiated, enabling us to expand or restrict the

possible relationships between agents, since we have an indication of the exact regions of the

environment that agents can seek to influence. Thus, we have developed a typology of agent

goals, relating goals to the Region of Influence and Viewable Environment of an agent.

These relationship analysis tools are illustrated through the definitions of particular types of

relationships, such as interfering relationships and the development of a dedicated relationship

analysis agent.

7.2.4 Implementation and Evaluation

The models for agent construction and relationship analysis were evaluated through a simulation

of a ubiquitous computing application. The application includes middle agents for capability

matching, and agents that are able to perform relationship analysis using the models developed

in Chapter 5. Architectures for both agents have been specified using actSMART. We have

provided examples of how relationship analysis agents can be used to identify relationships

Chapter 7 Conclusions 191

between devices at particular locations and consequently generate rules to regulate interactions

or inform agents of the possibilities for cooperation.

The evaluation is supported by the implementation of actS MART, which acted as the core of

a desktop-based development tool that enables developers to modify the agent architecture by

dynamically loading components and changing the execution sequence of the components. This

also allows us to test specific aspects of the architecture, by instantiating just those components

that we wished to check and also check the operation of the architecture by stepping-through

the execution sequence.

7.3 Contributions

In this section we identify specific contributions that we have made through the work developed

in this thesis. Several of these contributions have been described in a number of publications

that have been presented in international workshops and conferences [7, 8,9, 10, 11, 12].

7.3.1 Abstract Agent Model

We have refined SMART'S model of agents which, although providing definitions for different

types of agents, does not have the required level of granularity nor support for translating those

definitions into structural and behavioural models of agents. We introduced the notion of self

direction, as distinct from the notion of autonomy. At the risk of repetition, self-direction refers

to an agent's ability to choose how to achieve a goal, while autonomy refers to an agent's ability

to choose a goal. In addition, through actS MART we provide a clear path from the specification

of different entity types at an abstract level to the way such entities can be constructed at a

practical implementation level.

This enables developers to proceed with system design with a clear understanding of what the

concepts used imply for both design and implementation. Such clarity supports the reuse of

solutions across domains and applications, which can eventually lead to reduced development

costs.

192 Chapter 7 Conclusions

7.3.2 Agent Construction Model

We have developed a conceptually grounded and architecturally-neutral model of agent con

struction, that enables the specification and development of modular and reconfigurable agents.

The model is conceptually grounded through the abstract model of agents, discussed above, and

is architecturally neutral since it does not restrict agents to any single architecture.

In order for agents to operate effectively in heterogeneous environments, their architectures must

be tailored both to the demands of the application and to the demands and limitations the en

vironment places on the application. This means that developers must deal with a number of

different agent architectures for a single application, increasing the complexity of application

design. Our agent construction model provides a consistent manner in which to specify and

construct a range of architectures so as to reduce development effort, avoid the use of ad-hoc de

velopment methods, and enable reuse of solutions across applications. Furthermore, actS MART

is equally relevant to development for both limited-capability devices as well as more powerful

ones, providing the necessary consistency across the application domain.

Finally, actS MART provides the following secondary contributions.

Shell, component types, links and execution sequence The agent construction model makes

use of: a shell as a manager of agent components; distinct components types as a means

of encapsulating different types of agent functionality (reasoning, sensing, acting, infor

mation storage); links between components to support information-flow; and an execution

sequence to define the order of execution of components. Each of these issues can be con

sidered as an engineering construct to be reused in different contexts, supporting an agent

construction model that can be based on several different abstract agent models, not just

SMART. They are constructs that enable modular and reconfigurable agent architectures,

regardless of the underlying agent model supporting construction.

Graphical Notation We have developed a graphical notation for describing agent architectures

that enables us to illustrate the different types of components within the architecture and

the information-flow between components.

Chapter 7 Conclusions 193

7.3.3 Description, Structure and Behaviour

In support of the agent construction model we have provided a three-dimensional view of an

agent, distinguishing between the descriptive specification of agents, in terms of their attributes,

capabilities, goals and motivations, and the structural and behavioural specifications, providing

benefits both at the design and at the implementation stage of agent architecture development.

At the design stage, it provides significant flexibility since it provides a developer different

perspectives and the ability to move between them while refining the design of an agent ar

chitecture. We have illustrated this process through examples, such as the architectures for

negotiating agents in Chapter 4. There we show how to move from a detailed descriptive specifi

cation which, in essence, provides a set of requirements for the agent, to more detailed structural

and behavioural specifications which indicate how those requirements can be met and specified

through actSMART.

At the implementation stage, it enables us to experiment with different structural and behavioural

specifications by manipulating components and the links between them, as well as the execution

sequence.

7.3.4 Linking Theory to Practice

The development of actS MART also makes an important contribution from a purely research

level perspective since it provides an example of the clear path from the abstract specification

of agents in SMART to the elaboration of that specification to construct agents. We have demon

strated how a well-established theoretical model can be made more relevant to application devel

opment, while still providing access to the concepts of the abstract framework. Well-understood

software engineering concepts such as components, and the refinement of components into com

ponent types, have shown how to use these concepts at the design stage to provide specifications

for agent architectures without concern for the specific implementations of computational mech

anisms to achieve the functionality of components.

7.3.5 Model of agent interaction

We have developed a model of agent interaction that is widely applicable, since it makes minimal

assumptions about the internal structure of agents, focusing instead on the abilities of agents to

194 Chapter 7 Conclusions

affect change or retrieve attributes from the environment. The interaction model makes use of

SMART, and can be directly translated to a practical tool that agents can use at run-time, since

we already have a clear path between the concepts of SMART and their practical implementation

through actSMART.

The interaction model is a key contribution towards supporting cooperation between agents,

since it enables us to model the possible interactions between agents in order to gain a bet

ter picture of the system and arrive at appropriate decisions about the best models to support

cooperation. Such an analysis is important at design time, by revealing issues not considered

explicitly, and also at run-time since, in heterogeneous and dynamic environments, agents may

enter and leave the environment at any time.

In developing the model of agent interaction we also make the following secondary contribution.

Viewable Environment and Region of Influence We have introduced and formally defined the

notion of Viewable Environment as the region of the environment an agent is able to view,

and the notion of Region of Influence as the region of the environment as agent is able to

affect.

7.3.6 Typology of Relationships

Using the model of agent interaction we have comprehensively characterised all the possible

interactions between two agents through a typology of relationships, which allows us to take

decisions about how to deal with different types of situations. It is especially useful for au

tomating the reasoning about relationships, since the typology can be used directly by agents or

by systems management tools at run-time to facilitate the application of relationship manage

ment based on the identified types of relationships.

7.3.7 Typology of Goals

The relationship typology is also supplemented with a typology of goals, which relates goals

to their location within an agent's Viewable Environment and Region of Influence. Knowledge

of an agent's goals enables us to expand or constrain the possible relationships between agents,

since it indicates the exact regions of the environment that an agent will either attempt to sense

or affect.

Chapter 7 Conclusions 195

7.4 Limits and Further Work

The work presented in this thesis represents a significant step towards providing truly reusable

models in support of agent-based systems development, both with respect to the construction of

individual agents, and with respect to supporting cooperation in multi-agent systems. In fact,

it is precisely this comprehensive aspect of the work that is key to its utility. The same set

of concepts is used throughout, providing the necessary consistency in development that can

ensure both reusability between applications and the ability to contrast alternative solutions, and

facilitating progress towards robust application development.

From a research perspective the work is one of the few examples that adopts an existing concep

tual framework and refines and extends it, providing a clear path from abstraction to construc

tion. As such the work represents a clear progression from the current state-of-the-art.

Inevitably, there are limitations, relating both to the inherent difficulty of evaluation and to

the multiple facets of agent development, ranging from methodologies to development toolkits.

More importantly, the work provides promising avenues for further research that seem able to

lead to further useful results. We discuss both limitations and possibilities for further work

below.

7.4.1 ~innits

Lack of methodology If our overarching aim is to support the development of agent-based ap

plications, then perhaps the most serious limitation of this work is that it is not coupled

to a principled development methodology. A methodology describes the steps developers

should take to move from the definition of a problem to the specification and implemen

tation of an agent-based application addressing the problem. Nevertheless, we recognise

that a prerequisite to a methodology is a principled account of the models that form the

space of discourse for the methodology. The work in this thesis provides such models and

thus creates the necessary preconditions for developing a methodology.

Evaluation across domains Throughout the thesis we have provided several examples of the

application of the models. However, more examples and more extensive evaluation across

different domains would undoubtedly strengthen the arguments for the validity of the

work. Unfortunately, the limited resources of development within the context of the thesis

have meant that we attempted to focus effort on several key examples as best as possible.

196 Chapter 7 Conclusions

Scalability of relationships models The relationship models presented provide a means to anal

yse relationships between agents and use that information to manage agent-based systems.

However, we have not dealt with the implications of dealing with thousands or even hun

dreds of thousands of agents. In the context of the design for the relationship analysis

agent presented in Chapter 6, the problems faced are similar to those faced by middle

agents, where some results on scalability are available [129], but a closer analysis of the

particular issues concerning relationship analysis and scalability are necessary.

Trust and security Application development in the context of heterogeneous and dynamic en

vironments inevitably raises the need to ensure that any attempt to act maliciously is

effectively controlled. Within the context of the work presented here such issues are par

ticularly relevant, since when dealing with relationship analysis agents are required to

share information about their capabilities and decisions are taken based on that informa

tion. An account of the implications of doing so within environments in which agents

may be willing to deceive would enhance this work.

7.4.2 Further Work

Necessarily, the limitations discussed above must also act as pointers for further work. However,

beyond work directed to addressing such limitations, further work is possible to extend and

expand the relevance of the work both at the level of abstract models as well as at a practical

implementation level.

Systematic comparison and evaluation techniques It would be useful to take advantage of

the ability to describe, through SMART, actSMART and SMART+, a range of agent archi

tectures and interactions across different domains in order to systematically analyse and

compare different approaches. From a research perspective this can provide a better means

for identifying progress, while from a development perspective it can provide guidelines

in the form of construction patterns for individual agent architectures and multi-agent

systems.

Analysis of multi-agent systems The relationship analysis and identification tools can allow

us to analyse an entire multi-agent system, identifying the level of potential cooperation

or interference between agents according to the types of relationships that are prevalent

within the system. This could enable us to characterise different types of agent societies,

Chapter 7 Conclusions 197

or identify particular agents within a system that are heavily relied upon or which are

particularly damaging to the society as a whole, akin to the concepts discussed in the

contexts of social dependence networks, but without the reliance on knowledge of plans,

as discussed in Chapter 5.

Application of relationship analysis tools across domains The agent interaction model and

the resulting relationship typology can find application in a number of areas. For ex

ample, within a market domain, relationship analysis can be used by agents to analyse

the relationships between other agents, identifying situations that may indicate that two

agents are either competing, collaborating or colluding. Using such information we can

then make inferences about the trustworthiness of different agents. For example, if two

agents are related by virtue of the fact that they are selling in the same market (common

Region of Influence) and they belong in the same organisation, we could assume that they

share their Viewable Environment as well, since they belong to the same organisation,

and may attempt to collude to enhance their standing within the market. This line of re

search has been taken up by Sabater and Ramchurn, building on existing work on trust

and reputation [174,188].

Supporting service composition A topic of particular relevance in recent years has been the

use of technologies to provide semantically-annotated descriptions of services to support

service composition [205]. The combination of our relationship analysis techniques with

such semantically-annotated services could provide an important tool to support develop

ment in this direction, since it could indicate some of the effects of composing different

types of services offered by agents.

Integration with existing agent development tools The integration of the agent construction

model within existing agent development tools, such as JADE [21], could prove a rel

atively cost-effective means of providing direct access to the models presented in this

thesis in the context of a wider infrastructure supporting the development of multi-agent

systems.

7.5 Conclusions

Any advances in agent research must be done with the recognition that existing work has reached

a certain level of maturity, and there is a wealth of alternative proposals available. By basing

198 Chapter 7 Conclusions

our work on an established existing model and clearly identifying its limitations and needs for

refinement in order to better deal with dynamic, heterogeneous computing environments we

hope to have ensured the relevance of the work to the state-of-the-art.

Agent-based development has an important role to play in shaping the way in which applications

for distributed, heterogeneous environments are, and wiII be, developed and managed. However,

for the paradigm to find wide application and become as mainstream as object-oriented develop

ment, we must ensure that our abstractions are presented in a clear manner, provide real utility

to developers, and are related to practical implementation issues. In this thesis we have done just

that, through the development of principled, reusable models for agent construction, in support

of multi-agent systems.

AppenrlixA

Agent Architectures for the

Demonstration Application

A.1 Supporting Infrastructure for Individual Agents

In order to gain a better understanding of the operation of agents within the demonstration

application of Chapter 6, we describe here, in broad terms, the technical infrastructure in support

of individual agents.

Irrespective of its specific functionality within an application, every agent is assumed to operate

within the overall technological framework illustrated in Figure A.I. At the lowest level, an

agent is considered to function through the support of a specific operating system that provides

Infrastructure Support

I Agent Capabilities
Capabilities

Agent Execution Environment

Middleware Support

Programming language Support

Operating System + Networking Capabitlies

}
}
}

actsMART

Jini, JXTA, UPnP, ..

Java, C#, C++, ...

Palm OS, Linux,
Windows, ...

FIGURE A.I: Technological framework for conference agents.

199

200 Appendix A Agent Architectures for the Demonstration Application

low-level access to the network capabilities of the device hosting the agent, processing power,

memory, and so forth. Agents are developed in a specific programming language, according

to the support available on the device. In our case, this is always Java, since we take advan

tage of Java 2 Micro Edition, which is supported by the widest range of mobile devices. In

addition, agents may benefit from access to specific middleware technologies such as Jini [5]

or JXTA [156] to facilitate the discovery of other services and the exchange of messages. As

mentioned earlier, we abstract out such details, and assume very basic middleware support for

the exchange of messages. I The agents are contained within an agent execution environment,

which provides some administration capabilities that are not dealt with directly by the agent

architecture, such as logging of actions and administration of the agent lifecycle. Finally, the

agent capabilities are the ones that make up the actual agent architecture. In our case the agent

execution environment, the infrastructure support capabilities and the agent capabilities are all

modeled through actS MART and are supported by our implementation of actS MART in Java.

Infrastructure support capabilities are mainly those that enable the agent to interact with other

agents in the environment through the use of specific communication protocols such as Blue

tooth or 802.11 b. Once more we point out that the application is simulated so the existence of

different protocols is simply represented by different types of sensors or actuators representing

different modes of interacting with other agents.

A.2 Broker Agent

A.2.1 Structural Specification

In the structural specification we provide a description of the components that make up the agent

architecture, without referring to how the components interact together to provide the required

behaviour for the agent.

The broker architecture has two sensors, which accept different types of messages from agents.

The SenJiceRegistration sensor is able to accept messages from agents wishing to register wanted

or provider profiles. It produces INFORM statements that contain the profile to be registered. The

incomingQueries sensor is able to accept messages relating to queries about existing provider

profiles. It produces appropriate INFORM statements with this information.

1 The reader interested in the specifics of appying the SMART model in the context of middleware such as Jini can
refer to our previous work on the subject [6, 8].

Appendix A Agent Architectures for the Demonstration Application 201

The infostores for the architecture simply maintain wanted and provider profiles. The Pro

videdServices infostore contains all the provider profiles currently registered with the broker.

It can reply to REQUEST statements for specific types of provider profile and accept INFORM

statements to update the list of provider profiles. The WantedServices infostore contains all the

wanted profiles currently registered with the broker. It can reply to REQUEST statements for

specific types of wanted profiles and accept INFORM statements to update the list of wanted

profiles.

The controllers manage the registration of profiles with the agent and match wanted to provider

profiles. The RegistrationManager controller handles the maintenance and updating of reg

istered profiles. It contains the necessary logic for parsing agent profiles to determine their

validity, as well as ensuring that agents are notified when their profiles can no longer remain

registered with the broker. It can produce REQUEST messages for provider or wanted profiles;

accept INFORM statements with profiles to register; and produce EXECUTE statements for mes

sages to be sent to registered agents. The QueryManager controller handles queries from agents.

It contains the matching algorithm that is used to match wanted profiles against provider pro

files. A profile is matched against a query if every attribute, capability, goal, and motivation

in the profile submitted by the querying agent is found in a registered profile. The first profile

that matches is returned. This is of course a very basic matching algorithm but sufficient for the

purposes of our demonstration application. The component can produce REQUEST messages

for provider or wanted profiles; accept INFORM statements with queries; and produce EXECUTE

statements with replies to queries.

Finally, the actuators send messages to agents, informing them of either a match to their query

or of the expiration of their registration. The RegistrationMessages actuator is used to send out

messages relating to the administration of registrations of profiles by the broker. For example,

an agent may be warned that its registration has expired and will be removed. It can accept

EXECUTE statements with the message it should send to agents. The QueryReplies actuator is

used to send out messages relating to replies to queries from agents. It can accept EXECUTE

statements with the replies it should send to querying agents.

A.2.2 Behavioural Specification

The overall architecture of the broker is shown in Figure A.2. Messages for registering services

arrive at the ServicesRegistration sensor, where they are parsed for syntactic validity and passed

202 Appendix A Agent Architectures for the Demonstration Application

BrokerAgenlr-------------------------------------~

,_. -S;,:,;j~;·-·'
1 Registration '-j ------~
1._._._._._._.

'I----('

,_._._._.-._.,
. Incoming .
1 Queries '-j --------I>j
1._._._._._._. '-___ __"

FIGURE A.2: Broker architecture

on to the RegistrationManager. The RegistrationManager queries the ProvidedServices infos

tore to ensure that registrations are not duplicated, and subsequently updates it appropriately.

Messages relating to queries from other agents about registered services arrive at the Incoming

Queries sensor. They are then passed on to the QueryManager which, according to the query,

attempts to match the wanted profile with the registered profiles. If no match is found, the

request is stored in the WantedServices, which the QueryManager periodically checks against

provider profiles to determine whether a match is available. If a match is found, a reply is sent

to the requesting agent via the QueryReplies actuator. Both wanted and provider profiles are

removed from the infostore once their registration time period expires.

The execution sequence for this architecture combines both an event-driven and a sequential

model. When a service registration or a query for a service arrives, it generates an event that

causes a cycle of execution to commence. At the same time, the shell periodically causes first

the RegistrationManager controller to execute so as to check that registrations have not expired,

and second the QueryManager to check new provided services that may satisfy wanted services.

A.3 Relationship Analysis Agents

A.3.t Structural Specification

The sensors of the RA agent simply allow it register agents and accept profiles or updates to

profiles. The AgentRegistration sensor accepts agent profiles from agents registering with the

Appendix A Agent Architectures for the Demonstration Application 203

RA agent. It produces INFORM statements with the received profiles. The UpdateInfomzation

sensor accepts profiles containing just the current attributes and goals of an agent. It produces

INFORM statements with this information.

The agent's infostores store the various types of information relating to information about the

agents being analysed, domain information and regulation information. The RegionStore info

store maintains information about an agent's Viewable Environment and Region of Influence.

It can reply to REQUEST statements to provide information, and accept INFORM statements to

update information. The GoalStore infostore maintains information about the goals of an agent

categorised along the lines of the goal typology. It can reply to REQUEST statements to pro

vide goal information about a specific agent, and it can accept INFORM statements to update

the information stored. The DomainInfomwtion store maintains information that maps capabil

ities to the attributes they can influence or view in an environment. It can reply to REQUEST

statements to provide information about a specific capability. Domain information is supplied

at design-time, although more dynamic ways of updating and maintaining such information are

possible.

The controllers deal with relationship identification and analysis. The RegionIdentification com

ponent can analyse an agent profile in order to identify the set of attributes that form an agent's

Viewable Environment and Region of Influence. It can accept INFORM statements with an agent

profile and produce REQUEST statements for domain information relating to capabilities. It can

produce INFORM statements with the sets of attributes that define the Viewable Environment and

Region of Illfluellce for an agent, along with an identification of that agent. The GoalCategori

sation controller can analyse an agent profile containing goals of an agent and make use of

information about that agent's Region of Influence and Viewable Environment in order to cate

gorise goals according to the goal typology of Chapter 5. It can accept INFORM statements with

an agent profile containing information about current goals and attributes; produce REQUEST

statements requesting information about the agent's Region of Injluence and Viewable Environ

ment; and produce INFORM statements with the goal categories and the identification of the

agent in question. The RelationshipAnalyser compares the Viewable Environment and Region

of Illfluence of an agent against those of other agents and produces the relationship table. It can

produce REQUEST statements to request information about an agent's regions and produce IN

FORM statements containing the relationship table. The ConjlictAnalyser controller can identify

conflicts between agents and accordingly identify whether any regulations apply to the situation.

It makes use of the relationship table for the agent under analysis and any relevant goal infor-

204 Appendix A Agent Architectures for the Demonstration Application

RelationshipAnalystc--~===~--------------l

r------------'
- Agent i
1 Registration i 1 ____ - _, ______ _

r------------'
- Update i
1 Information i
1.------------

FIGURE A_3: Relationship analysis agent architecture

Regulations
Notification

mation about the agent. The component can produce REQUEST statements for the relationship

table, goal and regulation information; and, INFORM statements with the relevant regulations.

The CooperationAnalyser uses the same types of information as the ConjlictAnalyser, but with

the aim of identifying possibilities for cooperation. It produces the required REQUEST state

ments to get information about regulations and INFORM statements with the regulations that

apply to the situation under consideration. Finally, the MotivationEvaluation controller evalu

ates the regulations to determine which would offer the greatest utility to the agent. It accepts

INFORM statements with the relevant regulations and produces EXECUTE statements with the

regulations to be sent to agents.

The only actuator for the RA agent is the RegulationsNotification actuator that accepts EXECUTE

statements and sends messages to agents for which relevant regulations have been identified.

A.3.2 Behavioural Specification

The links between components and the overall architecture are shown in Figure A.3. The exe

cution sequence for this agent is a combination of a sequential and an event-based model. Each

component is called to execute whenever it receives a statement from another component. This

means that the agent first begins operation when a profile arrives at the AgentRegistration sensor.

This sensor then notifies the Regionldentification controller which in turn sends statements and

Appendix A Agent Architectures for the Demonstration Application

OwnerProfile
hasName=1
hasAffiliation
hasResearrhlnterest
hasResources

Regulation
hasContext
hasForbiddenGoal
hasMandatoryAction
mandatory: TRUElFALSE

Time

Ownerldentifitcation
hasAffiliation=1
hasName=1
HasRegNumber- 1

Presentation
refersToSlides
presentedBj
atTime=1
inLocation=1

FIGURE A.4: actS MART Implementation

205

causes the activation of the other components it is connected to, and so on. The event-based

execution sequence drives this architecture, since registrations arrive at irregular times and the

agent might constantly cycle through execution sequence otherwise. In addition, at regular in

tervals the architecture cycles through an execution of the controllers (to which info stores may

respond) to deal with any new information.

A.4 User Agent Architecture

A.4.1 Descriptive Specification

Attributes

The attributes describing the user agent represent features such as the name of the owner, the

user agent's current location, the research interests of the owner, and so on. Now, it is necessary

to make clear exactly how can attributes be represented at the implementation level so as to make

clear the correspondence between the abstract notion of attributes in SMART and their technical

206 Appendix A Agent Architectures for the Demonstration Application

realisation. To this end, we adopt the approach provided by OWL [143] for describing concepts.

In essence, OWL is an extension of RDF [85] to provide the capability to specify ontologies

composed of taxonomies of classes and inference rules.

Attributes in SMART are mapped to the notion of individuals in OWL, where an individual

represents a describable thing in the domain we are interested in. For example, the attribute

RonaldAshri is an individual. Individuals, can be related through properties, which are binary

relations between individuals. Therefore we could say that the property hasResearchlnterest

links the individual RonaldAshri to an individual AgentModels. Now, individuals can be grouped

within classes which can state precisely the requirements for membership to a class. We could,

for example, define a class OwnerName and indicate that RonaldAshri belongs to that class.

Classes, therefore, enable us to define concepts which individuals can then instantiate.

Furthermore, we can define the OwnerProfile class to have a property hasResearchInterest,

which refers to the Researchlnterest class. An instantiation of these classes with specific in

dividuals, such as RonProfile-hasResearchlnterest-AgentModels would define an attribute as

understood in SMART.

All the classes used to define attributes and the relationships between them are illustrated in

Figure AA. Note that we can also place restrictions on the cardinality of the attributes that can

be referred to by a property. For example, in the case of OwnerProfile, the property hasName

is restricted by the fact that one and only one name must exist for that attribute to be valid. If

a cardinality is not defined, then any number of instances of an attribute could be defined and

related through the property. Note that we use only a very limited set of the capabilities of OWL,

since our aim is simply to illustrate that such a technology has an important role to play in aiding

the specification of multi-agent systems and facilitating run-time operation. Below, we provide

a short explanation of each attribute, along with some simplifying assumptions we make about

how such information is treated within the context of the application.

Affiliation The Affiliation attribute refers to the organisation, such as University of Southamp

ton, that the agent is affiliated with.

Conference Registration Number The ConferenceRegistrationNumber attribute is an identi

fying number issued by the conference site at the moment that the user registers at the

site.

OwnerName The OwnerName is simply the name of the owner of the agent.

Appendix A Agent Architectures for the Demonstration Application 207

ResearchInterest The Researchlnterest attribute refers to the research interests of the owner of

the agent.

Resource The Resource attribute describes resources that are available through the agent. There

are three types of resources in our case. The Link attribute represents URLs that a user

may wish to make available to other users. The Paper attribute refers to publications that

the agent can make directly available from the device it is operating. Finally, the Slides

attribute refers to slides of presentations that the agent can make available. Clearly, all

these attributes could be further elaborated to provide more information about the exact

content of the resources. However, such a level of detail in not required for the purposes

of our demonstration application.

Location The Location attribute refers to the current location of the agent. Once more, we do

not attempt to provide detailed information about the location of the agent. The value of

the Location attribute changes as the user changes rooms within the conference site, as

long as there are devices within the room that can provide the agent with its new location,

and the agent itself is able to communicate with such devices. In the case where the

location cannot be ascertained, the value of the attribute should simply be the name of the

entire conference site, set upon registration with the conference.

Time The Time attribute is simply a reference to a point in time providing the day, month, year

and and time of day.

Ownerldentification The Ownerldentification attribute is a composite attribute whose purpose

is to identify the owner of the agent. The attribute has three properties: the hasAffilia

tion property refers to one Affiliation attribute; the hasName property refers to one Name

attribute; and, the hasRegNumber property refers to one RegistrationNumber property.

Presentation The Presentation attribute refers to a presentation that the owner may be giving

during the conference. The attribute is composite and has the following properties: the

refersToSlides property can be used to describe the slides that will be used at the presen

tation through the Slides attribute; the presentedBy property can be used to refer to the

owner name through the OwnerNal71e attribute; the atTime property can provide the time

of the presentation through the Time attribute; and, the Location property can be used to

provide the location of the presentation through the Location attribute.

OwnerProfile The OwnerProfile attribute is used to provide a description of the owner, includ-

208 Appendix A Agent Architectures for the Demonstration Application

ing research interests and resources that the owner has on the device. It is a composite

attribute with properties for the name of the owner, their affiliation, their research interests

and resources.

Regulations Finally, the Regulations attribute describes what the agent is allowed or not al

lowed to do with respect to interacting with other agents and services within the con

ference site. Each regulation has a set of mandatory goals and forbidden goals within a

specific context. The hasContext simply refers to the location within which the regulation

is applicable, since relationship analysis agents operate within specific locations.

Capabilities

The capabilities of the agent can broadly be divided into the discovery and access to physical

devices and information services and the provision and access to information and resources

from other agents. We avoid here a lengthy description since we have discussed these issues

throughout Chapter 6 and will touch upon them later on.

Goals

The goals of the agent can also broadly be described as assisting the user in discovering and

employing physical devices and information services, and handling the interaction with other

user agents by exchanging information and resources.

A.4.2 Structural Specification

The components that make up the agent architecture for the user agent are shown in Figure A.S.

The links between components are not drawn since they would overly complicate the figure,

and components are grouped according to the functionality they collectively offer the agent. We

avoid here a lengthy description of each individual component, but rather describe the broad

functionality offered by sets of components as indicated by their divisions within squares in the

figure.

Sensors There are four sensors for the user agent: the Userlnput sensor transmits the informa

tion provided by the user; the WiFiDevicelncomingMessages sensor can accept messages

Appendix A Agent Architectures for the Demonstration Application 209

UserAgentt--~

r - , - ' - ,- , - , - , -,
, Bluetooth 1
1 DevicesDiscovery i
1._,-,-,-,-,-,"';

r-·-·-·-·-·-·-·
· BluetoothDevice 1
~ IncomingMessages i
1,_._._,-,_._:

,._'_._'_._'-'--:
· WifiDevice 1
~ IncomingMessages i
1.-,-,_._ .. _,_'

"-'-'-'-'-'-'-,
i Userlnput 1
· 1
1._._._,_._._,-'

Sensors

BluetoothDevice
OutgoingMessages

WiFiDevice
OutoingMessages

UserNotification

Actuators

ServiceComponents

OwnerComponents

Situation
Components

FIGURE A.S: User Agent Architecture

Delegate
Components

Goal
Management

from devices using the 802.11 b wireless protocol; the BluetoothDevicelncomingMessages

sensor accepts messages from Bluetooth devices; and the BluetoothDevicesDiscovery sen

sor handles and reports on the discovery of Bluetooth devices.

Actuators The actuators of the user agent essentially mirror the sensors. The BluetoothDevice

OutgoingMessages actuator is used to send messages to Bluetooth devices, the WiFiDe

viceOutgoingMessages actuator is used for communication with 802.11b devices, while

UserNotification actuator is used to send messages to the user through the device screen.

Owner Components The owner components handle information about the owner and the input

from the owner. The OwnerResources infostore stores resources such as papers, slides

and links; The OwnerProfile infostore stores information about the owner such as their

affiliation and research interes; the OwnerGoals infostore stores the user's goals based on

the user input; and, finally, the UserlnputEvaluation controller evaluates input from the

user and updates the relevant information stores, while the OwnerlnfoManager controller

2lO Appendix A Agent Architectures for the Demonstration Application

manages the updating of the owner profile and owner goals.

Situation Components The situation components manage information relating to the current

context of the user agent, the agent profile, and the regulations that apply to that agent.

The context is defined as simply the location of the agent, and the current time. The agent

profile defines the information that can be sent to a middle agent to indicate the services

offered by the agent. Finally, regulations indicate what goals are mandated and prohibited

in a specific context. The RegulationsManager and ContextManager controllers update

this information.

Service Components The service components are dedicated to handling the interactions with

either physical devices or information services: the DeviceEvaluation and InfoServiceE

valuation controllers evaluate descriptions of information services against the required

devices; the DeviceRegister and InfoServiceRegister infostores store descriptions of ser

vices; and, finally, the DeviceManager and InfoServiceManager controllers handle inter

actions with the registered services.

Delegate Components The delegate components simply store profiles provided by other user

agents. The DelegatelnfoManager is provided with such profiles and updates the Dele

gateProfiles infostore.

Goal Management The goal management components coordinate the execution of other com

ponents based on the agent's current goals. They also control interaction with middle

agents when use of other agents is required. The AgentGoals infostore contains the agent's

current goals, while the GoalManager controller uses information on current goals and

sends appropriate statements to other components in order to achieve those goals. The

MiddleAgentManager controller creates appropriate messages to request information on

services from the middle agent.

MessageManager Finally, the MessageManager controller handles the routing of incoming

messages to appropriate components within the architecture. It uses a set of basic rules

that define which controller should first handle a message based on where the message is

coming from.

Appendix A Agent Architectures for the Demonstration Application 211

A.4.3 Behavioural Specification

The execution sequence of the agent is a combination of a periodic execution of certain com

ponents, along with an event-based execution of components. The event-based behaviour is

mainly used to handle interaction that is initiated by other agents or the user. For example, a

user can enter information at any time, which may cause the owner profile, resources or owner

goals to be updated. Similarly, Bluetooth devices may be discovered at any time as the agent

changes locations, and any relevant information is registered at the DeviceRegister. In addition,

all infostores execute as soon as they receive a statement.

The GoalManager periodically executes to check whether there are any goals within the OWller

Goals infostore. If there are, then they are retrieved and placed within the AgentGoals infostore,

indicating that they are now active goals that the agent will attempt to achieve. If the goal re

lates to the use of a physical device or an information service, the GoalManager queries the

DeviceRegister or InfoServiceRegister in order to identify whether the agent has access to a de

vice or service able to satisfy the goal. If such a device does not exist, then the GoalManager

makes use of the MiddleAgentManager to submit a query for the required service. Once a re

ply is received, it is directed, through the MessageManager to the middle agent, which informs

the DeviceEvaluation controller, in turn updating the DeviceRegister. When the Goalmanager

executes once more, it identifies whether an appropriate device has been found and instructs the

DeviceManager to interact with the device requesting the appropriate action to be taken. In the

case of information services, the replies from the queries are then sent through the UserNotifi

cation component to the user's screen.

If the goal relates to collecting information about specific types of users, such as all users with

the same interests as the owner, then the DelegatelnfoManager component and the MiddleAgent

Manager are used to gain that information.

Interaction with other user agents can take place when a user agent directly contacts another user

agent, or whenever a user agent is notified about other user agents. The OwnerlnfoManager con

troller handles request for information about the agent's owner, while the DelegatelnfoManager

controller handles messages providing information about other agents.

Bibliography

[1] M. P. Singh A. K. Jain, M. Aparico. Agents for process coherence in virtual enterprises.

Communications of the ACM, 42(3):62-69, 1999.

[2] J.-R. Abrial, E. Borger, and H. Langmaack, editors. Fonnal Methods for Industrial Ap

plications: Specifying and Programing the Steam Boiler. Springer, 1996.

[3] B. Adams, C. Breazeal, R A. Brooks, and B. Scassellati. Humanoid Robots: A New

Kind of Tool. IEEE Intelligent Systems, 15(4):25-31, 2000.

[4] A. Ankolenkar, M. Burstein, J. R Hobbs, o. Lassila, D. L. Martin, D. McDermott, S. A.

McIlraith, S. Narayanan, M. Paolucci, T. R Payne, and K. Sycara. DAML-S: Web Ser

vice Description for the Semantic Web. In 1. F. Cruz, S. Decker, J. Euzenat, and D. L.

McGuinness, editors, The First Semantic Web Working Symposium, pages 411-430. Stan

ford University, California, 2001.

[5] K. Arnold, B. 0' Sullivan., R W. Scheifler, J. Waldo, and A. Wollrath. The lini Specifi

cation. Addison-Wesley, 1999.

[6] R Ashri and M. Luck. Paradigma: Agent implementation through Jini. In A. M.

Tjoa, RR. Wagner, and A. AI-Zobaidie, editors, Eleventh Intemational Workshop on

Databases and Expert System Applications, pages 453-457. IEEE Computer Society,

2000.

[7] R Ashri and M. Luck. An Agent Construction Model for Ubiquitous Computing De

vices. In Proceedings of the Fifth Agent-Oriented Software Engineering Workshop, 2004

(to appear).

[8] R. Ashri, M. Luck, and M. d'Inverno. Infrastructre Support for Agent-based Devel

opment. In M. d'Inverno, M. Luck, M. Fisher, and C. Preist, editors, Foundations and

Applications of Multi-Agent Systems, volume 2403 of LNAI, pages 73-88. Springer, 2002.

213

214 BIBLIOGRAPHY

[9] R. Ashri, M. Luck, and M. d'Inverno. On Identifying and Managing Relationships in

Multi-Agent Systems. In G. Gottlob and T. Walsh, editors, Proceedings of the 18th Inter

national foint Conference on Artificial Intelligence, pages 743-748. Morgan Kaufmann

Publishers, 2003.

[10] R. Ashri, M. Luck, andM. d'Inverno. A typology of relationships and goals for regulation

and coordination. In Proceedings of ECAI Workshop in Coordination in Emergent Agent

Societies, 2004 (to appear).

[11] R. Ashri, M. Luck, and M. d'Inverno. Identifying opportunities and constraints for goal

achievement through relationship analysis. In Poster Proceedings of the 3rd Intemational

Conference on Autonomous Agents and Multi-Agent Systems, 2004 (to appear).

[12] R. Ashri, I. Rahwan, and M. Luck. Architectures for Negotiating Agents. In V. Marik,

J. Muller, and M. Pechoucek, editors, Mutli-Agent Systems and Applications III, volume

2691 of LNA!, pages 136-146. Springer, 2003.

[13] R. Axelrod. An evolutionary approach to norms. The American Political Science Review,

80(4):1095-1111,1986.

[14] K.S. Barber, R. McKay, M. MacMahon, c.£. Martin, D.N. Lam, A. Goel, D.C. Han,

and J. Kim. Sensible Agents: An Implemented Multi-Agent System and Testbed. In

Proceedings of the Fifth Intemational Conference on Autonomous Agents, pages 92-99.

ACM Press, 2001.

[15] c. Bartolini, C. Preist, and N. R. Jennings. Architecting for Reuse: A Software Frame

work for Automated Negotiation. In F. Giunchiglia, J. Odell, and G. WeiB, editors, Agent

Oriented Software Engineering III, volume 2585, pages 88-100. Springer, 2002.

[16] B. Bauer, J .Muller, and J. Odell. Agent UML: A formalism for specying multi agent

software systems. Intemational foumal on Software Engineering and Knowldge Engi

neering, 11(3):207-230,2001.

[17] J. Baumann, F. Hohl, K. Rothermel, M. Strasser, and W. Theilmann. MOLE: A mobile

agent system. Software - Practice and Experience, 32(6):575-603, 2002.

[18] P. Bellavista, A. Corradi, and C. Stefanelli. A secure and open mobile agent programming

environment. In Proccedings of the Fourth Intemational Symposium on Autonomous

Decentralized Systems, pages 238-245. IEEE Computer Society Press, 1999.

BIBLIOGRAPHY 215

[19] P. Bellavista, A. Corradi, and C. Stefanelli. A mobile agent infrastructure for the mobility

support. In Proceedings of the 2000 ACM symposium on Applied computing, pages 539-

545. ACM Press, 2000.

[20] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a FIPA

compliant agent framework. Software - Practice and Experience, 31(2):103-128,2001.

[21] F. Bellifemine, A. Poggi, and G. Rimassa. Developing Multi-agent Systems with JADE.

In C. Castelfranchi and Y. Lesperance, editors, Intelligent Agents VII. Agent Theories

Architectures and Languages, volume 1986 of LNCS, pages 89-103. Springer, 2001.

[22] F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA2000 compliant agent develop

ment environment. In 216-217, editor, Proceedings of the 5th International Conference

on Autonomous Agents. ACM Press, 2001.

[23] T. Bellwood, L. Clement, and C. von Riegen. UDDI Version 3.0.1- UDDI Spec Technical

Committee Specification. Technical report, OASIS, 2003.

[24] F. Bergenti and A. Poggi. Ubiquitous Information Agents. International Journal of

Cooperative Infonnation Systems, 11(3-4):231-244,2002.

[25] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May

2001.

[26] D. Bert, J.P. Bowen, M.C. Henson, and K. Robinson, editors. ZB 2002: Fomal Speci

fication and Development in Z and B: 2nd International Conference of Band Z Users,

volume 2272 of LNCS. Springer, 2002.

[27] D. Bert, J.P. Bowen, S. King, and M. Walden, editors. ZB 2003: Fonnal Specification

and Development in Z and B: Third International Conference of Band Z Users, volume

2651 of LNCS. Springer, 2003.

[28] C. Bicchieri. Norms of cooperation. Ethics, 100(4):838-861, 1990.

[29] R. H. Bordini, A. L. C. Bazzan, R. d. O. Jannone, D. M. Basso, R. Maria Vicari, and

V. R. Lesser. AgentSpeak(XL): efficient intention selection in BDI agents via decision

theoretic task scheduling. In The First International Joint Conference on Autonomous

Agents and Multiagellt Systems, pages 1294-1302. ACM Press, 2002.

[30] J. Bowen. Formal Specification and Documentation using Z: A case study approach.

International Thomson Computer Press, 1996.

216 BIBLIOGRAPHY

[31] J. P. Bowen and M. G. Hichley. Seven more myths of formal methods. IEEE Software,

12(4):34-41,1995.

[32] J. M. Bradshaw, M. Greaves, H. Holmack, T. Karygiannis, W. Jansen, B. G. Silverman,

N. Suri, and A. Wong. Agents for the Masses. IEEE Intelligent Systems, 14(2):53-63,

1999.

[33] M. E. Bratman, D. Israel, and M. E. Pollack. Plans and Resource-Bounded Practical

Reasoning. Computational Intelligence, 4(4):349-355, 1988.

[34] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup Language

(XML) 1.0 (Second Edition). Technical report, W3C, 2000.

[35] F.M. T. Brazier, C.M. Jonker, and J. Treur. Principles of Component-Based Design of

Intelligent Agents. Data and Knowledge Engineering, 41: 1-28,2002.

[36] F.M. T. Brazier, C.M. Jonker, J. Treur, and NJ.E. Wijngaards. Compositional Design of

a Generic Design Agent. Design Studies Journal, 22:439-471, 2001.

[37] F.M.T. Brazier, B.M. Dunin-Keplicz, N.R. Jennings, and J. Treur. DESIRE: Modelling

multi-agent systems in a compositional formal framework. International Journal of Co

operative Information Systems, 6(1):67-94, 1997.

[38] W. Briggs and D. Cook. Flexible Social Laws. In C. Mellish, editor, Proceedings of the

14th International Joint Conference on Artificial Intelligence, pages 688-693. Morgan

Kaufmann, 1995.

[39] M. L. Brodie. The promise of distributed computing and the challenges of legacy infor

mation systems. In David K. Hsiao, Erich J. Neuhold, and Ron Sacks-Davis, editors, Pro

ceedings of the IFIP WG 2.6 Database Semantics Conference on Interoperable Database

Systems (DS-5), IFIP Transactions, pages 1-31. North-Holland, 1993.

[40] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Jouranl of

Robotics and Automation, 1(2):14-23, 1986.

[41] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47(1-3):139-

159,1991.

[42] J. Bryson and L. A. Stein. Architectures and Idioms: Making Progress in Agent Design.

In C. Castelfranchi and Y. Lesperance, editors, Intelligent Agents VII. Agent Theories

Architectures and Languages, volume 1986, pages 73-88. Springer, 2001.

BIBLIOGRAPHY 217

[43] K. Bryson, M. Luck, M. Joy, and D. Jones. Agent Interaction for Bioinformatics Data

Management. Applied Artificial Intelligence, 15(10):917-947,2001.

[44] P. Busetta, R. Rnnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents - Compo

nents for Intelligent Agents in Java. Agentlink News, (2):2-5, 1999.

[45] G. Caire, R. Evans, P. Massonet, W. Coulier, F. J. Garijo, J. Gomez, J. Pavon, F. Leal,

P. Chainho, P.E. Kearney, and J. Stark. Agent-Oriented Analysis Using MESSAGEIUML.

In M. Wooldridge, G. Weiss, and P. Ciancarini, editors, Agent-Oriented Software Engi

neering II, volume 2222 of LNCS, pages 119-l35. Springer, 2001.

[46] J. Camp and Y.T. Chien. The internet as public space: concepts, issues, and implications

in public policy. ACM SIFAS Computers and Society, 30(3):13-19, 2000.

[47] A. Cassandra, D. Chandrasekara, and M. Nodine. Capability-based agent matchmak

ing. In C. Sierra, M. Ginia, and J. S. Rosenschein, editors, Proceedings of the Fourth

International Conference on Autonomous Agents, pages 201-202, 2000.

[48] C. Castelfranchi. From individual intentions to gorups and organisations. In V. Lesser

and L. Gasser, editors, Proceedings of the First International Conference on Multi-Agent

Systems, pages 196-196. AAAI PresslMIT Press, 1995.

[49] C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur. Deliberative Normative Agents.

Principles and Architecture. In N. Jennings and Y. Lesperance, editors, Intelligent Agents

IV (ATAL99), volume 1757 of LNCS, pages 364-378. Springer, 2000.

[50] C. Castelfranchi, M. Miceli, and A. Cesta. Dependece relations among autonomous

agents. In E. Werner and Y. Demazeau, editors, Decentralised Artificial Intelligence,

pages 215-231. Elsevier, 1992.

[51] H. Chalupsky, Y. Gi, C. A. Knoblock, K. Lerman, J. Oh, D. Pynadath, T. A. Russ, and

M. Tambe. Electric Elves: Applying Agent Technology to Support Human Organiza

tions. In H. Hirsch and S. Chien, editors, International Conference of Innovative Appli

cation of Artificial Intelligence (IAAI'Ol), pages 51-58. AAAI, 2001.

[52] H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman, J. Oh, D. Pynadath, T. A. Russ, and

M. Tambe. Electric Elves: Applying Agent Technology to Support Human Organisations.

In H. Hirsh and S. Chien, editors, Proceedings of the Thirteenth Innovative Applications

of Artificial Intelligence Conference, pages 51-58. AAAI, 2001.

218 BIBLIOGRAPHY

[53] J. Cheesman and J. Daniels. UML Components: A Simple Process for Specifying

Component-Based Software. Addison-Wesley, 2000.

[54] B. Chellas. Modal Logic: An Introduction. Cambridge University press, 1980.

[55] P. Ciancarini, R. Tolksdorf, and F. Zambonelli. A Survey of Coordination-Middleware

for XML-Centric Applications. The Knowledge Engineering Review, 17(4),2003.

[56] E. Clarke and J. Wing. Formal Methods: State of the art and future directions. ACM

Computing Surveys, 28(4):626-643, 1996.

[57] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial

intelligence, 42(2-3):213-261, 1990.

[58] B.P. Collins, lE. Nicholls, and I.H. Sorensen. Introducing Formal Methods: The CICS

experience with Z. In B. Neumann, D. Simpsona, and G. Slater, editors, Mathematical

Structures for Software Engineering. Oxford University Press, 1991.

[59] R. Conte and C. Castelfranchi. Cognitive and Social Action. UCL Press, 1995.

[60] R. Conte and C. Castelfranchi. Norms as mental objects. From normative beliefs to nor

mative goals. In C. Castel franc hi and J. P. Muller, editors, From Reaction To Cognition,

volume 957 of LNCS, pages 186--196. Springer, 1995.

[61] R. Conte and C. Castelfranchi. Simulating multi-agent interdependencies: A two-way

approach to the macro-micro link. In K. Troitzsch, U. Mueller, N. Gilbert, and J.E.

Doran, editors, Social Science Microsimulation, pages 394-415. Springer, 1998.

[62] R. Conte, C. Castelfranchi, and F. Dignum. Autonomous norm-acceptance. In J. Muller,

M. Singh, and A. Rao, editors, Intelligent Agents V (ATAL98), volume 1555 of LNCS,

pages 319-333. Springer, 1999.

[63] D. D. Corkill and V. Lesser. The use of meta-level control for coordination in a distributed

problem solving network. In A. H. Bond and L. Gasser, editors, Proceedings of the

Eighth International Joint Conference Oil Artificial Intelligence, pages 748-756. Morgan

Kaufmann Publishers, 1983.

[64] Microsoft Corporation. Universal plug and play device architecture. Technical Report

V1.0, Microsoft Corporation, 2000.

BIBLIOGRAPHY 219

[65] M. Cossentino and C. Potts. A Case Tool Supported Methodology for the Design of

Multi-Agent Systems. In The 2002 Intemational Conference on Software Engineering

Research and Practice, 2002.

[66] R. Davis. What are intelligence? And Why? AI Magazine, 19(1):91-111, 1998.

[67] R Davis and RG. Smith. Negotiation as a metaphor for distributed problem solving.

Artificial Intelligence, 20(1):63-109, 1983.

[68] D. de Roure, N. R. Jennings, and N. Shadbolt. The Semantic Grid: A future e-Science

infrastructure. In F. Berman, G. Fox, and AJ.G. Hey, editors, Grid Computing: Making

the Gloab Infrastructure a Reality, pages 437-470. Wiley, 2003.

[69] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. In Proceedings

of the 15th loint Conference on Artificial Intelligence, volume 1, pages 573-578. Morgan

Kaufmann, 1997.

[70] S. Deering and R Hinden. Internet Protocol, Version 6 (IPv6) Specification. Technical

Report RFC2460, IPV6.org, 1998.

[71] S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Multiagent Systems Engineering. The

Intemational loumal of Software Engineering and Knowledge Engineering, 11(3),2001.

[72] G. DeSanctis and B. M. Jackson. Co-ordination of information technology management:

Team based structures and computer-based communication systems. loumal of Manage

ment Infomzation Sciences, 4(10):85-110,1994.

[73] F. Dignum. Autonomous Agents with Norms. Artificial Intelligence and Law, (7):69-79,

1999.

[74] V. Dignum and F. Dignum. The knowledge market: Agent-mediated knowledge sharing.

In V. Marik and J. Muller, editors, Multi-Agent Systems and Applications III, volume

2691 of LNCS, pages 168-179. Springer, 2003.

[75] M. d'Inverno, D. Kinny, M. Luck, and M. Wooldridge. A Formal Specification of

dMARS. In M. P. Singh, A. S. Rao, and M. Wooldridge, editors, Intelligent Agenrs

IV: Proceedings of the Fourth Intemational Workshop on Agent Theories, Architectures

and Languages, volume 1365 of LNCS, pages 155-176. Springer, 1996.

220 BIBLIOGRAPHY

[76] M. d'Inverno and M. Luck. A Formal View of Dependece Networks. In C. Zhang and

D. Lukose, editors, Distributed Artificial Intelligence Architecture and Modelling: Pro

ceedings of the First Australian Workshop on Distributed Artificial Intelligence, volume

1087 of LNCS, pages 155-129. Springer, 1996.

[77] M. d'Inverno and M. Luck. Formalising the contract-net as a goal-directed system. In

W. Van de Velde and 1. W. Perram, editors, Agents Breaking Away, 7th European Work

shop on Modelling Autonomous Agents in a Multi-Agent World, volume 1038 of LNCS,

pages 72-85. Springer, 1996.

[78] M. d'Inverno and M. Luck. Development and Applications of a Formal Agent Frame

work. In First IEEE International Conference on Fonnal Engineering Methods, pages

222-231. IEEE Computer Society, 1997.

[79] M. d'Inverno and M. Luck. Engineering AgentSpeak(L): A Formal Computational

Model. Journal of Logic and Computation, 8(3):233-260, 1998.

[80] M. d'Inverno and M. Luck. Formal agent development: Framework to system. In 1.L.

Rash, C.A. Rouffand, W. Truszkowski, D. Gordon, and M.G. Hinchey, editors, For

mal Approaches to Agent-Based Systems: First International Workshop, volume 1871

of LNCS, pages 133-147. Springer, 2001.

[81] M. d'Inverno and M. Luck. Understanding Agent Systems. Springer, 2001.

[82] M. d'Inverno and M. Luck. Understanding Agent Systems. Springer, 2nd edition, 2004.

[83] D. D'Souza and A. Wills. Objects Components and Frameworks with UML. Addison-

Wesley, 1998.

[84] N. Dulay, N. Darnianou, E. Lupu, and M. Sloman. A policy language for the management

of distributed agents. In M. 1. Wooldridge, G. Weiss, and P. Ciancarini, editors, Agent

Oriented Software Engineering II, volume 2222, pages 84-100. Springer-Verlag, 2001.

[85] Dave Beckett (ed). RDF/XML Syntax Specification. Technical report, W3C, 2003.

[86] T. Eiter and V.S. Subrahmanian. Heterogeneous Active Agents, II: Algorithms and Com

plexity. Artificial Intelligence, 108(1-2):257-307, 1999.

[87] T. Eiter, V.S. Subrahmanian, and G. Pick. Heterogeneous Active Agents, I:Semantics.

Artificial Intelligence, 108(1-2): 179-255, 1999.

BIBLIOGRAPHY 221

[88] T. Eiter, V.S. Subtahmanian, and T. Rogers. Heterogeneous Active Agents,

III:Polunomially implementable agents. Artificial Intelligence, 117(1):107-167,2000.

[89] M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions editor. In

The First International Joint Conference on Autonomous Agents and Multiagent Systems,

pages 1045-1052. ACM Press, 2002.

[90] Peyman Faratin. Automated Service Negotiation Between Autonomous Computational

Agents. PhD thesis, UCL, Queen Mary and Westfield, Dept. of Electronic Engineering,

2000.

[91] S. Fatima, M. Wooldridge, and N. R. Jennings. Multi-issue negotiation under time con

straints. In C. Castelfranchi and L. Johnson, editors, Proceedings of the Second Inter

national Conference on Autonomous Agents and Multi-Agent Systems, pages 143-150.

ACM Press, 2002.

[92] I. A. Ferguson. TouringMachines: An Architecturefor Dynamic, Rational, Mobile Agents.

PhD thesis, Clare College, Cambridge University, 1992.

[93] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.

Hypertext Transfer Protocol- HTTP/I.I. Technical report, The Internet Society, 1999.

[94] T. Finin, A. Joshi, L. Kagal, O. V. Patsimor, S. Avancha, V Korolev, H. Chen, F. Perich,

and R. S. Cost. Intelligent Agents for Mobile and Embedded Devices. International

Journal of Cooperative Infonnation Systems, 11(3-4):205-230,2002.

[95] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication language. In

Jeffrey Bradshaw, editor, Software Agents. MIT Press, 1997.

[96] K. Fischer, J. P. Miiller, and M. Pischel. A pragmatic BD! architecture. In M. Wooldridge,

J. P. Miiller, and M. Tambe, editors, Intelligent Agents II, Agent Theories, Architectures,

and Languages, volume 1037, pages 203-218. Springer, 1996.

[97] T. L. Fox, R. Pedigo, and S. W. Remingon. Building the Virtual Organization with elec

tronic communication. EM - Electronic Contracting, 8(3):43-45, 1998.

[98] F. Gandon and N. Sadeh. Semantic Web Technologies to Reconcile Privacy and Context

Awareness. Web Semantics Journal, 1(3),2004.

222 BIBLIOGRAPHY

[99] A. F. Garcia, C. J. P. de Lucena, F. Zambonelli, A. Omicini, and J. Castro, editors. Soft

ware Engineering for Large-Scale Multi-Agent Systems, Research Issues and Practical

Applications, volume 2603 of LNCS. Springer, 2006.

[100] M. R. Genesereth and S. P. Ketchpel. Software agents. Communications of the ACM,

37(7):48-53, 1994.

[101] M. P. Georgeff and A. S. Rao. A profile of the Australian AI Institute. IEEE Expert,

11(6):89-92, December 1996.

[102] M.P. Georgeff and A.L. Lansky. Reactive reasoning and planning. In Proceedings of the

Sixth National Conference on Artificial Intelligence, pages 677-682. AAAI PresslMIT

Press, 1987.

[103] F. Giunchiglia, J. Mylopoulos, and A. Perini. The TROPOS Software Development

Methodology: Processes, Models and Diagrams. In C. Castelfranchi and W. Johnson,

editors, Proceedings of the First International Joint Conference on Autonomous Agents

and Multi Agent Systems, pages 35-36. ACM Press, 2002.

[104] F. Giunchiglia and L. Serafini. Multilanguage hierarchical logics (or: How we can do

without modal logics). Artificial Intelligence, (65):29-70,1994.

[105] J. Graham and K. Decker. Towards a Distributed Environment-Centered Agent Frame

work. In N.R. Jennings and Y. Lesperance, editors, Intelligent Agents VI Agent Theories,

Architectures, and Languages, volume 1757 of LNCS. Springer, 1999.

[106] R. Gray, D. Katz, G. Cybenko, and D.a Rus. D' Agents: Security in a multiple-language,

mobile agent system. In G. Vigna, editor, Mobile Agents and Security, volume 1419 of

LNCS, pages 154-187. Springer-Verlag, 1998.

[107] JSR 118 Expert Group. Mobile Information Device Profile for the Java 2 Micro Edition

- Version 2.0. Technical report, Java Community Press, 2002.

[108] W3C HTML Working Group. HTML 4.01 Specification. Technical report, W3C, 1999.

[109] P. Gupta and D. Moitra. Evolving a pervasive IT Infrastructure: a technology integration

approach. Personal and Ubiquitous Computing, 8(1):31-41, 2004.

[110] Rune Gustavson. Agents with power. Communications of the ACM, 42(3):41-47,1999.

BIBLIOGRAPHY 223

[111] S. Hadjiefthymiades, V. Matthaiou, and L. Merakos. Supporting the www in wireless

communications through mobile agents. Mobile Networks and Applications" 7(4):305-

313,2002.

[112] K. Z. Haigh, J. Phelps, and C. W. Geib. An open agent architecture for assisting elder

independence. In Proceedings of the first International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 578-586. ACM Press, 2002.

[113] A. Hall. Seven myths offormal methods. IEEE Software, 7(5):11-19,1990.

[114] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,

(21):666-677,1978.

[115] L. J. Hoffman and L. Cranor. Internet Voting for Public Officials. Communications of the

ACM, 44(1):69-71, 2001.

[116] N. Howden, R. Runnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents - Sum

mary of an Agent Infrastructure. In T. Wagner and O. F. Rana, editors, The 5th bztena

tiona I Coference on Autonomous Agents, Workshop on Infrastructure for Agents, MAS

and Scalable MAS, pages 251-257, 2001.

[117] M. J. Hubber. JAM: A BDI-Theoretic mobile agent architecture. In Proceedings of

the Third International Conference on Autonomolls Agents, pages 236-243. ACM Press,

1999.

[118] N. R. Jennings. Specification and implementation of belief, desire, joint-intention ar

chitectures for collaborative problem solving. Journal of Intelligence and Cooperative

Infonnation Systems, 2(3):289-318,1993.

[119] N. R. Jennings. On being responsible. In Proceedings of the First International Confer

ence on Multi-Agent Systems, pages 133-139. AAAI Press/MIT Press, 1995.

[120] N. R. Jennings. On agent-based softare engineering. Artificial Intelligence, 117(2):277-

296,2000.

[121] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge.

Automated negotiation: prospects, methods and challenges. International Journal of

Group Decision and Negotiation, 10(2):199-215,2001.

224 BIBLIOGRAPHY

[122] N. R. Jennings, S. Parsons, P. Noriega, and C. Sierra. On argumentation-based negoti

ation. In Proc. of the Int. Workshop on Multi-Agent Systems, pages 1-7, Boston, USA,

1998.

[123] N. R. Jennings and T. Wittig. ARCHON: Theory and Practice. In N. M. Avouris and

L. Gasser, editors, Distributed Artificial Intelligence: Theory and Praxis, pages 179-195.

Kluwer Academic Press, 1992.

[124] C. B. Jones. Systematic Software Development using VDM. Prentice Hall, 2nd edition,

1990.

[125] A. Joshi, T. Finin, and Y. Yesha. Me-Services: A Framework for Secure and Personalized

Discovery, Composition and Management of Services in Pervasive Environments. In

C. Bussler, R. Hull, S. McIlraith, M.E. Orlowska, B. Pernici, and J. Yang, editors, Web

Services, E-Business, and the Semantic Web: CAiSE 2002 Intemational Workshop, WES

2002, Toronto, Canada, May 27-28,2002. Revised Papers, volume 2512 of LNCS, pages

248-259. Springer, 2002.

[126] A. Joshi, T. Finin, and Y.Yesha. Agents, Mobility, and M-services: Creating the Next

Generation Applications and Infrastructure on Mobile Ad-Hoc Networks. In B. Knig

Ries, K. Makki, S.A.M. Makki, N. Pissinou, and P. Scheuermann, editors, Developing an

Infrastructure for Mobile and Wireless Systems: NSFWorkshop IMWS 2001 Scottsdale,

AZ, October 15,2001. Revised Papers, volume 2538 of LNCS, pages 106-118. Springer,

2002.

[127] T. Juan, A. R. Pearce, and L. Sterling. ROADMAP: extending the GAIA methodology

for complex open systems. In The First Intemational Joint Conference on Autonomous

Agents & Multiagent Systems, pages 3-10. ACM Press, 2002.

[128] L. Kagal, T. Finin, and A. Joshi. A Policy Based Approach to Security for the Semantic

Web. In D. Fensel, K. Sycara, and J. Mylopoulos, editors, Proceedings of the 2nd In

temational Semantic Web Conference, volume 2870 of LNCS, pages 402-418. Springer,

2003.

[129] M. Kahn and C. D. T. Cicalese. CoABS Grid Scalability Experiments. In T. Wagner

and O. F. Rana, editors, Infrastructure for Agents, MAS and scalable MAS, Workshop in

Autonomous Agents 2001, pages 145-152,2001.

BIBLIOGRAPHY 225

[130] M. Kahn and P. Sage. DARPA Control of Agent-Based Systems Tutorial. In J.M. Brad

shaw, editor, PAAM 2000, 2000.

[131] S. Kent and K. Seo. Security Architecture for the Internet Protocol. Technical Report

RFC2401bis-01, IETF, 2004.

[132] D. Kinny, M. P. Georgeff, and A. S. Rao. A methodology and Modelling Technique for

Systems of BDI Agents. In W. Van de Velde and J. W. Perram, editors, Agents Breaking

Away, 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World,

Eindhoven, The Netherlands, January 22-25, 1996, Proceedings, volume 1038 of LNCS,

pages 56-71. Springer, 1996.

[133] Danny Lange and Mitsuru Oshima. Programming and Deploying Java(tm) Mobile Agents

with Aglets(tm). Addisson-Wesley, 1998.

[134] Kevin Lano. The B Language and Method: A guide to Practical Fomzal Development.

Springer-Verlag, 1996.

[135] J. Lawrence. LEAP into Ad-Hoc Networks. In T. Finin and Z. Maamar, editors, Ubiqui

tous Agents on embedded, wearable and mobile devices, 2002.

[136] J. Lind. Issues in Agent-Oriented Software Engineering. In P. Ciancarini and

M. Wooldridge, editors, Agent-Oriented Software Engineering, volume 1957 of LNCS,

pages 45-48. Springer, 200l.

[137] M. Luck. From definition to development: What next for agent-based systems. Knowl

edge Engineering Review, 14(2):119-124, 1999.

[138] M. Luck, R. Ashri, and M. d'Inverno. Agent-Based Software Development. Artech House,

2004.

[139] M. Luck and M. d'Inverno. Engagement and cooperation in motivated agent modelling.

In C. Zhang and D. Lukose, editors, Proceedings of the First Australian DAI Workshop,

volume 1087 of LNCS, pages 70-84. Springer, 1996.

[140] M. Luck, P. McBurney, and C. Preist. Agent Technology: Enabling Next Generation

Computing (A roadmap for Agent-Based Computing). Technical report, Agentlink, 2003.

[141] E. Lupu and M. Sloman. Towards a role-based framework for distributed systems man

agement. Journal of Network and Systems Management, 5(1):5-30, 1997.

226 BIBLIOGRAPHY

[142] K. Matsuda, T. Miyake, and H. Kawai. Culture formation and its issues in personal agent

oriented virtual society: "PAW 2". In Proceedings of the 4th International Conference on

Collaborative Virtual Environments, pages 17-24. ACM Press, 2002.

[143] D. L. Mcguinness and F. van Harmelen. OWL Web Ontology Language: Overview.

http://www.w3.org/TRl2003IPR-owl-features-20031215/.

[144] M .Miceli, A. Cesta, and P. Rizzo. Distributed Artificial Intelligence from a socio

cognitive standpoint: Looking at reasons for interaction. Artificial Intelligence and Soci

ety, 9:287-320, 1996.

[145] D. Milojicic, A. Messer, P. Bemadat, I. Greenberg, O. Spinczyk, D. Beuche, and

W. Schrder-Preikschat. Psi - pervasive services infrastructure. In F. Casati, D. Geor

gakopoulos, and M.-C. Shan, editors, Technologies for E-Services: Second International

Workshop, TES 2001, Rome, Italy, September 14-15,2001, Proceedings, volume 2193 of

LNCS, pages 187-199. Springer, 2001.

[146] L. Moreau, N. M. Zaini, D. Cruishanck, and D. De Roure. SoFAR: An Agent Framework

for Distributed Information Management. In Intelligent Agent Software Engineering,

pages 49-67. Idea Group Publishing, 2003.

[147] A. Mowshowitz. Virtual Organization. Communications of the ACM, 40(9):30-37, 1997.

[148] S. Munroe, M. Luck, and M. d'Invemo. Towards a motivation-based approach for eval

uating goals. In The Second International Joint Conference Oil Autonomous Agents &

Multiagent Systems, pages 1074-1075. ACM Press, 2003.

[149] M. A. Mupoz, M. Rodriguez, J. Favela, A. I. Martinez-Garcia, and V. M. Gonzalez.

Context-aware mobile communications in hospitals. Computer, 36(9):38-46, 2003.

[150] J. Mylopoulos, M. Kolp, and J. Castro. UML for Agent-Oriented Software Engineer

ing: The TROPOS Proposal. In M. Gorgolla and C. Kobryn, editors, UML 2001 - The

Unified Modeling Language, Modeling Languages, Concepts and Tools 4th International

Conference, volume 2518 of LNCS. Springer, 2001.

[151] R. Nair, M. Tambe, S. Marsella, and T. Raines. Automated assistants for analyzing team

behaviours. Journal of Autonomous Agents and Multi-Agent Systems, 8(1),2004.

[152] M. H. Nodine and A. Unruh. Facilitating Open Communication in Agent Systems:

The InfoSleuth Infrastructure. In M. P. Singh, A. S. Rao, and M. Wooldridge, editors,

BIBLIOGRAPHY 227

Intelligent Agents IV, Agent Theories, Architectures, and Languages, volume 1365 of

LNCS. Springer, 1998.

[153] P. Noriega. Agent-Mediated Auctions: The Fishmarket Metaphor. PhD thesis, Institut

d'Investigacio en Intelligencia Artificial (IlIA), 1997.

[154] P. Noriega and C. Sierra. Towards Layered Dialogical Agents. In J.P. Muller,

M. Wooldridge, and N.R. Jennings, editors, Intelligent Agents III - Agent Theories, Ar

chitectures and Languages, volume 1193 of LNCS, pages 173-188. Springer, 1997.

[155] H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A Tool-Kit for Building Distributed

Multi-Agent Systems. Applied Artifical Intelligence, 13(1):129-186, 1999.

[156] S. Oaks, B. Traversat, and L. Gong. lXTA In a Nutshell. O'Reilly and Associates, 2002.

[157] PD. O'Brien and M.E. Wiegand. Agents of Change in Business Process Management,

volume 1198 of LNAI, pages 132-145. Springer, 1997.

[158] D. O'Leary, D. Kuokka, and R. Plant. Artificial intelligence and virtual organizations.

Communications of the ACM, 40(1):52-59, 1997.

[159] E. Oliveira and A. P. Rocha. Agents Advanced Features for Negotiation in Electronic

Commerce and Virtual Organisations Formation Processes. In F. Dignum and C. Sierra,

editors, Agent Mediated Electronic Commerce, The European AgentLink Perspective, vol

ume 1991, pages 78-97. Springer, 2001.

[160] A. Omicini. SODA: Societies and infrastructures in the analysis and design of agent

based systems. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software

Engineering, volume 1957 of LNCS, pages 185-193,2001.

[161] A. Omicini, A. Ricci, M. Viroli, and G. Rimassa. Integrating Objective & Subjective

Coordination in MultiAgent Systems. In 19th ACM Symposium on Applied Computing

(SAC 2004), pages 485-491. ACM Press, 2004.

[162] A. Omicini and F. Zambonelli. Coordination of Mobile Information Agents in TuCSoN.

Internet Research: Electronic Networking Applications and Policy, 8(5):400-413, 1998.

[163] L. Padgham and M. Winikoff. Prometheus: A Methodology for Developing Intelligent

Agents. In F. Giunchiglia, J. Odell, and G. WeiB, editors, Agent-Oriented Software Engi

neering III, volume 2585, pages 174-185. Springer, 2002.

228 BIBLIOGRAPHY

[164] M. Paolucci, Z. Niu, K. Sycara, C. Domashnev, S. Owens, and M. van Velsen. Match

making to support intelligent agents for portfolio management. In Proceedings of the

Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on

on Innovative Applications of Artificial Intelligence, pages 1125-1126. AAAI PresslMIT

Press, 2000.

[165] S. Parsons, N. R. Jennings, J. Sabater, and C. Sierra. Agent Specification Using Multi

Context Systems. In M. d'Inverno, M. Luck, M. Fisher, and C. Preist, editors, Founda

tions and Applications of Multi-Agent Systems, volume 2403 of LNCS. Springer, 2002.

[166] S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing.

Joumal of Logic and Computation, 8(3):261-292, 1998.

[167] T. R. Payne, R. Singh, and K. Sycara. Browsing Schedules - An Agent-based approach

to navigating the Semantic Web. In Intemational Semantic Web Conference, pages 469-

473,2002.

[168] M. Pollack and M. Ringuette. Introducing the Tileworld: Experimentally evaluating agent

architectures. In Proceedings of the Eigth National Confenrence on Artificial Intelligence,

1990.

[169] T. F. La Porta, T. Woo, K. K. Sabnani, and R. Ramjee. Experiences with network-based

user agents for mobile applications. Mobile Networks and Applications, 3(2):123-141,

1998.

[170] B. Potter, J. Sinclair, and D. Till. An Introduction To Formal Specification and Z. Inter

national Series in Computer Science. Prentice Hall, 1991.

[171] H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. In D. Gabbay

and F. Guenthner, editors, Handbook of Philosophical Logic, volume 4, pages 219-318.

Kluwer, 2nd edition, 2002.

[172] I. Rahwan, L. Sonenberg, and F. Dignum. Towards interest-based negotiation. In Pro

ceedings of the Second Intemational Conference in Autonomous Agents and Multi-Agent

Systems. ACM Press, 2003.

[173] A. Rakotonirainy, J. Indulska, S. Wai Loke, and A. Zaslavsky. Middleware for Reactive

Components: An Integrated Use of Context, Roles, and Event Based Coordination. In

BIBLIOGRAPHY 229

R. Guerraoui, editor, Middleware 2001 : IFIPIACM International Conference on Dis

tributed Systems Platfomls Heidelberg, Gennany, November 12-16, 2001. Proceedings,

volume 2218 of LNCS, pages 77-98. Springer, 2001.

[174] S. D. Ramchurn, C. Sierra, L. Godo, and N. R. Jennings. A Computational Trust model

for Multi-Agent Interactions based on Confidence and Reputation. In R. Falcone, S. Bar

ber, L. Korba, and M. Singh, editors, Workshop on Deception, Trust, and Fraud in the

Second International Joing Conference in Autonomous Agents and Multi-Agent Systems,

pages 69-7S, 2003.

[17S] A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.

In W. Van de Velde and J. W. Perram, editors, Agents Breaking Away, 7th European

Workshop on Modelling Autonomous Agents in a Multi-Agent World, volume 1038 of

LNCS, pages 42-SS. Spinger, 1996.

[176] A. S. Rao and M. P. Georgeff. Asymmetry Thesis and Side-Effect Problems in Linear

Time and Branching-Time Intention Logics. In John Mylopoulos and Raymond Reiter,

editors, Proceedings of the 12th International Joint Conference on Artificial Intelligence,

pages 498-S0S. Morgan Kaufmann, 1991.

[177] A. S. Rao and M. P. Georgeff. An Abstract Architecture for Rational Agents. In B. Nebel,

C. Rich, and W. R. Swartout, editors, Proceedings of the 3rd International Conference on

Principles of Knowledge Representation and Reasoning, pages 439-449. Morgan Kauf

mann, 1992.

[178] A. S. Rao and M. P. Georgeff. A Model-Theoretic Approach to the Verification of Situated

Reasoning Systems. In R. Bajcsy, editor, Proceedings of the 13th International Joint

Conference on Artificial Intelligence, pages 318-324. Morgan Kaufmann, 1993.

[179] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings of

the First International Conference on Multiagent Systems, pages 312-319. AAAI Press/

The MIT Press, 1995.

[180] A. Ricci, A. Omicini, and E. Denti. Engineering agent societies: a case study in smart

environments. In Proceedings of the First International Joint Conference on Autonomous

Agents alld Multiagent Systems, pages 1064-106S. ACM Press, 2002.

[181] J. A. Rodriguez~Aguilar. On the design and construction of Agent-Mediated Institutions.

Monograph Series 11, Institut d'Investigacio en Intelligencia Artificial (IlIA), 2002.

230 BIBLIOGRAPHY

[182] J. A. Rodriguez-Aguilar, F. 1. Martin, P. Noriega, P. Garcia, and C. Sierra. Towards a test

bed for trading agents in electronic auction markets. AI Communications, 11(1):5-19,

1998.

[183] J. Antonio Rodriguez-Aguilar and C. Sierra. Enabling Open Agent Institutions. In

K. Dautenhahn, A. H. Bond, L. Canamero, and B. Edmonds, editors, Socially Intelligent

Agents: Creating relationships with computers and robots. Kluwer, 2002.

[184] A. Ross. Directives and Nonns. Routledge and Kegan Paul Ltd, 1968.

[185] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference

Manual. Object Techology Series. Addison Wesley, 1998.

[186] S. J. Russel and P. Norvig. Artificial Intelligence: A Modem Approach. Prentice Hall,

1995.

[187] R. T. Rust and P.K. Kannan. E-service: a new paradigm for business in the electronic

environment. Communications of the ACM, 46(6):36-42, 2003.

[188] J. Sabater and C. Sierra. REGRET: a reputation model for gregarious societies. In

C. Castelfranchi and L. Johnson, editors, Proceedings of the 1 st Intemational Joint Con

ference onAutonomous Agents and Multi-Agent Systems, pages 475-482,2002.

[189] 1. Sabater, C. Sierra, S. Parsons, and N. R. Jennings. Engineering Executable Agents

using Multi-context Systems. Journal of Logic Computation, 12(3):413--442,2002.

[190] N. Sadeh, T. Chan, L. Van, O. Kwon, and K. Takizawa. A semantic web environment for

context-aware m-commerce. In Proceedings 4th ACM Conference on Electronic Com

merce, pages 268-269, 2003.

[191] D. Saha and A. Mukherjee. Pervasive Computing: A Paradigm for the 21st Century.

IEEE Computer, 36(3):25-31,2003.

[192] A. Sahai and C. Morin. Mobile agents for enabling mobile user aware applications. In

Proceedings of the Second International Conference on Autonomous Agents, pages 205-

211. ACM Press, 1998.

[193] G. Diez-Andino Sancho, R. M. Garcia Rioja, and C. Campo. Design of a FIPA-Compliant

Agent Platform for Limited Devices. In Mobile Agents for Telecommunication Applica

tions, volume 2881 of LNCS. Springer, 2003.

BIBLIOGRAPHY 231

[194] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51-92,1993.

[195] Y. Shoham and M. Tennenholtz. On Social Laws for Artificial Agent Societies. Artifial

Intelligence, 73(1-2):231-252, 1995.

[196] J.S. Sichman, Y. Demazeau, R. Conte, and C. Castelfranchi. A social reasoning mecha

nism based on dependence networks. In 11th European Conference on Artificial Intelli

gence, pages 188-192. John Wiley and Sons, 1994.

[197] C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A framework for argumentation

based negotiation. In M. Singh, A. Rao, and M. Wooldridge, editors, Intelligent Agent

IV: Proc. of ATAL 1997, volume 1365 of LNCS, pages 177-192. Springer, 1998.

[198] M. P. Singh. A criticiaI examination of the Cohen-Levesque theory of intention. In

Proceedings of the Tenth European Conference on Artificial Intelligence, pages 364--368,

1992.

[199] M.P. Singh. Multiagent Systems: A Theoretical Framework for Intentions, Know-How,

and Communications, volume 799 of LNCS. Springer, 1994.

[200] M. Sloman. Policy driven management for distributed systems. Network and Systems

Management, 2(4):333-360, 1994.

[201] J.M. Spivey. The Z Notation. Prentice Hall, 2nd edition, 1992.

[202] I. Srnkovic, B. Hnich, T. Jonsson, and Z. Kiziltan. Specification, Implementation and

Deployment of Components. Communications of the ACM, 45(10):35--40, 2002.

[203] V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross. Hetero

geneous Agent Systems. MIT Press, 2000.

[204] N. Suri, M. Carvalho, J. Bradshaw, M. R. Breedy, T. B. Cowin, P. T. Groth, R. Saavedra,

and A. Uszok. Enforcement of Communications Policies in Software Agent Systems

through Mobile Code. In 4th IEEE International Workshop on Policies for Distributed

Systems and Networks, pages 247-250. IEEE Computer Society, 2003.

[205] K. Sycara, M Paolucci, A. Ankolenkar, and N. Srinivasan. Automated Discovery, Interac

tion and Composition of Semantic Web Services. Journal of Web Semantics, 10):27--46,

2003.

232 BIBLIOGRAPHY

[206] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa. The RETSINA MAS Infras

tructure. Autonomous Agents and MAS, 7(1-2), 2003.

[207] K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmaking Among

Heterogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-Agent

Systems, (5): 173-203, 2002.

[208] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison

Wesley, 1998.

[209] TAC. The Trading Agent Competition. World Wide Web, http://www.sics.se/tac/. 2003.

[210] C. Tessier, L. Chaudron, and H.-J. Muller, editors. Conflicting Agents: Conflict Manage

ment in Multi-Agent Systems. Kluwer Publishers, 2000.

[211] R. Titmuss, LB. Crabtree, and C.S. Winter. Agents, Mobility and Multimedia Infonnation,

volume 1198 of LNAl, pages 146-159. Springer-Verlag, 1997.

[212] J. Tretmans, K. Wijbrans, and N. Chaudron. Software Engineering with Formal methods:

The Development of a Storm Surge barrier Control System Revisiting Seven Myths of

Formal Methods. Fomwl Methods in System Design, 19(2):195-215, 2001.

[213] M. Tsvetovat and K. Sycara. Customer Coalitions in the electronic marketplace. In

Proceedings of the 4th International Conference on Autonomous agents, pages 263-264.

ACM Press, 2000.

[214] R. Tuomela. The Importance of Us: A Philosophical Sudy of Basic Social Nonns. Stan

ford University Press, 1995.

[215] R. Tuomela and M. Bonnevier-Tuomela. Norms and Agreements. European Journal of

law, Philosophy and Computer Science, 5:41-46, 1995.

[216] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. J. Hayes, M. R. Breedy, L. Bunch, M. John

son, S. Kulkarni, and J. Lott. KAoS Policy and Domain Services: Toward a Description

Logic Approach to Policy Representation, Deconfiiction, and Enforcement. In 4th IEEE

International Workshop on Policies for Distributed Systems alld Networks, pages 93-98.

IEEE Computer Society, 2003.

[217] A. van Lamsweerde. Formal specification: A roadmap. In Proceedings of The Future of

Software Engineering, pages 147-159. ACM Press, 2000.

BIBLIOGRAPHY 233

[218] J. Vazquez-Salceda and F. Dignum. Modelling Electronic Organizations. In V. Marik

and 1. Milller, editors, Multi-Agent Systems and Applications III, volume 2691, pages

584-593. Springer, 2003.

[219] 1. Venn. On the diagrammatic and mechanical representation of propositions and rea

sonings. The London, Edinburgh and Dublin Philosophical Magazine and loumal of

Science, (9):1-18,1880.

[220] W3C. Web Services Activity. http://www.w3.orgI2002/ws/.

[221] A. Walker and M. Wooldridge. Undestanding the emergence of conventions in multi

agent systems. In V. Lesser and L. Gasser, editors, Proceedings of the First Intemational

Conference on Multi-Agent Sysetms. AAAI PresslMIT Press, 1995.

[222] D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of Inter

personal Reasoning. SUNY Press, Albany, NY, USA, 1995.

[223] M. Weiser. The computer for the twenty-first century. Scientific American, pages 94-104,

September 1991.

[224] B. Wellman. Designing the internet for a networked society. Communications of the

ACM, 45(5):91-96,2002.

[225] G. J. WickIer. Using Expressive and Flexible Action Representations to Reason about

Capabilities for Intelligent Agent Cooperation. PhD thesis, University of Edinburgh,

1999.

[226] G. Wills, H. Alani, R. Ashri, R. Crowder, Y. Kalfoglou, and S. Kim. Design issues for

agent-based resource locator systems. In Proceedings of the 4th Intemational Conference

on Practical Aspects of Knowledge Management (PAKM'02), 2002.

[227] M. Winikoff, L. Padgham, and J. Harland. Simplifying the Development of Intelligent

Agents. In AI200I: Advances in Artificial Intelligence. 14th Australian, pages 557-568,

2001.

[228] H. Wong and K. Sycara. A Taxonomy of Middle-Agents for the Internet. In Proceedings

of the Fourth Intemational Conferene on Multi-agent Systems. ACM Press, 2000.

[229] J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof Prentice Hall

International, 1996.

234 BIBLIOGRAPHY

[230] M. Wooldridge. This is MYWORLD: The Logic of an Agent-Oriented DAI Testbed.

In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents, ECAI-94 Workshop on

Agent Theories, Architectures, and Languages, volume 890 of LNCS, pages 160-178.

Springer, 1995.

[231] M. Wooldridge and P. Ciancarini. Agent-Oriented Software Engineering: The State of the

Art. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software Engineering,

volume 1957 of LNCS, pages 1-28. Springer, 2001.

[232] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. Knowledge

Engineering Review, 10(2):115-152, 1995.

[233] M. Wooldridge, N.R. Jennings, and D.Kinny. The GAIA Methodology for Agent

Oriented Analysis and Design. Journal of Agents and Multi-Agent Systems, 3(3):285-

312,2000.

[234] F. Lopez y Lopez, M. Luck, and M. d'Inverno. Constraining autonomy through norms. In

The First International Joint Conference on Autonomous Agents and Multiagent Systems,

pages 674-681. ACM Press, 2002.

[235] E. Yu. Agent Orientation as a Modelling Paradigm. Wirtschaftsinfonnatik.,43(2):123-

132,2001.

[236] F. Zambonelli, N. R. Jennings, A. Ornicini, and M. Wooldridge. Agent-Oriented Soft

ware Engineering for Internet Applications. In A. Ornicini, F. Zambonelli, M. Klusch,

and R. Tolksdorf, editors, Coordination of Internet Agents, chapter 13, pages 326--346.

Springer, 2001.

