
University of Southampton

An Open Hypermedia Link Service Architecture Supporting
Multiple Context Models

by

Gareth Vaughan Hughes

A thesis submitted for the degree of
Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

August 2003

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

An Open Hypermedia Link Service Architecture Supporting Multiple Context Models

by Gareth Vaughan Hughes

Open hypermedia concerns itself with finding ways to provide links between information using

systems that allow the direct manipulation of links. These systems are generally built in component

fashion, a m^or component will be the Link Service. This thesis extends previous work on building

link services for the World Wide Web in order to improve the quality of linking that can be provided.

A link service delivers links into Web pages dynamically, this allows the system the opportunity to

adapt the links to suit the user and content. The more general form of this adaption is to deliver links

in some context. The core of this work is to examine how to generalise the delivery of links in context

so that new context models and techniques can be introduced without writing a new link service each

time.

This thesis examines the problem of deGning models of context and how different models are

often incompatible. It introduces a new architecture for exploring methods of providing links in

context. The architecture consists of a core infrastructure along with a method for dynamically

changing the components of the system concerned with the link model and the computation process

for generating the final link to deliver.

The effecdveness of the architecture is explored through the undertaking of a number of projects

using real-world data. The limits of the design are explored and the analysis focuses on how

successful it is possible to be given the goals set.

Contents

1 Introduction 1

1.1 Motivation 1

1.1.1 Open Hypermedia 3

1.1.2 Context 4

1.2 Contribution 5

1.3 Thesis Structure 5

1.4 Declaration 6

2 Hypermedia Linking and Adapting ^

2.1 Open Hypermedia Systems 7

2.1.1 Hypertext Origins 7

2.1.2 The Evolution of Link Services 8

2.1.3 The World Wide Web 10

2.1.4 Hyperwave H

2.1.5 Microcosm

2.1.6 Open Hypermedia Reference Models 16

2.2 Adaptive Hypermedia 19

2.2.1 Where are adaptive systems helpful? 22

2.2.2 What Features of the User Can be Used as the Source of Adaption?. . . 23

2.2.3 What are the Methods of Adaption? 24

2.2.4 What can be Adapted by a Particular Technique? 25

2.2.5 Key Adaptive Hypermedia Systems 26

2.3 Link Services for the World Wide Web ^8

2.3.1 Introduction

2.3.2 The Distributed Link Service 28

2.3.3 Web Based Intermediaries (WBI) 32

2.3.4 Muffin 32

2.3.5 Microsoft Smart Tags 37

2.3.6 Other Link Service Products 40

2.4 Summary ^1

2.5 Conclusion

3 Integrating Link Services With A Document Management System 43

III

3.1 Introduction 43

3.2 The AIMS Document Management System 44

3.2.1 Background 44

3.2.2 System Summary 46

3.2.3 An Introduction to Lotus Notes 46

3.2.4 Features of AIMS 47

3.3 Experimental Integration ofAIMS with a Link Service 52

3.3.1 Basic Link Service Integration 52

3.3.2 Using Pattern Matching Techniques for Creating Link Anchors 54

3.3.3 Compilation of Links Versus Dynamic Linking 57

3.3.4 Incorporating the Link Service within AIMS 59

3.3.5 Altering Links by Date: an Initial Experiment with Context 62

3.3.6 Performance Issues for DLS Applications 65

3.3.7 Summary 67

3.4 Evaluation of the AIMS System 68

3.4.1 Formal AIMS Evaluation 68

3.4.2 Reflecting on AIMS 70

3.4.3 Managing the Service 72

3.5 Conclusion 73

Context 74

4.1 Introduction 74

4.2 What is Context? 75

4.3 Representing Context 77

4.4 Determining the Context 80

4.4.1 Document Understanding 80

4.4.2 Pervasive Computing 82

4.5 Using Context 87

4.5.1 Hypertext Systems 87

4.5.2 Other Fields Using Context 88

4.6 Summary 89

4.7 Discussion 90

4.8 Conclusion 91

A Context-Aware Distributed Link Service 93

IV

5.1 Introduction

5.2 Design Considerations for a Context-A ware DLS

5.3 Implementation of the Context-Aware DLS

5.3.1 TheCA-DLSFilterforMufGn

5.4 Link Resolvers: Interchangeable Context-Aware Linking Engines.

5.4.1 Link Resolver Supported Events

5.4.2 Dynamic Link Resolver Invocation

5.5 Beyond Web Proxies and Link Filters

5.6 Discussion

5.7 Conclusion

93

94

99

100

100

101

102

103

104

105

6 Applying the CA-DLS 107

6.1 Project Background 107

6.2 Phase One Implementation HI

6.3 Phase Two Implementation 116

6.4 Conclusion 120

7 Examining the Limits of the CA-DLS Design 123

7.1 User Models for Resolving Links 123

7.2 Links With a Context of Time 127

7.2.1 TheTimespanResolver 127

7.2.2 Application Plan - The Story of the MiUennium Dome 130

7.2.3 Generic Links for Works of Fiction Based on Timelines and Plotlines .135

7.3 Conclusion 136

8 Future Work and Conclusion 138

8.1 Future Work 138

8.1.1 Detection of Context Changes 138

8.1.2 Transmission of Context Changes to a Link Resolver 138

8.1.3 Downloading Link Resolvers 139

8.1.4 Chaining Link Resolvers 140

8.1.5 News Archives 141

8.1.6 The Semantic Web 142

8.1.7 Future Work Summary 142

8.2 Summary and Conclusion 144

Appendix A:Overview of Relevant W3C Technologies 148

A.l A Beginners Guide to W3C Acronyms 148

A.2 XML 149

A.3 XSL 150

A.4 XSLT 150

A.5 XPath 150

A.6 XPointer 151

A.7 XLink 151

Appendix Bzlmplementation of Chapter Six, Part One 153

B.l Introduction 153

B.2 Background 153

B.3 Summary of Goals 158

B.4 Interface Implementation 158

B.5 Application Overview 162

B.6 Linkbase Design 162

B.7 An Alternative Link Resolver 164

B.8 5 Nearest Neighbours 167

B.9 Project Conclusions 167

Appendix C: Implementation of Chapter Six, Part Two 170

C.l Project Summary 170

C.2 Project Implementation 172

C.3 Document Conversion 173

C.4 The Analysis Knowledge Maps 173

C.5 The Contact List Knowledge Map 177

C.6 Linkbase Design 178

C.7 The Implementation of a Knowledge Map Reader (KMReader) 185

C.8 The KMReader 185

C.8.1 The XLink Based XML Fragment Resolver 188

C.8.2 A Scenario for an Authoring System 189

C.9 Project Conclusions 190

References 192

V I

List of Figures

2.1 The Architecture of Microcosm 12

2.2 The Filter Manager Component of Microcosm 13

2.3 A Microcosm Document Viewing Application 14

2.4 A Toolbar for Helping Users Manage the Microcosm Interface 15

2.5 Dexter Hypertext Model 17

2.6 OHP Data Model 19

2.7 Major Questions to Ask of an Adaptive Hypermedia System (Brusilovsky, 1996) 20

2.8 The Range of Adaptive Hypermedia Applications (Brusilovsky, 1996) 22

2.9 Light Hypermedia Services Augmenting a Web Browser 29

2.10 The Distributed Links Session Control Panel 30

2.11 The Effect of the Distributed Links Service on a Web Page 31

2.12 Document Request Handling in Muffin (Boyns, 2000) 34

2.13 Document Reply Handling in Muffin (Boyns, 2000) 35

2.14 The Muffin User Interface 36

2.15 Microsoft Smart Tags in use in Microsoft Word 38

3.1 The AIMS Document Submission Web Form 48

3.2 Features in AIMS 49

3.3 A Document Listing View of AIMS 50

3.4 The Document Editing Form in AIMS 51

3.5 Minutes of a Meeting Augmented with Standard Generic Links from the DLS 53

3.6 Using Pattern Matching Techniques in the DLS to Link Issues to Items in Minutes 55

3.7 The Webcosm DLS Being Utilised as an Offline Link Service 60

3.8 Integrating AIMS and the Webcosm DLS to Provide Margin Links for Documents 61

vn

4.1 The Context Toolkit Architecture 84

5.1 The Flow of Events Within a Standard Implementation of a Distributed Link Service. . . . 95

5.2 The CA-DLS Architecture Model 97

5.3 The Effect of Context on a Traditional Black Box System (Lieberman & Selker, 2000). . 98

5.4 Changing a Link Resolver Whilst the CA-DLS is Running 103

6.1 Example of a Pathfinder Network for Documents Shown in VRML 110

6.2 A Document Enhanced with Multi-Destination Links 113

6.3 Changing the Link Resolver in use With Muffin 115

6.4 A Sample of the Technical Knowledge Map Viewed in a Web Browser 118

6.5 A Sample of the Main Linkbase as Viewed in a Web Browser 119

6.6 The Generated Document for the Sub-Area 'Intellectual Property' 120

7.1 A Sample Link for Use with the LDAPResolver 126

7.2 A Sample of a Linkbase Incorporating Time Spans 128

7.3 An Example of Editorial Linking in the Millenium Dome Application 132

7.4 Data Model of the Millennium Dome Application 133

A.l An Example of the Structure of a Simple XLink 151

A.2 An Example of an Extended XLink Structure 152

B. l Example of a PathGnder Network for Keywords Shovm in VRML 156

B.2 Example of a Pathfinder Network for Documents Shown in VRML 157

B.3 An Example of the Popup Menus Generated by the Link Resolver 159

B .4 Sample of HTML Placed in a Document Forming a Prioritised Link Anchor 159

B.5 Sample of an HTML DIV Data Island Depicting the Links to Display in a Popup Menu.. 160

B.6 A Document Enhanced with Multi-Destination Links 161

B.7 A Linkbase Entry Linking the Word 'integrate' to Five Destinations 164

B.8 Changing the Link Resolver in use With Muffin 166

viu

B.9 The Link Service Adding Five Links to the Nearest Documents in the Space 167

C.l The Contents Page of the Live Version of the Learning Summary Report 172

C.2 A Sample Knowledge Map (KM) Aom the Original Learning Summary Report 174

C.3 A Fragment of XML Aom the Technical Analysis KM 175

C.4 The XSL File Needed to Display an XML Knowledge Map on a Web browser 176

C.5 A Fragment of the XML of the Contact List KM 177

C.6 The Contact List KM Viewed Through a Web browser 178

C.7 A Sample of Source Data for Building the Linkbase 179

C.8 Sample of Source Data for Link with XML Paragraph Numbers Added 180

C.9 A Fragment of the XML for the Main Linkbase of this Application 182

C. 10 A Sample Link Destination from the Main Linkbase 182

C. 11 The XPath Statement Within Each Link Destination 183

C. 12 The Main Linkbase as Viewed in a Web browser 184

C.13 A Fragment of the Technical Knowledge Map as XML 185

C.14The Technical KM Viewed in a Web browser 186

C.15 The Generated Document for the Sub-Area 'Intellectual Property' 187

C.16 An Example of a New XML Document that an Author Could Create 189

C.17 The Document in Figure C. 16 Rendered 190

IX

List of Tables

3.1 Average Times to Complete the Tasks 69

3.2 Score from the Questionnaire 70

3.3 Technology Acceptance Model Scores 70

7.1 Example Scoring of a Link Against a Researcher Profile 125

A.l A Beginners Guide to Some Relevant W3C Technologies 148

C.l The Sections of the Learning Summary Web Site 172

Acknowledgements

I would like to thank Wendy Hall for being my supervisor over many years and for having the trust

in my abilities to offer me a job with the group in the first place. My thanks must go to all the people

in the group, past and present, who have helped me learn this new discipline. I did a degree in physics

and did not learn a great deal about computing during it. I then joined the Multimedia Research Group

(now Intelligence Agents Multimedia) and feel that the first few years here were the equivalent of

doing a vocational degree in computer science. It was a degree done the hard way, on the job, and

with a lot of people's help. With that completed I had the skiUs to produce the work in this thesis.

I wish to thank Steve Rake for reading the first full draft with such care and attention to detail. His

suggested changes were to the benefit of anyone who attempts to read this thesis.

I wish to thank Lynda Hardman and David De Roure for being my examiners.

This work has been Snally completed because I was given some flexibility by Wendy Hall and

Richard Crowder. I am eternally grateful for the freedom and promise to pay Richard back in code

and papers.

Special thanks to all on #iam_here, especially Bay 6.

This is for my wife, Jo, the most important person in the world.

XI

1 Introduction

1.1 Motivation

For many people in developed countries the World Wide Web is now ubiquitous. It has become part

of our daily lives in a way which could not have been imagined when I started my PhD 6 years ago.

To the vast majority of users who have no idea that there have ever been other hypertext systems there

is no significant problem with the Web. It is just the Web, a part of the infrastructure of the modem

world. It has many wonderful properties that have made it so successful but there are still problems.

For instance, those that have tried to build and manage Web pages know that it is difGcult but there

is so much money involved in the Web there are now plenty of commercial solutions, in fact a whole

industry has spmng up where none existed.

The simplicity of the design of the Web is also a major design flaw. Links between pages are placed

directly into the pages as part of the documents themselves. This makes it very easy to create simple

Web pages and the ease of ruiming a server makes it straightforward to make them available to the

whole world. Anyone on the Internet can write a Web page and be part of a global community. This

simple link model makes it a significant problem to manage just 500 pages.

My first experience of writing a significant number of Web pages was in December 1996 when I

produced a Compact Disc based 'Web site'. The CD documented aU of the projects being funded by

an initiative of the UK science research funding council, HEFCE. The task was to download three or

four pages of each project Web site, plus reports, and integrate them into a coherent whole. The CD

included a categorisation of each project and a number of ways of navigating the contents. To do this,

sets of pages were downloaded from the project Web sites, all of the internal links between pages

were corrected to still work and my own navigation links added. Navigation links and graphics were

also added to each and every downloaded page as part of the overall site design. AH of this was done

with a simple text editor, producing a complex structure many directories deep. There were over 500

files and even more links. Any changes made to the categorisation and hence the navigation of the

pages meant editing every single page involved by hand to amend the links.

The task was so painful and repetitive to do that since then I have never produced normal HTML Web

pages other than the occasional page.

The difficulties of working with raw HTML and the management of complex Web sites have led to

it now being rare for people to edit HTML directly. There is now a mature Web publishing and

content management industry. It is impressive to remember that it has largely grown from nothing

during the lifetime of this PhD. One area that has not received the same attention is the generation of

links between and within pages. For conmiercial Web site producers links are most commonly used

as navigational tools, Hnking index pages or catalogue listings to data or content pages. It is rarer to

see links within content of pages (Miles-Board & Carr, 2002).

Navigation links are the infrastructure of a Web site. Often they are mechanically created by software

simply to be functional. Links within content can provide significant added value to documents if

they are produced well. An author can cross reference readers to other interesting pages or pages that

give greater explanations of technical terms. The links can refer to previous stories on a news Web

site or link to other Web sites with a similar or differing opinion. Content based links bring the Web

to life but require work to produce, careful thought in placing and maintenance to ensure that they

continue to work correctly.

(Lowe et al., 1997) discusses this in detail and proposes that link authoring should be approached

with the same discipline as software engineering. They claim that link authoring is in the same state

as the software industry thirty years ago. Development is largely od Aoc with little proper thought

given to process modelling or management of the production.

There are systems to help with this process. Tools have been produced to add links into content

automatically. A simple but powerful application is one which will add a link on any occurrence of a

word to a definition. For instance a Web site that includes many technical terms can produce a

glossary section and link occurrences of the technical words to their definitions. These systems also

need to be used judiciously if they are not have adverse effects. A simple mechanical search and

replace technique to add links does not take into account the situation in which the document is being

read, the users interests and will not be computed on demand for a particular set of circumstances.

The links are not in context.

1.1.1 Open Hypermedia

The links in Web pages form an example of a hypertext, a field of study now over 50 years old. The

foundation of which is the vision of Vannevar Bush in his post-war description of machines to aid us

think and work 'As We May Think' (Bush, 1945). Many of the early hypermedia systems were built

as single dedicated pieces of software encompassing all of the functions and data they required. As

computers have improved the new possibilities have led to ever more sophisticated systems.

The hypermedia community has long advocated systems whose major property is their openness.

There are many definitions of open hypermedia, one is that an opg/i hypermedia if one w/iicA

i.r opgM fo fAe imporf (Davis, 1995). This implies various requirements such as being

able to support an unlimited size of system, to aUow for new data types to be added, to allow multiple

users have their own view on the system, to mn on multiple, distributed platforms and to allow for

differing views on the data model of a hypermedia application. Other definitions can be found in

(Lowe et al., 1997) and (0sterbye & Wiil, 1996).

The Web is an open system because it is distributed and scales well , but it is a closed system due to

the implementation of links (Lowe et al., 1997). A core component of open hypermedia systems is

that links are stored, managed and served by a separate system called a link service. Links are not

embedded or written directly into documents, as they are in Web pages, but stored in a database of

some kind. This database, called a Unkbase, is the source of links used by other components of an

open hypermedia system. Chapter 2 contains a review of the areas of open hypermedia and link

services.

This fundamentally different approach to implementing a hypermedia system opens up a much

greater set of possibilities. A number of very powerful systems that had nothing to do with the Web

were produced up to the mid 1990's using this approach. Now their number is dwindling (Bernstein,

1999) as research groups use the Web as the infrastructure for their systems and experiments.

When links are managed by a link service the possible uses grow and powerful effects can be

produced. A link becomes a first class object to be managed, deployed and reused as required

allowing for ease of management and efGciency. A link does not have to start at one place in a certain

document and end at one destination. Links can connect multiple resources together which other

components of the system can interpret as they wish. A link service can also be used to add links to

content on demand in a multitude of ways. One such technique is to place a link on any occurrence

of a word or phrase in any document in the system, and hnk it to a single destination. The classic

usage is to link any occurrence of a word in any document to a page w i ± a deAnition of it. These links

are called generic links or glossary links (Carr et al., 1998).

The ability to add a link to any occurrence of a word in any document and link it to one destination

is a powerful mechanism. Like any powerful tool if it is not implemented judiciously it can cause as

many problems as it solves. The hnk might not be to the correct definition (for instance the word

'spring' has a considerable number of meanings) or the system may be confused by acronyms ('and'

could be a word or a person's initials). A common problem that has arisen is that too many links are

placed into the document giving too many choices and adversely affecting document presentation. To

solve these problems the link service needs to understand more about the document, the user and

situation in which the document is being used. In short the links need to be placed in context. This

thesis presents a design for a system for doing just that.

1.1.2 Context

There are considerable challenges in determining and using contextual information at even the

simplest level. The first problem to be tackled is to understand exactly what context is. The word

stems from the latin for weave or entwine. This leads to one definition "The weaving together of

words and sentences"^. Another definition is "The circumstances in which an event occurs"^. These

cover the two major usages of the word. The first and older definition is on the subject of writing and

defines context as the meaning given to words based on those around them. The second definition is

slightly more general purpose and defines context as all of the factors that are needed to describe a

situation or event.

We implicitly understand what context means in any given situation but building it formally into

computer software is much harder. In computer science literature there are as many definitions of

context as there are systems claiming to use it. Trying to reach a deAnitive statement of what context

is and how to go about using it has been a difficult task.

This thesis describes work done in developing an architecture for an open hypermedia link service to

add links to information in context. The design is such that new definitions of context and links with

contextual information can be designed and added to the system along with any special methods

required to process these links. The system has been used in the implementation of a number of

^Oxford English Dictionary.
^The American Heritage Dictionary of the English Language, Fourth Edition.

hypermedia applications. These demonstrate that a variety of simple contextual situations can be

modelled and that the architecture is flexible enough to accommodate them. The variety of

experiments allow an evaluation of the design which considers the limits of what is possible and how

to proceed from this point.

1.2 Contribution

The work presented in this thesis contributes to the area of open hypermedia. In particular the major

contribution is the development of an architecture to allow the changing of the link service used by a

hypermedia system according to a form of context. The other contribution is to survey and examine

the meaning of context as used by different fields of computer science. The survey finds that there is

no correct solution to properly defining context and hence the system presented here allows for

interchangeable models of context to allow for new methods of providing links.

1.3 Thesis Structure

Chapter 2 presents a review of previous work on open and adaptive hypermedia systems along with

the development of the hypermedia link service as an independent entity.

Chapter 3 describes the development of a document management system and the integration of an

open hypermedia service. The integration was taken even further through a number of experiments.

The aim was to improve the quality of the links provided by adding links in context. This leads to the

conclusion that a new design of link service is needed that specifically copes with context.

Chapter 4 reviews the incredibly difficult question 'What is context? ' . It looks at how context has

been a core problem in the field of Artificial Intelligence for decades. The review looks at how

context is represented, how changes in context can be determined and how context can pragmatically

be used by computer programmes. It examines how any model of context will always be flawed or

broken by some unexpected factor which leads to the conclusion that any system incorporating

context needs to be able to use multiple models of context.

Chapter 5 describes the design for an experimental architecture for resolving links in context. This

link service allows new methods of resolving links to be loaded and new context models to be added

on demand.

Chapter 6 describes the major implementations of the system in work undertaken with an external

sponsor. In the first phase of the work a system is built to add links to documents which depend on

which document the reader was viewing in a 'document space' . A context model was developed

linked to document location. It then describes how the architecture was used to create a method for

generating new documents based on the existing corpus of information. The system used a new model

of contextual link processing to extract paragraphs for the document corpus and combine them into

new documents.

Chapter 7 explores the limits of the system design. This is done through the building of a number of

other context models and ways of resolving links. For example a system that understands the age of

a document in an archive and can generate links appropriately, perhaps for a news site. Another is a

system for adding generic links into works of Hction to give a character summary, but the service

knows where the reader is in the book and only reveals the plot information they would have read at

that point in the story.

Chapter 8 concludes this work and draws the various strands together. It examines whether the

proposed architecture is a success and discusses methods to improve the overall model used. Future

work is proposed to tackle weak points in the design.

1.4 Declaration

This work has been done within a collaborative environment. The work described in this document

is the sole work of the author unless specifically credited to others.

2 Hypermedia Linking and Adapting

2.1 Open Hypermedia Systems

2.1.1 Hypertext Origins

A prime point to start a survey of hypertext systems is with Conklin 's 1987 survey of early hypertext

systems (Conklin, 1987). In it he maintains that machine-supported links are the key distinguishing

feature of a hypertext system. Other features such as a window-based viewing system or text

processing capabilities are shared with many other families of applications that are not necessarily

hypertext systems. The paper summarises many of the early, classic, hypertext systems including

Bush's visionary ideas as incorporated in the Memex (Bush, 1945), NLS/Augment (Englebart, 1963)

and Xanadu (Nelson, 1987) before giving Conklin's view on the advantages and disadvantages of

hypertext. The term hypertext and the term hypermedia are attributed to Ted Nelson and refer to

nonlinear text for navigating an environment (Nelson, 1987).

Conklin starts by giving a definition of hypertext. Hypertext allows a user to easily trace references,

given within documents, by the form of a link which can easily be followed forwards and,

occasionally, backwards. A user can add to the network of ideas by being able to easily create new

links or add annotations without altering the original documents. A variety of structures can be

imposed onto a collection of documents that may not already have a structure. The majority of

systems allow a non-hierarchical structure to be built whilst some early systems had specific support

for creating hierarchical structures. Systems can customize documents by linking particular sections

of a document together allowing for efficient reuse of material. This increases the modularity of the

information in the system leading to a tendency to split larger documents into smaller modules to

make them more useful.

He also states that a powerful feature of hypertext systems is that as the links were embedded in the

text of the documents the text could be moved around and the links would still work. This is an

argument that has to be seen in the context of the age of the paper. The majority of systems developed

since the mid 1980's, with one notable exception, the World Wide Web, have advocated the

separation of links from the content of documents. Conklin also cites the ability to explore several

paths of enquiry through material and to be able to trace back through the path using history

mechanisms.

Conklin describes two main problems with hypertext systems. Disorientation and cognitive overload.

The ability to organise information in a much more complex manner also makes it much harder for a

user to successfully navigate the information space. This problem increases with the number of

nodes. Cognitive overload arises from the extra work the user needs to do to keep track of their

location in the document space. This thesis concerns itself with ways to tackle these problems through

better targeting of links and content to the reader and the context within which the document is being

read.

2.1.2 The Evolution of Link Services

Up until the end of the 1980's hypermedia systems were largely monolithic applications. The

functionality of both data or document management and link management were provided by the

system as a whole. There was no attempt to separate the link functionality to cope with changes in

link design or other such updates. There were calls to change this and provide hypertext functionality

to other applications (Meyrowitz, 1989).

2.1.2.1 Intermedia

An early hypertext system to have a separate link server was Intermedia (Yankelovich et al., 1988).

This system used a link server which communicated to the rest of the hypermedia system using socket

connections. The rest of the system was custom built and the authors did not try to integrate the link

service with outside applications.

The ability to link between different types of nodes raised a number of issues that many open

hypertext systems have since faced. The link service had no direct way of knowing if a node had been

deleted without performing an exhaustive search. There was a similar problem caused by changes to

a document that already contained links. In order to know where to put a link within a node the link

service assumed that the linked object was a single full line of text. This text was stored as part of the

link data and when the document was loaded the service searched the document to find the first

occurrence of that line. A link was marked in the document by a simple icon which the application

developer needed to place. This simplistic approach only worked if the system was used for text

documents. Because the system was designed to work with any application the authors did not design

specific link types or attributes, including directionality. The authors felt it better to allow link types

to be created dynamically rather than create a fixed set which may limit the usefulness of the design.

2.1.2.2 Sun's Link Service

The first practical implementation of a link service and the first use of the name was in Sun's Link

Service (Pearl, 1991). This was not a hypertext system in its own right but a protocol and application

developers toolkit to add hypertext functionality into existing applications on a Sun workstation. The

implementation consisted of a link database and a library which a developer added into their

application. The library implemented a series of windows and dialogues adding hypertext

functionality to an existing application without having a large impact on the existing program's

interface.

2.1.2.3 PROXHY

The PROXHY' system (Kacmar & Leggett, 1991) was a prototype implementation of an open

hypermedia architecture design based on a process and object oriented model. In the model anchors,

links and applications were separate actors communicating through a message passing protocol. It

was a significant step forward in terms of open hypermedia design. The architecture consisted of four

major components: hypertext, communications protocol, application and back-end. The hypertext

layer comprised the anchor and link processes which, like all parts of the system, were written as

classes and implemented as processes. The communications protocol layer supported networked

communications allowing the system to be distributed. The back-end layer provided data storage

services to the applications layer.

An application needed to implement support for the communications protocol and also to support a

global unique naming convention for objects. As the whole system was based on an object oriented

design it was a relatively easy task for a developer to utilise the existing classes for these functions.

The ambitious design gave considerable flexibility but at a cost of large amounts of message traffic

resulting in poor performance.

2.1.2.4 Multicard

The Multicard hypermedia system (Rizk & Sauter, 1992) was a serious attempt to write a hypermedia

system that could be used on a large scale in an industrial environment. It featured an extensible

protocol (M2000) for sending messages between different processes in the system. The provided

hypermedia toolkit consisted of a scripting language, basic tools for creating and manipulating

distributed hypermedia structures, an interactive authoring and navigation tool as well as the protocol

'Process-Oriented Extensible Hypertext Architecture

for applications to communicate with a back end providing the hypermedia services. In order to

participate in the system an application only needed to support a basic subset of the protocol and a

developer could choose what level of integration to implement.

The system featured an interesting approach to link usage. Links were event/message

communications channels between the two end points of the link. The default message being one to

activate the destination object. Link endpoints could be anchors, nodes or groups of either. It was

possible to attach scripts to any of these objects. In effect the endpoints of a link became handles or

ports to use in the scripts. This powerful ability meant that the system could cope well with evolving

system or link design and could adapt to new editors being introduced or changed.

2.1.3 The World Wide Web

It is necessary at this point in the story to introduce the World Wide Web as it is the system against

which all others must be compared. The utter success of the system and the revolution it has caused

not only to hypertext research but to the world in general means it needs to be given special treatment

in this document. Whilst I shall not explain the basics of the system in any great detail, as this should

not be necessary to anyone, I will examine the design of links in the system as their simplicity is the

root of the work described in this thesis.

The World Wide Web is a distributed hypermedia system. In it documents are written in a format

called H T M L \ itself derived from SGML^. This allows authors to embed links to other pages by

means of a syntax for referencing the page and server on which it is located. The source of the link is

normally underlined in blue by the browser indicating that it can be activated by a click. The click

will cause the browser to fetch and display the page. The behaviour can be augmented in numerous

ways as competition has led to companies adding more and more features to the browsers. Scripting

languages now give considerable control over link activation behaviour, this is usually used to

provide features such as drop down menus on links for navigation uses. The main way to expand the

capabilities of a browser is to download and install application plug-ins. These normally give the user

the ability to view material created with proprietary systems such as Apple's Quicktime or

Macromedia Shockwave. The price is that browsers have become very large and monolithic in nature.

Only a few organisations have the ability to produce a modem browser capable of supporting all of

the formats in use today. This has led to problems of monopoly in the browser market.

^Hypertext Markup Language
^Standard Generalised Markup Language

10

Whilst not an open hypermedia design the system is able to scale enormously and is highly

distributed. The simplicity of the basics of producing a Web site and making it available to everyone

on the Internet meant that the system was bound for success. When browsers became high quality and

freely available the revolution was guaranteed. The Web has had an effect on the Hypertext

community too. It is now rare to see hypermedia systems research that is not directed at generating

Web pages or augmenting the user experience of the Web, usually by adding browser functionality.

2.1.4 Hyperwave

One of the major hypermedia projects of the 1990's was Hyper-G (Andrews et al., 1995). This

ambitious system was designed to solve many of the problems of previous systems as well as break

new ground in its support for multiple languages and its scalability. Support for the World Wide Web

was added and is now a commercial product, Hyperwave (Maurer, 1995). The system is a scalable,

distributed, open hypermedia system comprising servers and clients. The underlying system is an

object-oriented database in which documents and links are grouped together in hierarchical

collections that each user maintains in their own private space.

The system has all the features of the UNIX file permission system and allows for complex

information structuring and link maintenance. The original versions of the system made use of a

number of specially written clients and a proprietary rich text format. The commercial system is now

designed to store a wide variety of common document formats. Full index searching is automatic for

all documents and powerful searching is possible within documents, collections and across multiple

servers. The strong language support includes translators to make links available in any language. A

special collection type called a cluster allows for clustering of multimedia composites or multilingual

aggregates. This allows the display of different language versions of the same document where

required.

The core of Hyperwave is an object oriented database. Links, in the form of source and destination

anchors are part of the object hierarchy supported by the server. This allows the system to serve and

maintain links like any other object in the system as well as provide all of the tools that a proper

database design brings. Links are bidirectional, the source of a link can be found from the destination.

This allows the system to have link consistency, it is possible to deal with the deletion of a document

from the system by not showing links to that document and guarantee that there will not be 'dangling

links'. A protocol allows multiple servers to maintain referential integrity for all objects including

links.

11

2.1.5 Microcosm

Microcosm was begun before the Web existed as a project to integrate a variety of sources of

information into an open hypermedia system and provide a researchers workbench system within

which to explore new ideas. (Fountain et al., 1990) explains the main design aims for the open

hypermedia system.

No distinction between author and user. Anyone could make links within the system and

removing the idea that link making was an ability limited to administrators or teachers.

Modular architecture. Software components could be replaced allowing individual projects or

researchers to develop new components to augment the behaviour of the whole system.

Loosely coupled system. The design called for a multiprocess system with no interdependencies

between the subsystems. When Microcosm 1.0 was developed on Microsoft Windows 2 this was an

ambitious goal.

Links separate to documents. On top of the other benefits already discussed designing a system

where the links were separate entities would allow the development of tools to analyse and

manipulate links. Links were stored in link databases, known as linkbases. Multiple linkbases could

be used simultaneously.

Viewer.

Viewer, Filter,

Filter

Viewer, Filter,

Document
Control
System

Filter
Managemen t

System

Presentation and Document
Management Services

Figure 2.1: The Architecture of Microcosm.

Link Management Service

12

The core of the Microcosm architecture comprised two communicating processes. One, the

Document Control System (DCS) managed the front end display components. The other, the Filter

Management System (FMS) managed communication between the hypermedia link processing

components.

The DCS managed the launching and communication with document viewers. A document viewed

in Microcosm was viewed in a dedicated viewing application which would communicate with the

DCS. The message system in Microcosm was extensible and allowed components to alter any part of

a message using a standard method. The FMS managed communication between the components of

the system that provided hypertext services. The subsystem's primary function was to respond to and

augment messages flowing through the system, hence the name 'filters' . Messages flowed in a single

line along the line of filters in the 'chain' before reaching the Message Dispatcher (Hill et al., 1993).

Figure 2.2 shows the Filter Manager component of Microcosm. The right hand pane shows all of the

available filters and the left hand side shows the actual filters in use within the running system.

Current r Available

OK Cancel

Arrange Filters

Selection
Linker
MimEng
Stiowlink
User's Linkbase
Caerdroia Linkbase
Computed linker

Available Links
Computed Linker
History
Link Maker
Selection
Show Links
Tour Engine
Debugging Filter
Caerdroia

Figure 2.2: The Filter Manager Component of Microcosm.

A user interacted with documents in the system through dedicated pieces of software called Viewers.

The level of integration of the viewer with Microcosm led to the notion of fully-aware and partially

aware viewers. A fully aware viewer was a piece of software specifically written for Microcosm and

could support the full range of hypermedia functionality. Figure 2.3 shows a typical document

viewer. The Action menu gives access to the hypertext functionality in the system.

13

• Contents; 18th Centuiy Towns

0a File Acfcn Edit Oplions Help ,

{Economic Growth and Social Change in the Eighteenth Century English -̂ 1
Town I

A publication of the TLTP History Courseware Consortium
AH of the n u t e m l contained in this tutodal is COPYRIGHT and must iiot copied in any form. The only exception
to this is that core documents maybe printed.

Sources of d i i r d p a r ^ material

Contents

Local Information

INTRODUCTION i

KEY TOWNS EXPLORED IN THIS TUTORIAL |

THE POPULATION HISTORY OF ENGLISH TOWNS

Mortality and Fertility

Migration

ECONOMY]

The Diversity of Urban Economies
T ai M If A —Ji

Figure 2.3: A Microcosm Document Viewing Application.

The linkbase filter provided the core link database functions for creating new links, following link

actions and returning all of the links for a document.

A number of types of links were used in Microcosm.

Speci f ic Links . A link from an object in a specific location in a specific source document. The

location could be defined using an offset in text documents or as a region in images. The destination

of the link could also be a specific object in the destination document. A button link was a special

case of this form of link. In this case the source selection would be coloured blue. All other links were

not visible in the source document.

Local Links . A link on a certain word, word-pair or object at any location in a specific source

document. The link can be followed from any occurrence of the selection in the source document.

Gener ic Links . A link on a certain word, word-pair or object occurring in any location in any

document. A common usage for such powerful link design was as a glossary link, to link a word to a

document giving its definition.

14

When a user opened a document in the system a specially written document viewer would request

links for the document from the system. The linkbases would return found links that would reach the

end of the filter chain before being returned to the viewer. It was a relatively simple matter to write a

filter to alter the messages and hence the behaviour of the system. For instance a number of interface

components were written for the system that knew the documents that were open and the user's

browsing history (Bernard et al., 1994, Hall et al., 1996). One use of such a tool would be to stop a

new copy of an already open document being spawned and to bring the existing window to the user's

attention. This involved the crucial ability to act upon and alter the results of the link services

depending on the user's circumstances. Figure 2.4 shows a toolbar written to help users manage the

multiple window interface of the system and provide shortcuts to k e y documents in the system.

File Documents Go To Tool*

Core Resources for Histor ians

I 2 Open Documents. i

Figure 2.4: A Toolbar for Helping Users Manage the Microcosm Interface.

As part of the goal of building an open hypermedia system, work was done in investigating the levels

of integration and hypertext awareness that could be brought to other applications on a user's desktop.

The goal being to increase the move away from the early monolithic hypertext systems and towards

a point where the hypermedia services extended to all applications. Achieving this led to the

development of the notion of light hypermedia services (Davis et al., 1994, Knight, 1996).

A number of levels of integration were identified, from specifically written viewers to the worst case

where a hypermedia system could only launch a third party application with an appropriate file and

expect no further interaction.

Tailor m a d e viewers. A specifically written part of the hypermedia application and fully

integrated into the system. Microcosm featured a number which over time grew in power and

complexity but cost a great deal in terms of hours of programming and support.

Source code adaptation. If the source code of a third party application was available then the

hypermedia functionality could be added.

15

Applicat ion interface adaption. Many applications featured scripting interfaces which allowed

features to be added such as extra menu items.

Shim or proxy programs. A program to sit between the application and the hypermedia system

to augment or enhance the communication between the two. Examples included the Microcosm

Universal viewer, described below and the Web proxy implementations of a link service such as the

Distributed Link Service, described in Section 2.3.2.

Launch only viewers. In the worst case the hypermedia system would only launch a third party

application with a data file. The application had no hypermedia functionality and no further

interaction with the rest of the service would be expected.

The Universal viewer was an attempt to integrate any application on the users desktop with

Microcosm. The program behaved as a parasite to the main application by adding new buttons to the

title bar of an application. These gave access to the available hypermedia functionality. For instance

if a user clicked on the Follow Link action on the Universal Viewer (UV) the UV would attempt to

ascertain the current selection of the host application, for example a text selection, and send that to

Microcosm in the standard Follow Link message.

2.1.6 Open Hypermedia Reference Models

A constant theme in the history of open hypermedia systems has been the attempts to integrate the

systems together and to find reference models as a basis for interoperability. The first of these, a

highly influential piece of work, was the creation of the Dexter model.

The Dexter model was the result of a series of workshops in 1989 between researchers from many of

the main US hypertext groups (Halasz & Schwartz, 1994). It was realised that there was little

interoperability between systems of the time and the model was a way to create a shared

understanding and reference point of the components required.

The Dexter model divides hypermedia systems into three main layers.

16

Runt ime Layer
Hypertext Presentation and

User Interaction

Presentat ion Speci f icat ions

Storage Layer
Node and Link 'Database'

Ancl io r ing

With in Componen t Layer
Node Content and Structure

Figure 2.5: Dexter Hypertext Model.

The runtime layer is concerned with the presentation and manipulation of the system. It deals with

the interactive aspects of the system. The storage layer is the focus of the design. It is a database of

components, often referred to as nodes in many systems, between which there are links. Links are

entities that store relationships between components. They feature end point anchors, direction and a

presentation specification. The within-component layer stores the data about the structure and content

of nodes. It is largely unspecified as to how this will be implemented.

Between these three main layers there are two others. The anchoring layer specifies how to address

a specific location or item within an individual component. The presentation specifications layer

encodes how a component is to be presented to a user.

The design has been very influential and systems are still being produced to conform to the model.

Dexter is not without its shortcomings and there have been numerous contributions that improve on

many aspects of the design. Two groups in particular have continued to work on systems and to

extend the model. DHM^ is considered to be the system that is closest to the principles of the Dexter

model. It has extended the model into the areas of cooperative working (Gr0nbcek et al., 1994) and

more recently as a system for the Web (Gr0nb£ek et al., 1997). The other major system closely

following the principles of Dexter is AHAM^, described in Section 2.2.5.

By the end of the 1990's the major hypertext groups were realising that there were a number of highly

advanced open hypermedia systems but each was unable to use any of the resources or components

of the other. There began a long series of interoperability workshops, the Open Hypermedia Systems

'Devise Hypermedia Model

^Adaptive Hypermedia Applications Model

17

(OHS) workshops (Reich et al., 2000). The starting point to this was a call for a protocol for linking,

OHP^ (Davis et al., 1996), which proposed a method of protocol conversion between the various link

services and client applications. This protocol was flawed but formed the basis for the OHS Working

Group's meetings.

The group used various scenarios to produce a list of requirements for their overall framework.

1. Standardized representation format.

2. Means for identifying structure.

3. Integration of arbitrary data sources.

4. Update structural information.

5. Support for multiple structures.

6. Support for combining multiple structures.

7. Provide a consistent user interface across applications.

8. Support for references between distributed document partitions.

9. Support for access control.

10. Support for group awareness.

11. Support for joint editing sessions.

12. Support for consistency mechanisms between document partitions.

Following on from this they developed a unified data model drawing on the many similarities

between many of the models of the existing systems. The core data model is presented below in

Figure 2.6.

'Open Hypermedia Protocol

18

AbstractObject
ID
Name
Type
Descriptions
CharacteristicSet

Collaboration Classes

Object

C o n t e n t S p e c
URN
Content
MimeType

equal

LocSpec
Version
Reference
Selection
SelectionContext
SelectionType

equal

Sess ionRecord
Name, Members
CouplingMode
VirtualClients, State
DoclDs, Tools
CommAddress

Sessk)nState
ToolsOpen
TelepointerPos
sharedBuffer

HMObject NatLoc
PSpec Spec

Con tex t
Members

L ink

EndpointlDs
Endpo in t

Anchor
LinklD
Directk)n
AnchorlD

ParentID
LocSpec

LinklD
Directk)n
AnchorlD

zc

AxIsLoc
AxisList
RevAxisList
Ovenun

Navigation Classes Retrieval Class

Node
ContentSpec

PSpec
Spec

Computation

InParamSet
OutParamSet
MimeTypeSet

execute

Figure 2.6: OHP Data Model.

The group produced a number of demonstrators of the principles including the Solent system (Reich

et al., 1999) and the Construct system (Wiil & Numberg, 1999). From there the group has evolved

and the workshops have continued. One result of the work was that the core data model was extended

to become FOHM' (Millard et al., 2000).

2.2 Adaptive Hypermedia

In order to provide a better, more adaptive, link service the system must take account of the situation

in which it finds itself. This is a field in which a lot of work has been done, the majority of it aimed

towards providing educational systems designed to cope with the student's progress. This field is

called adaptive hypermedia.

An adaptive hypermedia system provides functionality that is personalised for a user. The system

builds a model of a user's goals, preferences and knowledge in order to improve the experience for

an individual. There are many approaches to building such systems that concentrate on various

Fundamental Open Hypermedia Model

19

aspects of the user model or the technologies to deliver the systems. The definitive classification of

such systems and the fields of work is Peter Brusilovsky's 1996 survey of the state of the art at that

time (Brusilovsky, 1996).

He begins the survey with a working definition:

"by adaptive hypermedia systems we mean all hypertext or hypermedia systems which

reflect some features of the user in the user model and apply this model to adapt various

visible aspects of the system to the user"

The key characteristic of an adaptive hypermedia system is that such a system is based around the use

of a user model as the root of adaption. The basic process of the system consists of three stages. The

system collects data about a user, the data is processed to form a user model, the model is used by the

system to effect adaption.

Brusilovsky reviews the methods and techniques for providing adaption. He produces the following

questions to ask of an adaptive system design.

Where? Why?

Application areas Adaption Goals Application areas Adaption Goals

To what? How? What?

User Features
Methods,

r,
Adaptation

User Features
conceptual level Technologies

How?
Techniques,

implementaticn

level

Systems

Figure 2.7: Major Questions to Ask of an Adaptive Hypermedia System (Brusilovsky, 1996).

20

These fall into 4 major sections. Within these sections Brusilovsky goes into some depth examining

the various topics and reviewing a considerable number of systems of the time.

Where are adaptive systems helpful?

In what situations are adaptive hypermedia systems being used and for what purpose.

What features of the user can be used as the source of adaption?

What aspects of the user working with the system can be used when providing adaption.

What are the goals of adaption?

Where the techniques can be used, why they are useful and the methods which can be employed.

What can be adapted by a particular technique?

This can be generalised into techniques for either content or navigation adaption.

In each of these areas it is possible to focus and expand greatly. We shall examine each in a little detail

but concentrate on the areas most relevant to designing a link service architecture: techniques of

adaption.

21

2.2.1 Where are adaptive systems helpful?

IR Hypermedia i k

Online Information
Systems

On-l ine Help
Systems

Educational
Hypermedia

Institutional
Hypermedia

Personalized Views
on Information

Spaces 1r

Application Area Size of Hyperspace

Global Guidance

Local Guidance

Local Orientation
Support

Global Orientation
Support

Managing
Personalized Views

Goals of adaptive
navigation support

Figure 2.8: The Range of Adaptive Hypermedia Applications (Brusilovsky, 1996).

Adaptive hypermedia systems are mainly used to provide support in the following ways.

• Providing navigational guidance, perhaps to novice users in an educational system or by

reducing choice in a large information retrieval system.

• To personalise a system for a user, perhaps in a way that reflects their use of the system for

their work when using an intranet system or their information seeking goals when using

information retrieval systems.

• To adapt to the users level of experience in using the system in question. If the user is new to

such systems then they can be guided and have their choices restricted thus keeping the

interface simple. An experienced user needs to move quickly throughout the application to find

what they need. In one case the system could be an educational hypermedia application

whereas the latter is more likely to be in a work related situation where the person uses the

system regularly as part of their job.

22

2,2.2 What Features of the User Can be Used as the Source of Adaption?

In order to provide adaption a system must have criteria upon which to base its decisions. These

mainly derive from some form of model of the user. The most common implementation is to represent

the users knowledge as an overlay model which is based on a structural model of the domain. These

are often quite sophisticated systems consisting of a network of domain concepts. These can be linked

together in a semantic network. Both the model and adaptive system need to be able to cope with the

user model changing whilst in use. For each element of the model the system holds some type of value

of how well the user knows the concept. These could be binary, f rom a fixed list of possible values,

or a quantitative value such as a percentage.

A simpler method is to use a stereotype model. These involve assessing how closely a user matches

a listed set of stereotypical users for each dimension of the model. These could encompass ranges

such as "novice - expert" or "junior rank - high rank". Even simpler systems might utilise a true/false

or probability value for whether a user belongs to a certain stereotype. Such systems are simpler but

much easier to implement and maintain.

Often a combination of the two models is used. The stereotypical model is used to start the user with

the system and can be filled in following a short interview. From here the system uses these values

with a full overlay model.

A user model is different to user preferences, which can also be used by such systems. The system

cannot deduce preferences itself but must obtain them directly f rom the user. The representation of

preferences also differs in that model data is often stored symbolically but preference data is stored

as numerical values. The obtaining of these values can be achieved by highly complex methods.

Because the data is numerical it is possible to combine several user models together to form a group

user model. Preferences can sometimes be the only data stored for users of some systems. Many

information retrieval systems just use such data.

In a similar fashion to using a model of the user's knowledge of the subject, two other features can

be used, their background and experience in the given domain. Background is relevant information

about the user from outside the hypermedia system. This could be factors such as the user's

profession or previous work in the subject area. Experience is a measure of how familiar the user is

with the system in question rather than the subject.

23

Task or goal oriented features relate to the user's work when using the system. Goals can range from

high level overarching educational goals to rapidly changing goals such as learning each new piece

of material in an education system. The use of such models is usually to influence the navigational

aspects of a system. Many are modelled in the same way as overlay models with some quite

sophisticated techniques in use. These include a hierarchical tree of possible goals or using a

probability value against a list of goals as to which goal is the most likely to match that of the user.

Before a profile or model can be used it must be captured and processed before being applied to the

system. Capturing data for a model is a balance between automated methods and manual input from

the user. In the case of most adaptive hypermedia systems fully automated methods are limited due

to the sources of information available to system builders. The most obviously available sources are

the time the user spends reading a particular node and the trail through the application. Neither are

particularly reliable to use, a person may spend a long time on a particular page but may not be

reading it.

Therefore additional sources of data are required in the form of direct user input. In this there is a

balance between input methods that are quick and simple, such as a way of directly indicating how

relevant a page was to the user, and longer but more accurate methods such as providing an interface

to the user model itself and letting the user edit it. In between these extremes are methods such as

allowing the user to move hypertext elements around the screen to suit themselves, for instance re-

ordering navigation links or hiding/revealing pieces of text. To supplement this the user can be

directly asked to provide specific information about themselves to feed the model. In all cases a

design decision must be made to balance quality of data required against distracting the user to the

point where the user resents supplying the information.

2.2.3 What are the Methods of Adaption?

In this section we look at some of the overall methods by which adaptive hypermedia techniques can

solve some of the problems found in hypermedia systems. The next section goes into detail on some

of the implementations used.

Content adaption is most usually associated with hiding information from users or steering them

away from information that is considered irrelevant. This can work both ways, hiding advanced

information from novices or basic information which is considered superfluous for advanced users.

Other techniques include using pre requisites and comparative explanations. Pre-requisite

information is that which is considered the user must have seen before viewing the current piece of

24

information. If they have not read those pieces of information then links are given to them.

Comparative explanations work similarly to link pieces of information together to compare or

contrast topics. Both techniques are most commonly used in the teaching of programming languages

or other subjects where the knowledge must be learnt in a structured way. Beyond that the decision

over what to show can be tied to the user model in some way. In some systems the fragments of

information can be sorted to alter the priority of them for a user.

Navigation adaption methods aim to achieve two main types of goals. To provide guidance in

navigating the system, either making sense of the overall system or to help decide where to go next.

The other function is to help the user orient themselves in the system, again either in the global sense

of the system or at a local level so that the user knows what other nodes are around the current one.

Methods include hiding or sorting navigation links, dynamically generating a 'next' button to directly

guide a user and using a user model or goals to influence the navigation layout. Navigation guidance

between local nodes can be improved with techniques such as giving an indication of the nature of

the destination, by ranking, colouring or rating the links.

2.2.4 What can be Adapted by a Particular Technique?

(Brusilovsky, 1996) categorises the implementable techniques of adaptive hypermedia into two main

areas, adaptive presentation; the altering of the content of a node, and adaptive navigation; techniques

for guiding the user around the system.

Adaptive presentation is most normally associated with the adaption of text content to suit the user,

more rarely is it concerned with multimedia adaption. Navigation techniques include direct guidance,

link sorting or hiding, link annotation and map adaption.

Map adaption is the altering of images that provide navigation assistance to the user, these are now

most commonly found on the Web as image maps with clickable areas. It is still rare for these to be

implemented in an adaptive fashion on most Web sites.

As previously discussed direct guidance aims to provide a best direct route through the material for

a particular user, for instance by generating a 'next' button according to a user model. Sometimes

such systems can fail if they make no provision for the possibility that the user does not want to follow

the precscribed route.

25

A more flexible solution is to re-order links to suit a user in order to suggest a best route. This leaves

more options open but gives clear indications where the user should go in the system. The other

related technique is to hide links considered irrelevant to the user. These techniques can lead to the

problem of breaking the user's mental map. If navigation links are continually being reordered or

disappearing then the user cannot build up familiarity with the system.

Link annotation is a newer solution to these problems. Links are annotated with information about

the destinations. These can take the form of textual annotations, such as popup text boxes, or in some

other visual clue such as a colour to indicate a link priority e.g. a traffic lights colour scheme.

2.2.5 Key Adaptive Hypermedia Systems

This section describes some of the key adaptive hypermedia systems and projects of recent times.

They illustrate many of the methods and techniques outlined above but angle more towards the

particular issues that arise when producing such systems for the Web.

Adaptive hypermedia systems that were created before 1993 are generally referred to as First

Generation systems. They were single user systems lacking distribution and open hypermedia

functionality. First generation systems tended to be monolithic in nature. Second generation adaptive

hypermedia systems are generally targeted at the Web and add features such as greater openness of

design and greater distribution.

A major first generation system was Hypadaptor (Hohl et al., 1996), used to teach the programming

language LISP. The goal was to take account of the highly personal way in which programmers learn

and work. Hypadaptor was a system that could dynamically adapt content presentation and

navigation to a sophisticated user model of the student. Learning material was also modelled and

stored in a structured knowledge base. In order to initiate the user model the student filled in a

questionnaire about their programming skills and knowledge of Lisp. This fairly course system was

enough to start the process of adapting to the user's needs. The knowledge structure, object oriented

in nature, was navigable using a topic browser which could be used within documents or as an aid to

navigation around the structures. This highly structured knowledge base was the key to the system.

With this close integration between system, knowledge base and user model the developers could

provide many adaptive features to aid learning.

26

One of the major pieces of work in this field is the AHAM (Bra et al., 1999) system based on the AHA

(de Bra & Calvi, 1998) architecture. It combines the classic principles of an adaptive system; user

model, domain model, pedagogical model, with the Dexter model. In the model the Dexter storage

layer is split into the domain, user and teaching model parts. This allows the requisite adaption based

on the domain and user model using pedagogical rules. As with the majority of adaptive systems the

major uses for the systems based on the model have been educational but the applications have also

developed into general purpose tools for Web site generation (Wu & Bra, 2002, Bra et al., 2002).

A good example of a second generation adaptive hypermedia teaching system is Interbook, a system

for creating adaptive electronic teaching books produced at Carnegie Mellon University (Brusilovsky

et al., 1998, Brusilovsky & Pesin, 1995). The system uses two models. The first is a domain model

of the concepts to learn. In this case the pages of an Interbook book can be indexed by the author.

Concepts could either be pre-requisites or outcomes. Pre-requisite concepts are those the student is

required to know before proceeding with the current page in the book. An outcome is a concept that

the student will now understand following the reading of a page or some other task such as passing a

test. The system implements sequences of concepts for a student to learn. Such models were

developed much earlier in the field of Intelligent Tutoring Systems (Poison & Richardson, 1988). The

second model records the progress of the student using the system.

The delivery of material is through the Web with the implementation based on a Lisp-based Web

server Common Lisp Hypermedia Server CL-HTTP. The authoring of material is facilitated by

writing in Microsoft Word and using a structured template to extract the content into a structured and

specially marked-up version of HTML. The process allows users to add the concept-based

annotations necessary to place the material into the concept model. The concept model provides the

basis for the generation of navigation links between concepts but is also the foundation of a glossary.

The glossary matches the network of domain concepts so there is a glossary entry for each concept

in the model.

During evaluation experiments it was shown that people did not use many of the components, for

instance hardly any users had ever read the online manual, itself presented through the system

(Brusilovsky & Schwarz, 1997). Therefore it was decided to introduce the interface elements to the

user during their reading of the manual. The starting interface was a simplified one and as the user

read through the online manual the newer interface elements were revealed to them. They chose to

implement a model in which each user interface component was considered a unit of learning in a

teaching model. The user became a student learning to use the system.

27

Interbook is a successful and mature system in use today. It is distributed and large scale but is not

an open hypermedia system. It uses its own form of adapted HTML pages and complex domain

model to link concepts of learning together. Navigation linking is an implicit part of this structure as

is glossary linking. When combined with the student model the system is flexible and can adapt well

to support the delivery of material in diverse ways. Documents and links are closely integrated with

their structured domain and there is little opportunity to swap sets of links or different structures on

the documents.

Microcosm can also be thought of as a framework for building adaptive hypermedia systems (Hothi

& Hall, 1998, Hothi et a l , 2000). A linkbase with a built in user model can be used within the filter

chain to give different links for different users. The interface components of Microcosm allowed for

extensive control to allow applications to place them and manipulate in order to aid in adapting the

whole system to a user model.

2.3 Link Services for the World Wide Web

2.3.1 Introduction

As it became clear in the mid-nineties that the World Wide Web would become all conquering many

hypertext research groups began to think on how to adapt their systems to integrate with the Web.

The simplistic implementation of links in HTML by embedding them in the content was a great step

backwards to the hypermedia community but also a contributing factor to the success of the system.

It made it very easy for users to create simple collections of interlinked pages without any special

environments or tools.

2.3.2 The Distributed Link Service

The group behind Microcosm developed a way to provide a Microcosm-style linkbase service to Web

pages in the form of the Distributed Links Service (Carr et al., 1994). The original system was a link

server implemented as a set of CGI scripts on a Web server. This could be queried from a Web

browser and would return links in much the same way as the linkbase filter in Microcosm.

The client side implementation originally used the 'Light Hypermedia Services' approach developed

by Simon Knight (Knight, 1996), described in Section 2.1.5, to add an extra menu to a Web browser.

In order to query the link service a user would make a text selection in a Web page and click on the

'Follow Link' menu item, see Figure 2.9. The software would communicate with the browser and

28

cause it to query the DLS server for hnks using a CGI POST query. The query would include the

selected text as well as send some simple contextual information in the form of the URL of the

document and the location of the text selection. The server would respond with a page of 'Available

Links' in a similar style to the 'Available Links' filter in Microcosm.

Fill
Follow Link
Start Link
End Link
Show Links
Compile Links
Get Context

Netscape - [Distributed Link Service]
Bookmarks Options Directory

& A «
Reload ivmtps i Open Print Find

ck.ecs.soton.ac.uk/dls/

Distributed Link Service

The Distributed Link Service, developed from ideas in the Microcosm pr̂
of links to be published on the Web. These link or linkbases.

requests for link following either dynamically, based on an individual requi

Figure 2.9: Light Hypermedia Services Augmenting a Web Browser.

The 'Show Links' item would send the text selection to the server but it would be separated into

individual word and word-pairs which would all be sent to the link server.

The 'Start Link' and 'End Link' menu items allowed users to author links in the same way as was

possible in Microcosm. The different types of link were also available and links could be edited

through a Form interface. The full generic link functionality opened up a new style of Web

publishing. A user could create pages and also author linkbases to match. By making their pages the

destinations for generic links they would encourage users to ' come-to ' their pages. This is an

important concept which we will return to later.

The 'Compile-Links' item caused the DLS to add all possible links to the currently viewed page and

return it to the user. This had the same end result as the user selecting the whole document body and

clicking on 'Show Links'. Once the DLS was re-implemented as a W e b proxy server this became the

default behaviour but the history of the system shows that it did not start out as the core functionality.

This was simply because it had not occurred to the authors at that t ime.

29

The DLS supported the use of multiple linkbases just like Microcosm. An interface Web page, shown

in Figure 2.10, allowed the user to specify various preferences a n d to choose which of the available

linkbases they wished to use. This gave the system a simplistic contextual linking capability in that

different linkbases could be chosen by user depending on which w a s most appropriate to the material

being viewed. Contextual linking was more strongly supported by the capability to limit the scope of

usage of a link or linkbase. A link could be limited to a certain document or to a certain server.

File ! Links n
j j Address @ http: //eric. ecs. soton. ac. uk: 8080/session

Link Controller

Welcome to the Distributed Link Sert'er's Link Control Panel . Please fill out

the form below to specify how you want links to be added to your

documents.

Set Linking Options

3

Link Databases

Turing

r General Linkdatabase

r Stop Words

Collections

Link Presentation

Appearance: ^ Default Aster isk ^ Bibliography

Behaviour: P Indirect Once only

Colour: | N o n e 3

Add few C r C C (» many links to each document .

Priority threshold: Low < ^ C C C C High.

Prioritisation scheme: [Ra inbow ^

r Demo link processing? V Suspend link processing?

Set Linking Options

zl

@ Done Internet

Figure 2.10: The Distributed Links Session Control Panel

30

3 Southampton: The Univenty, City and Environs - Microsoft Internet Explore:

- i j Favorites Tools Help

Southampton is the region's premier shopping destination, boasting rich variety among its smaller shops and famous names in the high street and ^
the covered Marlands and Bargate shopping centres. It is also well served by superstores in and around the city.

The Region
One of Southampton's main advantages is its position on the South Coast. The city is just over an hour's train journey from central London. You
can, therefore, enjoy all the Capital has to offer without the high costs and accommodation difficulties of living in London and its surrounding area.
Travel to Europe is very easy with frequent daily ferry services to France from Portsmouth and Southampton. Southampton has its own airport
with fights to the Channel Islands, Holland, Belgium and France as well as domestic services. Heathrow is an hour's drive away.

The city is also ideally placed flor sightseeing in the region. The ancient cathedral cities of Chichester, Salisbury and Winchester are within eesy
reach, as is Stonehenge, one of the most notable prehistoric sites in England. The New Forest is nearby and a short train or car journey gives
you access to the Forest's heathland, wildlife and picturesque villages. The village of Minstead, on t he eastern border of the forest has a turf
labyrinth. For the children, a theme park is nearby, containing a popular dinosaur attraction. Being a port, Southampton does not have its own
beach but there are plenty close at hand at such holiday centres as Bournemouth and Lyme Regis.

This document has been augmented with 0 links from the Distributed Link Service at Tue Jul 23 16:26:17 2002

^ Done

The normal Web page above is seen below with generic links added by the Distributed
Link Service. New links are added on words found in a linkbase about points of interest
around Southampton. For instance any occurrence of the word 'Saints' in any document
viewed with this browser will receive 4 links related to Southampton Football Club.

' 3 Southampton: The Univeiity, City and Environs - Microsoft internet Explore:

- 4> - [g nie Edit View Favotites Tools Help

I here are a wide range ot sporting taciiities Doth at the university and in the city at various sports c lubs and centres, one ot wnich tDoasts a dry ^
ski falsol slope. Southampton has its own Premier League football falsol club, the Saints fa I sol falso^ (also), and is also home to the Hampshire
Cricket Ground. The area is. of course, ideal for sailing and all types of water sports.

Southampton is the region's premier shopping destination, boasting rich variety among its smaller shops and famous names in the high street and
the covered Marlands and Bargate shopping centres. It is also well served by superstores Calsol fa lsol falsol in and around the city.

The Region
One of Southampton's main advantages is its position on the South Coast. The city is just over an hour 's train journey from central London. You
can. therefore, enjoy all the Capital has to offer without the high costs and accommodation difficulties of living in London and its surrounding area.
Travel to Europe is very easy with frequent daily ferry sen/ices to France from Portsmouth and Southampton. Southampton has its own airport
with fights to the Channel Islands. Holland, Belgium and France as well as domestic sen/ices. Heathrow is an hour's drive away.

The city is also ideally placed for sightseeing in the region. The ancient cathedral cities of Chichester. Salisbury and Winchester are within easy
reach, as is Stonehenge, one of the most notable prehistoric sites in England. The New Forest is nearby and a short train or car journey gives
you access to the Forest's heathland, wildlife and picturesque villages. The village of Minstead. on t h e eastern border of the forest has a turf
labyrinth. For the children, a theme park is nearby, containing a popular dinosaur faisol falsol falsol fa lso l (also) attraction. Being a port,
Southampton does not have its own beach but there are plenty close at hand at such holiday centres as Boumemouth and Lyme Regis.

This document has been augmented with 25 links from the Distributed Link Service at Tue Jul 23 16:47; 19 2002

i #] Done Internet

Figure 2.11: The Effect of the Distributed Links Service on a Web Page.

31

Eventually the proxy implementation was written and adopted. It is shown in use in Figure 2.II . The

Netscape menu addition implementation proved very difficult to maintain as each version of the

browser exposed differing API functionality. By choosing to implement a proxy the set of user

interface implementation difficulties were bypassed.

2.3.3 Web Based Intermediaries (WBI)

When working with the protocols and architecture of the Web the proxy implementation is a powerful

way to build more adaptable systems. (Barrett & Maglio, 1998) have created an architecture for

building transducers or intermediaries called WBl ' . This comprises a toolkit of Java building blocks

from which it is possible to construct applications. There are 5 basic building blocks which need to

be put together in a certain sequence in order to create an application. They are request editors,

generators, document editors, monitors and autonomous functions.

• Monitors observe transactions without affecting them.

• Editors modify outgoing requests or incoming documents.

• Generators produce documents in response to requests.

• Autonomous functions run independently of any transaction and perform background tasks.

WBI has been used to build a variety of applications. These include a personalisation proxy for a user

to run on their own machine that will annotate pages the user reads. A more powerful system is to use

a pair of transducers that can convert HTML or XML into other data formats more suited for

transmission using wireless technology. A third use is as a filter fo r allowing children to use the Web.

The system is also used for a transcoding (Barrett & Maglio, 1999, Fox & Brewer, 1996) application,

IBM WebSphere Transcoding Publisher. Transcoding is a technology for converting documents

between different formats to suit a variety of systems and circumstances such as monochrome

displays, low bandwidth connectivity and operating system differences.

2.3.4 Muffin

Muffin (Boyns, 2000) is a framework for writing filters for H T T P messages. The filters work in a

chain to modify any aspect of the conversation between a browser and a Web server. The primary

aim of Muffin was to provide a way for users to filter Web pages, for instance to remove annoying

Web Based Intermediaries, pronounced "Webby"

32

banner adverts from Web pages. The system has an architectural similarity to the filter chain of

Microcosm in that each filter can alter the message before passing it to the next filter in the system.

For this work a new Muffin filter has been written that implements a context-aware DLS. It parses

documents sent from a Web server to a browser and adds links into the documents. The key feature

is that this DLS filter is implemented to allow the replacement of the way that links are processed and

generated. It is this extra layer of abstraction that allows contextual linking to be implemented.

Boyns envisaged four major areas of use for Muffin.

Privacy. Filters were provided to block the transmission and use of cookies by a browser in order

for the user to remain anonymous and not have their preferences stored. Other uses included blocking

JavaScript code in pages from sending information about a user back to a server.

Security. At the time that Muffin was written Web browsers were more vulnerable to security

problems than they are now. Support for Java applets and Microsoft ActiveX controls was in its

infancy and such systems were the focus of some speculation over their abilities to allow damage to

be done to a computer. Muffin was seen as a way to add further security checks to monitor and control

possible harmful effects from such technologies.

Unwanted features. There are many features of Web pages that users find a distraction or

irritating. These include the use of banner adverts, Java applets and background music. The system

provides filters to remove these and other components from pages. Such abilities have more serious

uses when there is a need to adapt Web pages for uses such as viewing on a text only browser or when

a browser is limited in capability, such as that on a PDA. Here the system can be used to remove

images from the page or other extraneous information to reduce bandwidth required. Web pages can

be reformatted to be more suitable to view on a small screen.

Implement ing new features. The architecture is an obvious way for developers to implement

new functionality. Muffin included several examples including filters for viewing HTTP headers, a

way to automatically fill in Web forms and ways to provide fine grained access control to Web sites.

Figures 2.12 and 2.13 depict the flow of events within Muffin for a browser request and the Web

server reply.

33

Web Browser

Receive new
Web Browser
Connection

Server

Create new
Handler to

Process the
Request

Request

Handler
Ask for Filters

Request

Filter

Filter

Filter

Filter

Create
new set
of Filters

Filter Manager
Filter A ^ Filter

FactoryJ VFactory

Filter
Factory

Filter
Factory

Filtered
Request

HTTPRelay

Internet Web
Server

Filtered
Request

Figure 2.12: Document Request Handling in Muffin (Boyns, 2000).

34

"A

Web Browser

Send Filtered
Reply and

Content to the
Web browser

Filtered
Tokens

Token

Token j

Token

Token

Token

Token

Token

Token

Token

Token

Filtered
Reply and
Content

Filtered
Reply ^ F i l t e r ^

Filter }—j

Filter

Filter

Token

Token

Token

Filter Manager
Filter \ ^ Alter

Factory/ ^Factory,

Filter \ ^ Filter \
Factory/ yFactoryy

Token Parse HTML
Into Tokens

^ and send to
Filters

HTML Parser

Send reply
to the
Filters

Handler

Send Reply
content bytes

to HTML
Parser

Reply

HnrrPFkday

Internet Web
Server

Receive HTTP
Reply

Figure 2.13: Document Reply Handling in Muf f in (Boyns, 2000).

35

Figure 2.14 shows Muffin in use with a number of the default filters. In this case the Document

Information, Animation Remover and HTTP Statistics Filters are being used. Their combined

functionality is to transform a page and provide information on the requests being made between

browser and server. There is considerable similarity to the Filter Manager of Microcosm as shown in

Figure 2.2. The important difference is in Muffin each filter alters the raw content of the HTML

document before the next filter does the same. In Microcosm the filter chain is responsible for

communication between filters but is primarily for the generation and alteration of links.

^ M u f f i n

File Edit V iew Help

Contacting neitiE.bbc.co.ul<..._3S152S24_snouu54.)ps .

Muffin 0.9.3a running on iuor port619QS (default.conf)

This figure shows the Muffin main
window, above and the Filter selection
window on the right. In this example
the enabled filters are Documentlnfo,
AnimationKiller and Stats. The Stats
filter is providing status information for
each individual request the browser is
making.
More filters can be added from the
upper list and the filters can be
ordered.

^ M u f f i n : F i l te rs D I E

Preview
Referer
Rewrite
SecretAgent
Secretaiv
SecretSeroer
Snoop

[Translate

Configuration: jdefault-conf

Supported Filters

3 Enable

New...

Delete

Help

Enabled Filters

Documentlnfo
AnimationKiller
Stats

Preferences..

Move Up

Move Down

Disable

Same Close

Figure 2.14; The Muffin User Interface.

36

2.3.5 Microsof t Smart Tags

More recently the same basic principle of adding glossary style links, see Section 2.1.5, to Web pages

has been taken up by a variety of commercial organisations. Now that Web browsers are vastly more

powerful and easier to integrate the task has become a lot simpler. Many products are so much newer

than the DLS that their announcement is greeted by the computing press as if new ground is being

broken. One of the most recent products was Microsoft Smart Tags (Hughes & Carr, 2002).

For many outside of the Web and hypertext research communities the first time that they were

exposed to the idea of generic links was through the announcement that Microsoft planned to add so

called 'Smart Tags' to Office XP and the Windows XP version of Internet Explorer 6. As the authors

of the operating system and the client applications it would be much easier for them to actually

implement the systems properly. However the reaction of various news and review publications was

highly negative.

Smart Tags are a facility provided for Microsoft Office applications, which allow software plug-ins

to identify regions of a document which are suitable for annotation and to control the processing

options available when a user activates (i.e. clicks on) the annotation. Effectively these annotations

are synonymous with links.

A Smart Tag consists of two components: a recogniser and an action. The former functions like a

simple callback routine, and has a simple Recognise() method which is invoked by the application

with a string of text peAaps representing a paragraph, word or cell in the document. The Recognise()

method also flags any interesting parts of the text for annotation. The Office application is then

responsible for providing the user interface (here a dotted purple underline with a dropdown

information menu) for each annotation. The Action object defines the items which can appear in the

menu, and controls what happens when any menu item is chosen. The action trivially lists the

keywords as menu items, and forms an appropriate URL to trigger the knowledge service when the

menu item is selected. See Figure 2.15.

Smart Tags are the basis of a useful implementation of open hypermedia linking. It has been

especially designed to allow many recognisers to be active in parallel with the word processing

features themselves. It also delivers hypermedia "as you type", as the recognisers are invoked each

time a new word has been entered. This is a significant innovation, providing instant feedback to the

hypermedia author. However, it is impossible to control the order and timing of the processing of text

- in an existing document, paragraphs may only be processed once they are clicked on. Consequently,

37

it is not possible to efficiently establish a document context, and links which depend on certain

document features (for example the use of triggering keywords or document structures such as a

bibliography) may not be immediately apparent. Lastly, the user's interaction with the annotation and

the style of its presentation cannot be controlled.

ABSTRACT
paper describes the latest

XanEdu - Telecommunications & Computing: hypermedia

Find in Telecommunications & Computing

Check for New Actions.,.

Remove this Smart Tag

Smart Tag Options...

gen
th<

anc
acti

computing press. Recommendati(
system design could be improved f(

Figure 2.15: Microsoft Smart Tags in use in Microsoft Word.

Smart Tags were first announced as a new feature to be included in the release of Windows XP. The

reaction of the computing press was far more passionate than that usually associated with the launch

of a hypertext technology. The criticisms^ were a combination of technical and political and are

summarised here.

Parsing and linking of Web pages was to have been enabled by default. All pages would be processed

and linked by the system unless the page contained a special META tag in its HTML. Critics argued

that this policy should have been implemented in reverse and used it as an example of the company

changing the operating system or Web browser without user control^.

The normal passive experience of using a browser to consume content from a remote server is altered

by the inclusion of a link service. The only obvious sign of this to the inexperienced would be the

change in appearance of some links in a document. Other link services are more visible to the user as

^http://web.archive.org/web/20010710094728/http;//public.wsjxorn/sri/y/SB991862595554629527.htriil
http://web.archive.Org/web/20010712030846/http://www.zdnet.com/anchordesk/stories/story/0,10738,2771967,OO.hW

^http://news.com.com/2100-1001-267992.html?Iegacy=cnet

38

http://web.archive.Org/web/20010712030846/http://www.zdnet.com/anchordesk/stories/story/0,10738,2771967,OO.hW
http://news.com.com/2100-1001-267992.html?Iegacy=cnet

browser plug-ins, proxies or personal agent systems. This informs the user that something more is

happening beyond normal Web browsing. When the Smart Tag system is enabled there is no obvious

third party involved in the delivery and rendering of the Web page.

The raison d'etre of a link service is to dynamically enhance a document with links the reader would

find useful. The original static text is personalised at read time. There is some irony to this mechanism

being cited as the primary offence by the critics. The legal issue was raised that original content could

be altered by the browser without permission of the author. This has raised copyright issues over the

creation of derivative works'.

The issue of content being 'surreptitiously' altered is magnified by the crucial factor that the Web is

a way of earning a living. It is the only hypertext system that functions as a global marketplace. For

instance a review site links readers to affiliate vendors who sell the product under review. The review

site receives revenue from such a transaction. If the link service recognises the product and adds its

own links to a different vendor then there is potential for lost revenue and the review site is directly

damaged^. (Neumliller, 2000) has described how keywords are now a commercial commodity to be

fought over and the use of keywords out of context is already having an adverse affect on Web sites.

The Smart Tag system is open to similar problems, especially given the difficulties of establishing

the correct context to link words.

The lack of objectivity in the reviews of this technology is a reaction to a lack of competition. The

computer industry is subject to a monopoly in many areas including operating systems, office

software and Web browsers. There is a conflict when a company is both content provider and the

producer of the means to view the content.

Smart Tags were deactivated in the June 2001 release of Windows XP. Microsoft has stated that it

will activate the technology in a future release of Internet Explorer. Smart Tags are implemented in

Office XP.

The implementation of Smart Tags does not allow the developer any opportunity to decide how and

when to place annotations into documents. There is no scope for contextual linking at the time of

parsing the document. When an annotation is activated the system does give the developer a chance

to evaluate the circumstances of the link and its context within the document. A handle is given to the

'http://wwvv.newsbytes.com/news/01/166676.htrrLl

^ http://www.clickz.com/aff_mkt/aff_mkt/article.php/843801

39

http://wwvv.newsbytes.com/news/01/166676.htrrLl
http://www.clickz.com/aff_mkt/aff_mkt/article.php/843801

document which allows the developer to determine the application within which the Smart Tag is

working, for example Word, Excel or Internet Explorer, and the rest of the document object model

for those applications is available. For instance the Smart Tag application can determine the user, the

location of the link and other such document-based data. Therefore it is possible to write Smart Tag

applications that have some form of contextual awareness but there is no such facility for determining

what links to place where at parse time. It is understood that this restriction is for implementation

reasons, the parser is a separate thread within the application and has a lower priority than other

threads. There was some difficulty in integrating the parser into the applications. There were

possibilities of causing the host applications to freeze up during parsing which were considered

unacceptable to the developers. As the system was meant to work in the background and not affect

normal user input the decision was made to limit what a developer could do in the API. The other

reason given was that parsing could become too expensive an operation for large documents and large

numbers of links. A familiar problem encountered by all such systems.

Smart Tags add links as the user types but do not make any attempt to contextualise them. Only when

a user activates a link can contextual processing be performed. The resultant application contrasts

with my own design.

2.3.6 Other Link Service Products

There have been a number of other such commercial systems producing similar effects to the DLS.

Some have not survived the massive shake up of the Internet industry in the year 2000 and some have

been acquired by large companies to use in portals and other such systems.

The Flyswat system was a plug-in for Microsoft Internet Explorer that produced a similar effect to

the DLS. It underlined words in yellow and gave links to sites. A similar system was TopText, also

known as ContextProAdvertising. It was a more aggressively commercial product adding links to

commercial sites as a form of advertisement. A third system, EasyLink, gained a little notoriety for

the way in which it placed links to a vast array of third party Web sites onto pages.

In most cases these systems are now dead or heavily altered or have little impact on the wider Web

community. As with Smart Tags the overwhelming problem is that these systems placed links on

Web pages without any consideration of context. Some of the systems aggravated the problem by

using too many links and linking to inappropriate sites. As shown with Smart Tags the opposition to

these systems has been considerable and organised. The systems have been seen as another way to

impose advertising onto Web pages whether that was their prime purpose or not.

40

Atomica is a similar product but with an emphasis on providing information to employees of an

enterprise. The user interface is a simple window which displays search results for any word the user

enters. A user can also Alt-Click on any word in any application to activate the system. The company

supplies the data sources for the results and does not rely just on public search engines for its data.

An enterprise level deployment involves the company integrating the customers existing data sources

to provide information to employees.

Another product, RichLink is "the world's first patented, Internet-based service which automatically

adds rich contextual information to Web pages which instantly pop up at the user's request." The

system has a marked similarity to the DLS and Webcosm in that the company will use the customers

own resources to create new links to compile into pages. They will even host the system for the

customer. It is difficult to gauge exactly how it is uniquely different from the other systems listed here

without contacting a sales representative.

2.4 Sununary

Link services are a component of open hypermedia services which have been used to provide linking

to systems, either integrated in systems or as stand alone products. This culminated with the Open

Hypermedia Systems workshops and the development of generalised models of linking to allow for

interoperability between open hypermedia systems.

To improve the quality of linking is the goal of adaptive hypermedia, here systems use models of

users, documents and goals to aid in providing links that are better suited to users. The systems have

mainly been used in educational applications whereby documents and navigation links are altered to

reflect the users stage of learning.

The advent of the Web has provided new opportunities for link services to improve the rudimentary

hypertext features of a browser. Systems such as the DLS from Southampton add links to web pages

on demand via implementations such as taking the form of a web proxy. These systems have tended

to use a single model of a link and a corresponding single way to compute which links to use and

when to use them in a document. Later proxy-based application development systems such as WBI

and Muffin have provided methods to add to these functionalities though no context aware linking

applications had been produced using them until now.

41

2.5 Conclusion

This chapter has presented a brief history of open hypermedia with particular attention to the link

service component of such systems. The use of applications such as the DLS to improve the linking

facilities of the World Wide Web has been examined and the success or otherwise of various

commercial systems that have attempted to do so. The goal has been to find hypermedia research

areas which can provide pointers on to how to design a contextual link service. The adaptive

hypermedia community has many years of experience in techniques to provide more useful links for

users in particular situations. The core of these systems is sophisticated modelling of users and the

goals of the system.

The next chapter describes the use of a link service for the Web with a document management system.

The hard lessons learnt from trying to integrate the service with an operational system using real

documents and real data sources produced many new issues that needed addressing. First attempts

were made to serve links in context as required to be useful to the service and users. This led to the

conclusion that a new design of link service would be needed in order to be able to provide contextual

links. Chapter 4 looks closely at what exactly context is and Chapter 5 presents the architecture of a

contextual link service.

42

3 Integrating Link Services With A Document
Management System

3.1 Introduction

An open hypermedia system is always championed as a way to improve documents and information.

It adds knowledge to a corpus of information and aids users who want to find something. There are

known problems and design issues with the implementation of a system such as the DLS which need

to be addressed. One of the ways of improving its effectiveness is to create tighter integration with

the system producing the documents. Whilst being an entirely independent system has strong

advantages there reaches a point when it prevents innovation and experimentation. In this chapter the

integration issue is explored, in particular the effects that can be achieved when the link service and

document provision service are more closely related.

The experiments take the form of integrating a Web based document management system with link

services in order to enhance the documents. The AIMS (Academic Information Management System)

document management system described in this chapter provided a web based service to staff of the

author's Department allowing them to upload and view administration documents. A number of

experimental combinations of link service and document management system are described aiming

to find new ways to tailor links to users and to the documents themselves. The chapter explores the

limitations of using current link service technology and builds a set of requirements for a new link

service that can provide a greater range of adapted links.

Effective adaption requires better understanding of the documents, the users and the circumstances

in which the links were being used. The work leads to the realisation that no single link service model

could do all of the possible things expected of such a system and that a new link service is required

that is completely open to new linking methods and models. The results of the work described here

are a requirements list for a new design of contextual link service.

It was the conclusions drawn from these experiments and a deeper look into the meaning and uses of

context (Chapter 4) that led directly to the design of the contexual link service presented in Chapter 5.

43

3.2 The AIMS Document Management System

3.2.1 Background

The Electronics and Computer Science Department had a considerable need for an electronic

document management solution. Almost no administrative information was available online. There

was no policy for keeping paper documents and no electronic archive. Documents were produced by

secretaries, printed and sometimes the source files lost. For important committees the minutes and

associated reports were printed, photocopied and distributed by hand to academic staff, a process

taking many hours. Due to the confidential nature of the material it was felt that the internal post

system was not secure enough to be used. The use of electronic distribution was certainly not a

possibility. Many of the academics preferred to have paper copies of the documents and a significant

number did not possess the technical skills to print an email attachment.

No central archive of the source files was kept and in many cases the electronic files were deleted by

the secretary from their own machine. They would use the file of the previous edition as the starting

point for the new, but not keep a backup. The situation was exacerbated by a lack of training for

administrative staff. Because none of the administrative staff had any knowledge of creating Web

documents they could not and would not place their documents on the Department site and would

never have been instructed to do so. The only information online was either provided by a select few

Web-enlightened academic staff or by Webmasters under the instruction of senior Department staff.

For a Department featuring a world class research group specializing in hypermedia and Web

technologies here was a challenge that needed meeting. It was also felt necessary that we should 'put

our own house in order' if we were to extol the virtues of hypertext and linking technologies to the

wider world.

The overall goal of the AIMS project was to deliver a document management system with a Web

interface. This system would enable the authors of documents to directly contribute their work to a

Web site without needing to know how to create HTML, without needing to know the mechanics of

where their files would need to be located and without the direct intervention of anyone else in the

process. The system could not cause a large upheaval in working practice or the employment of a full

time administrator. The system would become an electronic archive and a resource for enabling

document reuse. A long term aim was to reduce printing costs by distributing documents

electronically and allow each staff member to decide whether to print them or have them printed for

them. It should be noted that at the start of this project, January 1997, the electronic skills of many

44

members of the Department, both academic and administrative, were very limited. Many were not

users of the Web. The author also felt that he could not impose too many changes on working practice

as the natural inertia of the Department would be considerable.

The project did not set out to create a paperless environment. The administrative system was geared

towards creating printed documents. Archiving and publishing them on AIMS would be of secondary

importance. With this in mind the system was designed to allow people to work as they always had

done using the tools that they wished to use. No software standards or working practice rules could

be imposed because the author was in no position to do so. For example it was not possible to ask

everyone to use a certain brand of word processor in order to exploit its features as part of the system

design. Approximately half of the Department staff use a variety of Unix and half use Microsoft

Windows. With many commercial document management systems available the user is expected to

be able to view the stored file on their local machine. To be more explicit there is an assumption that

the user has Microsoft Word for Windows and can view the file. Even today this expectation is not

valid in academia, especially in a Computer Science Department. In industry, where Microsoft has a

near monopoly on normal workstations the assumption has more validity. Many other document

management systems just act as a file store and expect the user to download the file and read it locally.

AIMS explicitly does not make this assumption.

This contrasts with an industrial environment where it is normal for the organisation to impose a

choice of software or a style of working on a workforce for financial reasons. Here in a University

Computer Science Department it is almost impossible to tell people how to work on a day to day

basis, especially when it comes to software choices. The design of AIMS reflects this ethos (some

might say chaos). For instance the minimum of information is required about each document in order

not to discourage users from using the submission form. Users are not expected to enter large amounts

of metadata in order to classify their own work. The site was also designed for access by any Web

browser rather than just the most modem. Features such as frames, JavaScript, Java applets and

advanced HTML tags were not used. It must be remembered that in 1997 Netscape 2 was not formally

released and Internet Explorer had yet to be successful. Another important factor is that the systems

used by administrative staff tend to be the oldest and of poorest specification in the Department.

45

3.2.2 System Summary

The AIMS system is an automatically generated document database accessible from any Web

browser. It is implemented as a Lotus Notes database application and hosted by a Lotus Domino Web

server. Submission of documents to AIMS is achieved by a user completing a Web form and

submitting a file produced by their word processor application. The AIMS application imports the

file into the database and the Domino Web server renders the content of the file as a Web page

automatically. What this means to the user is that if a Word for Windows file is submitted into AIMS

the server will instantly generate a Web page of the content of that file. The page also allows the user

to download the original Hie, acting as a file store, and the page becomes part of the full text search

index.

3.2.3 An Introduction to Lotus Notes

Lotus Notes is an application development environment for large, groupware oriented, distributed

applications. The features are numerous and include a powerful underlying object oriented database,

programming languages for creating bespoke applications and a range of rich-text import libraries.

These are crucial as they allow the system to import the content of word processed files that users

submit to the system. The name 'Lotus Notes' refers to the overall product family and also to the

client application portions of the product. 'Lotus Domino' is the name of the server product line that

hosts 'Lotus Notes' databases. Originally users ran the Notes client to access database applications

and their email. In 1997 Lotus added Web server functionality to the product allowing Web browsers

to access the system though with a limited capability. The functionality improved during the lifetime

of the project. The Domino server generates Web pages on demand for all aspects of the design.

In Lotus Notes a database is filled with Documents created by the completion of Forms. Forms

describe the layout of Fields of data. Fields contain individual i tems of data ranging from a simple

number to a rich text field capable of holding many megabytes of varied information. Documents in

the database are listed by Views. Views are also designed to show certain subsets of the data in the

database. When a user requests an AIMS document from their browser the server places data into the

fields according to the chosen form design. The result is converted to HTML by the HTTP server

component of Domino. The main project deliverable was a Lotus Notes database template file. This

is used to create new AIMS databases on a server. For instance there are currently 5 AIMS databases

in use on the project server. If the template is updated the databases will be automatically upgraded.

46

There is wide confusion over exactly what Lotus Notes actually is. Lotus Notes is not a document

management system and it is not just an email system though that is a key component. It is a complex

and adaptable starting point for organisations to create applications that reflect the way a company is

organised and works. A large investment is required to create the bespoke applications that are its

speciality. This is why major corporations use and benefit from it most and may explain why it is little

used in academia. The key ability to import various word processing formats and then generate Web

pages of the content on the fly was found to be unique at the t ime. The alternative to using Lotus

Notes for the AIMS project would have been to develop a bespoke system.

3.2.4 Features of A I M S

The following sub-section describes the features for users of the AIMS system. It is a description of

the fourth version of the system finished at the end of the 3 year project.

Submiss ion Process. The process for a user to submit a file to AIMS is simplified to encourage

usage. The user writes a document using a Word processing package. Once the document is finished

it will usually be printed and distributed. The user would also then submit this file to the AIMS system

by completing the Web form shown in Figure 3.1.

47

^ New Document - Netscape

F3e Edit View Go Communicator Help

ZZSZLEZZ

Submit A New Document
D Current Versions

3) All Versions

O Minimalist View required.
0/ieiAi just t he t i t les)

Select a Pi le to submi t by cl icking on Browse

E n t e r t h e t i t l e and sub t i t l e of t he documen t

4 . Search

o Login

. ' Mv Documents
vV. Submit New
Document

CB Support

AIMS Home

^ ECg Home Pagg gg 25/12/1999. Make

Browse...

E n t e r t h e d a t e of the documen t

you enter t h e da te of t he ac tua l meet ing , not t o d a y ' s da te .

You are logged on as j
Gareth Hughes

Select a ca tego ry for t he document

Please select a category tc use for this document . If a category is missing p l e a s e contact support for help.

I A IMS Informat ion • j

Se lec t the f o r m a t of your document

If your documen t fype is not expl ic i t ly l isted then use Other. This inc ludes H T M L . WordPerfect 8,

PowerPoint and Excel 97 .

lid*.

jWond

'Document: Done

V I Submi t I

Figure 3.1: The AIMS Document Submission W e b Form.

The person selects the actual file to put into the system using the Browse button. They then enter in

a Title, Subtitle, document or meeting Date and choose a Category f rom the pre-determined list of

categories. When the user presses the Submit button the browser sends the file and form data to the

server. At this point a complex process occurs to create a new document in the Notes database,

populate it with the metadata and spawn off the file conversion and import process. The result is a

Web page of the document the user submitted.

When this method was designed the ability to upload files f rom a W e b browser was a new feature and

the method a novel one.

B r o w s i n g Features . Figure 3.2 below illustrates a page from A I M S and highlights some of the

tools and properties of the system.

48

Link to the main listing
of documents in the
system showing only ,
current versions of
documents.

Link to an archive
listing of all document!
in the system.

Board Minutes - Microsoft Internet Explorer

X

Link to the full text
search page.

Link to a listing
showing only the
documents that the
person has submitted.

Link to form for
submitting a
document.

Link to download the
original file version of
the document.

Link to open the
Adobe Acrobat PDF
version of the
document.

Tool to edit the details
of the currently
viewed document.

Link to update this
document by
submitting a new
version.

The main body of the
document is generated
on the fly by the
server. No HTML is
created by document
contributors.

Current Versions

H All Versions

O Minimalist View

(View just the titles)

. A Search

o Login

y Mv Documents
t:. Submit New
Document

<1/ Support

Board Minutes
6 October 1 9 9 9 Date mo/mQ category
l\ginutes'£oard

1

Department of Electronics and
Computer Science

Department Board
Minutes
6 October 1999 8.1

<as AIMS Home Present: CJH(Cliair), BMAH, PA,
^ ECS Home Page R E A . A B , M J B , S Q C , L E C , S C , A J C ,

, , GE.TMF.MF. PWG.HG.SRG.CH.
You are logged on as MK1, MAL, LAVM, DAN, MSN,

DN, JAP, APB, STR, JSR, ETAR, JNR,
HNR, CHS, RDS, UUN, NMW, JSW,
EJZ

Gareth Hughes

V iew:
Just the content

Download:
Original file: 89901
Minutes, doc

"El The PDF Version

B 1 Recent staff incident

Editing :

Edit Details

. /Submi ixa new

Edi t ioa^ f this

doctfment

Import report

Navigate :

Previous Next

Newer versions;
Board Minutes CI 7

The Department would like
to record its thanks to those
that attended to Dr David
Pritchard on 4 October in
the Zepler Building. He was
moved to the General
Hospital promptly and we
await further news. The
Department wishes him
and his wife well.

B.2 Minutes of Board, 23 June 1999

The Minutes of Board held
on 23 June 1999 were

Done , Local intranet

d

Figure 3.2: Features in AIMS.

49

Some of the main design features of AIMS are listed below.

Access to documents via generated listings. The documents in the AMS system are Hsted by

automatically generated listings. A number of listings are available, the main listing contains only

current document versions. Older versions of documents can be accessed from a Document Archive

listing. Figure 3.3 shows one of the listings views.

' 3 AIMS for ECS (V4) - Current Versions - Microsoft Internet Explorer y s i J l
File Edit Viev»

T3

AIMS for ECS (V4) - Current Versions
I I Al l Versions * '
M Minimalist View • . . u i . . , , . • . u
C^iew just the titles) Here are just the latest versions of documents i n t l i e sys tem

4 , Search

Login

a Support

* AIMS Home
6 ECS Home P

^ AIMS Information
^ Calendar
i Department Admin
^ Department Handbook

• Forms
•Minutes

V Academic Committee
• Board

You are logged on as Board Minutes 10 May 2000 1fy06/2000

A n o n y m o u s Department Board Minutes 5th July 2000 06/07/2000

Department Board Minutes 5th July 2000 Q5/07/2000

Department Board Minutes 5th July 2000 05/07/2000

Department Board Minutes 24 January 2001 24/01/2001

• Agenda
• Papers

^ Finance
^ Research Committee
• SSLC

> Newsletter
V Research Groups
^ Test Documents
^ University Publications

Previous Next Expand Contract

d
I _ Local intranet

Figure 3.3: A Document Listing View of AIMS.

Version control facilities. A form of version control was designed for the later versions of AIMS.

An important characteristic of the system is that each document had a unique number. URLs to

documents in AIMS used this unique number. The version control facilities were designed with the

assumption that it was more important for bookmarks to documents in AIMS to stay constant rather

than break them. If a document was updated with a newer version it assumed the unique number of

the existing document so that a bookmark to that document would always retrieve the latest version.

50

The older version would be given a new unique number. The justification being that for the type of

information stored in AIMS the user would usually want to see the latest rather than earlier versions.

All versions of documents were available through the Archive listing of the database.

Automatic creation of Adobe Acrobat PDF files. One of the additional features of AIMS is an

ability to create an Adobe Acrobat PDF file of documents submitted to the system. This has been a

popular facility especially when some documents are not represented well as a Web page or are

designed to be printed. For example a popular PDF download from the site is the Travel Expenses

Claim form for the Department.

Details of documents can be edited online. Once a document is in the system it is possible for

the contributor to alter the details of that document via an online fo rm shown in Figure 3.4. This is

useful for correcting spelling errors in fields, changing the security settings of the document or

changing the category of a document.

' 3 AIMS User Manual - Microsoft Internet Explorer i-lnixi
4= - @ SI (3 a # # I M - S # File Edit Vievs '

% A M w " ' E d i t Document Details
a All Versions

O Minimalist View _
(View just the titles) D o c u m e n t T i t le ;

IAIMS User Manual
Search

-o Login

Sub T i t le :

|235k Zip File

Date ;

|23/12/1999

. ' My Documents

Submit New
Document

tl? Support

fiJJMSHoms IAIWS Information

a ECS HomaPaqa

You are logged on as is visible to

Gare th Hughes

C a t e g o r y ;

3

V i e w :
Just the content

Mark, Publio'Private |

This switches between your
document be ing available to

everyone or just people who log on.

Close

D o w n l o a d :
Original file:
manual.zip

Submit I ^

This will close and save the This will close the editor without
chenoes you have made. saving the current changes..

Click Here To Download the Original file: manual, zio

.d
I £ Local inkranek

Figure 3.4: The Document Editing Form in AIMS.

Full Text Search Engine. Other interface features include a full text search page. Full text

searching is built into Lotus Notes. A page was built to tailor searching to the AIMS design.

51

3.3 Experimental Integration of AIMS with a Link Service

3.3.1 Basic Link Service Integration

As well as providing a service to the Department the AIMS system was created to be used as a testbed

for experiments in integrating DLS-style link servers. As a consequence of their automated creation

the pages produced by the AIMS site had no actual links within the body of the pages. However the

documents were highly related in nature so plenty of opportunities were available to link topics and

keywords in the documents to each other and to the Department's main Web site. The first steps were

to use the DLS in the normal way as a Web proxy supplying linkbases of generic links.

A company was started to commercialise Microcosm. In 1997 it also took on the DLS and created a

product version called Webcosm. The core technologies were to appear in all of the products from

the company, now called Active Navigation Ltd. In the early experimental work described in Chapter

3 both the DLS and Webcosm have been used, at times interchangeably. From the point of view of

the work described here they are interchangeable in principle but one or the other has been chosen for

a particular strength of its implementation.

A number of linkbases were created with relevance to the material in AIMS or to pages on the

Department Web site. The first consisted of a generic link for each undergraduate course taught by

the Department to the relevant course home page on the Department Web site. For example 'CM142'

is the code for the first year computer science course 'Advanced Programming'. This linkbase was

generated by parsing the existing Department Web page listing all of the Undergraduate courses.

A large linkbase linking user id's and user names to people's home pages was generated by writing a

script to access the Department personnel database. For each person in the Department three links

were generated. One on user name, full name and initials followed by surname. E.g. 'gvh', 'Gareth

Hughes' and 'G.V. Hughes'. For each link the destination was to their official home page.

These two simple examples of linkbases highlight many common features. They illustrate many of

the positive contributions that link services make. The creation and maintenance of the two linkbases

is a simple task as each is generated from a script. These links are highly applicable and will be useful

in many documents. The number of links that will appear in documents against the effort to make

them is highly favourable. The linking of people's names in order to allow a user to find out more

about the person is not so useful or easy to do as normal generic links on acronyms. The first problem

52

is that if the linkbase is generated from a data source such as the user accounts system then only

current members of the Department will be linked. Those who have left will no longer be linked. In

a system which is essentially a history of the formal workings of the Department this is not so useful.

Another, much harder to solve, problem is that of understanding when to place a link in a document.

A classic, real-life, example is that the example given includes a l ink on a person who's usemame is

'AND'. The link service does not know when to place the link and when not to. It has no idea if the

characters 'and' refer to the person or just to the word 'and'. Even a cursory examination of the

problem indicates that this would be very hard to solve.

Both problems can be seen manifesting themselves in Figure 3.5. It shows a document of meeting

minutes being linked by the DLS using the usemame linkbase. People who have since left the

Department are not linked and AND' is linked inappropriately.

^ Depailmenlal Board • Netscape

File Edit View go £ommunicalof Help

a Horrible Links
It doesn't work!

Department of Electronics and Computer Science

Departmental Board Minutes
« AIMS Home 4111 October 1995 gj_
* EOS Home Page

^ D i s c u s s i o n anri

Sunoort Site

foommeniswelcomed Present: AJGH (HoD and Chair), JAP (Secretary). PA, DWB,
JEB, CJH, EH, WH. HAK. HNR, M , ADB, GE. AGRE,

^ MH, PWG, AMG. LH, PHH, RH, PHL. TPN, DAN, DJP. JSR,
D o « ™ # . RDS, K ^ I , m W . JSW, EJZ, MZ, MNZ, KES, CH,

B PDF Version
Submit a new version

"3

J

Previous Next
Click Hire f o r t t e cofTect
URL for this document.

Apologies: DdeR, HG, ETAR

8 ,1 Minutes of Meeting 5th Juiy 1995

ETAR had been present at the meeting. Otherwise, the minutes
were accepted as a true record.

B.2 Actions

ACTION B.47 Draft course phiiosophiesto be circulated.
Chair of Academic Committee

B.54a Nominate suitable CASE students LH, D A N

-

Figure 3.5; Minutes of a Meeting Augmented with Standard Generic Links from the DLS.

The third linkbase included listings of more generic terms and acronyms such as research group

acronyms and other abbreviations such as 'HoD' for 'Head of Department ' . These definitions were

gathered and written manually into a linkbase by the author.

53

These linkbases and techniques for creating them were the traditional methods in use for a number of

years in a variety of projects relating to Microcosm and the DLS. Either a linkbase was written

manually or simple scripts would be written to harvest existing information from a source or Web

site.

More advanced linking techniques can be employed depending on the level of programmatic access

to the document management system and the link service. The following sections demonstrate this

showing the use of pattern matching linking, the effect of integrating the link service directly into the

document management system, the effects of pre-compiling static links as opposed to real-time

generation and the use of document dates as an aid to more relevant linking. Each experiment

demonstrates limitations of the current technologies and provides requirements for the design of a

new link service.

3.3.2 Using Pattern Matching Techniques for Creating Link Anchors

One of the major types of documents stored in AIMS were minutes of meetings. These provide an

opportunity to go beyond simple linking on keywords as the documents are related to each other.

Frequently items in minutes will be following on from Actions and Items in previous editions of the

minutes. The plan was to use a link service to automatically link these relationships together. The

minutes of the Department Board of Electronics and Computer Science contain item numbers of the

form 'B.n' where 'n' is a number. The Distributed Links Service was used to link together these item

numbers with the goal being that readers could follow the trails of issues back through time. Figure

3.6 illustrates the process.

54

Item B.2 contains
a reference to an
ACTION B.47 in
the previous set
of minutes. The
user follows the
link B.47. This
link triggers an
script on the
AIMS server.

* Dopailmenlal Ho Aid Nnlsc^pR

09 E* iS®w fio Coomonicalw
Department of Electronics and Computer Science

Board Minutes
'ji Horrible Links
-JttijpgsntWQrkj Qgpg
6 AIMS Home 4lh Octobp1995aj.
fcommen^ welcome! Preswt: and Chair), J A p'TS'e cRta rvM? A, D WB.

. jg'B. CJH. PH. WH. HAK. HNR. AB. ADB. JNC. GE, AGRE.
. C.. n . ' MH' em, AMG. LH, PHH, RH, PHL, TPN, DAN, DJP, J S R , ^

SQS. KSI, NMW. jsyv, ejz, mz, mnz, kes, o*.
Emcmm _
saamtanwrersign Apologies: DdeR, HG. ETAR

J

Prewous Next
Click taafortht torttt*
URL forthis documM,

8.1 Minutes of Meeting 5th July 1995

ETAR had been present at the meeting. Otherwise, the minutes
were accepted a s a true record.

B-2 Actions

ACTION B.47 Draft course philosophies to be circulated.
Chair of Academic CommiitBe

B.54a Nominate suitable

Link to dan

ZASE smdents Lb. DAN

.at J
±i

Another set of links in
the Link Service
provides a link from the
initials of members of
the Department to their
home page. These links

.are generated based on
the information stored
in the Department's
personnel database.

H I M H W B I M I
Fk £dH \gew go Commnomloi Help

quaiirications ana mis would not oe easy to achieve
from a distance.

RESOLVED that, subject to guidance from the
Academic (Registrar, the course be continued to t *

developed

8.47.3 Cours9worf< A 42

2 to accept the com gOime
A C n O N B 4 7 a Provide coursework scheduKw
policy and procedures HG/PWG

B.4^1 I'll" I'm Ill,ml

P r o y e s s in estal)lishing the degree was noted.

B.47.5 RefosAofwng Per! / courses A.43

Noted that PHL and JNC are establishing a
subcommittee. It was also reported that MH had
expressed willingness to track the Mathematics
course for Electronics studeras and would welcome
comments, would be happy to receive comments
on subject matter relating to Physical Electronics.

:

J

zJ

The script searches the
database to find the most likely
document containing the correct
item B.47 by using the date of the
document the user is viewing.

\
\ Fte £dit Vew fio £oiwnunicalor iJalp |

>

1

g h e i tem B.47 in

D«paiTnie i i ta l Board 1995 - 1996 Minute 1 (04/1(yi99^
was referred to in the following document.

r)Ri>aiTnient. i l Bo .nd 1995-1996 Minute44 f'03^07/19951

>

1
1

flf' : Document bone M •M' = % ^

The script
returns a link to the referred
document, in the body of this
document is the Action B.47.3

Figure 3.6: Using Pattern Matching Techniques in the DLS to Link Issues to Items in Minutes.

The application worked only partially, it would often fail to match correctly on words and

subsequently fail to add links where there should have been links. When the document parsing

worked the application would correctly link documents together.

55

The problem with this application was that it only applied to a few documents in the system matching

a very specific pattern. The implementation of the application made it difficult to present easily

understood results to the user when a link was followed. Hence it was not obvious how to use the

links provided and navigate back through the documents. Because of inaccuracies and variations in

the patterns of codes used in different documents the pattern matching was seldom successful.

The conclusion drawn from the experiment was that pattern matching can work but with a

considerable maintenance cost and a large failure rate for matching. A major problem was that there

would need to be large number of patterns to match all the different types of documents in the system.

These would all need maintaining to cope with users changing their styles of working. For instance

some types of minutes use B 1' and some use 'K-3a' etc. This leads to a second problem, if a full

implementation was contemplated the first problem to be overcome would be to find a way for the

link service to switch between patterns and, more importantly but much harder to implement, it needs

to know when to do it.

This is an example of a common problem in attempting to work with free text. Authors of documents

are rarely accurate or consistent. If the content is difficult for the developer to work with then the

logical solution is to attempt to place links based on document structure. For example a program

could look for text with the style 'Heading 1'. This seems more natural as XML (W3C Consortium,

1998a) has taken hold and structured text has become more widespread but unfortunately the

technique is completely unworkable with the real documents held in AIMS. The surprising reality is

that none of the documents in AIMS have been authored using even simple styling or heading names.

It is not known how much training in using Word processors the staff have been given but it would

seem reasonable to assume that they know how to use styles. Hence it was a surprise to the author to

find no structured markup to work with.

Therefore whilst many great things are possible with structured text, demonstrated by the explosion

in popularity of XML, none of them can be done here because structured text is not available in this

real life situation. The author has also had some experience of other industrial situations where even

simple headings and other style information or metadata is not used by people creating word

processed documents. Perhaps it is an indication that there is a lag between the work done by

computer scientists familiar with new technologies and the 'real world ' .

56

The techniques briefly examined here stem from work done elsewhere in the group on linking in

scientific journals. Citation linking (Garfield, 1979) is the automatic linking of references in research

papers. It is one of the major areas which have fuelled the development of the link service within lAM

and elsewhere. The major one being the Open Journals project (Hitchcock et al., 1997, Hitchcock

et al., 1998) in which a system to link references between journals in a number of electronic archives

was achieved by the creation of a citation agent. This version of the DLS could recognise references

in a paper, match the citations against a database of abstracts and add links to the database entry where

one was found. The system was designed to load new patterns and methods of recognition allowing

the authors to refine their techniques to match increasing numbers of references. A name recognition

version was also written matching the combination of people's surnames and initials. The project had

higher quality resources to work with in the form of scientific papers rather than simple word

processed documents. These are more structured and the formatting is more consistent.

Citation indexing and linking is now a powerful resource for researchers. For instance this thesis was

written using such a system as the major source of references. The Research Index or CiteSeer

(Bollacker et al., 1998) system is a digital research publications library incorporating a number of

automatic citation tools to cross reference papers in the system (Lawrence et al., 1999).

For pattern matching algorithms to be more successful within the AIMS project the most obvious

solution would have been to train users to be accurate in their use of a numbering schema or styling

when authoring. This was an unrealistic idea to try in the circumstances. The pressures of work would

mean it would not be a high priority to users. Placing links using style markup might be more feasible

in some industrial settings where there may be a more frequent use of templates and standard

documents but not with AIMS. In the context of the AIMS system it was not worth trying to create

any more patterns for links and the experiment was not continued.

One crucial idea did arise from this work. The notion that a link service would need to somehow

change the way it processed a document in order to place different types of links depending on

particular criteria. It was finally implemented much later as the context-based link service described

in Chapter 5.

3.3.3 Compilation of Links Versus Dynamic Linking

The emphasis with projects relating to Microcosm was that documents were dynamically linked. In

the Microcosm system a document viewer would request links f rom the rest of the system for the

opening document. This philosophy was correct for Microcosm and became an assumption in

57

implementations of the DLS. This resulted in obvious scaleability and performance limitations in the

proxy implementation of a link service. For the AIMS project the requirement for dynamic link

creation was not so easily justified. The major reason was a desire for the user not to need a Web

proxy to view AIMS and to give the effect that the links were seamlessly part of the system. Another

major factor is that the documents in AIMS would not change very often. The linkbases in use with

AIMS would not change very often either therefore it was not strictly necessary to dynamically add

normal generic links to the documents.

An experimental system was implemented to attempt to pre-compile links into AIMS. The goal being

to batch process the linking of content, possibly at the document import stage. It was envisaged that

a daemon process could maintain links and update them as required. A number of technology barriers

made implementation costly. Without resorting to the low level C++ API for Lotus Notes it was not

possible to access the raw rich text content of the body of a document. Therefore it could not be given

to the link service for linking. Another method had to be found.

An experimental system was written to act as a Web client and 'pull' the body of AIMS documents

through the link service Web proxy. The linked HTML content could then be stored back into the

Notes database and displayed instead. The implementation is described in detail below.

1 A new Lotus Notes Form and View were created for the system. These showed normal documents

to be displayed with the navigation parts of the document stripped out. Only the HTML form of the

original document is shown. This was first designed as a way to allow PDA's and text based browsers

such as Lynx to view the system.

2 A Java application was written to act as a simple Web client and make the appropriate HTTP

requests to the server via the link service proxy. The application was run within the Lotus Domino

server so could access the underlying database. It could obtain a list of unlinked documents from the

database and hence know which documents to retrieve and link.

3 The application requested the bare version of each document by talking HTTP to the server. The

application used the Webcosm as a proxy in the normal manner and as each document was requested

the link service would automatically add generic links. The application would now have the raw

HTML for the body of the document complete with generic links.

58

4 The HTML was stripped of header and footer information and placed into a new field in the

document and stored in the database. The system was configured to show this data rather than the

original body of the document. The server could be configured to not convert this field data to HTML

but just pass it straight through to a browser.

The final result was that a user would view documents enhanced with generic links but without

needing to use a Web proxy.

Whilst being an educational system building experience, the result was not a viable solution to put

into production. Unfortunately it was not possible to implement the system in any kind of reliable

way. The largest obstacle was that it caused numerous internal database problems and the design

would not scale well. The experiment was not continued as the focus moved to attempting a more

direct way to make use of the link service.

3.3.4 Incorporating the Link Service within AIMS

The experiments in integrating a link service with the AIMS system would always be compromised

if the work relied on the proxy implementation of the link service. The attempts to compile links

directly into the AIMS documents using the proxy had been shown to be feasible at the cost of a

highly complicated and unsatisfactory implementation. Therefore ways needed to be found to work

at a lower level with the technologies to ascertain what level of integration could be achieved. The

obvious place to implement the link service so that it was invisible to users was within the Web server

itself. This was attempted next.

Webcosm was implemented as a Web proxy component and a link server engine. These components

answered requests on ports allowing for the product to be distributed across a number of machines.

The link service supported a simple protocol for querying its linkbases. It would also take text, parse

it for generic links and return the links. Therefore an opportunity existed to write programs that would

communicate directly with the link server process.

The Domino system allows for a developer to add programming to system events such as the point

when a document is requested by a browser. Each time a document is requested from the server an

application has the chance to run and rewrite any data in the document. Once this has run the

temporary version of the document is sent to the HTTP server component for conversion to HTML

and out to the browser. The plan was to utilise the link service at this point in the request process.

59

An application was written that, at request time, obtained the text of the body of the document and

passed it in a request to the linkserver engine. The linkserver parsed the document for generic links

and returned the HTML it would have placed into the document to form a normal URL link anchor.

Figure 3.7 shows an example of this.

Document
Request

Browser

J
Links

compiled into
margin of
finished

document

AIMS

H T T P

C o m p o n e n t

D o c u m e n t

Da tabase

Document
^ Text Sent to

Linkservice

All matching
URLs

Returned

Link service
searches for
links in text

1
Link Service

Welcome

to

the

University

^ f
of

Southampton

Linkbase

Lookup Anchor in List

Return found URL

From

this

page

Figure 3.7: The Webcosm DLS Being Utilised as an Offline Link Service.

The Java-based application collected and processed these fragments of HTML. The application

sorted and removed duplicates before parsing the HTML to build link objects. These were then used

to write out a new block of HTML code listing the links. The application embedded this into a field

60

in the Notes document and hence the Web page. Once link processing had completed the document

was delivered to the browser by the Domino server. The links appeared in the margin or at the bottom

of the page as a list of recommended sites for the user to view.

Figure 3.8 demonstrates one way of implementing the system. The links on names of people

mentioned in the minutes have been added to the bottom of the left hand margin.

20 matches on 3 Present: AJGH (HoD and Chair), JAP (Secretary), PA, DWB, JEB,
=1 HAK, HNR, AB, JNC, AJC, HCD, GE, AGRE, PWG, AMG, LH, RH,

pi°eTEtecVonbl TJK, PHL, DAN, MSN, DJP, JNR, SDS, PJS, RDS, KST, NMW,
Scan using rtf , J S W , E J Z , K E S .

J Apologies: CJH. RS. WH, ECC, RD, DDeR, HG. ETAR, VJDS,
TMF. GAH.

Slaffy Student Liason Committee M inu^
2 1 ,

B 48 Unrestricted Minutes of Meeting 17th May 1995

. ' Edit Details
Download b9448.rtf
E l PDF Version

DWe and AGRE stated that they had been present. JAP requested
Airian Pteteiino that svepyone attending Board make a point of ensuring that they

mat<e a note of this on the circulated attendance list.
John Brigneli

Henri te^diian ThG uHrestricted minutes were accepted as a true record.
Harvav Run ^
A thur Bfunnschmeiler
John Carter
Andrew Cunie
Hugh Davis
Gwil Edmunds
Aan Evans

B.39 A Paper explaining studentship finance guidelines was tabled

B.49 Actions

a -T — ^ — — — •

Figure 3.8: Integrating AIMS and the Webcosm DLS to Provide Margin Links for Documents.

This implementation is a vast improvement over previous integration attempts but is still a

compromise. Although the links are not embedded in the main body of the document the system

dynamically incorporates links on demand. This is approximately half way to the ideal solution of

seamlessly including generic links in the body of documents. The design allows for some flexibility,

the HTML generated can be varied and its position on the page can be altered so that the links or

annotations can be best placed to suit the document design.

There are problems with the implementation. Again there is the usual balance between the advantages

and disadvantages that dynamic linking brings. In this case the situation is made a little worse by the

considerable amount of processing required to extract the content of each document and send it to the

link service then embed the data back in the document for delivery to the browser. There is also a

limit to how much data can be sent in one transaction with the link service and many of the documents

in AIMS are very large and would break the limit. The large documents also lead to large numbers of

61

links, albeit many may be duplicates, which can lead to the display being corrupted if dozens or

hundreds of links are placed in the margin. The obvious next step in the experiment would have been

to apply the compilation style techniques described earlier. The documents and links do not change

often so links could be generated once and kept in the documents. Each night the system could

compile links into new documents or refresh them all if the linkbases change.

Overall it was not a usable system because too many documents in AIMS were too large spoiling the

effect. However a large amount of technical progress was made in link service integration. A wrapper

was formed around the raw link service making its facilities available through a Java API. This alone

made the effort worthwhile as it produced a useful code base used in projects outside the scope of this

thesis. The result was code that gave the ability to separate the delivery and display of links from the

system that it was being used with. An important step if the work was to be applied to systems other

than AIMS.

In such an implementation the limitations of generic links soon become apparent. Too many links

overwhelm the reader by filling the margin of the page and are a distraction. This problem has been

addressed by work done for the Open Journals project by modifying the DLS. The DLS has a concept

of link priority schemes, different links can be given a priority by their author and the system can

colour the links accordingly or even not display certain priority levels of links.

3.3.5 Altering Links by Date: an Initial Experiment with Context

If a link service was going to add value to the AIMS system then it needed to do more than just deliver

glossary-style links with no thought behind why they were there. It is so easy for the effect to be

ruined if the links included with documents are not included with care and explanation. At this point

it was clear that the opportunity existed to provide a system that took a step further into integrating

the document database with the link service and provide links that had some contextual reason for

being there. To this end a first experiment was made to filter the links provided by Webcosm

according to a crude form of context.

Because the AIMS system acted as an archive for the Department an obvious contextual factor to use

was to vary link delivery as the date of the document varies. There were many time-based events that

could be used with the system and could be represented in the links. These included people leaving

the Department or people changing roles.

62

A simple example is the role of Head of Department which was represented in documents as the

acronym 'HoD'. The majority of the minutes stored in AIMS were written whilst the Head of

Department was Professor Tony Hey. Therefore any occurrence of the acronym 'HoD' in documents

should be linked to the home page of Professor Hey. But roles have changed and the link service

needs to take account of this. Ideally the link service should understand the date of the minutes being

read by the user and add a link on occurrences of 'HoD' to the person who was Head of Department

at that time. The implication of this is that the link service understands the document enough to

understand the implication of its date.

In order to achieve this effect the links need to be designed to have a time frame and the link service

needs to understand how to display the correct links. It would need to be able to ascertain the date of

the document the user is reading and then decide which links to display. The definition of the link

from 'HoD' to 'Professor Hey' needs to include the start and end dates of his tenure. It follows that

there needs to be multiple occurrences of the HoD link in the linkbase to cater for the new HoD and

previous occupants of the title. If a more complex link model was being used then this would not

necessarily be the case but the idea was to use the Webcosm system unchanged and merely filter its

output according to a simple algorithm.

An illustration of the need for such a system is that if the linkbase of user names is generated from

the live accounts system then anyone who has left the Department will not be linked. This can be

solved by using an archive of personnel records to find the starting and leaving dates for employees.

However there is a problem with such a plan. The information needed to make the correctly dated

links, such as a personnel archive, needs to be found and accessed. The information might not exist

and if it does then access might not be granted. After all it must be remembered that the Department

has no electronic archive so it would be a mistake to assume that the data exists.

A first attempt to solve this problem and explore the resulting issues was created. The simplest way

to add contextual filtering by date into the existing application was to add another two properties to

each link - a start date and an end date. These properties define a date range or time frame over which

the link is valid. Links are allowed to be open ended in one direction of time. This allows for links to

current definitions in which it is not known when the definition will change. The service will return

all valid links within the time frame. This allows for overlaps in time frames.

63

There are a number of scenarios for using links with a date range. One is to use the date of the

document as the input to a link filtering algorithm. Each document in AIMS has a date as part of its

metadata, this is the date of when the document was originally created or when the meeting occurred.

Such a system would examine each link and only allow links to be added where the date of the

document is inside the date range of the link. The system displaying the links could obtain this

information from the server and display the links that were current for that time. For instance links

about people who were not members of the Department before the time of the document would not

be delivered to the user.

A more unusual scenario is for the user to tell the system what date they wish to use. The user 'turns

back the clock' to a specific point in time and browses the system viewing the state of play of the

Department at that time. This could be extended to the AIMS application so that the server only lists

the documents that had been created by that time. This version was never implemented but was found

to be technically possible. Such an application could have uses for certain archival database

applications.

To test how possible it would be to create a basic link filtering system modifications were added to

the system that communicated directly with the commercial Webcosm link service. The existing

system was designed to parse the HTML fragments that represented each link that the link service

returned. Without having the ability to modify the link service the only way to add extra parameters

to the links was to create special description strings with a certain format of description followed by

2 dates. The system parsing this HTML could extract the dates into new date fields of the link objects.

From there it was a simple matter to provide a 'barebones' contextual link service.

This application demonstrated that the idea of a link service with the ability to provide contextual

linking was worth pursuing properly. The actual implementation was not worth expanding on as full

control was needed of the link service or the project scope would be severely limited. Therefore it

was necessary to find or build another link service to use for further work. Before that could begin a

considerable amount of thought was needed to understand and design a system that could be called

'context aware'. The next chapter describes this work.

64

3.3.6 Performance Issues for DLS Applications

The major drawback of the proxy implementation approach is in performance, especially with

regards to scaling. The server must process and add links to the whole of each document that the user

views using their browser. The performance is governed by the number of users using the service and

the number of links available.

The other major usability issue with Web proxies is that a W e b browser application must be

configured to use the proxy. This has always caused problems in applications of the DLS and its

descendants. (Hitchcock etal., 1998) summarises the problems well when reporting on the

conclusions of the Open Journals project, the first major usage of the DLS.

Technology must be transparent: users want better services without having to install new

software or change computer settings.

It was common practice for Web users, especially back in 1995 when the project began,

to download and install software from the Web to improve the Web experience. With

the exception of Acrobat it seems the practice of software download does not apply to

typical e-joumal users, as the project soon discovered from publishers and librarians. So

the link service software was rewritten to work at the server end, mediated by a user-set

browser proxy. Even this was insufficient. Libraries do not want settings on shared

machines to be altered, and proxy settings can interfere with firewalls in corporate

environments. In the latest version the direction to the proxy server is attached to the

URL, leaving the user to browse the Web conventionally and do nothing to receive the

link service, bar starting from the right place!

Hitchcock is referring at the end to an implementation of the DLS as a form of portal. The service is

used as a starting page and any pages navigated from that page will have all link destination URLs

augmented by the service in the following manner.

If a link was to http://real-server/real_page.html

then it would become http:/Ainkservice/augment.cgi/}ittp://real-server/real__page.html

This does not require a user to set up a proxy but does require a user to start from a home page hosted

by the link service to make use of the system. In effect the link service acted as a form of portal, a

concept not yet in use on the Web at the time. This was an acceptable solution for their situation.

65

http://real-server/real_page.html

There are a number of answers to the perceived problem of implementing a link service as a Web

proxy. The simplest is that this is scientific research and not a polished product from a major software

company. Some 'rough edges' are to be expected that should not detract from the aims of the

research. This argument has become much weaker when the DLS or its derivatives have been

commercialised, as Webcosm, or implemented outside of the laboratory.

The implementable answer is to make the functionality available at either the server end or the client

end. The server end requires that the link service and the Web server be integrated in order to be

perceived to be a single system to a user. This was attempted with Webcosm which was implemented

as a plug-in to the Apache Web server. It has also been attempted with the AIMS application, see

Section 3.3.4.

There are two ways to implement a link service for the Web at the client side. As seen previously the

first is to modify or add hypertext functionality to the Web browser. This was how the DLS began

life with an interface addition to Netscape. This proved unsustainable as the APIs were unstable

during the early versions of the browser. Modern Web browsers are highly extensible and many

similar systems have been created in more recent times.

The second way to implement a client-side Web link service is to write a personal proxy. This has

proved a popular implementation strategy for a wide variety of applications, not just link services.

Whilst the user needs to go through the process of configuring the browser it can be argued that if

they are motivated enough to use the software in question they will not be troubled by this task.

The WBI system, described in Section 2.3.3, included a personal proxy implementation. The Muffin

(see Section 2.3.4) modular Web proxy used in the implementation of my work was also originally

designed as a personal proxy. The original use was a system to purge annoying artifacts from Web

pages such as adverts and Java applets.

The difference in the implementations is an important factor. The DLS as a proxy is more effective

for users of the Web because it does not require physical integration with the browser and is platform

and browser independent. Documents are just altered for them and require no user effort to activate

the system once the proxy is in use. The first implementation required the user to actively ask the

system to return extra links by using a menu item. Whilst this type of behaviour was normal for

Microcosm and other hypermedia systems it was not compatible with the simplistic hypertext

navigation facilities of the Web where a user simply clicks on blue underlined words to follows links.

66

As the history of the DLS shows there was a time when the only reliable way to augment a Web page

was to use a proxy. Operating systems and Web browsers have improved to the point where this is

not the case, as long as a developer is not concerned with providing a cross platform solution. My

decision to continue to use the proxy as the main implementation framework is purely for

convenience, the systems and principles described could b e implemented again using other

approaches. The most obvious would be to write a new toolbar for Internet Explorer.

3.3,7 Summary

The experimental integration of AIMS with either the DLS or Webcosm led to a number of

conclusions and requirements. The chief of these was that a new design of link service architecture

was needed in order to allow for new methods of creating tailored links. Compiling links into

documents was a seemingly sensible option for the static documents of AIMS but this implied the use

of standard links as opposed to the more creative linking approaches that could be produced if the

link service was a dynamic system. The current system designs hampered more creative approaches

such as pattern matching text to find links or attempting to compute links by using the date of the

document. In both cases there was no clean way to alter the underlying model of the link services.

The services provided one model of links and one way to compute the link to place on an anchor.

Providing link services within the document management system showed promise as it did not

require a client to use a proxy but again highlighted the need to be more creative in linking. The

service was providing too many links and links that were of little use to readers. The unsatisfactory

implementation methods also restricted the experiments.

Linking on dates was a first proper contextual linking system. It demonstrated that a properly

implemented link service could use new ways to compute the links that should be placed in

documents. Linking on dates also showed that a new link model was required in which links had date

ranges over which they were relevant. The experiment demonstrates a requirement for a close union

between a link model, the situation of use and the code that uses these to compute the final link.

Describing the situation of use, or the context, is the subject of the next chapter.

67

3.4 Evaluation of the AIMS System

3.4.1 Formal A I M S Evaluation

A formal evaluation was carried out to measure the acceptance of the AIMS system by the secretaries

of the ECS Department. The evaluation focused on the subjective opinion of the people and measured

the time taken to perform the major functions of the system. This work was carried out for the AIMS

project by Dr Gary Wills (Wills et al., 1999). The report presents the methodology and describes the

rationale behind the approach used. A summary of the report and its results are included below. In

this section references to 'users' means staff who are 'contributors' to the AIMS system and not just

'readers' of the Web pages.

The evaluation was conducted in two stages, first a contextual review (Preece et al., 1994) of the

working practices of the secretarial staff was undertaken. The second stage, was a usability study of

the system, which was conducted in two parts. A structured expert review using discounted usability

engineering (Nielsen, 1989, Nielsen, 1994) with an additional principle of 'Provide Navigational

Aids' to ensure that the hypertext components of the system are reviewed (Wills et al., 1997). The

second half of the usability study was to conduct a time trial with users completing questionnaires.

The questionnaires were used to measure the user subjective opinion of the system and their

acceptance to use the system (Davis, 1993, Davis & Venkatesh, 1996), an additional criteria of

Navigation was added to measure the users opinion on how well they could move around and through

the information space.

The contextual review showed that currently the main method of archiving is in the paper format,

making it difficult for academic staff to obtain back copies of meetings to check on discussion or

discussions made at previous meetings. The length of time required to photocopy, collate minutes,

put them into envelopes, stick the address labels on (which have previously been printed) then walk

them to each group, takes on average between six to eight hours.

68

Task Average time second (SD) Median

Task 1 Enter a new document 98.6 (10.0) 9 8 j

Task 2 Enter the next set of Minutes 60.8 (7.7) 6 3 j

Task 3 Edit document details 334 (6.3) 354

Task 4 Search for a document 40.9 (12.0) 4 3 j

Task 5 Using Webcosm to follow links. 3L5 (&3) 320

Table 3.1: Average Times to Complete the Tasks

The average time to complete the tasks is shown in Table 3.1. The time taken to complete the tasks

was consistent throughout the user group. The obvious saving of time comes from the ability to

publish the set of minutes extremely quickly, when compared to the current method. The ability to

disseminate information quickly would be a significant cost benefit to the department. However, this

will only be an advantage if there is a paradigm shift in that an academic member of staff will need

to read the minutes online, or as last resorts print them off themselves to read them.

The general comments from the users showed that they were interested in the idea of a central

repository for administrative information. This was reflected in the high score from the

questionnaires given to the Impression Category in Table 3.2, and the 'intention to use' category from

the Technology Acceptance Model criteria in Table 3.3. All the users replied that they would

recommend the system to their colleagues, and that the majority (87%) could navigate the

information space.

The scores were normalised by dividing the score by the number of respondents and the number of

questions they answered. The maximum normalised score is +I indicating a very strongly agreed to

-1 indicating a very strongly disagreed to all positively phrased questions (and visa-versa on all the

negatively phrased questions). A score of 0.5 indicates that all the users agree with a positive

statement, i.e. They agreed with 'The AIMS system is one that I want to use on a regular basis.' The

questionnaire also showed that the scores given were not affected by the user's access to the Internet

from home, or the user's preference for using the Internet.

69

Criteria

Normalised

Score

Range -1 to +1

Impression- user's feelings or emotions when using the software. OjO

Command - the measure to which the user feels that they are in control.

Learnability - the degree to which the user feels that the application is easy to

become familiar with.

0.44

Navigability - the degree to which the user can move around the application. &43

Helpfulness - the degree to which the application assists the user to resolve a situa-

tion.

&43

Effectiveness - the degree to which the user feels that they can complete the task while

using the system.

037

Over All 0.44

Table 3.2: Score from the Questionnaire

TAM Criteria Score

Normalised Score

Range -1 to +1

Intention to use 17 0^7

Perceived Usefulness 41 0.46

Perceived Ease of Use 80 041

Table 3.3: Technology Acceptance Model Scores

3.4.2 Ref lect ing on A I M S

At the time of writing the AIMS system had been available in the Department for over 3 years. It is

still in use by the central administration group of the University and archives the minutes of their

meetings. They have been using it for 3 years and are currently looking for a replacement solution

within a wider remit for a University wide document management solution. It was also evaluated by

a number of other UK University departments.

70

Within my department the formal usability evaluation was highly encouraging but the system was

never widely used. More importantly for the author it was extremely successful as a research project

and testbed for this PhD work. The Lotus Notes development skills have been put to great use for a

variety of small, Web based, applications for other projects and administrative uses. However the

level of skill needed to produce them was only gained after many years of struggle against an

extremely complicated system to learn. This complexity is one of the factors which has contributed

to the lack of official interest in taking over and maintaining the system. It is fair to say that Lotus

Notes has gained a little notoriety for its 'unique' interface design.

The design of AIMS had one serious technical flaw. It struggled to cope with very large documents

or documents that spanned multiple files. Despite many attempts no satisfactory way was found to

present a decent user interface that allowed users to relate documents together to indicate that they

were related. For example a way to show how chapters of a book were related. A great deal of work

went into ensuring that the underlying system could cope with 'compound' documents and even to

cope with complex version control scenarios where users could update certain, but not all, chapters.

This was never fully deployed. The AIMS application pushed the capabilities of Lotus Notes and

early Web browsers to the limits and often it was not possible to achieve the effects required. Many

of the early link service integration experiments were hampered by the inability of Notes to do what

was needed.

What has changed in the time since AIMS was started is that a lot more administration information

is being published on the Department Web site. This is being done by the Web Masters acting on the

instructions of senior members of the Department. A variety of other sources have also appeared

including a publications database and a central database of research projects is in production. In the

vast majority of cases the information is there partly due to the much greater usage of the Web and

also because external factors such as Teaching Quality Assessment provide a real need. What has not

happened is a model where the producers of documents are the W e b publishers of their documents.

This unusual model is allowed by AIMS but the hierarchical nature of the Department expects that a

mechanistic task such as this should be done by purposely employed administrative staff. Many

secretaries were trained on using AIMS but few ever used the system on more than a few occasions

despite their positive response at the time. The vast majority of information in AIMS was placed there

by myself.

71

In the time since the AIMS project began some of the working practices of the Department have not

changed. The minutes of meetings are still word processed and printed then distributed by hand. They

are still not available online and there is no sign of this changing. Therefore the author feels justified

in the assumptions made that the system would have to be incredibly simple to use or it would not be

adopted. Even though submitting a document takes very little effort the system is not used. The

combination of little change in some aspects of the Department, little demand for the material to be

online and the employment of more Webmasters to specifically author Web page versions of the

certain documents has meant that the AIMS site is little used. This is regrettable but the focus of this

research work lies in the link service provision ideas that were provoked by working with AIMS and

the real world documents it contained.

3.4.3 Managing the Service

As the system design evolved and the system was brought into service it was found that there were

two distinct roles for managing the system. The first was technical. The system administrator needed

to have a certain amount of Lotus Notes knowledge which is a specialised field. Many tools and

scripts are provided with AIMS to maintain the documents and the database but using them

effectively takes understanding of the database model and the programming languages involved.

Lotus Notes features a language called LotusScript which is very similar to Visual Basic and later

provided support for Java. These languages provided access to the large object oriented API of the

system which requires a considerable amount of training to fully grasp. The server administration

tools shipped with Lotus Domino are powerful and well documented but it is not a trivial task to

understand the full complexity of the system and fix problems.

The second, vital, role is editorial. This role is crucial in keeping the site up to date and relevant. As

well as expecting all secretaries and administrators to actively submit their work to the server a person

or persons is needed to ensure that other documents are in the system. There is also a considerable

amount of work to do because not all staff will actively use the system. That person needs to know

what documents exist and where to obtain them electronically to ensure they are in the system. It may

also be that the submission is to be a complicated collection of documents rather than one single file.

For example the major, regular, submission of documents follows the meetings of the Departmental

Board. The minutes, agenda and accompanying reports are submitted to AIMS together. There are

many authors and the system works most efficiently if one person ensures that all documents are

submitted. The logical person to do that is the meeting secretary.

72

This need for a second person to manage the service, an editor, contradicts the initial goal of the

project. It was hoped that each person in the Department who wrote something worth saving would

directly contribute it to the system themselves. The system is simple enough for that to happen.

Unfortunately it never did. One reason is that the service was slightly ahead of its time with the users

not being as Web-aware as it needed. Another is that academics will not do 'menial' tasks if they do

not have to and will expect an administrator to do it for them. The third is that administrators will only

do precisely what they are told to do for a job and as the political will has not being there to instruct

them to do it they have not entered documents. Since the formal evaluation was carried out no further

training has taken place and no new administrative staff have been trained. In short, using AIMS has

not entered the culture of the Department.

3.5 Conclusion

This chapter has described the AIMS document management system. This was developed to allow

writers of normal word processed documents to submit them directly to a Web site which would take

care of all the work of publishing the document on the Web. This design meant that none of the pages

would have links within their content so the application of technologies such as the Distributed Link

Service and the commercial equivalents were highly desirable. From this base point a variety of

prototypes were built to evaluate how best to integrate open link services with a Web server and try

to improve the quality of linking available by closer integration of the two systems. This chapter has

described the ways in which the two systems were integrated to alter link delivery depending on

factors such as the date of the document in question or by pattern matching.

Near the time that the AIMS project formally ended the conclusion had also been reached that a link

service needed to be built that understood how to provide links in context. The second conclusion was

reached that in order to build such a system the service would need to be designed for contextual link

processing from the beginning and not as an afterthought. At this point the use of the DLS and

Webcosm stopped and the planning began to write a new contextual link service.

Before describing the resultant contextual link service architecture in Chapter 5 the next chapter

tackles the difficult topic of context.

73

4 Context

4.1 Introduction

The experiments with integrating the DLS and its commercial descendant, Webcosm, now Portal

Maximiser, with the AIMS document management system resulted in the decision to move the design

of such systems in a new direction. The link service needed to deliver links with greater relevancy to

a reader whilst not overwhelming them with too many links or distracting them with irrelevant

destinations. In summary a link service should provide contextual linking and be adaptable to new

uses and types of Web sites.

Some of the integration approaches taken with the AIMS system resulted in the user being presented

with dozens of links to people or other information, sometimes delivered in a small space such as the

left hand margin of a Web page. Clearly the links needed to be reduced in number. The natural

approach to this problem is to filter the links that are delivered with a document. They would need to

be filtered according to criteria relevant to the circumstances. This is where the work on improving

the link service overlaps with the field of information filtering (Belkin & Croft, 1992, Foltz &

Dumais, 1992, Loeb & Terry, 1992). Deciding what criteria to use when filtering is where this work

strays into the much broader field of context.

Filtering links is the simplest solution, and the most crude, it assumes that the system has no influence

over what links are being created and placed in the system, merely that it blocks delivery of a link at

the last moment. Microcosm showed that a link service infrastructure can do so much more. The next

logical advance is to generalise the link creation process itself. This is the process of parsing

documents and making the decision of what links to place where, what form they should take and

how the user should interact with them. The system now becomes a contextually aware adaptive

hypermedia system. Generalising further we see that the function of the link service could be to

provide content, usually links or data to be used as links, to place into Web documents. The system

must be designed in such a way that it is as general as possible for the purpose of serving links. This

chapter discusses some of the ramifications of this goal.

The difficulty in attempting to improve the design of the system is that one must confront the problem

of generality identified by John McCarthy (McCarthy, 1987). He argued that even a small addition

to the predetermined possibilities that a program must handle often results in a rewrite, starting with

the underlying data structures. Any system that attempts to utilise context requires a model and it is

74

this model that can always be broken. Bruce Edmonds points out (Edmonds, 1999) that in order to

pragmatically get on with building a system based on a complex model many factors must be ignored

and a set of assumptions made. Again this results in the possibility that new circumstances will be

found to break the model. Edmonds goes on to illustrate methods for modelling context to use in

applications. The key skill is to learn what factors are so constant they can be ignored and to

understand when other factors will affect the model.

Ideally a generalised link service design would be able to cope with new situations, new document

types, new link types and new methods of processing links. It should be possible to change the

underlying model used by the link service to use new input factors and situational contexts. The ideal

version of such a system is impossible but in order to make some advance in the right direction we

need to understand how systems claiming to incorporate context do so. This requires an investigation

into what context means to different disciplines and how researchers pragmatically attempt to take

advantage of it.

4.2 W h a t is Context?

Context is a word meaning many things and is routinely used in connection with a vast array of

subject areas. In computing the term has dozens of uses and we shall look at a number of the major

areas that describe themselves or their systems as contextual.

It is so difficult to precisely declare what context means that it is traditional (Akman & Surav, 1996)

to start with dictionary definitions:

"The weaving together of words and sentences."

Oxford English Dictionary.

"The circumstances in which an event occurs; a setting."

The American Heritage Dictionary of the English Language, Fourth Edition.

"The interrelated conditions in which something exists or occurs."

Merriam-Webster Collegiate Dictionary.

75

Another set of definitions and usages of the word can be found by using Google. Searching for "What

is context" gives an insight into how the only thing that people can agree on is that nobody can agree

on a definition. This is left as an exercise for the reader as the list will change over time.

This problem is acutely felt in computer science. Bruce Edmonds puts it well (Edmonds, 1999).

"Frequently at workshops and conferences on context, one finds that the emphasis is on

drawing distinctions between different types of context and illustrating how little each

type has to do with the others."

In her keynote at Information Seeking in Context (ISIC96) Brenda Dervin said that to

"ask [What is context?] turns out to be almost embarrassing, and certainly a question

leading to a quest that demands extraordinary tolerance of chaos." (Dervin, 1997).

She notes the overuse of the word in the social sciences, a phenomenon clearly spreading into

computing.

Dervin's survey of context (Dervin, 1997) forms a continuum in the treatment of context. The

extremes of the study of context can be caricatured in the following ways.

Everything is a context which must be measured and taken into account. This reduces

context to a set of attributes to be measured and it is possible to f ind approaches where 'almost every

imaginable attribute of people, culture, situation, behaviour, organization, or structure has been

defined as context'. Context is the enemy of understanding, to be eliminated or reduced to simple

data.

Context is a cont inuum. The view states that using context is the only way to understand human

behaviour. It is the way in which meaning is transported. It is not possible to quantify this amorphous

whole as each context is unlike any other, derived from an unlimited set of factors.

These extremes of opinion essentially reduce to taking either a quantitative or qualitative approach to

defining context. Dervin's survey picks out many major themes in all of the areas studying context,

some of which are instructive in this discussion.

One of the themes is that knowledge is partial and temporary. Therefore any attempt to use context

should cope with uncertainty and fluidity in the model. In some ways a context is a historical device,

a snapshot of a system in time. A core theme is that the knower and the known are bound together

76

when producing an understanding. This goes along with the idea that context can never usefully be

treated as an independent entity and that doing so has the effect of reducing context to something

more simplistic.

Ultimately there is a balance to strike. Some method must be used to measure, define or determine

context at the risk of reducing an essentially unmeasurable whole to something overly simplistic. In

order to pursue practical goals where context is concerned one has to 'make a cut' somewhere,

somehow. This is especially true in the highly pragmatic circumstances of the work presented here.

Happily there are many practical lessons to learn from diverse f ields on how to go about it. We shall

now see what computer science has done in order to represent, determine and utilise context.

4.3 Representing Context

To use context in some form in an actual computer system it must be modelled and represented. Here,

again, we find a bewildering array of approaches which have a lot in common with the need to define

context and use it. It is most normal to find models that are solely to satisfy a particular need or

application area. Applicability to other fields is often not possible nor envisaged. This is born of the

necessity to implement something that is not too general (Edmonds, 1999).

More detailed definitions of context in computer science fields require more specialised fields. The

definition of context must be given in the context of the subject being discussed. Perhaps this is the

root of the problem of overusage of the term.

In the AI field (Akman & Surav, 1996) give a comprehensive review of various attempts to formalise

context and identify what role context plays in a variety of fields in the subject. These include

intelligent information retrieval, knowledge representation and natural language processing. In

natural language processing the need is to narrow down the possibilities of meaning in something

such as a statement or sentence. The aim is to remove ambiguities from language and attempt to

eliminate multiple meanings or at least try and attach some form of probabilities to each possible

meaning. This may include attempting to find the common ground between speakers, the intrinsic

context of the conversation. Some utterances must be accompanied by context - "the library is to the

left of the administration building" is only correct for a single location on a university campus and

that context must be supplied for the sentence to be useful.

77

The need to disambiguate is also true of categorisation studies and methods of representing

knowledge and reason. The process of categorising the everyday world requires context which is

often implicit in our language but needs to be defined if a system is to be even remotely effective. A

temperature may be classified as 'high' for the air temperature but 'normal' for body temperature.

This requires rules to be written, which, as stated earlier, can always be broken if one tries hard

enough.

McCarthy's introduction of an idea for formalising context (McCarthy, 1987) was based on the

assertion that there can be no general context where everything is meaningful and all stated things are

true. Therefore the domain or context in which something can be stated must be defined. The basis

for his representation proposal was that a proposition in a certain confezf.

The various methods that (Akman & Surav, 1996) cover mostly concentrate on the notion of

narrowing the domain of possibilities to make it more possible to model context. The overall goal is

to create a database of common-sense knowledge that can be re-used outside of a specific domain.

For instance defining micro-domains in which a context is defined and can be used. The concept is

crudely analogous with local variables and functions in programming languages. The different

approaches do not always agree, for instance one says that an assertion always holds, in every context,

but that the values might be different.

In order to be able to learn from a situation, or make sense of it in a model, Edmonds advocates that

we need to make assumptions that many possible causes of an event remain constant. Therefore they

can be factored out of a model of a context as parameters. The list of assumptions made varies with

the domain. For instance these could be physical factors such as coordinates in a physical model -

time, distance, gravity. At the other end of the scale in terms of complexity is the world around us and

our social interactions. Here there are so many factors that it might not be possible to find any

commonalities to use.

A highly practical example of this is described by (Turner, 1997, Turner, 1998). He describes the

development of operating software for a robot submarine which is designed to operate autonomously.

To do this the team developed the agent based software to model its world as a set of contexts. In

order to be able to produce these the factors and inputs have to be limited to those that differentiate

the different contexts that the vehicle can find itself in. Their terminology differentiates situation from

context. Situation is all the circumstances surrounding the agent including internal system state.

78

Context is the set of elements of the situation that impact behaviour. Each context tells the system

how to operate under the conditions found. Again, the model is reduced to just the factors that are

deemed to matter to the application.

The system attempts to find all of the context-schemas that match the current inputs and then merge

them into a new current context. The context includes all of the rules of how to operate whilst in that

context. The contexts are implemented in frames using the Common Lisp Object System and include

relationship hierarchies. The problem they face is attempting to predict all of the situations that the

robot could find itself in and what it should do about it. It is not surprising to learn that the vast

majority of the code is concerned with disaster recovery and how to deal with failure or danger to the

vehicle. The system contains fuzzy event detection capabilities to aid in matching inputs to a context.

Secondly there is a way to grade the importance of an event in order to correctly match it to the right

context. Thirdly they can directly link an event to a goal through a context. For instance the event

'leak' can trigger a rise to the surface if the context is 'at sea' but the context 'in harbour' will require

it to sink to the bottom to avoid damage from surface traffic.

For a system to be context aware a practical way to implement a solution is to have a user model, a

system model and a task model, or some combination of the three. User and task models try to

understand what the user wants to achieve when using the software or system. For instance the user

wants to enter a room or find relevant documents to the item of interest. As before the models must

attempt to encompass a wide enough set of expected behaviours and expect to be broken at some

point. (Selker & Burleson, 2000) point out that a users needs are often intangible. Users often do not

behave logically and issues of comfort, self-image and motivation come into play. For instance a user

might not shop online because it gives away a lot of information about their personal tastes to a third

party. The user might take their grocery shopping list to the supermarket on a state of the art PDA

because they love to have the latest gadgets when a pen and paper would be sufficient.

The simplest models are based on parameters and environment variables as this is often easily

sufficient for the application and is easy to implement. Schilit 's (Schilit, 1995) system used

environment variables stored on context servers. The HP Cooltown project used a Web based context

model in which an entity's context could be retrieved using a U R L (Kindberg et al., 2000). In this

case the system was concerned with the movement of people and things between places and the

infrastructure allowed the transfer of their Web presence between servers representing different

locations. Another location based context model is in the Sentient Computing Project from the AT&T

Cambridge lab (Harter et al., 2002). The system stores people's location as part of a shared world

79

model allowing users and software to interact together in the model. Users are tracked around the

building and all of the office furniture and layout are also in the model. In these systems context is

essentially location.

4.4 Determining the Context

A system utilising a model of context requires a way to detect changes in the situation which will lead

to the system switching to a new context or updating the existing context model. In different subject

areas the deHnition of context varies.

4.4.1 Document Understanding

For many researchers context is closely linked to understanding a document. One goal is to ascertain

what a user is reading. For a variety of reasons many companies and research groups are working on

ways to automatically determine the meaning of text documents. The major method is to

mechanistically understand or categorise text. If a system can determine the subject matter of a piece

of text then it can be said to understand the context of the document. Again the definition of context

is different to those seen from before. It is only a slight exaggeration to say that document

understanding is seen as a potential source of huge revenue to many companies. The promise of being

able to accurately guide users through enormous document repositories to the documents, paragraphs

or knowledge they need to know is driving a thriving industry.

One of the most common basic computational tools used is a statistical technique to calculate words

that occur more regularly in documents and give an indication of their importance. Term frequency -

inverse document frequency (TF-IDF) is a well established information retrieval technique (Salton &

Buckley, 1988) which works on a corpus of documents. An index vector is created for each

document, each element of the vector represents a term in the document and its magnitude indicates

how well that term represents the content of the document. This is achieved by using the frequency

of the term in the document and the inverse of the frequency of documents containing the term. Hence

a term appearing often in a document but rarely overall will have a high magnitude and hence strongly

indicates that the document is a good choice if a user wants to know about that subject.

The system works well for many situations but has limitations which various researchers have tried

to address. The major problem is that documents need to be pre-processed and the corpus needs to be

known in advance of usage. If the techniques are to be used in connection with Web browsing then

it is a serious problem as the corpus cannot normally be known in advance.

80

A tool such as TF-IDF will aid greatly in automatically understanding the content of a document. The

context of the document will require more work. Again we need to understand what researchers use

as their definition of context. In this case context means how a document is being used, it is related

to the reader's tasks or goals. As (Bauer & Leake, 2001) puts it ' there would be a different answer to

the question "What is this document about?"'. Various methods have been developed to determine

the users goal by looking at the documents the user is reading and seeing if a pattern can be found in

the individual document contexts and hence the overall context of the user.

The most obvious way to obtain such information is to request a user to directly provide it. This is an

unrealistic approach as users will often not take the time to supply such information so automatic

methods are required. An example of such a system is WordSieve (Bauer & Leake, 2001). WordSieve

works in real time to filter documents the user is reading and maintains 3 layers of information about

words in the documents. The first layer is similar to TF-IDF in that it builds a list of most frequently

occurring words in the documents. The system is built around the notion of the level of excitement

of a term and has decay functions built in so that words that stop appearing in documents will fade

from the list. The second layer maintains a ranking of terms appearing in sequences of documents. If

a term keeps featuring strongly in the first layer then it will move up the ranking, the rate of movement

in the ranking is also a factor. This layer does not 'forget' words as fast as the first layer. The third

layer is the opposite of layer 2 in that it maintains a list of words which only rise to the top when they

stop appearing in list 2. It helps to define the point at which the context has changed.

Finding related documents for a user is a popular area with similar goals to those in this thesis. Again

the word context is often used in the description of these techniques. There are plenty of methods to

choose from. For instance the WebTop system (Wolber et al., 2002) builds a personal space of related

documents with both links to the document and from the document. They call this the context view

of the document. They employ multiple techniques to provide the relationships. The system presents

a personal space which integrates three sources of linking information they contend are traditionally

kept separated; local file and directory information, links to Web pages in the form of bookmarks and

the links found within the document themselves such as hyperlinks and citations. In addition the

system attempts some document analysis of the current document being viewed or edited to ascertain

its 'meaning' and passes that to the Web search engine Google (Brin & Page, 1998) for further

linking.

81

Another example was Kenjin from the company Autonomy'. Kenjin was a simplified version of the

full Autonomy product and ran on the user's machine displaying a toolbar in a browser, word

processor or email client. It monitored the users typing and then found similar documents for the user.

Autonomy claimed that Kenjin could find the real ideas within documents so that the returned

documents were found on more than word similarity. The system used Baysian inference logic to

interpret the context of the text in question. A user could drag a text selection onto the toolbar to

directly query for results or the system could automatically supply links. Computing magazine

reviews stated that searches were no more effective than a normal search engine.

The closest related project to the author's own work is the PhD work of Samhaa El-Beltagy (El-

Beltagy et al., 2001). Her system provided generic links in documents where the links were placed

by determining the context of the document and using generic links of similar context. In this case

the definition of context was the overall subject matter of the document the user was reading. Links

were created by harvesting documents and using a TF-IDF based technique to ascertain the subject

matter. Hence a generic link to the document with an associated context could be stored. In order to

build a database of links to use in the system, groups of users nominated interesting documents to

process via a user interface agent. This allowed the system to be primed with contexts and links. The

TF-IDF process alone was not enough to distinguish between certain types of words as the vectors of

some types of documents would be very similar. Similarly to WordSieve a more accurate way was

established to distinguish between certain document contexts.

4.4.2 Pervasive Computing

Those in the field of pervasive or ubiquitous computing use the term 'context' to define some element

or elements of a person's physical situation. It is implicit in all of the work in this field that context

is a physically measurable phenomenon. It can be argued that the impression given by some of the

papers in this arena is that the term is theirs alone, even to the point that the community has coined

the phrase 'context-aware computing'. In these systems context is a measurable dimension to be used

as an input to a software application, most commonly by the use of physical sensors in the users

environment. On Dervin's scale, see Section 4.2, we can see that this is a field that is near the extreme

of the quantitative approach to context. Whether it is truly context is a different matter but many of

these applications are the most practical applications to date and do advance the field forward more

than most considered here.

'wwvv.autonomy.com

82

Ubiquitous computing has been described by Mark Weiser (Weiser, 1991, Weiser, 1993) as the

method of enhancing computer use by making many computers available throughout the physical

environment, but making them effectively invisible to the user. Rather than the computer being a

focal point at which a user must sit, computers are so embedded, small and natural that they are just

used without the user realising it. The steps to achieving this require systems that understand the users

physical context (Davies et al., 1998, Mynatt et al., 1997, Pascoe et al., 1998), most commonly in the

form of location and the systems relationship with other resources on the network. Such systems are

known as context-aware applications (Schilit et al., 1994), the subject of Bill Schilit's PhD Thesis

(Schilit, 1995) and subsequent work (Mankoff & Schilit, 1997). Systems built into the fabric of

offices that follow users around a building are known as follow-me applications and are seen as a

subset of context-aware applications. They make use of a person's location as well as a detailed

profile to automatically display a users desktop on any computer in the building (Harter et al., 2002).

A major contribution to this particular field is Anind Dey's PhD thesis (Dey, 2000) in which he

describes the development of a 'context toolkit' (Dey et al., 2001). The definition of context is given

as

"any information that can be used to characterize the situation of an entity, where an

entity can be a person, place or physical or computational object."

He describes 'context-aware' applications that

"use context to provide task-relevant information and/or services to a user."

The goal of the work is to develop a framework to deal with context handling in the same way as input

handling from devices. The framework is a way of abstracting the differences between context inputs

to provide generic methods for developers to use in applications. Each context is abstracted primarily

through the use of context widgets (Salber et al., 1999) in order to provide similar interfaces to each

sensor and facilities such as reuse, polling and notification mechanism and a common interface. The

design was modelled on graphical user interface widgets. This context widget idea was the starting

point for the toolkit which added support for a number of more complex issues. The biggest issue

when building environmentally aware applications is that sensors are often physically distributed

over wide areas, such as a building. The consequence is that applications and the computers being

83

used are also distributed. This also leads to applications where the context widget does not belong to

the application but is independent. The third issue was that some contexts required greater abstraction

and more processing than others before they were useful to applications.

The toolkit architecture consists of the components illustrated in Figure 4.1.

Application

Application

Aggregator
Interpreter

Discoverer

Interpreter

Widget

^ Service ^

Widget

Context
Architecture

Figure 4.1: The Context Toolkit Architecture.

Sensors provide data to context widgets which make it available via attributes and standard

programming techniques such as polling and callback. They also provide historical context

information. Context servers aggregate context data at a higher level from multiple widgets saving a

developer from subscribing to multiple individual widgets. Interpreters provide abstraction from the

raw data provided by widgets, this enables code reuse and also means that applications do not have

to do all of the raw interpretation of data themselves. Components register with a Discoverer on

startup which act as a form of resource discovery service to the rest of the system. These components

communicate using XML messages via HTTP providing cross platform support for distribution.

84

The overall application has similarities to a distributed agent framework such as SoFAR (Moreau

et al., 2000). These provide notification and callback services with individual agents providing

services to other agents in the system. The abstraction that agents and their ontologies provide are

similar in capability to the context toolkit. It is also similar and could be rewritten to conform to the

SOAP^ techniques for writing distributed applications. In fact it would not be surprising at all to see

future versions supporting a form of SOAP. However the toolkit is designed from the start for use

with applications dealing with physical phenomenon such as people entering a room and have the

correct logistical capabilities built in whereas agent frameworks tend to be designed for more general

purpose work.

An application from the same arena but with a different definition of context is a context-aware office

assistant (Yan & Selker, 2000) developed at MIT. The developers wanted to decrease the number of

interruptions to an office owner. They noted that many visitors to an office do not want to talk with

the office owner but may just want to leave a short message or check the status of the person. The

office assistant acts as an intermediary which visitors can interact with on behalf of the office owner.

The system combines an office door sensor system which can detect people approaching a person's

office with an interactive scheduling system and the ability to interact via a display with visitor and

owner. The agent understands the status of people and can decide whether the person is important

enough to warrant disturbing a current meeting. The contexts utilised in the system are listed as;

identity of users and visitors obtained through a question and answer process, the office owners

schedule, the office owners status and the office owners willingness to see a visitor. This is obtained

via interaction with the owner. Again the usage of the word context is different to any seen before.

The GUIDE system from Lancaster University is a prototype handheld tourist guide (Cheverst et al.,

2000) which has been designed and deployed in real-world use throughout the city. The project has

produced a great deal of pragmatic lessons for developers of context-aware applications. Their work

is more appropriate to the pervasive computing world than the specifics of the work described in this

thesis but the lessons are still worthy.

The GUIDE system uses 300 wireless communication cells in the city centre, each with a radius of

approximately 300m. These disseminate information to the terminal as well as enabling the terminal

to know its own location. The team list three prime goals of using context to improve the system. The

main outcome is to simplify the input from the user required to adequately express their task or needs.

^Simple Object Access Protocol

85

A second is to simplify the choices and information presented to a user: for instance rearrange a list

of nearby tourist attractions so that the open ones appear at the top of the list. The third is to reduce

the size of the mental model the user needs to make a choice. This is achieved by an agent doing some

of the work for them (Cheverst et al., 2000).

The lessons they present are as follows. The system must work predictably and consistently. They

quote the 'principal of least astonishment' as the rule to follow. The system should improve the

original functionality as opposed to confusing the user with a change in the mental model. There were

drawbacks to the system. Using context to constrain presentation or the results that a system produces

can be frustrating for a user. Their example is that the system could be used to list nearby attractions.

The early versions omitted attractions that were closed in order to simplify the list. User feedback

showed that this was frustrating some users who want to see a building just for its architecture alone.

They therefore incorporated this into their model.

What is not acknowledged in their report is that this is a classic example of McCarthy's problem of

generality, see Section 4.1. Here was a condition that broke their model forcing them to add additional

complication into the system at a later date. This time they were lucky because the data model was

unbroken in terms of the data stored about each building, they only needed to add to the user model

a preference for seeing buildings from the outside. Their conclusion is that you should allow users to

override the systems effects, a useful point to remember. They do not mention that such factors are

always going to occur and it is impossible to cater for all possibilities. For instance, what if people

wanted to see all buildings in the list to make plans for the following day when the locations would

be open? Perhaps this fallibility is so obvious to them it does not warrant mentioning.

The quality of the work done in the project, including a comprehensive survey of user requirements,

ensured that this type of minor alteration was all that was required. More problems were caused by

difficulties with the physical implementation of the system as the devices had difficulty establishing

their location with enough accuracy.

The pervasive computing community is tackling the problems of designing contextual systems to

cope with problems such as change, distribution and reconfiguration. Whilst the AI community has

many decades of experience in thinking through the underlying problems the pervasive computing

world is taking steps towards pragmatic solutions to some of the problems.

86

4.5 Using Context

4.5.1 Hypertext Systems

There are numerous examples of the use of the word context in the hypermedia field. These tend to

be highly pragmatic approaches and also tend to be unlike other perspectives already presented. A

definition will be given for context which is often not discussed but just presented as a known

quantity. Little acknowledgement is explicitly given to the wider debate on context as seen in the

previous sections. Often context is another word for situation or a concept, it is another dimension

across the hypermedia space to be utilised. Whilst the pragmatism and practicality of the approaches

ensures that the authors can get on with building systems, there is little acknowledgement of other

points of view on the subject.

A prime example stems from issues that arise when attempting to scale hypermedia systems to cope

with very large amounts of data. In 'Dexter With Open Eyes' (Leggett & Schnase, 1994) discuss the

notion of 'Hypermedia-in-the-large', drawing on the work of (Malcolm et al., 1991). Hypermedia-in-

the-large examines the issues that arise when a hypermedia system starts to be deployed on a greater

scale than was usually the case for most systems developed by research groups (Anderson, 2000). In

their discussion they describe the need for a mechanism to reduce the size of the working set that the

user is currently interested in, essentially a filtering mechanism to lower the number of links,

documents and other components in use at one time. The notion was derived from examples such as

Webs in Intermedia (Haan et al., 1992) and association sets in H B l (Schnase et al., 1993).

The notion carried on into the work of the OHS Working Group. (Reich et al., 2000) defined Contexts

as similar to these definitions. They cited (Delisle & Schwartz, 1987) who used context as a way to

partition hypertexts into different views to aid collaborative working and deal with version control

issues such as merging. The implementation view on the OHS system was that a Context object was

a collection of id's to other objects in the systems, similar to the existing Composite object. The

notion was not explored to much further extent within the OHS but individuals went on to produce

new definitions in subsequent systems and models. There is little explicit definition of what context

means in these papers which seems to hint that it is considered a known quantity.

Millard differentiates a Context from a Concept or a Composite object in the FOHM model (Millard

et al., 2000) as implemented in Linky (Michaelides et al., 2001). The actual implementation of the

FOHM model, the Linky service, uses Context as an extra mechanism for filtering results of queries

to the link server. A Context object can be attached to various parts of the link model. The Context

87

objects are implemented as a series of key-value pairs that may be matched against one another.

Queries to the link server are made in context. Parts of the link structures that do not match the query

context will be removed and the remaining link structures collapsed correctly. This allows for

dynamic views on a single linkbase rather than choosing from a set of static linkbases.

The Dexter model was also extended by the Amsterdam Hypermedia Model (AHM) with the

intention of including greater support for the complexities of presenting multimedia content

(Hardman et al., 1994). Hypermedia linking, as opposed to hypertext linking, needs to take account

of time-based presentations and linking into complex collections of dynamic contents, such as video

being played alongside static images. The solution was the creation of link contexts, these are

structures that give explicit instructions about which parts of a presentation are affected when a link

is followed (Hardman et al., 1993). The work has primarily fed into multimedia presentation projects

(Hardman et al., 1999) and has strongly influenced SMIL (Synchronised Multimedia Integration

Language) (W3C Consortium, 1998b) and SMIL2 (W3C Consortium, 2001), languages for authoring

interactive audiovisual presentations.

Hypermedia systems have taken advantage of contextual information for a long time, whether the

word context was used to describe it or not. The primary area of work is the adaptive hypermedia

world as discussed in Chapter 2. The adaptive user models and task modelling applications are

contextually aware to a sophisticated degree though the methods for determining context and sensing

change are limited.

4.5.2 Other Fields Using Context

An unrelated use of the word context is in information visualisation. Here the phrase 'focus+context'

is a technical term for a system which visualises a large or complex amount of information by making

a portion of it clear and detailed (focus) and displays a smaller scale or less clear version of the

periphery of information (context) (Mukherjea & Hara, 1997).

An unexpected result of this investigation into uses of context is that the term 'contextual linking' is

now used by the Web advertising industry. It defines advert links placed on sites that are deemed to

be more relevant to the page requested by the user. The most common use is on search Web sites. The

user enters a search term and the adverts placed on the returned page will be related to the query. The

market is reaching maturity with there being a considerable level of sophistication in both the

marketing techniques and technology being developed.

For instance a piece of software for creating the adverts for a travel Web sites called Tripadvisor^ can

provide packages of contextual advert links on a page. These links take into account the locations the

user is interested in and the activity they are engaged in. For instance the user could be looking at

hotels in a certain town. The software will provide links to a range of services for booking hotels in

that town as well as fares for travel to the town. The links are categorised by the staff of the company

for the customer. These technologies are advanced keyword matching systems, perhaps aided by

some taxonomy or ontology work. The use of the word context is reasonable for the markets the

companies work in but by the more stringent categorisation used here they are not strictly contextual.

As there is no clear definition of context, their use of the word is as justified as anyone elses.

4.6 Summary

A context aware link service is one that would be able to cope with new situations, new document

types, new link types and new methods of processing links. It should be able to change the underlying

model used by the link service to use new input factors and new contexts. Understanding context has

led to an investigation of its meaning and use in different fields of computer science. At the definition

level there are multiple ways to describe its meaning ranging f rom the idea in which everything is a

context to be measured and taken into account to the notion that context is one unmeasurable

continuum derived from an unlimited set of factors. In order to progress towards a practical solution

the notion of a measurable phenomenon is usually chosen by people wishing to incorporate context

in computer systems. This model needs to be represented and the common lessons found amongst an

array of approaches is that the modeller must decide what factors matter to them and what factors can

be discounted from a model. This can be because the factor will stay static, and hence does not need

explicit modelling, or that it is considered irrelevant or too difficult to measure.

Once a model is in place methods are needed to determine a change in the situation that leads to the

adoption of a new context. Two relevant areas are explored, that of determining the subject of a

document and pervasive computing. There has been considerable work done in systems that attempt

to determine document subjects automatically. Such a technique was used in a previous thesis

produced in the author's research group. Samhaa El Beltagy's work was similar to the authors in that

it was concerned with providing generic links in context. However the major difference is that there

her system used a fixed model of a linkbase in which a link has an attached context (subject) and there

' http ://w WW .tripadvisor.com/

89

was a fixed method for determining the context. Her focus was more on the document understanding

issues and the collaborative user aspects. This thesis aims for a more flexible approach to determining

context and the ability to change how context is used.

The pervasive computing field has had some success in the implementation of systems to use sensors

and systems to determine a context. The work is necessarily pragmatic but the models used can be

sophisticated. Their major contribution is to make strong inroads into abstracting methods of

detecting context changes and providing systems that can deal with new ways to determine context

changes as they are required.

4.7 Discussion

This chapter started with the decision to build a new link service that provides links in context. But

what is context? The daunting answer is that context is anything you want it to be. When considering

the model to use in an application, if a factor can be considered to be static or not important then it

may not need to be included in the model. But if we are to use links in applications that have not been

decided yet how can there be a fixed model at all? As (Lieberman & Selker, 2000) says, "what you

consider context depends on where you draw the boundary around the system you are considering".

This does not even take into account the even harder problem that context is fluid and constantly

changing. This derives from the definition of context as everything about a user that the software must

take account of.

At the heart of the problem is that systems trying to take account of context suffer from the Frame

Problem. The Frame Problem in the field of AI was first named by John McCarthy and is explained

brilliantly by Daniel Dennett (Dennett, 1987). The problem is difficult enough for him to explain so

my version will be brief. Essentially no computer programme's model can take account of all possible

events or situations. The system model can be broken by circumstance or events considered outside

the original frame of the problem. In our perspective any application designed to use context can

always be found lacking in the way that it detects context shifts.

In a basic AI system a model of knowledge can be represented as a set of axioms and predicate logic

is used to deduce the effects of the action. In the system a set of background axioms, called the frame

axioms, would be used to describe general conditions and the general effects of actions in the system.

The problem is that the frame axioms can always be broken by some unforeseen circumstance, hence

the name.

90

For instance a robot is designed to navigate across a piece of land. It has a rugged all-terrain drive

system and understands how to navigate boulders, sand and other obstacles. Perhaps it is being

prepared to be sent to the moon. It is left in a desert with an objective to navigate to a point 50 miles

away by itself. Suddenly it rains for the first time in ten years. As the desert is renowned for its

dryness and the inventors are looking to send it to the moon the robot's model contains no mention

of water at all. Especially streams. The robot drowns itself in the first one it tries to drive through.

The designers have made an assumption that there would be no rain in the desert. They also assumed

there would be no lava, deep snow or walking killer trifOds and w e instinctively know that they were

right to do so. If they had heaped every circumstance they could think of into the model, no matter

how unlikely, the robot would have ground to a halt whilst it iterated through all of them checking if

the current circumstances matched. This seems to be something humans do not appear to have to do

(Dennett, 1987). In each case a human would have naturally avoided the danger without needing

specific warning or a re-write of his or her model of the world.

An even bigger problem is that of determining context changes. This chapter has primarily illustrated

that anything and everything around us is a source of contextual information. Another constant theme

is that there is no way to design an architecture that allows for all possible contextual applications and

the sensing mechanisms they require. A compromise is always required. The pervasive computing

world is leading the way with complex systems for abstracting the sensing of change and feeding that

to applications. A possible reason for this success is that determining context changes is easier to do

when physical sensors are used as opposed to attempting to use document understanding techniques.

This work is focused on the considerable logistical issues involved in distributed computing and

dealing with devices. The feeling must be that this area can only grow at a very rapid pace as the cost

of devices, computing power and high bandwidth communications continues to fall. How many of

the applications will succeed or be wanted by users is another question. The hardware technology

may be outstripping the demand from users and the usefulness of the applications at the moment

(Lueg, 2002).

4.8 Conclusion

The key lesson of this chapter is that the great thinkers tell us that models of context are implicitly

fallible. They show that every model is going to be simplistic, breakable and often simply wrong. At

the other end of the scale the pervasive computing community has shown great ways to incorporate

sources of contextual information into applications and enormous progress is being made in taming

91

the power of core technologies such as tiny devices, distributed systems and wireless

communications. It is not surprising that much of their effort is taken up with the technical

implementation challenges. However there does not seem to be a great deal of explicit

acknowledgement that the models of context used will be flawed. There is little explicit planning for

the time when the model breaks and some other factor has to be added. Whether it is a new attribute

for an object, a new column to a database table or a change to the object API.

Trying to find advice on how to deal with the key issue of the context model breaking before it

happens is very hard work. The vast majority do not acknowledge it or assert that their context model

is sufficient. Most of the papers I have found sporting the keyword 'context' make no effort to

acknowledge that their view on the subject is just one of millions. Most make statements to the effect

that their system is contextual because of X implementation and that is sufficient justification.

This chapter has attempted to give a flavour for the many areas of research working on the problem

of context in order to find some pragmatic advice for building a contextual link service. The

conclusions have been daunting, the AI community has been finding context to be an extremely tough

problem for decades. Overall it seems that attempting to define a model for some system, and

declaring it to be a model for representing context, is a naive thing to do. Rather the safer option

seems to work to the rule that there can be no single model for context, what is really needed is a way

to work with as many models of specific contexts as necessary. This is the approach taken by the

system described in this thesis.

The literature survey found that the term 'context' is used to describe attributes of systems that have

no relation to each other. When writing a review of context-aware systems this causes problems.

Perhaps the solution is to ban the use of the heavily overloaded word 'context' from descriptions of

computer systems in favour of more accurate adjectives.

In the next chapter some of the lessons of this review are put to effect in an architecture for a

contextual link service.

92

5 A Context-Aware Distributed Link Service

5.1 Introduction

The previous chapter illustrated that using the word 'contextual' when describing a computer system

is a decision not to be taken lightly. Another key theme running through the chapter was that any

application incorporating a model of context will be compromised (McCarthy, 1987). No single

model of a system can successfully take account of all of the possible contextual situations that can

occur. If the design acknowledges that perfection is impossible then much can still be achieved when

writing contextual applications.

This could be construed as admitting failure before we even start a chapter describing a context-aware

system. The answer is that such an attitude is healthy to take and avoids a temptation to make

extravagant claims about the system in question. This leads to the suggestion that perhaps every

system that claims to be context-aware should state a definition of context and what it is used for.

More importantly, perhaps systems builders should acknowledge their own fallibility and state the

limitations of their models and consequently what will break the system.

In Chapter Two existing open hypermedia link services were reviewed. The capabilities of the

Southampton DLS were tested in Chapter Three when it was used with a document management

system to provide a variety of linking services. The desire was stated to be able to provide new ways

to determine the links to use in documents, such as by using the date of the document as a factor in

the computation of the links. It was concluded that current link service architectures did not allow

this. Existing systems were designed around one link model and one method of computing links. It

was concluded that a system was required that allowed new models of links, along with a way to

change the code that used the link model to compute the final links placed in documents.

This led to the idea of a contextual link service that could use new models of links and contexts to

provide new linking applications. Chapter Four examined the meaning of context and its use in

computer science. The conclusion from this examination is that modelling context is an unsolvable

problem but that pragmatic solutions are possible. The important point is to know the limitations of

any context model in use and when it becomes invalid to use it. This thesis advocates a system that

can use many models of context in order tackle the problem of relying on a single model.

93

In this chapter, decisions are made on how to design and implement a working context-aware version

of a Distributed Link Service. The process begins with a discussion of the problem of committing to

a single model for the system design, for instance having one linkbase model or a single algorithm

for generating links. The single model will always fail to adapt in some circumstance. Therefore a

system is needed that can use multiple models. This chapter examines the architecture of a standard

form of a DLS to understand what needs to be changed. The reference point for this work is the

original DLS designed by Les Carr and Dave DeRoure (Carr et al., 1994). To implement the design

change the notion of a Link Resolver is introduced. A Link Resolver encapsulates all of the elements

of a DLS that will need to be interchanged as new models are required. The chapter goes on to

describe the architecture of the new DLS incorporating Link Resolvers. In order to test the design,

experiments need to be performed in which this new DLS is used with real world data. The following

three chapters describe a number of uses for the core system in different experiments.

The underlying aim is not to write a link service to model context, but to write a link service to support

multiple models for linking in context. The system is called the Context-Aware DLS, abbreviated to

CA-DLS.

5.2 Design Considerations for a Context-Aware DLS

In order to design a Context-Aware DLS we first need to examine what functions a DLS performs

and how previous applications of the technology have varied. See 2.3.2 for details of previous DLS

systems.

Figure 5.1 shows the overall flow of events within a DLS such as that described in (Carr et al., 1994).

94

Linkbase supplies words to find

T o k e n Parser

Welcome

to

the
Matcli

University

of Add URL

Southampton

From

this

page

Linkbase

Lookup Anchor in List

Return found URL

Figure 5.1: The Flow of Events Within a Standard Implementation of a Distributed Link Service.

The DLS parses Web pages into tokens and searches for tokens that are listed within the linkbase or

linkbases. If a token is matched, the DLS will replace it with the H T M L for a link anchor. The link

destination is specified by the linkbase. The DLS will add links to every occurrence of the word in

the Web page. The DLS can be written to provide alternative forms of links using different HTML.

For instance underlined links or citation links placed at the bot tom of the page (Hitchcock et al.,

1998). The nature of the provided link can also vary. For instance an algorithm could be used to

understand more about the subject of the page in order to provide better targetting of links. For

instance an application could recognise citations or attempt to understand the subject of the page (El-

Beltagy et al., 2001).

Each of the different versions of the DLS have been written as one complete implementation with a

single model of computing and presenting links. In this thesis the a im is to develop a version of the

DLS in which it is possible to replace the model in order to completely alter the system's behaviour.

95

The overall goal is to attempt to create a DLS which avoids the problem of generality (McCarthy,

1987), discussed in Section 4.1. This states that any particular model can always be broken by some

unforeseen circumstance resulting in a rewrite of the system.

The first step to building such a system was to examine the general Carr/DeRoure DLS design and

identify the components of a DLS that can remain constant and the components that need to be

replaceable. From this a new DLS was designed which supports the interchanging of the key

components in order to support new models of context.

The Context-Aware DLS is designed in two parts. The first part consists of the basic infrastructure

including networking and document parsing capability. This provides all of the normal functionality

up to the point when a word is identified as (potentially) being the source anchor for a link (i.e. it is

matched against a term in the linkbase). It has no built in way to resolve the link and no set design for

what form the link should take. These key functions are performed by interchangeable libraries.

These libraries are called Link Resolvers.

For each method of providing contextual linking, there will be a new Link Resolver. If a new model

of linking requires a new linkbase design, along with the code to utilise the design, then that can be

written into a Link Resolver. If a method of linking requires access to other data sources, such as a

database, then a Link Resolver can be written to perform such computations and plugged into the CA-

DLS. In such a way new models for linking in context can be added into the CA-DLS without causing

the underlying system to be rewritten.

Figure 5.2 shows the CA-DLS design incorporating Link Resolvers. A number of Link Resolvers

have been written for this work. Each provides a different model for linking.

96

Link Reso l ve r supp l i es w o r d s to f ind

T o k e n Parser

1 r

1 f

u

^ f

w e come

soiveLink

University

Southampton

R e s o l v e r C o d e

L inkbase Othe r da ta

In te rchangeab le Link R e s o l v e r s . E a c h Reso l ve r is
m a d e up of c o m p o n e n t s s u c h a s the c o d e , the l i nkbase

m o d e l a n d data as wel l a s a n y o ther da ta requ i red .

Figure 5.2; The CA-DLS Architecture Model .

In the CA-DLS the Link Resolver is responsible for the linking process. The main system will search

for tokens in the documents and when it finds a match it will pass responsibility to the Link Resolver.

The functioning of the Link Resolver is opaque to the CA-DLS and the two communicate through a

simple set of function calls. The Link Resolver will generate and return HTML which will be placed

into the document to form the anchor of a link.

The CA-DLS has also been implemented with the ability to dynamically change the Link Resolver

during operation. It also has the ability to load and run Link Resolvers dynamically that were not

compiled into the original system. This is discussed further in Section 5.4.2. This property gives

further abilities to switch contextual processing models as required by an application of the CA-DLS.

97

The concept of the Link Resolver isolates the contextual modelling and processing components of the

system from the rest of the infrastructure. This allows them to be replaced as new models of context

are built or needed. This answers the first problem arising from Chapter 4 that the model can always

be broken.

What has been designed has a similarity to a 'black box' approach. However the need to sense context

changes and be open to new methods of context detection means the comparison is not quite true. A

black box implies a sealed unit into which there are well defined inputs, processing occurs and an

output is made. Designing an application to accommodate context means that the system cannot be

isolated and inputs cannot be well defined. This is discussed brilliantly in (Lieberman & Selker,

2000), a context aware application must not only decide what to do based on the explicit input, but

on the context as well. They consider context to be everything that affects the computation that is not

the explicit input. Figure 5.3 shows how this affects the system design.

Input Output

Application Application

Context is:
State of the user
State of the physical environment
State of the computational environment
History of user-computer environment
interaction

Explicit
Input

Application

Explicit
Output

Figure 5.3: The Effect of Context on a Traditional Black Box System (Lieberman & Selker, 2000).

98

This returns us to the discussion in Section 4.3, how to decide where to deRne the model and draw

the boundary around the model of the system. What is implicit and what is explicit? Again this leads

to the frame problem discussed at the end of Chapter 4. Lieberman & Selker, (2000) highlight that

scientists often deal with this problem by a process of 'reification', redefining the boundaries of the

system so that what was external becomes internal. This leads to a need to be able to re-model the

system, write new methods of defining and using context and a need for an open architecture for using

multiple contextual models. With such a difficult problem to solve it could be said that the criteria for

judging the overall system design a success can only be whether it can be reused in a number of

different applications with a number of different contextual models.

5.3 Implementation of the Context-A ware DLS

In order to create the link service a search was undertaken to find existing technologies and

components that could be used to build a proxy-based link service. It was reasoned that finding an

existing Web proxy application and building the required components into it would save time. The

focus of the work was not to build a proxy as this is a standard piece of software but to try and design

a contextual link server. After a survey of available systems an application was found that fitted the

requirements. The system chosen was called Muffin, a Web proxy with a modular architecture

written in Java and described in Section 2.3.4.

The CA-DLS system is entirely implemented within one Muffin filter. The overall Muffin system

was not affected. This new filter has an open architecture in which all of the processing of links and

the model used to represent them is interchangeable. This Muffin filter is the core of the

implementation work done for this thesis and is called the CA-DLSFilter. It is described in detail

below.

The other major alternative to using Muffin for this work was WBI , described previously in Section

2.3.3. It is a larger scale piece of work used in commercial applications and has had a larger amount

of effort put into it. The functionality is greater and the implementation more powerful and

complicated. The work done in this PhD could have been implemented in this system but Muffin was

chosen because of its simpler design and the example filters more closely matched the original project

aims.

99

5.3.1 The CA-DLSFi l ter for Muff in

A new filter within Muffin was written to implement the CA-DLS. This CA-DLSFilter is the

framework for Link Resolvers. It is described in detail in Section 5.4.

One of the sample filters included with Muffin is a simple Glossary filter. The Glossary filter

implements the most basic form of a DLS. It searches for occurrences of a list of words and replaces

them with links. It was deemed a promising framework for the requirements of this thesis and so was

used to build the first version of the CA-DLSFilter. This was created while the author was working

on the project described in Chapter 6.

The implementation of the core of a DLS is not a trivial task. The overall goal is to parse Web

documents looking for words to annotate with links. The system quickly becomes one which has to

deal with the many difficulties of parsing free text. Attempting to parse HTML adds to the

complications. The parser must have an awareness of the structure of an HTML document and not

attempt to add links within markup nor within sections such as the HEAD of the document. The code

for such operations is time consuming to write and must be full of special exceptions and error

handling. A large amount of the programming time for this thesis went into the parsing code.

5.4 Link Resolvers: Interchangeable Context-Aware Linking Engines

The architecture of the CA-DLSFilter is that previously seen in Figure 5.2. The CA-DLSFilter parses

the HTML of the document looking for words to associate with link anchors. This list is supplied by

the Link Resolver part of the system. When a potential anchor is found the CA-DLSFilter invokes a

Link Resolver which generates the HTML to place in the document.

The name Resolver was chosen because a Link Resolver has the responsibility of resolving the form

and destination of each link from the input information and other contextual inputs it requires. Each

Resolver comprises a linkbase design and all the code to use that design plus any external data sources

it will need. Each Link Resolver will load a linkbase specified in its preferences file. The CA-DLS

does not provide the linkbase.

There is no set link model and each Link Resolver can represent and use links and other data as it sees

fit. The code to load the linkbase and the code to use this data is unique to each Link Resolver. The

Link Resolver library can be dynamically invoked by the system. A Link Resolver must conform to

100

a certain specification which is detailed below. How it implements the specification is the

responsibility of the Link Resolver. This simplicity allows f reedom in the implementation of Link

Resolvers and provides opportunities for contextual linking.

5.4.1 Link Resolver Supported Events

All Link Resolvers (shortened to Resolvers) must support four functions corresponding to four events

in the system.

1. System Initialisation. initializeResolver()

When the system is started each Resolver is given the opportunity to load any data or links it requires.

The Resolver must return a list of words which will be used by the DLS filter to search for in Web

pages. In other words the Resolver must give a list of words to use as source anchors. How it

generates this list is the sole domain of the Resolver. It can use a linkbase similar to that of other link

servers or it can use any other data sources. The format and model of the linkbase used by a particular

Resolver is not governed by any specification or single model. A Resolver can use whatever link

model is most suitable to its particular functionality.

2. Adding a document header. getHeader()

When a document is requested the Resolver is asked to add extra HTML into the HEAD of a

document. This allows the system to add in references to other resources such as JavaScript libraries

or CSS stylesheet pages. An example of this can be seen in Appendix B, which is describing the

details of an implementation of a Link Resolver application summarised in Chapter 6.

3. Adding a document footer. getFooter()

Similarly the Resolver is given the opportunity to add HTML to the end of the HTML document. This

allows data or XML data islands to be embedded in the page if required.

4. Resolving a link. resolveLink()

This is the key activity of the Resolver. Each time a word has been identified by the document parser

as representing an anchor, the Resolver is passed the word with other contextual information and

asked to provide the HTML to place into the document. At this point it is the responsibility of the

101

Resolver to create a link or other HTML to place in the page. This is the core role of the Resolver and

is how the separation is maintained between the basic system and the specialist components for

implementing a contextual link service.

A crucial part of the design of the system is the interface between a Link Resolver and the CA-DLS.

The goal was to allow Link Resolvers to be interchanged in a basic architecture and not to need to

change any other code to significantly alter the functionality of the link service. Text is sent to the

Resolver and text is returned. It is highly likely that the Resolver will require other contextual

information in order to perform its function. The Resolver must be implemented to gain access to

such data. For instance other data files might be required to supplement the data in the linkbase. The

Link Resolver might also need access to real time environmental data about the system. This issue

was discussed in Section 5.2.

5.4.2 Dynamic Link Resolver Invocation

The dynamic invocation of the Resolver means that it is possible to invoke a different Resolver each

time a link request is made, even during the processing of a single document. In the case of adding

generic links to a Web page, different Resolvers can be invoked for different words. It is also possible

for the user to interact with the Muffin interface to choose a Resolver to invoke. This allows the user

to radically alter the behaviour of the system whilst it is running. An example of this is shown in the

next chapter which describes the first application of this system.

The invocation of the methods in a Link Resolver are achieved via the Reflection API of the Java

programming language. The Reflection API represents the classes, methods and objects of a Java

application. It allows a developer to obtain and use information about objects and classes whilst a

program is running. It gives the ability to create an instance of a class whose name is not known until

runtime and similarly invoke methods on that class.

The CA-DLSFilter is written in such a way that it does not know the name of the Resolver class until

it needs it. The class name is not written into the source code. Instead it is given to the system as a

parameter in the configuration file or from an interface control. In Figure 5.4 a user is entering the

name of the class to use as a Resolver. When the 'Apply' button is pressed the system will load the

class and invoke the initialize() method to allow the Resolver to load its linkbase and other data. This

gives the user the opportunity to change the Resolver in use while the system is live. The example is

taken from the system described in the next chapter.

102

Muffin

File Edit View Help

Muffin: Filters

Configurat ion: [fff-l'liHltiiWiflTi

S u p p o r t e d Filters

Enable |

New... I

AnimationKitler
CookieMons te r
Decaf

Document ln fo
EmptyFont
ForwardedFor
G los sa ry
History
H o s t n a m e E x p a n d e r
ItnaanKUl j l]

Enabled Fitters

Document lnfo
CA-DLSFiher

Help

P r e f e r e n c e s . . .

Move Up j

M w e Down I

Disable

The Muffin program provides an interface to
change parameters to individual filters running in
the system. In this case the user is changing the
name of the Class being used as a Resolver. The
alternative Resolver is being chosen. The CA-
DLSFilter will then load the new Resolver. Any
pages now viewed will have their linl<s generated
by the SimpleResolver.

Muffin: CA-DLSFillet

ResolvBr C l a s s : | org.iloit .muffln.fiKer.SlinpleResolwer

AppV I S a v e I R e l o a d File

Browse. . .

Help

Save Close

Figure 5.4: Changing a Link Resolver Whilst the CA-DLS is Running.

The system allows for more than one method of choosing a Resolver. The system is written to allow

the code itself to choose which Resolver to invoke and it is possible to allow this to be done per link.

For example a CA-DLSFilter could be written to choose between a number of Resolvers as it parsed

a document. Different words could be linked in different ways.

The maj or reason for using the Reflection method of dynamically invoking Resolvers is to allow them

to be added to a running system. It is possible to write a system where Resolvers could be found,

installed and instantiated dynamically. The possibilities this introduces are discussed in Section 8.1.3.

5.5 Beyond Web Proxies and Link Filters

The architecture of the CA-DLS was designed so that the Resolvers are separated away from any of

the Web proxy components. The Resolvers are deliberately encapsulated designs with the intention

that the code could be used in other ways. The limitations of Web proxies for use as link servers were

fully explored before this work began so it was always the case that a reliance should not be placed

on them. For instance in Section 6.3 a Link Resolver is written and used within the Muffin proxy and

also as a library to a normal program. Another prime example is the original motivation for this work,

the integration of a link service with AIMS. The Resolvers could be directly run on the AIMS server

103

allowing for the contextual link service to be directly part of the site. Unfortunately the design of

Lotus Domino still makes it very difficult to access the content of documents from Java so the

experiment has never been performed.

Another possible use for the system is complete contextual content generation. The system was

originally designed as a way to generate fragments of HTML and place them in Web pages. The

fragments of HTML were wrappers around link anchors to resolve the link to a destination. There is

no particular reason why the system should just be used for making links. As the only requirement is

that the Link Resolver should return a string, it could be used to generate pages that are specified by

templates. Keywords or special markup would give instructions to the Resolver which it would use

to perform some content generation and return a result. The result could be HTML, XML or any type

of string.

In summary there are two overall problems, modelling context and detecting context changes. Of the

two the first is the easier in this domain. It is a feasible proposition to find a way to encapsulate the

design of a linkbase incorporating context, as this is enclosed deep within the system. However the

places in the system where it is exposed to the outside world are much harder to deal with. The key

problem is to design a mechanism for sensing context changes and communicating this information

to the parts of the system that need it. This requires some assumptions to be made about how the

context change can be represented in the system and communicated. The review, in Chapter Four, has

shown that such things are impossible to do perfectly, for instance trying to convey information about

a change in temperature in one circumstance but then being required to convey data about it suddenly

raining. If the system does not know in advance all of the possible causes of a context change then

there is bound to be a point when it cannot model some type of event and the design will fail. The

frame problem applies to this design as much as any other.

5.6 Discussion

If there is some form of algorithm for creating or modifying links using some contextual reasoning

then it needs parameters to use in its processing. These can originate from a variety of sources. They

can be stored in the individual links. They can be obtained from the system or from user specified

preferences. System or environmental data could be of the form of security permissions, operating

system version or other basic information. User specified preferences, in the form of a profile, is the

104

most common method of using contextual data. It is easy to extrapolate this list to include almost any

measurable phenomenon. Chapter Four showed how context aware systems use such a wide spectrum

of data, though not all at the same time.

The context review and the pervasive computing world have shown that the most difficult part in the

design of any system incorporating context is the ability to detect a change in context. The application

described in this chapter is weakest in this area. It is plainly obvious that a situation or use can be

found for the system where it will be impossible for the Resolver to detect some phenomenon and

hence not be able to determine the current context. It might be a limitation of the Java language to be

unable to convey or represent some event. It might be a limitation imposed by the determination to

make Link Resolvers a plug-in component sealed from the rest of the system. As we have seen the

traditional black box approach to programming falls down when context must be considered because

external effects must be taken into account.

This system like any other contextual system suffers from the frame problem. The point in the system

in which the problem occurs is the function call that invokes a Link Resolver to resolve a link and

return data. Whilst every attempt has been made to minimise the possible effects of the problem by

making the constraints on the system as weak as possible this point in the design is still a flaw. It will

always be a flaw as there is no possible solution that can work for all events and all possible situations.

Therefore it is argued that the best that can be done is to openly acknowledge the frame problem and

use all possible means to avoid it. Systems that do not claim to suffer from the frame problem but

claim to be context aware are simply not being wholly truthful in the claims for their design. There

is always a weakness which should be acknowledged and the bounds within which a system or design

will not fail should be made explicit.

5.7 Conclusion

This chapter has presented a design for a Context-A ware Distributed Link Service. It is an evolution

of the existing link services such as the Southampton DLS in two main areas. It is designed to support

an unlimited number of link models and also an unlimited number of ways of computing the final link

to place in a document. The system is designed with the intention that hypermedia application

developers can build new links models and link applications to match their particular contextual

requirements.

105

Rather than specifying what context is or declare a particular model the design acknowledges that any

model of context to be used will eventually be shown to be flawed and so it is better to allow a system

to use many models rather than just one. An open architecture for contextual link resolution has been

described which attempts a solution to this. The system allows for the dynamic interchange of Link

Resolvers. These are the core components that have total responsibility for how links are generated

and are the location of the context models.

In the next two chapters examples of using the basic architecture are shown with a wide variety of

applications and scenarios. Chapter 8, Conclusions and Future Work, looks at how well the design

has worked and what could be done to improve it.

106

6 Applying the CA-DLS

The core CA-DLS design was presented in Chapter 5 as a new design for a contextual hypermedia

link service. The CA-DLS is designed to be a starting point for writing a variety of context aware

applications that are not limited to one context model or one linking model. In order to test the validity

of the design the CA-DLS must be used to build contextual hypermedia applications. Only then can

the design be evaluated as a realistic solution rather than a clever model. The writing and deploying

of applications that use the CA-DLS will also help to explore the limits of the design in terms of the

types of context models that can be utilised. This chapter presents the major uses of the CA-DLS and

Chapter 7 explores a number of smaller experiments to examine the limits of CA-DLS.

The CA-DLS was built during the undertaking of two projects for an external sponsor, the CA-DLS

creation being just one aspect of the work. This chapter describes the work done during those projects

from a point of view concerned with how the CA-DLS was used. It summarises the other aspects of

the project work emphasising the contextual linking approaches used. Appendices B and C are

detailed accounts of the project work with information on exactly how the overall applications were

built.

The CA-DLS was used as the core of a contextual link service delivering multi-destination generic

links presenting the user with a weighting of the relationship between source and destination

documents. The context models used in the CA-DLS Resolvers were based upon presenting links

whose form and destination depended on which document, within a known set, the user was currently

viewing. As the user viewed different documents within a document set the Resolver would present

links which gave an indication of how relevant a particular destination document was to the current

one for a given generic link anchor. The overall theme of the two projects was to develop methods to

help users navigate through a large corpus of documents to find information that was useful and

relevant to them.

6.1 Project Background

The work described in this chapter was carried out with the Post Office Research Group (PORG).

PORG is a research division of the UK national postal service, recently renamed Consignia, possibly

to be renamed back again. In 1997 a group of Consignia staff were involved in a contract to work on

the privatisation and modernisation of the Argentine Post Office. These people participated in a

107

knowledge capture and dissemination project at PORG because it was felt that their experiences

would be of considerable importance to many parts of the organisation. This was known internally as

the Argentina Knowledge cApture Project (AKAP). The main focus of AKAP was the development

of a knowledge capture tool. The tool was designed to capture knowledge through a semi-structured

interview process in which people were asked to recollect their experiences. People's names and

commercially sensitive technical details have been changed for all figures in this thesis.

The result of the capturing amounted to a considerable number of documents, many of great length.

A very large amount of time and effort went into the transcription of the documents from the tape-

recorded interviews. When printed, the documents formed a pile of paper six inches high. The harsh

reality was that AKAP had produced a document set so large and so verbose that no-one would have

time to read them. If they contained important knowledge that could aid managers of the company, it

was almost impossible to tell. Figure 6.2 shows a sample of one the documents and is typical of the

content of the document set.

The AKAP researchers began two methods for analysing the document set. The first was to work on

a Knowledge Visualisation tool with Dr. Chaomei Chen, then of Brunei University. This would

combine various document analysis and visualisation techniques to discover relationships between

the documents or between the keywords and represent it visually. The second effort was to examine

the document set manually and attempt to extract the knowledge by hand. Finally the two approaches

could be compared and contrasted. The results of these two efforts form the starting inputs for the two

phases of work described here.

Chen's novel work (Chen, 1999) was in the merging of a statistical document analysis technique

called Latent Semantic Analysis (LSA) with a technique for reducing the complexity of the resulting

network of relationships, called Pathfinder. The result is visualised as a VRML^ world.

LSA is a fully automated statistical technique which splits raw textual documents into words or

phrases and builds a matrix of their occurrences in each document. Each entry is given a weight,

either its weight in the context of the local document or a global weighting across the document set.

From this matrix a variety of relationship matrices are mathematically derived; document-to-

document similarity, word-to-document similarity and word-to-word similarity. The technique

'virtual Reality Modelling Language

108

allows the user to manually intervene to reduce the word list. Stop words are automatically removed

and all other words are stemmed. The user can then choose which words to use in the system and

which to discard. In the case of the AKAP project Chaomei Chen chose the word list.

Even though the LSA technique already reduces the amount of relationship data produced it still

produces such a complex network of relationships that it is of little use to a user. The Pathfinder

network scaling algorithm essentially preserves only the most important relationships in the network

using a more complex technique than simply deleting the lower values in the network. The result is

a much simpler set of relationships called a Pathfinder network.

The Pathfinder network is then visualised into a VRML model by drawing it using force-directed

graph-drawing algorithms. Each connection is treated as a hypothetical spring, with the spring

strength relative to the connection strength. The model is then allowed to 'settle' into a minimum

energy position. Strong connections will tend to be closer together and weak ones further apart. The

user can view this network on VRML viewing software.

The end result of Chen's work was the delivery of a variety of VRML worlds showing various

relationships within the AKAP documents. Chen delivered a variety of document-to-document

networks, word-to-document networks and listings of the most relevant documents for each keyword.

In Figure 6.1 an example of one of the document networks can be seen. The documents are mainly

interview transcripts and are named for each interviewee. Each node represents a document and the

clustering shows how the documents are related. In the VRML viewer each node can be clicked on

to view the source document. Figure B.l is another example.

109

! i - # - ' ^ 1 ^] 1 File Edit View Favorites Tools Help

i: Ajdress D;\dev\porg\docs\vrml\dpostwr[

"Rob K1

Rob CS Tech
o |
l u iua l

o
f»v

o

iDavrd KJ ,
Jane CS WLA Rob CS People

Jolul CS

Steptrie CS

Jane Key KI Mavds KI

O

ftm

f

Jiiliei CS

J a n c ' l ^ g i t i

Jane CS Del F ranch

; R i c h a r d K l l KI •

PeteCS

Richard CS

Nicky CS

Mavis "Pre-Int
J a n e S I

J o h n K I

Jolm lilt Plan
O o

m s My Computer

Figure 6.1: Example of a Pathfinder Network for Documents Shown in VRML.

It was felt by PORG that the visualisation process had been useful but there were usability issues. The

VRML worlds were slow and difficult to navigate using the current computers of the time. An even

bigger problem was the company ban on installing software not on an approved list. This included

the VRML viewer and the latest version of Internet Explorer that was necessary to use the

accompanying Web pages. The result was that the only people who saw the VRML worlds were the

researchers on the project. None of the intended recipients could make use of the data. A more

important problem was relating the 3D visualisations back to the documents themselves. In the

VRML worlds of document-to-document relationships the user could click on a node and be taken to

110

that document. In the keyword-to-keyword visualisations the user could click on a node and be taken

to a listing of the 5 most important documents for that keyword. Once in a report there was little aid

to actually navigating within the reports or clues on how to make use of the relationships that were

being inferred.

At this point I was approached to attempt to build a link service that could make use of the data behind

these networks and link into the documents in a more meaningful way. The first phase of work was

to produce a system to add generic links into the AKAP document set that would utilise Chen's

analysis work.

Once this phase of work was completed a second phase was proposed. Another, manual, analysis had

been performed on the AKAP document set that listed paragraphs within documents that were felt to

be the most important for a given topic. This data was used to build a new linkbase with a different

model. An application was built to combine these paragraphs together to produce new documents that

could be considered the highlights of the document set for a given topic. To do this the CA-DLS was

used as a link service and queried from a new application rather than as a Muffin filter. The new

application was a wrapper around an XSLT engine with the linkbase storing the transforms to

perform on the document set. The final deliverable was a form of document compiler. The CA-DLS

did not need any alteration to its design to be able to perform such a different operation from its

original intended purpose.

6.2 Phase One Implementation

The phase one system consisted of a web site of the AKAP documents complemented by an

introductory page and contents listing. When a reader opened one of the documents using Muffin and

the CA-DLS as their proxy the CA-DLS would add popup generic links to words in the documents.

The link destinations were to other documents within the set. T h e destinations were chosen as

locations of important information about the topic of the word being linked. Each link anchor had

multiple destinations which were ranked and prioritised. This gave users a choice of documents to

read on a particular topic and an indication of its relevancy and its relationship to the current

document.

The system introduced a spacial context into the linking by ranking the links in a document depending

on which document the user was viewing at the time. The documents in the system had been

previously analysed and grouped in a 3D spacial viewing system. Fo r instance documents that were

i l l

considered to be more related were placed close together in the space. The link service used the data

behind the visual analysis to give readers a feel for how related a destination document was as

depicted in the 3D system. The links attempted to convey this by giving each destination a value

between zero and ten and as well as ranking the multiple destinations for each link anchor. This was

displayed using colours in the menus and a score between zero and ten; ten indicating the strongest

relationship between the two documents at each end of a link.

The first Link Resolver for the CA-DLS was produced to add generic links to documents in which

each link would produce a popup menu of five possible destinations. In this menu an indication was

given of the relevance of the destination document to the current document by the use of a score for

each link and ranking the links in the menu. Appendix B describes how the documents were

processed and provides details of the HTML that the CA-DLS produced.

Figure 6.2 shows the system in action. Words that are coloured and marked in bold have been made

into link anchors. A user has clicked on an anchor and a popup menu is presenting a choice of

destination documents. Each is given a score which is also represented by the colour of the text.

112

E

j 4 " " ' 0 1 File Edit View Favotitf ** i Links " B
3 worse than I did.

Q. What t ime did you come back?

A. April. It was starting to get cold out there. People should be prepared maybe 6 months before
you leave. What is this person going to bring back to the business, how are we going to use
that, this person has achieved this, how do we recognise that and h e l p them get on.

Q. How can we use the knowledge you and your colleagues have got. How can we exploit it?

A. Putting me here didn't at all.

Q. A bit left out?

A. I think most people are left out. People have found their own jobs. Some people have gone on
to do other contracts.

Q. Did anybody go back to their original job?

A. No. J went back to G went back to account management. Yes two of

them went back to POC to Integrate the work and do project t ype stuff.

7 Jane Key Themes
6 John CS Q. Okay Steffi, I found this '

all?

lything you can add or wish to expand on at
6 Keith CS

5 Keith Kl
0 Stephie Kl

A. I just think the main one'is recognition from the business, not just to use it for those
individuals but to actually use the exper ience. I would expect something to come out of this in
terms of he lp ing other people. Other people going abroad really need to make the most of it and
hopefully select the right people to do it. Hopefully I'll get some f e e d b a c k from this in terms of
what is going to happen with it.

Thank you very much S_ thank you for your t ime and of in te rv iew.

Anchor(s) placed; 771 Unique link(s): 28

D o n e l | i % M y C o m p u t e r

Figure 6.2: A Document Enhanced with Multi-Destination Links.

113

The Link Resolver written for this project is described in detail in Appendix B. It used a linkbase

written in XML using the XLink notation to describe the links. This data was supplemented with a

set of data relating each document to the others in terms of a score between zero and one. The

Resolver used this to generate the scoring of each link. The contextual input to the Resolver was the

current document URL which was used to calculate document destination priorities. The Resolver

was written to directly import the output data supplied by Chaomei Chen.

During the project an alternative version of the PorgResolver was written. There were two reasons

for doing this. The first was that the end users of the system might not be able to make use of the

popup menus written in JavaScript as they might not have the correct browser version. The second

was to implement the ability of the CA-DLS to switch Link Resolvers whilst running.

The implementation was written to dynamically allow the user to change the Resolver in use whilst

the system was running. A crude technique was implemented to facilitate this. In Figure 6.3 below

the user enters the name of the class file of the Resolver and the CA-DLS instantiates the new

Resolver immediately. The menu based links are replaced with in-line links. It should be noted that

the processing and results are the same for both Resolvers as the development was just a proof of

concept exercise. The key point of the exercise being to demonstrate the dynamic loading

characteristic of the Link Resolver architecture.

1 1 4

^ M u f f i n

Fte Edit View Help

l - in ix i

^ M u f f i n : Filters

Confiouration: jlUflWififiTi ^ |

Supported Filters

AnimationKiller
CookieMonster
Decaf
Documentlnfo
EmptyFont
ForwardedFor

Deete

Resolver Class: |org.doit.mumn.filter.StmpIeResorver

Apply 1 Save | Reload File | Close Help 1

The Muffin program provides an interface to
change parameters to individual filters running in
the system. In this case the user is changing the

/name of the Class being used as a Resolver. The
/ alternative Resolver is being chosen. The CA-

DLSFiiter will then reload and the new Resolver
is now running. Any pages now viewed will have

their links generated by the
SimpleResolver.

Documentlnfo
CA-DLSFiller

Save Close

Preferences...

Move Up

Disable

. Knowledge Interview Transcript - Microsoft Internet Explorer

g i File Edit View FavoriU

This is the same
document as that shown
in Figure 6.2 but viewed
using the SimpleResolver.
The rudimentary way of
showing the available
links is not meant to be
used but just to illustrate
the concept of Resolvers.

I would end - - - up worse than I did.

d What time did you come beck?

A. April. It was starting to get cold out there. People should be prepared maybe 6 months before

you leav 1 6 & & 5e. What is this person going to bring back to the business, how are we going

to use that, this person has achieved this, how do we recognise that and help Z B 6 8 G t h e m get

on.

Q. How can we use the knowledge you and your col leagues have got. How can we exploit it?

A. Putting me here didnt at all.

Q. A bit left out?

A. I think most people are leA out. People have found their own jobs. Some people heve gone on
to do other contracts.

Q. Did anybody go back to their original job?

A. No. J went back to " ^ 1 4 * * went back to account management. Yes two of

them went back to POC to i n teg r - - - - - a t e the work and do project t ype ^ £ S fl stuff.

Q. Okay Steffi, I found this very interesting. Is there anyth ing you can add or wish to expand on at

all?

A. I just think the main one is recognition from the business, not just to use it for those individu

8 6 6 5 Ogig IQ actually use the expen % n c e . I would expect something to come out

of this in terms of help ^ ^ ^ i n g other people. Other people going abroad really need to make

the most of it and hopefully select the right people to do it. Hopefully I'll get some f e e d b a c k ^

& ^ from this in terms of what is going to happen with it.

Thank you very much S , thank you for your t ime and e n d 3 i i 2 3 of in terv iew Z 8 6 8 A

Anchor(s) placed: 771 Unique link(s): 28 J

I Computer

Figure 6.3: Changing the Link Resolver in use With Muffin.

115

The document analysis work that fed into this project had delivered VRML worlds such as that in

Figure 6.1. The external partners had found it difficult to derive a great deal of worth from them alone

as they did not relate easily back to the original documents and there were problems with navigating

the VRML worlds. The original reason for doing all of the work was to capture business knowledge

from a group of people. Now that the source documents were enhanced with links based on the

analysis data it became an easier task to examine them and question how well the knowledge capture

process had worked.

Many of the documents were extremely long. In the 42 documents used in the work there were

284384 words amounting to 680 pages. It was an extremely difficult process for a reader to find the

important pieces of knowledge from such an enormous amount of material. The bigger problem for

the analysis projects that followed was that they relied on using keywords to describe the whole

document. The underlying problem was the assumption that a long document can be described by five

keywords.

Chen's analysis of the documents attempted to pick out the useful information from the surrounding

'noise' of the verbatim transcripts. The VRML work provided a start in this direction by providing

means to navigate the document set and see the relationships amongst the text. The first phase of this

project improved upon this by embedding those relationships back into the documents. This was

hampered by the size of the documents.

6.3 Phase Two Implementation

Researchers at PORG had analysed the document set by hand in a laborious attempt to find the best

information and summarise the findings. This involved physically reading all of the documents,

finding the most important excerpts and forming an overall picture of the content. A document was

produced, the 'Learning Summary' report, that contained an analysis of the documents and an in-

depth summary of the knowledge found. The major contribution was a number of diagrams the

authors called Knowledge Maps (KM) accompanied by references and indices. See Figure C.2 for an

example. A KM is a hierarchical tree diagram of areas and sub-areas of knowledge covered in the

document set. One KM, covering technical areas, is backed up by full references to the actual

locations of relevant content on that topic. This analysis is of high quality and made good use of the

documents.

116

The diagrams were clear, well designed and formed a good overall understanding of the knowledge

found. However the results were essentially 'locked' within this set of Microsoft Word diagrams and

the data they contained was not reusable. The prime motivation of the second phase of work was to

demonstrate that technologies such as open hypermedia and open standards could bring such work to

life as well as enable knowledge reuse. On the implementation front the remit went beyond just

extending the architecture of the CA-DLS.

The implementation consisted of reproducing 'Learning Summary' report as a living, dynamic Web

site. Each part of the report was recreated using a variety of techniques to ensure that the knowledge

could be reused and displayed as needed. The Knowledge Maps and references were re-written using

XML and transformed to Web pages using XSLT transforms. This allowed for superior display

techniques to allow users to view the KM's as well as allowing them to link into the documents or

other data as required.

The 'Learning Summary' report was designed to accompany and reference the original AKAP

documents described in the previous project. In order to use them with this project they were

converted to XML, a difficult and time consuming process in itself.

During the project a second major Link Resolver was developed for processing a linkbase and

activating XPointer links. The Resolver was utilised both using a standalone program and the existing

CA-DLS. The standalone program was used to batch process the linkbase due to its size and the

complexity of the XML processing being done.

The links in this project were from a structured diagram of areas of knowledge in the document set

to individual paragraphs or pages in one of the documents. The source documents were the

Knowledge Maps, in particular one Knowledge Map (KM) on technical issues in the document set.

See Figure 6.4 for this Knowledge Map viewed on a Web browser. This KM was backed up by a

number of pages of references mapping each technical issue to document file names and page

numbers. This raw data was used as the start point for a link model. A summary of the model is

included here, see Section C.6 for the full detail of the linkbase design.

117

m # 01 @ M ' y ^ { S'e Edik View Favorites Toe
J

Technical Knowledge Map
Corporate Operat ions Retai l Marke t ing C o m m e r c i a l Relat ionships

StratBQV New Prncessina Centm Joint VentiirAR
1 ... Rtrmteov Devfilnpment... Lman Team Manaomment ... Mail Flnishina

... Business Planning ... Automation Alliances and Partnershios
KPis ... Mail Handlino Ec^uipment ... UK fRp.lav One"!
Oroanisation ... Post Code SuDOlier Rfilationshios
Manaaement ProcAss ... Pipfiline CnntainRrism ... Intellectual Prooertv
Chanoe ManaoemAnt ... Buildina Desian and Build
PeoDle Manaaement Delivery
... Unions ... Deliverv Franchisino
... Redundancy ... Dfilivflrv Scecificatinn
... Recruiment ... Delivery Oifice Revisions
... Trainina ... Work Load Assessment
Finance ... Eauipment

... SQD ... Urban Delivery

Figure 6.4: A Sample of the Technical Knowledge Map Viewed in a Web Browser.

The technical KM represented the key pages in the document set fo r a set of technical subjects. See

Figure C.8 for a sample of the XML. However these pages were not easily accessible to readers of

the 'Learning Summary' report. From this starting point a system was built that could extract the

paragraphs from the document set and compile them into new documents. These new documents

would represent the best knowledge on each technical subject according the 'Learning Summary'

authors. The new documents could then be given to interested readers targetting relevant information

to specific people rather than relying on all users to search through the entire corpus of information

for paragraphs of interest to them.

Figure 6.5 shows a sample of the linkbase as viewed on a Web browser, the XML can be seen in

Figure C.9. The figure lists links against the anchor term, for instance the word 'culture', followed by

the destination document and a range. The range, in square brackets, refers to paragraphs numbers in

the XML. Some links are to a single paragraph and some are to a range of paragraphs. The XML

representation of these links is produced using the XLink standard. Details of how the linkbase was

designed and built can be found in Section C.6. In the figure the names of people have been blurred

out for confidentiality reasons.

118

m/mm i - l n l x i

' < 4 - ' g i <21 i - a S i "Sf i S 1 i f e - # i s i ' s s File Edit View Favorites loois

[999784-999014] d

management approach (21)
http://ivor,ecs,soton an ijWDora2/xml/ KnnwiPdoe InfArvimw Part 2j(ml
[999820-999830]

decision-making process (22)
htto://ivor.ecs.soton ac.ul</Dora2A<ml/„„„_. . - Modernisinp Corren xmi 19992481 J
decision-mailing process (23)
nttn7/ivor ecs.sntnn ar iJk'Hora2/xm;,;; - TranscnDt.xml 19992391

culture (24)
httnV/ivor ecs sGton ac ut</aorci2/xml/l- case-studv.xmi 1999225-9992311

r^KQnno Mononomont

Figure 6.5: A Sample of the Main Linkbase as Viewed in a Web Browser.

The finished application's purpose was to iterate through the KM and use each topic or sub-topic as

a link anchor to query the linkbase. It would use the linkservice to extract the appropriate paragraphs

and build a new document. Each link destination in the linkbase is an XSLT statement. The Link

Resolver uses this statement with an XSLT engine to transform the XML original document. The

result of the transform is just the selected paragraphs as XML. The application created a new XML

document from a template and inserted each new XML paragraph into it.

Figure 6.6 shows one of the newly created documents. In this case the document covers the area of

'Intellectual Property' and includes paragraphs from a selection of documents in the set. Each

included section starts with an explanation of its source and a link to that paragraph in the original

source document. This allows users to follow a link and read the extracts in their original context. In

the figure the names of people have been blurred out for confidentiality reasons.

119

'at Document for Intellectual Property - Microsoft Internet Explorer

- a 13 i m "Sf 5 3 i 1 1 1 ' s s j ' a s Pile Edit View Favorites

From
http:J/ivor.ecs.soton.ac.uk/pora2fxmUCORREO Office rev is ions
(approved version).xml

With the Pannier coming through trials more effectively, the decision was to
build an 'Argentinean version' to overcome cost, shipping and copyright
issues.

From iittp:ffivor.ecs.soton.ac.ukfporq2Jxrr'V.ii,'i; '':
Modernis ing Correo.xml

Containerisation
Whilst reviewing the transport, processing and delivery operations of Correo,
it was also logical to incorporate containers into the way of working: essential
for automation (which was limited in Correo), but also for WLA in Deliveries.
After a lot of contact with UK experts in containerisation: manuals and IE
studies were sent, the Argentines could clearly see the benefits and the focus
was put on obtaining the "right' equipment to do it. With the proviso that trays
and cages would be locally sourced from a design developed specifically for
the purpose. So a specification was developed from:

The UK containerisation manuals and contacts.
Previous containerisation benchmarking to Sweden Post and La Poste
South American plastics manufacturers' exhibitions
Advise fror,

From
http:/fivor.ees.soton.ac.ukfporo"ixrr::- ' ' 'ui!; i: "• Tn-:r."^:cript.xml

A. Yes. It was innately obvious that we neeoed some containerisation
or containerisation would be a benefit so we contacted the
containerisation teams - • - y . etc. back in the UK, got the
manual, out there got it translated into Spanish and we was therefore
able to show them the pictures of the equipment that we use and how
we used it and able to show them the industrial engineering studies
which proved the savings between a manual operation and a
mechanised operation and a container operation and we tried to get
their lE's involved in and doing some study work themselves to identify

j f ~ ~ | Local intranet

Figure 6.6: The Generated Document for the Sub-Area 'Intellectual Property'

6.4 Conclusion

This chapter has described the first full implementation project using the CA-DLS. During the

projects described in this chapter the CA-DLS was designed and built. It was then used as a platform

for building two differing hypermedia applications.

A proxy-based link service has been built to deliver multi-destination generic links presenting the

user with a weighting of the relationship between source and destination documents. This weighting

data was derived from previous analysis work of the document set by other researchers. The data

maps to a 3D world in which the various documents or keywords can be visualised and the strength

of the relationship between 2 documents or keywords is depicted by the distance between them. This

maps to the links placed in documents giving users an indication of how related a destination

120

document is, before they decide to follow the link. The CA-DLS also places links to the 5 'nearest

neighbours', the documents deemed to be most related. The application helps users to find their way

in a large document collection full of information that is not strictly important to them.

The context input to this system is the position of the current document within the 3D world and its

relationships to those 'around' it. The data is provided by a number of source files and the entire

processing system is self-contained within the Link Resolver. A second version of the Link Resolver

was built that performed the same computation but returned a completely different style of links to

the documents. In this case the links were normal HTML in-line links. This was to give users without

the necessary modem browser the ability to still use the system. The implementation of this second

version of the Resolver demonstrated the dynamic capabilities of the CA-DLS.

The effectiveness of the system for end users was affected by the quality of the documents supplied

and the data supplied to build the links. The second phase of work effectively provided the reverse

system. Rather than take the user to the paragraphs, the system compiled paragraphs with a similar

subject, allowing improved navigation into the document set. Extracting paragraphs on a given topic

and building new documents from them. The CA-DLS was utilised as the link service core of an

application to provide linking from structures of knowledge stored as XML to the source documents

themselves, again stored as XML. A new Link Resolver was written for the CA-DLS, called the

XMLFragmentResolver, which understands XLinks. These links anchor one XML source to another

and include notation understood by XSLT processing engines. The destinations of links are XSL

transforms to apply to an XML document. The result is an extract from the XML file which can be

returned by the Resolver.

The key contribution to the overall work is that this second phase of work for PORG saw the

development of a much more powerful Link Resolver. This demonstrated how a Link Resolver can

perform significant processing yet still fit into the CA-DLS design. The Link Resolver still conforms

to the original specification but harnesses outside libraries, in this case an XSLT engine, and makes

use of multiple sources of data. It demonstrates that Link Resolvers can be powerful systems in their

own right and that the opportunity exists to interface with other systems in order to perform the

contextual computation required for a particular application.

121

The CA-DLS implementation was further strengthened by the development of stable libraries and

techniques for designing and using linkbases. It now became possible to rapidly design a new

linkbase model and generate the code to load and utilise the model. The Link Resolvers described in

the next chapter were developed very quickly due to this investment in library design.

In the second phase of the work the project moved beyond hypermedia and concentrated on XML

processing and the power of XSL to extract data. The emphasis was on reusability of both data and

software components as well as showcasing the activities of the W 3 C . For the project sponsors almost

all the technologies and work described in this chapter were completely new. It is a disconcerting fact

for a computer science researcher to realise that many computer users in large companies only know

the applications they are given to work with. This invariably means the use of Microsoft Office. The

work in this chapter is a significant distance from such tools and demonstrates that there is a

considerable gap between the state of the art in computer science research and the harsh realities of

computer users in large companies.

Now that the CA-DLS has been implemented attention can turn to examining the limits of the design.

This chapter has described work in which the core system was implemented and used with real data.

The context models themselves were simple in nature but the linkbase models were fairly complex

to implement. Along with that there has been much implementation work to facilitate writing of new

context models and linkbase parsers as well as numerous other infrastructure code required to

produce the CA-DLS.

With much of the basic implementation work complete effort only needs to be spent on simpler

experiments. These are ones in which context models and link models are designed or developed

simply to test the ability of the CA-DLS to cope with such a design. Chapter 7 describes a number of

new Link Resolvers and applications. In each case there are new forms of context model and hence

new methods for detecting context changes. These contribute to the testing of the overall design and

inform the discussion of how well this approach to writing a context-aware link service really works.

122

7 Examining the Limits of the CA-DLS Design

The previous two chapters chronicled the building of the CA-DLS and its use in two fairly different

projects. Once these had been completed it was felt that, rather than build complete applications,

smaller, more diverse, experiments should be carried out to test the design. To this end a number of

Link Resolvers were written to perform some type of contextual linking but not fully deployed as

finished applications. A number of further scenarios were developed for applications using the CA-

DLS or the idea of the Link Resolver. These were used to consider the implications for the design and

whether it would actually work if the systems were completed.

The weak point in the design was acknowledged in Section 5.6, it is the function call that invokes a

Link Resolver to resolve a link and return data. There will always be some situation in which it is not

possible to convey the necessary contextual inputs to the Link Resolver from the CA-DLS. This is

not the same as data that the Link Resolver can obtain independently of the CA-DLS. If this happens

then the only solution will be to redesign the system to allow for the representation and transmission

of some new data type. This chapter is concerned with learning more about that limit.

The focus in this chapter is on the contextual link model within the Link Resolvers and what

requirements that places on the overall system to detect the context changes involved in that design.

7.1 User Models for Resolving Links

As we have seen, the adaptive hypertext field is about building systems which model the user's goals,

preferences and knowledge and use it to personalise a system. In this thesis we have, so far,

concentrated on the infrastructure and methods needed to adapt links in context. This would form part

of the infrastructure required to turn the CA-DLS into a fully fledged adaptive hypertext system but

the system will also need to be able to model users. The Link Resolver developed in this section is a

simple first step towards incorporating a user model and integrating with existing infrastructure to

produce personalised links.

The Link Resolver described in this section provides links that are adapted to a type of user. The links

are tailored to the position a person holds in an organisation and hence to the types of information

that person is more likely to require. The Link Resolver has the ability to look up the person in a

personnel database using a standard protocol called LDAP^ (Yeong et al., 1993). With this ability the

123

Resolver can look up the position that a person occupies and hence determine a profile to use when

resolving links. The Link Resolver, called LDAPResolver, runs within Muffin and the user would use

Muffin as their Web proxy.

LDAP, lightweight directory access protocol, is an open networking protocol for accessing

information stored in a Directory Services server (Bumbulis et al., 1993). Typically such servers hold

personnel information such as names, locations, phone numbers and email addresses. One of the

goals of writing this Resolver was to demonstrate how a Resolver could make use of the information

already existing within organisations using open standards and protocols.

The Resolver holds a fixed list of people profiles, the directory services system is used to match an

individual user to a particular profile. The linkbase model allows for links to be graded against each

profile type. This allows the Resolver to score links based on how useful they might be to a particular

user. The overall effect is similar to that in the first PORG Link Resolver from the previous chapter.

An algorithm scores links depending on a context, in this case the context is determined by the

username, and hence their user profile. The Resolver has been written to use a plug-in profiling

system allowing for rapid development of new profiling applications or for the replacement of the

existing scoring algorithm with a more complex one.

In this prototype there is no interface for the user to identify themselves to the Link Resolver. In a

production system this could be achieved by the user entering their id into an interface component of

Muffin or the user entering their id into the Web site using authentication or by the Resolver

ascertaining the current user directly from the operating system. In the demonstrator Muffin is given

a user id in the configuration file and uses that to query the LDAP server, all links are then adapted

to suit that user type.

The LDAPResolver has a model which consists of an internal representation of the user's position

within an organisation. It is a simple example of the type of profiles that could be built into this

Resolver, these could take account of user information such as status, interests, age or project. Within

the Department of Electronics and Computer Science a Link Resolver can make use of the internal

personnel database containing information such as research group and whether the person is an

undergraduate, researcher or academic. The simplest way to explain the nature of the database is that

it is used to generate the department phone book.

'Lightweight Directory Access Protocol.

124

Both links and people are given scores between 1 and 10 in the areas of 'research', 'academic',

'administration', 'teaching' and 'support', the five major staff groups within the Department. When

applied to a link these scores indicate how relevant the destination document is to those areas. The

user profile works in a similar fashion. The user profile values are stored in a configuration file given

to the Resolver. For instance all academics are given the same profile. When the Link Resolver adds

links to a page the two sets of criteria are combined to score each link.

Table 7.1 shows an example scoring of a link against the profile of a researcher. The link's profile

suggests that the destination will be of most use to those who are more concerned with teaching. This

is reflected in the overall score of 156 which is low compared to the possible total of 500. When the

link is placed in the document the score is normalised to a value between 0 and 1, in this case the final

link value is 0.312.

Researcher Profile Link Profile Score

Research 10 2 2 0

Academic 5 8 4 0

Teaching 6 10 6 0

Administrat ion 4 6 2 4

Support 3 4 12

Total 156

Normal ised Value 0 3 1 2

Table 7.1: Example Scoring of a Link Against a Researcher Profile.

A link model has been developed to represent the profile information for each link. Figure 7.1 shows

a simple example linkbase in which a generic link on the phrase 'Courses Handbook' has been

defined to the online version of the Courses Handbook. The link has an Information Profile

component ranking the link's relevance out of ten on the areas of research, academic, teaching,

administration and support. This link is most useful to academics within the department and

administration personnel.

125

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE l i n k SYSTEM ' ' G t a t u s _ l i n k b a s e . d t d " >
<linkbase title="Test Linkbase with Status information">
<keyword

href="http;//localhost/foo"
id="keyword_l"
title="Courses Handbook"

/>
<destination

href="https://www.ecs.soton.ac.uk/ug/handbook/"
id="dest_l"
title="Courses Handbook destination"

/ >
<Information

id="information_l"
research^"2"
academic="8"
teaching^"10"
administration^"6"
support="4"

/ >
<go title="Courses Handbook Link" id="Linkl">

<from elements"keyword" id="keyword_l"/>
<to elements"destination" id="dest_l"/>
<attribute elements"Information" id="information_l"/>

</go>
</linkbase>

Figure 7.1: A Sample Link for Use with the LDAPResolver.

When links are placed on the page the score can be indicated in the HTML of the anchor by some

mechanism such as the colours described in Chapter 6. The exact calculation method and display

mechanism are not important at this point and a new calculation method could be added to the Link

Resolver in place of the one illustrated here.

The result is a Link Resolver that adapts generic links to the user of the system using a basic model

based on the status of the user. The system determines the profile of the user by looking up status

information from a live Directory Services system running in the department. The model is a simple

one but designed to be altered easily to match new uses or more complex ways of using the

technology. The CA-DLS architecture has not needed alteration to cope with the application and

demonstrates potential for building a powerful adaptive hypertext system. The logical step would be

to integrate the Link Resolver with an existing user profiling technology rather than create a new

system. The use of the LDAP protocol is a demonstration of the ability to make use of external

libraries from within a Link Resolver without affecting the overall system.

126

https://www.ecs.soton.ac.uk/ug/handbook/

7.2 Links With a Context of Time

The context of time and dates has always been one of the key areas associated with this thesis. The

initial problem which started the whole work on the CA-DLS was the flux of a workforce within an

organisation and the need to reflect that in links for the AIMS system. In order to showcase this area

a detailed plan has been produced for a Web site chronicling the story of the Millennium Dome with

particular emphasis on showing how politicians change their views on a subject to suit the current

political climate. The key action is to implement links with a timeline or plotline and be able to serve

them effectively. This is described fully in Section 7.2.2.

First a Link Resolver is described which properly implements the links needed to work with AIMS

as described in Section 3.3.5. It uses a variety of methods to determine the date of the document the

user has requested. This then forms the basis of the Millennium D o m e application.

7.2.1 The TimespanResolver

In this Link Resolver a model is used where each link has a start anchor, a destination and a time span.

A time span consists of 2 dates forming a range. If the date of the document the user has requested is

within the range of a link's time span then it will be added to the page. The objective is to develop

applications in which a link service supplies appropriate links in context of the date of the document

the user is reading. The date range components of the linkbase design have been added to the basic

design and extra functionality written to allow a link service to query for links by date.

In order to work with dates and times in Java a general purpose class, TimeSpan, was written to

interpret dates given in the linkbase. In the linkbase a Resolver author can specify the format of the

date information given in the startjime and endjtime components of a TimeSpan. The Format

element contains text describing the layout of the dates and is given to the DateFormat class of the

Java API. Figure 7.2 shows a sample of a linkbase incorporating t ime spans. A generic link is made

from the acronym 'hod' to the home page of Professor Tony Hey. The link has a timespan which

represents the time during which Professor Hey was Head of Department.

127

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE link SYSTEM "timescales_linkbase.dtd">

<linkbase title="ECS Linkbase with Timescales">
<keyword

href=""
id="hod_ajgh"
title="hod"

/ >
<destination

href="http://www.ecs.soton.ac.uk/~ajgh/"
id="Tony_Hey"
title="para_title"

/ >
<TimeSpan

id="1"
format="d M y"
start__time="23 February 1997"
end_time="21 January 2002"

/ >
<go title="HoD for Tony Hey" id="43">

<from element="keyword" id="hod_ajgh"/>
<to element="destination" id="Tony_Hey"/>
<attribute element="TimeSpan" id="l"/>

< / g o >
</linkbase>

Figure 7.2: A Sample of a Linkbase Incorporating Time Spans.

The Link Resolver was written to find the date of a Web page by a number of means. It builds a cache

of dates against URLs to speed link processing. If one method fails it tries others until it finds a date

of some kind. Method 3 will always return a date though it may not be very useful. The methods are

used in the following order:

1. Find a Date entry in the META tags of the HEAD of the H T M L . This is where a date entry for

the document is recommended to be placed in a HTML document. The system was written to

be able to find the value of any META tag in HTML and then a date-specific function written

to take advantage of that. The system will attempt a variety of ways to parse the text into a date

and others can be given to the system as required by a specific example.

2. Find a Last-Modified date from a HTTP HEAD request. The HTTP HEAD request asks the

Web server for basic information about a page. It may include a Last-Modified date entry

which the Link Resolver will attempt to use.

3. Find a Last-Modified entry in the META data tags. In a similar fashion to the first method the

Web page is parsed to find a Last-Modified date entry. This is a less reliable source of a true

128

http://www.ecs.soton.ac.uk/~ajgh/

date.

4. Methods were also written to find dates from specific archives and sites. For instance URLs

to pages on The Times archive site contain a date within the URL itself. A method was written

to extract them for the Resolver to use in a later example.

The AIMS system produces dates that will be found by the first technique and therefore this Link

Resolver works easily with AIMS to find the date of a document. Now it is possible to correctly add

date-specific links to AIMS, one of the original motivations for this PhD as described in Section

3.3.5.

In this case context detection is achieved simply by using the U R L of the requested document. This

is automatically given to the Resolver during the resolveLink() request so no further development was

needed to obtain a context input. The Link Resolver can independently use HTTP and HTML parsing

to obtain the information it needs. All data processing is done using the Date class from the Java API.

It is a little more complex than is strictly necessary but once the work had been done to understand

the Date Formatter class the work was reusable.

There are at least two applications of this technique with online archives as discussed in Section 3.3.5.

1 The simplest application is to place links in documents which match the date of the documents.

Therefore if a link is valid for documents between 1998 and 1999 then it will only be returned if the

document's date is within that range.

2 A more sophisticated example would be to allow the user to view an archive and be able to 'turn

back the clock' through some interface. The archive and link service would show the state of the

system at that time by only showing documents created up to that point and only showing links to

match.

The concept of a Link Resolver that understands time spans can be expanded to more ambitious

applications. The linkbase essentially forms a timeline of information. From here a possible avenue

to explore emerges in the merging of work to produce a linkbase and work to produce a timeline. For

instance history projects and news stories often feature timeline illustrations as a compact way to

display a story summary. There is potential for the use of linkbases and time related link services here.

129

A related area is that of genealogy. There are standards for representing family trees in software. The

GEDCOM' (Hawgood, 1998) standard is the underlying data format used by the majority of software

in the genealogy industry. Such software is increasingly used to produce GEDCOM files of a family

history which are uploaded to genealogy Web sites. It would be possible to write a Link Resolver to

map from the genealogy data to links in the pages which correctly interprets the dates of people

referenced in those pages.

7.2.2 Application Plan - The Story of the Mi l lennium D o m e

This section is an in-depth discussion of a possible application of this technology. It has not been

implemented but a considerable amount of work was done in ascertaining the feasibility of such a

design. For instance the archives of major online newspapers have been examined and the appropriate

documents collected. The design is discussed in some detail before a discussion of the possibilities

of how well it would work are considered.

The story of the Millennium Dome mainly spanned 5 years with a massive amount of media

coverage. The many politicians involved changed their views on the project many times as the project

was delayed, the vision was changed and site was eventually opened, run and then closed. The story

is made more interesting because the project was initiated under the Conservative government of

John Major and completed under the Labour government of Tony Blair. Politicians from both sides

of the political spectrum found themselves having to change their public views on the subject when

the change of government occurred.

Many people were involved in the project and many were casualties of the problems and considerable

media criticism. Therefore there is a complex timeline of events involving a changing cast of

characters and companies. Many online newspapers have good archives of the story along with

analysis and historical overviews. When combined these provide the materials to build a new archive

of stories complete with a timeline architecture and linking on key characters involved. The challenge

is to show how contextual linking could add value to such a story.

The key aspect of the project would be to provide generic links on people and organisations which

give a concise history of their involvement in the story. These links would be provided in the context

of the date of the article being read. This first stage feature is interesting but of limited interest to

'Genealogy Electronic Data COMmunications

130

readers. The major showcase is to add value in the form of editorial opinion and analysis. This is also

a form of context as differing views can be overlaid on the same corpus to provide radically differing

views on a story.

A controversial showcase of this technology would be an application to highlight contradictions in

people's statements. The reader would browse through stories augmented with generic links.

Available generic links would normally include the most recent links or events involving the

character such as recent statements or a list of key events they have been involved in. However an

editor could decide to show links that illustrate how the politician is contradicting their previous

statement or show how another person is backing their previous statements up and being consistent.

For instance if a reader clicks on a person's name a pop-up box could give a list of links to stories

using the quotes of the person as the description. Which links are shown is up to an editor to decide.

To add to the effect a reader could indicate preferences to the system and these could include their

political sympathies. Therefore the whole system would be configured to give the user the version of

events that appeals to their views. This would be a system that is not only using time as a context but

is using the context of the editor's or readers political beliefs. A wholly subjective system. It could

be argued that the context being used here is the context of 'spin' .

Figure 7.3 illustrates the potential effects of the system. The Link Resolver displays two different sets

of destination links to related stories. It could be that the results depend on the preferences the user

has registered with the system or that a site editor has registered with the system.

131

3 The Times: PoliticsBlair offers l egi e t but no apology for Dome - Microsoft In te rne t Expior. . " - T a r x i

J - a - a B w L I P «e-\0- 5 Eile Edit ê'.v Favorites

Blair offers regret but no apology for Dome

BY TOM BALDA'IN. DEPUTY POLmC.AL EDITOR

TONY B L ^ R admitted yesterday that the Millennium Dome had not been successful and that
he should fee cancelled the project before it got off the ground.

However, the A le Minister refused to apologise for the mounting
which has acco ged k r ^ 2 8 miUion of public money.

at the attraction.

He said; "I don't apofMise for trying to do something really ambitious for the Millennium, it's
not been the success\e 'd hoped, that's true, but I do say to people, try to put the other side
of the balance sheet." l l t s includes reclaiming a large area of derelict land and creating up to
30.000 jobs during the nAu seven years, he said.

f M y Computer

z j

Following the link on Tony Blair'
opens an available links box to
stories that back the Prime Minister in
his statement that the Dome was a
good idea.

w-iaifxt
o ' 0 a

Blair Dome "a triumph of confidence
over cynicism, boldnems over
blandness. excellence over
mediocfity".
The Times. 15 December 1999

Dome "sunk by media sniping" Ken
Robinson
The Times. 27 September 2000

Blair backed project from the start.
The Guardian.

I H " ! 'r^WyCompuiT

The third link in
each case is to
different reporting
of exactly the same
story.

-"a The Times: PoliticsBlair offers regret but no apology for Dome - Microsoft In te rne t Explor, . a s i g i .

IO ' O " 3 0 I V- tg* ^ I & S ^ Is® Edit i5e\v Favorites * ^

Blair offers regret but no apology for Dome

BY TOM BALDWIN. DEPUTY POLITICAL EDITOR

TONY BLAIR admitted yesterday that the Millennium Dome had not been successful and that
he should have Cancelled the project before it got off the ground.

However, the Prime Mnister refused to apologise for the mounting
which has accounted\r mWBon of pubic money.

at the atrsctjon.

He said: "1 dont a p o l o g i s ^ r trying to do something really ambitious for the Millennium. It's
not been the success we'd\oped. that's true, but I do say to people, try to put the other side
of the balance sheet." This ineijudes reclaiming a large area of derelict land and creating up to
30,000 jobs during the next sevfen years, he said.

« r My Computer

Zi

g g

O " J " B 0

Archbishop's fury a| Dome condom
deal
The Telegraph. 14 February 1999.

The Dome. A thoi^hly unsatisfying
experience
Guardian SpecialReport. 23 May
2000

Blair "ignored Dome warning from the
stait"
BBC News. 12 November 2000.

" 3

zi
1 If, My Computer

Following the link on 'Tony Blair'
opens an available links box to stories
that attack the Prime Minister for not
scrapping the Dome project.

Figure 7.3: An Example of Editorial Linking in the Mil lenium Dome Application.

132

There are three layers of information in the system, these are shown in Figure 7.4.

At the bottom are the news articles. These stories would be gathered from standard news

organisations and can be considered to be fairly objective. However all reporting is subjective to

some extent. The advantage of an archive of stories drawn from multiple organisations is that many

versions of the same event can be read by the reader helping to provide a more objective system.

The next layer is the collection of event-based links of major statements or events in the stories

relating to characters and organisations. These would be written to be objective statements of fact.

The upper layer provides the way of choosing which links to provide to readers and is wholly

subjective. It contains other metadata about the stories and links such as political bias and importance

rating. This needs to be an extensible layer to allow reuse of lower layers of material for different

purposes. This will even extend to deciding which versions of stories to present to readers. Some

accounts of an event might be more sympathetic to a point of view than others.

Editorial Linkbase

Events Linkbase

News Articles

Subjective

Selective

Objective

Figure 7.4: Data Model of the Millennium Dome Application.

From a linkbase design point of view there will be three major objects to describe in a link.

Stories. An interesting property is that stories are often about historical events. A news story may be

about the emergence of facts about an event that happened earlier. For instance a leak to the media

about what was said at a government cabinet meeting 6 months earlier. This requires careful thinking

about the metadata used to represent the story.

133

Links to dated events. These could include simple summaries of the events. Links are primarily

about an event. An event might be a complex object involving many characters and organisations

used in the system. This would need careful designing to avoid overcomplexity.

Editorial l inks from stories to opinions. This is where the added value of the system is

implemented in the form of editorial content.

In order to explore the implementation further a Link Resolver was written in which the following

model of Link was built. The Link model took the form

Link = Entity + Story + Event + Information

This links an Entity, such as a person's name or an organisation, to an actual news Story, a time-based

Event object and an additional Information entry. The Information entry would let a developer add

arbitrary meta-data tags to the link. The Information object consists of an arbitrary set of key-value

pairs which need to be listed within the linkbase, linkbase parser and the Resolver. This simple

flexibility gives a powerful link model from which to begin the D o m e system. A sample linkbase was

built which matched this model and a parser also written to load such links.

To fully implement such a system would be a major piece of work. Not least in the creation of many

links and the creation of the editorial linking. Story links would be relatively easy to harvest from

news sites. Building Event links would require careful thought and almost certainly some type of

timeline editor to aid in organising the chronological aspects to the data. There would also be

considerable work in designing an underlying database to store the stories. The contexts involved

would primarily relate to the date of the document or the simple identification of the document the

user was reading. This would be in addition to a considerable amount of user profiling adaption

needed to filter and shape links to suit the reader's tastes and political leaning. As the system would

need to be based around an archive database it would not be difficult for the Link Resolver to obtain

the metadata it required to help in link resolution.

The implementation would be an interesting challenge. There would be much to learn from the

sophisticated news web sites at this point, many of which already implement a related links system.

In order to fully integrate the system with an archive of news stories there would come a point at

which it would be better if the link service was fully integrated with the web server so that pages were

generated complete rather than the link service being implemented as a proxy or some other type of

add-on to the site.

134

There is also a similarity to the work of Steve Hitchcock (Hitchcock & Hall, 2001) in which he has

produced a form of journal portal. The system is a place for commentaries, views and discussion of

papers. The papers are published elsewhere on the Web so the system forms a waypoint to discover

and discuss these papers. He also uses a form of DLS linking to add links into externally stored full

papers to add value or comments.

7.2.3 Generic Links for Works of Fiction Based on T ime l ines and Plotl ines

This section briefly discusses a further application of time-based contextual linking.

When reading works of fiction it can sometimes be difficult to remember all of the information about

the characters involved. It may be possible to use the Link Resolver idea to help a reader keep track

of the characters. Links could be used with an electronic book reader to add annotation links about

major characters by giving a quick biography of each character. The important feature is that the

biography shown would only be the facts that the reader knows at that point in the story. The links

would be displayed in the context of what 'page' the reader is on. When a user hovers the mouse over

a character the link service would only return the fragments of the links that should be seen and hence

give the right summary. A mode would also be required to return all the information at any point for

readers who have finished the book, for example students studying the text.

The core of the implementation would be a system of links that form a time line for each character.

This would essentially form a plot summary for each character. This would need to use parameters

such as paragraph number or time as told in the story for its markers. Such an application would be

closest to the system developed in Chapter 6 where links are related to paragraphs in documents using

the unique paragraph number in the XML.

This system would not be a small task to implement, here we are more concerned with the

implications for the CA-DLS design and whether it would break the Link Resolver model. The

context detection system at the heart of this application would revolve around a technique for

understanding the text the viewer is reading, this would map to the page in the original book.

Paragraph markers such as those used in the second PORG application of Chapter 6 would be one

method for solving this problem. This would not present great difficulties as an input to the Resolver.

Therefore whilst such an application is far from easy to implement it would not create problems for

the CA-DLS architecture. Therefore we can envisage that this is another contextual application that

the CA-DLS could be used to produce.

135

7.3 Conclusion

Now that the CA-DLS is stable this chapter has demonstrated how a variety of contextual hypermedia

applications can be created. The infrastructure for doing so is complete and there are now a number

of reusable libraries for creating and manipulating link models in XLink. The solution to the original

problem found in AIMS was solved quickly once the necessary date formatting library was written

to accommodate links with a time span. Needless to say if a completely new link model is required

that has nothing in common with XLink then that can be accommodated too. One of the key points

of the CA-DLS design is that there is no need to have one single, complicated, link model which must

always cope with all future possible needs. By hiding all responsibility for link models and link

resolution inside an interchangeable component the application developer is free of many constraints.

The problems of contextual systems have been avoided as far as possible by this design choice.

The Link Resolver design is very loosely constrained by the A P I it must conform to and that is

reflected in the variety of applications shown here. The Link Resolver is so simply specified that there

is no requirement for a Link Resolver to produce links. All a Link Resolver must do is return a string.

Therefore a Link Resolver can be a simple wrapper around almost any existing functionality. This

was demonstrated in the second phase of work in Chapter 6 when the XMLResolver returned XML

paragraphs, sometimes of considerable size.

The range of contextual inputs to the system has been expanded so that the Resolvers have a large

number of methods to ascertain the information they need to produce their results. Work has gone

into writing methods for Resolvers to independently gather data from Web servers and Web pages

such as dates and other meta data. In this case the Resolver needs the URL of the document the user

is viewing, something that it has guaranteed access to from Muffin. The second major demonstration

of this was to write a library to communicate with a Directory Services system using LDAP. This

allows a Resolver an opportunity to query external resources for the information it requires. In this

case the Resolver needs to be told who the user is by some means. This could come from an interface

component of Muffin, data coming from Web browser authentication or even via the Resolver

identifying the current user directly from the operating system.

All Resolvers require some seeding information with the resolve request or access to enough data to

make their algorithms work. This is another way of looking at the edge of the capabilities of the CA-

DLS design. The examples in this chapter were formulated to expand on the list of methods for

obtaining the seed information to see how the design would cope. There will come a point where it

136

will not be possible to write a Link Resolver that can determine enough information to use in its

algorithm. At this point the CA-DLS will hit the frame problem and need a rewrite. That time has not

come yet.

137

8 Future Work and Conclusion

8.1 Future Work

This section discusses areas of future work for developing the CA-DLS further and finishes with a

list of implementation possibilities.

8.1.1 Detection of Context Changes

Roy Turner (Turner, 1997, Turner, 1998) describes a system, previously discussed in Section 4.3, for

an autonomous robot submarine that attempts to use external inputs to match its current situation to

a number of predefined contexts. Turner describes how this mechanism falls into three stages,

recognition, tracking context change and changing the context knowledge. This thesis has not

concentrated on the recognition or tracking areas but instead provided a framework in which such

work can now be considered. The CA-DLS supports dynamic context switching as well as dynamic

addition of new Link Resolvers to support new contexts. An important difference between the two

systems is that Link Resolvers include executable code and can be more diverse in their operation.

The robot contexts were all aimed towards helping the robot survive using changes in strategy.

An area for future work would be to concentrate on areas of context detection and mechanisms for

context switching. This could be to use document understanding techniques such as those used by

(El-Beltagy etal., 2001) or to look towards systems from the pervasive computing world. An

investigation could be considered into utilising the Context Toolkit (Dey et al., 2001) with the CA-

DLS as a framework for supporting a wide range of methods to switching contexts.

8.1.2 Transmission of Context Changes to a Link Resolver

The source of strength in the system design is also the weak point. It is the interface between Link

Resolver and the main system through a single function call. This careful separation and definition

of the interface between the main system and core functionality was the result of a lot of thought. It

was also shaped by the experience of producing the diverse applications of the system. It gives

considerable freedom to the implementation of Link Resolvers but is certainly not perfect.

There will be a circumstance in which the Link Resolver needs some piece of information about the

current system, document or user status which it cannot obtain. T o overcome this problem the main

system will need to be rewritten to pass that particular information to the Link Resolver as a

138

parameter in the function call. A solution would be to devise a method for the Resolver to describe

its needs to the main system in such a way that the main system can automatically use that description

to package the required data and send it to the Link Resolver. This was partially realised by the

inclusion of a parameter to resolveLink() called 'Context', having the class of Object, the most

general class in the Java language. The problem is to produce some form of shared understanding of

what this Context object needs to contain so that the CA-DLS can supply it. The analogy is with the

ontologies (Gruber, 1993) used by agent systems (Weal et al., 2001) or perhaps with the types of

shared understanding being developed under the Semantic Web (Berners-Lee et al., 2001) work of

the W3C.

For instance a Link Resolver might need to know the current location of processing within a

document so that it can detect it is within the references section of a scientific paper and thus link

citations properly. The solution might be of the form of a description file in a standard format that the

Link Resolver designer can write and the CA-DLS can understand and act on when the Link Resolver

is loaded.

As we have already seen there is no general purpose solution to this problem. This problem is another

perspective on John McCarthy's problem of generality (McCarthy, 1987). He was talking about

trying to build a general database of commonsense knowledge for use by any agent that requires it.

This knowledge should be applicable in any context and not need modifying for any new purpose. He

then identified that the real problem was finding a language to express general commonsense

knowledge. I feel that finding a solution to such problems is outside the remit of this particular thesis.

8.1.3 Downloading Link Resolvers

A further stage to the work described here would be to implement the system as a personal proxy

which makes use of published Link Resolvers downloaded from the Web. This section will examine

how such a system could be implemented and evaluates whether it would be feasible.

One scenario for using the system is that a Web site or intranet could publish a matching Link

Resolver for use with a personal copy of the CA-DLS. For instance the contextual processing to

match the AIMS system is quite specific to that system and may not be meaningful to other sites. This

introduces the notion that the publishing of a site should include the linkbase and the Link Resolver

to match the site. The user's CA-DLS would find the Link Resolver, download and instantiate it as

an accompaniment to using the site.

139

The user would run the CA-DLS as their personal proxy. The Link Resolver would be published as

a download on the Web site. The CA-DLS could search for it via a special URL and then download

the Link Resolver. This would include any other material the Link Resolver requires. Link Resolvers

already have the ability to load linkbases and other data from URLs rather than just the file system so

the idea is technically feasible. The Link Resolver would then be loaded as normal and given a chance

to load any resources it required.

The single biggest objection to such a scheme is security. The very real problems of viruses on the

Internet means that there is a culture of fear of downloaded applications. The target audience for most

DLS applications has been corporate users of computers in which the links are related to their work.

These users are the ones who are least likely to want to use this system or even be allowed to use such

a system by system managers. In many companies installing software on computers without

permission is a offence punishable by dismissal so the notion of this design would not be welcomed.

An interesting conclusion that can be derived at this point is that Link Resolvers and their context

models are rarely reusable in their entirety. One of the key reasons for open hypermedia link services

is reuse of data. This happens within applications as demonstrated by the power of generic links but

more rarely at the higher application level. This is not the same for the code that has been developed.

The Link Resolvers have been developed to be as general purpose as possible and easy to customise

for new contexts. What has emerged is that the contexts need to match the applications closely and

consequently are not so easily reusable. The context model is entwined in the particular link model

and tailored to the content involved so this is not so surprising. It is not a great problem as good

programming practice ensures that the components of a Link Resolver can be reused and remodelled

as desired. This was demonstrated by the speed with which the Link Resolvers of Chapter 8 were

developed.

8.1.4 Chaining Link Resolvers

A major issue with Link Resolvers is how to chain them together. As each Link Resolver is designed

to be self contained it seems natural to want to put more than one in a system. For instance the user

profiling work described in Section 7.1 would be a natural component to complement many of the

other Resolvers described in this work. However the design does not easily allow for this as the

Resolver is built to return completed HTML to the main parser of the CA-DLS. This is a weak point

in the design and any future work should try to correct for this. Plenty of systems are designed in a

modular way to form a chain and lessons can be learnt from them for a way to implement a solution.

140

The obvious one being the filter chain in Microcosm. The simple solution is to run more than one CA-

DLSFilter in Muffin each hosting different Link Resolvers. This would keep the design clean and

would achieve a great deal in terms of combining Resolvers. It also allows each CA-DLSFilter to look

for different link anchors in the documents. The penalty would be an additional performance cost.

Another solution would be for the CA-DLS to call the next Link Resolver with the same parameters

and supply the solution from the previous Link Resolver. This would be the HTML string (or

whatever the string happens to be) that was generated to add to the Web page. This would require

Resolvers to be able to parse and use that HTML in their own processing. In order to make this an

effective system there would need to be tighter integration between Resolvers so that they would have

a better awareness of what the other is generating.

8.1.5 News Archives

If a project such as the Millennium Dome archive was to be undertaken then it would be best linked

to the work of Reuters in pushing towards a standard for representing multimedia news articles in

XML.

There are two complementary XML standards for the representation of news articles. The first is

NITF^. This is a schema for marking up textual news articles. It was started as an SGML DTD but is

now based on XML. A more recent standard for representing multimedia news information is

NewsML. This was advocated last year by Reuters. The International Press Telecommunications

Council has now accepted the NewsML standard and a toolkit is already available for managing

NewsML articles. The sample Web pages^ indicate that NewsML could prove to be a valuable

resource if such an application is envisaged. The drawbacks include the fact that there are at least 4

other standards for representing news articles; XMLNews-Meta, RSS 0.91, PRISM and RSS 1.0. It

is unclear how these will evolve but Reuters have signalled their intentions to use NewsML and move

their whole business operation to the Internet in the near future. Another problem with trying to build

applications using one of these schema is availability of data. The system is designed for business to

business communication and it is not clear that the raw XML feeds will be publicly available.

'News Industry Text Format

^available at http://newsshowcase.rtrlondon.co.uk/default.asp

141

http://newsshowcase.rtrlondon.co.uk/default.asp

8.1.6 The Semantic Web

The continuing development of the Web, and particularly the Semantic Web (Berners-Lee etal . ,

2001), has implications for the work presented here. In this thesis a vision is presented of an adaptive

open hypermedia link service that uses multiple models and techniques to deliver links. The point of

the thesis is not to focus on a particular model of context or one way to compute the links. The more

interesting point is finding a mechanism to decide which context model to use and methods for

detecting when to change context. As most of the contexts being discussed here are to do with

documents it is now obvious that if this work were being started again today the tools and techniques

of the semantic web would provide answers to some of the questions.

The semantic web is concerned with providing machine understandable documents on the web, as

opposed to machine generated documents for human consumption. The prime goal is to provide

structured semantic representation of the content of the document in a machine-readable way. This

semantic representation will be domain-specific. This maps well to the notion of contexts in this

thesis. For each domain ontologies are created that have certain bounds. They are well understood

and match well to the data they are designed for. When moving between domains new ontologies and

processing are required. In this work this maps to changing link resolver and link models. Therefore

it seems logical that the way forward would be to use semantic web technologies to describe the

context models and the capabilities, or domain, of a link resolver.

This issue was examined by (van Ossenbruggen et al., 2002), w h o used their Cuypers system (van

Ossenbruggen et al., 2001) as an example of where semantic web technologies could be beneficial to

them. Cuypers is a system for using high level descriptions of a multimedia presentation to

dynamically deliver the final presentation to a user. It uses various models, such as the user profile,

a platform profile, a domain model, design model and domain ontology as inputs to an engine. In this

regard it has a similarity with the work presented here but is more closely related to the time-based

systems described in Section 4.5.1. They embedded a variety of ontological markup within the SMIL

presentations used by their system to examine their usefulness. This provided a way to describe the

domain of the presentation to the system to use in adaption. A similar mechanism could be used by

the CA-DLS as a mechanism for deciding which link resolver to use with a document.

8.1.7 Future Work Summary

1. Link Resolver download and invocation. A method fo r the CA-DLS to find, download

and instantiate a Link Resolver and all of the supplementary components it requires. See

142

Section 8.1.3.

2. Publishing a Link Resolver as part of a Web site. A Web site could provide a Link

Resolver to perform part of the linking between pages of the site. Users would then

download the Link Resolver to their personal CA-DLS. See Section 8.1.3.

3. Cafa/oguzMg and f/ie o/LznA: A way of describing the

functionality of a Link Resolver to enable reuse. This strays into ontology work and the

Semantic Web initiative.

4. Integrate pervasive computing systems that can detect and convey context changes. The

Context Toolkit (Salber et al., 1999) provides a framework for detecting and conveying

events and sensor data. This could be a way to expand the capabilities of the CA-DLS to

decide when to switch Link Resolvers. See Section 8 .L2.

5. Utilise document understanding technology to detect context changes in documents.

Utilise technology to decide upon the subject of a document as a method to either pass to

a Link Resolver as a contextual input or to trigger a change in Link Resolver. See Section

4.4. L

6. Investigate the usefulness of languages such as Prolog as a means to describe contexts

and detect context changes. This technique was seen in (Turner, 1998) see Section 8.1.1

and Section 4.2.

7. Investigate methods for describing data that a Link Resolver will need to perform its

functions. Each Link Resolver needs certain external inputs and a more general purpose

version of the system would need to involve some way to catalogue and describe the

required inputs to the rest of the system.

8. Chain Link Resolvers together at the filter level within Muffin. A simple task would be to

run more than one copy of the CA-DLSFilter in Muff in to utilise more than one Link

Resolver. Each Link Resolver would add links to the complete document without any

interaction with other Link Resolvers. A more powerful solution would be a system in

which multiple Link Resolvers cooperate to produce links in one pass of the document.

This would be much harder to implement as all of the possible interactions between Link

Resolvers could not be known in advance. The solution would be to limit the scope of

143

Link Resolvers or to utilise a system such as that in the Microcosm filter chain in which

a link is described in a message which all of the filters can alter and is only rendered at the

end of the chain. Link Resolvers do more than just produce links so this would not be very

effective. See Section 8.L4.

8.2 Summary and Conclusion

This thesis has described the design, build and testing of an open hypermedia link service capable of

supporting multiple models of contextual linking. The main objective was to investigate how context

can be added into hypermedia systems in a general way and to avoid committing to a single model of

context.

The history of open hypermedia link services presented in this thesis described the development of

the DLS (Carr et al., 1994) from the link services in the earlier Microcosm (Fountain et al., 1990)

system. The key idea propagated through these systems is that of a link from any occurrence of a word

in any document to a single destination. Such links are called generic links and the standard usage is

as a glossary or dictionary link in which a word is linked to its definition.

The DLS was used as the basis for experimenting with contextual linking by integrating it with a

document management system. The nature of the content of the AIMS document management system

allowed for many integration and linking opportunities. The system contained documents relating to

the administration workings of the author's department and contained many references to people and

other concepts within the department. Attempts were made to link these concepts with other online

resources taking into account the context of the documents.

For instance, the historical nature of the system meant that documents contained references to people

who had left the department. There were also links on acronyms for roles where it was not clear who

it was meant to reference as the job had changed hands. The conclusion was that the link service

would need to understand concepts such as the date of the document or some other attribute of the

material. However each experiment found that the link service needed to understand and model some

new attribute of the document, system or user and therefore needed different abilities for its particular

version of context.

Various experiments in adding contextual linking to the DLS led to a set of requirements for a new

link service in which multiple models of links with context could be used. A deeper investigation into

what exactly context means and its use in computer science led to some challenging ideas arising

144

from the work of the major thinkers in the development of artificial intelligence. Context is related to

the frame problem (Dennett, 1987) in AI where a model is built for a system and the boundary

conditions are set up to 'frame' the model. The problem is that circumstances can always be produced

in which this frame can be broken.

The result of breaking the model of a system is that the system will need to be rebuilt in order to

improve it. (Lieberman & Selker, 2000) calls this process reification. Any system that wants to avoid

this problem cannot commit to a single model of context and therefore it was decided to design a

system in which the model of context and link processing was written into an interchangeable

component. The idea of a Link Resolver was introduced as a self contained subsystem which had total

control of how links were modelled, computed and generated. The model of context and any code

needed to work with this model was only held within the Link Resolver. The architecture provides

the ability to change Link Resolver, and hence change contextual model, during operation in order to

attempt to circumvent the frame problem.

The Link Resolver concept was introduced and the building of a Context Aware Distributed Link

Service (CA-DLS) was described. The core functionality of the system is to act as a Web proxy

service and parse documents as they are requested by a Web browser. The link service adds new links

into the document. As the CA-DLS parses documents it looks for a set of words that are supplied by

the Link Resolver. If one is found the Link Resolver is invoked with the word and other contextual

parameters. The Link Resolver has the responsibility to return a string which will be placed into the

Web page instead of the found word. The Link Resolver may use any model of linking and any model

of context and any resources it wishes to compute the final value. The normal use is to return HTML

containing a link anchor though there are a few restrictions.

The system was designed and built during the undertaking of two projects with an external partner.

Both are described with attention paid to the model of links and the contexts they employ. The first

project describes a link service that can add multi-destination generic links to Web documents. The

links were also rated and ranked to indicate whether the destination document was closely related to

the current document. The ranking data was the result of a previous project by the partner and had

been represented using 3D VRML worlds. The documents were placed in the world so that related

documents were nearer each other. Therefore the Link Resolver represented a spatial context

allowing the user to relate the 3D visualisations back to the source documents and benefit from the

analysis.

145

For the second project a different type of analysis work was used. A report had been written analysing

the documents in considerable detail. This excellent body of work was reproduced on the Web using

a variety of technologies such as XML and XLink linkbases. A key constituent of the report was a

detailed knowledge map listing exact occurrences in the paper documents of useful technical

information. This was reproduced as a complex linkbase that linked from each technical concept to

the appropriate XML paragraphs. A Link Resolver was written to understand this linkbase and to

harness an XSLT processor to extract the exact paragraphs from the reports. A program was written

to use the Link Resolver to process the whole linkbase and build new documents from the paragraphs.

The end result was a set of new documents containing just the high quality knowledge on each subject

area listed in the report.

This system concentrated less on the context modelling aspects and more on the careful design of the

system and the development of components to reuse in each new Link Resolver. The system also

showed that Link Resolvers could be used independently of the CA-DLS in a standard application.

Following this, the limits of what could be achieved with the design were further explored. The tools

previously developed were used to rapidly prototype two new Link Resolvers. Models of links based

around contexts of dates and user profiles were built. A number of further scenarios were developed

to the planning stage in order to examine whether the systems would be feasible and what the

implications would be for the modelling of context and the detection of context changes.

The results of these evaluations of the system is that the design copes well with the hosting of

alternative models of context. It was shown that there are few technical constraints on the processing

that could be implemented by a Link Resolver as they can use any part of the Java language and make

use of external libraries and facilities. The system has other significant abilities. It is possible to

switch Link Resolvers dynamically, even to the point where a new Resolver can be invoked for every

occurrence of an anchor in a document. It is also possible to start a new Link Resolver whilst the CA-

DLS is running. A user could choose which Link Resolver to use or a system could be developed so

that the main system chooses depending on some factor. This introduces a new level of context

switching and, at first glance, is similar to the way that Microcosm and the DLS could swap linkbases.

The DLS had the notion of a domain within which a linkbase could be processed, described by a

partial URL address. That is a simple single context determination mechanism implemented in the

main system whereas the Link Resolver idea allows for multiple methods of context determination.

It would be simple to implement such behaviour in a Link Resolver.

146

A conclusion arising from the study of context is the idea that designers of systems that wish to

support contextual behaviour by a single model should acknowledge that they are going to produce

something fundamentally flawed. Any model of context within a computer programme will always

be a simplification of reality and hence open to circumstances in which the model will fail. A

suggestion arising from this thesis is that anyone wishing to claim that their system is contextual

should declare their particular definition of context, what the domain is and what its limits are. More

importantly an explicit statement of the circumstances in which the model would fail should be made.

In the CA-DLS the location in which the system will fail, the point at which the frame problem

occurs, is in the interface between Link Resolver and the main system. There will be a circumstance

in which the Link Resolver needs some piece of information about the current system, document or

user status which it cannot obtain by any other means than the main system supplying it directly

during the Link Resolver invocation.

The CA-DLS is a solution to the problem of rewriting link models and hypermedia systems to match

new context models and new ways of generating links. It has been designed to allow for rapid and

easy development of new contextual open hypermedia applications. This has been demonstrated by

building a variety of applications in which the CA-DLS remains unchanged but the effects it produces

are markedly different. The key point of this thesis was not to produce a single contextual hypermedia

application. That has been done before, each with a new version of what context actually is and no

agreement over what it really means. This thesis puts forward the claim that there is no definitive

explanation of context, only application specific versions of a generally understandable concept. If

there is no single, agreed definition then the solution must be to allow as many varieties as possible.

The CA-DLS provides a platform for people to build contextual applications, each embodying their

own definition of the word.

147

Appendix A:Overview of Relevant W3C
Technologies

The projects described in Chapter 6 used a plethora of new and emerging standards for describing

data and information. These standards are developed by the World Wide Web consortium, known as

the W3C. The goal was to learn about and evaluate them in real-world projects for ease of

programming, data representation and reusability. The following is a brief introduction to each

technology to act a quick reference guide. Further information about each technology can be found

from the W3C Web site www.w3.org.

A.l A Beginners Guide to W3C Acronyms

This section begins with a simple summary of the acronyms used here.

Acronym Introduction

HTML
(Hypertext
Markup
Language)

The language used to describe Web pages. It is understood by a Web browser.
It contains simple, fixed tags such as <H1> fo r a top level heading and <p> to
denote the start of a new paragraph.

URI and URL
(Uniform
Resource
Identifier or
Locator)

A way of describing the location of a resource on a network. It provides a
uniform syntax for describing diverse resources in an extensible manner. A
URL refers to a subset of a URI describing the location of the resource and
the primary access mechanism. An example of an access mechanism is the
HTTP protocol.

CSS
(Cascading Style
Sheets)

A way to add more style to Web pages in a controlled manner. A simple
language which defines how a Heading 1 should look, for example. Can be
stored in a separate file from the HTML and so helps authors to manage their
pages.

SGML (Standard
Generalised
Markup
Language)

An ISO standard for a standard meta language in which all other markup
languages may be expressed.

XML
(Extensible
Markup
Language)

A way to represent any structured data in documents and on the Web. The
basic building block of all new Web technologies. Unlike HTML there is no
fixed definition of what any tag means, it is up to the applications to interpret
the data as they see fit.

Table A.l : A Beginners Guide to Some Relevant W 3 C Technologies.

148

http://www.w3.org

Acronym Introduction

XHTML The latest version of HTML written using the XML syntax.

XSL
(Extensible
Stylesheet
Language)

Stylesheets for XML data. Much more powerful than CSS and much more
complicated. Comprised of the following three parts:

XPath
(XML Path
Language)

Is a way to build an address path into an X M L document in order to refer to a
specific part of the data. Used by the transformation language to extract
specific pieces of data.

XSLT
(XSL
Transformations)

Instructions that describe how to transform one set of XML data into another.
An application can use the instructions to remodel the XML into something
else. For instance turn XML to HTML.

XSL-FO
(XSL Formatting
Objects)

Formatting instructions and properties for presenting the transformed
information.

XPointer
An improved version of XPath. It can additionally refer to a range in an XML
file rather than just to a point.

XLink
A format for describing links between XML documents. In the language of
this thesis it is a standard for describing linkbases.

Table A.l : A Beginners Guide to Some Relevant W3C Technologies.

A.2 XML

The core format used to represent the data and documents created in this thesis was XML (W3C

Consortium, 1998a), a markup language for documents containing structured information. XML is a

simplified descendant of SGML but is in fact an application profile or restricted form of SGML and

can be read by SGML processors. The need for XML arose as the limitations of HTML began to

hinder the development of the World Wide Web. HTML is a fixed markup format for the authoring

of World Wide Web pages. For example in HTML the format and meaning of a top level heading is

always a '<H1>' tag. By contrast XML is a generalised data representation language allowing the

tags and semantics to be designed as required. XML is a generic data format expressly designed for

use with the Web, for instance as a means to interchange data between Web based applications. The

specification is compact but verbosity is common in files created with XML.

149

A.3 XSL

XSL (Clark & Deach, Aug 18, 1998) is a language for expressing stylesheets. It is the method with

which the semantics of an XML document can be understood and the data used or transformed. XSL

comprises 3 parts, XSLT, a language for transforming XML documents into other XML documents,

XPath statements, for expressing locations of data within X M L documents and XML Formatting

Objects, a vocabulary for expressing formatting semantics.

A.4 XSLT

XSLT (Clark, 1999) is a language for transforming the vocabulary of XML documents into another

XML vocabulary and is an inherent part of the XSL specification. It is designed to allow

interoperability between applications and ease data exchange. XSL is a rendering vocabulary

describing the semantics of formatting information for different media. XSL is primarily aimed at

rendering XML to another format.

For instance a modern Web browser has an XSLT processor built in. If an XML document is opened

in a browser and that XML document has the appropriate link to an XSL file to use then the browser

can transform and format the XML document into a HTML document and display the results. The

Microsoft Internet Explorer browser has a default XSL stylesheet capable of rendering an XML file

to a readable tree for viewing in the browser.

A.5 XPath

XPath (Clark & DeRose (Eds), 1999) is a syntax for building an address path into an XML document

and is used by XSLT and XPointer. The non-XML syntax allows a path expression to be built to

address any location in an XML document from any other. The primary model of an XML document

is of an arbitrary tree-like hierarchical model and the XPath syntax mirrors this. In fact it has a

similarity to a URL in the way that it uses the "/" delimiter to dig down through the branches and

leaves of an XML document to find the required node.

XPath has support for certain filtering expressions allowing an XPath expression to perform simple

computations such as 'find the first "answer" child of the third "question" child of the current

element'. However it is not a query language and has many limitations that compromise its ability. A

major use of XSL files is to render XML data to HTML.

150

A.6 XPointer

XPointer (DeRose etal., 2001) can be characterised as 'XPath++'. XPointer is directly based on

XPath but adds the abilities to address points and ranges as well as whole nodes. It is also designed

to be used inside URI fragment identifiers. XPointer is designed for linking, it identifies sets of

locations which are connected using XLink. XPath identifies nodes which can be used in an XSLT

transformation.

In the project described in Chapter 6 a complex XLink linkbase was designed and populated that used

'XPointer-like' destination addresses. Unfortunately at the time of the project no software was

available to support XPointers so the addresses really were a concatenation of a URL with an XPath

statement. The link service utilised an XSL processor to process the XPath part of the address. The

effect was the same as that which would be achieved by an XPointer processor and so the design was

considered forward compatible. There is currently little software support for XPointer and the

specification has been delayed for some time.

A.7 XLink

XLink (DeRose et al., 2000) is a language from the W3C for creating and describing links in XML

documents. It provides a framework for simple uni-directional l inks and for complex, arbitrary link

structures. The specification does not provide a design for a linkbase but a notation to use when

representing a linkbase design in XML. It is up to the developer to design a linkbase to match their

needs and to ensure that the linkbase can be parsed and used by an application.

There are two major types of links that can be modelled, simple links and extended links.

A simple link replicates the functionality of links in HTML. It is an outbound link comprising exactly

two resources, a source and a destination. The syntax is different f rom that of complex links because

they only require a subset of the functionality. They are of limited interest but prove useful for

learning the syntax. Below is an example of a simple XLink.

:studentlink xlink:href="students/patjones62 .xml">Pat Jones</studentlink>

Figure A.l : An Example of the Structure of a Simple XLink.

151

Extended links can have an arbitrary number of the following f o u r elements in any order.

• title elements are human readable labels for the link.

• locator elements that address the remote resources participating in the link. For example the

address of an external Web page.

• arc elements provide the traversal rules between the resources of the link. For example an

element called 'go' which says that a link is followed from a symbol of a church on a map to

a page about the church. It may also say how and when the link is activated.

• resource elements are local resources that participate in the link. These are essentially pieces

of data stored as part of the link. For example the link to the church could have a resource

element that is a label containing the name of the church.

Figure A.2 shows an extended link structure associating five remote resources. In this case it links

five Web pages together concerning the different facets of the author ' s role within the department.

Home Page

Resource2

PhD Page Group Page

Resource 1 Resource 3

Gareth ^ ^ A r c 3
Hughes

Arc 4
Proiect Page Publications

Arc 5
Resource 4 Resource 5

Figure A.2: An Example of an Extended X L i n k Structure.

The complex link allows a linkbase designer to create a s ingle link structure joining together a

plethora of resources whilst providing multiple ways to traverse between them.

152

Appendix B :Implementation of Chapter Six, Part
One.

B.l Introduction

This appendix describes a short term research project with an external partner. The project goals were

written to allow me the opportunity to design and write the Context-Aware DLS. The project goal

was to produce a link service for dynamically adding generic links to documents with multiple,

ranked destinations. The work followed on from previous projects by the external partner and used

documents and analysis results generated by other researchers as its starting point. It was hoped that

a link service could add value to the documents by representing the analysis results in a usable way.

The final result was a link service providing generic links in the documents to other documents within

the set. The destinations were chosen as locations of important information about the topic of the

word being linked. Each link anchor had multiple destinations which were ranked and prioritised.

This gave users a choice of documents to read on a particular topic and an indication of its relevancy

and its relationship to the current document.

The system introduced a spacial context into the linking by ranking the links in a document depending

on which document the user was viewing at the time. The documents in the system had been

previously analysed and grouped in a 3D spacial viewing system. For instance documents close

together in the space were considered to be more related than those far apart. The link service used

the data behind the visual analysis to give readers a feel for how related a destination document was

as depicted in the 3D system. The links attempted to convey this by giving each destination a value

and colour as well as ranking the multiple destinations for each link anchor.

B.2 Background

This project and the one described in Appendix C were carried out for the Post Office Research Group

(PORG), a research division of the UK national postal service, recently renamed Consignia, possibly

to be renamed back again. In 1997 a group of Consignia staff were involved in a contract to work on

the privatisation and modernisation of the Argentine Post Office. These people participated in a

knowledge capture and dissemination project because it was felt that their experiences would be of

considerable importance to many parts of the organisation. This was known internally as the

Argentina Knowledge cApture Project (AKAP).

153

The main focus of the project was the development of a knowledge capture tool. The tool was

designed to capture knowledge through a semi-structured interview process in which people were

asked to recollect their experiences. Many were interviewed both before and after their time in

Argentina. It was hoped to be able to identify what had been learnt during this time by identifying the

differences in knowledge between the two document sets.

People's names and commercially sensitive technical details have been changed for all diagrams in

this appendix and the next.

The result of the capturing amounted to a considerable number of documents, many of great length.

A very large amount of time and effort went into the transcription of the documents from the tape

recorded interviews. When printed, the documents formed a pile of paper six inches high. The harsh

reality was that the project had produced a document set so large and so verbose that no-one would

have time to read them. If they contained important facts that could aid managers of the company, it

was almost impossible to tell.

The AKAP researchers began two methods for analysing the document set. The first was to work on

a Knowledge Visualisation tool with Dr. Chaomei Chen, then of Brunei University. This would

combine various document analysis and visualisation techniques to discover relationships between

the documents or between the keywords and represent it visually. The second effort was to examine

the document set manually and attempt to extract the knowledge by hand. Finally the two approaches

could be compared and contrasted. The results of these two efforts form the starting inputs for the two

projects described here and in the next appendix.

Chen's novel work (Chen, 1999) was in the merging of a statistical document analysis technique

called Latent Semantic Analysis (LSA) with a technique for reducing the complexity of the resulting

network of relationships, called Pathfinder. The result is visualised as a VRML^ world.

LSA is a fully automated statistical technique which splits raw textual documents into words or

phrases and builds a matrix of their occurrences in each document. Each entry is given a weight,

either its weight in the context of the local document or a global weighting across the document set.

From this matrix a variety of relationship matrices are mathematically derived; document-to-

document similarity, word-to-document similarity and word-to-word similarity. The technique

^Virtual Reality Modelling Language

154

allows the user to manually intervene to reduce the word list. Stop words are automatically removed

and all other words are stemmed. The user can then choose which words to use in the system and

which to discard. In the case of the AKAP project Chaomei Chen choose the word list.

Even though the LSA technique already reduces the amount of relationship data produced it still

produces such a complex network of relationships that it is of little use to a user. The Pathfinder

network scaling algorithm essentially preserves only the most important relationships in the network

using a more complex technique than simply deleting the lower values in the network. The result is

a much simpler set of relationships called a Pathfinder network.

The Pathfinder network is then visualised into a VRML model by drawing it using force-directed

graph-drawing algorithms. Each connection is treated as a hypothetical spring, with the spring

strength relative to the connection strength. The model is then allowed to 'settle' into a minimum

energy position. Strong connections will tend to be closer together and weak ones further apart. The

user can view this network on VRML viewing software, a variety of which are freely available.

The end result of Chen's work was the delivery of a variety of VRML worlds showing various

relationships within the AKAP documents. Chen delivered a variety of document-to-document

networks, word-to-document networks and listings of the most relevant documents for each keyword.

Figure B.l is an example of the VRML worlds, this one is a network of all the keywords.

155

• - I n l x j

^ " @ a a ' @ G] 0 i a a J File Edit View Favorites Tools Help

1 Address D:\dev\porg\docs\vrml\post-tefms.wri

o
«» V V 4 oxVi' Y"

r\ii:

i_^&fv

My Computer ^

Figure B.l : Example of a Pathfinder Network for Keywords Shown in VRML.

In Figure B.2 an example of one of the document networks can be seen. Each node represents a

document and the clustering shows how the documents are related. In the VRML view each node can

be clicked on to show the source document.

156

j 4 . ^ ^ i ; File Edit View Favorites Tools Help

" " ^ 1 Ajjdress^^ D:\dev\porg\docs\vrml\dpost.wri

0
•iaij

o|
01
•tudyl

RobKI

Rob CS Tcch

O
piM

Jane CS %)b Cg People

^ ^ ' ^ a n e - M l Jolui c s
Stepltie CS

Jane Key KI Mavis KI
Juliet

Tanp r R r)f->1 Frnnrh Pet6 C-S

JulieiCS

Jane
Jane CS Del Franch

Richard CS James SI

Nicky C S

Mavis Pre-Tnt
Jane SI

John KI

Jolm lilt Plan
O o o

[My Computer

Figure B.2: Example of a Pathfinder Network for Documents Shown in VRML.

It was felt by PORG that the visualisation process had been useful but there were usability issues. The

VRML worlds were slow and difficult to navigate using the current computers of the time. An even

bigger problem was the company ban on installing software not on an approved list. This included

the VRML viewer and the latest version of Internet Explorer that was necessary to use the

accompanying Web pages. The result was that the only people who saw the VRML worlds were the

researchers on the project. None of the intended recipients could make use of the data. A more

important problem was relating the 3D visualisations back to the documents themselves. In the

VRML worlds of document-to-document relationships the user could click on a node and be taken to

157

that document. In the keyword-to-keyword visualisations the user could click on a node and be taken

to a listing of the 5 most important documents for that keyword. Once in a report there was little aid

to actually navigating within the reports or clues on how to make use of the relationships that were

being inferred.

At this point I was approached to attempt to build a link service that could make use of the data behind

these networks and link into the documents in a more meaningful way.

B.3 Summary of Goals

The project plan was to build a demonstrator system and try to combine the analysis data provided

by Chen with an open hypermedia link service. A Web site of the documents would be linked through

a set of generic links whose characteristics would convey the relationships between the documents.

The implementation of the system consisted of a Web site of the AKAP documents complemented

by an introductory page and contents listing. When the reader opened a document the CA-DLS added

popup links to words in the documents.

Not all of Chen's data was available to use or could be utilised in a way that made sense. The obvious

starting point for building a system was the table of keywords and the 5 documents of most relevance

to the word. Each document had a weighting between 0 and 1 attached to it. The raw data behind the

various networks was obtained from Chen as text files.

The proposal was to use this as the basis for a linkbase of generic links, each with 5 destinations and

each of those with a weighting. As the user browsed the document collection any of the keywords

found in the content of the documents would be linked to the 5 destination documents and there would

be some indication of the strength of the relationship given by the weighting.

The second major task of this project was to design and build a linkbase using the complex link form

and write the accompanying parser to load it. For an in depth example of the implementation of a

complex linkbase using the XLink specification see Section B.6.

B.4 Interface Implementation

Once the original documents had been converted to Web pages the first stage was to develop a

method for displaying links with multiple destinations. This was done first so that it would be easier

to know what the CA-DLS should generate. The chosen method was to implement a pop-up menu

158

system. The destinations in the menu were ranked and colour coded according to the weighting given

by the data. This indicated how close the destination documents were to the current document. A

close document in the world indicated a higher priority, this was indicated by a stronger colour of

link. The links were also ranked in the menu so that high priority links were at the top of the menu.

An example of the how a popup menu appears in a browser is shown in Figure B.3. In this case the

word 'integrate' has been clicked on and a menu has appeared with five links. Four are relatively high

priority and one is of very low priority.

nte.qrate the work and do
7 Jane Key Themes
6 John CS
6 Keith CS
5 Keith Kl
0 Stephie Kl

Figure B.3: An Example of the Popup Menus Generated by the Link Resolver.

The menu was implemented using JavaScript written for Internet Explorer. The priority scheme and

colouring was written using Cascading Style Sheets (CSS). Figure B.4 shows the HTML placed in a

document at the link anchor

This link anchor has a priority of 5 <a CLASS="clsMenu-
Title" ID = "links" >click again

Figure B.4: Sample of HTML Placed in a Document Forming a Prioritised Link Anchor.

When a user clicks on the link anchor JavaScript will load data f r o m the matching DIV data island

stored at the bottom of the page. Figure B.5 shows the corresponding DIV data island stored at the

bottom of the page.

159

<DIV ID="divMenu8" CLASS="clsMenu">
IAM Group Home Page
Gareth Hughes
Muffin

< / D I V >

Figure B.5: Sample of an HTML DIV Data Island Depicting the Links to Display in a Popup Menu.

When the user clicks on an anchor the JavaScript loads the data for the menu from the appropriate

DIV and displays a menu of links coloured according to the priority.

The colours chosen for the experimental system range from a deep red, denoting highest priority,

through oranges to yellow. Ten colours were required and it was always known that finding the best

colours to use would be a difficult and controversial task. Hence the system was designed so that

colours were only defined in the CSS file and nowhere else. It would be trivial task to alter the file

and change the way link priority is denoted. It would also be possible to change the colour of the menu

background and borders to aid in designing a better colour scheme. There are many other ways to add

formatting using the style sheet, for instance a variety of fonts which could vary in size could be used

to convey meanings such as priority or whether the link destination had already been visited. The

purpose of the project was primarily to develop a link service architecture and not to be concerned

with HCI issues so testing the quality of the colour scheme was not pursued.

When a link anchor was activated a JavaScript function was used to load the appropriate destination

data and display it as a popup. The data was stored in a data island stored at the end of the document.

Only one occurrence of the data for each link anchor was placed in the document and referred to by

a unique identifier. All occurrences of a linked word in the document would use the same data island

identifier and hence use the same data island. This gave considerable efficiencies in the document

size as well as during the document parsing stage. The parser needed to keep track of what keywords

had already been linked and what data islands had been generated. Once an island was generated

during the parsing stage there was no further requirement to do so. Data islands would be written out

to the document by the getFooter() method of the Link Resolver.

Figure B.6 shows an example of a page in which a number of words have been linked. They are the

words in colour. The user has activated the link on the word integrate and a menu of destinations has

appeared. Some words have been erased for confidentiality reasons.

160

http://www.ecs.soton.ac.uk/~gvh/%22%3eGareth
http://muffin.doit.org/%22%3eMuffin%3c/a

Knowledge Interview Transcript - Microsoft Internet Explorer

File Edit View Favorite Links

worse than I did.

Q. What time did you come back?

A. April. It was starting to get cold out there. People should be prepared maybe 6 months before
you leave. What is this person going to bring back to the business, how are we going to use
that, this person has achieved this, how do we recognise that and help them get on.

Q. How can we use the knowledge you and your colleagues have got. How can we exploit it?

A. Putting me here didn't at all.

Q. A bit left out?

A. I think most people are left out. People have found their own jobs. Some people have gone on
to do other contracts.

Q. Did anybody go back to their original job?

A. No. J went back to G went back to account management. Yes two of
them went back to POC to integrate the work and do project lype stuff.

7 Jane Key Ttiemes
6 John CS Q. Okay Steffi, I found this •

all? 6 Keith CS
5 Keith Kl
0 Stephle Kl

A. I just think the main one is recognition trom the business, not just to use it for those
individuals but to actually use the experience. I would expect something to come out of this in
terms of helping other people. Other people going abroad really need to make the most of it and
hopefully select the right people to do it. Hopefully I'll get some feedback from this in terms of
what is going to happen with it.

Thank you very much S , thank you for your time and

Anchor(s) placed: 771 Unique link(s): 28

of interview.

lything you can add or wish to expand on at

iJ
1 ^ My Computer Done A.

Figure B.6; A Document Enhanced with Multi-Destination Links.

161

B.5 Application Overview

Once a method for generating the menus had been decided the system could be developed to produce

the required Web pages. The CA-DLS was designed and implemented at this point. The first Link

Resolver for the system, called the PorgResolver, was written. A short recap of the overall system

functionality is included here.

The user's Web browser is connected to a Web site of the documents via the CA-DLS Web proxy.

For each requested document the CA-DLSFilter processes the document looking for keywords from

the list it has been given by the PorgResolver and also for other key points in the HTML. Specifically

it looks for the <HEAD> and </BODY> elements. Firstly it will find the <HEAD> and at this point

invoke the Resolvers getHeader() function. This allows the Resolver to add in the HTML needed to

include a reference to the JavaScript for the menu system. Once inside the BODY of the document

full link processing begins. Each time that a word is found that is on the anchor list the PorgResolver

is invoked to resolve that anchor into a link.

When the system starts the PorgResolver loads the following data. The linkbase, a mapping of

document file names to an identifier and a matrix of document to document weightings using the

same document identifier. When a document is requested the Resolver is informed of the request

URL by the system and hence can infer which document the user is viewing. The linkbase data gives

the 5 destination documents for the anchor.

For each of these destination documents the Resolver looks up the document-to-document weighting

from the currently viewed document to each possible destination. It builds a ranked menu of

destination links. This takes the form of a data island to be added to the foot of the Web page. The

data is stored by the Resolver until the end of processing when all are added to the bottom of the

HTML. The anchor and data are joined by an identifier and if the anchor word is seen again in the

document the system will simply reuse the identifier of the previous occurrence. This speeds link

processing and minimizes the data added to each page.

B.6 Linkbase Design

The design and building of the linkbase was used as an opportunity to explore emerging standards

being produced by the W3C. In the years since Microcosm and the DLS was invented the XLink

(DeRose et al., 2000) standard has been created. The standard cites Microcosm as an influence (S. J.

162

DeRose (Editor), 1999) so it was considered an interesting exercise to use XLink for the linkbase

design. The XLink concept of a complex link which can include multiple anchors and destinations in

a single link object was an obvious candidate for the multiple destination links required by this work.

A number of standard Java classes for parsing XML and XLink were found and a considerable

investment in time was spent understanding and incorporating this code into the system. It was

reasoned that the investment would be realised in future applications of the system as the link loading

subsystem could be reused with little modification. For each Link Resolver the linkbase design and

context model is altered and a new version of the parser and link loader is written to match.

It should be noted that the information about priorities is not stored in the linkbase. Only keywords

and their destinations. The datasets produced by Chaomei Chen for document-document distance and

keyword-document distance are loaded by the PorgResolver and used to compute the link priorities.

The PorgResolver understands which document the user has requested and can look up the priority

of each destination document. The PorgResolver contextual model is based around the user's location

within the closed document space. The URL of the document the user has requested is the input the

system needs to decide how to generate the appropriate links.

Figure B.7 shows one link from the linkbase. It describes an extended link from the word 'integrate'

to five destination documents. The priority values in the linkbase are all set to I and the real values

are stored in another file which was delivered by Chen.

163

<link xml;link= "extended" show="replace" actuate="user" in-line= "false">
<locator show="replace" actuate="user"

role = "source"
title = "integrate"
in-line= "false"

/ >
<locator

role = "destination"
title = "John CS"
href = "http;//localhost/porg/post-akap/JCCase-Study. htm"
in-line= "false"
priority= "1"

/ >
<locator

role = "destination"
title = "Stephie KI"
href = "http://localhost/porg/post-akap/SB_KI_transcript. htm"
in-line= "false"
priority^ "1"

/ >
<locator

role = "destination"
title = "Jane Key Themes"
href = "http : //localhost/porg/post-akap/ JK_AKAP_KEY_THEMES . htm"
in-line= "false"
priority= "1"

/ >
<locator

role = "destination"
title = "Keith CS"
href = "http ://localhost/porg/post-akap/K_F_Case_Study. htm"
in-line= "false"
priority= "1"

/>
<locator

role = "destination"
title = "Keith KI"
href = "http : //localhost/porg/post-akap/K_F_Kjiowledge_Interview. htm"
in-line= "false"
priority= "1"

/ >
</link>

F i g u r e B.7 : A L i n k b a s e En t ry L i n k i n g the W o r d ' i n t e g r a t e ' to F i v e Des t i na t i ons .

B.7 An Alternative Link Resolver

A s par t of the p rocess of d e s i g n i n g and bu i ld ing the R e s o l v e r a r c h i t e c t u r e a s e c o n d vers ion of the

P o r g R e s o l v e r w a s wri t ten that p r o d u c e d a d i f f e r e n t s ty le of l i n k s . Th i s R e s o l v e r p r o d u c e d in- l ine

H T M L l inks ra ther than a m e n u . Th i s s imple r d i sp lay s tyle e n s u r e d tha t t he f i n i s h e d s y s t e m w a s

c o m p a t i b l e wi th all W e b b r o w s e r s ra ther than those suppor t ing t h e J a v a S c r i p t p o p u p m e n u code .

164

http://localhost/porg/post-akap/SB_KI_transcript

The implementation was written to dynamically allow the user to change the Resolver in use whilst

the system was running. A crude technique was implemented to facilitate this. In Figure B.8 below

the user enters the name of the class file of the Resolver and the CA-DLSFilter instantiates the new

Resolver immediately. The menu based links are replaced with in-line links. It should be noted that

the processing and results are the same for both Resolvers as the development was just a proof of

concept exercise. The key point of the exercise being to demonstrate the dynamic loading

characteristic of the Link Resolver architecture.

165

Muffin

File Edit View Help

^ Muffin: Filters

Confifluration: ^ |

Supported FiltOTS

AnimationKiller
CookieMonster
Decaf
Documentlnfo
EmptyForrt
ForwardedFor

Enable

Delete

• • • • • •
Resolver Class: | org.doit.muffln.tllter.simpleRBsolver

Apply 1 Save | Reload File | Close Help 1

The Muffin program provides an interface to
change parameters to individual filters running in
the system. In this case the user is changing the

/name of the Class being used as a Resolver. The
/ alternative Resolver is being chosen. The CA-

DLSFilter will then reload and the new Resolver
is now running. Any pages now viewed will have

their linl<s generated by the
SimpleResolver.

Documentlnfo
CA-DLSFilter

Preferences...

Movel̂ I
Move Down |

Disable I

3 S B Knowledge Interview Transcript - Microsoft Internet Explorer

Save Close

This is the same
document as that shown
in Figure B.6 but viewed
using the SimpleResolver.
The rudimentary way of
showing the available
links is not meant to be
used but just to illustrate
the concept of Resoivers.

File Edit View Favofitf

- - 1 would end ^ ^ ^ ^ up worse than I'did! ^

Q. What time did you come back?

A, April. It was starting to get cold out there. People should be prepared maybe 6 months before

you l e a v - ' ^ - ^ ^ e . What is this person going to br ing back to the business, how are we going

to use that, this person has achieved this, how do w e recognise that and help - - - - - t h e m get

on.

Q. How can we use the knowledge you and your col leagues have got. How can we exploit it?

A. Putting me here didn't at all.

Q. A bit left out?

A, I think most people are left out. People have found their own jobs. Some people have gone on

to do other contracts.

Q. Did anybody go back to their original job?

A. No, J went back to _ w e n t back to account management. Yes two of

them went back to POC to integr ^ ^ ^ ^ ^ate the work and do project type ^ ^ 6 6 0

Q. Okay Steffi. I found this very interesting. Is there anything you can add or wish to expand on at

all?

A, I just think the main one is recognition from the business, not just to use it for those individu

8 6 6 5 Og|g lo actually use the exper i ^ence. I would expect something to come out

of this in terms of help Z B S G &ing other people. O ther people going abroad really need to make

the most of it and hopefully select the right people to do it. HopefuHy I'll get some feedbeck & ^ ^

- - from this in terms of what is going to happen w i th it.

Thank you very much S . thank you for your t ime and end 3 3 1 3 3 of In terv iew Z 8 5 8 0

Anchor(s) placed: 771 Unique link(s): 28 J

;«] I My Computer

Figure B.8: Changing the Link Resolver in use With Muffin.

166

B.8 5 Nearest Neighbours

Once the system had been built it was a fairly simple matter to adapt the technology to show more of

the relationships between the documents. The document-to-document network data provided the

means for a simple tool to aid navigation around the document set.

A second Muffin filter was written that added links at the top of the page of each document to the 5

nearest documents in the document space according to the document-document priority data. The

same colour scheme and ranking indicator was used helping users evaluate how related the

destination document was to one they were reading. This can be seen in action in Figure B.9 below.

The 5 links at the top of the document were produced by this filter.

. Knowledge Interview Transcript - Microsoft Internet Explorer

4 " ' ^ j j File £dit View Favofik Links'

5 Nearest: Nickv Kl Jane KevThemes Richard KI1 ,

Knowledge Interview

interviewer: M H

Interviewee; S B

Date: 2 7 ^ January

Subject: Argentina Project

3

Tape 1 Side 1

Q. Good morning S_ . My names M H_ _fmm POC. rd like to t a k e tliis opportunity
to ski a re in the knowledge and expeiience you've applied or developed during your t ime on the
assignment regarding the Argentina project a few years ago. Please don't feel const ra ined by my

Figure B.9: The Link Service Adding Five Links to the Nearest Documents in the Space.

B.9 Project Conclusions

The finished system utilised generic links as a way to navigate through the document collection and

discover the relationships as found by Chen's analysis work. The data displayed in the 3D VRML

worlds was embedded back into the documents allowing users to directly take advantage of the

analysis results whilst reading the documents.

167

When the delivered VRML worlds and data had been analysed it had proved difficult to derive a great

deal of worth from them alone as they did not relate easily back to the original documents. Now that

the source documents were enhanced with the data it became an easier task to examine them and

question how well the knowledge capture process had worked. The original reason for doing all of

the work was to capture business knowledge from the people w h o went to Argentina on the contract.

Could the important knowledge be found within the documents and delivered to the right people

within the organisation? Informal trials of the system with members of PORG quickly showed that

the answer was no. The reason lay back with the knowledge capture process and the resulting

documents.

Many of the documents were extremely long. In the 42 documents used in the work there were

284384 words amounting to 680 pages. For a reader to find the important pieces of knowledge from

such an enormous amount of material was an extremely difficult process. The bigger problem for the

analysis projects that followed was that they relied on using keywords to describe the whole

document. This would be hard enough for someone who was a domain expert and would know what

keywords or phrases to look for. However the keywords used were chosen by Chaomei Chen who,

not being a domain expert, did not choose the best set. Needless to say the keywords could be chosen

again by an expert and Chaomei could run all of his analysis work again. The underlying problem is

the assumption that a long document can be described by five keywords. The major limiting factor is

still the length of the documents.

A possibility to consider would be to decompose the documents into a vast number of smaller

documents and analyse those. This would have the advantage that a keyword would be able to more

accurately describe the smaller document. Whilst visualisation of a very large number of documents

would pose Chen and users far greater problems it would be to the advantage of the link service. The

system would fall down because it would be difficult to decide how to partition documents

automatically. These were conclusions that the AKAP team had also come to. There were lessons to

be learnt for the team who had undertaken the knowledge capture process in the first place.

The decision to use open software in the form of Muffin and various XLink parsing libraries brought

advantages and disadvantages. The main reason for using open software was to speed development

of the code and to concentrate on the research issues, not the implementation of basic system

infrastructure. This worked initially allowing the CA-DLS to be running in a short time. However

168

there were a number of serious bugs in the code that took a lot of t ime to find and solve. Thus the time

taken to code the system was approximately the same as if it has been written from scratch, but the

majority of the time had been spent on the areas of interest.

At the end of the project I suggested that the best way to proceed would be to manually split the

documents up into much smaller fragments. These should then be analysed by a human to decide

what parts of each were of value and to assign keywords. What I did not know at that time that this

had already happened at PORG. The results of that analysis work form the input to the second PORG

project described in the next appendix.

169

Appendix C: Implementation of Chapter Six, Part
Two.

This appendix describes a second project carried out with the Post OfOce Research Group (PORG)

which followed on from the work in Appendix B. This project used the results of another analysis

effort carried out by a member of PORG. The same document set was analysed by hand in a laborious

attempt to find the best information in the documents. This involved physically reading all of the

documents, Rnding the most important excerpts and forming an overall picture of the content. A

document was produced, the 'Learning Summary' report, that contained an analysis of the documents

and an in-depth summary of the knowledge found. The major contribution was a number of diagrams

they called Knowledge Maps (KM), accompanied by references and indices. See Figure C.2 for an

example. A KM is a hierarchical tree diagram of areas and sub-areas of knowledge covered in the

document set. One KM, covering technical areas, is backed up by full references to the actual

locations of relevant content on that topic. This analysis is of high quality and made good use of the

documents.

As before the figures in this appendix have been altered as necessary to protect privacy and

confidentiality.

C.l Project Summary

At the time of completion of the first project I had no idea that this analysis work had been done or

that the 'Learning Summary' existed. The brief of the project was open ended, I was given the report

and KM maps with no request from the external partner for any particular deliverable. My starting

point was the future work recommendations I had given them at the end of the previous project. The

major recommendation was to break the documents up and work on a paragraph or page level

analysis. This tallied with the work done for the 'Learning Summary ' so it was natural to begin

working on a way to implement some way of achieving this.

There were no pre-set requirements and no idea of what the outcome of the work should be. Therefore

the project started with an in-depth study of the 'Learning Summary ' and a survey of technologies

and standards that could be used in an implementation. There was a desire that the project should be

an opportunity to showcase and evaluate a number of standards being published by the W3C. There

170

was not the same need for any software produced to be backwards compatible. The source materials

were studied and a great deal of research was done into various programming technologies until a

plan evolved and a schedule of deliverables was written.

A key factor in the project planning process was that a great deal of work had gone into the analysis

work but it was just shown as diagrams in the paper report such as Figure C.2. The diagrams were

clear, well designed and formed a good overall understanding of the knowledge found. However the

results were essentially 'locked' within this set of Microsoft Word diagrams and the data they

contained was not reusable. The prime motivation was to demonstrate that technologies such as open

hypermedia and open standards could bring such work to life as well as enable knowledge reuse. On

the implementation front the remit went beyond just extending the architecture of the CA-DLS.

I set an overall project goal to reproduce the 'Learning Summary' report as a living, dynamic Web

site. Each part of the report was recreated using a variety of techniques to ensure that the knowledge

could be reused and displayed as needed. The Knowledge Maps and references were re-written using

XML and transformed to Web pages using XSLT transforms. This allowed for superior display

techniques to allow users to view the KM's as well as allowing them to link into the documents or

other data as required. The goal was to show that open data formats could present a superior

alternative to a paper based report.

The 'Learning Summary' report was designed to accompany and reference the original AKAP

documents described in the previous project. In order to use them with this project they were

converted to XML, a difficult and time consuming process in itself.

During the project a second major Link Resolver was developed for processing a linkbase and

activating XPointer links. The Resolver was utilised both using a standalone program and the existing

CA-DLS. The standalone program was used to batch process the linkbase due to its size and the

complexity of the XML processing being done. Due to the Link Resolver design the system also

worked when activated through the CA-DLS.

171

C.2 Project Implementation

Each of the sections of the 'Learning Summary' were converted or adapted to be accessible from a

Web browser. The main body of the report was a simple text report but following that were all of the

KM diagrams and data to support them. Each was represented as X M L files and accompanied by XSL

files to render them viewable. This section lists the KM's and demonstrates the transformation

process.

The site contains the following sections which map to the parts of the original report.

Learning Summary: Argentina Knowledge CApture Project (AKAP) - Microsoft Int.

File Edit » ! •

Learning Summary: Argentina Knowledge
CApture Project (AKAP)

Project Report

Original Learning Summary Report

Learning Summary Report

Annex 2 - Pre-Analvsis Knowledge Map

Annex 3 - Post-Analysis Knowledge Map

Annex 4 - Contact List

Annex 5 - Technical Knowledge Map

The Links Between the Knowledge Map and Documents

The Original Documents 2l

Figure C . l : The Contents Page of the Live Version of the Learning Summary Report.

Section Explanation

Learning Summary Report
The main body of text f rom the report, reproduced as
HTML.

Annex 2 - Pre-Analysis
Knowledge Map These knowledge maps are written in XML and reproduce

the diagrams produced in the report. Annex 3 - Post-Analysis
Knowledge Map

These knowledge maps are written in XML and reproduce
the diagrams produced in the report.

Table C. 1: The Sections of the Learning Summary Web Site.

172

Section Explanation

Annex 4 - Contact List

The contact list has been merged with all other acronyms
used in the report to form a reusable XML resource. The
Knowledge maps dynamically use the data in the contact list
to expand acronyms and initials to their full values.

Annex 5 - Technical Knowledge
Map

A KM depicting the technical subjects found within the
document set.

The Links Between the
Knowledge Map and Documents

This is the core of the project and is described below.

The Original Documents
The XML versions of the original documents that this
analysis is based on.

Table C. l : The Sections of the Learning Summary Web Site.

C.3 Document Conversion

The first task was to convert the original AKAP documents used in the previous project from

Microsoft Word format to XML. Unfortunately the work was hampered as in the previous project by

the poor state of the supplied documents. There was no consistency in the writing style and no use of

Word styles used in any document. Subsequently the work took much longer than planned.

The document set of Microsoft Word files was imported into Adobe Framemaker 6 and headings

added to the text where economic to do so. A package called Webworks Publisher included with

Framemaker 6 was used to export each document to XML. The package creates a complex XML

document and makes use of a Cascading Style Sheet file to achieve a final document that can be

displayed on any version 5 Web browser. A key property of the generated XML is that each paragraph

is given a unique identifier. These XML documents were used as the basis for the project.

C.4 The Analysis Knowledge Maps

In the original 'Learning Summary' the various Knowledge Maps were drawn using Microsoft Word.

An example is shown in Figure C.2. In the report there are 3 KM's . Each was replicated as an XML

document. Figure C.3, shows a fragment of XML from the same Knowledge Map.

173

PEOPLE CLIENT
RELATIONSHIP

ENVIRONMENT PRE AWARD
PHASE

PROJECT
ORGANISATION

TECHNICAL
AREAS

Comms
(knowledge: JH,
NM)

J o b Spec
(knowledge: JH,
DL, AT, RO'D)

Retail

Corporate

Marketing

Operat ions

audience:
BPCS, NE,
M&A, CPG

audience:
DE
POC

audience:
POC
BPCS

audience:
BPCS
POC

audience:
BPCS
POC

Commercial
Relat ionships

Leadership
(knowledge: KF,
NM, JH, NH, BT,
RO'D, WP)

Team
Dynamics
(knowledge: JH,
DL, RO'D)

Repatriation
(Knowledge: DL,
KFi, NH
Short Term, MB) Suppor t

f rom UK
(knowledge: KFi, ~
DL, RB, JB,
RO'D)

Induction/
Training
(knowledge: NH,
DL, RO'D, JH, J B

Language
(knowledge: KFi,
JH, RT, RO'D, DL,
JM, JB, JO)

Consul tant 's
Role
(knowledge: KFi,
JK, JH, NH,
RO'D, DL)

Relations
between
POC/BPCS
(knowledge: RJ
NH, RO'D, WP,
DL)

Tender/Bid
Issues
(knowledge:
PD, MJ, RT, FC,
BT, JH, KFi)

Project
Management
(knowledge: KFi,
NH, JC, NM, JB,
RO'D, DL, BT, PD
FC, WP, RB, JH,

Recruitment
(knowledge:
JB.KFI, NH, RO'D,
JM, JH, DL, RB,
WP, JC , PD)

Relocation:
UK to BA
(knowledge: DL,
RBI, NH, JC, JM,
KFi, NM, FC, BT,
JH, RO'D

for ful l details
please refer
to separate
map of
Technical
Areas

Work ing in a
Dif ferent
Cul ture
(knowledge: KFi,
FC, RO'D, DL,
JM, JB,)

Work ing
Relat ionship
(knowledge:
KFi, SG, J L
JH, NH, RB,
DU JB, JK,
RO'D, PD)

Work ing in a
De-regulated/
pr ivat ised
Post Office
(knowledge: KFi,
NH, RO'D, PD, DL)

KNOWLEDGE MAP: A RGENTINA KNOWLEDGE C A P T U R E PROJECT
Product 1.1 Version I d (post knowledge capture & analysis)

Author: Bob Fleming

Figure C.2: A Sample Knowledge Map (KM) from the Original Learning Summary Report.

This XML fragment is from the Post Analysis Knowledge Map.

174

<?xml versions"!.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="analysis.xsl "?>

<KM
title="Post Analysis Knowledge Map (Annex 3)"
version="Product 1.1 Version Id (post knowledge capture and analysis)
project="Argentina Knowledge Capture Project"
author="Bob Fleming"

<Area name="Pre Award Phase" id="l">
<Audience>BPCS</Audience>
<Audience>NE</Audience>
<Audience>M&A</Audience>
<Audience>CPG</Audience>
<Sub-Area name="Tender/Bid Issues" id="l.l">

<Knowledge id="1.1.1">PD</Knowledge>
<Knowledge id="1.1.2">MJ</Knowledge>

F i g u r e C.3; A F r a g m e n t of X M L f r o m the T e c h n i c a l Ana lys i s K M .

In o rde r to v i ew the r a w X M L vers ions of the K n o w l e d g e M a p s a n X S L s ty leshee t h a d to b e d e s i g n e d

wh ich w o u l d d isp lay the K n o w l e d g e M a p in a s imi la r f a sh ion to t h e or ig ina l d i ag rams . T h e h igh l igh t s

of the X S L f i le to d o that is s h o w n in F igu re C .4 . D u e to the n a t u r e of X S L it is poss ib le to ach i eve

the same e f fec t by writing this f i le in a number of w a y s and m a n y improvements might be possible.

175

<?xml version^"1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www . w3 .org/1999/XSL/Transform" :
<xsl:template match="/">

<HTML>
<BODY>
<P class="Title"xxsl:apply-templates/> </P>

<TABLE WIDTH="100%" BORDER="0" >
<TR VALIGN="TOP">
<xsl:for-each select="KM/Area">

<TD><P class= " CellHeading" xxsl: value-of select= "®name" / > </Px/TD>
</xsl:for-each>
</TR>
<TR VALIGN="TOP">
<xsl:for-each select="KM/Area">

<TD>
<xsl:for-each select="Sub-Area|Audience">
<xsl:variable name="foo"xxsl;value-of select="©name" /x/xsl:variable>

<A>
<xsl;attribute name="HREF">

. ./output/<xsl:value-of select = "®name"/> .xml
</xsl: attributexxsl: value-of select = "©name"/>

< / A >

<xsl:for-each select="Issue|Knowledge">

<A>
<xsl:attribute name="HREF">

../output/<xsl:value-of select="$foo"/>
-<xsl:value-of select="."/>.xml

</xsl : attributexxsl : value-of select=" . "/>

<BR / >

</xsl:for-each>
</xsl:for-each>
</TD>

</xsl;for-each>
</TR>

</TABLE>

</BODY>

</xsl:template>

<xsl;template match="KM">
<xsl:value-of select="®title"/>

</xsl:template>

</xsl:stylesheet)

Figure C.4: The XSL File Needed to Display an XML Knowledge Map on a Web browser.

176

http://www

When this XSL file is used to transform a Knowledge Map X M L file the result is a Web page. This

Web page contains all of the names of the people in the project so is not shown in this thesis for

confidentiality reasons.

C.5 The Contact List Knowledge Map

The Contact List Knowledge Map is a list of people and acronyms used throughout the report. It

matches the abbreviations used in the Pre and Post Analysis Knowledge Maps to the full names of

the person or department. This reusable data source can then be either read by humans, via an

appropriate XSL stylesheet, or used by other applications as a data source. For instance the previous

section showed one of the KMs in which the initials of users and other acronyms had been expanded

out. This is possible because the XSL language has a powerful ability to use data from a second XML

source whilst processing a document. Figure C.5 shows a single entry for a person from the XML

version of the Contact List and Figure C.6 shows the Contact List when viewed with a Web browser.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="contact_list.xsl" type="text/xsl"?>
<Contacts title="Contact List and Other Abbreviations">
<Person abbreviation^"AM">

<Name>Ally McBeal</Name>
<Argent ina_Role ></Argent ina_Role >
<Current_Role></Current_Role>
<Contact_Details ></Contact_Details>

</Person>

Figure C.5: A Fragment of the XML of the Contact List KM.

177

3 Contact l i s t a n d Qlher Abbreviations - Micrnsoft I n t e r n e t Fxplnrpr

• a a j a ai 3 3; a- J a • n sa
oaa

: Efe Edit view Fjvo"

Contact List and Other Abbreviat ions

AM-'
AS - ; . . e

BPCS • British Postal Consultancy Services

BT - _

B»,. . - jo ined the Arganlina assignment in October 1998 as Finance Manager, B P C S
is responsible and involved in the finance arrangements; billing, setting up the branch/local bank,
payments, liaison with Ernst and Young and interpretation of contract (finance aspects). Still has
continuous invoh/ement

Finance Manager BPCS

49 Featherstone Street Tel:D171 320 4013

C provided UK Support to the Argentina assignment in the contractual phase of th is project

3

flBDone™ " r r r E Local intranet

Figure C.6: The Contact List KM Viewed Through a Web browser

This is a prime example of how open standards encourage information reuse. In an ideal world the

Contact List should be generated automatically from a source such as a personnel database and not

be re-written by the report author.

C.6 Linkbase Design

The major implementation task in this project was to design and build a tool to make use of the data

stored in the Knowledge Maps and link it back to the raw documents. Before that could be done a

great deal of design work was required to learn how to build the linkbase and other data sources. The

analysis work was represented as a complex linkbase linking concepts in a Knowledge Map to the

relevant paragraphs in the source documents. The finished tool would be able to follow the links in

the linkbase and find the destination paragraphs. The tool would use these paragraphs to build new

documents on topics described by the Knowledge Maps. The final system can build a new document

on a topic or subtopic in the Knowledge Map. For instance a document can be generated containing

all of the most important paragraphs in the documents on the subject of purchasing agreements. This

tool was built using the CA-DLS and Link Resolver architecture.

178

One of the core pieces of analysis contained in the 'Learning Summary' was a Knowledge Map on

technical areas covered in the document set. This was followed by 9 pages of listings detailing where

in the document set the knowledge was contained. The data lists pages of the documents which are

considered to be worth reading for a particular topic or sub-topic. Figure C.7 is an example of such

data.

OPERATIONS KEYWORDS DOCUMENT NAME PAGE

NEW PROCESS- New Mail Centre Case Study [AKAP-R0'D-case4-technicalar- R _ 0 D All

ING CENTRE
CTP

eas.doc]

Knowledge Transfer Report [AKAP-RO'D-

KnowledgeReport.doc] R O'D

All

Benchmarking Case study P D 2

Lean Team Man- MNl AKAP Knowledge Questionnaire F C 3

agement

Automation Sorting machinery Case Study [AKAP-R0'D-case4-technicalar- R _ 0 D 2 . 3 , 4

eas.doc]
R O'D 6-10

Knowledge Transfer Report [AKAP-RO'D-

KnowledgeReport.doc]

Figure C.7: A Sample of Source Data for Building the Linkbase.

The task was to design a representation of this information as a set of links. The links would go from

a point in a knowledge map to a paragraph or paragraph range in one of the source documents. The

design process proceeded in three stages.

The first stage was to convert paper-based page numbers to X M L file-based paragraph numbers for

each link. These formed the destination ranges for each link.

The second stage was to define XPath statements that represented these paragraph ranges as the end

point of each link. The intention being that the destination of a link would be an XPath statement that

a suitable engine could apply to the appropriate document to extract the paragraphs in question.

179

The third stage was to design a linkbase to represent the complex link design. The source of the link

being a point in a KM and the destinations being paragraphs defined by XPath destination statements.

The complex form of links as defined in the XLink specification was used. The overall goal was to

write a system that could follow links in a Knowledge Map to the specific paragraphs located within

the AKAP documents and deliver those paragraphs to the user or another system.

A way of representing this data in an XML linkbase was investigated and then designed. The data in

the first two columns is the data in the XML Knowledge Map. The destinations of each link are to the

newly created XML versions of the documents. The original links point to pages in the text. These

no longer exist in the XML so for each link a paragraph or paragraph set was specified. This analysis

was carried out by hand resulting in the data in Figure C.8.

For each anchor an id has been added and for each page or page range a paragraph number or

paragraph range has been created. For certain entries there were multiple ranges which would be

represented as multiple link destinations. Each area and sub-area has an id as well.

OPERATIONS KEYWORDS DOCUMENT NAME PAGE

NEW New Mail Centre Case Study [AKAP-R0'D-case4-technica- R O'D 55 All

PROCESSING
CENTRE

CTP
lareas.doc]

Knowledge Transfer Report [AKAP-RO'D-

All

2.1 KnowledgeReport.doc) R O'D 56

Benchmarking Case study P D 57 2

246-249

Lean Team MNI AKAP Knowledge Questionnaire F , C 58 3

Management
2.1.1

330

Automation Sorting machinery Case Study [AKAP-R0'D-case4-technica- R O'D 59 2 . 3 , 4

lareas.doc]
R O'D 60 231-251

Knowledge Transfer Report [AKAP-RO'D-

KnowledgeReport.doc]
6-10

470-561

Figure C.8: Sample of Source Data for Link with XML Paragraph Numbers Added.

180

The linkbase designed for this project consists of separate elements describing a link in three parts.

There are a set of start points and a set of end points which are joined together by actual links. In the

linkbase these are referred to as 'keyword', 'paragraph' and 'go' .

A 'keyword' represents a point on the Knowledge Map using an XPath statement.

Each 'paragraph' entry represents a location in a document as defined by the analysis. The actual

destination paragraphs to use are specified using an XPath statement. When this XPath transform is

applied to the original document the result is just the specified paragraphs as XML.

A 'go' is an actual link. It states that there is a connection between a point on the Knowledge Map

and a paragraph set in one of the original documents. When the linkbase is loaded it represents each

'go' as a link object to be used and manipulated as required.

This linkbase design follows the XLink standard. The standard does not specify that a link should

have a particular set of components or be laid out as below. It merely specifies the details of the

language to use. The linkbase still has to be designed and the application written to use it.

Below is a sample of the actual linkbase showing the variety of elements found.

181

<?xml versions"1.0" encoding="UTF-8"?>
<?xml-stylesheet href="linkbase.xsl" tYpe="text/xsl"?>
<!--Represents all the knowledge in the knowledge map and links-->
<!DOCTYPE link SYSTEM "km.dtd">

<linkbase title="Porg 2 Linkbase">

<paragraph

href ="http: //localhost/porg2/xml/RD-CaseStudy4-TechnicalAreas .xml"
id="55"
title="para_title"
/>
<paragraph

href= "http : //localhost/porg2/xml/PD__case-study .xml#//wp : Document [1] /wp : Con-
tent/ /* [(number (@wp : id) > = 9 9924 6 and number {®wp : id) < = 999249)] "
paragraphs="999246-9 9924 9"
id="57"
title="para_title"
/ >
<keyword

href="http://localhost/porg2/km/tech_km.xml#///*[@id='2.1']"
id="2 .1"
title="New Processing Centre"
/>
<go

from="2.1"
to="S5"
title="New mail centre"
arcrole="arcrole"
/>

</linkbase>

Figure C.9: A Fragment o f the X M L for the Main L i n k b a s e o f this Apphcat ion.

A s e x p l a i n e d prev ious ly the des t ina t ion U R L s were s u p p o s e d t o c o n f o r m to the X P o i n t e r

spec i f i ca t ion bu t n o s o f t w a r e s u p p o r t e d this. T h e r e f o r e the v a l u e of a ' h r e f c o m p r i s e d a U R L

f o l l o w e d by a ' # ' and an X P a t h s t a t emen t to b e p rocessed by a n X S L e n g i n e .

href = "http: //localhost/porg2/xml/PD_case-study .xml#//wp:Document [1] /wp; Con-

tenC//*[(number(®wp:id)>:;=999246 and number(@wp:id)&lC;=999249)]"

Figure C. IO: A S a m p l e L i n k Des t ina t ion f r o m t h e M a i n L i n k b a s e .

T h e X P a t h s ta tement in this l ink is s h o w n b e l o w in F i g u r e C . l L

182

http://localhost/porg2/km/tech_km.xml%23///*%5b@id='2.1'

//wp:Document[1]/wp:Content//*[(number(®wp;id) >=99 9246 and
number(®wp:id)alt;=999249)]

Figure C . l l ; The XPath Statement Within Each Link Destination.

This statement can be translated as follows. 'Find all elements in the wp:Document/wp;Content

branch where the wp:id value of the element is between 999246 and 999249.' Each paragraph has

been given an id (wp:id) by Webworks Publisher. This statement takes a significant amount of

processing and is further slowed by the considerable size of many of the XML documents. Therefore

the processing of the whole linkbase takes some number of minutes.

In the linkbase there are 200 'paragraph' entries, 65 'keyword' entries and 201 'go' entries, or actual

links. The linkbase design assigns one 'keyword' entry for each section or subsection of the

Knowledge Map. There is one destination entry for each destination written about by the 'Learning

Summary' author. The 'go' entries bind from a source 'keyword' to a 'paragraph' destination. In

many cases a single 'keyword' will have multiple destination 'paragraphs' and the model suits this

well. All of the links were created by manually writing the XLink file. This linkbase can also be

viewed as a Web page after transformation by a specially written XSL file. Figure C.I2 shows the

transformed linkbase.

183

3 Porg 2 Linkbase - Microsoft Internet Explorer -fSixl
t - # Ml d) I a aa (9 0 |#i ' @ M - a g File £dit View Favorites lods He'

[939784-999814]

managennent approach (21)
hmnV/ivor.ecs.soton.ac.uk/oara2/xm I/.
[999B2D-999B30]

decision-making process (22)
httn7/ivnr Rcs sntnn ac.uk/oora2A(ml/»^„_

— Knowledge InterviRw Part 2.xml

- Modernising CorrFin xml [999248]

H

J
decision-making process (23)
httnv/lvor.ecs.soton.ac.uk/aora2/ym:,'.: Transcnpt.xml [999239]

culture (24)
nttn://ivor.ecs.soton.3c.uk/aora2/Xml/l- case-study.xml [999225-999231]

Change Management (1.5)
change management (25)
http://ivor.ecs.soton.ac.uk/aara2/xmi/. Kl transcript .xml [999551-999585]

line management role (26)
httnv/lvor.ecs.saton.ac uk/aaro2/xml/,.^i,^. - Modernlsina Corrmn xml [999229]

line management role (27)
httn7/ivor.ecs.saton ac.uk/Dora2/xml/..,.,111 Transcript .xml [999316-999348]

manual processing (28)
http7/ivor ecs sntnn an uk/nnr[i2/Xml/. . - Modernising CnrrRnxml [999304-999310]

People Management (1.5)
MBO (29)
http://lvor.ecs.soton.ac.uk/aorg2/xml/..,..
[999609]

process mapping (30)
httn//ivor.ecs.saton.ac.uk/pora2/xm I/:,

MO J Knowledge InterviRw Part 1 .xml

Kl transcriat xml [999333-999379]

Unions (1.5.1) ^
jgg Local intranet ^

Figure C.12: The Main Linkbase as Viewed in a W e b browser.

The separation of the different components of a link makes reuse of the data and linkbase parser code

much easier. When an XML parser loads the file it will build a collection of each type of element and

then bind them together to form link objects as required. Object oriented code design makes it

possible to add a new element type or alter the components of an existing one. It also makes it an

easier task to add other types of data into a link object. For instance a link object might also contain

a security rating. This linkbase format and matching code has been the base for all the later Link

Resolver examples.

184

http://ivor.ecs.soton.ac.uk/aara2/xmi/
http://lvor.ecs.soton.ac.uk/aorg2/xml/

C.7 The Implementation of a Knowledge Map Reader (KMReader)

The major project goal was to build a program that could read the Technical Analysis Knowledge

Map and use the matching linkbase to find the specified paragraphs from the original documents. The

paragraphs would be compiled into new documents representing the definitive knowledge on a given

topic.

C.8 The KMReader

The KMReader is a standalone Java application that processes the linkbase and generates new

documents from the Knowledge Map and linkbase. It is a harness for the XMLFragmentResolver and

uses the same function calls to the Resolver as the CA-DLS.

A fragment of the XML of the Technical Knowledge Map is shown in Figure C.13. The rendered

version is shown in Figure C.14.

<?xml version="l.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="km.xsl"?>

<KM
title="Technical Knowledge Map"
project="Argentina Knowledge Capture Project"
authors"Ron Manager"

<Area name="Corporate" id="l">
<Sub-Area name="Strategy" id="l.l">

<Issue id="1.1.1">Strategy Deve1opment</1ssue>
<Issue id="1.1.2">Business Planning</Issue>

</Sub-Area>
<Sub-Area name="KPIs" id="1.2">
</Sub-Area>

Figure C.13: A Fragment of the Technical Knowledge Map as XML.

185

fzmm
m e 1 a M - a @ Rie Edit View Favorites Toe

J
Technical Knowledge Map

Corporate Operat ions Retai l Marke t ing C o m m e r c i a l Relat ionships

Strateov New ProcBssinn Cmntm Joint Ventures
... Strateav DevelotDment... Lean Team Manaaement ... Mai l Finishina
... Business Piannina ... Automation All iances and Partnershios
KPis ... Mail Handlina Equipment ... UK fRelav Onel
Oroanisation ... Post Code SuDolier Rmlatinnmhinm
Manaoement Process ... Pipeline Containerism ... Intellfirti ial Prooertv
Chanoe Manaoement ... Buildina Desian and Build
Peoole Manaoement DRlivfiry
... Unions ... Deliverv Frandiisino
.. Rfiriundancv ... Deliverv Soecification
... Recruimenl ... Deliverv Office Revisions
... Trainino ... Worl(Load Assessment
Finance ... Eauioment
... sag ... Urban Deliverv
... Fundino Iran soon
Sales ... Trunk Networl(

... Air Networl(

... Collection Network
Manual Processino
... Rationalisation of Network
... Model ProcBRsino Centre
Track and Trace
... Ooeratlonal Securitv
... International Mail

i f f i i Done 1 i i ^ Local intranet A

Figure C.14: The Technical KM Viewed in a W e b browser.

The Knowledge Map in Figure C. 14 is similar to the other 2 Knowledge Maps but the XSL stylesheet

is more powerful and makes each Area and Sub-Area in the map a link to a document of the same

name.

The KMReader loads the Knowledge Map and generates a new document of the same name for each

Area and Sub-Area. For instance a file called STRATEGY.XML is created containing all of the

paragraphs referenced in its sub-areas of Strategy Development and Business Planning. The program

also creates individual files for each of these Sub-Areas as well, 'STRATEGY

DEVELOPMENT.XML' and 'BUSINESS PLANNING.XML' .

The documents are formed using a template X M L file. The KMReader uses this as a starting point

and inserts each result of the XSL transform into the body of the document. The same XSL stylesheet

is used to display them as used with the original documents giving them a familiar look.

186

^Document for Intellectual Property - Microsoft Internet Explorer r-Tatxl
' 0 i @ @ File Edit View Favorites

From
http:Wivor.ecs.soton.ac.uk/porq2/xmlJC0RRE0 Office revisions
(approved versionj.xmi

With the Pannier coming through thais more effectiveiy, the decision was to
build an 'Argentinean version' to overcome cost, shipping and copyright
issues.

From littp://ivor.ecs.soton.ae.uk/Porq2/xrr 'V.ii,^i;'^
Modernising Correo.xml

Containerisatlon
Whilst reviewing the transport, processing and delivery operations of Correo,
it was also logical to incorporate containers into the way of working: essential
for automation (which was limited in Correo), but also for WLA in Deliveries.
After a lot of contact with UK experts in containerisation; manuals and IE
studies were sent, the Argentines could clearly see the benefits and the focus
was put on obtaining the "right' equipment to do it. With the proviso that trays
and cages would be locally sourced from a design developed specifically for
the purpose. So a specification was developed from;

The UK containerisation manuals and contacts.
Previous containerisation benchmarking to Sweden Post and La Poste
South American plastics manufacturers' exhibitions
Advise fror,

From
l ittp://ivor.ecs.soton.ac.uk/porg"'Xrr;:' '- 'ui^;i: "• : .ns T--nrscr ipt .xml

A. Yes. It was innately obvious that we neeoed some containerisation
or containerisation would be a benefit so we contacted the
containerisation teams - •' - y . etc. back in the UK, got the
manual; out there got it translated into Spanish and we was therefore
able to show them the pictures of the equipment that v^e use and how
we used it and able to show them the industrial engineering studies
which proved the savings between a manual operation and a
mechanised operation and a container operation and w e tried to get
their lE's involved in and doing some study work themselves to identify

i I

zl
3

Figure C.15: The Generated Document for the Sub-Area 'Intellectual Property'

Figure C.15 shows one of the newly created documents. In this case the document covers the area of

'Intellectual Property' and includes paragraphs from a selection of documents in the set. Each

included section starts with an explanation of its source and a link to that paragraph in the original

source document. This allows users to read the extracts in their original context and read further if

they wish. In the figure the names of people have been blurred out for confidentiality reasons.

187

C.8.1 The XLink Based XML Fragment Resolver

For this project a Link Resolver was developed to fully support parsing and loading a linkbase

conforming to the final version of the XLink specification and to perform XSL transforms as

instructed by the linkbase.

The destinations of the links in use are XPointer/XSL statements that the Resolver applies to an XML

document by utilising an XML processor such as the Apache X M L parser Xerces (Apache Software

Foundation, 2001b). The XMLFragmentResolver returns the results of the XSL transformation back

to the parent system. This is a departure from the first Resolver application which added links into

HTML pages. This Resolver is designed to work with XML instead but as the specification for

Resolvers is so loose the system needed little alteration to cope with this new usage. The Resolver

does not return any information for the header and footer requests. The parser in the CA-DLS was

modified to understand XML parsing as opposed to HTML parsing and be able to switch between

them.

Another departure from the original reason for the development of the CA-DLS was that this Link

Resolver was used both with a standalone program and within the CA-DLS. The Link Resolver still

worked with the CA-DLS though the process of interpreting the transforms and extracting the XML

paragraphs slowed the system to a degree that it became unusable.

To complete the project the 'Technical Map' and accompanying linkbase was batch processed by the

KMReader Link Resolver harness to generate the finished documents on the various technical

subjects. These were considered the final deliverables as demonstrators of the power of the approach.

As well as generating new XML files the HTML versions were also generated making them more

accessible to users of older Web browsers.

Because of the volume of material involved and the slow XPath engine the processing would take a

number of minutes to run. It is not currently feasible to use the system dynamically with any useful

speed. However, because the code is written into a Link Resolver it worked within the CA-DLS

operating as a Web proxy. A user could click on a link in the 'Technical Knowledge Map' and the

link service would generate a new document by applying all of the XPath transforms to all of the

documents extracting the paragraphs. In a few minutes a new document that represented all the best

knowledge on a certain topic would appear.

188

C.8.2 A Scenario for an Authoring System

The technology described here could provide the foundation for a new document authoring tool. In

the scenario an author writes an analysis report similar the one used as the source for this project.

They use links to reference paragraphs from the source documents. A modified version of the

KMReader could replace those links with the actual paragraphs from the original documents.

A simple XML document has been authored following an analysis of the document set. In it

paragraphs from source documents are referred to using the id of a link in a linkbase. Users place

special tags in the document to indicating which paragraph to use by using the link id. When this

document is passed through the CA-DLS the service will call the Resolver with that link id and the

Resolver will replace the reference with the paragraphs found at the destination or destinations of that

link.

<?xml version^"1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet href/document.xsl" type="text/xsl"?>
<wp:Document

xmlns:wp='http://webworks.com/publisher/xml/schema '
title="Executive Issues concerned with Strategy Development">

<wp:Content>
<Heading2 wp;class="Heading2" wp:id="9992 63" wp: style="display: block;"
wp:type="para">
This document contains an executive overview of the most important lessons learnt
on the issue of strategy development during the Argentine experience.
Denzil Dexter puts it most succinctly.

< / H e a d i n g 2 >
<paragraph id="4" />
</wp:Content>
</wp:Document >

Figure C.16: An Example of a New XML Document that an Author Could Create.

When this document is opened through the Muffin proxy using the XMLFragmentResolver

<paragraph id=4/> will be replaced with the relevant paragraph pertaining to this subject as specified

in the linkbase. A new document is easily created using simple references to the original document.

189

http://webworks.com/publisher/xml/schema

' 3 D:\dev\porg2\site\km\transclusion_sample.xmil - Microsoft Internet Explorer

' # a {3! @ ai # # I a a a #
rnoixi

File Edit VieiA '

This document contains an executive overview of
tlie most important lessons learnt on the issue of
strategy development during the Argentine
experience. Denzil Dexter puts it most succinctly.

A Business Planning - i thinl< one of the big t i l ings I've
learnt in tiie work this area, is that the Post Office isn't that
bad at integrating projects together or looking at how they
connect. And it really, really is key to actually making a
business plan actually happen. A couple of specif ics that
we've actually pulled out of the business planning work
we've done is the very simple prioritisation matrix that we
mentioned before. Actually doing a prioritisation. Like In
priority based budgeting but can be expanded to fulfilling a
prioritisation role in business planning. I can't actually
remember what we did in this, so I'll have to have a look
through what we did in it. I actually think that s o m e of the
Correo's problems were that they weren't actually coming
up with a business plan that we connected to their
business budget. Again, I don't think that you can look at
the two in isolation and I think that we can pull out lessons
that actually it gets even worse if you dont have any link at
all. So one of the things that we did see was a budget
setting process which happened 4 months before we
started thinking about business planning for this financial
year. And the budgets were set in stone before we had

zi
Done I My Computer

Figure C.17: The Document in Figure C.16 Rendered.

This is a simple example of the types of publishing scenario envisaged by a number of groups. For

example the Apache Software Foundation has produced Cocoon (Apache Software Foundation,

2001a). A powerful way to organise the publishing of material f o r the Web. It uses the ability to

produce a pipeline of XSL transformations to manage the publishing of XML data. (Wilde & Lowe,

2002, Wilde & Lowe, 2000) use these technologies to argue for a move towards a Web publishing

model that is less concentrated on content publishing but involves a better balance application

architecture using XLink as a key mechanism for a link based publishing platform.

C.9 Project Conclusions

This project provided an external industrial partner with a new way of thinking about how to write

documents and manage the information within them. The system show-cased W3C open

technologies and open hypermedia solutions to an audience used to dealing only with standard office

software and Web pages. It was demonstrated that XML is a key new technology allowing

information reuse and interchange in ways that have not been widely used before.

190

The deliverable was a Web based version of a report previously written in Microsoft Word. The

report had used tables and tree diagrams to catalogue and categorise an analysis of the document set

described in Appendix B. The major findings were displayed in tree diagrams. The detailed

references were tables whose columns held the data for where to find pages in the document set

considered to be worth reading on a specific topic. This high quality analysis work was the result of

human labour and not machine analysis. The problem was that it was difficult to follow the references

and the structured knowledge found in the diagrams was locked within the images. This project

reproduced the report online using open hypermedia and open technologies to make the data reusable

and to link the analysis back to the source documents in a powerful way.

There is a contrast with the previous project in that the former produced a working link server which

would dynamically add links to documents. It was a stable product that could be distributed. This

project produced a set of components and ideas to illustrate technologies and concepts. The end

product was a set of static XML and HTML documents as well the data files such as the linkbase. The

software was never brought to such a polished state. When the starting points for the two projects are

considered the reverse is true. The first project was given fragments of data and a document set. The

quality of the data was not as high as that in the second project and the resulting links between

documents were subsequently less useful than they could have been. In the second project the starting

point was a high quality analysis of the document set. The problem was that it was locked in a

Microsoft Word document and diagrams. A dead end for the data.

An important issue is that a lot of information was lost in the capture process for two reasons. One

was that the wrong questions had been asked and that the interviews need to be more structured to

acquire the hard business facts that were desired of the project. The documents contained too much

'noise'. The second was that the transcripts and other documents used had no markup at all, there was

a basic lack of competence in using styles in Microsoft Word. This restricts the options available to

application writers hoping to reuse the data and is ultimately a considerable cost to the business. The

contrast with the trend towards structured knowledge such as X M L and RDF is quite acute. The

problem lies in it being more expensive and difficult for busy people in the real world to produce

documents with structured markup as opposed to just doing the utter minimum to get the report

finished.

191

References

Akman, Varol, & Surav, Mehmet. 1996. Steps Toward Formalizing Context. AI Magazine,
17(3), 55-72.

Anderson, Kenneth M. 2000. Issues of data scalability in open hypermedia systems. New
Review of Hypermedia, 151-178.

Andrews, Keith, Kappe, Frank, & Maurer, Hermann A. 1995. The Hyper-G Network Infor-
mation System. The Journal of Universal Computer Science, 1(4), 206-220.

Apache Software Foundation. 2001a. Cocoon Project, http://xml.apache.org/cocoon/.

Apache Software Foundation. 2001b. Xerces Project, http://xml.apache.org/.

Barrett, R., & Maglio, P. P. 1999. Intermediaries: An approach to manipulating information
streams. IBM Systems Journal, 38(4), 629-641.

Barrett, Rob, & Maglio, Paul P. 1998. Intermediaries: new places for producing and manip-
ulating Web content. Computer Networks and ISDN Systems, 30(1-7), 509-518.

Bauer, Travis, & Leake, David B. 2001. WordSieve: A Method for Real-Time Context
Extraction. Lecture Notes in Computer Science, 2116, 30-43.

Belkin, N. J., & Croft, W. B. 1992. Information Filtering and Information Retrieval: Two
Sides of the Same Coin? Communications of the ACM, 35(12), 29-38.

Bernard, R., Crowder, R., Heath, I., & Hall, W. 1994 (Sept.). A Large-Scale Industrial Appli-
cation of an Open Hypermedia System. In: Proceedings of the ACM Hypertext '94
Conference, Edinburgh, Scotland.

Bemers-Lee, T., Hendler, J., & Lassila, O. 2001. The Semantic Web. Scientific American,
May.

Bernstein, M. 1999. Where Are The Hypertexts? Hypertextual Bookmaking: Betting on the
Future of Literature. Pages 1-1 of: Tochtermann, Klaus, Westbomke, Jorg, Wiil,
Uffe K., & Leggett, John J. (eds), Proceedings of the ACM Hypertext '99 Conference,
Darmstadt, Germany. New York, N.Y.: ACM Press.

Bollacker, Kurt D., Lawrence, Steve, & Giles, C. Lee. 1998. CiteSeer: An Autonomous Web
Agent for Automatic Retrieval and Identification of Interesting Publications. Pages
116-123 of: Sycara, Katia P., & Wooldridge, Michael (eds), Proceedings of the 2nd
International Conference on Autonomous Agents (Agents'98). New York: ACM Press.

Boyns, Mark. 2000. Muffin. A World Wide Web Filtering System, http://muffin.doit.org/.

Bra, P. De, Houben, G-J., & Wu, H. 1999. AH AM: A Dexter-based Reference Model for
Adaptive Hypermedia. Pages 147-156 of: Proceedings of the ACM Hypertext '99
Conference, Darmstadt, Germany.

192

http://xml.apache.org/cocoon/
http://xml.apache.org/
http://muffin.doit.org/

Bra, Paul De, Aerts, Ad, Smith, David, & Stash, Natalia. 2002 (June). AHA! The Next Gen-
eration. In: Proceedings of the Thirteenth ACM Conference on Hypertext and Hyper-
media, University of Maryland, College Park, Maryland, USA.

Brin, Sergey, & Page, Lawrence. 1998. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117.

Brusilovsky, P., & Schwarz, E. 1997. User as Student: Towards an Adaptive Interface for
Advanced Web-Based Applications. Pages 177-188 of: Jameson, Anthony, Paris,
Cecile, & Tasso, Carlo (eds). Proceedings of the 6th International Conference on User
Modeling (UM-97). CISM, vol. 383. Wien: Springer.

Brusilovsky, P., Eklund, J., & Schwarz, E. 1998 (Apr.). Web-based education for all: A tool
for developing adaptive courseware. Pages 291-300 of: Proceedings of the Seventh
International World Wide Web Conference, Brisbane, Australia.

Brusilovsky, Peter. 1996. Methods and Techniques of Adaptive Hypermedia. User Modeling
and User-Adapted Interaction, 6(2-3), 87-129.

Brusilovsky, Peter, & Pesin, Leonid. 1995. Visual Annotation of Links in Adaptive Hyper-
media. Pages 222-223 of: Proceedings of ACM CHI'95 Conference on Human Factors
in Computing Systems. Short Papers: Agents and Anthropomorphism, vol. 2.

Bumbulis, P. J., Cowan, D. D., Durance, C. M., & Stepien, T. M. 1993. An introduction to
the OSI Directory Services. Computer Networks and ISDN Systems, 26(2), 239-249.

Bush, V. 1945. As We May Think. Atlantic Monthly, July, 101-108.

Carr, L. A., Hall, W., Davis, H.C, DeRoure, D., & R., Hollom. 1994 (May). The Microcosm
Link Service and its Application to the World Wide Web. In: Proceedings of the First
International World Wide Web Conference, Geneva, Switzerland.

Carr, Les A., DeRoure, David C., Davis, Hugh C., & Hall, Wendy. 1998. Implementing an
Open Link Service for the World Wide Web. World Wide Web Journal, 1(2).

Chen, Chaomei. 1999. Information Visualization and Virtual Environments. Springer.

Cheverst, Keith, Davies, Nigel, Mitchell, Keith, & Friday, Adrian. 2000. Experiences of
developing and deploying a context-aware tourist guide: the GUIDE project. Pages
20-31 of: Mobile Computing and Networking.

Clark, J. 1999. XSL Transformations (XSLT), Version 1.0. W3C Recommendation http://
www.w3.org/TR/xslt.

Clark, J., & Deach, S. Aug 18, 1998. Extensible Stylesheet Language (XSL), Version 1.0.
W3C Recommendation http://www.w3.org/TR/WD-xsl.

Clark, J., & DeRose (Eds), S. J. 1999 (Apr.). "XML Path Language (XPath) Version 1.0".
W3C Recommendation http://www.w3.org/TR/xpath.

193

http://www.w3.org/TR/xslt
http://www.w3.org/TR/WD-xsl
http://www.w3.org/TR/xpath

Conklin, J. 1987. Hypertext: An Introduction and Survey. IEEE Computer, 20(9), 17-40.

Davies, Nigel, Mitchell, Keith, Cheverst, Keith, & Blair, Gordon. 1998. Developing a Con-
text Sensitive Tourist Guide. Page 10 of: Proceedings of the First Workshop on Human
Computer Interaction with Mobile Devices.

Davis, Fred D. 1993. User Acceptance of Information Technology: System Characteristics,
User Perceptions and Behavioral Impacts. International Journal of Man-Machine Stud-
ies, 38(3), 475-487.

Davis, Fred D., & Venkatesh, Viswanath. 1996. A Critical Assessment of Potential Measure-
ment Biases in the Technology Acceptance Model: Three Experiments. International
Journal of Human-Computer Studies, 45(1), 19-45.

Davis, H. C. 1995 (Nov.). Data Integrity Problems in an Open Hypermedia Link Service.
Ph.D. thesis. Department of Electronics and Computer Science, University of
Southampton.

Davis, H. C., Knight, S. J., & Hall, W. 1994 (Sept.). Light Hypermedia Services: A Study of
Third Party Application Integration. Pages 41-50 of: Proceedings of the ACM Hyper-
text '94 Conference, Edinburgh, Scotland.

Davis, H. C., Lewis, A. J., & Rizk, A. 1996. OHP: A Draft Proposal for a Standard Open
Hypermedia Protocol. Pages 27-53 of: Wiil, Uffe Kock, & Demeyer, Serge (eds). Pro-
ceedings of the 2nd Workshop on Open Hypermedia Systems, ACM Hypertext '96.
Washington, D C.: Available as Report No. ICS-TR-96-10 from the Dept. of Informa-
tion and Computer Science, University of California, Irvine.

de Bra, Paul, & Calvi, Licia. 1998. AHA! An open adaptive hypermedia architecture. New
Review of Hypermedia and Multimedia, 4, 115-139.

Delisle, Norman M., & Schwartz, Mayer D. 1987. Contexts — A Partitioning Concept for
Hypertext. ACM Transactions on Office Information Systems, 5(2), 168-186. Special
Issue on Computer-Supported Cooperative Work.

Dennett, Daniel C. 1987. Cognitive Wheels: The Frame Problem of AI. Pages 41-64 of:
Pylyshyn, Zenon (ed). The Robot's Dilemma: The Frame Problem in Artificial Intelli-
gence. Norwood, New Jersey: Ablex Publishing Co.

DeRose, S. J., Maler, E., & Orchard (Eds), D. 2000 (Dec.). X M L Linking Language (XLink)
Version 1.0. W3C Proposed Recommendation http://www.w3.org/TR/xlink/.

DeRose, S. J., Maler, E., & Jr. (Eds), R. Daniel. 2001 (Sept.). XML Pointer Language
(XPointer) Version 1.0. W3C Candidate Recommendation http://www.w3.org/TR/
xptr/.

Dervin, B. 1997. Given a context by any other name: Methodological tools for taming the
unruly beast. Pages 13-38 of: Vakkari, P., Savolainen, R., & Dervin, B. (eds). Informa-
tion seeking in context. London, UK: Taylor Graham.

194

http://www.w3.org/TR/xlink/
http://www.w3.org/TR/

Dey, Anind K. 2000 (Nov.). Providing Architectural Support for Building Context-Aware
Applications. Ph.D. thesis, Georgia Institute of Technology.

Dey, Anind K., Salber, Daniel, & Abowd, Gregory D. 2001. A Conceptual Framework and
a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications.
Human Computer Interaction (HCI) Journal, 16(2-4), 97-166.

Edmonds, B. 1999. The Pragmatic Roots of Context. Pages 119-132 of: Bouquet, Paolo,
Serafini, Luciano, Brezillon, Patrick, Benerecetti, Massimo, & Castellani, Francesca
(eds). Proceedings of the 2nd International and Interdisciplinary Conference on Mod-
eling and Using Context (CONTEXT-99). LNAI, vol. 1688. Berlin: Springer.

El-Beltagy, Samhaa, Hall, Wendy, Roure, David De, & Carr, Leslie. 2001 (Aug.). Linking in
Context. Pages 151-160 of: Proceedings of the ACM Hypertext 2001 Conference,
Aarhus, Denmark.

Englebart, D. C. 1963. A Conceptual Framework for the Augmentation of Man's Intellect.
Vistas of Information Handling, 1.

Foltz, Peter W., & Dumais, Susan T. 1992. Personalized Information Delivery: An Analysis
of Information-Filtering Methods. Communications of the ACM, 35(12), 51-60.

Fountain, A., Hall, W., Heath, I., & Davis, H. C. 1990 (Nov.). Microcosm: An Open Model
for Hypermedia With Dynamic Linking. Pages 298-311 of: Rizk, A., Streitz, N., &
Andre, J. (eds), Hypertext: Concepts, Systems and Applications, Proceedings of the
Hypertext '90 Conference, INRIA, France.

Fox, A., & Brewer, E. A. 1996. Reducing WWW latency and bandwidth requirements by
real-time distillation. Computer Networks and ISDN Systems, 28(7-11), 1445-56.

Garfield, Eugene. 1979. Citation Indexing: Its Theory and Application in Science, Technol-
ogy, and Humanities. New York: Wiley.

Gr0nbcek, K., Hem, J. A., Madsen, O. L., & Sloth, L. 1994. Cooperative Hypermedia Sys-
tems: A Dexter-Based Architecture. Communications of the ACM, 37(2), 64-75.

Gr0nbaek, K., Bouvin, N. O., & Sloth, L. 1997 (Apr.). Designing Dexter-based Hypermedia
Systems for the World Wide Web. Pages 146-156 of: Proceedings of the ACM Hyper-
text '97 Conference, Southampton, UK.

Gruber, Thomas R. 1993 (Aug.). Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. Tech. rept. KSL-93-04. Knowledge Systems Laboratory, Stanford
University.

Haan, B. J., Kahn, P., Riley, V. A., Coombs, J. H., & Meyrowitz, N. 1992. IRIS Hypermedia
Services. Communications of the ACM, 35(1), 36-51.

Halasz, F. G, & Schwartz, M. 1994. The Dexter Hypertext Reference Model. Communica-
tions of the ACM, 31(2), 30-39.

195

Hall, W., Davis, H. C., & Hatchings, G. A. 1996. Rethinking Hypermedia: The Microcosm
Approach. Kluwer Academic Press.

Hardman, L., Bulterman, D. C. A., & Van Rossum, G. 1994. Adding Time and Content to the
Dexter Model. Communications of the ACM, 37(2), 50-63.

Hardman, Lynda, Bulterman, Dick C. A., & Rossum, Guide Van. 1993. Links in Hyperme-
dia: the Requirement for Context. Pages 183-191 of: FYoceedings of the ACM Hyper-
text '93 Conference, Seattle, Washington, USA. New York, NY, USA: ACM Press.

Hardman, Lynda, van Ossenbruggen, Jacco, Mullender, K. Sjoerd, Rutledge, Lloyd, & Bul-
terman, Dick C. A. 1999. Do You Have the Time? Composition and Linking in Time-
Based Hypermedia. Pages 189-196 of: Proceedings of the Tenth ACM Conference on
Hypertext.

Harter, Andy, Hopper, Andy, Steggles, Pete, Ward, Andy, & Webster, Paul. 2002. The Anat-
omy of a Context-Aware Application. Wireless Networks, 9(Mar.), 187-197.

Hawgood, David. 1998. GEDCOM Data Transfer. Federation of Family History Societies
(Publications). ISBN 094815117X.

Hill, G. J., Wilkins, R. J., & Hall, W. 1993. Open and Reconfigurable Hypermedia Systems:
A Filter Based Model. Hypermedia, 5(2), 103-118.

Hitchcock, S., Carr, L., Harris, S., Hey, J. M. N., & Hall, W. 1997. Citation linking: Improv-
ing access to online journals. Pages 115-122 of: Allen, Robert B., & Rasmussen, Edie
(eds). Proceedings of the 2nd ACM International Conference on Digital Libraries.
New York: ACM Press.

Hitchcock, Steve, & Hall, Wendy. 2001. How Dynamic E-joumals can Interconnect Open
Access Archives. Pages 183-193 of: Hubler, Arved, Linde, Peter, & Smith, John W. T.
(eds). Electronic Publishing '01: 2001 in the Digital Publishing Odyssey. Amsterdam:
lOS Press, for ICCC/IFIP.

Hitchcock, Steve, Carr, Les, Hall, Wendy, Harris, Steve, Probets, Steve, Evans, David, &
Brailsford, David. 1998 (Dec. 15,). Linking electronic journals: Lessons from the Open
Journal project. Technical Report. D-Lib Magazine.

Hohl, Hubertus, Boecker, Heinz-Dieter, & Gunzenhaeuser, Rul. 1996. Hypadapter: An adap-
tive hypertext system for exploratory learning and programming. User Modelling and
User-Adapted Interaction, 6(2-3), 131-156.

Hothi, J, & Hall, W. 1998. An Evaluation of Adapted Hypermedia Techniques Using Static
User Modelling. Pages 45-50 of: Proceedings of the Second Workshop on Adaptive
Hypertext and Hypermedia, Pittsburgh, USA.

Hothi, Jatinder, Hall, Wendy, & Sly, Tim. 2000. A Study Comparing the Use of Shaded Text
and Adaptive Navigational Support in Adaptive Hypermedia. Lecture Notes in Com-
puter Science, 1892, 335-342.

196

Hughes, Gareth, & Carr, Leslie. 2002 (June). Microsoft Smart Tags: Support, Ignore or Con-
demn Them? In: Proceedings of the Thirteenth ACM Conference on Hypertext and
Hypermedia, University of Maryland, College Park, Maryland, USA.

Kacmar, C. J., & Leggett, J.J. 1991. A Process-Oriented Extensible Hypertext Architecture.
ACM Transaction on Information Systems, 9(4), 399-419.

Kindberg, Tim, Barton, John, Morgan, Jeff, Becker, Gene, Caswell, Debbie, Debaty, Phil-
ippe, Gopal, Gita, Frid, Marcos, Krishnan, Venky, Morris, Howard, Schettino, John,
Serra, Bill, & Spasojevic, Mirjana. 2000. People, Places, Things: Web Presence for the
Real World. Tech. rept. Hewlett Packard Labs.

Knight, S. J. 1996 (May). Abstracting Anchors from Documents. Ph.D. thesis. Department
of Electronics and Computer Science, University of Southampton.

Lawrence, Steve, Giles, C. Lee, & Boll acker, Kurt. 1999. Digital Libraries and Autonomous
Citation Indexing. IEEE Computer, 32(6), 67-71.

Leggett, J. J., & Schnase, J. L. 1994. Dexter With Open Eyes. Communications of the ACM,
37(2), 77-86.

Lieberman, H., & Selker, T. 2000. Out of context: Computer systems that adapt to, and learn
from, context. IBM Systems Journal, 39(3/4), 617-632.

Loeb, Shoshana, & Terry, Douglas. 1992. Information filtering. Communications of the
ACM, 35(12), 26-28.

Lowe, D., Hall, W., & Ginige, A. 1997. Principles of Hypermedia Engineering: Beyond the
Web. Wiley and Sons, Inc.

Lueg, Christopher. 2002. On the Gap Between Vision and Feasibility. In: International Con-
ference on Pervasive Computing. Springer.

Malcolm, K. C., E., Poltrock S., & D., Schuler. 1991 (Dec.). Industrial Strength Hypermedia:
Requirements for a Large Engineering Enterprise. Pages 13-25 of: Proceedings of the
ACM Hypertext '91 Conference, San Antonio, Texas, USA.

Mankoff, Jennifer, & Schilit, Bill N. 1997. Supporting Knowledge Workers Beyond the
Desktop with Palplates. Pages 550-551 of: Proceedings of ACM CHI 97 Conference
on Human Factors in Computing Systems. TECHNICAL NOTES: Beyond the Desk-
top, vol. 1.

Maurer, H. 1995. Hyper-G now Hyperwave: the next generation Web solution. Addison Wes-
ley.

McCarthy, John. 1987. Generality in artificial intelligence. Communications of the ACM,
30(12), 1030-1035.

Meyrowitz, N. 1989. The Missing Link: Why We're All Doing Hypertext Wrong. The Soci-
ety of Text, MIT Press, Cambridge, Massachusetts, 107-114.

197

Michaelides, Danius T., Millard, David E., Weal, Mark J., & Roure, David C. De. 2001.
Auld Leaky: A Contextual Open Hypermedia Link Server. In: Proceedings of the 7th
Workshop on Open Hypermedia Systems, ACM Hypertext 2001 Conference.

Miles-Board, Timothy, & Carr, Leslie. 2002 (June). Looking for Linking: Associative Links
on the Web. In: Proceedings of the Thirteenth ACM Conference on Hypertext and
Hypermedia, University of Maryland, College Park, Maryland, USA.

Millard, Dave, Moreau, Luc, Davis, Hugh, & Reich, Sigi. 2000. FOHM: A Fundamental
Open Hypertext Model for Investigating Interoperability between Hypertext Domains.
In: Proceedings of the Hypertext Conference HT'OO.

Moreau, Luc, Gibbins, Nick, DeRoure, David, El-Beltagy, Samhaa, Hall, Wendy, Hughes,
Gareth, Joyce, Dan, Kim, Sanghee, Michaelides, Danius, Millard, Dave, Reich, Sigi,
Tansley, Robert, & Weal, Mark. 2000. SoFAR with DIM Agents: An Agent Framework
for Distributed Information Management. In: Proceedings of the Fifth International
Conference on the Practical Application of Intelligent Agents and Multi-Agent Sys-
tems.

Mukherjea, Sougata, & Hara, Yoshinori. 1997. Focus+Context Views of World-Wide Web
Nodes. Pages 187-196 of: Proceedings of the ACM Hypertext '97 Conference,
Southampton, UK. Visualization.

Mynatt, Elizabeth D., Back, Maribeth, Want, Roy, & Frederick, Ron. 1997. Audio Aura:
Light-Weight Audio Augmented Reality. Pages 211-212 of: Proceedings of the ACM
Symposium on User Interface Software and Technology. Blurring Physical and Vir-
tual.

Nelson, T. H. 1987. Literary Machines. Mindful Press.

Neumiiller, Moritz. 2000 (Apr.). A Semiotic Analysis of iMarketing Tools. Pages 238-239
of: Proceedings of the ACM Hypertext 2000 Conference, San Antonio, Texas, USA.

Nielsen, J. 1989. Usability Engineering at a Discount. Vol. Designing and using Human-
Computer Interfaces and Knowledge Based Systems. Editors, Salvengy G & Smith
MJ. Elsevier. Pages 394-401.

Nielsen, J. 1994. Enhancing the Explanatory Power of Usability Heuristics. Page 210 of:
Proceedings of ACM CHr94 Conference on Human Factors in Computing Systems.
PAPER ABSTRACTS: Tools for Design, vol. 2.

0sterbye, K., & Wiil, U. K. 1996 (Mar.). The Flag Taxonomy of Open Hypermedia Systems.
Pages 129-139 of: Proceedings of the ACM Hypertext '96 Conference, Washington
D.C., USA.

Pascoe, Jason, Ryan, Nick, & Morse, David. 1998. Human-Computer-Giraffe Interaction:
HCI in the Field. Page 8 of: Proceedings of the First Workshop on Human Computer
Interaction with Mobile Devices.

198

Pearl, Amy. 1991 (Nov.). Sun's Link Service: A Protocol for Open Linking. Pages 137-146
of: Proceedings of the Hypertext '89 Conference on Hypertext, Pittsburgh, Pennsylva-
nia, USA.

Poison, Martha C., & Richardson, J. Jeffrey (eds). 1988. Foundations of Intelligent Tutoring
Systems. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Preece, Jenny, Rogers, Yvonne, Sharp, Helen, Benyon, David, Holland, Simon, & Carey,
Tom. 1994. Human-Computer Interaction. Reading, Mass.: Addison-Wesley Publish-
ing.

Reich, Siegfried, Griffiths, Jon, Millard, David E., & Davis, Hugh C. 1999. Solent - A Plat-
form for Distributed Open Hypermedia Applications. Pages 802-811 of: Database and
Expert Systems Applications.

Reich, Siegfried, Wiil, Uffe K., Niimberg, Peter J., Davis, Hugh C., Gr0nbaek, Kaj, Ander-
son, Kenneth M., Millard, David E., & Haake, Jorg M. 2000. Addressing Interopera-
bility in Open Hypermedia: The Design of the Open Hypermedia Protocol. New
Review of Hypermedia, 207-243.

Rizk, A., & Sauter, I. 1992 (Nov.). Multicard: An Open Hypermedia System. Pages 4-10 of:
Lucarella, D., Nanard, M., J., Nanard, & Paolini, P. (eds), Proceedings of the ACM
Hypertext '92 Conference, Milano, Italy.

S. J. DeRose (Editor). 1999. XML XLink Requirements Version 1.0. W3C Note http://
w WW. w3 .org/TR/1999/NOTE-xlink-req-19990224/.

Salber, Daniel, Dey, Anind K., & Abowd, Gregory D. 1999. The Context Toolkit: Aiding the
Development of Context-Enabled Applications. Pages 434—441 of: Williams,
Marian G, Altom, Mark W., Ehrlich, Kate, & Newman, William (eds). Proceedings of
the Conference on Human Factors in Computing Systems (CHI-99). New York: ACM
Press.

Salton, Gerard, & Buckley, Christopher. 1988. Term-weighting approaches in automatic text
retrieval. Information Processing and Management, 24(5), 513-523.

Schilit, Bill, Adams, Norman, & Want, Roy. 1994 (Dec.). Context-Aw are Computing Appli-
cations. In: IEEE Workshop on Mobile Computing Systems and Applications. Palo
Alto Research Center, Santa Cruz, CA.

Schilit, Bill N. 1995 (May). A System Architecture for Context-Aware Mobile Computing.
Ph.D. thesis, Columbia University, http://sandbox.parc.xerox.com/parctab/.

Schnase, John L., Leggett, John J., Hicks, David L., Nuernberg, Peter J., & Sanchez,
J. Alfredo. 1993. Design and Implementation of the H B l hyperbase management sys-
tem. Electronic Publishing Origination, Dissemination and Design, 6(1), 35-63.

Selker, T., & Burleson, W. 2000. Context-aware design and interaction in computer systems.
IBM Systems Journal, 39(3/4), 880-891.

199

http://sandbox.parc.xerox.com/parctab/

Turner, Roy M. 1997. Context-Mediated Behavior for Intelligent Agents. International Jour-
nal of Human-Computer Studies.

Turner, Roy M. 1998. Context-Mediated Behavior for AI Applications. Pages 538-545 of:
lEA/AIE (Vol. 1).

van Ossenbruggen, Jacco, Geurts, Joost, Cornelissen, Frank, Rutledge, Lloyd, & Hardman,
Lynda. 2001. Towards Second and Third Generation Web-Based Multimedia. Pages
479^88 of: WWW200L

van Ossenbruggen, Jacco, Hardman, Lynda, & Rutledge, Lloyd. 2002. Hypermedia and the
Semantic Web: A Research Agenda. Journal of Digital Information, 3(1).

W3C Consortium. 1998a. Extensible Markup Language (XML) LO Specification, http://
WW w. w3. org/TR/REC-xml.

W3C Consortium. 1998b. Synchronized Multimedia Integration Language (SMIL) 1.0 Spec-
ification. http://www.w3.org/TR/REC-smil.

W3C Consortium. 2001. Synchronized Multimedia Integration Language (SMIL) 2.0. http:/
/www.w3.org/TR/REC-smil20.

Weal, Mark J., Hughes, Gareth V., Millard, David E., & Moreau, Luc. 2001 (Aug.). Open
Hypermedia as a Navigational Interface to Ontological Information Spaces. Pages
227-236 of: Proceedings of the Twelveth ACM Conference on Hypertext and Hyper-
media HT'Ol.

Weiser, M. 1991. The Computer for the Twenty-First Century. Scientific American, 265(3),
94-104.

Weiser, M. 1993. Some computer science issues in ubiquitous computing. Communications
of the ACM, 36(7), 74-84.

Wiil, Uffe Kock, & Numberg, Peter J. 1999. Evolving Hypermedia Middleware Services:
Lessons and Observations. Pages 427-436 of: ACM Symposium on Applied Comput-
ing (SAC '99).

Wilde, Erik, & Lowe, David. 2000. From Content-Centered Publishing to a Link-based View
of Information Resources. In: Proceedings of the 33rd Hawaii International Confer-
ence on System Sciences. IEEE Computer Society Press.

Wilde, Erik, & Lowe, David. 2002. XPath, XLink, XPointer, and XML: A Practical Guide
to Web Hyperlinking and Transclusion. Reading, Massachusetts: Addison Wesley.

Wills, G.B, Heath, I, Crowder, R.M, & Hall, W. 1997. Evaluation of a User Interface Devel-
oped for Industrial Applications. Tech. rept. M97-4, ISBN-0854326499. University of
Southampton.

200

http://www.w3.org/TR/REC-smil
http://www.w3.org/TR/REC-smil20

Wills, G.B, Hughes, G.V., & Hall, W. 1999 (November). Evaluation of AIMS-Academic
Information Management System. Tech. rept. M99-5, ISBN-085432700-2. University
of Southampton.

Wolber, D., Kepe, M., & Ranitovic, I. 2002. Exposing Document Context in the Personal
Web. Pages 151-158 of: Proceedings of the 7th ACM International Conference on
Intelligent User Interfaces.

Wu, H., & Bra, P. De. 2002 (May). Link-Independent Navigation Support in Web-Based
Adaptive Hypermedia. In; Proceedings of the Eleventh International World Wide Web
Conference, Honolulu, Hawaii, USA.

Yan, H., & Selker, T. 2000 (Jan.). Context Aware Office Assistant. Pages 276-279 of; Pro-
ceedings of the 2000 International Conference on Intelligent User Interfaces, New
Orleans, LA USA.

Yankelovich, N., Haan, B. J., Meyrowitz, N., & Drucker, S. M. 1988. Intermedia; The Con-
cept and the Construction of a Seamless Information Environment. IEEE Computer,
21(1), 81-96.

Yeong, Wengyik, Howes, Tim, & Kille, Steven. 1993 (July). Lightweight Directory Access
Protocol. Internet proposed standard RFC 1487.

201

