UNIVERSITY OF

Southampton

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal
non-commercial research or study, without prior permission or charge. This thesis and the accom-
panying data cannot be reproduced or quoted extensively from without first obtaining permission
in writing from the copyright holder/s. The content of the thesis and accompanying research data
(where applicable) must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given,
e.g.

Thesis: Jie Zhan (2022) "Energy Budgeting for Intermittently-Powered Systems”, University of
Southampton, School of Electronics and Computer Science, PhD Thesis, 1-102.






UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Science
School of Electronics and Computer Science

Energy Budgeting for
Intermittently-Powered Systems

by
Jie Zhan

A thesis for the degree of
Doctor of Philosophy

June 2022


http://www.southampton.ac.uk




University of Southampton
Abstract

Faculty of Engineering and Physical Science

School of Electronics and Computer Science

Doctor of Philosophy

Energy Budgeting for Intermittently-Powered Systems
by Jie Zhan

Energy harvesting has become a promising power solution for the Internet of Things,
liberating numerous wireless sensors from batteries and the power grid. Environmen-
tally harvested power, however, is intrinsic variable and intermittent, which conflicts
with conventional electronics. Conventionally, energy-harvesting devices buffer en-
ergy in large energy storage devices, such as rechargeable batteries or supercapacitors,
to smooth out supply variability. Unfortunately, these increase costs and device dimen-
sions, raise pollution concerns, and have constrained lifespans. To work with only a
small energy buffering capacitor, Intermittent-Powered Systems (IPSs) have been stud-
ied for intermittent supply. In IPSs, application forward progress, i.e. execution ben-
eficial to the active application, is maintained by saving volatile computing state into

non-volatile memory before power interruptions, and restored afterwards.

While IPS research has focussed on efficiently sustaining computing state at the load
side, system-wise energy budgeting in IPSs has not yet been widely studied. This thesis
investigates the energy budget of IPSs in order to improve forward progress. We stud-
ies the issues on sizing energy storage and setting voltage thresholds, both of which de-
termine an energy budget. The main contributions are: (i) exploration and analysis of
the energy storage sizing effect on IPS performance, where a reactive IPS model is pro-
posed and validated to quantify and illustrate the relationship between energy storage
capacitance and forward progress, showing up to 65% forward progress improvement
by sizing energy storage; (ii) an energy storage sizing approach that recommends an
appropriate energy storage size after analysing real-world energy availability data and
trading off multiple design factors, achieving 93% of the maximum forward progress
while saving 83% capacitor volume and 91% interruption periods; (iii) a runtime energy
profiling and adaptation method for efficiently and reliably performing atomic tasks in
cases of runtime-variable energy consumption, with results showing it can save manual
profiling effort (within 5mV error), alleviates non-termination with even 68% capaci-
tance reduction, and improve forward progress by up to 98% with runtime-variable
workloads.
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Chapter 1

Introduction

The promising expansion of the Internet of Things (IoT) has drawn research interests on
new design paradigms for deploying tens of billions of electronic devices over a wide
geographical range and probably in hard-to-reach places [3, 4]. Such a scenario gener-
ates considerations on how to enable the devices in networks to operate independently
and effectively and how to construct a long-life, maintenance-free, environmentally

friendly, and low-cost IoT.

One of the most significant concerns in deploying IoT devices is how to power numer-
ous low-power devices (tens of billions expected [3, 5, 6]). Traditional wired electricity
limits flexibility of deployment and involve expensive wiring costs [7]. Traditional pri-
mary batteries (i.e. non-rechargeable batteries) are not suitable for such a large number
of devices. A widespread use of primary batteries can cause tedious work of battery re-
placement due to the limited battery lifetime, and also pose pollution concerns as these
batteries are typically made of non-disposable heavy-metal materials [8]. Therefore, it

is necessary to find an alternative powering solution.

A potential power alternative is energy harvesters. Energy harvesters scavenge energy
from environmental sources (e.g. solar irradiation, wind flow, radio frequency (RF)
signals, and kinetic energy) [9]. Devices powered by energy harvesters can avoid us-
ing power wires and surpass the lifetime limit of primary batteries, enabling a scalable
IoT. However, the power generated by energy harvesters in real-world deployment is
variable, uncontrollable, and in many cases insufficient for continuous workload oper-
ation [10]. Hence, directly using energy harvesters as the power supply without energy
buffering may cause a device to keep booting up and shutting down, making little ap-

plication progress.

Initially, large energy storage, in forms of rechargeable batteries (also known as sec-
ondary batteries) or supercapacitors, is allocated with energy harvesters to buffer the

temporal variations of energy input and provide reliable power supply. Motivated by
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such a scenario, energy-neutral (EN) operation was proposed to balance energy input
and energy consumption so as to prevent a system from power failures [11]. EN op-
eration intends to sustain systems over a long period of time (e.g. a few days [12] or
a year [13]) by adapting system runtime schedules (e.g. duty cycles [12-14] or task
schedules [15, 16]) according to the available energy amount.

Rechargeable batteries and supercapacitors are two main choices of energy storage
in EN operation. Rechargeable batteries are historically used as energy storage in
energy harvesting embedded systems because of their high energy density [17] and
stable discharging profile [11]. However, due to electrolyte deterioration, the limited
charge-discharge cycles of rechargeable batteries constrain the operating lifetime, caus-
ing heavy battery replacement work as well as environmental issues as primary bat-
teries do [18]. To alleviate the problems of rechargeable batteries, supercapacitors are
then explored in research. Although the energy density of supercapacitors is several
orders of magnitude lower than the energy density of batteries [19], supercapacitors
outperform rechargeable batteries in terms of lifetime. Supercapacitors have an esti-
mated operational lifetime of 10 years before its capacitance reduces to 80%, whereas
rechargeable batteries usually need to be replaced within 3-5 years [20]). However, to
achieve a considerable energy capacity, supercapacitors should be designed to tens of
farads or one hundred farads [21, 22]. Supercapacitors in such a scale occupy large
volume in contrast to small IoT devices, e.g. a 34 x 16 x64 mm? supercapacitor [22].

1.1 Intermittently-Powered Energy-Harvesting Systems

To circumvent the lifetime, pollution, and volume problems in rechargeable batteries
and supercapacitors, a research trend in energy-harvesting sensor nodes moved to-
wards eliminating the demand for large energy storage and adopting only a minimum
one, where the energy storage is only enough for ensuring the most energy-expensive
atomic operation?, typically in the form of a pF-level capacitor. Despite the benefits
over batteries and supercapacitors, small capacitors can only buffer a considerably lim-
ited amount of energy. Thus, the harvested power is almost directly given to the load
and the system only works when the harvested power is available. This violates the

demand for stable power supply in conventional computing systems.

Without any modifications, a conventional system can only work when input power is
higher than system power consumption (which is rare for an energy-harvesting sup-
ply), and cannot boot up when input power is lower than system power consumption.
However, ensuring and improving local processing ability of sensor nodes is crucial for

In this context, an operation is atomic if it should be completed in one consecutive period without
power interrupts; otherwise, if interrupted, it should be re-executed from the beginning. Example atomic
operations in IoT devices can be peripheral operations and nonvolatile memory read/write operations.
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a few reasons. First, to reduce network traffic volume and energy consumption, sen-
sor nodes should be able to process sensing data on-site and transmit only the useful
information, typically when the number of sensor nodes increases in orders of mag-
nitude [6]. Second, advanced communications techniques, such as scheduling, rout-
ing, coding, and decoding, require local computing ability to ensure timeliness and
efficiency in networking [23]. Third, IoT devices are also expected to be able to trig-
ger actions in reaction to the physical world by either receiving commands from other
nodes and servers or making a decision based on locally acquired data [24]. Hence, it
becomes a major concern that how to guarantee forward execution and functionality of

such systems with only minimum energy storage.

With an energy-harvesting supply and small energy buffering capacitance, a system is
powered up intermittently once a small amount of energy is accumulated in the capac-
itor. The system has to utilise these intermittent power-on cycles to make application
progress. To this end, many approaches for energy-harvesting intermittently-powered
systems (IPSs) have been proposed in the past few years [25-27]. The majority of these
approaches have been addressing how to sustain computational progress throughout
intermittent power-on cycles by correctly and efficiently saving and restoring volatile
computing state. The volatile computing state includes CPU registers, static RAM
(SRAM) data, and perhaps peripheral configurations and data, i.e. the volatile part
that cannot sustain after a power failure. The volatile state is saved into and restored
from non-volatile memory (NVM), where most published approaches use ferroelectric
RAM (FRAM).

According to the style of saving and restoring state, approaches in IPSs can be cate-
gorised as proactive and reactive [27]. Proactive IPSs save and restore state at design-time
or compile-time defined points by inserting checkpoints [28-31] or defining tasks [32-35]
in a program. A certain amount of progress is achieved and saved into NVM once the
program passes a checkpoint or a task boundary; otherwise, if interrupted by a power
failure, the program rolls back to the last checkpoint or task boundary. Checkpointing
and task-based approaches are mainly different in implementation and usage, where a
checkpoint is typically a function call while task-based IPSs require dedicated compil-
ers and programming models. In contrast to the proactive IPSs, reactive IPSs monitor
Ve at runtime and save state upon an imminent power failure when supply voltage
talls below a low threshold (V.. <V1) [36-39]. After saving state, reactive IPSs sleep and
wait for energy storage to be refilled until a high threshold is reached (V..> V1), where
it wakes up and restore the state. Detail of these approaches will be further illustrated
in Chapter 2.

A conceptual architecture of a typical energy-harvesting IPS is shown in Figure 1.1.
The power frontend is an energy harvester, which transduces an ambient energy source
into electric power. Then, a power regulator converts the harvested power to a suitable
voltage that charges up the energy storage. The type of the power regulator depends
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FIGURE 1.1: A conceptual architecture of an IPS.

on the pattern of the power input, which can be an AC-DC converter for AC input,
e.g. a rectenna, or a DC-DC converter or a diode for DC input, e.g. a photovoltaic
(PV) panel. The energy storage is in the form of a pF-level capacitor, which buffers
a small amount of energy for the load to operate intermittently in short active cycles.
The power given to the load is usually conditioned through a low-dropout regulator
(LDO) to lower down supply voltage, and hence current consumption. IPSs are usually
equipped with a voltage detection circuit so as to wake up or power up the load when
the voltage of the energy storage reaches a threshold. In IPSs, the load is typically a
microcontroller (MCU) with NVM to sustain computing state, and with many on-chip

or external peripherals, e.g. sensors and wireless transceivers (TRX).

1.2 Applications of IPSs

An inherent limitation of IPSs is that the system can only execute when the supply
power is being harvested from ambient environment, as opposed to an EN system
where it can still execute with buffered energy if ambient power is not available. This
limitation thereby indicates that application operation periods and power availability should
be compatible in time. While there are various needs of operation periods for various ap-
plication scenarios, the power availability is constrained and determined by the avail-
ability of the target energy source in the deployed environment. Hence, the appli-
cations of IPSs should suit, or be adapted to suit, the power availability. Under this
consideration, there are two typical categories of application scenarios as seen in recent
publications.

To summarise the application suitability of IPSs, a diagram is shown in Figure 1.2.
An example unsuitable application can be a periodic sensing task without periodically
available power or the period of the energy source does not match the sensing period

(left bottom circle in Figure 1.2).

e Category I: Applications with flexible time requirements.



1.2. Applications of IPSs 5

A P - ~ . P - ~ ~
- p 7 N N , 7 N N
2 / \ / \
ol I 5 N/ \
/ ateqgory 2: \ L \
I ategory <. \ 1 No applications
| Application activity | . e |
) identified in this
< \ correlated with I category vet I
= ' available power gory'y /
g ) \ / \ /
= = \ / \ /
%D? \\\\__//// \\\\__////
% 2 —_ T T~ —_ T T~
_Q - N ~ ~
O E p 7 N N p 7 N N
DS / \ / \
_.2\ > / \ / \
S < y 1 / Category 1: 1
© . Application with
< ' Unsuitable ' PpIIC . '
1\ flexible time !
A )\ requirements
\ / \ /
N\ / N\ /
= N 7 AN 7/
o e __odd S o _-
- —— -~ _ -
Strict . s Flexible
Time Flexibility

FIGURE 1.2: Application Suitability of Energy-Harvesting IPSs.

Applications with flexible requirements on operating periods tolerate the inter-
mittency of energy sources. In such applications, devices are allowed to wait for

power-on periods to execute.
Application 1: Kitchen event detection [40]

This application intends to capture kitchen events, such as dishwasher working,
fan on, and refrigerator cooling, to record equipment usage. As such events usu-
ally last for tens of seconds to a few hours, the device does not need to operate
immediately after the event occurs or disappears. The device iterates the follow-
ing tasks in turn during power-on periods: sampling acoustic information from
a microphone, classifying kitchen events with a pre-trained model, and transmit-
ting the results in Bluetooth Low-Energy (BLE) packets to an always-on server.
The device harvests ambient RF energy, and the packets are transmitted every
several seconds as reported. This application is to complete program iterations as
frequently as possible so as to improve the accuracy of event records.

Application 2: Temperature monitor for air conditioning [41]

This application intends to monitor indoor temperature for air conditioning. As



6 Chapter 1. Introduction

the room temperature does not usually change over a few minutes, the tempera-
ture monitor does not need to wake up frequently or periodically. During power-
on periods, the device samples temperature by an external analog sensor. If the
temperature is detected to be out of a pre-defined range, the device sends a BLE
packet to alert the server. The device is also powered by ambient RF signals. Sim-
ilar to Application 1, the device is expected to maximise sampling frequency in
order to capture out-of-range temperature as soon as possible.

e Category II: Application activity in correlation with available power.

In such applications, the required operation periods correlate with power-on pe-
riods. This correlation is typically linked by an event that comes with harvestable
power. When the event occurs, the device is activated by harvesting the power
of the event at the same time to start operating. Therefore, the application op-
eration periods and the power availability are inherently simultaneous in such

applications.
Application 3: Bicycle trip counter [42]

The bicycle trip counter intends to read cycling speeds and calculate total trav-
elled distances. The wheel rotation brings energy for the device to sense the cy-
cling speed; the device does not need to operate without cycle movement. The
trip counter is contained in a single-sided 2.0x 1.4 cm? PCB and installed on the
frame of a bicycle, with a magnet on the wheel that brings electromagnetic en-
ergy to the system. Each wheel rotation activates the trip counter to calculate the
current speed and log the travelled distance. After collecting enough energy over
a few wheel rotations, the trip counter transmits the logged information. This
application is also expected to report results as frequently as possible.

Application 4: Monjolo Power meter [43]

The power meter measures the power flow of a main load wire. The AC power
in the wire can be harvested by a coil to activate the power meter. A design is
shown in Monjolo, where the power meter transmits a plain packet to a server
once it collects a preset amount of energy. The server then calculates the elapsed

time between the recent two packets to estimate the main load power.

As implied by the above applications, a common application specification of IPSs is
to obtain as much application progress as possible under the same energy conditions
because the energy cannot be saved for later use. Depending on applications, the
metric of application progress could be the program iterating rate, sensing accuracy
or frequency, or the transmitting rate of results. To generally describe the applica-
tion progress, in IPSs, forward progress denotes the effective application progress, ex-
cluding lost progress due to power failures and the progress on saving and restoring
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state [44]. A generic metric of forward progress can be the time spent on effective ap-
plication progress. As illustrated, an IPS should maximise forward progress using the
limited energy.

1.3 Research Justification

As illustrated with the previous background and application examples, a major tar-
get for many IPS approaches is to maximise forward progress given restricted energy
condition. Various approaches have been proposed for the load to efficiently sus-
tain computing state across power failures, so as to leave more energy for forward
progress [34, 45-49]. However, energy efficiency can not only be explored from the
load side, but can also be explored from a system perspective, where the energy bud-
geting in IPSs has not yet been widely studied. The energy budget of an IPS is the
energy allocated for one power-on cycle. The energy budget is mainly represented in
two aspects — the system energy storage size Csior and the voltage threshold to wake
up the load Vy,, i.e.:

1
Ebudget = Ecstor(vt%l - Vim) (1.1)

where Vinin represents the minimum operating voltage below which the load’s hard-
ware cannot function correctly or the IPS has to save state. In practice, as existing elec-
tronic systems typically use an LDO to keep low supply voltage for the load so as to
lower the load current consumption, an IPS typically consumes relatively constant cur-
rent rather than constant power when the voltage of Csr changes. Hence, the energy
budget in an IPS is usually expressed in charge rather than energy:

Qbudget = Cstor(Vth - Vmin) (1.2)

Following the two aspects of the energy budget, this thesis will focus on how to im-
prove the energy budgeting for IPSs in order to increase forward progress, where it can
be further discussed on three issues.

1. With the goal of minimising device dimensions and interruption periods, most
IPS approaches adopt a minimum amount of energy storage [30, 38, 50-52]. This
is typically just sufficient for the most energy-expensive atomic operation, e.g.
saving and restoring a complete state [37]. However, a system with minimum en-
ergy storage may frequently go through a cycle of: wake up, restore state, execute
program, save state, and halt. Provisioning more energy storage can prolong the
power-on cycles, reduce the overheads, and hence increase forward progress, but
can also increase system leakage and decrease forward progress. The sizing effect

of energy storage on forward progress has not been studied. Therefore, a focus of
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this thesis will be studying the relationship between energy storage capacitance
and forward progress in IPSs.

2. Extending the above, to determine a size of energy storage of IPSs in deployment,
developers may also wish to consider, along with forward progress, other design
factors, e.g. devices” physical volume and interruption periods. An approach
for exploring the effect of energy storage size on multiple design factors has not
been proposed yet. Also, there is not a method of determining an energy storage
size that balances different design factors. Hence, another focus of this thesis will
be exploring an energy storage sizing approach for IPSs that balances multiple
design factors in deployment.

3. Apart from the energy storage size, the voltage threshold that wakes up an IPS
also determines the energy budget of one power-on cycle. Existing approaches
use one or a few fixed voltage thresholds, which are calibrated at design time.
Some approaches (e.g. [53]) minimise the threshold for each task, but the fixed
threshold can be violated at runtime due to variability in energy consumption,
leaving the system in non-termination, i.e. unable to finish a task due to in-
sufficient energy and repetitive re-execution. The variable energy consumption
can come from many reasons, which include, but not limited to, variability in
data amounts, peripheral configurations, devices, and capacitance degradation.
In contrast, some approaches (e.g. [40]) set a universal high threshold, such that
the energy budget should be sufficient for all tasks. However, waiting for a high
voltage threshold can be energy-inefficient because, typically, current input re-
duces with higher voltage and a high operating voltage also increases system
quiescent current consumption. Hence, the final focus of this thesis will be the
scheme of voltage threshold settings that avoids non-termination under runtime

variable energy consumption while maintaining system energy efficiency:.

1.4 Research Questions

Motivated by the previous discussion, the following three research questions are de-

rived:

1. What is the effect of sizing the energy storage capacity on IPS performance?

Specifically, the energy storage capacity in IPSs is presented as the capacitance be-
tween V.. and ground. The forward progress rate directly determines application
performance, e.g. program iteration rate or task completion time, and hence is
regarded as the performance metric in this study. The goal is to explore whether
sizing the energy storage capacity can change the forward progress rate in IPSs,

and if so, to study and quantify the relationship between them.
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2. How may the energy storage of IPSs be sized to trade off multiple design fac-

tors, such as forward progress, device dimensions, interruption periods?

While the last question explores the energy storage sizing effect on computational
performance, this question encompasses more design factors in IPSs that a ca-
pacitor size can affect. Increasing energy storage capacity may benefit forward
progress, but may also have significant drawbacks. A larger capacitor typically
has larger physical dimensions, which are a key design factor that IPSs should
minimise in some application scenarios, e.g. wearable and implantable sensors.
Also, a larger capacitor leads to longer charge-discharge cycles, and thus pro-
longs interruption periods and undermines system reactivity to external events.
The goal is to study the trade-off and to propose an approach that recommends

an energy storage size for practical deployment.

3. How can an IPS run safely and efficiently when executing tasks with runtime-

variable energy consumption?

Energy consumption of tasks can change at runtime with regards to many fac-
tors, where we include, but are not limited to, the variability in data amounts to
process, peripheral configurations, devices, and capacitor degradation. A design
concept is to allocate just enough energy for each task. This design concept can
further break into two aspects — safety and efficiency. The safety aspect means
that the IPS should intend to avoid non-termination by allocating enough energy
for tasks. The efficiency aspect means that, while meeting the safety aim, the IPS
should minimise the energy budget, such that the system can set the lowest pos-
sible energy threshold, maintaining energy efficiency and forward progress. The
goal is to devise an approach that can enable IPSs to run with variable energy
consumption of tasks, following the above design concept.

1.5 Research Contributions

The contributions that address the research questions in this thesis are:

1. Exploration and analysis of the energy storage sizing effect on IPS performance,
where a reactive IPS model is proposed and validated to quantify and illustrate
the relationship between energy storage capacitance and forward progress. The
exploration shows adding a relatively small amount of energy storage can sig-
nificantly improve forward progress by up to 65%. The proposed model demon-
strates its potential for design exploration of IPSs. (Addressing Research Question
1, reported in Chapter 3)

2. An energy storage sizing approach for deploying IPSs, which accepts real-world
energy availability data and trades off multiple design factors. A cost function
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can be incorporated, allowing various properties of the system to be traded off.
A demonstration shows it achieves 93% of the maximum forward progress while
saving 83% capacitor volume and 91% interruption periods. A simulation tool
is available to download?, enabling researchers to experiment with energy stor-
age sizes to optimise IPS designs. (Addressing Research Question 2, reported in
Chapter 4)

3. A runtime energy profiling and adaptation method, named as OPTIC, for effi-
ciently performing atomic tasks in cases of runtime-variable energy consumption.
OPTIC enables runtime energy profiling of tasks, so alleviates manual profiling
efforts in development. Owing to the ability of runtime energy profiling and set-
ting a barely sufficient energy budget, OPTIC is able to: (i) adapt its threshold
for a new task on a new device, (ii) adapt to a higher threshold in cases of in-
creased energy consumption or device ageing, (iii) lower operating voltage and
improve energy efficiency and forward progress. OPTIC, along with its software
design tools and experimental comparisons, is open-source®, hence facilitating
future development and research. (Addressing Research Question 3, reported in
Chapter 5)

1.6 Publications

The research presented in this thesis were published in the following papers:

e J. Zhan, G. V. Merrett, and A. S. Weddell. "Exploring the Effect of Energy Stor-
age Sizing on Intermittent Computing System Performance.” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2021. [1]

e J.Zhan, A.S. Weddell, and G. V. Merrett. ”Adaptive Energy Budgeting for Atomic
Operations in Intermittently-Powered Systems.” In Proceedings of the 8th Interna-
tional Workshop on Energy Harvesting and Energy-Neutral Sensing Systems (ENSsys
'20), pp-82-83, 2020. [2]

In additional, the following paper is currently in preparation for a journal submission:

e J. Zhan, A. S. Weddell, and G. V. Merrett. “"Runtime Energy Profiling and Adap-
tation for Energy-Harvesting Intermittently-Powered Systems.” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (in preparation).

Zhttps://git.soton.ac.uk/energy-driven/energy-storage-sizing
Shttps://github.com/UoS-EEC/optic
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1.7 Thesis Structure

The remainder of this thesis is organised as follows. Chapter 2 provides background
on energy harvesting, energy storage and energy-neutral computing, as well as reviews
recent IPS techniques following a taxonomy based on their fundamental mechanisms
and focusses. Chapter 3 analyses the sizing effect of energy storage on IPS perfor-
mance. Chapter 4 explores a wider energy storage sizing effect on IPSs considering
multiple design factors and real-world energy conditions to determine an energy stor-
age size when deploying IPSs. Apart from sizing energy storage, Chapter 5 focusses on
runtime energy profiling and adaptation through adaptive voltage thresholding, so as
to maintain system performance despite runtime variability. Chapter 6 concludes this

thesis and discusses potential directions of future research.
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Chapter 2

Energy-Harvesting Intermittent
Systems

The development of energy harvesters and low power electronics provides the po-
tential for wireless IoT sensors to operate with power autonomy, with their designs
adapted to variable harvested power rather than reliable power supply [24]. This
chapter first provides a background of various ambient energy sources and their cor-
responding energy harvesters in Section 2.1, as well as the types of energy storage
used in energy-harvesting systems in Section 2.2. Energy-neutral operation, a tradi-
tional design of energy-harvesting systems, is introduced in Section 2.3. The recent
research towards IPSs is then reviewed in Section 2.4 with a classification of proposed

IPS methodologies. Finally, Section 2.5 summarises this chapter.

2.1 Energy Harvesting Techniques

Although all kinds of energy harvesters can extract energy from ambient sources, they
have various output characteristics in terms of the amount and dynamics of the har-
vested power depending on the ambient energy conditions and energy harvesting tech-
niques. To select an energy harvester for powering sensor nodes, one important con-
cern is whether the supply power level matches the consumption of the load [54]. For
one certain type of energy harvesters, the harvested power can be scaled by the power
density of an environmental energy source and the size of an energy harvester. The
power density of environmental energy sources is determined by the deploying envi-
ronment, which cannot be controlled by the harvesting devices, but the size of energy
harvesters can be determined at design-time with considerations on systems require-

ments, such as energy utilization, form factors, performance, etc.
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Energy Source Energy Harvester

Light
(solar, artificial)

Photovoltaic cells

. Radio frequency harvester
Radio waves 4 y

(rectenna)
Flow Wind turbine,
(air, liquid) hydrogenerator
Mechanical Electromagnetic, electrostatic,
(vibrations, pressure, stress-strain) piezoelectric harvester
Heat Theomal electric generator

TABLE 2.1: Classification of energy sources and energy harvesters in IoT.

In order to appropriately size and designate energy harvesters for sensor nodes, the
power features of different energy harvesters are widely considered by researchers and
engineers [55]. A classification of common energy harvesting sources and correspond-
ing energy harvesters used in IoT is presented in Table 2.1. The voltage and current
features of different energy harvesters largely differ from each other, due to the in-
trinsic differences in temporal distributions of the available amount of different energy
sources and the physical principles of power conversion. The following part of this sec-
tion introduces three kinds of energy sources and energy harvesting techniques listed
in Table 2.1.

2.1.1 Light Energy Harvesting

Due to the abundant energy amount of light, whether from outdoor sunlight or indoor
artificial light, light becomes a feasible energy source to power sensor nodes and is
historically treated as a substitute for battery supplies [56, 57]. Light energy can be
converted to DC power by PV cells, which consist of silicon semiconducting materials.
When PV cells absorb light, electrons are excited by the photovoltaic effect, producing
an electric potential by the separation of electrons and holes.

Given a fixed intensity of light, the output current from PV cells manifests an inverse
relationship with the output voltage, as there is a semiconducting bypass within the
PV cells. Although the power conversion efficiency may vary among different PV cell
techniques (such as monocrystalline, polycrystalline, thin film), the curve shapes of
current-voltage relationships are similar. Obviously, higher irradiance leads to higher
current output when the output voltage is fixed, because there is more intensive light
sources provided. More importantly, the output feature of PV cells can be summarised

like “an inverse semiconductor” —— when the terminal voltage is low, the output
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FIGURE 2.1: Typical I-V curves of a PV panel at a constant temperature and different
irradiance (adapted from [58]1).

current is almost constant and close to short-circuit current; when the terminal voltage
gets close to open-circuit voltage, the output current significantly decreases and finally

terminates at the open-circuit voltage.

Typical current-voltage curves of PV cells are shown in Figure 2.1, with an example
of a monocrystalline cell given five values of illumination intensity from 200 W/m? to
1000 W/m2. When the voltage is under 15V, the PV cell is similar to a current gener-
ator (so when the voltage increases, the power increases almost linearly). When the
output voltage increases above 15V, the output current drops significantly and reaches
zero at around 22V. According to this phenomenon, there is a voltage point where the
cell produces the maximum power, which is named Maximum Power Point (MPP) as

indicated by black dots in Figure 2.1.

In order to extract as much power as possible out of PV panels, most energy harvest-
ing systems with PV modules adopts maximum power point tracking (MPPT) tech-
niques [59-61]. MPPT is achieved by dynamically controlling the output voltage of PV
cells around the MPP.

Outdoor sunlight and indoor artificial light are two main sources for light energy har-
vesting. The illumination intensity of direct sunlight on the earth’s surface is typically

IReprinted from Renewable and Sustainable Energy Reviews, Volume 32, Ciulla et al., A Comparison
of Different One-Diode Models for the Representation of I-V Characteristic of a PV Cell, Pages 684-696,
Copyright 2014, with permission from Elsevier.
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FIGURE 2.3: One-day dynamics of global horizontal solar irradiance in Los Angeles
29 April 2016 [65].

1000 W /m? [62], while the typical indoor illumination intensity is 10 W/ m? [54]. Due
to this large difference in the power density of these two circumstances, PV modules
are more prospective in outdoor applications for harvesting solar energy. Conversion
efficiency of PV cells is typically 15% to 25% in outdoor conditions [63].

Solar energy is an uncontrollable but partially predictable source [13, 64]. Solar irradi-
ance demonstrates daily and annual periodicity due to the regularity of celestial move-
ments, as well as irregular variations due to cloud movements, air mass, etc. A 3-year
trace of diurnal global horizontal solar energy available measured in Los Angeles from
2012 to 2014 is presented in Figure 2.2, and an example of daily dynamics of global
horizontal solar irradiance of the same location is presented in Figure 2.3. As shown in
both figures, the predictability is reflected from the roughly annual and daily periodic-
ity, and the uncontrollability and randomness relates to the irregular variations, which
include both daily variations in an annual scale and variations over a few seconds and
minutes on a daily scale.
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In order to make full use of solar energy, substantial efforts have been made to develop
and improve energy harvesting sensor nodes with solar panels [56, 57]. Generally, solar
energy harvesting approaches adopt large energy storage, e.g. a rechargeable battery, to
smooth out the daily and annual variations. Examples of solar-powered sensor nodes
are presented in [12, 56, 66], and a comprehensive review on solar-powered sensor
nodes is published in [11].

2.1.2 Radio Frequency Energy Harvesting

Radio Frequency (RF) energy exists in time-varying electromagnetic fields, which widely
spread in our environment now due to the propagation of wireless networks, such as
Wi-Fi and cellular phone signals [67]. When radio waves pass through an antenna, due
to electromagnetic induction, AC voltage is generated. This AC voltage can be rectified
and regulated to DC power for sensor nodes. The received RF power is reciprocal to
the square of distance from the source to the destination. The maximum conversion ef-
ficiency from RF waves to DC power is typically 50-75% given a transmission distance
of 100 metres [54].

Due to the widespread deployment of telecommunication networks, RF energy har-
vesting becomes available in a wide range of locations, both outdoors and indoors.
Compared to light energy harvesting, RF harvesting shows its strength in indoor ap-
plications as there is often low or no light intensity inside buildings.

A basic and common example of RF harvesting is RF Identification (RFID). In a passive
RFID application, an RFID reader transmits RF signals to an RFID tag for asking its tag
information. The tag absorbs the signals and energy through its antenna, and then re-
sponds the reader with its information. Up to now, Wireless Identification and Sensing
Platform (WISP) [68, 69] is presented to show the possibility of the integration of RF

energy harvesting in IoT applications.

2.1.3 Flow Energy Harvesting

Flow-based energy harvesting utilises turbines and rotors to collect the kinetic energy
in air flow or liquid flow. Air flow is converted by wind turbines and liquid flow is
converted by hydrogenerators. Wind turbines and hydrogenerators are normally in
different mechanical structures (shapes), but the fundamental principles of them are
the same.

Wind turbines are manufactured in a wide spectrum in terms of dimensions, from a
large-scale wind farm (arrays of large turbines) to a portable micro wind turbine. Micro
wind turbines are suitable for battery charging and powering autonomous electronic

devices.
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FIGURE 2.4: Dynamics of a micro wind harvester (reproduced from [70] (© 2016 IEEE).

A raw voltage output trace of a micro wind turbine given a blast of wind is presented
in Figure 2.4. Given a constant blow, a wind turbine should produce a sinusoidal volt-
age signal. Its voltage output vibrates from the positive domain to the negative domain
with time, so a rectifier is normally required in order to utilise this AC power for DC
load.

Similar to solar energy, wind energy is uncontrollable but partially predictable. Sharma
et al. [71] introduce a system that achieves available wind energy predictions based on
downloaded weather forecast information within recent 3 days. Also, Cammarano et
al. [72] present a wind and solar energy predicting method which dynamically adjusts
its time horizon of prediction in order to achieve higher accuracy than its prior meth-

ods.

Hydrogenerators harness the energy in moving liquids, such as water or a mix of dif-
ferent liquids. Traditionally, hydrogenerators are used for generating large-scale elec-
tricity from rivers and streams. However, since the possible underwater applications
in IoT, hydrogenerators can be a suitable alternative for powering sensor nodes. For
example, Morais et al. [73] incorporate a small-sized hydrogenerator as a part of energy

harvesting supply for sensor nodes.

2.2 Energy Storage for Energy-Harvesting Systems

Energy harvesting supply is variable and intermittent over time, causing disparity be-
tween power supply and power consumption. In order to deliver stable power output
from a varying source, a critical component in an energy harvesting power unit is en-
ergy storage, which buffers the harvested energy and powers the load when needed.

Besides its ability to buffer energy and its effect on overall efficiency, energy storage has



2.2. Energy Storage for Energy-Harvesting Systems 19

a dominant effect on the size, cost, and lifetime of sensor nodes [17]. Therefore, how
to design energy storage is a critical concern in deploying energy harvesting sensor
nodes.

Technologies of energy storage used in sensor nodes are generally divided into two cat-
egories: rechargeable batteries and capacitors, which are different from each other in
terms of energy density, power density, lifetime, discharging features, leakage, etc. In
general, batteries have higher energy density (containing more energy with the same
volume/weight), lower leakage, and a more stable discharging curve (a stable voltage
output while discharging), while capacitors have higher power density (higher lim-
its for charging/discharging current), and longer lifetime in terms of charge-discharge
cycles [17, 56]. The choice of these two forms of energy storage depends on applica-
tion requirements. These two technologies and their implementations will be briefly
reviewed in the following subsections.

2.2.1 Rechargeable Batteries

Batteries are more energy-dense than capacitors and manifest a stable voltage output
when discharging. Rechargeable batteries have been widely adopted in mobile de-
vices. Rechargeable batteries are generally made in the following techniques: Sealed
Lead Acid (SLA), Nickel Cadmium (NiCd), Nickel Metal Hydride (NiMH), Lithium
Ion (Li-ion), and Lithium ion Polymer (Li-Po). Due to the similar techniques and fea-
tures of Li-ion and Li-Po batteries, Li-ion will be used to represent Li-ion and Li-Po
batteries in this subsection. SLA and NiCd batteries are less likely to be implemented
in energy harvesting sensor nodes [17, 56]. SLA batteries suffer from low energy den-
sity and are normally bulky and heavy, which is unfavorable for sensor nodes. NiCd
batteries involve memory effect, i.e. decrease of energy capacity after repeated par-
tially discharging and recharging, which is a common situation in energy harvesting

implementations.

Compared to SLA and NiCd batteries, NiMH and Li-ion batteries show a strength in
energy density in both weight and volume, and hence, are more suitable for energy har-
vesting applications [17, 56, 74, 75]. A comparison of two commercial NiMH and Li-ion
batteries is listed in Table 2.2 with a variety of perspectives and features. Li-ion batteries
are typical lighter than NiMH batteries, with weight energy density 2-3x and volume
energy density 1-2x to NiMH batteries. Also, Li-ion batteries significantly outperform
NiNH batteries in terms of charging efficiency and self-discharge rate. However, Li-ion
batteries are normally more expensive than NiMH batteries, and require more compli-
cated pulse charging circuits [56]. NiMH batteries also provide a relatively constant
voltage supply during discharging [12].
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NiMH (Panasonic BK150AA) | Li-ion (EEMB LIR14500)
Nominal voltage 12V 3.7V
Charge capacity 1500 mAh 750 mAh
Energy capacity 1.80 Wh 2.775 Wh
Weight 26g 20g
Dimensions 214.5mm x 50.5mm 214.1mm x 48.5mm
Weight energy density 69 Wh/Kg 139 Wh/Kg
Volume energy density 216 Wh/L 366 Wh/L
Operating temperature -20°C to 65°C -20°C to 60°C
Charging cycles =500 =300
(until 80% capacity)
Reference price £2.91 £3.25
Charging efficiency [75] 66% 99.9%
Self-discharge [75] 30% per month 10% per month
Charging Method [75] Trickle Pulse

TABLE 2.2: Comparison between commercial NiMH and Li-ion rechargeable batteries.

NiMH and Li-ion batteries have been widely implemented in energy harvesting sensor
nodes. Heliomote [56] uses two NiMH batteries in series to match the charging voltage
(2.2-2.8V) with the MPP of the solar panel. HydroSolar [74] also adopts two NiMH
batteries to avoid the Li-ion charging hardware. Jiang et al. [21] design a hybrid storage
system including a lithium based rechargeable battery as the secondary buffer, due to
its high efficiency and charge density.

Despite the high energy density and stable discharging voltage, batteries still show a
typical drawback at short lifetime (less than 5 years [20]), which involves manual re-
placement of batteries or devices after the battery lifetime expires. Also, batteries raise
environmental concerns due to the heavy metals and toxic chemicals within. If not
properly charged, Li-ion batteries can cause safety issues, i.e. explosion and fire, which
are problematic when deployed in distant and wild places. In addition, rechargeable
batteries are susceptible to temperature. Most batteries only exhibit their rated charac-
teristics around 20°C, and lose their efficiency and capacity when operating at extreme
temperatures (around their rated limits) [75].

2.2.2 Capacitors

Due to the lifetime limits and pollution issues of batteries, capacitors, typically super-
capacitors, are considered as an alternative to replace rechargeable batteries as energy
storage. Supercapacitor (also known as ultracapacitors or electrostatic double-layer ca-
pacitors) are capacitors with higher energy density than electrolytic capacitors. Unlike
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conventional capacitors, where charges are stored and separated by solid dielectric, su-
percapacitors maintain charges based on double-layer or pseudo-capacitive charging
phenomena [76]. Supercapacitors are still much less energy-dense than batteries, but

act as a transition from capacitors to batteries.

Compared to rechargeable batteries, supercapacitors exhibit strengths in a large num-
ber of charge/discharge cycles, long lifetime (20 years), high charge/discharge effi-
ciency (98%). The self-discharge rate of supercapacitors is higher than batteries, with
5.9-11% of maximum capacity per day [77, 78], but this leakage is insignificant com-
pared to the small capacity and the total energy gained per day. The main constraint
of supercapacitors is still the low energy density, which results in large storage dimen-
sions if the aim were to achieve a comparable capacity with batteries. In order to main-
tain the same form factors of sensor nodes, designers have to adapt system architecture

to a small storage (compared to batteries).

Prometheus [21] introduces supercapacitors into energy storage for sensor nodes whereby
two 22F supercapacitors are used in combine with a Li-Po battery. AmbiMax [79] also
proposes a hybrid storage design similar to Prometheus, but with two more 10F super-
capacitors for wind energy harvesters. To achieve longer lifetime than battery-based
sensor nodes, Everlast [22] demonstrates the feasibility of replacing batteries with su-
percapacitors in energy harvesting sensor nodes, designing a power system that adopts

a 100F supercapacitor as the only energy reservoir.

However, farad-level supercapacitors occupy a significant part of device volume. The
advent of energy-driven computing [80] introduces the application and design sce-
nario where execution happens only if there is energy available. Within this scenario,
energy storage using millifarad-level supercapacitors are investigated in energy har-
vesting sensing applications [53, 69]. Furthermore, intermittent computing, which
will be illustrated in the next section, enables computation given intermittent power,
making progress with electrolytic capacitors or even without dedicated storage (only

microfarad-level parasitic capacitance).

2.2.3 Discussion

To summarise, due to the requirements on lifetime, environmental-friendliness, and
form factors in energy harvesting sensor nodes, the energy storage designs have trans-
formed from batteries to supercapacitors, and eventually eliminated the need for dedi-

cated storage.

Batteries have been the preferable choice for buffering harvested energy and powering
sensor nodes because they make sensor nodes easy to program and operate reliably un-
til the battery lifetime expires. However, the environmental issues and short lifetime of
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batteries limit the deployment of ubiquitous sensors. Supercapacitors avoid the prob-
lems of batteries and have been used to replace batteries, but the low energy density of
supercapacitors also makes sensor nodes bulky and heavy in order to achieve sufficient
capacity for uninterrupted operations. Recent development of intermittent computing
enables forward execution over power outages and encourages storage-less designs in

energy harvesting sensor nodes.

Although the minimum need for storage capacity to operate sensor nodes decreases
with the evolution of computing techniques, decreased storage does limit the flexibility
of energy usage. A storage-less system has to consume the incoming power immedi-
ately, otherwise the energy is wasted. This fact consequently restricts the application
scenarios of storage-less systems to energy-driven applications, where execution needs
to run only when there is available energy sources to harvest. However, energy-driven
applications do not cover all the demands in 10T, so simply reducing the storage need
is not always desirable. A wider spectrum of storage designs should be explored to suit
and optimise for different application scenarios.

2.3 Energy-Neutral Computing

Energy-neutral (EN) computing aims to operate sensor nodes with at least a certain
performance level over a period of time. Energy-neutrality can be described as the
following equation:

to+At
Emin S Eto +/t [Ph(t) - Pc(t)]dt S Emux (2'1)
0

where Py (t) and P.(t) are the harvested and consumed power at time ¢, ty is the time
when EN computing is meant to start, At is the length of period during which EN
conditions are achieved, E;, is the initial available energy in energy storage at time fo,
E,nin is the minimum amount of stored energy below which the system cannot sustain
(typically due to insufficient supply voltage), and E,;;, is the maximum capacity of
energy storage beyond which the harvested energy is wasted. P.(t) includes the power
consumption of the whole system, such as the MCU, peripherals, power conversion
circuit, and the power leakage of energy storage. Py(t) is the harvested power after

conversion.

EN devices are typically powered by solar cells [81], and At is typically 24 hours or one
year to suit the period of the solar energy source. In order to achieve energy neutral-
ity over such a long term, sufficient amount of energy storage, typically in the form of
rechargeable batteries, is required to smooth out the large temporal variations of har-
vested power. The capacity of the energy storage is determined by how long the system
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tries to maintain a stable performance as larger energy storage tolerates more energy
differences. In general, the length of At and the difference between P, and P, determine
how much storage is required, and on the other hand, the capacity of energy storage
limits how long At can be.

In order to ensure that the system works uninterruptedly by managing the stored en-
ergy (the middle term in Equation 2.1) between E,;;, and E,;5x, EN computing dynam-
ically adapts system performance and power consumption over the period At. Typical
adapting techniques include adjusting workload duty cycles and participation in net-
work activity [80].

Kansal ef al. [12] illustrate a preliminary power management algorithm by which the
incoming energy is estimated by an Exponentially Weighted Moving Average (EWMA)
of the past recorded slots of harvested energy, and the system tries to exploit the har-
vested energy by scaling its duty cycles. Vigorito et al. [82] introduce a Linear-Quadratic
Tracking (LQT) approach to scale duty cycles based on the current battery level, and as
evaluated in its datasets, mean duty cycle is improved by 6-32% and duty-cycle vari-
ation is reduced by 6-69% compared to [12], which means the system works with a
more a stable performance. In [14], a Proportional-Integral-Derivative (PID) controller
is used for monitoring and stabilizing the voltage of a supercapacitor-based energy
storage, and hence, the storage level of this system. While these approaches achieve
satisfactory energy neutrality for the magnitude of hours, they all show a latency when
responding to the harvested power, and high variance of duty cycles when adapting
to a new power trace. Additionally, approaches in [82] and [12] rely on an accurate
estimating algorithm to detect the remaining battery energy, which is vulnerable to

deployed time and temperature.

In [83], a prediction algorithm for solar energy named Weather-Conditioned Moving
Average (WCMA) is presented, in which both the current and the past weather data
are taken into account to achieve higher accuracy than EWMA methods. It is reported
by the authors that the average prediction error is improved from 28.6% in EWMA
to 9.8% in WCMA over a test duration of 45 days, but it is unclear in the article that
how to harness this prediction to improve the system performance. Similarly, weather
forecast is adopted in [71], by which the authors build a model to approximate the
available solar and wind energy. Although these two methods based on weather data
provide high prediction accuracy, the network overheads for receiving these data are

not presented, and how to fully utilise this daily prediction is still a problem.

Different from the aforementioned daily EN operations, a long-term annual power
management based on duty-cycling is presented in [13] to achieve annual energy neu-
trality. The authors use an adjustment factor, which is dynamically calculated from the
historical windows, to modify the design-time energy prediction model to a more real-

istic model, and determine its performance level accordingly. However, this algorithm
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is only tested in simulation instead of practical experiments. Moreover, for such a long-
term EN operation, a large battery is required, but the battery deterioration is ignored
in their analysis.

In [15], a task scheduling algorithm for optimising the performance of an energy har-
vesting system (typically based on PV harvesters) is exhibited. Given a predicted
power trace, storage bounds, energy consumption of tasks and quality of tasks, the
proposed scheduling algorithm is proved to be able to find the optimal scheduling in
a pseudo-polynomial time which leads to the maximum sensing quality. While this
algorithm provides an ideal solution for power management, it requires that the en-
ergy source should be predictable with high accuracy, and the energy cost and quality
of each task should be defined at design time. The first requirement almost constrains
this algorithm within the cooperation of solar energy. The second requirement is hard
to achieve since a) in practice the energy consumption of tasks may change due to tem-
perature and dynamic data amount [84] and b) the energy cost of a system includes

many elements other than the energy consumption of computing tasks.

EN computing efficiently utilises energy and maintains system performance, ensure
reliability and periodic task execution despite variable harvesting power input. How-
ever, in almost all energy neutral approaches reviewed above, a large energy storage,
i.e. a rechargeable battery, is in need in order to buffer temporal energy variations. The
usage of batteries poses sustainability challenges due to the limited lifetime and pol-
lution issues. Recent research develops IPSs to minimise the need for energy storage.
Next, Section 2.4 reviews the existing IPS methodologies with respect to their focuses.

2.4 Intermittently-Powered System

Energy harvesting provides an autonomous power supply for wireless sensor nodes as
an alternative of battery power. However, with small storage, energy harvesting sys-
tems inevitably suffer from frequent power outages, which affect forward execution of
programs. Intermittently-Powered Systems (IPSs, also known as transient computing
systems or intermittent computing systems) aim to maintain forward execution and
computation correctness through power failures [28]. Intermittent execution spans its
execution and intermittently computes over power outages, while conventional execu-
tion restarts after power interruptions. A typical characteristic of an IPS is that it starts
executing whenever there is power available and suspends during power outages; af-
ter power recovery, it can continue its prior task correctly instead of restarting from the
beginning of a program.

Due to different design considerations, IPS methodologies varies in a wide spectrum [85].
These methodologies include saving snapshots of system volatile state into NVM at

checkpoints, breaking down execution into small atomic tasks, and hardware circuits
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for suspend and restore operations. According to the main features in execution styles
and focuses, the existing research work on IPSs can be classified into five groups: static
IPSs, reactive IPSs, power-neutral computing, energy allocation methods, and tools for
simulation and emulation. The following part of this section explains each of the above
groups of methodologies with the associated research progress.

2.4.1 Static IPS
2.4.1.1 Static Checkpointing

An static checkpointing IPS require manual insertion of checkpoints into code at com-
pile time. When a checkpoint is called, the system checks the current available energy
amount. If this amount is less than a predefined threshold, which indicates the avail-
able energy may not be enough to sustain execution, a snapshot saving function is
called at this checkpoint. To save a snapshot of the system computing state, the system
copies the current stacks and heaps, local and global variables, general registers, the
stack pointer, and the program counter, into the NVM. A static checkpointing system
continuously operates until it encounters power outages, where the supply voltage is
less than the minimum operating voltage of the systems. After the supply voltage re-
covers, the system restores its state from the last checkpoint, and hence, continues its

execution from that checkpoint.

Mementos [28] first presents a static checkpointing solution in which checkpoints are
placed at design time. Mementos includes three strategies for placing checkpoints,
which are placing at every loop, placing at every function call, and an auxiliary timer
delay to determine the minimum cycle between two adjacent checkpoints. Addition-
ally, programmers can also insert or delete checkpoints manually as a custom option.
Two NVM blocks are used and snapshots are saved to the two blocks alternately, so
there is always at least one available and complete snapshot even if the energy is de-
pleted during saving a new snapshot. One significant shortcoming of Mementos is the
instrumenting strategy: with the different sizes of loops and functions, the granularity
of checkpoints can be either too small, which introduces high run-time overheads, or
too large, which leads to non-termination where the execution can never get to the next
checkpoint. Another concern in Mementos is how to set the voltage threshold so that

snapshots can be saved successfully while avoiding too many redundant snapshots.

HarvOS [29] is proposed to improve the strategies of inserting checkpoints in Memen-
tos. HarvOS analyses the control-flow graph of a program and splits it into sub-graphs
with a checkpoint inserted for each sub-graph. To reduce the number of checkpoints
compared to Mementos, the size of sub-graphs is set close to the worst-case number
of useful cycles the MCU can execute until the next checkpoint. To reduce the size of
snapshots, the RAM usage in each sub-graph is analysed and the checkpoint is placed



26 Chapter 2. Energy-Harvesting Intermittent Systems

at the point with the least RAM usage. HarvOS claims to reduce 68% checkpoints on

average compared to Mementos.

Chinchilla [30] proposes a static checkpointing tool which automatically overprovi-
sions checkpoints at compile time and adaptively eliminates unnecessary checkpoints
at run time. Compared to Mementos and HarvOS, Chinchilla relieves the program-
ming efforts on manually inserting checkpoints while still achieves an efficient number

of checkpoints at run time.

An advantage of the checkpointing method is the size of a specific snapshot can be
estimated from the program execution flow to find a smaller snapshot [29]. However,
there are still two significant challenges remaining unsolved in static checkpointing

methods: idempotency violation and non-termination.

An execution is idempotent if it can be repeated while maintaining the same result [32].
Non-idempotent actions include I/O operations and NVM writes, which are fairly
common in IPS applications. Repeating non-idempotent actions can leads to undesired
results, so these non-idempotent actions should be executed only once. Checkpoint-
ing systems repeat executing the code between two adjacent checkpoints, and hence,
cause non-idempotency. Current compile-time checkpointing methods as listed above

are not able to ensure idempotency.

Non-termination in static checkpointing systems exhibits when the energy consump-
tion between two checkpoints is more than the buffered and harvested energy. Non-
termination typically happens when the instrumentation strategy of checkpoints ig-
nores the size of the energy buffer, as in Mementos. HarvOS and Chinchilla manage
to mitigate non-termination, but they cannot eliminate this problem as they cannot dy-

namically insert checkpoints at run time according to varying environmental sources.

2.4.1.2 Harvest-Store-Use

Harvest-store-use IPSs perform a complete task in one consecutive period when the
harvested energy in energy storage is enough. A complete task typically includes sens-
ing, processing, and transmitting actions. In order to sustain a successful task exe-
cution, the required capacity of energy storage is larger than the minimum required
storage in other IPS methodologies. Harvest-store-use systems need to calibrate the
energy consumption of the task at design time and set an energy threshold to trigger
execution based on that energy consumption. When the threshold is reached, which
means there is enough energy for a task, the system performs one task and sleeps until
the next threshold trigger. As shown in Figure 2.5, the behaviours of the amount of
stored energy can be seen as alternating in turn between two states: the collecting state
and the executing state.
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FIGURE 2.5: Harvest-Store-Use execution (taken from [86] (© 2017 ACM).

Monjolo [43] is an early design following the harvest-store-use pattern. Monjolo presents
a home power meter, whereby a current transformer is installed around the main power
cable and provides the energy for this metering system. When the energy stored in a
500uF capacitor reaches a predefined amount, the system transmits a data packet. An-
other wireless receiver keeps collecting these packets and approximates the power of
the main cable based on the receiving frequency of packets. Such a system contains
little sensing and processing work on the transmitting node, and instead, it treats the
intensity of energy sources as the sensing data, and processes this translation of data

on the receiving node which is powered stably.

WISPCam [69] is a wireless camera that obtains energy from an RF harvester. The
harvested energy is stored in a 6mF supercapacitor and the data (photos) are saved in
NVM. Once the energy is sufficient for taking one photo, the system starts execution

and depletes the energy for taking a picture and data transmission.

Similarly, Dynamic Energy Burst Scaling (DEBS) [53] also wakes up and executes tasks
when there is enough energy in the 80uF capacitor. The major difference between DEBS
and the above two approaches is DEBS can adjust the energy thresholds dynamically
for a set of different tasks and generates energy bursts according to which task is in

need.

Harvest-store-use paradigms are suitable for occasions where the harvested power
is too weak to support the power consumption of any normal execution (other IPS
methodologies may quickly deplete energy storage and make little progress). Also,
harvest-store-use methods circumvent the idempotency issues by complete tasks in
one burst. However, this pattern is task-based, which means its operation is limited to
one or several fixed energy-defined tasks and also relies on high-quality design-time
profiling of tasks.
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2.4.1.3 Task-based

Task-based IPSs decompose a program into a series of atomic tasks, which only deliver
non-volatile results after all operations in a task are completed [32]. Task-based IPSs are
achieved by programming and execution models, which aim to ensure NVM consis-
tency and idempotency. In such models, accesses to NVM and I/O operations are care-
fully managed to prevent idempotent violations. To ensure idempotency, the program
control flow is divided by task boundaries, and the communication between tasks is en-
abled by reading or writing NVM data on those boundaries. To avoid non-termination,
the maximum size of one task is limited by the capacity of energy storage. Therefore,
a task-based IPS can be seen as a rigorously-organized and fine-grained checkpointing
method, which eliminates the the non-termination and idempotency problems in static
checkpointing IPSs. Task-based systems feature with fast suspend and restore opera-
tions because only the runtime and the current task should be versioned and restored
through power outages [85].

DINO [32] proposes the first task-based programming and execution model, illustrat-
ing the task-based idea and providing a basic groundwork. DINO implements the
programming and execution model on the LLVM compiler for C code, with program
libraries and compiler passes. Chain [33] improves DINO data flows with “Channels”,
which is dedicated to manage non-volatile data, guaranteeing the correctness on appli-
cations with both idempotent and non-idempotent code. Alpaca [34] introduces data
privatization which reduces memory usage compared to Chain.

A main drawback of DINO, Chain, and Alpaca is they require great programming ef-
forts for programmers to understand the implemented libraries and redesign a pro-
gram according to the task-based concept. A recent work, CleanCut [87], proposes an
auxiliary tool to check and automatically decompose the non-terminating tasks (the
energy consumption of which exceeds the capacity of system energy storage).

Also, like static checkpointing, task-based IPSs inevitably involve re-execution. Alpaca,
the state-of-the-art task-based approach, reports a run time overhead of 1.3-3.6x com-

pared to plain C code given constant power supply.

2.4.2 Reactive IPS

2.4.2.1 Reactive Checkpointing

Instead of instrumenting checkpoints at compile time, reactive checkpointing IPSs do
not set predefined checkpoints but save snapshots at run time when the supply volt-
age is detected to be lower than a threshold that indicates an imminent power failure.
Therefore, the snapshot saving operations is only invoked when there is an indication
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FIGURE 2.6: Voltage trace with hibernation and restoration points in Hibernus (taken
from [37] © 2015 IEEE).

of an imminent power outage, i.e. a low supply voltage. Also, after saving a snapshot,
a reactive IPS suspends its execution and enter a low-power mode, rather than con-
tinues execution until a power outage as checkpointing systems do. When the voltage
supply recovers above a restore threshold, the system either restores the last snapshot
if the system reboots, or just continues execution if the system comes back from the

low-power mode.

Hibernus [37] saves only one snapshot before a power interruption and then enter the
sleep mode. Two fixed voltage thresholds, Vg and Vg, are predefined for hibernation
(save a snapshot and sleep) and restoring a snapshot. An on-chip voltage comparator
and an on-chip voltage reference generator are used for monitoring the supply voltage
and triggering hibernation when the supply voltage drops to Vg or restoration when
the supply voltage recovers to Vg. A voltage trace is shown in Figure 2.6 to explain
Hibernus behaviours, and this trace is representative for a reactive IPS behaviours. To
adapt thresholds to variable energy sources, Hibernus++ [38] implements dynamic self-
calibration for suspend and restore thresholds by executing a hibernation test. By using
adaptive thresholds instead of fixed thresholds as in Hibernus, Hibernus++ makes it-
self compatible with a variety of energy sources. Compared to Hibernus, Hibernus++
improves application execution time by reducing the overheads of suspend and restore

operations.

Quickrecall [36] is a similar approach to Hibernus except replacing RAM with NVM, so
that all the run-time volatile data become non-volatile and only registers are necessary
to be saved in a snapshot. An external voltage comparator detects a triggering voltage
Virig to back up only peripherals and registers. Compared to the voltage thresholds
in Mementos and Hibernus, Vj;;, in Quickrecall is lower since the reduced energy and
time overheads for saving and restoring a snapshot. However, using NVM as RAM
may lead to the higher cost of NVM accesses. A comparison between Hibernus and
Quickrecall is presented in [88], showing that Quickrecall performs worse when the
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frequency of power interrupts is low as the NVM consumes more than volatile RAM,
and performs better when the frequency of power interrupts is high as the overheads
of saving snapshots are much lower.

Reactive IPS methods only save snapshots when power failure is imminent, and hence,
reduce the number of snapshots compared to checkpointing methods. Also, reactive
IPSs avoid code re-execution by suspending execution after saving a snapshot, and
hence, ensure idempotency.

The RAM usage varies at run time, so the size of snapshots in reactive checkpointing
also varies throughout code execution. To circumvent this issue, Hibernus saves the
entire RAM in each snapshot while Quickrecall does not use RAM at all. Compar-
ing Hibernus to checkpointing methods, the overheads of saving snapshots in Hiber-
nus is larger as checkpointing methods can avoid saving large snapshots by analysing
the program. Such high saving overheads becomes significant when the frequency of
power outages increases. Increasing the size of energy storage in reactive checkpoint-
ing should be helpful to mitigate frequent snapshot taking because the increased energy
storage can filter the variations of supply voltage and avoid frequent voltage drops.

2.4.2.2 Non-Volatile Processors

Non-Volatile Processors (NVPs) incorporate automatic backup and restore hardware
within the chips. A comparison of memory architecture between traditional processors
and NVPs is shown in Figure 2.7. The traditional volatile elements are replaced with
non-volatile elements to achieve efficient backup and restore operations with a faster
speed and lower energy consumption than the conventional memory architecture. To
be specific, the registers and cache are equipped with built-in additional non-volatile
backup and restore circuits, so that when the supply power is going to disappear, the
computing state can be saved locally just beside the elements, rather than being copied
out into an external NVM. It is reported that the backup and restore speed of NVPs
can be 2-4x magnitudes faster than the state-of-the-art NVM based commercial pro-

cessors [89].

Wang et al. [90] present a preliminary NVP with 3us backup time and 7us restore time,
which enables the processor to operate safely under a 20 kHz square wave of power.
As a comparison, the existing MCUs in TI MSP430 family can only achieve 212us and
310us for saving and restoring states respectively. Su et al. [91] extend the backup and
restore time overheads to a system level, presenting a NVP with 46us system-level
wake-up time and 14us system-level sleep time. Liu ef al. [92] integrate a NVP into a

system-on-chip with independent backup and restore circuits for peripherals.
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FIGURE 2.7: Memory architectures of traditional processors and NVPs (taken
from [89] © 2015 ACM).

NVP-based research follows with the development of NVP hardware. Ma et al. [93]
examine the performance and energy consumption of several types of NVPs with dif-
ferent ambient sources, providing a guideline for NVPs selection. The concept of “Inci-
dental Computing” based on NVPs is proposed in [94] to improve the forward progress
under unstable power supply, and also provides an evaluation of performance on
NVPs. Essentially, it pays more attention to processing forward data in need than the
buffered historical data from recovery, but an incidental recomputing on the histori-
cal data is performed when there is abundant energy. It is reported that this approach
outperforms the existing save-and-use computing scheme by 2.2-5x in the simulation
with respect to an image processing speed, and also the forward progress is improved
by 4.28 x on average over a basic NVP.

NVPs perform well in terms of the response to power intermittency, but the research
on how to deliver better forward progress with NVPs is limited. Dynamic Voltage and
Frequency Scaling (DVFS) can be a potentially applicable solution [95]. In a traditional
NVP, the small buffering capacitor tends to be either charged to be full or depleted
rapidly and frequently [96]. This behaviour accounts for a large part of backup and
recovery overheads, so power management based on NVP is in need.

2.4.3 Power-Neutral Computing

While the above IPS methods aim to ensure forward execution despite frequent power
outages, energy harvesters may also generate more power than systems can consume
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when ambient sources are sufficient. Such excessive energy is wasted if not stored for

later usage or consumed immediately.

2.4.3.1 Principles of Operation

Power-neutral (PN) computing aims to manage power without additional storage or
with only a very limited amount of storage which can only sustain its system for mil-
liseconds. In principle, power-neutral computing is a special case of energy neutral
computing when At in Equation 2.1 is equal (or close) to zero. Technically, PN comput-
ing scales the instantaneous system power consumption to match the instantaneous
harvested power with theoretically zero storage (in other words, energy neutrality is

met instantaneously). PN operations can be translated into the following expressions:

Pu(t) = P.(1) 22)

where t € {t|Vee(t) > Vipin} (2.3)

where V. is the input voltage of the computing load, and V,,;, is the minimum voltage
required for the system to operate. Equation 2.2 describes the methodology of power
neutrality (dynamic and instantaneous power adaptation). Equation 2.3 limits the re-
quirement for power neutrality that the system should be powered and active to make
reactions of performance scaling. This requirement may change according to different
system designs, but for contemporary computing and sensing loads, this is determined
by the supply voltage.

Given a very limited amount of storage and a range of scalable performance and power
consumption, PN computing scales down performance if P, is lower than P, such that
Ve remains stable, which extends execution time and avoids suspend and restore op-
erations. On the other hand, PN computing scales up performance if Py is higher than
P,, such that the excessive harvested energy is immediately consumed on useful work
rather than wasted.

In practice, however, there does not exist a system that can adjust its power consump-
tion instantaneously to the harvested power without any overheads. Any performance
scaling costs a small amount of time and energy overheads, which a system cannot
afford without any energy storage. Therefore, a minimum storage is still required,
normally in the form of decoupling or parasitic capacitance, to provide a small but suf-

ficient amount of energy for scaling performance and adapting power consumption.

In order to achieve power neutrality, a system has to adapt its performance and hence

power consumption. Performance scaling can be achieved by hardware controlling,



2.4. Intermittently-Powered System 33

Input Regulation Test Platform
S1 82 lf — | :-MSP430FR Evaluation Board :
I I | Vee I Voltage setting J/ I

l

Energy I 1 €1 A Micro External |
Harvester | T Co  Cou = :l TIC Controller Inter. | Compar. ||
| | |
I I | | |
— e — — = J ool

FIGURE 2.8: Architecture of an example power neutral system based on TI MSP430FR
platform (taken from [70] © 2016 IEEE).

such as Dynamic Frequency Scaling (DFS) [70], DVFES [97], or switching on/off load ele-
ments [97, 98] (also known as Dynamic Power Management, DPM [99] or hot-plugging).
Apart from these achieved methods, duty-cycle scaling and task scheduling are also
choices for changing performance and consumption, though they have not been imple-

mented in current research yet.

2.4.3.2 Recent Approaches

The concept of PN computing is proposed in [70] and implemented on a Texas Instru-
ment MSP430FR5739 MCU without an external energy buffer. As shown in Figure 2.8,
the executing load is directly connected to a regulated energy harvesting source. The
control scheme in [70] utilises DFS with a voltage feedback. Specifically, two voltage
thresholds, V.. and V., are set for detecting voltage variance caused by power in-
equality and then scaling performance accordingly. In order to respond fast to power
difference, the capacitance is reduced to 19uF, which is only the parasitic and on-board
decoupling capacitance. When P, (t) > P.(t) and the operating voltage V. increases
rapidly due to the small capacitance and reaches Vj,., the MCU increases its operating
frequency resulting in faster computing speed and higher power consumption, and
also increases the thresholds between which the new voltage value is contained; and
vice versa, a reverse procedure is executed for P,(t) < P.(t). In a word, this control
scheme is trying to make the operating voltage stable around a desired value so that
Py (t) equals P.(t) approximately.

A similar control scheme is adopted in [97] where the platform is an MP-SoC adopting
DVFS and DPM, which leads to higher performance, higher power consumption, and
more operating points than the MCU in [70]. A 47mF supercapacitor is used for safely
overcoming performance switching where the power consumption of the board is nor-

mally above 2W. As an illustration for how to scale performance by DVES and DPM,
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FIGURE 2.9: Board power consumption of ODROID XU4 vs operating frequency and
core configurations, running CPU intensive application Raytrace (taken from [97] ©
2017 IEEE).

Figure 2.9 presents an example application profile of ‘power consumption vs perfor-
mance” when DVFS and DPM applied on a heterogeneous multi-processor system-on-
chip (MP-SoC) platform. The SoC used in this platform is the Samsung Exynos5422
big.LITTLE SoC with four 'big” high-performance A15 cores and four 'LITTLE’ low-
power A7 cores. In this case, the performance refers to the speed of executing this
application for one time and is proportional to the operating frequency under a certain
core configuration. As shown in the figure, each performance level (a pair of frequency
and core status, also named as an operating point) requires a certain power consump-
tion. At run-time, the system dynamically switch its performance among these operat-
ing points so as to timely match P.(t) with Py (f).

There are three advantages in this kind of PN control scheme. First, the voltage is
stabilized so it can offset ephemeral power drops which cause insufficient voltage sup-
ply and power failures, and therefore the lifetime increases (e.g. reported by 4-88%
in [70]). Second, as power neutral computing eliminates many elements that required
in EN systems, such as large energy storage, power converters and MPPT units, the
size and cost of devices is reduced and the number of power consumption components
also decreases. Third, if powered by a solar panel and the operating voltage range en-
compasses the MPP of the given solar panel, the system embraces an intrinsic MPPT
characteristic as it can stabilize the voltage around a target value.

Similarly, Wang et al. [98] propose a storage-less and converter-less approach which
can be classified as a power neutral system. In this design, a 47uF bulk capacitor is
equipped with a 3.29mW non-volatile MCU and up to 16.5mW peripherals. This ca-
pacitor is also small enough compared to the 19uF capacitance operating with an up
to 3 mW MCU in [70]. An external MPPT controlling element dynamically adjusts the
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power duty-cycle for the non-volatile load in order to match the harvested current and

the consumed current, and hence power neutrality is met.

One disadvantage of power neutral computing is that it has to passively scale its power
consumption as well as its performance, causing large variations in performance. How-
ever, this might not be good in terms of the overall forward progress. In the next chap-
ter, a preliminary analyse is explained about how the forward progress is improved

when the capacitor size is increased, while not violating the merits of PN computing.

2.4.4 Energy Allocation

Several existing designs have been able to handle atomic peripheral operations in IPSs,
where energy profiling of workloads is an inherent part of their methodologies.

DEBS [53] experimentally profiles the energy consumption of each task at design time,
and designates a threshold to each task individually. After completing an operation,
DEBS enters a low-power mode (LPM) and waits for energy to be replenished to the
next threshold.

Samoyed [40] utilises a custom design-time energy profiler to identify an energy storage
size that suffices to run an adequate number (hundreds, as suggested) of peripheral
operations in one active cycle. At runtime, Samoyed starts execution when energy is
refilled to a certain threshold, and keeps executing until energy is depleted. Samoyed
differs from proactive intermittent computing approaches, e.g. Alpaca [34], mainly on
handling computational workloads where it reactively checkpoints when the buffered
energy is below a threshold, and supports user-customised subdivision of peripheral
operations when the operation cannot complete in one active cycle.

RESTOP [100] provides programmer-configurable rules that track the instructions is-
sued to peripherals through serial interfaces in a history table. On power recovery,
RESTOP re-issues instructions saved in the history table and then resumes the inter-
rupted operation. At design time, RESTOP needs to profile the worst-case energy con-
sumption for restoring peripheral state to identify the minimum (most-efficient) restore
threshold.

2.4.5 Tools for Simulation and Emulation

To explore forward progress of IPSs, simulation tools need to represent transient op-
eration (timescales of ps-ms) as well as long-term overall performance (from days up
to years). A number of models have been proposed for exploring system designs and
parameters in IPSs.
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Su et al. [101] modelled a dual-channel solar-powered non-volatile sensor node, and
Jackson et al. [102] provided a model to explore battery usage in IPSs. Both were con-
tigured for long-term simulations and large energy storage (from mF-scale supercapac-
itors to batteries), thus cannot respond to frequent power interruptions and accurately

estimate forward progress when using minimized energy storage (e.g. 4.7 pF [52]).

In contrast, a set of fine-grained models have been proposed to accurately simulate the
frequent micro-operations in IPSs. NVPsim [103] is a gemb5-based simulator for NVPs.
Fused [104] is a closed-loop simulator which allows interaction between power con-
sumption, power supply, and forward progress. EH model [105] can compare a range
of IPS approaches in a single active period with the same energy budget, quantifying
forward progress by the energy spent on effective execution. These fine-grained mod-
els are inefficient for processing long-term energy data, especially when iterative tests

are needed for various system configurations.

Besides models and simulators, hardware emulators of energy harvesters [106, 107] can
provide repeatable power profiles recorded from energy harvesters for experimental
comparisons. Though they provide practical results, hardware emulations are limited
by hardware options and are generally impractical for performing long-term trials.

2.5 Summary

This chapter introduces a background of energy harvesting techniques, summarises
the evolution of energy storage used in energy harvesting computing, and reviews the
existing methodologies of battery-less energy harvesting computing.

EN computing emphasizes the continuous activity of devices over a long-term dura-
tion (e.g. several days, one year) by buffering harvested energy in large energy storage
and adapting energy consumption “reluctantly”. However, large energy buffers, usu-
ally in the form of batteries or large supercapacitors, are demanded for EN operations,
whereas such large energy storage limits device lifespans, increases the cost, mass, di-
mensions of devices, and bring pollution and maintenance issues. This contradicts the
design requirements of ubiquitous sensor deployments.

To circumvent the limitations in EN computing, intermittent computing is recently de-
veloped. Intermittent computing continues computation after the supply fails rather
than restarts from the beginning of programs. Hence, intermittent computing devices
can achieve forward execution despite frequent power failures with only minimum
storage (e.g. a decoupling capacitor) to secure successful saving and restoring oper-
ations of computing states between volatile and non-volatile components. Based on

intermittent computing, PN computing introduces run-time performance adaptation
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to match power consumption with harvested power, such that the number of saving
and restoring operations can be reduced and application execution speed is increased.

However, with minimised storage, an intermittent computing device has to frequently
wake up, execute for a short time, and halt when the harvested power is less than
the load power consumption, consuming much energy in managing system states. As
for PN computing, volatile power from environment results in significant performance
variations, which then cause performance loss. The remaining part of this thesis re-
ports a study on how to mitigate these two problems and improve system execution
speed by adding a small amount of energy storage without significantly affect device

dimensions.
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Chapter 3

Effect of Energy Storage Sizing on
IPS Performance

With the goal of minimising device dimensions and interruption periods, most IPS
approaches adopt only a minimum amount of energy storage [30, 38, 50-52, 52, 70], e.g.
a decoupling capacitor. This is typically just sufficient for the most energy-expensive
atomic operation. However, our assertion is that this can be inherently inefficient in terms
of time and energy. We show that a system with minimum energy storage frequently goes
through a cycle of: wake up, restore state, execute program, save state, and halt. We
propose that provisioning slightly more energy storage can prolong the operating cycles,

reduce the frequency of interruptions, and hence improve forward progress.

However, the relationship between IPS energy storage capacitance and forward progress
has not previously been defined. Due to the computational speedup of reactive IPSs

over proactive IPSs as discussed in Section 2, we focus on reactive IPSs in this chapter.

We develop an experimentally-validated model of reactive IPSs to estimate forward

progress. Taking advantage of the model, we explore the effect of energy storage ca-

pacitance on forward progress with respect to supply current and volatile state size.

The main contributions in this chapter can be summarised as:

e A reactive IPS model which accurately estimates forward progress; experimen-
tal validation based on a TI MSP430FR6989 MCU shows a 0.5% mean absolute

percentage error across a range of current inputs and energy storage capacitance.

e An exploration based on the model, where we analyse the energy storage sizing
effect on forward progress with respect to supply current and volatile state size,

showing up to 65% forward progress improvement.

As discussed in Chapter 1, forward progress denotes the computation beneficial to the

progress of the active application, excluding lost progress due to power failures and



40 Chapter 3.  Effect of Energy Storage Sizing on IPS Performance

Input Parameters

Iharv | Energy harvester current supply
C Energy storage capacitance

Configuration Parameters

Toxe Execution current draw

Lpm | Low-power mode current draw

L Restore current draw

I Save current draw
Leak Leakage current draw

Vi Restore voltage threshold

Vs Save voltage threshold

T; Restore time overhead

Ts Save time overhead

Output Parameter

Xexe | Normalised forward progress

TABLE 3.1: Model parameters of reactive IPS.

state-saving and -restoring operations [44]. The amount of forward progress directly
determines application performance, e.g. program iteration rate or task completion
time. To allow fair comparison, we define normalised forward progress as the ratio of
the effective execution time to the total elapsed time, without being restricted to a specific
workload. In this chapter, the normalised forward progress, denoted as aeye, is used as
the key performance metric of IPSs in the modelling and experiments.

The rest of this chapter is organised as follows. The reactive IPS model is proposed
in Section 3.1. The exploration on the energy storage sizing effect is presented in Sec-
tion 3.3. Section 3.4 validates the proposed model and the energy storage sizing effect.
Finally, Section 3.5 summarises this chapter.

3.1 Reactive IPS Modelling

To facilitate the understanding and exploration of reactive IPSs, we present a model
which outputs the normalised forward progress aeyx.. Parameters of this model are
listed in Table 3.1. The model assumes that all configuration parameters remain con-
stant. We assume that all input and configuration parameters remain constant in this
model derivation, but later provide a dynamic process for cases where parameters
change dynamically.
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FIGURE 3.1: Operating modes of reactive IPSs, and achieved forward progress against
supply current.

For brevity, [;; denotes the usable input current as expressed in Equation 3.1. The effect
of capacitor leakage current, Ijo.y, is discussed at the end of Section 3.1.2.

Iin = Iharv - Ileak (31)

3.1.1 Operating Modes of Reactive IPS

The behaviour of reactive IPSs can be classified into three operating modes depending
on the supply current, as shown in Figure 3.1. These are differentiated by the relation-
ship between input current I, and the system’s current draw in LPM or active modes,

i.e. Lpm and lexe. We define the three modes as:

e Off mode: When [jy < Ipm, the system stays inactive. The supply voltage V.
cannot rise above the restore threshold V; to wake the system and start execution.
The LPM current I, includes the consumption of voltage monitoring circuits

and system idle current.

e On mode: When I, > Iexe, the system executes constantly as the supply voltage
Vee never drops below Vs. V. grows until L, and Ieye are in equilibrium, which
may result from I;, decreasing due to poor impedance matching, or Iexe increas-
ing due to either greater current draw at higher voltage or dissipation through

overvoltage protection circuits.
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o Intermittent mode: When Lpm < fin < Ilexe,s the system executes intermittently
after Voc > V; and before V.. < Vi. V. can rise above V; and the system starts
execution. However, the stored energy is then consumed by the load as [in < Iexe,
causing V. to eventually drop below the save threshold Vs, where the system
saves its state and enters LPM. The system stays in LPM until V. rises to V;
again and then resumes execution. In general, a higher [, leads to more for-
ward progress in this mode, but the exact relationship between I, and forward

progress requires further analysis.

3.1.2 Formulating Forward Progress

Next, we derive formulations to calculate aexe from I, and energy storage capacitance

C. We then explore the effect of capacitor leakage on maximum forward progress.

In the On and Off modes, the normalised forward progress is trivial to find (simply 1
and 0 respectively). In the Intermittent mode, as shown in Figure 3.2, the system goes
through four intervals in turn, i.e. charging, restoring, executing, and saving, with cur-
rent consumption of Lipm I, lexe, and I in each interval respectively. The normalised
forward progress, i.e. effective execution time ratio, is indicated as Texe/ Tcycle, Where
Texe is the time spent on effective execution in one operating cycle and Ty is the

period of operating cycles. Hence, the forward progress given all supply levels is ex-

pressed as:
0 ’ Off(lin < Ilpm)
T .
Nexe = ==, Intermittent (I < Iin < Iexe) (3.2)
Tcycle
1 , On (Iin > Iexe)

In the following analysis, we focus on deriving Texe/ Teycle in the Intermittent mode.
Let Vp,r (post-restore) and Vs (post-save) denote the voltage after restoring and saving
operations. Referring to Table 3.1 and Figure 3.2, V,,; and V)5 can be calculated as:

Tr(Ii - Ir)

Vor = Ve + c (3.3)
To(Iin — I
Vs = Vs + S(CS) (3.4)

With Equation 3.3, the time spent on effective execution Teye in one operating cycle can
be expressed as:
C(Vpr — Vi)
lexe —
C<Vr - Vs) + Tr(Iin - Ir)
exe — i

Texe -
(3.5)
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Analogously, with Equation 3.4, the charging interval can be described as:
C(Vr = Vs)
Tchurge = I L
in lpm (3 6)
_ C(Vr — Vo) — Ts(Lin — Is)
Lin — Ilpm
With Equation 3.5 and Equation 3.6, the period of an operating cycle is:
Tcycle = lcharge + Tr + Texe + Ts
_ C(Ve = Vo) + T (Is — lipm) L GV = Vo) + Tr(fere — 1) (3.7)

Iin - Ilpm Iexe - Ii

Finally, combining Equation 3.3 to Equation 3.7, we obtain normalised forward progress

Kexe 1N the Intermittent mode (Ilpm < Iin < Iexe) as:

x _ Texe
e Tcycle
C(Ve — Vo) + T:(Iin — [
=1 . Iesx)e — If( r)]/ (3:8)
[C(Vr - Vs) + Ts(ls - Ilpm) + C(Vr - Vs) + Tr(Iexe - Ir)]
Iin - Ilpm Iexe - Ii

In the numerator Texe, C(V; — V5) represents the amount of charge in the capacitor
available for restoring and executing. T;(lin — I) represents the charge used by a restore
operation. Iexe — lin is the rate of charge consumption from the energy storage during

execution.
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Also, the ratio of the time overhead on state-saving and -restoring operations to the
total elapsed time T,q9, can be deduced as:

T+ Ts
Tcycle

Trs% —

3.9
C(Vt = Vo) + Ts(Is — Lpm) . C(Ve = Vo) + Ty (Iexe — Ir) (3:9)

= (T} + T.
( ot S)/[ Iin_Ilpm Iexe_li ]

Equation 3.9 can describe the impact of state-saving and -restoring overhead with re-
spect to C and Iip.

To explore the effect of energy storage on forward progress, we need to analyse daeye /dC.
Here, if we assume that [}, remains constant, e keeps increasing and approaches
(lin — Lpm)/ (Iexe — Lipm) when energy storage capacitance C increases. Defining (Iin —
Lpm)/ (Iexe — lipm) @S &exe ideals Xexe = Xexe ideal iS an ideal case, where state-saving and

-restoring overheads are absent.

In an electrolytic capacitor, however, [,k typically increases with C with the following
relationship [108]:
Leak = kCVic (3.10)

where k is a constant normally in a range of 0.01-0.03 A/(FV). Combining Equa-
tion 3.10 with Equation 3.1, dI;,/dC is —kV,., meaning I, decreases linearly as C in-
creases. Thus, when C increases, aexe keeps approaching deye ideal While teye ideal de-
creases. Hence, we believe that there is a capacitance value that leads to the maximum
Aexe cOnsidering e,k increases with C.

3.1.3 Dynamic process

The above model assumes all parameters are constant, which is useful for fast explo-
ration in cases where this can be considered to approximately hold true (this is used
for the analysis of principal sizing effects presented in Section 3.3). For dynamically-
varying parameters (e.g. a dynamic harvesting profile), we also implement a dynamic
process, where the supply voltage is calculated with system’s current flows and energy
storage capacitance across small time steps, hence updating system state accurately.

This is used for the exploration of real-world energy conditions in Section 4.2.

3.2 Experimental Methodology

The presented model (Equation 3.8) was utilised to explore the sizing effect of energy
storage. An existing IPS was implemented and profiled to configure the model. With

the configured model, the relationship between forward progress and other system
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FIGURE 3.3: Methodology of Model Exploration and Experimental Validation.

parameters was explored. The modelled results were then validated with the imple-
mented IPS. For reproducing and understanding the method and results, the source
code of the model and the implemented IPS is available onlinel.

The modelling and experimental methodology is shown in Figure 3.3. The initial model
(Equation 3.5) estimates theoretical forward progress as presented in Section 3.1. The
energy storage in the model was configured based on an empirical capacitor leakage
model (with detail presented in Section 3.2.1.1). An IPS based on Hibernus [37] was
implemented and its load parameters were profiled so as to configure the load model
(with detail presented in Section 3.2.1.2). With the configured model, a range of the
energy storage size (C, supply current (Iin), and volatile state size (equivalent to restore
time T, in Hibernus-like IPSs) were swept with a fine granularity and the corresponding
forward progress was generated, so as to investigate their relationship against forward
progress (Texe). Finally, the actual forward progress was measured on the implemented
IPS with a smaller set of C and I, for validation of modelled results.

3.2.1 Model Configuration

The model was configured with an empirical capacitor model and experimentally mea-

sured load characteristics so as to approximate a real IPS platform.

Ihttps://git.soton.ac.uk/energy-driven/energy-storage-sizing
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3.2.1.1 Energy Storage

The energy storage is represented as an ideal capacitor with empirically defined leak-
age current. Its terminal voltage is directly applied to the load, so is modelled as:
av

CT;C = Iharv - Iload - Ileak (311)

where [},,4 is the current consumption of the load. In this exploration, we refer to the
empirical [jep of AVX TAJ low-profile series tantalum capacitors [109], which depends

on capacitance C, rated voltage Viateq, and terminal voltage Vi [108]:
Leax = 0.01AC Viated (A) (3.12)

where A denotes the ratio of the actual current leakage at V.. to the current leakage at

Viated, and A is approximated as:
Vee
A = 0.05 x 20 rated (3.13)

We assume a typical load of < 4.0V so, to minimise leakage, we select a device with
Viated = 10V s0 as to operate between 25-40% of its rated voltage [108].

3.2.1.2 Intermittent Computing Load

We configured the load with experimentally measured current draws and time over-
heads. We only consider computational loads in this study, as handling of peripherals
in intermittent systems is still an ongoing research topic [100, 110].

We implemented and parameterised a reactive IPS [37] on a TI MSP430FR6989-based
development board. The load parameters were profiled with the MCU running a Di-
jkstra path finding algorithm with 1696 B RAM usage at 8 MHz. The supply voltage
monitoring circuits use the MCU'’s internal comparator and an external 3 M() voltage
divider. The restore and save voltage thresholds are set as V; =24V and Vs = 2.1V
respectively. The MCU shutdown voltage Vi is 1.8 V.

The measured current draws and time overheads are listed in Table 3.2. The current
draw was profiled with experimental measurements at a range of supply voltages. The
variation of Ij,, between Vi (1.8 V) and V; (2.4 V) is 2%, and for lexe between Vs (2.1V)
and 3.3V is 1.5%. Iexe also has a run-time variation of 2.8% due to a variable memory
access rate. As these variations of lexe and Ijpp, in their effecting voltage range are minor,
we therefore omit the variations and use the mean of Iex and Lipm in the model. I, and

Is are measured at V; and V; respectively.
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Parameter | Value
Texe 887 nA
Lpm 26 nA

I 971 pA
Is 811 pA
T: 1.903ms
T 1.880 ms

TABLE 3.2: Profiled MCU parameters.

Given the voltage thresholds and the current consumption, the minimum energy stor-
age capacitance is 6.2 pF. This guarantees that a save and restore operation can com-
plete even if the incoming supply current drops instantaneously to zero. Moreover, the
model parameters in Table 3.2 are given as an example, and can be changed for differ-
ent load characteristics. For example, T; and Ts can be tuned for different volatile state

sizes.

3.3 Exploration of Energy Storage Sizing

In this section, we present an exploration of the relationship between aexe and C with

respect to supply current I, and volatile state size.

3.3.1 Impact of Supply Current

Increasing energy storage capacitance beyond the minimum one can improve forward
progress by reducing the frequency of power interruptions, but this improvement may
be offset by increased leakage. Figure 3.4 shows the relationship between forward
progress and energy storage capacitance for a range of constant supply currents. In
this section, we denote the capacitance that leads to the maximum forward progress
Aexe @S Cy_max- Ca_max for each current value is also shown in Figure 3.4.

The minimum capacitance (dashed line in Figure 3.4) is calculated to deliver correct
operation even if the supply current instantaneously drops to zero. If it does not drop
to zero, this means that correct operation could have continued even with a smaller
capacitance given that the current supply keeps providing energy during execution,
though designing a system in this way would be inadvisable owing to unpredictability
of the supply. This property is illustrated in Figure 3.4, in the area on the left of the
dashed line. It may be observed that, for each of the current values, there is a sud-
den drop-off towards zero forward progress. This illustrates the hazard of setting the
capacitance too small: the stored energy is too low to allow a restore and save to be

undertaken. The reason for this step change rather than a continuous change is that the
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FIGURE 3.4: Forward progress against energy storage capacitance at different levels

of constant supply current. Error bars around Cy max denote the impact of typical

+20% capacitance tolerance. The 30-150 uF range is omitted as forward progress in
that range increases monotonically.

implemented IPS only performs one restore operation in the first execution cycle after a
reboot and enters a low-power mode with volatile state retained after a save operation.
Hence the energy used for restoring state is then used for effective execution in the fol-
lowing operating cycles as long as the supply voltage recovers to the restore threshold

without a power interruption.

Typically, commercially-available capacitors have a £20% tolerance. The effect of this
variation on maximum forward progress is shown to be negligible (< 0.23%) in Fig-
ure 3.4. However, it must be pointed out that the effect would be much more pro-
nounced if operating at the minimum capacitance as the variation of forward progress
is larger with smaller capacitance values. Thus, it is recommended that a tolerance is

considered when designing IPSs with minimum capacitance.

Figure 3.5 shows that an improvement in forward progress of up to 65% can be achieved
when using Cy_max instead of the minimum. However, it may not be desirable to set the
capacitance solely for maximising forward progress, because there are often trade-offs
with other factors including increased interruption periods and dimensions (later ex-
plored in Section 4.2.3). In real-world energy source conditions, the supply current
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forward progress improvement.

varies across this spectrum, and hence leads to an overall progress improvement based
on its supply distribution. This improvement exists only when the device operates in
the Intermittent mode, since the device keeps either inactive in the Off mode or active in
the On mode without the need for restoring and saving state. Correspondingly, Cy max
is also plotted against supply current. While a large improvement can be delivered
with Cy max, as shown in Figure 3.5, 95% of this gain can still be obtained with signifi-
cantly smaller capacitances (mean 31% of Cy_max). For example, reducing from 325 pF
to 90 pF gives 95% of the maximum improvement with a 0.5mA supply.

3.3.2 Impact of Volatile State Size

The size of volatile state differs across applications with different amounts of RAM
usage, and hence incurs varying time and energy overheads for restore and save oper-
ations. We measured time overheads of restore and save operations in the minimum
case (64B register data and a 160B stack) and the maximum case (64B register data and
a full 2048B RAM) respectively as shown in Table 3.3. As these time overheads are
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St i
. ate Size Restore Time Save Time
(Registers + SRAM)
64B + 160B (lower bound) 232 ps 208 us
64B + 2048B (upper bound) 2.298 ms 2.274ms

TABLE 3.3: Linear scaling range of volatile state size and restore/save time overheads.
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FIGURE 3.6: Impact of RAM usage (linear to restore/save overheads) on sizing energy
storage with 0.4mA current supply. Improvement and reduction are normalised by
the minimum capacitance case.

expected to be linear to the state size [45], the model can be tuned for various volatile
state sizes by linearly scaling the profiled values.

An example of this is plotted in Figure 3.6. The forward progress improvement by siz-
ing energy storage increases with the volatile state size, and Cy_max grows accordingly.
The improvement becomes insignificant when the volatile state size is small because
the restore and save overheads are already negligible. For example, when the workload
uses the least volatile state (the leftmost point), the maximum progress improvement is
only 3.6% although the restore and save overheads are reduced by 93%.

Where the size of the volatile state may vary at run time, a different capacitor size
within the range 108-355 uF may have been recommended (Figure 3.6). However, as
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can be seen from Figure 3.4, there is a minimal difference in forward progress across this
range. In the worst case, a 2.7% reduction results from setting Cy max for the minimum

state size, while running with the largest state size.

3.4 Experimental Validation

This section compares experimental forward progress with the modelled one to vali-
date the proposed reactive IPS model and the presented energy storage sizing effects.

3.4.1 Experiment Setup

We validated our model on the IPS system that we parameterised for exploration (Sec-
tion 3.3), so its IPS method, voltage thresholds, current draws, and workload are as
mentioned. The on-board decoupling capacitance was measured as 10.0 uF, and hence
was the minimum capacitance that could be tested. Further capacitance was added
to provide extra energy storage up to a maximum of 43 uF, as forward progress with
this capacitance can approximate &eye ideal (@n upper bound), which is linear to supply

current [;,, when Lipm < Iin < lexe (mentioned in Section 3.1.2).

In practical IPSs, the effective execution time ratio (the metric of forward progress in
this chapter) that contributes to the effective output is not easy to differentiate from
the execution time that is wasted. Therefore, in the experiment, the task completion
rate, i.e. the number of tasks completed per second, was measured because it directly
reflects forward progress and closely relates to the effective execution time ratio. A
task completion was indicated by a positive output pulse from the MCU at the end of
a task. The task completion rate was then obtained by giving an observation window
in the oscilloscope that covers a number of output pulses and measuring the frequency
of these pulses. The task complete rate in the Intermittent mode was divided by the one
in the On mode to obtain the experimental normalised forward progress.

3.4.2 Model Validation

To validate the accuracy of our model, we powered the device with a range of sup-
ply currents (0-0.9mA) to operate the device in Intermittent mode, and repeated the
tests with three energy storage capacities: a) 10.0 uF decoupling capacitance; b) 21.5 uF
(11.5pF added); c) 43.0 uF (33.0 pF added). We compared the actual forward progress
against predictions generated from our model. As shown in Figure 3.7, the model-
generated forward progress matches closely with the experimental results with only
0.5% mean absolute percentage error across all the results. Hence, the proposed model

is able to accurately estimate forward progress for design exploration.
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3.4.3 Validation of Sizing Effects

As shown with modelled and experimental results in Figure 3.8, the efficiently-sized
energy storage capacitance (43 uF) improves forward progress by up to 55% and 30%
compared against using the minimum and decoupling capacitance respectively. We
notice that this improvement becomes significant when the supply current attenuates
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because the save and restore overheads consume a larger proportion of the available
energy. Also, the efficiently-sized capacitor achieves at least 90% of the ideal forward
progress across the tested supply currents. The ideal case only switches between LPM
and execution, without restoring and saving overheads (explained in Section 3.1.2).
These results illustrate the importance of this technique, in particular for conditions
where the supply current is low.

3.5 Summary

While conventional IPSs have used minimal levels of capacitance, this chapter explored
the energy storage sizing effect on IPS’s forward progress. A model of reactive IPSs was
proposed to facilitate the understanding and design exploration of IPSs, explaining a
mathematical relationship between forward progress and system parameters, e.g. en-
ergy storage capacitance and supply current. We then configured the proposed model
with an experimentally-profiled IPS platform, and utilised it to explore the energy stor-
age sizing effect. The exploration results showed that sizing energy storage can im-
prove forward progress by up to 65%. We also found that this improvement becomes
significant when the supply current attenuates, which implies the importance of sizing
energy storage in energy harvesting conditions where the supply current is low. The
model was experimentally validated across a range of supply current and energy stor-
age capacitance, showing a mean absolute percentage error of 0.5%. We conclude that
adding a relatively small amount of energy storage can significantly improve forward

progress.

The proposed model has demonstrated its potential for design exploration of IPSs. In
the next chapter, we will incorporate the model in a simulation framework that recom-

mends an appropriate energy storage size in real-world energy conditions.
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Chapter 4

Energy Storage Sizing Approach for
Deploying IPSs

Having analysed the sizing effect of energy storage on IPS performance, this chapter
focusses on the energy storage sizing effect when deploying IPSs under real-world en-

ergy conditions, and providing an approach that recommends an energy storage size.

As presented in Chapter 3, providing more energy storage than the minimum can im-
prove forward progress. However, it was also revealed in Section 3.3.1 that to obtain
the maximum forward progress improvement with C, max can take 3.2x capacitance
compared to the one that achieves 95% of the maximum improvement. A larger capac-
itor typically occupies more physical space, which may contradict with some IPS ap-
plications that require miniaturised size, e.g. implantable medical devices [111]. Also,
a larger capacitor takes longer to recharge, hence prolonging the period of power in-
terruption and compromising reactivity. A systematic method is in need to decide the
energy storage size for deploying IPSs, considering a trade-off of multiple design fac-

tors.

However, as reviewed in Section 2.4.5, current tools for IPSs are not practical for fast
estimation of forward progress in a long-term deployment, and lack a method of siz-
ing energy storage to improve forward progress while moderating the physical size
and interruption periods. Coarse-grained models cannot react to frequent power inter-
ruptions and accurately estimate forward progress, while fine-grained models become
inefficient when processing long-term data and iterating for multiple system configu-
rations. Hardware emulators, though reliable for repeatable experiments, are limited

by hardware options and also impractical for long-term and iterative tests.

To address the above problem, this chapter presents an approach for sizing energy stor-
age in IPSs, quantifying and trading off forward progress, capacitor volume, and inter-
ruption periods. With the model in Section 3 integrated, the proposed sizing approach



56 Chapter 4. Energy Storage Sizing Approach for Deploying IPSs

is able to fast explore the relationship between the energy storage size and forward
progress with long-term real-world energy conditions. An example cost function is
also provided to trade off multiple design factors so as to recommend an energy stor-

age size. The main contributions in this chapter are as follows:

e A model-based sizing approach that recommends appropriate energy storage ca-

pacitance in IPSs (Section 4.1).

e An evaluation of the impact of sizing in real-world conditions using real energy
availability data (Section 4.2). This includes a cost function-based method for
trading off parameters. In an example, this reduced capacitor volume and in-
terruption periods by 83% and 91% respectively, while sacrificing 7% of forward

progress, compared to solely maximising forward progress.

The associated simulation tool, coded in C, is available open—sourcel.

The remainder of this chapter is organised as follows. Section 4.1 proposes an ap-
proach for sizing energy storage in IPS deployment Section 4.2 configures and demon-
strates the proposed sizing approach with real-world energy source data, with forward
progress, capacitor volume, and interruption periods being estimated and traded off.

Finally, Section 4.3 summarises this chapter.

4.1 Energy Storage Sizing Approach

As mentioned, previous IPS designs typically adopt a minimised capacitor size so as to
minimise device dimensions and interruption periods, but this can also reduce forward

progress. An appropriate capacitor size instead may balance the three factors.

We propose a sizing approach which recommends appropriate energy storage capaci-
tance for an IPS, trading off forward progress against capacitor volume and interrup-
tion periods. We present a system model which accepts real long-term data on environ-
mental energy conditions. The three inputs can be swept for design exploration, but we
focus on energy storage in this chapter. The model outputs forward progress, capacitor
volume, and interruption periods (defined in Section 4.2.2). These are subsequently
traded off in a cost function to obtain the appropriate energy storage capacitance. This

process is summarised Figure 4.1 with details explained as follows.

411 Input

A time trace of representative environmental energy conditions in the intended deploy-
ment location is provided as an input, along with the energy harvester size. For design

Inttps://git.soton.ac.uk/energy-driven/energy-storage-sizing
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FIGURE 4.1: Structure of the proposed system model and sizing approach.

exploration, assuming the energy source is equally distributed in the deployed space,
these can optionally be changed to explore variations and scales of harvested power. A

pre-defined set of energy storage capacitance values are swept through.

4.1.2 System Model

This contains three modules, i.e. Energy Harvester and Conversion Circuits, Energy Stor-
age, and Intermittent Load. The three modules communicate by their voltage and current
flows. The current production L, and consumption Ij,,q are buffered in the energy
storage, which then calculates V. for the load and the harvester output. Due to the
variety in each module, they should be individually specified to represent the target

platform according to the techniques implemented.

e Energy Harvester and Conversion Circuits: The energy harvester module transduces
environmental energy into electricity. The harvested power is typically condi-
tioned to provide a suitable voltage for charging the energy storage and supply-
ing the load efficiently. In IPSs, conversion circuits may simply be a diode to
inhibit backflow of current. The energy harvester and conversion circuits can be

modelled together as a module because they are usually coupled or integrated.
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FIGURE 4.2: System model of a PV-based IPS.

e Energy Storage: Energy storage in IPSs is usually in the form of a pF- to mF-scale
capacitor. It must be sufficient to complete the most energy-expensive atomic
operation, and may be formed only of the decoupling capacitor(s). This also in-
cludes an empirical model relating capacitance to capacitor volume (discussed in
Section 4.2.3).

o Intermittent Load: It includes all the power consumers in an IPS, such as a mi-
crocontroller, sensors, and a radio. This module outputs forward progress and
interruption periods using the model presented in Section 3.1.

4.1.3 Trade-off

The appropriate capacitance is then found through a cost function (an example of
which is presented in Section 4.2.3). This may trade-off forward progress against ca-
pacitor volume and interruption periods.

4.2 Sizing under Real-World Energy Conditions

In this section, we model an IPS with a PV energy harvester to explore the energy stor-
age sizing effect in real-world energy conditions, and demonstrate use of the proposed

sizing approach.

4.2.1 Simulation Configuration

We integrate the validated reactive IPS model into a system model with a PV energy-
harvesting supply as shown in Figure 4.2. The energy storage model and the intermit-

tent load model are as presented in Section 3.3.
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Parameter Value
Open-Circuit Voltage 0.89V/cell
Short-Circuit Current 14.8 mA /cm?

Maximum Power Voltage | 0.65V/cell

Maximum Power Current | 12.1 mA /cm?2

TABLE 4.1: PV cell properties under a 1000 W/cm?, AM-1.5 light source.

We use a converter-less supply circuit where only a Schottky diode is connected to the
energy harvester output in order to prevent current backflow. The energy source con-
ditions are imported from NREL outdoor solar irradiance data [112] and EnHANTSs
indoor irradiance data [113]. Four sets of light conditions are used to encompass dif-
ferent energy environments. To convert irradiance into harvested power, we adopt a
PV cell model [114] which uses the parameters available in common datasheets, so it
can easily be reconfigured to suit various devices. The output current I, of the PV cell
model can then be described as:

I Vo—Voc
Iy = o hell = (1 2R i ) @
Gref Isc

where V, is the output voltage of the PV cell, G is the ambient irradiance, G, is the
reference irradiance (normally 1000 W/ cm?), and I, Voo, Impp, Vmpp are respectively
short-circuit current, open-circuit voltage, and the current and voltage at the MPP given
the reference irradiance. V,, and G are dynamic at run time, while other parameters in
this model are constant. We refer to Panasonic Amorton glass type solar cells [115] for
PV cell properties as shown in Table 4.1. We set four cells in series (with Vi, = 3.56V) to
match the operating voltage of the MCU (maximum 3.6V), and model energy harvester
sizing by scaling the cell area.

Our simulation tool can perform two simulation processes: (a) sort and process the time
distribution of environmental conditions, and (b) simulate system state chronologically
with a fine-grained time step. Process (a) reduces simulation time significantly, e.g.
from hours to seconds, but ignores the restore operation after a brownout reset, hence
overestimating forward progress, and it overestimates more with smaller capacitance
and lower supply current. In the following results, Figure 4.3 comes from Process (a)
for fast exploration, and Figure 4.5 and Figure 4.7 come from Process (b) for accurate
records of interruption periods.

4.2.2 Exploration with Real-World Energy Source Conditions

In real-world deployments, ambient energy source conditions are dependent on time
and location. The energy harvester and storage need to be sized to achieve the desired

forward progress across the range of expected conditions.
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4221 Sizing the Energy Harvester

For the purposes of this exploration, three levels of baseline mean forward progress
(aexe) are set as 0.1, 0.2, and 0.3. We use the system model to find the PV panel area that
achieves the expected forward progress under the different energy source conditions
with minimum energy storage. We scale the PV panel area to find that which achieves
each baseline aeye. As shown in Figure 4.3, the energy harvester sizes that achieve the
desired aee may span orders of magnitude given different energy source conditions
from mm? for outdoor sources ((c) and (d)) to cm? for indoor sources ((a) and (b)).

4.2.2.2 Sizing the Energy Storage

Having obtained the energy harvester sizes for the baseline forward progress, we then
use the modelling approach to size energy storage. We analyse the sizing effect of
energy storage on forward progress given real-world energy conditions. Figure 4.3
shows a 7.8-43.3% improvement in forward progress by sizing energy storage under
the given real-world energy conditions and baseline energy harvester sizes. It can also
be inferred that optimising energy storage can either improve forward progress for
a given energy harvester size, or reduce the energy harvester size that achieves the
target forward progress. Given higher-power energy sources (e.g. Denver 2018 and
Hawaii 2018 outdoor solar), increasing the harvester size efficiently improves forward
progress with minor dimensional overheads, e.g. tens of mm?; however, given lower-
power sources (e.g. EnNHANTSs Setup A and Setup D indoor light), optimising energy
storage capacitance can save tens of cm? of PV panel area to achieve the same forward

progress.

Also, the progress improvement by sizing energy storage varies accordingly with en-
ergy source conditions. As mentioned in Chapter 3, this improvement stems from the
reduction of restore and save overheads when the supply current is low and the device
work in the Intermittent mode. Thus, the results of EnHANTs Setup A and Setup D
show a higher progress improvement from sizing energy storage than those of Denver
2018 and Hawaii 2018.

The mean forward progress given target aexe = 0.1 is plotted in Figure 4.4, with the 60th
and 90th time percentiles of forward progress. In all the above datasets, the energy
source is absent and the system is off for around 55 % of time, so we plot the percentiles
from the 60th. The mean progress during the energy-available periods is averaged over
the energy-absent periods, so the actual mean forward progress during the energy-

available periods is nearly double the annual mean.
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FIGURE 4.3: Improvement of average forward progress by sizing energy storage given
different PV panel areas under real-world energy source conditions. The model is able
to find the PV panel area required for achieving the target mean forward progress.

4.2.2.3 Interruption Period

Besides forward progress, we also explore how the capacitance can change the inter-
ruption periods. When interrupted by insufficient power supply, an IPS enters an inter-
ruption period where it saves its volatile state, waits for supply voltage to recover, and
restores the state to resume execution, without making any forward progress. Appli-
cations that require frequent sensing may be negatively affected by long interruption
periods. We measure an interruption period as the period between two successive execu-

tion periods, e.g. a consecutive ‘SLR’ period in Figure 3.2 forms an interruption period.
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FIGURE 4.4: Time percentiles of forward progress by sizing energy storage with target

&exe = 0.1 and the corresponding PV panel area listed in Figure 4.3. The percentiles

start from the 60th as the system is off for around 55 % of time due to insufficient
energy source.

We record all the interruption periods during a one-year simulation with 10-50 pF ca-
pacitors, the Denver 2018 dataset, and an 80 mm? PV panel. Figure 4.5 presents the
distribution of all the interruption periods. With increased energy storage, the inter-
ruption period is prolonged. For example, the 90th percentile of interruption periods
increases from 32.2ms at 10 pF to 123.4ms at 50 uF at an approximate rate of 23 ms
per 10 pF. Facilitated by the simulator, developers are enabled to estimate whether the
distribution of interruption periods meet their application requirement.
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FIGURE 4.5: Distribution of interruption periods.
4.2.3 Trading Forward Progress, Dimensions, and Interruption Period

Although increasing energy storage capacitance improves forward progress, larger ca-
pacitance increases both dimensions and interruption periods. We evaluate the over-
heads of increased capacitor dimensions and interruption periods, and then trade them
off against forward progress using a cost function to suggest an optimal capacitance
value.

4.2.3.1 Metric of Dimensions

The overhead of capacitor dimensions is evaluated by characteristics of off-the-shelf
tantalum capacitors. We narrow down the range of sample capacitors within a set of
characteristics: low-profile, 10V rated voltage, and surface-mount package, and select
six series of capacitors?>. The volume and capacitance of these devices are plotted in
Figure 4.6. We use the regression of these data to approximate a capacitance-volume
relationship.

2The series of capacitor considered were: AVX TAJ, AVX TACmicrochip, AVX F92, Vishay 572D, Vishay
591D, and Vishay 592D.
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4.2.3.2 Metric of Interruption Periods

Applications may have various requirements on interruption periods. To demonstrate
the usage of our sizing approach, we consider a designer requests the 90th percentile of
all interruption periods as an example metric of interruption periods, denoted as Tint.
This metric indicates 90% of interruption periods are shorter than Tj,. This metric can
be adapted for particular application requirements.

4.2.3.3 Cost Function

From the previous observations (Figure 3.5) we can see that achieving the optimal
progress improvement costs much more capacitance (mean 3.2x) than to achieve 95%
improvement. A trade-off is necessary to improve forward progress while restricting
the overheads of increased capacitor volume and interruption periods. This involves
a problem of multi-criteria decision making [116], which is outside the scope of this
work. Nevertheless, we provide a cost function in (4.2) as an example to illustrate how
these three factors could be traded-off, but designers are expected to customise a cost
function with parameters of importance to specific application requirements. Note that
the function (4.2) is to be maximised to find the recommended capacitance.

2 2
_ Qexe [ Ucap \" [ Tint
/= ki ( k> > ( ks ) *.2)
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Xexe denotes normalised forward progress, vcap denotes capacitor volume, and Tin; de-
notes application interruption periods as mentioned in Section 4.2.3.2. &exe, Ucap, and
Tint can be generated from the simulation tool given C as an input. ki, kp, and k3 are co-
efficients for normalising each metric, and they are empirically determined according
to applications. In this example, the undesirable parameters are expressed as quadratic
and negative terms to give an increasing cost to higher values. While only three param-
eters are considered here, others (such as the energy harvester size) could be included
for a system-wise sizing scenario. As an example to demonstrate its usage, we arbitrar-

ily configure the function by setting k; = 0.2, k, = 200 mm?, and k3 = 500 ms.

4.2.3.4 Results

The effect of the trade-off is plotted in Figure 4.7 using the Denver 2018 energy source
dataset. Compared to the capacitor size that solely maximises forward progress, on av-
erage, an appropriately-sized capacitor achieves 93% of the maximum forward progress,
while saving 83% of capacitor volume and 91% of interruption periods. This also
demonstrates the efficacy of the cost function and the chosen coefficients. Compared to
the minimum storage case, the appropriately-sized capacitor improves forward progress
by 12-124% with energy storage increased from 6.2 uF to 30 pF.

As shown in Figure 4.6, the closest available capacitance that satisfies the 6.2 puF mini-
mum capacitance is 6.8 pF, whereas the closest available capacitance to the appropriate
30 pF is 33 pF. The minimum volumes of 6.8 uF and 33 puF capacitors are both 2.75 mm?,
which means using the appropriate capacitance, instead of the minimum one, may not
incur dimensional overhead. The regressed volume of the above two capacitance val-
ues are 8.1 mm? and 23.8 mm? respectively. However, the selection of capacitors can
be dependent on factors other than physical volume, such as reliability, operation tem-
perature, and more specific application needs. These factors can also be added into the

cost function if necessary.

4.3 Summary

This chapter has presented an approach for sizing energy storage when deploying IPSs,
trading off forward progress against capacitor volume and interruption periods. The
work includes a simulation tool which is available to download, enabling researchers
to experiment with energy storage sizes to optimise IPS designs. The approach was
configured and demonstrated with an experimentally-profiled IPS and real-world data
of PV sources, showing up to a 43% annual forward progress gain by sizing energy
storage. A cost function can be incorporated, allowing various properties of the system
to be traded off. The results showed that the suggested energy storage capacitance



66

Chapter 4. Energy Storage Sizing Approach for Deploying IPSs

0.2

aexe

0.1

0.0
120

(0]
o

N
o

3
Veap (MM?)

800

400

Tint (ms)

Max: maximise forward progress only
Appropriate: balanced by the sizing approach
Min: minimum capacitance for atomicity

— — i

—#— Capacitance Max
—w— Capacitance Appropriate
- @ Capacitance Min -

p==t
—_—— =
=2

—&— Forward Progress Max

L. —w Forward Progress Appropriate
f C ® Forward Plrogress Min |
B — - "B
—— Capacitor Volume Max
—w- Capacitor Volume Appropriate |
- @ Capacitor Volume Min |
—-———- ) ¥-——=- b4
®--------- ®--------- ®--------- [ ]

—&— Interruption Period Max ]
—W¥~ Interruption Period Appropriate
- @ Interruption Period Min 7

40 60 80
PV Panel Area (mm?)

FIGURE 4.7: The sizing approach trades off forward progress, capacitor volume, and
interruption periods. The results are plotted against a range of PV panel area, given

Denver 2018 energy source dataset.



4.3. Summary 67

achieves 93% of the maximum forward progress while saving 83% capacitor volume
and 91% interruption periods. Our conclusion is that energy storage should be carefully
designed, rather than minimised or indiscriminately picked, to efficiently operate IPSs.
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Chapter 5

Runtime Energy Profiling and
Adaptation for IPSs

Apart from computational workloads, embedded sensing systems need to utilise pe-
ripherals, such as sensors, computational accelerators, and radios, which typically re-
quire atomicity [117]. In the context of IPSs, an atomic operation should not be check-
pointed during execution; if interrupted by power failures, it should restart rather than
checkpoint and resume. A peripheral operation is considered atomic because it is usu-
ally problematic to checkpoint and restore the operation later, even if the intermedi-
ate peripheral state is also checkpointed. For example, checkpointing during a sensor
reading and resuming it later can cause incorrect results or an infinite wait as the ini-
tialisation is lost, and violate timeliness as the sensor does not render the latest and
consecutive results [40]. As presented in Section 2.4, prior works on intermittent pe-
ripheral operations either customise a design-time calibrated energy budget for each
peripheral operation individually [53], or allocate a universal and large energy budget
that ensure the most energy-hungry operation can finish in one active cycle [40].

However, we argue that manually profiling each peripheral operation and customising
energy thresholds is impractical due to variability in IPSs, where we have considered
the variability in the data amount to process, peripheral configurations, devices, and
energy buffering capacitance (detailed in Section 5.1.1). A fixed threshold can be vi-

olated if any of the above cases happen, and lead to non-termination’

. In practical
deployment, considering the complexity and labour effort, it is unrealistic to profile ev-
ery atomic operation for every device under every runtime scenario at design time and

customise the energy budgets accordingly.

INon-termination happens when the pre-defined energy budget is less than how much the operation
consumes and the supply is not strong enough to fill the energy gap. It is one of the main causes for
failures in intermittent systems.
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On the other hand, using only one high voltage threshold, though probably avoiding
non-termination, can affect system energy efficiency. IPSs typically minimise operating
voltage in order to lower quiescent power consumption from power conversion loss
and system leakage [53]. Also, a high operating voltage can decrease the output cur-
rent of energy harvesters, making it harder to charge up the buffering capacitor [118].
Hence, setting a high wake-up voltage threshold results in a longer charging time than
a linear scale of the voltage threshold, which therefore slows down the system execu-

tion or even leave the system in an infinite wait under poor energy conditions.

As reviewed in Section 2.4.4, existing IPS methods profile the energy consumption of
atomic peripheral operations at design time to determine a voltage threshold or a ca-
pacitor size that avoids non-termination. However, this does not actually guarantee the
completion of every atomic operation because energy consumption can change with
any runtime conditions different to the profiling setup (demonstrated in Section 5.1.1).
Hence, to tolerate dynamic variations, previous IPS designs should usually leave an
inefficiently large margin when allocating energy budgets. If this large margin is not
given, they can cause either non-termination or high overheads of tracking and restor-
ing state, where DEBS fails, Samoyed undo-logs the NVM data, and RESTOP re-issues

peripheral instructions.

To address the above issues, we propose OPTIC?, which profiles energy consumption of
operations at runtime and dynamically adapts energy thresholds based on newly pro-
filed energy consumption and user-defined parameters. A naive approach of runtime
energy profiling can be disconnecting the power supply during profiling and taking
two readings of supply voltage before and after a task [2], but this can waste the energy
harvested during the operation. In contrast, OPTIC’s energy profiling operates with
the energy harvesting supply connected. The profiling strategy is to measure the input
current in the charging cycle so as to estimate the energy budget A Vi, the drop of sup-
ply voltage caused by an operation without any incoming energy meanwhile, which directly
determines the minimum voltage threshold that safely guarantees the completion of an
atomic operation. The runtime profiled energy budget can thus, compared to a design-
time profiled one, closely match with the latest energy consumption. Based on the
profiling results, OPTIC dynamically adapts the threshold for each atomic operation,
with an option of scaling thresholds by user-defined parameters, e.g. a variable data
size. Therefore, OPTIC enables IPSs to allocate a barely sufficient energy budget de-
spite runtime energy variations, and hence mitigates non-termination while achieves

high energy efficiency, eventually improving the workload throughput.

The main contributions of this chapter can be summarised as follows:

20pTIC: Online Energy Profiling and Threshold Adaptation for Intermittent Computers.
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1. An exploration of the runtime variations of energy consumption in IPSs that
compromise existing approaches in comparison with an adaptive thresholding

scheme.

2. A method of runtime energy profiling of tasks for IPSs without disconnecting
supply, showing a high accuracy within 5mV.

3. An adaptive thresholding scheme that, utilising the runtime energy profiling
method, dynamically allocates barely sufficient energy budgets for tasks, with
an optional scaling based on user-defined parameters. The proposed scheme en-
ables a system to survive with 68% less energy buffering capacitance than the
initially allocated amount and presents up to a 98% speedup with variable data
sizes, compared to SOA approaches.

4. Implementation of the proposed runtime energy profiling and threshold adapta-

tion method, with an efficient supply voltage monitor.

The rest of this chapter is organised as follows. Runtime energy variations of workloads
are explored in Section 5.1, with simulated performance of an adaptive thresholding
scheme compared against SOA approaches given the variations. OPTIC’s runtime en-
ergy profiling method and runtime energy adaption routine are proposed in Section 5.2
and Section 5.3 respectively. An implementation of OPTIC is presented in Section 5.4
Experimental evaluation is shown in Section 5.5. Finally, Section 5.6 summarises the

main findings in this chapter.

5.1 Motivation

In this section, we study the variability in IPSs that can violate a predefined fixed
threshold. We then investigate how existing approaches fail or become inefficient un-
der this variability, and explore the potential of an adaptive thresholding scheme.

5.1.1 Variability in Intermittent Systems

Design-time profiling of workloads” energy consumption in the prior work can be po-
tentially violated by the variability of IPSs. To study and demonstrate the variability,
we chose the built-in AES accelerator on the TI MSP430FR5994 MCU as an example pe-
ripheral workload. The example AES function encrypts data in the cypher block chain
mode, and can process up to 4KB data with a 128-, 192-, or 256-bit key length. As men-
tioned, we measured AV, as the energy budget of these tasks. We used Device 1 in
Table 5.2, which has 11.5 puF energy buffering capacitance, for the tests for variable data
sizes and peripheral configurations, whereas in the device variability test we tested
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FIGURE 5.1: AV}, varying linearly with the data size in AES 128-bit encryption.

3 devices. We explored four factors that can possibly change AVi,sk, which are vari-
able data amounts, variable peripheral configurations, devices variability, and capac-
itor degradation and tolerance. Besides the above four, energy consumption can also
change with other factors, such as temperature, clock frequency, and silicon ageing,
but we have found them either insignificant or hard to validate on our experimental

platform.

5.1.1.1 Variable Data Sizes

A peripheral function can accept a runtime variable amount of data, such as a variable
data size to encrypt or different lengths of packets for a radio to transmit. An exam-
ple of this is plotted in Figure 5.1, where the size of the square dots represent a 5mV
precision error of the scope and the lines represent linear regression. We observed that
AViask has a linear relationship with the data size, with an offset energy consumption
that accounts for the initialisation. In this case, the linearly scaled AVi,sx comes from

linearly scaled run time.

5.1.1.2 Variability in Peripheral Configurations

A peripheral can run with variable configurations at runtime, and demonstrate variable
performance and energy consumption. For example, as shown in Table 5.1, an AES
accelerator can encrypt data with 128-, 192-, or 256-bit keys. A longer key provides
higher security, but also takes more time and energy to complete. The dynamic range of
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Configuration | AVi,sx | Run Time
128-bit key 583 mV | 6.479ms
192-bit key 690mV | 7.638ms
256-bit key 736 mV | 8.606 ms

TABLE 5.1: AV, Varying with Configurations in AES 4KB Encryption.

Device No. | AVisk | Run Time
1 583 mV | 6.479ms
2 555mV | 6.444ms
3 535mV | 6.462ms

TABLE 5.2: AVj,sk Varying among Devices in AES 128-bit 4KB Encryption.

configuration variability in this case can be a 26% increase in AV, and a 33% increase

in run time.

5.1.1.3 Device Variability

Devices have their variation in power consumption, even with the same part number.
A threshold profiled on one device can be inadequate on another. We did a test on the
same three development boards, where they run 128-bit AES encryption on 4KB data.
As listed in Table 5.2, the effect of device variability on AV, is up to 9% among the
three devices, though with almost the same run time (0.5% variation). It should also be
noticed that device variability can present across platforms that run the same or similar
code.

5.1.1.4 Capacitor Ageing and Tolerance

As the component for buffering energy in IPSs, capacitors typically present a £10-20%
tolerance on rated capacitance as reported in many commercial capacitors [109, 119-
121]. Capacitors also age over time [122]. It is shown that capacitance can decrease by
7.2% in 3000 hours (125 days) under a 25 °C ambient temperature in experiments [123],
and by 50% within 10 years under 40 °C as manufacturers stated [124]. A degraded
capacitor does not change the load consumption, but can increase AVi,s, and hence
makes the pre-defined voltage threshold unsafe or inefficient.

The above four examples present that the variability in IPSs can potentially make a
predefined AV, insufficient. It is unrealistic to profile the AVj,q in each scenario at
design time in practice considering the complexity of the variations, and still cannot

encompass unexpected situations, necessitating a runtime energy profiling approach.
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FIGURE 5.2: An I-V curve of a glass-type amorphous PV panel (Sanyo AM-1417CA,
35mmx13.9 mm) under a white LED lighting condition.

5.1.2 Performance Improvement with Adaptive Thresholds

Having presented the variability in IPSs, we explore in modelling and simulation the
potential of adaptive thresholds on coping with such variability, as opposed to existing
fixed-threshold approaches, which may fail or run inefficiently under such variability.

5.1.2.1 Power Analysis

As suggested in prior work [53, 118], operating at a lower voltage can improve system
energy efficiency due to a higher charging efficiency and a lower power consumption.

To validate this, we analysed the charging characteristic of a glass-type amorphous PV
panel in an white LED lighting environment. We used the PV panel to charge a capaci-
tor with 103 pF capacitance as measured from 0V to 3.05V, at which point the capacitor
cannot be charged further. The voltage-time charging trace was then differentiated to
gain an I-V curve that represents the PV panel in the model (Figure 5.2). To model this
curve, we performed a linear regression for the data in 0-2.3V, and adapted a pub-
lished PV panel model [114] to represent the curve in 2.3-3.05V. The model function
of this I-V curve is then expressed as:

(—16.25Vi, +276.10) x 10°® , 0V < Vi, <=23V
Iin = Topp . Vin~Vec (A) (5.1)
T ) (1 (1 PRy Et) 23V < Vi <= 3.05V

sC

where we set Iy = 276 pA, Vo =3.05V, Impp =237 pA, and Vinpp = 2.3 V.
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In the MSP430FR5994 platform, we did not observe a significant change in current con-
sumption with supply voltage (only up to 2%). This is predominantly due to an on-
chip LDO that lowers down the external supply voltage to a constant internal supply
voltage, and hence maintains a relatively stable current draw as the external supply
voltage changes. Hence, we omitted the voltage effect on current consumption in this

simulation.

We used the energy and time overheads of AES encryption presented in Section 5.1.1 to
simulate the workload characteristics. In simulation, the current draw remains constant
during one operation, but changes with dynamic data sizes and configurations due to

the variable charge consumption and run time.

5.1.2.2 Runtime Control Models

We modelled an ideal adaptive threshold scheme, named as OPTIC Oracle, against two
State-of-the-Art fixed-threshold schemes, i.e. DEBS [53] and Samoyed [40]. We focussed
on modelling the control logic and threshold settings, and omitted the state manage-

ment overhead as it can be dependent on the actual implementation.

In OPTIC Oracle, the system knows exactly how much energy is needed for the next
operation and sets the lowest threshold that suffices the energy budget.

DEBS sets a minimum threshold for a fixed operation. We explored two cases of DEBS,
labelled as DEBS Low and DEBS High. We firstly modelled DEBS Low, which does not
foresee any possible changes in data sizes and configurations. DEBS Low’s threshold
was profiled with 1KB data and a 128-bit key length without considering any variabil-
ity. We then modelled DEBS High in a case where it foresees the possible dynamic
increase in workload consumption due to variable data sizes and configurations and
sets its threshold based on the most energy-hungry setup, while it does not consider
further capacitor ageing.

Samoyed differs from DEBS and OPTIC Oracle in its control, where, when completing
an operation, it keeps executing until it dies rather than sleeps and waits for the next
threshold. Samoyed suggests allocating an abundant energy budget, so its threshold is
also set to the highest possible operating voltage.

5.1.2.3 Simulation Setup

The above models were implemented as a numeric simulation program in Python. In
simulation, the system has 10 pF system capacitance without charge at the start. The
shutdown threshold is 1.8 V, against which DEBS and OPTIC Oracle set their thresh-
old, with a 10 mV small margin. The system consumes 10 nA when it is inactive. To



76 Chapter 5. Runtime Energy Profiling and Adaptation for IPSs

evaluate the performance of the three schemes, we conducted two tests that simulate a
variable workload and capacitance reduction respectively. The variable workload test
runs a random data amount from 16B to 4080B (1 to 255 blocks of data, 16B per block),
and also a random 128-, 192-, or 256-bit key length, both uniformly distributed. The
energy harvesting characteristics presented in Figure 5.2 are used as the supply for this
test. All the schemes take the same random series of data sizes and configurations. The
capacitance reduction test runs with 0-60% reduced capacitance, in line with the max-
imum possible reduction shown in Section 5.1.1.4. The system in this test is supplied
with a 50 pA constant current and runs only the most energy-hungry operation, in or-
der to examine whether the system can avoid non-termination even under the worst
case. We ran 10 rounds of simulations for each setup, and each round simulates for
10s.

5.1.2.4 Results

Figure 5.3 shows the mean, maximum, and minimum numbers of completed and failed
operations in the variable workload test. DEBS Low cannot terminate once it encoun-
ters an operation that consumes more than what it is profiled for and the supply is
too weak to provide the energy gap. DEBS Low can only occasionally get progress on
lightweight operations before non-termination. Samoyed also suffers performance loss
from waiting for a high energy threshold (2.9 V in this case), and failing an operation at
the end of an active cycle. DEBS High is relatively efficient because it does not usually
fail due to a sufficient energy budget and a sleep-after-completion control. OPTIC Ora-
cle runs the most efficiently among these four. It runs at reduced operating voltage that
improves system energy efficiency, and also guarantees the completion of every task
by setting a minimised but safe threshold. As an example voltage trace shown in Fig-
ure 5.4, OPTIC Oracle runs with 2.11 V mean voltage, while the ones for Samoyed and
DEBs High are 2.36 V and 2.40 V respectively. Due to the above reasons, OPTIC Oracle
completes more operations over Samoyed by 50% and DEBS High by 15% on average.

Figure 5.5 shows the results of the capacitance reduction test, where we have omitted
DEBS Low as it has already failed in non-termination with original capacitance (so will
still fail with reduced capacitance). With the capacitance decreased, DEBS High also
falls into non-termination like DEBS Low. Samoyed, where its threshold is set to 3.6 V
in this case, can still progress until a 60% reduction of capacitance because its abundant
energy budget can support at least one or a few operations in one active cycle. OPTIC
Oracle still maintains the highest forward progress among these control scheme.

The above exploration presents that using a fixed low threshold can leave the system
in non-termination (e.g. DEBS Low and DEBS High) but allocating an abundant en-
ergy budget compromises system efficiency (DEBS High and Samoyed). An adaptive
threshold can potentially overcome both problems.
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Motivated by the previous examples of variable energy consumption and the benefit
of an adaptive threshold, we propose OPTIC, a new methodology for profiling energy
consumption of tasks at runtime and adapting energy budgets to the variable energy

consumption of tasks.

5.2 OPTIC Runtime Energy Profiling

OPTIC’s runtime energy profiling method efficiently profiles the maximum drop of sup-
ply voltage that a task can cause, i.e. the aforementioned AVi,s. Unlike the previous
disconnecting-supply method, OPTIC’s performs energy profiling with the supply con-
nected, so as to reserve energy input during profiling. When the supply is connected,
AViask cannot be measured simply by two voltage measurements at the beginning and
the end of a task because the supply keeps charging the system during execution. In-
stead, OPTIC analyses the supply current in the charge cycle, and uses it to derive AVi,q
in the discharge cycle.

OPTIC’s runtime energy profiling method assumes an IPS is able to measure the supply
voltage and to record time when asleep and active. Usually, these two functions can be
achieved with efficient on-chip ADCs and timers on common off-the-shelf MCUs, e.g.
MSP430FR series (an example platform used in the IPS literature).
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FIGURE 5.6: Experimental schematic.
5.2.1 A disconnecting-supply approach

Before introducing OPTIC’s energy profiling method, a naive method for runtime en-
ergy profiling is disconnecting the supply and measure the supply voltage at the be-
ginning (V7) and the end (V>) of a task, hence AV, can be calculated as:

AVtask =-W (52)

However, this can waste the energy input during the task execution. The total wasted
charge is:
Qwaste = Iin Tiask (53)

which increases linearly with the current input and the time length of a task.

An example circuit to achieve this method is shown in Figure 5.6. It utilises an N-
channel FET to short-circuit the energy harvesting supply during calibration, with a
pull-down resistor to keep the gate low when MCU is not powered. The supply is
decoupled by a diode to prevent current backflow. The MSP430FR5994 MCU uses its
internal comparator and ADC to monitor and measure a divided supply voltage %VCC.

5.2.2 Principles

To obtain AV, OPTIC’s runtime energy profiling method compensates the voltage
difference before and after an operation by an estimated voltage gain brought by the
supply during the operation. The estimated voltage gain is calculated by measuring the
charging ability in the last charge cycle and scaling it with the duration of the discharge
cycle. Thus, OPTIC takes three voltage readings and two timer readings to perform one

energy profiling.

To focus on the profiling rationale in the following illustration, we temporarily assume

the mean supply current in a charge cycle remains the same in the next discharge cycle,
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FIGURE 5.7: An illustrative supply voltage trace for explaining OPTIC’s runtime en-
ergy profiling method.
Symbol Definition
AViask Maximum voltage decrease of a task
AViharge Voltage increase of a charge cycle
AViischarge Voltage decrease of a discharge cycle
C System energy storage capacitance
I Input current from energy harvester
Lseep System sleep current draw
Tiask System execution current draw during a task
Teharge Time length of a charge cycle
Tiask Time length of a task execution cycle

TABLE 5.3: Definitions of Mathematical Symbols.

both denoted as ;. We will discuss the effect of volatile supply current shortly. We
also omit the overhead of ADC voltage reading here.

We show an illustrative trace of supply voltage across a charge-discharge cycle in Fig-
ure 5.7 with the symbols listed in Table 5.3.

The system charge increase in the charging cycle can be described as

AVchargec - (Ii - Isleep) Tcharge (54)

where [jeep is the current draw of the whole system when it sleeps and waits for energy
refilling, including the current consumption for voltage monitoring, time recording,

and other quiescent or leakage current.
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The system charge reduction in the discharging cycle can be described as

A Vdischargec = (Itask - Iin) Thask (5.5)

where Ii,¢i consists of the current draw of the main workload, voltage monitoring, time

recording, and other quiescent or leakage current.

The actual charge consumption of a task comes from the consumer part in Equation 5.5,
which is
AVtaskC = liask Trask (5.6)

Hence, combining and rearranging Equation 5.4, Equation 5.5, and Equation 5.6, we
can get the expression of AV, as

Ttask Isleep Ttask
Tcharge C

AViask = AVclischarge + AVcharge (57)

AViask is the actual voltage drop that a task can cause, and directly determines the
voltage threshold a system should set for the task to safely complete. In Equation 5.7,
AViharger BVdischarges Ttask, aNd Tenarge are all perceivable values. AViparge and AViischarge
can be measured by three voltage readings at the transition points of charge and dis-
charge cycles. Tiosx and Teharge can be measured with an on-chip timer.

I T, . . 1. . . ..
w is a theoretical profiling error of this approach. If it is negligible or compens-

able, AV,sk can be derived at runtime with all perceivable values.

5.2.3 Minimising and Compensating Theoretical Profiling Error

As the profiling method ignores the last term in Equation 5.7, the profiled value

can be theoretically smaller than the actual one. However, the empirical values of Leep,
Tiask, and C in IPSs indicate that this error is relatively small. The system sleep current
Lsieep is a key property that is to be minimised in IPSs, and can be down to even sub-
pA with modern low power techniques. The system’s energy buffering capacitance
C is typically in the pF level in IPSs. The execution time of a task T, is typically
a few or tens of ms as the energy buffering capacitor cannot afford a long, energy-
hungry task. Hence, M should be typically under 10mV. This is insignificant
compared to the voltage drop of a task (potentially hundreds of mV), and can be easily
or intrinsically compensated by margins in implementation. For example, a voltage
comparator may not have such resolution and precision, and thus may over-provision
a small energy budget that compensate this error. Manually adding a small software
offset to the profiling results can also overcome this error. Therefore, this theoretical

profiling error is insignificant in implementation and can be easily compensated.
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5.2.4 Effect of Volatile Supply Current

The profiling method uses the average current input in the charge cycle as the current
input in the next discharge cycle to derive the actual charge consumption. A charge-
discharge cycle can be typically from tens to hundreds of ms, considering the capacitor
size and the supply power in IPSs. From our practical observation on some types of
energy harvesters (e.g. PV cells), OPTIC’s profiling method performs stably (results
presented in Section 5.5) as the supply current pattern complies with the assumption on
supply current. However, we still anticipate there can be more volatile energy sources

and discuss the consequent effect.

We denote the the mean current in charge and discharge cycles as iy charge and Iin_discharge
respectively. When Iy charge > Iin_discharge, the system over-profiles AV by (Iin,charge —

Iin,discharge) Tiask/ C higher. When [y charge < Lin_discharge, the system under-profiles AViuqx
by (Iin_discharge — lin_charge) Ttask / C lower. While the over-profiled energy budget should

be safe, the under-profiled energy budget could be inadequate, making the following

task failed. An unfortunate case is when the system first under-profiles a task with a
rapidly increasing supply current, and then executes the task again using the newly
profiled budget while no further energy is harvested during the execution. This can
lead to a task failure, where the system needs the existing approaches in IPSs to main-
tain atomic progress, e.g. disabling checkpoints during atomic sections. The over- or

under-profiled results can be corrected when Lin_charge and [in_discharge Match again.

As discussed, it is indicated that OPTIC’s profiling method is suitable for energy sources
that are not liable to change significantly across a charge-discharge cycle. If the energy
source is too volatile to obtain reliable profiling results, a disconnecting-supply profil-
ing method could be adopted as a workaround.

5.3 OPTIC Runtime Energy Adaptation

OPTIC runtime energy adaptation utilises the presented runtime energy profiling to
dynamically adapts the voltage threshold to the latest energy consumption of a task.
The adaptation method assumes the system is able to monitor the supply voltage and
signal the MCU to wake up or sleep when a high or low threshold is hit, and the thresh-
old is configurable by the MCU at runtime. In practice, this voltage monitoring ability
is widely adopted by IPSs in the forms of a voltage comparator [38, 39], an energy
management unit [40, 53], or a periodic ADC polling [45].

The fundamental goal of the runtime energy adaptation is to allocate a barely sufficient
energy budget for each task. Utilising the presented runtime energy profiling method,
OPTIC is able to obtain the latest AV;,q of a task and update its threshold accordingly.
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The voltage threshold Vi, of a barely sufficient energy budget is defined as:
Vih = AViask + Vend (5.8)

where V4 is the target end voltage below which the whole or part of system’s hard-
ware cannot function correctly. Venq can be higher than the MCU shutdown voltage,
e.g. a peripheral that has a higher operating voltage. Besides allocating the lowest
Vin, an ideal adaptation scheme is also expected to have low overheads, run energy

profiling only when necessary, and react to energy variations immediately.

Based on the above aims, we design OPTIC’s runtime adaptation scheme. It consists
of a basic adaptation routine for a fixed workload and an optional linear adaptation
method for workloads that has a linearly-scaled AVi,q with dynamic parameters. OP-
TIC’s runtime energy adaptation is decoupled with the energy profiling method. The
adaptation scheme allows the energy profiling method to be integrated in the routine
but only requires an interface which allows it to trigger an instance of profiling and

return a profiling result.

5.3.1 Adaptation Routine

A flowchart of OPTIC’s adaptation routine is shown in Figure 5.8. The routine operates
at the entry and the exit of a task. Checkpoints are disabled during the atomic task, so
the program rolls back to a point before the task entry if a power interruption happens
between the entry and the exit. The system executes the task body when V.. is above

Vin. If Ve is below Vi, the system sleeps and waits until Vy, is reached.

A non-volatile flag, “failed”, is assigned for each task in order to monitor whether
Vend is met with the current V. The “failed” flag is set when a power interruption
happens in the task body or when V. falls below V4 after the task body finishes. At
the entry of a task, OPTIC checks whether “failed” is set, i.e. whether V4, fails to meet
Vend last time, and increment Vy, if it is set. The increment amount can be dependent on
volatility of energy consumption and the resolution of the adopted voltage monitor. In
practice (Section 5.4), we found that incrementing one unit step of the voltage monitor,
which corresponds to about 30 mV in our implementation, suffices both stability and

reactivity.

Following the failure check, the routine has a control of when to trigger energy profiling
(blue blocks in Figure 5.8), such that energy profiling is not performed every time that
the task is run so as to save the energy and time overheads on unnecessary profiling.
The control logic can be configured as per the requirements of users or applications. We
have exemplified this with a delay counter, where the energy profiling is enabled every
a number of completions. Alternatively, persistent timekeepers [125-127] can also be

used to trigger energy profiling once a period of real time passes.
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FIGURE 5.8: Flowchart of OPTIC’s runtime energy adaptation routine. The blue blocks

represent a configurable control logic to decide when to perform energy profiling. The

dashed purple blocks are only run when the profiling is enabled, and represent OP-
TIC’s energy profiling with the last block updating Vy;, with the new AVi,q.
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If energy profiling is enabled, the dashed purple blocks in Figure 5.8 are performed
in the routine. The particular operations involved can be dependent on the profiling
method, while we have illustrated this in the flowchart with OPTIC’s profiling method.
As explained, OPTIC” energy profiling operates at three points when the charge cy-
cle starts, when the charge cycle ends and the discharge cycle starts, and when the
discharge cycle ends. V4, is then updated after a new AV,,q is profiled following Equa-
tion 5.8. If a charge cycle is not needed, i.e. the energy stored is already sufficient for
the task, the profiling is skipped and performed next time as this contradicts the design
of OPTIC’s profiling method.

5.3.2 Linear Adaptation

The above threshold adaptation is design for workloads that have a fixed amount of
computational work and a determined configuration, the AVi,q variation of which
can change slowly with non-computational factors, e.g. capacitor ageing or temper-
ature variations. For workloads that have runtime changeable parameters that scale
energy consumption significantly, e.g. data sizes and peripheral configurations, the
above adaptation can cost a number of failures before adapting to the new threshold.
While dynamic configurations can be solved with multiple thresholds that switched
by the configuration, data sizes can be fine-grained and can introduce a high memory
overhead considering the number of thresholds needed. Hence, we propose a linear
adaptation method as an option for workloads that have linearly-scaled energy con-

sumption with its parameter.

Thus, a linearly-scaled AV;,qk can be represented as:
AViask = 01x + 6o (5.9)

where x is the parameter that is supposed to scale AVi,q. 01 and 6 are the slope and y-
intercept of the linear relationship between AVi, and x. Hence, Vy, for the task should
be set as:

Vih = 01x + 00 + Vend (5.10)

A straightforward solution to obtain 6; and 6 can be taking a series of profiling results
and calculating the regression function. Though viable, this can introduce relatively

high overheads on sampling and calculation.

To lower the overheads, we adopt an efficient method where energy profiling is per-
formed to update 6; and 6y when x reaches its minimum or maximum values. 6; and

6 can then be calculated with less computation than linear regression. When the task
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is run with a x value other than the minimum or maximum, the energy profiling is dis-
abled and 0y is incremented when necessary, e.g. a x value that causes a higher AV,
than what the equation predicts.

The routine of the linear adaptation method is then similar to the one shown in Fig-
ure 5.8, with modifications on the profiling control and the increment and update of
Vin, where it controls whether to profile based on x, increments 6y, and updates 6; and
0y rather than V.

5.4 Implementation

OPTIC was implemented based on an MSP430FR5994 development board. Its runtime
is implemented as a C library and used with function calls. OPTIC is available open-
source®, along with the simulation program of design exploration, comparisons of run-
time (Samoyed and DEBS), and benchmarks. A picture of OPTIC in experiments is

shown in Figure 5.9.

The system schematic is shown in Figure 5.10. To reduce power consumption, the
system utilises the MCU’s on-chip ADC, timer, and voltage reference to perform en-
ergy profiling, and an external voltage monitor to monitor and control the threshold.
The energy harvester is decoupled from the rest of the system by a diode to prevent
the backflow of current when the harvester’s power output drops off. The harvested
energy is then buffered in a 10 uF capacitor (Cext). Together with 1.5 uF on-board de-
coupling capacitance, the system has an energy buffering capacity of 11.5 puF in total.

The energy profiling is achieved through the on-chip modules. The ADC reads voltage
from a built-in 1/2 V. channel, and thus an external voltage divider is not needed. A
2V voltage reference is used by the ADC to convert the voltage reading, hence provid-
ing a 0—4V reading range. A timer, driven by a 10 kHz low-power clock, records the
charge and discharge cycle for OPTIC’s energy profiling.

5.4.1 External Voltage Monitor

As shown in Figure 5.10, we built an external voltage monitor to control the threshold
that signals the MCU to wake up or sleep. The voltage monitor consists of a 100 k()
129-step digital potentiometer (MCP4131-104) controlled through SPI, a voltage com-
parator (LT6703HVIS5-3) with 400 mV internal reference. Two resistors, 560 k() and
68 k(), were connected with the digital potentiometer to provide a detection range of
1.73-4.28 V, which covers the operating voltage range of the system. A 1MQ pull-
up resistor was added at the comparator’s open-collector output. Hence, the detected

Shttps://github.com/UoS-EEC/optic
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FIGURE 5.9: A picture of OPTIC’s experimental setup based on an MSP430FR5994

development board. The MCU is intermittently powered by a digital power supply

(constant low current source), and can also be powered by a PV panel. The workload
in this picture transmits wireless packets to an always-on receiver.

voltage threshold of V. is:

560 + 100 + 68

Ruiper 4100 + 68

Vin = x 04 (V) (5.11)

where Nyiper is the wiper step of the potentiometer, ranged in 0-128 inclusively. Also,
the profiling result of AVi,q is stored as Nppofiling in a digital ADC-scale format:

N irs
w X Vadcmax (512)

AViask =
fask N, adcmax

where AV, is as defined in Equation 5.8. N,gcmax and V,gcmax are the maximum digital
ADC reading and its corresponding voltage, which are 4095 and 4 V respectively in our
implementation. Combining Equation 5.8, Equation 5.11, and Equation 5.12, we can
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FIGURE 5.10: OPTIC system schematic.

obtain the relationship between Npofiling and Nwiper as:

Nprofili 560 + 100 + 68
—_profiling X Vademax T Vend = N ha + x 0.4 (5.13)

Nademax Ivziger * 100 + 68

where Vg is the target end voltage, which we set at 2V because the energy profil-
ing uses the 2V voltage reference for ADC reading such that the energy profiling can
correctly work above Vpq.

In order to speed up the threshold setting from this non-linear relationship (Equa-
tion 5.13), We generated a look-up table to efficiently convert a profiling result Npofiling
into the corresponding voltage threshold setting Nyiper- To avoid unnecessarily fine-
grained steps, we equally divide Nprofiling by a step of Nstep. We recommend setting
Nitep as a power of 2 for an efficient threshold conversion, and we set Nitep as 32, which
translates to a voltage step of about 31 mV. We traversed Nyiper to find the closest Vi,
for each step of Npofiling, and the look-up table is then formed by the array of Nyiper-
We also shifted the look-up table by one step higher so that the look-up table can inher-
ently round up the threshold. Therefore, the corresponding threshold setting Nyiper of a
profiling result Nprfiling can be found in the look-up table with a computation-efficient

. Norofiling . .
index of == as shown in Equation 5.14.
step

N, profiling )

Nuiper = lookup_table( N,
step

(5.14)
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5.4.2 Software

OPTIC’s software is implemented as a library that accounts for the bootstrap configu-
ration, function interfaces, memory mapping, and state retention. The bootstrap per-
forms necessary system initialisation, such as configuring clocks, GPIOs, essential pe-
ripherals, and loading RAM data. OPTIC’s software interface is implemented as two
function calls at the entry and exit of an atomic task. Each atomic task should be as-
signed with a function ID such that its state is independent from other atomic tasks.
The state of an atomic task consists of a minimum of 2 bytes non-volatile data that
accounts for a failure check and an adaptive threshold, with optional data for a user-
defined control logic (e.g. a delay counter) or linear adaptation. The state retention
mechanism is implemented as a style of reactive intermittent computing as in [36, 37].
The usage of OPTIC’s software is straightforward by assigning an ID to an atomic task
in the library’s header and calling the functions with the ID at the entry and exit of the
atomic task.

5.5 Experimental Evaluation

We experimentally evaluated OPTIC, showing its ability to run with an adaptive mini-
mum threshold that mitigate non-termination and improve energy efficiency. OPTIC’s
runtime energy profiling presents a low and relatively consistent error across different
task scales. We show that, despite with reduced capacitance, OPTIC is able to adapt Vy,
to meet a target end voltage V4 until the highest threshold is reached, while the fixed-
threshold comparison DEBS fails. We also show that OPTIC improves performance over
DEBS and Samoyed with a PV panel supply owning to its reduced operating voltage.

5.5.1 Experimental Setup and Benchmarks

A PV panel (Sanyo AM-1417CA) provided the sole power supply for the system. It is
covered in a black box with a white LED light as the only energy source, producing a
consistent supply characteristic (as shown in Figure 5.2) during the experiments. For
the experiment on capacitance reduction only, we instead use a constant low-current
supply so as to examine whether the system is able to survive with little energy income

during task execution.
Three common peripheral tasks in IoT sensors were used as the benchmarks for evalu-

ation.

e DMA: Data transfer using an on-chip DMA module, frequently used in data log-
ging.
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FIGURE 5.11: Error Distribution of OPTIC’s Runtime Energy Profiling given a PV sup-
ply, compared to the "Naive” disconnecting-supply method.

e AES: AES encryption using an on-chip AES accelerator processing up to 4KB data
at a time for secure communication.

¢ RF: Wireless communication through an external nRF24L.01 radio module, trans-
mitting a payload up to 96B at a time, configured as a 2Mbps air data rate and a
0dBm output power. The radio module is connected through an LDO witha 2V
output voltage to lower the quiescent current consumption, with a 10 pF at the
LDQO’s low side.

5.5.2 Profiling Accuracy

We first measured the profiling accuracy of OPTIC’s runtime energy profiling ability.
A hundred profiling results were obtained for each workload. Manual profiling was
also conducted by disconnecting the power supply during task execution and reading
AViask from an oscilloscope, and used as a reference that we evaluate the profiling re-
sults against. The results are divided in a 5mV step because the resolution of our scope
is 5mV, below which the manual profiled reference is not even accurate.
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As shown in Figure 5.11, the profiling errors are within 5mV and relatively consis-
tent across the three workload with different levels of energy consumption. The error
becomes insignificant with energy-hungry tasks, e.g. 0.7 % with RE. Compared to the
step of voltage thresholds in our implementation (around 30mV), this 5mV error is
acceptable as it can convert to a relatively stable threshold assuming a fixed energy

consumption.

Additionally, the average profiling results are shown to be a slightly higher than the
reference, which seems to contradict the theoretical error that is supposed to make the
profiling undershoot. This is due to a positive error in the MCU’s internal 1/2 V(.
divider from an observation that the Naive approach produced a higher reading. This
also evidences that the theoretical error is insignificant and easily compensated by other

factors.

5.5.3 Reliability with Dynamic Energy Consumption

We evaluated whether OPTIC can adapt to variability in IPSs and keep making forward
progress. We classified the variability in three categories according to the frequency of

these changes:

e Changing once, such as new workloads, devices, and components.

e Changing infrequently, such as capacitor ageing, device ageing, temperature

changes, and configurations that last for a long term.

e Changing frequently, such as variable data sizes and peripheral configurations
that can frequently change.

To reduce similar results, we show one example in each category to illustrate OPTIC’s

adaptation to variability.

5.5.3.1 Changing once

Figure 5.12 shows an example of how OPTIC adapts its threshold to a new workload
and a new device. The system runs an AES-128 encryption on 1KB data repetitively.
The energy adaptation algorithm does not have any knowledge on the energy con-

sumption of the platform or the workload.

The system first waits for the initial profiling threshold, which was set at 2.7V in this
case. Then it performs energy profiling as this was the first time it executes this task.
The next threshold for the task was then adapted to a lower one. In the following exe-
cution, the system was able to maintain the same threshold that guarantees the comple-

tion of the task. The end voltage after completing a task matches closely with the target
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FIGURE 5.12: A voltage trace of OPTIC adapting to a new operation on a new device.

Vend, with a small margin that comes from both the round-up threshold and the energy
harvested during the task execution. Hence, the above example shows OPTIC’s ability
to adapt to a new workload or device, obviating the need for manual energy profiling
for various scenarios, e.g. updating workloads or deploying new devices.

5.5.3.2 Changing infrequently

We then evaluated OPTIC’s adaptation on infrequently or slowly changing AV,,q. We
took capacitor ageing as an example for this category of changes. The capacitor ageing
was emulated with a capacitor bank consisting of 1 pF capacitors. The capacitor bank
replaced the 10 uF Cey in Figure 5.10, and hence the system capacitance could then be
tuned in the range of 1.5-11.7 pF with 1.2-1.5 uF per step as measured.

In this experiment, the initial system capacitance was 11.7 pF, and was reduced step by
step to test the system’s ability against capacitor ageing. We compared OPTIC against
DEBS in terms of whether it may fail. As the target end voltage for OPTIC in this im-
plementation is 2V, we configured the thresholds of DEBS against 2V as well for a
fair comparison, allowing additional energy before the shutdown threshold (1.8V) is
reached. We omitted the results of Samoyed as it assumes an abundant energy budget
and the simulation results in Figure 5.5 indicate it is resilient to reduction of capacitance

though with performance loss.

Figure 5.13 shows whether OPTIC and DEBS can safely complete the tasks with their
threshold settings, along with their start and end voltages. In terms of meeting the
target Vinq, OPTIC is able to increase its threshold to prevent its end voltage drop-
ping below the target V,,q, while DEBS fails to do so with reduced capacitance as its
threshold is fixed. The increase of OPTIC’s threshold has a limit, where we set with the
maximum operating voltage (3.6 V) for DMA and AES, and 3.3V for RF beyond which
the system’s quiescent current draw becomes larger than the supply. OPTIC’s threshold

is increased with reduced capacitance until the upper limit is met, where it signals an
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FIGURE 5.14: Relative Completion Rates of Samoyed, DEBS, and OPTIC with variable
data sizes and a PV supply.

alert. In a practical scenario, the alert could be sent to maintainers and indicate fur-
ther actions needed. Owing to the threshold adaptation, OPTIC can still survive with
much lower capacitance, only failing the RF task with the lowest capacitance (67.5%

reduction).

5.5.3.3 Changing frequently

A task may have runtime variable data sizes and configurations, which frequently
change AVi,gc. While DEBS and Samoyed can set a high threshold that suffices the
most energy-hungry task, OPTIC adapts its threshold to frequently changing AV, so

as to lower operating voltage and increase forward progress.

We demonstrate OPTIC’s linear threshold adaptation on workloads that have variable
data sizes, where AES encrypts 512B to 4KB data with a 256-bit key length, and RF
transmits 16B to 96B data to an always-on receiver. An array of randomised numbers
was generated to switch the data sizes. The average completion rate in a 30 s window
was recorded as a performance metric. As shown in Figure 5.14, OPTIC managed to
make 64% and 98% more progress compared to Samoyed and DEBS respectively on the
AES workload. On the RF workload, the improvement compared to DEBS is 10% while
Samoyed failed because the radio cannot reset to the correct state after a power failure
and draws large current. The improvement of OPTIC comes from a lower threshold
from which the system can harvest more energy and save the time on waiting for un-

necessary energy.
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5.6 Summary

Though previous IPS designs adopt fixed energy thresholds profiled at design time
for atomic tasks, this chapter has shown that this can cause non-termination or reduce
system energy efficiency. We found that the variability in IPSs can significantly change
energy consumption. We presented four examples of such variability, i.e. variable data
sizes, variable peripheral configurations, device variability, and capacitor ageing, all of

which can, at runtime, violate a predefined energy threshold.

To address this issue, we proposed OPTIC, a runtime energy profiling and adaptation
method. We proposed two methods of runtime energy profiling. A disconnecting-
supply method measures the supply voltage difference before and after executing a
task while short-circuiting the supply. While this is straightforward, it wastes the en-
ergy input during the task execution. A connecting-supply method for runtime energy
profiling is also proposed, where it estimates the energy input during the task execution
by measuring the current input before the task and compensating the supply voltage
difference caused by a task. Experimental results has shown the proposed profiling
method has a low error of less than 5mV. This enables IPSs to profile energy consump-
tion of tasks at runtime and alleviates manual profiling efforts in development. We also
proposed a runtime energy adaptation routine that adapts the voltage threshold for a
task utilising the proposed runtime energy profiling, with an option of linearly scaling
the threshold by user-defined parameters.

We implemented OPTIC on a TT MSP430FR5994 MCU, with an external supply voltage
monitor that can be efficiently configured and wake up the MCU when a threshold
is hit. The experimental results showed that OPTIC can reliably adapt its threshold
for a new task on a new device. OPTIC can also adapt to an increased AV,q caused by
increased energy consumption or device ageing, e.g. up to 67.5% capacitance reduction
that emulates an ageing capacitor, while the SoA fails, making IPSs possible to operate
beyond capacitor lifetime. Finally, with variable data sizes or configurations, OPTIC is
able to efficiently set barely sufficient energy thresholds that lowers operating voltage
and improves energy efficiency, thus improving up to 98% progress over the SoA.
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Chapter 6

Conclusions and Future Work

Enabled by energy harvesting and low-power computing techniques, IPSs are expected
to be a promising system paradigm for numerous IoT sensors in the near future, with
forecasts of hundreds of billions being installed [128]. IPSs adapt to the intrinsically
variable and uncontrollable power input of energy harvesters, and thus, circumvent
large volume, environmental impact, and limited lifespan of large energy buffers, i.e.
batteries and supercapacitors, that contradict with the requirements of future IoT sen-

SOTS.

While existing IPS technology has mainly focussed on the computing part, i.e. effi-
ciently and correctly retaining the system state across power interruptions, this thesis
has explored energy budgeting in IPSs. The energy budget in an IPS is represented as
the energy allocated for an active cycle when the load wakes up and executes program.
As the energy budget is determined by the energy storage size and the voltage thresh-
old that wakes up the load, this thesis has conducted the research following the two
aspects, where Chapter 3 and Chapter 4 explored the energy storage sizing effect and
Chapter 5 proposed runtime profiling and adaptation of voltage thresholds.

6.1 Answers to Research Questions

1. What is the effect of sizing the energy storage capacity on IPS performance?

To minimise device dimensions and interruption periods, most IPSs have adopted
only a minimum amount of energy storage. However, as found in Chapter 3,
this can be energy inefficient as the system has to frequently save and restore the
state. Hence, a reactive IPS model was proposed to explore the sizing effect of en-
ergy storage on forward progress. Derived from the pattern of operating cycles
in IPSs, the proposed model can fast and accurately estimates forward progress
given supply current and energy storage capacitance, facilitating exploration and



98

Chapter 6. Conclusions and Future Work

understanding of IPSs. The proposed model was configured with experimentally
profiled parameters on a reactive IPS platform. The model was experimentally
validated with a 0.5% mean error across multiple conditions of supply current
and energy storage capacitance. The energy storage sizing effect was then ex-
plored with respect to supply current and volatile state size, showing a forward
progress improvement of up to 65% compared to using minimised energy stor-
age. The forward progress improvement from sizing energy storage becomes
significant when supply current is low and when volatile state size is large. Ad-
ditionally, the energy storage capacitance that achieves the maximum forward
progress improvement (i.e. Cy max as denoted in Chapter 3) can be 3.2 as large
as the one that gains a 95% improvement. With considerations on volume and
charging time of a large capacitor, this indicates that an energy storage sizing
approach is in need to comprehend multiple design factors in IPSs instead of
maximising forward progress only.

. How may the energy storage of IPSs be sized to trade off multiple design fac-

tors, such as forward progress, device dimensions, interruption periods?

As indicated in Chapter 3, an energy storage sizing approach for recommending
an energy storage size considering multiple design factors when deploying IPSs
was proposed in Chapter 4. Following a modelling and simulation process, the
sizing approach is able to output forward progress, capacitor volume, and inter-
ruption periods given long-term energy source data, energy harvester configura-
tions, and energy storage capacitance. Through iterations with different capaci-
tance values, the sizing approach trades off various properties of the system with
a cost function and recommends an appropriate energy storage size. The sizing
approach was configured and demonstrated with parameters profiled on an IPS
and real-world data of indoor and outdoor PV sources. The results showed up
to a 43% annual forward progress gain by sizing energy storage. Corresponding
to Chapter 3, this improvement is more significant with weaker power input, e.g.
a smaller PV panel size. With an example cost function, the results showed that
the suggested energy storage capacitance achieves 93% of the maximum forward
progress while saving 83% capacitor volume and 91% interruption periods, com-
pared to the one that solely maximises forward progress. Combining the findings
in Chapter 3 and Chapter 4, the conclusion is that energy storage should be care-
fully designed, rather than minimised or indiscriminately picked, to efficiently
operate IPSs.

. How can an IPS run safely and efficiently when executing tasks with runtime-

variable energy consumption?
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While the energy storage size studied, Chapter 5 has focussed on the voltage
thresholds of an energy budget. With the runtime variability of energy consump-
tion, the prior SoA approaches can cause non-termination or reduce system en-
ergy efficiency. The variable energy consumption has been exemplified in four
cases, which are variable data sizes, variable peripheral configurations, device
variability, and capacitor ageing. Motivated by this variability, OPTIC, a runtime
energy profiling and adaptation method, was presented in Chapter 5. OPTIC’s
runtime energy profiling measures AVi,q, the drop of supply voltage caused by
a task without any incoming energy meanwhile, with supply connected to save
the input energy during profiling. To obtain AV, it measures the input cur-
rent before the task and compensates the supply voltage difference of execut-
ing a task by the input current. Utilising the runtime energy profiling method,
OPTIC’s runtime energy adaptation adapts the voltage threshold for a task, ef-
ficiently allocating a barely sufficient threshold according to its runtime energy
consumption. OPTIC’s runtime energy adaptation also provides an option of lin-
early scaling the threshold by user-defined parameters, allowing a fast switch-
ing of thresholds without excessive profiling. OPTIC was implemented on a TI
MSP430FR5994 MCU with an external supply voltage monitor. The experimental
results has shown multiple findings as follows. OPTIC’s runtime energy profiling
has a low error within 5mV, enabling IPSs to perform energy profiling at run-
time and alleviating manual profiling efforts. OPTIC can adapt its threshold for a
new task or on a new device. OPTIC is also able to cope with an increased AVi,qx
from increased energy consumption or capacitor ageing, where it survived with
up to 68% capacitance reduction while the SoA failed, allowing IPSs to operate
beyond capacitor lifetime. Finally, OPTIC efficiently adjusts to a barely sufficient
threshold with variable data sizes, which lowers operating voltage and improves
energy efficiency, thus improving up to 98% progress over the SoA approaches.

6.2 Future Work

While this thesis has presented extensive research work contributed to the energy bud-
geting in IPSs, some interesting research topics can be explored in the future so as to
achieve a more energy-efficient IPS. One interesting research research could be: can
IPSs transform from an MCU-centred system to an EMU-centred system, i.e. powering the
load modules in a controllable and programmable order?

Currently, an off-the-shelf energy management unit (EMU) for energy harvesting ap-
plications, e.g. TI BQ25504 [129], has the major features of boost charging, voltage
detection, and power gating. Due to its features, an EMU can improve the energy ef-
ficiency of an IPS typically with low power input, where energy can be collected from

a very weak supply (e.g. 130mV input voltage) at a low quiescent current draw (e.g.
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FIGURE 6.1: A conceptual architecture of an EMU-centred IPS.

330nA). While energy management makes a significant impact on IPS performance
as illustrated in this thesis, published IPS approaches are implemented on an MCU,
where the MCU may interface with an EMU. To cope with the intermittent power sup-
ply, the MCU manages computing state and stored energy while executing application
software, which deviates from what a processor is initially designed for.

It could be worthwhile to explore a dedicated EMU for IPSs that manages energy and
state with power-gating on load modules. A major benefit of this could be a lower
quiescent current consumption. External peripherals in existing MCU-centred IPSs are
powered together with the MCU as a unified load. This increases the quiescent or sleep
current when the system waits for energy to refill, especially with more peripherals
connected or peripherals with large quiescent current consumption. With an EMU-
centred IPS, each load module is power-gated and only powered when it is due to
work. Thus, the system can work with a lower input current, ensuring the operation
of IPSs in a poor energy condition. Other advantages could include (i) a lower control
overhead as the IPS software could be offloaded to hardware, (ii) each module can
independently work without a processor being active immediately before and after the
operation of a module, and (iii) an integral IPS hardware that saves the area overhead

of external components.

A conceptual architecture of such an EMU-centred IPS is depicted in Figure 6.1. The

central control unit is responsible for the configuration of input power regulation (e.g.
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MPPT), control of which module to power, and the data flow among modules through a
shared NVM. The load modules, such as accelerators, sensors, and wireless transceivers
(TRX), are connected to the EMU through a power gate (PG). The central control unit
opens a corresponding PG when a load module is supposed to work. The load mod-
ules communicate through the shared NVM, where the volatile state and shared data
are saved. The concept could be possibly achieved by incorporating IPS functions (e.g.
state consistency) into existing EMUs. This may reconstruct the hardware architecture
of existing IPSs.

Some potential subdivided research questions related to this topic could be:

1. Is an EMU-centred IPS theoretically more energy-efficient than existing MCU-
centred IPSs considering the energy trade-off, e.g. initialisation overheads of
modules vs. energy savings of power-gating?

2. How could an EMU-centred IPS be implemented?
3. Isit possible to integrate the functions of IPSs into a dedicated chip?

4. How can such a system be programmed so that it can have a configurable control
logic?

5. Is a new programming model necessary for an EMU-centred IPS?
6. How can the system state be retained across multiple modules in a shared NVM?

7. Could an EMU-centred IPS condition the supply voltage for each module such
that modules with different operating voltage levels can cooperate?

6.3 Conclusion

This thesis has presented extensive research work towards the energy budgeting for
efficient operation of IPSs. A reactive IPS model was proposed to reveal the sizing ef-
fect of energy storage on forward progress, emphasizing that adding a small amount of
energy storage beyond the minimum can improve IPS performance. A simulation tool
was provided to estimate forward progress of IPSs given real environmental energy
conditions, allowing an appropriate energy storage to be picked considering multiple
design factors. To safely and efficiently execute atomic tasks, a method of runtime
energy profiling and adaptation was presented, enabling IPSs to adapt the wake-up
voltage threshold to variable energy consumption and future device degradation. All
software related to the research work in this thesis was open-source available, facilitat-

ing reproduction of results and future research.
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To summarise, this thesis has contributed methods of energy budgeting to improve
IPS performance alongside the existing research work on efficient state-retention tech-
niques. Researchers and developers are enabled to observe how the performance of
their IPSs may change with the energy storage size and the supply current without
comprehensive and repetitive experimental measurements. Given environmental en-
ergy data, a recommended energy storage size for deploying an IPS can be obtained
through a simulation process with a customizable cost function that trades off different
design factors, such as total forward progress, physical dimensions, and interruption
periods. With OPTIC, the IPS is able to automatically adjust its voltage threshold to
runtime variable operating conditions, dispelling the need for manual energy profiling

of atomic tasks and improving performance by a just-sufficient dynamic threshold.
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