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Abstract 

The numerical prediction of vortex induced vibrations has been the focus of nu-
merons investigations to date using tools such as computational Huid dynamics. 
In particular, the flow around a circular cylinder has raised much attention as it 
is present in critical engineering problems such as marine cables or risers. Limi-
tations due to the computational cost imposed by the solution of a large number 
of equations have resulted in the study of mostly two-dimensional Sows with only 
a few exceptions. The discrepancies found between experimental data and two-
dimensional numerical simulations suggested that three-dimensional instabilities 
occurred in the wake of the cylinder that affect substantially the characteristics 
of the How. The few three-dimensional numerical solutions available in the liter-
ature confirmed such a hypothesis. 

In the present investigation the effect of the spanwise extension of the solution 
domain on the three-dimensional wake of a circular cylinder is investigated for 
various Reynolds numbers between 40 and 1000. By assessing the minimum span-
wise extension required to predict accurately the flow around a circular cylinder, 
the infinitely long cylinder is reduced to a finite length cylinder, thus making nu-
merical solution an effective way of investigating Rows around circular cylinders. 

Based on the projection method, and using the finite volume discretisation, a 
method is presented to solve the incompressible form of the Navier-Stokes equa-
tions. A parallel algorithm is used to distribute the computations onto several 
cluster nodes, thus enabling large domain to be solved. 

Results are presented for three different spanwise extensions, namely 7r/2D, vrD 
and 27rD. The analysis of the force coefficients obtained for the various Reynolds 
numbers together with a visualisation of the three-dimensionalities in the wake 
of the cylinder allowed for a comparison between the effects of the three spanwise 
extensions. Furthermore, by showing the different modes of vortex shedding 
present in the wake and by analysing the streamwise components of the vorticity, 
it was possible to estimate the spanwise wavelengths at the various Reynolds and 
to demonstrate that a Hnite spanwise extension is suSicient to accurately predict 
the flow past an inflnitely long circular cylinder. 
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Chapter 1 

Introduction 

1.1 Vortex Induced Vibrations 

ybffez-mjuceff or /Zow-m(fuce(f aome-
(ime5 re/erre(f (o, Aag 6eeM (Ae gt̂ 6_;ec( 0/ m^enazue reaearcA /o r mon?/ years, 
^oncon?/, fAe _/irs( eipenmen^g were carried out 6?/ 5'(ro{i/toZ m OM vleofian 
(oMes. 5'(rouAa//ouM<i (Ae o/fAe yleoZmn (o^e was Mo( depeyiden^ OM Âe 
(eMszon, ZeM̂ Â or ma(er%aZ, 6u( ra^Aer on (Ae yilow speed a/id dmme^er onZ?/. B;/ 
reprod?/cm^ (Ae aeoZwM ôme wsm^ resoMa^m^ wzres, Ae oAsenved (Aa( a ŝ McAro-
nzsâ zoM pAenomenoM occurred wAe)% Âe /regwenc?/ 0/ edd?/ sAeffdmp %s ZocA;ed OM̂O 
(Ae Madura/ /reguenc?/ o/(Ae wzre (̂ Zdraî /coiiẑ cA / ,9^ . /zi ^Ae/oZ^owm^para^rapAs, 
a peyiero/ m^roduc^zon (o i/or^ez-mdwced M6ra(zon wzZ/ 6e /o/Zowed 6?/ a 6ne/ 
ret;ieiu 0/ (Ae researcA carried oii(. 

In practical applications such as in the wind or oEshore engineering where slender 
bodies with low structural damping are exposed to unsteady fluid forces, consider-
ation has to be given to the inSuence of the vortex shedding. It is well known that 
vortex induced vibration can occur when the frequency of the vortex shedding 
coincides with a structural frequency (Bearman [4]). Furthermore, the maximum 
amplitude of response is inSuenced by both the damping and the magnitude of 
the mass ratio. One of the major diHerences between flexible structures in the air 
and in the water is that in the later case, the maas ratio is much smaller leading 
to greater Euid/structure interaction. Such greater interaction results in larger 
vortex-induced vibration amplitudes as well as a broader range of Sow over which 
the amplitude of the oscillations are significant and the possible excitation of not 
only the transverse but also the in-line oscillations. This becomes critical in the 
case of marine risers. As the oil held development activities moved into deeper 
waters and areas of stronger ocean currents, the importance of vortex-induced 
vibrations becomes critical at the system design stages (Cook e( aZ. [19]) as it 
can result in serious fatigue failure or interference and clashing. 



Prediction of VIV around cylindrical structures has thus become the centre of 
many research projects over the years. As most of the interesting fluid dynamic 
phenomena are present (Dalton [21]) such as boundary layer and boundary layer 
separation, laminar and turbulent Sow, shear layer and shear layer roll up, vor-
tices and vortex shedding, and unsteady lift and drag, the task of capturing or 
predicting all of these represents a major challenge. In an attempt to categorise 
the VIV research, whether it is for the offshore engineering or other, one could 
consider various stand points (Huse [40]): 

the kind of structure targeted (rigid or flexible pipes installed horizontally 
or vertically). 

the kind of phenomenon of interest (in-line or transverse deformation, 
bending moment, fatigue ...) 

the kind of natural environment condition considered (current, wave, 
forced oscillation) 

the kind of top or bo t tom condition of the riser (fixed, spring support, 
rotation free..) 

the kind of section configuration (circular or rectangular cylinder, arbi-
trary cross section) 

the kind of flow condition (uniform or oscillatory, regular or irregular ...) 

the kind of flow parameters (Reynolds number, Keulegan-Carpenter num-
ber, reduced velocity...) 

These aspects, although still under intense investigations are however well docu-
mented in the literature. Davis aZ. [22] compared rigid and flexible cylinders 
and observed significant difference between the VIV responses although the two 
structures achieved similar Reynolds number, mass ratio and damping ratio. Mil-
iou et al. [60] simulated the effect of flow around curved riser pipes for various 
velocity profiles and flow directions and presented results for the fluid dynamic 
loading and wake structure behind the pipes. Maeda [56] presented in his re-
view of the research on VIV in Japan various work carried out on the influence 
of wave forces acting on circular cylinders, behaviour of long flexible pipes and 
the effect of transverse hydrodynamic forces on towed vibrating cylinders. Ya-
mamoto oZ. [96] carried out numerical analysis of the VIV response of flexible 
risers. Bearman ef a/. [5] studied the in-line response of large scale models while 
Anagnostopoulos et al [3] analysed the phenomenon numerically. Fujana et al. 
[30] showed the similarities between the dynamic behaviour of flexible cantilevers 
and elastically mounted rigid cylinders. Vandiver [85] showed the important role 



of How parameters in VIV response of risers. Other works involve the study of 
multiple risers. Huse [40] raised the increasingly concerning issue of collisions or 
clashing of risers for future deep sea floating production unit. Caly et al. [13] pre-
sented a detailed experimental study of the flow past a pair of cylinders inside by 
side configuration. Mahir g( aZ. [57] [58] conducted experiments on a pair of side 
by side cylinders, comparing the lock-in phenomenon for the single cylinder and 
for the pair of cylinders and focusing on the wake patterns and velocity spectra 
due to the forced oscillations. Laneville oZ. [47] studied the mechanical and 
Suid coupling between two circular cylinders focusing on the relative response 
between the cylinder. Zhou aZ. [105] presented an experimental investigation 
of a the wake interaction for a two and a three side-by-side cylinders configuration. 

1.2 Aims and Objectives 

1.2.1 Aims 

The aim of the present research is to investigate the wake behind a circular 
cylinder and determine the influence of the spanwise extension of the solution 
domain onto the three-dimensional solution of the flow past a circular cylinder. 
Furthermore, the research aims at determining the minimum spanwise extension 
required to obtain accurate prediction of the flow past the cylinder. 

1.2.2 Objectives 

To achieve this aim, several objectives have to be fulfilled that can be summarised 
in three parts, namely the (ooZ its faZWa^zon and the appZzcâ wM. 

The vortex-induced vibrations of marine risers is becoming critical as offshore 
exploration moves into deeper water where stronger ocean currents occur. Fur-
thermore, since the viscous effects in such flows is of significant importance, they 
must be accounted for in the prediction of the Sow. To numerically predict 
vortex-induced vibration, it is thus necessary to solve the Navier-Stokes equa-
tions. In the context of the present research, as no commercial CFD software was 
available, it was deemed necessary to develop a solver. Developing a solver is by 
far not a trivial task as it involves not only the coding of a complex algorithm 
but also the validation of the code. It is thus equally important to present the 
requirements for the solver as well as the validation of the algorithm. 

Tool Development 

It is not intended to present here in detail the algorithm used in the solver but 



rather the various features or capabilities it should possesses. Furthermore, in the 
interest of future developments outside the scope of the current research whose 
focus is on the flows past a Axed circular cylinder, the possibility of investigating 
oscillating cylinders must be taken into account in the method development. 

The development of a three-dimensional Navier-Stokes solver for incompressible 
flows should thus include: 

• curvilinear multi-blocks grid handling to tackle complex geometries. 

• an adequate algorithm for the pressure solver to close the system of 
equation by means of the projection method with a second order accuracy. 

• a suitable turbulence model such as a Large Eddy Simulation model. 

• a fluid/structure interaction method including a force model, a struc-
tural model for rigid bodies subject to spring and damping forces, a 
moving grid capability to tackle the oscillating objects. 

• a message passing model for parallel computation to handle large meshes. 

Tool Validation 

Before being able to carry out the application part, it is necessary to establish 
a set of validation tests. Such a validation consists of carrying out a number of 
benchmark tests and comparing the results obtained with the code with those 
published in the literature. As the majority of results available are for two-
dimensional problems, the validation process will focus on two-dimensional tests 
only. 

Although the Reynolds numbers for practical applications can range from 10^ to 
10® (Vandiver [85]), the transition from two- to three-dimensional flows occurs at 
a much lower Reynolds number between 150 and 300 (Roshko [72]). Furthermore, 
as the Reynolds is increased from 300 to 1000, turbulence starts occurring as the 
disorder in the fine scale three-dimensionalities increases. Two-dimensional sim-
ulations will thus be carried out for flows around a circular cylinder at Reynolds 
number varying from 40 to 1000 and compared with the various results available 
in the literature. Particular attention will be paid to the Strouhal-Reynolds re-
lationship in the two-dimensional regime. 

An oscillating cylinder case will also be undertaken in the two-dimensional caae 
only to assess the capabilities of the method to tackle the Aow past a circular 
cylinder undergoing VIV. 



Three-Dimensional Flow Around Circular Cylinders 

From the two-dimensional results obtained as part of the validation of the method, 
three-dimensional numerical solutions will be carried out by increasing the span-
wise extension of the domain. Various Reynolds numbers in the transition regime 
and in the fully three-dimensional regime will be examined focusing on quantities 
such as the force coefBcients and the Strouhal number. 

The visualisation of the three-dimensional features in the wake of the cylinder in 
the considered range of Reynolds numbers will allow for the different modes of 
vortex shedding to be examined. Particular attention will be paid to the transi-
tion between the two- and three-dimensional wake. 

Such a systematic study will allow for the assessment of the inHuence of the 
spanwise extension of the domain on the solution. It will then be possible to de-
termine, if such is the case, the minimum spanwise extension required to capture 
accurately the three-dimensional Hows around the cylinder. 

1.3 Format 

(feyined (o acAzerW, za mow poagzAZe (o 
m more m/Z 6e a(fop(e(f /or repoff. TAe /oZ-

Zowm^ pamprop/ig m// pro!;z(fe o 6ne/ (feacnp^zon 0/ (Ae (o /oZfow. 

In chapter 2, a review of the current status of the numerical prediction of VIV 
will be carried out leading to a number of key questions that remain unanswered. 

In chapter 3 the numerical methods currently available will be investigated, fo-
cusing on various aspects such as modelling and discretisation, turbulence mod-
els, moving grids and parallel computation. The discussion aims at defining the 
method to be employed in the present work. 

Chapters 4 and 5 focus on the method developed in the context of this research. 
Firstly the mathematical model will be introduced focusing on the governing 
equations for incompressible fiows, the force description, the structural motion 
equation, and finally the moving grid model. The numerical method will then 
be presented, detailing the finite volume discretisation, the boundary conditions 
treatment and the methods for the forces computation and moving grid method. 
Throughout the chapter, a discussion of the implication of a parallel implemen-
tation will be carried out when relevant. 



Chapter 6 will present the validation of the method and its numerical imple-
mentation through a comparison with benchmark test cases for circular cylinder 
found in the literature. 

Chapter 7 will deal with the application of the method to the problem of interest, 
namely the assessment of the three-dimensionality of the How around a circular 
cylinder. The results for solution domains with different spanwise extension will 
be presented together with a visualisation of the wake behind the cylinder and a 
discussion on the key issues. 

Finally, chapter 8 will draw conclusions from the present investigation and extend 
the discussion to possible future areas of investigation to be conducted on the 
subject. 



Chapter 2 

Towards the Three-Dimensional 
Numerical Prediction of Vortex 
Induced Vibration of circular 
Cylinder 

2.1 Overview of Numerical Prediction of Vortex 
Induced Vibration 

Prediction of VIV response has traditionally been carried out using either an 
empirical or a numerical approach. 

Empirical models have been traditionally based on data from oscillatory test with 
short cylinder sections and are almost exclusively based on the assumption that 
VIV will appear as a response at discrete frequency (Larsen [49]). Stochastic 
models (Vandiver [85]) have been used aa well ag discrete frequency models. 

The VIV response of a body can be interpreted as the combination of an excita-
tion and a response to that excitation. Both the excitation force and the response 
of the body to that excitation constitute the complete fluid-structure interaction. 
A full numerical prediction of the VIV response would encompass both aspects. 
However, owing to the complexity of the phenomenon and the computation limi-
tations, the numerical prediction of VIV response has so far been focused on one 
of the two aspects only, i.e. the excitation or the response. Some recent models 
combine both numerical models for response through Rnite element computations 
and empirical data for excitation (Larsen oL [50]). 

The determination of the response to a prescribed excitation, i.e. the structural 
deformation due to the excitation, is generally carried out numerically using 
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methods based on the Hnite element approaches. 

The determination of the excitation, i.e. the determination of the behaviour of the 
Suid around the body, is generally carried out by means of computational Huid 
dynamic (CFD) methods. Such methods include discrete vortex methods and 
methods based on the complete solution of the Navier-Stokes equations (Maeda 
[56]). 

Discrete shed vortex methods are based on the idea raised by Chorin [17] that 
vortex blobs can be generated on the boundary of a body to satisfy the no-slip 
condition. These blobs are then convected and diffused according to the vorticity 
transport equation. One of the major advantages of such a method is the relative 
simplicity of its implementation. Also, being a grid-free method, the computa-
tional elements are automatically concentrated in the regions of most interest. 
However, such a method presents several shortcomings. Two of the most criti-
cal are the inaccurate representation of the velocity Held near the boundaries of 
the body and the exponentially increasing computational cost as the number of 
elements grows with time. Several extensions to the method led to the develop-
ment of better approaches. The Vortex-in-Cell technique (VIC) first introduced 
by Christiansen [18] improves the solution of the pressure by introducing a grid 
around the body and thus gives a better representation of the velocity field near 
the body. Furthermore, it substantially reduces the computational cost. Other 
methods retain the field grid free formulation and improved the solution by using 
boundary integral methods to solve the pressure and a vortex sheet algorithm to 
improve the boundary layer solution and thus the representation of the flow near 
the body (Yeung aZ. [98]). 

Methods based on the solution of the Navier-Stokes equations have been the most 
popular methods to numerically predict the VIV response around circular cylin-
ders. Such methods consist of solving for a set of primitive variables on a mesh 
defined in a domain around the body. For such a solution to produce results of in-
terests, the mesh used must be such that it allows the capture of all phenomenon 
occurring in the flow. This dependency upon the mesh size and quality implies 
that the accurate solution of the Navier-Stokes equations is a computationally 
costly method. Intense investigations into the generation of grids have been car-
ried out to produce better quality meshes using less elements. Methods using 
adaptive meshes have also been developed where the mesh evolves by addition, 
subtraction or motion of the mesh elements while the solution of the flow is being 
carried out. A comprehensive collection of work on numerical grid generation 
and adaption can be found in Thompson et al. [82] . Also, investigations into the 
discretisation methods (flnite difference, finite volumes or flnite elements) used 
to solve the Navier-Stokes equations led to more accurate solutions by means of 
higher order representations of the terms of the equations. 



2.2 Three-Dimensional Numerical Predict ion 

To assess the progress and validity of numerical simulations, it is necessary to 
consider the experimental research on the subject. The study of the How around 
circular cylinders has been the centre of many investigations for over a 100 years 
and it is now common knowledge that the Sow around cylinders can be charac-
terised essentially by two parameters, namely the Reynolds number Re = UD/u 
and the Strouhal number St = fD/U where U is the far stream velocity, D is the 
cylinder diameter, u is the kinematic viscosity of the flow and / is the frequency 
of the shedding of vortices from the cylinder. 

Recent progress in the measurement techniques hag allowed for considerable de-
velopments to be made. In the early 1980's, Bouard e( o/ [8] used Sow visuali-
sation techniques to study the early development of the wake behind a circular 
cylinder for Reynolds numbers ranging from 40 to 10'̂  giving an insight into the 
nature of the vortex shedding behind the circular cylinder. 

The first de6nition of the Sow regimes around a circular cylinder was given by 
Roshko [72] who established a Reynolds-Strouhal numbers relationship as shown 
in figure 2.1. His measurements of the velocity fluctuation, spectra and frequency 
allowed for the identification of a transitional region for 150 < < 300 while 
distinct irregularities could be observed for Ae > 300. 

Williamson [90] provided further evidence of the transition from two-dimensional 
to three-dimensional flows in the Strouhal-Reynolds number relationship. He also 
identified two stages in the transition to three-dimensional flows characterised by 
two discontinuities in the Strouhal-Reynolds number relationship, the first one 
at = 178 and the second for Reynolds numbers between 230 and 260. He 
further associated those discontinuities with a mode change in the shedding of 
vortices in the cylinder wake (Williamson [92]). The first mode, named mode A 
is characterised by the inception of streamwise vortex loops. The primary vor-
tices roll up and deform in a wavy pattern along their length during process of 
shedding to result in the local spanwise formation of vortex loops. The second 
mode, namely mode B, associated with the second discontinuity, is characterised 
by the formation of finer-scale streamwise vortex pairs. 

Reviewing the numerical simulations of vortex shedding, he also noted the very 
good agreement found between three-dimensional direct numerical simulation and 
experimental results and how the numerical solution were capable of capturing 
the two mode changes (Thompson oA [83]). He further commented that the 
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discontinuities observed in the Strouhal-Reynolds number relationship were not 
achieved with two-dimensional numerical solutions aa can be shown in figure 2.2. 

He further described the flow regimes around a circular cylinder in function of 
the Reynolds number as follows: 

< 49 Laminar steady regime 
49 < < 140 — 194 Laminar vortex shedding 

194 < TZe < 260 3-D wake transition regime 
260 < < 1000 Increasing disorder in the 6ne scale 

three-dimensionalities 
1000 < < 200000 Shear layer transition regime 

200000 < < 400000 Asymmetric reattachment regime 
400000 < TZe < 800000 Symmetric reattachment regime 

> 800000 Boundary layer transition regime 

Williamson [91] also reported the importance of the end conditions of the cylinder 
in an experimental set-up and how oblique or parallel modes of vortex shedding 
in the spanwise direction could be produced in the wake of a cylinder. He also 
stated that end conditions could be responsible for the different critical Reynolds 
numbers found in the literature at which transition to three-dimensional wake 
occur. One can thus be expected that for Reynolds number between 140 and 
200, three-dimensional features will start appearing in the wake of the cylinder, 
and transition to three-dimensional wake will start occurring. 

In their study of three-dimensional vortex structures in a cylinder wake, Wu o/ 
[95] used digital particle image velocimetry (DPIV) to measure the instantaneous 
velocity field in the vertical plane in the near wake of a cylinder at Re = 525. 
The measured velocity field was then used to compute accurately the vorticity 
field. No visual evidence of the presence of the two transitional modes presented 
by Williamson were found, but the importance of vortex stretching was shown. 
An interesting comment raised by Wu et al in the observation of the results is 
the remarkable regularity of the vortices in the streamwise and spanwise direc-
tions although some variability appeared due to the distortion of the vortex sheet. 

Numerical simulations of VIV excitation of circular cylinders using the solution 
of the Navier-Stokes equations have been the focus of numerous work in the liter-
ature but essentially restricted to the two-dimensional simulations owing to the 
limitation of the computational resources. Several aspects of the fiuid-structure 
interactions are examined in these works among which the computation of the 
forces acting on the cylinder, the shedding of vortex from the cylinder and the 
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wake of the cylinder. 

For example, Cheer [15] simulated flows around a two dimensional circular cylin-
der at Reynolds numbers between 3000 and 10^ and examined the formation of 
primary and secondary vortex structure behind an impulsively started circular 
cylinder. 

As the computational resources improved over the years, different flow condi-
tions became the focus of researchers. Yeung e( aZ [98] used a modiSed random 
vortex method to study the accelerated flow past a flxed cylinder and compared 
the results with a cylinder accelerating in a static flow, showing that the two 
kinematically identical flows were producing identical results when the uniform 
velocity was attained. They also presented a simulation of an oscillating flow 
past a flxed cylinder and results for an oscillating cylinder in a uniform flow. 

But as the Reynolds numbers of interest for practical flow problems can range 
from 10^ to 10^ (Vandiver [85]), researchers focused their numerical investigations 
on higher Reynolds numbers and started encountering discrepancies between their 
two-dimensional numerical results and the experimental data. 

Kalro et al [42] studied the flows around a three-dimensional circular cylinder in 
a uniform flow and found that the results obtained for the Reynolds number 300 
compared well with the two-dimensional results. Since three-dimensional efl'ects 
appear for Reynolds number of about 190, this indicates that for = 300, lit-
tle three-dimensional features are present. On the other hand, the results they 
obtained for = 800 were clearly different from the two-dimensional ones, indi-
cating that the three-dimensional features were much stronger. They concluded 
that, as the boundary layer is thiner at higher Reynolds number, the velocity 
gradients in the near cylinder region are much larger, thus implying the release 
of stronger vortices. It follows that the amplitude of the force coeflScients in two-
dimensional simulations is larger at = 800 than at .Re — 300. However, this is 
not seen in the three-dimensional computations since the vortices are signiflcantly 
distorted and posses components besides that in the spanwise directions. 

Zhang et al. [101] studied the flow around three-dimensional cylinders at Re = 
100 and = 200 and conflrmed the two-dimensional nature of the flow for 
the Re = 100 case. However, their results for the Re = 200 case clearly show 
the presence of distinct three-dimensional features and emphasised that the flow 
in the wake was becoming three-dimensional before it even becomes turbulent. 
Furthermore, their studies stressed the importance of the proper representation 
of the flow in the wake as it has a noticeable effect on the force coeflicients and 
the Strouhal number. Zhang also commented that as two-dimensional computa-
tions were still cheaper than three-dimensional solutions, if a cautious estimate 
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of the effect of the lack of three-dimensional features could be established, two-
dimensional simulations could still provide a qualitative understanding of the 
flow. 

Breuer [10] further details the differences between the two-dimensioneil and three-
dimensional computations by showing, at = 3900, the striking differences 
in the time-averaged streamlines patterns characterised by the absence, in two-
dimensional results, of a recirculation zone behind the cylinder clearly showing 
in the three-dimensional results. He noted that the two-dimensional field was 
more asymmetrical than the three-dimensional one as the vortices shed from the 
cylinder moved downstream along an axis which is inclined with reference to the 
symmetry line. As a consequence, the drag coefhcient and the base pressure coef-
ficient were much too high in two-dimensional computations. He thus concluded 
that, even for nearly two-dimensional How problems, two-dimensional computa-
tions were useless as three-dimensional structures strongly influenced the near 
wake flow. 

In a later publication on the inEuence of subgrid-scale models for large-eddy sim-
ulations around circular cylinders in three-dimensions, Breuer [11] noted that 
the flow around the circular cylinder was not only a function of the Reynolds 
number, but also, among other factors, it was a function of the cylinder's aspect 
ratio. He thus stressed that the difference between numerical and experimental 
results were apparent and that the most relevant factor to evaluate numerical 
simulations was the spanwise extension of the integration domain often limited 
due to computational resources. 

So far, mostly fixed cylinder cases have been considered, but practical engineering 
problems generally involve the oscillation of such a cylinder v^hether in a free or 
forced mode. The occurrence of the two free and forced oscillation mode can be 
explained in the context of a marine riser. When a marine riser is excited at one 
elevation due to the shedding of vortices, it oscillates at another elevation while 
exposed to the current at this elevation (Lu a/. [55]). The oscillations of the 
cylinder give rise to another commonly used characteristic parameter, namely 
the Keulegan- Carp enter number KC = U/fD where the frequency / describes 
the oscillation frequency. A parameter taking both the Reynolds number and 
the Keulegan-Carpenter number into account can be found in the literature: 

Anagnostopoulos [2] reported in his study of the response of a vortex-excited 
cylinder in a uniform flow that the numerical solution failed to predict the high 
amplitude and low beat oscillations above the lock-in region observed experimen-
tally. He also stressed that the mesh refinement and the formula to compute the 
vorticity on the solid wall boundary signihcantly influenced the accuracy of the 
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results. Such a comment underlines the importance of the representation of the 
8ow in the near cylinder region for the computation of the forces acting on the 
cylinder. 

Lu e( aJ [55] examined the vortex switching phenomenon around a circular cylin-
der in an oscillating flow and found that as the frequency of excitation increased, 
the initially formed concentration of vorticity moved closer to the cylinder until 
a limiting position was reached and then switched abruptly to the opposite side 
of the cylinder. They presented results for both oscillating and non-oscillating 
flow around a cylinder for Reynolds numbers of 185, 500 and 1000. While the 
non-oscillating values of the mean drag coeScient and the Strouhal number for 
.Re = 185 compare rather well with experimental data, they are overpredicted 
for the higher Reynolds number. This confirms the findings of Williamson [92] 
that at Reynolds above 200, the Strouhal number obtained through numerical 
solution is overpredicted (see figure 2.2). 

Sun oZ [80] presented two-dimensional simulation results for oscillating fiows 
around a circular cylinder at ^ = 1035 and 0.4 < A'C < 4.0. The small 
A'C results showed good agreement with experimental data while simulations 
at KC > 2 demonstrated that two-dimensional numerical solutions were inade-
quate to describe an established three-dimensional flow. 

Lu aZ [54] compared the three-dimensional numerical solution of an oscillating 
flow past a circular cylinder for various KC with the experimental results from 
Sarpkaya [73]. Good agreement with the experimental data was found for the 
mean drag coefficient. 

It is interesting to note that, for = 1035, Sarpkaya identifies three regimes of 
the oscillating flow, namely a transition to three-dimensional flow at KC = 1.1, 
a turbulent regime at KC = 1.5 and a separation at KC = 1.9. As /? = 1035 and 
A'C — 1.1 correspond to a Reynolds number of 1138, this suggests that the tran-
sition to a three-dimensional flow occurs at a much higher Re than for the fixed 
cylinder case {Re 190). A possible explanation can be found in [104] where Zhou 
et al studied the numerical solutions of a two-dimensional uniform flow past an 
elastic cylinder and commented that the structural vibration normally enhance 
the spanwise correlation of the wake, thus promoting the two-dimensionality in 
the wake. Their two-dimensional simulation exhibited differences with the exper-
imental data suggesting the presence of three-dimensional features in the wake. 
As a two-dimensional solution assumes a perfect spanwise correlation, the over-
predicted lift coefficient and thus vibration amplitude can be explained. They 
also noted that the streamwise oscillations had a substantial effect on the trans-
verse vibrations and their characteristics. 
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2.3 Summary 

From the above review of the literature on the flow around circular cylinder, sev-
eral conclusions can be drawn and questions raised. 

It is clear that two-dimensional numerical solutions are inadequate to describe 
practical Aow problems as they result in an erroneous representation of the wake 
of the cylinder and cannot reproduce the three-dimensional features occurring 
above Ae 190. Using two-dimensional numerical predictions is thus inadequate 
for practical engineering problems as they can lead to inaccurate force prediction. 

Also, it has been found that three-dimensional simulations were in good agree-
ment with experimental results. However, such simulations are highly dependent 
on the spanwise extension of the domain considered. Furthermore, to accurately 
predict the Sow past the circular cylinder, particular attention has to be paid to 
the representation of the flow field in the near vicinity of the cylinder and in its 
wake. 

An interesting issue concerns the aspect of the wake of the cylinder at low 
Reynolds number. As it has been reported that the vortex pattern waa remark-
ably regular in the spanwise directions and moreover that a spanwise periodicity 
of the flow occurs in the wake, one may wonder, if such a periodicity exists, what 
is its spanwise extension and how is it aflFected by the different flow regimes? 

As far as oscillating cylinders are concerns, it seems that the transition to the 
three-dimensional regime occurs at higher Reynolds numbers. Furthermore, the 
vibrations of the cylinder tend to promote the two-dimensionality of the flow. 
One could think that if the wake of the cylinder was displaying some periodicity 
in the spanwise direction, the transverse and streamwise vibrations could influ-
ence the extent of that periodicity. If such is the caae, how is the periodicity 
affected by the vibrations? 

If a periodicity really occurs in the spanwise direction, the problem of an infinitely 
long cylinder in a flow would be reduced to that of a flow past a finite length 
cylinder, therefore reducing the computational cost substantially. 
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Chapter 3 

Numerical Methods - Background 

3.1 Flow Solver 

5'mce engmeenmp /Zowg (/le #OMer-5'(oA:ea 
ofer (Ae ?/eora mucA Aaa 6eem 5pem^ on (Aezr aoWzoM. (Ae /oZZow-

mp aec^zon, o 6ne/ pregem^ofzoM 0/ (Ae Mi/mencaZ me(Ao(fa /or (Ae soZiî zoM (o (/le 
jVawer- '̂̂ oAea eguo^wna mZZ 6e pzfen. 

TAe m(ere5( 0/ f/ie current tuorA 6em^ oa mcompregg%6/e /Zows, (Ae mcompreaa-
/oTiTi 0/ (Ae eguo(wMg m%ZZ 6e comWered anc( (Ae me^Aoda /o r Âe%r goWzoM 

(f2gcuaae(f. Fur^Aer-more, smce (Aree-dzmengzoMoZ /fowg ore (Ae /oc^/a 0/ (Azg re-
georcA, tAe pnm%(we ?;ono6Ze /orm w/( 6e odop(e(f. 

y4 ^enero/ (fzacugamn OM (Ae numenca/ goZu(%on wzZf /oZZow /ocz/gm^ on 6ô A (Ae 
gpo(m/ ond (emporoZ dzgcre^zao^zon 0/ (Ae eguô zoMg. For awcA p^rpoaeg, (Ae /zMẑ e 
wo/̂ /me mê Aocf m// 6e 6ne^!/ pregeM^ed Gn(f ea;p/2cẑ  oncf zmpZzcẑ  ̂ emporoZ gcAemes 
(fzgcwsaecf. 

3.1.1 Incompressible Navier-Stokes Equat ions 

All fluids are compressible to a greater or lesser degree. By assuming the den-
sity as a constant, the incompressibility condition represent an idealisation of the 
physical behaviour of fluids for certain flow conditions. 

The compressible Navier-Stokes equations can be derived by applying the conser-
vation laws to the extensive properties such as the momentum of a given control 
maas. However, in a fluid, it is generally more convenient to use a control volume 
rather than a control mass. 

The incompressible Navier-Stokes equations can then be derived from the com-
pressible form by simply treating the density as a constant, thus giving: 
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Continuity (Mass conservation): 

Momentum (Momentum conservation): 

(3.1) 

Although the above set of equation seems sufRcient to solve the primitive vari-
ables and p, one can notice the absence of a time derivative for the pressure. 
This is due to the fact that, for incompressible Hows, the pressure waves are 
propagated at infinite speed. Furthermore, this results in the decoupling of the 
continuity equation from the momentum equations. 

The incompressibility condition thus makes the enforcement of the continuity 
constraint particularly difBcult. Over the years numerous methods to solve the 
incompressible Navier-Stokes equations have been derived but they generally fall 
in one of two categories, namely the coupled approaches and the pressure correc-
tion approaches (Tannehill et al. [81]). 

Coupled Approaches: Artificial Compressibility M e t h o d s 

The coupled approach is one of the earliest techniques employed to solve the 
incompressible Navier-Stokes equations. The equations are solved treating the 
dependent variables as simultaneous unknowns. Since there are one less equation 
than the number of unknowns, an artihcial time derivative of the pressure is in-
troduced. This is known as the artificial compressibility method. 

The continuity equation (3.1) is thus replaced by: 

Where f is a pseudo time and (5 is the incompressibility factor. 

The value taken by is somewhat dependent on the problem tackled but values in 

the range 0.1 — 10.0 (Tannehill et al. [81] ) seem to be suitable for most problems. 

Upon convergence of the steady state solution, the pseudo time term vanishes. 

In the case of time-dependent solutions, the solution of a steady-state interme-
diary step must be reached before advancing the physical time. This constitutes 
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one of the major drawback of this method as the sub-iterations required for time-
dependent solution can substantially add to the overall computational cost of the 
solution (Kiris et al. [45]). 

Pressure Correct ion Methods 

An alternative to the use of artiScial compressibility methods consists of using a 
pressure correction method. 

In such methods, the momentum equations are solved in an uncoupled fashion 
using an available estimate of the pressure. The velocity components are thus 
solved without using the continuity constraint. A Poisson equation for the pres-
sure or pressure change is generally used to alter the velocity Aeld so as to satisfy 
the continuity equation. 

There exist a number of pressure correction methods among which the most 
widely used are the projection (fractional step) methods. The projection methods 
were first introduced by Chorin [16]. One of the characteristics of the original 
formulation resides in the omission of the pressure gradients from the momentum 
equations. 

+ (3,4) 

The momentum equations are solved in a first step to obtain a temporary velocity 
held K*. The velocity are then corrected by accounting for the pressure gradient 
and the continuity constraint. 

By considering that: 

, , " + 1 _ qi*n 

' ^ - 0 (3.5) 

And taking the divergence of the momentum equation and applying the continuity 
equation, the following Poisson equation can be obtained: 

\7 . n*^ 
' (3.6) 

At 
The final velocity field is then obtained by projecting the provisional velocity 
field on a divergence-free space using the pressure gradient. 

From equation (3.5): 

(3.7) 
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Several variants of this method have been derived and used successfully over the 
years. Kiris aZ. [45] include the pressure gradients into the momentum equa-
tions, using previously calculated values for the pressure. Such scheme allows for 
higher order solution in time. However, Guermond oZ. [34] showed that differ-
ent interpolation order for the pressure and velocity led to improved convergence 
rate and stability of the solution. Equal interpolation order for both pressure 
and velocity often led to numerical instabilities in the solutions, characterised by 
severe node to node oscillations. Using lower order for the pressure than for the 
velocity avoided those numerical oscillations. 

Other pressure correction methods include the Semi-Implicit Method for Pres-
sure Linked Equation (SIMPLE) family of methods. These methods are based on 
a prediction-correction cycle. The velocities are Arst calculated using a guessed 
pressure Seld. The velocities are then corrected to satisfy the continuity con-
straint. The main difference between this type of method and the projection 
method resides in the formulation of the pressure and velocity corrections. The 
pressure corrections are related to the velocity corrections through approximate 
forms of the momentum equations. Furthermore, only the pressure corrections 
are solved for using a Poisson equation. Such methods have been widely used 
but present the inconvenience of overestimating the pressure corrections to be ap-
plied, thus slowing down the convergence process. Very often, an under-relaxation 
factor is used to attenuate the pressure prediction. 

3.1.2 Spatial Discretisation: the Finite Volume Method 

The selection of a mathematical model constitutes the first part of a numerical 
method. The next step involves the choice of a suitable discretisation method, 
i.e. the method to approximate the differential equations. Many approaches have 
been used but the mainstream ones are the finite difference (FD), the finite vol-
ume (FV) and the finite element (FE) methods. 

Selecting a discretisation method is somehow a matter of taste. In the context 
of the present research, the finite volume method was chosen as it is one of the 
most straight forward method to understand and implement, and it can deal with 
complex geometries. The finite volume method has been widely employed and 
is now textbook material. Detailed description of the method can be found for 
example in Ferziger et al. [29], Versteeg et al. [87] or Tannehill et al. [81]. In the 
next few paragraph, only a brief presentation of the method will be given. 

The finite volume discretisation method uses the integral form of the conservation 
equations. The solution domain is decomposed into a set of contiguous control 
volumes (CV) of arbitrary shapes, and the equations are applied to each CV. 
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Continuity: 

Momentum: 

u • nd5' = 0 (3.8) 
s 

it I + L / / ' ' • + I s (" & + W '•) • 
(3.9) 

Where y is the volume enclosed by the CV and S the surface bounding it. 

The decomposition of the domain is usually carried out adopting either a struc-
tured or an unstructured strategy. In the structured decomposition, the domain 
is simply divided into quadrilateral (in 2D) or hexahedral (3D) elements with a 
straight forward connectivity. In the unstructured approach, the elements can 
be of a completely arbitrary shape usually triangular (2D) or tetrahedral (3D), 
thus facilitating the representation of complex geometries. In contrast with the 
structured decomposition, the unstructured grids do not possess a simple con-
nectivity, thus making the implementation of an unstructured scheme a rather 
complex task. In both cases, to account for the complex geometries present in 
the solution domain, it is preferable to adopt boundary htted grids. Such grids 
can be generated by mapping the physical space (a;, ?/, z) into a computational 
space (^, T], (). The major advantage of such a boundary fitted grid is that the 
grid lines follow the boundary, thus enabling a straight forward implementation 
of the boundary conditions. 

Usually, the variable values are calculated at the centre of each CV, although 
some schemes use the cell vertices. Interpolation is then used to compute the 
face variables in terms of the cell-centred values. By using suitable expressions 
for the surface and volume integrals, one can thus obtain an algebraic equation 
for each CV where the cell-centred variable is expressed in terms of the neigh-
bouring CVs value. 

Approximation of the surface integrals is usually carried out by considering the 
sum of the integrals over the faces of the CV. If (j) is component of a vector in 
the normal direction to the CV face (e.g. WjU • n, pij • n, ... ) , then: 

(̂ d;9 = y / (^d^ (3.10) 
J s 

Thus, in the 2D caae, for a quadrilateral CV as illustrated in figure 3.1: 
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(3.11) 

The integral can then be approximated by the product of the integrand at the 
face centre and the face area, giving: 

(I)qSQ H~ (3.12) 

Since the face values are not readily available, they have to be interpolated from 
the cell-centred values. Linear interpolation is usually employed for that matter 
as it gives a second order accuracy. Other schemes giving the same order of 
accuracy may be used such as the upwind scheme where the value taken is that 
of the CV upstream of the considered CV, or Quadratic Upwind Interpolation 
for Convective Kinematics (QUICK) that makes use of a parabola 6t. 

. o w . 
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, 
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# Grid Mode 

o Cell Centre 

Figure 3.1: Typical Control Volume and its neighbours 

Volume integrals are usually approximated by the product of the cell-centred 
value with the CV volume: 

X ,^dy % 9!,Ay (3.13) 

For CVs lying on the boundaries of the domain, special care must be taken to 
derive the face values as no information is available on the other side of the 
boundary. The boundary conditions are usually enforced by either prescribing 
the values or the gradient at the boundary. This results either in a explicit face 
value or in a face value that can be computed using the interior value and the 
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prescribed gradient. 

Slimming all the approximation, an algebraic equation is obtained for each CV 
where the variable value for that CV is expressed in terms of the neighbouring 
variable values. Gathering all the equation results in a system of linear algebraic 
equations: 

— Q (3 14) 

where A is the coefficient matrix, the vector of variable values at the centre 
of the CVs and Q the vector composed of all the terms not containing unknown 
variable values. 

To solve such a system of equations, although direct methods such as the Gaus-
sian elimination could be used, it is generally found that iterative methods are 
more efBcient. The Successive Over-Relaxation method (SOR), the Conjugate 
Gradient (CG) and its variants (CGS, CGSTAB, GMRES) and the incomplete 
LU decomposition (ILU) are some of the most commonly used methods. 

3.1.3 Temporal Discretisation 

Since most practical problems are time-dependent, one must take into account a 
fourth coordinate direction: time. This implies that the time derivative present 
in the Navier-Stokes equations must also be discretised. Several methods can be 
found in the literature to carry out such a discretisation. 

Considering that the equations can be reduced to the following: 

(3.15) 

where / represent the components other than the time derivative one. 

Then if one knows an initial condition (po, the above equation can be solved 
through time by advancing in time steps. 

Integrating between two instants and (^+1, the following can be obtained: 

^ = ^ /((^,^)d^ (3.16) 

By using an adequate approximation, the integrals can be evaluated. The most 
commonly found approximation methods are the so-called Euler explicit and Eu-
ler implicit methods. 
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The Euler explicit method simply consists of evaluating the right hand side inte-
gral using the initial value of the integrand. Thus: 

= + (3.17) 

On the other hand, the Euler implicit method makes use of the Enal value of the 
integrand, leading to: 

y At (3.18) 

Also, by using a simple average between the initial and Anal values, the so-called 
trapezoid rule method can be define: 

r*' = r+\[nr,tn)+f (</•"+'. w O ] A« {s.W) 

It is interesting to note that appart from the hrst method, all the others require 
the value of 0 at a time other than These methods belong to the implicit 
method class. If the time step A( is small enough, both classes of methods will 
produce good solutions (Ferziger et o/. [29]). However, if A t is larger, explicit 
method become unstable aa smaller time scales cannot be captured. 

Other methods can be used for the approximation of the time derivative such as 
the multipoint methods. One of the most commonly known method is the Adams-
Bashford method where a Lagrangian polynomial is fitted to the derivatives at 
different points in time. The second order accurate version of such a method is 
given by: 

At 
^"+1 =r + Y [3/(<«.•#") - / (3.20) 

The multipoint approach presents the advantage of being rather simple to imple-
ment. However, one has to be carefull when considering the initial conditions as 
no information is available for a previous time step. A simple explicit scheme such 
as the Euler one may be employed in the first few steps to account for this matter. 

The choice of an explicit or an implicit method is dependent upon the problem 
to be tackled and is also usually a trade-off between stability, accuracy and com-
putational cost of the solution. 

Explicit methods have the major disadvantage of presenting severe constraints on 
the time step to be employed, particularly when using very refined grids. How-
ever, they are very simple to implement and require very few calculation. 

In implicit methods, the time steps can be much larger. Thus the desired so-
lution can be obtained in fewer steps. Although implicit methods require much 
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more computation per time step, this can result in an overall shorter computa-
tional time. However, owing to the much larger computation per time step, the 
truncation error due to computer limitation can be much larger than for explicit 
methods. This implies that implicit methods can lead to less accurate solution 
than explicit methods. However, in the case of a time-independent solution where 
the steady state is the desired result the resultant difference is negligible. 

3.1.4 Errors, Stability and Convergence 

As can be seen from the previous discussion, numerical solutions are only approx-
imate solutions. Several approximations are applied that introduce three types 
of errors (Perziger a/. [29]): 

# Modeling errors 

• Discretisation errors 

* Iterative errors also referred to as truncation or round-off errors 

The modeling errors are related to our inability to fully represent the flow through 
mathematical equations. The discretisation errors come from the approximation 
of the differential equation. The iterative or truncation errors are due to the 
computational representation of numbers. The latter are also called round-off 
errors. 

If we define 72. as the real Sow, the analytical solution of the model equation, 
D, the exact solution of the discretised equation and / / , the numerical solution 
of the discretised equation, then the various errors can be described as follows: 

Modeling error: sm = Tl — A 

Discretisation error: ex> = A — V 

Iterative error: 

(3.21) 

These errors can be used to assess the properties of a particular method. The 
stability criterion previously mentioned relates to the iterative or truncation er-
ror. In fact, a method will be stable if tends to zero or at best stays constant 
as the iteration progress. If this error grows, then the solution is unstable. 

Also, the method will be convergent if e%)reduces to zero as the grid spacing and 
time step are decreased. 
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However, convergence often refers to the error reduction in the iterative solution 
(ei). It is thus important to differentiate the convergence of the numerical so-
lution to the exact solution and the iterative convergence. In the latter case, 
the iterative error is used as a criterion to stop the computation. Assessing the 
convergence to the exact solution is not a trivial case and is usually achieved 
by performing grid dependency tests. The solution is carried out on grids, the 
refinement of which is progressively increased, until the solution is not improved 
by further refinement. 

3,2 Turbulence Modelling 
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on/;/ m (erms 0/ reaw/(g proc(wce(i ako m ^erma 0/ comp7/(o(zonaZ 

Most of practical engineering Sows are turbulent and thus possess various proper-
ties such as the highly unsteady nature, the three-dimensionality, the important 
vorticity, the diffusive behaviour or the fluctuation on a broad range of lengths 
and time scales of the flow (Ferziger a/. [29]). It is generally accepted that the 
most common fluids encountered in engineering, air and water, can be described 
by the Navier-Stokes equations. Furthermore, these equations not only describe 
adequately the laminar flows, but also the turbulent flows. Although the numeri-
cal solution of laminar flows does not present any real difficulty, the computation 
of turbulent flows on the other hand can be a real challenge. This is essentially 
due to the non-linearities in the Navier-Stokes equations, giving rise to a broad 
range of spatial and temporal turbulent scales, the larger scales being related 
for the major part to the turbulent diffusion, and the smaller scales, related to 
the turbulent dissipation (Deng et al. [35]). A simulation which is to produce 
meaningful results has to cover suitably both the diffusive and dissipative eEects. 

A complete solution of all the scales using the so-called Direct Numerical Simu-
lation (DNS) would satisfy the requirements. Such a solution, however, requires 
a number of grid points highly dependent upon the Reynolds number and thus 
is currently restricted to simple flows at low Reynolds numbers. A more suit-
able solution consists of simulating the larger scales while modelling the smaller 
ones. One such method, known as the Large Eddy Simulation (LES), reduces 
the Reynolds number restrictions of the DNS by directly simulating the large 
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scales and modelling the small scale by means of subgrid models. A further sim-
pliEcation of the problem of resolving turbulent Hows consists of modelling the 
entire Eow by suitably averaging both the mean and turbulent motions. Such a 
procedure, known as the Reynolds averaging, consists of the solution of the so-
called Reynolds-Averaged Navier-Stokes (RANS) equations for the mean motions 
coupled with a closure scheme to model the turbulent Reynolds stresses (Deng et 
al. [32]). This procedure has been and is still widely used in engineering problems. 

3.2.1 Reynolds-Averaged Navier-Stokes Equa t ions 

The formulation of the RANS equations and the closure schemes have been pre-
sented in textbooks by various authors such as Hirsch [38], Ferziger e( oZ. [29], 
Deng oZ. [32], Versteeg aZ. [87] or Deschamps [25] among others and will 
only be outlined here. 

The Reynolds averaging procedure consists of the decomposition of any How 
variable into a time averaged value and a fluctuation about that value: 

= + (3.22) 

Where: 

1 r 

(x) = ^ (x, () d^ (3.23) 

With the time, and T the averaging interval. 

In the case where the Row is unsteady, a separation of the time scales must be 
assumed, i.e. the averaging time interval T must be at most equal to the time 
scale for the mean How This results in a constraint on the time step used to 
resolve the time-dependent How. In practice, this is rarely achieved. 

Applying the above decomposition to the continuity and momentum equations 
in the case of incompressible flows, gives, in tensor notation: 

— 0 (3.24) 

^ ^ _ 1 ^ ^ ^ ^ (n,) 2 ^ ^ 

(3.26) 

Where the Reynolds stress tensor, is: 

Vn,/ Tu = 
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Since the Auctuations are unknown, the Reynolds stress tensor Tij cannot be 
found explicitely. The above system of equations is thus not closed. Various 
closure schemes have been developed and used over the years, including sim-
ple zero-equation or one-equation systems, or more complex models such as the 
Reynolds Stress Equations (RSE), or two-equations models like the A; — e or the 
k — u models (Wilcox [89], Zheng et al. [103, 102]). 

3.2.2 Large Eddy Simulation Models 

The RANS models as seen above, model all scales of turbulence, and thus make 
it unlikely for such models to represent all turbulent flows due to the complexity 
of turbulence. Furthermore, the time averaging procedure imposes a restriction 
on the time step used to resolve all the time scale of the flow. In turbulent flows, 
the transport of the conserved properties is essentially provided by the large scale 
motions, the small scale motions being far less effective. It appears thus obvious 
that a method that simulates the large eddies more accurately than the small ones 
would provide more sensible results. By filtering out the small scale motions, LES 
simulates exactly the large scales while modelling at the so-called subgrid scales. 
As was shown by Murakami o/ [64], although LES calculations are more CPU 
intensive, they presented better agreement with experimental results than RANS 
models such as RSE or A: — e models. 

The filtering process of the Navier-Stokes equations appears somewhat similar 
to that in the averaging procedure of the RANS. The major difference resides in 
the fact that in the LES method, the filtering procedure is of a spatial nature 
rather than a temporal one. The decomposition of the flow variables separates 
the filtered part, i.e. the part corresponding to the large scale motions, and the 
subgrid part accounting for the smaller scale motions. 

(x, t) = (x, t) 4- (x, t) (3.27) 

Where: 

(^(x,() = ^ j^]^G(x, x') ^(x%()dx' (3.28) 

Where D is the domain and G the filter kernel. The most common definition of 
the filter kernel is the volume filter: 

Gi k - . < ) = ( (3-29) 
(^0 otherwise 

Where is the control volume spacing in the direction 
Giving: 
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Assuming that the SGS turbulence is locally in a state of equilibrium between 
production and dissipation, Smagorinsky [76] derived the follovying expression for 
the eddy viscosity: 

Pt = CgA p | with PI = '\j2Ski Ski (3.38) 

Where A is the filter width, usually taken as an average of the local mesh sizes, 
and Cg is a non-dimensional constant commonly called Smagorinsky constant. 
Theoretically, the Smagorinsky constant is equal to about 0.17, but in practice, 
the optimum values for Cg range from 0.07 to 0.24 depending on the Sow con-
sidered (Deng a/. [35]). 

The inability to represent the variety of phenomena present in turbulent flows 
with a single universal constant led Germano oZ [33] to develop a dynamic sub-
grid scale model where the Smagorinsky constant Cg is calculated dynamically. 
Such a procedure, modifled by Lilly [52], has been presented in the literature 
whether in cartesian or in curvilinear form (Jordan et al. [41], Yang et al. [97]). 
Other variants of the dynamic subgrid-scale model have been developed such as 
the Dynamic Mixed Model (P6neau of. [67]) but its validity still has to be 
shown. 

Another approach to modelling the subgrid-scales, based on statistical turbulence, 
is the structure function model developed by M6tais and Lesieur [59]. In this 
method, the eddy-viscosity is evaluated as follows: 

vt (f. A, )̂ = 0.063AyF2(f , A,() (3.39) 

Where A is the mean mesh size, and Fg is the second order structure function of 
the resolved velocity field for a radius A: 

F2( f , A,^) = (||iZ(x4-r,t) -n(x,t)||^)||r||=A (3.40) 

A further development of the structure function model is the selective structure 
function model that switches off the eddy viscosity when the flow is not suSciently 
three-dimensional. The three-dimensionality of the flow is assessed from the angle 

between the local vorticity vector and the average vorticity vector evaluated 
over the neighboring points. The formulation of the eddy-viscosity is thus as 
follows; 

ut (z. A, t) = O.OQS'yA^Fg (f. A, t) (3.41) 

Where 7 is the selective parameter. Lesieur and Metais recommended a threshold 
value of 20° for the angle /). Rather than using an abrupt on-off switch, a smoothly 
varying function is often used such as; 
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for < 20° 
-y = ,{ e-W/3)' for 20° > > 10° and = |/) - 20| (3.42) 

for /3 > 20° 

Suksangpanomrung aZ [79] compared the structure function model, the selec-
tive structure function model and the Smagorinsky eddy viscosity model for the 
case of separated Sow over a bluff rectangle plate for Reynolds number of 50,000. 
In the case of the selective structure function model, both the mean flow and 
turbulence statistic obtained were in good agreement with experimental data. 
The Smagorinsky model yielded a mean reattachment length in good agreement 
with the experiments but the turbulence statistics and the dynamics of the flow 
were deficient. Both the Smagorinsky model and the structure function models 
delayed the break-up and three-dimensionalisation of the separated shear layer. 

In the particular case of Sow past a cylinder, whether two or three dimensional, 
numerous investigations using LES have been carried out. Lu et al [54] used a 
Smagorinsky Eddy viscosity model and showed the good agreement between LES 
and experimental results for such flow problems. Dalton [21] further emphasised 
the validity of LES for How past cylinder by showing the very accurate predic-
tions of drag, lift and inertia coefficients at Reynolds number of the order of 
10 .̂ Jordan e( oZ [41] investigated the formation and transport of Strouhal vor-
tices in the near wake of circular cylinder and concluded that LES gave accurate 
prediction of the base pressure coeEicient directly behind the cylinder, thus ade-
quately simulating the fundamental Strouhal vortices characteristics. Murakami 

oZ [64] showed how the lock-in phenomena was well reproduced by three-
dimensional LES computations while two-dimensional computations could not 
produce accurate results. However, Bouris a/ [9] showed that two-dimensional 
LES computations should not be dismissed for quasi two-dimensional Sows, the 
only requirements being satisfactory grid refinements. Breuer [10] investigated 
the impact of three dimensionality for LES computations and the discretisation 
schemes, comparing various subgrid-scale models for the flow past circular cylin-
der. High Reynolds numbers simulation around circular cylinder were carried out 
by Breuer [11], that showed that grid refinement did not automatically lead to 
improved results for all quantities. He also reached the conclusion that although 
the dynamic subgrid-scale model gave very satisfying results, its superiority over 
Smagorinsky's eddy viscosity model could not be proven. 

3.3 Force and Structural Motion Description 

/n (Ae og fAe /ZwW (fg/nomzc 
(acAW /los mcreaaed. One 
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wz// 6e pmen /o/Zowecf 67/ a (feacnp(zon 0/ (Ae s(ruc(ura( ?no<ieZ ?/geo( (0 m/cuWe 
(Ae mo(zon. 

3.3.1 Force Description 

By deSnition, the force acting on a body can be expressed as follow: 

F Fp + Fv - - y (pn + S . n) d^ (3.43) 

Where Fp and F^ are the contributions of the pressure force and the viscous force 
respectively, p is the pressure, S the viscous stress tensor, and 5" is the surface 
of the body. 

Another form of the above equation making use of the vorticity w is: 

F = Fp + Fv = — y (pn + iixix u) dS" (3.44) 

Both formulations are widely used. Given the velocity Held, the contribution of 
the viscous force can be determined in a straight forward manner. The accuracy 
will only depend on the resolution of the mesh in the proximity of the object. On 
the other hand, the pressure not being a local variable, i.e. the pressure at a point 
depends on the velocity and vorticity in the whole domain, the determination of 
the contribution of the pressure force can be difficult. 

To overcome the difRculties associated with the determination of the contribution 
of the pressure force, alternative approaches such as the vorticity impulse have 
been sought, eliminating the pressure information. The major inconvenience of 
this method is that the vorticity in the near and far wake contribute equally to 
the hydrodynamic force (Protas e( a/. [70]). Using a control volume approach 
as a starting point, Noca et al [65] modified the approach by considering the 
momentum balance in a finite control volume surrounding the body. However, 
although the method seems advantageous as it does not require any pressure or 
shear stress information, the results do not differ significantly with those obtained 
using the classical pressure-shear stress formulation. 
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3.3.2 S t ruc tura l Motion Description 

Having obtained the hydrodynamic force acting on the object, the resultant mo-
tion of the object must be determined. In the case of the Sow around a circular 
cylinder, as for most objects, it is generally assumed that the system is equivalent 
to a mass-spring-damping system. The equation of dynamic equilibrium for such 
a system can be expressed as: 

rp"y; fj'K 

" a i? + ' ' a + 

Where m is the mass of the cylinder, c is the damping coefBcient, A; is the spring 
stiffness, F is the fluid force acting on the cylinder and x the resultant displace-
ment of the cylinder. 

Using the following non-dimensional parameter: 

x- = ^ ; f = ^ ; C = - ^ ; = Cp = ^ ; m- " 
D' D ' ^ ' UD • ' pU^D • pD^ ' 

(3.46) 
Where a:* is the non-dimensional displacement, is the non-dimensional time, 

is the damping ratio, is the velocity ratio also referred to as the reduced 
velocity, Cp is the force coefRcient and is the mass ratio 
then equation (3.45) is equivalent to: 

Furthermore, if one considers the frequency ratio defined by ^ where 
is the natural frequency of the cylinder and is the vortex-shedding frequency, 
then equation (3.47) can be written as: 

^ + + = ^ (3.48) 

Where St is the Strouhal number defined by: 

The last two description of the dynamic equilibrium of the system are commonly 
found in the literature. Mittal et al [62] used a form similar to that in equation 
(3.48) where the non-dimensionalisation of the displacement is carried out using 
the cylinder radius as opposed to the diameter. The resulting equation of motion 
thus appears different but is strictly equivalent to the ones presented above. The 
only diSerence lies in the expression used for the various ratios such as the mass 
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ratio or the velocity ratio that they deEne as the reduced natural frequency. 

It was found that the flow-induced vibration of a structure is a self-limiting pro-
cess and the amplitude of the vibration could be correlated with a parameter 
known as the Skop-GrifRn parameter (KhalaJt aZ. [43, 44]): 

(m%) (3.50) 

For that reason, Zhou et al [104] used the second formulation (equation (3.48)) 
as it present the advantage of a better control over the frequency ratio /* and 
thus provide a simple mean to achieve a desired S'g. 

For a given mass, damping and frequency ratio, and a given 6"̂ , one can simply 
deduce the Strouhal number. The solution of the equation of dynamic equilibrium 
of the system is then carried out numerically using methods such as the Runge-
Kutta method. 

3.4 Moving Grid Method 
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When attempting to solve numerically the How around an object, much eSFort is 
put into the generation of a mesh representing the domain with a quality enabling 
the accurate capture of the How phenomenon. Mesh generation has been the sub-
ject of intense investigations and has always been a computationally expensive 
process. It seems thus quite clear that if one was to re-generate a complete mesh 
when displacing an object in the solution domain, such a process would increase 
tremendously the overall computational cost of the solution. For such a reason, 
the process of deforming the mesh must not be a complete re-generation, but 
rather a modification of the current mesh. Also, the process must be completely 
independent of the method used to create the initial grid. This defines the con-
cept of the so-called dynamic mesh. 

3.4.1 Algebraic Methods 

Several methods can be considered to carry out such a modification. Schulz 
oZ [75] use a simple algebraic method to deform the mesh based on a distance 
function from the moving objects. To preserve the local quality of the mesh in the 
neighbourhood of the objects, the displacement of the mesh vertices surrounding 
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an object is matched with the displacement of the object itself. The displacement 
of the remaining mesh vertices are then linearly reduced based on the distance 
away from the structure such that the domain boundaries remain unchanged. In 
the case of multiple structures present in the field, the contribution of the motion 
of each structure is taken into account by super-imposing the displacement of the 
vertex according to the motion of each individual structure. 

num. bodies 

vertex — ^ ] (<̂ i) (^'"body)j (3.51) 
i=l 

where Ar is the displacement vector and di is the distance function for the body 
i ,normalised so that it ranges from 0 on the domain boundaries to 1 on the body 
surface. 

An illustration of the motion of a mesh vertex in the presence of two bodies is 
shown in figure 3.2 

Object 
Object 

Figure 3.2: Example of tandem cylinder geometry 

An attractive quality of such a method resides in the fact it preserves the quality 
of the grid in the immediate surrounding of the objects and provides for multiple 
objects configurations. Furthermore, its implementation is straight forward and 
the added computational cost small. However, the overall grid quality cannot be 
guaranteed by such a method. 

3.4.2 I terat ive Me thods - The Linear Spring Analogy 

A popular method for the creation of dynamic meshes that provides a solution 
for the preservation of the quality of the whole grid is the so-called lineal spring 
analogy (LSA) method. The edges of the mesh are assimilated with a network 
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of lineal springs whose stiBFnesses are inversely proportional to the length of the 
supporting edge. The system is thus in equilibrium if for all the mesh vertices: 

num. edges 

^ - 0 (3.52) 
i=l 

Where is the stiSFness of the spring supported by the edge and is the 
expansion of the spring from its resting state. 

i.e.: 

num. edges 

A;i(Af\,ertex " ^ 0 (3.53) 
i = l 

Where Af^grtej; corresponds to the displacement of the vertex considered and Ar^ 
corresponds to the displacement of the other vertex composing the edge i. 

To solve the above system of equations, iterative methods are employed such aa 
the Jacobi or the Successive Over Relaxation (SOR) methods. An immediate 
consequence is that at each time step of the solution, a large number of computa-
tion must be carried out to update the mesh, thus adding substantial time to the 
computation of the solution. However, in the case of small displacements of the 
bodies present in the domain, very few iterations are required to deform the mesh. 

Furthermore, a major advantage of the method lies in the preservation of the 
quality of the mesh. As the stiffness of the springs is inversely proportional to 
the length of the supporting edge, small edges found in region of high level of 
refinement are extremely stiff. Thus very little deformation of these regions oc-
curs. On the other hand, regions where the mesh reRnement is not so important, 
and thus where the mesh edges are not so small, higher deformation occur. An-
other advantage of the method resides in the fact that as two vertices tend to 
get closer, the spring supported by the edge joining these vertices gets stiffer and 
thus prevent them from colliding. However, in the case of larger deformations, 
overlapping of mesh elements may occur, thus making the method inadequate for 
a lot of practical engineering problems. 

The major deficiency of the lineal spring analogy method is that the stiffness of 
the springs do not take into account the mesh elements area or angles, leading 
to possible crossover of mesh elements. To overcome this problem, the notion 
of torsional springs was introduced and is now widely used to generate dynamic 
meshes (Farhat et al. [28], Degand et al. [23]. Further torsional springs are 
attached to each vertex whose stiffnesses are functions of the length of the edges 
connected to the vertex and the area of the grid elements connected at the vertex. 
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This method, although it prevents the crossover of grid lines and preserves the 
overall mesh quality is however rather complex and computationally costly. 

3.4.3 Hybrid Methods - Transfinite In te rpola t ion and Lin-
eal Spring Analogy 

An alternative to the solution of a large system of equations involves the transS-
nite interpolation (TFI) of the grid point displacements. Such a technique, based 
on an algebraic method of grid generation, can be seen as a perturbation method 
rather than a complete re-generation. Dubuc a/. [27], Liu oZ. [53] and Wong 

a/. [94] used a combined TFI and spring analogy approach on a multi-block 
configuration. 

The process is decomposed in two major stages according to the method em-
ployed: 

First, the spring analogy is applied to a high level grid formed by the corners 
of the blocks. If /l and B are two corners forming an edge of a block, them 

and Afg are obtained by solving the linear system of equations as described 
previously. 

Then, the TFI of the grid point displacements is applied to the edges, faces and 
interior vertices of each blocks. 

Considering a two-dimensional case, the edges and faces of the blocks are the 
same, thus if P is a vertex on the edge formed by A and B, its displacement is 
updated using: 

Afp = — - 1 dfg (3.54) 

Where o, 6 and c are distances calcu 

a = AP B P and c 

ated from the initial points coordinates as 

The displacement of the interior vertices is obtained from: 

Af ((, ?7) - / i (^, 77) -I- (7;) [ % ( 0 - ((, 0)] + (?7) -t- ( 0 - A ((, 1)] 
(3.55) 

Where: 

A ((, = lAi (() (77) + '̂ 2 ( 0 (^^2 (??) (3-56) 
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Also, dfbi, and are the interpolated displacements along the four 
block faces. 

and are blending functions in the ^ and direction respectively deRned by: 

(^) = 1 - 'Sl ( 0 

= 53(() 

V'XO = 1-54(77) 

^ 2 ( 0 - 'SsW 

si, 52, 53 and 54 are stretching functions deEned simply by: 

^ ^ length from A to f ((, 0) ^ 
^ length of curve from ^ to B 

length from B t o r (1,7?) 
length of curve from B to C ^ ^ 

^ length from D to f ((, 1) 
length of curve from D to C 

^ length from A to f (0,77) 
length of curve from v4 to D 

Finally, the coordinates of the displaced points are updates using: 

r((,77) = n)(6,77) + c(r(^,77) (3.61) 

Figure 3.3 illustrates the mesh deformation process. 

This method guarantees the matching of the displacements of the block faces of 
two adjacent blocks. Furthermore, the large amplitude motions that were prob-
lematic in the case of the lineal spring analogy can be studied without the risk 
of cross-over cells. 

3.5 Parallel Computation Methods in CFD 

One 0/ Âe prea^ea( 0/ numerzcoZ remomg (/:e ouozZobZe 
TAe mam encoi/M^ered reZa(e(f (o (/le gzze 

0/ (Ae proAZem ond zk ?̂ Ae gzze 0/ (Ae proAZem za accouM^eii /or 6?/ (Ae mem-
ory 0/ (Ae compw^o^z'ona/ tfHzY (̂ eggen^m//y CacAe memory TZoncfom ^cceaa 
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Or ig ina l grid 

D i s p l a c e m e n t of block co rne r s us ing t h e s p r i n g ana logy m e t h o d 

D i s p l a c e m e n t of block faces us ing t h e T F I m e t h o d 

D i s p l a c e m e n t of block in te r io r ver t ices us ing t h e T F I m e t h o d 

Figure 3.3: Combined Spring Analogy and TFI method on multi-block mesh 
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Memory or on (Ae (g/pe o/pro6Zem ôcAZetf (1trona%en( or ^ur6w-
Zen( /Zowg . .J, (Ae aize 0/ (Ae proAZem u;z// oZao Ao%;e an %mpoc( on (Ae proceaamg 
(zme. /;( za cZear (Aa( og (Ae comp/eiz^?/ 0/ Âe pro6/ema aoZt/ecf mcreoaeg, (Ae 
amownf 0/ memory on(f (Ae procegamp power become crẑ zcaZ. v4 aoZû zon (0 
%55ue /zeg m wAâ  zs co/Zê f paroZZeZ compu(o(zon. 

/n /̂le /oZZomn^ sec^zona, (Ae d%ĵ eren( poroZ/e/ computer g^/gfemg wz/Z 6e pregen(e(f 
and (Ae parofZeZzsa^zon gtra^epzes /or (Ae go/w^mn (fzacuaaed. 

3.5.1 Parallel Compute r Systems 

Parallel computations can be performed on three types of computer architectures: 

* vector computers that make the best use of vector calculations for matrix 
operations, 

* shared memory computers that possess a common memory area between 
several processors, 

and the distributed computers where each computer node possesses its own 
processor and local memory. 

The first type of architecture presents the inconvenience to require specific algo-
rithm adaptation and also is not scalable. 

The second type possesses the great advantage of not requiring special care for 
the data exchange processes. However, the complexity of such machines due to 
the control over the access to the global memory limits their potential. 

The third type, although requiring great care as far as the data exchange is con-
cerned, offers the best compromise as its scalability allows more complex problems 
to be tackled. 

Furthermore, the hrst two types of computer architectures, namely the super-
computers, are extremely costly and restricted in their availability. On the other 
hand, the third type of architecture can be achieved by simply networking several 
standard workstations into a computer cluster. With the recent slow down in the 
growth in processor speed, such a system can be built at a much more viable cost 
and present a real alternative to supercomputers. 
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3.5.2 Parallel Computa t ion Strategies 

Parallelising the computation on a distributed system consists of breaking up the 
solution process so that the complete solution is distributed among several pro-
cessing units. Individual processing unit will thus treat part of the solution. Since 
all the parts of the solution are closely related and cannot be treated indepen-
dently, the different processes must communicate during the solution procedure 
thus linking the various parts of the solution. 

Winkelmann aZ. [93] suggested that the parallelisation of an algorithm on a 
distributed system can generally be performed in three different ways: at the 
loop level, at the task level, i.e. functional decomposition, or at the data level, 
i.e. the domain over which the solution is carried out is distributed. 

When performed at the loop or at the task level, i.e. task parallelism the speed of 
execution depends on the least efhcient part of the code. It is thus necessary to 
minimise the non-parallel part of the code in order to achieve maximum efficiency. 

An alternative way that is more suited to CFD problems and thus has been widely 
adopted (Garbey a/. [31], di-Serafino [26], Lanteri [48], Moitra aZ. [63], Vatsa 

a/. [86], Akay aZ. [1], Carre o/. [14] ) is achieved by performing a do-
main decomposition, i.e. data parallelism. In a convenient manner, the solution 
domain is divided into sub-domains, each being assigned to a processing unit. If 
the decomposition is of a spatial nature, then it is similar to block structuring of 
grids. As most of the complex geometries are represented using multiple blocks, 
the natural partitioning of the domain can be used. To maximise eSciency, it is 
important that each processing unit is given the same amount of work to do so 
that the waiting time (time during which one or more processing unit are idle) 
is reduced. The load balancing is then achieved by dividing the solution domain 
into sub-domains of similar sizes (mesh size). Each sub-domain is assigned to one 
processor but more than one grid block may be handled by one processor. 

The same code runs on each node of the cluster with its own set of data. This cor-
respond to the Single Program Multiple Data (SPMD) programming paradigm. 
Since each processor requires data residing in other sub-domains, exchange of 
data between processors is required. Furthermore, since there is no mechanism 
for any process to directly access the memory of another, the sharing of the 
data between processes must take place by explicitly sending and receiving data. 
Specific communication tools for the data exchange process such as the Message 
Passing Interface libraries (MPI) provide a useful set of routines for that purpose. 

Parallelism is thus achieved by combining the partitioning of the domain and the 
interfacing of the various processes. 
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3.5.3 Domain Par t i t ion and Message Pass ing Model 

Interfacing the various sub-domains constitutes one of the most important part of 
the parallel process. Two distinct aspects have to be taken into consideration, one 
being the partitioning of the data on the various sub-domains, and the other be-
ing the communication of the information from one sub-domain to its neighbours. 

Domain Par t i t ioning 

In his study on parallel solutions of compressible flows, Lanteri [48] identifies two 
different strategies for the partitioning of data, namely using overlapping and 
non-overlapping mesh partitioning. 

In the overlapping mesh partitioning strategy, a layer of cells surrounding each 
blocks is introduced, the ghost cells, and used to store the information from 
neighbouring blocks. At appropriate times during the numerical solution, the 
information in these cells is updated. The major advantage of this method is 
that the communication between processes is minimal. However, according to 
Lanteri, such a method results in redundant floating point operations. 

In the second case, i.e. the non-overlapping mesh partitioning strategy, a sub-
domain will not contain any information from the neighbouring sub-domain. The 
information required for the computation are directly exchanged when required. 
This results in fewer floating point operations than for the previous method but 
implies a much larger communication cost. 

Overlapping mesh partitioning is probably the most widely used strategy. Its im-
plementation is straight forward and the resulting additional computation have 
little impact on the overall cost of the solution in comparison with the commu-
nication cost incurred by the non-overlapping mesh method. 

Message Passing Model 

Having discussed the partitioning strategies, one must consider the message pass-
ing model. Most implementation to date make use of the Message Passing Inter-
face (MPI) as it is intended as a standard implementation of the message passing 
model of parallel computation. 

The basic concept of MPI is the transfer of data between a pair of processes, 
one sending and the other receiving. This is generally called the point-to-point 
communication. Most send and receive functions provided by MPI are based on 
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this type of communication. Other type of functions available involve collective 
communication whereby information is sent to or gathered from all the processes. 

The default communication modes are so called "blocking" modes, i.e. both the 
sender and the receiver do not proceed further until the communication has com-
pleted. One inconvenience of this type of calls is that it can lead to deadlock 
situations where two processes try to send data to each other at the same time 
without any matching receiving calls. 

MPI provides another type of communication mode: the non-blocking mode, al-
lowing one process to carry on with its task although the communication has not 
yet completed. One process thus becomes a "communication" server, initiating 
the exchange while proceeding onto other tasks, and the "client" process execute 
the exchange when required. 

Winkelmann et al. [93] defined two basic strategy adopted for the update of the 
ghost cells data: 

# The Blocking Send, Non-blocking Receive (BSNR) strategy illustrated by 
the algorithm 3.1 where the code sets up non blocking receives for all in-
coming messages, then looping over ail blocks, a message is sent to each 
neighbouring blocks. 

# The Non-blocking Send, Blocking Receive (NSBR) strategy illustrated by 
the algorithm 3.2 where a single loop over ail blocks is used and messages 
are sent as soon as the information is ready. Then for each neighbouring 
block, a blocking receive is posted. 

A l g o r i t h m 3.1: Blocking Send Non-Blocking Receive Strategy 

1. Loop over ail blocks: 

• Exchange ghost cells information 

2. Loop over iteration: 

• Solve the equations on the local domain 

3. Loop over all blocks: 

a Exchange ghost cells information 

4. Store the solution 

In the BSNR method, since the communication and computation are separated, 
all communication will occur at the same time. This could result in a very slow 
solution in the case of a slow networking system. In contract, the NBSR method 
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spreads communication traffic in time. Furthermore, in the case of the NSBR 
method, no deadlock can occur. 

A l g o r i t h m 3.2: Non-Blocking Send Blocking Receive Strategy 

1. Loop over all blocks: 

• Send ghost cells information 

2. Loop over iteration: 

(a) Receive ghost cells information (blocking) 

(b) Solve the equations on the local domain 

(c) Send ghost cells information (non-blocking) 

3. Loop over all blocks: 

o Receive ghost cells information 

4. Store the solution 

3.6 Summary 

The review carried out in this chapter leads to the following conclusions for the 
method to be used in the present research: 

Mathemat ica l Model: 

• The flow will be modelled by the incompressible form of the Navier-Stokes 
equations. The equations will be filtered for the LES turbulence model. To 
enforce the continuity constraint and thus solve the incompressibility of the 
How, the projection method will be used. 

• To account for complex geometries, a boundary fitted coordinates (BFC) 
system will be adopted. 

• The Force calculation will be based on the integration around the object of 
the pressure and shear stress contributions. 

• The Structural motion will be derived from a simple mass-spring-damping 
system. 

Numerical Method: 

• The flow governing equations will be discretised using the finite volume 
method. 

• To compute the structural displacement of the object, the Runge-Kutta 
method will be used. 
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* The mesh deformation will be carried out using a hybrid TFI / spring 
analogy method. 

Numerical Implementat ion: 

® The method will be parallelised to carry out the computation on a computer 
cluster, thus enabling the large size problem to be solved. The parallel 
implementation will be based on the Single Program Multiple Data (SPMD) 
model with a domain decomposition using overlapping blocks. The parallel 
interface will use the MPI message passing model. 
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Chapter 4 

Flow Solver: The Projection 
Method 

4.1 Mathematical Model 

As previously discussed, a numerical solution is composed of several components. 
The first and most critical one is the mathematical formulation of the problem. 
For the purpose of the present work, the incompressible Navier-Stokes equations 
expressed in body fitted coordinates (i.e. curvilinear coordinates) and Altered for 
the large eddy simulation turbulence model are the most suited. 

Since the filtering and coordinate transformation processes are lengthy, only the 
final form of the equations are presented below. The details of the derivation can 
be found in appendix A and B. 

The flow governing equations can thus be written in a non-dimensional form as 
follows, using the Einstein notation: 

Continuity: 

81 

Momentum: 

JL 

Where J is the Jacobian of the coordinate transformation: 
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is the filtered contravariant component of velocity: 

IT = (4.4) 

[4^ is the filtered contravariant component of relative velocity: 

Ur — Sf (Wj — Ug^ (4.5) 

Where is the filtered grid velocity component, and g is the pseudo pressure 
dehned by: 

9 == P - (4.6) 

And 5] are the metrics of the transformation defined by: 

5"' = with 2, j and A; cyclic (4.7) 

is the turbulent Reynolds number as obtained using one of the following LES 
models: 

Smagorinsky model: 

Where jS"! = and the rate-of-strain tensor 5";̂  = ^ 

S t ruc ture funct ion model: 

Re, = ^ 7 ^ ( 4 . 9 ) 

O.OeSA^/fztt.Af) 

Where the function F2 can be obtained from; 

-̂ 2 = (||u (( + r) - u (()||^)||r| =1 (4-10) 

Selective s t ruc ture funct ion model: 

(4.11) 
0.098'yA^F2 (^, A() 
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3 function F2 is as above and 'y is a switch function that uses the 
itween the local vorticity vector and the average vorticity vector in the ^ 
ing region: ^ 

] for /) < 20° " 
-y = e-W/3)' for 20° > /) > 10° and d/? = - 20| (4.12) 

1 for > 20° 

^ = cos-^ I „ ' 1 '̂" „ ) (4.13) 
ll^a. 

zity components can be obtained from: 

1 

J 
a ( ? % ) 9 (s^uj 

(%,j, k in cyclic order) (4.14) 

Che Projection Method in Finite Volume 

the incompressible Navier-Stokes equations, the projection method as 
d originally by Chorin [16] was chosen for its simplicity and efficiency, 
ted before in chapter 3, the projection method consists of three steps: 

: momentum equations are solved ignoring the pressure terms to obtain 
ntermediate velocity Seld that does not satisfy the continuity constraint. 
! equations resulting from the omission of the pressure terms from the 
nentum equations are named the Burger equations. 

! pressure is then solved by using the Poisson equation. 

using the pressure gradient, a provisional velocity field is projected onto 
ivergence-free space thus resulting in a velocity field complying with the 
tinuity constraint. 

'̂ e these three steps, the equations governing the How need first to be dis-
ising the finite volume method. Since the full discretisation procedure is 
only the final representation will be formulated here. The author refers 
!r to appendix C for a more comprehensive description and derivation of 
etised equations. 

liscretisation presented in the following section, the control volume lay-
notation adopted is illustrated for the two-dimensional case by Sgure 
bhe three-dimensional case, an upper (top) and lower (bottom) layers 
d to the computational cell. As a convention, capital letters will denote 
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Where ; = JViy, TM/, Bg, B, BN, f , AT, Tg, T, TAT, BE, ^E, E, A^E, TE. 
The complete deSnition of the laplacian /I can be found in appendix C. 

Now, since: 

then the spatially discretised Burger equations are: 

(4.18) 

Integrating now between two instants and — (" + A( gives: 

/ ^ "t" I Cidt = j T)idt (4.19) 
Vf" ^ Vt" Jt" 

Using a simple Euler explicit scheme for the temporal derivative term, the Adams-
Bashford scheme for the convective term and the Crank-Nicolson scheme for the 
diffusive term, a second order time accurate solution is obtained: 

( « o ) 

C,dt — (3Cr - Cr- ' ) (4.21) 

A/ 
D^dt % — ( r r + (4.22) 

in Z 
The fully discretised Burger equations are thus: 

(Ja-)"-" - (M-r + ^ (3C," - c r ' ) = y (Bf + 0."+') (4.23) 

Grouping now the terms at instant on one side and the others on the other 
side gives: 

^ ~ { J K T - 3C» + C»-' + B." (4.24) 

i.e., using equation (4.16): 

E 4 ( i + ^ {j%r - s c . " + c r ' + ( 4 , 2 5 ) 
J / 

Where is the Kronecker delta function defined by: 

49 



- { 0 I L L (^^26) 

For each control volume in the solution domain, equation (4.25) must be solved 
for each velocity component. The resulting system of equations for the whole 
domain is thus of the form: 

AU! = Bi for 2 = 1,2,3 (4.27) 

Where A is the matrix of coefficients to be applied to the velocity components 
as defined in equation (4.25), U; is the vector of velocity component z for all the 
control volumes and B; is the vector corresponding to the right hand side term 
of equation (4.25). 

Following the projection method steps, the pressure field must now be solved by 
using the Poisson equation. 

The curvilinear form of such a Poisson equation can be written as: 

In a very similar way to that used for the diffusive part of the Burger equations, 
the discretisation of the Poisson equation results in the following approximation: 

^ = [IT], - + [ r - [ r + [W*], [W*]6 (4.29) 
j 

As for the Burger equation, the above equation must be solved for each control 
volume in the domain. This results in a system of equations of the following 
form: 

AQ = B (4.30) 

Where A is the matrix of coefficients to be applied to the pseudo pressure deEned 
in equation (4.29), Q is the vector of pseudo pressure for all the control volumes 
and B is the vector corresponding to the right hand side term of equation 4.29. 

Finally, the actual velocity field satisfying the continuity constraints is simply 
solved using the projection equation. In its curvilinear form, the latter can be 
written as follows: 

u. = u - - J - ' S i ^ (4.31) 

Applying the finite volume discretisation gives: 
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Ui — u* — (2 J) ^ [5"̂  {qe — qw) + (Qn " Qs) + (Qt ~ Qb)] (4.32) 

The complete solution method for the projection method can thus be summarised 
as follows: 

1. Solve equation system (4.27) to obtain the provisional velocity field. 

2. Solve equation system (4.30) to obtain the pressure field. 

3. Solve equation (4.32) to obtain the actual velocity field. 

4.3 Boundary Conditions Implementat ion 

From the discretisation presented previously, and taking into account that the 
flow is solved using the primitive variables at the cell centre, it appears quite 
clear that the computational cell used in solving the set of equations is composed 
of a single layer of cells around the current cell as illustrated in figure 4.2. 

OCe. âce Cenlre 

Figure 4.2: The computational cell 

However, at the domain boundaries, some of the neighbouring cells are non-
existent. To account for such an absence of cells, a layer of so-called "ghost cells" 
is introduced around the block as can be seen in figure 4.3. Such ghost cells must 
then be set to represent appropriately the boundary conditions. 

Conveniently, these ghost cells can also be used to store information from adja-
cent blocks. The overlapping mesh strategy discussed in chapter 3 can thus be 
enforced in a straight forward manner using the ghost cells as the overlapping 
mesh area. Figure 4.4 illustrates the subdivision of a domain into sub-domains, 
and the data dependency between the sub-domains with the overlapping mesh 
strategy. 
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-0- Inlcnial Cells GliosI Cells 

Figure 4.3: Block Cells Arrangement 

Domain Internal O i l s 

- # - Domain Boundary Cells 

Block Internal Cells ( j)- Block Corner Cells 

-4p- Domain Boundary Cells OverlappiuR Cells 

mocko Block 1 Block 2 

Figure 4.4: Multi-block domain decomposition and data dependency 

In the following discussion, it will be assumed that the boundary cells, whether 
domain cells or ghost cells, are normal to the boundary. 

In most cases, the boundary conditions used in the resolution of the Navier-Stokes 
equations are associated with the velocity, the nature of the problem usually not 
providing enough information on the pressure at the boundary except in cases 
such as free-surface flows. For each variable, i.e. velocity and pressure, the bound-
ary r is subdivided into Vd where Dirichlet boundary conditions apply (such as 
u = g {x,t) ), and where Neumann boundary conditions apply (such as = 0 
where n denotes the direction normal to the face of the cell where the condition 
applies). 
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In practical terms, the most common boundary conditions encountered in flow 
computations are: 

• InAow (Constant or variable) 

• Outflow 

• Solid Wall (Fixed or moving) 

• Symmetry 

• Periodic 

4.3.1 Inflow Boundary Condition 

When the velocity is specified directly as in the case of an inflow, the Dirichlet 
boundary condition can be interpreted as follows: 

u = (x, )̂ (4.33) 

Where Uin/Zow is the specified inflow velocity proAle. 

It has to be noted that the inAow velocity mentioned above is in fact applied to 
a face and not to the centre of a cell. Thus, by supposing that the inflow velocity 
is the average velocity between the domain cell and the adjacent ghost cell, the 
velocity components of the ghost cells can be set aa: 

llGC = 2 - Uin/Zoiu - llDC (4-34) 

Where subscript GC and DC denote the ghost cell and the neighbouring domain 
cell variables respectively as illustrated in figure 4.5. 

As far ag the pressure is concerned, applying the Neumann condition ( ^ = 0 ) 
leads to: 

Pcc = PDC (4.35) 

4.3.2 Outflow Boundary Condition 

In the case of an outflow, the zero gradient of the velocity in the direction of the 
flow is used. This translates into: 

Ucc ^ UDC (4.36) 
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Using a reference pressure on the face of the domain cell where the outflow con-
dition applies, and assuming it is the average pressure between the domain cell 
and the adjacent ghost cell, the ghost cell pressure can be set as: 

PCC = 2 - Pre/ — PDC (4.37) 

Figure 4.6 illustrates the outflow boundary condition. 

4.3.3 Solid Wall Boundary Condition 

The wall boundary condition, whether the wall is fixed or moving, is in fact the 
combination of two conditions: namely, the no-slip and no-penetration conditions. 

In the more general case of a moving wall, assuming that the velocity at the wall is 
the average velocity between that in the ghost cell and that in the adjacent domain 
cell, theses conditions can be interpreted by the following Dirichlet conditions: 

UCC = 2 - - Ugc (4.38) 

Where the subscript wall denotes the variable at the wall, i.e. at the face of the 
cell lying on the wall (whether the ghost cell or the corresponding domain cell). 

In the case of a fixed wall, the above simplifies to: 

iiGC = -iiDC (4.39) 

So, applying the Neumann condition for the pressure, the ghost cell pressure is 
set as: 

Pcc == PDC (4.40) 

The wall boundary condition is illustrated in figure 4.7. 

4.3.4 Symmet ry boundary condition 

The symmetry boundary condition is in fact the same as a wall boundary condi-
tion where slip occurs. Hence, depending on the plane along which the symmetry 
is set, two of the components of the velocity vector will be set equal in the ghost 
cell to that in the domain cell. 

For example, if the plane of symmetry is the X-Z plane, both and w components 
of velocity will be the same in the ghost cell as those in the adjacent domain cell 
while the t; component is set equal to the opposite of that in the domain cell: 
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iihinoMi 

Figure 4.5: Inflow boundary condition 

Figure 4.6: Outflow boundary condition 

Figure 4.7: Wall boundary condition 
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f e e = — t'DC 

WCC - WDC 

As far as the pressure goes, applying the Neumann condition, the ghost cell 
pressure is set as: 

Pcc = PDC (4.41) 

At this stage, it is important to note that, the contravariant components of ve-
locity should be used rather than the cartesian components. For implementation 
reasons, the symmetry condition is currently restricted to the planes parallel to 
the (a;?/), (a;z) and (i/z) planes. 

4.3.5 Periodic boundary condition 

The periodic boundary condition consists of setting the variables of a set of ghost 
cells on one face of the block equal to a similar set of domain cells on another 
(or even the same) face of the block. Such condition is enforced by means of 
interfacing as will be described later on in the report. The ghost cells where the 
periodic condition applies are fed with the value of the variables of the "adjacent" 
block domain cells. 

4.3.6 General Formulat ion 

It thus appears that all the boundary conditions (with the exception of the peri-
odic boundary condition) can be represented using a generic formulation: 

= Ci + Cg - (̂ DC (4.42) 

Where can be the velocity components or the pressure and the constant Ci 
and C2 depend on the condition to be applied. Tables 4.1 and 4.2 summarise the 
constants used for each boundary condition. 

4.3.7 Block Corners and Edges 

One aspect of multi-block computation rarely described by other authors but 
however well known is that of block corners. In the particular case of three-
dimensional computations, this extends to the block edges. The reaaon such 
corners and edges are of concern is related to the computational cell used in the 
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Boundary Condition Ci C2 
Inflow '^^inflow - 1 

Outflow 0 1 
Fixed Wall 0 - 1 

Moving Wall - 1 

Symmetry (XY plane) 0 
1 for u 
1 for V 

— 1 for w 

Symmetry (XZ plane) 0 
1 for u 

— 1 for V 
1 for w 

Symmetry (YZ plane) 0 
—1 for K 

1 for V 
1 for tu 

Table 4.1: Ghost cell boundary condition velocity constants 

Boundary Condition Ci C2 
InHow 0 1 

Outflow '2pref - 1 
Fixed Wall 0 1 

Moving Wall 0 1 
Symmetry 0 1 

Table 4.2: Ghost cell boundary condition pressure constants 

discretisation scheme and the boundary conditions treatment. In the current im-
plementation, this concerns the ghost cells variables to be set in the corners and 
edges of each block of the domain. At this point, it is important to note that 
only the edges of the blocks are of interest since the block corner values are never 
used in the computational stencil. In the two-dimensional case, the block corners 
are in fact a special case of block edges. Figure 4.8 illustrates a block edge with 
the notation adopted for the variables to be set. The subscripts and GCE' 
denote variable in the domain edge (domain cell) and in the block edge (ghost 
cell). 

To illustrate the method used to determine the ghost cell values in the edge of a 
block, let's consider the case showed in figure 4.9 where the one side of the edge 
is a solid wall (fixed or moving) and the other an inflow condition. 
Using the boundary condition enforcement as described previously, then the ve-
locity in the two ghost cells denoted GCO and GCl can be set as: 
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GCO 

Eg 

DOE 

1 

GCE 

P 

GCl 

Domain Cells 

Domain Boundary 

Ghost Cells 

Figure 4.8: Block Edges Layout and Notation 

GCO ^ D C E 

Wall Boundary Condit ion 

r~)~|> In How Bonndnr}' Condit ion 

Figure 4.9: Inflow/Solid Wall Block Edge Condition 

And: 

U g C O = 2 U i n f l o w — ' ^ D C E (Inflow) 

u g c i = 2 u s o i i d wa l l — '^DCE (Solid Wall) 

Now, the actual edge velocity ug is such that: 

U g = U g o i i d wal l — ^ ( U g C O + ^ D C E + U G C I + ' ^ G C e ) 

(4.43) 

(4.44) 

(4.45) 

58 



It follows that: 

UGCE = UGCI — UGCO + ^DCE (4.46) 

If now both conditions were inverted as illustrated by figure 4.10, the following 
would be obtained; 

UGCB = Ugco — UGCI + ^DCE (4.47) 

I Wall Boundary Condition 

Inllovs' Boiindaiy Condition 

Figure 4.10: Solid Wall/Inflow Block Edge Condition 

Following the same procedure as above, it can be shown that all the possible 
combinations of boundary conditions can be enforced at the block edges using 
either equation (4.46) or equation (4.47) which will be referred to as type 0 and 
type 1 respectively. 

In a generalised form, the value of the velocity in the edge ghost cell can be set 
by: 

UGCB — C's • UGGO + C4 • UGCI + C5 • U£)CE (4.48) 

Where C3, C4 and C5 are constants set according to the boundary conditions on 
each side of the edge. Table 4.3 summarizes the constants used for each case. 

For the pressure, a simple extrapolation technique is used based on the value of 
the pressure in the ghost cells on each side of the edge. 
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Boundary 
Face 0 

Condition 
Face 1 

Edge Type Q C5 

Inflow Solid 0 -1 1 1 
Solid Inflow 1 1 -1 1 

Inflow Interface 0/1 0 0 1 
Interface Inflow 0/1 0 0 1 
Outflow Solid 0 0 1 0 

Solid Outflow 1 1 0 0 

Outflow Inflow 0 0 1 0 
Inflow Outflow 1 1 0 0 

Outflow Interface 0 0 1 0 
Interface Outflow 1 1 0 0 

Interface Solid 0 -1 1 1 
Solid Interface 1 1 -1 1 

Solid Solid 0/1 0 0 1 
Inflow Inflow 0/1 0 0 1 

Outflow Outflow 0/1 0 0 1 

Table 4.3: Ghost cell boundary condition velocity constants at block edge 

4.4 Linear System Iterative Solution 

The discretisation of the projection method led to two systems of linear equations 
to be solved, one for the solution of the Burger equations, the other for the Pois-
son equation. In both cases, the matrix of coeGicients of the unknowns are large 
and sparse, thus making direct solution rather inefRcient. For this reason, itera-
tive method are generally used in computational Huid dynamics. In the present 
section, an outline of two of those method will be given, namely the Successive 
Over- Relaxation (SOR) and the Conjugate Gradient (GC) methods. Although 
both methods are extensively documented in the literature and in textbooks, 
their implementation in a parallel fashion need further explanation. 

4.4.1 Parallel Successive Over-Relaxation 

Considering the following system of linear equations: 

AX = B 

Then the line can be written as follows: 

(4.49) 
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i=i 

(4.50) 

or: 

a;,; ^ I ^ j /a» (4.51) 
\ i=i j=j+i / 

In an iterative method, a solution is guessed and improved by using an appropri-
ate equation. Using the previously calculated values for the right hand side term 
in equation (4.51), one can thus obtain the left hand side vector. This is called 
the Jacobi iteration: 

i-l 

(k) (4.52) 
j = l 

If the computed values are immediately used as they are obtained, then the left 
hand side can be calculated using the so-called Gauss-Seidel (GS) iteration: 

i — 1 n 

(fc+l) (4.53) 
j=l j=i+l J 

By relaxing the above, the Successive Over-Relaxation (SOR) method is obtained: 

= t . ( i . - i : ^ j /oii -H (1 — (4.54) 

Where u is the relaxation factor. If a; — 1, the above equation is equivalent to the 
Gauss-Seidel one. If w > 1, then the system is over-relaxed. An advantage of the 
SOR method over the Gauss-Seidel method is that the solution is accelerated and 
requires far less iterations to reach a converged solution provided the relaxation 
factor is well chosen. As no real guidance for the relaxation factor can be found 
in the literature, its choice is often based on trial and error. 

Equation (4.54) is equivalent to; 

(fc+i) 
— (J 

= 

'i-l 

.j=i j = i 

(4.55) 

Where % is the local intermediary residue dehned by: 
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iZi — I ^ ^ ^ /Gii — bi (4.56) 
\ j= l j=i / 

The actual locai residue % at an iteration A; can be calculated from: 

j (4 57) 

As the iterations are performed, the residue will reduce towards zero. This 
residue is generally used as a stopping criterion for the iteration. 

As seen previously in the discussion on the discretisation of the Sow governing 
equations, the computational stencil is composed of nineteen points or cell, i.e. 
the current cell and eighteen neighbouring cell. It is thus clear that since values in 
the ghost cells layer are used, those must be updated at each SOR iteration. The 
solution thus requires not only the update of the boundary cells to be carried out 
but also the interface (or overlapping) cells to be updated at every single SOR it-
eration. Algorithm 4.1 describes the parallel Successive Over-Relaxation method. 

A l g o r i t h m 4.1: Parallel Successive Over-Relaxation Algorithm 

For k=l t o k=(max. num. of iteration) 

1. Set overall residue TZ = 0.0 

2. For i = l t o i=(num. of domain cells) 

# Compute: 7̂  = /a» -

• Compute: = w ( % j ) + (1 — w) 

3. For i = l t o i=(num. of domain cells) 

(a) Compute: /«» - 6. 

(b) Compute: 7?, = max (|7?.p' ' '^' | , 7?.) 

4. Update X in the ghost cells at boundaries, interface and block edges 

5. If7l< (Min. Residue) T h e n set flag 'local block convergence' to 'TRUE' 

6. ( M P I : G a t h e r ) Gather all local convergence flags from all processes 

7. If all processes have converged set flag 'global convergence' to 'TRUE' and exit 
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4.4.2 Parallel Conjugate Gradient 

The SOR method although widely used in CFD tends to have a slow conver-
gence rate if the initial guess is innaccurate. On the other hand, if an accurate 
guess of the solution is available, the SOR method will converge very quickly. In 
CFD problems, it is rare to have such an accurate initial solution, thus methods 
with faster convergence rate than that of the SOR method can be very desir-
able. Among such methods, the conjugate gradient (CG) is one of the simplest 
to implement. It is based on the minimisation of a function in several directions 
simultaneaously while searching in one direction only. 

The serial CG method is presented in algorithm 4.2 below. 

A l g o r i t h m 4.2: Conjugate Gradient Algorithm 

1. For i = l t o i=(num. of domain cells) 

(a) Set initial: 

(b) Compute: = bi -

(c) Set d f ^ = 

2. For k = l t o k=(max. num. of iteration) 

(a) Compute: 

(b) For i = l t o i={num. of domain cells) 

i. Compute: 

ii. Compute: 

(c) Compute: EILi 

(d) For i = l t o i=(num. of domain cells) 

• Compute: 

• Compute: 7?,'''''"^^ = 

• Compute; TZ = max | , 7^^ 

(e) If % < (Min. Residue) T h e n exit 

In the case of a parallel method, a and must be computed using the residual 
values r of the whole solution domain. Also, in the case of a, the search directions 
d of the whole solution domain are necessary. The parallel CG must thus include 
some modification to account for the communication of r, d and Ad across the 
various processes. 

The parallel CG algorithm is presented below. 
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A l g o r i t h m 4.3: Parallel Conjugate Gradient Algorithm 

1. For i = l t o i=(num. of domain cells) 

(a) Set initial: 3;^°' 

(b) Compute: 

(c) Set 

2. For k = l t o k=(max. num. of iteration) 

(a) Compute: 

(b) ( M P I : All R e d u c e ) Sum the across all the processes giving rC^') 

(c) Compute: E j = i 

(d) ( M P I : All R e d u c e ) Sum the across all the processes giving 

(e) Compute: aC') = / (dC' ' , Ad^^') 

(f) For i = l t o i=(num. of domain cells) 

i. Compute: 

ii. Compute: ^ 7 = 1 "-ijd-j''^ 

(e) Compute: = 

(h) ( M P I : All R e d u c e ) Sum the across all the processes giving 

(i) Compute: r(*)) 

(j) For i = l t o i=(num. of domain cells) 

o Compute: dp"'"' ' = 

• Compute: = a(A:)d^'°''"^' 

• Compute: 7?. = max | , 7?,̂  

(k) Update d in the ghost cells at boundaries, interface and block edges 

(1) If % < (Min. Residue) T h e n exit 

Although the parallel CG method (algorithms 4.3) possesses a convergence rate 
far greater than that of the parallel SOR (algorithms 4.1), each iteration carried 
out using this method requires substantially more operations. In the case where 
an accurate initial guess is known, the SOR method is more efficient than the CG 
method as the number of iterations to achieve the solution in both cases is similar 
but the number of operations per iteration is less in the SOR method. On the 
other hand, if no such initial guess is known, the CG method is more appropriate. 
When carrying out a numerical solution of a time-dependent problem, as the 
solution is advanced through time, the results from a previous time step are used 
as initial guesses. Thus the initial guess is getting more and more accurate. It 
follows that for the initial steps of the solution, the CG method can provide a 
more efficient method to solve the large system of equations. As the solution 
progresses, the initial guess becoming closer and closer to the actual solution, 
less iterations are required to solve such a system. The SOR method becomes 
thus more advantageous. 
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4.5 Overall Flow Solution Procedure 

Having derived the various equations to be solved and suitable methods to solve 
them, the general procedure for the solution of the How can be summarised in 
algorithm 4.4. Since the solution is iterative, it is important to determine a stop-
ping criterion for the loop. Generally, a maximum number of iterations (time 
steps) can be set, but in the case of a steady Sow, the solution may converge 
to the exact solution before reaching the majdmum number of iterations. A 
residue must thus be calculated assessing the difference between the solution at 
two consecutive time steps. If such a difference is below a certain tolerance level, 
the solution is assumed steady and thus converged. One way to determine the 
convergence is by comparing the velocity field between two consecutive time steps. 

A l g o r i t h m 4.4: Global Flow Solution Algorithm 

For k = l t o k=(max. num. of iteration) 

1. Solve the Burger equations (Equation (4.25)) using SOR (Algorithm 4.1) or C G (Algorithm 4.3) 

2. Solve the Poisson equation (Equation (4.29)) using SOR (Algorithm 4.1) or C G (Algorithm 4.3) 

3. Solve the projection equations (Equation (4.32)) 

4. Update the velocity and pressure in the ghost cells at boundaries, interface and block edges 

f n) 
5. Compute the local solution residue TZiocal based on the velocity: Tiiocal = -—/ n P s (k+i)n\ 

( H i jJJ 

6. Determine the maximum residue across all the processes ( M P I : All R e d u c e ) giving TZ 

7. If 7^ < (Min. Residue) T h e n exit 

4.6 Code Development and Performance 

The method presented in this chapter was implemented in a code written over a 
period of two years during the course of the research. A mixture of the C and 
Fortran languages was used to take advantage of the data structure capabilities 
of the first one and the numerical efhciency of the second. The implementation 
in itself represents around forty thousands lines of codes. The global architecture 
of the code is based on a communication layer for the data exchange between the 
various solution processes (i.e. domain blocks) on top of which is the flow solver. 
Adopting such a strategy implies that different flow solvers could be further im-
plemented using the same communication layer, or additional capabilities for the 
present solver could be added. 

In table 4.5 below, a comparison of the performances of the solution is given for 
three different mesh sizes, those used in the application presented later in the 
report (see chapter 7). Regarding the performance of the two different computer 
node classes (table 4.4) used to process the solution, the same setup will run 
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almost three times faster on the myr-P4 class than on the myr-1024 class aa il-
lustrated by the first caae presented in table 4.5. 

It is also intersting to note that for the last two cases shown in table 4.5, although 
one has twice the amount of cells of the other, they both take aa much time to 
carry out the iteration. The reason for such a difference resides in the fact that 
in the first of the two cases, only two nodes were used whereas the second case 
used four nodes, thus twice as much power. 

The average time over 30,000 iterations shown in the table indicates how long a 
typical simulation such as those presented in chapter 7 takes to complete. 

Node Class Processors RAM (Mb) Network Connection 
myr-1024 
myr-P4 

2xl.0Ghz PHI 
2xl.8Ghz P4 

1024 
2048 

Myrinet 

Table 4.4: Computer node class definition 

No. of 
cells 

No. of nodes 
(procs) used 

Av. time over 
30,000 iter. 

Av. time (s) 
per iter. 

Av. time (10 ̂s) 
per iter per cell 

Node Class 

524288 

1048576 
2097152 

4 ( 8 ) 
4 ( 8 ) 
2 (4) 
4 ( 8 ) 

5d llhr 17min 
2d 02hr 38min 
5d 22hr 05min 
6d 07hr 12min 

15.75 
6.07 
17.05 
17.35 

30.04 
11.58 
16.26 
8.27 

myr-1024 
myr-P4 
myr-P4 
myr-P4 

Table 4.5: Performance evaluation of present method 
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Chapter 5 

Fluid Structure Interaction Method 

5.1 Forces And Structural Displacement 

5.1.1 Forces Solution 

The computation of the forces acting on the bodies present in the domain is used 
to determine the force coefhcients. As seen in chapter 3, the forces acting on a 
body are composed of the contributions of both the pressure acting on the surface 
of this body and the viscous forces: 

F = Fp + Fv = — y (pn + /in X w) d J (5.1) 

Using the following non-dimensionalised parameters: 

where A is a reference area and Cp is the force coefRcient vector, and dropping 
the superscripts for convenience, equation 5.1 can be re-written as: 

Cp = Cpp + ^ ~~A J ^ (5.3) 

In the case of circular cylinders, the reference area A is usually taken as the 
product of the length L and the diameter D of the cylinder. 

Considering now the individual components of the force coefficient vector: 

Where: 

Cf., = + Gf.., (54) 

^ (5.5) 
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= " ^ 4 ^ y d j with i, j and /c cyclic (5.6) 

Since the solution domain is represented by a curvilinear mesh, i.e. one that 
follows the contours of specified boundaries, the objects present in the domain 
for which force coeGcients must be determined are represented by a set of faces. 
Thus, by approximating the integrals in equations (5.5) and (5.5) as a sum over 
the faces describing the object, the force coefRcients can be calculated from: 

_ of faces 

E (5-7) 
^ f = l 

And: 

o/yocea 

^ J .S/ with z.j and /c cyclic (5.8) 

Now, in a parallel multiblock solution, the objects may extend over several blocks. 
The determination of the force coefficient must thus include some inter-process 
communication to sum the locally calculated coefficients and thus obtain the to-
tal force coeSicient. 

The complete procedure for the determination of the force coeGicients acting on 
a single object is illustrated in algorithm 5.1. 

A l g o r i t h m 5.1: Force Computation Algorithm (Single Object) 

1. Initialise the local and global variables: = 0, = 0 and = 0 for i = 1,2, 3 

2. For f = l t o f=(num. of faces describing the object) 

(a) Compute: f o r i = 1 , 2 , 3 

(b) Compute the face area: Sf 

(c) Compute the vorticity vector at the face: for i = 1, 2, 3 

(d) Compute the pressure acting on the face: pf 

(e) Compute the local pressure force coefficient: Cp^^ = Cp^^ — <5/ for i = 1 ,2 ,3 

(f) Compute the local viscous force coefficient: Cp^^ = Cp^^ - Sf 

for i = 1, 2, 3 with i,j and k cyclic 

(g) Compute the local force coefficient; Cp^^ = Cp^, + Cp^^ + Cp^^ for i = 1 ,2 ,3 

(h) Sum ( R e d u c e operation) the force coefficients across all the processes giving the global , 
: = 1 , 2 , 3 
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In the presence of several objects, the above procedure is simply applied to each 
object present in the domain, an object identifier (integer) being used to distin-
guish between the various coefficients and inter-process communications. 

5.1.2 St ructura l Displacement Solution 

Once the force acting on each object present in the domain is obtained, their 
displacement can be calculated according to a specific structural model. As dis-
cussed in chapter 3, a simple mass-spring-damping system is generally employed 
to model dynamic cylinders in a flow. The dynamic equilibrium of such a system 
was given in equation (3.47) and is repeated here, dropping the non-dimensional 
superscripts for convenience: 

W + (IT) W + (W) ^ 
Where x is the non-dimensional displacement vector, ^ is the non-dimensional 
time, is the damping ratio, is the velocity ratio, Cp is the force coefficient 
vector and m is the mass ratio. 

To solve equation (5.9), the classical fourth order Runge-Kutta method is gener-
ally used and given here without proof: 

Considering the following equation: 

mz(t)4-6±(t) + A;a;(() —]^(() (5.10) 

where F (() is a function of time, and the initial conditions a; (0) and 2; (0) are 
known. 

Then: 

(^) = ^ (̂ ) — 62; (^) — (^)] (5-11) 

Let (t) = a; (() and 3:2 (() = i ((). 

Substituting xi and X2 back into equation (5.11), the following can be defined: 

= :ri(()=a;2(() (5.12) 

^ ( ^ , 3:1,2:2) = :r2(()=:r(^) = ^[F(( ) -6a ;2( ( ) -A;a ; i (^) ] (5.13) 

Knowing the initial conditions (0) = a; (0) and 3:2 (0) = (0), it is possible at 
a time step /i to construct the following: 
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^1,1 

'̂ 1,2 

'%,2 

<^,3 

^̂ 1,4 

'̂ 2,4 = + — , a; 

+ g't'i,!, + g ' ^ . i 

+ 2-̂ 1,2,3:2"^ + 2^^'^ 

n) + 2'^i,2,:c^''^ + 2-^,2 

+ n'^l,3,3;2"^ + 
2 

1 

2 ' 
+ 7;'̂ i,3,2;2"^ + - ^ , 3 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

i.e: 

<̂ 1,1 

<̂ 1,2 

'%,2 

<̂ 1,3 

"^,3 

;[̂ i,4 

'%,4 

(n) 
— 

1 

m 

_ /r(") 

— X2 

1 
m 

F(") - - Ala;}") 

1 
vfc 2 ,1 

F W ) + 

(n) 1 -w 
^2 + 2 
1 

771 
F H & ) - 6 f a:(") + ^^"2,2 

3̂ 2̂ ^ + Â 2,3 
1 

m 
^("+1) _ 6 ^a;(") + ^"2,3) - A: (̂ a;̂ ) + ^^1,3) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

And finally, the solution for a; and i is given by: 
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) _j_ _ + 2A^ 2 + 2A'i_3 + X\^i) (5.32) 

^(n+l) _ Zg ^ + - (^2,1 + 2/12,2 + 2^2,3 + ^2,A) (5.33) 

The procedure can thus be summarised as follows in algorithm 5.2: 

A l g o r i t h m 5.2: Fourth Order Runge-Kutta Algorithm (RK4) 

1. From the knowledge of m, b, k, F and f Compute; Xij, ^2,1, ^1,2, ^2,2, ^1,3, •^2,3, 
A'i,4 and "̂2,4 

2. Compute: 0:'"+^' = + g (^1,1 + 2X1^2 + 2A'i,3 + <^1,4) 

and = 1̂ ") + 1 + 2;f2,2 + 2A'2,3 + ^̂ 2,4) 

In the procedure to determine the displacement of a given object, the axes of mo-
tion along which the object is allowed to move must be taken into consideration. 
Seven cases can thus be foreseen: 

1. Motion in the X axis only 

2. Motion in the Y axis only 

3. Motion in the Z axes only 

4. Motion in the X and Y axes only 

5. Motion in the % and Z axes only 

6. Motion in the y and Z axes only 

7. Motion in the %, y and Z axes 

Depending on the case, only certain components of displacement will be updated. 
The complete procedure to determine the displacement of an object in the solu-
tion domain is given in algorithm 5.3. 

A l g o r i t h m 5.3: Object Structural Displacement Algorithm 

1. Compute the coefficients: m = 1.0, b = and k = ( ^ ^ ) 

2. For i = l t o i=(num. of dimension) 

• If Motion in the Xi axis is allowed 

(a) Compute f z , 

(b) Compute (((")) = 

(c) Set and 

(d) Solve for and ("+!) using the RK4 method (Algorithm 5.2) 

(e) Set and 
^object ^object 
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5.2 Moving Grid Method 

Moving an object or several in the solution domain implies the update of the 
mesh on which the solution is carried out to account for the displacement of 
the faces defining the object(s). As discussed in chapter 3, the process of re-
meshing a domain, particularly a multi-block domain, can be rather complex if 
the quality of the grid is to be preserved. Furthermore, the re-meshing procedure 
can be computationally costly. A hybrid method combining the iterative lineal 
spring analogy (LSA) method with the algebraic transfinite interpolation (TFI) 
was shown to be rather attractive as it not only preserves the overall mesh quality 
but also is computationally efficient. 

The general principles behind this method are rather simple. Two steps are taken 
to update the mesh as was illustrated in Rgure 3.3: 

1. The LSA method is applied to a high level grid composed of the corners 
of the blocks dehning the solution domain. The displacement of the block 
corners are thus determined. 

2. For each block, the TFI method is applied to a lower level mesh, i.e. the 
actual block mesh, based on the calculated displacement of the block cor-
ners. The displacement of all the mesh vertices (except the corners) are 
thus determined. 

In the following sections, the complete method to update the grid will be pre-
sented. The three dimensional LSA method will be detailed focusing on the issues 
raised by a parallel multi-block system. The three-dimensional TFI method will 
then be described in three steps: the update of the block edges, block faces and 
block internal vertices. 

5.2,1 High Level Grid Motion - The LSA M e t h o d 

The first step in the update of the mesh describing the solution domain consists 
of the global deformation of the various blocks composing that domain. This 
global deformation only affects the corners of the blocks. It is thus important to 
distinguish between three types of corners: 

• Fixed corners, i.e. corners lying on the boundaries of the domain 

• Explicitly moving corners, i.e. corners moving according to the motion of 
part of the domain boundary 

• Interface corners, i.e. corners shared by at least two adjacent blocks 
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In the first two cases, the displacement of the considered corners is set explicitly: 
either it is nil or it matches the displacement of an object lying on a face con-
nected to that corner. 

In the last caae, the corners being vertices in the middle of the domain cannot be 
displaced explicitly. The LSA method is thus applied to this type of corners. 

Supposing that at a specific corner requiring to be updated, there are edges 
connected and that each of these edges connects the specific corner to another 
block corner, then the LSA method is interpreted by the following dynamic equi-
librium: 

[A:; (Axcorner " Ax^)] = 0 (5.34) 
j = l 

where Axcomer is the displacement vector of the considered corner, Axj corre-
sponds to the displacement vector of the other corner dehning edge and /cj is 
the stiEness of edge j de6ned by: 

kj = — (5.35) 
h 

with the length of the edge j . 

Thus, if all the displacements Axj are known, the displacement of the considered 
corner can be explicitly calculated from: 

Z^j=l % 

Separating the known (explicitly set) from the unknown (interface) corner dis-
placements, the following can be written: 

^ n \ 

kj j AXcorner " ^ (% AXj) = ^ (% AXj) (5.37) 

For each moving block corner, equation (5.37) needs to be solved. The complete 
system thus takes the form of: 

AAX - B (5.38) 

Where A is the matrix of coefficients to be applied to the unknown displacements, 
A X is the vector of the unknown corner displacements and B is the vector cor-
responding to the right hand side of equation (5.37). 
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As seen in chapter (4), such a system of equations can be solved using an itera-
tive method such as the SOR or CG method. Owing to the parallel multi-block 
aspect of the solution, this could be achieved using two different approaches. 

The first approach would consists of solving the complete system on one proces-
sor, thus implying that the data related to the high level grid be sent and stored 
on a single processing unit. The high level grid would then be updated on that 
processing unit and the updated block corner positions sent to the corresponding 
block processing units. Although this approach offers the advantage of allow-
ing faster iterative solvers to be used, it results in a rather complex procedure to 
gather and re-distribute all the data that could affect the computational e&ciency. 

In the second approach, each block processing unit updates the displacement 
of the corners of its own block, exchanging information only with the adjacent 
blocks. The parallel communication layout is thus much simpler than for the 
first approach. However, this second approach presents the inconvenience of re-
stricting the choice of iterative solver to be used. To avoid the non-matching of 
the corners displacement, the iterative solver to be employed can only use data 
from a previous iteration to compute the new displacements. Thus the GS or 
SOR algorithms are inadequate for such purposes. Furthermore, since the high 
level mesh is composed of a very small amount of vertices in comparison to the 
complete mesh, very few iterations will be required to reach a converged solution. 
The CG method might therefore prove computationally inefficient in comparison 
to a simpler Jacobi method. 

The adopted method, i.e. the second approach, consists therefore in setting the 
explicitly displaced corners and then solving iteratively equation (5.36), with 
an update of the displacements of the adjacent block corners at each iteration 
through an inter-process communication. Algorithm 5.4 describes the complete 
procedure. 

It is important to note that a block corner can only be associated with the motion 
of a single object on the domain boundary. If several objects were to be associ-
ated with that corner, the displacement of the corner could be set by combining 
the motion of the two objects. However, as will be seen in the presentation of the 
low-level mesh update, the displacement of the block face vertices is set according 
to the displacement of the corners. Thus, if an object is present on the face of 
a block and one of the corners of that face is displaced according to the motion 
of another object, then the update of the mesh on that face would deform the 
entire face. The faces defining the object would therefore also be deformed, thus 
not matching anymore the object surface. As a consequence, only one object per 
face can be allowed, unless their motion are identical. Furthermore, to avoid the 
association of more than one object to a single block corner, two objects cannot 
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be placed on block faces sharing a corner. 

A l g o r i t h m 5.4: High Level Grid Motion Algorithm - LSA Method 

1. Set Ax for the explicitly displaced corners of the local block, i.e.: 

For each block corner: 

(a) If the corners lying on a fixed domain boundary T h e n Ax = 0 

(b) Else If the corners is associated with the motion of a specified object T h e n A x = A-X^bject 

2. Set Ax for the other corners using the LSA method, i.e.: 

For each block corner: 

If the corners is an interface corner T h e n 

For k = l t o k=(max. num. of iteration) 

( a l C o m p u t e A x c o m e r — ~~r 

(b) ( M P I : Send & Receive) Exchange corner displacement with neighbouring blocks 

5.2.2 Low Level Grid Motion - The TFI Method 

Having displaced the corners of each blocks according to the motion of the ob-
ject(s) in the domain, the position of the remaining vertices defining each block 
must be updated. In the case of a multi-block configuration, the update pro-
cedure must guarantee the matching of the faces of two adjacent blocks. The 
transfinite interpolation method was chosen as it satisfies such a necessary con-
dition (see chapter 3). 

Three steps are required to carry out the complete update of the block vertices: 

• First, the displacements of the vertices on the block edges are determined 
from the motion of the block corners using a one-dimensional transfinite 
interpolation (ID-TFI). 

• Then, the vertices on the faces of the blocks are displaced using a two-
dimensional transfinite interpolation of the displacement of the face edges 
(2D-TFI). 

• Finally, the block interior vertices are updated using a three-dimensional 
interpolation of the displacement of the block faces. 

The TFI method is based on the parametrisation of the mesh vertices coordinates. 
A simple yet effective parametrisation consists of normalising the coordinates. 

A mesh vertex y is defined in the computational space by three indices %, j and 
A; varying from 1 to (moz, jmoz and /cmoz respectively. To parametrise its coor-
dinates, one must consider the length 5"/, 5"^ and 5"]^ of the mesh curves along 

75 



the lines of equal z or j or A. 

(.r _ f 0 for 2 = 1 
II otherwise 

5'J,J,/: - ^ _ )q_j_i_t|| otherwise 

SK,,,,, = I (I otherwise 

Where x are the mesh vertices cartesian coordinates. 

The parametrised coordinates % and ^ of a vertex are thus defined by: 

0 for 2 = 1 
I otherwise (5.42) 

0 for j = 1 
^ otherwise (5.43) 

0 for = 1 
= i . f ' " ' otherwise 

Edge Motion - I D TFI 

Using the parametric coordinates, the edges of the block can simply be update 
according to the type of edge. 

For an edge along the % direction, i.e. where (j, A;) is one of (1,1), (^moz,!), 
(^jmax) k^ax ) 01 (1, kmax ) • 

— (1 ^ "t~ 4 î,j,k^ îmax,j,k (5.45) 

For an edge along the j direction, i.e. where (2, A;) is one of (1,1), (zmai,l), 
ij'raax T k-uiax^ Or (1, Âmaa;}-

— (1 ^ XiJ,k) ̂ ^i,l,k + Xi,j,k^'^i,jmax,k (5.46) 

Finally, for an edge along the A; direction, i.e. where (2, j ) is one of (1,1), (zmoz, 1), 
{ j / m a x i j m a x ^ 0 1 ( I j J ' m a x ) -

^^i,j,k ~ (1 ~ '^i,j,k) + '4'i,j,k^^i,j,kmax (5.47) 
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The update of the vertices lying on a block edge depends only on the displace-
ment of the corners of the block and the parametrised coordinates. Since the 
corners are displaced identically on an interface between two blocks and since the 
parametrisation of the coordinates of the vertices lying on the edges is the same 
for the two adjacent blocks, the edges are exactly matched between two adjacent 
blocks. 

Face Motion - 2D TFI 

The displacement of the vertices lying on the faces of the block can then be car-
ried out by interpolating the displacements of the face edges. 

For a vertex on a face of constant z, i.e. % = 1 or z = 

+ (1 — 

- (1 - (1 - (1 -
— (1 — 

(5.48) 

For a vertex on a face of constant j , i.e. j = 1 or j = jmoz: 

^ ^ i , j , k ( 1 "4^1,j,k) "t" ' 4 ^ i , j , k ^ ^ i , j , k m a x 

+ (1 -

" (1 - V'ij.Ai) (1 - (1 -

(5.49) 

And finally, for a vertex on a face of constant A:, i.e. A; = 1 or A; = 

^ ^ i , j , k ( 1 X i , j , k ) ^ ' ^ i , l , k "H X i , j , k ^ ^ i , j T n a x , k 

+ (1 " 

— (1 — %i,;,A:) (1 — ^ij,t) (1 — 

" (1 ^ %ij,A:) jTTiaz,*: 
(5.50) 

For similar reasons to those explained in the procedure to update the edges, the 
common face interfacing two adjacent blocks will be updated identically on each 
blocks, thus guarantying the matching of the face vertices on the two blocks. 
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Interior Vertex Motion - 3D TFI 

Once the edges and faces of a block have been displaced, the remaining interior 
vertices can be displaced by interpolating the displacement of the vertices on the 
block faces. 

The contribution of the displacement of the vertices on faces of constant %, i.e. 
% = 1 or 2 = Zmoz is calculated as follows: 

DI = (1 — + 4'i,j,k * ^ ^ i m a x , j , k (5.51) 

The contribution of the displacement of the vertices on faces of constant i.e. 
j = 1 or j = jmoz is calculated as follows: 

D J = (1 - X i j , ( 5 . 5 2 ) 

Finally, the contribution of the displacement of the vertices on faces of constant 
A;, i.e. A; — 1 or A; = is calculated as follows: 

DfiT - (1 - (5.53) 

The correction due to the superposition of the contribution of the displacement 
of vertices on faces of constant % and j can be obtained from: 

Df J — (1 — * (1 - + (1 — <̂ 1,;,/:) * (%ij,t) * 

+ (<zl'ij,k) * (1 - %ij,t) * + ((;6ij,t) * (%ij,k) * 
(5.54) 

Similarly, the correction due to the superposition of the contribution of the dis-
placement of vertices on faces of constant z and A; can be obtained from: 

= (1 - * (1 - + (1 - * (^ij , t) * 

+ * (1 - + ((^^j,k) * (V'ij.̂ k) * Axi__ 

(5.55) 

The correction due to the superposition of the contribution of the displacement 
of vertices on faces of constant j and A; can be obtained from: 

= (1 - * (1 - V'ij.t) * Ax^,i,i + (1 - %(j,t) * (V'lj.t) * 

+ (%ij,t) * (1 - V-ij-.t) * + (%^j,t) * (V^ij.t) * 
(5.56) 
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Similarly, the correction due to the superposition of all the contributions is de-
termined as follows: 

+ (1 - * (1 - * (V'i 

+ (1 - * (%!,;,t) * (1 — V'ij.k) * 

+ (1 — 0i,i,fc) * iXi,j,k) * {'4'i,j,k) * ^^l,jmax,kmax 
+ * (1 - * (1 — 

+ * (1 -

+ * (1 -

(5.57) 

Finally, the displacement of an interior vertex can be calculated from: 

Ax^j,jk = D7 + D J + - D / J - - D ( 5 . 5 8 ) 

The simpliRed algorithm for the TFI method is presented in the algorithm below 
(5.5). 

A l g o r i t h m 5.5: Low Level Grid Motion Algorithm - TFI Method 

1. Initialisation 

(a) Compute the block mesh curve length SI, SJ and SK 

(b) Compute the parametrised coordinates (f), % and ip 

2. In the main loop: 

(a) Update the block edges vertices using the ID-TFI 

(b) Update the block faces vertices using the 2D-TFI 

(c) Update the block interior vertices using the 3D-TFI 

5.2.3 Overall Solution Method 

In a multi-block parallel method, the dynamic mesh issue is not a trivial one. Fur-
thermore, when adopting an overlapping mesh strategy as in the present case, a 
layer of ghost cells surrounds the blocks. These ghost cells must therefore have a 
geometry. When lying on the boundary of the domain, a simple mirroring tech-
nique is used. However, when lying on an interface between two adjacent blocks, 
the geometry must be set so as to represent exactly the cells on the adjacent 
block. It follows that, when dealing with a dynamic mesh, the ghost cells ge-
ometry must be updated at the interfaces. Also, as detailed in the How solution 
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(chapter 4), the solution of the Poisson and Burger equations depends on Lapla-
cians computed from the geometry of the mesh. It is thus necessary to update 
those Laplacians when updating the dynamic mesh. 

Algorithm 5.6 below described in a simplified manner the complete dynamic grid 
updating procedure. 

A l g o r i t h m 5.6: Grid Motion Algorithm 

1. Grid ghost cells initialisation 

(a) Mirror the domain cells for the ghost cells lying on domain boundaries 

(b) Exchange the cell geometry for the ghost cells lying on interfaces 

2. Grid Motion Initialisation 

(a) Compute the block mesh curve length SI, SJ and SK 

(b) Compute the parametrised coordinates <l>, % and ip 

3. In the main loop: 

(a) Compute the block corners displacement using the LSA method 

(b) Update the block edges, faces and interior vertices using the TFI method 

(c) Update the ghost cells geometry at the interfaces 

(d) Update the Burger and Poisson equation Laplacians 

Figure 5.1 illustrates the motion of a four blocks arrangement around a circular 
cylinder. As a measure of the preservation of the quality of the grid, the mesh 
is coloured according to the relative deformation of the cells. The mapping of 
colours is done by comparing the motion of the cell vertices from their original 
position with the motion of the cylinder. The blue area denotes cells whose shape 
virtually did not changed (relative displacement close to 0) while the red area 
describes the largest shape change (up to 0.8 cylinder diameter). As expected, 
the shape of the mesh elements close to the cylinder where the original mesh is 
denser remain similar throughout the motions. On the other hand, those close 
to the domain boundary where the original mesh is coarser, deform more signiH-
cantly. It can thus be concluded that the quality of the mesh is preserved by the 
moving mesh method. 

5.3 Solution Procedure 

As seen in the previous sections, a complete solution involves quite a number of 
parts. An initialisation part where the domain is decomposed into blocks, inter-
faces defined, and a layer of ghost cells created. In the case of a static mesh, 
the flow solution is then carried out by solving the Burger, Poisson and pro-
jection equations. In the more complex case of a dynamic mesh problem, the 
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Figure 5.1: Grid Motion - 4 Blocks Arrangement 
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solution must incorporate the update of the mesh itself, but also the update of 
the Laplacian used by the Burger and Poisson solvers. In both cases, if a turbu-
lent model is being used, then the turbulent Reynolds number must be computed. 

Algorithm 5.7 summarises the complete solution procedure. 

A l g o r i t h m 5.7; Complete Solution Algorithm 

1. Read the input files 

(a) Read the general information file 

(b) Read the block information file 

(c) Read the grid files (each proc. reads its own) 

2. Initialise the ghost cells 

(a) Initialise the block interface(s) 

(b) Set the boundary constants and variables in the ghost cells 

(c) Determine the ghost cells mesh geometry: 

• At the domain boundary (mirror of domain cells) 

• At the block interface(s) (Geometry exchange with adjacent block(s)) 

• At the edges and corners of the block 

3. If (Dynamic Mesh) T h e n Initialise the dynamic mesh parameters SI, SJ, SK, 4>, % and tp 

4. Compute the grid metrics S | and J 

5. Compute the Burger and Poisson Laplacians 

6. W h i l e ( not converged ) O r ( iter < max. num. of iteration ) 

(a) If (Dynamic Mesh) T h e n Update block mesh 

(b) If (Turbulent Model) T h e n Compute turbulent Reynolds number Ret 

(c) Solve the Burger equations 

(d) Solve the Poisson equation 

(e) Solve the Projection equations 

(f) Compute the vorticity 

(g) Compute the forces acting on the object(s) in the domain 

(h) Compute the solution's residual 

(i) Write transient output files 

7. Write output files 
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Chapter 6 

Validation 

6.1 Introduction 

Validating a CFD method is not a trivial task. As was demonstrated in the previ-
ous chapters, a method to solve numerically a Huid dynamic problem is composed 
of several parts. Validating the method should thus imply the validation of each 
individual component of the method. 

However, it is quite clear that each component of the method is inherently con-
nected to the other ones. Thus, one cannot validate a single aspect of the method 
without using other components of the method. There exists however an order or 
hierarchy in the parts composing the method. Such an order can allow for com-
ponents to be evaluated individually provided that the previous components in 
the hierarchy have been validated. The flow solver is at the top of the hierarchy, 
followed by the structural model and Anally the moving grid method. 

In the following sections, the validation of the method will be presented following 
this hierarchy. First, the flow solver will be assessed. Then, the force description 
model will be investigated and finally the validation of the moving grid method 
will be carried out. 

6.2 Flow Around an Impulsively Star ted Cylinder 

To assess the validity of the flow solver, the problem of an impulsively started 
cylinder is considered. A cylinder initially at rest is set in motion at a constant 
velocity and the wake behind the cylinder observed in the initial stages thus en-
abling the creation, diEusion and convection effects to be evaluated. 

In their experiments, Bouard and Coutanceau [8] used a visualisation technique 
to analyse the results, and in particular, to determine the main geometrical fea-
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tures of the recirculating zone that occurs behind the cylinder. The aim of the 
present numerical test is to reproduce the experimental setup and compare the 
data obtained numerically to those of Bouard and Coutanceau. Four di%rent 
cases were simulated at Reynolds numbers of 60, 200, 550 and 3000. 

6.2.1 Problem Description 

Initially, the cylinder of diameter D = 1 is at rest in a stationary fluid. At t > 0, 
the cylinder is impulsively set in motion at a constant velocity C/oo = 1. The 
two-dimensional flow development as shown in flgure 6.1 is considered where D 
is the cylinder diameter, is the angle of separation, Z, is the length of the vortex 
and (a, 6) are the coordinates of the main vortex centre. 

Figure 6.1: Geometrical parameters of the close wake 

To carry out the test case, a square domain eis shown in flgure 6.2 is chosen, the 
boundaries of which are situated flve diameters away from the centre of the cylin-
der. Since only the initial stages of the development of the flow are considered, 
such a small extent of the domain is considered suflRcient to capture accurately 
the flow. Also, it is consistent with the general layout adopted by Bouard and 
Coutanceau where the cylinder of diameter varying between 3 and 15 cm in a 
tank of dimension 56 x 46 x 100 cm. 

In a similar study, Rengel [71] used a single block mesh of identical extension and 
180 X 160 elements for the Reynolds number 60 and 200. The volumes close to 
the cylinder surface in that case were of a size of the order of O.OID. However, in 
the case where the Reynolds number reached 550 and 3000, Rengel experienced 
oscillations in the solution and reduced the extension of the domain such that the 
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outer boundaries were situated at 4 cylinder diameters from the cylinder centre. 
This led to a more rehned grid and suppressed the numerical oscillations. 

The minimum mesh size set on the surface of the cylinder is based on the di-
mensionless parameter representing a local Reynolds number in the near-wall 
region: 

^ (6 .1 ) 

where y is the distance from the wall surface, is the frictional velocity. 

Tit, is the shear stress at the wall, p is the density and z/, the kinematic viscosity. 

Using the Hat-plate boundary layer theory (Schlichting [74]), the parameter can 
be approximate by: 

= (6 .2) 

where Z, is the body length and the Reynolds number based on the body 
length. 

For the present numerical solution, the chosen mesh is composed of four blocks, 
each composed of 512 x 128 volumes, thus a total of 65536 volumes. Cells on the 
cylinder surface are thus of a size close to 0.006D. The same mesh is used for 
all the Reynolds numbers. Details of the setup including the i/"'" value estimated 
using the above formulation for each Reynolds number are presented in table 6.1. 

R e y n o l d s 

n u m b e r 
Grid S izes 

Tota l n u m b e r 

of v o l u m e s 

V o l u m e s ize 

o n c y l i n d e r surface 

60 0.04 
200 
550 

0.12 
0.30 

512 X 128 65536 0 . 0 0 6 D 

3000 1.39 

Table 6.1: Impulsively Started Cylinder - Grid details 

On the left, upper and lower boundary, a uniform inflow velocity Uoo = 1 is im-
posed, while on the right boundary, the outHow condition is enforced. 

6.2.2 Numerical Solution 

The choice of the time step is based on the Courant-Priedrichs-Lewy (CFL) 
stability restriction. According to the condition, the distance the fluid trav-
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Figure 6.2: 4 Blocks mesh used for the impulsively started cylinder case 
Coarse representation where each cell shown contains 4 x 4 volumes (left) 

Mesh detail near the cylinder surface (right) 

els in one time increment must be less than one space increment, i.e. (At < 
(|u| /Ax + I /Aj/)"^). For the four different Reynolds numbers tested, the nu-
merical solution was carried out up to t = 3 with a time step At = 5 x 10"^ 
which is much less than the stability criterion (% 3 x 10'^). 

To compare the results obtained with the current method to the experimental 
results of Bouard and Coutanceau [8], the motion and global geometry of the 
main vortex occurring behind the cylinder are tracked with time. 

Firstly, the evolution of the streamwise component of velocity in the wake of the 
cylinder is monitored. Figures 6.3, 6.5, 6.7 and 6.9 show the time evolution of the 
streamwise component of velocity for the case at = 60, .Re = 200, .Re — 550 
and .Re = 3000. 



Such velocity profiles enable the determination of the length of the primary vortex 
and its evolution with time. In figures 6.4, 6.6, 6.8 and 6.10, this characteristic 
vortex length is reported along with the time evolution of the coordinates of its 
core. 

The evolution of the streamwise component of velocity and close wake length at 
the various Reynolds numbers considered compare very weel with the experimen-
tal data from Bouard and Coutanceau [8]. Since the vortex main geometrical 
parameters are well captured by the current method, a visual comparison can 
be made of the numerically obtained flow streamlines and the visualisation of 
Bouard and Coutanceau [8] as shown in figures 6.11 and 6.12 for = 550 and 
Ae = 3000. The similarities between the numerical and experimental results are 
striking. Not only is the primary vortex well captured by the numerical method, 
but so are the secondary vortices appearing close to the cylinder surface. 

Although the cases where the Reynolds number are 550 and 3000 will develop into 
a flow with three-dimensional components, the early stages of the How are purely 
two-dimensional. Thus the two-dimensional numerical solution, is perfectly suited 
to represent these cases. The agreement between the experimental and numerical 
data found in this case indicates that the present method reproduce accurately 
the diffusion and convection effects of the Sow. 

6.3 Flow Around a Fixed Circular Cylinder 

There exist a number dynamic phenomena present in the flow around a circular 
cylinder. Among many, the vortex shedding that occurs for Reynolds numbers 
above 49 (Roshko [72]) is probably the most dominant characteristic aspect of 
such flows. The occurrence of the shedding of vortices in the wake of the cylinder 
is intrinsically linked with a non symmetrical pressure distribution around the 
cylinder. Furthermore, for low Reynolds numbers, both the shedding of vortices 
and the pressure distribution are periodic. As a consequence, the forces acting on 
the cylinder, whether the drag (streamwise) force or the lift (transversal) force, 
oscillate in a periodic fashion. 

In the following section, the study of the flow past a fixed cylinder is undertaken 
to assess the force model of the method. Firstly, the case of a quasi-steady viscous 
Sow is investigated to test the model in the absence of the vortex shedding. In a 
second part, the unsteady flow past a fixed circular cylinder is considered, thus 
including the effect of the vortex shedding. 
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Figure 6.3: Evolution of the streamwise component of velocity on the Sow axis 
for Re = 60 
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Figure 6.4: Evolution of the closed wake length and coordinates of the main eddy 
core for = 60 
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Figure 6.5: Evolution of the streamwise component of velocity on the flow axis 
for Ae = 200 
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Figure 6.6: Evolution of the closed wake length and coordinates of the main eddy 
core for = 200 
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Figure 6.7: Evolution of the streamwise component of velocity on the How axis 
for Re = 550 
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Figure 6.8: Evolution of the closed wake length and coordinates of the main eddy 
core for = 550 
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Figure 6.9: Evolution of the streamwise component of velocity on the Aow axis 
for = 3000 
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Figure 6.10: Evolution of the closed wake length and coordinates of the main 
eddy core for Ee = 3000 
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Figure 6.11: Comparison of streamlines obtained experimentally (upper) by 
Bouard and Coutanceau [8] and numerically (lower) for jRe = 550 at t = 2.5. 

Figure 6.12: Comparison of streamlines obtained experimentally (upper) by 
Bouard and Coutanceau [8] and numerically (lower) for = 3000 at 2.5. 
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6.3.1 Steady Viscous Flow 

In the steady flow past a circular cylinder, at a Reynolds number below 49, two 
symmetrical vortices are formed in the wake of the cylinder tha t remain attached 
to this one. One of the steady flow past a circular cylinder tha t has been widely 
reported in the literature is that at a Reynolds number of 40. As for the case 
of the impulsively started cylinder, the accuracy of the method can be measured 
through the geometrical characteristics of the wake of the cylinder, i.e. the co-
ordinates of the core of the vortex behind the cylinder, the separation angle and 
the reattachment length. These characteristics have been previously described in 
hgure 6.1. 

Behr et al. [6] studied the effects of the location of the lateral boundary on the 
computation of the How Held at a Reynolds number of 100 and suggested that the 
external boundary of the domain should be situated at least 8 cylinder diameters 
away from the cylinder centre. In particular, they found that if the boundary was 
set closer to the cylinder, the calculated Strouhal number and other quantities 
could be substantially affected and thus "artificial". 

For the numerical solution, an O type grid was chosen, with an outer boundary 
situated at 15 cylinder diameter from the cylinder centre. The grid is composed 
of four identical blocks dividing the domain into four quarters. Three degrees of 
refinement of the mesh were used, namely 64 x 64, 128 x 128, and 256 x 256, thus 
enabling a grid dependency check to be carried out. The grid is stretched in the 
radial direction to allow for a greater local rehnement close to the cylinder sur-
face. The rehnement close to the cylinder surface is critical to obtain an accurate 
representation of the velocity gradients. Table 6.2 summarises the grid details for 
the three rehnement levels including the 7/"̂  values based on the flat-plate bound-
ary layer theory (Schlichting [74]) and corresponding to the Reynolds numbers 
studied. Figures 6.13, 6.14 and 6.15 illustrate the three grids, with details being 
shown close to the cylinder surface. 

The boundary conditions comprised a uniform inflow condition on the upstream 
half of the outer boundary, and an outflow condition on the other half of the 
outer boundary, i.e. the downstream part. 

The time step was chosen so as to satisfy the CFL condition. On the 64 x 64 and 
128 X 128 grids, a time step of 0.01 was used (stability limit of 0.024 and 0.012 
respectively), whereas on the 256 x 256 grid, a time step of 0.005 was used (sta-
bility limit of 0.006). The solution was marched through time until a converged 
solution was reached with a residue of 10"^ as illustrated in figure 6.16 for the 
solution on the 256 x 256 grid. 

93 



Grid S izes 
T i m e 

S t e p 

Tota l n u m b e r 

of v o l u m e s 

V o l u m e s ize 

o n cy l inder surface 

?/+ R a n g e 

f o r 40 < i?e < 1000 
64 X 64 0.01 4096 0.0490D 0.23 to 4.23 

128 X 128 0.01 16384 0.0245D 0.12 to 2.11 
256 X 256 0.005 65536 0.0123D 0.06 to 1.06 

Table 6.2: Grid details 

Figure 6.13: Grid 64 x 64 and details near the cylinder surface 

As illustrated by Egure 6.17, the two symmetrical vortices characteristic of Hows 
at Reynolds below 49 are well reproduced by the present method. The symmetry 
of the flow is further shown by the distribution of the pressure around the cylin-
der. The pressure coefficient distribution on the surface of the cylinder is shown 
on Rgure 6.18 and exhibit the expected symmetry about the streamwise axis. The 
results obtained on the 64 x 64, 128 x 128 and 256 x 256 grids compare very well 
with the numerical results of Rengel [71]. Interestingly, the pressure coefficient 
at the cylinder stagnation point is greater than 1.0. Such a result is incorrect as 
the pressure coefficient should be at most equal to 1. However, this error has also 
been reported by other authors such as Rengel (num. [71]) or Tritton (exp. [84]) 
and is most likely due to the location of the reference pressure set in the outflow. 

Details of the geometrical characteristics of the wake of the cylinder are pre-
sented in table 6.3 alongside results found in the literature. It is interesting to 
note that although the diEerences between the results obtained for the coarser 
grid (64 x 64) and the others are noticeable, the 128 x 128 and 256 x 256 grids 
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Figure 6.14: Grid 128 x 128 and details near the cylinder surface 

Figure 6.15: Grid 256 x 256 and details near the cylinder surface 
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Figure 6.16: Residual history at — 40 - Grid 256 x 256 

Figure 6.17: Streamlines around a circular cylinder at — 40 - Grid 128 x 128 

resulted in comparable values. One can thus conclude that the results for the 
two finer grids are converged. 

The characteristics of the wake obtained are in very good agreement with those 
found in the literature As far as the drag coefficient is concerned, the value of 
1.55 obtained with the 256 x 256 grid seems slightly lower than the 1.60 found 
in most published numerical results. This could be due to the domain extension 
used in these solutions and how the boundary conditions are enforced. However, 
the drag coefBcient compares well with the experimental value from Tritton [84]. 

The results presented here conHrm that the method is able to describe accurately 
steady How. Furthermore, the force model produces values in good agreement 
with those found in the literature 
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Figure 6.18: Distribution of the pressure coefRcient around the cylinder surface 
at = 40 is the angle from the point of stagnation on the cylinder) 

R e f e r e n c e CD Cv Cp L / D a/D b/D N o t e s 

Tritton [84] 1.57 - - - — - - Exp. 
Coutanceau 
& Bouard [7] - - - 2.13 0.76 0.59 53.5 Exp. 

Rengel [71] 1.61 - - 2.23 0.72 0.58 54.06 FV 180 X 160 

Wanderley [88] 
1.60 

1.61 : 2.20 

2.20 

0.72 

0.71 

0.60 

0.60 

54.60 

54.01 
FD 

100 X 100 

180 X 160 

Poncet [69] 1.59 0.55 1.04 - - — - P M 256 X 256 

P r e s e n t 

M e t h o d 

1.51 0 .48 1.03 1.96 0 .73 0 .56 51 .70 64 X 64 
P r e s e n t 

M e t h o d 
1.54 0.52 1.02 2.19 0.72 0.59 54.55 FV 128 X 128 

P r e s e n t 

M e t h o d 
1.55 0 .53 1.02 2.25 0.72 0.59 54 .33 256 X 256 

Table 6.3: Summary of results for Re = 40. 
and are the contribution of the viscous and pressure forces to the drag 

coefRcient. 
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6.3.2 Unsteady Viscous Flow 

Unsteady flows around a circular cylinder have been the focus of numerous studies 
as reported in chapter 1.1. In particular, the Sows for Reynolds numbers varying 
between 40 and 1000 have been the subject of both experimental and numerical 
investigations, since both laminar and turbulent regimes are present in this range 
and plethora of results are available in the literature(William8on [91, 92], Roshko 
[72], Zhang et al. [101], Dalton [21]). It is thus quite natural to investigate the 
force model by solving the flow around a circular cylinder at Reynolds numbers 
varying in this range. 

Since most numerical solutions for the considered range have dealt with two-
dimensional setup, the validation will be carried out for two-dimensional flows 
only. Furthermore, the two-dimensional numerical solutions obtained in the con-
text of the validation of the method will provide a base for the comparison with 
the three-dimensionals solution at the same Reynolds numbers, thus allowing for 
the assessment of the three-dimensional eSiects. 

Several important parameters are of particular interest when studying the solu-
tion of the unsteady flow past a cylinder. The Strouhal number is probably the 
most important one as it describes the frequency of the shedding of the vortices 
in the wake of the cylinder. Other parameters closely linked with the Strouhal 
number include the force coe@cients, in particular the average drag coefficient, 
and the lift coefficient amplitude. One could also consider the various contribu-
tions to the force coefficients, i.e. the contribution of the pressure and viscous 
forces. These quantities will thus be the centre of attention of the validation 
analysis. 

In the present method, the coe@cients are explicitly calculated from the pres-
sure and viscous forces contributions, and as the solution is marched through 
time, the history of the coefBcients can easily be recorded. The calculation of 
the Strouhal number can be more complex. A simple method consists of dividing 
a known number of periods of the lift coefficient by the time length over which 
they occur. Such a method, although simple, is however rather inaccurate. A 
better approach employed here is to use the Fast Fourier transform (FFT) since 
the coefBcients are recorded at regular time steps. Since the Fourier transform 
method is textbook material, its details will not be presented here. 

To carry out the numerical solution for the unsteady flow past a circular cylin-
der, the two finer grids previously de6ned are used, namely the 128 x 128 and 
256 X 256 grids. A total of 20 simulations are carried out for each case of tur-
bulencemodel used, i.e. using no turbulence model, using the Smagorinsky LES 
model (LES-S), using the Structure Function LES model (LES-SF) and using the 



Selective Structure Function LES model (LES-SSF). Table 6.4 gives a summary 
of the numerical solution setup. 

The time step for both grids was chosen according to the same criteria as for the 
quasi-steady flow case. However, to account for the increase in the time rate of 
change of the fluid properties with the increase in the Reynolds number, it was 
deemed necessary to half the time steps for both grids for the Reynolds number 
above 400. 

R e T i m e S t e p for grid Turbu lence S i m u l a t i o n 

R a n g e 128 X 128 256 x 256 M o d e l T i m e 

40-375 
400-1000 

0.0100 0.0050 
0.0050 0.0025 

None, LES-S, LES-SF, LES-SSF 300 

Table 6.4: 2D unsteady viscous flow case details 

Results for all the cases can be found in tables 6.6, 6.7, 6.8, 6.9 and 6.10. 

Figure 6.22 shows for the 256 x 256 grid, the history of the force coefRcients 
along with the power spectrum associated with the lift coefhcients to determine 
the Strouhal number. 

Figures 6.23, 6.24 and 6.25 illustrate the streamlines, pressure distribution and 
vorticity distribution for a complete vortex shedding period for the flow at a 
Reynolds number of 200 on the 128 x 128 grid. 

Table 6.5 presents in a comparative fashion, both the results found in the litera-
ture and those obtained in the present investigation. 

Three relationships can be used to compare the results obtained using the cur-
rent method with those available in the literature, namely the Strouhal, drag 
coefficient and lift coefficient to Reynolds number relationships. In his work, 
Williamson [92] provided a standard curve from experimental data for the first 
two relationships that will be used as a basis for comparison. The lift to Reynolds 
number relationship can be extracted from the literature data although there ex-
ists a relative scatter of the data for identical Reynolds numbers aa can be seen 
from table 6.5. 

The Strouhal numbers obtained with the current method do agree reasonably 
well with those found in the literature. This can be further noted on figure 6.19 
when comparing the Strouhal-Reynolds number relationship for the various cases 
with the curve established by Williamson [92]. The results agree very well with 
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Re St CD Cv Cp CL M e t h o d S o u r c e 

100 0.176 1.340 0.355 0.985 0.290 PM Poncet [69] 
100 0.166 1.350 0.350 1.000 — Henderson [36] 
100 0.164 1.330 - - 0.310 Kravchenko et al. [46] 
100 0.163 1.330 — - 0.195 FD Wanderley et al. [88] 
100 0.173 1.360 - - 0.320 Rengel [71] 
100 0.168 1.360 - - 0.340 Herjford [37] 
100 0.166 1.332 0.314 1.018 0.331 1 2 8 X 1 2 8 N o t u r b . 

100 0.166 1.332 0.314 1.018 0.331 128 X 128 LES S 
100 0.164 1.321 0.301 1.020 0.322 128 X 128 LES SF 
100 0.156 1.319 0.311 1.007 0.331 128 X 128 LES SSF 
100 0.166 1.332 0.326 1.006 0.330 256 X 256 LES SF 
200 0.196 1.250 - - 0.540 FD Zhang et al. [100] 
200 0.185 1.310 — - 0.640 FV Hoe-Tai et al. [39] 
200 0.201 1.340 0.245 1.100 0.700 PM Poncet [69] 
200 0.197 1.340 0.250 1.100 - Henderson [36] 
200 0.196 1.180 - - 0.739 FE Sphaier et al. [78] 
200 0.196 1.350 - — 0.600 FV Sphaier et al. [78] 
200 0.192 1.320 — — 0.534 FD Wanderley et al. [88] 
200 0.203 1.350 - - 0.670 Rengel [71] 
200 0.196 1.350 - - 0.700 Herjford [37] 
200 0.205 1.323 0.215 1.108 0.695 128 X 128 No turb. 
200 0.205 1.324 0.215 1.109 0.695 128 X 128 LES S 
200 0.195 1.310 0.197 1.113 0.662 128 X 128 LES SF 
200 0.195 1.324 0.215 1.109 0.696 128 X 128 LES SSF 
200 0.200 1.329 0.229 l . l O O H e r j f o r d 0.679 256 X 256 LES SF 
300 0.211 1.390 0.220 1.170 0.960 PM Poncet [69] 
300 0.210 1.380 0.220 1.160 — Henderson [36] 
300 0.215 1.312 0.165 1.147 0.937 1 2 8 X 1 2 8 N o t u r b . 

300 0.205 1.319 0.165 1.153 0.936 128 X 128 LES S 
300 0.205 1.337 0.148 1.190 0.878 128 X 128 LES SF 
300 0.205 1.300 0.164 1.136 0.944 128 X 128 LES SSF 
300 0.210 1.357 0.182 1.174 0.908 256 X 256 LES SF 
325 0.206 1.400 - - — Henderson [36] 
325 0.210 1.400 — — 0.950 Mittal et al. [61] 
325 0.210 1.306 0.156 1.150 0.984 1 2 8 X 1 2 8 N o t u r b . 

325 0.215 1.313 0.156 1.157 0.983 128 X 128 LES S 
325 0.215 1.341 0.139 1.202 0.918 128 X 128 LES SF 
325 0.215 1.322 0.157 1.165 0.996 128 X 128 LES SSF 
325 0.215 1.362 0.174 1.188 0.950 256 X 256 LES SF 
400 0.223 1.420 0.208 1.212 1.100 PM Poncet [69] 
400 0.220 1.400 0.195 1.205 1.180 Henderson [36] 
400 0.215 1.417 0.143 1.275 1.127 1 2 8 X 1 2 8 N o t u r b . 

400 0.215 1.421 0.143 1.278 1.125 128 X 128 LES S 
400 0.221 1.377 0.120 1.257 1.017 128 X 128 LES SF 
400 0.225 1.345 0.137 1.208 1.127 128 X 128 LES SSF 
400 0.215 1.339 0.149 1.190 1.051 256 X 256 LES SF 

Table 6.5: Comparison of the force coefEcients at various Re 
The values in bold correspond to the present method. 
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Re St Cd Cv Cp Cl Method Source 
500 0.229 1.440 — - 1.180 PM Poncet [69] 
500 0.226 1.445 0.172 1.273 1.210 Henderson [36] 
500 0 .234 1 .467 0 .123 1 .343 1.266 1 2 8 X 1 2 8 N o t u r b . 

500 0 .234 1.467 0 .123 1 .344 1.264 128 X 128 L E S S 
500 0 .225 1.410 0.100 1.310 1.113 128 X 1 2 8 LES SF 
500 0 .225 1.419 0 .120 1.298 1.266 128 X 128 LES SSF 
500 0 .234 1 .354 0.128 1.226 1.149 256 X 2 5 6 LES SF 
1000 0.235 1.510 - - 1.370 FD Wanderley et al. [88] 
1000 0.235 1.520 - - 1.360 FD Wanderley et al. [88] 
1000 0.225 1.500 - - 1.700 FV Rengel [71] 
1000 0.234 1.470 - - 1.450 FE Herjford [37] 
1000 0 .234 1.582 0.073 1.509 1.739 1 2 8 X 1 2 8 N o t u r b . 

1000 0 .234 1.595 0 .074 1.522 1.820 128 X 1 2 8 LES S 
1000 0 .234 1 .527 0 .061 1.465 1.500 128 X 1 2 8 LES SF 
1000 0.234 1.713 0 .077 1.636 1.760 128 X 128 LES SSF 
1000 0 .234 1 .417 0 .076 1.341 1 .407 256 X 2 5 6 LES SF 

Table 6.5: Continued 

those of Williamson for Reynolds numbers up to about 250. For higher Reynolds 
numbers, there exist a relative scatter of the results. This could be due to a reso-
lution issue in the FFT method where the frequency obtained depends highly on 
the time over which the sampling is taken and the number of periods occurring 
over that time. The error bars on the hgure are an indication of the frequency 
resolution and thus error on the calculated Strouhal number. However, for each 
Reynolds number investigated, the Strouhal numbers obtained with the present 
method fall in the ranges found in the literature (table 6.5). 

When comparing the relationship between the drag and lift coeHicients and the 
Reynolds number as shown on hgure 6.20 and 6.21, the influence of the turbu-
lence model used for the solution can only be noted for Reynolds number above 
250. This can be expected as little to no small scale instabilities are present in 
the flow for Reynolds number up to about 300. 

In the case where no turbulence model is used, or when the Smagorinsky or Selec-
tive Structure Function are used, one can observe an over-prediction of both the 
lift and drag coefficients. Furthermore, the difference between the lift coefficient 
found numerically and the results found in the literature grows with the Reynolds 
number. 

The Structure Function LES model whether applied using the 128 x 128 or 
256 X 256 grid appears to slightly under-predict the drag coefficient for Reynolds 
number up to about 800. However, this model produces very good results for the 
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lift coefEcients. Also, one can note that there are very little differences between 
the results on the two grids for this turbulence model. Such a finding can be cor-
roborated by those of Breuer [11] who came to the conclusion that, when using 
LES models, greater refinement did not automatically lead to improvements in 
the results. The Structure Function LES turbulence model led to a prediction 
of the force coefEcients in better agreement with the data from Williamson [92] 
than other models, particularly for the 128 x 128 grid at high Reynolds numbers. 

This series of tests have revealed that the Structure Function LES turbulence 
model was better suited to predict the viscous flow around a cylinder in the con-
sidered range of Reynolds number. Furthermore, the 128 x 128 grid is sufficiently 
refined to produce accurate results as far as the lift and drag coefficients are 
concerned. The 256 x 256 grid did not result in substantially different solutions. 
However, the added computational cost of such a grid makes it less favoured than 
the coarser 128 x 128 one for the considered range of Reynolds numbers. 
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Figure 6.19: Relationship between the Strouhal and Reynolds Numbers 
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Figure 6.21: Relationship between the lift coefBcient and the Reynolds Numbers 
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Re St C p C D . C l 

40 - 1.535 0.513 1.022 0.000 0.000 0.000 
100 0.166 1.332 0.314 1.018 0.331 0.039 0.299 
125 0.176 1.318 0.279 1.039 0.433 0.044 0.396 
150 0.186 1.315 0.253 1.062 0.528 0.048 0.488 
175 0.195 1.318 0.232 1.086 0.616 0.051 0.574 
200 0.205 1.323 0.215 1.108 0.695 0.052 0.652 
225 0.195 1.328 0.201 1.127 0.767 0.053 0.723 
250 0.205 1.329 0.188 1.141 0.828 0.054 0.785 
275 0.205 1.322 0.176 1.146 0.882 0.054 0.840 
300 0.215 1.312 0.165 1.147 0.937 0.053 0.894 
325 0.210 1.306 0.156 1.150 0.984 0.053 0.941 
350 0.215 1.302 0.147 1.154 1.025 0.052 0.983 
375 0.215 1.281 0.139 1.142 1.057 0.052 1.016 
400 0.215 1.417 0.143 1.275 1.127 0.051 1.087 
500 0.234 1.467 0.123 1.343 1.266 0.049 1.228 
600 0.234 1.473 0.107 1.366 1.383 0.046 1.349 
700 0.234 1.539 0.097 1.442 1.482 0.044 1.450 
800 0.234 1.590 0.089 1.502 1.571 0.042 1.540 
900 0.234 1.655 0.082 1.573 1.676 0.043 1.644 
1000 0.234 1.582 0.073 1.509 1.739 0.042 1.708 

Table 6.6: Force coefRcients for the 2D 128 x 128 grid - No turbulence model 

Re St C p C p ^ C p ^ C l C l ^ 

40 - 1.535 0.513 1.022 0.000 0.000 0.000 
100 0.166 1.332 0.314 1.018 0.331 0.038 0.298 
125 0.176 1.318 0.279 1.040 0.432 0.044 0.396 
150 0.186 1.315 0.253 1.063 0.527 0.048 0.488 
175 0.195 1.319 0.232 1.087 0.615 0.050 0.574 
200 0.205 1.324 0.215 1.109 0.695 0.052 0.652 
225 0.205 1.330 0.201 1.129 0.766 0.053 0.723 
250 0.205 1.333 0.188 1.144 0.829 0.053 0.785 
275 0.205 1.328 0.176 1.152 0.882 0.053 0.839 
300 0.205 1.319 0.165 1.153 0.936 0.053 0.893 
325 0.215 1.313 0.156 1.157 0.983 0.053 0.941 
350 0.215 1.309 0.148 1.162 1.025 0.052 0.983 
375 0.225 1.302 0.140 1.162 1.060 0.052 1.019 
400 0.215 1.421 0.143 1.278 1.125 0.051 1.085 
500 0.234 1.467 0.123 1.344 1.264 0.048 1.227 
600 0.234 1.505 0.108 1.396 1.380 0.046 1.346 
700 0.234 1.537 0.097 1.440 1.477 0.044 1.445 
800 0.234 1.589 0.088 1.501 1.571 0.042 1.540 
900 0.234 1.591 0.080 1.511 1.652 0.043 1.623 
1000 0.234 1.595 0.074 1.522 1.820 0.043 1.789 

Table 6.7: Force coefRcients for the 2D 128 x 128 grid - LES S model 
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Re St CD CD. C d , CL 

40 - 1.537 0.513 1.024 0.000 0.000 0.000 
100 0.164 1.321 0.301 1.020 0.322 0.037 0.291 
125 0.176 1.306 0.264 1.042 0.419 0.042 0.384 
150 0.186 1.302 0.236 1.066 0.508 0.045 0.471 
175 0.186 1.304 0.214 1.090 0.589 0.046 0.550 
200 0.195 1.310 0.197 1.113 0.662 0.047 0.622 
225 0.205 1.317 0.182 1.136 0.726 0.048 0.687 
250 0.205 1.325 0.169 1.156 0.783 0.047 0.744 
275 0.205 1.331 0.158 1.173 0.834 0.047 0.795 
300 0.205 1.337 0.148 1.190 0.878 0.046 0.840 
325 0.215 1.341 0.139 1.202 0.918 0.045 0.881 
350 0.215 1.345 0.131 1.213 0.954 0.044 0.917 
375 0.215 1.345 0.124 1.221 0.985 0.043 0.950 
400 0.221 1.377 0.120 1.257 1.017 0.042 0.983 
500 0.225 1.410 0.100 1.310 1.113 0.037 1.083 
600 0.234 1.437 0.086 1.351 1.185 0.034 1.157 
700 0.234 1.452 0.076 1.376 1.237 0.030 1.213 
800 0.234 1.465 0.067 1.397 1.279 0.028 1.257 
900 0.234 1.469 0.060 1.409 1.312 0.025 1.292 
1000 0.234 1.527 0.061 1.465 1.500 0.029 1.477 

Table 6.8: Force coefRcients for th 2D 128 x 128 grid - LES SF model 

Re St CD C D . CL C l . 

40 - 1.537 1.024 0.513 0.000 0.000 0.000 
100 0.156 1.319 0.311 1.007 0.331 0.038 0.298 
125 0.176 1.313 0.278 1.035 0.433 0.044 0.396 
150 0.186 1.312 0.252 1.060 0.528 0.048 0.488 
175 0.195 1.317 0.232 1.085 0.616 0.051 0.574 
200 0.195 1.324 0.215 1.109 0.696 0.052 0.653 
225 0.195 1.330 0.201 1.129 0.769 0.053 0.725 
250 0.205 1.337 0.189 1.148 0.835 0.054 0.790 
275 0.205 1.328 0.177 1.151 0.894 0.054 0.850 
300 0.205 1.300 0.164 1.136 0.944 0.053 0.901 
325 0.215 1.322 0.157 1.165 0.996 0.053 0.953 
350 0.215 1.349 0.152 1.197 1.044 0.052 1.002 
375 0.215 1.371 0.146 1.225 1.088 0.052 1.047 
400 0.225 1.345 0.137 1.208 1.127 0.051 1.087 
500 0.225 1.419 0.120 1.298 1.266 0.049 1.228 
600 0.234 1.410 0.104 1.306 1.378 0.046 1.343 
700 0.234 1.536 0.097 1.439 1.483 0.044 1.450 
800 0.244 1.613 0.090 1.523 1.575 0.042 1.543 
900 0.234 1.491 0.077 1.414 1.659 0.044 1.629 
1000 0.234 1.713 0.077 1.636 1.760 0.040 1.731 

Table 6.9: Force coefficients for the 2D 128 x 128 grid - LES SSF model 
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Re St Cd CD. C d , C l C l . 

40 — 1.554 0.528 1.026 0.000 0.000 0.000 
100 0.166 1.332 0.326 1.006 0.330 0.041 0.294 
125 0.176 1.321 0.292 1.029 0.429 0.047 0.387 
150 0.186 1.318 0.266 1.052 0.519 0.052 0.475 
175 0.195 1.322 0.246 1.076 0.603 0.055 0.556 
200 0.200 1.329 0.229 1.100 0.679 0.057 0.630 
225 0.205 1.337 0.215 1.122 0.747 0.058 0.698 
250 0.205 1.345 0.203 1.142 0.808 0.059 0.757 
275 0.210 1.351 0.192 1.159 0.860 0.059 0.810 
300 0.210 1.357 0.182 1.174 0.908 0.058 0.858 
325 0.215 1.362 0.174 1.188 0.950 0.058 0.901 
350 0.215 1.366 0.166 1.200 0.989 0.057 0.940 
375 0.215 1.369 0.158 1.211 1.023 0.056 0.975 
400 0.215 1.339 0.149 1.190 1.051 0.055 1.004 
500 0.234 1.354 0.128 1.226 1.149 0.051 1.106 
600 0.234 1.365 0.113 1.253 1.219 0.047 1.179 
700 0.234 1.376 0.111 1.265 1.317 0.049 1.276 
800 0.234 1.369 0.090 1.279 1.327 0.040 1.293 
900 0.234 1.409 0.093 1.316 1.427 0.043 1.390 
1000 0.234 1.417 0.076 1.341 1.407 0.035 1.377 

Table 6.10: Force coefEcients for the 2D 256 x 256 grid - LBS SP model 
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Figure 6.23: Streamlines around a circular cylinder at Re = 200 for a complete 
vortex shedding period 
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Figure 6.24: Pressure distribution around a circular cylinder at Re = 200 for a 
complete vortex shedding period 

109 



C / 

i 

Figure 6.25: Vorticity distribution around a circular cylinder at Re = 200 for a 
complete vortex shedding period 
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6.4 Flow Around a Freely Oscillating Cylinder 

All Auid structure interactions are composed of an excitation on one hand and a 
response on the other. In the case of a freely oscillating cylinder for example, the 
excitation corresponds to the forces acting on the cylinder. Such forces are the 
results of the fluid motion around the cylinder. 

Having determined that the flow solver is able to accurately reproduce the dif-
fusion and convection effects of the flow, and furthermore tha t the force model 
predicted well the forces acting on the circular cylinder, one can conclude that the 
fluid excitation aspect of the fluid structure interaction is correctly represented by 
the present method. Thus the structural response side of the interaction remains 
to be assessed. 

In the present method, the response of the cylinder to the Euid excitation is de-
termined by the solution of a simple mass-spring-damping system and the update 
of the solution grid (see chapter 5). 

To assess the structural response, the problem of the freely oscillating cylinder 
is considered. The results obtained by Oliveira a/. [66] [78] in their numerical 
experimentation of VIV simulation will be used as a basis for comparison as their 

are validated against experimental results. 

The solution parameters of the original setup are defined in table 6.11 and the 
non-dimensional ones used in the present solution are given in table 6.12. 

Parameter Name Value 

Cylinder diameter D 0.1 m 
Reynolds number Re 275 

Inflow velocity [/oo 0.275 m/s 
Mass (2D) m 13.06 kg/m 
Stiffness k 207.5 N/m^ 
Damping c 1.041 kg/(m.s) 

Reduced velocity U* 5.5 

Table 6.11: Solution parameters 

The solution was carried out on the same 128 x 128 grid as for the two-dimensional 
flow around a fixed circular cylinder. The time step was set to 0.001 and the sim-
ulation time was of 150s. 

Results are presented in table 6.4 along with a history of the force coefficients in 
figure 6.26. Additionally, figure 6.27 displays the trace of the position of the cylin-
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Parameter Name Value 

Cylinder diameter D 1.0 
Reynolds number Ae 275 

Inflow velocity [/oo 1.0 
Mass ratio m* 1.306 

Damping ratio C 10-3 

Reduced velocity U* 5.5 

Table 6.12: Non-dimensional solution parameters 

der and shows the convergence of the motion to the characteristic Lissajous shape. 

Although the average drag coefRcient found using the present method seems 
slightly lower than that reported in the literature, the other quantities such as 
the maximum lift and transversal displacement of the cylinder agree very well 
with the data from Oliveira oZ. [66] and Krokstad e( oZ. [77] in the "DEEPER" 
project. 

Furthermore, the pattern of vortex shedding seen in iigure 6.28 corresponds to a 
"2S" pattern, i.e. two distinct opposite vortices shed per cycle. This result was 
also found by Oliveira oZ. [66] although they reported tha t a "2P" pattern 
should be expected, i.e. two pairs of vortex shed per cycle. Oliveira suggested 
that a reason why the expected pattern of vortex shedding could not be captured 
may reside in the manner in which the inHow velocity is increased. He subse-
quently made the hypothesis that three-dimensional effects could play a role in 
the vortex shedding pattern. 

Parameter Present Method Oliveira et al. [66] D E E P E R [77] 

St 0.195 — — 

CD 1.900 2.24 2.24 
Cl 0.220 0.24 0.24 
x/D 0.595 — -

y/D 0.609 0.57 0.54 

Table 6.13: Comparison of results for the freely oscillating cylinder 

As identified by Brika et al. [12], the relationship between the relative amplitude 
of oscillation and reduced velocity is characterised by two branches as illustrated 
by figure 6.29. The transition between these two branches exhibits an hysteresis 
loop and each branch is associated with a specific mode of vortex shedding. 

Although no results were available for comparison, it was thought that testing 
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1.50 

Co =1.899 

C l = 0 . 2 1 0 

Figure 6.26: Force coeHicients history for the freely oscillating cylinder at Ae = 
275, = 1.306, C = 10-3 and (7* = 5.5 

Figure 6.27: Longitudinal (upper) and transversal (middle) displacement history 
for the freely oscillating cylinder at Re = 275, m* = 1.306, ( = 10"^ and U* = 5.5. 
The Lower plot is the X-Y phase plot over the complete simulation 
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Figure 6.28: Vortex shedding period for the freely oscillating cylinder at Re — 
275, = 1.306, ( = 10'^ and = 5.5 
The sequence reads from top to bottom, left column first followed by the right 
column with a time step between frames of 0.5s. The original position of the 
cylinder is given by the black circle. 
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Figure 6.29: Amplitude of vibration versus reduced velocity 

the freely oscillating cylinder over a range of reduced velocity may add to the 
discussion and allow for the relationship between the oscillation amplitude and 
the reduced velocity to be determined. 

Further simulations were thus carried for a reduced velocity varying between 2.5 
and 25 with the same Reynolds number, damping ratio and mass ratio. 

In figure 6.30 the relative amplitude exhibits the overall expected shape although 
the hysteresis cannot be seen. Furthermore, Hgure 6.31 shows the correlation 
between the relative frequency of oscillation and the reduced velocity. 

An interesting issue which was also reported by various authors (Oliveira [66], 
Pinto of. [68], Sphaier [78]) is that over the whole range of tested reduced 
velocity, only the "2S" mode was shown. In hgure 6.32, even though the shedding 
of vortices at a reduced velocity of 4.52 shows a secondary vortex attached to the 
primary vortex, the pattern shown is characteristic of the "2S" pattern. 

In light of the comparison with the results found in the literature for a two-
dimensional freely oscillating cylinder and the characteristic behaviour demon-
strated by the additional simulations, the results presented here demonstrated 
that the moving grid method and the structural model were adequate to simu-
late the response of objects under Euid excitation. 
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Figure 6.30: Vibration relative amplitude as a function of the reduced velocity 
for = 275, - 1.306, ( = 10'^ 

0.50 

Figure 6.31: Vortex shedding frequency as a function of the reduced velocity for 
= 275, m* = 1.306, ( - 10"^ 
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Figure 6.32: Vortex shedding period for the freely oscillating cylinder at Re = 
275, = 1.306, ( = 10-3 and - 4.54 
The sequence reads from top to bottom, left column first followed by the right 
column with a time step between frames of 0.5s. The original position of the 
cylinder is given by the black circle. 
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Chapter 7 

Three-Dimensional Flow Around a 
Fixed Circular Cylinder 

7.1 Introduction 

The study of the three-dimensional flow around a circular cylinder so far has 
mostly been the focus of experimental investigations only. A review of the cur-
rent findings was done in chapter 2 and revealed that three-dimensional instabil-
ities occur in the wake of a circular cylinder for Reynolds numbers greater than 
180. Furthermore, the two discontinuities found by Williamson [90], [92] in the 
Strouhal-Reynolds number relationship are associated with two different modes 
of vortex shedding. The first, named mode A, occurs at a Reynolds number of 
about 180, whilst the second, mode B, starts occurring between Re = 230 and 
.Re = 260. These two modes are intrinsically related to the development of three 
dimensional instabilities. As a consequence, the study of the three-dimensional 
wake of a circular cylinder implies an investigation into the prediction of these 
two modes. 

As discussed in chapter 2, few numerical solutions have been carried out on such 
a problem, and have generally focused on a specific Reynolds number or at a 
specific spanwise length (Thompson et al. [83], Zhang et al. [101], Kalro et al. 
[42], Lei et al. [51]). Since the main focus of the present research is to assess the 
effect of the spanwise extension of the solution domain on the three-dimensional 
effects in the wake of a circular cylinder, it is quite natural tha t most of the 
investigation will concentrate on that issue. However, a number of issues closely 
related to the present research need investigation. 

In their study of the effect of the spanwise length on the modelling of flow over 
a circular cylinder. Lei et al. [51] concluded that a spanwise length less than 
two cylinder diameters was insufficient to achieve reliable results. Furthermore, 
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the quasi-periodic beat phenomenon observed experimentally in the lift and drag 
coefEcient history can only be observed for three-dimensional simulations with 
a spanwise extension greater than twice the cylinder diameter. However, their 
investigation was carried out for a Reynolds number of 1000. It is thus reasonable 
to question if for different Reynolds numbers the minimum spanwise length for 
which reliable prediction can be achieved would be different. 

Furthermore, in the same study, the results obtained with a spanwise extension 
of four cylinder diameters suggested there might be a relationship between this 
particular spanwise length and the real spanwise wavelength at a Reynolds num-
ber of 1000. Since all the numerical solutions encountered in the literature are 
carried out with periodic boundary conditions on the upper an lower part of the 
domain, a pseudo periodicity is forced onto the flow. This implies that a reli-
able solution using the periodic boundary condition can only be achieved if the 
extension matches an exact number of spanwise wavelengths. It is however diHi-
cult, at the present stage of the research into the flow around a circular cylinder 
to predict accurately such a spanwise wavelength. Could a different boundary 
condition be enforced on the upper and lower parts of the solution domain that 
would not incur a pseudo periodicity in the wake? It is also important to be 
able to distinguish between the eSFects of the spanwise extension and those of the 
boundary conditions on the three-dimensional wake. 

In the following chapter, these various issues will be addressed. A complete de-
scription of the numerical solution setup will be given with details of the spanwise 
extension of the domain, and the boundary conditions used. Results for the var-
ious cases will be presented and analysed. A detailed visualisation of the various 
cases focusing on the vorticity in the wake of the cylinder will allow for the various 
vortex shedding modes to be examined. The appearance of the three-dimensional 
effects in the wake of the cylinder will be shown for the various spanwise exten-
sions and the e%ct of the extension and boundary condition, assessed. 

7.2 Numerical Solution Setup 

7.2.1 Computa t iona l Mesh 

As it was shown that the 128 x 128 grid produced satisfying results in the two-
dimensional case, and considering the computational cost of a three-dimensional 
solution, this grid will be used as a base for the three dimensional solutions. 

In [92], Williamson reports that there exists two distinct spanwise wavelength 
depending on the vortex shedding modes. When mode A occurs, the wavelength 
is about four cylinder diameters while at mode B, it varies around one cylinder 
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diameter. Clearly, mode A requires a substantially greater spanwise extent of the 
domain than mode B and if one is to capture it, the solution domain must extend 
vertically by at least four cylinder diameters. 

In the context of the present investigation, three extensions were chosen, namely 
7r/2D, TrD and 27rD. This allows for the cells close to the cylinder surface to have 
an aspect ratio of 1. Table 7.1 gives the details of the three grids used here and 
figure 7.1, 7.2 and 7.3 illustrate the solution domain in the th ree cases. Details of 
the grid at the cylinder base are shown in figure 7.4. Grid E is composed of four 
blocks distributed across the perimeter of the cylinder as in the two-dimensional 
case, whilst grid F was composed of eight blocks, i.e. two layers of the grid blocks 
used in the grid E. Grid D that was tested at a later stage is composed of eight 
blocks, in the same configuration as for grid F, but each block of a quarter of the 
size of those of grid E. The reason for the greater number of blocks in comparison 
to the grid size for grid D was due to a time constraint and the need to carry out 
the solution at a faster pace. 

Grid 
Spanwise 

Extension 

Grid 

Sizes 

Total Number 

of Volumes 

Volume sizes 

on Cylinder Surface 

D 7r/2D 128 X 128 X 32 524288 

E t t D 128 X 128 X 64 1048576 0.0490D X 0.0490D 
F 27rD 128 X 128 X 128 2097152 

Table 7.1; 3D Grid details 

7.2.2 Boundary Conditions 

A substantial difference between the two- and three-dimensional solutions of the 
flow past a circular cylinder resides in the presence of two extra boundaries, one 
at each end of the cylinder. As mentioned in the introduction to the chapter, 
a commonly used boundary condition for these two boundaries is the periodic 
one. The variables on one of the boundary planes are fed into the other one 
and vice versa. Such a condition forces a periodicity of the flow and can thus 
present an inconvenience if the domain spanwise extension does not match a 
number of spanwise wavelengths. The spanwise wavelength could be increased 
or decreased depending on whether the extension is slightly less or more than a 
number of actual periods. Also, by affecting the spanwise wavelength, the three-
dimensional instabilities occurring in the wake could be reduced, increased or 
delayed. Although this type of boundary condition has been employed in most of 
the three-dimensional solutions of the Sow past a circular cylinder, it is believed 
that an alternative boundary condition could be used that would not affect the 
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Figure 7.1; Grid D - 128 x 128 x 32 

Figure 7.2: Grid E - 128 x 128 x 64 

Figure 7.3: Grid F - 128 x 128 x 128 

Figure 7.4; Grid details near the cylinder base 
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spanwise periodicity of the wake as much. 

The most obvious approach would be to use an outSow condition on both upper 
and lower boundaries. However, the imposed constant reference pressure on the 
boundaries would result in a different distribution of the pressure on the cylinder 
extremities and thus change the nature of the Aow. A symmetric boundary 
condition was therefore chosen for both upper and lower boundaries that can 
be assimilated to a slippy wall condition. Although such a boundary condition 
does not represent the reality of the flow at the boundaries, it does not result 
in a flow displaying an exact number of periods within the spanwise extension. 
Quite obviously, such a condition will affect the flow close to the upper and 
lower boundaries of the domain, but it is believed that it will allow for a better 
representation of the actual periodicity of the wake. 

7.2.3 Numerical Solution 

To assess the difference between the two and three-dimensional results, the same 
cases as for the two-dimensional Hows were tested on each of the three grids, D, 
E and F, using the structure function LES turbulence model. The general details 
of the cases setup are given in table 7.2. 

Re 
Re 

step 

Time 

Step 

Min. 

Burger 

Residue 

Poisson 

Turbulence 

Model 

Simulation 

Time 

40 — 0.0100 
125-375 25 0.0100 10-" 10-̂  LES-SF 300 
400-1000 100 0.0050 

Table 7.2: 3D flow past a circular cylinder - Case details 

The solution obtained for the steady flow at Re = 40 is used as an initial solution 
for all the other cases, increasing the Reynolds number progressively until reach-
ing the desired value. The initial solution being converged, very few sub-iterations 
are required to resolve the pressure field at each time step, thus reducing the over-
all computation time. 

A total number of sixty simulations were thus carried out using the Iridis cluster 
of the University of Southampton. The processing nodes used were dual 1.8 Ghz 
Xeon processors nodes with 2 GB of RAM interconnected by a myrinet network. 
Details of the cluster hardware and software are available on the world wide 
web at http://www.iss.soton.ac.uk/research/iridis/. Each node carried out the 
solution of two blocks of the mesh. Thus, the solutions on grid E required two 
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nodes (total of four processors for four grid blocks) while the solution on grid F 
and D required four nodes (eight processors for eight grid blocks) 

7.3 Three-Dimensional Lift, Drag and Strouhal 
Number 

One of the key results in the analysis of the flow past a circular cylinder is the 
overall force acting on the cylinder. Generally, this force is decomposed in both 
a streamwise component, i.e. the drag force, and a transversal component, i.e. 
the lift force. Both drag and lift coefEcient are recorded over the duration of the 
simulation and their behaviour over time can be analysed to reveal characteristic 
aspects of the flow past a circular cylinder. Among other factors, the Strouhal 
number can be determined using the lift force coefBcient history. 

In the present section, the history of the force coefBcients for the three grids D, 
E and F are presented and analysed over the range of Reynolds numbers con-
sidered. Key relationships between the lift, drag, Strouhal number and Reynolds 
number are then deduced and discussed. 

As the simulations are carried out using a boundary driven method, the local 
Reynolds number around the cylinder is progressively accelerated. As a con-
sequence, the How will always be two-dimensional in the initial stages of the 
simulations. Whether three-dimensionalities appear in the How after a certain 
time is then dependent upon the considered Reynolds number. It is thus ex-
pected that the history of the force coefBcients will reflect such a transition from 
two- to three-dimensional flows for Reynolds numbers above approximately 200. 

The history of the force coefRcients, as presented in figures 7.8, 7.9 and 7.10 for 
grid D, F and F respectively, revealseveral interesting features. 

The first noticeable one is the transition between the purely two-dimensional 
flow and the three-dimensional flow mentioned above. The regular sinusoidal os-
cillations with constant amplitudes of both the lift and drag coeScients for the 
Reynolds number above 300 change to oscillations with more irregular amplitudes 
when the three-dimensional instabilities appear. These changes in the force co-
efficient traces bares some consequences on the Strouhal number obtained. For 
the two dimensional part of the flow, the frequency of oscillations of the lift co-
efficient, i.e. the frequency of the vortex shedding should match the one found 
in the two-dimensional simulations whilst the frequency of the oscillation after 
the wake becomes three-dimensional should be different. In the power spectrum 
of the lift coefficient (flgure 7.8, 7.9 and 7.10), a secondary weaker peak appears 
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and separates from the main one as the Reynolds is increased. Although it is 
sometimes diScult to see it clearly, this secondary peak occurs in fact at the 
Strouhal frequency of the two-dimensional part of the flow. 

As the spanwise extension is increased from 7r/2 for grid D to 27r for grid F, the 
occurrence of the oscillation of the coefficients is delayed in time. Furthermore, 
the period over which the flow is two-dimensional increases with the spanwise 
extension. This difference is particularly noticeable when comparing the traces 
obtained with grid D with the traces from the other two grids. Interestingly, 
one could have supposed that the opposite should occur as the shorter spanwise 
extension would promote two-dimensional flows. 

Another interesting feature that appears for Reynolds numbers above 300 is the 
quasi periodic beat phenomenon. As can be observed in the three figures 7.8, 7.9 
and 7.10, the beat is more pronounced aa the spanwise extension is decreased. 
This seems to contradict the hndings of Lei a/. [51] who could only observe the 
quasi-periodic beat phenomenon for extensions greater than two cylinder diame-
ters at a Reynolds number of 1000. An explanation may be the coarser grids used 
in their simulation. Early tests carried out on coarse grids in the present research 
revealed much more regular behaviour of the force coefficients than for finer grids 
at Reynolds number of about 1000. It seems thus reasonable to suggest that a 
coarse grid that can not capture the small scale instabilities, would not be able 
to predict accurately the forces acting on the cylinder. 

The secondary oscillations (quaai-periodic beat) observed in the lift coefficient 
traces are such that in the case of the lower 7r/2D spanwise extension, the lift 
reaches both lower and higher values than for the greater extensions. This is par-
ticularly evident for Reynolds numbers between 350 and 700. As a consequence, 
the maximum lift values obtained with grid D are expected to be higher than 
for the other two grids for this range of TZe. For the lower and higher Reynolds 
numbers, the beat is not so accentuated and matches that observed in the traces 
obtained with grid E and F in a better fashion. 

Some of the findings described above are essential to understand the relationships 
between the Reynolds number and the Strouhal number, the average drag coeffi-
cient and maximum lift coefBcient. Tables 7.3, 7.4 and 7.5 give the characteristic 
force parameters for the three grids. In figure 7.5, a comparison is made between 
the Strouhal-Reynolds number relationship for the three studied grids and the 
data obtained experimentally by Williamson [92]. The results show very good 
agreement with the experimental data. In particular, the transition between the 
two and three-dimensional part of the curves is well predicted on all three-grids. 
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Re St C o CD. CL Cl^ C l , 

100 0.166 1.328 0.309 1.019 0.328 0.038 0.296 
125 0.181 1.314 0.273 1.041 0.428 0.043 0.392 
150 0.181 1.310 0.246 1.064 0.521 0.047 0.482 
175 0.190 1.313 0.225 1.088 0.606 0.049 0.565 
200 0.195 1.318 0.207 1.111 0.683 0.050 0.642 
225 0.200 1.324 0.193 1.131 0.752 0.051 0.710 
250 0.200 1.318 0.179 1.140 0.812 0.051 0.771 
275 0.205 1.308 0.166 1.142 0.842 0.049 0.801 
300 0.200 1.307 0.156 1.151 0.784 0.044 0.749 
325 0.205 1.314 0.147 1.166 0.840 0.044 0.804 
350 0.205 1.317 0.139 1.177 0.880 0.044 0.845 
375 0.210 1.303 0.131 1.172 0.868 0.041 0.836 
400 0.205 1.306 0.125 1.181 0.922 0.041 0.890 
500 0.215 1.262 0.102 1.160 1.055 0.039 1.023 
600 0.205 1.277 0.087 1.190 1.120 0.036 1.091 
700 0.205 1.242 0.075 1.167 1.126 0.032 1.101 
800 0.215 1.178 0.064 1.115 0.852 0.025 0.834 
900 0.205 1.229 0.059 1.171 1.026 0.024 1.006 
1000 0.215 1.155 0.051 1.104 0.651 0.015 0.638 

Table 7.3: Force coefRcients for grid D 

Re St CD C l CL. Cl, 

100 0.166 1.331 0.314 1.018 0.331 0.039 0.299 
125 0.176 1.318 0.279 1.039 0.433 0.044 0.396 
150 0.181 1.315 0.253 1.062 0.528 0.048 0.488 
175 0.190 1.318 0.232 1.086 0.616 0.051 0.574 
200 0.200 1.323 0.215 1.108 0.696 0.052 0.653 
225 0.200 1.328 0.201 1.127 0.767 0.053 0.724 
250 0.205 1.328 0.188 1.140 0.830 0.054 0.787 
275 0.205 1.309 0.175 1.134 0.885 0.054 0.842 
300 0.205 1.302 0.155 1.146 0.850 0.047 0.810 
325 0.205 1.302 0.146 1.156 0.839 0.044 0.803 
350 0.205 1.292 0.138 1.154 0.819 0.041 0.786 
375 0.205 1.264 0.128 1.136 0.845 0.040 0.813 
400 0.205 1.264 0.122 1.142 0.795 0.036 0.766 
500 0.205 1.256 0.101 1.154 0.830 0.032 0.804 
600 0.215 1.211 0.084 1.126 0.781 0.027 0.759 
700 0.205 1.213 0.074 1.140 0.851 0.026 0.830 
800 0.205 1.177 0.064 1.113 0.890 0.024 0.872 
900 0.219 1.195 0.058 1.138 0.826 0.020 0.808 
1000 0.215 1.203 0.052 1.151 0.717 0.017 0.703 

Table 7.4: Force coefficients for grid E 
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Re St Cd Co. CD, C l 

100 0.161 1.327 0.309 1.019 0.328 0.038 0.296 
125 0.176 1.313 0.273 1.040 0.428 0.043 0.392 
150 0.186 1.310 0.246 1.064 0.521 0.047 0.482 
175 0.190 1.313 0.225 1.088 0.606 0.049 0.565 
200 0.195 1.318 0.207 1.111 0.683 0.050 0.642 
250 0.205 1.307 0.177 1.130 0.811 0.051 0.769 
275 0.200 1.268 0.162 1.106 0.846 0.050 0.805 
300 0.205 1.287 0.154 1.132 0.745 0.042 0.709 
325 0.205 1.299 0.146 1.153 0.810 0.042 0.776 
375 0.205 1.268 0.129 1.139 0.782 0.037 0.752 
400 0.205 1.262 0.122 1.140 0.777 0.036 0.748 
500 0.205 1.253 0.101 1.151 0.820 0.032 0.793 
700 0.205 1.224 0.074 1.150 0.783 0.024 0.765 
800 0.205 1.193 0.064 1.129 0.732 0.020 0.716 
900 0.205 1.237 0.059 1.178 0.703 0.018 0.690 
1000 0.215 1.200 0.052 1.148 0.687 0.016 0.674 

Table 7.5: Force coefficients for grid F 
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The drag to Reynolds relationship shown in Hgure 7.6 also exhibits a very good 
correspondence with the data found in the literature for three-dimensional Rows. 

It seems thus difficult to assess the difference between the three grids from the 
Strouhal to Reynolds and Drag Coefficient to Reynolds relationships alone. 

The differences between the results obtained at different spanwise extensions 
starts showing when looking at the lift coefficient relationship with the Reynolds 
number as illustrated in hgure 7.7. Although for Reynolds numbers up to « 350 
similar results are found for the three grids, the maximum l i f t coefficients found 
for grid D at Reynolds numbers between 350 and 700 are over-predicted and thus 
a lot closer to the two-dimensional results than the other tv^o grids. This is a 
consequence of the more accentuated quasi-beating phenomenon observed in the 
coefficient traces and discussed previously. For Reynolds numbers higher than 
700, the lift coefEcients obtained with grid D tend to reduce towards those ob-
tained with the other two grids suggesting that the three curves would eventually 
converge for Reynolds numbers greater than 1000. 

Despite the differences in results discussed above, the analysis of the force coeffi-
cients is not suHicient to clearly assess the influence of the spanwise extension on 
the three-dimensional wake behind a circular cylinder. In particular, the quasi-
beating phenomenon observed for all three grids suggests that differences in the 
wake of the cylinder could be observed for the various spanwise extension. It is 
thus necessary to investigate the vortex shedding using adequate visualisation. 

7.4 Vortex Shedding Modes 

In the present section, an analysis of a visualisation of the results obtained is car-
ried out. The core part of the analysis will focus on the components of vorticity 
in the wake of the cylinder. The visualisation was developed using the IBM Data 
Explorer software (see http://www.opendx.org). 

Williamson [90] showed the existence of two modes of vortex shedding in the 
transition to three-dimensional wake. Furthermore, each of these two modes 
corresponds to a spanwise instability in the wake and has a distinct geometry 
(Williamson [92]). In mode A, the streamwise vortices of one sign are in a stag-
gered arrangement from one braid region to the next whilst in mode B, an in-line 
arrangement of streamwise vortices of the same sign can be seen. 

In addition to their specihc geometry, both mode A and B exhibit very different 
spanwise wavelengths. Although a relative scatter of the data can be seen in 
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the literature, it is usually found that in mode A, the spanwise wavelength is of 
about 4D while it is of about I D for mode B. As a consequence, grid F used 
in the present research should be adequate to capture mode A as its spanwise 
extension is 27rD. Grid E of spanwise extension vrD might be a bit too short to 
capture fully the mode and grid D with an extansion of 7r/2Z) should not allow 
for mode A to be well predicted. All three grids on the other h a n d should be able 
to capture the vortex shedding mode B. 

7.4,1 Mode A 

In figure 7.11, the influence of the spanwise extension is shown by comparing the 
streamwise and spanwise components of vorticity at a Reynolds number of 200 
on the three grids D, E and F. The dark blue and red surfaces show a particular 
value of positive and negative streamwise vorticity while the light blue and green 
surfaces show a particular value of positive and negative spanvyise vorticity. 

Grid F clearly captures mode A and exhibits a spanwise wavelength of about 
4D. Since this is slightly more than the spanwise extension of grid E, it is un-
derstandable that the visualisation shows a partially predicted mode A on grid 
E'. Another interesting comment can be made from this visualisation regarding 
grid D. Although the spanwise extension of grid D is far too short to capture 
mode A, its extension is close to half a wavelength, thus explaining the reason 
for seeing what appears to be half of the spanwise period. 

It thus appears that grid D, through the non-periodic spanwise boundary con-
ditions, is capable of capturing half of the spanwise wavelength of the vortex 
shedding. In 6gure 7.12, the visualisation of the streamwise and spanwise vortic-
ity for grid D and F at = 225 supports this argument by showing a complete 
wavelength period in the case of grid F and an exact half period for grid D. 

Although it was not possible to produce a comparative visualisation for grid F 
owing to the absence of results at this particular Reynolds number, it appears 
that for .Re = 225, the spanwise wavelength is closer to TrD, thus suggesting that 
the vortex shedding mode A may have indeed different spanwise wavelengths de-
pending on the Reynolds number. This could explain the relative scatter of data 
reported by Williamson [92]. 

The comparison between the experimental visualisation of mode A by Williamson 
[92] and the present numerical simulation at Re = 200 shown in figure 7.13 shows 
remarkably similar pa t te rn in the vorticity. Furthermore, the wavelength shown 
in both case is in very good agreement. This confirms that the present method is 
capable of accurately predicting the vortex shedding mode A provided the grid 
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Figure 7.11: Domain spanwise extension influence on Mode A vortex shedding. 
Comparison of the streamwise and spanwise components of vorticity for grid D 
(top), grid E (middle) and grid F (bottom) at Re = 200. 
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Figure 7.12: Mode A vortex shedding: Comparison of the streamwise and span-
wise components of vorticity for Grid D and E sA Re = 225 

Figure 7.13: Mode A vortex shedding at Re = 200 
Williamson (exp.)[92](left) and present simulation (right) 
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possesses sufBcient spanwise extension. Although grid E resulted in a good pre-
diction of the wake for Re = 225 and grid D could predict half a wavelength, 
most of mode A occurs at a spanwise extension of about 4D. It can be concluded 
that a spanwise extension of at least 2D is required to capture half a wavelength 
at mode A and one of at leaat 4D for the complete wavelength. 

7.4.2 Mode B 

The transition to the vortex shedding mode B is somewhat difficult to investigate 
as numerous simulations would be required in the Reynolds number range where 
it occurs. Since at Re = 200 it is clearly established that mode A is occurring, 
and since the transition occurs approximately between .Re — 230 and .Re = 260, 
a visualisation of the vorticity in the wake of the cylinder for Reynolds numbers 
between 200 and 300 should give an insight into the transition phase. 

A confirmation of this hypothesis is given in Sgure 7.14 where clear evidences of 
the occurrence of both mode A and B are provided for — 200 and = 300 
on grid .F. The visualisation at .Re = 250 shown in this figure is extremely in-
teresting as it exhibits a vortex pattern complying with mode A but with much 
thiner vortex layers, indicating the transition to mode B. Furthermore, a clear 
difference with the pure mode A vortex shedding patterns can be seen in the 
spanwise component of vorticity (light blue and green surfaces). 

Further evidence of the transition between the two vortex shedding modes is 
given in figures 7.15, 7.16 and 7.17 where the components of velocity are shown 
in the symmetry plane in the wake of the cylinder. 

In particular, the transversal component of velocity, [/, exhibits a clear wavy 
pattern at .Re = 250 that does not show at the lower Reynolds number of 200. 
At the higher Reynolds number of 300, although there seems to be an oscillation 
in the spanwise direction of the transversal component of velocity, the pattern 
exhibited are much more uniform than for Re = 250. 

Also, in Agure 7.17, a clear change of the spanwise component of velocity can 
be observed. At Re = 200, the switching of sign of the velocity is extremely 
regular and the spanwise velocity component quite strong. At the intermediate 
Re = 250, the spanwise velocity still displays the alternative pattern observed 
at Re = 200 in the far wake of the cylinder, but the close wake seems to be 
undergoing a transition. At .Re = 300, the intensity of the spanwise velocity has 
decreased substantially suggesting that, although three-dimensional instabilities 
are present in the flow, their spanwise wavelengths are much smaller. 

135 



Figure 7.14; Mode A to Mode B Transition - Streamwise and spanwise compo-
nents of vorticity for grid F - Mode A at Re = 200 (top), Transition at Re = 250 
(middle) and Mode B at i?e = 300 (bottom) 
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• 
Figure 7.15: Mode A to Mode B Transition - Streamwise components of velocity 
(U) for grid F - Mode A at Re = 200 (top), Transition at Re = 250 (middle) 
and Mode B at i?e = 300 (bottom) 
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Figure 7.16: Mode A to Mode B Transition - Transversal components of velocity 
(V) for grid F - Mode A ed. Re — 200 (top), Transition at Re = 250 (middle) 
and Mode B at i?e = 300 (bottom) 
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Figure 7.17: Mode A to Mode B Transition - Spanwise components of velocity 
(W) for grid F - Mode A at i?e = 200 (top), Transition at Re = 250 (middle) 
and Mode B ai Re = 300 (bottom) 
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For Reynolds numbers greater than 300, the shedding of vortices in the wake of 
the cylinder follows the pattern of mode B. As shown in figure 7.18, the predic-
tion of mode B with grid F compares remarkably well with both experimental 
(Williamson [92] and numerical (Poncet [69]) results found in the literature. 

1 

Figure 7.18: Vortex shedding in the wake of a circular cylinder at Re = 400. 
From left to right; Williamson (exp.)[92], Poncet (num.)[69] and present 

numerical solution 

Since the wavelength of mode B is close to ID, the three span wise extensions are 
suificient to capture the mode as illustrated by figure 7.19. 

Indeed, a visual inspection of figures 7.20, 7.21 and 7.22 reveals that for Reynolds 
numbers greater than 300, the spanwise wavelength is approximately equal to ID 
at Re — 300, decreasing slightly as the Reynolds number increases to approxi-
mately 0.8D for Re = 1000. 

A closer look into the visualisation of the wake vorticity obtained with grid D 
shows however that two spanwise periods are captured at most Reynolds num-
bers, thus giving a spanwise wavelength of slightly less than O.SD. 

7.4.3 Spanwise Wavelength and Extension 

Determining the wavelength is rather difficult from the visualisation, particularly 
at the higher Reynolds number where the wake is more chaotic. However, by 
looking at the wake close to the cylinder, i.e. at approximately x/D = 3, it 
is possible to estimate the wavelength of the three-dimensional instabilities by 
averaging a number of periods over the spanwise extension of the cylinder. 
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Figure 7.19: Mode B vortex shedding: Comparison of the streamwise and span-
wise components of vorticity for grid D (top), grid E (middle) and grid F (bot-
tom) at Re = 300 
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Figure 7.20: Evolution of the spanwise and streamwise vorticity for grid D 
From top to bottom, left column first followed by the right column: Re = 300, 
325, 375, 400, 500, 700, 800 zuxi 900. 

Figure 7.21; Evolution of the spanwise and streamwise vorticity for grid E 
From top to bottom, left column first followed by the right column: Re = 300, 
325,375,400,500,700, 800 ;Hd 900. 
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Figure 7.22: Evolution of the spanwise and streamwise vorticity for grid F 
From top to bottom, left column first followed by the right column: Re — 300, 
325, 375, 400, 500, 700, 800 SKui 900. 
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Although using such a method may appear rather inaccurate considering that 
very few periods can be observed particularly for the shortest extension (grid 
D), the resulting estimation agrees rather well with Williamson's measurements 
[92] as shown in figure 7.23. The separation between the wavelengths at mode A 
and those at mode B clearly appears and compares well with Williamson's trends. 

Williamson (1996) 
Present MetlnocI - Grid D 
Present Method - Grid E 
Present Method - Grid F 

s Mode A 

Mode B 

200 400 600 

Re 

800 1000 

Figure 7.23: Spanwise wavelengths of the three-dimensional instabilities 

Furthermore, whilst the wavelengths obtained for grid E and f are similar, those 
obtained for grid D at a spanwise extension of 7r/2D are slightly shorter for the 
Reynolds numbers between 250 and 600. Considering that only a single period 
could be measured from the visualisation of the spanwise vorticity on grid D, the 
estimation could be rather inaccurate for this particular grid. However, the fact 
that the wavelength is systematically lower suggests that the spanwise extension 
and most probably the boundary conditions imposed in that direction affected 
the three-dimensional instabilities. 

7.5 Summary 

The investigation of the effects of the spanwise extension on the three-dimensional 
wake of a circular cylinder revealed several interesting facts. 
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The cmalysis of the force coefRcients obtained for the three spanwise extensions 
led to the conclusion that the TrD (grid E) and 27rD (grid F ) extensions produced 
similar results. In the case where the extension was only of 7T/2D, both Strouhal 
number and average drag coeHicient were well predicted. However, owing to the 
more pronounced quasi-periodic beat phenomenon, the lift coefficient amplitude 
was over-predicted. Nevertheless, the trend observed in the lift coefficient ampli-
tude for that extension suggested that as the Reynolds number is increased, the 
prediction of the force coefficient for grid D would converge with the other two 
grids. 

The visualisation of the vorticity in the wake of the cylinder confirmed that both 
grid D and E are not well suited to predict the vortex shedding mode A across 
the whole range of Reynolds number where it occurs. However, a very interesting 
result at a Reynolds number of 225 showed that grid D was capable of predicting 
an exact half wavelength of mode A. Grid F on the other hand allowed for mode 
A to be fully captured and the transition between mode A and B to be visualised. 

For the vortex shedding mode B, it was found that all three extensions and in 
particular the shortest 7r/2 extension produced similar wake vorticity patterns. 
The agreement between the spanwise and streamwise vorticity observed for the 
three grids therefore suggests that the extension of grid D is sufficient to predict 
the flow past a circular cylinder at Reynolds numbers in the mode B range. 

Finally, the estimated spanwise wavelength obtained from the visualisation of the 
three-dimensional instabilities compared very well with experimental data found 
in the literature for all three spanwise extensions investigated thus confirming 
that the three-dimensional instabilities are well predicted in all three cases. 

In light of these findings, it is possible to conclude that a finite spanwise exten-
sion of the cylinder is sufficient to predict the flows past an infinitely long circular 
cylinder in the considered range of Reynolds numbers. Clear evidences were pro-
duced showing that the minimum spanwise extension required for flows at low 
Reynolds numbers up to about 300 was in the region of four cylinder diameters. 
For higher Reynolds numbers, a shorter spanwise extension between 7r/2D and 
-KD is sufficient to predict accurately all the characteristic components of the flow, 
namely the force coefficients, the Strouhal number and also the three-dimensional 
instabilities and their wavelength. Furthermore, it is reasonable to suggest that 
such conclusions could extend beyond the range of Reynolds number studied in 
the present investigation. 
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Chapter 8 

Conclusions 

8.1 Summary 

The aim of this research was to investigate the three-dimensional wake behind a 
circular cylinder using numerical tools and determine the influence of the domain 
spanwise extension on the solution. 

The review of the research carried out to date revealed the clear inadequacy of 
the two-dimensional solutions to describe practical flow problems where a three-
dimensional wake occurs. The few three-dimensional numerical solutions reported 
in the literature predicted a wake in close agreement with the experimental data, 
capturing the three-dimensional effects. Furthermore, the observation of the vor-
ticity in the wake showed that a spanwise periodicity was occurring thus suggest-
ing that a finite spanwise extension would be sufficient to accurately predict the 
flow and Enid-structure interaction. 

Practical engineering problems often involve long cylinders in a Eow. A typical 
example is that of marine risers subject to current and undergoing vortex-induced 
vibrations. Determining the minimum spanwise extension of the numerical so-
lution domain required to capture the flow past a circular cylinder thus allows 
for the problem of the infinitely long cylinder to be reduced to a finite length 
one. An immediate consequence of significant importance is tha t the accurate 
prediction of the vortex-induced vibration of long cables can be obtained from 
the finite spanwise length domain thus at a reasonable cost. 

In this research, a numerical method was presented to solve the incompressible 
form of the Navier-Stokes equation based on the projection method and the finite 
volume discretisation. To allow for complex geometries to be solved, a curvilin-
ear coordinates, multi-block approach was adopted that led to a straight forward 
parallelisation of the solution. In turn, the parallel strategy allows for large or 
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dense computational domains to be solved on computer clusters. Although careful 
thinking is required to implement such a parallel solution, the method presented 
here showed a simple and efhcient parallelisation. In particular, the development 
of a general formulation for the enforcement of the boundary conditions allowed 
for a straight forward implementation. Moreover, such a versatile formulation 
enables the subsequent addition of new boundary conditions or numerical meth-
ods in a very simple manner. 

To tackle the fluid-structure interaction, a force model was presented that allows 
the determination of the forces acting on bodies present in the flow. Further-
more, a structural model combined with a parallel moving mesh procedure was 
presented that enables the motion of objects present in the domain across several 
blocks. 

The suitability of the solution method for the present research was then demon-
strated through the validation of each of its components. The initial stages of the 
development of the wake behind an impulsively started cylinder were predicted 
accurately and validated the flow solver. A number of two-dimensional cases of 
flow past a circular cylinder were then used to demonstrate the validity of the 
force model and showed a very good agreement with the data found in the lit-
erature for the predicted forces acting on the cylinder and the Strouhal number. 
The structural model and moving mesh method were then assessed on the flow 
past a freely oscillating cylinder at various reduced velocities, thus showing the 
ability of the method to accurately predict the flow past moving objects and to 
handle dynamic objects spread across several domain blocks. 

The investigation of the three-dimensional wake of the cylinder was then carried 
out on three diEerent spanwise extensions of the domain. The numerical results 
obtained here and validated by the experimental work of Williamson [90, 91, 92] 
represent a significant contribution to the field of the numerical solution of flows 
past a circular cylinder. Such a systematic analysis of the influence of the span-
wise extension of the solution domain over the considered range of Reynolds 
numbers has never been reported in the literature. 

The study of the behaviour of the forces acting on the cylinder showed a very 
good agreement with the data found in the literature. In particular, the tran-
sition from the two-dimensional to three-dimensional flow clearly appeared and 
the quasi-periodic beat phenomenon was observed. 

However, the diff"erences between the results obtained for the three spanwise ex-
tensions could not allow for the clear assessement of the efl^ects of the spanwise 
extension on the solution. It thus became evident that an appropriate visu-
alisation of the three-dimensional instabilities in the wake of the cylinder was 

147 



necessary to investigate the effect of the spanwise extension. 

The visualisation of the three-dimensional components of t h e vorticity in the 
wake of the cylinder provided clear evidences of the diEerent vortex shedding 
modes. Furthermore, such a visualisation gave an insight into the transition be-
tween these modes. The comparison between the wake predicted using the three 
spanwise extensions revealed clear differences particularly for the vortex shed-
ding mode A and the transition to mode B. Moreover, by determining through 
the visualisation the wavelengths of the instabilities and comparing the results 
obtained with the three extensions, it was shown that a finite spanwise extension 
was sufficient to predict accurately the flow past a circular cylinder. 

Indeed, it was found that to correctly reproduce the vortex shedding mode A, a 
spanwise extension of about four cylinder diameters was sufficient. For the vortex 
shedding mode B, although the spanwise wavelength was shown to be close to 
one cylinder diameter, the shorter 7r/2D spanwise extension was not quite suffi-
cient to predict accurately the flow. In particular, owing to a more accentuated 
quaai-periodic beat phenomenon, the lift coefBcient was over-predicted for the 
Reynolds numbers between 350 and 700. 

However, the trends observed in the force coefficients suggest t h a t the results for 
the three spanwise extensions would eventually converge for Reynolds numbers 
higher than 1000. Thus, although the 7r/2D spanwise extension, was not sufficient 
in the considered range of Reynolds numbers, it should be for higher Reynolds 
numbers where the three-dimensional effects are weaker. 

It can thus be concluded that the study of the flow past an infinitely long cylinder 
can be reduced to a finite length one, the length of which is dependent upon the 
vortex shedding mode. It was shown that the solution of the flow past such 
a finite length cylinder gives an accurate prediction of the forces acting on the 
cylinder, the geometry of the wake and the three-dimensional effects, all of which 
being predicted at a reasonable computational cost. It becomes thus possible 
to envisage the solution of flows past marine risers undergoing vortex-induced 
vibrations using a method such as that presented here at a viable cost. 

8.2 Further Investigations and Perspectives 

The research into the flow past circular cylinders has been for years at the centre 
of numerous investigations and will still raise considerable interest for the number 
of phenomenon it encompasses. During the course of the present investigation, 
several issues were raised that the author believes require fur ther investigation. 
Also, from the discussion and results presented in this thesis, a few perspectives 
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can be suggested. 

An interesting observation that was made when looking into the history of the 
three-dimensional force coefRcients traces was the clear distinction between the 
two- and three-dimensional phases of the How. Although the power spectrum 
revealed a secondary peak in the Strouhal frequencies corresponding to the two 
dimensional Strouhal number, the use of Fourrier transforms to determine the 
two dimensional frequency is rather inaccurate. For the Fourrier transforms to 
produce good results, a large number of periods is desirable which is not the case 
for the two-dimensional part of the flow. It was also found t h a t the uncertainties 
existed for the three-dimensional frequencies. It would be interesting to investi-
gate alternative means of measuring the vortex shedding frequencies. Combining 
the identification of the vortices as they are shed and released in the wake with a 
proper statistical model could provide a more accurate prediction of the Strouhal 
frequency. 

Furthermore, the same method could be used to determine accurately the three-
dimensional instabilities wavelengths. Clearly, the averaging procedure employed 
in the present work can only be adequate if a large number of periods can be 
observed in the Aow. By identifying the three-dimensional vortices and their 
shedding, one could, through statistical analysis determine accurately the span-
wise wavelengths. 

Many engineering Aow problems involve oscillating bodies. In particular, the 
problem of oscillating marine cables or risers has been the centre of attention for 
quite some time. The method presented here was developed with the capabil-
ity of dealing with moving bodies and was shown to predict well the flow past 
an oscillating cylinder. It would thus be very straight forward to extend the 
present investigation to oscillating cylinders, thus determining the wavelength of 
the three-dimensional instabilities in the case of oscillating bodies and as a con-
sequence the minimum spanwise extension required. Since the oscillation tend to 
promote the two-dimensionality of the flow, it is expected that such an extension 
should be shorter than for the fixed cylinder case. 

To solve the problem of flexible marine risers subject to current loading, hybrid 
methods such as that developped by Dalheim [20] have been employed. In such a 
method, the fluid forces acting on the cylinder are calculated a t various locations 
along the length of the riser with a two-dimensional CFD method. Using the 
strip theory, those local forces are combined to obtain the complete fluid loading 
on the cylinder and furthermore the response of the riser to the excitation. Since 
the three-dimensional effects are non-negligeable for most practical engineering 
flows, the use of three-dimensional sections instead of the two-dimensional ones 
would allow for a better determination of the local forces, and thus improve the 
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overall solution. 

Finally, an aspect that was not investigated in the present research concerns the 
mathematical model representing the flow. More specifically, the assumptions 
made when dealing with a two-dimensional approximation of the Navier-Stokes 
equation result in the elimination of a number of factors f rom the equations. In 
particular, by assuming that no third dimension exist, the derivatives in that 
direction are ignored. During the early stages of the development of the present 
method, tests carried out on a two-dimensional domain, i.e. using a unit thickness 
of the domain, showed different results than those expected. A carefull inspection 
revealed that the metrics associated with the third dimension were not all null 
and thus contributed to the flow. To correctly predict two-dimensional flows, 
i.e. to match the two-dimensional mathematical model used in the literature, it 
was necessary to zero those metrics. Investigating the difference in the mathe-
matical models used in both the two- and three-dimensional cases would most 
certainly provide answers regarding the discrepancies of the results found in the 
two-dimensional cases. 
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[75] SCHULZ, K . AND KALLINDERID, Y . , Unsteady flow structure interaction 
/or mcompreaaz^Ze yZowg uamg (fe/ormoMe Journal of Compu-
tational Physics, 143 (1998), pp. 569-597. 

[76] SMAGORINSKY, J. , GeneroZ czrcu/a^zon eipenmeM^a pnmẑ %%;e ggua-
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Appendix A 

Coordinate System 

To account for arbitrarily shaped bodies, it is necessary to introduce a general 
curvilinear coordinates system. Such a system will be effective by transforming 
the governing equation. 

In this section, the relationships used to transform the governing equations be-
tween the generalised coordinates system and the physical coordinates system are 
presented. The geometrical concept and coordinates transformation relationships 
are essentially based on those presented by Deng oZ. [24] and are repeated here 
for convenience. 

Let be the unit tangent vector in the direction. In a Cartesian system, a 
line element is thus defined by; 

dr dziei, r = 0 + 2:̂ 62;̂  

Where 0 corresponds to the origin of the coordinate system. 

In a body fitted coordinate system, i.e. curvilinear coordinate system, the line 
element is defined as: 

dv 
dr = d ( j — = d(jgj 

The Jacobian of the transformation is: 

^ ^ ^ ^ order) (A.l) 
1^1,42,43; 

{g;} is the covariant basis of vector tangent to the curves along which varies. 
Let {g'} be the contravariant basis of vector g' = grad^, normal to the faces 

= const. 
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The relationship between the covariant and the contravariant vectors is: 

g' = X gt (2, j, A; in cyclic order) (A.3) 

The Jacobian J can in fact be interpreted as the volume in the physical space 
of a unit cube in the computational space 

Now, since the area element on a coordinate surface of constant is: 

= l|gj X gtll 

then the modulus of S' = Jg® is the surface area corresponding to a unit in-
crement ( i j and k cyclic) with its direction orthogonal to the surface 

Thus the flux associated to the vector V across the surface area of sides A^j, A^k 
(j, k cyclic) is related to the contravariant component = u g ' by; 

Flux = = u . S' (A.4) 

The oriented area satisfies the so-called Arst fundamental metric identity: 

= 0 for all j (A.5) 

The second fundamental identity also has to be fulHlled when the curvilinear 
coordinate system moves with time: 

Where Ug is the velocity of the curvilinear coordinate system, i.e. the grid veloc-
ity, whose Cartesian components are: 

% 
(A.7) 

^=const 

Uĝ  is the contravariant component of the grid velocity defined by: Uĝ  = Ug • g \ 

An important relationship to be used in the chain rule is: 

^ = ^" 'S ' • e,, = J - ' S j (A.8) 
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Covariant and contravariant metric tensors: 

= g , ' gj and = g ' . gJ = (A.9) 

Where 

4 :=(let (/L.IO) 
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Appendix B 

Flow Governing Equation in 
Curvilinear Coordinates Form 

B. l Equations in Cartesian Coordinates System 

In the absence of external body forces, the basic governing equation for an in-
compressible Newtonian fluid are the continuity equation and the momentum 
equations. 

In Cartesian coordinates, these can be written as follows: 

f)'!! • 
Continuity: = 0 (B.l) 

Mommtum: 9 + N (B.2) 

Now, to transform these equations to their non-dimensional form, the following 
relationships are used: 

< = 7 ; u - = ^ •, = r = ^ {B,3) 
ÔO P'^oo ÂOO 

Where the superscript * denotes the non-dimensional quantities. 

Substituting for these in the governing equations and dropping the superscript 
for convenience gives; 

f)u • 
Continuity: = 0 (B.4) 
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Momentum: ^ = _ | P + ^ ^ ^ 
0% 0%i R e o ^ \ o b j c b ; ' 

B.2 Filtered Equations for LES Model 

As seen previously, the Altered equations governing the Sow using LES turbu-
lence modelling can be obtained rather easily. The final filtered equations, in 
their non-dimensional form, are repeated here for convenience: 

du-
Continuity: = 0 (B.6) 

obi 

Momentum: ^ ^ = + 

Where: 
1 . 2 

(G.8) 

and: 

== Tvith |6f| === 5'ij (B.9) 
O gZA o 

Defining the pseudo-pressure q by adding the isotropic part of the turbulence 
SGS stress tensor to the pressure: 

(B.IO) 

The momentum equation can thus be written as follows: 

% a? 0 1 1 \ 
- + 

j?e .Re* / \ 
(B.ll) 

Now, as outlined before, the projection method consists of solving the Burger 
equations to obtain an intermediary velocity field. A pressure equation is then 
solved that is used to project the intermediary velocity field onto a zero diver-
gence space. 

The set of filtered equations is as follows: 
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Continuity: — 0 (B.12) 

(B.13) 
.Re Ee t / ĉci 

Poisson: (B.14) 
J 

Projection: Ui = u* — (B.15) 

Where: 

= ^ Z j l i f®'®' 

And: 

1̂ 1 - (B.17) 

B.3 Filtered Equations in Curvilinear Coordinates 
System 

B.3.1 Continuity equat ion 

Using the chain rule, the continuity equation becomes: 

% n . ^ 6 ; % n 

Using now equation (A.8) gives the continuity equation in terms of the Cartesian 
components of velocity: 

= 0 (B.19) 

And, from equation (A.5): 

r-lSjSiu,) _ 

SO 

Finally, using equation (A.4), the continuity equation using the contravariant 
components of velocity can be written as:: 
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(B.20) 

I.e.: 

a j f y 
= 0 (B.21) 

Where U , the filtered contravariant component of velocity, is defined as: = 

B.3.2 Burger equations 

In the Burger equation (B.13), the time derivative for Zi — const will correspond 
to a time derivative for = const. Using the chain rule gives: 

dt dt 4=const 

(B.22) 

Where: ^ ^ 

Thus, multiplying equation (B.13) by the Jacobian of the transformation, J , 
substituting the above expression for the time derivative and using the chain rule 
gives: 

du- ,a&g(g.-5-) 

— J 
% ^ 
ga;, % 

1 1 
+ 

.Re .Ret/ % 

Now, since the second fundamental metric identity (A.6) must be satisHed: 

0 

Adding the above to the Burger equation thus gives: 

a ( J < 
dt + J 

J 
1 1 
+ 

Ee .Re* 
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And, from equation (A.8): 

aiJut) J ~ s ; 
% ' 9& 

1 1 
#6, 

i c / ^ 
% 

Or, since the first fundamental metric identity must be satisfied (eq. (A.5)): 

a{Ju-) , d 
dt 

A % 
1 1 

Ee 
T-l ok CZ , T-1 ot nf 

' 'Wi ' 
(B .23 ) 

If we now define the contravariant relative velocity component of the fluid with 
respect to the grid such as: 

Then, equation (B.23) becomes: 

(B.24) 

+ 
dt 

Â:_ [4 n. 

1 1 ^ T-l qt qZ , T-l Ct C/ (B.25) 

B.3.3 Poisson equation 

Using the chain rule, the Poisson equation (B.14) becomes: 

Using now equation (A.8), the above equation becomes: 
% \ ' % 

And, from the first metric identity: 

J - 1 A % T-l pt p/ 
J S . S . ^ 

J - i ^ i g x ) 

(B.26) 

(B.27) 

(B.28) 

Or: 
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a ( 

Finally, from the deSnition of the contravariant components of velocity: 

& ^ 
B.3.4 Project ion equations 

Using the chain rule, the projection equations (eq. (B.15)) become: 

If i 
Using now equation (A.8), the above equation becomes: 

— J (B.32) 

B.3.5 Turbulent Stress tensor 

Finally, using the chain rule again, equation B.18 becomes: 

^ 1 

i.e., with equation (A.8): 

B.4 Summary 

The full set of governing equations is the following: 

9 ( ,-^3 
Continuity; — ( JU ) — 0 

Oqj 

Burger: 
a 

A ( ^ -
( * + ^ ) 
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f'oisscxn: ( j == /./c/*-.) 
ftCk ' '6)& y ae 

Projection: == 
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Appendix C 

Finite Volume Discretisation 

C.l Burger Equation 

As established previously (see Appendix B), the Burger equation for incompress-
ible flows in its filtered curvilinear form is: 

% 
(C.l) 

The discretisation of the above equation can be achieved by separately discretis-
ing the convective term, the diffusive term and the temporal derivative. 

Convective term 

The convective term of the Burger equation can be expanded as follows: 

Integrating over the control volume gives: 

#- (Vr'u:) dV + 

i.e., since dV = 
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cy 

cv 

e 

t 
(C.4) 

where subscripts e, w, n, s, t and b denotes the east, west, north, south, top and 
bottom faces of the control volume. 

Using a simple central difference scheme to evaluate the velocities at a face of a 
control volume, the following is obtained: 

^ (Wuf) d(dr,dC = 1%' 

~ (Vr'u-) d(d^dC = 

^ ( w ^ ) dCdtidi; = 

Z If/ 

Z a 

('U*p + — - Wr (12*̂  + 
C Z O 

-*A; 
Also, since [4 " = 5^ f — t/g*), then: 

Ur 

L K - + 'S'sL (tzr - iz);*). 

(C.6) 

Using now a simple linear interpolation scheme to obtain the components of 
velocity at the face of the control volume gives: 

Ur 

Similarly: 

1 
["̂ 1 le ^ Un ip) + iS'g I (v*p + — Vp o — V, sp "'gf;/ zi|g 

izr* ^gp 

gp 

(C.7) 
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Ur 

Vr 

Vr 

Wr 

1 
2 

1 
2 

["^iL ap 

f 4 

(^P + ^ —* IV 

w . 9P w, aw )1 

L '̂ gp '̂ svv) + "̂ 2 L ('̂ P + 
* 

'9P <n) + 

5|l + 9P W 9Af )1 

— 2 - 'ẑ gp - '̂ gg) + la ('̂ p + %;g — f. -* gf ) + 
"^sL ('"^p + 'u;g - w. 9P W. gg )] 

^gr 

WT — w, gp 

['S'l It (^P + ^ - 'Ugp - %/, 2 It \.̂ P V* T V. gp 

ĝg 

0 + 

w gr )] 

31 r̂TT* 
2|6 (f p + f g — i;. * gp -'gg ) + 

^gg)] (C.8) 

Diffusive term 

The diffusive term of the Burger equation can be expanded as follows: 

% 
^ 1 1 \ 7 - l c k N ^ 
. i f e + i j s r ' dC 

A 
^7; 

A 
ac 

A 
' 1 1 

^6 ^ 
1 

Re 
1 

-Re* 

T-l q2 d 

+ 

(C.9) 

Considering now the first term on the right hand side, i.e. the first spatial deriva-
tive in 

d 
di X i + i k ) ^ - ' 4 5 ; 

du* 
a(, 

_9 
a( 

— + ^ 

Re Ret 
J- + 'S'a '̂a) ^ 4 -8( 

+ 5'25'2 + drj 
8nf 
9C (C.IO) 

Let: 
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Ci 

C2 

C3 

' ' 9 : 
J-^ (g|g^ + 

'1 (C.ll) 

Then: 

_a 
8( 

_8 
a( 

^ 4-
Be ^ Aet 

(C.12) 

Integrating over the control volume gives: 

an; % 

X 
Ae 

1 
Ret 

dy 

% ? an? + ^ 2 ^ + C 3 - ^ (C.13) 

I.e.: 

A 
cy 

1 
Ret 

dy = ' j _ j _ ^ 
^ TZet 

1 1 

7i!e, 

%: %* %:-
' W ' W . 

% : % : %*-
' W 

I.e.: 

(C.14) 

/< 
d_ 

cygf + 3S • ' - ' S ] s j | i dy 

J_ -1—L. 
Ae ^ Act 

, J-") 
i?e Ret J 
+ 

Cil 

Cil 

e a( 
dul 

lu 8( 

+ C'2L 

+ C2I 

%r 
d-q + C3I aa? 

e a( 

w drj 
aar 

31 w 

(C.15) 

Now, using once more a simple interpolation scheme for the face derivatives: 
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- 7/, ip 

dC 
% 

d^ 

%r 
7̂7 

% 

'̂ iP ^ '^W 

1 

dC 

(%/*yy + 2/*;\rw " '̂ Ig ^ ^Zgw) 

(Wr + " '^law) 

(C.16) 

Thus: 

^ v ^ ( : 6 + : ^ ) a(, dy 

X 
Ae 

J-") Ae( y 

1 I 1 
Re Ret 

[Ci, % - iZZf) 4- I Q , 

+ %C3e — 'U*gg)] 

[Ciiu — 'UiMf) 4- ^C2m (%*jY + ^iNW " '(̂ Is ^ '^iSw) 
U/ 

('U^ + — 'U*g — 
(C.17) 

Similarly, using: 

Ce = + (C.18) 

It can be shown that the second term of the diffusive term can be expanded as 
folows: 
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dil 
(fy -

1 
Re 

1 
Ret 

J—I—L_ 
Be ^ Bet 

[Qn - n^p) + IC2;, (iz?yvg + % -

+ %C'5n (̂ &̂ yv + - ^ g ) ] 

[C4, K p - iZTg) + IC2, 

+^^53 + Wr — ^Zsa - '(̂ Zg)] 
(C.19) 

And the third term gives: 

A cy ac dV = 

+ : ^ ) ^ [^6t - 1!*̂ ) + (̂ *̂rE + ^Is -

+^C'5t ^ '̂ Z?)] 

— -I—— 
Re Ret [Qb (M*P — 'wZg) + %C36 (^iBE + — '̂ Zsw 

+ | Q 6 % A r + - ^ g ) ] 
(C.20) 

Gathering all the terms and grouping them adequately, we can define: 
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Cw 

/Zjvw 

Cs 

Cp 

Cm 

^ (C'sw + C'sb) 

^ (C'zw + C23) 

Ciw — - (C2n — C2a + Cgf — Cgb) 

((^2^ + C2n) 

— ̂  (C'su, + (/St) 

^ (C'ssw + Csb) 

Ggb — - (Cge — Csw + Csn — Csa) 

1 
(Csn + Cst) 

Cis — ^ (Cgg — C2W + Cu — C^h) 

~ (C'le + C\w + C^n + Cas + C%t + C'eb) 

Cin + ^ {C2e ~ C2W + Cst — C^h) 

1 

'4 
(C'ss + C'st) 

1 
Get + - (C3e — + Csn — G53) 

1 

Cts 

Ct 

= - (Gsn + Csta) 

Ce 

C-ne 

/2rE = -7 (Qe + Qf ) 

(Cse + Cgb) 

(C2e + (̂ 23) 
4: 

C'le + ^ ((̂ 271 — (̂ 23 + (/St — (/Sb) 

((̂ 26 + C2n] 

(C.21) 

Hence the diffusive term of the Burger equation is discretised as; 

A 
cy 

1 1 \ 

jfe+s^r ' dV = 
1 1 

Re Ret 
4n* . (C.22) 
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Where ; is one of B^, B, BAT, f , TV, T, r # , 
BB, ^B, B, jVB and TB. 

Temporal Derivative Term 

Using the previously described discretisation, and integrating the time deriva-
tive over the same control volume as for the convective and diffusive term, the 
following can be written: 

^ (Ju*) = T>i — Ci (C.23) 
cy Gt 

Where D, and Q are the diffusive and convective terms respectively. 

Using a Crank-Nicholson scheme for the diffusive term and an Adams-Bashford 
scheme for the convective term, it follows: 

' = I - I ( K ' " ' - (C.24) 

Where superscripts M — 1, M and M-i-l denote the previous, current and next time 
step values. 

Thus: 

^ ^ -k (c.25) 
Or: 

E ? (%) ' "*" = ^ - 3Cf ' + C.'"-" {C.26) 
j 

Where j is one of BW, 5"^, W, NVK, Tty, BS, B, BN, S, f , AT, TS, T, TAT, 
BE, SE, E, NE and TE and: 

(C.27) 

Where 5p = l \ f j = P and 0 otherwise. 

C.2 Poisson Equation 

The discretisation of the Poisson equation takes a very similar form to that of 
the diffusive term of the Burger equation. 
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Integrating over a control volume gives: 

/ I 
Vcy 

9i 
® 'jW' 

•di, 
I (Zy 

d 

(C.28) 

(C.29) 
/cy 

i.e., using the same Laplacian as for the diffusive term of the Burger equation; 

d 
Z ' . ' - ' - i as ^ l i ^ 

(C.30) 

Thus: 

JU 

Where, since [/ = 

+ j y j r {jW 

(C.31) 

u' (C.32) 

That is, using a simple linear interpolation scheme for the face variables: 

w 

Similarly: 

— Q le (^P + + "̂ 2 le ('̂ P + + "̂ 3 L (C.33) 

r 
F 

W 

I [̂ ?L 
1 

2 L % + ^ ) + ' ^3L(^f 

["̂ 1L "̂2 L "̂ 3 L 

- n['^l|6('^P + 

2 It + "̂ 3 L ^r)] 

2 L ( ^ f + ^ B ^g) ] 

(C.34) 
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C.3 Projection Equation 

The discretisation of the Projection equation can be carried out rather simply. 

From the projection equation: 

% 
Integrating over a control volume; 

cy cy cy 

I.e.: 

(C.35) 

(C.36) 

/cv 

Furthermore: 

cv 
^ ^ (C.37) 

cv 5C, 

— '"'Z - ^ (gle - gL) + ^ (gL ^ ^W] (c.38) 

Using again a simple linear interpolation scheme for the face variables gives; 

(gjv - 9s) + - gg)] (C.39) 

The three velocity components are thus computed from: 

^ = 2/* — - J ^ (gg — 

w = w* — - J ^['$^3(9^ —9M/)+'5'3(9Ar"9a) + '5'3(9T —^a)] (C.40) 

C.4 Vorticity Equation 

The vorticity equation is; 

w = V X u = 
* J 

dx dy 

k 
a 

dz 

W 

/ 9?; 
+ j 

0̂7 
k 

(CM) 
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Or: 

Wi = 

Using the chain rule: 

Hence: 

= 

with z, j and A; cyclic 

a ( 5 X ) 

% 

(C.42) 

(C.43) 

= J -1 ' d 

M 
- - "^3 )̂ + ^ ("^2^ - '̂3 ;̂) 

Ur^ = 
' d 

di 
"^1^) + ^ ("^3^ -- S"! w) + — (5'3'u - 5"! w) 

= j-^ ' d 

M 
"^2^) + ^ ("̂ 1^ - "^2^) + ^ ("̂ 1 ̂  ^ -^2^) 

(C.44) 

Integrating over a control volume gives: 

® oj^dV : 
Vcy 

cv 

cv 

I.e.: 

J ^ — '$'3%;) |g - 1̂  + (^'gw — - (S'gw — 

4- (SgW - S'a'u) 1̂  - (SgW - Sgu) | J 

J ^ [(5'3'U - 6'iw) |g - - 6'i w) - 6"!w) 1̂  

+ (5'3%f - 5"! w) 1̂  - - S"! w) 

J ^ [ ('S'lf - |g — 1̂  + (5'i2; — 

+ (5'if - ^2^) 1̂  - (S'lf - 5'2'u) 1̂ ] 
(C.45) 
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cy 
- 2"^ ^ - "̂ ale ^le " ^ L + '^'^L 1̂ 

"^sL ^L + <̂ 3! v\ s"^a ' ^ 3 ^ - ^ 

+ 'S'zlt w|( - 'S'sL ^ + 'S'sib 

X 'S'sle '̂ le - 'S'lle + 5'̂ L.. w' V 9 cy 
lu Itu 

cy 

+ "^sL " "̂ 1 In ^In "" "̂ sL ''̂ L + 'S'lL 

+ 'S'sit ^l( - "S"! If 

+ "̂ 1L " "^zL '̂ In ^ "^iL ^L + "̂ 21 

+ 'S'llf - '̂ glf '̂ It - 5'i lb + s^lt 

u\ 

u\ 
(C.46) 

As previously, the face variables are simply computed from the linear interpola-
tion between the cell-centered variables. 

C.5 Turbulence Models 

Smagorinsky Model 

The Smagorinsky turbulence model is described by the following expression for 
the turbulent Reynolds number; 

^ C^A 1̂ 1 (C.47) 

Where; 

|g | = ^ 2 ^ ^ (C.48) 

The discretisation of the Smagorinsky turbulence model thus essentially resides 
in the discretisation of the rate of strain tensor given by: 

fe) 
Now, the above equation can be transformed into its curvilinear form using the 
chain rule, giving: 

' - K t S ' S S 
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I.e., using the first fundamental metric identity: 

Sn 
• 9 6 

1 f,-lot du; 
2V 'Wk 

1 (djs^u;) djslu-) 

2 j i 

Now, since: 

Sij — Sn + ^12 + Si3 + 5'2I + S22 + S23 + 'S'ai + S32 + S-, 33 
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'S'23 — <932 
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Sij — 5'ii + S22 + <5*33 + 2 (5*12 + Si3 + S23) 
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' A ( ^ ) + ^ ( • s j r ) ) 

2 

Similarly: 

S22 = 

<933 = 
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5'23 — 
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(C.51) 

(C.52) 

(C.53) 

(C.54) 

(C.55) 

— ( ^ 3 ^ ) + ^ (^3^*) + ^ (5 '3^) 
^ ^ ^ 

^ w*) + — (5'3^* + 5"!w*) + — w') 

(C.56) 
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Integrating over a control volume gives: 

^ — 5'ii — - [6"! |g - 5"! 4- 5"! I 
Vcv ^ 

- s f L » ' L + s ? i , s - | , ^ s j l ^ r y 

cy 

cy 

5'220(̂ c(77cZC = ^22 = J ['S'zlg 

- L ^*l6. 

:933(̂ c(77(̂ C - ^33 = j [^sL ^ l e " '^'sL + "^sL ^*L 

CV 

+ + "̂ 1 L ^*L - "̂ 2 L ^'la " "^iL 
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Sud(d^d( = Su = i [ s 3 ' L s ' L + s ; | ^ » - L - s ] L « ' i „ - s ; i „ ® ' i 
CV 

+ "̂ sL ^*ln + " îL '̂ *ln " " "̂ iL 
+ 'S'sL ^*l( + 1̂  ^ | ( - 5'31^ ti*|b - W*|J 

s^diidrtdc = s,, = [ 4 L «'L + 5 ' ! , w'L - 4 L « ' L - 'S^L 
cv 

+ ^*L - -̂ 3 L - "^21 

+ "̂ sL + "̂ zL " "̂ 3 lb - 'S'̂ lb 
(C.57) 

Again, the face variables can be computed using a simple linear interpolation 
between the appropriate cell-centred values. 

Structure Function Model 

In the case of the Structure Function model, the turbulent Reynolds number is 
obtained from: 

1 
= 0 .063AYF2(^ ,A,( ) (C.58) 

It follows that the discretisation of the structure function model consists mainly 
of the discretisation of the structure function itself, i.e.: 
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^2 A, () := ( 12* (x 4- r, )̂ - li* (x, | lr| |=A (C.59) 

Considering the six direct neighbouring volume to our control volume, the above 
can be written as: 

I.e.: 

Fo 
1 
6 

— > — ^ 2 _ > ^ 2 2 
+ + 7 / * ^ — 

^ ^ 2 

+ + 7/ B — (C.60) 

W E 

+ (i& -

u T Ul 

ig - Mpy 

Selective Structure Function Model 

) + 
\ 2 , / ~ A 

T 3,)" + ( ^ - w 
* \ 2 

f ) 

[W B (C.61) 

The Selective Structure Function model is very similar to the Structure function 
and only differs the latter by a switch function C based on the three dimensionality 
of the Sow: 

1 
(C.62) 

Where: 

0 for /) < 20° 
( = ^ g-W/3)' for 20̂ ^ > ^ > 10° and d/) = |^ - 20| (C.63) 

1 for /) > 20° 

The angle represent the angle between the local vorticity and the average 
neighbouring vorticity. It is evaluated as follows: 

= acos CO p • UJ , 
U) p\ • UJ , 

(C.64) 

Where: 

w, (uJe + + OJpf + U)s + OOt + Wg) (C.65) 
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And: 

(C.66) 

ll^pll ' ll'^a^ll = y ( ^ & u + (^'G'^) 

C.6 Metrics 

The metrics required for the discretisation are as follow: 

Since: 

f ~ y^k^ij 1 
5"* = < > with z, j and A; cyclic (C.68) 

I % j 
In 3D, this implies 9 coefficients to be defined as: 

S\ — 2/77 
si = -

si = -

si = 

si 

si = -

si = 3;̂ % -
si = % -

(C.69) 

The Jacobian of the transformation between cartesian and curvilinear space can 
be calculated from: 

(C.70) 
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