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Abstract

The numerical prediction of vortex induced vibrations has been the focus of nu-
merous investigations to date using tools such as computational fluid dynamics.
In particular, the flow around a circular cylinder has raised much attention as it
is present in critical engineering problems such as marine cables or risers. Limi-
tations due to the computational cost imposed by the solution of a large number
of equations have resulted in the study of mostly two-dimensional flows with only
a few exceptions. The discrepancies found between experimental data and two-
dimensional numerical simulations suggested that three-dimensional instabilities
occurred in the wake of the cylinder that affect substantially the characteristics
of the flow. The few three-dimensional numerical solutions available in the liter-
ature confirmed such a hypothesis.

In the present investigation the effect of the spanwise extension of the solution
domain on the three-dimensional wake of a circular cylinder is investigated for
various Reynolds numbers between 40 and 1000. By assessing the minimum span-
wise extension required to predict accurately the flow around a circular cylinder,
the infinitely long cylinder is reduced to a finite length cylinder, thus making nu-
merical solution an effective way of investigating flows around circular cylinders.

Based on the projection method, and using the finite volume discretisation, a
method is presented to solve the incompressible form of the Navier-Stokes equa-
tions. A parallel algorithm is used to distribute the computations onto several
cluster nodes, thus enabling large domain to be solved.

Results are presented for three different spanwise extensions, namely 7 /2D, 7D
and 27 D. The analysis of the force coefficients obtained for the various Reynolds
numbers together with a visualisation of the three-dimensionalities in the wake
of the cylinder allowed for a comparison between the effects of the three spanwise
extensions. Furthermore, by showing the different modes of vortex shedding
present in the wake and by analysing the streamwise components of the vorticity,
it was possible to estimate the spanwise wavelengths at the various Reynolds and
to demonstrate that a finite spanwise extension is sufficient to accurately predict
the flow past an inflnitely long circular cylinder.
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Chapter 1

Introduction

1.1 Vortex Induced Vibrations

Vortez-induced vibration (VIV) or flow-induced vibration (FIV) as it is some-
times referred to, has been the subject of intensive research for many years. His-
torically, the first experiments were carried out by Strouhal in 1878 on Aeolian
tones. Strouhal found that the pitch of the Aeolian tone was not dependent on the
tension, length or material, but rather on the flow speed and diameter only. By
reproducing the aeolian tone using resonating wires, he observed that a synchro-
nisation phenomenon occurred when the frequency of eddy shedding is locked onto
the natural frequency of the wire (Zdravkovitch [99]). In the following paragraphs,
a general introduction to vortez-induced vibration will be given followed by a brief
review of the research carried out.

In practical applications such as in the wind or offshore engineering where slender
bodies with low structural damping are exposed to unsteady fluid forces, consider-
ation has to be given to the influence of the vortex shedding. It is well known that
vortex induced vibration can occur when the frequency of the vortex shedding
coincides with a structural frequency (Bearman [4]). Furthermore, the maximum
amplitude of response is influenced by both the damping and the magnitude of
the mass ratio. One of the major differences between flexible structures in the air
and in the water is that in the later case, the mass ratio is much smaller leading
to greater fluid/structure interaction. Such greater interaction results in larger
vortex-induced vibration amplitudes as well as a broader range of flow over which
the amplitude of the oscillations are significant and the possible excitation of not
only the transverse but also the in-line oscillations. This becomes critical in the
case of marine risers. As the oil field development activities moved into deeper
waters and areas of stronger ocean currents, the importance of vortex-induced
vibrations becomes critical at the system design stages (Cook et al. [19]) as it
can result in serious fatigue failure or interference and clashing.



Prediction of VIV around cylindrical structures has thus become the centre of
many research projects over the years. As most of the interesting fluid dynamic
phenomena are present (Dalton [21]) such as boundary layer and boundary layer
separation, laminar and turbulent flow, shear layer and shear layer roll up, vor-
tices and vortex shedding, and unsteady lift and drag, the task of capturing or
predicting all of these represents a major challenge. In an attempt to categorise
the VIV research, whether it is for the offshore engineering or other, one could
consider various stand points (Huse [40]):

e the kind of structure targeted (rigid or flexible pipes installed horizontally
or vertically).

e the kind of phenomenon of interest (in-line or transverse deformation,
bending moment, fatigue ...)

e the kind of natural environment condition considered (current, wave,
forced oscillation)

e the kind of top or bottom condition of the riser (fixed, spring support,
rotation free..)

e the kind of section configuration (circular or rectangular cylinder, arbi-
trary cross section)

e the kind of flow condition (uniform or oscillatory, regular or irregular ...)

e the kind of flow parameters (Reynolds number, Keulegan-Carpenter num-
ber, reduced velocity...)

These aspects, although still under intense investigations are however well docu-
mented in the literature. Davis et al. [22] compared rigid and flexible cylinders
and observed significant difference between the VIV responses although the two
structures achieved similar Reynolds number, mass ratio and damping ratio. Mil-
iou et al. [60] simulated the effect of flow around curved riser pipes for various
velocity profiles and flow directions and presented results for the fluid dynamic
loading and wake structure behind the pipes. Maeda [56] presented in his re-
view of the research on VIV in Japan various work carried out on the influence
of wave forces acting on circular cylinders, behaviour of long flexible pipes and
the effect of transverse hydrodynamic forces on towed vibrating cylinders. Ya-
mamoto et al. [96] carried out numerical analysis of the VIV response of flexible
risers. Bearman et al. [5] studied the in-line response of large scale models while
Anagnostopoulos et al [3] analysed the phenomenon numerically. Fujana et al.
[30] showed the similarities between the dynamic behaviour of flexible cantilevers
and elastically mounted rigid cylinders. Vandiver [85] showed the important role



of flow parameters in VIV response of risers. Other works involve the study of
multiple risers. Huse [40] raised the increasingly concerning issue of collisions or
clashing of risers for future deep sea floating production unit. Caly et al. [13] pre-
sented a detailed experimental study of the flow past a pair of cylinders inside by
side configuration. Mahir et al. [57] [58] conducted experiments on a pair of side
by side cylinders, comparing the lock-in phenomenon for the single cylinder and
for the pair of cylinders and focusing on the wake patterns and velocity spectra
due to the forced oscillations. Laneville et al. [47] studied the mechanical and
fluid coupling between two circular cylinders focusing on the relative response
between the cylinder. Zhou et al. [105] presented an experimental investigation
of a the wake interaction for a two and a three side-by-side cylinders configuration.

1.2 Aims and Objectives

1.2.1 Aims

The aim of the present research is to investigate the wake behind a circular
cylinder and determine the influence of the spanwise extension of the solution
domain onto the three-dimensional solution of the flow past a circular cylinder.
Furthermore, the research aims at determining the minimum spanwise extension
required to obtain accurate prediction of the flow past the cylinder.

1.2.2 Objectives

To achieve this aim, several objectives have to be fulfilled that can be summarised
in three parts, namely the tool development, its wvalidation and the application.

The vortex-induced vibrations of marine risers is becoming critical as offshore
exploration moves into deeper water where stronger ocean currents occur. Fur-
thermore, since the viscous effects in such flows is of significant importance, they
must be accounted for in the prediction of the flow. To numerically predict
vortex-induced vibration, it is thus necessary to solve the Navier-Stokes equa-
tions. In the context of the present research, as no commercial CFD software was
available, it was deemed necessary to develop a solver. Developing a solver is by
far not a trivial task as it involves not only the coding of a complex algorithm
but also the validation of the code. It is thus equally important to present the
requirements for the solver as well as the validation of the algorithm.

Tool Development

It is not intended to present here in detail the algorithm used in the solver but



rather the various features or capabilities it should possesses. Furthermore, in the
interest of future developments outside the scope of the current research whose
focus is on the flows past a fixed circular cylinder, the possibility of investigating
oscillating cylinders must be taken into account in the method development.

The development of a three-dimensional Navier-Stokes solver for incompressible
flows should thus include:

e curvilinear multi-blocks grid handling to tackle complex geometries.

e an adequate algorithm for the pressure solver to close the system of
equation by means of the projection method with a second order accuracy.

e a suitable turbulence model such as a Large Eddy Simulation model.

e a fluid/structure interaction method including a force model, a struc-
tural model for rigid bodies subject to spring and damping forces, a
moving grid capability to tackle the oscillating objects.

e a message passing model for parallel computation to handle large meshes.

Tool Validation

Before being able to carry out the application part, it is necessary to establish
a set of validation tests. Such a validation consists of carrying out a number of
benchmark tests and comparing the results obtained with the code with those
published in the literature. As the majority of results available are for two-
dimensional problems, the validation process will focus on two-dimensional tests
only.

Although the Reynolds numbers for practical applications can range from 10° to
10° (Vandiver [85]), the transition from two- to three-dimensional flows occurs at
a much lower Reynolds number between 150 and 300 (Roshko [72]). Furthermore,
as the Reynolds is increased from 300 to 1000, turbulence starts occurring as the
disorder in the fine scale three-dimensionalities increases. Two-dimensional sim-
ulations will thus be carried out for flows around a circular cylinder at Reynolds
number varying from 40 to 1000 and compared with the various results available
in the literature. Particular attention will be paid to the Strouhal-Reynolds re-
lationship in the two-dimensional regime.

An oscillating cylinder case will also be undertaken in the two-dimensional case
only to assess the capabilities of the method to tackle the flow past a circular
cylinder undergoing VIV.



Three-Dimensional Flow Around Circular Cylinders

From the two-dimensional results obtained as part of the validation of the method,
three-dimensional numerical solutions will be carried out by increasing the span-
wise extension of the domain. Various Reynolds numbers in the transition regime
and in the fully three-dimensional regime will be examined focusing on quantities
such as the force coefficients and the Strouhal number.

The visualisation of the three-dimensional features in the wake of the cylinder in
the considered range of Reynolds numbers will allow for the different modes of
vortex shedding to be examined. Particular attention will be paid to the transi-
tion between the two- and three-dimensional wake.

Such a systematic study will allow for the assessment of the influence of the
spanwise extension of the domain on the solution. It will then be possible to de-
termine, if such is the case, the minimum spanwise extension required to capture
accurately the three-dimensional flows around the cylinder.

1.3 Format

Having defined the aim and the objectives to be achieved, it is now possible to
present in more details the format that will be adopted for this report. The fol-
lowing paragraphs will provide a brief description of the chapters to follow.

In chapter 2, a review of the current status of the numerical prediction of VIV
will be carried out leading to a number of key questions that remain unanswered.

In chapter 3 the numerical methods currently available will be investigated, fo-
cusing on various aspects such as modelling and discretisation, turbulence mod-
els, moving grids and parallel computation. The discussion aims at defining the
method to be employed in the present work.

Chapters 4 and 5 focus on the method developed in the context of this research.
Firstly the mathematical model will be introduced focusing on the governing
equations for incompressible flows, the force description, the structural motion
equation, and finally the moving grid model. The numerical method will then
be presented, detailing the finite volume discretisation, the boundary conditions
treatment and the methods for the forces computation and moving grid method.
Throughout the chapter, a discussion of the implication of a parallel implemen-
tation will be carried out when relevant.



Chapter 6 will present the validation of the method and its numerical imple-
mentation through a comparison with benchmark test cases for circular cylinder

found in the literature.

Chapter 7 will deal with the application of the method to the problem of interest,
namely the assessment of the three-dimensionality of the flow around a circular
cylinder. The results for solution domains with different spanwise extension will
be presented together with a visualisation of the wake behind the cylinder and a

discussion on the key issues.

Finally, chapter 8 will draw conclusions from the present investigation and extend
the discussion to possible future areas of investigation to be conducted on the

subject.



Chapter 2

Towards the Three-Dimensional
Numerical Prediction of Vortex
Induced Vibration of circular
Cylinder

2.1 Overview of Numerical Prediction of Vortex
Induced Vibration

Prediction of VIV response has traditionally been carried out using either an
empirical or a numerical approach.

Empirical models have been traditionally based on data from oscillatory test with
short cylinder sections and are almost exclusively based on the assumption that
VIV will appear as a response at discrete frequency (Larsen [49]). Stochastic
models (Vandiver [85]) have been used as well as discrete frequency models.

The VIV response of a body can be interpreted as the combination of an excita-
tion and a response to that excitation. Both the excitation force and the response
of the body to that excitation constitute the complete fluid-structure interaction.
A full numerical prediction of the VIV response would encompass both aspects.
However, owing to the complexity of the phenomenon and the computation limi-
tations, the numerical prediction of VIV response has so far been focused on one
of the two aspects only, i.e. the excitation or the response. Some recent models
combine both numerical models for response through finite element computations
and empirical data for excitation (Larsen et al. [50]).

The determination of the response to a prescribed excitation, i.e. the structural
deformation due to the excitation, is generally carried out numerically using



methods based on the finite element approaches.

The determination of the excitation, i.e. the determination of the behaviour of the
fluid around the body, is generally carried out by means of computational fluid
dynamic (CFD) methods. Such methods include discrete vortex methods and
methods based on the complete solution of the Navier-Stokes equations (Maeda

[56]).

Discrete shed vortex methods are based on the idea raised by Chorin [17] that
vortex blobs can be generated on the boundary of a body to satisfy the no-slip
condition. These blobs are then convected and diffused according to the vorticity
transport equation. One of the major advantages of such a method is the relative
simplicity of its implementation. Also, being a grid-free method, the computa-
tional elements are automatically concentrated in the regions of most interest.
However, such a method presents several shortcomings. Two of the most criti-
cal are the inaccurate representation of the velocity field near the boundaries of
the body and the exponentially increasing computational cost as the number of
elements grows with time. Several extensions to the method led to the develop-
ment of better approaches. The Vortex-in-Cell technique (VIC) first introduced
by Christiansen [18] improves the solution of the pressure by introducing a grid
around the body and thus gives a better representation of the velocity field near
the body. Furthermore, it substantially reduces the computational cost. Other
methods retain the field grid free formulation and improved the solution by using
boundary integral methods to solve the pressure and a vortex sheet algorithm to
improve the boundary layer solution and thus the representation of the flow near
the body (Yeung et al. [98]).

Methods based on the solution of the Navier-Stokes equations have been the most
popular methods to numerically predict the VIV response around circular cylin-
ders. Such methods consist of solving for a set of primitive variables on a mesh
defined in a domain around the body. For such a solution to produce results of in-
terests, the mesh used must be such that it allows the capture of all phenomenon
occurring in the flow. This dependency upon the mesh size and quality implies
that the accurate solution of the Navier-Stokes equations is a computationally
costly method. Intense investigations into the generation of grids have been car-
ried out to produce better quality meshes using less elements. Methods using
adaptive meshes have also been developed where the mesh evolves by addition,
subtraction or motion of the mesh elements while the solution of the flow is being
carried out. A comprehensive collection of work on numerical grid generation
and adaption can be found in Thompson et al. [82] . Also, investigations into the
discretisation methods (finite difference, finite volumes or finite elements) used
to solve the Navier-Stokes equations led to more accurate solutions by means of
higher order representations of the terms of the equations.

8



2.2 Three-Dimensional Numerical Prediction

To assess the progress and validity of numerical simulations, it is necessary to
consider the experimental research on the subject. The study of the flow around
circular cylinders has been the centre of many investigations for over a 100 years
and it is now common knowledge that the flow around cylinders can be charac-
terised essentially by two parameters, namely the Reynolds number Re = UD /v
and the Strouhal number St = fD/U where U is the far stream velocity, D is the
cylinder diameter, v is the kinematic viscosity of the flow and f is the frequency
of the shedding of vortices from the cylinder.

Recent progress in the measurement techniques has allowed for considerable de-
velopments to be made. In the early 1980’s, Bouard et al [8] used flow visuali-
sation techniques to study the early development of the wake behind a circular
cylinder for Reynolds numbers ranging from 40 to 10* giving an insight into the
nature of the vortex shedding behind the circular cylinder.

The first definition of the flow regimes around a circular cylinder was given by
Roshko [72] who established a Reynolds-Strouhal numbers relationship as shown
in figure 2.1. His measurements of the velocity fluctuation, spectra and frequency
allowed for the identification of a transitional region for 150 < Re < 300 while
distinct irregularities could be observed for Re > 300.

Williamson [90] provided further evidence of the transition from two-dimensional
to three-dimensional flows in the Strouhal-Reynolds number relationship. He also
identified two stages in the transition to three-dimensional flows characterised by
two discontinuities in the Strouhal-Reynolds number relationship, the first one
at Re = 178 and the second for Reynolds numbers between 230 and 260. He
further associated those discontinuities with a mode change in the shedding of
vortices in the cylinder wake (Williamson [92]). The first mode, named mode A
is characterised by the inception of streamwise vortex loops. The primary vor-
tices roll up and deform in a wavy pattern along their length during process of
shedding to result in the local spanwise formation of vortex loops. The second
mode, namely mode B, associated with the second discontinuity, is characterised
by the formation of finer-scale streamwise vortex pairs.

Reviewing the numerical simulations of vortex shedding, he also noted the very
good agreement found between three-dimensional direct numerical simulation and
experimental results and how the numerical solution were capable of capturing
the two mode changes (Thompson et al. [83]). He further commented that the



discontinuities observed in the Strouhal-Reynolds number relationship were not
achieved with two-dimensional numerical solutions as can be shown in figure 2.2.

He further described the flow regimes around a circular cylinder in function of
the Reynolds number as follows:

Re < 49 Laminar steady regime
49 < Re < 140 — 194  Laminar vortex shedding
194 < Re < 260 3-D wake transition regime

260 < Re < 1000 Increasing disorder in the fine scale
three-dimensionalities
1000 < Re < 200000  Shear layer transition regime
200000 < Re < 400000 Asymmetric reattachment regime
400000 < Re < 800000 Symmetric reattachment regime
Re > 800000 Boundary layer transition regime

Williamson [91] also reported the importance of the end conditions of the cylinder
in an experimental set-up and how oblique or parallel modes of vortex shedding
in the spanwise direction could be produced in the wake of a cylinder. He also
stated that end conditions could be responsible for the different critical Reynolds
numbers found in the literature at which transition to three-dimensional wake
occur. One can thus be expected that for Reynolds number between 140 and
200, three-dimensional features will start appearing in the wake of the cylinder,
and transition to three-dimensional wake will start occurring.

In their study of three-dimensional vortex structures in a cylinder wake, Wu et al
[95] used digital particle image velocimetry (DPIV) to measure the instantaneous
velocity field in the vertical plane in the near wake of a cylinder at Re = 525.
The measured velocity field was then used to compute accurately the vorticity
field. No visual evidence of the presence of the two transitional modes presented
by Williamson were found, but the importance of vortex stretching was shown.
An interesting comment raised by Wu et al in the observation of the results is
the remarkable regularity of the vortices in the streamwise and spanwise direc-
tions although some variability appeared due to the distortion of the vortex sheet.

Numerical simulations of VIV excitation of circular cylinders using the solution
of the Navier-Stokes equations have been the focus of numerous work in the liter-
ature but essentially restricted to the two-dimensional simulations owing to the
limitation of the computational resources. Several aspects of the fluid-structure
interactions are examined in these works among which the computation of the
forces acting on the cylinder, the shedding of vortex from the cylinder and the
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wake of the cylinder.

For example, Cheer [15] simulated flows around a two dimensional circular cylin-
der at Reynolds numbers between 3000 and 10* and examined the formation of
primary and secondary vortex structure behind an impulsively started circular

cylinder.

As the computational resources improved over the years, different flow condi-
tions became the focus of researchers. Yeung et al [98] used a modified random
vortex method to study the accelerated flow past a fixed cylinder and compared
the results with a cylinder accelerating in a static flow, showing that the two
kinematically identical flows were producing identical results when the uniform
velocity was attained. They also presented a simulation of an oscillating flow
past a fixed cylinder and results for an oscillating cylinder in a uniform flow.

But as the Reynolds numbers of interest for practical flow problems can range
from 10° to 108 (Vandiver [85]), researchers focused their numerical investigations
on higher Reynolds numbers and started encountering discrepancies between their
two-dimensional numerical results and the experimental data.

Kalro et al [42] studied the flows around a three-dimensional circular cylinder in
a uniform flow and found that the results obtained for the Reynolds number 300
compared well with the two-dimensional results. Since three-dimensional effects
appear for Reynolds number of about 190, this indicates that for Re = 300, lit-
tle three-dimensional features are present. On the other hand, the results they
obtained for Re = 800 were clearly different from the two-dimensional ones, indi-
cating that the three-dimensional features were much stronger. They concluded
that, as the boundary layer is thiner at higher Reynolds number, the velocity
gradients in the near cylinder region are much larger, thus implying the release
of stronger vortices. It follows that the amplitude of the force coefficients in two-
dimensional simulations is larger at Re = 800 than at Re = 300. However, this is
not seen in the three-dimensional computations since the vortices are significantly
distorted and posses components besides that in the spanwise directions.

Zhang et al. [101] studied the flow around three-dimensional cylinders at Re =
100 and Re = 200 and confirmed the two-dimensional nature of the flow for
the Re = 100 case. However, their results for the Re = 200 case clearly show
the presence of distinct three-dimensional features and emphasised that the flow
in the wake was becoming three-dimensional before it even becomes turbulent.
Furthermore, their studies stressed the importance of the proper representation
of the flow in the wake as it has a noticeable effect on the force coefficients and
the Strouhal number. Zhang also commented that as two-dimensional computa-
tions were still cheaper than three-dimensional solutions, if a cautious estimate

12



of the effect of the lack of three-dimensional features could be established, two-
dimensional simulations could still provide a qualitative understanding of the

flow.

Breuer [10] further details the differences between the two-dimensional and three-
dimensional computations by showing, at Re = 3900, the striking differences
in the time-averaged streamlines patterns characterised by the absence, in two-
dimensional results, of a recirculation zone behind the cylinder clearly showing
in the three-dimensional results. He noted that the two-dimensional field was
more asymmetrical than the three-dimensional one as the vortices shed from the
cylinder moved downstream along an axis which is inclined with reference to the
symmetry line. As a consequence, the drag coefficient and the base pressure coef-
ficient were much too high in two-dimensional computations. He thus concluded
that, even for nearly two-dimensional flow problems, two-dimensional computa-
tions were useless as three-dimensional structures strongly influenced the near

wake flow.

In a later publication on the influence of subgrid-scale models for large-eddy sim-
ulations around circular cylinders in three-dimensions, Breuer [11] noted that
the flow around the circular cylinder was not only a function of the Reynolds
number, but also, among other factors, it was a function of the cylinder’s aspect
ratio. He thus stressed that the difference between numerical and experimental
results were apparent and that the most relevant factor to evaluate numerical
simulations was the spanwise extension of the integration domain often limited
due to computational resources.

So far, mostly fixed cylinder cases have been considered, but practical engineering
problems generally involve the oscillation of such a cylinder whether in a free or
forced mode. The occurrence of the two free and forced oscillation mode can be
explained in the context of a marine riser. When a marine riser is excited at one
elevation due to the shedding of vortices, it oscillates at another elevation while
exposed to the current at this elevation (Lu et al. [55]). The oscillations of the
cylinder give rise to another commonly used characteristic parameter, namely
the Keulegan-Carpenter number KC = U/fD where the frequency f describes
the oscillation frequency. A parameter taking both the Reynolds number and
the Keulegan-Carpenter number into account can be found in the literature:

8= Re/KC.

Anagnostopoulos [2] reported in his study of the response of a vortex-excited
cylinder in a uniform flow that the numerical solution failed to predict the high
amplitude and low beat oscillations above the lock-in region observed experimen-
tally. He also stressed that the mesh refinement and the formula to compute the
vorticity on the solid wall boundary significantly influenced the accuracy of the
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results. Such a comment underlines the importance of the representation of the
flow in the near cylinder region for the computation of the forces acting on the

cylinder.

Lu et al [55] examined the vortex switching phenomenon around a circular cylin-
der in an oscillating flow and found that as the frequency of excitation increased,
the initially formed concentration of vorticity moved closer to the cylinder until
a limiting position was reached and then switched abruptly to the opposite side
of the cylinder. They presented results for both oscillating and non-oscillating
flow around a cylinder for Reynolds numbers of 185, 500 and 1000. While the
non-oscillating values of the mean drag coeflicient and the Strouhal number for
Re = 185 compare rather well with experimental data, they are overpredicted
for the higher Reynolds number. This confirms the findings of Williamson [92]
that at Reynolds above 200, the Strouhal number obtained through numerical
solution is overpredicted (see figure 2.2).

Sun et al [80] presented two-dimensional simulation results for oscillating flows
around a circular cylinder at 8 = 1035 and 04 < KC < 4.0. The small
KC results showed good agreement with experimental data while simulations
at KC' > 2 demonstrated that two-dimensional numerical solutions were inade-
quate to describe an established three-dimensional flow.

Lu et al [54] compared the three-dimensional numerical solution of an oscillating
flow past a circular cylinder for various KC with the experimental results from
Sarpkaya [73]. Good agreement with the experimental data was found for the
mean drag coefficient.

It is interesting to note that, for 8 = 1035, Sarpkaya identifies three regimes of
the oscillating flow, namely a transition to three-dimensional flow at KC = 1.1,
a turbulent regime at KC' = 1.5 and a separation at KC = 1.9. As f = 1035 and
KC = 1.1 correspond to a Reynolds number of 1138, this suggests that the tran-
sition to a three-dimensional flow occurs at a much higher Re than for the fixed
cylinder case (Re 190). A possible explanation can be found in [104] where Zhou
et al studied the numerical solutions of a two-dimensional uniform flow past an
elastic cylinder and commented that the structural vibration normally enhance
the spanwise correlation of the wake, thus promoting the two-dimensionality in
the wake. Their two-dimensional simulation exhibited differences with the exper-
imental data suggesting the presence of three-dimensional features in the wake.
As a two-dimensional solution assumes a perfect spanwise correlation, the over-
predicted lift coefficient and thus vibration amplitude can be explained. They
also noted that the streamwise oscillations had a substantial effect on the trans-
verse vibrations and their characteristics.
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2.3 Summary

From the above review of the literature on the flow around circular cylinder, sev-
eral conclusions can be drawn and questions raised.

It is clear that two-dimensional numerical solutions are inadequate to describe
practical flow problems as they result in an erroneous representation of the wake
of the cylinder and cannot reproduce the three-dimensional features occurring
above Re 190. Using two-dimensional numerical predictions is thus inadequate
for practical engineering problems as they can lead to inaccurate force prediction.

Also, it has been found that three-dimensional simulations were in good agree-
ment with experimental results. However, such simulations are highly dependent
on the spanwise extension of the domain considered. Furthermore, to accurately
predict the flow past the circular cylinder, particular attention has to be paid to
the representation of the flow field in the near vicinity of the cylinder and in its

wake.

An interesting issue concerns the aspect of the wake of the cylinder at low
Reynolds number. As it has been reported that the vortex pattern was remark-
ably regular in the spanwise directions and moreover that a spanwise periodicity
of the flow occurs in the wake, one may wonder, if such a periodicity exists, what
is its spanwise extension and how is it affected by the different flow regimes?

As far as oscillating cylinders are concerns, it seems that the transition to the
three-dimensional regime occurs at higher Reynolds numbers. Furthermore, the
vibrations of the cylinder tend to promote the two-dimensionality of the flow.
One could think that if the wake of the cylinder was displaying some periodicity
in the spanwise direction, the transverse and streamwise vibrations could influ-
ence the extent of that periodicity. If such is the case, how is the periodicity
affected by the vibrations?

If a periodicity really occurs in the spanwise direction, the problem of an infinitely

long cylinder in a flow would be reduced to that of a flow past a finite length
cylinder, therefore reducing the computational cost substantially.
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Chapter 3

Numerical Methods - Background

3.1 Flow Solver

Since most engineering flows satisfy the Navier-Stokes equations, it is natural
that over the years much effort has been spent on their solution. In the follow-
ing section, a brief presentation of the numerical methods for the solution to the
Nawvier-Stokes equations will be given.

The interest of the current work being on incompressible flows, the incompress-
ible form of the equations will be considered and the methods for their solution
discussed. Furthermore, since three-dimensional flows are at the focus of this re-
search, the primitive variable form will be adopted.

A general discussion on the numerical solution will follow focusing on both the
spatial and temporal discretisation of the equations. For such purposes, the finite
volume method will be briefly presented and explicit and implicit temporal schemes
discussed.

3.1.1 Incompressible Navier-Stokes Equations

All fluids are compressible to a greater or lesser degree. By assuming the den-
sity as a constant, the incompressibility condition represent an idealisation of the
physical behaviour of fluids for certain flow conditions.

The compressible Navier-Stokes equations can be derived by applying the conser-
vation laws to the extensive properties such as the momentum of a given control
mass. However, in a fluid, it is generally more convenient to use a control volume
rather than a control mass.

The incompressible Navier-Stokes equations can then be derived from the com-
pressible form by simply treating the density as a constant, thus giving:
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Continuity (Mass conservation):

8ui

9o 0 (3.1)
Momentum (Momentum conservation):

Although the above set of equation seems sufficient to solve the primitive vari-
ables u; and p, one can notice the absence of a time derivative for the pressure.
This is due to the fact that, for incompressible flows, the pressure waves are
propagated at infinite speed. Furthermore, this results in the decoupling of the
continuity equation from the momentum equations.

The incompressibility condition thus makes the enforcement of the continuity
constraint particularly difficult. Over the years numerous methods to solve the
incompressible Navier-Stokes equations have been derived but they generally fall
in one of two categories, namely the coupled approaches and the pressure correc-
tion approaches (Tannehill et al. [81]).

Coupled Approaches: Artificial Compressibility Methods

The coupled approach is one of the earliest techniques employed to solve the
incompressible Navier-Stokes equations. The equations are solved treating the
dependent variables as simultaneous unknowns. Since there are one less equation
than the number of unknowns, an artificial time derivative of the pressure is in-
troduced. This is known as the artificial compressibility method.

The continuity equation (3.1) is thus replaced by:

19p Ouy
it =0 3.3
5ot " o, (8:3)

Where ¢ is a pseudo time and £ is the incompressibility factor.

The value taken by (3 is somewhat dependent on the problem tackled but values in
the range 0.1 —10.0 (Tannehill et al. [81] ) seem to be suitable for most problems.

Upon convergence of the steady state solution, the pseudo time term vanishes.

In the case of time-dependent solutions, the solution of a steady-state interme-
diary step must be reached before advancing the physical time. This constitutes
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one of the major drawback of this method as the sub-iterations required for time-
dependent solution can substantially add to the overall computational cost of the

solution (Kiris et al. [45]).
Pressure Correction Methods

An alternative to the use of artificial compressibility methods consists of using a
pressure correction method.

In such methods, the momentum equations are solved in an uncoupled fashion
using an available estimate of the pressure. The velocity components are thus
solved without using the continuity constraint. A Poisson equation for the pres-
sure or pressure change is generally used to alter the velocity field so as to satisfy

the continuity equation.

There exist a number of pressure correction methods among which the most
widely used are the projection (fractional step) methods. The projection methods
were first introduced by Chorin [16]. One of the characteristics of the original
formulation resides in the omission of the pressure gradients from the momentum

equations.
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The momentum equations are solved in a first step to obtain a temporary velocity

field u;. The velocity are then corrected by accounting for the pressure gradient

and the continuity constraint.

By considering that:

n+l _ ,#n

And taking the divergence of the momentum equation and applying the continuity
equation, the following Poisson equation can be obtained:

V-u"
At
The final velocity field is then obtained by projecting the provisional velocity

field on a divergence-free space using the pressure gradient.

v2pn+1 — (36)

From equation (3.5):

uftt = — AtVpt T (3.7)

1
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Several variants of this method have been derived and used successfully over the
years. Kiris et al. [45] include the pressure gradients into the momentum equa-
tions, using previously calculated values for the pressure. Such scheme allows for
higher order solution in time. However, Guermond et al. [34] showed that differ-
ent interpolation order for the pressure and velocity led to improved convergence
rate and stability of the solution. Equal interpolation order for both pressure
and velocity often led to numerical instabilities in the solutions, characterised by
severe node to node oscillations. Using lower order for the pressure than for the
velocity avoided those numerical oscillations.

Other pressure correction methods include the Semi-Implicit Method for Pres-
sure Linked Equation (SIMPLE) family of methods. These methods are based on
a prediction-correction cycle. The velocities are first calculated using a guessed
pressure field. The velocities are then corrected to satisfy the continuity con-
straint. The main difference between this type of method and the projection
method resides in the formulation of the pressure and velocity corrections. The
pressure corrections are related to the velocity corrections through approximate
forms of the momentum equations. Furthermore, only the pressure corrections
are solved for using a Poisson equation. Such methods have been widely used
but present the inconvenience of overestimating the pressure corrections to be ap-
plied, thus slowing down the convergence process. Very often, an under-relaxation
factor is used to attenuate the pressure prediction.

3.1.2 Spatial Discretisation: the Finite Volume Method

The selection of a mathematical model constitutes the first part of a numerical
method. The next step involves the choice of a suitable discretisation method,
i.e. the method to approximate the differential equations. Many approaches have
been used but the mainstream ones are the finite difference (FD), the finite vol-
ume (FV) and the finite element (FE) methods.

Selecting a discretisation method is somehow a matter of taste. In the context
of the present research, the finite volume method was chosen as it is one of the
most straight forward method to understand and implement, and it can deal with
complex geometries. The finite volume method has been widely employed and
is now textbook material. Detailed description of the method can be found for
example in Ferziger et al. [29], Versteeg et al. [87] or Tannehill et al. [81]. In the
next few paragraph, only a brief presentation of the method will be given.

The finite volume discretisation method uses the integral form of the conservation

equations. The solution domain is decomposed into a set of contiguous control
volumes (CV) of arbitrary shapes, and the equations are applied to each CV.
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Continuity:

/u -ndS =0 (3.8)
s
Momentum:
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Where V is the volume enclosed by the CV and S the surface bounding it.

The decomposition of the domain is usually carried out adopting either a struc-
tured or an unstructured strategy. In the structured decomposition, the domain
is simply divided into quadrilateral (in 2D) or hexahedral (3D) elements with a
straight forward connectivity. In the unstructured approach, the elements can
be of a completely arbitrary shape usually triangular (2D) or tetrahedral (3D),
thus facilitating the representation of complex geometries. In contrast with the
structured decomposition, the unstructured grids do not possess a simple con-
nectivity, thus making the implementation of an unstructured scheme a rather
complex task. In both cases, to account for the complex geometries present in
the solution domain, it is preferable to adopt boundary fitted grids. Such grids
can be generated by mapping the physical space (z,y,2) into a computational
space (£,71,¢). The major advantage of such a boundary fitted grid is that the
grid lines follow the boundary, thus enabling a straight forward implementation
of the boundary conditions.

Usually, the variable values are calculated at the centre of each CV, although
some schemes use the cell vertices. Interpolation is then used to compute the
face variables in terms of the cell-centred values. By using suitable expressions
for the surface and volume integrals, one can thus obtain an algebraic equation
for each CV where the cell-centred variable is expressed in terms of the neigh-
bouring CVs value.

Approximation of the surface integrals is usually carried out by considering the

sum of the integrals over the faces of the CV. If ¢ is component of a vector in
the normal direction to the CV face (e.g. uw;u-n, pi;-n, ... ) , then:

/quds - Z/S 4dS (3.10)

Thus, in the 2D case, for a quadrilateral CV as illustrated in figure 3.1:
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The integral can then be approximated by the product of the integrand at the
face centre and the face area, giving:

[ 645 % 0u5. + 8uS + 605, + 4.5, (3.12)
S

Since the face values are not readily available, they have to be interpolated from
the cell-centred values. Linear interpolation is usually employed for that matter
as it gives a second order accuracy. Other schemes giving the same order of
accuracy may be used such as the upwind scheme where the value taken is that
of the CV upstream of the considered CV, or Quadratic Upwind Interpolation
for Convective Kinematics (QUICK) that makes use of a parabola fit.
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Figure 3.1: Typical Control Volume and its neighbours

Volume integrals are usually approximated by the product of the cell-centred
value with the CV volume:

/ sdV ~ AV (3.13)
14

For CVs lying on the boundaries of the domain, special care must be taken to
derive the face values as no information is available on the other side of the
boundary. The boundary conditions are usually enforced by either prescribing
the values or the gradient at the boundary. This results either in a explicit face
value or in a face value that can be computed using the interior value and the
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prescribed gradient.

Summing all the approximation, an algebraic equation is obtained for each CV
where the variable value for that CV is expressed in terms of the neighbouring
variable values. Gathering all the equation results in a system of linear algebraic

equations:

Ad =Q (3.14)
where A is the coefficient matrix, ¢ the vector of variable values at the centre

of the CVs and @) the vector composed of all the terms not containing unknown
variable values.

To solve such a system of equations, although direct methods such as the Gaus-
sian elimination could be used, it is generally found that iterative methods are
more efficient. The Successive Over-Relaxation method (SOR), the Conjugate
Gradient (CG) and its variants (CGS, CGSTAB, GMRES) and the incomplete
LU decomposition (ILU) are some of the most commonly used methods.

3.1.3 Temporal Discretisation

Since most practical problems are time-dependent, one must take into account a
fourth coordinate direction: time. This implies that the time derivative present
in the Navier-Stokes equations must also be discretised. Several methods can be
found in the literature to carry out such a discretisation.

Considering that the equations can be reduced to the following:
d¢
- t 3.15
== (6. (3.15)

where f represent the components other than the time derivative one.

Then if one knows an initial condition ¢y, the above equation can be solved
through time by advancing in time steps.

Integrating between two instants ¢, and ¢,.;, the following can be obtained:
tt1 9 tnt1
/ 99 4 — / £ (6,4) dt (3.16)
tn at tn

By using an adequate approximation, the integrals can be evaluated. The most
commonly found approximation methods are the so-called Euler explicit and Eu-
ler implicit methods.
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The Euler explicit method simply consists of evaluating the right hand side inte-
gral using the initial value of the integrand. Thus:

¢m ="+ f (9" 1) At (3.17)

On the other hand, the Euler implicit method makes use of the final value of the
integrand, leading to:

¢'n+1 — ¢n +f (¢n+l7tn+1) At (318)

Also, by using a simple average between the initial and final values, the so-called
trapezoid rule method can be define:

G =8 3 [t (6 b)) A (3:19)

It is interesting to note that appart from the first method, all the others require
the value of ¢ at a time other than ¢,. These methods belong to the implicit
method class. If the time step At is small enough, both classes of methods will
produce good solutions (Ferziger et al. [29]). However, if At is larger, explicit
method become unstable as smaller time scales cannot be captured.

Other methods can be used for the approximation of the time derivative such as
the multipoint methods. One of the most commonly known method is the Adams-
Bashford method where a Lagrangian polynomial is fitted to the derivatives at
different points in time. The second order accurate version of such a method is
given by:

6 = "+ 5L B (10 7) — F (facr, 6)] (3.20)

The multipoint approach presents the advantage of being rather simple to imple-
ment. However, one has to be carefull when considering the initial conditions as
no information is available for a previous time step. A simple explicit scheme such
as the Euler one may be employed in the first few steps to account for this matter.

The choice of an explicit or an implicit method is dependent upon the problem
to be tackled and is also usually a trade-off between stability, accuracy and com-
putational cost of the solution.

Explicit methods have the major disadvantage of presenting severe constraints on
the time step to be employed, particularly when using very refined grids. How-

ever, they are very simple to implement and require very few calculation.

In implicit methods, the time steps can be much larger. Thus the desired so-
lution can be obtained in fewer steps. Although implicit methods require much
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more computation per time step, this can result in an overall shorter computa-
tional time. However, owing to the much larger computation per time step, the
truncation error due to computer limitation can be much larger than for explicit
methods. This implies that implicit methods can lead to less accurate solution
than explicit methods. However, in the case of a time-independent solution where
the steady state is the desired result the resultant difference is negligible.

3.1.4 Errors, Stability and Convergence
As can be seen from the previous discussion, numerical solutions are only approx-

imate solutions. Several approximations are applied that introduce three types
of errors (Ferziger et al. [29]):

e Modeling errors
e Discretisation errors

e Iterative errors also referred to as truncation or round-off errors

The modeling errors are related to our inability to fully represent the flow through
mathematical equations. The discretisation errors come from the approximation
of the differential equation. The iterative or truncation errors are due to the
computational representation of numbers. The latter are also called round-off

€ITorsS.

If we define R as the real flow, A, the analytical solution of the model equation,
D, the exact solution of the discretised equation and A, the numerical solution
of the discretised equation, then the various errors can be described as follows:

Modeling error: ey =R - A
A—-D
D _

|

Discretisation error:  ¢ep

N

Il

Iterative error: ¢r
(3.21)

These errors can be used to assess the properties of a particular method. The
stability criterion previously mentioned relates to the iterative or truncation er-
ror. In fact, a method will be stable if ez tends to zero or at best stays constant
as the iteration progress. If this error grows, then the solution is unstable.

Also, the method will be convergent if epreduces to zero as the grid spacing and
time step are decreased.
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However, convergence often refers to the error reduction in the iterative solution
(ez). It is thus important to differentiate the convergence of the numerical so-
lution to the exact solution and the iterative convergence. In the latter case,
the iterative error is used as a criterion to stop the computation. Assessing the
convergence to the exact solution is not a trivial case and is usually achieved
by performing grid dependency tests. The solution is carried out on grids, the
refinement of which is progressively increased, until the solution is not improved
by further refinement.

3.2 Turbulence Modelling

The choices for a method to solve a problem using CFD techniques are often
bound to the computational capabilities. It becomes all too obvious when looking
at turbulence modelling. In the following section, the major turbulence modelling
techniques will be discussed. A brief outline of the methods will be presented fol-
lowed by a discussion to assess their suitability for the present investigations not
only in terms of results produced but also in terms of computational efficiency
and adequacy

Most of practical engineering flows are turbulent and thus possess various proper-
ties such as the highly unsteady nature, the three-dimensionality, the important
vorticity, the diffusive behaviour or the fluctuation on a broad range of lengths
and time scales of the flow (Ferziger et al. [29]). It is generally accepted that the
most common fluids encountered in engineering, air and water, can be described
by the Navier-Stokes equations. Furthermore, these equations not only describe
adequately the laminar flows, but also the turbulent flows. Although the numeri-
cal solution of laminar flows does not present any real difficulty, the computation
of turbulent flows on the other hand can be a real challenge. This is essentially
due to the non-linearities in the Navier-Stokes equations, giving rise to a broad
range of spatial and temporal turbulent scales, the larger scales being related
for the major part to the turbulent diffusion, and the smaller scales, related to
the turbulent dissipation (Deng et al. [35]). A simulation which is to produce
meaningful results has to cover suitably both the diffusive and dissipative effects.

A complete solution of all the scales using the so-called Direct Numerical Simu-
lation (DNS) would satisfy the requirements. Such a solution, however, requires
a number of grid points highly dependent upon the Reynolds number and thus
is currently restricted to simple flows at low Reynolds numbers. A more suit-
able solution consists of simulating the larger scales while modelling the smaller
ones. One such method, known as the Large Eddy Simulation (LES), reduces
the Reynolds number restrictions of the DNS by directly simulating the large
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scales and modelling the small scale by means of subgrid models. A further sim-
plification of the problem of resolving turbulent flows consists of modelling the
entire flow by suitably averaging both the mean and turbulent motions. Such a
procedure, known as the Reynolds averaging, consists of the solution of the so-
called Reynolds-Averaged Navier-Stokes (RANS) equations for the mean motions
coupled with a closure scheme to model the turbulent Reynolds stresses (Deng et
al. [32]). This procedure has been and is still widely used in engineering problems.

3.2.1 Reynolds-Averaged Navier-Stokes Equations

The formulation of the RANS equations and the closure schemes have been pre-
sented in textbooks by various authors such as Hirsch [38], Ferziger et al. [29],
Deng et al. [32], Versteeg et al. [87] or Deschamps [25] among others and will
only be outlined here.

The Reynolds averaging procedure consists of the decomposition of any flow
variable into a time averaged value and a fluctuation about that value:

¢ (x,1) = ¢ (%) + ¢ (x,1) (3.22)
Where:

@ (x = lim = / ¢ (x,t)d (3.23)
With ¢, the time, and T the averaging interval.

In the case where the flow is unsteady, a separation of the time scales must be
assumed, i.e. the averaging time interval 7" must be at most equal to the time
scale for the mean flow ¢. This results in a constraint on the time step used to
resolve the time-dependent flow. In practice, this is rarely achieved.

Applying the above decomposition to the continuity and momentum equations
in the case of incompressible flows, gives, in tensor notation:

du;
=0 3.24
. (3.24)
S L - 3.25
ot * 0z, p Ox; * pOx; \ Oz, - 0z; Oz, (3.25)
Where 7;;, the Reynolds stress tensor, is:
Tij = WU (3.26)
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Since the fluctuations are unknown, the Reynolds stress tensor 7;; cannot be
found explicitely. The above system of equations is thus not closed. Various
closure schemes have been developed and used over the years, including sim-
ple zero-equation or one-equation systems, or more complex models such as the
Reynolds Stress Equations (RSE), or two-equations models like the & — € or the
k — w models (Wilcox [89], Zheng et al. [103, 102]).

3.2.2 Large Eddy Simulation Models

The RANS models as seen above, model all scales of turbulence, and thus make
it unlikely for such models to represent all turbulent flows due to the complexity
of turbulence. Furthermore, the time averaging procedure imposes a restriction
on the time step used to resolve all the time scale of the flow. In turbulent flows,
the transport of the conserved properties is essentially provided by the large scale
motions, the small scale motions being far less effective. It appears thus obvious
that a method that simulates the large eddies more accurately than the small ones
would provide more sensible results. By filtering out the small scale motions, LES
simulates exactly the large scales while modelling at the so-called subgrid scales.
As was shown by Murakami et al [64], although LES calculations are more CPU
intensive, they presented better agreement with experimental results than RANS

models such as RSE or £ — € models.

The filtering process of the Navier-Stokes equations appears somewhat similar
to that in the averaging procedure of the RANS. The major difference resides in
the fact that in the LES method, the filtering procedure is of a spatial nature
rather than a temporal one. The decomposition of the flow variables separates
the filtered part, i.e. the part corresponding to the large scale motions, and the
subgrid part accounting for the smaller scale motions.

b (x,t) = ¢ (x,1) + ¢ (x,1) (3.27)
Where:

b (x,1) = }é [HG(X, x’)} o (', 1) dx’ (3.28)

Where D is the domain and G the filter kernel. The most common definition of
the filter kernel is the volume filter:

o [y i |z =2l < A/2
Gj (25— 2j) = { 0 otherwise (3.29)

Where A; is the control volume spacing in the j** direction
Giving:
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Assuming that the SGS turbulence is locally in a state of equilibrium between
production and dissipation, Smagorinsky [76] derived the following expression for

the eddy viscosity:

V= CéA ’gl with ’Fl =14/ 2§kl —S—kl (3.38)

Where A is the filter width, usually taken as an average of the local mesh sizes,
and Cg is a non-dimensional constant commonly called Smagorinsky constant.
Theoretically, the Smagorinsky constant is equal to about 0.17, but in practice,
the optimum values for Cs range from 0.07 to 0.24 depending on the flow con-
sidered (Deng et al. [35]).

The inability to represent the variety of phenomena present in turbulent flows
with a single universal constant led Germano et al [33] to develop a dynamic sub-
grid scale model where the Smagorinsky constant Cg is calculated dynamically.
Such a procedure, modified by Lilly [52], has been presented in the literature
whether in cartesian or in curvilinear form (Jordan et al. [41], Yang et al. [97]).
Other variants of the dynamic subgrid-scale model have been developed such as
the Dynamic Mixed Model (Péneau et al. [67]) but its validity still has to be
shown.

Another approach to modelling the subgrid-scales, based on statistical turbulence,
is the structure function model developed by Métais and Lesieur [59]. In this
method, the eddy-viscosity is evaluated as follows:

v (T, A1) = 0.063A4/ Fy (T, A, 1) (3.39)

Where A is the mean mesh size, and F5 is the second order structure function of
the resolved velocity field for a radius A:

Fy (7,A,1) = (|[a (x +1,t) — 7 (%, )" jrj=a (3.40)

A further development of the structure function model is the selective structure
function model that switches off the eddy viscosity when the flow is not sufficiently
three-dimensional. The three-dimensionality of the flow is assessed from the angle
B between the local vorticity vector and the average vorticity vector evaluated
over the neighboring points. The formulation of the eddy-viscosity is thus as

follows:
v (T, A, 1) = 0.098v7A/ Fo (T, A, 1) (3.41)

Where + is the selective parameter. Lesieur and Métais recommended a threshold
value of 20° for the angle 5. Rather than using an abrupt on-off switch, a smoothly
varying function is often used such as:
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0 for B < 20°
v={ e A for 20° > § > 10° and df = |8 — 20| (3.42)
1 for g > 20°

Suksangpanomrung et al [79] compared the structure function model, the selec-
tive structure function model and the Smagorinsky eddy viscosity model for the
case of separated flow over a bluff rectangle plate for Reynolds number of 50,000.
In the case of the selective structure function model, both the mean flow and
turbulence statistic obtained were in good agreement with experimental data.
The Smagorinsky model yielded a mean reattachment length in good agreement
with the experiments but the turbulence statistics and the dynamics of the flow
were deficient. Both the Smagorinsky model and the structure function models
delayed the break-up and three-dimensionalisation of the separated shear layer.

In the particular case of flow past a cylinder, whether two or three dimensional,
numerous investigations using LES have been carried out. Lu et al [54] used a
Smagorinsky Eddy viscosity model and showed the good agreement between LES
and experimental results for such flow problems. Dalton [21] further emphasised
the validity of LES for flow past cylinder by showing the very accurate predic-
tions of drag, lift and inertia coefficients at Reynolds number of the order of
10*. Jordan et al [41] investigated the formation and transport of Strouhal vor-
tices in the near wake of circular cylinder and concluded that LES gave accurate
prediction of the base pressure coefficient directly behind the cylinder, thus ade-
quately simulating the fundamental Strouhal vortices characteristics. Murakami
et al [64] showed how the lock-in phenomena was well reproduced by three-
dimensional LES computations while two-dimensional computations could not
produce accurate results. However, Bouris et al [9] showed that two-dimensional
LES computations should not be dismissed for quasi two-dimensional flows, the
only requirements being satisfactory grid refinements. Breuer [10] investigated
the impact of three dimensionality for LES computations and the discretisation
schemes, comparing various subgrid-scale models for the flow past circular cylin-
der. High Reynolds numbers simulation around circular cylinder were carried out
by Breuer [11], that showed that grid refinement did not automatically lead to
improved results for all quantities. He also reached the conclusion that although
the dynamic subgrid-scale model gave very satisfying results, its superiority over
Smagorinsky’s eddy viscosity model could not be proven.

3.3 Force and Structural Motion Description

In the recent years, as the methods to solve fluid dynamic problems matured, the
complexity of problems tackled has increased. One of the most interesting aspects
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which is the subject of numerous studies is that of the coupled fluid-structure
interaction where the motion of one or more objects in the flow is taken into ac-
count. Such motions of objects imply the determination of both the forces acting
on the objects and the resulting displacements. In the following section, a brief
presentation of the method used to determine the fluid forces acting on an object
will be given followed by a description of the structural model used to calculate

the motion.

3.3.1 Force Description

By definition, the force acting on a body can be expressed as follow:

F:FP+FV=—/(pn+Z-n)dS (3.43)
5

Where F, and F, are the contributions of the pressure force and the viscous force
respectively, p is the pressure, 3 the viscous stress tensor, and S is the surface
of the body.

Another form of the above equation making use of the vorticity w is:

F:Fp+FV:—/(pn+unxw)dS (3.44)
s

Both formulations are widely used. Given the velocity field, the contribution of
the viscous force can be determined in a straight forward manner. The accuracy
will only depend on the resolution of the mesh in the proximity of the object. On
the other hand, the pressure not being a local variable, i.e. the pressure at a point
depends on the velocity and vorticity in the whole domain, the determination of
the contribution of the pressure force can be difficult.

To overcome the difficulties associated with the determination of the contribution
of the pressure force, alternative approaches such as the vorticity impulse have
been sought, eliminating the pressure information. The major inconvenience of
this method is that the vorticity in the near and far wake contribute equally to
the hydrodynamic force (Protas et al. [70]). Using a control volume approach
as a starting point, Noca et al [65] modified the approach by considering the
momentum balance in a finite control volume surrounding the body. However,
although the method seems advantageous as it does not require any pressure or
shear stress information, the results do not differ significantly with those obtained
using the classical pressure-shear stress formulation.
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3.3.2 Structural Motion Description

Having obtained the hydrodynamic force acting on the object, the resultant mo-
tion of the object must be determined. In the case of the flow around a circular
cylinder, as for most objects, it is generally assumed that the system is equivalent
to a mass-spring-damping system. The equation of dynamic equilibrium for such
a system can be expressed as:
2

m%g + c%z;— +kx=F (3.45)
Where m is the mass of the cylinder, ¢ is the damping coefficient, k is the spring
stiffness, F' is the fluid force acting on the cylinder and x the resultant displace-
ment of the cylinder.

Using the following non-dimensional parameter:

X*—i't*—tUm'C— c 'U*—UOO'C _2F . . omo
D" T D oekm 4D P uzp’ ™ T D2
(3.46)

Where z* is the non-dimensional displacement, ¢* is the non-dimensional time,
¢ is the damping ratio, U* is the velocity ratio also referred to as the reduced
velocity, Cr is the force coefficient and m* is the mass ratio

then equation (3.45) is equivalent to:

2 % ¥ 2
0%x N (47r§> ox N <27r> e Cr (3.47)

o+ U~ ) o U~ ~ o

Furthermore, if one considers the frequency ratio defined by f* = —{{—‘ where f,
is the natural frequency of the cylinder and f; is the vortex-shedding frequency,
then equation (3.47) can be written as:

BQX* aX* 9 CF
4 * * *) — .4
o T ATCS. ) T (2mSif ) = (3.48)
Where S; is the Strouhal number defined by:
s JnD Y
g =L _Jo D U (3.49)

U JfolUs 7

The last two description of the dynamic equilibrium of the system are commonly
found in the literature. Mittal et al [62] used a form similar to that in equation
(3.48) where the non-dimensionalisation of the displacement is carried out using
the cylinder radius as opposed to the diameter. The resulting equation of motion
thus appears different but is strictly equivalent to the ones presented above. The
only difference lies in the expression used for the various ratios such as the mass
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ratio or the velocity ratio that they define as the reduced natural frequency.

It was found that the flow-induced vibration of a structure is a self-limiting pro-
cess and the amplitude of the vibration could be correlated with a parameter
known as the Skop-Griffin parameter (Khalak et al. [43, 44]):

S, = 21352 (m*() (3.50)

For that reason, Zhou et al [104] used the second formulation (equation (3.48))
as it present the advantage of a better control over the frequency ratio f* and
thus provide a simple mean to achieve a desired 5.

For a given mass, damping and frequency ratio, and a given .5, one can simply
deduce the Strouhal number. The solution of the equation of dynamic equilibrium
of the system is then carried out numerically using methods such as the Runge-

Kutta method.

3.4 Moving Grid Method

Once the forces acting on an object and the resulting displacement of that ob-
ject have been calculated, the motion of the computational mesh representing the
solution domain must be determined. Several methods have been used for such
purposes which will be reviewed in the following sections.

When attempting to solve numerically the flow around an object, much effort is
put into the generation of a mesh representing the domain with a quality enabling
the accurate capture of the flow phenomenon. Mesh generation has been the sub-
ject of intense investigations and has always been a computationally expensive
process. It seems thus quite clear that if one was to re-generate a complete mesh
when displacing an object in the solution domain, such a process would increase
tremendously the overall computational cost of the solution. For such a reason,
the process of deforming the mesh must not be a complete re-generation, but
rather a modification of the current mesh. Also, the process must be completely
independent of the method used to create the initial grid. This defines the con-
cept of the so-called dynamic mesh.

3.4.1 Algebraic Methods

Several methods can be considered to carry out such a modification. Schulz et
al [75] use a simple algebraic method to deform the mesh based on a distance
function from the moving objects. To preserve the local quality of the mesh in the
neighbourhood of the objects, the displacement of the mesh vertices surrounding
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an object is matched with the displacement of the object itself. The displacement
of the remaining mesh vertices are then linearly reduced based on the distance
away from the structure such that the domain boundaries remain unchanged. In
the case of multiple structures present in the field, the contribution of the motion
of each structure is taken into account by super-imposing the displacement of the
vertex according to the motion of each individual structure.

num. bodies

Afrertex = Y, (di) (Afboay); (3.51)
i=1
where A7 is the displacement vector and d; is the distance function for the body
¢ ;normalised so that it ranges from 0 on the domain boundaries to 1 on the body
surface.

An illustration of the motion of a mesh vertex in the presence of two bodies is
shown in figure 3.2

Figure 3.2: Example of tandem cylinder geometry

An attractive quality of such a method resides in the fact it preserves the quality
of the grid in the immediate surrounding of the objects and provides for multiple
objects configurations. Furthermore, its implementation is straight forward and
the added computational cost small. However, the overall grid quality cannot be
guaranteed by such a method.

3.4.2 Tterative Methods - The Linear Spring Analogy

A popular method for the creation of dynamic meshes that provides a solution
for the preservation of the quality of the whole grid is the so-called lineal spring
analogy (LSA) method. The edges of the mesh are assimilated with a network
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of lineal springs whose stiffnesses are inversely proportional to the length of the
supporting edge. The system is thus in equilibrium if for all the mesh vertices:

num. edges

> kAlL=0 (3.52)
i=1

Where k; is the stiffness of the spring supported by the i* edge and Al is the
expansion of the spring from its resting state.

ie.:

num. edges
Z ki(AFvertex - A’F;) =0 (353)
i=1
Where ATyerer corresponds to the displacement of the vertex considered and A7
corresponds to the displacement of the other vertex composing the edge .

To solve the above system of equations, iterative methods are employed such as
the Jacobi or the Successive Over Relaxation (SOR) methods. An immediate
consequence is that at each time step of the solution, a large number of computa-
tion must be carried out to update the mesh, thus adding substantial time to the
computation of the solution. However, in the case of small displacements of the
bodies present in the domain, very few iterations are required to deform the mesh.

Furthermore, a major advantage of the method lies in the preservation of the
quality of the mesh. As the stiffness of the springs is inversely proportional to
the length of the supporting edge, small edges found in region of high level of
refinement are extremely stiff. Thus very little deformation of these regions oc-
curs. On the other hand, regions where the mesh refinement is not so important,
and thus where the mesh edges are not so small, higher deformation occur. An-
other advantage of the method resides in the fact that as two vertices tend to
get closer, the spring supported by the edge joining these vertices gets stiffer and
thus prevent them from colliding. However, in the case of larger deformations,
overlapping of mesh elements may occur, thus making the method inadequate for
a lot of practical engineering problems.

The major deficiency of the lineal spring analogy method is that the stiffness of
the springs do not take into account the mesh elements area or angles, leading
to possible crossover of mesh elements. To overcome this problem, the notion
of torsional springs was introduced and is now widely used to generate dynamic
meshes (Farhat et al. [28], Degand et al. [23]. Further torsional springs are
attached to each vertex whose stiffnesses are functions of the length of the edges
connected to the vertex and the area of the grid elements connected at the vertex.
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This method, although it prevents the crossover of grid lines and preserves the
overall mesh quality is however rather complex and computationally costly.

3.4.3 Hybrid Methods - Transfinite Interpolation and Lin-
eal Spring Analogy

An alternative to the solution of a large system of equations involves the transfi-
nite interpolation (TFI) of the grid point displacements. Such a technique, based
on an algebraic method of grid generation, can be seen as a perturbation method
rather than a complete re-generation. Dubuc et al. [27], Liu et al. [53] and Wong
et al. [94] used a combined TFI and spring analogy approach on a multi-block
configuration.

The process is decomposed in two major stages according to the method em-
ployed:

First, the spring analogy is applied to a high level grid formed by the corners
of the blocks. If A and B are two corners forming an edge of a block, them
A7, and Arp are obtained by solving the linear system of equations as described

previously.

Then, the TFI of the grid point displacements is applied to the edges, faces and
interior vertices of each blocks.

Considering a two-dimensional case, the edges and faces of the blocks are the
same, thus if P is a vertex on the edge formed by A and B, its displacement is

updated using:
AFp = (1 - %) 7y + (1 - g) A5 (3.54)

Where a, b and ¢ are distances calculated from the initial points coordinates as
a= ]lA?D”, b= “B—P” and ¢ = HA?)’I'

The displacement of the interior vertices is obtained from:

AF(E,m) = f1(&,n) + @1 () [dFn (€) — f1(€,0)] + @5 (n) + [d7bs (€) — fu (5(,31%]5)
Where:

Fu(€,m) = Y (€) divy (n) + ¢S (€) iz () (3.56)
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Also, dryy, drye, drpys and drpy are the interpolated displacements along the four
block faces.

¢ and 1 are blending functions in the £ and 7 direction respectively defined by:

¢1(n) = 1-s1(€)
(/5(2)(77) = s3()
PP (€) = 1—s4(n)
Py (€) = s2(n)

s1, S, s3 and s, are stretching functions defined simply by:

length from A to 7(¢,0)

s1(8) = length of curve from A to B (3:57)
s2(n) = lerllegr‘iit};ffziiferrtoog ](; ’tqz))C’ (3:58)
O = oot cai o D100 (359
51(8) = lerllegr‘zitgffzziejqfrt(?; f‘? ’tZ)D (3.60)
Finally, the coordinates of the displaced points are updates using:
7(&m) =70 (€n) +dr (€ n) (3.61)

Figure 3.3 illustrates the mesh deformation process.

This method guarantees the matching of the displacements of the block faces of
two adjacent blocks. Furthermore, the large amplitude motions that were prob-
lematic in the case of the lineal spring analogy can be studied without the risk
of cross-over cells.

3.5 Parallel Computation Methods in CFD

One of the greatest limitations of numerical computations remains the available
computing capabilities. The main difficulty encountered is related to both the size
of the problem and its type. The size of the problem is accounted for by the mem-
ory of the computational unit (essentially Cache memory and Random Access
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Original grid

Displacement of block corners using the spring analogy method

Displacement of block faces using the TFI method

1

Displacement of block interior vertices using the TFI method

Figure 3.3: Combined Spring Analogy and TFI method on multi-block mesh

38



Memory or RAM). Depending on the type of problem tackled (transient or turbu-
lent flows ...), the size of the problem will also have an impact on the processing
time. It is thus clear that as the complexity of the problems solved increases, the
amount of memory and the processing power become critical. A solution to this
1ssue lies in what is called parallel computation.

In the following sections, the different parallel computer systems will be presented
and the parallelisation strategies for the solution discussed.

3.5.1 Parallel Computer Systems

Parallel computations can be performed on three types of computer architectures:

e vector computers that make the best use of vector calculations for matrix
operations,

e shared memory computers that possess a common memory area between
several processors,

e and the distributed computers where each computer node possesses its own
processor and local memory.

The first type of architecture presents the inconvenience to require specific algo-
rithm adaptation and also is not scalable.

The second type possesses the great advantage of not requiring special care for
the data exchange processes. However, the complexity of such machines due to
the control over the access to the global memory limits their potential.

The third type, although requiring great care as far as the data exchange is con-
cerned, offers the best compromise as its scalability allows more complex problems
to be tackled.

Furthermore, the first two types of computer architectures, namely the super-
computers, are extremely costly and restricted in their availability. On the other
hand, the third type of architecture can be achieved by simply networking several
standard workstations into a computer cluster. With the recent slow down in the
growth in processor speed, such a system can be built at a much more viable cost
and present a real alternative to supercomputers.
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3.5.2 Parallel Computation Strategies

Parallelising the computation on a distributed system consists of breaking up the
solution process so that the complete solution is distributed among several pro-
cessing units. Individual processing unit will thus treat part of the solution. Since
all the parts of the solution are closely related and cannot be treated indepen-
dently, the different processes must communicate during the solution procedure
thus linking the various parts of the solution.

Winkelmann et al. [93] suggested that the parallelisation of an algorithm on a
distributed system can generally be performed in three different ways: at the
loop level, at the task level, i.e. functional decomposition, or at the data level,
i.e. the domain over which the solution is carried out is distributed.

When performed at the loop or at the task level, i.e. task parallelism the speed of
execution depends on the least efficient part of the code. It is thus necessary to
minimise the non-parallel part of the code in order to achieve maximum efficiency.

An alternative way that is more suited to CFD problems and thus has been widely
adopted (Garbey et al. [31], di-Serafino [26], Lanteri [48], Moitra et al. [63], Vatsa
et al. [86], Akay et al. [1], Carré et al. [14] ) is achieved by performing a do-
main decomposition, i.e. data parallelism. In a convenient manner, the solution
domain is divided into sub-domains, each being assigned to a processing unit. If
the decomposition is of a spatial nature, then it is similar to block structuring of
grids. As most of the complex geometries are represented using multiple blocks,
the natural partitioning of the domain can be used. To maximise efficiency, it is
important that each processing unit is given the same amount of work to do so
that the waiting time (time during which one or more processing unit are idle)
is reduced. The load balancing is then achieved by dividing the solution domain
into sub-domains of similar sizes (mesh size). Each sub-domain is assigned to one
processor but more than one grid block may be handled by one processor.

The same code runs on each node of the cluster with its own set of data. This cor-
respond to the Single Program Multiple Data (SPMD) programming paradigm.
Since each processor requires data residing in other sub-domains, exchange of
data between processors is required. Furthermore, since there is no mechanism
for any process to directly access the memory of another, the sharing of the
data between processes must take place by explicitly sending and receiving data.
Specific communication tools for the data exchange process such as the Message
Passing Interface libraries (MPI) provide a useful set of routines for that purpose.

Parallelism is thus achieved by combining the partitioning of the domain and the
interfacing of the various processes.
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3.5.3 Domain Partition and Message Passing Model

Interfacing the various sub-domains constitutes one of the most important part of
the parallel process. Two distinct aspects have to be taken into consideration, one
being the partitioning of the data on the various sub-domains, and the other be-
ing the communication of the information from one sub-domain to its neighbours.

Domain Partitioning

In his study on parallel solutions of compressible flows, Lanteri [48] identifies two
different strategies for the partitioning of data, namely using overlapping and
non-overlapping mesh partitioning.

In the overlapping mesh partitioning strategy, a layer of cells surrounding each
blocks is introduced, the ghost cells, and used to store the information from
neighbouring blocks. At appropriate times during the numerical solution, the
information in these cells is updated. The major advantage of this method is
that the communication between processes is minimal. However, according to
Lanteri, such a method results in redundant floating point operations.

In the second case, i.e. the non-overlapping mesh partitioning strategy, a sub-
domain will not contain any information from the neighbouring sub-domain. The
information required for the computation are directly exchanged when required.
This results in fewer floating point operations than for the previous method but
implies a much larger communication cost.

Overlapping mesh partitioning is probably the most widely used strategy. Its im-
plementation is straight forward and the resulting additional computation have
little impact on the overall cost of the solution in comparison with the commu-
nication cost incurred by the non-overlapping mesh method.

Message Passing Model

Having discussed the partitioning strategies, one must consider the message pass-
ing model. Most implementation to date make use of the Message Passing Inter-
face (MPI) as it is intended as a standard implementation of the message passing
model of parallel computation.

The basic concept of MPI is the transfer of data between a pair of processes,

one sending and the other receiving. This is generally called the point-to-point
communication. Most send and receive functions provided by MPI are based on
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this type of communication. Other type of functions available involve collective
communication whereby information is sent to or gathered from all the processes.

The default communication modes are so called "blocking" modes, i.e. both the
sender and the receiver do not proceed further until the communication has com-
pleted. One inconvenience of this type of calls is that it can lead to deadlock
situations where two processes try to send data to each other at the same time

without any matching receiving calls.

MPI provides another type of communication mode: the non-blocking mode, al-
lowing one process to carry on with its task although the communication has not
yet completed. One process thus becomes a "communication' server, initiating
the exchange while proceeding onto other tasks, and the "client" process execute

the exchange when required.

Winkelmann et al. [93] defined two basic strategy adopted for the update of the
ghost cells data:

e The Blocking Send, Non-blocking Receive (BSNR) strategy illustrated by
the algorithm 3.1 where the code sets up non blocking receives for all in-
coming messages, then looping over all blocks, a message is sent to each
neighbouring blocks.

e The Non-blocking Send, Blocking Receive (NSBR) strategy illustrated by
the algorithm 3.2 where a single loop over all blocks is used and messages
are sent as soon as the information is ready. Then for each neighbouring
block, a blocking receive is posted.

Algorithm 3.1: Blocking Send Non-Blocking Receive Strategy

1. Loop over all blocks:

s Exchange ghost cells information
2. Loop over iteration:

e Solve the equations on the local domain
3. Loop over all blocks:

e Exchange ghost cells information

4. Store the solution

In the BSNR method, since the communication and computation are separated,
all communication will occur at the same time. This could result in a very slow
solution in the case of a slow networking system. In contrast, the NBSR method
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spreads communication traffic in time. Furthermore, in the case of the NSBR
method, no deadlock can occur.

Algorithm 3.2: Non-Blocking Send Blocking Receive Strategy

1. Loop over all blocks:
e Send ghost cells information
2. Loop over iteration:

(a) Receive ghost cells information (blocking)
(b) Solve the equations on the local domain

(c) Send ghost cells information (non-blocking)

3. Loop over all blocks:

o Receive ghost cells information

4. Store the solution

3.6 Summary

The review carried out in this chapter leads to the following conclusions for the
method to be used in the present research:
Mathematical Model:

e The flow will be modelled by the incompressible form of the Navier-Stokes
equations. The equations will be filtered for the LES turbulence model. To
enforce the continuity constraint and thus solve the incompressibility of the
flow, the projection method will be used.

e To account for complex geometries, a boundary fitted coordinates (BFC)
system will be adopted.

e The Force calculation will be based on the integration around the object of
the pressure and shear stress contributions.

e The Structural motion will be derived from a simple mass-spring-damping
system.

Numerical Method:

e The flow governing equations will be discretised using the finite volume
method.

e To compute the structural displacement of the object, the Runge-Kutta
method will be used.
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e The mesh deformation will be carried out using a hybrid TFI / spring
analogy method.

Numerical Implementation:

e The method will be parallelised to carry out the computation on a computer
cluster, thus enabling the large size problem to be solved. The parallel
implementation will be based on the Single Program Multiple Data (SPMD)
model with a domain decomposition using overlapping blocks. The parallel
interface will use the MPI message passing model.
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Chapter 4

Flow Solver: The Projection
Method

4.1 Mathematical Model

As previously discussed, a numerical solution is composed of several components.
The first and most critical one is the mathematical formulation of the problem.
For the purpose of the present work, the incompressible Navier-Stokes equations
expressed in body fitted coordinates (i.e. curvilinear coordinates) and filtered for
the large eddy simulation turbulence model are the most suited.

Since the filtering and coordinate transformation processes are lengthy, only the
final form of the equations are presented below. The details of the derivation can

be found in appendix A and B.

The flow governing equations can thus be written in a non-dimensional form as
follows, using the Einstein notation:

Continuity:
5 (.JU?)
Momentum:
6 - 8 Tk, . -1 qj 82_7

) 1 1 ou;
SR I et JlgkglZ 4.2
T % [(Re*Re)( f %H (42)
Where J is the Jacobian of the coordinate transformation:
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J= Dlz,y,2) (4.3)

D (& n,¢)
77 is the filtered contravariant component of velocity:
7 = S, (4.4)
Vrj is the filtered contravariant component of relative velocity:
U’ =Sl (W -1, (4.5)

Where %, is the filtered grid velocity component, and g is the pseudo pressure
defined by:

1

7=pP—3m (4.6)
And S;ﬁ are the metrics of the transformation defined by:
i 0&; NP _
Si=J with 7, j and k cyclic (4.7)
8.’1)]'

Re, is the turbulent Reynolds number as obtained using one of the following LES
models:

Smagorinsky model:

UL
INE

Where |S| = 1/25;;Si; and the rate-of-strain tensor Sj; = 4 (S]k o Sf%%>

Re; (4.8)

Structure function model:

UsL

R@t = — (49)
0.063A+/Fy (€, At)
Where the function Fs can be obtained from:
Fy= <[|u(§ +1)—u (§>”2>||r| =1 (4.10)
Selective structure function model:
Re, = UL (4.11)

0.098vA4/Fy (£, At)
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s function Fy is as above and v is a switch function that uses the
tween the local vorticity vector and the average vorticity vector in the

ing region:

0 for 8 < 20°
v={ e[/ for 20° > 4> 10° and dF = |3 — 20| (4.12)
1 for B > 20°
_ W Wap
p=e () (413)

:ity components can be obtained from:

o (Suy, £ Uj
19S5 ) G(Skug):} (1,9,k in cyclic order) (4.14)

LA BT On

[he Projection Method in Finite Volume

the incompressible Navier-Stokes equations, the projection method as
d originally by Chorin [16] was chosen for its simplicity and efficiency.
ted before in chapter 3, the projection method consists of three steps:

: momentum equations are solved ignoring the pressure terms to obtain
ntermediate velocity field that does not satisfy the continuity constraint.
: equations resulting from the omission of the pressure terms from the
nentum equations are named the Burger equations.

» pressure is then solved by using the Poisson equation.

using the pressure gradient, a provisional velocity field is projected onto
ivergence-free space thus resulting in a velocity field complying with the
tinuity constraint.

e these three steps, the equations governing the flow need first to be dis-
1sing the finite volume method. Since the full discretisation procedure is
only the final representation will be formulated here. The author refers
T to appendix C for a more comprehensive description and derivation of

etised equations.

liscretisation presented in the following section, the control volume lay-
notation adopted is illustrated for the two-dimensional case by figure
the three-dimensional case, an upper (top) and lower (bottom) layers
d to the computational cell. As a convention, capital letters will denote
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Where j = BW, SW, W, NW,TW, BS, B,BN,S, P, N, TS, T, TN, BE,SE,E,NE,TE.
The complete definition of the laplacian £ can be found in appendix C.

Now, since:
0 0
— (Ja\dV = — (Ja* 4.17
| mumav = 2 m) (4.17)
then the spatially discretised Burger equations are:
9 (Ja;) +C; = D; (4.18)
ot o '
Integrating now between two instants t* and t"! = " + At gives:
tn+1 a tn+l t”l+1
/ — (Ju})dt +/ C;dt = D,dt (4.19)

Using a simple Euler explicit scheme for the temporal derivative term, the Adams-
Bashford scheme for the convective term and the Crank-Nicolson scheme for the
diffusive term, a second order time accurate solution is obtained:

tn+1 8
[ gumasgmy - gmy (4.20)
tn at
tn+1
/ Cdtm%—(SC” e (4.21)
tn
tn+l
D,-dtfv%—t—(@” Dt (4.22)

tn
The fully discretised Burger equations are thus:

At

O L O

2
Grouping now the terms at instant t"*! on one side and the others on the other
side gives:

(D} + Di ) (4.23)

2 2

~ (Jap)™ — Dptt = ~7 (JT)" =3¢} + crl+ D (4.24)
i.e., using equation (4.16):
25JP —*n—H i n n—1 n
ZE I At (Ja)™ —3Cr +Cr 7 + D (4.25)

Where J;p is the Kronecker delta function defined by:
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(1 ifj=rP
0;p —{ 0 otherwise (4.26)

For each control volume in the solution domain, equation (4.25) must be solved
for each velocity component. The resulting system of equations for the whole
domain is thus of the form:

AU;=B; fori=123 (4.27)

Where A is the matrix of coefficients to be applied to the velocity components
as defined in equation (4.25), U; is the vector of velocity component 7 for all the
control volumes and B; is the vector corresponding to the right hand side term

of equation (4.25).

Following the projection method steps, the pressure field must now be solved by
using the Poisson equation.

The curvilinear form of such a Poisson equation can be written as:

2 (gl - 2 (o
5 (J Stige ) = 5 (T ) (4.28)

In a very similar way to that used for the diffusive part of the Burger equations,
the discretisation of the Poisson equation results in the following approximation:

Z Lig; =0 =0l + V9= V] + W]~ W (4.29)

As for the Burger equation, the above equation must be solved for each control
volume in the domain. This results in a system of equations of the following
form:

AQ=B (4.30)

Where A is the matrix of coefficients to be applied to the pseudo pressure defined
in equation (4.29), Q is the vector of pseudo pressure for all the control volumes
and B is the vector corresponding to the right hand side term of equation 4.29.

Finally, the actual velocity field satisfying the continuity constraints is simply
solved using the projection equation. In its curvilinear form, the latter can be
written as follows:
. aq
— — —1cqu
=4, —J 5 —
(] ( ag]

Applying the finite volume discretisation gives:

(4.31)
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=1 — (2J) 7 [SH @ —Tw) + 5P @y — Ts) + S} (@r — 75)] (4.32)
The complete solution method for the projection method can thus be summarised

as follows:
1. Solve equation system (4.27) to obtain the provisional velocity field.
2. Solve equation system (4.30) to obtain the pressure field.

3. Solve equation (4.32) to obtain the actual velocity field.

4.3 Boundary Conditions Implementation

From the discretisation presented previously, and taking into account that the
flow is solved using the primitive variables at the cell centre, it appears quite
clear that the computational cell used in solving the set of equations is composed
of a single layer of cells around the current cell as illustrated in figure 4.2.

W . TE

[ F

4 (3 @ Cell Centre

OcCeil Face Centre
Figure 4.2: The computational cell

However, at the domain boundaries, some of the neighbouring cells are non-
existent. To account for such an absence of cells, a layer of so-called "ghost cells"
is introduced around the block as can be seen in figure 4.3. Such ghost cells must
then be set to represent appropriately the boundary conditions.

Conveniently, these ghost cells can also be used to store information from adja-
cent blocks. The overlapping mesh strategy discussed in chapter 3 can thus be
enforced in a straight forward manner using the ghost cells as the overlapping
mesh area. Figure 4.4 illustrates the subdivision of a domain into sub-domains,
and the data dependency between the sub-domains with the overlapping mesh

strategy.
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> Internal Cells @ Ghost Cells

Figure 4.3: Block Cells Arrangement

.=.=.=.
000 1)
AR © -

—¢— Domain Internal Cells —¢— Block Internal Cells Q— Block Corner Cells

—,— Domain Boundary Cells —’— Domain Boundary Cells ~(>— Overlapping Cells

Block 1 i:g Block 2

Figure 4.4: Multi-block domain decomposition and data dependency

In the following discussion, it will be assumed that the boundary cells, whether
domain cells or ghost cells, are normal to the boundary.

In most cases, the boundary conditions used in the resolution of the Navier-Stokes
equations are associated with the velocity, the nature of the problem usually not
providing enough information on the pressure at the boundary except in cases
such as free-surface flows. For each variable, i.e. velocity and pressure, the bound-
ary I is subdivided into I'p where Dirichlet boundary conditions apply (such as
u =g (&,t) ), and I'y where Neumann boundary conditions apply (such as g;ii =
where n denotes the direction normal to the face of the cell where the condition

applies).
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In practical terms, the most common boundary conditions encountered in flow
computations are:

e Inflow (Constant or variable)

Outflow

Solid Wall (Fixed or moving)

Symmetry

Periodic

4.3.1 Inflow Boundary Condition

When the velocity is specified directly as in the case of an inflow, the Dirichlet
boundary condition can be interpreted as follows:

U = Winflow (X, 1) (4.33)

Where Wy, 100, 1S the specified inflow velocity profile.

It has to be noted that the inflow velocity mentioned above is in fact applied to
a face and not to the centre of a cell. Thus, by supposing that the inflow velocity
is the average velocity between the domain cell and the adjacent ghost cell, the
velocity components of the ghost cells can be set as:

Ugc = 2 Winfiow — UpC (4.34)

Where subscript GC and DC denote the ghost cell and the neighbouring domain
cell variables respectively as illustrated in figure 4.5.

As far as the pressure is concerned, applying the Neumann condition ( gg =0)
leads to:

Pec = Ppc (4.35)

4.3.2 Outflow Boundary Condition

In the case of an outflow, the zero gradient of the velocity in the direction of the
flow is used. This translates into:

Ugc — Upe (436)
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Using a reference pressure on the face of the domain cell where the outflow con-
dition applies, and assuming it is the average pressure between the domain cell
and the adjacent ghost cell, the ghost cell pressure can be set as:

PGC = 2 Pref — PDC (4.37)

Figure 4.6 illustrates the outflow boundary condition.

4.3.3 Solid Wall Boundary Condition

The wall boundary condition, whether the wall is fixed or moving, is in fact the
combination of two conditions: namely, the no-slip and no-penetration conditions.

In the more general case of a moving wall, assuming that the velocity at the wall is
the average velocity between that in the ghost cell and that in the adjacent domain
cell, theses conditions can be interpreted by the following Dirichlet conditions:

Ugc — 2- Wyl — UpC (438)

Where the subscript wall denotes the variable at the wall, i.e. at the face of the
cell lying on the wall (whether the ghost cell or the corresponding domain cell).

In the case of a fixed wall, the above simplifies to:

Uce = —lpc (4.39)

So, applying the Neumann condition for the pressure, the ghost cell pressure is
set as:

Pcc = Ppc (4.40)

The wall boundary condition is illustrated in figure 4.7.

4.3.4 Symmetry boundary condition

The symmetry boundary condition is in fact the same as a wall boundary condi-
tion where slip occurs. Hence, depending on the plane along which the symmetry
is set, two of the components of the velocity vector will be set equal in the ghost
cell to that in the domain cell.

For example, if the plane of symmetry is the X-Z plane, both v and w components

of velocity will be the same in the ghost cell as those in the adjacent domain cell
while the v component is set equal to the opposite of that in the domain cell:
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Figure 4.5: Inflow boundary condition

Figure 4.7: Wall boundary condition
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Ugc = Upc
Vgc = ~—Upc

wWee = Wpc

As far as the pressure goes, applying the Neumann condition, the ghost cell
pressure is set as:

Pcc = Ppc (4.41)

At this stage, it is important to note that, the contravariant components of ve-
locity should be used rather than the cartesian components. For implementation
reasons, the symmetry condition is currently restricted to the planes parallel to
the (zy), (zz) and (yz) planes.

4.3.5 Periodic boundary condition

The periodic boundary condition consists of setting the variables of a set of ghost
cells on one face of the block equal to a similar set of domain cells on another
(or even the same) face of the block. Such condition is enforced by means of
interfacing as will be described later on in the report. The ghost cells where the
periodic condition applies are fed with the value of the variables of the "adjacent"

block domain cells.

4.3.6 General Formulation

It thus appears that all the boundary conditions (with the exception of the peri-
odic boundary condition) can be represented using a generic formulation:

dcc=Cr1+Cy- dpc (4.42)

Where ¢ can be the velocity components or the pressure and the constant C}
and Cs depend on the condition to be applied. Tables 4.1 and 4.2 summarise the
constants used for each boundary condition.

4.3.7 Block Corners and Edges

One aspect of multi-block computation rarely described by other authors but
however well known is that of block corners. In the particular case of three-
dimensional computations, this extends to the block edges. The reason such
corners and edges are of concern is related to the computational cell used in the
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Boundary Condition Ch Co
Inflow 2Win flow -1
Outflow 0 1
Fixed Wall 0 -1
Moving Wall 2Uya -1
1 foru
Symmetry (XY plane) 0 1 forw
—1 forw
1 foru
Symmetry (XZ plane) 0 -1 forw
1 forw
—1 foru
Symmetry (YZ plane) 0 1 forw
1 for w

Table 4.1: Ghost cell boundary condition velocity constants

Boundary Condition Ci Oy
Inflow 0 1
Outflow 2Dref -1
Fixed Wall 0 1
Moving Wall 0 1
Symmetry 0 1

Table 4.2: Ghost cell boundary condition pressure constants

discretisation scheme and the boundary conditions treatment. In the current im-
plementation, this concerns the ghost cells variables to be set in the corners and
edges of each block of the domain. At this point, it is important to note that
only the edges of the blocks are of interest since the block corner values are never
used in the computational stencil. In the two-dimensional case, the block corners
are in fact a special case of block edges. Figure 4.8 illustrates a block edge with
the notation adopted for the variables to be set. The subscripts DCE and GCE
denote variable in the domain edge (domain cell) and in the block edge (ghost

cell).

To illustrate the method used to determine the ghost cell values in the edge of a
block, let’s consider the case showed in figure 4.9 where the one side of the edge
is a solid wall (fixed or moving) and the other an inflow condition.
Using the boundary condition enforcement as described previously, then the ve-
locity in the two ghost cells denoted GCO and GC'1 can be set as:
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GCO DCE

GCE GC1

C’ Domain Cells

— Domain Boundary

l—___’ Ghost Cells

Figure 4.8: Block Edges Layout and Notation

L

GCO DCE

GCE GCl1

Wall Boundary Condition

> Inflow Boundary Condition

Figure 4.9: Inflow/Solid Wall Block Edge Condition

Ucco = 2Uinfiow — UDCE (Inflow) (4.43)

And:

Ugci1 = 2usolid wall — UDCE (SOhd Wall) (444)

Now, the actual edge velocity ug is such that:

1
Up = Usolid wall = (ugco + upce + ucer + Uccr) (4.45)
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It follows that:

Ugce = Ugcl — Ugeo + UpcE (4.46)

If now both conditions were inverted as illustrated by figure 4.10, the following
would be obtained:

Ugce = Ugco — Uger + UpcE (4.47)

g ixialii>

| Wall Boundary Condition

{F Inflow Boundary Condition

Figure 4.10: Solid Wall/Inflow Block Edge Condition

Following the same procedure as above, it can be shown that all the possible
combinations of boundary conditions can be enforced at the block edges using
either equation (4.46) or equation (4.47) which will be referred to as type 0 and
type 1 respectively.

In a generalised form, the value of the velocity in the edge ghost cell can be set
by:

ucce = C3-ugco + Cs - uge1 + Cs - upce (4.48)

Where C3, Cy and Cs are constants set according to the boundary conditions on
each side of the edge. Table 4.3 summarizes the constants used for each case.

For the pressure, a simple extrapolation technique is used based on the value of
the pressure in the ghost cells on each side of the edge.
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P O g e 2] ]
Inflow Solid 0 1)1 1
Solid Inflow 1 1 ]-111
Inflow | Interface 0/1 0101

Interface | Inflow 0/1 0101

Outflow Solid 0 0] 1 0
Solid Outflow 1 110 0

Outflow Inflow 0 0|1 0
Inflow Outflow 1 110 0

Outflow | Interface 0 011 0

Interface | Outflow 1 110 0

Interface Solid 0 11 1
Solid Interface 1 1 1-111
Solid Solid 0/1 001
Inflow Inflow 0/1 01011

| Outflow | Outflow | 0/1 00| 1]

Table 4.3: Ghost cell boundary condition velocity constants at block edge

4.4 Linear System Iterative Solution

The discretisation of the projection method led to two systems of linear equations
to be solved, one for the solution of the Burger equations, the other for the Pois-
son equation. In both cases, the matrix of coefficients of the unknowns are large
and sparse, thus making direct solution rather inefficient. For this reason, itera-
tive method are generally used in computational fluid dynamics. In the present
section, an outline of two of those method will be given, namely the Successive
Over- Relaxation (SOR) and the Conjugate Gradient (GC) methods. Although
both methods are extensively documented in the literature and in textbooks,
their implementation in a paralle]l fashion need further explanation.

4.4.1 Parallel Successive Over-Relaxation

Considering the following system of linear equations:
AX =B (4.49)

Then the i** line can be written as follows:
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Z ATy = bl (450)
j=1

or:

i—1 n
= (bl - Zaija;j — Z aij:cj> /a,-i (451)
j=1

j=i+1

In an iterative method, a solution is guessed and improved by using an appropri-
ate equation. Using the previously calculated values for the right hand side term
in equation (4.51), one can thus obtain the left hand side vector. This is called

the Jacobi iteration:

(A+1 (b - Zam (k Z G,ijilfyc)) /aii (452)

j=itl
If the computed values are 1mmed1ately used as they are obtained, then the left
hand side can be calculated using the so-called Gauss-Seidel (GS) iteration:

o) = (b - Zam et Z aijfvﬁ-k)) /@i (4.53)

j=i-+1

By relaxing the above, the Successive Over-Relaxation (SOR) method is obtained:

i—1
a:z(-kﬂ) =w (bi — Zaij:c§~k+1) Z i ) Jai; + (1 — w) a:§k) (4.54)

j=1 Fj=i+1

Where w is the relaxation factor. If w = 1, the above equation is equivalent to the
Gauss-Seidel one. If w > 1, then the system is over-relaxed. An advantage of the
SOR method over the Gauss-Seidel method is that the solution is accelerated and
requires far less iterations to reach a converged solution provided the relaxation
factor is well chosen. As no real guidance for the relaxation factor can be found
in the literature, its choice is often based on trial and error.

Equation (4.54) is equivalent to:

i—1 n
:U,EIH_I) = ng) —Ww l:(Z aij$§k+1) + Z aijxg-k)> /(lii - bz':l
j=1 j=i
= M — R, (4.55)

Where R; is the local intermediary residue defined by:
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i—1 n
Ri= D ayay™V+ D aya” | Jai — b (4.56)
i=1 J=i

The actual local residue R; at an iteration k can be calculated from:

j=1

As the iterations are performed, the residue R; will reduce towards zero. This
residue is generally used as a stopping criterion for the iteration.

As seen previously in the discussion on the discretisation of the flow governing
equations, the computational stencil is composed of nineteen points or cell, i.e.
the current cell and eighteen neighbouring cell. It is thus clear that since values in
the ghost cells layer are used, those must be updated at each SOR iteration. The
solution thus requires not only the update of the boundary cells to be carried out
but also the interface (or overlapping) cells to be updated at every single SOR it-
eration. Algorithm 4.1 describes the parallel Successive Over-Relaxation method.

Algorithm 4.1: Parallel Successive Over-Relaxation Algorithm

For k=1 to k=(max. num. of iteration)

1. Set overall residue R = 0.0

2. For i=1 to i=(num. of domain cells)
e Compute: R; = ( ;;11 aijz§k+l) + Y, aijgj;k)) Jaz — b
e Compute: zEkH) =w (7@0 +(1-w) ng)
3. For i=1 to i=(num. of domain cells)
{a) Compute: ngﬂ) = (Z;;l (IijI](»k+1)> Jai; — by

(b) Compute: R = maz (xREkH)’ ,R)

Update X in the ghost cells at boundaries, interface and block edges
If R < (Min. Residue) Then set flag "local block convergence’ to "TRUE’

(MPI: Gather) Gather all local convergence flags from all processes

oo o e

If all processes have converged set flag 'global convergence’ to "TRUE’ and exit
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4.4.2 Parallel Conjugate Gradient

The SOR method although widely used in CFD tends to have a slow conver-
gence rate if the initial guess is innaccurate. On the other hand, if an accurate
guess of the solution is available, the SOR method will converge very quickly. In
CFD problems, it is rare to have such an accurate initial solution, thus methods
with faster convergence rate than that of the SOR method can be very desir-
able. Among such methods, the conjugate gradient (CG) is one of the simplest
to implement. It is based on the minimisation of a function in several directions
simultaneaously while searching in one direction only.

The serial CG method is presented in algorithm 4.2 below.

Algorithm 4.2: Conjugate Gradient Algorithm

1. For i=1 to i=(num. of domain cells)

(0)

(a) Set initial: z;

(b) Compute: TEO) =b; — ;}:1 aij$§»0)
(c) Set dgo) = 7-1(0)

2. For k=1 to k=(max. num. of iteration)

(a) Compute: ot =57, r{r® 570 | (a5 0iydV)
(b) For i=1 to i=(num. of domain cells)
Ek—H) - zgk) +a(k)d§k)

ii. Compute: rka) = rgk) — otk Z;:1 ai]"ék)

i. Compute: z

(¢) Compute: (%) =31 pFHDEFL y5on L (0)(K)
(d) For i=1 to i=(num. of domain cells)

e Compute: d§k+1) = rl{k) + ,B(k)d,gk)

o Compute: ’ng+l) = a(k)d§k+1)

e Compute: R = maz (‘R§k+1)’ ,’R)

(e) If R < (Min. Residue) Then exit

In the case of a parallel method, o and 8 must be computed using the residual
values 7 of the whole solution domain. Also, in the case of a, the search directions
d of the whole solution domain are necessary. The parallel CG must thus include
some modification to account for the communication of r, d and Ad across the
various processes.

The parallel CG algorithm is presented below.
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Algorithm 4.3: Parallel Conjugate Gradient Algorithm

1. For i=1 to i=(num. of domain cells)

(a) Set initial: z{*

(b) Compute: rio) =b; — 30, aij$§0)
(c) Set dz(.o) = Tl(o)
2. For k=1 to k=(max. num. of iteration)
@ Computes (+9, K9, = SO, r9r
(b) (MPI: All Reduce) Sum the (r(®),r(*)) ~  across all the processes giving (r(*),r(*))
() Compute: (49, 44),._, = 1, (49 T, )
(d) (MPI: All Reduce) Sum the (d<k),Ad(k))local across all the processes giving (d(’“),Ad““))
(e) Compute: a®) = (r(¥), p()) /(d(F) 4d(R))
(f) For i=1 to i=(num. of domain cells)

(k1) L (B o (k) (k)
2 2

%

ii. Compute: rl(}”l) = rgk) —a® a,_-jd;k)

i. Compute: z

(g) Compute: (r(:+D) p(k+1) = ?:1T§k+1)rz(k+l)

(h) (MPI: All Reduce) Sum the (r(#+1) r(k+1)) - across all the processes giving (r(+1), r(k+1))
(i) Compute: %) = (x40} plk+1)y (r(k)’r(k))
(j) For i=1 to i=(num. of domain cells)
o Compute: d§k+1) = rl(k) + ﬁ(k)dgk)
¢ Compute: R£k+1) = a(k)d§k+1)
e Compute: R = mazx (‘RE’CH)’ ,’R)
(k) Update d in the ghost cells at boundaries, interface and block edges
() If R < (Min. Residue) Then exit

Although the parallel CG method (algorithms 4.3) possesses a convergence rate
far greater than that of the parallel SOR (algorithms 4.1), each iteration carried
out using this method requires substantially more operations. In the case where
an accurate initial guess is known, the SOR method is more efficient than the CG
method as the number of iterations to achieve the solution in both cases is similar
but the number of operations per iteration is less in the SOR method. On the
other hand, if no such initial guess is known, the CG method is more appropriate.
When carrying out a numerical solution of a time-dependent problem, as the
solution is advanced through time, the results from a previous time step are used
as initial guesses. Thus the initial guess is getting more and more accurate. It
follows that for the initial steps of the solution, the CG method can provide a
more efficient method to solve the large system of equations. As the solution
progresses, the initial guess becoming closer and closer to the actual solution,
less iterations are required to solve such a system. The SOR method becomes

thus more advantageous.
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4.5 Overall Flow Solution Procedure

Having derived the various equations to be solved and suitable methods to solve
them, the general procedure for the solution of the flow can be summarised in
algorithm 4.4. Since the solution is iterative, it is important to determine a stop-
ping criterion for the loop. Generally, a maximum number of iterations (time
steps) can be set, but in the case of a steady flow, the solution may converge
to the exact solution before reaching the maximum number of iterations. A
residue must thus be calculated assessing the difference between the solution at
two consecutive time steps. If such a difference is below a certain tolerance level,
the solution is assumed steady and thus converged. One way to determine the
convergence is by comparing the velocity field between two consecutive time steps.

Algorithm 4.4: Global Flow Solution Algorithm

For k=1 to k={(max. num. of iteration)
Solve the Burger equations (Equation (4.23)) using SOR (Algorithm 4.1) or CG (Algorithm 4.3)
Solve the Poisson equation (Equation (4.29)) using SOR (Algorithm 4.1) or CG (Algorithm 4.3)

Solve the projection equations (Equation (4.32))

W o

Update the velocity and pressure in the ghost cells at boundaries, interface and block edges
nfs=8 R+ ()
5. Compute the local solution residue R;,.q; based on the velocity: Ripear = > [23_1!%1. (H:)L“ H)
(zr[z3o 5 01)

6. Determine the maximum residue across all the processes (MPI: All Reduce) giving R

7. If R < (Min. Residue) Then exit

4.6 Code Development and Performance

The method presented in this chapter was implemented in a code written over a
period of two years during the course of the research. A mixture of the C and
Fortran languages was used to take advantage of the data structure capabilities
of the first one and the numerical efficiency of the second. The implementation
in itself represents around forty thousands lines of codes. The global architecture
of the code is based on a communication layer for the data exchange between the
various solution processes (i.e. domain blocks) on top of which is the flow solver.
Adopting such a strategy implies that different flow solvers could be further im-
plemented using the same communication layer, or additional capabilities for the
present solver could be added.

In table 4.5 below, a comparison of the performances of the solution is given for
three different mesh sizes, those used in the application presented later in the
report (see chapter 7). Regarding the performance of the two different computer
node classes (table 4.4) used to process the solution, the same setup will run
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almost three times faster on the myr-P4 class than on the myr-1024 class as il-
lustrated by the first case presented in table 4.5.

It is also intersting to note that for the last two cases shown in table 4.5, although
one has twice the amount of cells of the other, they both take as much time to
carry out the iteration. The reason for such a difference resides in the fact that
in the first of the two cases, only two nodes were used whereas the second case

used four nodes, thus twice as much power.

The average time over 30,000 iterations shown in the table indicates how long a
typical simulation such as those presented in chapter 7 takes to complete.

Node Class Processors RAM (Mb) Network Connection

myr-1024  2x1.0Ghz PIII 1024
myr-P4 2x1.8Ghz P4 2048

Myrinet,

Table 4.4: Computer node class definition

No. of No. of nodes Av. time over Av. time (s) Av. time (107%) Node Class

cells (procs) used 30,000 iter. per iter. per iter per cell
524288 4 (8) 5d 11hr 17min 15.75 30.04 myr-1024
4 (8) 2d 02hr 38min 6.07 11.58 myr-P4
1048576 2 (4) 5d 22hr 05min 17.05 16.26 myr-P4
2097152 4 (8) 6d 07hr 12min 17.35 8.27 myr-P4

Table 4.5: Performance evaluation of present method
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Chapter 5

Fluid Structure Interaction Method

5.1 Forces And Structural Displacement

5.1.1 Forces Solution

The computation of the forces acting on the bodies present in the domain is used
to determine the force coefficients. As seen in chapter 3, the forces acting on a
body are composed of the contributions of both the pressure acting on the surface

of this body and the viscous forces:

F:FP+FV:~/(pn+un><w)dS (5.1)
S

Using the following non-dimensionalised parameters:
" 2F
= prmy w =
P=uz o L pUZ A

where A is a reference area and Cp is the force coefficient vector, and dropping
the superscripts for convenience, equation 5.1 can be re-written as:

1
CF = CFp + CFV = —%/ <pl’l + —égn X w) dsS (53)
S

In the case of circular cylinders, the reference area A is usually taken as the
product of the length L and the diameter D of the cylinder.

Considering now the individual components of the force coefficient vector:

Cr,, = Cpri + vaxi (5.4)
Where:

2
Cr,, = —~——/pnzl.d8 (5.5)
: A Js
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Cr,, = —Ai%e /s (N, W, — Naywy,) S with 4, § and & cyclic (5.6)
Since the solution domain is represented by a curvilinear mesh, i.e. one that
follows the contours of specified boundaries, the objects present in the domain
for which force coefficients must be determined are represented by a set of faces.
Thus, by approximating the integrals in equations (5.5) and (5.5) as a sum over
the faces describing the object, the force coeflicients can be calculated from:

num.
of faces

2
Ch., =—7 Y pma, Sy (5.7)
F=1
And:
5 of faces
Cszi iy f}: (nl.jfwzkf — nxkfwzjf> Sy with i, and k cyclic (5.8)
=1

Now, in a parallel multiblock solution, the objects may extend over several blocks.
The determination of the force coefficient must thus include some inter-process
communication to sum the locally calculated coefficients and thus obtain the to-

tal force coefficient.

The complete procedure for the determination of the force coeflicients acting on
a single object is illustrated in algorithm 5.1.

Algorithm 5.1: Force Computation Algorithm (Single Object)

1. Initialise the local and global variables: szi =0,Cp,, =0and Cp, =0fori=1,23
2. For f=1 to f=(num. of faces describing the object)
(a) Compute: e fori=1,2,3

(b) Compute the face area: Sy

(¢) Compute the vorticity vector at the face: Wy, forti=1,2,3
{(d) Compute the pressure acting on the face: pys
(e) Compute the local pressure force coefficient: Cppzi = Cppxi - %pfnxif Sy fori=1,2,3

(f) Compute the local viscous force coefficient: vami = CF”ri - ALRe (nxjf Way, T Mg, wzjf) Sy
for ¢ =1,2,3 with 4,5 and k cyclic
(g) Compute the local force coefficient: Cr,, = Cr,, +Cr,, +Cr,, fori=1,2,3

(h) Sum (Reduce operation) the force coefficients across all the processes giving the global Cr, ,
Cr and Cva- fort=1,2,3

Pxy
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In the presence of several objects, the above procedure is simply applied to each
object present in the domain, an object identifier (integer) being used to distin-
guish between the various coeflicients and inter-process communications.

5.1.2 Structural Displacement Solution

Once the force acting on each object present in the domain is obtained, their
displacement can be calculated according to a specific structural model. As dis-
cussed in chapter 3, a simple mass-spring-damping system is generally employed
to model dynamic cylinders in a flow. The dynamic equilibrium of such a system
was given in equation (3.47) and is repeated here, dropping the non-dimensional
superscripts for convenience:

0?x ¢\ Ox om\? Cr
- - S 5.
8t2+<U)8t+<U)X om (5.9)
Where x is the non-dimensional displacement vector, ¢ is the non-dimensional

time, ¢ is the damping ratio, U is the velocity ratio, Cg is the force coefficient
vector and m is the mass ratio.

To solve equation (5.9), the classical fourth order Runge-Kutta method is gener-
ally used and given here without proof:

Considering the following equation:

mz (t) + bk (t) + kz (t) = F (t) (5.10)
where F'(t) is a function of time, and the initial conditions z (0) and z (0) are
known.

Then:

[P (¢) ~ b (2) — ha (1) (5.11)

Let 21 () = z (t) and x5 (t) =  (¢).

(1) =

Substituting x; and x4 back into equation (5.11), the following can be defined:

]71 (t,!l?l,ilig) = ﬁfl (t) = T2 (t) (5.12)
Fo(t,1,00) = &9 (t) =3 (t) = %—[F (t) — bas (t) — kzy (B)]  (5.13)

Knowing the initial conditions z; (0) = z (0) and x5 (0) = £ (0), it is possible at
a time step n to construct the following:
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le:
X1
Ao
X2
ROP:
X3

Xo3

Xi4
Xo 4

X1

KXo

X2

Xoo

= A (t(n)ﬁxgn) xgﬁ)
= fQ (t(n)a gn), xé"))
At o, 1 ” 1
= Fi (t(n) + -5—,305 )+ §Xl,17$2 + ‘2“X2,1
JAY 2 1 n 1
= F <f(")+-2—,$§)+§X11,$§)+‘2‘X21
At 1 n 1
= A (t(n) + —2—‘, g ) -+ §X172,$2 -+ 'Z_XQ,Q
At o, 1 n 1
= F (t(n) + ‘2—7335 )+ '2'X1,2a37g D ‘2‘X2,2
JAV R 1 1
= F (t(n) + “2—733§ = 5951,371% + "2‘X2,3
At 1 n 1
= Fp [t + —‘7-’F§ '+ “Xl,B:xg S 52,3
2 2 2
a:én)
L [ (n) (n)
—~ [F ~ bl — kal }
my 1
Ty + 521
10 n 1 n 1
= F<n+%>_b(g;g>+.2. 2,1)_k(xg>+§
™, 1
1) -+ —Q-Xg’g
1T n 1 n 1
— F(n+%)—b .I'g)—i-—/’vg’g —k l‘g)—l——
m | 2 2
CU(Qn) + X3
L T (n) (n)
;7—1- F —b (.1’2 + XQ}B) —k <$1 -+ Xl,g

And finally, the solution for z and Z is given by:
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1,1)

1,2>

(5.14)
(5.15)

(5.16)
(5.17)
(5.18)
(5.19)
(5.20)

(5.21)
(5.22)



n n 1
L CL‘g +1) _ :E& ) + -é (X1,1 + 241 9 + 2X1 3 + X1,4) (5.32)

V1) n 1
AR e 5 (Ao + 285 + 205 + Xpy) (5.33)

The procedure can thus be summarised as follows in algorithm 5.2:

Algorithm 5.2: Fourth Order Runge-Kutta Algorithm (RK4)

1. From the knowledge of m, b, k, F(t<”)) and F (t(""“l)), Compute: X1,1, X2,1, X1,2, X2,2, Y13, A2.3,
X1,4 and XQA

2. Compute: z("*+1) = zgn) + (X +2X 2 + 28 3 + X1 ,4)
and #(n+1 = zg") + % (Xo,1 + 2X2,2 + 2X0 3 + X2.4)

In the procedure to determine the displacement of a given object, the axes of mo-
tion along which the object is allowed to move must be taken into consideration.
Seven cases can thus be foreseen:

1. Motion in the X axis only
Motion in the Y axis only

Motion in the Z axes only

B

Motion in the X and Y axes only

o

. Motion in the X and Z axes only
6. Motion in the Y and Z axes only
7. Motion in the X, Y and Z axes

Depending on the case, only certain components of displacement will be updated.
The complete procedure to determine the displacement of an object in the solu-
tion domain is given in algorithm 5.3.

Algorithm 5.3: Object Structural Displacement Algorithm

2
1. Compute the coefficients: m = 1.0, b = % and k= (%)

2. For i=1 to i=(num. of dimension)

e If Motion in the X; axis is allowed

cln+D)

(a) Compute Fy, (¢{*+1) = -F2;I—7;l——

e
(b) Compute Fy, (t(™) = -
(C) Set Isn) = miobject and Ign) = iiobject
(d) Solve for z;("*+1) and 2;(»+1) using the RK4 method (Algorithm 5.2)
(e) Set o™V = gz, (n4D) ang (MY = g (n1)

tobject tobject
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5.2 Moving Grid Method

Moving an object or several in the solution domain implies the update of the
mesh on which the solution is carried out to account for the displacement of
the faces defining the object(s). As discussed in chapter 3, the process of re-
meshing a domain, particularly a multi-block domain, can be rather complex if
the quality of the grid is to be preserved. Furthermore, the re-meshing procedure
can be computationally costly. A hybrid method combining the iterative lineal
spring analogy (LSA) method with the algebraic transfinite interpolation (TFI)
was shown to be rather attractive as it not only preserves the overall mesh quality
but also is computationally efficient.

The general principles behind this method are rather simple. Two steps are taken
to update the mesh as was illustrated in figure 3.3:

1. The LSA method is applied to a high level grid composed of the corners
of the blocks defining the solution domain. The displacement of the block

corners are thus determined.

2. For each block, the TFI method is applied to a lower level mesh, i.e. the
actual block mesh, based on the calculated displacement of the block cor-
ners. The displacement of all the mesh vertices (except the corners) are

thus determined.

In the following sections, the complete method to update the grid will be pre-
sented. The three dimensional LSA method will be detailed focusing on the issues
raised by a parallel multi-block system. The three-dimensional TFI method will
then be described in three steps: the update of the block edges, block faces and
block internal vertices.

5.2.1 High Level Grid Motion - The LSA Method

The first step in the update of the mesh describing the solution domain consists
of the global deformation of the various blocks composing that domain. This
global deformation only affects the corners of the blocks. It is thus important to
distinguish between three types of corners:

e Fixed corners, i.e. corners lying on the boundaries of the domain

e Explicitly moving corners, i.e. corners moving according to the motion of
part of the domain boundary

e Interface corners, i.e. corners shared by at least two adjacent blocks
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In the first two cases, the displacement of the considered corners is set explicitly:
either it is nil or it matches the displacement of an object lying on a face con-
nected to that corner.

In the last case, the corners being vertices in the middle of the domain cannot be
displaced explicitly. The LSA method is thus applied to this type of corners.

Supposing that at a specific corner requiring to be updated, there are n edges
connected and that each of these edges connects the specific corner to another
block corner, then the LSA method is interpreted by the following dynamic equi-

librium:
D Tk (AXeorner — A%;)] =0 (5.34)
j=1
where AXcorner is the displacement vector of the considered corner, Ax; corre-
sponds to the displacement vector of the other corner defining edge 7, and k; is
the stiffness of edge j defined by:

kj=— (5.35)
with [; the length of the edge j.

Thus, if all the displacements Ax; are known, the displacement of the considered
corner can be explicitly calculated from:

Y (ki Ax
AXcorner = ZJ—_Zln(_—]—A:;"—"Jl (536)

j=1"7
Separating the known (explicitly set) from the unknown (interface) corner dis-
placements, the following can be written:

(i k]) AXcorner - Z (ijXj) = Z (ijXj) (537)

junknown Jknown

For each moving block corner, equation (5.37) needs to be solved. The complete
system thus takes the form of:
AAX =B (5.38)

Where A is the matrix of coeflicients to be applied to the unknown displacements,
AX is the vector of the unknown corner displacements and B is the vector cor-
responding to the right hand side of equation (5.37).
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As seen in chapter (4), such a system of equations can be solved using an itera-
tive method such as the SOR or CG method. Owing to the parallel multi-block
aspect of the solution, this could be achieved using two different approaches.

The first approach would consists of solving the complete system on one proces-
sor, thus implying that the data related to the high level grid be sent and stored
on a single processing unit. The high level grid would then be updated on that
processing unit and the updated block corner positions sent to the corresponding
block processing units. Although this approach offers the advantage of allow-
ing faster iterative solvers to be used, it results in a rather complex procedure to
gather and re-distribute all the data that could affect the computational efficiency.

In the second approach, each block processing unit updates the displacement
of the corners of its own block, exchanging information only with the adjacent
blocks. The parallel communication layout is thus much simpler than for the
first approach. However, this second approach presents the inconvenience of re-
stricting the choice of iterative solver to be used. To avoid the non-matching of
the corners displacement, the iterative solver to be employed can only use data
from a previous iteration to compute the new displacements. Thus the GS or
SOR algorithms are inadequate for such purposes. Furthermore, since the high
level mesh is composed of a very small amount of vertices in comparison to the
complete mesh, very few iterations will be required to reach a converged solution.
The CG method might therefore prove computationally inefficient in comparison
to a simpler Jacobi method.

The adopted method, i.e. the second approach, consists therefore in setting the
explicitly displaced corners and then solving iteratively equation (5.36), with
an update of the displacements of the adjacent block corners at each iteration
through an inter-process communication. Algorithm 5.4 describes the complete

procedure.

It is important to note that a block corner can only be associated with the motion
of a single object on the domain boundary. If several objects were to be associ-
ated with that corner, the displacement of the corner could be set by combining
the motion of the two objects. However, as will be seen in the presentation of the
low-level mesh update, the displacement of the block face vertices is set according
to the displacement of the corners. Thus, if an object is present on the face of
a block and one of the corners of that face is displaced according to the motion
of another object, then the update of the mesh on that face would deform the
entire face. The faces defining the object would therefore also be deformed, thus
not matching anymore the object surface. As a consequence, only one object per
face can be allowed, unless their motion are identical. Furthermore, to avoid the
association of more than one object to a single block corner, two objects cannot
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be placed on block faces sharing a corner.

Algorithm 5.4: High Level Grid Motion Algorithm - LSA Method

1. Set Ax for the explicitly displaced corners of the local block, i.e.:

For each block corner:
(a) If the corners lying on a fixed domain boundary Then Ax =0
(b) Else If the corners is associated with the motion of a specified object Then Ax = AXpject

2. Set Ax for the other corners using the LSA method, i.e.:

For each block corner:

If the corners is an interface corner Then
For k=1 to k=(max. num. of iteration)

Sii(ki0%;)

(a) Compute AXcorner = k,
7

T
i=1

(b) (MPI: Send & Receive) Exchange corner displacement with neighbouring blocks

5.2.2 Low Level Grid Motion - The TFI Method

Having displaced the corners of each blocks according to the motion of the ob-
ject(s) in the domain, the position of the remaining vertices defining each block
must be updated. In the case of a multi-block configuration, the update pro-
cedure must guarantee the matching of the faces of two adjacent blocks. The
transfinite interpolation method was chosen as it satisfies such a necessary con-
dition (see chapter 3).

Three steps are required to carry out the complete update of the block vertices:

e [irst, the displacements of the vertices on the block edges are determined
from the motion of the block corners using a one-dimensional transfinite
interpolation (1D-TFI).

e Then, the vertices on the faces of the blocks are displaced using a two-
dimensional transfinite interpolation of the displacement of the face edges
(2D-TFI).

e Finally, the block interior vertices are updated using a three-dimensional
interpolation of the displacement of the block faces.

The TFI method is based on the parametrisation of the mesh vertices coordinates.
A simple yet effective parametrisation consists of normalising the coordinates.

A mesh vertex V is defined in the computational space by three indices 7, 7 and
k varying from 1 t0 maz, Jmae and k.. respectively. To parametrise its coor-

dinates, one must consider the length SI, SJ and SK of the mesh curves along
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the lines of equal 7 or 7 or k.

0 fori=1
Lij i = i - .
Shia { >_izo I%ige — Xi—15kl]  otherwise (5:59)
0 forj =1
STijk =1 i )= (5.40)
1o |IXijk — Xsj—1,6]] otherwise
0 fork=1
L= ) 5.41
SR { Zfﬂ |%ij6 — Xijk—1]| otherwise (5-41)
Where x are the mesh vertices cartesian coordinates.
The parametrised coordinates ¢, x and ¥ of a vertex are thus defined by:
0 forz =1 1
Pk = —-—-——Sfli‘j"k_ otherwise (5.42)
imazx,j Kk
0 forj =1
Xigh = { ED.S—J—J——L— otherwise (5.43)
i, Imazx.k
/ 0 fork=1 5 44
Vi k = T ;K”" otherwise (5.44)
4,4, kmaz

Edge Motion - 1D TFI

Using the parametric coordinates, the edges of the block can simply be update
according to the type of edge.

For an edge along the 7 direction, i.e. where (j, k) is one of (1,1), (jmas, 1),
(jmazy kmaz) or (1, kmax):

Axijr = (1= Gijx) A%k + Gij kDXips ik (5.45)

For an edge along the j direction, i.e. where (i,k) is one of (1,1), (Zmaz, 1),
(imaza kmaz) or (1) kmam):

A e = (1= Xijhk) DX 1k + Xij e AXi ok (5.46)

Finally, for an edge along the k direction, i.e. where (4, 7) is one of (1,1), (¢mez, 1),
(Z'ma:ujmax) or (ijaz):

Axijr = (1= ijx) DX 1 + Vi j kDX ko (5.47)
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The update of the vertices lying on a block edge depends only on the displace-
ment of the corners of the block and the parametrised coordinates. Since the
corners are displaced identically on an interface between two blocks and since the
parametrisation of the coordinates of the vertices lying on the edges is the same
for the two adjacent blocks, the edges are exactly matched between two adjacent

blocks.

Face Motion - 2D TFI

The displacement of the vertices lying on the faces of the block can then be car-
ried out by interpolating the displacements of the face edges.

For a vertex on a face of constant 7, i.e. @ =1 0r ¢ = ez

A i = (1 —1i0) AXij1 + Yij kA% j kpaz
+ (1 = Xigik) AXi 1k + Xi g kDX oo k
— (1= hijp) (1= Xajk) DXi11 — Yigk (1= Xajk) DXi 1 kmas
— (1= i k) Xig kAKi fmamsd = Vi gk Xid kDK o hmas
(5.48)

For a vertex on a face of constant 7, i.e. 7 =1 0r j = jmaz:

Axije = (1= ijn) AXign + %55 e A% j kmac
+ (1 = bign) AXy ik + Gij kDX gk
— (1= tiin) (1 = @ign) Ax1j1 = Vijik (L= Pi k) DX jkmas
— (1 = Yijk) ik DX awil — Vi k@i j e Diman jikmas
(5.49)

And finally, for a vertex on a face of constant k, i.e. k =1 or k = kpnas:

Axijr = (1= Xigr) DX 1k + Xij b AXi jaz b
+ (1= dijr) AX1 gk + GijhlD¥ep0r ik
— (1 = xijk) (1 = Gijn) AX116 — Xk (1 — Pigik) DX1jmas
= (1= Xijik) Dij e D%imnan 1k = Xig kDb DXima  jrmaz
(5.50)

For similar reasons to those explained in the procedure to update the edges, the

common face interfacing two adjacent blocks will be updated identically on each
blocks, thus guarantying the matching of the face vertices on the two blocks.
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Interior Vertex Motion - 3D TFI

Once the edges and faces of a block have been displaced, the remaining interior
vertices can be displaced by interpolating the displacement of the vertices on the

block faces.

The contribution of the displacement of the vertices on faces of constant i, i.e.
7 =1 0r ¢ = imq, i calculated as follows:

DI = (1 - ¢i,j,k) % AXl,j,k -+ ¢i,j,k * AXimax,j,k (551)

The contribution of the displacement of the vertices on faces of constant j, i.e.
J =10r j = Jmas is calculated as follows:

DJ = (1 — Xijr) ¥ AXi 10 + Xijk * DX jron i (5.52)

Finally, the contribution of the displacement of the vertices on faces of constant
k,ie. k=1or k= k.. is calculated as follows:

DK = (1 — ipi’j,k) * AXW-J + '(/)i,j,k * AXi;j,kma_:c (5.53)

The correction due to the superposition of the contribution of the displacement
of vertices on faces of constant 7 and j can be obtained from:

DIJ = (1—=ijr)* (1= Xijr) * Ax11x + (1= dijn) * (Xigk) * DXL jnank
+ (Digr) * (1= Xigk) * Dok + (Digik) ¥ (Xik) * DXipoe jmasik
(5.54)

Similarly, the correction due to the superposition of the contribution of the dis-
placement of vertices on faces of constant 7 and k can be obtained from:

DIK = (1= ¢ijn)* (1 —vijn) * Axiz1 4+ (L= bijr) * (Wijk) * AX1j ks
+ (@igr) * (1= ijr) * DX in + (Bigik) * (Wigk) * AXips jibmas
(5.55)

The correction due to the superposition of the contribution of the displacement
of vertices on faces of constant j and k can be obtained from:

DIK = (1= xijk)* (1 —izn) * Axin + (1= Xigk) * (Vigk) * AXi1 ke
+ (Xigk) * (1= Yijp) * AXi oot T (Xigik) * Wik) * DXi e bmas
(5.56)
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Similarly, the correction due to the superposition of all the contributions is de-
termined as follows:

DIJK = (1= ijk)* (1= Xijr) * (1= Pijr) * Axy)
(1= @ign) * (1= Xigw) * (Wigm) * AX11 ke
L= ¢ijr) * (Xigr) * (1= Yijr) % AX1 et

) * (Xigk) * (Vi) * AX1 e ke

+
+(
+ (1 Qbm,k (
+(@igk) * (1= Xige) * (1 — Yigr) * AXin11
+ (‘bm,k) * (1 Xij, A) * (wi,j,k) * AXimaxyl,kmaz
+ (D) * Oige) * (1= Pign) * AXirpan jmas 1
F(Pigr) * (Xigk) * (Vi) * DXipneu jmas bmas
(5.57)
Finally, the displacement of an interior vertex can be calculated from:
Ax;jr=DI+DJ+DK—-DIJ—-DIK -DJK+ DIJK (5.58)

The simplified algorithm for the TFI method is presented in the algorithm below
(5.5).

Algorithm 5.5: Low Level Grid Motion Algorithm - TFI Method

1. Initialisation
(a) Compute the block mesh curve length SI, SJ and SK
(b) Compute the parametrised coordinates ¢, x and ¢

2. In the main loop:
(a) Update the block edges vertices using the 1D-TFI

(b) Update the block faces vertices using the 2D-TFI
(c) Update the block interior vertices using the 3D-TFI

5.2.3 Overall Solution Method

In a multi-block parallel method, the dynamic mesh issue is not a trivial one. Fur-
thermore, when adopting an overlapping mesh strategy as in the present case, a
layer of ghost cells surrounds the blocks. These ghost cells must therefore have a
geometry. When lying on the boundary of the domain, a simple mirroring tech-
nique is used. However, when lying on an interface between two adjacent blocks,
the geometry must be set so as to represent exactly the cells on the adjacent
block. It follows that, when dealing with a dynamic mesh, the ghost cells ge-
ometry must be updated at the interfaces. Also, as detailed in the flow solution
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(chapter 4), the solution of the Poisson and Burger equations depends on Lapla-
cians computed from the geometry of the mesh. It is thus necessary to update
those Laplacians when updating the dynamic mesh.

Algorithm 5.6 below described in a simplified manner the complete dynamic grid
updating procedure.

Algorithm 5.6: Grid Motion Algorithm

1. Grid ghost cells initialisation
(a) Mirror the domain cells for the ghost cells lying on domain boundaries
(b) Exchange the cell geometry for the ghost cells lying on interfaces
2. Grid Motion Initialisation
(a) Compute the block mesh curve length SI, SJ and SK
(b) Compute the parametrised coordinates ¢, x and
3. In the main loop:
(a) Compute the block corners displacement using the LSA method
(b)
(¢) Update the ghost cells geometry at the interfaces
(d)

Update the block edges, faces and interior vertices using the TFI method
Update the Burger and Poisson equation Laplacians

Figure 5.1 illustrates the motion of a four blocks arrangement around a circular
cylinder. As a measure of the preservation of the quality of the grid, the mesh
is coloured according to the relative deformation of the cells. The mapping of
colours is done by comparing the motion of the cell vertices from their original
position with the motion of the cylinder. The blue area denotes cells whose shape
virtually did not changed (relative displacement close to 0) while the red area
describes the largest shape change (up to 0.8 cylinder diameter). As expected,
the shape of the mesh elements close to the cylinder where the original mesh is
denser remain similar throughout the motions. On the other hand, those close
to the domain boundary where the original mesh is coarser, deform more signifi-
cantly. It can thus be concluded that the quality of the mesh is preserved by the
moving mesh method.

5.3 Solution Procedure

As seen in the previous sections, a complete solution involves quite a number of
parts. An initialisation part where the domain is decomposed into blocks, inter-
faces defined, and a layer of ghost cells created. In the case of a static mesh,
the flow solution is then carried out by solving the Burger, Poisson and pro-
jection equations. In the more complex case of a dynamic mesh problem, the
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Figure 5.1: Grid Motion - 4 Blocks Arrangement
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solution must incorporate the update of the mesh itself, but also the update of
the Laplacian used by the Burger and Poisson solvers. In both cases, if a turbu-
lent model is being used, then the turbulent Reynolds number must be computed.

Algorithm 5.7 summarises the complete solution procedure.

Algorithm 5.7: Complete Solution Algorithm

1. Read the input files
(a) Read the general information file
(b) Read the block information file
(¢) Read the grid files (each proc. reads its own)
2. Initialise the ghost cells
(a) Initialise the block interface(s)
(b) Set the boundary constants and variables in the ghost cells

(c) Determine the ghost cells mesh geometry:

o At the domain boundary (mirror of domain cells)
o At the block interface(s) (Geometry exchange with adjacent block(s))
e At the edges and corners of the block

3. If {Dynamic Mesh) Then Initialise the dynamic mesh parameters SI, SJ, SK, ¢, x and ¥

4. Compute the grid metrics Sg and J
5. Compute the Burger and Poisson Laplacians
6. While ( not converged ) Or ( iter < max. num. of iteration )
(a) If (Dynamic Mesh) Then Update block mesh
(b) If (Turbulent Model) Then Compute turbulent Reynolds number Re;
(¢) Solve the Burger equations
(d) Solve the Poisson equation
(e) Solve the Projection equations
()
(

g) Compute the forces acting on the object(s) in the domain

Compute the vorticity

(h) Compute the solution’s residual

(i) Write transient output files

7. Write output files
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Chapter 6

Validation

6.1 Introduction

Validating a CFD method is not a trivial task. As was demonstrated in the previ-
ous chapters, a method to solve numerically a fluid dynamic problem is composed
of several parts. Validating the method should thus imply the validation of each
individual component of the method.

However, it is quite clear that each component of the method is inherently con-
nected to the other ones. Thus, one cannot validate a single aspect of the method
without using other components of the method. There exists however an order or
hierarchy in the parts composing the method. Such an order can allow for com-
ponents to be evaluated individually provided that the previous components in
the hierarchy have been validated. The flow solver is at the top of the hierarchy,
followed by the structural model and finally the moving grid method.

In the following sections, the validation of the method will be presented following
this hierarchy. First, the flow solver will be assessed. Then, the force description
model will be investigated and finally the validation of the moving grid method
will be carried out.

6.2 Flow Around an Impulsively Started Cylinder

To assess the validity of the flow solver, the problem of an impulsively started
cylinder is considered. A cylinder initially at rest is set in motion at a constant
velocity and the wake behind the cylinder observed in the initial stages thus en-
abling the creation, diffusion and convection effects to be evaluated.

In their experiments, Bouard and Coutanceau [8] used a visualisation technique
to analyse the results, and in particular, to determine the main geometrical fea-
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tures of the recirculating zone that occurs behind the cylinder. The aim of the
present numerical test is to reproduce the experimental setup and compare the
data obtained numerically to those of Bouard and Coutanceau. Four different
cases were simulated at Reynolds numbers of 60, 200, 550 and 3000.

6.2.1 Problem Description

Initially, the cylinder of diameter D = 1 is at rest in a stationary fluid. At ¢ > 0,
the cylinder is impulsively set in motion at a constant velocity U, = 1. The
two-dimensional flow development as shown in figure 6.1 is considered where D
is the cylinder diameter, 0, is the angle of separation, L is the length of the vortex
and (a, b) are the coordinates of the main vortex centre.

Figure 6.1: Geometrical parameters of the close wake

To carry out the test case, a square domain as shown in figure 6.2 is chosen, the
boundaries of which are situated five diameters away from the centre of the cylin-
der. Since only the initial stages of the development of the flow are considered,
such a small extent of the domain is considered sufficient to capture accurately
the flow. Also, it is consistent with the general layout adopted by Bouard and
Coutanceau where the cylinder of diameter varying between 3 and 15 c¢m in a
tank of dimension 56 x 46 x 100 cm.

In a similar study, Rengel [71] used a single block mesh of identical extension and
180 x 160 elements for the Reynolds number 60 and 200. The volumes close to
the cylinder surface in that case were of a size of the order of 0.01.D. However, in
the case where the Reynolds number reached 550 and 3000, Rengel experienced
oscillations in the solution and reduced the extension of the domain such that the
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outer boundaries were situated at 4 cylinder diameters from the cylinder centre.
This led to a more refined grid and suppressed the numerical oscillations.

The minimum mesh size set on the surface of the cylinder is based on the di-
mensionless parameter y representing a local Reynolds number in the near-wall

region:
+ o S 6.1
yt== (6.1)
where y is the distance from the wall surface, u, = 77“’ is the frictional velocity,

Tw 18 the shear stress at the wall, p is the density and v, the kinematic viscosity.

Using the flat-plate boundary layer theory (Schlichting [74]), the parameter can
be approximate by:

gt = 0.172%}360'9 (6.2)

where L is the body length and Re, the Reynolds number based on the body
length.

For the present numerical solution, the chosen mesh is composed of four blocks,
each composed of 512 x 128 volumes, thus a total of 65536 volumes. Cells on the
cylinder surface are thus of a size close to 0.0060D. The same mesh is used for
all the Reynolds numbers. Details of the setup including the y* value estimated
using the above formulation for each Reynolds number are presented in table 6.1.

Reynolds . Total number Volume size
yt  Grid Sizes .
number of volumes on cylinder surface
60 0.04
200 0.12
550 0.30 512 x 128 65536 0.006D
3000 1.39

Table 6.1: Impulsively Started Cylinder - Grid details

On the left, upper and lower boundary, a uniform inflow velocity Uy = 1 is im-
posed, while on the right boundary, the outflow condition is enforced.

6.2.2 Numerical Solution

The choice of the time step is based on the Courant-Friedrichs-Lewy (CFL)
stability restriction. According to the condition, the distance the fluid trav-
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Figure 6.2: 4 Blocks mesh used for the impulsively started cylinder case
Coarse representation where each cell shown contains 4 x 4 volumes (left)
Mesh detail near the cylinder surface (right)

els in one time increment must be less than one space increment, i.e. (At <
(Ju| /Az + |v| /Ay)™). For the four different Reynolds numbers tested, the nu-
merical solution was carried out up to ¢t = 3 with a time step At = 5 x 1074
which is much less than the stability criterion (= 3 x 1073).

To compare the results obtained with the current method to the experimental
results of Bouard and Coutanceau [8], the motion and global geometry of the
main vortex occurring behind the cylinder are tracked with time.

Firstly, the evolution of the streamwise component of velocity in the wake of the
cylinder is monitored. Figures 6.3, 6.5, 6.7 and 6.9 show the time evolution of the
streamwise component of velocity for the case at Re = 60, Re = 200, Re = 550
and Re = 3000.
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Such velocity profiles enable the determination of the length of the primary vortex
and its evolution with time. In figures 6.4, 6.6, 6.8 and 6.10, this characteristic
vortex length is reported along with the time evolution of the coordinates of its

core.

The evolution of the streamwise component of velocity and close wake length at
the various Reynolds numbers considered compare very weel with the experimen-
tal data from Bouard and Coutanceau [8]. Since the vortex main geometrical
parameters are well captured by the current method, a visual comparison can
be made of the numerically obtained flow streamlines and the visualisation of
Bouard and Coutanceau [8] as shown in figures 6.11 and 6.12 for Re = 550 and
Re = 3000. The similarities between the numerical and experimental results are
striking. Not only is the primary vortex well captured by the numerical method,
but so are the secondary vortices appearing close to the cylinder surface.

Although the cases where the Reynolds number are 550 and 3000 will develop into
a flow with three-dimensional components, the early stages of the flow are purely
two-dimensional. Thus the two-dimensional numerical solution is perfectly suited
to represent these cases. The agreement between the experimental and numerical
data found in this case indicates that the present method reproduce accurately
the diffusion and convection effects of the flow.

6.3 Flow Around a Fixed Circular Cylinder

There exist a number dynamic phenomena present in the flow around a circular
cylinder. Among many, the vortex shedding that occurs for Reynolds numbers
above 49 (Roshko [72]) is probably the most dominant characteristic aspect of
such flows. The occurrence of the shedding of vortices in the wake of the cylinder
is intrinsically linked with a non symmetrical pressure distribution around the
cylinder. Furthermore, for low Reynolds numbers, both the shedding of vortices
and the pressure distribution are periodic. As a consequence, the forces acting on
the cylinder, whether the drag (streamwise) force or the lift (transversal) force,
oscillate in a periodic fashion.

In the following section, the study of the flow past a fixed cylinder is undertaken
to assess the force model of the method. Firstly, the case of a quasi-steady viscous
flow is investigated to test the model in the absence of the vortex shedding. In a
second part, the unsteady flow past a fixed circular cylinder is considered, thus
including the effect of the vortex shedding.
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Figure 6.11: Comparison of streamlines obtained experimentally (upper) by
Bouard and Coutanceau [8] and numerically (lower) for Re = 550 at t = 2.5.

Figure 6.12: Comparison of streamlines obtained experimentally (upper) by
Bouard and Coutanceau [8] and numerically (lower) for Re = 3000 at t = 2.5.
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6.3.1 Steady Viscous Flow

In the steady flow past a circular cylinder, at a Reynolds number below 49, two
symmetrical vortices are formed in the wake of the cylinder that remain attached
to this one. One of the steady flow past a circular cylinder that has been widely
reported in the literature is that at a Reynolds number of 40. As for the case
of the impulsively started cylinder, the accuracy of the method can be measured
through the geometrical characteristics of the wake of the cylinder, i.e. the co-
ordinates of the core of the vortex behind the cylinder, the separation angle and
the reattachment length. These characteristics have been previously described in

figure 6.1.

Behr et al. [6] studied the effects of the location of the lateral boundary on the
computation of the flow field at a Reynolds number of 100 and suggested that the
external boundary of the domain should be situated at least 8 cylinder diameters
away from the cylinder centre. In particular, they found that if the boundary was
set closer to the cylinder, the calculated Strouhal number and other quantities
could be substantially affected and thus "artificial".

For the numerical solution, an O type grid was chosen, with an outer boundary
situated at 15 cylinder diameter from the cylinder centre. The grid is composed
of four identical blocks dividing the domain into four quarters. Three degrees of
refinement of the mesh were used, namely 64 x 64, 128 x 128, and 256 x 256, thus
enabling a grid dependency check to be carried out. The grid is stretched in the
radial direction to allow for a greater local refinement close to the cylinder sur-
face. The refinement close to the cylinder surface is critical to obtain an accurate
representation of the velocity gradients. Table 6.2 summarises the grid details for
the three refinement levels including the y* values based on the flat-plate bound-
ary layer theory (Schlichting [74]) and corresponding to the Reynolds numbers
studied. Figures 6.13, 6.14 and 6.15 illustrate the three grids, with details being
shown close to the cylinder surface.

The boundary conditions comprised a uniform inflow condition on the upstream
half of the outer boundary, and an outflow condition on the other half of the
outer boundary, i.e. the downstream part.

The time step was chosen so as to satisfy the CFL condition. On the 64 x 64 and
128 x 128 grids, a time step of 0.01 was used (stability limit of 0.024 and 0.012
respectively), whereas on the 256 x 256 grid, a time step of 0.005 was used (sta-
bility limit of 0.006). The solution was marched through time until a converged
solution was reached with a residue of 1079 as illustrated in figure 6.16 for the
solution on the 256 x 256 grid.
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Time Total number Volume size yT Range

Grid Sizes Step of volumes on cylinder surface for 40 < Re < 1000
64 x 64 0.01 4096 0.0490D 0.23 to 4.23
128 x 128 0.01 16384 0.0245D 0.12 to 2.11
256 x 256  0.005 65536 0.0123D 0.06 to 1.06

Table 6.2: Grid details

Figure 6.13: Grid 64 x 64 and details near the cylinder surface

As illustrated by figure 6.17, the two symmetrical vortices characteristic of flows
at Reynolds below 49 are well reproduced by the present method. The symmetry
of the flow is further shown by the distribution of the pressure around the cylin-
der. The pressure coefficient distribution on the surface of the cylinder is shown
on figure 6.18 and exhibit the expected symmetry about the streamwise axis. The
results obtained on the 64 x 64, 128 x 128 and 256 x 256 grids compare very well
with the numerical results of Rengel [71]. Interestingly, the pressure coefficient
at the cylinder stagnation point is greater than 1.0. Such a result is incorrect as
the pressure coefficient should be at most equal to 1. However, this error has also
been reported by other authors such as Rengel (num. [71]) or Tritton (exp. [84])
and is most likely due to the location of the reference pressure set in the outflow.

Details of the geometrical characteristics of the wake of the cylinder are pre-
sented in table 6.3 alongside results found in the literature. It is interesting to
note that although the differences between the results obtained for the coarser
grid (64 x 64) and the others are noticeable, the 128 x 128 and 256 x 256 grids
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Figure 6.15: Grid 256 x 256 and details near the cylinder surface
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Figure 6.16: Residual history at Re = 40 - Grid 256 x 256

Figure 6.17: Streamlines around a circular cylinder at Re = 40 - Grid 128 x 128

resulted in comparable values. One can thus conclude that the results for the
two finer grids are converged.

The characteristics of the wake obtained are in very good agreement with those
found in the literature As far as the drag coefficient is concerned, the value of
1.55 obtained with the 256 x 256 grid seems slightly lower than the 1.60 found
in most published numerical results. This could be due to the domain extension
used in these solutions and how the boundary conditions are enforced. However,
the drag coefficient compares well with the experimental value from Tritton [84].

The results presented here conflrm that the method is able to describe accurately

steady flow. Furthermore, the force model produces values in good agreement
with those found in the literature
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Figure 6.18: Distribution of the pressure coefficient around the cylinder surface
at Re = 40 (0 is the angle from the point of stagnation on the cylinder)

Reference Cp G, C, L/D a/D b/D A Notes
Tritton [84] 1.57 - - - - - - Exp.
Coutanceau
©Bowwd[r] ~ ~ — 213 076 059 535 Exp.
Rengel [71] 1.61 — — 223 072 0.58 54.06 FV 180 x 160
1.60 — — 220 0.72 0.60 54.60 100 x 100
Wanderley [88] o) _ 990 o071 060 5401 TP 180x 160
Poncet [69] 1.9 055 1.04 - — - - PM 256 x 256
1.51 048 1.03 196 073 056 51.70 64 x 64
Present
Method 1.54 052 1.02 219 072 059 5455 FV 128x 128
1.55 053 102 225 072 059 5433 256 x 256

Table 6.3: Summary of results for Re = 40.
C, and C, are the contribution of the viscous and pressure forces to the drag
coefficient.
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6.3.2 Unsteady Viscous Flow

Unsteady flows around a circular cylinder have been the focus of numerous studies
as reported in chapter 1.1. In particular, the flows for Reynolds numbers varying
between 40 and 1000 have been the subject of both experimental and numerical
investigations, since both laminar and turbulent regimes are present in this range
and plethora of results are available in the literature(Williamson [91, 92], Roshko
[72], Zhang et al. [101], Dalton [21]). It is thus quite natural to investigate the
force model by solving the flow around a circular cylinder at Reynolds numbers
varying in this range.

Since most numerical solutions for the considered range have dealt with two-
dimensional setup, the validation will be carried out for two-dimensional flows
only. Furthermore, the two-dimensional numerical solutions obtained in the con-
text of the validation of the method will provide a base for the comparison with
the three-dimensionals solution at the same Reynolds numbers, thus allowing for
the assessment of the three-dimensional effects.

Several important parameters are of particular interest when studying the solu-
tion of the unsteady flow past a cylinder. The Strouhal number is probably the
most important one as it describes the frequency of the shedding of the vortices
in the wake of the cylinder. Other parameters closely linked with the Strouhal
number include the force coefficients, in particular the average drag coefficient,
and the lift coefficient amplitude. One could also consider the various contribu-
tions to the force coeflicients, i.e. the contribution of the pressure and viscous
forces. These quantities will thus be the centre of attention of the validation

analysis.

In the present method, the coeflicients are explicitly calculated from the pres-
sure and viscous forces contributions, and as the solution is marched through
time, the history of the coefficients can easily be recorded. The calculation of
the Strouhal number can be more complex. A simple method consists of dividing
a known number of periods of the lift coefficient by the time length over which
they occur. Such a method, although simple, is however rather inaccurate. A
better approach employed here is to use the Fast Fourier transform (FFT) since
the coefficients are recorded at regular time steps. Since the Fourier transform
method is textbook material, its details will not be presented here.

To carry out the numerical solution for the unsteady flow past a circular cylin-
der, the two finer grids previously defined are used, namely the 128 x 128 and
256 x 256 grids. A total of 20 simulations are carried out for each case of tur-
bulencemodel used, i.e. using no turbulence model, using the Smagorinsky LES
model (LES-S), using the Structure Function LES model (LES-SF') and using the
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Selective Structure Function LES model (LES-SSF'). Table 6.4 gives a summary
of the numerical solution setup.

The time step for both grids was chosen according to the same criteria as for the
quasi-steady flow case. However, to account for the increase in the time rate of
change of the fluid properties with the increase in the Reynolds number, it was
deemed necessary to half the time steps for both grids for the Reynolds number

above 400.

Re Time Step for grid Turbulence Simulation
Range 128 x 128 256 x 256 Model Time
40-375 0.0100 0.0050
400-1000 0.0050 0.0025 None, LES-S, LES-SF, LES-SSF 300

Table 6.4: 2D unsteady viscous flow case details
Results for all the cases can be found in tables 6.6, 6.7, 6.8, 6.9 and 6.10.

Figure 6.22 shows for the 256 x 256 grid, the history of the force coefficients
along with the power spectrum associated with the lift coefficients to determine

the Strouhal number.

Figures 6.23, 6.24 and 6.25 illustrate the streamlines, pressure distribution and
vorticity distribution for a complete vortex shedding period for the flow at a
Reynolds number of 200 on the 128 x 128 grid.

Table 6.5 presents in a comparative fashion, both the results found in the litera-
ture and those obtained in the present investigation.

Three relationships can be used to compare the results obtained using the cur-
rent method with those available in the literature, namely the Strouhal, drag
coefficient and lift coefficient to Reynolds number relationships. In his work,
Williamson [92] provided a standard curve from experimental data for the first
two relationships that will be used as a basis for comparison. The lift to Reynolds
number relationship can be extracted from the literature data although there ex-
ists a relative scatter of the data for identical Reynolds numbers as can be seen
from table 6.5.

The Strouhal numbers obtained with the current method do agree reasonably
well with those found in the literature. This can be further noted on figure 6.19
when comparing the Strouhal-Reynolds number relationship for the various cases
with the curve established by Williamson [92]. The results agree very well with
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Re St Cp Cy Cp CL Method Source

100 0.176 1.340 0.355 0.985 0.290 PM Poncet [69]
100 0166 1.350 0.350 1.000 - Henderson [36]
100  0.164 1.330 — — 0.310 Kravchenko et al.[46]
100 0.163 1.330 - - 0195 FD  Wanderley et al. [8]
100 0173 1360 - - 0.320 Rengel [71]
100 0.168 1.360 - - 0.340 Herjford [37]
100 0.166 1.332 0.314 1.018 0.331 128 x 128 No turb.
100 0.166 1.332 0.314 1.018 0.331 128 x 128 LES S

100 0.164 1.321 0.301 1.020 0.322 128 x 128 LES SF
100 0.156 1.319 0.311 1.007 0.331 128 x 128 LES SSF
100 0.166 1.332 0.326 1.006 0.330 256 x 256 LES SF

300 0.196 1.250  — - 0.540  FD Zhang et al. [100]
200 0.185 1.310 - — 0.640 FV Hoe-Tai et al. [39]
200 0.201  1.340 0.245 1.100 0.700 PM Poncet [69]
200 0.197 1.340 0.250 1.100 - Henderson [36]
200 0.196 1.180 — — 0.739 FE Sphaier et al. [78]
200 0196 1.350  — - 0.600  FV Sphaier et al. [78]
200 0.192  1.320 - - 0.534 FD Wanderley et al. [88]
200 0203 1350 - - 0.670 Rengel [71]
200 0196 1.350  — - 0.700 Herjford [37]
200 0.205 1.323 0.215 1.108 0.695 128 x 128 No turb.
200 0.205 1.324 0.215 1.109 0.695 128 x 128 LES S

200 0.195 1.310 0.197 1.113 0.662 128 x 128 LES SF
200 0.195 1.324 0.215 1.109 0.696 128 x 128 LES SSF
200 0.200 1.329 0.229 1.100Herjford 0.679 256 x 256 LES SF

300  0.211  1.390 0.220 1.170 0.960 PM Poncet [69]
300 0210 1.380 0.220 1.160 - Henderson [36]
300 0.215 1.312 0.165 1.147 0.937 128 x 128 No turb.
300 0.205 1.319 0.165 1.153 0.936 128 x 128 LES S

300 0.205 1.337 0.148 1.190 0.878 128 x 128 LES SF
300 0.205 1.300 0.164 1.136 0.944 128 x 128 LES SSF
300 0.2106 1.357 0.182 1.174 0.908 256 x 256 LES SF

325 0.206  1.400 - - - Henderson [36]
325 0210 1400 - - 0.950 Mittal et al. [61]
325 0.210 1.306 0.156 1.150 0.984 128 x 128 No turb.
325 0.215 1.313 0.156 1.157 0.983 128 x 128 LES S

3256 0.215 1.341 0.139 1.202 0.918 128 x 128 LES SF
325 0.215 1.322 0.157 1.165 0.996 128 x 128 LES SSF
325 0.215 1.362 0.174 1.188 0.950 256 x 256 LES SF

400 0.223 1.420 0.208 1.212 1.100 PM Poncet [69]
400 0.220 1.400 0.195 1.205 1.180 Henderson [36]
400 0.215 1.417 0.143 1.275 1.127 128 x 128 No turb.
400 0.215 1.421 0.143 1.278 1.125 128 x 128 LES S

400 0.221 1.377 0.120 1.257 1.017 128 x 128 LES SF
400 0.225 1.345 0.137 1.208 1.127 128 x 128 LES SSF
400 0.215 1.339 0.149 1.190 1.051 256 x 256 LES SF

Table 6.5: Comparison of the force coefficients at various Re
The values in bold correspond to the present method.
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Re S Cp Cy Cp CL Method Source

500 0.20 1440 - ~ 1180 PM Poncet [69]

500 0.226 1445 0.172 1.273 1.210 Henderson [36]
500 0.234 1467 0.123 1.343 1.266 128 x 128 No turb.

500 0.234 1.467 0.123 1.344 1.264 128 x 128 LES S

500 0.225 1410 0.100 1.310 1.113 128 x 128 LES SF

500 0.225 1419 0.120 1.298 1.266 128 x 128 LES SSF

500 0.234 1.354 0.128 1.226 1.149 256 x 256 LES SF

1000 0.235 1.510 - - 1.370 FD Wanderley et al. [88]
1000 0.235  1.520 - - 1.360 FD Wanderley et al. [88]
1000 0.225 1500  — ~ L1700  FV Rengel [71]
1000 0.234 1.470 — - 1.450 FE Herjford [37]
1000 0.234 1.582 0.073 1.509 1.739 128 x 128 No turb.
1000 0.234 1.595 0.074 1.522 1.820 128 x 128 LES S

1000 0.234 1.527 0.061 1.465 1.500 128 x 128 LES SF

1000 0.234 1.713 0.077 1.636 1.760 128 x 128 LES SSF
1000 0.234 1.417 0.076 1.341 1.407 256 x 256 LES SF

Table 6.5: Continued

those of Williamson for Reynolds numbers up to about 250. For higher Reynolds
numbers, there exist a relative scatter of the results. This could be due to a reso-
lution issue in the FFT method where the frequency obtained depends highly on
the time over which the sampling is taken and the number of periods occurring
over that time. The error bars on the figure are an indication of the frequency
resolution and thus error on the calculated Strouhal number. However, for each
Reynolds number investigated, the Strouhal numbers obtained with the present
method fall in the ranges found in the literature (table 6.5).

When comparing the relationship between the drag and lift coefficients and the
Reynolds number as shown on figure 6.20 and 6.21, the influence of the turbu-
lence model used for the solution can only be noted for Reynolds number above
250. This can be expected as little to no small scale instabilities are present in
the flow for Reynolds number up to about 300.

In the case where no turbulence model is used, or when the Smagorinsky or Selec-
tive Structure Function are used, one can observe an over-prediction of both the
lift and drag coefficients. Furthermore, the difference between the lift coefficient
found numerically and the results found in the literature grows with the Reynolds
number.

The Structure Function LES model whether applied using the 128 x 128 or
256 x 256 grid appears to slightly under-predict the drag coefficient for Reynolds
number up to about 800. However, this model produces very good results for the
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lift coefficients. Also, one can note that there are very little differences between
the results on the two grids for this turbulence model. Such a finding can be cor-
roborated by those of Breuer [11] who came to the conclusion that, when using
LES models, greater refinement did not automatically lead to improvements in
the results. The Structure Function LES turbulence model led to a prediction
of the force coefficients in better agreement with the data from Williamson [92]
than other models, particularly for the 128 x 128 grid at high Reynolds numbers.

This series of tests have revealed that the Structure Function LES turbulence
model was better suited to predict the viscous flow around a cylinder in the con-
sidered range of Reynolds number. Furthermore, the 128 x 128 grid is sufficiently
refined to produce accurate results as far as the lift and drag coefficients are
concerned. The 256 x 256 grid did not result in substantially different solutions.
However, the added computational cost of such a grid makes it less favoured than
the coarser 128 x 128 one for the considered range of Reynolds numbers.
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Re St C—D Cp, C’Dp Cr Cr, CL,,
40 — 1.535 0.513 1.022 0.000 0.000 0.000
100 0.166 1.332 0.314 1.018 0.331 0.039 0.299
125  0.176 1.318 0.279 1.039 0.433 0.044 0.396
150 0.186 1.315 0.253 1.062 0.528 0.048 0.488
175 0.195 1.318 0.232 1.086 0.616 0.051 0.574
200 0.205 1.323 0.215 1.108 0.695 0.052 0.652
225 0.195 1.328 0.201 1.127 0.767 0.053 0.723
250  0.205 1.3290 0.188 1.141 0.828 0.054 0.785
275 0.205 1.322 0.176 1.146 0.882 0.054 0.840
300 0.215 1.312 0.165 1.147 0.937 0.053 0.894
325 0.210 1.306 0.156 1.150 0.984 0.053 0.941
350 0.215 1.302 0.147 1.154 1.025 0.052 0.983
375 0.215 1.281 0.139 1.142 1.057 0.052 1.016
400 0.215 1.417 0.143 1.275 1.127 0.051 1.087
500 0.234 1.467 0.123 1.343 1.266 0.049 1.228
600 0.234 1.473 0.107 1.366 1.383 0.046 1.349
700  0.234 1.539 0.097 1.442 1.482 0.044 1.450
800 0.234 1.590 0.089 1.502 1.571 0.042 1.540
900 0.234 1.655 0.082 1.573 1.676 0.043 1.644
1000 0.234 1.582 0.073 1.509 1.739 0.042 1.708

Table 6.6: Force coeflicients for the 2D 128 x 128 grid - No turbulence model

Re St C—D Cp, CDp Cr, Cr, CLP
40 — 1.535 0.513 1.022 0.000 0.000 0.000
100 0.166 1.332 0.314 1.018 0.331 0.038 0.208
125 0.176 1.318 0.279 1.040 0.432 0.044 0.396
150  0.186 1.315 0.253 1.063 0.527 0.048 0.488
175 0.195 1.319 0.232 1.087 0.615 0.050 0.574
200 0.205 1.324 0.215 1.109 0.695 0.052 0.652
225 0.205 1.330 0.201 1.129 0.766 0.053 0.723
250 0.205 1.333 0.188 1.144 0.829 0.053 0.785
275  0.205 1.328 0.176 1.152 0.882 0.053 0.839
300 0.205 1.319 0.165 1.153 0.936 0.053 0.893
325 0.215 1.313 0.156 1.157 0.983 0.053 0.941
350 0.215 1.309 0.148 1.162 1.025 0.052 0.983
375  0.225 1.302 0.140 1.162 1.060 0.052 1.019
400 0.215 1.421 0.143 1.278 1.125 0.051 1.085
500 0.234 1.467 0.123 1.344 1.264 0.048 1.227
600 0.234 1.505 0.108 1.396 1.380 0.046 1.346
700 0.234 1.537 0.097 1.440 1.477 0.044 1.445
800 0.234 1.589 0.088 1.501 1.571 0.042 1.540
900 0.234 1.591 0.080 1.511 1.652 0.043 1.623
1000 0.234 1.595 0.074 1522 1.820 0.043 1.789

Table 6.7: Force coefficients for the 2D 128 x 128 grid - LES S model
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Re St EB Cp, CDp Cr, CL, CLp
40 — 1.537 0.513 1.024 0.000 0.000 0.000
100 0.164 1.321 0.301 1.020 0.322 0.037 0.291
125 0.176 1.306 0.264 1.042 0.419 0.042 0.384
150 0.186 1.302 0.236 1.066 0.508 0.045 0.471
175 0.186 1.304 0.214 1.090 0.589 0.046 0.550
200 0.195 1.310 0.197 1.113 0.662 0.047 0.622
225 0.205 1.317 0.182 1.136 0.726 0.048 0.687
250 0.205 1.325 0.169 1.156 0.783 0.047 0.744
275 0.205 1.331 0.158 1.173 0.834 0.047 0.795
300 0.205 1.337 0.148 1.190 0.878 0.046 0.840
325 0.215 1.341 0.139 1.202 0918 0.045 0.881
350 0.215 1.345 0.131 1.213 0.954 0.044 0.917
375 0.215 1.345 0.124 1.221 0.985 0.043 0.950
400 0.221 1.377 0.120 1.257 1.017 0.042 0.983
500 0.225 1.410 0.100 1.310 1.113 0.037 1.083
600 0.234 1.437 0.086 1.351 1.185 0.034 1.157
700 0.234 1452 0.076 1.376 1.237 0.030 1.213
800 0.234 1.465 0.067 1.397 1.279 0.028 1.257
900 0.234 1469 0.060 1.409 1.312 0.025 1.292
1000 0.234 1.527 0.061 1.465 1.500 0.029 1.477

Table 6.8: Force coefficients for th 2D 128 x 128 grid - LES SF model

Re St _C_D Cp, CDp Cy, Cr, CLp
40 - 1.537 1.024 0.513 0.000 0.000 0.000
100 0.156 1.319 0.311 1.007 0.331 0.038 0.298
125 0.176 1.313 0.278 1.035 0.433 0.044 0.396
150 0.186 1.312 0.252 1.060 0.528 0.048 0.488
175 0.195 1.317 0.232 1.085 0.616 0.051 0.574
200 0.195 1.324 0.215 1.109 0.696 0.0562 0.653
225  0.195 1.330 0.201 1.129 0.769 0.053 0.725
250  0.205 1.337 0.189 1.148 0.835 0.054 0.790
275 0.205 1.328 0.177 1.151 0.894 0.054 0.850
300 0.205 1.300 0.164 1.136 0.944 0.053 0.901
325 0.215 1.322 0.157 1.165 0.996 0.053 0.953
350 0.215 1.349 0.152 1.197 1.044 0.052 1.002
375 0.215 1.371 0.146 1.225 1.088 0.052 1.047
400 0.225 1.345 0.137 1.208 1.127 0.051 1.087
500 0.225 1.419 0.120 1.298 1.266 0.049 1.228
600 0.234 1.410 0.104 1.306 1.378 0.046 1.343
700 0.234 1.536 0.097 1.439 1.483 0.044 1.450
800 0.244 1.613 0.090 1.523 1.575 0.042 1.543
900 0.234 1.491 0.077 1414 1.659 0.044 1.629
1000 0.234 1.713 0.077 1.636 1.760 0.040 1.731

Table 6.9: Force coefficients for the 2D 128 x 128 grid - LES SSF model
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Re St a')_ Chp, CD;, Cr Cr, CLp
40 — 1.554 (0.528 1.026 0.000 0.000 0.000
100  0.166 1.332 0.326 1.006 0.330 0.041 0.294
125 0.176 1.321 0.292 1.029 0429 0.047 0.387
150 0.186 1.318 0.266 1.052 0.519 0.0562 0.475
175 0.195 1.322 0.246 1.076 0.603 0.055 0.556
200 0.200 1.320 0.220 1.100 0.679 0.057 0.630
295 0.205 1.337 0.215 1.122 0.747 0.058 0.698
250 0.205 1.345 0.203 1.142 0.808 0.059 0.757
275 0.210 1.351 0.192 1.159 0.860 0.059 0.810
300 0.210 1.357 0.182 1.174 0.908 0.058 0.858
325  0.215 1.362 0.174 1.188 0.950 0.058 0.901
350 0.215 1.366 0.166 1.200 0.989 0.057 0.940
375 0.215 1.369 0.158 1.211 1.023 0.056 0.975
400 0.215 1.339 0.149 1.190 1.051 0.055 1.004
500 0.234 1.354 0.128 1.226 1.149 0.051 1.106
600 0.234 1.365 0.113 1.253 1.219 0.047 1.179
700 0.234 1376 0.111 1.265 1.317 0.048 1.276
800 0.234 1.369 0.090 1.279 1.327 0.040 1.293
900 0.234 1.409 0.093 1.316 1.427 0.043 1.390
1000 0.234 1.417 0.076 1.341 1.407 0.035 1.377

Table 6.10: Force coefficients for the 2D 256 x 256 grid - LES ST model
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Figure 6.23: Streamlines around a circular cylinder at Re = 200 for a complete
vortex shedding period
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Figure 6.24: Pressure distribution around a circular cylinder at Re = 200 for a
complete vortex shedding period
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Figure 6.25: Vorticity distribution around a circular cylinder at Re = 200 for a
complete vortex shedding period
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6.4 Flow Around a Freely Oscillating Cylinder

All fluid structure interactions are composed of an excitation on one hand and a
response on the other. In the case of a freely oscillating cylinder for example, the
excitation corresponds to the forces acting on the cylinder. Such forces are the
results of the fluid motion around the cylinder.

Having determined that the flow solver is able to accurately reproduce the dif-
fusion and convection effects of the flow, and furthermore that the force model
predicted well the forces acting on the circular cylinder, one can conclude that the
fluid excitation aspect of the fluid structure interaction is correctly represented by
the present method. Thus the structural response side of the interaction remains

to be assessed.

In the present method, the response of the cylinder to the fluid excitation is de-
termined by the solution of a simple mass-spring-damping system and the update
of the solution grid (see chapter 5).

To assess the structural response, the problem of the freely oscillating cylinder
is considered. The results obtained by Oliveira et al. [66] [78] in their numerical
experimentation of VIV simulation will be used as a basis for comparison as their
results are validated against experimental results.

The solution parameters of the original setup are defined in table 6.11 and the
non-dimensional ones used in the present solution are given in table 6.12.

Parameter Name Value
Cylinder diameter D 0.1m
Reynolds number Re 275

Inflow velocity Uso 0.275 m/s

Mass (2D) m 13.06 kg/m

Stiffness k 207.5 N/m?
Damping c 1.041 kg/(m.s)
Reduced velocity U 5.5

Table 6.11: Solution parameters

The solution was carried out on the same 128 x 128 grid as for the two-dimensional
flow around a fixed circular cylinder. The time step was set to 0.001 and the sim-

ulation time was of 150s.

Results are presented in table 6.4 along with a history of the force coefficients in
figure 6.26. Additionally, figure 6.27 displays the trace of the position of the cylin-
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Parameter Name Value

Cylinder diameter D 1.0
Reynolds number Re 275
Inflow velocity U 1.0
Mass ratio m* 1.306
Damping ratio ¢ 1073
Reduced velocity u* 5.5

Table 6.12: Non-dimensional solution parameters

der and shows the convergence of the motion to the characteristic Lissajous shape.

Although the average drag coefficient found using the present method seems
slightly lower than that reported in the literature, the other quantities such as
the maximum lift and transversal displacement of the cylinder agree very well
with the data from Oliveira et al. [66] and Krokstad et al. [77] in the "DEEPER"

project.

Furthermore, the pattern of vortex shedding seen in figure 6.28 corresponds to a
"25" pattern, i.e. two distinct opposite vortices shed per cycle. This result was
also found by Oliveira et al. [66] although they reported that a "2P" pattern
should be expected, i.e. two pairs of vortex shed per cycle. Oliveira suggested
that a reason why the expected pattern of vortex shedding could not be captured
may reside in the manner in which the inflow velocity is increased. He subse-
quently made the hypothesis that three-dimensional effects could play a role in
the vortex shedding pattern.

Parameter Present Method Oliveira et al. [66] DEEPER [77]

St 0.195 - —
Cp 1.900 2.24 2.24
CL 0.220 0.24 0.24
x/D 0.595 — -
y/D 0.609 0.57 0.54

Table 6.13: Comparison of results for the freely oscillating cylinder

As identified by Brika et al. [12], the relationship between the relative amplitude
of oscillation and reduced velocity is characterised by two branches as illustrated
by figure 6.29. The transition between these two branches exhibits an hysteresis
loop and each branch is associated with a specific mode of vortex shedding.

Although no results were available for comparison, it was thought that testing
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Figure 6.26: Force coefficients history for the freely oscillating cylinder at Re =
275, m* = 1.306, { = 102 and U* = 5.5
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Figure 6.27: Longitudinal (upper) and transversal (middle) displacement history
for the freely oscillating cylinder at Re = 275, m* = 1.306, { = 1073 and U* = 5.5.
The Lower plot is the X-Y phase plot over the complete simulation
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Figure 6.28: Vortex shedding period for the freely oscillating cylinder at Re =
275, m* = 1,806, { = 1072 apd U* =55

The sequence reads from top to bottom, left column first followed by the right
column with a time step between frames of 0.5s. The original position of the
cylinder is given by the black circle.
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Figure 6.29: Amplitude of vibration versus reduced velocity

the freely oscillating cylinder over a range of reduced velocity may add to the
discussion and allow for the relationship between the oscillation amplitude and
the reduced velocity to be determined.

Further simulations were thus carried for a reduced velocity varying between 2.5
and 25 with the same Reynolds number, damping ratio and mass ratio.

In figure 6.30 the relative amplitude exhibits the overall expected shape although
the hysteresis cannot be seen. Furthermore, figure 6.31 shows the correlation
between the relative frequency of oscillation and the reduced velocity.

An interesting issue which was also reported by various authors (Oliveira [66],
Pinto et al. [68], Sphaier et al. [78]) is that over the whole range of tested reduced
velocity, only the "2S" mode was shown. In figure 6.32, even though the shedding
of vortices at a reduced velocity of 4.52 shows a secondary vortex attached to the
primary vortex, the pattern shown is characteristic of the "2S'" pattern.

In light of the comparison with the results found in the literature for a two-
dimensional freely oscillating cylinder and the characteristic behaviour demon-
strated by the additional simulations, the results presented here demonstrated
that the moving grid method and the structural model were adequate to simu-
late the response of objects under fluid excitation.
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Figure 6.30: Vibration relative amplitude as a function of the reduced velocity
for Re = 275, m* = 1.306, ¢ = 1073
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Figure 6.31: Vortex shedding frequency as a function of the reduced velocity for
Re = 275, m* = 1.306, ¢ = 1073
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Figure 6.32: Vortex shedding period for the freely oscillating cylinder at Re =
275, m* = 1.306, ¢ = 1072 and U* = 4.54

The sequence reads from top to bottom, left column first followed by the right
column with a time step between frames of 0.5s. The original position of the
cylinder is given by the black circle.
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Chapter 7

Three-Dimensional Flow Around a
Fixed Circular Cylinder

7.1 Introduction

The study of the three-dimensional flow around a circular cylinder so far has
mostly been the focus of experimental investigations only. A review of the cur-
rent findings was done in chapter 2 and revealed that three-dimensional instabil-
ities occur in the wake of a circular cylinder for Reynolds numbers greater than
180. Furthermore, the two discontinuities found by Williamson [90], [92] in the
Strouhal-Reynolds number relationship are associated with two different modes
of vortex shedding. The first, named mode A, occurs at a Reynolds number of
about 180, whilst the second, mode B, starts occurring between Re = 230 and
Re = 260. These two modes are intrinsically related to the development of three
dimensional instabilities. As a consequence, the study of the three-dimensional
wake of a circular cylinder implies an investigation into the prediction of these

two modes.

As discussed in chapter 2, few numerical solutions have been carried out on such
a problem, and have generally focused on a specific Reynolds number or at a
specific spanwise length (Thompson et al. [83], Zhang et al. [101], Kalro et al.
[42], Lei et al. [51]). Since the main focus of the present research is to assess the
effect of the spanwise extension of the solution domain on the three-dimensional
effects in the wake of a circular cylinder, it is quite natural that most of the
investigation will concentrate on that issue. However, a number of issues closely
related to the present research need investigation.

In their study of the effect of the spanwise length on the modelling of flow over

a circular cylinder, Lei et al. [51] concluded that a spanwise length less than
two cylinder diameters was insufficient to achieve reliable results. Furthermore,
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the quasi-periodic beat phenomenon observed experimentally in the lift and drag
coefficient history can only be observed for three-dimensional simulations with
a spanwise extension greater than twice the cylinder diameter. However, their
investigation was carried out for a Reynolds number of 1000. It is thus reasonable
to question if for different Reynolds numbers the minimum spanwise length for
which reliable prediction can be achieved would be different.

Furthermore, in the same study, the results obtained with a spanwise extension
of four cylinder diameters suggested there might be a relationship between this
particular spanwise length and the real spanwise wavelength at a Reynolds num-
ber of 1000. Since all the numerical solutions encountered in the literature are
carried out with periodic boundary conditions on the upper an lower part of the
domain, a pseudo periodicity is forced onto the flow. This implies that a reli-
able solution using the periodic boundary condition can only be achieved if the
extension matches an exact number of spanwise wavelengths. It is however diffi-
cult, at the present stage of the research into the flow around a circular cylinder
to predict accurately such a spanwise wavelength. Could a different boundary
condition be enforced on the upper and lower parts of the solution domain that
would not incur a pseudo periodicity in the wake? It is also important to be
able to distinguish between the effects of the spanwise extension and those of the
boundary conditions on the three-dimensional wake.

In the following chapter, these various issues will be addressed. A complete de-
scription of the numerical solution setup will be given with details of the spanwise
extension of the domain, and the boundary conditions used. Results for the var-
ious cases will be presented and analysed. A detailed visualisation of the various
cases focusing on the vorticity in the wake of the cylinder will allow for the various
vortex shedding modes to be examined. The appearance of the three-dimensional
effects in the wake of the cylinder will be shown for the various spanwise exten-
sions and the effect of the extension and boundary condition assessed.

7.2 Numerical Solution Setup

7.2.1 Computational Mesh

As it was shown that the 128 x 128 grid produced satisfying results in the two-
dimensional case, and considering the computational cost of a three-dimensional
solution, this grid will be used as a base for the three dimensional solutions.

In [92], Williamson reports that there exists two distinct spanwise wavelength

depending on the vortex shedding modes. When mode A occurs, the wavelength
is about four cylinder diameters while at mode B, it varies around one cylinder
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diameter. Clearly, mode A requires a substantially greater spanwise extent of the
domain than mode B and if one is to capture it, the solution domain must extend
vertically by at least four cylinder diameters.

In the context of the present investigation, three extensions were chosen, namely
7/2D, 7D and 2w D. This allows for the cells close to the cylinder surface to have
an aspect ratio of 1. Table 7.1 gives the details of the three grids used here and
figure 7.1, 7.2 and 7.3 illustrate the solution domain in the three cases. Details of
the grid at the cylinder base are shown in figure 7.4. Grid E is composed of four
blocks distributed across the perimeter of the cylinder as in the two-dimensional
case, whilst grid F was composed of eight blocks, i.e. two layers of the grid blocks
used in the grid E. Grid D that was tested at a later stage is composed of eight
blocks, in the same configuration as for grid F, but each block of a quarter of the
size of those of grid E. The reason for the greater number of blocks in comparison
to the grid size for grid D was due to a time constraint and the need to carry out
the solution at a faster pace.

Grid Spanwise Grid Total Number Volume sizes
th Extension Sizes of Volumes on Cylinder Surface
D 7w /2D 128 x 128 x 32 524288
E 7D 128 x 128 x 64 1048576 0.0490D x 0.0490D
F 2rD 128 x 128 x 128 2007152

Table 7.1: 3D Grid details

7.2.2 Boundary Conditions

A substantial difference between the two- and three-dimensional solutions of the
flow past a circular cylinder resides in the presence of two extra boundaries, one
at each end of the cylinder. As mentioned in the introduction to the chapter,
a commonly used boundary condition for these two boundaries is the periodic
one. The variables on one of the boundary planes are fed into the other one
and vice versa. Such a condition forces a periodicity of the flow and can thus
present an inconvenience if the domain spanwise extension does not match a
number of spanwise wavelengths. The spanwise wavelength could be increased
or decreased depending on whether the extension is slightly less or more than a
number of actual periods. Also, by affecting the spanwise wavelength, the three-
dimensional instabilities occurring in the wake could be reduced, increased or
delayed. Although this type of boundary condition has been employed in most of
the three-dimensional solutions of the flow past a circular cylinder, it is believed
that an alternative boundary condition could be used that would not affect the
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Figure 7.1: Grid D - 128 x 128 x 32

Figure 7.3: Grid F - 128 x 128 x 128

Figure 7.4: Grid details near the cylinder base
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spanwise periodicity of the wake as much.

The most obvious approach would be to use an outflow condition on both upper
and lower boundaries. However, the imposed constant reference pressure on the
boundaries would result in a different distribution of the pressure on the cylinder
extremities and thus change the nature of the flow. A symmetric boundary
condition was therefore chosen for both upper and lower boundaries that can
be assimilated to a slippy wall condition. Although such a boundary condition
does not represent the reality of the flow at the boundaries, it does not result
in a flow displaying an exact number of periods within the spanwise extension.
Quite obviously, such a condition will affect the flow close to the upper and
lower boundaries of the domain, but it is believed that it will allow for a better
representation of the actual periodicity of the wake.

7.2.3 Numerical Solution

To assess the difference between the two and three-dimensional results, the same
cases as for the two-dimensional flows were tested on each of the three grids, D,
E and F, using the structure function LES turbulence model. The general details
of the cases setup are given in table 7.2.

R Re Time Min. Residue Turbulence Simulation
© step Step Burger Poisson Model Time
40 — 0.0100
125-375 25  0.0100 107 10~° LES-SF 300

400-1000 100  0.0050

Table 7.2: 3D flow past a circular cylinder - Case details

The solution obtained for the steady flow at Re = 40 is used as an initial solution
for all the other cases, increasing the Reynolds number progressively until reach-
ing the desired value. The initial solution being converged, very few sub-iterations
are required to resolve the pressure field at each time step, thus reducing the over-
all computation time.

A total number of sixty simulations were thus carried out using the Iridis cluster
of the University of Southampton. The processing nodes used were dual 1.8 Ghz
Xeon processors nodes with 2 GB of RAM interconnected by a myrinet network.
Details of the cluster hardware and software are available on the world wide
web at http://www.iss.soton.ac.uk/research/iridis/. Each node carried out the
solution of two blocks of the mesh. Thus, the solutions on grid E required two
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nodes (total of four processors for four grid blocks) while the solution on grid F
and D required four nodes (eight processors for eight grid blocks)

7.3 Three-Dimensional Lift, Drag and Strouhal
Number

One of the key results in the analysis of the flow past a circular cylinder is the
overall force acting on the cylinder. Generally, this force is decomposed in both
a streamwise component, i.e. the drag force, and a transversal component, i.e.
the lift force. Both drag and lift coefficient are recorded over the duration of the
simulation and their behaviour over time can be analysed to reveal characteristic
aspects of the flow past a circular cylinder. Among other factors, the Strouhal
number can be determined using the lift force coefficient history.

In the present section, the history of the force coefficients for the three grids D,
E and F are presented and analysed over the range of Reynolds numbers con-
sidered. Key relationships between the lift, drag, Strouhal number and Reynolds
number are then deduced and discussed.

As the simulations are carried out using a boundary driven method, the local
Reynolds number around the cylinder is progressively accelerated. As a con-
sequence, the flow will always be two-dimensional in the initial stages of the
simulations. Whether three-dimensionalities appear in the flow after a certain
time is then dependent upon the considered Reynolds number. It is thus ex-
pected that the history of the force coefficients will reflect such a transition from
two- to three-dimensional flows for Reynolds numbers above approximately 200.

The history of the force coefficients, as presented in figures 7.8, 7.9 and 7.10 for
grid D, E and F' respectively, revealseveral interesting features.

The first noticeable one is the transition between the purely two-dimensional
flow and the three-dimensional flow mentioned above. The regular sinusoidal os-
cillations with constant amplitudes of both the lift and drag coefficients for the
Reynolds number above 300 change to oscillations with more irregular amplitudes
when the three-dimensional instabilities appear. These changes in the force co-
efficient traces bares some consequences on the Strouhal number obtained. For
the two dimensional part of the flow, the frequency of oscillations of the lift co-
efficient, i.e. the frequency of the vortex shedding should match the one found
in the two-dimensional simulations whilst the frequency of the oscillation after
the wake becomes three-dimensional should be different. In the power spectrum
of the lift coefficient (figure 7.8, 7.9 and 7.10), a secondary weaker peak appears
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and separates from the main one as the Reynolds is increased. Although it is
sometimes difficult to see it clearly, this secondary peak occurs in fact at the
Strouhal frequency of the two-dimensional part of the flow.

As the spanwise extension is increased from 7 /2 for grid D to 2 for grid F, the
occurrence of the oscillation of the coefficients is delayed in time. Furthermore,
the period over which the flow is two-dimensional increases with the spanwise
extension. This difference is particularly noticeable when comparing the traces
obtained with grid D with the traces from the other two grids. Interestingly,
one could have supposed that the opposite should occur as the shorter spanwise
extension would promote two-dimensional flows.

Another interesting feature that appears for Reynolds numbers above 300 is the
quasi periodic beat phenomenon. As can be observed in the three figures 7.8, 7.9
and 7.10, the beat is more pronounced as the spanwise extension is decreased.
This seems to contradict the findings of Lei et al. [51] who could only observe the
quasi-periodic beat phenomenon for extensions greater than two cylinder diame-
ters at a Reynolds number of 1000. An explanation may be the coarser grids used
in their simulation. Early tests carried out on coarse grids in the present research
revealed much more regular behaviour of the force coefficients than for finer grids
at Reynolds number of about 1000. It seems thus reasonable to suggest that a
coarse grid that can not capture the small scale instabilities, would not be able
to predict accurately the forces acting on the cylinder.

The secondary oscillations (quasi-periodic beat) observed in the lift coefficient
traces are such that in the case of the lower 7/2D spanwise extension, the lift
reaches both lower and higher values than for the greater extensions. This is par-
ticularly evident for Reynolds numbers between 350 and 700. As a consequence,
the maximum lift values obtained with grid D are expected to be higher than
for the other two grids for this range of Re. For the lower and higher Reynolds
numbers, the beat is not so accentuated and matches that observed in the traces
obtained with grid F and F in a better fashion.

Some of the findings described above are essential to understand the relationships
between the Reynolds number and the Strouhal number, the average drag coeffi-
cient and maximum lift coefficient. Tables 7.3, 7.4 and 7.5 give the characteristic
force parameters for the three grids. In figure 7.5, a comparison is made between
the Strouhal-Reynolds number relationship for the three studied grids and the
data obtained experimentally by Williamson [92]. The results show very good
agreement with the experimental data. In particular, the transition between the
two and three-dimensional part of the curves is well predicted on all three-grids.
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Re St _C'B CDv CDp CL CLU CLp
100 0.166 1.328 0.309 1.019 0.328 0.038 0.296
125 0.181 1314 0.273 1.041 0.428 0.043 0.392
150 0.181 1.310 0.246 1.064 0.521 0.047 0.482
175 0.190 1.313 0.225 1.088 0.606 0.049 0.565
200 0.195 1.318 0.207 1.111 0.683 0.050 0.642
225 0.200 1.324 0.193 1.131 0.752 0.051 0.710
250 0.200 1.318 0.179 1.140 0.812 0.051 0.771
275 0.205 1.308 0.166 1.142 0.842 0.049 0.801
300 0.200 1.307 0.156 1.151 0.784 0.044 0.749
325 0.205 1.314 0.147 1.166 0.840 0.044 0.804
350 0.205 1.317 0.139 1.177 0.880 0.044 0.845
375 0.210 1.303 0.131 1.172 0.868 0.041 0.836
400 0.205 1.306 0.125 1.181 0.922 0.041 0.890
500 0.215 1.262 0.102 1.160 1.055 0.039 1.023
600 0.205 1.277 0.087 1.190 1.120 0.036 1.091
700 0.205 1.242 0.075 1.167 1.126 0.032 1.101
800 0.215 1.178 0.064 1.115 0.852 0.025 0.834
900 0.205 1.229 0.059 1.171 1.026 0.024 1.006
1000 0.215 1.155 0.051 1.104 0.651 0.015 0.638
Table 7.3: Force coefficients for grid D
Re St —C—'B Cp, CD,, Cy, Cr, CLp
100 0.166 1.331 0.314 1.018 0.331 0.039 0.299
125 0.176 1.318 0.279 1.039 0.433 0.044 0.396
150 0.181 1.315 0.253 1.062 0.528 0.048 0.488
175  0.190 1.318 0.232 1.086 0.616 0.0561 0.574
200 0.200 1.323 0.215 1.108 0.696 0.052 0.653
225 0.200 1.328 0.201 1.127 0O.767 0.053 0.724
250 0.205 1.328 0.188 1.140 0.830 0.054 0.787
275 0.205 1.309 0.175 1.134 0.885 0.054 0.842
300 0.205 1.302 0.155 1.146 0.850 0.047 0.810
325 0.205 1.302 0.146 1.156 0.839 0.044 0.803
350 0.205 1.292 0.138 1.154 0.819 0.041 0.786
375 0.205 1.264 0.128 1.136 0.845 0.040 0.813
400 0.205 1.264 0.122 1.142 0.795 0.036 0.766
500 0.205 1.256 0.101 1.154 0.830 0.032 0.804
600 0.215 1.211 0.084 1.126 0.781 0.027 0.759
700 0.205 1.213 0.074 1.140 0.851 0.026 0.830
800 0.205 1.177 0.064 1.113 0.890 0.024 0.872
900 0.219 1.195 0.0568 1.138 0.826 0.020 0.808
1000 0.215 1.203 0.052 1.151 0.717 0.017 0.703

Table 7.4: Force coefficients for grid £
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Re St 6}5 CD,, CDp Cr CL,, CLp
100 0.161 1.327 0.309 1.019 0.328 0.038 0.296
125  0.176 1.313 0.273 1.040 0.428 0.043 0.392
150 0.186 1.310 0.246 1.064 0.521 0.047 0.482
175  0.190 1.313 0.225 1.088 0.606 0.049 0.565
200 0.195 1.318 0.207 1.111 0.683 0.050 0.642
250  0.205 1.307 0.177 1.130 0.811 0.051 0.769
275 0.200 1.268 0.162 1.106 0.846 0.0560 0.805
300 0.205 1.287 0.154 1.132 0.745 0.042 0.709
325 0.205 1.299 0.146 1.153 0.810 0.042 0.776
375 0.205 1.268 0.129 1.139 0.782 0.037 0.752
400 0.205 1.262 0.122 1.140 0.777 0.036 0.748
500 0.205 1.253 0.101 1.151 0.820 0.032 0.793
700 0.205 1.224 0.074 1.150 0.783 0.024 0.765
800 0.205 1.193 0.064 1.129 0.732 0.020 0.716
900 0.205 1.237 0.059 1.178 0.703 0.018 0.690
1000 0.215 1.200 0.052 1.148 0.687 0.016 0.674

Table 7.5: Force coefficients for grid F
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Figure 7.5: Relationship between the Strouhal and Reynolds Numbers
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The drag to Reynolds relationship shown in figure 7.6 also exhibits a very good
correspondence with the data found in the literature for three-dimensional flows.

It seems thus difficult to assess the difference between the three grids from the
Strouhal to Reynolds and Drag Coeflicient to Reynolds relationships alone.

The differences between the results obtained at different spanwise extensions
starts showing when looking at the lift coefficient relationship with the Reynolds
number as illustrated in figure 7.7. Although for Reynolds numbers up to ~ 350
similar results are found for the three grids, the maximum lift coefficients found
for grid D at Reynolds numbers between 350 and 700 are over-predicted and thus
a lot closer to the two-dimensional results than the other two grids. This is a
consequence of the more accentuated quasi-beating phenomenon observed in the
coefficient traces and discussed previously. For Reynolds numbers higher than
700, the lift coefficients obtained with grid D tend to reduce towards those ob-
tained with the other two grids suggesting that the three curves would eventually
converge for Reynolds numbers greater than 1000.

Despite the differences in results discussed above, the analysis of the force coeffi-
cients is not sufficient to clearly assess the influence of the spanwise extension on
the three-dimensional wake behind a circular cylinder. In particular, the quasi-
beating phenomenon observed for all three grids suggests that differences in the
wake of the cylinder could be observed for the various spanwise extension. It is
thus necessary to investigate the vortex shedding using adequate visualisation.

7.4 Vortex Shedding Modes

In the present section, an analysis of a visualisation of the results obtained is car-
ried out. The core part of the analysis will focus on the components of vorticity
in the wake of the cylinder. The visualisation was developed using the IBM Data
Explorer software (see http://www.opendx.org).

Williamson [90] showed the existence of two modes of vortex shedding in the
transition to three-dimensional wake. Furthermore, each of these two modes
corresponds to a spanwise instability in the wake and has a distinct geometry
(Williamson [92]). In mode A, the streamwise vortices of one sign are in a stag-
gered arrangement from one braid region to the next whilst in mode B, an in-line
arrangement of streamwise vortices of the same sign can be seen.

In addition to their specific geometry, both mode A and B exhibit very different
spanwise wavelengths. Although a relative scatter of the data can be seen in
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Figure 7.10: Grid F - Force coefficients history (left) and Power Spectrum (right)
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the literature, it is usually found that in mode A, the spanwise wavelength is of
about 4D while it is of about 1D for mode B. As a consequence, grid F' used
in the present research should be adequate to capture mode A as its spanwise
extension 1s 27 D. Grid F of spanwise extension 7D might be a bit too short to
capture fully the mode and grid D with an extansion of /2D should not allow
for mode A to be well predicted. All three grids on the other hand should be able
to capture the vortex shedding mode B.

7.4.1 Mode A

In figure 7.11, the influence of the spanwise extension is shown by comparing the
streamwise and spanwise components of vorticity at a Reynolds number of 200
on the three grids D, £/ and F. The dark blue and red surfaces show a particular
value of positive and negative streamwise vorticity while the light blue and green
surfaces show a particular value of positive and negative spanwise vorticity.

Grid F clearly captures mode A and exhibits a spanwise wavelength of about
4D. Since this is slightly more than the spanwise extension of grid F, it is un-
derstandable that the visualisation shows a partially predicted mode A on grid
E. Another interesting comment can be made from this visualisation regarding
grid D. Although the spanwise extension of grid D is far too short to capture
mode A, its extension is close to half a wavelength, thus explaining the reason
for seeing what appears to be half of the spanwise period.

It thus appears that grid D, through the non-periodic spanwise boundary con-
ditions, is capable of capturing half of the spanwise wavelength of the vortex
shedding. In figure 7.12, the visualisation of the streamwise and spanwise vortic-
ity for grid D and E at Re = 225 supports this argument by showing a complete
wavelength period in the case of grid F and an exact half period for grid D.

Although it was not possible to produce a comparative visualisation for grid ¥
owing to the absence of results at this particular Reynolds number, it appears
that for Re = 225, the spanwise wavelength is closer to D, thus suggesting that
the vortex shedding mode A may have indeed different spanwise wavelengths de-
pending on the Reynolds number. This could explain the relative scatter of data
reported by Williamson [92].

The comparison between the experimental visualisation of mode A by Williamson
[92] and the present numerical simulation at Re = 200 shown in figure 7.13 shows
remarkably similar pattern in the vorticity. Furthermore, the wavelength shown
in both case is in very good agreement. This confirms that the present method is
capable of accurately predicting the vortex shedding mode A provided the grid
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Figure 7.11: Domain spanwise extension influence on Mode A vortex shedding.
Comparison of the streamwise and spanwise components of vorticity for grid D
(top), grid E (middle) and grid F' (bottom) at Re = 200.
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Figure 7.12: Mode A vortex shedding: Comparison of the streamwise and span-
wise components of vorticity for Grid D and E at Re = 225

Figure 7.13: Mode A vortex shedding at Re = 200
Williamson (exp.)[92](left) and present simulation (right)
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possesses sufficient spanwise extension. Although grid E resulted in a good pre-
diction of the wake for Re = 225 and grid D could predict half a wavelength,
most of mode A occurs at a spanwise extension of about 4D. It can be concluded
that a spanwise extension of at least 2D is required to capture half a wavelength
at mode A and one of at least 4D for the complete wavelength.

7.4.2 Mode B

The transition to the vortex shedding mode B is somewhat difficult to investigate
as numerous simulations would be required in the Reynolds number range where
it occurs. Since at Re = 200 it is clearly established that mode A is occurring,
and since the transition occurs approximately between Re = 230 and Re = 260,
a visualisation of the vorticity in the wake of the cylinder for Reynolds numbers
between 200 and 300 should give an insight into the transition phase.

A confirmation of this hypothesis is given in figure 7.14 where clear evidences of
the occurrence of both mode A and B are provided for Re = 200 and Re = 300
on grid F. The visualisation at Re = 250 shown in this figure is extremely in-
teresting as it exhibits a vortex pattern complying with mode A but with much
thiner vortex layers, indicating the transition to mode B. Furthermore, a clear
difference with the pure mode A vortex shedding patterns can be seen in the
spanwise component of vorticity (light blue and green surfaces).

Further evidence of the transition between the two vortex shedding modes is
given in figures 7.15, 7.16 and 7.17 where the components of velocity are shown
in the symmetry plane in the wake of the cylinder.

In particular, the transversal component of velocity, U, exhibits a clear wavy
pattern at Re = 250 that does not show at the lower Reynolds number of 200.
At the higher Reynolds number of 300, although there seems to be an oscillation
in the spanwise direction of the transversal component of velocity, the pattern
exhibited are much more uniform than for Re = 250.

Also, in figure 7.17, a clear change of the spanwise component of velocity can
be observed. At Re = 200, the switching of sign of the velocity is extremely
regular and the spanwise velocity component quite strong. At the intermediate
Re = 250, the spanwise velocity still displays the alternative pattern observed
at Re = 200 in the far wake of the cylinder, but the close wake seems to be
undergoing a transition. At Re = 300, the intensity of the spanwise velocity has
decreased substantially suggesting that, although three-dimensional instabilities
are present in the flow, their spanwise wavelengths are much smaller.
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Figure 7.14: Mode A to Mode B Transition - Streamwise and spanwise compo-
nents of vorticity for grid F' - Mode A at Re = 200 (top), Transition at Re = 250
(middle) and Mode B at Re = 300 (bottom)
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Figure 7.15: Mode A to Mode B Transition - Streamwise components of velocity
(U) for grid F' - Mode A at Re = 200 (top), Transition at Re = 250 (middle)
and Mode B at Re = 300 (bottom)
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Figure 7.16: Mode A to Mode B Transition - Transversal components of velocity
(V) for grid F - Mode A at Re = 200 (top), Transition at Re = 250 (middle)
and Mode B at Re = 300 (bottom)
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Figure 7.17: Mode A to Mode B Transition - Spanwise components of velocity
(W) for grid F - Mode A at Re = 200 (top), Transition at Re = 250 (middle)
and Mode B at Re = 300 (bottom)
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For Reynolds numbers greater than 300, the shedding of vortices in the wake of
the cylinder follows the pattern of mode B. As shown in figure 7.18, the predic-
tion of mode B with grid F' compares remarkably well with both experimental
(Williamson [92] and numerical (Poncet [69]) results found in the literature.

Figure 7.18: Vortex shedding in the wake of a circular cylinder at Re = 400.
From left to right: Williamson (exp.)[92], Poncet (num.)[69] and present
numerical solution

Since the wavelength of mode B is close to 1D, the three spanwise extensions are
sufficient to capture the mode as illustrated by figure 7.19.

Indeed, a visual inspection of figures 7.20, 7.21 and 7.22 reveals that for Reynolds
numbers greater than 300, the spanwise wavelength is approximately equal to 1D
at Re = 300, decreasing slightly as the Reynolds number increases to approxi-
mately 0.8D for Re = 1000.

A closer look into the visualisation of the wake vorticity obtained with grid D
shows however that two spanwise periods are captured at most Reynolds num-
bers, thus giving a spanwise wavelength of slightly less than 0.8D.

7.4.3 Spanwise Wavelength and Extension

Determining the wavelength is rather difficult from the visualisation, particularly
at the higher Reynolds number where the wake is more chaotic. However, by
looking at the wake close to the cylinder, i.e. at approximately z/D = 3, it
is possible to estimate the wavelength of the three-dimensional instabilities by
averaging a number of periods over the spanwise extension of the cylinder.
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Figure 7.19: Mode B vortex shedding: Comparison of the streamwise and span-

wise components of vorticity for grid D (top), grid £ (middle) and grid F (bot-
tom) at Re = 300
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Figure 7.20: Evolution of the spanwise and streamwise vorticity for grid D
From top to bottom, left column first followed by the right column: Re = 300,
325, 375, 400, 500, 700, 800 and 900.

Figure 7.21: Evolution of the spanwise and streamwise vorticity for grid E
From top to bottom, left column first followed by the right column: Re = 300,
325, 375, 400, 500, 700, 800 and 900.
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Figure 7.22: Evolution of the spanwise and streamwise vorticity for grid F
From top to bottom, left column first followed by the right column: Re = 300,
325, 375, 400, 500, 700, 800 and 900.
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Although using such a method may appear rather inaccurate considering that
very few periods can be observed particularly for the shortest extension (grid
D), the resulting estimation agrees rather well with Williamson’s measurements
[92] as shown in figure 7.23. The separation between the wavelengths at mode A
and those at mode B clearly appears and compares well with Williamson’s trends.
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Figure 7.23: Spanwise wavelengths of the three-dimensional instabilities

Furthermore, whilst the wavelengths obtained for grid E and F' are similar, those
obtained for grid D at a spanwise extension of 7/2D are slightly shorter for the
Reynolds numbers between 250 and 600. Considering that only a single period
could be measured from the visualisation of the spanwise vorticity on grid D, the
estimation could be rather inaccurate for this particular grid. However, the fact
that the wavelength is systematically lower suggests that the spanwise extension
and most probably the boundary conditions imposed in that direction affected
the three-dimensional instabilities.

7.5 Summary

The investigation of the effects of the spanwise extension on the three-dimensional
wake of a circular cylinder revealed several interesting facts.
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The analysis of the force coeflicients obtained for the three spanwise extensions
led to the conclusion that the 7D (grid F) and 27D (grid F) extensions produced
similar results. In the case where the extension was only of 7 /2D, both Strouhal
number and average drag coefficient were well predicted. However, owing to the
more pronounced quasi-periodic beat phenomenon, the lift coefficient amplitude
was over-predicted. Nevertheless, the trend observed in the lift coefficient ampli-
tude for that extension suggested that as the Reynolds number is increased, the
prediction of the force coefficient for grid D would converge with the other two

grids.

The visualisation of the vorticity in the wake of the cylinder confirmed that both
grid D and E are not well suited to predict the vortex shedding mode A across
the whole range of Reynolds number where it occurs. However, a very interesting
result at a Reynolds number of 225 showed that grid D was capable of predicting
an exact half wavelength of mode A. Grid £ on the other hand allowed for mode
A to be fully captured and the transition between mode A and B to be visualised.

For the vortex shedding mode B, it was found that all three extensions and in
particular the shortest m/2 extension produced similar wake vorticity patterns.
The agreement between the spanwise and streamwise vorticity observed for the
three grids therefore suggests that the extension of grid D is sufficient to predict
the flow past a circular cylinder at Reynolds numbers in the mode B range.

Finally, the estimated spanwise wavelength obtained from the visualisation of the
three-dimensional instabilities compared very well with experimental data found
in the literature for all three spanwise extensions investigated thus confirming
that the three-dimensional instabilities are well predicted in all three cases.

In light of these findings, it is possible to conclude that a finite spanwise exten-
sion of the cylinder is sufficient to predict the flows past an infinitely long circular
cylinder in the considered range of Reynolds numbers. Clear evidences were pro-
duced showing that the minimum spanwise extension required for flows at low
Reynolds numbers up to about 300 was in the region of four cylinder diameters.
For higher Reynolds numbers, a shorter spanwise extension between 7/2D and
7D is sufficient to predict accurately all the characteristic components of the flow,
namely the force coefficients, the Strouhal number and also the three-dimensional
instabilities and their wavelength. Furthermore, it is reasonable to suggest that
such conclusions could extend beyond the range of Reynolds number studied in
the present investigation.
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Chapter 8

Conclusions

8.1 Summary

The aim of this research was to investigate the three-dimensional wake behind a
circular cylinder using numerical tools and determine the influence of the domain

spanwise extension on the solution.

The review of the research carried out to date revealed the clear inadequacy of
the two-dimensional solutions to describe practical flow problems where a three-
dimensional wake occurs. The few three-dimensional numerical solutions reported
in the literature predicted a wake in close agreement with the experimental data,
capturing the three-dimensional effects. Furthermore, the observation of the vor-
ticity in the wake showed that a spanwise periodicity was occurring thus suggest-
ing that a finite spanwise extension would be sufficient to accurately predict the
flow and fluid-structure interaction.

Practical engineering problems often involve long cylinders in a flow. A typical
example is that of marine risers subject to current and undergoing vortex-induced
vibrations. Determining the minimum spanwise extension of the numerical so-
lution domain required to capture the flow past a circular cylinder thus allows
for the problem of the infinitely long cylinder to be reduced to a finite length
one. An immediate consequence of significant importance is that the accurate
prediction of the vortex-induced vibration of long cables can be obtained from
the finite spanwise length domain thus at a reasonable cost.

In this research, a numerical method was presented to solve the incompressible
form of the Navier-Stokes equation based on the projection method and the finite
volume discretisation. To allow for complex geometries to be solved, a curvilin-
ear coordinates, multi-block approach was adopted that led to a straight forward
parallelisation of the solution. In turn, the parallel strategy allows for large or
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dense computational domains to be solved on computer clusters. Although careful
thinking is required to implement such a parallel solution, the method presented
here showed a simple and efficient parallelisation. In particular, the development
of a general formulation for the enforcement of the boundary conditions allowed
for a straight forward implementation. Moreover, such a versatile formulation
enables the subsequent addition of new boundary conditions or numerical meth-

ods in a very simple manner.

To tackle the fluid-structure interaction, a force model was presented that allows
the determination of the forces acting on bodies present in the flow. Further-
more, a structural model combined with a parallel moving mesh procedure was
presented that enables the motion of objects present in the domain across several

blocks.

The suitability of the solution method for the present research was then demon-
strated through the validation of each of its components. The initial stages of the
development of the wake behind an impulsively started cylinder were predicted
accurately and validated the flow solver. A number of two-dimensional cases of
flow past a circular cylinder were then used to demonstrate the validity of the
force model and showed a very good agreement with the data found in the lit-
erature for the predicted forces acting on the cylinder and the Strouhal number.
The structural model and moving mesh method were then assessed on the flow
past a freely oscillating cylinder at various reduced velocities, thus showing the
ability of the method to accurately predict the flow past moving objects and to
handle dynamic objects spread across several domain blocks.

The investigation of the three-dimensional wake of the cylinder was then carried
out on three different spanwise extensions of the domain. The numerical results
obtained here and validated by the experimental work of Williamson [90, 91, 92]
represent a significant contribution to the field of the numerical solution of flows
past a circular cylinder. Such a systematic analysis of the influence of the span-
wise extension of the solution domain over the considered range of Reynolds
numbers has never been reported in the literature.

The study of the behaviour of the forces acting on the cylinder showed a very
good agreement with the data found in the literature. In particular, the tran-
sition from the two-dimensional to three-dimensional flow clearly appeared and
the quasi-periodic beat phenomenon was observed.

However, the differences between the results obtained for the three spanwise ex-
tensions could not allow for the clear assessement of the effects of the spanwise
extension on the solution. It thus became evident that an appropriate visu-
alisation of the three-dimensional instabilities in the wake of the cylinder was
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necessary to investigate the effect of the spanwise extension.

The visualisation of the three-dimensional components of the vorticity in the
wake of the cylinder provided clear evidences of the different vortex shedding
modes. Furthermore, such a visualisation gave an insight into the transition be-
tween these modes. The comparison between the wake predicted using the three
spanwise extensions revealed clear differences particularly for the vortex shed-
ding mode A and the transition to mode B. Moreover, by determining through
the visualisation the wavelengths of the instabilities and comparing the results
obtained with the three extensions, it was shown that a finite spanwise extension
was sufficient to predict accurately the flow past a circular cylinder.

Indeed, it was found that to correctly reproduce the vortex shedding mode A, a
spanwise extension of about four cylinder diameters was sufficient. For the vortex
shedding mode B, although the spanwise wavelength was shown to be close to
one cylinder diameter, the shorter /2D spanwise extension was not quite suffi-
cient to predict accurately the flow. In particular, owing to a more accentuated
quasi-periodic beat phenomenon, the lift coefficient was over-predicted for the
Reynolds numbers between 350 and 700.

However, the trends observed in the force coefficients suggest that the results for
the three spanwise extensions would eventually converge for Reynolds numbers
higher than 1000. Thus, although the 7/2D spanwise extension was not sufficient
in the considered range of Reynolds numbers, it should be for higher Reynolds
numbers where the three-dimensional effects are weaker.

It can thus be concluded that the study of the flow past an infinitely long cylinder
can be reduced to a finite length one, the length of which is dependent upon the
vortex shedding mode. It was shown that the solution of the flow past such
a finite length cylinder gives an accurate prediction of the forces acting on the
cylinder, the geometry of the wake and the three-dimensional effects, all of which
being predicted at a reasonable computational cost. It becomes thus possible
to envisage the solution of flows past marine risers undergoing vortex-induced
vibrations using a method such as that presented here at a viable cost.

8.2 Further Investigations and Perspectives

The research into the flow past circular cylinders has been for years at the centre
of numerous investigations and will still raise considerable interest for the number
of phenomenon it encompasses. During the course of the present investigation,
several issues were raised that the author believes require further investigation.
Also, from the discussion and results presented in this thesis, a few perspectives
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can be suggested.

An interesting observation that was made when looking into the history of the
three-dimensional force coefficients traces was the clear distinction between the
two- and three-dimensional phases of the flow. Although the power spectrum
revealed a secondary peak in the Strouhal frequencies corresponding to the two
dimensional Strouhal number, the use of Fourrier transforms to determine the
two dimensional frequency is rather inaccurate. For the Fourrier transforms to
produce good results, a large number of periods is desirable which is not the case
for the two-dimensional part of the flow. It was also found that the uncertainties
existed for the three-dimensional frequencies. It would be interesting to investi-
gate alternative means of measuring the vortex shedding frequencies. Combining
the identification of the vortices as they are shed and released in the wake with a
proper statistical model could provide a more accurate prediction of the Strouhal

frequency.

Furthermore, the same method could be used to determine accurately the three-
dimensional instabilities wavelengths. Clearly, the averaging procedure employed
in the present work can only be adequate if a large number of periods can be
observed in the flow. By identifying the three-dimensional vortices and their
shedding, one could, through statistical analysis determine accurately the span-
wise wavelengths.

Many engineering flow problems involve oscillating bodies. In particular, the
problem of oscillating marine cables or risers has been the centre of attention for
quite some time. The method presented here was developed with the capabil-
ity of dealing with moving bodies and was shown to predict well the flow past
an oscillating cylinder. It would thus be very straight forward to extend the
present investigation to oscillating cylinders, thus determining the wavelength of
the three-dimensional instabilities in the case of oscillating bodies and as a con-
sequence the minimum spanwise extension required. Since the oscillation tend to
promote the two-dimensionality of the flow, it is expected that such an extension
should be shorter than for the fixed cylinder case.

To solve the problem of flexible marine risers subject to current loading, hybrid
methods such as that developped by Dalheim [20] have been employed. In such a
method, the fluid forces acting on the cylinder are calculated at various locations
along the length of the riser with a two-dimensional CFD method. Using the
strip theory, those local forces are combined to obtain the complete fluid loading
on the cylinder and furthermore the response of the riser to the excitation. Since
the three-dimensional effects are non-negligeable for most practical engineering
flows, the use of three-dimensional sections instead of the two-dimensional ones
would allow for a better determination of the local forces, and thus improve the
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overall solution.

Finally, an aspect that was not investigated in the present research concerns the
mathematical model representing the flow. More specifically, the assumptions
made when dealing with a two-dimensional approximation of the Navier-Stokes
equation result in the elimination of a number of factors from the equations. In
particular, by assuming that no third dimension exist, the derivatives in that
direction are ignored. During the early stages of the development of the present
method, tests carried out on a two-dimensional domain, i.e. using a unit thickness
of the domain, showed different results than those expected. A carefull inspection
revealed that the metrics associated with the third dimension were not all null
and thus contributed to the flow. To correctly predict two-dimensional flows,
i.e. to match the two-dimensional mathematical model used in the literature, it
was necessary to zero those metrics. Investigating the difference in the mathe-
matical models used in both the two- and three-dimensional cases would most
certainly provide answers regarding the discrepancies of the results found in the

two-dimensional cases.
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Appendix A

Coordinate System

To account for arbitrarily shaped bodies, it is necessary to introduce a general
curvilinear coordinates system. Such a system will be effective by transforming
the governing equation.

In this section, the relationships used to transform the governing equations be-
tween the generalised coordinates system and the physical coordinates system are
presented. The geometrical concept and coordinates transformation relationships
are essentially based on those presented by Deng et al. [24] and are repeated here
for convenience.

Let e, be the unit tangent vector in the z; direction. In a Cartesian system, a
line element is thus defined by:

dr = dz;e,, o r=0+4ze,,

Where 0 corresponds to the origin of the coordinate system.

In a body fitted coordinate system, i.e. curvilinear coordinate system, the line
element is defined as:

or
dr =d¢;— = d¢; g,
.'Iaé-j ¥E=¥}
The Jacobian of the transformation is:

D (z1, 22, z3)

D€, 62 6) °

{g:} is the covariant basis of vector tangent to the curves along which &; varies.
Let {g'} be the contravariant basis of vector g° = gradé; normal to the faces
&; = const.

J = (g; xgr) (4,7,k in cyclic order) (A.1)
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The relationship between the covariant and the contravariant vectors is:

0&; Oy,

anE, M E e 8)

g =J1gixeg (i,5,k in cyclic order) (A.3)
The Jacobian J can in fact be interpreted as the volume in the physical space

{z;} of a unit cube in the computational space {¢;}.

Now, since the area element on a coordinate surface of constant &; is:

dA = ||g; x gl d§;dé:

then the modulus of S' = Jg' is the surface area corresponding to a unit in-
crement A&AE, (i,j and k cyclic) with its direction orthogonal to the surface

& = const.

Thus the flux associated to the vector V across the surface area of sides A;, A&
(j, k cyclic) is related to the contravariant component U’ = u - g by:

Flux = JU' = u - 8¢ (A.4)

The oriented area satisfies the so-called first fundamental metric identity:

85}——0 for all j A5
g or all j (A.5)

The second fundamental identity also has to be fulfilled when the curvilinear
coordinate system {¢;} moves with time:

oJ . Og® . ou 0 (JUgi)
— = Jg*- =J ‘e £ = - A6
g~ 78 o T U8 D¢ (A.6)
Where ug is the velocity of the curvilinear coordinate system, i.e. the grid veloc-
ity, whose Cartesian components are:
ot

(A7)

Ug
£=const

U," is the contravariant component of the grid velocity defined by: U,' = ug - g'.

An important relationship to be used in the chain rule is:

Q@; = J1lgt. ey, = J—ls;'. (A.8)
6$j
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Covariant and contravariant metric tensors:

gj=gi-g and ¢g7=g'.gl=y718" .G
Where

g = det g = J*
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Appendix B

Flow Governing Equation in
Curvilinear Coordinates Form

B.1 Equations in Cartesian Coordinates System

In the absence of external body forces, the basic governing equation for an in-
compressible Newtonian fluid are the continuity equation and the momentum

equations.

In Cartesian coordinates, these can be written as follows:

aui

Continuity: 5o 0 (B.1)
_ Ou;  O(uu;)  10p 0 [Ou; Ou;
Momentum: 5 + 0w, pom +v 9z, \ oz, + Oz, (B.2)

Now, to transform these equations to their non-dimensional form, the following
relationships are used:

>.k N . p . t = ; Re = poo

= B.3

Where the superscript * denotes the non-dimensional quantities.

Substituting for these in the governing equations and dropping the superscript
for convenience gives:

8’11,2‘

Continuity: T = 0 (B.4)
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Ou; N 0 (uwiu;)  Op N 1 0 <3ui N (9uj> (B.5)

M : 0w, Re
omentum ot 8xj 8(1;1 Re 81‘]' 6‘xj 8271

B.2 Filtered Equations for LES Model

As seen previously, the filtered equations governing the flow using LES turbu-
lence modelling can be obtained rather easily. The final filtered equations, in
their non-dimensional form, are repeated here for convenience:

ou;

Continuity: T 0 (B.6)
_ ou; O0(wu;) Op 1 0 [Ou Oy 0rij

Momentum: ot + aCEj N 8932 + Re 8$j &cj + 33:2 + 833]'
Where: ] 9

Tig — §5ijTll = ”}E‘;Sij (B-7)

~ 1 [(om  omy

== B.

and:

N

1 X — /A —
Ret — Em with ISI — 25” ij (Bg)

Defining the pseudo-pressure § by adding the isotropic part of the turbulence
SGS stress tensor to the pressure:

1

qg=7D— -8~7'll (BIO)
The momentum equation can thus be written as follows:
ou; 0 (u; 1) o5 0 1 1 ou; Oty
A [ — B.11
ot + Oz, 0x; + Oz; |\ Re + Re; 0z; * ox; ( )

Now, as outlined before, the projection method consists of solving the Burger
equations to obtain an intermediary velocity field. A pressure equation is then
solved that is used to project the intermediary velocity field onto a zero diver-

gence space.

The set of filtered equations is as follows:
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ou;

Continuity: T 0 (B.12)
our o(ww) 0 1 1)\ [ow ou
Burger: 5 oz,  oa Ki@?* Ret) (amj + Bmi)} (B.13)
25 ou*
Poisson: 8:(3 (;Jx = 82:1? (B.14)
i P ¥
Projection: U =1 — gj (B.15)
Where:
Re ! (B.16)
REINE ‘
And: 7 s
< _* U; U,j
S =3 ( 5.+ a%) (B.18)

B.3 Filtered Equations in Curvilinear Coordinates
System

B.3.1 Continuity equation

Using the chain rule, the continuity equation becomes:
u; 0¢; 0u;

t=0 = l— =0

Using now equation (A.8) gives the continuity equation in terms of the Cartesian
components of velocity:

O
Ry e B.19
JLs %, 0 ( )

And, from equation (A.5):

8 (Siw)
9¢;
Finally, using equation (A.4), the continuity equation using the contravariant

components of velocity can be written as::

J1 =0
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J_l_”ag_j‘* =0 (B.20)
ie.:
) (JUj>
—og = 0 (B.21)

Where Uj, the filtered contravariant component of velocity, is defined as: T =
-G

B.3.2 Burger equations

In the Burger equation (B.13), the time derivative for z; = const will correspond
to a time derivative for ¢ = const. Using the chain rule gives:

o}
ot

T ;==Cconst

ou:
ot

i (B.22)
k

&é=const
Where: gF = §* - &,
Thus, multiplying equation (B.13) by the Jacobian of the transformation, J,

substituting the above expression for the time derivative and using the chain rule
gives:

ou; - + 79 0 (u;;) _
a J j 564 6:z:j 85k

0&, 0 1 1 _, 0¢ ou; 1 0& ou;
= J-2= —_— Jt= gt > g
Dz, O K + Ret> ( oz, 06 7 0w 06
Now, since the second fundamental metric identity (A.6) must be satisfied:
a——*
oJ _ zk ~0
ot 3§k

Adding the above to the Burger equation thus gives:

ovm) 2 (%m) | somm) _
ot T 06, Ox;  O&

06, 0 [(1 | 1Y\ (060w _ 060%
J@xj 0 {( * Ret) (J Oz; 0§ 7 Ox; 0&
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And, from equation (A.8):

ot J 0&y. I &
o 1 1 o ou;
ok Y o i 1l 1l
=55, KRJR&) (‘] Erasd 51@&)}

Or, since the first fundamental metric identity must be satisfied (eq. (A.5)):

) -

11 1 ok ot 0% 1 ok o 98
afk < +Ret> <J SiS; = 7 + JTSES 5%, (B.23)

If we now define the contravariant relative velocity component of the fluid with
respect to the grid such as:

P

U =k (w; ~7;) (B.24)

J

Then, equation (B.23) becomes:

o(Jw) , 9 (Wk_*) _

7

ot 08,
i __1_ _1__ 1k la 1ok laﬂ*
3 (Re + R@) (J SESL—L 3 +JTigksl 5 (B.25)

B.3.3 Poisson equation

Using the chain rule, the Poisson equation (B.14) becomes:

o0& 0 [0¢ O O, O}
il 2 =220 B.2
Using now equation (A.8), the above equation becomes:
0 aq ou;
JISF— (J Lol = > JLsr L B.27
" O ‘1 0& ! 3§m (B.27)
And, from the first metric identity:
4 0 g _,0(Srw)
Jl— [ JlSES 2 ) e of S FA B.28
agk ( 2 1651 8£m ( )
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o (S™*
ﬁ—(J Sksl&-’) (5"%) (B.29)

Ok Lo 0m
Finally, from the definition of the contravariant components of velocity:
—xj]
9 (J 1gkg! ﬁ) o) (7”) (B.30)

B.3.4 Projection equations

Using the chain rule, the projection equations (eq. (B.15)) become:

— _ afy 8q
=T — B.31
U % 8:2:1 8§] ( )
Using now equation (A.8), the above equation becomes:
oq
W= — JIS = B.32
%; (B3

B.3.5 Turbulent Stress tensor

Finally, using the chain rule again, equation B.18 becomes:

5 1 (%8m0 om,
Siy = (axj 26, o ag,) (B.33)

i.e., with equation (A.8):

5, =

l\DlKe

o, ou;
(SJ’C 5, Sf'a‘g‘j) (B.34)

B.4 Summary

The full set of governing equations is the following:

Continuity: 885 (JU)
j

g m)+ 5% (Tw) =

& [+ ) (st +-ispst )]

Burger:
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Poisson:

Projection:
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Appendix C

Finite Volume Discretisation

C.1 Burger Equation

As established previously (see Appendix B), the Burger equation for incompress-
ible flows in its filtered curvilinear form is:

P AN 0 1 1Y oy 0T
— (Ju) + — = — [ ==+ — i 1
ot (JUZ) ng (UT ul) 8@ {(Re - Ret) J SJ SJ 851 ] (C )

The discretisation of the above equation can be achieved by separately discretis-
ing the convective term, the diffusive term and the temporal derivative.

Convective term

The convective term of the Burger equation can be expanded as follows:

Integrating over the control volume gives:

& @)

I

(—UZ*E;‘) dv +

<

C}s\%\e\@e\
R Plo o
]
£
-

Q.
<
+

<!

(Wr u) av (C.3)

i.e., since dV = dédnd(:
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§ & (e - e - .
£ % e - 5] - ]
jé V;% (W) dedna¢ = |[Wwr)| - [War]| .

where subscripts e, w, n, s, t and b denotes the east, west, north, south, top and
bottom faces of the control volume.

Using a simple central difference scheme to evaluate the velocities at a face of a
control volume, the following is obtained:

0 s S 1 — —k —% 1 o ¥ 7%
?gv 2% (UT uz> dédnd¢ = 3 Ur . (Uip +Ujg) — 5 Ux " (@p + Tiw)
f 55 (w a;) dgdnd¢ = V7| (@p+Ty) — 5 Vi | (W + i)
cv n s
f 2(W*—*)dgdalg = 1W* (w; —f—_*)—lW* (u;p +u)C.5)
oy OC r Uy U = 5 Wr |\t tir) = 5 Wr 5 U;p iBAV:

= S|, @ —u%), + S|, 0 —v"), + S3|, (W —wy"),
(C.6)

Using now a simple linear interpolation scheme to obtain the components of
velocity at the face of the control volume gives:

(Y], (@p + Ty — Up — Tgp) + S3|, (W5 + 0% — Tgp — Ugip) +

Si, (@p +Wp — Wyp — Wy)] (C.7)

1
e 2

Similarly:
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ol = _;_[s}}w(a;w;v_-@;—a;;v)+s;|w(@;+v’;v-@;}z~@;’;v)+
83|, (@p + Wiy — W55 — Way )]

Al %[sf;n(a;+afv-'@;~ﬂ;}*v)+S§ln(ﬂ}s+5}‘v~@zz—@;}‘v)+
S, (@p + Wy — Wyp — Wy )]

v = %[Sf]s(a}+ﬂ§—@;—u—gg)+S§}s(5}+5§—7§}3*%2)+

Si|, (@p + T — Wy — Wy ]

1 i i —k D a3 — —% — ——
W - 5 [Sf!t (UP T Up — Ugp — uQT) + Sg't (UP +Up = Ugp — UgT) +

S3|, (@p + Ty — Wy — Wep)]

]- 3k — P
) [S%lb (ﬂ}+a*3 — Ugp "u_g*B) + Sg’b (E*P"HJB — Ugp ”"vgB> +

i, (@p + W — Wy — Wyy)] (C.8)

Diffusive term

The diffusive term of the Burger equation can be expanded as follows:

o1 1N Ly gadu| 9 1 _1~> —1 o1 9] |

Oty {(Re+Ret>‘] Sjsfagl - 0¢ Re  Be J stj@gl_"*“
d 1 1 a2 0T
o7 KRe*Ret)J %% og | "
0 1 1 ez O]
5 KRe*”R_et) 555, | (O9)

Considering now the first term on the right hand side, i.e. the first spatial deriva-
tive in &:

- our
&1+ ) 9% -
=2 [(&+5) 7 [(s18] + 5353 + 5388 2
(517 + 5153 + 5353) T 4 (1% + S1S3 + S4S3) %?H (C.10)

Let:
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Ci = J'(S1S] + 5355 + S3S3)
Cy = J (5187 + S355 + 53S53)
J7H (8157 + 5355 + 5353) (C.11)
Then:
- our
G+ ) ) -
=2 (F+&) [oF+of+ ] (C.12)
Integrating over the control volume gives:
_ our
fov it | (% + ) IS} S 5 av =
:—‘fcv% [(;%g—i-ﬁ@—le‘,-t-) [01%%2—1-02%;“4-03%2” dédndC (C.13)

i.e.

DI, 1N ] _ (L, 1\ [p0u 0% om
fgvag [(ReJrRet)J %7 |V = & TR ) |Ca T T %
11 owr . ow  ou

KEWE) [Cl % Oy +Oge |

(C.14)

€

w

l.e.:

e
1 o ou; o
= (ﬁ;%-R—Q)L {lee Ze| T Cal, 5 e+03fe 5 e] -
1 1 ouy our o
(7 + )], [l B, + ol B, + ol 5]

(C.15)

Now, using once more a simple interpolation scheme for the face derivatives:
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aﬂ: —% —x
frovond U — U
8§ . ’LE 7,P
our 1
7 . —% -k —x —x
on = 7 (Tiy + Uing — Uis — Uisp)
e
ou’ 1
i . —% — —k ok
B¢ = 1 (Wi + Uirg — Uip — Uipg)
e
oy N
= Up — Uw
o¢ |,
ot
% o —% f— —% —x
B = 7 Wiy + Tiyw — Uis — Uisw
w
ou: 1
i . —k P —k ——k
B¢ =1 (Wi + Wipw — Ui — Uigw)
w

(C.16)

fov o Kﬁl' + 'Rl—> J’lS}Sg%ﬂg} AV =

[Cle (s — Wp) + 1Coe (Uiy + Uing — Ul — Tisk)

+3Cse (W + Urp — Uip — UlpE)]

~ (F+ )|, [Cn @~ Taw) + 1Cou @i + T — Tis — Tiow)
JDIICBw (Wi + Wirw — Ui — Upw)]
(C.17)
Similarly, using:
Cy, = J'(S1S?+ 5355 +5253)
Cs = J (5187 + S355 + 5553)
Cs = J (8853 + 5555 + S35%) (C.18)

It can be shown that the second term of the diffusive term can be expanded as
folows:
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fov 2 (e + o) Ti83815E | av =

1 1
= (%+&)

(Cun (W —Usp) + 3Con (Wivg + Uip — Wiy — Thy)

n
1 —k e —x —
+105n (Wipy + Uir — Uigy — uiB)]
*

[Cus (@p — W) + +Cos (Wsg + Uiy — Tiew — Tyy)

s

+3Css (Tirs + Ty — Uips — Ujp)]
(C.19)

And the third term gives:

$ov % {(R% + 7%8;) J“leS]l.%i_f] dV =

[Co (W — UWp) + 1Cs (W + Ug — Uirw — Ty

o+

+3Cst (T + Uiy — Ui — Uls) |
- (ﬁ + 'RTt) L [Co» (Wp — Wp) + +Cs% (Wpp + Us — Waw — L)

+1Cs (Tpy + Ty — Ulps — Ujs)]
(C.20)

Gathering all the terms and grouping them adequately, we can define:

176



Lpw
Lsw
Lw
Lnw
Lrw
Lps
Lp
Lpn

Ls
Lp
Ly

Lrs

Lr
Lrn
LpE
Lsg

Lg
Lng

LrE

i (C3 + Csp)

 (Cou+ O
%rg@p@ﬁ@ﬁ@g
—i (Co + Cn)

—%«gw+cg)

(Cssw + Csp)

NS

1
CGb - Z (C3e - C3w + CSn - 053)
1
—1 (Csp + Csp)

Cis — 3 (Coo = Cou + G = Ci)

—(Che + Crypy + Can + Cus + Cor + Cop)

Cin + 7 (Cae = Cau + G — Ci)

!
4

G+ 3 (Cae =~ Cow + Cin — Cis)

(OBS + C5t)

1
Zl' (Cﬁn + CSts)

1
1 (C3e + Cap)

1
_ZJ: (CQe + C'2.9)

1
Cie + 1 (Con — Cos + C3t — Cap)
1
Z (026 + CQn)

1
7 (Cse + Cst)

Hence the diffusive term of the Burger equation is discretised as:

7{ 0 (-1_+___
cv 0& [\ Re Re

ot} 1 1
—lghkgltZ 71 = =+ E:ﬁ.“’f‘.
)‘] Sf‘gfandV (Re*Ret) -
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Where § is one of BW, SW, W, NW, TW, BS, B, BN, S, P, N, TS, T, TN,
BE, SE, E, NE and TE.

Temporal Derivative Term

Using the previously described discretisation, and integrating the time deriva-
tive over the same control volume as for the convective and diffusive term, the

following can be written:

3 % (Jat) = D; — C; (C.23)

Where D; and C; are the diffusive and convective terms respectively.

Using a Crank-Nicholson scheme for the diffusive term and an Adams-Bashford
scheme for the convective term, it follows:

(Jﬂ%)(n—i_l) — (Jﬂ’.k)(n) 1 ( (n) (n+1) 1 (n) (n—1)
e t 2 2 + K3 2 K 2 (C )
Where superscripts n — 1, n and n+ 1 denote the previous, current and next time

step values.

Thus:
At i 7 At 7 i 1 4 :
Or:
n 2 n n n n—
ST @)Y = o )™+ D - s Y (C26)

J
Where j is one of BW, SW, W, NW, TW, BS, B, BN, S, P, N, TS, T, TN,
BE, SE, E, NE and TE and:

1 2 1 1
- — 57 R —_— . .2
T; = 6hor <R€+R€t)5] (C.27)

Where 65 = 1 if j = P and 0 otherwise.

C.2 Poisson Equation

The discretisation of the Poisson equation takes a very similar form to that of
the diffusive term of the Burger equation.
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9 (J*lsfs?—a@) A (JU*j) (C.28)

—a_f—]; ‘ a& afm
Integrating over a control volume gives:
— J“lsffsf-—> dv = f — (JU? ) av C.29
\%CV aé.k ( ! 5‘& cv aé-m < > ( )

i.e., using the same Laplacian as for the diffusive term of the Burger equation:

> L = fc ) [(.—% (JU*) + % (JV*) + ’a% <JW*)J dednd¢  (C.30)

Thus:

> = (97)| = (7)],+ (7)), - (7)) + (07, - (7)),
’ (C.31)

Where, since U = 57Uz, then:
U = (Stu* + S3v* + S3w")|, (C.32)

That is, using a simple linear interpolation scheme for the face variables:

U, = % [S1], (@5 +75) + SY, (@5 +75) + S3|, (@p +W)] (C.33)
Similarly:
Ul = -;- [SY],, (@5 + ) + S3], @ +Ti) + Si|, (@p +Tiy)]
v = % [S3|, @y +ay) + Si|. (Wp +Ty) + Si|(@Wp + Ty))
V| = S (82, @) + 3, (5 + 05) + S3), (p + W)
w = % [S3], @p +uy) + S5, (0p +05) + S|, (W + Wh)]
W = % (83|, (@p +us) + S3|, (@ +Tp) + S3|, (W + W)

(C.34)

179



C.3 Projection Equation

The discretisation of the Projection equation can be carried out rather simply.

From the projection equation:

Jq
w=u - JNS C.35
%, (C.35)
Integrating over a control volume:
— ke 1qi aq
udV = u; dV — J S —dV (C.36)
cv cv cv 9E;

ie.
74 TdV = 7{ adv — ¢ J” <518‘] + 525 o4 S+ S8 c')q) dednd¢  (C.37)
Ccv cv cv 8§ 8C

Furthermore:

o= = J7 [ (al, - al,) + S (@, —al) + SV (@ —al)] (C38)

)

Using again a simple linear interpolation scheme for the face variables gives:

1
U =T, = 57 S (e~ Gw) + 7 @n —Ts) + 57 (Gr —38)]  (C:39)

The three velocity components are thus computed from:

— —% 1. = 7 q q q q
T _§J 1[Sll(qE~qW)+512(QN—QS)”*‘S?(QT_QB)}
1
— —k L = a q q q q
W o= W= 5785 (@s —Tw) + 53 @y — Ts) + 53 (@r — Gs)] (C40)

C.4 Vorticity Equation

The vorticity equation is:

&

I

<l

X

=)

I
2 Plo l
< Qo]
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Or:
a'U/]; 0Uj

_Yu duy h g . .
w; oz O with 4, j and k cyclic (C.42)
Using the chain rule:
= Qe Oue 06m 0u; oy | B (Sjuk)  O(Spuy) (C.43)
&vj 8& Ga:k 8§m a& 6§m

Hence:

we = J {8 (Stw — Sho) + 2 (Sgw—ng)—kba—C(Sg’w—Sg’v)}

0¢ 3
w, = J! 0 (S U — Slw) -+ é— (5’2u - S’Qw) + ﬁ (S3u — S"O’w)
n aé- 3 1 an 3 1 3C 3 1
we = 5|2 (510 - st) + 2 (520 - 52) + 2 (530 - i)
¢ - 86 1V 877 1V 2 U aC 1Y U

(C.44)

Integrating over a control volume gives:

j{, CwgdV = T [(Sp= S}, ~ (Spo = S)l,, + (Shw - S)], - (St - Sh)],
+ (Sgw — ng) !t — (Sgw — ng) m
j[ wadv = J7V[(Shu— Stw)|, — (Stu— Stw)| + (S2u — SPw)|, — (S2u— Stw)|,
~ + (Sju — Siw) lt — (Sju— Siw) fb]
jé v = I [(Sto=Sju)l, - (St Sp), + (S — Shu)], - (S-S,

+ (Sfv = Sju)|, — (Siv — Su)],]
(C.45)

Le.:
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1
$ we=37 Sl - Sl = Sil wl+ S3, 0,
cv

+ S%’n w‘n - S?%’n 'U’n - S%]s w!s + S??]s Uls
+S§Itwlt_ S??ltvlt_ SQSIb wlb'*‘ S??lb vlb ]

1.
$ an=307 Siloul~ Sloul,— Sl + S, wl,
cv

+ S3l,, ul, — Stl, wl, — S3l, ul, + SE|, wl,
+ Sglt ul, — S?lt wlt - Sglb ul, + S?lb wl, ]

I __
7( we=5J"1 Silool.— SHl, ul, — S, ol, + S3, ul,
cv

+ Slgln U!n - 522!77, U’In - SIQIS Uls + ‘5'22!3 Uls
+ 83|, vl, — S3l, ul, — S3, vl, + S5l ul, )
(C.46)

As previously, the face variables are simply computed from the linear interpola-
tion between the cell-centered variables.

C.5 Turbulence Models

Smagorinsky Model

The Smagorinsky turbulence model is described by the following expression for
the turbulent Reynolds number:

1 oris
7o, = 058 H (C.47)
Where:

The discretisation of the Smagorinsky turbulence model thus essentially resides
in the discretisation of the rate of strain tensor given by:

— 1 /our Ou;
Gii= = Lty C.49
Now, the above equation can be transformed into its curvilinear form using the
chain rule, giving:

- 1[0 0w o aﬂ;)
Ss=5 <5:? 5. " o, 78 (C.50)
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Le., using the first fundamental metric identity:

— a_*
Sy = 1( s dE g “)

2 7 O, 73
1 (o(Sm)  0(Sim)
Now, since:
*—gij = 5114 S12 4 S13 + So1 + Soo + Saz + Sa; + S + Sas (C.52)
And:
Sz =8y
Si3 = Sx
So = S (C.53)
Then:
Sij = 811 + So2 + S5z + 2 (S12 + S13 + Sa3) (C.54)
Where:
= 1 /9 0
Sy = Stu) + Sia )
: (6& (S17) + 5 (57)
170 , 0 O, 0. B
= 5 [05 (Siw*) + o (Stu”) + B¢ (Sfu )J (C.55)
Similarly:
S = _1_ 0 1o 9 F7* 9 3k
Se = 3| 61 + 5 (530)+ 2 (5p)]
_ 1|9 . 0 . o .
So = 7 |5 (S + 5 (S5) + 7 (s30)
a 1 P a sk —k ekt ke
Sie = 57 | o (I +59) + 2 (Sh 4 i) + 5 (st + 517°)
_ 1 [0 . 9 - . . .
S13=§—j[ 1) 8(52 +52 )+_(3 3)]
— 1|0 . 0 - . . -
O3 = Ej[ 7+ Sy )+55(S?‘ + S2w )+—(3 S3 )}

(C.56)
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Integrating over a control volume gives:

_ ~ 1
S11dédnd¢ = Sn = 3wmv%—$uwu+sﬂﬁm

cv
= SH| @l + 83, @, — 5P|, w,)
— — 1
Sod€dnd( = Sg2 = i [S5], 7"l — S5, 7"l + S3|, 7",
ov
= 83|, 7l + 83|, 7, — S5, 7]
1

Sssdédnd¢ = Ss3 = = [S3], w*|, — S|, w*l, + S3| @,

cv

-

- S5, @', + S5, W], ~ 83, wly]

—% sk

— — 1
% Slgdng]dC = 512 = é-j [S%‘e ﬂ*!e + S%le v ‘e - SQllw ﬂ*lw - Slllw (2 P
cv

+ 83, @, + St vl — S|, 'l - 8P, v,
+ Sglt H*It + Slglt 7}—*lt - Sglb le'*lb - Sﬂb 5*16]

— — 1

Swdidnd( =813 = = (3] @l + S}, @, — S3], @], — Si|, @],
+ 83, @, + S|, @, - 83, T, - S w

+ 83|, @, + 83|, @, - S3|, @), - S3, W)

cv

=k —k

z = 1
Swdgdnd( =Sy = 5= [S], 7|+ S|, 7). - S, 7L, — S, e
+ 83, 7+ 83, @', = 83|, L, - S5, 7,

+ 831, vl + 83, ), - 83, 7"l — 3], W)
(C.57)

cv

Again, the face variables can be computed using a simple linear interpolation
between the appropriate cell-centred values.

Structure Function Model

In the case of the Structure Function model, the turbulent Reynolds number is

obtained from:
1 A
— =0.063A/Fo (7, At C.58
e, 0.063A/ Fy (Z', A, 1) ( )

It follows that the discretisation of the structure function model consists mainly
of the discretisation of the structure function itself, i.e.:
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Fo(T,0,8) = (|7 (x +1,8) — T (x, t)”2>n‘f|r=a (C.59)

Considering the six direct neighbouring volume to our control volume, the above
can be written as:

2

1
F2'—‘6( , U'N —Up

P ol [For o

—

—_—
+”UB—u*p

=T [

D (C.60)

Le.:
1 N2 ek w02 e a2
F2:6[ (Up —up)” + (Vp — Up)" + (W — Th)
—% —x \2 * —x \2 * —
@y —ap)" + (T —0p)” + (Wyy — wp)2
—— —% 2 ok —% \2 * )2
@y —p)”+ Ty —Tp)" + (Wy — W
— —%\2 —% =% 2 * —x \2
(Ws —up)" + (U5 — p)" + (W5 — U
s 2 — —x \2 * —x \2
Wy —up)” + (Uy — Up)° + (W) — Up)
* 2 —x % \2 — — \2
(g —up)" + (T —Tp)" + (W — Wp J (C.61)

Selective Structure Function Model

The Selective Structure Function model is very similar to the Structure function
and only differs the latter by a switch function ¢ based on the three dimensionality

of the flow:
1
= An/ At .62
e = 0.098CA\/Fa (T, A, 1) (C.62)
Where:
0 for B < 20°
(=14 e /¥ for 20°> > 10° and df = |8 — 20| (C.63)
1 for 8 > 20°

The angle (8 represent the angle between the local vorticity and the average
neighbouring vorticity. It is evaluated as follows:

Wpw
5=acos< S ) (C.64)
[Pl W aoll
Where:
wav:é@+m+m+@+@+@> (C.65)
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And:

-L—d-)p . Zd_)av = Wepldeg,, + WnpWney + WepWe,a, (C66)

1D el 1wl = (2, + w2, +02,) (W, +w, + ) (C.67)

C.6 Metrics

The metrics required for the discretisation are as follow:

Since:

—. Ye; 26, — Ye e

St =1 Tz — Te 2, with 4, j and k& cyclic (C.68)
Te;Yer — Ter Vg

In 3D, this implies 9 coefficients to be defined as:

S% = YnR¢ — Y¢cn

ST = ez — Yex
ST = Yery — Yn%
521 = X¢zp — TpZ
Sy = @ez—
Sy = Tyze — Tezy
Si = Ty — Ty
S5 = mye — zeye
S3 = Tey, — Tyye (C.69)

The Jacobian of the transformation between cartesian and curvilinear space can
be calculated from:

J = 2¢ (Ynze — Yezn) + Ty (Yoze — Yeze) + B¢ (Yezn — Ynze) (C.70)
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