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This thesis describes a frequency domain formulation for predicting the broadband self-
noise due to an open rotor or propeller. The integration in the formulation can be
evaluated on the real blade surface rather than on the projected disk or blade mean-chord
surface, as has been done previously, thereby avoiding the commonly made assumption
of flat plate geometry. It is assumed that the noise is predominantly due to trailing edge
interaction of the hydrodynamic pressure associated with the turbulent boundary layer
over the rotor blades (self-noise). The unsteady blade loading, which constitutes the
aerodynamic sound source, is predicted using modifications to Amiet’s thin aerofoil
theory, and a prediction of the boundary layer surface pressure frequency— wavenumber
spectrum. This is obtained by combining the wavenumber spectrum due to Corcos, the
measured frequency spectrum due to Chou and George, and the boundary layer
thickness measurements of Brooks.

A generalized frequency domain formulation has been developed for making rotor
broadband noise predictions. It can be used for making broadband and tonal noise
predictions, and is valid in both the near field and the far field. A simplified expression
for making far-field self-noise prediction is presented. This far-field frequency-domain
formulation is computationally far more efficient than the general formulation. It is
shown to reduce to the classic Gutin solution of propeller tonal noise prediction when
the steady surface pressure source is confined to the propeller-projected disc.

A numerical scheme for performing the source integration on an arbitrary blade
surface has been presented. The validation is performed of predictions of the measured
broadband noise from an R212 propeller. Good agreement between the measurement
and predicted noise spectrum is obtained. It is shown that the broadband self-noise
directivity is significantly different from the single-frequency directivities due to a
steady blade surface pressure distribution. The main lobe of broadband self-noise
directivity is in the direction of the propeller axis whereas the main lobe of the single-
frequency directivity is normal to the propeller axial direction. The theory has been used
to undertake a parameter study of the broadband noise radiation from the propeller. A
prediction of the pressure spectrum in the plane of the propeller for various blade-setting
angles shows that for each degree of increase in blade-setting angle, the sound pressure
level increases by 1.4 dB. The predicted dependence of the broadband frequency
spectrum on the blade tip Mach number is found to scale very closely with the fifth
power of the blade tip Mach number. Effects due to chord, blade number and angle of
attack are also discussed in this thesis.

To understand the basic mechanism of self-noise generation, a comprehensive study
of airfoil self-noise generation is also presented in this thesis. Numerical results of airfoil
broadband self-noise show reasonable agreement with Brook empirical prediction based
on experimental data. Broadband self-noise predictions are made for both frozen and
non-frozen boundary layer turbulence. Non-frozen turbulence is shown to generate
higher noise radiation than frozen turbulence at high frequency. However, the difference
is generally less than 3 dB, suggesting that the frozen-gust assumption is a reasonable
assumption for broadband noise predictions
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Chapter I

Introduction

1.1 Overview

The problem of sound radiated from aircraft engines is of increasing importance to the
aircraft community as ever more stringent environmental constraints are imposed by the
regulation bodies. Over the years, aero-engine fan noise is growing in importance as the
engine bypass-ratio has increased and hence jet noise is reducing. An effective acoustic
analysis tool for making rotor noise predictions is most desirable in the engineering
design process. The analysis should model the problem as realistically as possible,
taking into account blade geometry, rotor design parameters, but should also compute
the solution within realistic time scales. Moreover, the input parameters (such as

pressure spectrum) to the prediction should be easily measurable.

The principal motivation of this work is to develop an engineering analysis tool for the
prediction of the broadband self-noise from an open rotor or propeller. Noise generated
by a rotor can be classified into three categories: BPF (Blade Passing Frequency) tone

noise, broadband in-flow noise and broadband self-noise, as shown in Fig. 1.1.

Tonal noise is due to a steady pressure distribution over the blade surface, which forms
the steady thrust and torque on the rotor blade surface. This rotation (Gutin) noise will
occur at the blade passing frequency (BPF), which may be interpreted as the Doppler
shift frequency from the blade-fixed reference frame to an observation reference frame
fixed to the airplane. The tonal noise has been well understood since Gutin’s classical

theory of propeller noise (Gutin, 1936). Tonal noise will be discussed in this thesis by
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way of validation of the frequency domain formulation presented in this thesis. This is
because the steady surface pressure distribution can be predicted with much greater

accuracy than the unsteady pressure due to boundary layer turbulence.

Laminar-Boundary-Layer-Vortex-
Shedding (LBL-VS) noise

Tonal noise

Trailing-Edge-Bluntness-Vortex-
Shedding (TEB-VS) noise

Rotor noise £ Inflow noise

Tip vortex formation noise

Self-noise Turbulence separation noise

Turbulent-Boundary-Layer-
Trailing-Edge (TBL-TE) noise

Figure 1.1. Rotor noise classification

Broadband inflow noise originates from the interaction between inflow turbulence with
the rotating blades. The ingested turbulence may be atmospheric turbulence, ship-wake
turbulence, or front flap wake turbulence. The interaction of turbulence with both
leading and trailing edges is important in this case. To solve this inflow problem, the
inflow turbulence velocity spectrum is usually used as the input for the determination of
the acoustic source on the blade surface. The broadband inflow noise from rotors was
investigated by Amiet (1990) and Homicz (1974). Whilst the prediction procedure
proposed here is also applicable to this inflow noise problem, it will not be discussed

further in this thesis.

Self-noise is due to the interaction between the turbulence generated in the boundary
layer on the blade surface and the trailing edge. It is the noise produced by the airfoil
situated in a smooth, non-turbulent in-flow. The self-noise may be further divided into

five categories based on its generating mechanism (Brooks, 1983), as shown in Fig.1.1.
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Laminar-Boundary-Layer-Vortex-Shedding (LBL-VS) noise is due to vortex shedding in
the presence of laminar boundary layers at low Reynolds number. The fluid dynamic
process can be modelled in terms of Tollmien-Schlicting instability waves, which grow
exponentially along the chord and radiate noise when scattered by the trailing edge
(McAlpine et al. 1999). In the case of the airfoil, the discrete tonal frequency depends on
the free stream velocity. For the case of a rotor, the variation of local-blade relative
velocity 1s expected to result in a narrow band spectral hump in the radiation spectrum.
In this thesis we assume that the Reynolds number is sufficiently large so that the LBL-

VS noise can be neglected.

Trailing-Edge-Bluntness-Vortex-Shedding (TEB-VS) noise is due to vortex shedding in
the presence of boundary layer turbulence at a blunt trailing edge. The narrow band
spectral hump of this noise was first observed by Brooks and Hodgson (1981). Coherent
vortex shedding gives rise to a fluctuating surface pressure differential, or lift, across the
finite thickness edge, which produces noise. The vortex shedding frequencies correspond
to Strouhal numbers based on trailing edge thickness of about 0.24. A sharp trailing edge

is assumed in this thesis. TEB-V'S noise is therefore neglected in this thesis.

Tip noise has been identified with the turbulence in the local separated flow associated
with formation of the tip vortex. For non-zero angles of attack, the flow can separate
near the trailing edge (TE) on the suction side of the airfoil to produce TE noise due to
the shed turbulent vorticity. At very high angles of attack, the separated flow near the TE
gives way to large-scale separation (deep stall) causing the airfoil to radiate low-
frequency noise similar to that of bluff-body radiation. These two sources of tip vortex
formation noise and turbulence separation noise are assumed here to be small compared

to the self-noise radiation of interest in this thesis.

Both in-flow noise and self-noise show that the sound intensity varies as the fifth power
of a related characteristic flow velocity (Amiet, 1975; Howe, 1978; Goldstein,1976) due
to the effect of the edge scattering. However it is difficult to give the relative noise levels
of all five self-noise generation mechanisms since these self-noise mechanisms usually

coexist.
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At high Reynolds number, turbulent boundary layers (TBL) develop over most of the
airfoil surface. Noise is produced as this turbulent flow passes over the trailing edge.
This is referred to as the Turbulence-Boundary-Layer-Trailing-Edge (TBL-TE) noise
that will be addressed in this thesis. For the sake of conciseness, this noise mechanism

will be referred as self-noise throughout this thesis.

This thesis describes a frequency domain method for predicting the broadband self-noise
due to an open rotor or propeller. In this method, the rotor is assumed to operate with
smooth incoming axial flow and with subsonic tip Mach number. The blade surface
pressure spectrum due to boundary layer turbulence is used as the input to the prediction.
A generalized formulation of the self-noise radiation from a rotor, which is valid in both
near and far fields, has been obtained. A simpler formulation is also provided that is

valid only in the far field.

1.2 Methods Currently Available for Self-noise

Prediction

The prediction of rotor broadband self-noise proposed in this thesis comprises two
separated stages. First the unsteady blade surface pressure distribution on the airfoil, or
blade, surface is determined using the boundary layer spectrum combined with an
analytic solution for the unsteady airfoil response function. The acoustic analogy
(Goldstein, 1976) is then applied to relate the source distribution over the blade surface

to the radiated noise.

This review focuses on three aspects involved in making self-noise prediction: First the
spectrum of the pressure due to boundary layer turbulence incident on the trailing edge
will be addressed in Section 1.2.1. This pressure spectrum will serve as the input to the
self-noise prediction procedure. Second, the prediction of the airfoil surface pressure
will be discussed in Section 1.2.2. Finally, the method for making rotor noise prediction

will be summarized in Section 1.2.3.
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1.2.1 Pressure Spectrum due to Boundary Layer Turbulence

For practical reasons, it is useful to take the airfoil surface pressure spectrum as the input
quantity for making self-noise predictions. To devise a pressure spectrum model, various
analytical relationships between the fluctuating wall pressure and the velocity field in the
adjacent boundary layer have been proposed for boundary layer turbulence over an
infinite flat-plate, or for inner pipe turbulence. The earliest works are due to Kraichnan
(1956a, 1956b), Ffowcs Williams (1965), Corcos (1964), Mawardi (1955), Powell
(1960), Phillips (1956), Chase (1987), Meecham & Tavis (1980) et al. The relationships
between the wall pressure and the adjacent turbulent velocity can be determined by
solving Lighthill’s equation (see Section 2.3). The acoustic wave equation, or the
Poisson equation if strictly uncompressible flow is assumed, is manipulated into an
integral equation. In other words, the Lighthill’s quadrupole source term is integrated
over the turbulent region to give the turbulent pressure over an infinite flat-plate. The
resulting expression is then subjected to various simplifying assumptions, which

generally conform to existing experimental observations and intuitive reasoning.

Theoretical models of the frequency-wavenumber spectrum of the turbulent wall
pressure generally assume the turbulence to be homogeneous, of low Mach number, and
assume a flat, rigid wall with no mean pressure gradient. The steady growth of the
boundary layer in the streamwise direction is usually ignored, and the mean flow
velocity is taken to be parallel to the wall and dependent only on distance from the wall.
Howe (1998) has summarized various spectral expressions for the frequency-
wavenumber spectrum of the turbulent wall pressure. Chase (1987) has developed an
empirical spectral formula with adjustable constants that can be fixed by comparison
with experimental data. Corcos (1963) was the first to express the frequency-
wavenumber spectrum as the product of separated frequency and wavenumber functions.
It is more convenient to make use of experimental data to quantify the spectrum
parameters when the separable form of frequency-wavenumber spectrum is used
(Brooks and Hodgson, 1981). The Corcos’ spectrum will therefore be adopted for self-

noise prediction in this thesis.
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Most models of boundary layer turbulent spectrum are valid only for low Mach number.
This is because wall pressure fluctuations at high Mach number are generally
accompanied by significant variation in temperature and density. Hence the properties of
spectra at high Mach number are not well understood. Langanelli and Wolfe (1989) have
given an approximation of the point wall pressure spectrum in high Mach number flow.
The effect of Mach number on the wall pressure spectrum is beyond the scope of this

thesis.

Effects of surface curvature and roughness on wall pressure spectra have been reviewed
by Dowling (1992). These factors are of practical importance as adjustment of the flow
to abrupt changes in wall roughness, and severe pressure gradients may lead to flow

separation and hence noise generation. These effects will not be included in this thesis.

1.2.2 Prediction of Airfoil Surface Pressure and its Radiated Noise

Over the last three decades there have been numerous theoretical analyses undertaken of
the unsteady response function for an airfoil undergoing unsteady motion or
encountering a gust. Goldstein (1976) has summarized some of the classical closed-form
solutions for both incompressible and compressible flows. Howe (1978) has presented a
review of the literature on the theory of the generation of sound by the interaction of low
Mach number turbulent flow with the edge of a semi-infinite rigid flat plate. For self-
noise calculations involving trailing edge interaction, two distinct approaches have been
developed to predict the surface pressure, and hence calculate its radiated noise. One
approach solves the problem of a quadrupole source in the close vicinity of a rigid half-
plane. Volume-quadrupole sources induce the surface dipole sources, which are the main
sound producing sources. This method involves the calculation of these surface forces,
followed by the calculation of the radiated noise (Hubbard, 1991) using a form of the
acoustic analogy. This approach was adopted by Ffowcs Williams and Hall (1970) using
a half-plane Green function. The effects of mean flow were ignored and hence the
approach is only valid at low Mach number. Another important omission is that the half-
plane Green function, used in the solution of Ffowcs Williams and Hall (1970), does not
satisfy the Kutta condition at the trailing edge (Blake, 1986). However, as pointed out by
Blake (1986), the incident vorticity interacts with the sharp trailing edge, creating a
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velocity that becomes singular at the trailing edge. Vorticity is shed into the wake with
exactly the strength and convection velocity to cancel the singularity created by the
incident vorticity. Experimental evidence for this may be found in the flow visualization
experiment of Yu and Tam (1978), who observed vortices shed in the wake of a one-
sided wall jet flow in response to a primary upstream vortex convecting past the trailing
edge. Howe (1978) subsequently extended this approach to include the effect of mean
flow and the effect of imposing the trailing edge Kutta condition on the solution. The
total, or stagnation, enthalpy is used as the fundamental acoustic variable and the
quadrupole sources are expressed as a divergence of dipole sources of vorticity
distribution. The final solution is obtained by employing the Wiener-Hopf technique.
Recently an extension was made to predict sound produced by very low Mach number
flow over the edge of an airfoil of finite thickness by the use of a compact Green
function tailored to the trailing edge geometry (Howe, 1999). Both Ffowcs Williams &
Hall (1970) and Howe (1978) predict that the scattered intensity increases in proportion
to the fifth power of the mean velocity. The approaches mentioned above assume that
the quadrupole strengths are known. However, this method presents the same
fundamental difficulties associated with the prediction of jet noise from quadrupole
distributions inferred from turbulence predictions. In general, the turbulence, and hence

the distribution of the volume quadrupole sources, is not known to sufficient accuracy.

Another approach for the prediction of airfoil self-noise assumes that the surface
pressure produced by convected turbulence is known (that is the incident pressure
discussed in the last Section). The main objective in this case is to establish a
relationship between the radiated sound and the surface pressure induced by the
turbulence upstream of the trailing edge. Chase (1972) was one of the first to employ
this method for making noise predictions. However the Kutta condition was not satisfied
by this solution and mean flow effects were not included in his solution because the
same half-plane Green function as used by Ffowcs Williams and Hall (1970) was
employed. A solution that satisfies the Kutta condition was given by Chandiramani
(1974), and subsequently used by Chase (1975). However Chandiramani solves the
boundary value problem in such a way that only the scattered pressure is cancelled at the
trailing edge. The total pressure in his solution does not fully satisfy the Kutta condition.

A more general formulation, which includes a mean flow, was developed by Amiet
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(1976a), although his solution is only valid for two dimensional flat plate airfoil
geometries. His solution satisfies the linear Helmholtz equation and satisfies the Kutta
condition and the condition of no-flow through the airfoil upstream of the trailing edge.
The main advantage of Amiet’s solution is that a closed-form relation between the
scattered pressure and the incident pressure on the flat airfoil surface is clearly
established. This simple closed-form solution will be found to be very useful for making
rotor broadband noise predictions. Amiet’s solution is restricted to normal incident
harmonic plane wave gusts convected at the convective velocity. Howe (1999) gives the
solution for skewed incident turbulent gusts, but without mean flow effects included. In
this thesis, a general solution for skewed gusts with mean flow effects will be introduced

following the method proposed by Amiet (1976b).

Solving for the airfoil surface pressures induced by incident turbulence impinging on the
trailing edge usually results in an integral equation. For a semi-infinite flat plate airfoil,
the integral equation can be solved using the Wiener-Hopf technique to obtain a closed-
form solution for the surface pressures or pressure jump across the flat plat
(Chandiramani, 1974; Howe, 1978, 1999). The method used by Amiet (1976a) is
different in that the Schwartzschild solution (Schwartzschild, 1902) is applied in an
iterative manner to give a series of solutions for the scattered surface pressure. In this
case, the boundary conditions on both the leading and trailing edge can be satisfied when
an infinite number of terms are taken. However, a good closed-form approximation can
be obtained for a flat plate airfoil using only the first term and hence neglecting the
leading edge contribution. For the general geometry of an airfoil, the integral equation
may be solved using the Boundary Element Method (BEM). A review of the use of
boundary integral equations in aerodynamics was presented by Morino (1993), with
emphasis on unsteady flows (incompressible and compressible, potential and viscous). A
time-domain BEM has been used by Gennaretti, Luceri and Morino (1997) to predict the
pure tonal noise of a helicopter rotor. However, a frequency domain BEM is more
desirable for airfoil noise prediction due to the excessive computation time involved in
the time-domain method. A recent development for airfoil self-noise prediction is the
Large Eddy Simulation (LES) of the incompressible Navier-Stokes equations (Oberai,
Roknaldin and Hughes, 2002; Manoha, Delahay, Sagaut and Mary, 2001). LES is used

to determine the acoustic sources on the airfoil surface and self-noise radiation is
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predicted through the acoustic analogy. Numerical methods (BEM, LES) are attractive
but the computation time required for making rotor broadband noise predictions is
currently excessive. Therefore a closed-form solution for predicting the surface

pressures will be proposed in this thesis for making rotor broadband noise predictions.

A complication in the prediction of rotor noise is the scattering of aerodynamic and
acoustic pressure between adjacent blades. To incorporate the influence of adjacent
blades, a cascade model, in which a row of airfoils is considered, can be formulated.
Comparison of the single-airfoil Sears’s function with the response function for a
cascade version calculated by Whitehead (1962) shows that when the gap between
adjacent blades is large compared with the upwash wavelength along the blade, the
cascade effect is small and single-airfoil theory is a good approximation. Additional
refinements to the theory have been made by Goldstein and Atassi (1976), who
accounted for the effects of finite thickness and camber, and by Atassi and Akai (1979),
who included the effects of high loading and finite angle of attack. The effects of

scattering between adjacent blades are ignored in this thesis.

1.2.3 A Review of Rotor Noise Prediction Methods

The early history of research on rotating blade noise was reviewed by Morfey (1973)
with emphasis on the fundamental aspects of aerodynamic sound generation by blades.
Another review was undertaken by Cumpsty (1977) from the point of an engineer
wanting to understand, reduce and predict noise from turbomachines. More recently,
Brooks (1983) has summarized the research of helicopter rotor broadband noise.
Extensive treatments of the theoretical acoustics of ducted fans and fans in the free field

have been presented by Blake (1986) and Goldstein (1976).

The prediction of tonal noise from propellers was first made by Gutin (1936), who
recognised the fundamental dipole character of airfoil radiation. In essence, his model
predicts the far field sound produced by the thrust and torque distributed over the disk
swept out by the propeller. Mean flow effects due to forward flight, ‘thickness noise’
generated by the volume displacement effects of the blades, and the volume distribution

of quadrupole sources were not included in the model, however. Thickness effects were
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first included in the propeller theory by Ernsthausen (1936), Demming (1938) and
completed by Gutin himself in 1942. However, noise due to blade thickness is generally
found to be unimportant until the tip speed approaches the speed of sound (Metzger,
Magliozzi, Towle and Gray, 1969). Quadrupole source contributions were shown by
Ffowcs Williams and Hawkings (1969a) to be important through the potential and
turbulence velocity fields generated by multi-bladed high-speed fans. This quadrupole
effect was investigated by Hanson and Fink (1979). They showed that for moderately
subsonic, or fully supersonic, flow over thin blade sections, the quadrupole term is
negligible, but the volume displacement source (thickness noise) and quadrupole source
are of roughly equal importance at flow Mach numbers, relative to the blade, close to
unity. Therefore, in this thesis, we are mainly concerned with dipole sources, which we
assume to be the dominant sources for subsonic rotors. We further assume that the
dominant radiation mechanism is by interaction of the turbulent boundary layer
produced over the airfoil surface with the airfoil trailing edge. Furthermore, the effects

due to blade-to-blade interaction are ignored.

Garrick and Watkins (1954) extended Gutin’s analysis to account for the forward motion
of the propeller. In Garrick and Watkins’ formulation, the sound field is expressed in the
frequency domain by integrating the source contribution over the projected disk of the
propeller. A different approach was adopted by Van de Vooren and Zandbergen (1963)
who calculated the sound field due to a source moving along a helicoidal path. This
method gives a better representation of the physical source distribution, but it requires
the solution of the retarded time equations. Lowson (1965) obtained a general expression
for the sound field of a point force in arbitrary motion. His expression provided clear
insight into the mechanism of sound generation due to the time-rate-of-change of the
force distribution acting on the fluid, and the acceleration of the system in which the
force is acting. An alternative approach is taken by Ffowcs Williams and Hawkings
(1969b) who generalized Lighthill’s acoustic analogy approach to include surfaces in
arbitrary motion. Lowson’s formulation and Ffowcs Williams and Hawkings’ equations
are quite general. However, both are time-domain formulations which involve the
evaluation of convolution-type integrals. Farassat (1981) has developed a practical time-
domain method for the calculation of noise due to rotating blades. The time-domain

method is readily applied to arbitrary blade geometries but requires source strength time
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histories to be known, as well as requiring calculations of retarded blade positions to be

performed.

A transformation of the governing equation to the frequency domain eliminates the need
for computing retarded blade locations and gives clearer insight into the influence on
noise radiation of blade geometry. Hanson (1980, 1983) has proposed a frequency-
domain formulation for propellers in flight via a helicoidal surface representation of the
blades corresponding to the path followed by a point on the blade during flight.
Hanson’s integration is evaluated on the helicoidal surface of the blade mid-chord and
hence the thin-blade approximation has to be made. However, as Peake and Crighton
(1991) have pointed out, integration over the mean plane is inadequate when airfoil
thickness is comparable with the Doppler-shifted wavelength. In particular, great care
must be exercised when considering Mach radiation for which the effective Doppler

frequency is infinite.

In the early stages of propeller noise research, integration of the source distribution was
carried out over the propeller disk to reveal the basic characteristics of rotor noise
radiation. The source distribution is therefore assumed to be concentrated on the
projected-disc plane. The result is valid for the case when the axial dimension of the
rotor is smaller than the acoustic wavelength. Far field assumptions are usually made in
order to evaluate the integration in the blade-fixed coordinate reference frame. A
combined analytical and numerical method has in recent years been applied to evaluate
the integration over the disc-shaped source (Chapman, 1993; Carley, 1999). The method
allows an efficient evaluation of the rotating sound fields. In the 1980s, Hanson (1980,
1983) and Farassat (1981) developed frequency-domain and time-domain formulations
of propeller noise to allow the integration to be evaluated over more realistic blade
surface geometries. However, their methods have not been extended to rotor broadband
noise prediction. Time-domain methods are not appropriate for making broadband noise
prediction because they requires random time history of source strength to be known.
Hanson’s frequency-domain method is too complicated to extend to broadband noise
computations and, furthermore, it is only valid for thin airfoils. Due to the complexity of
broadband noise calculations, empirical correlations between the radiated sound and

operational parameters were developed by both Wright (1976) and Widnall (1969).
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Ffowcs Williams and Hawkings (1969a) were the first to develop a formula relating the
power spectral density of fluctuating forces on a rotating blade to the spectral description
of the radiation field. Again the sources are regarded as concentrated at a point rotating

in the projected-disc plane and the solution is only valid in the far field.

Frequency domain formulations have recently been extended to the non-axially
symmetric sound field based on the unsteady (‘once per revolution’) loading
experienced by the propeller blades when the propeller axis is at an angle of attack to the
freestream (Mani, 1990; Hanson, 1995). An ideally uniform stream with the propeller
axis coincident with the direction ofithe free stream is assumed in this paper because it is
too complicated to include the effect of non-axially symmetric mean flow in the rotor

broadband noise prediction.
1.3 Research Objectives

The purpose of this research is to develop a method in the frequency domain to predict
broadband self-noise from rotors. The source model will first be applied to predict the
broadband self-noise from a single airfoil in a uniform mean flow. The theory is then
extended to multiple rotating blades. A general relationship between the radiated
pressure spectrum and the unsteady blade surface pressure spectrum is derived.
Parameter studies are performed to provide insight into the effects on rotor noise
generation of rotor geometry, blade setting angles, angles of attack, blade number, and

blade tip Mach numbers. The main objectives of this thesis are as follows:

(1) To investigate the relationship between the scattered pressure field from the trailing
edge of an airfoil and the pressure in the turbulent boundary layer on airfoil surface

incident on the trailing edge.

(2) To investigate the relationship between the radiated pressure spectrum and the

surface pressure spectrum for the case of a single airfoil of realistic geometry.
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(3) To investigate the characteristics of airfoil self-noise radiation, such as far-field

directivity, the effects of airfoil geometry, and mean flow Mach number.

(4) To develop a validated theory of the broadband self-noise radiated by an un-ducted

rotor, or propeller.

(5) To investigate the characteristics of rotor broadband self-noise, such as far-field
directivity, radiation spectrum and investigate effects of rotor design parameters,
such as blade setting angles, angles of attack, chord length, blade number, and blade

tip Mach numbers.
1.4 Original Contributions

The main original contributions of this thesis are listed below:
1.4.1 Original Contributions to Airfoil Broadband Noise Prediction:

(1) An empirical model for the boundary layer wavenumber-frequency spectrum has
been applied to make broadband self-noise prediction. This forms the basis for the
engineering model of broadband rotor self-noise prediction presented later in this

thesis.

(2) A general closed-form solution for the surface pressure on a flat plate due to an
arbitrary time-harmonic single wavenumber component of boundary layer pressure
incident upon the trailing edge has been derived. The important difference from
previous solutions is that the effects of both Mach number and oblique-incidence

turbulence are included in the solution.

(3) The closed-form flat-plate solution in (2) has been applied to a realistic airfoil
geometry under the assumption of high reduced frequency and sharp trailing edge.
Due to the local characteristics of the scattered pressure near the trailing edge, this
flat plate model is expected to provide a good approximation to the surface pressure

distribution for real airfoils.
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(4) A frequency domain formulation has been developed for making airfoil self-noise
predictions. The important difference from previous work is that it is valid for
arbitrary airfoil geometries at small, but non-zero angles of attack. Moreover, the
solution is valid in both near and far fields. It is shown to reduce to Amiet’s analytic
solution when the airfoil collapses to a flat plate with large span and the

measurement point is taken to the far field.

(5) A numerical scheme for the evaluation of the integral formula required in (4) on an
arbitrary airfoil surface has been presented. The method requires a closed-form
source distribution of the scattered pressure on the airfoil surface. Numerical results
show reasonable agreement with Brook empirical prediction scheme based on

experimental data.

(6) Broadband noise directivity has been predicted for a flat-plate, NACA 0012 and
NACA 0024 airfoils. The directivities are asymmetric due to the non-zero angle of
attack. The results reveal that mean flow Mach number has an important influence
on the magnitude and directivity of broadband self-noise. The directivity prediction
due to a single harmonic component of turbulence for a flat plate airfoil shows

excellent agreement with Amiet’s analytic solution.

(7) Broadband self-noise predictions are made for both frozen and non-frozen boundary
layer turbulence. Non-frozen turbulence is shown to generate higher noise radiation
than frozen turbulence at high frequencies. However, the difference is generally less
than 3 dB, suggesting that the frozen-gust assumption is a reasonable assumption for

broadband noise predictions

1.4.2 Original Contributions to Rotor Broadband Noise Prediction:

(1) The single airfoil model for predicting airfoil surface pressure distribution has been

extended to rotating blades using strip theory.

(2) A generalized frequency domain formulation has been developed for making rotor
broadband noise predictions. It can be used for making broadband and tonal noise

predictions, and is valid in both the near field and the far fields. The main difference
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from previous work is that the source distribution is integrated over the real blade
surface to provide greater accuracy. Previous formulae were integrated over the

projected disk of the rotating blades only.

(3) The general formulation above has been validated by comparison with the analytic

solution of the 3™ CAA benchmark problem.

(4) A simplified expression for making far-field self-noise predictions has been derived.
This far-field frequency-domain formulation is computationally far more efficient
than the general formulation in (2). It is shown to reduce to the classical Gutin
solution of propeller tonal noise prediction when the steady surface pressure source
is confined to the propeller-projected disc.

(5) The numerical method for making airfoil noise predictions is extended to rotating
blades. The validation is performed from predictions of the measured broadband
noise from an R212 propeller. Absolute sound pressure levels are generally within
10 dB of the measured data. Good agreement between the spectral shapes of the
measured and predicted noise spectrum is obtained. The tonal noise predicted by the

method also shows very good agreement with the R212 propeller experimental data.

(6) The broadband self-noise directivity is predicted to be significantly different from the
pure-tone noise directivities. The main lobe of broadband self-noise directivity is in
the direction of the propeller axis while the main lobe of the pure-tone noise

directivity is normal to the propeller axis.

(7) Parameter studies on rotor self-noise prediction show that a propeller with large
blade number and constant attack angle along the blade radius produces lower self-
noise radiation compared with propellers with small blade number and non-constant
attack angle. The predicted dependence of the broadband noise frequency spectrum

is predicted to scale very closely with the fifth power of the blade tip Mach number.
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1.5 Thesis Contents

This thesis is arranged as follows. Chapter II contains the general theory used in the
development of the frequency domain formulation in subsequent chapters. The integral
equation in the moving coordinate system is addressed, and the free-space Green

function with mean flow effect has been derived for later use.

Chapter III provides a description of the turbulence spectra of the aerodynamic
boundary-layer-turbulence pressure field incident upon the airfoil trailing edge.
Measured point pressure spectra and boundary layer parameters (boundary layer
thickness, turbulence integral length scales) are discussed. Chapter IV gives a detailed
derivation of the closed-form solution of the surface pressure due to an incident pressure
field impinging upon the trailing edge of a flat plate airfoil. A discussion of the
application of thin airfoil theory to a realistic airfoil geometry is then presented. A
transfer function relating the incident pressure to the airfoil surface pressure, which
includes trailing edge scattering, is introduced in this chapter. Chapter III and Chapter
IV together provide a description of the determination of the airfoil surface source

distribution.

Chapter V presents the frequency domain formulation for making airfoil broadband
noise predictions. Details are provided to show how it reduces to Amiet’s analytic
solution for flat plate airfoils. A numerical scheme is then introduced to implement the
prediction of airfoil broadband self-noise. Chapter VI presents the validation results of
the frequency domain formulation derived in Chapter V for making airfoil broadband
self-noise predictions. The predicted results are compared with Amiet’s analytic solution
and the Brooks empirical prediction for a NACA 0012 airfoil. The effects of airfoil
geometry and non-frozen boundary layer turbulence on broadband self-noise radiation

are also presented.

Chapters VII to Chapter XI are concermned with the prediction of broadband self-noise
radiation from an open rotor. A general frequency domain formulation is derived in

Chapter VII and a simplified far-field approximation is presented in Chapter IX for rotor
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broadband noise predictions. A mode transfer function between the radiated sound
pressure and the unsteady blade surface pressure are introduced in these two
formulations. These formulations provide insight into the mechanisms by which the
unsteady surface pressure is shifted by the blade passing frequency to radiate sound with
continuous pressure spectra. In Chapter VIII, the Category 2 benchmark problem of the
3" CAA Workshop (see Category 2—Rotor Noise, 1999) is used as a test case to
provide a validation of the general frequency-domain formulation described in Chapter
VIL In Chapter X, the far field frequency-domain formulation of rotor noise radiation is
adapted to predict tonal noise. The predicted tone noise is compared against
experimental data obtained by Trebble for a 1/5™ scale model propeller (Trebble,
1987a). To further validate the far field formulation, the predicted self-noise radiation is
compared against the broadband experimental data obtained by Trebble (1987b) in
Chapter XI. Parameter studies are also presented in this Chapter, whereby the variation
in self-noise is predicted against various blade setting angles, angle of attack, chord
length, blade number, and blade tip Mach number. Finally, concluding remarks are put

forward in Chapter XII.
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Chapter II:

Fundamental Equations for the

Prediction of Aerodynamic Noise

2.1 Introduction

The study of flow-generated acoustic noise due to rotating blades probably began with
Gutin’s (1936) theory of propeller noise. Yet, it was not until 1952, when Lighthill
(1952,1954) introduced his acoustic analogy to deal with the problem of sound
generated by unsteady flow that a general theory began to emerge. Lighthill’s theory was
subsequently extended by Curle (1955), and Ffowcs Williams and Hawking (1969b), to
include the effects of solid boundaries. Ffowcs Williams and Hawkings’ equation is
quite general. It is a time-domain formulation that involves convolution-type integrals to
be evaluated. However it was Goldstein (1976) who derived an integral formulation in
which, not only the effects of solid boundaries, but also mean flow effects, are included.
In this thesis Goldstein’s formulation is used as the basis of frequency domain

formulations for making broadband fan noise predictions.

In this chapter, two coordinate systems are introduced. The differential and integral
equations, which form the basis of the broadband fan noise prediction in this thesis, will
then be discussed. Finally, the free-space Green function with mean flow effects

included will be derived for later use.
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2.2 Coordinates and Coordinates Transformation

Two frames of reference are employed here for the prediction of airfoil, or propeller,

noise, as shown in Fig.2.1. One is the stationary reference frame y'(y}, y,,y;), which is

an inertial system fixed to the earth, as shown in Fig.2.1b. Another is the moving

coordinate system y(y,,y,,»;), which moves with the constant forward flight velocity

U of the rotor, as shown in Fig.2.1a. Note that in some literature, such as Goldstein

(1976), the coordinate system y(y,,y,,y,) is referred to as a stationary coordinate

system in which the fluid medium moves with uniform velocity U .

vV =
b
N\ ¥,
>
Figure 2.1a. Moving coordinates Figure 2.1b. Stationary coordinates
of reference y(y,,5,,¥;) of reference y'(y!,y,, y:)

The relationship between these two coordinate systems are given by
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y; =yi+0,Ut’ (2.1a)
T:T’ (21b)
v, =V +6,U (2.1c)
2. a, (2.1d)
o,

D _0 y0_20 @2.1¢)

T 01 oy, ot

where U is the velocity of the moving body in the y,-direction, 7' and 7z are times

associated with the fixed coordinate system and the moving coordinates respectively,

0,

; 18 the Kronecker delta function, v = (v;,v,,v,) is the total fluid velocity measured in

the moving reference frame, and v’ =(v],v},v;) is the fluid velocity measured in the

stationary coordinate system.

2.3 Governing Equations and their Equivalence

Under the assumption of an isentropic fluid, the fundamental system of differential
equations governing the motion of an inviscid, compressible fluid takes the form of
Euler’s equations. Both Euler and Lighthill equations are invariant under the Galilean

transformation of Egs. (2.1). It can be shown that the equations in the block diagrams of

Fig.2.2 are mutually equivalent. In these block diagrams, V' = —a—e’. V= iei are the

r E?

oy; Oy;
vector operators in the fixed coordinate system and the moving coordinate system

respectively, e}, e, are unit vectors in the y; and y, direction, p is the density of the
fluid, p is the pressure, and ¢, is the speed of sound in the steady background fluid. To

obtain equations A3 from equation B2 in Fig. 2.2, one needs only to substitute Eq. (2.1¢)
into equation B2. To derive equation A2 from equation A3, Egs. (2.1c), (2.1d) and (2.1¢)

are substituted into equation A3.
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Moving coordinates

A1: Euler equations

0
a—p+V'(,0V)=0
T

AL v+ (v-V)v]=-Vp
or

Fixed coordinates

B1: Euler equations
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Rearrange Euler equations

A2: Lighthill equation
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Mathematical manipulation

A3: Lighthill equation
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i J
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B2: Lighthill equation
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/\

C

(Galilean transformation

Figure 2.2. Equivalent equations in stationary and moving reference frames

Equation B2 is referred to as the stationary-medium wave equation while equation A3 is

referred to as the moving-medium wave equation. The moving-medium wave equation

will be used later in this thesis. This convected wave equation from equation A3 is

rewritten below
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1 D* o’
2 N4 -Vp=
c; Dt 0y, 0y

)

() 22)

Note that Eq.(2.2), is expressed in the moving coordinate system, but the unsteady
velocity is measured in the stationary frame of reference. It means that the acoustic
waves propagate through a medium that is in a state of uniform motion relative to the
observer. There are two advantages in the use of this equation: (i) The effect of mean
flow is included in the Green function solution, and thus one does not need to consider

this mean-flow effect again when dealing with the quadrupole sources,

2

y(y,7) = (pvv}), (ii) Boundary surfaces are stationary relative to the moving

0y,0y b
reference of frame (i.e. airfoil-fixed reference frame) for computing airfoil noise, which
allows a more convenient integration over the airfoil surface. In the case of rotor noise,
further development of Eq.(2.2) will lead to an integration over a stationary boundary

surface in the blade-fixed reference frame.

2.4 Integral Equations in the Moving Coordinate
System

Consider a region V(7) exterior to an impermeable closed surface S(z), as shown

schematically in Fig.2.3. Goldstein (1976) has derived a generalized integral equation
(Goldstein 1976, Eq.(1.65)) which relates the
acoustic pressure at an arbitrary field point x

S() at time ¢ to the distribution y(y,r) of

quadrupole sources within v , and the

distribution of the pressure p(y,r) and its

ve) derivatives Op(y,7)/0n on the boundary of

v . In the moving frame of reference this
Figure 2.3. Fluid region v(z) and

its boundary S(z) generalized integral equation becomes
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_[dT Jl G(X Ly, T)_p(ya T) p(y,r)—G(x LY, Z"):|dS(y)

-T  S(r
x;ty
oL Jae [ (y)[G(x £Y,7) 2 (YD)~ B3, =G5y, r)}dS(y) 23)
0 -T S(r)
X£Y
p(x,1) if xisinv(7)
T
+ [dz [[[ry,0)6(x. 1y, )dy =41 p(x,8)  if xisonS(z)
-T v(r)
x>y 0 if x 1s outside of v(7)

where V) =V, —nU is the normal velocity of the boundary surface S(z) observed in the
stationary coordinate system, ¥, is the normal velocity of the boundary surface observed

in the moving coordinate system, n is the unit normal (drawn outward from v(z) ),

is the first component of n, and T is some very large but finite interval of time. Here

p(y,7) and p(x,¢)are the acoustic pressures at the source point and the field point

respectively which satisfy equation (2.2), and G(x,t;y,7) is the Green function that

satisfies
2
“ D G-V’G=6(r-1)é(y —x)
ce D7’
1 Jim |R,G| <o (2.4)
lim[R, (———1—2— G)]=0 or 11m [R (— ——I—EG)] 0
(Zao=" " OR, ¢, Ot OR, ¢, 0t

In Eq.2.4 R, =|y—x| is the distance between the observation point x and the source

point y in the moving coordinate system, J is the Dirac delta function, and ¢ is the

time associated with the arrival of sound at the observation point.

Although the integral equation (2.3) refers to the moving reference frame of constant
velocity, it is valid for arbitrary motion of the boundary surface. Another boundary

integral formulation which allows the reference frame to have arbitrary motion can be
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found in Gennaretti and Morino (1992). Gennaretti and Morino’s integral equation is

equivalent to the integral equation (2.3), but no non-linear terms related to y(y,z) are

included.

Further mathematical manipulation of the integral equation (2.3) gives Goldstein’s
version of the acoustic analogy (Goldstein 1976, Eq.(4.10)), which is the fundamental
equation governing the generation of aerodynamic sound in the presence of solid

boundaries. It is in the form of the integral equation

pxn =[] aﬁj;j T;(y,7)dydr

v 2.5)

+ fT [ Igy—G f,aS(y)dr + [T HpOV,,' ‘g—de(y)df

s()y“i S(r)

where f, =-n,(p—p,)+n;e; is the i™ component of the force per unit area exerted by
the boundaries on the fluid, e; is the (7, /) ™ component of the viscous stress tensor, n;
is the /™ component of the unit inward normal n on the surface S(z), D, is the pressure
of the stationary background flow, p, is the density of the steady background flow, and

’__ 1t . : *11° : :
T; = pv;v; +e; 1s Lighthill’s stress tensor for isentropic flow.

Since the integral formulation of Eq. (2.5) is expressed in the moving reference frame,
several important points are worthy of note. First, it involves a Green function for the
wave equation with mean flow (determined by Eq. (2.4)) instead of a Green function for
a stationary medium. Second, Lighthill’s stress tensor is expressed in terms of the real

velocity v; =v, —6,,U measured in the fixed frame instead of the velocity v; observed in

the moving reference frame. Finally, the volume displacement term is expressed in terms

of V! =V, —nU and D/Dt rather than ¥, and 8/dz.

Equation (2.5) will serve as the starting point for the prediction of airfoil and rotor

broadband self-noise presented in this thesis.
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2.5 Green Fu

nction in the Moving Coordinate System

In the moving reference frame, the Green function G(x,t;y,7) is a solution of the

following equations

A

fi D2
%

— G-V2G=38(r—-1)5(y —x)

1im|RG| <

R—

(2.6)

1

LR%[ aR Bc

1=

where R = \/(y1 -x,)*

+ B2 (v, —x,) + B2 (v, —x3)°, B’ =1-M>, M =UJc, is the

Mach number of the mean flow (airfoil velocity or axial rotor speed). One should note

that when the partial
Eq.(2.6), the quantity

derivative with respect to R is taken in the last equation of

R is assumed to be an independent variable although it is

dependent on the variables x and y. The third expression of Eq.(2.6) is a statement of

Sommerfeld radiation

condition and is equivalent to the last equation of Eq. (2.4).

However, the last equation of Eq.(2.6) is easier to verify in analytical studies.

Expansion of the first expression of Eq. (2.6) gives

2
1- M)GG o°G

o°G 2M@G 1 &°G

oyl 0y;

Equation (2.7) may be

transformations:

— =-5(t-1)o(y—-x 2.7
oy: c, Oy 0t ¢ or’ (z-0)0(y ~x) 2.7)

reduced to an equivalent no-flow problem by making the Lorentz
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Y=y
Y =
2 =5y, 2.8)
Y, =By,
T = Bc,r + My,
which simplifies Eq.(2.7) to
0’G 9°G 9*°G 0°G
+ + -
oY} oY} oy] or’
2.9)
1 1 1
= _Fé(ﬂzco (T -MY) -6, —x1)5(EY2 —x2)5(EY3 —X5)
It may be verified that the general solution to Eq.(2.9) is of the form
1
=Ef(TiR) (2.10)

where R = J(Yl - X))+, - X))’ +(Y, - X,)” is the distance between two points in
the transformed coordinate system, and f denotes an arbitrary function of its argument.
In order to determine the arbitrary function f, let v, be taken to be a sphere of fixed
radius R, centred about the point y =x and dQ denotes an element of solid angle (so
that dS = R’dQ). Integration of Eq. (2.9) with the aid of the Gauss divergence theorem

shows that

R [EE(E o~ [ L RaTZ (T RRdRAQ

2.11)

1 1
=180~ )Y, =5, = x)dXdY,dY,

Integration of Eq. (2.11) by parts leads to
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1

3
S

f(T)=L5[ (T —Mx)-1] . (2.12)
4

In terms of the original variables, the unique Green function solution expressed in the
moving coordinate system is derived by making use of Sommerfeld’s radiation condition

of Egs.(2.6)

G(x,t;y,r)zzj[—R-5[r+—l-’;—c-(R +M(y,—x))-t] . (2.13)

We shall make use of the Green function in the frequency domain, which takes the form
of

G(x,y,0)= IG(x,t;y,r)ei“(”’)dt = ﬁew (2.14)

where @ is the angular frequency, £ =R+ M(y, —x,), y=1</,32 , and k = @/c,is the

acoustic wave number. A similar Green function to that in Eq. (2.14) was given by
Garrick and Watkins (1954).
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Chapter 111

Characteristics of Boundary Layer

Turbulence

3.1 Introduction

For making airfoil or rotor self-noise predictions we shall show in Chapter IV that it is
convenient to use as input data the surface boundary layer pressures measured well away
from the trailing edge. These pressure data could be obtained by measurements or from
CFD predictions. We define the unsteady pressure developed beneath the turbulent
boundary layer on an infinite surface (i.e. with trailing edge absent) as the incident

pressure p,, and the pressure subsequently scattered from the trailing edge as the
scattered pressure p, . The scattered pressure may be obtained from p, by imposing the

Kutta condition at the airfoil trailing edge, such that the incident and scattered pressure

exactly cancels at the trailing edge. These two pressures add to form the total airfoil

surface pressure p, with trailing edge present,

ptzpi+ps (3.1)

Once the relationship between p, and p, is known, the problem of broadband self-noise

prediction is therefore completely determined from the incident pressure spectrum.
Brooks and Hodgson (1981), for example, argue that the scattered pressure is only
significant at distances less than about one hydrodynamic wavelength from the trailing

edge. This agrees with the conclusion by Ffowcs Williams and Hall (1970) who state
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that if the eddies are far from the trailing edge ((k|,)"* >>1) then sound amplification

by the trailing edge is negligible. We assume in this thesis that the measured pressure
used in the model (see Eq. (3.2)) is the pressure incident upon the trailing edge provided
that the measurement point is sufficiently far from the trailing edge. This is the same

assumption made implicitly by Amiet (1976a).

Figure 3.1 illustrates
convective
ridge qualitatively the general

(17 > k characteristic of the wall-

S
klj pressure spectrum

S,(k,@,) at a fixed

acoustic domain

frequency satisfying

0,6 /U, >>1 Versus

|
I
|
|
|
|
|
|
|
|

streamwise wavenumber,

subconvective

domain viscous where & is the boundary

region

i layer thickness, U, is the
airfoil velocity or mean-

Figure 3.1. Characteristic of the wall pressure flow velocity, o, is the

spectrum, see Howe (1998)

source angular frequency

(see, for example, Howe (1998)). It shows two main peaks. The largest peak occurs in

the ‘convective regime’, where the turbulent eddies convect at speeds slower than the

speed of sound, ¢,. Most of the energy convects at, or close to, the characteristic eddy
convection velocity, U, . Turbulent energy in this region is said to be in the convective
ridge. The second peak is in the vicinity of the acoustic wavenumber x, where &, the

modulus of the vector k =(k,,k,) , is centred on x,=w,/c, . The range k <|K0|

corresponds to the ‘acoustic domain’. Here, the phase velocity of the eddies is
supersonic; and the wall pressure fluctuations are acoustic in nature produced directly by
boundary layer quadrupoles or by the scattering of convective pressures. The phase

velocity, @, /k, of the eddies in the convective domain is subsonic. Here, the pressure

fluctuation decays rapidly with distance from the wall and does not radiate efficiently to

the far field. However, the pressures in the convective domain can generate sound when
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they interact with discontinuities such as the airfoil trailing edge. The level of the
pressure spectrum in the convective peak is typically some 40dB larger than in the
acoustic domain (Crighton etc. (1992)). In this thesis we assume that the spectrum of the
incident pressure lies in the convective regime. The turbulent energy in the acoustic

domain will not be included.

In addition to the rectangular coordinate system y =(y,, v,, ;) employed in this thesis,

it will be shown to be useful to formulate the airfoil surface pressure in the curvilinear

coordinates system, n=(7,,7,) ,

A n, attached to the airfoil, as shown
3
ﬂ Y2 in Fig. 3.2. Here n, =7.(y) is
the streamwise coordinate of the
U, Yi i ”
- ) . > pressure or suction side,
\ originating at the trailing edge,

M. and 7, =7,(y) is the spanwise

coordinate originating at the
Figure 3.2. Curvilinear coordinates n = (7,,7,) mid-span along the suction-side
and rectangular coordinates y(y;,y,,;) or pressure-side trailing edges.

Correspondingly, we define £,
as the wavenumber in the 7, -direction and %, as the wavenumber in the 7, -direction.

For a flat plate airfoil, (7,,7,) = (y,,¥,) and (k,.k,) = (k.k,).

In this chapter, the frequency-wavenumber spectra of the boundary layer pressure
incident upon the trailing edge will be modelled using the Corcos (1963) theory for the
wavenumber spectrum of a fully developed turbulent boundary layer over a flat plate,
combined with measured frequency spectra on an airfoil surface. The turbulence wall-
pressure frequency-wavenumber spectrum over an infinite flat-plate airfoil will be
investigated in Section 3.2. This flat plate spectrum model will then be extended to the
application of realistic airfoil geometry in Section 3.3. A simplified frozen spectrum of

turbulence wall pressure is discussed in section 3.4. Finally, the Brooks semi-empirical
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expression for predicting the boundary layer thickness is described in section 3.5, which

is subsequently used as the input to the frequency spectrum model.

3.2 Turbulence Wall-pressure Spectrum of an Infinite

Flat-plate Airfoil

As an approximation to the turbulent boundary layer above an airfoil, the turbulent
boundary-layer above a smooth, rigid plane without mean pressure gradient is

considered in this Section, as shown schematically in Fig.3.3. The unsteady wall

—_—
’[ - e b ] s ] - e b - - - “a - - s | -2 -

o T 22> p 7
J NANANARy

N,

Figure 3.3. Boundary layer turbulence over a flat plate

pressure, p,;(y,7), of the turbulence incident upon the trailing edge can be written in

terms of its wavenumber-frequency components p,(k,®,) (Chase (1980)),

p(y.0) = | [ [Bi0c,@0)em+m>dk dk deo, (3.2)

—0—C0—0

where k =(k_,k,) . The Fourier components p,(k,®,) can be determined from p,(y,7)

by the inverse relation

1 0 0 ©

W I f J-pi(ya r)e "IN dy dn,dt (3.3)

—00—00—00

ﬁi(k, a)o) =
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For broadband problems, it is useful to work with pressure wavenumber-frequency
spectral densities. For simplicity, we assume here that the turbulent pressure field is
spatially homogeneous and stationary with respect to time, i.e. the space-time
correlations of the boundary layer pressure field are dependent only on the separation
distance and temporal interval. Under this assumption, the wall-pressure frequency-

wavenumber spectral density S, (k,,k,,,) is related to the Fourier components of wall

pressure p,(k,®,) by
E[D; (ky.k,s0) p,(., K, o)) = (k. — k)5 (k] — k)5 (9 — 9,)S,, (K, K, 0,) (3.4)

where S, (k,,k,,m,) is the wavenumber-frequency spectral density of the turbulence

wall pressure, the superscript “ * ” denotes complex conjugation, E[---] denotes the

expected value and J is the Dirac delta function.

The wavenumber-frequency spectral density S, is obtained by Fourier transforming to

the space-time correlation of the boundary layer pressure. Under the assumption of
homogeneous and stationary boundary layer turbulence, the Fourier transform of the

cross-correlation of the surface pressure is defined by,

o0

R, & a,)= [(pi(y,D)p,(y +& 7 +0)e™ dt (3.5)

-0

where the brackets (--) denote an ensemble average, &=(&,&,) is the separation

distance between two points on the airfoil surface, ¢, is streamwise separation distance
and £, spanwise separation distance and the overbar denotes complex amplitude of an

oscillation quantity in the frequency domain. The wall-pressure spectrum in the
convective region has been studied by Corcos (1963), and is discussed in detail in a
review article by Willmarth (1975). Corcos assumes that a stationary and homogeneous
pressure field is developed in the fully turbulent boundary layer over the flat plate,
whereby the statistical properties of the pressure field change very little in the

streamwise direction over a length comparable either to a transducer size or to a typical
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turbulence scale. For a fully developed turbulent boundary layer flow in the absence of

mean-pressure gradients, Corcos assumes the following separable form for jl—qq & m,)

R, (&,0,) = So(@,) A(@,&, U, )B(w2&, /U, )e ™" (3.6)

where S,(w,) is the wall point pressure frequency spectrum, A and B are non-

dimensional functions determined from experimental data. The cross-power spectral

density may be obtained by the spatial Fourier transform of Eq. (3.6) to give

S, (k,,) =So(wo>(gcj 21(1—%)1@("%) 3.7)

where A and B are the Fourier transforms of 4 and B ,
p 17 i N 1 7 iay
A@)=7— [4(B)e”dp and B(a)==— [B(B)edp (3.8)
27 - 27 e

Blake (1986, equation (8.49)) fits algebraic expressions to the functions 4 and B, and
shows that the Corcos model provides a good estimate to the cross-spectral density of
the surface pressure fluctuations in the vicinity of the convective peak, where most of

the turbulent energy is contained.

Brooks and Hodgson (1981) have investigated the statistical character of the
hydrodynamic pressure field in the region that is far enough upstream of the trailing
edge for edge scattering to be unimportant. Brooks and Hodgson (1981) show that the
functions A4 and B given by

AP)y=e" | B(B)=e =V (3.9)

provide a good fit to their experimental data, where ¢, and ¢, are adjustable

coefficients. From experiment,
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g =011, ¢, =06 (3.10)

Substituting Eqs. (3.9) into Egs. (3.7) and (3.8), one obtains the Brook version of
Corcos’s spectrum, of the form

S,q (K, @) = S, (@,)8, (k,)S, (k,) (3.11)
where
S(k)="1 ! (3.12)
ST x| 142 (w0, /U, — k)’ '
Ll 1
SAkJ—;{——Hl;ktz} (3.13)

The integral scales /, and /, in the streamwise and spanwise directions are defined by
(Brooks and Hodgson,1981)

[e (@& /U )de, [&.Bng, 1U,)de,
[ =% , I, =% (3.14), (3.15)
[A(@g 1U,)dg, [B(@,&,1U,)de,

If the convection speed U, is assumed to be constant, substituting Eq.(3.9) into Egs.
(3.14) and (3.15) gives

L =U,/g0, , L=U,lsw, (3.16)
A point pressure spectrum S,(®,) based on data collated by Chase (1980) for an infinite

flat plate can be found in the book by Howe (1998). In non-dimensional form, it is given
by
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6.1409x107°@;
(@7 +0.0144)"

8o(@,) = (3.17)

where S,(@,) = S,(@,)U,/8)/(0.5p,U)* , &, is the non-dimensional frequency
defined by @, =w,5 /U, (Strouhal number with respect to §° ), and & is the

displacement thickness of the turbulent boundary layer.

An alternative expression (presented by Amiet, 1976) for the surface pressure spectrum
can be obtained by curve fitting the data of Willmarth and Roos (1965) for a flat plate.

The result is

2x107°
(1+ @, +0.217& +0.005623;)

S (@,) = 0.1< @, <20 (3.18)

3.3 Turbulence Wall-pressure Spectrum on a Realistic

Airfoil

Figure 3.4 shows schematically boundary layer turbulence over one side of an airfoil.

Due to the curvature of the airfoil surface and the non-zero angle of attack, the features

Figure 3.4. Boundary layer turbulence over an airfoil

of the turbulence over the airfoil differ from those over a flat plate in three important

respects: (1) boundary layer thickness varies along the streamwise direction; (2) local
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incoming velocity U, is non-uniform due to potential flow effects; (3) there is a pressure

gradient in the streamwise direction within the boundary layer. We assume here that the
boundary layer thickness, the incoming velocity and the pressure gradient change very
little over a small facet of the airfoil surface so that the Corcos pressure spectrum
remains locally valid. We further assume that an airfoil with the same local inflow

velocity U,(y), and boundary layer thickness &(y) (as shown in Fig. 3.4) develops the

same pressure spectrum as a flat plate under the same conditions. Corcos’ model of
pressure spectrum will therefore be extended to a realistic airfoil by applying it locally to
a small region on the airfoil surface, which is small compared with an acoustic and

hydrodynamic wavelength.

From Eq.(3.2), a single time-harmonic component of the incident surface pressure field

can be written as

pi(y,0) =pi(y, @) (3.19)

where p.(y,®,) = p,(k,m,)e"*™*")  However, as pointed out by Amiet (1978), use of

this expression to represent the boundary layer pressure suggests that the pressure field
appears suddenly at the airfoil leading edge, which is non-physical. A better model
would be one in which the pressure gradually increased from zero at the leading edge, to
reach its maximum value at the trailing edge, and which was identically zero further
downstream. Accordingly, Amiet (1978) introduces the exponential decay function f, of
Eq. (3.20), which multiplies the right hand side of Eq. (3.19) to give the desired

behaviour,

(. Kk, @) = e ¥ (3.20)

where ¢ is a decay factor, which Amiet chooses arbitrarily. Here, we choose another
function £, in a manner that is consistent with the surface pressure spectra predictions
made locally on the airfoil surface, which has the desired behaviour indicated above.
Equations (3.17) and (3.18) suggest that the wall pressure spectrum is a function of

position y on the blade surface due to boundary layer growth. We therefore introduce

the following position-dependent function for the wall pressure spectrum, defined by
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S (V. K, ;)

(3.21)
S (Yo, K, 0,)

fp(yakswo) =

where y, is an arbitrary reference point which we shall take at the trailing edge. A

single spectral component of the incident surface pressure field of Eq.(3.19) can

therefore be written as

pi(y,7)= fp (¥.k,@0)p,(¥,,®, )e_iwor = fp (y.k,a,) p,(k, @, )ei(ksm+k,77, o) (3.22)

where we denote p,(y,.k,®,) = p;(K,m,), and the pressure spectrum S, (k,,k,,@,) in
Eq. (3.11) will be referred to as the pressure spectrum at the reference point y,, which is

taken at the trailing edge y, =(0,0).

Strictly speaking, the Fourier amplitude, p,(k,®,), cannot be a function of position y
since p,(y,7) and p,(k,®,) are equivalent Fourier transform representations. However,
all the surface pressure spectra obtained up to now are functions of the displacement
thickness 8~ which depends on position y. Thus, although Eq. (3.22) may not be

mathematically rigorous, it provides a useful engineering approximation.

Equations (3.17) and (3.18) were derived using data for a flat plate at zero angle of
incidence. They may therefore be inaccurate for an actual airfoil at non-zero angle of
attack. By curve fitting the experimental data of both Yu & Joshi (1979) and Brooks &

Hodgson (1980) measured on an airfoil, Chou and George (1984) present an empirical

expression for §0 (@,) covering two frequency ranges. For @, <0.06,

1.732x107 @,
(1-5.489&, +36.74@; +0.1505&; )

80(@,) = (3.23)

and for 0.06 <@, <20
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1.4216x107 @,

S, (@,) = £ — _ — (3.24)
(0.3261+4.1837@, +22.818@2 +0.00136: +0.00284)

Figure 3.5 is a plot of §0 (@,) versus @, for a flat plate (Egs. (3.17) and (3.18)) and for a
NACA 0012 airfoil (Egs. (3.23) and (3.24)). Note that for @, > 0.1, the airfoil results are

typically 10dB higher in level than those for a zero pressure gradient fully developed

turbulence boundary layer over a flat plate, and more than 15dB at @, below 0.1. This

difference is caused by the change of boundary layer thickness due to the effect of airfoil

geometry. The frequency of the spectral peak is at about @, =0.1. Figure 3.6 is a plot of
Corcos dimensionless wavenumber spectrum, S,(k,)S,(k,)/8™ , versus dimensionless
streamwise wavenumber kU, /@, and dimensionless spanwise wavenumber k¢, /@, ,
at an airfoil trailing edge of chord ¢=0.252 m, Mach number M, =0.4 , non-
dimensional frequency @, =0.2 and a convective velocity coefficient ¢, = 0.65 .

Consistent with Fig. 2.1, the pressure spectrum peaks at the convective wavenumber of

k,=a,/U,.

35

1010g§0(a~)0)_
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Figure 3.5. Comparison of wall pressure frequency spectra



Chapter III: Characteristics of Boundary Layer Turbulence 39
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25

20 4

15~

ity
I
@}&‘&&%\‘é}m

10

Figure 3.6. Corcos dimensionless wavenumber spectrum, S, (k,)S,(k,)/5™ , from
Eqs.(3.12) and (3.13), at an airfoil trailing edge of chord ¢=0.252m, M, =04,
&,=02, c, =0.65

3.4 Frozen Spectrum of Turbulence Wall Pressure

A substantial simplification of the boundary layer turbulence description may be
obtained by making the assumption of a frozen pressure spectrum. Here, turbulence is

assumed to be frozen and convected as a frozen pattern at the convection velocity U, . In
a coordinate system 77, =7, —U,r, which moves with the convective velocity of the
flow, the surface pressure can be written as p,(y") = p,(n.,n,) . In the airfoil-fixed
coordinate system, the wall pressure p,;(y,7) for frozen turbulence, written in terms of

its wavenumber components, is

p(y,7) = [ [Biw)e Ukl g, (3.25)

—00—00
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The Fourier components p,(k) can be determined from p,(y’) by the inverse relation

~ 1 M AP ot ’
P = | [py)e ™m0 dnian, (3.26)
-R,-R,

where R_ is a large but finite distance to ensure that the integration is convergent if

p;(y’) does not go to zero as y' goes to infinity.

For spatially homogeneous turbulence, it can be shown that (Amiet, 1975)
. * . n Ry oo, A
Elp; (ky,k)p; (k. k)] = 75 (ki —k,)S,, (k. k,) (3.27)

which is equivalent to assuming uncorrelated wavenumber components. The frozen

spectrum ﬁqq (k,,k,) is related to the non-frozen spectrum of Eq.(3.11) by
(A _ZSqq (k,,k,, ), (3.28)
From Eq. (3.12), one has
:[Sl (k,)dk, =1 (3.29)

For frozen turbulence, /, - , which in Eq.(3.12), leads to S,(k,) > as
k,— w,/U, . These properties suggest that for frozen turbulence S,(k,) can be

approximated by a delta function

S.(k)—> Sk, —w,/U,), asl, — o (3.30)
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Substituting Egs. (3.11) and (3.30) into Eq. (3.28), the frozen wall pressure spectrum

may be written as
S, ko) = U S, (k,U,)S, (k) (3.31)
A similar result has been obtained by Amiet (1975) by following similar reasoning.

3.5 Calculation of Boundary Layer Thickness

Equations (3.17), (3.18), (3.23) and (3.24) suggest that the wall pressure spectrum may
be characterized by the boundary layer thickness. For a flat plate, the boundary layer

displacement thickness, &, for fully developed turbulence can be approximated by
(Eckert and Drake Jr., 1959)

5" /n,~0.047R" (3.32)

where R, is the Reynolds number based on the arc length distance, 7,, from the leading

edge.

Brooks, Pope and Marcolini (1989) have measured the boundary layer thickness for a
NACAO0012 airfoil section with chords ranging between 3.54cm to 30.48cm, with a
range of Mach numbers between 0.115 to 0.213, and an angle of attack between 0° to
20°. Based on this data, the following empirical expressions for the untripped (natural

transition) boundary layers were obtained for the boundary layer displacement thickness

& versus distance 7, at zero angle of attack

* . 2
50 /’]e — 10[3.0187 1.53971og R, +0.1059(log R, )" ] (3'33)

The effect of attack angle o on the boundary layer turbulence for the pressure and

suction sides, compared with that at & =0, was found to vary as
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é‘; /50* — 10[—0.0432a+0.00113a ] (334)

on the pressure side, and by

10%967« 0°<a<75°
gi =40.0162(10%°%%) 7.5°<a<12.5° (3.35)
0
52.42(10%0%58) 12.5° < <25°

on the suction side, where the zero subscripts indicate zero angle of attack, and the angle

of attack « is measured in degrees. The subscript “ p ” expresses the boundary thickness

for the pressure side while “s” is for the suction side. Figure 3.7 shows a comparison
between the boundary layer displacement thickness expression of Eq.(3.32) and the
Brooks expression of Eq.(3.33) for the case of zero angle of attack. It can be seen from
Fig.3.7 that the airfoil produces a larger boundary layer displacement thickness
compared with that on a flat plate. However, the difference reduces as Reynolds number

increases.

Figure 3.8 shows the ratio of the boundary displacement thickness, & "/ 5[; , versus angle

of attack. The boundary layer displacement thickness, and hence the pressure spectrum
on the airfoil suction side, varies significantly with angle of attack. Smaller variation is
observed on the pressure side. In accordance with Eqgs.(3.11), (3.23) and (3.24),

therefore, most of the energy is anticipated to originate from the suction side.
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Figure 3.7. Comparison of boundary layer displacement thickness between the flat
plate expression of Eq. (3.32) and the Brooks’ expression of Eq. (3.33) for the case
of zero angle of attack
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Figure 3.8. Ratio of boundary layer displacement thickness versus angle of attack
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Chapter IV

Prediction of Airfoil Surface

Pressures

4.1 Introduction

In the last Chapter the characteristics of the pressure field p, incident upon the trailing
edge were discussed. In this Chapter we are mainly concemmed with predicting the
scattered pressure p. from p,. The calculation of p, for airfoils of arbitrary geometry
is, in general, very difficult. All the analytical results obtained so far make the

assumption that the fluctuating velocity is small compared with the steady velocity

(Goldstein (1976)), primarily because the problem can then be linearized. This

assumption implies that [u| << U, where u is unsteady velocity and U is the mean flow

velocity.

The boundary value problem for the scattered pressure p, is required to satisfy the

linear Helmholtz equation, the Kutta condition, and the condition of no-flow on the
airfoil surface. At high-reduced frequency (high ratio of chord to hydrodynamic
wavelength) the interaction between the leading edge and the trailing edge is weak so
that the leading edge contribution to self-noise may be neglected. For the purpose of

calculating the surface pressure induced by the convecting boundary layer pressure p,,

the airfoil is therefore assumed to be semi-infinite with a trailing edge but no leading

edge. Roger (2002) has demonstrated that this is a good assumption at reduced
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frequencies greater than about unity. Under this assumption, it is possible to derive a
closed-form analytic solution for the surface pressure transfer function, which relates the

total surface pressure p, = p, + p, to the boundary layer surface pressure p; incident

upon the trailing edge.

In Section 4.2, a closed-form solution will be derived for the surface pressure on a semi-
infinite flat plate airfoil due to a single frequency-wavenumber component of boundary
layer pressure incident upon the trailing edge. In Section 4.3 the flat plate solution will
then be applied to a realistic airfoil under the assumption of high-reduced frequency and
sharp trailing edge. The result will finally be generalised to boundary layer turbulence
for an airfoil with arbitrary angle of attack.

4.2 Surface Pressure Predictions from Thin Airfoil

Theory

—iwyr

In Section 3.2, we defined an incident pressure field p, = p,e over an infinite flat
plate without trailing edge. In this Section, we are mainly concerned with the scattered
pressure p, = p.e”“" due to the incident pressure p, impinging upon the trailing edge.

As shown schematically in Fig. 4.1, a harmonic incident pressure component,

yl Aps

P (lower surface)

Figure 4.1. Boundary turbulence over a semi-infinite flat plate with trailing edge

p.(y,@,) = p;(k,@,)e’ ") | is taken as the input, and a scattered pressure p, is
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developed at the trailing edge on the upper surface and the lower surface with half value
of the pressure jump Ap, = p, (upper surface) — p, (lower surface) (Howe, 1999; Amiet,

—iwgT

1976a). A solution for this scattered pressure jump Ap, =Ap.e across the flat plate is

sought here. The analytic solution derived by Amiet (1976b) for the unsteady surface

pressure jump Ap_ over a flat-plate airfoil in a two-dimensional compressible flow will
be extended to the general case of a skewed gust (i.e.k, # 0). This analytical solution

may be expressed in terms of a transfer function H relating Ap, and p;,.

Consider a rectangular flat plate

of chord 2b and span 2d ,
located  at' {2b=y <0} .
Y
{-d <y, <d} , moving with
U,
// L 5 > velocity U, in the negative y,
!

e direction, as shown in Fig. 4.2.
Sh We assume that the chord

2b and the span 2d are large

compared to the hydrodynamic
Figure 4.2. Coordinate system for a flat-plate

airfoil wavelength so that the flat plate

airfoil may be assumed to be
semi-infinite with a trailing edge but no leading edge. Moreover, scattering by the ends
of the airfoil is ignored. For a two-dimensional harmonic component of incoming

turbulence convecting along the flat plate surface y, =0 with velocity U, and with
wavenumber component (k,;,k,), the fluctuating velocity u, normal to the flat plate

surface is of the form

i(kyyy+kyy,—wotr)

u,(y,7) =te = (V15 Vs> a’o)e_inT (4.0)

Note that u, is the virtual velocity that would be produced by the turbulent boundary

—iwyT

layer if the airfoil surface were absent. It is related to the velocity potential @, = ¢,e

by
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0D, op,

5 o =1, (4.12), (4.1b)

We now consider the total velocity potential @, that results following the interaction of
®, with the trailing edge and the field induced by the presence of the rigid airfoil

surface. The velocity potential @, must satisfy the wave equation

1 D?
Vie——2 \d(y,7)=0 4.2a
[ 2 Drzj (¥,7) (4.2a)

where D, /Dt =8/0t+U,8/dy, , together with the boundary condition of zero-normal

velocity on the flat plate surface

gj—_q)t(yl:yZ:Osf):O H _2b<y1 SO (42b)
3

The total velocity potential @, must also satisfy the Kutta condition, which specifies

zero pressure jump at the trailing edge and downstream of the trailing edge in the wake
D,®,/Dr=0 , ¥»20,y,=0 (4.2¢)

The velocity potential ®, may be decomposed into the sum of the incident field ®, and

the contribution ® due to trailing edge interaction and the effect of the airfoil surface,
D=0, +D (4.3)

Substituting Eq.(4.3) into Eq.(4.2) gives the following equation for ®

0

DZ
(VZ ——;;DTOZ )CD(y,T) =0 (4.42)
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0
_CD(y1>y2>O>T)=_u3(y19y270:z-) > —2b<)’1 <0 (4'4b)
;s
D®/Dt=-D,®,/Dt » 20 (4.4c)

—imyr

Again a harmonic time dependence is assumed of the form @(y,7)=¢(y,»,)e " .

Introducing a coordinate transformation identical to Egs. (2.8)

-

Y=y
Y, =py
1 2 02 4.5)
Y, = oy
T = o,7+ M, sy,
where B2 =1-M}, M,=U,/c, , Eq.(4.4a) becomes
o o’ o’ )
+ + + Y)=0 4.6a
(ale ayzz 8Y32 ,uo l//( ) ( )
where Y =(%,1,,Y,) , w(Y,w,)=¢(Y,a,)e™ ™" Ho =M,/ s =k, By

K, =®,/c, and x, =@, /U,. Correspondingly, the boundary conditions of (4.4b) and

(4.4c) become
0 1 _ iMopoh
—a_Y—W(YI’YZ’O’wO)Z_E u, (4, Y,,0,)e ’ —-2b<Y, <0 (4.6b)
3 0
and

(=ix,/ B, +0/0X)w (X, Y,,0,0,) = —(=ix,/ B, +0/0X)w, (1, 1,.0,@) , ¥, 20 (4.6¢)



Chapter IV: Prediction of Airfoil Surface Pressures 49

where y,(Y,w,) = ¢,(Y,®,)e"*". For a harmonic velocity component incident upon

the trailing edge of the form,
4,(¥,, ¥, @) = B, (K, @, ) 4.7)
with velocity potential,
v (Y, @) = 9, (1, Y, a0 )e" % (4.8)
a solution is sought by separation of variables in the form of
w(Y, @) = (., %, @,)e" "' (4.9)
Substituting Eq.(4.9) into Eq. (4.6), reduces Eqgs. (4.6) to the boundary value problem

formulated by Amiet (1976b) for a two-dimensional airfoil, but now extended to non-

zero k,- values. The velocity potential ¢ is now required to satisfy

( & Zj
+ +K° |p(Y,Y,,0,)=0 (4.10a)
ale 6Y32 143 0

where K = u; - (k, / f3,)> , with boundary conditions

%q)(ypo, @,) = —ﬁi@e”‘%e“‘o“oy‘ , -2b<Y, <0 (4.10b)
3 0

(-ix,/ By +0/0Y)o(X,0,0,) = ~(~ix, / B, +8/0X)p,(¥,.0,a0) , ¥, 20
(4.10c)

Following, for example, Amiet (1976b), Eqgs. (4.10) are solved with the aid of the
Schwartzchild solution. In order to use this solution, the velocity potential ¢ is further



Chapter I'V: Prediction of Airfoil Surface Pressures 50

decomposed into two parts: One is the velocity potential ¢'® reflected by an infinite

plate boundary with no trailing edge present, which satisfies

0* 8? 0
(51’2 +67+K2}p< '(Y,,Y,,w,)=0 (4.11a)
1 3
0 () 1 A ikt jiMouh
5‘(0 (K,O,a)o)z—ﬂ—u3e e . — 0 <Yl <o (411b)
3 (¢}

The other is the velocity potential ¢ that accounts for the interaction by the trailing

edge, which satisfies,
0? o? )
(ayZ +ay2 +K J¢(l)(x9ysawo)=0 (4.123)
1 3
9 = 4.12b
537—99 (K:O:a)o)"‘oa Yl<0 ( 12 )
3

(—ix,/ B, +5/5Y1)¢’(1)(Yp0a @,) =—(—ix,/ B, + 3/5}’1)[¢1(YI,0,@0) + ¢(0)(YI’O’ a)o)] s
Y, 20 (4.12¢c)

For an airfoil with large chord 2b compared to hydrodynamic wavelength, the

contribution from the leading-edge is negligible, the sum of these velocity potentials,
9 =99 +o" (4.13)
provides a good approximation to the solution of equations (4.10).

The solution of equations (4.11) for ¢© can be found, from a superposition of two-

dimensional sources, of form (Amiet, 1976b)
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4 i " —ittg Mo (¥~ 5 otk
¢(0)(ylay2>y3aa)0) = 25 e’ _[e Hotoly g)[_[cgl){[<\/(y1 _é:)z +ﬂZY32 }usek§d§ (4.14)
0 -

where H{" is the zero-order Hankel function of the first kind (note that Amiet use H

iwyr —iagt

due to the assumption of the time dependence ", while we use e ). Equation

(4.14) is the zero-order velocity potential expressed in the coordinate system y. Note
that we have made the variable substitution ¢'¥ = p@e ™"z  Evaluating the

integral in equation (4.14) on the plate surface, y, =0, gives

3 (31, 3,0, 0,) = A e D (4.15)

where 4, = 1/ (,Bo\/(,qu o tk) —-K? ) Since the pressure is related to the velocity

potential by
B(y, @)™ = —p,(D,®/Dr) (4.16)

the surface pressure corresponding to the zero-order velocity potential ¢® of Eq.(4.15)

is
ﬁ(O)(ypyz’O’ @,) =ip,U, (x, _k1)¢(0)(y1’y2’05 @, ) 4.17)

Similarly, the surface pressure related to the ‘virtual® velocity potential ¢, of Eq.(4.1b)

is

_ . 0
pj(ypyzaosa)o) = _po(_la)() +U0 g)¢1(ylay29oaa)o) (418)

1

It can be seen that the surface pressure

p,=p,+p" (4.19)
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satisfies the condition of no-flow through the airfoil surface but does not satisfy the
Kutta condition of Eq. (4.12). The surface pressure of Eq. (4.19) is the incident surface
pressure p, discussed in Chapter II. To satisfy both the no-flow, and the Kutta
conditions, a trailing-edge correction is needed that satisfies equations (4.12).
Substituting the zero-order solution (4.15) and ¢, into Eqn (4.12c), and making use of

the Schwartschild solution (see Schwartschild, 1902; Landahl, 1961), the solution of
Eqgs.(4.12) in terms of pressure is given by Amiet (1976b, Egs. (7a) and (7b)) as

1/2
— 1% - i(K+ -y +E) = 1
Ap (¥, ¥,,0,0,) = —— I(—XLJ g KrsM=r* 5 (£, 3,,0,0,) dé (4.20)
75\ ¢ »+é

Note that Amiet uses e X*#M)™1*) dyue to the assumption of the time dependence
" , while we use ¢ . Substituting Egs. (4.17) and (4.18) into Eq. (4.20) and

carrying out the £ -integration, one obtains the trailing-edge corrected pressure jump as

Aﬁs (ylayzsoaa)o) = Hs (ysk,a)o)ﬁi(ypyzsosa)o) (4-21)

where H is the transfer function that relates the scattered pressure jump Ap,to the

pressure p; incident upon the trailing edge

H,(y,k,0,) = erf (Ji(K + oM, + k)3, )-1 (4.22)

Note that Eq.(4.22) is valid for all k,- values. For k2 /82 < z12, which corresponds to

wave components whose phase velocity along the trailing edge exceeds the speed of

sound, the transfer function of Eq.(4.22) becomes
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H, (3%, @) = erf (iK + oM, + k)3, )-1
=(A-)E[- (K + uMy+k)y,|-1 , for k2 /B2 < (4.23)

= (1+)E"[(K + pM,y +K)y, |1

where E”(&)is the complex conjugate of E(&), E(&) is the Fresnel integral and erf (&)

is the error function, defined by
3 eiu 2 3 ,
E(&)= |—=du, er; =—— |e"“du 4.24a), (4.24b
&) jm (&) JEOI (4.242), (4.24b)

They are related by (1-i)E(&) =erf(yJ—i&). The pressure p, +Ap, now satisfies both
the no-flow and the Kutta condition. When g, and £, are set to be negative (note that

it

Amiet use €“7) and %, is equal to zero, equation (4.23) is consistent with the solution
formulated by Amiet (1976a). When M, =0, equation (4.22) reduces to the solution

given by Howe (1999).

Equation (4.22) shows that the transfer function H is completely defined by the non-

dimensional distance x,y, , streamwise wavenumber k,/x, , spanwise wavenumber

c

k,B,/x,, and Mach number M. Here x, =@, /U, is the streamwise wavenumber

related to the convection velocity. Figures (4.3) to (4.5) are plots of A against these

parameters. For the calculations of following Figs (4.3) to (4.5), the parameters are taken

as M,=04373,U,=cU,, ¢, =0.65, k,/x, =1, and frequency f =500 Hz.

Figure 4.3 shows the modulus of the transfer function |H ;

versus spanwise

wavenumber k,f,/x, for the various distances of x,y, =—-0.5,—1.0,—1.5 from the

trailing edge. It can be seen from Fig.4.3 that the main contribution to the scattered

pressure jump comes from Fourier components of turbulence which travel with
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supersonic phase speed, i.e. k,/,/x, <1. However the contribution from turbulence

component travelling with subsonic phase speed, i.e. &,f,/x, >1, is not negligible.

D? T T T T T T T T T
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Figure 4.3. Modulus of the scattering transfer function |HS

versus nomn-

dimensional spanwise wavenumber k,[,/x, for various distances x_y, from
the trailing edge.

Figure 4.4 and 4.5 show, respectively, the modulus and phase angle (in degrees) of the

transfer function H, versus dimensionless distance, x,

yll, from the trailing edge for
various normalized spanwise wavenumber k,f,/x, =0.0,1.0,2.0. Figure 4.4 shows

that the modulus of H_ decays rapidly with distance from the trailing edge. This finding

suggests that the scattered pressure jump is only significant close to the trailing edge,

which agrees with the finding of Brooks and Hodgson (1981). Figure 4.5 suggests that

the rate of change of phase in A with difference from the trailing edge is more rapid
than that of the incident pressure. In addition, the 180° phase angle change of A at the

trailing edge suggests that the incident pressure is exactly cancelled by the scattered

pressure jump in accordance with the Kutta condition.
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4.3 Application of Thin Airfoil Theory to Realistic
Airfoils

In the last Section, a closed-form solution was derived for the scattered pressure jump

Ap, due to a single Fourier component of the incident pressure p, impinging upon the

trailing edge of a flat plate airfoil. In this section, the flat plate theory described above

will be adapted in an approximate way to real airfoil geometries. The input quantity here
is the incident pressure, p;(y,7) = f,(y,k,@,)p; (y,w,)e ™", described by Eq. (3.22).
We wish to calculate the total pressure p, =p,+ p, , where again p, denotes the
scattered pressure due to the incident pressure p, impinging upon the airfoil trailing
edge. The purpose here is to derive a transfer function /7, between p, and p,on both

sides of the airfoil. The relation between the above quantities is shown schematically in
Fig. 4.6. In general, turbulence develops on both the suction side and the pressure side.
For simplicity, turbulence on one side of the airfoil is considered here. However, the
formulation provided below can be applied to turbulence on both sides of the airfoil and

the results then added.

Figure 4.6. Boundary layer turbulence and its related surface pressure
over an airfoil

We define a reduced frequency as
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o, =kp (4.25)

where b=c/2 is the airfoil semi-chord, and £, is the streamwise wavenumber defined

in Chapter III. The reduced frequency may be interpreted as a non-dimensional
frequency that is proportional to the ratio of semi-chord to hydrodynamic wavelength in

the boundary layer. For a frozen gust, k, =x, =w,/U,, where U,=¢c,U, is the
convection velocity and ¢, is convective velocity coefficient typically in the range
¢, =0.65~ 0.8. The product Mo, =x,b/c, is proportional to the ratio of semi-chord to

acoustic wavelength. In this thesis we indicate the reduced frequency by o, =«x.,b.

Equation (4.22) relates to the scattered pressure jump produced over the surface of a flat
plate airfoil. For more realistic airfoil geometries, numerical methods, such as the
boundary element method, may be used to obtain more accurate solutions. However, the
computation time required in the calculation of H; at each frequency and wavenumber in
the broadband problem, which involves a spectrum of wavenumbers and frequencies, is
currently excessive. Therefore, we make the assumption of high-reduced frequency

o, = k,b, which allows the use of the closed form solution of Eq.(4.22). When the
reduced frequency o, is high, the hydrodynamic wavelength of turbulence is much

smaller than the semi-chord so that the leading edge correction due to the backward
scattered pressure jump impinging on the leading edge is comparatively small (Roger,
2002). On the other hand, since the scattered pressure jump is only significant close to
the trailing edge (Brooks and Hodgson, 1981; Ffowcs Williams and Hall, 1970), we
further assume that no boundary layer separation occurs and that the trailing edge is
sufficiently “sharp” for flat plate theory to apply. The effect of the airfoil geometry on
the aerodynamic response function H;is therefore ignored. The airfoil response function
in this case can therefore be treated as a flat plate with chord equal to the arc length of
the actual airfoil, which differs on the pressure and suction sides. However, the effects of
airfoil geometry on sound radiation, taking into account retarded time effects, are

included in the formulation by integrating over the actual blade surface.
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The scattered pressure described by Eqgs. (4.21) and (4.22) refers to pressure jump across
the flat plate (Amiet,1976a); Howe,1999). Experimental verification of these results has
been obtained by Brooks and Hodgson (1981). Howe (1999) has shown from a low
Mach number approximation to the trailing edge problem that each side of the airfoil
develops a scattered pressure with half value of the pressure jump. To apply equations

(4.21) and (4.22) to a realistic airfoil, the variables y,,y,,k,k, are replaced by
7,,7,,k,,k, defined in Section 3.1 (to be consistent with the notation of the following
Chapters, the first argument of p_ is still denoted by y instead of m due to the
coordinate transformation 77, =7,(y), 7, =77,(y) ). With these variable substitutions and
noting the relation of equation (3.19), the scattered pressure p, takes half value of the

pressure jump of Eq. (4.21) of the form

LH (v.k,@,) p,(k,m,)e" "™ y on turbulence side
D (¥, @) = (4.26)

—LH (v,k,@,) p,(k,w,)e"* ™ ™) ynot on turbulence side

where H | is now given by

H,(y,k,@,) = erf ||Ji(K + oM, + &, )7, )1 4.27)

where now K =+/u —(k,/B,)* and 7, replaces y, in Eq.(4.22). Note that the pressure

amplitude p, in Eq. (4.26) must be taken as the incident pressure at the trailing edge
n, =0, since p, varies along the streamwise direction for the reason given in Section
3.3. Note also that the scattered pressure jump cancels with the incident pressure p, at

the trailing edge owing to the imposition on the solution of the Kutta condition.

In Chapter III, we showed that it was necessary to include the position-dependent
function f,(y,k,®) in the definition of the incident pressure p, according to Eq. (3.22).

—iwyT

Multiplying both sides of equations (4.26) by a time factor ", noting that only one
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sided turbulence has been considered, and noting that p,(y,z) = D, (y,®,)e ™ , the total
pressure p, distributed over the surface of a real airfoil due to interaction with the
trailing edge by a single frequency, single wavenumber, surface pressure component,

p,(y,7) = Dy, ®,)e ™" , may be approximated by

p.(¥,7) = p,(¥, D)+ p,(¥,7) = H (3,K, @,) P, (K, )& 770 (4.28)

where H is the transfer function between the surface pressure at any point on the airfoil

surface n=(7,,7,) and the incident pressure at the reference point y, along the trailing

edge, of the form

f,(v.K,0,)+5 H (y,K,,), ¥ ison the turbulenceside
H_ (y.k,®,) = (4.29)
—1H (y.k,0,), y is not on the turbulenceside

For the general case of a turbulent pressure field incident upon the trailing edge, which
involves a continuum of all wavenumber and frequency components, equation (4.28)

generalises to

p(y.0)= [ [ [H,(v.k, b 00,) Bk, K 0)e 500 dk dk doo, (4.30)

—a0—00—c0

where j),.(k,coo) is given by Eq.(3.3) and is related to the boundary layer turbulence

spectrum of Eq. (3.4).

Equation (4.30) gives the Fourier component amplitude of surface pressure p, (y, k, 600)

as

Dy, kK, @,) = H_(y,k,0,) p;(K,®,) (4.31)
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where the argument y arises due to the presence of position-dependent function
S, (¥,K,@,) . If the incident pressure field p, (k,w, ) is spatially homogeneous and time-
stationary, then so must the pressure field ﬁt(y,k, a)o). Analogous to Eq. (3.4), the
Fourier components of surface pressure p, (y, k, a)o) are related to the spectrum S, of

total surface pressure by
ELp, (k, k) B, (K., K/, )] = S (k; — k)8 (k) — k,)S () — ) Sgo (kK@) (4:32)

The surface pressure spectrum S

0o » Which includes the airfoil response, can therefore be

calculated from
2
Soo (¥, k. @,) =|H, (y,k,@,)| S,, (K, @,) (4.33)

Like the transfer function H for the scattered pressure jump, the transfer function H,
depends on the dimensionless distance x.7,, the normalized streamwise wavenumber
k,/ k., normalized spanwise wavenumber k,/f, /x,, and the Mach number M. Figures
4.7 to 4.11 are plots of IH qlz against these parameters evaluated on the turbulence side

of the airfoil, since on the non-turbulence side H, is identical to H  except for a

constant difference of 1/2. Amiet’s exponential decay function of Eq. (3.20) was used

for the calculation of f, in Figures 4.7 to 4.11. Common parameters used in these
calculations are M, =0.4373, ¢, =0.65, £ =0.03, and frequency f =500 Hz. For the

calculations of Figs (4.7) to (4.9), k,/x, =1 is also assumed.

The modulus squared transfer function !H q|2 is plotted in Fig. 4.7 against dimensionless
spanwise wavenumber k,f3;/x, at distances of x 7, =-0.5,-1.0,-1.5,-2.0,—2.5. The
main contribution to IH qlz comes from turbulence components travelling along the

trailing edge with supersonic phase speed, i.e. k,f,/x, <1. However the contribution



Chapter IV: Prediction of Airfoil Surface Pressures 61

from turbulence components travelling with subsonic phase speed, i.e. k,f,/x,>1,

cannot be neglected in the evaluation of the surface pressure.

14 T T T T

123
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1.1

2
|1
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08
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0

Figure 4.7. Modulus squared transfer function 7/, plotted against dimensionless

spanwise wavenumber k,3/x, at various distances, x,77,, from the trailing edge

Figure 4.8 shows the modulus squared transfer function ’H qf plotted against

dimensionless distance x,

n,| from the trailing edge for various spanwise wavenumber
kB, /x,=0.0,1.0,2.0. In the supersonic phase speed domain, k,/3,/x, <1, the function

s N
IH q| oscillates with distance K‘C|775

, while for k,/3,/x, >1, it does not. However in

both domains the amplitude of |H q|2 decays with distance from the trailing edge for

K m.0=2:

;s
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Figure 4.8. Modulus squared transfer function ‘H 4‘2 plotted against dimensionless

distance, «,

n,|, from the trailing edge for various spanwise wavenumber «, /3, /x,.

Figure 4.9 is a plot of the modulus squared transfer function |H q|2 against dimensionless

distance «, 773| from the trailing edge for the various streamwise wavenumbers

k,/x,=0.6,1.0,2.0 . It is shown that the transfer function for small-streamwise-

wavenumber component fluctuates more slowly than large-streamwise-wavenumber
components of turbulence. This means that small wavenumber components will make a
larger contribution to the noise radiation than large wavenumber components when an
integration of the source pressure over airfoil surface is performed to give the total
radiated noise. The reason for this is that the large wavenumber component corresponds
to small wavelength turbulence therefore the source contribution to the noise radiation is

weak due to the cancellation effects.
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Figure 4.9. Modulus squared transfer function IH q|2 plotted against dimensionless

distance, «,

n,|, from the trailing edge for various streamwise wavenumber £ /x_.

2 . ™ .
Figure 4.10 shows the function |H q| versus dimensionless streamwise wavenumber

k,/x, for various spanwise wavenumbers £k, f,/x,=0.0,1.0,2.0 at distances
i, n, =—0.5 respectively. Figure 4.11 is the same plot as Fig. 4.10 but evaluated at the
distance x,77, =—2.5. The figures suggest that the fluctuation of the transfer function
with respect to streamwise wavenumber £, /x, is slower at measurement positions close

to the trailing edge. However the main peak in Fig. 4.11 is located at the convective

wavenumber x,. When this main peak coincides with the peak of the incident pressure
spectrum (see Fig. 3.6), which also peaks at x, the surface pressure spectrum S, will

be greatly amplified. Fortunately, this coincidence does not occur at all points on the

airfoil surface.
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Figure 4.10. Modulus squared transfer function |H q|2 against dimensionless

streamwise wavenumber k_/x, for various spanwise wavenumbers k, [,/ x, at a
distance of «_77, =-0.5.

1~4 T T T T T T T T T
— KBt =00
) LT IR Il = e, S PESCEPRNE TP b ktBU/KU =110 |
3 :': — kBgfg =20

| HJ 2

[em]
—_

8 9 10
kshcc

Figure 4.11. Modulus squared transfer function |H q|2 against dimensionless

streamwise wavenumber k /x_ for various spanwise wavenumbers &, S, /x, at a
distance of x 77, =-2.5.
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Chapter V

Airfoil Self Noise Prediction: Theory

5.1 Introduction

In the last two Chapters, the spectral characteristics of the airfoil surface pressure due to

boundary layer turbulence were discussed. This Chapter uses these results to deduce a

theory of self-noise radiation by a single airfoil. The radiated sound pressure at any field

point x can be predicted by using Eq. (2.5) from the knowledge of the surface pressure

p,(y,7) at the source point y on the airfoil surface, as shown schematically in Fig. 5.1.

Airfoil broadband noise has been investigated in both the time domain and the frequency

domain. Casper and Farassat’s (2002) approach is a time domain method while Amiet

(1976a) solves the problem in the frequency domain. Both are restricted to flat plate

airfoils. The frequency method presented here is more general than previous

formulations since no far-field and large span flat-plate assumptions are made.

X y3,x3,% VX,
U vy | VX,

Figure 5.1. A pressure source on the element
area, dS(y), of airfoil surface radiates noise

received at observation point x(x,,x,,x;)

Approximations are
introduced that enable the thin
airfoil theory discussed in
Chapter IV to be extended to
realistic airfoil geometries of
small camber and small angle

of attack.

In Sections 5.2 and 5.3 of this

Chapter, a frequency domain
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formulation will be developed for making airfoil self-noise predictions under the
assumptions that the leading edge effect can be neglected and that the trailing edge is
sharp, as described in the last Chapter. The formula can be used to investigate the effects
on self-noise radiation of airfoil geometry and angle of attack, providing that the incident
pressure spectrum is known and that thickness, camber and angle of attack are not too
great. In Section 5.4, the formulation of self-noise radiation is shown to reduce to
Amiet’s analytic solution (Amiet, 1976a) when appropriate simplifying assumptions are
made. A numerical scheme for the evaluation of the integral formulation on an arbitrary

airfoil surface will be presented in Section 5.5.

5.2 Frequency Domain Formulation for Airfoil Sound

Radiation

Neglecting viscous stresses, the i ’th component of force acting on the fluid per unit area

by the airfoil is given by
[y, 1) =-np,(y,7) (5.1)

where p, is the unsteady pressure disturbance on the airfoil surface described in Chapter
IV, and n, is i" component of the unit inward normal n on the airfoil surface S .

Volume-quadrupole sources generated by shear stresses in the boundary layer are
assumed to be negligible compared with the dipole sources on the airfoil surface,
although the proposed method has no difficulty in dealing with this quadrupole term in
principle. For a rigid airfoil, the third term of the right side of equation (2.5) represents a

steady pressure, which does not radiate sound. In this case, equation (2.5) reduces to
. 0
pe==[_[[p.v.0m 5 Gusy, sz (52)
N i

Equation (5.2) is essentially a convolution of the space-time dependent surface-pressure

fluctuation p,(y,r) with the spatial-temporal impulse response function G(X,?;y,7).



Chapter V: Airfoil Self Noise Prediction: Theory 67

Note that the velocity U, as shown in Fig. 5.1, which appears in the Green function

G(x,t;y,7) is the airfoil velocity rather than the rotor shaft velocity shown in Fig. 2.1a.
For an infinite flat-plate airfoil, both U and U, are airfoil velocities but the subscript

‘0’ indicates the corresponding quantity related to the source on the airfoil surface, for

example, the Mach number M, f,, and the frequency @, (note that source frequency
and observer frequency differ in the case of a rotor). In general, U, is used to indicate

the local mean flow velocity at the interface of the boundary layer, as shown in Fig.3.4.

In this case U, equals U plus the local potential velocity due to airfoil thickness and

boundary layer displacement thickness. The effect of this local mean flow on the airfoil

surface pressure is taken into account through the position-dependent function of Eq.

(3.21) and eventually through the incident surface pressure spectrum S, of Eq. (3.11).

For simplicity, it is assumed in this thesis that the airfoil does not disturb the background

flow, which is assumed to be constant and uniform, U =U,,.

Fourier transforming Eq. (5.2) with respect to time ¢ gives the acoustic pressure at a

single frequency due to the unsteady loading on the airfoil surface

_ 1 o
X, W) =— X,t)e " dt
px®)=—[ p(x1)

(5.3)
1 a = ior
-1, [fienp .0 -Gy 0)ds e ds
Equation (5.3) may be written more compactly as
— 1 ior
px@) =2 [ [[p(v.0)I(xy,0)dS(v)e dz (54)
S

where /(x,y,®) is a form of radiation Green function given by

I(x,y,®)=—n, (y)ayi G(x, y,®) (5.5)

I
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From Chapter II, G(x,y,®)is given by Eq. (2.14). For subscript i =1, the derivative of

Green function G in Eq. (2.14) is given by

0 = V=X . Y X —=
éy—lG(x,y,w)=[— IRZ L+ iu( IR L+ MHIG(x,y,w) (5.6)

while for subscript i =2,3,

2 — —_—
25w y.0) =t i1 25 G (x y,0) (5.7)

1]

where u=x/B, k=w/c,, f* =1-M?*, M =U/c, as defined in Chapter IL

5.3 General Formulation for Turbulent Inputs

The time-harmonic analysis performed in the previous Section is now applied to one-
sided turbulent boundary layer pressures on an airfoil. Substituting equation (4.30) into

equation (5.4) gives

@0 0 o0

po)= [[ [ [ [H, 5.k, ko 0,) 5, (R, s 2) I (%, 0)

(5.8)

T

x @' ksTis+kin,) 1 I e dedk dk,dw,dS (y)
2z 3

Using the identity,

_ 1 —i(wg-w)r
5@, ~o) =5~ fTe dr (5.9)



Chapter V: Airfoil Self Noise Prediction: Theory 69

and carrying out the integration with respect to @, , the expression for the radiated

pressure becomes

px,0)= ([ [ [H,(v.k,.k,, @), (k, k. 0)I(x,y,0)e"*" " dk,dk,dS(y) (5.10)
S

~c0—00

Equation (5.10) may be written more compactly as

px.0)= [ [H,(%k,k,0)p,(k,.k,o)dk,dk, (5.11)

—00—00

where H , is a radiation transfer function relating the radiated pressure at x to each

wavenumber component (k_, k,) of pressure on the airfoil surface. From equations

(5.10) and (5.11), it takes the form

H,(%,k,,k,,@) = [[H,(y,k,.k,0)e " [(x,y,)dS(y) (5.12)
S

The power spectral density of the pressure at position x is given by
S, (%,@)5(0' - ) = E[p" (x,0) p(x,»)| (5.13)

Substituting equation (5.11) into equation (5.13) and making use of equation (3.4) for

homogenous turbulence, the pressure spectrum at any field point x is of the form

S, (x,@) = wj wﬂHp (x,k,,k,, a))|2 S, k. K, 0)dk, dk, (5.14)

—0—0

Using Egs. (3.11) and (3.30) and performing the integration with respect to k_, equation

(5.14) for a frozen turbulent boundary layer reduces to
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17 2 A
Spp(x,w):F ﬂHp(x,a)/Uc,k,,a))| S, (@1U k), (5.15)

Since the effect of attack angle is incorporated into the formulation through the incident

pressure spectra and the position-dependent function £, (y,k,®) of Eq. (3.21), equations

(5.14) and (5.15) are valid, not only for flat plates with zero angle of attack, but also for

an airfoil of arbitrary geometry with non-zero attack angle.
5.4 Consistency with Amiet’s Solution

In a classic paper, Amiet (1976a) has obtained an analytic solution for the self-noise
radiated by a large-span, flat plate airfoil with frozen turbulence convecting past the

trailing edge. We now demonstrate the consistency of the present formulation with

Amiet’s solution. For far-field positions |x|>>|y|, the flow-corrected distance R

appearing in Egs. (5.5) to (5.7) can be approximated by

R= \/(y1 _X1)2 +ﬂ2(y2 _x2)2 +/B2(y3 _x3)2

(5.16)
~ R~ (0, + f°%,0,) R,
where
R, =x2 + B (2 +x2) (5.17)
For large R, equation (5.7) approximates to
ié(x,y,a;) mie XL gutren (5.18)

Oy, R 4nR

§ s

Substituting equation (5.16) into (5.18), one has
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0 — IKX, un_
TRy, 0) ~ -t MR

: - i (M= /) yixzay IR, (5.19)
Y3 s

Substituting equation (5.19) into (5.12), and integrating over the surface of the flat plate

airfoill with span 24, and noting that for a flat plate, ., =y,,7, =y,,k, =k, and
k, =k, , the transfer function H, of equation (5.12) becomes
H,(x,k,,k,,0) = _IRbx, gy ek 0) sinl(k, ~ xx, /R, )d] (5.20)
27R? (k,—xx,/R,)d
where
L(x,k,k,, ) = f2 H,(y,k,, ky, 0)e 05 =3/R) g g (5.21)

and y =(b¢£,0,0) . Substituting equations (4.29) and (3.20) into Eq.(5.21), the integration
of Eq.(5.21) can be performed analytically. The result for L can be expressed as the sum

of the contribution L, due to the incident boundary layer pressure, and the contribution
L, due to the scattered pressure

L,k k,,0)=L,(x,k,,w)+ Ly (X, k., k,,®) (5.22)

The incident part L, is of the form

1 ~2(abfk|+K,)
L =— - ;
(X, k,0) 8b|k1| VK [ e ] (5.23)

and the scattered part ofithe form

L%,k k,, @) = ?}( e, fhyerf (=128, )-e ™ erf([“izay )+ e —1]  (5.29)
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where K, =blk +u(M -x,/R)], a, =b(K+uM +k) , k,=b(K+x, /R, and

K = y* —(k,/ B)* as defined in Section 4.2. For k2 /7 <y, which corresponds to

wave components whose phase velocity is supersonic along the trailing edge, equation

(5.24) is more usefully written in the form

Lo(x,k,, k,,®) =%{(l+i)[ a, [k E"(-2k,)- e E"(-2a, )]+ e 2k —1} (5.25)

where Eis defined in Chapter IV. Neglecting ‘end effects’, the far-field pressure
spectrum S, can be obtained by substituting equation (5.20) into (5.15). The result is

2
_ 1| xbx, sin[(k, —xx, / R,)d], 24
Spp(xaw) _?J:l:ﬁil wd [; (kz —kx, /.Rs)zﬂd [L(X5k1:k2:w)| Sqq(kpkz)dkz (526)

where for frozen turbulence, k, = @ /U, . Equation (5.26) is identical to that obtained by

Amiet (1975b, Eq. (15)) except that here the input quantity is the surface pressure
spectrum rather than velocity spectrum (note that Amiet’s paper (1975b) is for inflow
noise and Amiet’s paper (1976a) is for self-noise).

Assuming that the airfoil span is large, k,d >>1, Amiet (1975b) makes use of the delta

function property

- 2 _
fim S0 L0k, — %, / fs)d]=5(k2—xx2/1zs) (5.27)
d>= (k,—xx,/R,) md

Equation (5.26) then reduces to

2
1| xbx , A '
S,,,, (x,) =_[27sz} milL(x, kl,kz,a))leqq (k. k3) (5.28)

U

c s

where k, =xx, /R, . A commonly used approximation (Amiet 1975b, 1976a) is that,
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S, (k,0) =11 U S,(@) (5.29)

where /, ~2.1U,/ @ is the spanwise correlation length (Amiet ,1976a). Equation (5.28)
suggests that only the k, =0 pressure component contributes to the radiated pressure
spectrum for an observer at the mid span point x, = 0. Substituting equation (5.29) into
(5.28), and putting k£, =0, and f,(y.k,») = ¢ 4! in accordance with Amiet (1976b), a

simplified analytic solution is obtained for observers at the mid-span of the form

2
xkbx
Spp(x,a,){MR;} 1 d|L(x,k,,0, )| Sy () (5.30)

s

Note that Amiet’s result is recovered when the parameters x4 and k&, appearing in Egs.
(5.22) to (5.24) are replaced by — xzand —k, respectively due to the assumption of the

time dependence ¢ used by Amiet (1976a). The reduction of the general result of
equation (5.15) to the classic solution due to Amiet of Eq.(5.30) provides some

verification of the present approach.

Note that by making the assumption that only the k, =0 pressure component
contributes to the radiated pressure spectrum at x, =0,
sin[(k, —xx, /R )d] . sin(k,d) _

lim = lim
k>0 (k,—Kkx,/R)) ko0 k,

d (5.31)

from which the transfer function IH p|2 related to equation (5.20) may be expressed as

xbx,
2

2
\Hp(x,kl,o,a))lz ={ o ] d*|L(x, k0, ) (5.32)

S
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2 . . .. : .
Thus IH p‘ is predicted to vary as d”. This is because for a single wave component with

k, =0, the surface pressure is coherent along the span so that /, = d . Equation (5.30)

can then be rewritten as
2
S, (x0)=|H,(x»/U,0,0) S,(@) (5.33)

Here H , is the radiation transfer function, defined by Eq. (5.32), valid only for large-

span flat-plate airfoils.

5.5 Numerical Scheme for the Evaluation of the

Transfer Function Z,

As shown above, once the spectrum § , of the pressure field incident upon the trailing

edge is known, computation of the radiated broadband field reduces to a calculation of

the transfer function H,. For a flat plate airfoil, an approximate analytic solution is

available for the far-field radiated pressure as described in the previous section. For
airfoils of arbitrary geometries, a numerical scheme is now presented for performing this
calculation based on the fact

that the hydrodynamic

Y3 y, nt wavelength of the boundary

layer turbulence is usually

== r=——— smaller than the acoustic

& %,, o );1, wavelength. Integration of Eq.
o ~\\ (5.12) is then split into two

N, parts: one is related to the

acoustic term, the other is

Figure 5.2. A triangular elements S, on the ,cjated to the hydrodynamic

airfoil surface term. The benefit of this
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separation is that it allows the hydrodynamic term to be integrated analytically over a
small element facet of airfoil surface thereby improving the efficiency of the

computation.

In order to carry out the numerical calculation of Eq. (5.12) for arbitrary airfoil
geometries, the airfoil surface is discretized into finite triangular elements as shown
schematically in Fig.5.2. Suppose that, at a single frequency, each element
n (n =1,2,3,---,Nef) is small compared with the acoustic wavelength so that the

position-dependent function f,(y,k,®) and the function I(x,y,®) at this element,

defined by Eqs. (5.5) and (5.12), can be taken to be constant within that element. Under

this assumption, the numerical expression of equation (5.12) becomes

N,

ef
H,(x.k,k,0)=Y {I,(x.y,,0)E (Y,.k,k,©)} (5.34)
n=1
where N is the total number of: elements, the superscript H in equation (5.34) refers to

the ‘Hydrodynamic’ term. The acoustic term (see Eqgs. (5.5) and (5.12)) is given by

o0 =
I,(x,y,,w)=N, (yn)a—G(x,y,,,a)) (5.35)

H

where N, =-n, is the unit outward normal vector of element » and y, is the

coordinates of the centre of element n . From Egs. (5.12) and (5.34), the term I”

associated with the hydrodynamic pressure contribution is defined by an integral over

the facet of element n

LY, ko k@) = j qu (y,k, k,,0,)e "M dS (y) (5.36)
Sy

where @, = @ in this Chapter, and S, is the area of the n™ element facet on the airfoil

surface. From Eqgs.(3.11), (3.23) to (3.24), and Eq.(3.21), it can be seen that the position-
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dependent function f,(y,k,®) mainly depends on the boundary layer thickness. It is
reasonable to assume that f, (y,k,®) is a slowly varying function compared to
variations in the hydrodynamic surface pressure. When the element S, is sufficiently
small compared to the airfoil chord, f,(y,k,®) can be taken out of the surface

integration. In order to perform the integration analytically, we substitute Egs. (4.27) and
(4.29) into Eq.(5.36), and split the result into two parts:

Irfl(yn’ks’kt’wo) =

110 (ke k@) +Lf, (Y o Ky Ky @) = S110 (K

s

,k,), 'y, on turbulence side

— 1[I (k, k,,00,) - I (k,,k,)], y, not on turbulence side

(5.37)

The terms I and I” are defined as

L (ky k) = [[erf (Jam,)e ™™ dn,dn, (5.38)
Sn
LY (k) = [[e®m*man,dn, (5.39)
SH
T A where a = i(K + u,M +k,).

B (7,5,7,5) D (nypsnip)

Figure 5.3 depicts a triangular

element S, on the airfoil surface in

curvilinear coordinates m=(7,,7,)

C (nsC > 77;c )

— > s described in Section 3.1. The

apexes of the triangle are
Figure 5.3 A triangle element S, with apexes

BCD B1:15) » C(esne) » and
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D (n,n,,) - The triangular element S, is meshed with one edge parallel to the 7, axis
(for the case of Fig. 5.2, ,, =1, ) as shown in Fig. 5.3. The equation of any edge of the

triangle, for example line CD, may be written as

cD, CD

n? = pPn +4¢ (5.40)

where the constants p“° and ¢° can be determined by the coordinates of points

C(n,c.n,) and D (n,5,7,,) on the line CD,

pCD :(nsD _USC)/(ﬂtD_UtC) (541)

(/2]

q = —pCDU,c T ¢ (5.42)

For the line CB, equations (5.40) to (5.42) are still valid with the superscript CD
replaced by CB, and the subscript D replaced by B.

With the above notation, the integration of Eq. (5.38) can be performed analytically to

give

Irfle (k. k,, @) =Ea(a:pCBanBaﬂtDaksakt’a’o)_F;(a,pCB,qCBaﬂtcsksakr’wo)

(5.43)
_F;(aﬂpCDquD’ntD’ks9 t’a)o)+}Te(a:pCD:qCDantC’kﬂkt’a)o)
When p # 0 and k, # 0, the function F, is defined as
1 —ik! a '
F;(a,p,q,nt,ks,kt,a)o):;pTe k,q[le(a,ksr,ns)— k—le(k“’k"m):l (5.44)

where
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Ie(a’ks’ﬂs) Z%[e’f('\/;]:)eikﬂs _\/—kzerf(vkans )jl

and
n,=pn+q
k,=a-ik,, k/=k/p, k,=k +k

For p=0 and k, # 0, the function F, is defined as

1
Fe(asp,%??,,ksakpa)o) zgek’m'[e(‘hks’ns)

t

For p#0 and £, =0, the function F, is

1 a
Fe(a’paq’ntaks’ktawo)z . Ie(a’kwns)— _Iz(ka’ns)
ipk k,

5

where

I(k,,n,) = (77: -%Jerf(,/kans )+__‘/;T_\/;7?e-kam

Finally, for p=0 and %, =0,

F'e(aﬂp7q’77t’ks’kt’a)0) = ﬂtle(a’ks’ﬂs)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)
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Analogous to equation (5.43), the integration of Eq. (5.39) can be expressed as

17 ey k) = [F o (p™ %tk ) = F (9 g oo )
(5.52)

CF (0,4 Mok k) + Fr(p g, sk, k)]

The function F . is defined as

1 .
F.Ap,q.n. k. k)=——————¢n+arkml = 520,k #0and k, #0 (5.53
f(p g:7;- k. k,) k,(kp+k) p s t ( )

F (p,q.1,, k. k)= —#e"“‘s“"ﬂf], p=0, k #0and k, 20 (5.54)

st

and

F.(p,q,7m,:k,,k,) =—i%ei"’q, p=0,k #0and k,=0 (5.55)

s

Example calculations using this theory are presented in the next chapter.
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Chapter VI

Airfoil Self Noise Prediction:

Numerical Results

6.1 Introduction

In this Chapter, the frequency domain formulations of Egs. (5.14), (5.15) and (5.33) will
be applied to predict the self-noise radiated from a flat plate and a NACA 0012 and
NACA 0024 airfoil. An investigation will be made of the radiation due to both a single
Fourier (wavenumber) component of incident surface pressure, and broadband incident

boundary layer turbulence comprising a continuum of wavenumbers.

For a single Fourier component of boundary layer pressure incident upon the trailing

edge, the radiated pressure field can be characterized by the modulus squared transfer
function lH p\z defined by equations (5.12) and (5.32). The transfer function H, relates

the radiated pressure, at any observation point, to the amplitude of a single frequency-
wavenumber component of pressure on the airfoil surface. Here we define a directivity

function of the radiated sound field due to a single frequency-wavenumber component of

pressure, which is related to the transfer function H,, by

D,(R,,'¥,0.k,0)=|H,(x ko) 6.1)
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where x = (R, sinfcos'V, R, cosd, R, sinfsin V) is the observer coordinates, and where
(R,,¥,0) is a spherical coordinate system, as shown in Fig.6.1. Here R, is the observer

distance from the origin, located at the mid-span point along the trailing edge, ¥ is the

polar angle measured from the x, - axis in the mid-span plane, and @ is the azimuthal

angle measured from x, axis.

2b

Figure 6.1. Spherical coordinate system (R,,'¥,6) and
rectangular coordinate system x(x,,x,,x,)

For broadband noise, the sound pressure level (SPL) is defined as the spectral density of

mean square pressure in a 14z bandwidth, in decibels relative to p,, =2x 107 Pa

475 (X,w)
L,(x./) =10log,—25—— (6.2)
ref

where f = w/2xis the frequency in Hertz, and the factor 47 is included to convert from

a double sided spectrum to a single sided (0 <@ <« ) spectrum, and from radian

frequency to Hertz.

The directivity of the radiated sound field in decibel for broadband noise is defined here

as
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478 (X,
D(Y.0,f)= IOIOng:RdZ ”_ppz(_):|

j o (6.3)

=L, (x,f)+20log,, R,

In Section 6.3, the noise from two NACA airfoils will be investigated. The results will
then be compared with the empirical predictions based on the experimental data by
Brooks etc. (1989). We first focus on predicting the noise radiated by a flat plate airfoil

in Section 6.2. The results will be compared with the analytic solution of Amiet (1976a).

The use of Egs.(5.14), (5.15) and (5.33) to compute the spectrum of radiated pressure

spectrum S, assumes that the boundary layer turbulence on the airfoil suction side and

pressure side are statistically independent. The spectra of radiated pressure due to the
turbulence on each side are calculated separately and then added incoherently to obtain
the total pressure spectrum at any observation point. The contribution to the radiated
pressure due to the turbulence on each side of the airfoil is obtained by integrating the
transfer functions of Eq. (5.12) over both the suction side and the pressure side. This
procedure is described by Eq. (5.37).

6.2 Self-noise Radiation From a Flat Plate Airfoil

The flat plate airfoil used for this prediction has a chord length of 25 =1.0m and a span
of 2d = 4.0m, typical of a small aircraft wing. It moves in the — y, direction with Mach
number M . For the purpose of comparison with the analytic solution, this dimension is
chosen to comply with Amiet’s assumption of large span. For consistency with Amiet,
the convective velocity coefficient of ¢, = 0.8 is used. Figure 6.2 shows the mesh of the
flat plate airfoil used for the numerical calculation at frequencies less then 3000Hz. The
element dimension must be 10 times less than acoustic wavelength so that the transfer
function of Eq.(5.12) can be expressed in the separable form of Eq.(5.34). Finer meshes
are needed for calculation at higher frequencies. For a mesh that is valid for frequencies

up to f =3000 Hz, the element size is chosen such that / <¢,/(10f)=11.5mm. Below
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3kHz, 60552 triangle elements and 30712 nodes are used to represent
the1.0m x 4.0m flat plate airfoil, as shown below in Fig. 6.2.

Y X3

Figure 6.2. Mesh of flat plate airfoil for numerical
calculation of self-noise radiation

6.2.1 Comparison of Numerical Results With Amiet’s Analytic Solution for
Modulus Squared Transfer Function ‘H plzin the Mid-span Plane due to

Single Frozen, Normally Incident Gust Components

By way of verification of the numerical scheme presented in Chapter V, numerical
predictions of the self-noise radiation due to a flat plate airfoil are compared with the
analytic solution of Amiet (1976a). For consistency with the assumptions made by
Amiet, i.e. flat plate airfoil, large span and far field observer in the mid-span plane

x, =0, the parameters used for the calculations here are R, =150.0 m, x, =0
(0 =7/2), adecay factor of £ =0.3 for the incident field, k&, = x, for a frozen incident

gust convecting at the free stream velocity, k£, =0 for a normally incident gust. A Mach

number of M =0.3 is assumed.
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— Scattered
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150

180 e 0

Figure 6.3a. Directivity function, D, , calculated from Amiet’s analytic solution for
a flat plate airfoil, 4 =90°, M =0.3, 0, =30.5

0 3..008 —— total
— scattered
—— incident

180

210

Figure 6.3b. Directivity function, D,, , calculated by the numerical method for a
flat plate airfoil, & =90°,M =0.3, o, =30.5



Chapter VI: Airfoil Self Noise Prediction: Numerical Results 85

Figure 6.3a shows the directivity function D, (R,,"V,7/2,k ,0,®) calculated from

Amiet’s solution (equation (5.32)) at a reduced frequency of o, =30.5 ( f =800 Hz).

The radiation integral L in equation (5.32) for the incident, scattered and the total
pressure fields are calculated from equations (5.23), (5.25) and (5.22) respectively.
Figure 6.3b is the corresponding directivity function D,, calculated by the numerical

method of Eq. (5.34). The numerical and analytical solutions are in very close agreement.

The variation of IH pr , defined in Eqgs.(5.12) and (5.32), with reduced frequency

o, = k,b is plotted in Figs. 6.4. The observation point is taken at x =(0.0,0.0,150.0) m.

Figure 6.4a is obtained using Amiet’s solution (equation (5.32)) and Figure 6.4b
obtained by the numerical method given by Egs. (5.12) and (5.34). Again, excellent

agreement is obtained over the entire frequency range.
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Figure 6.4a. Modulus squared transfer function |H . |2 versus o, calculated by

Amiet’s analytic method for a flat plate airfoil, R, =150.0m, £¢=03, M =0.3
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Figure 6.4b. Modulus squared transfer function ‘H p ‘2 versus o, calculated by

the numerical method for a flat plate airfoil, R, =150.0m, ¢ =03, M =0.3
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6.2.2. Comparison of Numerical Results With Amiet’s Solution for Self-noise
Radiation in the Mid-span Plane due to Frozen Boundary Layer Turbulence

Figure 6.5 shows a comparison between the broadband self-noise spectrum predicted

using Amiet’s solution of Eq. (5.33) and the numerical solution of Eq. (5.15) for an

observer at x =(0.0,0.0,150.0) m. The correlation length is taken as [, = 2.1U, /@ for

consistency with Amiet (1976a). The combined Chase and Corcos spectrum of Egs.
(3.17) and (3.31) is used to represent the incident boundary layer turbulence frequency-
wavenumber spectrum. Figure 6.5 shows that at low frequencies, f <800Hz , the
numerical result is only about 1 dB greater than that predicted from the analytic solution.
At higher frequencies, agreement is less than 0.5 dB. In the intermediate frequency
range, agreement is even better. The main reason for the difference between predictions

1s because the numerical result includes integration over spanwise wavenumber £, ,
while Amiet’s solution makes the approximation that only %, =0 contributes to the

radiation in the mid-span plane. Figure 6.5 suggests that Amiet’s solution is a reasonable
approximation for flat plate airfoils with span large compared to the acoustic wavelength
for far field observers in the mid-span plane. The validity of Amiet’s approximation is

investigated further in Section 6.2.3.

Note that for the purpose of computational expediency, the numerical result presented in
Fig.6.5 only includes integration over a k, range of 0<k, <x/3. The error in the

pressure predictions incurred by this approximation was found to be negligible (see Fig.
6.29). The average computation time per frequency per observation point on a 1.2GHz
PC for the broadband noise predictions presented here for the Im x4m flat plate airfoil is
8.5 minute. For larger airfoils, more elements are needed to meet the sampling criterion,

which will therefore take a longer time, particularly for broadband noise calculations.
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Figure 6.S. Comparison of broadband self-noise prediction for a flat
plate airfoil, decay factor ¢ = 0.3, Mach number M =0.3

6.2.3 Variation of |H p|2 With Observer Position for Frozen, Normally Incident
Gusts

In Section 6.2.1, self-noise predictions are restricted to observer positions in the far field
mid-span plane. In this Section, the computation parameters are kept the same as in

Section 6.2.1 but with the constraint on observer position relaxed.

Figure 6.6 shows the directivity function D, (R,,VY,7/4,k,,0,) calculated from the

numerical method of equation (5.34) at a reduced frequency of o, =30.5( f =800Hz).
The parameters are the same as in Fig. 6.3b but with an azimuthal angle @ equal to 45°
rather than 90° as in Fig. 6.3b. Figure 6.6 indicates that for Fourier components of
surface pressure normally incident upon the trailing edge (k, =0) almost no noise is
radiated at observer positions away from the mid-span plane. This is the same
conclusion drawn by Amiet (1976a). Figure 6.7 shows the azimuthal directivity function

D,(R,,7/2,0,k ,0,w) for a polar angle of ¥ =90°. Again it suggests that noise due to
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normal incident wavenumber components is only radiated in the direction of the mid-

span plane (€ = £90°).

90 150010

180

Figure 6.6. Polar directivity function (in ¥ — direction) calculated by numerical
method for a flat plate airfoil, for 8 =45°,M =0.3, o, =30.5

180

Figure 6.7. Azimuthal directivity function (in & —direction) calculated by the
numerical method for a flat plate airfoil, for't =90°,M =0.3, o, =30.5
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Figures 6.8 shows the same calculation as plotted in Figs. 6.4 but with the observer

distance reduced to R, =50.0 m, i.e. x=(0.0,0.0,50.0) m. The dash line in Fig. 6.8

i 2 : : !
shows the variation of |H p‘ versus reduced frequency calculated using Amiet’s solution,

the solid line shows the corresponding variation calculated using the numerical method.
The difference between the two solutions is now significantly larger. It is due to the
break down of the geometric far-field assumption made in the Amiet solution. No such

restriction is placed on the numerical scheme proposed here.

2 . T T T T T Uy ! T 5
= numerical method
------ Amiet solution
18} |

(S .

7]
| Hy

(2 =

08

1 1 1 1

1 1
10 20 30 40 50 60 70 80 90 100

06 1 1 1
0

Reduced frequency, k_b

Figure 6.8. Comparison of the modulus squared transfer function |H 5 |2 for

a flat plate airfoil, for R, =50.0m, ¢ =0.3, M =0.3

6.2.4 Effects of Decay Factor on Self-noise Prediction

A decay factor of £ =0.3 is assumed for the incident pressure field in all calculations
presented in Sections 6.2.1 to 6.2.3. This section examines the sensitivity of the self-

noise prediction to this parameter. Figure 6.9 shows the modulus squared transfer

function ‘H plz plotted against reduced frequency o, . All the parameters are chosen to
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be the same as in Fig.6.4b, but with a decay factor reduced to & = 0.03 frome = 0.3. At

35 T 1 1 1 T 1 T 1 1
— total
— incident
BTl | el s el R b PRI S e I S Rt e e TN e e scattered

N
(8]
T
1

1 |
0 10 20 30 40 50 60 70 g0 80 100
Reduced frequency, x_b

Figure 6.9. Modulus squared transfer function ]H . |2 calculated by the numerical

method for a flat plate airfoil, for ¢ =0.03

small values of ¢ and o,, fluctuations in the ‘incident part’ of ’H plz (thin solid line)
indicates that Amiet’s choice of exponential function f, does not decay quickly enough
to avoid physically unrealistic behaviour in which the turbulence appears suddenly at the
leading edge. Figure 6.10 shows again ‘H p‘z plotted against reduced frequency o, but
with the position-dependent function f, calculated from Eq. (3.21) to perform the
calculation. In this case the function f, depends on the boundary layer thickness

through the boundary layer pressure spectra of Egs. (3.17), (3.18), (3.23) and (3.24).

Figure 6.10 shows that it gives the correct behaviour over whole reduced frequency
2 . . .
range inasmuch as |H p| due to the incident pressure is now very nearly frequency-

independent.
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Figure 6.10. Modulus Squared Transfer function |H 5 ‘2 calculated by the
numerical method for a flat plate airfoil, with f, calculated from Eq. (3.21)

Figure 6.11 is a plot of sound pressure level versus frequency computed using the
numerical method. The solid line shows the result with the position-dependent function

f, calculated by Egs. (3.21) and the dash line gives the result with the function f,

computed using the exponential function of Egs. (3.20). All other parameters in the
computation are the same as in Fig.6.5. Figure 6.11 suggests that the prediction of the

total radiated noise is not sensitive to the choice of position-dependent function f,

provided that the decay factor ¢ is not too small. This is because the contribution from
the incident pressure to the total radiated noise is small compared with that from the

scattered pressure.

From the above analysis, it can be seen that the behaviour of the predicted radiation

using Amiet’s exponential decay function f, of Eq. (3.20) depends on both frequency

and the choice of decay factor ¢. To simulate the correct behaviour of the turbulence at

the leading edge, a frequency-dependent factor & must be determined beforehand.
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However, there is a difficulty in choosing this arbitrary frequency-dependent factor ¢ to
give the required behaviour of leading edge turbulence. On the other hand, the position-
dependent function f, of Eq. (3.21) provides the correct behaviour of the leading edge
turbulence without the use of an arbitrary function. We therefore use the position-

dependent function f, of Eq. (3.21) for the remainder of the computations presented in

this thesis except in Section 6.2.7.
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Amiet decay function, &=0.3
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Figure 6.11. Comparison of the choice of position-dependent function for making
broadband self-noise prediction of a flat plate, decay factor ¢ = 0.3 for Amiet

position-dependent function f,

6.2.5 Variation of lH p|2 to Frozen Oblique Gust Components for Observers in the

Mid-span Plane

The results presented in Sections 6.2.1 to 6.2.4 are concerned with incident gusts that
impinge on the trailing edge at normal incidence (k, =0) and which convect at the

convection velocity. We now consider the radiation at positions in the mid-span plane
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for the more general case of a skewed gust (&, #0). Figure 6.12 shows IH plzplotted

against the reduced frequency o, based on the same calculation parameters as in Figure
6.4b but for dimensionless spanwise wave numbers of k,/x =0.0,0.5,1.5 . Here we
assume k, =x, corresponding to a frozen incident gust convecting at the convection

velocity. Figure 6.12 shows that the contribution to self-noise radiation from skewed

gusts is generally much smaller than that for the normally incident gusts at this mid-span

position.
10-4 T T T T T T T T T
Ak W_
"', — ky/x=0.0
QAo e S e o bt s SR Tl N Sl e e S k2/K=D_5
10k S kActs |
o~ o
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Figure 6.12. Modulus squared transfer function ‘H 5 ’2 versus o, , calculated by
numerical method for a flat plate airfoil, /, calculated from Eq. (3.21), &, =x_,

for different values of &, /x

6.2.6. Variation of ‘H ¢ ‘2 due to Non-Frozen, Normally Incident Gusts

In all the figures presented above, the boundary layer turbulence impinging on the airfoil

trailing edge has been assumed to be frozen (%, =« ). In order to assess the variation of
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|H o ’2 with variation in streamwise gust wavenumber £, # k_, i.e., with gust components
convecting at velocities other than the convection velocity, we plot in Fig. 6.13 the
modulus squared transfer function ‘H p‘z versus reduced frequency o, for various
streamwise wave numbers kb =10,30, 50, 70. Other parameters used in the calculation
are the same as those in Fig. 6.4b. It can be seen that |H p|2 generally increases as

kb decreases and x, increases. Thus, at any given frequency, low k; (large wavelength)

components in the kj-spectrum of non-frozen boundary layer turbulence, radiate more
efficiently than those of high streamwise wavenumber (small wavelength) components.
This is principally due to the high degree of cancellation that occurs for streamwise

components of wavelengths much smaller than a chord.

10. F T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

Reduced frequency, _b

Figure 6.13. Modulus squared transfer function IH plz versus o, calculated by

numerical method for a flat plate airfoil, f/, calculated from Eq. (3.21), k, =0,

for different values of kb
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6.2.7 Effects of Mean Flow Velocity on the Directivity Function

All the results presented in Sections 6.2.1 to 6.2.6 are calculated at a Mach number of

M =0.3. Figure 6.14 shows the directivity function D, (R,,w,7/2,k,,0,®) calculated

from Amiet’s solution (equation (5.32)) based on the same parameters as in Fig. 6.3a but
at a significantly higher Mach number of M =0.8. To ensure that there is no significant
contribution from the leading edge, a large decay factor of £=0.3 is used for the
calculation. By comparing Fig. 6.3a with Fig.6.14, it can be seen that at this higher Mach
number the main radiation lobe moves from the forward flight direction to the aft flight
direction, and that the contribution from the incident pressure now dominates that due to

the scattered component.

A B =g
: —— GScattered
=== |ncident

150 /

210\

270

Figure 6.14. Polar directivity function (in ¥ — direction) calculated using Amiet’s
analytic solution for a flat plate airfoil with 6 =90° and M =0.8

To understand this dependence of Mach number on directivity we separate the transfer

function H ,, expressed by equations (5.32), (5.22), (5.23) and (5.24), into the product

of three factors:
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wr, L2l (6.4)

AR KR, R,

The first factor is the radiation integral L of Eq.(5.22) but without the factor 1/ K . From

Egs. (5.22) to (5.24), it can be written as the sum of two parts:

Ly (%,k,,0,0) = L,y (%, k,,0,@) + L, (X, k,,0,®) = K, L(x, k,,0,) (6.5)

where L, is the contribution to the noise radiation from the incident pressure of the

form

K [1 _ e—z(eb|k1|+iKS ) ]

Lyy(X, k) = W
1 N

(6.6)

and Lg, is the contribution from the scattered pressure, given by

Loy (%K, by, 0) = %[\/ab Jkyerf =12k, )- e erf (= i2a, )+ 2% 1] 6.7)

This first term may be regarded as a source directivity factor since it relates to the

‘LO

2> 2>

pressure distribution over the airfoil surface. The directivity of the functions IL,O

and |LSO|, at Mach numbers of M =0.3 and M =0.8 are shown in Figures 6.15a and

6.16a, respectively. The other parameters used in the calculation are as for Figs. 6.3a and
6.14. Figures 6.15b and 6.16b are amplified versions of Figures 6.15a and 6.16a to allow

a clearer view. It can be seen that the mean flow velocity has no influence on the

contribution from the incident pressure L, , but shifts the lobes of the scattered pressure

towards the forward flight direction at higher Mach number.

The second part of the solution is the directivity associated with the factor 1/(K R,).

This term may be regarded as a geometric spreading factor and is plotted in Fig. 6.17 for
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Mach numbers of M =0.3 and M =0.8. It can be seen that the directivity lobe for
M =0.8 is significantly larger in the aft flight direction than that for M =0.3.

The third part of the transfer function IH p‘ of Eq. (5.32) is the factor |x3|/ R , and may

be interpreted as dipole directivity factor, as shown in the plot of this function in Fig.
6.18. It indicates that the main radiation lobes associated with this term are always
normal to the flat plate airfoil; the only effect of the Mach number being to alter the
magnitude of the main lobes.

The combination of the last two factors,

X3 I /(K ,R?), accounts for the propagation to the

far field. The directivity of this function is plotted in Figure 6.19 at Mach numbers of
M =0.3 and M =0.8. Figure (6.19) shows that the main lobes are significantly larger
in the aft flight direction at M =0.8 than at M =0.3. Figure. 6.16b suggests that

L,, > L, in the aft flight direction and Fig. 6.19 indicates there is a large amplification
in the same direction in the case of M =0.8. It is therefore not surprising that the
combined results of Figs. 6.16b and 6.19 account for a large noise radiation in Fig. 6.14
in the aft flight direction due to the incident pressure component. The results in Figs.
6.17 and 6.18 suggest that the mean-flow-corrected non-dimensional distance K R, are
the main reasons for the shift in the main radiation lobe in D,,, and not changes in the

source directivity.
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Figure 6.15a. Directivity of |L,|, |Lg,|, |,,] at Mach number M =0.3
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Figure 6.15b. Directivity of |L,|, |Lg,|, |Z,,] at Mach number M =0.3,
enlargement of Fig. 6.15a
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Figure 6.16a. Directivity of |L,|, |Ly|, |L,,| at Mach number M =0.8
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Figure 6.16b. Directivity of |Z,|, [Ls|, |Z,,| at Mach number M =0.8,
enlargement of Fig. 6.16a



101

Airfoil Self Noise Prediction: Numerical Results

Chapter VI

Figure 6.17. Directivity of geometric spreading factor1/(K R,)

Figure 6.18. Directivity of factor |x,|/R,
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270

Figure 6.19. Directivity of the combined factor |x3| / (RZK,)

6.3 Self-noise Radiation From a NACA 0012 Airfoil

In this section, we investigate the self-noise radiation from the general family of NACA
airfoils. Airfoil self-noise predictions using the numerical method given in Section 5.5 of
the last Chapter are compared with the empirical predictions due to Brooks et al.
(Brooks, Pope and Marcolini, 1989), which are based on experimental data from a
NACA 0012 airfoil. The numerical method will be applied to predict the self-noise
radiation from one of the NACA 0012 airfoils investigated by Brooks with 0.3048m
chord length, a span of 0.4752m, and which moves in the — y, direction with Mach
number M =0.208 at an attack angle of @ =4°. A convective velocity coefficient of

¢, = 0.8 is used. Figure 6.20 shows the suction-side mesh of the NACA 0012 airfoil

used for numerical calculation. The element dimension depends on the frequency

requirement for self-noise prediction. If the element size /, is required to be 10 times

less than acoustic wavelength for a mesh that is valid up to f =3000Hz, the element
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length should be less than ¢, /(10f)=0.0115m. Thus we use a mesh comprising 5952

triangle elements and 3038 nodes for the 0.3048mx0.4752m NACA 0012 airfoil. In

P S ey g
4‘,""‘*"'

T s, 7=
2SS

y:" x.’

Figure 6.20. Suction side mesh of the NACA 0012 airfoil for numerical calculation,
c=2b=0.3048m, 2d =0.4752 m

order to investigate the effects of airfoil geometry, the NACA 0012 prediction are

compared with prediction from a flat plate and a NACA 0024 airfoil. For the purpose of

comparison, meshes of a flat plate airfoil and a NACA 0024 airfoil with the same chord

and span length as the NACA 0012 airfoil were also created.

In this Section, the numerical method described by equation (5.34) will be used to

A Y

Y3

fP
O/
=

Figure 6.21. Airfoil coordinates

predict  the  self-noise
radiation. Amiet’s solution
is restricted to flat plate
and,

airfoils strictly

speaking, is therefore
unsuitable for this airfoil
geometry. The use of Egs.
(5.38) and (5.39) for the

numerical calculation of
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self-noise radiation requires the streamwise coordinate 77, of the airfoil profile to be
determined. Figure 6.21 shows the coordinate system (&, y,) used to express the airfoil
profile, where & is the abscissa normalized on chord and y, is the ordinate of the airfoil

thickness distribution, also normalised on the chord. The streamwise coordinate 7, may

be obtained from

mo=c | PV iy, /ae ag 68)

where ¢ = 2b s airfoil chord length. For a NACA 0012 airfoil, the thickness distribution
(see Abbott & Von Doenhoff, 1959) is given by

¥, =0.6(0.2969,/& —0.126£ — 0.3516£2 +0.2843E> — 0.10156) (6.9)

where 0 < £ <1. The derivative of y, required by Eq.(6.8) is

dy, ! dE =0.6(0.14845/[£ —0.126 —0.7032& +0.85295% — 0.406&) (6.10)

The integration of (6.8) is performed numerically.

For the flat plate calculations presented in Section 6.2, all computations were carried out
for zero angle of attack. It was therefore only necessary to perform the integration of Eq.
(5.12) on one side of the flat plate airfoil since, by symmetry arguments, the total
radiated noise is twice that for a (hypothetical) one-sided flat plate airfoil (Amiet, 1976a).
However, for an airfoil of arbitrary geometry with non-zero angle of attack, the
boundary layer turbulence on the airfoil pressure and suction sides differ and are
statistically independent. In this case, the surface integrations appearing in Egs. (5.12),
(5.14) and (5.15) for the radiated pressure spectra must be performed on each side of the
airfoil surface and the pressure spectral density due to each side added incoherently to

give the total noise radiation. This is the method adopted in the rest of the thesis.
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The combined Chase and Corcos spectrum described in Chapter II will be adopted for

the prediction throughout this section. The position-dependent function £, is calculated
from the spectrum of Eq.(3.21).

6.3.1 Relative Contribution to Airfoil Self-Noise Radiation from Oblique Gust
Components

In Section 6.2.5, the variation of ‘H p,z with %, was investigated for single gust

compoents on a flat plate airfoil. In this section, we investigate the relative contribution
to self-noise radiation from the different k, components in a turbulent boundary layer

comprising all £, components simultaneously. Figures 6.22 and 6.23 present a plot of the
dimensionless integrands, IH pIZS'qq /UC(O.Spoé'*)ZU3 , in Eq. (5.15) against spanwise
wavenumber k,f/x, (solid line). This complicated expression plotted against £,

specifies the relative contribution to airfoil self-noise radiation from the different %,

components (recall that £; is the transverse wavenumber components in the curvilinear
coordinate system attached to the airfoil). The calculations are made at the mid-span

observation point x =(0.0,0.0,1.22) m, with U =71.3 m/s at reduced frequencies of
o, =5.0,20.1,35.3,50.4 ( f=300Hz, 1200Hz, 2100Hz, 3000Hz). Other parameters
used are ¢, = 0.8 and a =4°. Also shown for comparison (dashed curve) is the function
F(k,) of Eq. (6.11) below, which is the factor appearing in the Amiet solution of Egs.
(5.26) and (5.27) for describing the variation of self-noise radiation with %, due to a flat

plate airfoil,

sin?[(k, —xx,/R,)d]
(k,—kx,/R) md

F(k,)=A4 (6.11)

where A4 is a constant chosen arbitrarily to allow straightforward comparison with the
numerical result. It can be seen that Eq. (6.11) provides a reasonable fit the £, -
dependence of the integrand in Eq. (5.15). Amiet makes the further approximation that
Eq. (6.11) tends to a delta function at high k,d , suggesting that in this limit, only the
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single k- component, k, = xx, /R , makes a significant contribution to the far field

radiation.

This behaviour is corroborated in figure 6.23. It shows that, at high frequency, the main
contribution to broadband self-noise radiation for mid-span observers x, = 0 comes from
the Fourier components of pressure arriving at the trailing edge close to normal
incidence, k; = 0. This is due to the lack of cancellation in spanwise direction when a
turbulent component arrives at the trailing edge in the normally incident direction. At
low frequencies, as shown in Fig. 6.22, a broader spectrum of k,-components can be
seen to be making a significant contribution to the radiated pressure, including subsonic

wave components for which &, 5/x, > 1.

18 x 10
|H I /U . R —— #=300Hz, numetical
Sl e ---- £=300Hz, Eq.(6.11)
(0.5 05 YU \\ —— =1200Hz, numetical
o o Sl SR R £1200Hz . Eq.(6.11)
1.2F

kB,

Figure 6.22. Non-dimensional integrand of Eq. (5.15) versus spanwise wavenumber
k,pB/x, for frozen incident turbulence, suction side, /' =300Hz, 1200Hz



Chapter VI: Airfoil Self Noise Prediction: Numerical Results 107

‘H ‘ /U —— £=2100Hz, numerical
--=- £=2100Hz, Eq.(6.11)
3
(0-5 5 ) U — f=3000Hz, numerical
------ £=3000Hz, Eq.6.11) |

kB,

Figure 6.23. Non-dimensional integrand of Eq. (5.15) versus span wise wave
number k, S /x, for frozen incident turbulence, suction side, /' =2100Hz, 3000Hz

6.3.2 Broadband Self-Noise Directivity and the Effect of Airfoil Geometry

In this section, we investigate broadband self-noise directivity and the effect of airfoil
geometry on self-noise radiation. Figures 6.24, 6.25, and 6.26 present the polar
directivities of broadband self-noise, D(W¥,7/2,w) , evaluated in the mid-span plane, for
a flat plate, and a NACA 0012 and a NACA 0024 airfoil. The parameters used for the
calculation are R, =10.0m, k, =x,, 8 =7/2, ¢, = 0.8, and an attack angle of o =4°.
Other parameters used in Fig. 6.24 are the frequency /' =1042.8 Hz (o, =12.13) and the
Mach number M = 0.3. Figure 6.25 has the same Mach number as Fig. 6.24 but with a
higher frequency of f =2780.8 Hz (o, =32.35). Figure 6.27 has the same frequency as
Fig. 6.24 but at a higher Mach number of M =0.8. In these three figures the
directivities for the NACA 0024 airfoil, the NACA 0012 airfoil, and the flat plate are
represented by the dark solid line, the dotted line and the solid line, respectively. All
airfoil geometries have the same chord of ¢ = 0.3048 m and span of 2d =0.4752 m.
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The directivity patterns exhibit asymmetric behaviour due to the non-zero angle of
attack. In contrast with the single wavenumber directivity function of Fig.6.3, the
broadband directivity function vary very slowly with polar angle. Airfoil geometry does
not appear to appreciably alter the directivity pattern relative to a flat plate airfoil but it
does significantly alter the sound pressure level in the airfoil chord direction, ¥ = 0, m,
this effect being most pronounced at high Mach number. This effect of flow speed on
directivity has been investigated in Section 6.2.7 for a single harmonic component of

boundary layer pressure.

— flat plate
------ NACA 0012
— NACA 0024

i e - S S S 0

Figure 6.24. Polar directivity (in ¥ -direction), D(‘¥,7/2,®)-13.0dB, of broadband
noise for frozen incident turbulence, o, =12.13, M =0.3
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— flat plate
------ NACA 0012
— NACA 0024

150

(1 0| SRR - =5 o 0

Figure 6.25. Polar directivity (in ¥ -direction), D(¥,7/2,®)-13.0dB, of
broadband noise for frozen incident turbulence, o, =32.35, M =0.3

— flat plate
------ NACA 0012
— NACA 0024

180 | 4smet oot L A 0
& vy A :

Figure 6.26. Polar directivity (in ¥ -direction), D(Y,7/2,w) -13.0dB, of
broadband noise for frozen incident turbulence, o, =4.549, M =0.8
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Figures 6.24 to 6.26 show the self-noise polar directivities, D(\¥,7/2,®) in the mid-

span plane. We are now concerned with the directivity pattern at an arbitrary position
away from mid-span plane (€ # 7z /2). Figure 6.27 shows a comparison between the
directivity patterns evaluated in the & =z /2 plane (mid-span plane) and the 8 =7/4
plane (non mid-span plane) for a NACA 0012 airfoil. It can be seen that the broadband
directivity pattern does not alter significantly from the & = 7z /4 plane to the 8 =7/2
plane. Figure 6.28 shows the self-noise azimuthal directivity, D(z/2,0,w) , in the
Y =7/2 plane for a NACA 0012 airfoil. Figure 6.28 suggests that the self-noise is
about 20 dB lower in the spanwise direction (€ =0) than in the normal spanwise
direction (€ = /2). The computation parameters used to calculate Figs 6.27 and 6.28

are the same as for Fig. 6.24.

270

Figure 6.27. Polar directivity, D(¥,7/2,®)-13.0dB, of broadband self-noise (in ¥ -
direction) for frozen incident turbulence, o, =12.13, M =0.3
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270

Figure 6.28. Azimuthal directivity, D(7z/2,6,), of broadband self-noise (in & -
direction) for frozen incident turbulence, o, =12.13, M =0.3

6.3.3 Broadband Self-noise Spectral Predictions

In this section, the broadband self-noise prediction obtained using the numerical scheme
presented in this thesis is compared with the empirical prediction scheme proposed by
Brooks. The effect of airfoil geometry on the broadband self-noise spectrum will then be
discussed. The effect of airfoil geometry on directivity has previously been discussed in

Section 6.3.2.

6.3.3.1 Validation of Airfoil Self-noise Prediction Scheme

By way of validation of the proposed prediction method, Figure 6.29 shows comparisons
between the numerical predictions of broadband self-noise with that predicted using the
empirical prediction scheme due to Brooks. The Brooks scheme is based on a regression
analysis of extensive experimental data of the self-noise radiation from a NACA 0012
airfoil over a broad range of flow speeds, angles of attack and chord lengths (Brooks,

Pope and Marcolini, 1989). The sound pressure level (SPL) is defined in equation (6.2).

“a



Chapter VI: Airfoil Self Noise Prediction: Numerical Results 112

span of 0.4752m, moving in the — y, direction with Mach number A/ =0.208. The
observation point is at x =(0.0,0.0,1.22) m, to be consistent with the experimental set up
of Brooks. In Fig. 6.29, the solid line is the result calculated from the Brooks prediction
scheme. The dark solid line is the numerical prediction assuming frozen boundary layer
turbulence integrated over the full &, range (with upper limit of integration chosen to
ensure convergence of the pressure prediction), while the dashed line is the numerical
result integrated within the range of supersonic wavenumber components only,

0<k, <k . The dotted solid line in Fig. 6.29 is the broadband noise prediction for non-

frozen boundary layer turbulence integrated over the k, range of 0 <k, < x as calculated

‘40 1 T 1 1 1 T

) w ) &3]
[N} N o) ao
T T T T

1

Sound pressure level, dB
W
O
T

— Brooks formula
P TN e SRR frozen full Kt range
—— frozen,supersonic Kt range

2L —e— nan-frozen,supersonic Kt range |
—&- non-frozen,average in 1/3 octave band
20 1 1 1 1 1 1
1] 500 1000 1500 2000 2500 3000

Frequency, Hz

Figure. 6.29. Comparison of broadband self-noise with Brooks empirical prediction

from Eq. (5.14). The numerical predictions are shown to be within 6dB of the Brooks
prediction. Note that the Brooks prediction scheme applies to 1/3 octave bands only and
cannot capture the details in the spectrum. The solid line with circles shows the spectral
density averaged in 1/3 octave bands for non-frozen boundary layer turbulence

integrated over the supersonic k&, range. At the high frequencies this matches the Brooks
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data slightly better. Figure 6.29 shows that the contributions from subsonic %,
components become increasingly small as frequency increases. It also suggests that the
frozen turbulence assumption gives a better approximation at low frequency than at high
frequency. The difference in the self-noise prediction between the frozen and non-frozen
gust assumptions is about 2 dB at high frequency. Thus, the frozen-turbulence
assumption appears to be a reasonable assumption for making airfoil self-noise

predictions.

The computation time for numerical prediction presented here is 4.5 minutes per
frequency per observation point for frozen incident turbulence over full £, - integration
range while for a k,- integration range of 0 <k, <k, the computation takes only 2.2
minutes per frequency per observation point on a 1.2 GHz PC. However, for non- frozen
turbulence, which involves performing an additional integration over %, , the

computation takes 240.9 minutes per frequency per observation point for a supersonic

k,- range integration of 0<k, <x ina 1.2 GHz PC.

6.3.3.2 Effect on Airfoil Self-Noise Radiation due to Airfoil Geometry

Figures 6.30 to 6.32 show broadband self-noise prediction for the three airfoil
geometries of, NACA 0024, NACA 0012 and a flat plate airfoil. Figure 6.30 is the self-
noise prediction at observation point x =(0.0,0.0,1.22) m (at ¥ =90°) for a Mach
number of M = 0.208, Figure 6.31 is for the same set of parameters as in Fig. 6.30 but
with Mach number of M =08 , Figure 6.32 is the prediction at
x=(-1.178,0.0,—0.316)m (at ¥ =195°) for a Mach number of M =0.8. These figures
suggest that at high Mach number, airfoil geometry may significantly influence the
radiation, particularly in the forward flight direction, as indicated in Fig. 6.26.
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— NACA 0024
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Figure 6.30. Comparison of broadband self-noise for different airfoil geometries,
at observation point x =(0.0,0.0,1.22) m, M = 0.208

SPL,[dB]
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Figure 6.31. Comparison of broadband self-noise for different airfoil
geometries, at observation point x =(0.0,0.0,1.22) m, M =0.8
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Figure 6.32. Comparison of broadband self-noise for different airfoil geometry,
at observation point x =(-1.178,0.0,—-0.316)m, M =0.8
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Chapter VII

Rotor Broadband Noise Prediction:

General Formulation

7.1 Introduction

This Chapter describes a frequency domain approach for the prediction of broadband
noise radiated from a rotor or propeller in free field. The formula obtained can also be
used to calculate the tonal noise when the surface pressure is taken as a steady force
distribution due to the lift and drag forces over the rotating blades. The approach has
particular application to fan broadband self-noise. This generalized formulation allows
for the integration of the steady and unsteady forces over the real blade surfaces and
hence no thin airfoil approximation is made, as has been done in previous
studies(Hanson,1983). The relationship between the spectrum of unsteady surface
pressure and the radiated far-field spectrum is clearly established. The unsteady blade
loading, which constitutes the aerodynamic sound sources, can be estimated by
combining single-airfoil theory discussed in Chapter IV, the representation of the
turbulence wavenumber spectrum proposed by Corcos (1963), and the measured
boundary layer frequency spectrum and boundary thickness measurements made by
Brooks, Pope and Marcolini (1989). The application of unsteady airfoil theory to predict
the self-noise due to a rotor blade requires an assumption that the boundary layer
turbulence at a particular spanwise position is the same as that on an airfoil of infinite
span with prismatic cross section at the same mean free-stream velocity and angle of
attack. This is similar to the strip theory used for an airfoil (for example, Goldstein,

1976).
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7.2 Co-ordinate Systems

The analysis presented here is formulated in a moving reference frame (aircraft-fixed

coordinates), which moves with constant velocity U = (U,0,0) as shown in Fig.7.1. In

the moving reference frame, the coordinates of the observation point and source point in

¥s

Figure 7.1. Relation between the moving coordinate system y = (y,,7,,6,) and the

blade-fixed coordinate system y’ = (y,,7,,6,)

a cylindrical coordinate system are denoted by x =(x,,7,0") and y=(y,,7,,6,) »

respectively. The relationships between the rectangular coordinate system and the
cylindrical coordinate systems are:
X =%Xs %y Srcosf x, =rsind’ (7.1)
Vi =Y Yo =1, 0086, y; =1, sin g, (7.2)

In the blade-fixed coordinates, the observation point and the source point are
respectively denoted by x° =(x,,7,0) and y’ =(y,,%,6,) . The transformations

between the moving coordinate system and the blade-fixed coordinate system are:
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x(x,,7,0") = x*(x,,r,0 - Q7)

y(ylaroag(;)zyb(ylnr():eo —QT)

(7.3)

(7.4)

where 7 is the time associated with the emission of sound, and Q is the angular

velocity of the blade rotating in the opposite direction of ;, as shown in Fig.7.1.

In addition to the rectangular coordinate system y = (y,,,,v,) employed in this thesis,

F Y
Ys Y

rotor hub

M.

Figure 7.2. Blade curvilinear coordinate system
(n,,7m,) and associated wavenumber (k_,k,)

we also make use of the

curvilinear coordinate system

n=(3,,7,) to express the

surface pressure distribution, as

shown »in: -Fig,.” 7.2 " Here
n,=n, (y’) is the streamwise

arc length with the origin

located at the trailing edge and
n, =n,(y") is the spanwise arc
length normal to 7, upon the

suction-side or pressure-side

surface. Correspondingly, we

use k, and k, to denote the streamwise wavenumber and the spanwise wavenumber,

respectively.

If we use a cylinder of radius 7,

cut through the propeller blade

with cylinder axis parallel to the

A

propeller axis, the blade section

21t Qr,

profile will closely fit onto the gjgure 7.3. Geometric pitch triangle and

cylinder surface. Unwrapping the hydrodynamic v_elocity triangle (the arrow
shows the direction of fluid velocity) , pitch

cylinder surface onto a flat plane

forms a right-angled triangle as angle «

angle S,, hydrodynamic angle /5, and attack
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shown in Fig. 7.3. The adjacent side of the triangle is the circumference 277, of the

cylinder circular end. The opposite side is the advanced distance (pitch distance), P, of
a point along the helicoidal chord line when the point rotates with a full circular angle.
The hypotenuse forms part of the blade section chord line as shown in Fig. 7.3. The
angle formed between the adjacent side and the hypotenuse is referred to as the

geometric pitch angle £, .

Figure 7.3 also shows the velocity triangle formed from the propeller forward flight

velocity U, the blade section rotational velocity Qr,, and the resultant inflow velocity

U,, given by

U, =U? +(Qr,)’ (7.5)

From this velocity triangle, shown in Fig. 7.3, the relative inflow angle [, can be

obtained by

By =tan™(U/Qr,) (7.6)
Finally, the attack angle ofithe blade section is given by

a=pf,- By (7.7)
7.3 Unsteady Blade Surface Pressure Estimation

We assume that the blade section develops the same surface pressure distribution as an

isolated airfoil with the same local inflow velocity U, , the same angle of attack « , and
the same sectional geometry. Here the local incoming velocity U, at the blade section of:
radius 7, is used instead of the airfoil incoming velocity U . Under this assumption, the
pressure, p,(y’,7), of Eq. (4.30) on the blade surface can be written in terms of an
integral over wavenumber-frequency components p,(k,,k,,®,) of the incident surface

pressure ofithe form
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Py 1) = [ [ [H,(5" &, b 0,) Bk, K, 00)e™ 70 de dk d oo, (7.8)

—00—00—00

where @, is the source angular frequency measured in the blade fixed coordinate

system.

The turbulence wall pressure p,(y,7) is measured in the blade fixed coordinate system,

which we now denote by p,(y®,7) . The surface pressure varies along the chord
direction of the blade-section airfoil. This variation is accommodated in the position-

dependent function, which we now indicate by f,(y’,k,@,). Note that f,(y’,k,@,)

varies in the streamwise direction as well as the blade spanwise direction because the

incoming velocity U, and the angle of attack « vary along the rotor radius 7,. For an

airfoil of uniform profile, f,(y,k,®,) =1 along the airfoil trailing edge. However, for a

rotating blade, f, (y’,k,m,) #1 along the blade trailing edge. To allow for this

situation, equation (4.29) must be reformulated as

1,0 K,@,)+1 £, (¥75. K, @)H (y° K, ,), y° on the turbulence side
H,(y" k,w,) =
-1/, (Ve K, 0)H (¥ K, 0,), y® not on the turbulence side

(7.9)

where y», takes coordinate value of y” at the trailing edge, in the coordinate system of
(17.,1,)» Yor =(0,7,) . Note that the quantities M,, B,, u,, K in Eq. (7.9) take their

local blade section values at radius 7.

When the transfer function H, of Eq. (4.27), which is valid for a single airfoil, is

applied to a multi-bladed rotor, an inherent assumption is made that the blade surface
pressure due to the scattering of sound by adjacent blades can be neglected. However, if

the incident surface pressure spectrum is measured on a rotating blade surface with
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adjacent blades present (Carley and Fitzpatrick, 2000), the scattering effects of adjacent
blades will have been included in the incident pressure spectrum. On the other hand, we
shall emphasize that the effects of multiblade geometry on sound radiation are always

included in the later derived formulation by integrating over all the blade surface.

7.4 Important Identities for the Derivation of the

FrequenAcy-domain Formulation

In this section, mathematical identities will be presented to assist further derivation of
the frequency-domain theory developed in the next section for making rotor self-noise

prediction.

As described in Section 1.2.3, volume-displacement sources due to the blade thickness
and quadrupole sources outside the blade surface are only important at high relative flow
speeds close to the sound speed. We shall therefore confine our attention to the sound
radiation due to the unsteady blade forces exerted by the blade surface on the adjacent
fluid, caused by turbulence interaction with the airfoil and its trailing edge. Thus, we are

concerned only with the second term of Eq.(2.5), which we now denote by

p(x,1) = fT 1] %C-;- f,dS(y)dz (7.10)

Sy =77

The difficulty arises in the evaluation of Eq. (7.10) because the emission time 7 is
implicitly included within its integrand. In order to avoid this difficulty, the following
key steps will be employed to reformulate the governing equations in the frequency
domain. Equation (7.10) is expressed in the moving, aircraft-fixed coordinate system.
The cylindrical coordinate system described by Eqs.(7.1) and (7.2) will be employed for

convenience. It is natural to express the observation point X =(x,,7,6’) in the moving
reference frame, while the source point y® = (y,,%,,6,) is expressed in the blade-fixed

coordinate system, thereby allowing simple integration of the source distribution over

the blade surface, as required by Eq. (7.10). The coordinate transform (7.4) will
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therefore be applied to Eq. (7.10), but the coordinate transform (7.3), which is related to
the observation point, will not. With the above considerations, the mean-flow corrected
distance R in the Green function of Eq.(2.13), in which the observation point

x=(x,r,0") is expressed in the moving coordinate system and the source point

¥y’ =(y,,7,,6,) expressed in the blade-fixed coordinates, becomes

R=+(3,—x)* + B2[r? + 12 —2rr, cos(8, - Q7 —0')] (7.11)

Note that only the source-time variable 7 appears inside the expression for R, and not
the observation time ¢. Fourier transformation of Eq. (7.10) with respect to ¢ using the

Green function of Eq.(2.13) can therefore be carried out explicitly to give

eiyw,X2+Rg
= (7.12)

R JXx*+R?

where X =y, —x, , R, = ﬂ\/rz +r] —2rr,co8(0, -Qr—0") , and u=x/B* defined

after Eq.(2.14). Equation (7.12) can be rewritten as an integral over a separable function

of X and Ry by using the identity (Gradshteyn and Ryzhik (1965))

ei,u\/X2 +R2 . ™

l i
_\/_X2+=R2 = j X HO R u? —k2)dk, (7.13)
0

-0

where H{" is the zero order Hankel function of the first kind. In what follows we shall

also make use of the identity:

Hgl>(KoJr2 +r2 =2rr, cos(8, -Qr - 6")) = ZJM (K,r)HP (K1, )e™ G278 (7.14)

m=—w

where
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Ky=pB1’ -k, r.=min{rn}, r, =max{r,r,} (7.15,7.16,7.17)

and J, denotes the m™ order Bessel function of the first kind. The useful aspect of

Eq.(7.14) is that 7 now only appears in a complex exponential term, which allows the

integration of Eq. (7.10) with respect to 7 to be readily performed.

7.5 Radiation Transfer Function and Pressure

Spectrum

Consider a rotor comprising N, blades. Substituting the Green function of Eq.(2.13)

into Eq. (7.10) for the radiated pressure due to a single blade surface S, gives

7 o 1 1
pxn= [ j [, ) [ R U g (R MO —xI»—r]}dS(y)dr (7.18)

Fourier transforming Eq. (7.18) with respect to ¢ gives the acoustic pressure due to a

single blade as

Px.@) =5 [px.ne~d
- (7.19)
— 1 1 T ior a 1 iR _iuM (y~xy)
R [T !Iﬂ(y,r)e E’:Ee "t dS(y)dr

Substituting Egs. (7.12) to (7.14) into Eq. (7.19), and noting that on a blade

surface y, = S,(r,,0,) and hence dS(y)=+/1+(8y,/0r,)* +(y, [r,86,)*r,d6,dr, , leads

to
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pay=L [ [l r)e’“\/l{zysj C%}

x_a_{: z (o) Ig (X rOako,w)el(ko+W)yldk :Irode drodr

O} |
(7.20)
where g"(x,#,k,,®) is defined as
g" (X, %, ko, @) = ®H08 J (K r YH (K,r,)e ™ (7.21)
The blade loading f; in Eq.(7.20) is related to the surface pressure by
f(y’,7)=~up,(y’,7) (7.22)

where n = {n,,n,,n,} is the unit normal vector pointing inwards from the blade surface.
Substituting Eq. (7.8) and Eq. (7.22) into Eq. (7.20) allows p(x,®) to be expressed in

the form,

@)= [ [p(xk,.k, w)dk,dk, (7.23)

—c0—00

where p(x,k,,k,,®) is the contribution to the radiated pressure from each wavenumber

component of boundary layer pressure at frequency @ . Each of these components can be
related to the Fourier components of the incident surface pressure via a transfer function

H,(X, k., k,,»,0,) defined by

PO K 0) = [H (%, K, 0,0) b, (K, K, 0) do, (7.24)
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From Egs. (7.20), (7.23) and (7.24), H , is given by

2
__° i(kgng+ho,) ayl _l_iy1_ b
H, (ki kom0 =25 3 HH (" s @ )e ,/1{&0] +[r0 600] m, (")

% Bi_b [ oo J’ g" (x,7y, ko, )e' 07 gl }5 (0, -0+ mQ)}rodﬁodro

J

-0

(7.25)

where we have used the identity
5(0)0 —o+ mQ) — L '[T e_i(wo_w+MQ)TdT (7.26)
27 +T

Equation (7.25) only requires integration over a single blade surface S;. In order to

include the effect of all NV, blades, we denote the &, -dependent terms in Eq. (7.25) by

Fi(y’ Kos ey ey 0,00) = 1, (v Y H (K, K, )00
(7.27)

x g kot M)y, \/1'*‘(8_)11/87’0)2 +(ay1/r0590)2

which for a single blade lies within the finite range of blade angles -6, <6, <6, as

shown in Fig.7.4.

blade i

blade i+7

Figure 7.4 Definition of blade angle
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It will be shown to be useful to express F; as a Fourier series expansion in the form of
Fjj(yb’ kO’ ks ] kz: w’ a)o) = Zﬁ"j’(ro’ kO: ks bl kts wa a)o) ei(”/ga)lgo (7°28)

l=—

with Fourier coefficients ! given by

R R 24

00
Ii?(%,ko,ks,k,,a),a)o)=% jF,.(y”,ko,k k,m,m,)e "o V0gQ, (7.29)
a -,

Substituting Eq. (7.28) into Eq. (7.25), and summing over N, blades, H, becomes

L) o 6,
Hp(x,ks,k,,w,wo)=;—;z > |7 8@ -0+mQ) B, [ db,
== m=—w -8,
x I{i(ko+,uM)13‘1’(r0,k0,kS,k,,a),a)0)+ﬁ‘2’(r0,k0,ks,k,,a),a)o)§—
—0 7'0
im 2, .
+—F; (roakoaksaktsa)awo):|g (X,I’O,ko,a))dkodro
%
(7.30)

where 7, and 7, are the radii of the blade root and blade tip, and ,, = (z/6,)! +m . The

term B,, is the blade-number amplifying factor, defined by

1 _ eiNblulmac

B] — 1 + eiiulmgc + eiz/‘lmgc 44 ei(Nb"'l)/Jlmec =
m 1 — e‘#lmgc

(7.31)

where 6, =26, is the blade angle defined in Fig.7.4, and 4, =(z/6,)I+m . For
overlapping blades the surface integral of Eq. (7.30) should include the overlapped

blades and both sides of each blade surface.
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The integration of e*»% with respect to 6, in Eq. (7.30) gives

I, =2/, )sin(u, 7/ N,) so that

B, I,|=2xsin(p,, ) (44, 7)|. Since N, = z/6, and
M, =N,/ +m must both take integer values, it can be seen that lB,mI gl #0 only for

H,, =0, and is zero for all other u,, values. Thus, m=-N,/, (/=0,1,2,---), and so

I,B,, =2z . Equation (7.30) therefore reduces to

H, (%K, k,0,0,)= D> H Xk, k,,0,0,)5(@, — 0+ m) (7.32)

[=—c0
where the transfer function H, due to the /™ Fourier series component is given by

<3

-i% - : 0
H\ (%, k., k., 0,0,) =7 Iro Il:l(ko +/1M)Fil(roakoaksakt’w=a)o)+F;1(roakoakssktawsa)o)—

)

+ B (ro,ko,ks,k,,a),a)o)}g’”(x, 7, k,, 0)dk,dr,
I

0

(7.33)

where m=—N,[ . It can be seen that the term H, can be interpreted as the transfer
function between the radiated acoustic pressure at the observation point and the
harmonic pressure component on the blade surface of frequency @, and wavenumbers

k,, k,. The Fourier coefficients £ ! serve as weighting factor in the transfer function of

Eq.(7.33). Substituting Egs. (7.27) and (7.29) into Eq. (7.33), the transfer function H,

can be reformulated as

H,(x,k k,0,0,)=

;Zb I} 0] [k + g ym, + 1, (8] 8r,) + my (im/[7,))

(7.34)
% ei(k0+;LM)ylgm(X, roakoaa))kko . Hq (yb,ks , k;: a)o)ei(ksﬂsﬂqfh)dS(yb)
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Note that the relation dS(y”)=dS(y) is used in the derivation of Eq. (7.34) since the
area element is invariant under the coordinate transformation of Eq. (7.4). Equation

(7.34) shows that the transfer function H, is an integration over a rotor blade surface,

and the integrand involves the normal vector of blade geometry, the pressure source on

the blade surface, and a form of Green function for rotating sources.

Substituting Eq. (7.32) into Egs. (7.23), (7.24) and performing the integration with

respect to @, , the expression for the radiated pressure is of the form

Pxo)=) | j H,(x,k,,k,, @, 0+ N,IQ)p (k,, k,, o+ N,IQ)dk dk, (7.35)

I=—0_0cn

Equations (7.34) and (7.35) show that the pressure received at frequency @ is due to the

blade surface pressure at the frequencies, @, =w+ N,JQ , which corresponds to
frequencies shifted by the blade passing frequencies, w, = N,IQQ, where [ takes all

integer values. For broadband excitation, the radiated pressure p may be regarded as a

random process which is most suitably expressed as a power spectral density, defined by
S, (x,0)8(a' ~w) = E[f’ (x, @) B(x, )] (7.36)

Inserting Eq. (7.35) into Eq. (7.36), making use of the statistical orthogonal relationship
of Eq. (3.4), and integrating the result with respect to @', gives the final result for the

power spectrum of the radiated pressure as

S, (x0)=> [ [|H,&k,k,0,0+NJQ) S, (k,k, o+N,IQ)dkdk, (1.37)

I=—0_co—o

Equation (7.36) reveals that the source spectrum evaluated in the blade-fixed reference

frame S, (k,,k,,®,) appears shifted in frequency by multiples of the blade passing

frequency in the moving frame, S (k,k,, @+ N,IQ).
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For frozen turbulence, substituting Egs. (3.11) and (3.30) into Eq. (7.37) and integrating

the result with respect to k&, gives the radiated pressure spectrum in the form

st

1 &7 A
Spp(x,w)=5—z _ﬂH,(x,kS,kt,a),a)+Nle)|2 S, k., k,)dk, (7.38)

¢ l=—o_g

where k, = (@+N,IQ)/U., U, = ¢,U, = c,{JU* +(0.7Qr,)* . Note that for the position--
dependent function f,, a reference point should preferably be taken at the trailing edge

at 0.7 ofthe rotor disk radius.
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Chapter VIII

Rotor Broadband Noise Prediction:

Benchmark Problem

8.1 Introduction

In this Chapter, the Category 2 benchmark problem of the 3" CAA Workshop (see
Category 2—Rotor Noise, 1999) is used as a test case to provide verification of the
frequency-domain formulation for propeller noise described in Chapter VII. The
Category 2 benchmark problem is concerned with the tonal noise generated by a
hypothetical rotor, which is represented by a rotating body force distribution specified
over a volume. The body force distribution is chosen so that its radiation has an analytic
solution which can be used for the purpose of comparison. Two equivalent formulations
will be presented for numerical computation. Mean flow effects on the directivity of the
radiated sound are also discussed in this chapter, which are not accounted for in the

benchmark analytic solution.
8.2 Description of the Benchmark Problem

The Category 2 benchmark problem relates to the sound field generated by an open
rotor. The rotor is represented by a rotating body force distribution (see Category
2—Rotor Noise, 1999). In our notation, this steady body force distribution is prescribed
by
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5 |01386% —iN)e VT, (Ay 1) r/d <1
7(y)=- ay’ = (8.1)
’ o, r/d>1

where N, =8 is the blade number, J, (Z) is the Bessel function of order N, ,

Ay, =9.64742 , d is the blade span and Bj(y,z')zﬁj(y)ei“’°’ is a steady body force
component in the j - coordinate direction described in the Category 2 benchmark
problem, and @, = N,Q is the source frequency. Equation (8.1) may be rewritten in the

form

Y(¥,7) = F(¥)e™" = P(y,,7,)e" B (8.2)

where 7(y,,r,) is the steady body force distribution y(y) without the 6, -dependent

term e™*® . Note that Egs. (8.1) and (8.2) are expressed in the moving reference system

y =(,,%,6,) (airplane-fixed coordinate system) rather than the blade-fixed coordinate

system yb =(¥,,%,6,) .

Substituting Eq. (8.2) into Eq. (2.3) and neglecting terms related to the boundary surface,
the integral of Eq.(2.3) becomes

px0) = [ [[[P0m)e"™ e Gx, 5y,2)dydr (8.3)
v(r)

Now substituting the Green function of Eq. (2.13) into Eq. (8.3), the radiated sound

pressure due to the rotating body force distribution is given by

~ iNyGy iwgr 1 1
pxt)= [ j( j )jy(yl,ro)e”e o 5[“ Fe, (R+M(y1—x1))—t}dydr (8.4)
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Fourier transforming Eq. (8.4) with respect to ¢ gives the frequency domain solution in

the form

1 5 ;
P(x,w) = s J‘ p(x,0)e’”'dt
7 (8.5)

=ii fT ‘{g}?(yl,ro)eiN”a"’ei(m%)T—;Ee'wdyd‘r

where E=R+M(y,-x,), u=x/p*, k= w/c,, @ is the observation frequency, and

R is the mean-flow corrected distance given by

R=+/(3, —x,)* + B[r? +12 —2rr, cos(6, — 6)] (8.6)

in which both observation point x=(x,,#,6") and source point y=(y,,#,0,) are
expressed in the moving reference frame (airplane-fixed coordinate system). The main
difference here from the last Chapter (see Section 7.5) is that the source coordinate y, is
independent of the source time 7 in Eq. (8.5). In the Ilast chapter,
v, =8:(r,,6,) =S,(%,,0, + Q) is a function of 7 in the moving reference frame because
the integration of Eq. (7.19) has to be carried out over the two-dimensional blade

surface. Since the distance R in Eq. (8.5) is independent of the source time 7, the

integration of Eq. (8.5) with respect to 7 can be performed to give

_ 1 N e |
Px0)=— Vj(!)jy(yl,ro)e —eHdyso+a,) (8.7)

Fourier transformation of Eq. (8.7) with respect to @ give the radiated acoustic pressure

in the time domain as

1

[P ey 83)

v(7)

p(x,0) =
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Equation (8.8) suggests that the radiated noise from a rotating body force distribution
may be obtained by integrating the source distribution over the source volume in the
moving reference frame rather than the blade-fixed coordinate system. This concise form
of Eq. (8.8) with the integration expressed in the moving reference frame is
computationally more efficient than the expression presented below with the integration
expressed in the blade-fixed coordinate system. However, it is more natural to perform
the integration in the blade-fixed coordinate system while the observer remains in the
moving reference frame. Furthermore, for the purpose of verifying the formulations
derived in the last chapter, we now derive an alternative frequency domain formulation

with the integration expressed in the blade-fixed coordinate system.

Substituting the coordinate transformation of Eq. (7.4) into Eq.(8.5), the radiated

pressure in the frequency domain is given by

P0) = [ ([0 e —emenomayds (8.9)
v(r)

where the mean-flow corrected distance now becomes

R= \/(yl —x )+ B[r* + 1} —2rr,cos(8, - Qr —-6")] (8.10)

in which source point y° =(y,,7,,6,) is expressed in the blade- fixed coordinate system.

Now substituting Eqgs. (7.13) and (7.14) into Eq. (8.9), the radiated pressure is obtained

in the 7 -variable separated form as

pxa)=- Y | jy(yl,ro)j g, j gy
"ot (8.11)

x|:f g/l ngm(y ro,ko,a))dko:lrodyldro
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where S/"is the projected area of the rotating volume around the blade in the y, —r

plane, g™ is defined by Eq. (7.21). Integrating Eq. (8.11) with respect to 7 and noting
that

2z . 2 , =_N
jel(m+Nb)60d90 :{ 4 m b (8.12)

0

gives
—_— i A i(ko+ P ]
P(x,0) = 2 H}’(yl,ro)[ [;e ot o (x, ro,ko,a))dko}rodyldro Sw+N,Q) (8.13)
s
In the time domain, equation (8.13) becomes

I A i(ko+ /] iN,Qt
pxn=|f y(yl,m[ [ etormnngm(x,r,,k,, w)dko}rodyldro ™ (8.14)
s

where @ =—N,Q, Numerical calculations show Egs. (8.8) and (8.14) give identical
results but Eq. (8.8) is much more efficient for numerical computation than Eq. (8.14).
This is because the k,-integration involved in Eq. (8.14) is slow to converge especially
in the case of the singularity arising in the Hankel function appearing in g™ . The

consistency of Eqs.(8.8) and (8.14) indicate that an approximation may exist for the
radiated pressure expressed in the non-rotating reference frame under some conditions,

such as if the y, coordinate is approximately independent of the 6§, coordinate.

8.3 Numerical Results

The frequency domain method (FDM) of Eq. (8.14) is compared with the analytical

solutions of Tam (1999). Figures 8.1 and 8.3 show comparisons of the rotor noise
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directivities at two different tip speed Mach number, Q = Qd/c, . The definition of

directivity for the Category 2 problem is

D(tp):lmogmh%2 lim Edzgf(ﬁd,?,agt)} (8.15)
ref >0

where R, =R,/d is the non-dimensional distance, R, =+/x’ +7> , ¥ is the polar
angle measured from the x, - axis, and the overbar denotes time averaging. For
numerical calculations, we take R, =10 and 8’ = 0. It can be seen from Figs.8.1 and 8.3

that the agreement between the FDM solution and the analytical solution is excellent,
with no discernable difference being observed between them. This agreement provides

verification of the frequency domain formulation presented in the last chapter.

Tam’s analytical solution (1999) is only valid for noise radiation without mean flow.
However, mean flow effects on radiated sound are included in the frequency-domain
formulation of Eq. (8.14). Figures 8.2 and 8.4 show the directivity of rotor noise for
different forward flight Mach numbers, M =U/¢,, for the two tip speed Mach numbers

of O=0.85 and Q=1.15 respectively. It can be seen that the directivities change
significantly, not only with the forward flight speed, but also with tip speed.
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100 —— FDM
----- Analysis

Figure 8.1 Directivity of body-force rotor noise, FDM result compared with
analytical solution, //=0.0, Q = 0.85

— FDMM=0.8
-==-- FDMM=06

180

Figure 8.2 Directivity of body-force rotor noise for two forward flight
Mach numbers of 0.6 and 0.8 at rotational speed Q=0.85
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Figure 8.3 Directivity of body-force rotor noise, FDM result compared with
analytical solution, M=0.0, Q =1.15
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Figure 8.4 Directivity of body-force rotor noise for two forward flight
Mach numbers of 0.6 and 0.8 at rotational speed QO =1.15
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Figure 8.5 shows the field-point mesh for the contour plot of sound pressure level (SPL)
shown in Figs (8.6) to (8.9). The rotor is located within the blank area of the “+” sign.
The dimensions of the mesh are 164 in the x- direction and 10d in the y- direction.

Figures 8.6 to 8.9 are the sound pressure level in dB for different forward flight Mach

numbers of M=0.0, 0.4, 0.6, 0.8 at the tip speed Mach number of Q =0.85. The SPL in
dB is represented by the colour at the corresponding grid point. The flight direction is

opposite to the x-axis indicated in the figures.

Figure 8.5 Mesh for SPL map, rotor located at the blank area of the “+” sign
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Figure 8.6 Map of sound pressure level (dB), M=0.0, Q =0.85
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Figure 8.7 Map of sound pressure level (dB), M=0.4, Q= 0.85
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Figure 8.8 Map of sound pressure level (dB), M=0.6, Q=0.85
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Figure 8.9 Map of sound pressure level (dB), M=0.8, Q=0.85
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Chapter IX

Rotor Broadband Noise Prediction:

Far-tield Approximation

9.1 Introduction

In Chapter VII, a general frequency-domain formulation of broadband self-noise
radiation from a free field rotor is developed that is valid both in the near field and in the
far field. We now consider approximations to this result, which whilst only being valid
in the far field, has the advantage of being simpler to compute. The results derived in
this Chapter for far field radiation are shown to reduce to the classical solution due to
Gutin (1936) for tonal noise when the flight speed is set to zero and the source integral is

confined to the projected disk of the rotating blades.

9.2 Far Field Approximation for the Prediction of
Rotor Broadband Self-noise

The starting point for the derivation of the far field approximation is Eq. (7.19). Here we

rewrite it as

pxa)=o— j jfj(y,r)e"“”ayijc‘?(x,y)dS(y)dr ©.)
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When j =1, the derivative of Green function G in Eq. (9.1) is given by

R2

aic_;(x,w:[—yl

i

+ip(Z ll‘ex' +M)IG(x,y)
while for 7 =2 3.

ai(_;(x, y)= —%f(%—w)[ro ~rcos(6 - 0)]G(x,y)

)

ic_;(x )——ﬂ—z(l—i ) rr,sin(6, —0)G (x,y)
69(; >y R R H) Ty 0 >y

(9.2)

(9.3)

(9.4)

We now make the far field approximations that 7,, y, << R, where R, =[x’ + 3’7’

is the flow corrected distance from the origin of the source to the observation point, as

b
'x39y3

05 Vs 5 Y5)

Figure 9.1. Relationship between distances R, R, and polar angle i .
Note that the distances R, R, shown in the figure are for S =1
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shown in Fig.9.1.

Expanding the expression for R of Eq. (7.11), and ignoring terms of second order give

R~R, —[y, cosyw + °r, siny cos(8), — )] 9.5)

where cosy =x, /R, and siny =r/R_. Substituting Egs. (9.2) to (9.5) into Eq. (9.1)

and ignoring the second order terms in Egs. (9.2) ~ (9.4), one obtains

iy itRs
Px.0) =25 e}T [ [ 00O 5)/ R, ]

+ [ DB -1, /R, +siny cos(Gy ~ O] £,(v,7) f sinysin(@; )} (9.6)

. . _ s 2. f _nr
x €1 @M O3 ikl cosy+ Brosiny o000 6 () I ¢

where f,, fr and f, denote the forces per unit area exerted by the rotor blades in the
¥, ¥y, 8, directions, respectively. Here, the usual far field approximation is made
whereby 1/R is replaced by 1/ R but the phase factors are retained. The forces in Eq.
(9.6) are related to the blade surface pressures of Eq. (7.8) by

Jr ny
fR =" pt(yb’z-) 9.7)
Jo Ry

Inserting Egs. (7.8) and (9.7) into Eq. (9.6) gives an expression for the radiated pressure

in the form

0 0

o) = [ | [H,(xk, k,0,0,)p,k, .k, 0,) doydk,dk, (9.8)

with the transfer function H, given by
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H,(x.k, b 0,0,) = 255 il f H mI(, =)/ R, +M]
+n,f°[~r, /R, +siny cos(d, —8") |- n, 5 siny sin(8, —9’)} 9.9)

x H, (Y2, k,, &, @, e Hm) gmi(eomo)r i (i=x) o~ HLycosy+ Brosiny cos(B) - N4S(y)dr

where u =/’ as defined in Chapter II. The expression above for H , can be written

in a form more suitable for computation by noting the generating function (Gradshteyn
and Ryzhik, 1965; Goldstein, 1976)

—thos€ Z‘] (Z) —im(0+7/2) (910)

m=—c0

for the Bessel function J, (Z) of the first kind, together with the following generating

functions for the derivatives of Eq. (9.10) with respective to & and Z :

sinfe % = —% D mJ, (Z)e ™ (9.11)
cosge—-iZcosé) =_T.l Z l:Z J (Z) o (Z):lé_'m(0+”/2) (912)

Substituting these identities into Eq. (9.9) and performing the integration with respect to

T gives
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#R —iuMyx, _iu(M-cosy)y, Yi—X%
H,(%,k,k,, 0, a)o)——IIZ y——R e M o 1 nl[—R +M]
S m=—o S

s

+nrﬂ2[—r0/Rs+iSinW(%_J—;i%j:| gﬂ }J (Z) —im(G,—0'+%)

2 2
H,(y" k. k t,a)o)e’(k“’s*"'”"\/l + (%] + [l%j r,dryd 6,5 (@, ~ @ —m)

o, r, 06,

(9.13)

where Z = k7, siny . Analogous to the steps leading to Eq. (7.27) and Eq. (7.33), we
denote the 6, -dependent terms in the integrand of Eq. (9.13) by

ny [(J’1 _xl)/Rs +M

F.(y’ k. k0,0,) = n, H (y°,k,.k,,@,)
Ry
9.14)
2 2
x @ s thiny) Giu(M~cosy)yy |y J{%J +[L W j
or, r, 06,
and expand F, (y k. k,,0,0,) as a Fourier series in the form of
Fy" .k, k, 0,0,) = ZF (o k, K, 0, 00) €717V (9.15)
with Fourier coefficients ﬁ'j’ given by
1% :
1;‘]1 (7'0 > ks s kt: 0), Cl)o) = g .[-F‘j (yb s ks N kt , 0), a)o)e_'(”/e“ )19°d00 (9. 1 6)
a -g,

Substituting Eq. (9.15) into Eq. (9.13), and summing over N, blades, the transfer

function H » becomes
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Hp(x,ks,k,,co,wo)=%e'ﬂ<’%‘“"0e"’”“’"?Z > [ Bul,S(@,-0-m)

=00 M=—00 17

x{_j:;l(ro,ks,k”a)’a)())+ﬁ;1(r0”ks>kt:a)aa)0)l:_;—o

S

+isim W(g_%ﬂ +EL ke ks @, 00) 5 g_}rodro
m [4]

(9.17)

where 7, and r, are the radii of: the blade root and blade tip. The term B, is the blade-
number amplifying factor defined by Eq. (7.31). The 6,-dependent integration I, is
defined by

I,= [* eeag, (9.18)

a

where y,, = (ﬂ'/ o, )l —m . Following the same analysis as in Section 7.5, one has

Yz m=N,l
B,I,= (9.19)
0 s m# N,l

Substituting Eq. (9.19) into Eq. (9.17), the transfer function H , reduces to
H,(x,k,.k,,0,0,)= ZH,(x,ks,k,,a),a)o)é'(a)o — @ —m) (9.20)
I=—

with the ‘mode’ transfer function H, given by
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/u 1 -Mx,) im Z
H,(x,k,,k, a)a)o)—ZR Ry =My im0 )J‘{ Elry k, k,,0,0,)

s ry

+13'2’(ro,ks,k,,a) ®,) 3 [ 3 +zsmz//(z ;+1((ZZ))I| (9.21)

+ B 1k, Ky 0,00) 57 mf (7)1, (2
where m = N,[ rather than m =—N,/ as described in Section 7.5.

Substituting Eq. (9.21) into Egs. (9.20) and (9.8), and performing the integration with

respect to @, , the expression for the radiated pressure may be written in the form

p(x,0)= j jH,(x k,,k,,o,0+N,IQ)p, (k,, k,,0+ N,IQ)dk,dk, (9.22)

I=—0_—op

Following the same steps leading to Eq. (7.37), the power spectrum of the far field

pressure is given by

S, (x,@)= Z j ﬂH (%,k,.k,, 0,0+ NJO) S, (k,,k,, 0+ N,IQ)dk,dk, (9.23)

I=—0_p- o

The corresponding expression for frozen turbulence is obtained by substituting Eqgs.

(3.11) and (3.30) into Eq. (9.23) and integrating the result with respect to k, . The

radiated pressure spectrum of Eq. (9.23) reduces to

(9.24)

P IATERAPY)

I=—w0_gp

where &k, =(@+N,IQ)/U,, U, =c,U, = cu\/U2 +(0.7Qr)* . Note that the reference
point for the position-dependent function f, is taken at the trailing edge at 0.7 of the

rotor disk radius.
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Equations (9.23) and (9.24) are computationally more efficient than Eqs (7.37) and
(7.38) since the mode transfer function H, of Eq. (9.21) differs from Eq. (7.33) in two

important respects: (i) the integration with respect to k, is eliminated; (ii) equation

(9.21) only involves the Bessel function of the first kind and hence the singularity

involved in Eq. (7.21) is removed.

9.3 Numerical Scheme for the Evaluation of the Mode

Transfer Function H,

To predict rotor broadband self-noise radiation using equations (9.23) and (9.24), the

main difficulty arises from the calculation of the mode transfer function H,. The

numerical scheme proposed here is based on the fact that, as presented in Section 5.5,
the hydrodynamic wavelength of boundary layer turbulence is usually smaller than the
acoustic wavelength. This fact is used to split the integration required in Eq. (9.21) into
three parts: one is the term independent of the blade surface coordinates and can
therefore be taken out from the integrand; another is related to the acoustic term, and the
third is the hydrodynamic term. The acoustic term can be taken out from the integration
over the small element facet to allow the remaining term (the hydrodynamic term) in the

integration to be performed analytically, thereby speeding up the computation time.

Substituting Eq. (9.14) into Eq. (9.16), one obtains the source Fourier coefficients as

nl[(yl _xl)/Rs +M
20 s R, Hq(yb’kS’kf’mO)
a n, (9.25)

a

Fl(y k&, 0,0,) =

5277t

2 2
Xei(ksﬂs+k1771)ei/l(M_c°SW)y1 1+ 6yl + l ayl e—iNblﬂo dgo
or, r, 06,
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Substituting Eq. (9.25) into Eq. (9.21) gives the mode transfer function as

o “ﬂ{ [ R +M}

S

_nr'BZ{ro/Rs—isinl//(%_%(ZZ))ﬂ ‘9irm}H (¥’ k. k,,@,) (9.26)

x g kel thim) gl M—cosydn o=Vl 1 (7 dS (y")

Using a procedure similar to that followed in Section 5.5, the blade surface is discretized
into finite triangular elements. Under the assumption that the acoustic wavelength is
much larger than the element scale, the numerical expression of equation (9.26)

approximates to

Ny

H (x,k,,k,0,0,) = I(x,0)> {I,(%,y%,0)F (y2,k,, k,,0,)} (9.27)

n=1

where I(X,w) is the term related to the observation coordinates and is independent of

the blade surface geometry

,UNb oM R M) im(6'-%)
Ix,0)= # ! 9.28
(x,0) = 4nR (9.28)

Note that the integrand of Eq. (9.26) may be split into two parts. One varies with the
acoustic wavelength, which may be called the influence coefficient of source strength

I, . Another is related to the hydrodynamic wavelength, which is called the source

strength 77 . The influence coefficient of source strength I, is defined by
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n__ n . J (Zn)
I(x,y:,0)=4-n" A0 | pr L ising Ll )
n( yn ) { 1 |: Rsn rﬂ Rn z l// Zn Jm(Zn)

S

(9.29)

m : _ n
+n;ﬂ2 Krn }el#(M COSY )y Jm (Zn)
0

where n = {n/,n,ny} is the unit inward normal vector of element n, Z" = k7, siny

and y = {y7,7,6;} is the coordinates of the centre of the elements . Once the centre
coordinates of element 7 is known, equation (9.29) can be calculated easily. Combining
Egs. (9.26) and (9.27), the source strength 7 is defined as an integral on the surface of

element n given by

If (y:’ ks ’kt’wo) = '[IHq (ybaks 9k,, a)o)ei(ksﬂs+k,7/,)e—iN1;1t90 dS(yb) (9.30)

Sn

th

where S, i1s the surface area of the n~ element facet on the blade surface. Equation

(9.30) differs from equation (5.36) by the additional term e ™*%* . This term cannot be

included in Eq.(9.29) since it cannot be assumed to be constant within the element for

large m = N,[ . If the source has a component that matches with the mode modulating

pattern of e ™% the source contribution will be amplified.

Two methods were attempted in the evaluation of the integral in Eq. (9.30). One is a
purely numerical method which is computationally slow. The other is an analytic

method for which a linear relation between 7, and §, has to be established. This
relationship is described below. If we use a cylinder of radius 7, cut through the

propeller blade with cylinder axis parallel to the propeller axis, the blade section profile
will closely fit on the cylinder surface. Unwrapping the cylinder surface onto a flat plane

forms a blade section profile as shown in Fig. 9.2. In Fig. 9.2, x, and y, represent,

respectively, the abscissa and ordinate of a typical point of the upper surface of the

airfoil section, and C is the centre of an element on the blade surface. The coordinate y,
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of the section upper or lower line is a function of 7,6, as shown in Fig. 9.2. The

streamwise curvilinear coordinate 7, can be calculated from

K 00y

n, = m+f 1+( SZIJ 7,d6, (9.31)

where 6, is the azimuthal angle of the cylindrical coordinates, 8, and 7, are

respectively the azimuthal angle §, and streamwise curvilinear coordinate 77, at the

Y4 Y

-0 70,

c

N

Figure 9.2 Relationship between curvilinear coordinates 7, , circumferential
length 7,6,, rectangle coordinate y, and blade section pitch angle 5, on a flatten
plane of cylinder surface at radius 7,. §, is the azimuthal angle of the cylindrical

coordinates and &, is the angle at element centre. (x,,y,) is rectangle coordinates
for airfoil profile

element centre C. In general, the relation between 7, and 8, is complicated. However, if

the element size is small, the arc length within elements can be replaced by a straight

line to connect the points. Following this approximation, we have

1o __ _
30, tan(f3, - ) (9.32)
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where S, is the blade section pitch angle, which is a known value once the blade
geometry is determined, and 4 is the tangent angle, which may be calculated from
9=tan"'(dy,/dx,) of the airfoil profile. Under this approximation, a linear relation

between 77, and 6, is obtained by substituting Eq. ( 9.32) into Eq. (9.31)

6+ =D 9.33)

%

6, =

Substituting Eq. (9.33) into Eq. (9.30) gives the following expression for the source

strength coefficient 77

If (yz,ks,k,,a)o) =e—im(0c_”ccos(ﬂp—|9)/’o) J"[Hq (yb;ks ,kt’ a)o)ei(ksmfls+k,7h) dS(yb) (9.34)
S'I

where &, =k, —mcos(fS,—3)/r,. Substituting Eq. (7.9) into Eq. (9.34) and performing
the integration of Eq. (9.34) gives the analytic integration scheme in the form of Eq.

(9.35). For y” on the turbulence side

Irf{ (yz,ks ,kt, a)o) =e—im(t9¢‘flccOS(ﬂp—-9)/ro) {%fp (yl;Eak: COO)I:IG (ksm’kt’ a)O)
(9.353)
[, 0 ) 4 £, (e ke @) 1 (o))
For y” not on the turbulence side
[:[ (yi,ks,kt,a)o) =__;_e—im(ec_ﬂccos(ﬁp‘3)/ro){fp (yl;'Eak:a)o)[:{e (ksmyk,,wo)
(9.35b)

Lk )T (R, )
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where a=i(K +uM,+k,) . The terms I’ (k,,.k,,»,) and I (k,,.k,) can be

calculated using Egs. (5.38) and (5.39), whose arguments are now a function of the

element-centre position.
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Appendix 9.A Reduction of the Far-field Expression to

Gutin’s Solution

This appendix demonstrates the consistency of the formulation of propeller noise with
the classical solution due to Gutin (1936). Gutin’s solution was concerned with the tonal
noise due to steady blade surface pressures, which forms the mean thrust and drag forces
acting on the blade. When the pressure exerted by the blade surface is steady, the forces

per unit area exerted by the blade in Eq. (9.7) can be rewritten as

fT n;
fet==1n12.(y") (9.A.1)
.];D Ny

where p,(y”)is now the steady pressure on the blade surface. Substituting Eq. (9.A.1)

into Eq. (9.6) to replace the unsteady forces f,, f, and f,, , the radiated pressure in a

form analogous to Eq.(9.8) without integrating over frequency and wavenumber

components is given by

(X, 0) =h,(X,w) (9.A.2)

where the function 4 ’ is defined as

iu e*
h(x0) =35 F [ y{—nl[(yl—xl)/Rs+M]
B[R, +siny cos(6) ~ )] n, 5 siny sin(@; — 01} ©.A3)

_ . . _ 7 2 . ' _ g
X pt(yb)em”e’#M()ﬁ xl)e ipl y cosy+ B ry siny cos(6p 9)]dS(y)d,z.
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Note that, unlike the transfer function H ,, the function %, has dimensions of pressure
7 - This is due to the oscillating part, H,e'“"*™ of the unsteady pressure in Eq. (9.9)

being replaced by the steady pressure p,(y’) in Eq. (9.A.3). Following the same
derivation procedure leading to Egs. (9.20) and (9.26), the far field pressure of the

radiated tonal noise is of the form,

?(x,m) = i h(X,0)0(w+mQ) (9.A4)

]=—

with the mode function %, given by

() = s guinsrgne=2 (|| 5% gy
47R g R

5

-npf 2{7‘0/ R —isin w(g —JJ'"—I((Z?H +n, /”; Zrm} (9.A.5)

xP,(y")eH e (2)dS(y")

where m=N,/.

Consider the case in which the forward flight speed U and the force in the radial

direction f, » are set to zero, and the integration is confined to the projected disk of the
rotating plane, therefore y,(7,,6,) =0 and dS(y®) =r,d6,dr,. Substituting the following

parameters
M=0, p=1, ,u=K=Nle/c0 (9.A.6)

into Eq. (9.A.5), one obtains
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ikN, ; iNJ(O—E -, - C
h (X, ) =Z—7ZR%6KR56NI(0 )H‘l:fr(ro’go)cosw_fu(ro’go) Q(; :I
s s 0 (9.A.7)

e M (7, siny)r,d0,dr,

Equation (9.A.7) is identical to the classical Gutin’s solution presented by Goldstein
(1976, Eqn (3.115)) for the same case except for a sign difference in the exponential
term e~™'% _ This sign difference gives no difference to the radiated pressure amplitude.
Gutin’s result has been substantiated by experiment. The reduction of Eq (9.22) to this

classical result provides verification of the proposed formulation.
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Chapter X

Rotor Broadband Noise Prediction:

Far-field Tone Noise

10.1 Introduction

In this Chapter, the frequency-domain formulation of rotor noise radiation will be
adapted to predict tonal noise. In this case, the source is a steady pressure distribution on
the blade surface. Since the steady pressures can be easily determined from wing section
theory and measured airfoil lift curves, this tonal noise prediction provides an alternative
method of validating the frequency-domain formulation derived in the last Chapter. The
predicted tone noise will be compared against experimental data obtained by Trebble for

a 1/5™ scale model propeller (Trebble,1987a).

10.2 Experimental Arrangement and Geometric

Parameters of R212 Model Propeller

The experimental results for tonal noise radiation used to validate the theory are reported
by Trebble (1987a). The noise measurements of the four-bladed Dowty Rotol R212
propeller (NACA 16 sections) are made at 1/5" scale in the RAE (Royal Aircraft
Establishment) 1.5 metre acoustic tunnel. The propeller was mounted on the propeller

test rig, which is capable of drive-speeds up to 10000 rev/min, as shown in Fig.10.1.
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Figure 10.1 Test arrangement for R212 propeller, figure from Trebble (1987a)

blade radius station chord thickness ratio camber Twist angle

2r, /D ¢ [mm] t/c C, [, [degree]
0.2 40.1 0.2399 0.325 31.0
0.25 45.0 0.224 0.463 255
0.3 48.5 0.181 0.535 21.2
0.45 52.6 0.121 0.590 11.0
0.6 52.6 0.087 0.575 3.4
0.7 503 0.072 0.550 0.0
0.8 453 0.063 0.520 -2.7
0.9 36.3 0.061 0.468 -4.7
0.95 30.2 0.059 0.473 -5.6
0.975 26.7 0.059 0.468 -6.0
1.0 22.6 0.059 0.468 -6.4

Table 10.1 Geometric parameters of the R212 propeller

The main geometric parameters of the model propeller are listed in Table 10.1. The

diameter of the 1/5™ scale model propeller is D = 0.73m. In Table 10.1, 2r,/ D is the

blade section radius station (radius ratio); ¢/ c is the blade section thickness ratio relative
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to the section chord c¢; f, is the blade twist angle relative to that at the 0.70 radius
station which is the standard position for setting the blade angle; and the camber C, is

used to express the design lift coefficient (ideal lift coefficient) for the blade section.

100 +
80
B0 F
40+
20+

0_m

20t

Yo Vo

40t
B0k

80 F

-100 b . . : . ,
0 50 100 150 200 250
L
Figure 10.2 NACA 16-section profile at blade radius 27,/ D = 0.45
Figure 10.2 shows the NACA 16-section profile at blade radius 27,/ D = 0.45 obtained

from Eqgs.(10.5) and (10.6) below. The fine solid line between the upper- and lower-
surface is the airfoil mean line. The NACA 16-section mean line is designed to obtain a
uniform chordwise load distribution (mean-line designation a =1). According to Abbott

(1959) and Lindsey (1948), the mean line can be expressed as
1
yc=—EC,i[§1n§+(l+§)ln(l—§)] (10.1)

where y, is the mean-line ordinate normalised on the chord and & is the distance along
the chord normalized on chord. The camber angle 9, is the gradient of y, with respect

to &, given by

sl L Ll
tan 9, = o C,[In& -In(1-¢)] (10.2)
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The thickness distribution of the NACA 16-series airfoils was designed to produce a
shape having very low induced velocities and thus having high critical Mach numbers.
The ordinates for the basic (or symmetrical) profile of the 16-series airfoils can be

obtained from the following equations

¥y, =i(0.989665§”2 —0.239250& —0.041000&> —0.559400&° ), for £<0.5  (10.3)
c

y, = £[0.01+2.325(1—§)—3.42(1—5)2 +1.46(1—§)3] , for£>05 (10.4)
C

where y, is the ordinate non-dimensionalized on the chord measured normal to the
camber line. If x, and y, represent, respectively, the abscissa and ordinate of a typical

point of the upper surface of the airfoil section, the upper —surface coordinates are given

by the following relations:

x, =&—y,sind
u § yt 4} (10‘5)
Yu =Y.ty c088
The corresponding expressions for the lower-surface coordinates are
x, =&+ y,sind
{ 1 § yt 0 (1 0.6)
Y=Y, — Yy, cosdy

In the following Section, the focus is placed on the tonal noise generation from the
dipole source due to steady blade surface pressure. The thickness noise was assumed to

be negligible for the reason discussed in the Section 1.2.3.

10.3 Reduction of the Far-field Formulation to Predict
the Tonal Noise

The frequency-domain formulation of Eq. (9.23) is a general far-field formula that is

valid for broadband noise prediction. It can also be used for tone noise prediction. The
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tonal noise pressure due to the steady pressure distribution on the blade surface is given
by Eq. (9.A.4). Fourier transforming Eq.(9.A.4) with respect to @ gives the radiated

pressure in the time domain of the form

p(x.0) = [P(x.@)e ™ do = h(x,0)e™" (10.7)

I=-0

where

I (x,0) = L0 gtk gm0 [[1_ | D75 g
4R J z

5

—n,ﬁz[ro /R, —isin W(%_JTM((EZ)—)H”@ f’; Zrm} (10.8)

% ﬁ, (yb )ei,u(M—cosyl)yle—iNbIﬁoJm (Z) dS(yb)

where againZ = xzsiny , g = lc/ﬁ2 , k=N,IQ/c,, m=N,l, and p,(y")is the steady
pressure distribution on the blade surface. Most fans have a blade skew angle equal to

zero, or at least very small. In this case n, <<(n,, n,). The second term in the big

bracket of Eq. (10.8) can therefore be ignored. Noting the Bessel function property
J_,(-Z)=J,(Z), we have the approximate result

b (x,0) = h; (X,0) (10.9)

where the superscript “*” indicates the complex conjugate. The pressure at the / ™ blade

passing frequency is defined as
pI — hleiNbIQ + h_le—iNbIQ — hleiNbIQ +hl*e—iNbIQ = 2Re{hleiNbIQ} (10‘10)

The function /, can be rewritten in the complex exponential form 4, = |h,]ei‘5. Equation

(10.10) then becomes
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1 =2/l |cos(N,IQ+ 5) (10.11)

with the mean-square value given by
PP = %(ZIhz ) =2n[ (10.12)

The sound pressure level at the / ™ blade passing frequency is therefore given by

h
SPL=3+201<>g10M . 1=123,-- (10.13)

prqf

where p,.. =2x 107 Pa. Note that %, can be calculated numerically in the same way as

the transfer function H, discussed in Section 9.3 of Chapter IX.

10.4 Prediction of Steady Surface Pressure Distribution

In this Section we use Abbott’s (1959) wing section theory and measured airfoil lift

curves (Lindsey, Stevenson and Daley,1948) to determine the steady pressure
distribution 7,(y”) on the blade surface. This pressure distribution will be used in the

next section to predict the tonal noise of an R212 propeller, which was measured by

Trebble (1987a).

Trebble’s investigations of R212 propeller noise were made at propeller rotational
speeds n of 3750 and 8000 rev/min at axial stream speeds U of 30 m/s and 50 m/s for
blade setting angles B, of 9.3°,17.3°,22.4°,27.3° and 34.9°. Here we focus on the

noise radiation at » =7000 rev/min, U =50 m/s and B, =17.3°. The blade setting
angle g, is defined as the twist angle at 0.70 radius station. The relation between pitch

angle, twist angle and setting angle is
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ﬂp = :BT + /Bs (10.14)

For n = 7000 rev/min, U =50 m/s, B, =17.3°, we have Q =27 /60 = 733.0rad/s. The

corresponding blade section Mach numbers M (7)) =U, /¢, and angles of attack a(r,)

are summarized in Table 10.2 below

blade station section Mach numbers attack angles section lift coefficients
2r, /D M(r) a(r,) (degree) C
0.2 0.21 5.24 0.45
0.25 0.24 6.02 0.60
0.3 0.27 6.58 0.72
0.45 0.38 5.75 0.84
0.6 0.49 3.40 0.76
0.7 0.56 2.35 0.83
0.8 0.64 1.45 0.81
0.9 0.71 0.87 0.77
0.95 0.75 0.57 0.73
0.975 0.77 0.45 0.71
1.0 0.79 0.31 0.68

Table 10.2 Section Mach numbers, angles of attack
and lift coefficients of R212 propeller

In Table 10.2, the section lift coefficients C, at each blade section are obtained by
interpolation of the measured airfoil lift curves (Lindsey, Stevenson and Daley, 1948)

according to the section design lift coefficients, thickness ratios, Mach numbers and

angles of attack.

According to Abbott’s wing section theory (Abbott and Von Doenhoff, 1959), the
velocity distribution due to steady non-uniform mean flow around an airfoil is

considered to be composed of three independent components:
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(1) The velocity distribution, v/U,, corresponding to the velocity distribution over the

basic thickness form at zero angle of attack. For different thickness ratios, values of

v/U, can be obtained from the tabulated data in Appendix I of Abbott’s book (Abbott
and Von Doenhoff, 1959).

(2) The velocity distribution, Av/U, corresponding to the load distribution of mean line
at its ideal angle of attack, «;. When C,, =1.0, o =0, the velocity ratio Av/U, = 0.25
is given in Appendix II of Abbott’s (1959) book. For any other value of C,, one should
use Av/U, =0.25C,.

(3) The velocity distribution, Av, /U, corresponding to the additional load distribution
associated with non-zero angle of attack. For the lift coefficient C, =1.0, values of
Av, /U, are given in the tabulated data in Appendix I of Abbott’s book (Abbott and
Von Doenhoff, 1959). For C, #1.0, the ratio Av, /U, must be assigned some value by
multiplying the originally calculated values (i.e. tabulated data for C, =1.0) of this ratio

by a factor C, -C,;.

The velocity increment ratios Av/U; and Av, /U, are added to the velocity ratio v/U,

to obtain the total velocity at one point from which the pressure coefficient IT is

obtained (Abbott and Von Doenhoff, 1959), thus

.
Hzpa+0-5poUg p_| v A, Ay, (10.15)
O.SPOUO U() UO UO

where p, =10’ Pa is the atmosphere pressure. In Eq. (10.15), the values of Av/U, and
Av, /U, are positive on the suction side and negative on the pressure side. When
Eq.(10.15) is applied to a real propeller, the velocity increment ratios Av/U, and
Av, /U, should be multiplied by a correction factor f, to include the effect of reduced

angle of attack due to the induced velocity produced by the three-dimensional propeller
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(Blake, 1986). The correction factor f, should be adjusted so that the calculated thrust

coefficient of the propeller is consistent with the measured thrust coefficient. After

considering this correction factor, Eq. (10.15) becomes

H=[Lifc(—§%+ ?J‘;H (10.16)

Numerical tests show that the radiated propeller tone noise is not sensitive to the
correction factor f,. From Eq. (10.16), the steady pressure distribution p,(»”) can be

calculated from
7.(y*)=p, +0.5p,U;(1-TI) (10.17)

Figure 10.3 below shows the mesh of the suction side of the R212 propeller used for
making tone noise predictions. The propeller is meshed with 2596 triangle elements and
1320 nodes. Figure 10.4 shows the colour contour map of the pressure coefficient IT for
the suction side of the R212 propeller. An enlarged map around the blade root part is
shown in Figure 10.5 to allow a clearer view. Figure 10.6 is the colour contour map of
the pressure coefficient IT for the pressure side with an enlarged view shown in Figure

10.7 around the blade root.
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Figure 10.3 The mesh of suction side of R212 propeller
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Figure 10.4 The colour contour map of the pressure
coefficient IT for the suction side
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Figure 10.5 An enlarged map of Fig. 10.4 around blade root
part to allow a clear view
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Figure 10.6 The colour contour map of the pressure
coefficient I1 for the pressure side
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Figure 10.7 An enlarged map of Fig. 10.6 around blade root
part to allow a clear view
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10.5 Comparison of Tone Noise Predictions with

Experimental Data

Noise measurements made by Trebble (1987a) were made in the plane of the propeller
disc at a distance2r = 4.17D from the propeller axis. Figure 10.8 shows the measured
noise spectrum reproduced from Trebble’s paper. The SPL value at the blade passing
frequency and its harmonics are indicated. Table 10.3 is a comparison of the predicted
sound pressure levels (SPL) with the measured SPL in dB for the first 11 blade passing
frequencies. Figure 10.9 shows a comparison of the predicted and measured tone noise.
For each blade passing frequency, the left red line is the predicted SPL, and the right
black line is the measured SPL. Table 10.3 and Fig. 10.9 show that the error between the
predicted SPL and measured SPL is generally within 2 dB except at the first-order blade
passing frequency. This agreement provides reassuring verification of the far-field
formulation. The over-estimated error at the first-order blade pass frequency may arise
from the differences between the far-field assumption, on which the far-field formula is
based, and the measurement point, which may not be far enough from the propeller to
justify use of the far field approximation. Additional error is introduced by the use of
two-dimensional airfoil theory to estimate the blade surface pressure, which does not

include three- dimensional effects.

C, = 0-064
120 1 Cry = 0-080
1114
dPB 1 § 1065
i 1109 L o
100 1 1034
4
80
60 Ll L2 4 R . Ll 2 5 T L]
0 16 3.2 48 fkHz 64

Figure 10.8 Measured noise spectrum at 2r/D=4.17, B =17.3,
n = 7000 rev/min, U = 50 m/s.
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Blade pass frequency Predicted SPL Measured SPL
(kHz) (dB) (dB)
0.467 118.9 111.4
0.933 1127 110.9
1.400 107.8 106.5
1.867 103.5 103.4
2,333 99.3 98.6
2.800 95.3 96.5
3.267 9l 913
3733 87.3 86.3
4.200 83.4 84.1
4.677 79.4 79:5
5.133 75.3 76.3

Table 10.3 Comparison between predicted sound pressure levels (SPL)
and the measured SPL
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SPL, dB
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5 6

Blade passing frequency f, kHz

Figure 10.9 Tone noise comparison, left red line is the predicted

SPL, right black line is measured SPL, R, =1.522m
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Figure 10.10 shows the predicted SPL directivity (in dB) of the line spectrum at blade
passing frequencies of f =466.7 Hz, 1400.0Hz, and 2333.0Hz. The polar angle ¥ is

measured from the x, -axis (x, axis is opposite to forward flight direction), the observer
distance R, =50 m is measured from the coordinate origin in the x, =0 plane. The

main lobes are in the direction vertical to the forward flight direction with null radiation
occurring on the axis. The width of the main radiation lobe becomes increasingly narrow
as the blade passing frequency increases. Similar directivity behaviour was predicted by

Garrick and Watkins (1954).

100 === 466.7Hz
— 1400.0Hz
—— 2333.0Hz

180 }---- EE e o o A 0

Figure 10.10 SPL directivity (in dB) of line spectrum of R212 1/5™ scale
model, R, =50 m, U =50.0m/s, »=7000 rev/min.
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Chapter XI:

Rotor Broadband Noise Prediction:

Far-field Self Noise

11.1 Introduction

In this Chapter, the frequency-domain formulations of rotor noise presented in Chapter

IX will be used to make self-noise predictions of the R212 propeller described in

Figure 11.1. Test arrangement for R212
full-scale propeller, from Trebble (1987b)

Chapter - X To. . validate* " the
theoretical approach for broadband
self-noise prediction, the predicted
self-noise will be compared against
the experimental data obtained by
Trebble (1987b). The full-scale
propeller shown in Fig. 11.1 will be
used for comparison in this Chapter
rather than the 1/5-scale model
propeller discussed in Chapter X.
This is because the self-noise
radiation is higher due to a larger
chord length in the full-scale
propeller case. Parameter studies will
also be presented in this Chapter,
whereby the variation in self-noise is

predicted against various blade
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setting angles, angles of attack, chord length, blade number, and blade tip Mach number.

The main geometric parameters of the full-scale propeller are identical to those of the
1/5-scale model propeller listed in Table 10.1, but with dimensions five times larger. The
diameter of the full-scale propeller is D =3.66 m. The blade geometry and angle of
attack are described by Egs. (10.5), (10.6), (10.14) and (7.7). To use Eq. (9.34) for

numerical calculation, the tangent angle ¢ and the coordinate 7, of the NACA 16-

series airfoil must first be determined. The tangent angle ¢ may be expressed in the

form

dy, _ dy, [y, (11.1)

tan & = =
dx, d&/ d&

The necessary derivatives required in Eq. (11.1) may be obtained by performing the

chain derivative of Eq. (10.5)

a, dcosY,

—tan g +Pcos +, (11.2)
dé dé dg
By 1 Digng —y 4505 (11.2)
dé dé dé
From Egs. (10.3) and (10.4), we have
% = 5(0.49483254‘”2 -0.23925-0.082¢£ -1 .678252) , for £<0.5 (11.3)
c
% =1 2325+6.84(1-£)-4380-£)] , for &> 0.5 (11.4)
C

Finally,
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dcosd, _C; tand, cos’ 4

(11.5)
d¢ 4z ¢(1-¢)
0 3
dsimnd,  C; cos” 4 (11.6)
dg 4z £(1-9)
The corresponding expressions for the airfoil lower surface may be written as
tan9=@=@ dy, (11.7)
dx, dg/ dg
where
ﬁztango—iv—’cosso—y,dcos‘g" (11.8)
dg dg dg
B G G g A0 (11.9)
dg dg dg

The 7, - coordinate can be calculated from

no=c[ 1+, jdefds  or g, =c[i+(ay /de)as (11.10)

Figure 11.2 below shows a pressure-side mesh ( S, =20.1°) used to perform the
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Figure 11.2. Mesh for numerical calculation of R212 Propeller, pressure side
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numerical integration of Eq. (9.26). This mesh has 25mm maximum element dimension,
which is valid for frequencies less than 1300Hz. This corresponds to 1298 triangle

elements meshed on each side of the blade surfaces.

The unsteady blade loading, which constitutes the aerodynamic sound sources, 1s
predicted using modifications to Amiet’s thin aerofoil theory described in Chapter IV, in
combination with the prediction of the boundary layer surface pressure frequency —
wavenumber spectrum discussed in Chapter III. This is obtained by combining the
wavenumber spectrum of Eq. (3.11) due to Corcos, the frequency spectrum of equations
(3.23) and (3.24) due to Chou and George, and the boundary thickness prediction
method of equations (3.33) to (3.35) due to Brooks given in Chapter III. For

computational efficiency, the frozen gust assumption is made.

11.2 Comparison of Predicted SPL Spectrum with

Experimental Data

In this section the theory developed in Chapter IX is compared against the experimental
results reported by Trebble(1987b). Figure 11.3 below shows a comparison between the
predicted SPL spectral density in the transverse plane (i.e., 90° to the axis), 5.49m from
the axis (black broken line), and the measured noise spectrum (solid line). Also shown is
the background noise spectrum (light broken line) to indicate the quality of the measured

data. The calculations are taken at a rotational speed of #» = 1000 rev/min, forward flight

speed of U =30 m/s, and a blade setting angle of g, =20.1°.

The sound pressure level (SPL) is defined in decibels referred to p,,, = 2%x107° Pa,

based on an analysis bandwidth Af of 11 Hz

SPL(x, f)=10log,,

ArAfS,, (x,®) (11.11)

D ref



Chapter XI: Rotor Broadband Noise Prediction: Far-field Self Noise 175

where the factor 47 accounts for (i) converting to a single sided (0 < @ < c0 ) spectrum

and (ii) converting from radian frequency to a 1 Hz bandwidth.

80 T T T T T T T T T 1
—— measured
----- background noise
75 —— calculated, tripped |
« calculated, untripped

SPL.dB

50 1 1 1 1 1 1 1 1 1 1
200 300 400 500 600 700 €00 9S00 1000 1100 1200 1300
Frequency Hz

Figure 11.3. Comparison of measured and predicted broadband self-noise from a
R212 propeller at R, =5.49m from the axis in the plane of the propeller, with

rotational speed » =1000 rev/min, forward flight speed U =30 m/s, blade setting
angle S =20.1°. Light broken line is the background noise spectrum.

Agreement between predictions and measurements at frequencies above about 700Hz
are generally within 6dB. Below 700Hz, agreement is generally poorer. This may be due
to the large background noise levels at these low frequencies. However, spectral shape is
closely predicted. The underestimated error over the whole frequency range may be due
to the differences between the far-field assumption, on which the far-field formula is
based, and the measurement point, which may not be far enough from the propeller to
justify the use of the far field approximation. Additional error is introduced by making
the frozen turbulence assumption, which is now known to underestimate the radiated
noise, as shown in Fig. 6.29. The third possible reason for the error is that the surface
pressure spectrum and the boundary layer thickness, which determine the acoustic

source on blade surface, are measured on NACA 0012 airfoil rather than NACA 16
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series airfoil of which the R212 propeller is made. To assess the sensitivity of changes in
the noise prediction to the source spectrum, the spectrum of the radiated pressure (dotted
line) due to tripped boundary layer turbulence is also plotted in Fig 11.3. The tripped
boundary layer thickness used here is that measured by Brooks, Pope and Marcolini
(1989) for a NACA 0012 airfoil. Boundary layer turbulence tripping was achieved by
placing random distributions of grit (nominal particle diameter of 0.29 mm with an
application density of about 380 particles/cm®) in strips from the leading edge to 20
percent chord. Figure 11.3 predicts a 3 dB increase in noise radiation due to tripping of
the boundary layer turbulence. It indicates that the radiated noise is sensitive to the
details of the boundary layer spectrum, for example, the location of the transition to

turbulent flow.

Figures 11.4 and 11.5 show comparisons between the measured and predicted broadband

self-noise for blade setting angles of B, =17.3°, 22.4°. In both cases, the agreement is
better than 9dB above 700Hz, and better than 14dB below it.
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Figure 11.4. Comparison of measured and predicted broadband self-noise from a
R212 propeller at R, =5.49m from the axis in the plane of the propeller, with
rotational speed n =1000 rev/min, forward flight speed U =30 m/s, blade setting
angle S =17.3°. Light broken line shows the background noise spectrum.
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Figure 11.5. Comparison of measured and predicted broadband self-noise from a
R212 propeller at R, =5.49m from the axis in the plane of the propeller, with

rotational speed » =1000 rev/min, forward flight speed U =30 m/s, blade setting
angle S =22.4°. Light broken line is the background noise spectrum.

11.3 Predicted Directivity of R212 Propeller Self-noise

In this section the theory in Chapter IX is used to predict the polar directivity of the
broadband noise radiated by the propeller. The directivity is defined by

(11:12)

2

D(¥,w) = 101ogm[ lim R
d pref

4n8, (x, a))}

where x = (R, cos'¥V,0,R, sin'¥)is the observation coordinates, ¥ is the polar angle
measured from the x, axis, and the observer distance R, is measured from the
coordinate origin as shown in Fig.11.6. For numerical calculations, we take R, =100m.
For a finite value of R,, the directivity D('¥,w) is related to the SPL spectrum of
Eq.(11.11) by
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D(¥,w) = SPL—10log,, Af +10log,, R, (11.13)

Figure 11.6. Observation distance R, and polar angle ‘¥ .

Figures 11.7 to 11.9 show the self noise directivities in decibels of the R212 propeller in
a 1Hz bandwidth with centre frequencies of 300Hz, 600Hz, and 900Hz respectively. In

order to allow a clearer presentation of the directivities, the predicted values of D(\¥, )

are subtracted by 56, 52, 52dB respectively. Clearly, the broadband self-noise
directivity is fundamentally different from the single-frequency directivities due to a
steady body-force distribution shown in Fig. 8.1 and due to a steady blade surface
pressure distribution shown in Fig. 10.10. In Figs. 11.7 to 11.9, the main lobes of the
broadband self-noise directivities are located along the propeller axis, while the main
lobes of the single-frequency directivities are in the direction transverse to the propeller
axis. This may provide a way of discriminating the broadband self-noise from other
sources of noise when processing propeller noise measurements. It also suggests that
duct liners may be inefficient for reducing broadband self-noise radiation. On the other
hand, the self-noise directivities exhibit greater omni-directional behaviour compared

with that of tonal noise if one notes that the variation of D(¥,®) in Figs 11.7 to 11.9 is

less than about 15dB over the entire range of polar angles.
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180

270

Figure 11.7. Directivity D(\Y,®)—56.0 (in dB) at 300Hz of R212 propeller for an

axial flow velocity U=30m/s, blade rotational speed of » = 1000 rev/min,
R, =100m, B =17.3°

Figure 11.8. Directivity D('W,»)-52.0 (in dB) at 600Hz of R212 propeller for an
axial flow velocity U=30m/s, blade rotational speed of »n = 1000 rev/min,
R, =100m, B, =17.3°

N
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180 b--

270
Figure 11.9. Directivity D(¥,®)—52.0 (in dB) at 900Hz of R212 propeller for
an axial flow velocity U=30m/s, blade rotational speed of » =1000 rev/min,
R, =100m, B, =17.3°

s

11.4 Parameter Study of Propeller Broadband

Self-noise

The theory in Chapter IX has been used to undertake a parametric study of the
broadband self-noise radiation from propellers with variations in fan tip speed, number
of blades, chord, and blade setting angles. Figure 11.10 shows a prediction of the

pressure spectrum for various blade-setting angles at R, =5.49m from the propeller

axis, in the plane of the propeller.

Figure 11.10 shows that increasing the blade setting angle A, increases self-noise
radiation. This is simply because at a larger angle of attack, the boundary layer thickness
is increased and hence the unsteady surface pressure is greater. For each degree of
increase in the blade-setting angle, the noise is predicted to increase by about 1.4dB,
except for the largest blade-setting angle of S, =32.1°. This is because the flow will be
separated at the highest blade angles and the radiated noise will be much higher than that

predicted above, which assumes attached boundary layers.
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Figure 11.10. Predictions of the Broadband self-noise of R212 propeller at
R, =5.49m from propeller axis in the plane of the propeller. Axial flow velocity is

U=30m/s, shaft rotational speed is » = 1000 rev/min, in an 11Hz analysis
bandwidth
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Figure 11.11. Predicted broadband noise of R212 propeller at R, =100 m for
various blade tip Mach numbers M, , in an 11Hz analysis bandwidth, S, =17.3°
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Figure 11.11 shows the predicted dependence of the broadband noise frequency

spectrum on the blade tip Mach number M, for the R212 propeller. Note that in each

case, the angular speed Q of the propeller and the forward flight speed U are adjusted

to keep the tip section attack angle unchanged at & = 2°. Consistent with measurement

and classical trailing edge noise theory, the mean square pressure is found to scale very

closely with the fifth power of the blade tip Mach number.

Figure 11.12. Geometry of one-chord
propeller

Figure 11.13. Geometry of three-chord
propeller

We now consider self-noise radiation

from two  hypothetical propellers
conceived specifically for the parametric
study presented here. One has the same
geometry as the R212 propeller discussed
above but with the twist angle chosen
such that a constant attack angle of four
degrees is obtained at an axial flow
velocity of U=30m/s and a shaft
rotational speed n= 1000 rev/min. We
refer to this geometry as the ‘one-chord’
propeller. The blade number of this one-

chord propeller is N, =12 . The other

propeller has the same geometry with the
same constant attack angle of four degree
as the one-chord propeller, but with a
chord length of three times greater than
that of the one-chord propeller. We refer
to as the ‘three-chord’ propeller. However
this three-chord propeller has only 4
blades so that both the
propeller and the ‘three-chord propeller’

‘one-chord’

have approximately the same thrust area. Figures 11.12 and 11.13 show the geometry of

these two propellers used in the calculation.



Chapter XI: Rotor Broadband Noise Prediction: Far-field Self Noise 183

Since the two propellers have the same angle of attack, they should be able to provide
roughly the same thrust. However their noise levels are predicted to differ appreciably,
as shown in Fig. 11.14, where the dashed line shows the SPL for the twelve-blade ‘one-
chord’ propeller and the solid line denotes the SPL of the four-blade ‘three-chord’

propeller. The calculations are made at R, =5.49m from the propeller axis in the plane
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Figure 11.14. Self-noise comparison between one-chord propeller and three-chord
propeller at R, =5.49 m from propeller axis in the plane of the propeller. Axial flow

velocity is U =30 m/s, shaft rotational speed is » =1000 rev/min, in a 11Hz analysis
bandwidth.

of the propeller with an axial flow velocity of U=30m/s, a shaft rotational speed of
n =1000rev/min, and an 11Hz analysis bandwidth. Figure 11.14 shows that the propeller
with small chord and large blade number radiates lower noise, especially at the lower

frequencies, where a difference in SPL of more than 10dB is observed.

The main difference between the R212 propeller and the ‘one-chord’ propeller is the
blade twist angle. With the blade setting angle equal to S, =17.3°, the attack angle of

the R212 propeller varies from 10.2° at the blade root to 2.0° at the blade tip for an axial

flow velocity of U=30m/s and a shaft rotational speed »# =1000rev/min. The ‘one-chord’
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propeller, however, has a constant attack angle of 4.0°. Noting that the blade tip section
has a higher speed than the root section, and that the airfoil lift depends on both the
attack angle and the airfoil velocity, these two propellers should deliver roughly the
same thrust if the ‘one-chord’ propeller has the same number of blades (equal to four) as
the R212 propeller. Figure 11.15 shows a comparison between the self-noise due to this

change of attack angle at an observation distance of R, =5.49m from the propeller axis

in the plane of the propeller. The sound pressure level is calculated in an 11 Hz
bandwidth. The propeller with constant angle of attack is predicted to radiate a SPL of 4
to 6dB lower at low frequencies, and about 2 dB lower noise levels at higher

frequencies.
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Figure 11.15. Self-noise comparison between propellers of constant angle of attack
and non-constant angle of attack at R, =5.49 m from propeller axis in the plane of

the propeller. Axial flow velocity is U =30 m/s, shaft rotational speed is » =1000
rev/min, in a 11Hz analysis bandwidth.

The computation time for numerical prediction presented above is 256.2 minutes per
frequency per observation point for the four-blade three-chord propeller while for the
four-blade one-chord propeller, the computation takes only 67 minutes per frequency per
observation point on a 1.2 GHz PC. However for the twelve-blade one-chord propeller,
the computation takes 27.7 minutes per frequency per observation point. The

computation code was written in FORTRAN 90.
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It is useful to make a study to see which part of the blade source makes large
contribution to the self-noise radiation. If it turns out that the blade tip source is
dominant due to the higher Mach number near to the blade tip, then a large saving in
computation time will be possible for a small loss in accuracy. Figure 11.16 shows a
comparison of the blade surface source contribution for a R212 propeller with the same
parameters used in Fig. 11.4. The dotted line and the line with circles show the noise

contribution from the pressure side and the suction side respectively. Note that the R212
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Figure 11.16. Comparison of blade surface source contribution for a R212
propeller at R, =5.49m from the axis in the plane of the propeller, with rotational

speed n = 1000 rev/min, forward flight speed U =30 m/s, blade setting angle
S, =17.3°, the propeller has hub radius 27,/ D =0.2.

propeller has hub radius 27,/ D =0.2. More than 10 dB differences between these two

curves indicate that the contribution from the suction side is dominant. The line with
crosses, the dashed line and the solid line show the noise contributions from the blade

segments on the suction side between non-dimensional radii 2r,/D = 0.2~1.0,
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2ry/ D =0.6~1.0, and 2r,/D =0.8~1.0 respectively. It can be seen that the tip segment
between 2r, /D =0.8~1.0 makes a noise contribution that is at least 8 dB lower than the

complete suction-side surface. This draws no conclusion that the noise contribution from
the blade tip segment is dominant because the large attack angle (see Table 10.2 on page
163) produces thick boundary layer turbulence at the blade root therefore a large source
contribution. However the conclusion that the main source contribution comes from the
suction side is useful for the saving in computation time. The computation time saved by
computing the source contribution from only suction side is 24 minutes per frequency

per observation point on a 1.0 GHz PC.
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Chapter XII

Conclusions

12.1 Acoustic Source Prediction

An engineering model for the determination of the acoustic source due to boundary layer
turbulence developed on an airfoil or blade surface has been developed. In this model,
the relationship between the spectrum of scattered pressure due to the trailing edge and
the spectrum due to the incident pressure is clearly established. The unsteady blade
loading, which constitutes the aerodynamic sound sources, is predicted by combining
single-airfoil theory, the representation of the turbulence wavenumber spectrum
proposed by Corcos (1963), and the measured boundary layer turbulence parameters
(that is boundary layer frequency spectrum of point pressure on the blade surface,
boundary-layer- turbulence integral scales, and boundary layer thickness). Using the
measured pressure spectrum as an input quantity forms an important basis for a robust,
accurate engineering model on the rotor self-noise prediction. Accuracy of the model
depends on how the boundary-layer-turbulence parameters are measured. Ideally they
should be measured on the rotating blade surface with adjacent blades present. When
these parameters are measured on a single airfoil surface, a cascade model in which the
effects of adjacent airfoils are included may be more pertinent than the single-airfoil
theory presented in this thesis. However the use of a cascade model may not allow a
concise closed-form solution for airfoil surface pressure prediction, which is crucial for
reducing the computation time to reasonable limits when making rotor broadband noise

prediction.
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12.2 Airfoil Self-noise Prediction

A frequency domain formulation has been developed for making airfoil self noise
predictions. It is valid for arbitrary airfoil geometries at small, but non-zero angles of
attack. Moreover, the solution is valid in both near and far fields. It is shown to reduce to
Amiet’s analytic solution when the airfoil collapses to a flat plate with large span and the

measurement point is taken to the far field.

A numerical scheme for the evaluation of the integral formula on an arbitrary airfoil
surface has been presented. Numerical predictions of broadband self-noise show
reasonable agreement with Brook empirical prediction, which is based on experimental
data. Broadband self-noise predictions are made for both frozen and non-frozen
boundary layer turbulence. Non-frozen turbulence is shown to generate higher noise
radiation than frozen turbulence at high frequency. However, the difference is generally
less than 3 dB, suggesting that the frozen-gust assumption is a reasonable assumption for

broadband noise predictions

Broadband noise directivity has been predicted for a flat-plate, a NACA 0012 and a
NACA 0024 airfoil. The directivities are asymmetric due to the non-zero angle of attack
assumed in the study. The results reveal that Mach number has an important influence
on the magnitude and directivity of broadband self-noise radiation. The directivity
predictions due to a single harmonic component of turbulence for a flat plate airfoil are

shown to be in excellent agreement with Amiet’s analytic solution.

12.3 Rotor Self-noise Prediction

A generalized frequency domain formulation has been developed for making rotor
broadband noise predictions. It can be used for making broadband and tonal noise
predictions, and is valid in both the near field and the far field. This general formulation
has been validated by comparison with the analytic solution of the 3™ CAA benchmark
problem of the far field noise due to a prescribed source distribution of a rotating body

force.



Chapter XII: Conclusions 189

A simplified expression for the self-noise radiation in the far field has been derived. This
frequency domain formulation is computationally far more efficient than the general
formulation. It can be used for frozen and non-frozen turbulence. The far-field
formulation is shown to reduce to the classic Gutin solution of propeller tonal noise
prediction when the steady surface pressure distribution is confined to the propeller-

projected disc.

These two formulations provide insight into the mechanisms by which the unsteady
surface pressure is shifted by the blade passing frequency to radiate a continuous
pressure spectrum. The main difference from previous work is that the source
distribution is integrated over the real blade surface to provide more accurate prediction.
Previous theory for broadband noise prediction performed source integration over the
projected disk of the rotating blades only. Although Hanson’s helicoidal surface theory
(Hanson, 1983), which was used for tone noise prediction, may be potentially extended
to broadband noise prediction, the source integration is confined mean-chord surface.
This leads to significant phase error at high frequency near the propeller axial direction
(Hanson, 1980). However, broadband self-noise has shown to be important in the axial

direction with source frequency shifted by the blade passing frequency.

The numerical method for making airfoil noise predictions is extended to rotating
blades. The validation is performed from predictions of the measured broadband noise
from an R212 propeller. Absolute sound pressure level predictions are generally better
than 10 dB. Good agreement between the spectral shapes of the measured and predicted
noise spectrum is obtained. The tonal noise predicted by the method also shows very

good agreement with the R212 propeller experimental data.

The broadband self-noise directivity is predicted to be significantly different from the
pure-tone noise directivities. The main lobe of broadband self-noise directivity is in the
direction of the propeller axis while the main lobe of the pure-tone noise directivity is

normal to the propeller axis.

Parameter studies on rotor self-noise prediction show that a propeller with large blade

number and constant attack angle along the blade radius radiates lower self-noise
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compared with propellers with small blade number and non-constant attack angle. A
prediction of the pressure spectrum in the plane of the propeller for various blade-setting
angles shows that for each degree of increase in blade-setting angle, the sound pressure
level increases by 1.4 dB. The predicted dependence of the broadband noise frequency
spectrum is predicted to scale very closely with the fifth power of the blade tip Mach

number.
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