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This thesis describes a frequency domain formulation for predicting the broadband self-
noise due to an open rotor or propeller. The integration in the formulation can be 
evaluated on the real blade surface rather than on the projected disk or blade mean-chord 
surface, as has been done previously, thereby avoiding the commonly made assumption 
of flat plate geometry. It is assumed that the noise is predominantly due to trailing edge 
interaction of the hydrodynamic pressure associated with the turbulent boundary layer 
over the rotor blades (self-noise). The unsteady blade loading, which constitutes the 
aerodynamic sound source, is predicted using modifications to Amiet's thin aerofoil 
theory, and a prediction of the boundary layer surface pressure frequency- wavenumber 
spectrum. This is obtained by combining the wavenumber spectrum due to Corcos, the 
measured frequency spectrum due to Chou and George, and the boundary layer 
thickness measurements of Brooks. 

A generalized frequency domain formulation has been developed for making rotor 
broadband noise predictions. It can be used for making broadband and tonal noise 
predictions, and is valid in both the near field and the far field. A simplified expression 
for making far-field self-noise prediction is presented. This far-field frequency-domain 
formulation is computationally far more efficient than the general formulation. It is 
shown to reduce to the classic Gutin solution of propeller tonal noise prediction when 
the steady surface pressure source is confined to the propeller-projected disc. 

A numerical scheme for performing the source integration on an arbitrary blade 
surface has been presented. The validation is performed of predictions of the measured 
broadband noise from an R212 propeller. Good agreement between the measurement 
and predicted noise spectrum is obtained. It is shown that the broadband self-noise 
directivity is significantly different from the single-frequency directivities due to a 
steady blade surface pressure distribution. The main lobe of broadband self-noise 
directivity is in the direction of the propeller axis whereas the main lobe of the single-
frequency directivity is normal to the propeller axial direction. The theory has been used 
to undertake a parameter study of the broadband noise radiation from the propeller. A 
prediction of the pressure spectrum in the plane of the propeller for various blade-setting 
angles shows that for each degree of increase in blade-setting angle, the sound pressure 
level increases by 1.4 dB. The predicted dependence of the broadband frequency 
spectrum on the blade tip Mach number is found to scale very closely with the fifth 
power of the blade tip Mach number. Effects due to chord, blade number and angle of 
attack are also discussed in this thesis. 

To understand the basic mechanism of self-noise generation, a comprehensive study 
of airfoil self-noise generation is also presented in this thesis. Numerical results of airfoil 
broadband self-noise show reasonable agreement with Brook empirical prediction based 
on experimental data. Broadband self-noise predictions are made for both frozen and 
non-frozen boundary layer turbulence. Non-frozen turbulence is shown to generate 
higher noise radiation than frozen turbulence at high frequency. However, the difference 
is generally less than 3 dB, suggesting that the frozen-gust assumption is a reasonable 
assumption for broadband noise predictions 
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Chapter I 

Introduction 

1.1 Overview 

The problem of sound radiated from aircraft engines is of increasing importance to the 

aircraft community as ever more stringent environmental constraints are imposed by the 

regulation bodies. Over the years, aero-engine fan noise is growing in importance as the 

engine bypass-ratio has increased and hence jet noise is reducing. An effective acoustic 

analysis tool for making rotor noise predictions is most desirable in the engineering 

design process. The analysis should model the problem as realistically as possible, 

taking into account blade geometry, rotor design parameters, but should also compute 

the solution within realistic time scales. Moreover, the input parameters (such as 

pressure spectrum) to the prediction should be easily measurable. 

The principal motivation of this work is to develop an engineering analysis tool for the 

prediction of the broadband self-noise from an open rotor or propeller. Noise generated 

by a rotor can be classified into three categories; EPF (Blade Passing Frequency) tone 

noise, broadband in-flow noise and broadband self-noise, as showm in Fig. 1.1. 

Tonal noise is due to a steady pressure distribution over the blade surface, which forms 

the steady thrust and torque on the rotor blade surface. This rotation (Gutin) noise will 

occur at the blade passing frequency (BPF), which may be interpreted as the Doppler 

shift frequency from the blade-fixed reference frame to an observation reference frame 

fixed to the airplane. The tonal noise has been well understood since Gutin's classical 

theory of propeller noise (Gutin, 1936). Tonal noise will be discussed in this thesis by 
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way of validation of the frequency domain formulation presented in this thesis. This is 

because the steady surface pressure distribution can be predicted with much greater 

accuracy than the unsteady pressure due to boundary layer turbulence. 

Tonal noise 

Laminar-Boundary-Layer-Vortex-
Shedding (LBL-VS) noise 

Rotor noise Inflow noise Rotor noise . w Inflow noise 

Trailing-Edge-Bluntness-Vortex-
Shedding (TEB-VS) noise 

Tip vortex formation noise 

Self-noise Turbulence separation noise Self-noise Turbulence separation noise 

Turbulent-Boundary-Layer-
Trailing-Edge (TBL-TE) noise 

Figure 1.1. Rotor noise classiflcation 

Broadband inflow noise originates from the interaction between inflow turbulence with 

the rotating blades. The ingested turbulence may be atmospheric turbulence, ship-wake 

turbulence, or front flap wake turbulence. The interaction of turbulence with both 

leading and frailing edges is important in this case. To solve this inflow problem, the 

inflow turbulence velocity spectrum is usually used as the input for the determination of 

the acoustic source on the blade surface. The broadband inflow noise from rotors was 

investigated by Amiet (1990) and Homicz (1974). Whilst the prediction procedure 

proposed here is also applicable to this inflow noise problem, it will not be discussed 

further in this thesis. 

Self-noise is due to the interaction between the turbulence generated in the boundary 

layer on the blade surface and the frailing edge. It is the noise produced by the airfoil 

situated in a smooth, non-turbulent in-flow. The self-noise may be further divided into 

five categories based on its generating mechanism (Brooks, 1983), as shown in Fig.1.1. 
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Laminar-Boundary-Layer-Vortex-Shedding (LBL-VS) noise is due to vortex shedding in 

the presence of laminar boundary layers at low Reynolds number. The fluid dynamic 

process can be modelled in terms of Tollmien-Schlicting instability waves, which grow 

exponentially along the chord and radiate noise when scattered by the trailing edge 

(McAlpine et al. 1999). In the case of the airfoil, the discrete tonal frequency depends on 

the free stream velocity. For the case of a rotor, the variation of local-blade relative 

velocity is expected to result in a narrow band spectral hump in the radiation spectrum, 

hi this thesis we assume that the Reynolds number is sufficiently large so that the LBL-

VS noise can be neglected. 

Trailing-Edge-Bluntness-Vortex-Shedding (TEB-VS) noise is due to vortex shedding in 

the presence of boundary layer turbulence at a blunt traiUng edge. The narrow band 

spectral hump of this noise was first observed by Brooks and Hodgson (1981). Coherent 

vortex shedding gives rise to a fluctuating surface pressure differential, or lift, across the 

finite thickness edge, which produces noise. The vortex shedding frequencies correspond 

to Strouhal numbers based on trailing edge thickness of about 0.24. A sharp frailing edge 

is assumed in this thesis. TEB-VS noise is therefore neglected in this thesis. 

Tip noise has been identified with the turbulence in the local separated flow associated 

with formation of the tip vortex. For non-zero angles of attack, the flow can separate 

near the trailing edge (TE) on the suction side of the airfoil to produce TE noise due to 

the shed turbulent vorticity. At very high angles of attack, the separated flow near the TE 

gives way to large-scale separation (deep stall) causing the airfoil to radiate low-

frequency noise similar to that of bluff-body radiation. These two sources of tip vortex 

formation noise and turbulence separation noise are assumed here to be small compared 

to the self-noise radiation of interest in this thesis. 

Both in-flow noise and self-noise show that the sound intensity varies as the fifth power 

of a related characteristic flow velocity (Amiet, 1975; Howe, 1978; Goldstein, 1976) due 

to the effect of the edge scattering. However it is difficult to give the relative noise levels 

of all five self-noise generation mechanisms since these self-noise mechanisms usually 

coexist. 
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At high Reynolds number, turbulent boundary layers (TBL) develop over most of the 

airfoil surface. Noise is produced as this turbulent flow passes over the trailing edge. 

This is referred to as the Turbulence-Boundary-Layer-Trailing-Edge (TBL-TE) noise 

that will be addressed in this thesis. For the sake of conciseness, this noise mechanism 

will be referred as self-noise throughout this thesis. 

This thesis describes a frequency domain method for predicting the broadband self-noise 

due to an open rotor or propeller, hi this method, the rotor is assumed to operate with 

smooth incoming axial flow and with subsonic tip Mach number. The blade surface 

pressure spectrum due to boundary layer turbulence is used as the input to the prediction. 

A generalized formulation of the self-noise radiation from a rotor, which is valid in both 

near and far fields, has been obtained. A simpler formulation is also provided that is 

valid only in the far field. 

1.2 Methods Currently Available for Self-noise 

Prediction 

The prediction of rotor broadband self-noise proposed in this thesis comprises two 

separated stages. First the unsteady blade surface pressure distribution on the airfoil, or 

blade, surface is determined using the boundary layer spectrum combined with an 

analytic solution for the unsteady airfoil response function. The acoustic analogy 

(Goldstein, 1976) is then applied to relate the source distribution over the blade surface 

to the radiated noise. 

This review focuses on three aspects involved in making self-noise prediction: First the 

spectrum of the pressure due to boundary layer turbulence incident on the trailing edge 

will be addressed in Section 1.2.1. This pressure spectrum will serve as the input to the 

self-noise prediction procedure. Second, the prediction of the airfoil surface pressure 

will be discussed in Section 1.2.2. Finally, the method for making rotor noise prediction 

will be summarized in Section 1.2.3. 
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1.2.1 Pressure Spectrum due to Boundary Layer Turbulence 

For practical reasons, it is useful to take the airfoil surface pressure spectrum as the input 

quantity for making self-noise predictions. To devise a pressure spectrum model, various 

analytical relationships between the fluctuating wall pressure and the velocity field in the 

adjacent boundary layer have been proposed for boundary layer turbulence over an 

infinite flat-plate, or for inner pipe turbulence. The earliest works are due to Kraichnan 

(1956a, 1956b), Ffowcs Williams (1965), Corcos (1964), Mawardi (1955), Powell 

(1960), Phillips (1956), Chase (1987), Meecham & Tavis (1980) et al. The relationships 

between the wall pressure and the adjacent turbulent velocity can be determined by 

solving Lighthill's equation (see Section 2.3). The acoustic wave equation, or the 

Poisson equation if strictly uncompressible flow is assumed, is manipulated into an 

integral equation, hi other words, the Lighthill's quadrupole source term is integrated 

over the turbulent region to give the turbulent pressure over an inflnite flat-plate. The 

resulting expression is then subjected to various simplifying assumptions, which 

generally conform to existing experimental observations and intuitive reasoning. 

Theoretical models of the fi-equency-wavenumber spectrum of the turbulent wall 

pressure generally assume the turbulence to be homogeneous, of low Mach number, and 

assume a flat, rigid wall with no mean pressure gradient. The steady growth of the 

boundary layer in the streamwise direction is usually ignored, and the mean flow 

velocity is taken to be parallel to the wall and dependent only on distance fi-om the wall. 

Howe (1998) has summarized various spectral expressions for the frequency-

wavenumber spectrum of the turbulent wall pressure. Chase (1987) has developed an 

empirical spectral formula with adjustable constants that can be fixed by comparison 

with experimental data. Corcos (1963) was the first to express the firequency-

wavenumber spectrum as the product of separated frequency and wavenumber fimctions. 

It is more convenient to make use of experimental data to quantify the spectrum 

parameters when the separable form of fi-equency-wavenumber spectrum is used 

(Brooks and Hodgson, 1981). The Corcos' spectrum will therefore be adopted for self-

noise prediction in this thesis. 
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Most models of boimdary layer turbulent spectrum are valid only for low Mach number. 

This is because wall pressure fluctuations at high Mach number are generally 

accompanied by significant variation in temperature and density. Hence the properties of 

spectra at high Mach number are not well understood. Langanelli and Wolfe (1989) have 

given an approximation of the point wall pressure spectrum in high Mach number flow. 

The effect of Mach number on the wall pressure spectrum is beyond the scope of this 

thesis. 

Effects of surface curvature and roughness on wall pressure spectra have been reviewed 

by Dowling (1992). These factors are of practical importance as adjustment of the flow 

to abrupt changes in wall roughness, and severe pressure gradients may lead to flow 

separation and hence noise generation. These effects will not be included in this thesis. 

1.2,2 Prediction of Airfoil Surface Pressure and its Radiated Noise 

Over the last three decades there have been numerous theoretical analyses undertaken of 

the unsteady response function for an airfoil undergoing unsteady motion or 

encountering a gust. Goldstein (1976) has summarized some of the classical closed-form 

solutions for both incompressible and compressible flows. Howe (1978) has presented a 

review of the literature on the theory of the generation of sound by the interaction of low 

Mach number turbulent flow with the edge of a semi-infinite rigid flat plate. For self-

noise calculations involving trailing edge interaction, two distinct approaches have been 

developed to predict the surface pressure, and hence calculate its radiated noise. One 

approach solves the problem of a quadrupole source in the close vicinity of a rigid half-

plane. Volume-quadrupole sources induce the surface dipole sources, which are the main 

sound producing sources. This method involves the calculation of these surface forces, 

followed by the calculation of the radiated noise (Hubbard, 1991) using a form of the 

acoustic analogy. This approach was adopted by Ffowcs WiUiams and Hall (1970) using 

a half-plane Green function. The effects of mean flow were ignored and hence the 

approach is only valid at low Mach number. Another important omission is that the half-

plane Green function, used in the solution of Ffowcs Williams and Hall (1970), does not 

satisfy the Kutta condition at the trailing edge (Blake, 1986). However, as pointed out by 

Blake (1986), the incident vorticity interacts with the sharp trailing edge, creating a 
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velocity that becomes singular at the trailing edge. Vorticity is shed into the wake with 

exactly the strength and convection velocity to cancel the singularity created by the 

incident vorticity. Experimental evidence for this may be found in the flow visualization 

experiment of Yu and Tam (1978), who observed vortices shed in the wake of a one-

sided wall jet flow in response to a primary upstream vortex convecting past the trailing 

edge. Howe (1978) subsequently extended this approach to include the effect of mean 

flow and the effect of imposing the trailing edge Kutta condition on the solution. The 

total, or stagnation, enthalpy is used as the fundamental acoustic variable and the 

quadrupole sources are expressed as a divergence of dipole sources of vorticity 

distribution. The final solution is obtained by employing the Wiener-Hopf technique. 

Recently an extension was made to predict sound produced by very low Mach number 

flow over the edge of an airfoil of finite thickness by the use of a compact Green 

function tailored to the trailing edge geometry (Howe, 1999). Both Ffowcs Williams & 

Hall (1970) and Howe (1978) predict that the scattered intensity increases in proportion 

to the fifth power of the mean velocity. The approaches mentioned above assume that 

the quadrupole strengths are known. However, this method presents the same 

fundamental difficulties associated with the prediction of jet noise from quadrupole 

distributions inferred from turbulence predictions. In general, the turbulence, and hence 

the distribution of the volume quadrupole sources, is not known to sufficient accuracy. 

Another approach for the prediction of airfoil self-noise assumes that the surface 

pressure produced by convected turbulence is known (that is the incident pressure 

discussed in the last Section). The main objective in this case is to establish a 

relationship between the radiated sound and the surface pressure induced by the 

turbulence upstream of the trailing edge. Chase (1972) was one of the first to employ 

this method for making noise predictions. However the Kutta condition was not satisfied 

by this solution and mean flow effects were not included in his solution because the 

same half-plane Green function as used by Ffowcs Williams and Hall (1970) was 

employed. A solution that satisfies the Kutta condition was given by Chandiramani 

(1974), and subsequently used by Chase (1975). However Chandiramani solves the 

boundary value problem in such a way that only the scattered pressure is cancelled at the 

trailing edge. The total pressure in his solution does not fully satisfy the Kutta condition. 

A more general formulation, which includes a mean flow, was developed by Amiet 
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(1976a), although his solution is only valid for two dimensional flat plate airfoil 

geometries. His solution satisfies the linear Hehnholtz equation and satisfies the Kutta 

condition and the condition of no-flow through the airfoil upstream of the trailing edge. 

The main advantage of Amiet's solution is that a closed-form relation between the 

scattered pressure and the incident pressure on the flat airfoil surface is clearly 

established. This simple closed-form solution will be found to be very useful for making 

rotor broadband noise predictions. Amiet's solution is restricted to normal incident 

harmonic plane wave gusts convected at the convective velocity. Howe (1999) gives the 

solution for skewed incident turbulent gusts, but without mean flow effects included. In 

this thesis, a general solution for skewed gusts with mean flow effects will be introduced 

following the method proposed by Amiet (1976b). 

Solving for the airfoil surface pressures induced by incident turbulence impinging on the 

trailing edge usually results in an integral equation. For a semi-infinite flat plate airfoil, 

the integral equation can be solved using the Wiener-Hopf technique to obtain a closed-

form solution for the surface pressures or pressure jump across the flat plat 

(Chandiramani, 1974; Howe, 1978, 1999). The method used by Amiet (1976a) is 

different in that the Schwartzschild solution (Schwartzschild, 1902) is applied in an 

iterative manner to give a series of solutions for the scattered surface pressure. In this 

case, the boundary conditions on both the leading and trailing edge can be satisfied when 

an infinite number of terms are taken. However, a good closed-form approximation can 

be obtained for a flat plate airfoil using only the first term and hence neglecting the 

leading edge contribution. For the general geometry of an airfoil, the integral equation 

may be solved using the Boundary Element Method (BEM). A review of the use of 

boundary integral equations in aerodynamics was presented by Morino (1993), with 

emphasis on unsteady flows (incompressible and compressible, potential and viscous). A 

time-domain BEM has been used by Gennaretti, Luceri and Morino (1997) to predict the 

pure tonal noise of a hehcopter rotor. However, a frequency domain BEM is more 

desirable for airfoil noise prediction due to the excessive computation time involved in 

the time-domain method. A recent development for airfoil self-noise prediction is the 

Large Eddy Simulation (LES) of the incompressible Navier-Stokes equations (Oberai, 

Roknaldin and Hughes, 2002; Manoha, Delahay, Sagaut and Mary, 2001). LES is used 

to determine the acoustic sources on the airfoil surface and self-noise radiation is 
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predicted through the acoustic analogy. Numerical methods (BEM, LES) are attractive 

but the computation time required for making rotor broadband noise predictions is 

currently excessive. Therefore a closed-form solution for predicting the surface 

pressures will be proposed in this thesis for making rotor broadband noise predictions. 

A complication in the prediction of rotor noise is the scattering of aerodynamic and 

acoustic pressure between adjacent blades. To incorporate the influence of adjacent 

blades, a cascade model, in which a row of airfoils is considered, can be formulated. 

Comparison of the single-airfoil Sears's function with the response function for a 

cascade version calculated by Whitehead (1962) shows that when the gap between 

adjacent blades is large compared with the up wash wavelength along the blade, the 

cascade effect is small and single-airfoil theory is a good approximation. Additional 

refinements to the theory have been made by Goldstein and Atassi (1976), who 

accounted for the effects of finite thickness and camber, and by Atassi and Akai (1979), 

who included the effects of high loading and finite angle of attack. The effects of 

scattering between adjacent blades are ignored in this thesis. 

1.2.3 A Review of Rotor Noise Prediction Methods 

The early history of research on rotating blade noise was reviewed by Morfey (1973) 

with emphasis on the fiandamental aspects of aerodynamic sound generation by blades. 

Another review was undertaken by Cumpsty (1977) from the point of an engineer 

wanting to understand, reduce and predict noise from turbomachines. More recently. 

Brooks (1983) has summarized the research of helicopter rotor broadband noise. 

Extensive freatments of the theoretical acoustics of ducted fans and fans in the free field 

have been presented by Blake (1986) and Goldstein (1976). 

The prediction of tonal noise from propellers was first made by Gutin (1936), who 

recognised the frmdamental dipole character of airfoil radiation. In essence, his model 

predicts the far field sound produced by the thrust and torque distributed over the disk 

swept out by the propeller. Mean flow effects due to forward flight, 'thickness noise' 

generated by the volume displacement effects of the blades, and the volume distribution 

of quadrupole sources were not included in the model, however. Thickness effects were 
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first included in the propeller theory by Emsthausen (1936), Demming (1938) and 

completed by Gutin himself in 1942. However, noise due to blade thickness is generally 

found to be unimportant until the tip speed approaches the speed of sound (Metzger, 

Magliozzi, Towle and Gray, 1969). Quadmpole source contributions were shown by 

Ffowcs Williams and Hawkings (1969a) to be important through the potential and 

turbulence velocity fields generated by multi-bladed high-speed fans. This quadrupole 

effect was investigated by Hanson and Fink (1979). They showed that for moderately 

subsonic, or fully supersonic, flow over thin blade sections, the quadrupole term is 

negligible, but the volume displacement source (thickness noise) and quadrupole source 

are of roughly equal importance at flow Mach numbers, relative to the blade, close to 

unity. Therefore, in this thesis, we are mainly concerned with dipole sources, which we 

assume to be the dominant sources for subsonic rotors. We further assume that the 

dominant radiation mechanism is by interaction of the turbulent boundary layer 

produced over the airfoil surface with the airfoil trailing edge. Furthermore, the effects 

due to blade-to-blade interaction are ignored. 

Garrick and Watkins (1954) extended Gutin's analysis to account for the forward motion 

of the propeller. In Garrick and Watkins' formulation, the sound field is expressed in the 

frequency domain by integrating the source contribution over the projected disk of the 

propeller. A different approach was adopted by Van de Vooren and Zandbergen (1963) 

who calculated the sound field due to a source moving along a helicoidal path. This 

method gives a better representation of the physical source distribution, but it requires 

the solution of the retarded time equations. Lowson (1965) obtained a general expression 

for the sound field of a point force in arbitrary motion. His expression provided clear 

insight into the mechanism of sound generation due to the time-rate-of-change of the 

force distribution acting on the fluid, and the acceleration of the system in which the 

force is acting. An alternative approach is taken by Ffowcs Williams and Hawkings 

(1969b) who generalized Lighthill's acoustic analogy approach to include surfaces in 

arbitrary motion. Lowson's formulation and Ffowcs Williams and Hawkings' equations 

are quite general. However, both are time-domain formulations which involve the 

evaluation of convolution-type integrals. Farassat (1981) has developed a practical time-

domain method for the calculation of noise due to rotating blades. The time-domain 

method is readily applied to arbitrary blade geometries but requires source strength time 
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histories to be known, as well as requiring calculations of retarded blade positions to be 

performed. 

A transformation of the governing equation to the frequency domain eliminates the need 

for computing retarded blade locations and gives clearer insight into the influence on 

noise radiation of blade geometry. Hanson (1980, 1983) has proposed a frequency-

domain formulation for propellers in flight via a helicoidal surface representation of the 

blades corresponding to the path followed by a point on the blade during flight. 

Hanson's integration is evaluated on the helicoidal surface of the blade mid-chord and 

hence the thin-blade approximation has to be made. However, as Peake and Crighton 

(1991) have pointed out, integration over the mean plane is inadequate when airfoil 

thickness is comparable with the Doppler-shifted wavelength. In particular, great care 

must be exercised when considering Mach radiation for which the effective Doppler 

frequency is infinite. 

In the early stages of propeller noise research, integration of the source distribution was 

carried out over the propeller disk to reveal the basic characteristics of rotor noise 

radiation. The source distribution is therefore assumed to be concentrated on the 

projected-disc plane. The result is valid for the case when the axial dimension of the 

rotor is smaller than the acoustic wavelength. Far field assumptions are usually made in 

order to evaluate the integration in the blade-fixed coordinate reference frame. A 

combined analytical and numerical method has in recent years been applied to evaluate 

the integration over the disc-shaped source (Chapman, 1993; Carley, 1999). The method 

allows an efficient evaluation of the rotating sound fields. In the 1980s, Hanson (1980, 

1983) and Farassat (1981) developed frequency-domain and time-domain formulations 

of propeller noise to allow the integration to be evaluated over more realistic blade 

surface geometries. However, their methods have not been extended to rotor broadband 

noise prediction. Time-domain methods are not appropriate for making broadband noise 

prediction because they requires random time history of source sfrength to be known. 

Hanson's frequency-domain method is too complicated to extend to broadband noise 

computations and, frirthermore, it is only valid for thin airfoils. Due to the complexity of 

broadband noise calculations, empirical correlations between the radiated sound and 

operational parameters were developed by both Wright (1976) and Widnall (1969). 
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Ffowcs Williams and Hawkings (1969a) were the first to develop a formula relating the 

power spectral density of fluctuating forces on a rotating blade to the spectral description 

of the radiation field. Again the sources are regarded as concentrated at a point rotating 

in the projected-disc plane and the solution is only valid in the far field. 

Frequency domain formulations have recently been extended to the non-axially 

symmetric sound field based on the unsteady ('once per revolution') loading 

experienced by the propeller blades when the propeller axis is at an angle of attack to the 

fi-eestream (Mani, 1990; Hanson, 1995). An ideally uniform stream with the propeller 

axis coincident with the direction of the fi"ee stream is assumed in this paper because it is 

too complicated to include the effect of non-axially symmetric mean flow in the rotor 

broadband noise prediction. 

1.3 Research Objectives 

The purpose of this research is to develop a method in the fi-equency domain to predict 

broadband self-noise from rotors. The source model will first be applied to predict the 

broadband self-noise fi-om a single airfoil in a uniform mean flow. The theory is then 

extended to multiple rotating blades. A general relationship between the radiated 

pressure spectrum and the unsteady blade surface pressure spectrum is derived. 

Parameter studies are performed to provide insight into the effects on rotor noise 

generation of rotor geometry, blade setting angles, angles of attack, blade number, and 

blade tip Mach numbers. The main objectives of this thesis are as follows: 

(1) To investigate the relationship between the scattered pressure field fi-om the trailing 

edge of an airfoil and the pressure in the turbulent boundary layer on airfoil surface 

incident on the trailing edge. 

(2) To investigate the relationship between the radiated pressure spectrum and the 

surface pressure spectrum for the case of a single airfoil of realistic geometry. 
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(3) To investigate the characteristics of airfoil self-noise radiation, such as far-field 

directivity, the effects of airfoil geometry, and mean flow Mach number. 

(4) To develop a validated theory of the broadband self-noise radiated by an un-ducted 

rotor, or propeller. 

(5) To investigate the characteristics of rotor broadband self-noise, such as far-field 

directivity, radiation spectrum and investigate effects of rotor design parameters, 

such as blade setting angles, angles of attack, chord length, blade number, and blade 

tip Mach numbers. 

1.4 Original Contributions 

The main original contributions of this thesis are listed below: 

1.4.1 Original Contributions to Airfoil Broadband Noise Prediction: 

(1) An empirical model for the boundary layer wavenumber-frequency spectrum has 

been applied to make broadband self-noise prediction. This forms the basis for the 

engineering model of broadband rotor self-noise prediction presented later in this 

thesis. 

(2) A general closed-form solution for the surface pressure on a flat plate due to an 

arbitrary time-harmonic single wavenumber component of boundary layer pressure 

incident upon the trailing edge has been derived. The important difference from 

previous solutions is that the effects of both Mach number and oblique-incidence 

turbulence are included in the solution. 

(3) The closed-form flat-plate solution in (2) has been applied to a realistic airfoil 

geometry under the assumption of high reduced frequency and sharp trailing edge. 

Due to the local characteristics of the scattered pressure near the trailing edge, this 

flat plate model is expected to provide a good approximation to the surface pressure 

distribution for real airfoils. 
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(4) A frequency domain formulation has been developed for making airfoil self-noise 

predictions. The important difference from previous work is that it is vahd for 

arbifrary airfoil geometries at small, but non-zero angles of attack. Moreover, the 

solution is valid in both near and far fields. It is shown to reduce to Amiet's analytic 

solution when the airfoil collapses to a flat plate with large span and the 

measurement point is taken to the far field. 

(5) A numerical scheme for the evaluation of the integral formula required in (4) on an 

arbitrary airfoil surface has been presented. The method requires a closed-form 

source distribution of the scattered pressure on the airfoil surface. Numerical results 

show reasonable agreement with Brook empirical prediction scheme based on 

experimental data. 

(6) Broadband noise directivity has been predicted for a flat-plate, NACA 0012 and 

NACA 0024 airfoils. The directivities are asymmetric due to the non-zero angle of 

attack. The results reveal that mean flow Mach number has an important influence 

on the magnitude and directivity of broadband self-noise. The directivity prediction 

due to a single harmonic component of turbulence for a flat plate airfoil shows 

excellent agreement with Amiet's analytic solution. 

(7) Broadband self-noise predictions are made for both frozen and non-frozen boundary 

layer turbulence. Non-frozen turbulence is shown to generate higher noise radiation 

than frozen turbulence at high frequencies. However, the difference is generally less 

than 3 dB, suggesting that the frozen-gust assumption is a reasonable assumption for 

broadband noise predictions 

1.4.2 Original Contributions to Rotor Broadband Noise Prediction: 

(1) The single airfoil model for predicting airfoil surface pressure distribution has been 

extended to rotating blades using strip theory. 

(2) A generalized frequency domain formulation has been developed for making rotor 

broadband noise predictions. It can be used for making broadband and tonal noise 

predictions, and is valid in both the near field and the far fields. The main difference 
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from previous work is that the source distribution is integrated over the real blade 

surface to provide greater accuracy. Previous formulae were integrated over the 

projected disk of the rotating blades only. 

(3) The general formulation above has been vahdated by comparison with the analytic 

solution of the 3"̂  CAA benchmark problem. 

(4) A simplified expression for making far-field self-noise predictions has been derived. 

This far-field frequency-domain formulation is computationally far more efficient 

than the general formulation in (2). It is shown to reduce to the classical Gutin 

solution of propeller tonal noise prediction when the steady surface pressure source 

is confined to the propeller-projected disc. 

(5) The numerical method for making airfoil noise predictions is extended to rotating 

blades. The validation is performed from predictions of the measured broadband 

noise from an R212 propeller. Absolute sound pressure levels are generally within 

10 dB of the measured data. Good agreement between the specfral shapes of the 

measured and predicted noise spectrum is obtained. The tonal noise predicted by the 

method also shows very good agreement with the R212 propeller experimental data. 

(6) The broadband self-noise directivity is predicted to be significantly different from the 

pure-tone noise directivities. The main lobe of broadband self-noise directivity is in 

the direction of the propeller axis while the main lobe of the pure-tone noise 

directivity is normal to the propeller axis. 

(7) Parameter studies on rotor self-noise prediction show that a propeller with large 

blade number and constant attack angle along the blade radius produces lower self-

noise radiation compared with propellers with small blade number and non-constant 

attack angle. The predicted dependence of the broadband noise frequency spectrum 

is predicted to scale very closely with the fifth power of the blade tip Mach number. 
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1.5 Thesis Contents 

This thesis is arranged as follows. Chapter II contains the general theory used in the 

development of the frequency domain formulation in subsequent chapters. The integral 

equation in the moving coordinate system is addressed, and the free-space Green 

function with mean flow effect has been derived for later use. 

Chapter III provides a description of the turbulence spectra of the aerodynamic 

boundary-layer-turbulence pressure field incident upon the airfoil trailing edge. 

Measured point pressure spectra and boundary layer parameters (boundary layer 

thickness, turbulence integral length scales) are discussed. Chapter IV gives a detailed 

derivation of the closed-form solution of the surface pressure due to an incident pressure 

field impinging upon the trailing edge of a flat plate airfoil. A discussion of the 

application of thin airfoil theory to a realistic airfoil geometry is then presented. A 

transfer function relating the incident pressure to the airfoil surface pressure, which 

includes traihng edge scattering, is introduced in this chapter. Chapter III and Chapter 

IV together provide a description of the determination of the airfoil surface source 

distribution. 

Chapter V presents the frequency domain formulation for making airfoil broadband 

noise predictions. Details are provided to show how it reduces to Amiet's analytic 

solution for flat plate airfoils. A numerical scheme is then infroduced to implement the 

prediction of airfoil broadband self-noise. Chapter VI presents the validation results of 

the frequency domain formulation derived in Chapter V for making airfoil broadband 

self-noise predictions. The predicted results are compared with Amiet's analytic solution 

and the Brooks empirical prediction for a NACA 0012 airfoil. The effects of airfoil 

geometry and non-frozen boundary layer turbulence on broadband self-noise radiation 

are also presented. 

Chapters VII to Chapter XI are concerned with the prediction of broadband self-noise 

radiation from an open rotor. A general frequency domain formulation is derived in 

Chapter VII and a simphfied far-field approximation is presented in Chapter IX for rotor 
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broadband noise predictions. A mode transfer function between the radiated sound 

pressure and the unsteady blade surface pressure are introduced in these two 

formulations. These formulations provide insight into the mechanisms by which the 

unsteady surface pressure is shifted by the blade passing frequency to radiate sound with 

continuous pressure spectra. In Chapter VIII, the Category 2 benchmark problem of the 

3* CAA Workshop (see Category 2—Rotor Noise, 1999) is used as a test case to 

provide a validation of the general frequency-domain formulation described in Chapter 

VII. In Chapter X, the far field frequency-domain formulation of rotor noise radiation is 

adapted to predict tonal noise. The predicted tone noise is compared against 

experimental data obtained by Trebble for a 1/5^ scale model propeller (Trebble, 

1987a). To further validate the far field formulation, the predicted self-noise radiation is 

compared against the broadband experimental data obtained by Trebble (1987b) in 

Chapter XL Parameter studies are also presented in this Chapter, whereby the variation 

in self-noise is predicted against various blade setting angles, angle of attack, chord 

length, blade number, and blade tip Mach number. Finally, concluding remarks are put 

forward in Chapter XII. 
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Chapter II: 

Fundamental Equations for the 

Prediction of Aerodynamic Noise 

2.1 Introduction 

The study of flow-generated acoustic noise due to rotating blades probably began with 

Gutin's (1936) theory of propeller noise. Yet, it was not until 1952, when Lighthill 

(1952,1954) introduced his acoustic analogy to deal with the problem of sound 

generated by unsteady flow that a general theory began to emerge. Lighthill's theory was 

subsequently extended by Curie (1955), and Ffowcs Wilhams and Hawking (1969b), to 

include the effects of solid boundaries. Ffowcs Williams and Hawkings' equation is 

quite general. It is a time-domain formulation that involves convolution-type integrals to 

be evaluated. However it was Goldstein (1976) who derived an integral formulation in 

which, not only the effects of solid boundaries, but also mean flow effects, are included, 

hi this thesis Goldstein's formulation is used as the basis of frequency domain 

formulations for making broadband fan noise predictions. 

In this chapter, two coordinate systems are introduced. The differential and integral 

equations, which form the basis of the broadband fan noise prediction in this thesis, will 

then be discussed. Finally, the free-space Green function with mean flow effects 

included will be derived for later use. 
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2.2 Coordinates and Coordinates Transformation 

Two frames of reference are employed here for the prediction of airfoil, or propeller, 

noise, as shown in Fig.2.1. One is the stationary reference frame ' which is 

an inertial system fixed to the earth, as shown in Fig.2.1b. Another is the moving 

coordinate system y{yx,yi,yi), which moves with the constant forward flight velocity 

U of the rotor, as shown in Fig.2.1 a. Note that in some literature, such as Goldstein 

(1976), the coordinate system is referred to as a stationary coordinate 

system in which the fluid medium moves with uniform velocity U. 

V = + V = 

^3 

yj 

y[ 

Figure 2.1a. Moving coordinates 
of reference y(y:,y2,y3) 

Figure 2.1b. Stationary coordinates 
of reference y'(j;,',y',,y',) 

The relationship between these two coordinate systems are given by 
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yi=y[ + d^iUt' (2.1a) 

T = T' (2.1b) 

v.=v\ + d,p (2.1c) 

^ ^• + U — = - ^ (2.1e) 
DT dt dt' 

where U is the velocity of the moving body in the y, -direction, r ' and r are times 

associated with the fixed coordinate system and the moving coordinates respectively, 

dy is the Kronecker delta function, v = is the total fluid velocity measured in 

the moving reference jframe, and v'= (Vj',V2,V3) is the fluid velocity measured in the 

stationary coordinate system. 

2.3 Governing Equations and their Equivalence 

Under the assumption of an isentropic fluid, the fundamental system of differential 

equations governing the motion of an inviscid, compressible fluid takes the form of 

Euler's equations. Both Euler and Lighthill equations are invariant under the Galilean 

transformation of Eqs. (2.1). It can be shown that the equations in the block diagrams of 

Fig.2.2 are mutually equivalent. In these block diagrams, V = , V = - ^ e . are the 
gy,. a;/,. 

vector operators in the fixed coordinate system and the moving coordinate system 

respectively, e'., e. are unit vectors in the y\ and direction, p is the density of the 

fluid, p is the pressure, and is the speed of sound in the steady background fluid. To 

obtain equations A3 from equation B2 in Fig. 2.2, one needs only to substitute Eq. (2.1e) 

into equation B2. To derive equation A2 from equation A3, Eqs. (2.1c), (2.Id) and (2.1e) 

are substituted into equation A3. 
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Rearrange Euler equations 

Mathematical manipulation 

Galilean transformation 

Fixed coordinates Moving coordinates 

A2: Lighthill equation 
1 6= a ' , , 

p\_— V + ( v • V) v ] = -Vp 

A1: Euler equations 

—yO + V • (yOV) = 0 

B2: Lighthill equation 

A3: Lighthill equation 

—y9 + V'-(/7v') = 0 
or 

/ ' [ ^ v ' + (v'-V)v'] = - V > 

Bl: Euler equations 

Figure 2.2. Equivalent equations in stationary and moving reference frames 

Equation B2 is referred to as the stationary-medium wave equation while equation A3 is 

referred to as the moving-medium wave equation. The moving-medium wave equation 

will be used later in this thesis. This convected wave equation from equation A3 is 

rewritten below 
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Note that Eq.(2.2), is expressed in the moving coordinate system, but the unsteady 

velocity is measured in the stationary frame of reference. It means that the acoustic 

waves propagate through a medium that is in a state of uniform motion relative to the 

observer. There are two advantages in the use of this equation: (i) The effect of mean 

flow is included in the Green function solution, and thus one does not need to consider 

this mean-flow effect again when dealing with the quadrupole sources, 

5' 
=— , (ii) Boundary surfaces are stationary relative to the moving 

reference of frame (i.e. airfoil-fixed reference frame) for computing airfoil noise, which 

allows a more convenient integration over the airfoil surface. In the case of rotor noise, 

fiirther development of Eq.(2.2) will lead to an integration over a stationary boundary 

surface in the blade-fixed reference frame. 

2.4 Integral Equations in the Moving Coordinate 

System 

Consider a region V(T) exterior to an impermeable closed surface S(T) , as shown 

schematically in Fig.2.3. Goldstein (1976) has derived a generalized integral equation 

(Goldstein 1976, Eq.(1.65)) which relates the 

acoustic pressure at an arbifrary field point x 

at time t to the distribution / (y , r ) of 

^ quadrupole sources within v , and the 

distribution of the pressure p{y,T) and its 
V (T ) 

derivatives dp{y,T)/dn on the boundary of 

V . In the moving frame of reference this 
Figure 2.3. Fluid region v(r) and 
its boundary S(T) generalized integral equation becomes 
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G(x, f , y, r) ̂  piy, T) - p(y, r) G(x, t; y, r) 
on on -r 

%̂y 

& h j}K(y) 
"o-r 3^) 

G(x, t; y, r) p(y, r) - p(y, r) G(x, f , y, T) 
DT Dr 

+ j j r jjjr (y, t)G{X, f , y, T)dy = 
-T y(T) 

x^y 

p(x,t) ifxisinv(T) 

\pix,t) if X is on^(r) 

0 if X is outside of V(T) 

(2 3) 

where = V„ -N^U is the normal velocity of the boundary surface S(T) observed in the 

stationary coordinate system, is the normal velocity of the boundary surface observed 

in the moving coordinate system, n is the unit normal (drawn outward from v(r) ), n•̂  

is the first component of n, and T is some very large but finite interval of time. Here 

p{y,T) and ^(x,^) are the acoustic pressures at the source point and the field point 

respectively which satisfy equation (2.2), and G{x,t\y,t) is the Green function that 

satisfies 

1 d ' 

co Dr 
• G-V^G = d{T-t)5{y-x) 

lim < 00 (2.4) 

In Eq.2.4 = |y -x | is the distance between the observation point x and the source 

point y in the moving coordinate system, 5 is the Dirac delta function, and t is the 

time associated with the arrival of sound at the observation point. 

Although the integral equation (2.3) refers to the moving reference frame of constant 

velocity, it is valid for arbitrary motion of the boundary surface. Another boundary 

integral formulation which allows the reference frame to have arbitrary motion can be 
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found in Gennaretti and Morino (1992). Gennaretti and Morino's integral equation is 

equivalent to the integral equation (2.3), but no non-linear terms related to y{y,r) are 

included. 

Further mathematical manipulation of the integral equation (2.3) gives Goldstein's 

version of the acoustic analogy (Goldstein 1976, Eq.(4.10)), which is the fundamental 

equation governing the generation of aerodynamic sound in the presence of solid 

boundaries. It is in the form of the integral equation 

V(T) 

"of 

c2 5) 

where / l = -n.{p - PQ) + rijCy is the component of the force per unit area exerted by 

the boundaries on the fluid, is the (z, j) component of the viscous stress tensor, «,• 

is the component of the unit inward normal n on the surface S(T) , is the pressure 

of the stationary background flow, is the density of the steady background flow, and 

Ty = pv[v'j +e.j is Lighthill's stress tensor for isentropic flow. 

Since the integral formulation of Eq. (2.5) is expressed in the moving reference frame, 

several important points are worthy of note. First, it involves a Green function for the 

wave equation with mean flow (determined by Eq. (2.4)) instead of a Green function for 

a stationary medium. Second, Lighthill's stress tensor is expressed in terms of the real 

velocity v[ = v,. -S^-U measured in the fixed fi-ame instead of the velocity v,. observed in 

the moving reference fi-ame. Finally, the volume displacement term is expressed in terms 

of -nJJ and D/Dr rather than and d/dr. 

Equation (2.5) will serve as the starting point for the prediction of airfoil and rotor 

broadband self-noise presented in this thesis. 
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2.5 Green Function in the Moving Coordinate System 

In the moving reference frame, the Green function G(x,t;y,T) is a solution of the 

following equations 

1 
G-W'G = S(T-t)S(y-x) 

Co Dt 

lim|i?G| < CO (2.6) 

where R = 'J(y^ = 1 - M % M = CZ/cg is the 

Mach number of the mean flow (airfoil velocity or axial rotor speed). One should note 

that when the partial derivative with respect to R is taken in the last equation of 

Eq.(2.6), the quantity R is assumed to be an independent variable although it is 

dependent on the variables x and y . The third expression of Eq.(2.6) is a statement of 

Sommerfeld radiation condition and is equivalent to the last equation of Eq. (2.4). 

However, the last equation of Eq.(2.6) is easier to verify in analytical studies. 

Expansion of the first expression of Eq. (2.6) gives 

Equation (2.7) may be reduced to an equivalent no-flow problem by making the Lorentz 

transformations; 
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Yi=yi 

T = + My^ 

(2 8) 

which simpUfies Eq.(2.7) to 

a ' g d^G d^G B^G 

^ 57/ ^ dY,^ ^ 

^^<r^(.T-MY,)-t)S(r,-x,)S(^Y,-x,)S(^Y,-x,) 
p p CQ P P 

(2.9) 

It may be verified that the general solution to Eq.(2.9) is of the form 

g = ^ / ( r ± a ) (2.10) 

where R - -^(Y^ +(]^ "^s)^ is the distance between two points in 

the transformed coordinate system, and / denotes an arbitrary function of its argument. 

In order to determine the arbitrary function / , let be taken to be a sphere of fixed 

radius centred about the point y = x and dQ denotes an element of solid angle (so 

that dS = R^dQ). Integration of Eq. (2.9) with the aid of the Gauss divergence theorem 

shows that 

= I I I S{-^(T-MY,)-mY,-x,)S(^r,-x,)S(^Y, -x,)dY,dY,dY, 
jjj/O H Q D O 

c2 11) 

Integration of Eq. (2.11) by parts leads to 
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- az*,) - ' ] - (% 1:2) 

In terms of the original variables, the unique Green function solution expressed in the 

moving coordinate system is derived by making use of Sommerfeld's radiation condition 

of Eqs.(2.6) 

G(x,^;y,r) = - ^ ^ [ r + — - X i ) ) - ^ ] . (2.13) 
^TtK p C q 

We shall make use of the Green function in the frequency domain, which takes the form 

of 

g(x,y,a)) = = ̂ 6 ' ^ ^ (2.14) 

where co is the angular frequency, E = R + M{y^ , j u ^ K j , and /r = ai/cg is the 

acoustic wave number. A similar Green function to that in Eq. (2.14) was given by 

Garrick and Watkins (1954). 
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Chapter III 

Characteristics of Boundary Layer 

Turbulence 

3.1 Introduction 

For making airfoil or rotor self-noise predictions we shall show in Chapter IV that it is 

convenient to use as input data the surface boundary layer pressures measured well away 

from the trailing edge. These pressure data could be obtained by measurements or from 

CFD predictions. We define the unsteady pressure developed beneath the turbulent 

boundary layer on an infinite surface (i.e. with trailing edge absent) as the incident 

pressure , and the pressure subsequently scattered from the trailing edge as the 

scattered pressure . The scattered pressure may be obtained from p. by imposing the 

Kutta condition at the airfoil trailing edge, such that the incident and scattered pressure 

exactly cancels at the trailing edge. These two pressures add to form the total airfoil 

surface pressure p, with trailing edge present, 

P,=Pi+Ps ( 3 1 ) 

Once the relationship between Pi and p^ is known, the problem of broadband self-noise 

prediction is therefore completely determined from the incident pressure spectrum. 

Brooks and Hodgson (1981), for example, argue that the scattered pressure is only 

significant at distances less than about one hydrodynamic wavelength from the trailing 

edge. This agrees with the conclusion by Ffowcs Williams and Hall (1970) who state 
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that if the eddies are far from the traihng edge » 1 ) then sound amphfication 

by the traihng edge is neghgibie. We assume in this thesis that the measured pressure 

used in the model (see Eq. (3.2)) is the pressure incident upon the trailing edge provided 

that the measurement point is sufficiently far from the trailing edge. This is the same 

assumption made implicitly by Amiet (1976a). 

acoustic domain convective 
ridge 

I I 

subconvective 
domain 

/ 
VISCOUS 

region 

0 k 

Figure 3.1. Characteristic of the wall pressure 
spectrum, see Howe (1998) 

Figure 3.1 illustrates 

qualitatively the general 

characteristic of the wall-

pressure spectrum 

at a fixed 

fi-equency satisfying 

(OQ5IUQ»\ versus 

streamwise wavenumber, 

where 5 is the boundary 

layer thickness, is the 

airfoil velocity or mean-

flow velocity, cô  is the 

source angular fi^equency 

(see, for example, Howe (1998)). It shows two main peaks. The largest peak occurs in 

the 'convective regime', where the turbulent eddies convect at speeds slower than the 

speed of sound, . Most of the energy convects at, or close to, the characteristic eddy 

convection velocity, . Turbulent energy in this region is said to be in the convective 

ridge. The second peak is in the vicinity of the acoustic wavenumber where k, the 

modulus of the vector Vi = {k ,̂k )̂ , is centred on aTq =&>(,/Cg . The range A:<|/Co| 

corresponds to the 'acoustic domain'. Here, the phase velocity of the eddies is 

supersonic; and the wall pressure fluctuations are acoustic in nature produced directly by 

boundary layer quadrupoles or by the scattering of convective pressures. The phase 

velocity, a ^ l k , of the eddies in the convective domain is subsonic. Here, the pressure 

fluctuation decays rapidly with distance from the wall and does not radiate efficiently to 

the far field. However, the pressures in the convective domain can generate sound when 
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they interact with discontinuities such as the airfoil trailing edge. The level of the 

pressure spectrum in the convective peak is typically some 40dB larger than in the 

acoustic domain (Crighton etc. (1992)). hi this thesis we assume that the spectrum of the 

incident pressure lies in the convective regime. The turbulent energy in the acoustic 

domain will not be included. 

hi addition to the rectangular coordinate system y = (3̂ 1,3̂ 2 >3̂ 3) employed in this thesis, 

it will be shown to be useful to formulate the airfoil surface pressure in the curvilinear 

coordinates system, 'n = (7,,77,), 

attached to the airfoil, as shown 

in Fig. 3.2. Here is 

the streamwise coordinate of the 

pressure or suction side, 

originating at the trailing edge, 

and 7, = 77, (y) is the spanwise 

coordinate originating at the 

mid-span along the suction-side 

or pressure-side trailing edges. 

Correspondingly, we define 

Un 

.vi / K .vi / 

yj 
> 

o 

Figure 3.2. Curvilinear coordinates 11 = (7^,7,) 

and rectangular coordinates y{yx,y2,y3) 

as the wavenumber in the 7̂  -direction and k, as the wavenumber in the 7, -direction. 

For a flat plate airfoil, (%,%) = (̂ 1,3^2) and {k ,̂k )̂ = {k^,k^). 

In this chapter, the frequency-wavenumber spectra of the boundary layer pressure 

incident upon the traihng edge will be modelled using the Corcos (1963) theory for the 

wavenumber spectrum of a fully developed turbulent boundary layer over a flat plate, 

combined with measured fi*equency spectra on an airfoil surface. The turbulence wall-

pressure frequency-wavenumber spectrum over an infinite flat-plate airfoil will be 

investigated in Section 3.2. This flat plate spectrum model will then be extended to the 

application of realistic airfoil geometry in Section 3.3. A simplified frozen spectrum of 

turbulence wall pressure is discussed in section 3.4. Finally, the Brooks semi-empirical 



Chapter III: Characteristics of Boundary Layer Turbulence 31 

expression for predicting the boundary layer thickness is described in section 3.5, which 

is subsequently used as the input to the frequency spectrum model. 

3.2 Turbulence Wall-pressure Spectrum of an Infinite 

Flat-plate Airfoil 

As an approximation to the turbulent boundary layer above an airfoil, the turbulent 

boundary-layer above a smooth, rigid plane without mean pressure gradient is 

considered in this Section, as shown schematically in Fig.3.3. The unsteady wall 

Uo 

l\i\ l\-f\K'f\f 
Figure 3.3. Boundary layer turbulence over a flat plate 

pressure, (y, r ) , of the turbulence incident upon the trailing edge can be written in 

terms of its wavenumber-frequency components (Chase (1980)), 

Pi (y, r)= j j (k, co^ (3.2) 
—CO—CO—00 

where k = (A:̂ ,A:,). The Fourier components p,.(k,®(,) can be determined from p,(y,7') 

by the inverse relation 

A(k,®o) = 7 ^ ^ J I (3.3) 
\ J - 0 0 - 0 0 - 0 0 



Chapter III: Characteristics of Boundary Layer Turbulence 32 

For broadband problems, it is useful to work with pressure wavenumber-frequency 

spectral densities. For simphcity, we assume here that the turbulent pressure field is 

spatially homogeneous and stationary with respect to time, i.e. the space-time 

correlations of the boundary layer pressure field are dependent only on the separation 

distance and temporal interval. Under this assumption, the wall-pressure fi-equency-

wavenumber spectral density S^^{k ,̂k ,̂coQ) is related to the Fourier components of wall 

pressure ^.(k,a*Q) by 

(3.4) 

where S^^{k ,̂k,,(DQ) is the wavenumber-frequency spectral density of the turbulence 

wall pressure, the superscript " * " denotes complex conjugation, £•[•••] denotes the 

expected value and 5 is the Dirac delta function. 

The wavenumber-frequency spectral density 5" is obtained by Fourier transforming to 

the space-time correlation of the boundary layer pressure. Under the assumption of 

homogeneous and stationary boundary layer turbulence, the Fourier transform of the 

cross-correlation of the surface pressure is defined by, 

+ + (3.5) 

where the brackets (•••) denote an ensemble average, ^ = (i^,,^;) is the separation 

distance between two points on the airfoil surface, is streamwise separation distance 

and 2̂ spanwise separation distance and the overbar denotes complex amplitude of an 

oscillation quantity in the fi-equency domain. The wall-pressure spectrum in the 

convective region has been studied by Corcos (1963), and is discussed in detail in a 

review article by Willmarth (1975). Corcos assumes that a stationary and homogeneous 

pressure field is developed in the fully turbulent boundary layer over the flat plate, 

whereby the statistical properties of the pressure field change very little in the 

streamwise direction over a length comparable either to a transducer size or to a typical 
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turbulence scale. For a fully developed turbulent boundary layer flow in the absence of 

mean-pressure gradients, Corcos assumes the following separable form for 

R„ e , ®„) = So (®. ) 4 % g / i 7 J e « (3.6) 

where SQ(O)Q) is the wall point pressure frequency spectrum, A and B are non-

dimensional functions determined from experimental data. The cross-power spectral 

density may be obtained by the spatial Fourier transform of Eq. (3.6) to give 

^m(k,oo) = ^owo) 
v'̂ 0 y 

(3.7) 
COq COQ 

where A and B are the Fourier transforms of A and B, 

1 <» 1 " 
,4((%) = iincl J9((%)== (3X3) 

Blake (1986, equation (8.49)) fits algebraic expressions to the functions A and B, and 

shows that the Corcos model provides a good estimate to the cross-spectral density of 

the surface pressure fluctuations in the vicinity of the convective peak, where most of 

the turbulent energy is contained. 

Brooks and Hodgson (1981) have investigated the statistical character of the 

hydrodynamic pressure field in the region that is far enough upstream of the trailing 

edge for edge scattering to be unimportant. Brooks and Hodgson (1981) show that the 

functions A and B given by 

/!(/?)== , j9(j9) = (3 9) 

provide a good fit to their experimental data, where and ^re adjustable 

coefficients. From experiment. 
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=0.11, =0 6 (3.10) 

Substituting Eqs. (3.9) into Eqs. (3.7) and (3.8), one obtains the Brook version of 

Corcos's spectrum, of the form 

^ (k,g)o) = (3.11) 

where 

•̂ 1 (^s) - ~ 
n 

1 
(3.12) 

- ~ n l + / # j 
ckl3) 

The integral scales and in the streamwise and spanwise directions are defined by 

(Brooks and Hodgson, 1981) 

/, = _ 0 u = 
2 m (3.14), (3.15) 

If the convection speed is assumed to be constant, substituting Eq.(3.9) into Eqs. 

(3.14) and (3.15) gives 

C116) 

A point pressure spectrum SQ(O)Q) based on data collated by Chase (1980) for an infinite 

flat plate can be found in the book by Howe (1998). In non-dimensional form, it is given 

by 
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6.1409xl0-"&^ 
(3.17) 

where SQ(SQ) = SQ((OQ)(UQ/5*)/(0.5pQUQy , is the non-dimensional frequency 

defined by = ojfyS* / UQ (Strouhal number with respect to S* ), and S* is the 

displacement thickness of the turbulent boundary layer. 

An alternative expression (presented by Amiet, 1976) for the surface pressure spectrum 

can be obtained by curve fitting the data of Willmarth and Roos (1965) for a flat plate. 

The result is 

^0(^0) = 
2 x 1 0 ' 

(l-ha,, -k 0.217^0 -h 0.00562^0)' 
0.1<a» <20 (3.18) 

3.3 Turbulence Wall-pressure Spectrum on a Realistic 

Airfoil 

Figure 3.4 shows schematically boundary layer turbulence over one side of an airfoil. 

Due to the curvature of the airfoil surface and the non-zero angle of attack, the features 

Figure 3.4. Boundary layer turbulence over an airfoil 

of the turbulence over the airfoil differ fi-om those over a flat plate in three important 

respects: (1) boundary layer thickness varies along the streamwise direction; (2) local 
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incoming velocity is non-uniform due to potential flow effects; (3) there is a pressure 

gradient in the streamwise direction within the boundary layer. We assume here that the 

boundary layer thickness, the incoming velocity and the pressure gradient change very 

little over a small facet of the airfoil surface so that the Corcos pressure spectrum 

remains locally vahd. We further assume that an airfoil with the same local inflow 

velocity U^iy), and boundary layer thickness ^(y) (as shown in Fig. 3.4) develops the 

same pressure spectrum as a flat plate under the same conditions. Corcos' model of 

pressure spectrum will therefore be extended to a realistic airfoil by applying it locally to 

a small region on the airfoil surface, which is small compared with an acoustic and 

hydrodynamic wavelength. 

From Eq.(3.2), a single time-harmonic component of the incident surface pressure field 

can be written as 

j?, (y,t) = ( s . i s ) ) 

where ^, (y,<»o) = . However, as pointed out by Amiet (1978), use of 

this expression to represent the boundary layer pressure suggests that the pressure field 

appears suddenly at the airfoil leading edge, which is non-physical. A better model 

would be one in which the pressure gradually increased from zero at the leading edge, to 

reach its maximum value at the trailing edge, and which was identically zero further 

downstream. Accordingly, Amiet (1978) introduces the exponential decay function ̂ o f 

Eq. (3.20), which multiphes the right hand side of Eq. (3.19) to give the desired 

behaviour, 

= (3.20) 

where £• is a decay factor, which Amiet chooses arbitrarily. Here, we choose another 

function in a manner that is consistent with the surface pressure spectra predictions 

made locally on the airfoil surface, which has the desired behaviour indicated above. 

Equations (3.17) and (3.18) suggest that the wall pressure spectrum is a function of 

position y on the blade surface due to boundary layer growth. We therefore introduce 

the following position-dependent function for the wall pressure spectrum, defined by 
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= (3 21) 
\ , ( yo ,k ,0q ) 

where yg is an arbitrary reference point which we shall take at the trailing edge. A 

single spectral component of the incident surface pressure field of Eq.(3.19) can 

therefore be written as 

where we denote p.(yo,k,0o) = p,.(k,(Uo), and the pressure spectrum S^^{k ,̂k ,̂co^) in 

Eq. (3.11) will be referred to as the pressure spectrum at the reference point , which is 

taken at the trailing edge y^ = (0,0). 

Strictly speaking, the Fourier amplitude, p, (k,cyo), cannot be a function of position y 

since /', (y,r) and ^,.(k,®o) are equivalent Fourier transform representations. However, 

all the surface pressure spectra obtained up to now are functions of the displacement 

thickness S* which depends on position y . Thus, although Eq. (3.22) may not be 

mathematically rigorous, it provides a useful engineering approximation. 

Equations (3.17) and (3.18) were derived using data for a flat plate at zero angle of 

incidence. They may therefore be inaccurate for an actual airfoil at non-zero angle of 

attack. By curve fitting the experimental data of both Yu & Joshi (1979) and Brooks & 

Hodgson (1980) measured on an airfoil, Chou and George (1984) present an empirical 

expression for covering two frequency ranges. For cô  < 0.06, 

%(&(,) = 1.732x10 (3.23) 
° ° (1-5.489^0+36.74«o'+o.15o50o') 

and for 0.06<a^<2Q 
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's'o(^o) = 
1.4216xlo-^&n 

(0.3261 + 4.1837^0 + 22.818^0 + 0.0013^^ + 0.0028a)o) 
(3.24) 

Figure 3.5 is a plot of SQ(S)Q) versus for a flat plate (Eqs. (3.17) and (3.18)) and for a 

NACA 0012 airfoil (Eqs. (3.23) and (3.24)). Note that for > 0.1, the airfoil results are 

typically lOdB higher in level than those for a zero pressure gradient fully developed 

turbulence boundary layer over a flat plate, and more than 15dB at below 0.1. This 

difference is caused by the change of boundary layer thickness due to the effect of airfoil 

geometry. The frequency of the spectral peak is at about Sq = 0.1. Figure 3.6 is a plot of 

Corcos dimensionless wavenumber spectrum, S^{k^)S2{k^)l5*^ , versus dimensionless 

streamwise wavenumber kJJJco^ and dimensionless spanwise wavenumber 

at an airfoil trailing edge of chord c = 0.252 m, Mach number = 0.4 , non-

dimensional frequency = 0.2 and a convective velocity coefficient - 0.65 . 

Consistent with Fig. 2.1, the pressure spectrum peaks at the convective wavenumber of 

5̂ = (wq / [/g . 

lologj^^a^) 
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Figure 3.5. Comparison of wall pressure frequency spectra 
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25 

kJJ^ / CO, 
0 0 

/ (DQ 

Figure 3.6. Corcos dimensionless wavenumber spectrum, ( A : , from 

Eqs.(3.12) and (3.13), at an airfoil trailing edge of chord c - 0.252 m, = 0.4, 

coq = 0.2, c„ = 0.65 

3.4 Frozen Spectrum of Turbulence Wall Pressure 

A substantial simplification of the boundary layer turbulence description may be 

obtained by making the assumption of a frozen pressure spectrum. Here, turbulence is 

assumed to be frozen and convected as a frozen pattern at the convection velocity . In 

a coordinate system rjl =j]^- U j , which moves with the convective velocity of the 

flow, the surface pressure can be written as = /',(7s>7,) • ki the airfoil-fixed 

coordinate system, the wall pressure for frozen turbulence, written in terms of 

its wavenumber components, is 

(3.25) 
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The Fourier components ^,(k) can be determined from Pi(y') by the inverse relation 

P , ( k ) = - ^ ] (3.26) 
-L-L 

where is a large but finite distance to ensure that the integration is convergent if 

(y') does not go to zero as y' goes to infinity. 

For spatially homogeneous turbulence, it can be shown that (Amiet, 1975) 

E[pJ (K. K) A % . K)] = - k. )S„ (K ,k,) (3.27) 

which is equivalent to assuming uncorrelated wavenumber components. The frozen 

spectrum is related to the non-frozen spectrum of Eq.(3.11) by 

(3.28) 

From Eq. (3.12), one has 

Js,(ijrft, =1 (3.29) 

For frozen turbulence, / j ^ o o , which in Eq.(3.12), leads to S^{k^)^oo as 

cOQIU^ . These properties suggest that for frozen turbulence {k^) can be 

approximated by a delta function 

S^{k )̂ ̂  S{k^—O)Q/U^), as/] —> 00 (3.30) 
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Substituting Eqs. (3.11) and (3.30) into Eq. (3.28), the frozen wall pressure spectrum 

may be written as 

S„(k„k,) = U^S,(k,U,)S,(k,) (3.31) 

A similar result has been obtained by Amiet (1975) by following similar reasoning. 

3.5 Calculation of Boundary Layer Thickness 

Equations (3.17), (3.18), (3.23) and (3.24) suggest that the wall pressure spectrum may 

be characterized by the boundary layer thickness. For a flat plate, the boundary layer 

displacement thickness, S*, for fully developed turbulence can be approximated by 

(Eckert and Drake JR., 1959) 

(3.32) 

where is the Reynolds number based on the arc length distance, , from the leading 

edge. 

Brooks, Pope and Marcolini (1989) have measured the boundary layer thickness for a 

NACA0012 airfoil section with chords ranging between 3.54cm to 30.48cm, with a 

range of Mach numbers between 0.115 to 0.213, and an angle of attack between 0° to 

20°. Based on this data, the following empirical expressions for the untripped (natural 

transition) boundary layers were obtained for the boundary layer displacement thickness 

S* versus distance rĵ  at zero angle of attack 

S*/T] (3 33) 

The effect of attack angle a on the boundary layer turbulence for the pressure and 

suction sides, compared with that at a = 0, was found to vary as 
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(3.34) 

on the pressure side, and by 

lOfUMT,* Qo < 

/>* 

%-= 0.0162(10°'°'®") 7.5° < a <12.5° (3.35) 
^0 

52.42(10°'̂ ""'') 12.5°<(Z<25° 

on the suction side, where the zero subscripts indicate zero angle of attack, and the angle 

of attack a is measured in degrees. The subscript" p " expresses the boundary thickness 

for the pressure side while "5" is for the suction side. Figure 3.7 shows a comparison 

between the boundary layer displacement thickness expression of Eq.(3.32) and the 

Brooks expression of Eq.(3.33) for the case of zero angle of attack. It can be seen from 

Fig.3.7 that the airfoil produces a larger boundary layer displacement thickness 

compared with that on a flat plate. However, the difference reduces as Reynolds number 

increases. 

Figure 3.8 shows the ratio of the boundary displacement thickness, S* / J j , versus angle 

of attack. The boundary layer displacement thickness, and hence the pressure spectrum 

on the airfoil suction side, varies significantly with angle of attack. Smaller variation is 

observed on the pressure side, hi accordance with Eqs.(3.11), (3.23) and (3.24), 

therefore, most of the energy is anticipated to originate from the suction side. 



Chapter III: Characteristics of Boundary Layer Turbulence 43 

0.04 
flat plate 

Brooks.airfoi l 
0.035 

0.02 

0.0 5 

R 

Figure 3.7. Comparison of boundary layer displacement thickness between the flat 
plate expression of Eq. (3.32) and the Brooks' expression of Eq. (3.33) for the case 
of zero angle of attack 
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Figure 3.8. Ratio of boundary layer displacement thickness versus angle of attack 
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Chapter IV 

Prediction of Airfoil Surface 

Pressures 

4.1 Introduction 

In the last Chapter the characteristics of the pressure field p- incident upon the trailing 

edge were discussed. In this Chapter we are mainly concerned with predicting the 

scattered pressure from p^. The calculation of p^ for airfoils of arbitrary geometry 

is, in general, very difficult. All the analytical results obtained so far make the 

assumption that the fluctuating velocity is small compared with the steady velocity 

(Goldstein (1976)), primarily because the problem can then be linearized. This 

assumption impUes that | u | « U, where u is unsteady velocity and U is the mean flow 

velocity. 

The boundary value problem for the scattered pressure p^ is required to satisfy the 

linear Helmholtz equation, the Kutta condition, and the condition of no-flow on the 

airfoil surface. At high-reduced frequency (high ratio of chord to hydrodynamic 

wavelength) the interaction between the leading edge and the frailing edge is weak so 

that the leading edge contribution to self-noise may be neglected. For the purpose of 

calculating the surface pressure induced by the convecting boundary layer pressure , 

the airfoil is therefore assumed to be semi-infinite with a trailing edge but no leading 

edge. Roger (2002) has demonstrated that this is a good assumption at reduced 
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frequencies greater than about unity. Under this assumption, it is possible to derive a 

closed-form analytic solution for the surface pressure transfer function, which relates the 

total surface pressure p, = p. 4-p^ to the boundary layer surface pressure p. incident 

upon the trailing edge. 

In Section 4.2, a closed-form solution will be derived for the surface pressure on a semi-

infinite flat plate airfoil due to a single frequency-wavenumber component of boundary 

layer pressure incident upon the trailing edge. In Section 4.3 the flat plate solution will 

then be applied to a realistic airfoil under the assumption of high-reduced frequency and 

sharp trailing edge. The result will finally be generalised to boundary layer turbulence 

for an airfoil with arbitrary angle of attack. 

4.2 Surface Pressure Predictions from Thin Airfoil 

Theory 

In Section 3.2, we defined an incident pressure field p̂  over an infinite flat 

plate without frailing edge. In this Section, we are mainly concerned with the scattered 

pressure p^ - due to the incident pressure p- impinging upon the trailing edge. 

As shown schematically in Fig. 4.1, a harmonic incident pressure component, 

u p p e r surface^- . 

y . 

' p ^ ( \ o y / t r s u r f a c e ^ 

Figure 4.1. Boundary turbulence over a semi-infinite flat plate with trailing edge 

= ) is taken as the input, and a scattered pressure p^ is 
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developed at the trailing edge on the upper surface and the lower surface with half value 

of the pressure jump (upper surface) - (lower surface) (Howe, 1999; Amiet, 

1976a). A solution for this scattered pressure jump across the flat plate is 

sought here. The analytic solution derived by Amiet (1976b) for the unsteady surface 

pressure jump Ap̂  over a flat-plate airfoil in a two-dimensional compressible flow will 

be extended to the general case of a skewed gust (i.e. ^ 0 ) . This analytical solution 

may be expressed in terms of a transfer function relating Ap̂  and p^. 

Consider a rectangular flat plate 

of chord 2b and span 2d , 

located at {-2b < jv, < 0} , 

{-d < y2 <d} , moving with 

velocity in the negative y, 

direction, as shown in Fig. 4.2. 

We assume that the chord 

2b and the span 2d are large 

compared to the hydrodynamic 

wavelength so that the flat plate 

airfoil may be assumed to be 

Figure 4.2. Coordinate system for a flat-plate 
airfoil 

semi-infinite with a trailing edge but no leading edge. Moreover, scattering by the ends 

of the airfoil is ignored. For a two-dimensional harmonic component of incoming 

turbulence convecting along the flat plate surface ^ , = 0 with velocity and with 

wavenumber component (A:;,̂ :^), the fluctuating velocity normal to the flat plate 

surface is of the form 

w,(y,r). (4.0) 

Note that is the virtual velocity that would be produced by the turbulent boundary 

layer if the airfoil surface were absent. It is related to the velocity potential 0 , = 

by 
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^ 3 
— , ^ = 5-3 

^ 3 
(4.1a), (4.1b) 

We now consider the total velocity potential O, that results following the interaction of 

with the traihng edge and the field induced by the presence of the rigid airfoil 

surface. The velocity potential O, must satisfy the wave equation 

<D,(y,r) = 0 (4.2a) 

where D^fDx ^djdx + U^dldy^, together with the boundary condition of zero-normal 

velocity on the flat plate surface 

_ 5 _ 

^ 3 
•lb<y^ <0 (4.2b) 

The total velocity potential O, must also satisfy the Kutta condition, which specifies 

zero pressure jump at the trailing edge and downstream of the trailing edge in the wake 

> 0, :F3 = 0 (4.2c) 

The velocity potential O, may be decomposed into the sum of the incident field 0^ and 

the contribution O due to trailing edge interaction and the effect of the airfoil surface, 

0^ = 0 ^ + 0 04 3) 

Substituting Eq.(4.3) into Eq.(4.2) gives the following equation for 0 

y2 1 A 2 \ 
0(y,r) = O (4.4a) 
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^ 3 
<)CXi,Ĵ 2A%-) = -«3CXi,y2,0,r) , - 2 6 < y i < 0 (4.4b) 

DgO/Dr = -DgOy/Dr , (4.4c) 

Again a harmonic time dependence is assumed of the form 0 (y , r ) = ^(y,6io)g . 

hitroducing a coordinate transformation identical to Eqs. (2.8) 

~yi 

^2 - Poyi 

T = Q)^T + M^fi^y^ 

(4 5) 

where fil = I -Mq , Eq.(4.4a) becomes 

- + r + -r2 ' 3^2 ' a^2 6];' 8]^' 
(/(Y) = 0 (4.6a) 

where Y = (};,]^,};) , = , 

KQ =(OQICQ and K^^CO^^IUQ. Correspondingly, the boundary conditions of (4.4b) and 

(4.4c) become 

ay, 
- 2 6 < y , < 0 (4.6b) 

and 
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where (Y, ) = (Z); (Y, cWg . For a harmonic velocity component incident upon 

the trailing edge of the form, 

%3(J/,, , dPo) = (4.7) 

with velocity potential, 

= <!>,{¥, (4.8) 

a solution is sought by separation of variables in the form of 

= ,p(]r, (4.9) 

Substituting Eq.(4.9) into Eq. (4.6), reduces Eqs. (4.6) to the boundary value problem 

formulated by Amiet (1976b) for a two-dimensional airfoil, but now extended to non-

zero - values. The velocity potential (p is now required to satisfy 

(p{Y,J ,̂(D^) = Q (4.10a) 

where K = -{k^j , with boundary conditions 

^ A<0o) = — , - 2 6 < y; ^ 0 (4.10b) 

{-iK^ / + 5/ DY^ )(p{Y, ,0, ) = -{-iK, / + DJDY^ )(p, (i^ ,0, CDQ) , Tj >0 

(4.10c) 

Following, for example, Amiet (1976b), Eqs. (4.10) are solved with the aid of the 

Schwartzchild solution, hi order to use this solution, the velocity potential (p is further 
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decomposed into two parts: One is the velocity potential reflected by an infinite 

plate boundary with no trailing edge present, which satisfies 

==() (4.1 la) 

= - cc<]r <00 pkllb) 
•̂̂ 3 Po 

The other is the velocity potential that accounts for the interaction by the trailing 

edge, which satisfies. 

2 ,0) 

9,o)(j;, %, d)o) = () (4.1:2a) 

573 
9,("(%,0,d,o) = (), <() (4.i:zb) 

(-zAT/ygo +a/g}^)^(')(]^,0,A)o) = - ( -zX /ygo + Aa^o)], 

7, > 0 (4.12c) 

For an airfoil with large chord 2b compared to hydrodynamic wavelength, the 

contribution fi-om the leading-edge is negligible, the sum of these velocity potentials, 

(p - (p'-°̂  + (4.13) 

provides a good approximation to the solution of equations (4.10). 

The solution of equations (4.11) for can be found, firom a superposition of two-

dimensional sources, of form (Amiet, 1976b) 
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-̂ Po -« 

where is the zero-order Hankel function of the first kind (note that Amiet use 

due to the assumption of the time dependence , while we use e"'®"'"). Equation 

(4.14) is the zero-order velocity potential expressed in the coordinate system y. Note 

that we have made the variable substitution . Evaluating the 

integral in equation (4.14) on the plate surface, = 0, gives 

= (4.15) 

where =I/{PQ'J(JUQMQ + Since the pressure is related to the velocity 

potential by 

^116) 

the surface pressure corresponding to the zero-order velocity potential of Eq.(4.15) 

is 

, :K2,0,00) = 0 ()^i, )/2,0, ̂ 0) (4.17) 

Similarly, the surface pressure related to the 'virtual' velocity potential of Eq.(4.1b) 

is 

PI (3^1' >'2,0, <»O) - ~Po ( " ' ^ 0 + U0 — ) ^ / CXI, y2,0, ®O) (4.18) 

It can be seen that the surface pressure 

Pi=Pi+P^°^ (4.19) 
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satisfies the condition of no-flow through the airfoil surface but does not satisfy the 

Kutta condition of Eq. (4.12). The surface pressure of Eq. (4.19) is the incident surface 

pressure discussed in Chapter 11. To satisfy both the no-flow, and the Kutta 

conditions, a trailing-edge correction is needed that satisfies equations (4.12). 

Substituting the zero-order solution (4.15) and q)j into Eqn (4.12c), and making use of 

the Schwartschild solution (see Schwartschild, 1902; Landahl, 1961), the solution of 

Eqs.(4.12) in terms of pressure is given by Amiet (1976b, Eqs. (7a) and (7b)) as 

1 " 
Ap,(y],:x2AG)o) = — f 

-TT •' 

-3̂ 1 (4.20) 
- f i + f 

Note that Amiet uses e due to the assumption of the time dependence 

e"""'' , while we use . Substituting Eqs. (4.17) and (4.18) into Eq. (4.20) and 

carrying out the ^ -integration, one obtains the trailing-edge corrected pressure jump as 

APS C^I ,Y2AO3<,) = H^ (Y, K,COO) PI {Y,, ,0, CÔ ) (4.21) 

where is the transfer function that relates the scattered pressure jump Ap̂  to the 

pressure p^ incident upon the trailing edge 

H,(y,Ko)o) = erf{jiiK + + k,)y,)-1 (4.22) 

Note that Eq.(4.22) is valid for all - values. For < jul, which corresponds to 

wave components whose phase velocity along the trailing edge exceeds the speed of 

sound, the transfer function of Eq.(4.22) becomes 
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H, (y,k,a)(,) = erf{^i(K + + k,)y^)-1 

= + (4.23) 

= (1 + i)E [(^ + Mo^o + )3̂ I ] ~ 1 

where E*{(̂ ) is the complex conjugate of E{^), E{^) is the Fresnel integral and eTf{^) 

is the error function, defined by 

f m h 
i%f )= I^T==db, = (4JWa),0L2#0 

They are related by (1 - i)E{^) = erf (-^-z^). The pressure now satisfies both 

the no-flow and the Kutta condition. When jUQ and k^ are set to be negative (note that 

Amiet use e"^ ) and is equal to zero, equation (4.23) is consistent with the solution 

formulated by Amiet (1976a). When Mq = 0 , equation (4.22) reduces to the solution 

given by Howe (1999). 

Equation (4.22) shows that the transfer function is completely defined by the non-

dimensional distance , streamwise wavenumber k j , spanwise wavenumber 

k̂ ^Q / Kq , and Mach number . Here K^=a)^ I i s the streamwise wavenumber 

related to the convection velocity. Figures (4.3) to (4.5) are plots of against these 

parameters. For the calculations of following Figs (4.3) to (4.5), the parameters are taken 

as Mq = 0 .4373 ,U^=cJJ^ , c ^= 0.65 , kjK^=\, and fi-equency / = 500 Hz. 

Figure 4.3 shows the modulus of the transfer function versus spanwise 

wavenumber k^P^lK^ for the various distances of =-0.5,-1.0,-1.5 from the 

trailing edge. It can be seen from Fig.4.3 that the main contribution to the scattered 

pressure jump comes from Fourier components of turbulence which travel with 
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supersonic phase speed, i.e. <1. However the contribution from turbulence 

component travelling with subsonic phase speed, i.e. I > 1, is not negligible. 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-| 1 1 1 1-
K,y. = -0.5 

_! I I 1_ _L 1 I L. 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Figure 4.3. Modulus of the scattering transfer function versus non-

dimensional span wise wavenumber for various distances from 

the trailing edge. 

Figure 4.4 and 4.5 show, respectively, the modulus and phase angle (in degrees) of the 

transfer function versus dimensionless distance, ArJyJ, from the trailing edge for 

various normalized spanwise wavenumber k^p^lK^ =0.0,1.0,2.0. Figure 4.4 shows 

that the modulus of decays rapidly with distance from the trailing edge. This finding 

suggests that the scattered pressure jump is only significant close to the frailing edge, 

which agrees with the finding of Brooks and Hodgson (1981). Figure 4.5 suggests that 

the rate of change of phase in with difference from the frailing edge is more rapid 

than that of the incident pressure. In addition, the 180° phase angle change of at the 

trailing edge suggests that the incident pressure is exactly cancelled by the scattered 

pressure jump in accordance with the Kutta condition. 
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Figure 4.4. Modulus of the transfer function versus dimensionless distance 

}<c\y\\ for various normalized spanwise wavenumber . 
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Figure 4.5. Phase angle of the transfer function versus dimensionless distance 

Kc\y\\ for various normalized spanwise wavenumber I . 
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4.3 Application of Thin Airfoil Theory to Realistic 

Airfoils 

In the last Section, a closed-form solution was derived for the scattered pressure jump 

Ap; due to a single Fourier component of the incident pressure impinging upon the 

trailing edge of a flat plate airfoil. In this section, the flat plate theory described above 

will be adapted in an approximate way to real airfoil geometries. The input quantity here 

is the incident pressure, / ' ,(y,r) = /p(y,k,0o)^,.(y,®o)e"'®°'', described by Eq. (3.22). 

We wish to calculate the total pressure = p̂  + p^ , where again p^ denotes the 

scattered pressure due to the incident pressure p^ impinging upon the airfoil trailing 

edge. The purpose here is to derive a transfer function H^ between p^ and on both 

sides of the airfoil. The relation between the above quantities is shown schematically in 

Fig. 4.6. In general, turbulence develops on both the suction side and the pressure side. 

For simplicity, turbulence on one side of the airfoil is considered here. However, the 

formulation provided below can be applied to turbulence on both sides of the airfoil and 

the results then added. 

Figure 4.6. Boundary layer turbulence and its related surface pressure 
over an airfoil 

We define a reduced frequency as 
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cTj = k^b (4.25) 

where b = cll is the airfoil semi-chord, and is the streamwise wavenumber defined 

in Chapter III. The reduced j&equency may be interpreted as a non-dimensional 

fi-equency that is proportional to the ratio of semi-chord to hydrodynamic wavelength in 

the boundary layer. For a fi-ozen gust, K^ = k^ = cOf̂ LU^ , where U^=cJJQ is the 

convection velocity and is convective velocity coefficient typically in the range 

= 0.65 ~ 0.8. The product Mcr̂  = KJD! is proportional to the ratio of semi-chord to 

acoustic wavelength. In this thesis we indicate the reduced frequency by cr, = KJJ . 

Equation (4.22) relates to the scattered pressure jump produced over the surface of a flat 

plate airfoil. For more realistic airfoil geometries, numerical methods, such as the 

boundary element method, may be used to obtain more accurate solutions. However, the 

computation time required in the calculation of Hs at each frequency and wavenumber in 

the broadband problem, which involves a spectrum of wavenumbers and frequencies, is 

currently excessive. Therefore, we make the assumption of high-reduced frequency 

(7, = KJJ , which allows the use of the closed form solution of Eq.(4.22). When the 

reduced frequency cr, is high, the hydrodynamic wavelength of turbulence is much 

smaller than the semi-chord so that the leading edge correction due to the backward 

scattered pressure jump impinging on the leading edge is comparatively small (Roger, 

2002). On the other hand, since the scattered pressure jump is only significant close to 

the trailing edge (Brooks and Hodgson, 1981; Ffowcs Williams and Hall, 1970), we 

fiirther assume that no boundary layer separation occurs and that the trailing edge is 

sufficiently "sharp" for flat plate theory to apply. The effect of the airfoil geometry on 

the aerodynamic response function Hs is therefore ignored. The airfoil response function 

in this case can therefore be treated as a flat plate with chord equal to the arc length of 

the actual airfoil, which differs on the pressure and suction sides. However, the effects of 

airfoil geomefry on sound radiation, taking into account retarded time effects, are 

included in the formulation by integrating over the actual blade surface. 
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The scattered pressure described by Eqs. (4.21) and (4.22) refers to pressure jump across 

the flat plate (Amiet, 1976a); Howe, 1999). Experimental verification of these results has 

been obtained by Brooks and Hodgson (1981). Howe (1999) has shown from a low 

Mach number approximation to the trailing edge problem that each side of the airfoil 

develops a scattered pressure with half value of the pressure jump. To apply equations 

(4.21) and (4.22) to a realistic airfoil, the variables >'2,^1,^2 replaced by 

rî ,T]„k ,̂k^ defined in Section 3.1 (to be consistent with the notation of the following 

Chapters, the first argument of is still denoted by y instead of t] due to the 

coordinate transformation % =^s(y), 7, -%(y))- With these variable substitutions and 

noting the relation of equation (3.19), the scattered pressure takes half value of the 

pressure jump of Eq. (4.21) of the form 

Y ( y , k , ) P.(k, C O Q \ y on turbulence side 

(4J6) 

\ ( y , k, Oq) P.(k, C O Q \ y not on turbulence side 

where is now given by 

H, (y, k, ®o) = erf{ji(K + ju^M^ + )7 , ) -1 (4.27) 

where now K = -JJUQ - ( k j a n d replaces in Eq.(4.22). Note that the pressure 

amplitude p- in Eq. (4.26) must be taken as the incident pressure at the trailing edge 

77; = 0, since p- varies along the streamwise direction for the reason given in Section 

3.3. Note also that the scattered pressure jump cancels with the incident pressure /»,. at 

the trailing edge owing to the imposition on the solution of the Kutta condition. 

In Chapter III, we showed that it was necessary to include the position-dependent 

function /^(y, k, (u) in the definition of the incident pressure p. according to Eq. (3.22). 

Multiplying both sides of equations (4.26) by a time factor , noting that only one 
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sided turbulence has been considered, and noting that (y, r) = (y, , the total 

pressure p, distributed over the surface of a real airfoil due to interaction with the 

trailing edge by a single frequency, single wavenumber, surface pressure component, 

a = A(y,G)o)^ ' may be approximated by 

A(y, 4 = A ( y , : " ) + ( y , = ^ , ( y , k , G)o)A (k, (4.28) 

where is the transfer function between the surface pressure at any point on the airfoil 

surface and the incident pressure at the reference point along the trailing 

edge, of the form 

HAyM,co^) = 

/p (y, k, Oq ) + ̂  (y, k, ), y is on the turbulence side 

(4.29) 

- Y (y, k, COQ ), y is not on the turbulence side 

For the general case of a turbulent pressure field incident upon the trailing edge, which 

involves a continuum of all wavenumber and frequency components, equation (4.28) 

generalises to 

where ^;(k,<»o) is given by Eq.(3.3) and is related to the boundary layer turbulence 

spectrum of Eq. (3.4). 

Equation (4.30) gives the Fourier component amplitude of surface pressure p^ (y, k, ) 

as 

p, (y, k,G)J = (y, k, )^. (k, cô ) (4.31) 
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where the argument y arises due to the presence of position-dependent function 

fp{y,'k,coQ). If the incident pressure field (k, ) is spatially homogeneous and time-

stationary, then so must the pressure field ^,(y,k,®o). Analogous to Eq. (3.4), the 

Fourier components of surface pressure are related to the spectrum SQQ of 

total surface pressure by 

E[Pt ( K ) P t ( K , ^ ( K -K)%'-K)d(»; -(o^)Sqq(k^,k,,co'^) (4.32) 

The surface pressure spectrum SQQ , which includes the airfoil response, can therefore be 

calculated fi-om 

SQQ (y, k, ) = \H^ (y, k, O), )F (k, (4.33) 

Like the transfer fimction for the scattered pressure jump, the transfer fimction 

depends on the dimensionless distance , the normalized stream wise wavenumber 

k j K ^ , normalized spanwise wavenumber I , and the Mach number . Figures 

4.7 to 4.11 are plots of against these parameters evaluated on the turbulence side 

of the airfoil, since on the non-turbulence side is identical to except for a 

constant difference of 1/2. Amiet's exponential decay fimction of Eq. (3.20) was used 

for the calculation of in Figures 4.7 to 4.11. Common parameters used in these 

calculations are = 0.4373, = 0.65 , s = 0.03, and frequency / = 500 Hz. For the 

calculations of Figs (4.7) to (4.9), A:, //c^ = 1 is also assumed. 

I P 
The modulus squared transfer fimction \H\ is plotted in Fig. 4.7 against dimensionless 

spanwise wavenumber k^P^lK^ at distances =-0 .5 , -1 .0 , -1 .5 , -2 .0 , -2 .5 . The 

I 2 

main contribution to \H^ comes from turbulence components travelling along the 

frailing edge with supersonic phase speed, i.e. k^P^ IKQ<\. However the contribution 
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from turbulence components travelling with subsonic phase speed, i.e. >1, 

cannot be neglected in the evaluation of the surface pressure. 

K̂TL = -1.0 

Figure 4.7. Modulus squared transfer function plotted against dimensionless 

spanwise wavenumber at various distances, , from the trailing edge 

Figure 4.8 shows the modulus squared transfer function plotted against 

dimensionless distance from the frailing edge for various spanwise wavenumber 

k,/3Q /Kq= 0.0,1.0,2.0. In the supersonic phase speed domain, k^^^ /aTq < 1, the function 

oscillates with distance , while for k,̂ ^̂  /aTq > 1, it does not. However in 

both domains the amplitude of decays with distance from the trailing edge for 

k\V\>2. 
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Figure 4.8. Modulus squared transfer function |i7 |̂ plotted against dimensionless 

distance, K\r]\, from the trailing edge for various span wise wavenumber I . 

Figure 4.9 is a plot of the modulus squared transfer function against dimensionless 

distance jfrom the trailing edge for the various stream wise wavenumbers 

kjK^=0.6,\.Q,2.Q . It is shown that the transfer function for small-streamwise-

wavenumber component fluctuates more slowly than large-streamwise-wavenumber 

components of turbulence. This means that small wavenumber components will make a 

larger contribution to the noise radiation than large wavenumber components when an 

integration of the source pressure over airfoil surface is performed to give the total 

radiated noise. The reason for this is that the large wavenumber component corresponds 

to small wavelength turbulence therefore the source contribution to the noise radiation is 

weak due to the cancellation effects. 
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k./K. = 1.0 

0 12 4 16 18 20 

Figure 4.9. Modulus squared transfer function plotted against dimensionless 

distance, K}r]\, from the trailing edge for various streamwise wavenumber kjk^. 

Figure 4.10 shows the function versus dimensionless streamwise wavenumber 

k jK^ for various spanwise wavenumbers A:,//Cg = 0.0,1.0,2.0 at distances 

K̂T]̂  =-0.5 respectively. Figure 4.11 is the same plot as Fig. 4.10 but evaluated at the 

distance = - 2 . 5 . The figures suggest that the fluctuation of the transfer function 

with respect to streamwise wavenumber is slower at measurement positions close 

to the trailing edge. However the main peak in Fig. 4.11 is located at the convective 

wavenumber . When this main peak coincides with the peak of the incident pressure 

spectrum (see Fig. 3.6), which also peaks at K^, the surface pressure spectrum SQQ will 

be greatly amplified. Fortunately, this coincidence does not occur at all points on the 

airfoil surface. 
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Figure 4.10. Modulus squared transfer function against dimensionless 

streamwise wavenumber I f o r various spanwise wavenumbers k̂ P̂  I at a 

distance of = -0.5. 
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Figure 4.11. Modulus squared transfer function |//_̂ | against dimensionless 

streamwise wavenumber kjK^ for various spanwise wavenumbers k f̂î lK^ at a 

distance of = -2.5. 
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Chapter V 

Airfoil Self Noise Prediction: Theory 

5.1 Introduction 

In the last two Chapters, the spectral characteristics of the airfoil surface pressure due to 

boundary layer turbulence were discussed. This Chapter uses these results to deduce a 

theory of self-noise radiation by a single airfoil. The radiated sound pressure at any field 

point X can be predicted by using Eq. (2.5) from the knowledge of the surface pressure 

/»,(y,r) at the source point yon the airfoil surface, as shown schematically in Fig. 5.1. 

Airfoil broadband noise has been investigated in both the time domain and the frequency 

domain. Casper and Farassat's (2002) approach is a time domain method while Amiet 

(1976a) solves the problem in the frequency domain. Both are restricted to flat plate 

airfoils. The frequency method presented here is more general than previous 

formulations since no far-field and large span flat-plate assumptions are made. 

Approximations are 

infroduced that enable the thin 

airfoil theory discussed in 

Chapter IV to be extended to 

realistic airfoil geometries of 

small camber and small angle 

of attack. 

Figure 5.1. A pressure source on the element 
area, ^^(y), of airfoil surface radiates noise 

received at observation point x(jt,,x2,x^) 

In Sections 5.2 and 5.3 of this 

Chapter, a frequency domain 
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formulation will be developed for making airfoil self-noise predictions under the 

assumptions that the leading edge effect can be neglected and that the trailing edge is 

sharp, as described in the last Chapter. The formula can be used to investigate the effects 

on self-noise radiation of airfoil geometry and angle of attack, providing that the incident 

pressure spectrum is known and that thickness, camber and angle of attack are not too 

great. In Section 5.4, the formulation of self-noise radiation is shown to reduce to 

Amiet's analytic solution (Amiet, 1976a) when appropriate simplifying assumptions are 

made. A numerical scheme for the evaluation of the integral formulation on an arbitrary 

airfoil surface will be presented in Section 5.5. 

5.2 Frequency Domain Formulation for Airfoil Sound 

Radiation 

Neglecting viscous stresses, the i 'th component of force acting on the fluid per unit area 

by the airfoil is given by 

(y,^) = (y,r) (5.1) 

where is the unsteady pressure disturbance on the airfoil surface described in Chapter 

IV, and n- is component of the unit inward normal n on the airfoil surface S . 

Volume-quadrupole sources generated by shear stresses in the boundary layer are 

assumed to be negligible compared with the dipole sources on the airfoil surface, 

although the proposed method has no difficulty in dealing with this quadrupole term in 

principle. For a rigid airfoil, the third term of the right side of equation (2.5) represents a 

steady pressure, which does not radiate sound. In this case, equation (2.5) reduces to 

p{x, t) = - L ffp, (y, G(x, t; y, T)dS(y)dr (5.2) 

Equation (5.2) is essentially a convolution of the space-time dependent surface-pressure 

fluctuation p,{y,r) with the spatial-temporal impulse response function G(x,/ ;y,r) . 
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Note that the velocity U, as shown in Fig. 5.1, which appears in the Green function 

G(x,t;'y,T) is the airfoil velocity rather than the rotor shaft velocity shown in Fig. 2.1a. 

For an infinite flat-plate airfoil, both U and are airfoil velocities but the subscript 

'0' indicates the corresponding quantity related to the source on the airfoil surface, for 

example, the Mach number , and the frequency cô  (note that source fi-equency 

and observer frequency differ in the case of a rotor). In general, is used to indicate 

the local mean flow velocity at the interface of the boundary layer, as shown in Fig.3.4. 

Li this case equals U plus the local potential velocity due to airfoil thickness and 

boundary layer displacement thickness. The effect of this local mean flow on the airfoil 

surface pressure is taken into account through the position-dependent function of Eq. 

(3.21) and eventually through the incident surface pressure spectrum of Eq. (3.11). 

For simplicity, it is assumed in this thesis that the airfoil does not disturb the background 

flow, which is assumed to be constant and uniform, U = UQ. 

Fourier transforming Eq. (5.2) with respect to time t gives the acoustic pressure at a 

single frequency due to the unsteady loading on the airfoil surface 

p{x,a)) = -^ r p{x,t)e""dt 
IK 

(5 3) 

Equation (5.3) may be written more compactly as 

p(x,a)) = jjPt(y,-^V(^,y,co)dS(y)e''"'dT (5.4) 

where /(x, y, o)) is a form of radiation Green fimction given by 

I(x,y,co) = -n;{y)^G(x,y,co) (5.5) 
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From Chapter II, G(x,y,®)is given by Eq. (2.14). For subscript / = 1, the derivative of 

Green function G in Eq. (2.14) is given by 

^ G ( x , y , o j ) = [ - ^ + M)]G(x,y,a) (5.6) 
dy^ R R 

while for subscript z = 2,3, 

——G(x,y,(y) = + ' G(x,y,a>) (5.7) 
dyi R R 

where // = , K = cojc^, - l-M^, M = U/CF^ as defined in Chapter II. 

5.3 General Formulation for Turbulent Inputs 

The time-harmonic analysis performed in the previous Section is now applied to one-

sided turbulent boundary layer pressures on an airfoil. Substituting equation (4.30) into 

equation (5.4) gives 

S —00— 00—00 

IK i 

Using the identity, 

(5.9) 
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and carrying out the integration with respect to co ,̂ the expression for the radiated 

pressure becomes 

p(x,co) = J| J (k^,k„o))l{x,y,(o)e'^''''^'*''''''^dk^dk,dS{y) (5.10) 
^ - 0 0 - 0 0 

Equation (5.10) may be written more compactly as 

p(x,o)) = YjHp(x,k^,k^,co)pi(k^,k^,co)dk^dk^ (5.11) 

where is a radiation transfer function relating the radiated pressure at x to each 

wavenumber component {k^,k,) of pressure on the airfoil surface. From equations 

(5.10) and (5.11), it takes the form 

s 

The power spectral density of the pressure at position x is given by 

Spp (x, (o')5 {co' - £y) = e\P* (x, (jo')p{x, co)] (5.13) 

Substituting equation (5.11) into equation (5.13) and making use of equation (3.4) for 

homogenous turbulence, the pressure spectrum at any field point x is of the form 

Spp(x,<y) = J {x,k^,k^,co)f {k^,k,,Q})dk^dk, (5.14) 

Using Eqs. (3.11) and (3.30) and performing the integration with respect to k^, equation 

(5.14) for a frozen turbulent boundary layer reduces to 
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= (5.15) 

Since the effect of attack angle is incorporated into the formulation through the incident 

pressure spectra and the position-dependent function/p(y,k,<y) of Eq. (3.21), equations 

(5.14) and (5.15) are valid, not only for flat plates with zero angle of attack, but also for 

an airfoil of arbitrary geometry with non-zero attack angle. 

5.4 Consistency with Amiet's Solution 

In a classic paper, Amiet (1976a) has obtained an analytic solution for the self-noise 

radiated by a large-span, flat plate airfoil with frozen turbulence convecting past the 

trailing edge. We now demonstrate the consistency of the present formulation with 

Amiet's solution. For far-field positions | x | » j y j , the flow-corrected distance R 

appearing in Eqs. (5.5) to (5.7) can be approximated by 

(5.16) 

where 

R^=^xf + ^ \ x l + x l ) (5.17) 

For large R, equation (5.7) approximates to 

^ G(X,y,6)) ^ (5.18) 

Substituting equation (5.16) into (5.18), one has 
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^ - G ( x , y , G ) ) « ( 5 19) 
dy^ 

Substituting equation (5.19) into (5.12), and integrating over the surface of the flat plate 

airfoil with span 2d , and noting that for a flat plate, ,7]̂  = y^,k^ = and 

ki=k2, the transfer function of equation (5.12) becomes 

, s i n f e IR )d] 
InR^ {k^-Kx^l R^)d 

where 

and y = {b^,Q,0). Substituting equations (4.29) and (3.20) into Eq.(5.21), the integration 

of Eq.(5.21) can be performed analytically. The result for L can be expressed as the sum 

of the contribution L, due to the incident boundary layer pressure, and the contribution 

Zj due to the scattered pressure 

Z(x, ̂ ,^2,(0) = Lj (x, k^,a}) + Ls (x, Atj , Atj , ca) (5.22) 

The incident part Lj is of the form 

L,{x,k„co):= ^ (5.23) 

and the scattered part of the form 

4 (x, k„k2,co) = - ^ erf(^-i2a^)+ -1] (5.24) 
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where K^=b[k^+ju{M-xjRJ\ , =b{K +/uM+ k^) , kf^ = b{K + jiajR^) , and 

K = -^ju^ -(k^/Pf as defined in Section 4.2. For kl / Pi < //q , which corresponds to 

wave components whose phase velocity is supersonic along the trailing edge, equation 

(5.24) is more usefully written in the form 

where E* is defined in Chapter IV. Neglecting 'end effects', the far-field pressure 

spectrum 5"^ can be obtained by substituting equation (5.20) into (5.15). The result is 

'S'fp (%,&)) = 
[/„ 

' ' i i ' P f w , K , K , 0 ' t s „ ( k , . k , ) d k , (5.26) 
{k^-KX^I RJ Tld 

where for fi-ozen turbulence, A:, = CO/U^. Equation (5.26) is identical to that obtained by 

Amiet (1975b, Eq. (15)) except that here the input quantity is the surface pressure 

spectrum rather than velocity spectrum (note that Amiet's paper (1975b) is for inflow 

noise and Amiet's paper (1976a) is for self-noise). 

Assuming that the airfoil span is large, » 1 , Amiet (1975b) makes use of the delta 

fimction property 

(̂ 2 ~ 
• Sik^-Kx^/R,) (5.27) 

Equation (5.26) then reduces to 

icbx^ 

2 ^ 
nid\L{x, \,k\, cof (^, k[) 0x28) 

where = /ccj / . A commonly used approximation (Amiet 1975b, 1976a) is that, 
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(5.29) 

where « L . L U J C O is the spanwise correlation length (Amiet ,1976a). Equation (5.28) 

suggests that only the &2=0 pressure component contributes to the radiated pressure 

spectrum for an observer at the mid span point = 0. Substituting equation (5.29) into 

(5.28), and putting = 0, and /p(y,k,®) = in accordance with Amiet (1976b), a 

simplified analytic solution is obtained for observers at the mid-span of the form 

Spp{^,(o) = 
fcbx^ 

2 ^ 
lyd\Lix,k„0,(of S^ico) (5.30) 

Note that Amiet's result is recovered when the parameters // and appearing in Eqs. 

(5.22) to (5.24) are replaced by - //and -k^ respectively due to the assumption of the 

time dependence used by Amiet (1976a). The reduction of the general result of 

equation (5.15) to the classic solution due to Amiet of Eq.(5.30) provides some 

verification of the present approach. 

Note that by making the assumption that only the &2=0 pressure component 

contributes to the radiated pressure spectrum at = 0, 

= lim-
k-Y —>0 

(5 31) 

fi-om which the transfer fimction \H \ related to equation (5.20) may be expressed as 

H hL,k„0, CO) 
Kbx^ 

2 ^ 
(5.32) 
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Thus \Hp\^ is predicted to vary as . This is because for a single wave component with 

A; = 0, the surface pressure is coherent along the span so that ly = d . Equation (5.30) 

can then be rewritten as 

Spp (x, a) = \Hp (x, a I U^,0, ty)|' (®) (5.33) 

Here is the radiation transfer function, defined by Eq. (5.32), valid only for large-

span flat-plate airfoils. 

5.5 Numerical Scheme for the Evaluation of the 

Transfer Function 

As shown above, once the spectrum 5" of the pressure field incident upon the trailing 

edge is known, computation of the radiated broadband field reduces to a calculation of 

the transfer fimction . For a flat plate airfoil, an approximate analytic solution is 

available for the far-field radiated pressure as described in the previous section. For 

airfoils of arbitrary geometries, a numerical scheme is now presented for performing this 

calculation based on the fact 

that the hydrodynamic 

wavelength of the boundary 

layer turbulence is usually 

smaller than the acoustic 

wavelength. Integration of Eq. 

(5.12) is then split into two 

parts: one is related to the 

acoustic term, the other is 

related to the hydrodynamic 

term. The benefit of this 

Figure 5.2. A triangular elements S„ on the 

airfoil surface 
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separation is that it allows the hydrodynamic term to be integrated analytically over a 

small element facet of airfoil surface thereby improving the efficiency of the 

computation. 

In order to carry out the numerical calculation of Eq. (5.12) for arbitrary airfoil 

geometries, the airfoil surface is discretized into finite triangular elements as shown 

schematically in Fig.5.2. Suppose that, at a single frequency, each element 

n (n = l ,2,3,"- ,#^) is small compared with the acoustic wavelength so that the 

position-dependent function /^(y,k,6)) and the function f(x,y,m) at this element, 

defined by Eqs. (5.5) and (5.12), can be taken to be constant within that element. Under 

this assumption, the numerical expression of equation (5.12) becomes 

(x, Ar,, 0 ) = ^ (x, y,, G))7j" (y,, a;)} (5.34) 
n~\ 

where N ĵ- is the total number of elements, the superscript 7/in equation (5.34) refers to 

the 'Hydrodynamic' term. The acoustic term (see Eqs. (5.5) and (5.12)) is given by 

(x, y., G)) = (y J ^ G (x, y,, a;) (5.35) 

where N\ = -n,. is the unit outward normal vector of element n and y„ is the 

coordinates of the centre of element n . From Eqs. (5.12) and (5.34), the term l" 

associated with the hydrodynamic pressure contribution is defined by an integral over 

the facet of element n 

f (5.36) 

where co^=o) in this Chapter, and is the area of the element facet on the airfoil 

surface. From Eqs.(3.11), (3.23) to (3.24), and Eq.(3.21), it can be seen that the position-
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dependent function /^(y,k,(») mainly depends on the boundary layer thickness. It is 

reasonable to assume that /^(y,k,cy) is a slowly varying function compared to 

variations in the hydrodynamic surface pressure. When the element is sufficiently 

small compared to the airfoil chord, fp(y,k,o}) can be taken out of the surface 

integration. In order to perform the integration analytically, we substitute Eqs. (4.27) and 

(4.29) into Eq.(5.36), and split the result into two parts; 

4 (y«,A:,,A„a)o) = 

+ , y„ on turbulencB side Hr 

y „ not on turbulence side 

(5.37) 

The terms I " ' and are defined as 

/."• % , ffl„) = J |er/( (5J8) 

(5.39) 

o Vs 

Figure 5.3 A triangle element with apexes 

BCD 

where a = i{K + ju^M +k^). 

Figure 5.3 depicts a triangular 

element on the airfoil surface in 

curvilinear coordinates T\ = {r]̂ ,T],) 

described in Section 3.1. The 

apexes of the triangle are 

, C(;7,c.77K:) , and 
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D (7s£,,77 )̂ . The triangular element is meshed with one edge parallel to the rj^ axis 

(for the case of Fig. 5.2, 7,̂ , = % ) as shown in Fig. 5.3. The equation of any edge of the 

triangle, for example line CD, may be written as 

(5.40) 

where the constants and can be determined by the coordinates of points 

CiVsc^Vtc) and D (7,0,77^) on the line CD, 

-;7,c)/('7(D -%*:) 05.41) 

(5.42) 

For the line CB, equations (5.40) to (5.42) are still valid with the superscript CD 

replaced by CB, and the subscript D replaced by B. 

With the above notation, the integration of Eq. (5.38) can be performed analytically to 

give 

CB „CB CB „CB 

CD CD 

(5.43) 

When ^ 0 and k, ^ 0 , the function is defined as 

Fei.^,P,q,VOK^,K„co^) = - 7 ^ 4 (^' Kr , ? & ) - J 1 - 4 , K' Vs ) (5.44) 

where 
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ik. 
erf - ^ e r f i ^ f k J i ) 0x45) 

and 

Vs=PV, + q 

K = , k[ = k j p , k^, =k^+ k[ 

(5.46) 

(5.47) 

For /? = 0 and k^^O, the function is defined as 

0x48) 

For p ^ Q and k^=Q, the function F^ is 

ipK 

a 
4 (K' %) 

(5.49) 

where 

' 1 ' -*a7s (5.50) 

Finally, for p = 0 and = 0, 

f L ( a , f , 9 , W o ) = %4(a, &,,%,) 
( 5 j l ) 
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Analogous to equation (5.43), the integration of Eq. (5.39) can be expressed as 

(5.52) 

The function is defined as 

F,(p,q,n„k„k,) = - ^ p^0,k^*0midk,*0 (5.53) 

= ;, = 0, (5.54) 
k,k. 

S t 

and 

Ff{p,q,Tj^,k^,k,) = -i^e''''\ p = 0, ^0 and = 0 (5.55) 
k. 

Example calculations using this theory are presented in the next chapter. 
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Chapter VI 

Airfoil Self Noise Prediction: 

Numerical Results 

6.1 Introduction 

In this Chapter, the frequency domain formulations of Eqs. (5.14), (5.15) and (5.33) will 

be applied to predict the self-noise radiated from a flat plate and a NACA 0012 and 

NACA 0024 airfoil. An investigation will be made of the radiation due to both a single 

Fourier (wavenumber) component of incident surface pressure, and broadband incident 

boundary layer turbulence comprising a continuum of wavenumbers. 

For a single Fourier component of boundary layer pressure incident upon the frailing 

edge, the radiated pressure field can be characterized by the modulus squared transfer 

function jif^| defined by equations (5.12) and (5.32). The transfer function Hp relates 

the radiated pressure, at any observation point, to the amplitude of a single frequency-

wavenumber component of pressure on the airfoil surface. Here we define a directivity 

function of the radiated sound field due to a single frequency-wavenumber component of 

pressure, which is related to the transfer function , by 

(R^, 0, k, (d) = (x, k, a>f (6.1) 
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where x = sin 0 cos T, cos 0, R^ sin 0 sin Y) is the observer coordinates, and where 

(R j , ^ ,0 ) is a spherical coordinate system, as shown in Fig.6.1. Herei?^ is the observer 

distance from the origin, located at the mid-span point along the trailing edge, Y is the 

polar angle measured from the x, - axis in the mid-span plane, and 0 is the azimuthal 

angle measured from Xj axis. 

Figure 6.1. Spherical coordinate system (Rj,^,0) and 

rectangular coordinate system , -̂ 3) 

For broadband noise, the sound pressure level (SPL) is defined as the spectral density of 

mean square pressure in a IHz bandwidth, in decibels relative to =2x10"^ Pa 

Lp{x,f) = lO\og 
4;7z5'_(x,(y) 

10 (6.2) 

where / = co/27ris the frequency in Hertz, and the factor Att is included to convert from 

a double sided spectrum to a single sided (0 < &)< % ) spectrum, and from radian 

frequency to Hertz. 

The directivity of the radiated sound field in decibel for broadband noise is defined here 

as 
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D(4^,^,/) = 101og 10 R 2 
d 2 

(&3) 

= ^p(x , / ) + 201ogioi?^ 

In Section 6.3, the noise from two NACA airfoils will be investigated. The results will 

then be compared with the empirical predictions based on the experimental data by 

Brooks etc. (1989). We first focus on predicting the noise radiated by a flat plate airfoil 

in Section 6.2. The results will be compared with the analytic solution of Amiet (1976a). 

The use of Eqs.(5.14), (5.15) and (5.33) to compute the spectrum of radiated pressure 

spectrum assumes that the boundary layer turbulence on the airfoil suction side and 

pressure side are statistically independent. The spectra of radiated pressure due to the 

turbulence on each side are calculated separately and then added incoherently to obtain 

the total pressure spectrum at any observation point. The contribution to the radiated 

pressure due to the turbulence on each side of the airfoil is obtained by integrating the 

transfer functions of Eq. (5.12) over both the suction side and the pressure side. This 

procedure is described by Eq. (5.37). 

6.2 Self-noise Radiation From a Flat Plate Airfoil 

The flat plate airfoil used for this prediction has a chord length of 26 = 1.0 m and a span 

of 2d = 4.0 m, typical of a small aircraft wing. It moves in the - direction with Mach 

number M . For the purpose of comparison with the analytic solution, this dimension is 

chosen to comply with Amiet's assumption of large span. For consistency with Amiet, 

the convective velocity coefficient of = 0.8 is used. Figure 6.2 shows the mesh of the 

flat plate airfoil used for the numerical calculation at frequencies less then 3000Hz. The 

element dimension must be 10 times less than acoustic wavelength so that the transfer 

function of Eq.(5.12) can be expressed in the separable form of Eq.(5.34). Finer meshes 

are needed for calculation at higher frequencies. For a mesh that is valid for frequencies 

up to / = 3000 Hz, the element size is chosen such that 4 ^ Co /(lO/) = 11.5 mm. Below 
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3kHz, 60552 triangle elements and 30712 nodes are used to represent 

thel.OfM X 4.0m flat plate airfoil, as shown below in Fig. 6.2. 

Figure 6.2. Mesh of flat plate airfoil for numerical 
calculation of self-noise radiation 

6.2.1 Comparison of Numerical Results With Amiet's Analytic Solution for 

Modulus Squared Transfer Function H ' m the Mid-span Plane due to 

Single Frozen, Normally Incident Gust Components 

By way of verification of the numerical scheme presented in Chapter V, numerical 

predictions of the self-noise radiation due to a flat plate airfoil are compared with the 

analytic solution of Amiet (1976a). For consistency with the assumptions made by 

Amiet, i.e. flat plate airfoil, large span and far field observer in the mid-span plane 

= 0 , the parameters used for the calculations here are i?^:= 150.0 m, x ^ = 0 

{0 - K decay factor of <£• = 0.3 for the incident field, for a fi-ozen incident 

gust convecting at the fi-ee stream velocity, ^ , = 0 for a normally incident gust. A Mach 

number of M = 0.3 is assumed. 
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Figure 6.3a. Directivity function, , calculated from Amiet's analytic solution for 
a flat plate airfoil, 6 = 90°, m = 0.3, cr, = 30.5 

3e-006 total 
scattered 
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2e-00B. 

e;0O6 \ 

Figure 6.3b. Directivity function,!)^, calculated by the numerical method for a 
flat plate airfoil, 0 = 90° ,M - 0.3, cr, = 30.5 
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Figure 6.3a shows the directivity function ,n12,ky,0,co) calculated from 

Amiet's solution (equation (5.32)) at a reduced frequency of = 3 0 . 5 ( / = 800Hz). 

The radiation integral L in equation (5.32) for the incident, scattered and the total 

pressure fields are calculated from equations (5.23), (5.25) and (5.22) respectively. 

Figure 6.3b is the corresponding directivity function Df̂  calculated by the numerical 

method of Eq. (5.34). The numerical and analytical solutions are in very close agreement. 

I | 2 

The variation of \H\ , defined in Eqs.(5.12) and (5.32), with reduced frequency 

o-j = KJJ is plotted in Figs. 6.4. The observation point is taken at x = (0.0,0.0,150.0) m. 

Figure 6.4a is obtained using Amiet's solution (equation (5.32)) and Figure 6.4b 

obtained by the numerical method given by Eqs. (5.12) and (5.34). Again, excellent 

agreement is obtained over the entire frequency range. 
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Figure 6.4a. Modulus squared transfer function | versus cr, calculated by 

Amiet's analytic method for a flat plate airfoil, =150.0 m, s = 0.3, M = 0.3 

X 10 

total 
incident 
scattered 

0 10 20 30 40 50 BO 70 80 90 100 
Reduced frequency, K^b 

Figure 6.4b. Modulus squared transfer function ^ j versus cr, calculated by 

the numerical method for a flat plate airfoil, =150.0 m, g = 0.3, m = 0.3 
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6.2.2. Comparison of Numerical Results With Amiet's Solution for Self-noise 
Radiation in the Mid-span Plane due to Frozen Boundary Layer Turbulence 

Figure 6.5 shows a comparison between the broadband self-noise spectrum predicted 

using Amiet's solution of Eq. (5.33) and the numerical solution of Eq. (5.15) for an 

observer at x = (0.0,0.0,150.0)m. The correlation length is taken as ly -l.lUJco for 

consistency with Amiet (1976a). The combined Chase and Corcos spectrum of Eqs. 

(3.17) and (3.31) is used to represent the incident boundary layer turbulence frequency-

wavenumber spectrum. Figure 6.5 shows that at low frequencies, / < 800//z , the 

numerical result is only about 1 dB greater than that predicted from the analytic solution. 

At higher frequencies, agreement is less than 0.5 dB. In the intermediate frequency 

range, agreement is even better. The main reason for the difference between predictions 

is because the numerical result includes integration over spanwise wavenumber , 

while Amiet's solution makes the approximation that only contributes to the 

radiation in the mid-span plane. Figure 6.5 suggests that Amiet's solution is a reasonable 

approximation for flat plate airfoils with span large compared to the acoustic wavelength 

for far field observers in the mid-span plane. The validity of Amiet's approximation is 

investigated further in Section 6.2.3. 

Note that for the purpose of computational expediency, the numerical result presented in 

Fig.6.5 only includes integration over a k̂  range of 0 < . The error in the 

pressure predictions incurred by this approximation was found to be negligible (see Fig. 

6.29). The average computation time per frequency per observation point on a 1.2GHz 

PC for the broadband noise predictions presented here for the lmx4m flat plate airfoil is 

8.5 minute. For larger airfoils, more elements are needed to meet the sampling criterion, 

which will therefore take a longer time, particularly for broadband noise calculations. 
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Figure 6.5. Comparison of broadband self-noise prediction for a flat 
plate airfoil, decay factor S = 0.3, Mach number M = 0.3 

6.2.3 Variation of ^ | With Observer Position for Frozen, Normally Incident 

Gusts 

In Section 6.2.1, self-noise predictions are restricted to observer positions in the far field 

mid-span plane. In this Section, the computation parameters are kept the same as in 

Section 6.2.1 but with the constraint on observer position relaxed. 

Figure 6.6 shows the directivity function calculated from the 

numerical method of equation (5.34) at a reduced frequency of cTj =30.5 ( / = 800Hz). 

The parameters are the same as in Fig. 6.3b but with an azimuthal angle 9 equal to 45° 

rather than 90° as in Fig. 6.3b. Figure 6.6 indicates that for Fourier components of 

surface pressure normally incident upon the trailing edge {k^ = 0) almost no noise is 

radiated at observer positions away from the mid-span plane. This is the same 

conclusion drawn by Amiet (1976a). Figure 6.7 shows the azimuthal directivity function 

/2,6,k^,0,<i>) for a polar angle of Y = 90° . Again it suggests that noise due to 
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normal incident wavenumber components is only radiated in the direction of the mid-

span plane {9 = ±90°). 

90 1.5e-010 
60 

6=45 , total 

1e-010 

5e-011 \ 

Figure 6.6. Polar directivity function (in ^ - direction) calculated by numerical 
method for a flat plate airfoil, for 6 = 45°,Af = 0.3, o", = 30.5 

90 2e-006 

T=90°. total 1.5e-OU0 

1 e-006 X 
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Figure 6.7. Azimuth al directivity function (in 9 - direction) calculated by the 
numerical method for a flat plate airfoil, forY = 90°,Af = 0.3, cr, = 30.5 



Chapter VI: Airfoil Self Noise Prediction: Numerical Results 90 

Figures 6.8 shows the same calculation as plotted in Figs. 6.4 but with the observer 

distance reduced to = 50.0 m, i.e. x = (0.0,0.0,50.0) m. The dash line in Fig. 6.8 

shows the variation of versus reduced frequency calculated using Amiet's solution, 

the solid line shows the corresponding variation calculated using the numerical method. 

The difference between the two solutions is now significantly larger. It is due to the 

break down of the geometric far-field assumption made in the Amiet solution. No such 

restriction is placed on the numerical scheme proposed here. 

X 10" 
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Reduced frequency, 

Figure 6.8. Comparison of the modulus squared transfer function | for 

a flat plate airfoil, for = 50.0m, g = 0.3, M = 0.3 

6.2.4 Effects of Decay Factor on Self-noise Prediction 

A decay factor of g = 0.3 is assumed for the incident pressure field in all calculations 

presented in Sections 6.2.1 to 6.2.3. This section examines the sensitivity of the self-

noise prediction to this parameter. Figure 6.9 shows the modulus squared transfer 

function \H plotted against reduced frequency cr,. All the parameters are chosen to 
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be the same as in Fig.6.4b, but with a decay factor reduced to £• = 0.03 fromg = 0.3. At 

X 10 

total 
incident 
scattered 

0 10 20 30 40 50 60 70 80 90 100 

Reduced frequency, 

Figure 6.9. Modulus squared transfer function | calculated by the numerical 

method for a flat plate airfoil, for e = 0.03 

small values of s and cr,, fluctuations in the 'incident part' of | (thin solid line) 

indicates that Amiet's choice of exponential function does not decay quickly enough 

to avoid physically unrealistic behaviour in which the turbulence appears suddenly at the 

leading edge. Figure 6.10 shows again plotted against reduced frequency cr,, but 

with the position-dependent function calculated from Eq. (3.21) to perform the 

calculation. In this case the function depends on the boundary layer thickness 

through the boundary layer pressure spectra of Eqs. (3.17), (3.18), (3.23) and (3.24). 

Figure 6.10 shows that it gives the correct behaviour over whole reduced frequency 

range inasmuch as \hp\ due to the incident pressure is now very nearly frequency-

independent. 
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Figure 6.10. Modulus Squared Transfer function calculated by the 

numerical method for a flat plate airfoil, with calculated from Eq. (3.21) 

Figure 6.11 is a plot of sound pressure level versus frequency computed using the 

numerical method. The solid line shows the result with the position-dependent function 

fp calculated by Eqs. (3.21) and the dash line gives the result with the function 

computed using the exponential function of Eqs. (3.20). All other parameters in the 

computation are the same as in Fig.6.5. Figure 6.11 suggests that the prediction of the 

total radiated noise is not sensitive to the choice of position-dependent function 

provided that the decay factor s is not too small. This is because the contribution from 

the incident pressure to the total radiated noise is small compared with that firom the 

scattered pressure. 

From the above analysis, it can be seen that the behaviour of the predicted radiation 

using Amiet's exponential decay function of Eq. (3.20) depends on both frequency 

and the choice of decay factor s . To simulate the correct behaviour of the turbulence at 

the leading edge, a frequency-dependent factor e must be determined beforehand. 
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However, there is a difficulty in choosing this arbitrary frequency-dependent factor s to 

give the required behaviour of leading edge turbulence. On the other hand, the position-

dependent function of Eq. (3.21) provides the correct behaviour of the leading edge 

turbulence without the use of an arbitrary fimction. We therefore use the position-

dependent function of Eq. (3.21) for the remainder of the computations presented in 

this thesis except in Section 6.2.7. 
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Figure 6.11. Comparison of the choice of position-dependent function for making 
broadband self-noise prediction of a flat plate, decay factor s = 0.3 for Amiet 

position-dependent function 

6.2.5 Variation of \ H t o Frozen Oblique Gust Components for Observers in the 

Mid-span Plane 

The results presented in Sections 6.2.1 to 6.2.4 are concerned with incident gusts that 

impinge on the trailing edge at normal incidence (^^ = 0) and which convect at the 

convection velocity. We now consider the radiation at positions in the mid-span plane 
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for the more general case of a skewed gust ^0) . Figure 6.12 shows plotted 

against the reduced frequency cTj based on the same calculation parameters as in Figure 

6.4b but for dimensionless spanwise wave numbers of //r = 0.0,0.5,1.5 . Here we 

assume corresponding to a frozen incident gust convecting at the convection 

velocity. Figure 6.12 shows that the contribution to self-noise radiation from skewed 

gusts is generally much smaller than that for the normally incident gusts at this mid-span 

position. 
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Reduced frequency, 

Figure 6.12. Modulus squared transfer function |i7^| versus cr,, calculated by 

numerical method for a flat plate airfoil, calculated from Eq. (3.21), 

for different values of / A: 

6.2.6. Variation of / / due to Non-Frozen, Normally Incident Gusts 

In all the figures presented above, the boundary layer turbulence impinging on the airfoil 

trailing edge has been assumed to be frozen (A:, =K^). In order to assess the variation of 
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\H p I with variation in stream wise gust wavenumber i.e., with gust components 

convecting at velocities other than the convection velocity, we plot in Fig. 6.13 the 

modulus squared transfer function \ H v e r s u s reduced frequency cr, for various 

stream wise wave numbers kj) = 10,30, 50, 70. Other parameters used in the calculation 

I |2 

are the same as those in Fig. 6.4b. It can be seen that \H \ generally increases as 

k^D decreases and increases. Thus, at any given frequency, low k\ (large wavelength) 

components in the -spectrum of non-frozen boundary layer turbulence, radiate more 

efficiently than those of high streamwise wavenumber (small wavelength) components. 

This is principally due to the high degree of cancellation that occurs for streamwise 

components of wavelengths much smaller than a chord. 

k. b=10 

k. b=30 

k. b=50 

k. b=70 

10 20 30 40 50 60 70 SO 90 100 

Reduced frequency, K^̂ b 

Figure 6.13. Modulus squared transfer function versus cTj , calculated by 

numerical method for a flat plate airfoil, calculated from Eq. (3.21), kj=0^ 

for different values of Lb 
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6.2.7 Effects of Mean Flow Velocity on the Directivity Function 

All the results presented in Sections 6.2.1 to 6.2.6 are calculated at a Mach number of 

M = 0.3. Figure 6.14 shows the directivity function Dfj{R^,y/,7t12,k^,Q,co) calculated 

from Amiet's solution (equation (5.32)) based on the same parameters as in Fig. 6.3a but 

at a significantly higher Mach number of M - 0.8. To ensure that there is no significant 

contribution from the leading edge, a large decay factor of £• = 0.3 is used for the 

calculation. By comparing Fig. 6.3a with Fig.6.14, it can be seen that at this higher Mach 

number the main radiation lobe moves from the forward flight direction to the aft flight 

direction, and that the contribution from the incident pressure now dominates that due to 

the scattered component. 

8 e - 0 0 6 

e-OOB / 

Total 

Scattered 

Incident 

270 

Figure 6.14. Polar directivity function (in Y - direction) calculated using Amiet's 
analytic solution for a flat plate airfoil with 9 = 90° andM = 0.8 

To understand this dependence of Mach number on directivity we separate the transfer 

function H^, expressed by equations (5.32), (5.22), (5.23) and (5.24), into the product 

of three factors: 
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(6.4) 

The first factor is the radiation integral L of Eq.(5.22) but without the factor MK^. From 

Eqs. (5.22) to (5.24), it can be written as the sum of two parts: 

ZQ (X, ,0, CO) = Ljq (X, ,0, CO) + (X, k^ ,0, co) = K^L(x, k^ ,0, co) (6.5) 

where Lj^ is the contribution to the noise radiation from the incident pressure of the 

form 

4 . k t , , CD) = f - [l - (6.6) 
£b\kA + iK^'-

and LgQ is the contribution from the scattered pressure, given by 

^ s o ( * ' e ilUf,)+ e -1] (6.7) 

This first term may be regarded as a source directivity factor since it relates to the 

pressure distribution over the airfoil surface. The directivity of the functions |Z^o|, |Zo|, 

and l^^ol' Mach numbers of M = 0.3 and M = 0.8 are shown in Figures 6.15a and 

6.16a, respectively. The other parameters used in the calculation are as for Figs. 6.3a and 

6.14. Figures 6.15b and 6.16b are amplified versions of Figures 6.15a and 6.16a to allow 

a clearer view. It can be seen that the mean flow velocity has no influence on the 

contribution from the incident pressure Lj^, but shifts the lobes of the scattered pressure 

towards the forward flight direction at higher Mach number. 

The second part of the solution is the directivity associated with the factor \I{K^R^). 

This term may be regarded as a geometric spreading factor and is plotted in Fig. 6.17 for 
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Mach numbers of M = 0.3 and M -O.S. It can be seen that the directivity lobe for 

M = 0.8 is significantly larger in the aft flight direction than that for M = 03. 

The third part of the transfer function of Eq. (5.32) is the factor and may 

be interpreted as dipole directivity factor, as shown in the plot of this function in Fig. 

6.18. It indicates that the main radiation lobes associated with this term are always 

normal to the flat plate airfoil; the only effect of the Mach number being to alter the 

magnitude of the main lobes. 

The combination of the last two factors, accounts for the propagation to the 

far field. The directivity of this function is plotted in Figure 6.19 at Mach numbers of 

M = 0.3 and M = 0.8. Figure (6.19) shows that the main lobes are significantly larger 

in the aft flight direction at M =0.8 than at M =0.3 . Figure. 6.16b suggests that 

L,q > LgQ in the aft flight direction and Fig. 6.19 indicates there is a large amplification 

in the same direction in the case of M = 0.8. It is therefore not surprising that the 

combined results of Figs. 6.16b and 6.19 account for a large noise radiation in Fig. 6.14 

in the aft flight direction due to the incident pressure component. The results in Figs. 

6.17 and 6.18 suggest that the mean-flow-corrected non-dimensional distance are 

the main reasons for the shift in the main radiation lobe in , and not changes in the 

source directivity. 
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Figure 6.15a, Directivity of |Zoj, \LSQ\, \LJQ\ at Mach numberM = 0.3 
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Figure 6,15b. Directivity of |Zo|, |Zjo|, \L,Q\ at Mach numberM = 0.3, 

enlargement of Fig. 6.15a 
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Figure 6.16a. Directivity of |Zo|, \LĴ \ at Mach numberM = 0.8 
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Figure 6.16b. Directivity of |Zo|, |Zjo|, |Z,̂ o| at Mach numberM - 0.8, 

enlargement of Fig. 6.16a 
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Figure 6.17. Directivity of geometric spreading factor 
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Figure 6.18. Directivity of factor 
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Figure 6.19. Directivity of the combined factor | / K J 

6.3 Self-noise Radiation From a NACA 0012 Airfoil 

In this section, we investigate the self-noise radiation from the general family of NACA 

airfoils. Airfoil self-noise predictions using the numerical method given in Section 5.5 of 

the last Chapter are compared with the empirical predictions due to Brooks et al. 

(Brooks, Pope and Marcolini, 1989), which are based on experimental data from a 

NACA 0012 airfoil. The numerical method will be applied to predict the self-noise 

radiation from one of the NACA 0012 airfoils investigated by Brooks with 0.3048m 

chord length, a span of 0.4752m, and which moves in the - ŷ  direction with Mach 

number M = 0.208 at an attack angle of a = 4°. A convective velocity coefficient of 

c„ =0.8 is used. Figure 6.20 shows the suction-side mesh of the NACA 0012 airfoil 

used for numerical calculation. The element dimension depends on the frequency 

requirement for self-noise prediction. If the element size ^ is required to be 10 times 

less than acoustic wavelength for a mesh that is valid up to / = 3000 Hz, the element 
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length should be less than Cq /(lO/) = 0.0115 m. Thus we use a mesh comprising 5952 

triangle elements and 3038 nodes for the 0.3048m x 0.4752m NACA 0012 airfoil. In 

Figure 6.20. Suction side mesh of the NACA 0012 airfoil for numerical calculation, 
c = 2b = 0.3048 m, 2d = 0.4752 m 

order to investigate the effects of airfoil geometry, the NACA 0012 prediction are 

compared with prediction from a flat plate and a NACA 0024 airfoil. For the purpose of 

comparison, meshes of a flat plate airfoil and a NACA 0024 airfoil with the same chord 

and span length as the NACA 0012 airfoil were also created. 

In this Section, the numerical method described by equation (5.34) will be used to 

predict the self-noise 

A .y. 

Figure 6.21. Airfoil coordinates 

radiation. Amiet's solution 

is restricted to flat plate 

airfoils and, strictly 

speaking, is therefore 

unsuitable for this airfoil 

geometry. The use of Eqs. 

(5.38) and (5.39) for the 

numerical calculation of 
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self-noise radiation requires the streamwise coordinate of the airfoil profile to be 

determined. Figure 6.21 shows the coordinate system used to express the airfoil 

profile, where ^ is the abscissa normahzed on chord and is the ordinate of the airfoil 

thickness distribution, also normalised on the chord. The streamwise coordinate may 

be obtained from 

(6.8) 

where c-Ibis airfoil chord length. For aNACA 0012 airfoil, the thickness distribution 

(see Abbott & Von Doenhoff, 1959) is given by 

y, =0.6(0.2969vf-0.126^-0.3516^' +0.2843^' -0.1015^') (6.9) 

where 0 < ^ < 1. The derivative of y, required by Eq.(6.8) is 

= 0.6(0.14845 / ̂  - 0.126 - 0.7032^ -h 0.8529^" - 0.406^") (6.10) 

The integration of (6.8) is performed numerically. 

For the flat plate calculations presented in Section 6.2, all computations were carried out 

for zero angle of attack. It was therefore only necessary to perform the integration of Eq. 

(5.12) on one side of the flat plate airfoil since, by symmetry arguments, the total 

radiated noise is twice that for a (hypothetical) one-sided flat plate airfoil (Amiet, 1976a). 

However, for an airfoil of arbitrary geometry with non-zero angle of attack, the 

boundary layer turbulence on the airfoil pressure and suction sides differ and are 

statistically independent. In this case, the surface integrations appearing in Eqs. (5.12), 

(5.14) and (5.15) for the radiated pressure spectra must be performed on each side of the 

airfoil surface and the pressure spectral density due to each side added incoherently to 

give the total noise radiation. This is the method adopted in the rest of the thesis. 
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The combined Chase and Corcos spectrum described in Chapter 11 will be adopted for 

the prediction throughout this section. The position-dependent function is calculated 

from the spectrum of Eq.(3.21). 

6.3.1 Relative Contribution to Airfoil Self-Noise Radiation from Oblique Gust 
Components 

In Section 6.2.5, the variation of \ h w i t h k2 was investigated for single gust 

compoents on a flat plate airfoil. In this section, we investigate the relative contribution 

to self-noise radiation from the different kz components in a turbulent boundary layer 

comprising all Ai components simultaneously. Figures 6.22 and 6.23 present a plot of the 

|2 -
dimensionless integrands, S^^IU^{0.5PQ5 ) U , in Eq. (5.15) against spanwise 

wavenumber (solid line). This complicated expression plotted against A:, 

specifies the relative contribution to airfoil self-noise radiation from the different k, 

components (recall that kt is the fransverse wavenumber components in the curvilinear 

coordinate system attached to the airfoil). The calculations are made at the mid-span 

observation point x = (0.0,0.0,1.22) m, with C/ = 71.3m/s at reduced frequencies of 

cjj = 5.0, 20.1, 35.3, 50.4 ( / = 300 Hz, 1200Hz, 2100Hz, 3000Hz). Other parameters 

used are =0.8 and or = 4°. Also shown for comparison (dashed curve) is the fimction 

F{kj) of Eq. (6.11) below, which is the factor appearing in the Amiet solution of Eqs. 

(5.26) and (5.27) for describing the variation of self-noise radiation with k̂  due to a flat 

plate airfoil, 

{k^-Kx^lR^) 7id 

where 4̂ is a constant chosen arbifrarily to allow straightforward comparison with the 

numerical result. It can be seen that Eq. (6.11) provides a reasonable fit the A:,-

dependence of the integrand in Eq. (5.15). Amiet makes the further approximation that 

Eq. (6.11) tends to a delta fimction at high k^d, suggesting that in this limit, only the 
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single k2- component, = kx^ / , makes a significant contribution to the far field 

radiation. 

This behaviour is corroborated in figure 6.23. It shows that, at high frequency, the main 

contribution to broadband self-noise radiation for mid-span observers = 0 comes from 

the Fourier components of pressure arriving at the trailing edge close to normal 

incidence, Ag = 0. This is due to the lack of cancellation in span wise direction when a 

turbulent component arrives at the trailing edge in the normally incident direction. At 

low frequencies, as shown in Fig. 6.22, a broader spectrum of ^2-components can be 

seen to be making a significant contribution to the radiated pressure, including subsonic 

wave components for which k^j51 > 1. 

X 10 

(0.5;,,<5 y v 2TTi 1.B 
f=300Hz, numerical 

— • M O O H z , Eq.(B.11) 

f=1200Hz, numerical 

f^1200Hz, Eq.(B.11) 

Figure 6.22. Non-dimensional integrand of Eq. (5.15) versus spanwise wavenumber 
k^piK^ for frozen incident turbulence, suction side, / -300Hz, 1200Hz 



Chapter VI: Airfoil Self Noise Prediction: Numerical Results 107 

X 10 

P . l A — 1=2100Hz, numerical 

. . . f ^2100Hz, Eq.(B.11) 
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Figure 6.23. Non-dimensional integrand of Eq. (5.15) versus span wise wave 
number for frozen incident turbulence, suction side, / = 2100 Hz, 3000Hz 

6.3.2 Broadband Self-Noise Directivity and the Effect of Airfoil Geometry 

In this section, we investigate broadband self-noise directivity and the effect of airfoil 

geometry on self-noise radiation. Figures 6.24, 6.25, and 6.26 present the polar 

directivities of broadband self-noise, DQ^ ,7t 12,co), evaluated in the mid-span plane, for 

a flat plate, and a NACA 0012 and a NACA 0024 airfoil. The parameters used for the 

calculation are = 10.0 m, 0 = n H, = 0.8, and an attack angle of or = 4°. 

Other parameters used in Fig. 6.24 are the frequency/ = 1042.8 Hz (cr̂  = 12.13) and the 

Mach number M = 03. Figure 6.25 has the same Mach number as Fig. 6.24 but with a 

higher frequency of / = 2780.8 Hz (cTj = 32.35). Figure 6.27 has the same frequency as 

Fig. 6.24 but at a higher Mach number of M = 0.8 . In these three figures the 

directivities for the NACA 0024 airfoil, the NACA 0012 airfoil, and the flat plate are 

represented by the dark solid line, the dotted line and the solid line, respectively. All 

airfoil geometries have the same chord of c = 0.3048 m and span of 2d = 0.4752 m. 
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The directivity patterns exhibit asymmetric behaviour due to the non-zero angle of 

attack, hi contrast with the single wavenumber directivity function of Fig.6.3, the 

broadband directivity function vary very slowly with polar angle. Airfoil geometry does 

not appear to appreciably alter the directivity pattern relative to a flat plate airfoil but it 

does significantly alter the sound pressure level in the airfoil chord direction, = 0, n, 

this effect being most pronounced at high Mach number. This effect of flow speed on 

directivity has been investigated in Section 6.2.7 for a single harmonic component of 

boundary layer pressure. 

flat plate 

NACA 0012 
NACA 0024 

330 

Figure 6.24. Polar directivity (in Y -direction), Z)(Y,;r/2,a;) -13.0dB, of broadband 
noise for frozen incident turbulence, cr, =12.13, M = 0.3 
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270 

flat plate 
NACA 0012 
NACA 0024 

Figure 6.25. Polar directivity (in Y -direction), D{^,71:12,co) -IS.OdB, of 
broadband noise for frozen incident turbulence, cr, = 32.35, M - 0.3 

flat plate 
NACA 0012 
NACA 0024 

Figure 6.26. Polar directivity (in Y -direction), DQV,k12,0)) - IS.OdB, of 
broadband noise for frozen incident turbulence, cr, = 4.549,M = 0.8 
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Figures 6.24 to 6.26 show the self-noise polar directivities, D{^,n I l,a)) in the mid-

span plane. We are now concerned with the directivity pattern at an arbitrary position 

away from mid-span plane {0 H'). Figure 6.27 shows a comparison between the 

directivity patterns evaluated in the 9 - k 11 plane (mid-span plane) and the 9 - n IA 

plane (non mid-span plane) for a NACA 0012 airfoil. It can be seen that the broadband 

directivity pattern does not alter significantly from the 9 = K IA plane to the 9 = n: 12 

plane. Figure 6.28 shows the self-noise azimuthal directivity, Z)(;t / 2, ̂ ,«) , in the 

^ = 7112 plane for a NACA 0012 airfoil. Figure 6.28 suggests that the self-noise is 

about 20 dB lower in the spanwise direction (0 = 0) than in the normal spanwise 

direction {9 = 7cl2). The computation parameters used to calculate Figs 6.27 and 6.28 

are the same as for Fig. 6.24. 

270 

Figure 6.27. Polar directivity, DQV,7r 12,co) -13.0dB, of broadband self-noise (in ^ 
direction) for frozen incident turbulence, cr, = 12.13, M = 0.3 
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Figure 6.28. Azimuth al directivity, D{n 11,0,oS), of broadband self-noise (in 6-

direction) for frozen incident turbulence, cjj = 12.13, M = 0.3 

6.3.3 Broadband Self-noise Spectral Predictions 

hi this section, the broadband self-noise prediction obtained using the numerical scheme 

presented in this thesis is compared with the empirical prediction scheme proposed by 

Brooks. The effect of airfoil geometry on the broadband self-noise spectrum will then be 

discussed. The effect of airfoil geometry on directivity has previously been discussed in 

Section 6.3.2. 

6.3.3.1 Validation of Airfoil Self-noise Prediction Scheme 

By way of vahdation of the proposed prediction method, Figure 6.29 shows comparisons 

between the numerical predictions of broadband self-noise with that predicted using the 

empirical prediction scheme due to Brooks. The Brooks scheme is based on a regression 

analysis of extensive experimental data of the self-noise radiation from a NACA 0012 

airfoil over a broad range of flow speeds, angles of attack and chord lengths (Brooks, 

Pope and Marcolini, 1989). The sound pressure level (SPL) is defined in equation (6.2). 

The prediction is made for a NACA 0012 airfoil with a chord length of 0.3048m and a 

# OF So; 
% 

5 LIBRARY I; I 
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span of 0.4752m, moving in the - direction with Mach number M = 0.208. The 

observation point is at x = (0.0,0.0,1.22) m, to be consistent with the experimental set up 

of Brooks, hi Fig. 6.29, the sohd hne is the result calculated from the Brooks prediction 

scheme. The dark sohd hne is the numerical prediction assuming frozen boundary layer 

turbulence integrated over the frill A, range (with upper limit of integration chosen to 

ensure convergence of the pressure prediction), while the dashed hne is the numerical 

result integrated within the range of supersonic wavenumber components only, 

Q<kf<K. The dotted solid hne in Fig. 6.29 is the broadband noise prediction for non-

frozen boundary layer turbulence integrated over the k, range of 0 < A:, < /r as calculated 

40 
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28 •o 
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20 

Brooks formula 
frozen,full Kt range 
frozen,supersonic Kt range 
non-frozen,supersonic Kt range 

- e - non-frozen,average in 1/3 octave band 
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Figure. 6.29. Comparison of broadband self-noise with Brooks empirical prediction 

from Eq. (5.14). The numerical predictions are shown to be within 6dB of the Brooks 

prediction. Note that the Brooks prediction scheme applies to 1/3 octave bands only and 

cannot capture the details in the spectrum. The sohd line with circles shows the spectral 

density averaged in 1/3 octave bands for non-frozen boundary layer turbulence 

integrated over the supersonic range. At the high frequencies this matches the Brooks 
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data slightly better. Figure 6.29 shows that the contributions from subsonic 

components become increasingly small as frequency increases. It also suggests that the 

frozen turbulence assumption gives a better approximation at low frequency than at high 

frequency. The difference in the self-noise prediction between the frozen and non-frozen 

gust assumptions is about 2 dB at high frequency. Thus, the frozen-turbulence 

assumption appears to be a reasonable assumption for making airfoil self-noise 

predictions. 

The computation time for numerical prediction presented here is 4.5 minutes per 

frequency per observation point for frozen incident turbulence over full k, - integration 

range while for a integration range of 0<A:, < / f , the computation takes only 2.2 

minutes per frequency per observation point on a 1.2 GHz PC. However, for non- frozen 

turbulence, which involves performing an additional integration over k̂  , the 

computation takes 240.9 minutes per frequency per observation point for a supersonic 

k^ - range integration of 0<k^<K in a 1.2 GHz PC. 

6.3.3.2 Effect on Airfoil Self-Noise Radiation due to Airfoil Geometry 

Figures 6.30 to 6.32 show broadband self-noise prediction for the three airfoil 

geometries of, NACA 0024, NACA 0012 and a flat plate airfoil. Figure 6.30 is the self-

noise prediction at observation point x = (0.0,0.0,1.22) m (at Y = 90° ) for a Mach 

number of M = 0.208, Figure 6.31 is for the same set of parameters as in Fig. 6.30 but 

with Mach number of M = 0.8 , Figure 6.32 is the prediction at 

X = (-1.178,0.0, - 0.316) m (at 4̂  = 195°) for a Mach number of M = 0.8. These figures 

suggest that at high Mach number, airfoil geometry may significantly influence the 

radiation, particularly in the forward flight direction, as indicated in Fig. 6.26. 
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Figure 6.30. Comparison of broadband self-noise for different airfoil geometries, 
at observation point x = (0.0,0.0,1.22) m, M = 0.208 
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Figure 6.31. Comparison of broadband self-noise for different airfoil 
geometries, at observation point x = (0.0,0.0,1.22) m, M = 0.8 
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Figure 6.32. Comparison of broadband self-noise for different airfoil geometry, 
at observation point x = (-1.178,0.0,-0.316)m, M =0.8 
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Chapter VII 

Rotor Broadband Noise Prediction: 

General Formulation 

7.1 Introduction 

This Chapter describes a frequency domain approach for the prediction of broadband 

noise radiated from a rotor or propeller in free field. The formula obtained can also be 

used to calculate the tonal noise when the surface pressure is taken as a steady force 

distribution due to the lift and drag forces over the rotating blades. The approach has 

particular application to fan broadband self-noise. This generalized formulation allows 

for the integration of the steady and unsteady forces over the real blade surfaces and 

hence no thin airfoil approximation is made, as has been done in previous 

studies(Hanson,1983). The relationship between the spectrum of unsteady surface 

pressure and the radiated far-field spectrum is clearly established. The unsteady blade 

loading, which constitutes the aerodynamic sound sources, can be estimated by 

combining single-airfoil theory discussed in Chapter IV, the representation of the 

turbulence wavenumber spectrum proposed by Corcos (1963), and the measured 

boundary layer frequency spectrum and boundary thickness measurements made by 

Brooks, Pope and Marcolini (1989). The application of unsteady airfoil theory to predict 

the self-noise due to a rotor blade requires an assumption that the boundary layer 

turbulence at a particular spanwise position is the same as that on an airfoil of infinite 

span with prismatic cross section at the same mean free-sfream velocity and angle of 

attack. This is similar to the strip theory used for an airfoil (for example, Goldstein, 

1976). 
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7.2 Co-ordinate Systems 

The analysis presented here is formulated in a moving reference frame (aircraft-fixed 

coordinates), which moves with constant velocity U = (17,0,0) as shown in Fig.7.1. In 

the moving reference frame, the coordinates of the observation point and source point in 

Figure 7.1. Relation between the moving coordinate system y = (y,,rg,6>g) and the 

blade-fixed coordinate system y'' = (yj,rQ,0g) 

a cylindrical coordinate system are denoted by x = (xj,r,6' ') and y = ( } ' , , ) , 

respectively. The relationships between the rectangular coordinate system and the 

cylindrical coordinate systems are: 

Xj =x^, - rcosO',x^ =rsm6' 

^ cos^o,_y3 = A;, sin^o 

(7.1) 

(7.2) 

In the blade-fixed coordinates, the observation point and the source point are 

respectively denoted by x*=(x,,r,6') and y* = (>'i,?"o!^o) • The transformations 

between the moving coordinate system and the blade-fixed coordinate system are: 
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x(xi, r, 6'') = x* (x,, r, (9 - Q r) (7.3) 

(7.4) 

where r is the time associated with the emission of sound, and Q is the angular 

velocity of the blade rotating in the opposite direction of , as shown in Fig.7.1. 

In addition to the rectangular coordinate system y = employed in this thesis, 

we also make use of the 

rotor hub 
curvilinear coordinate system 

i] = (^s'^t) to express the 

surface pressure distribution, as 

shown in Fig. 7.2. Here 

7s = 7?; (y^) is the streamwise 

arc length with the origin 

located at the trailing edge and 

It - (y^) is the span wise arc 

length normal to 7]̂  upon the 

suction-side or pressure-side 

surface. Correspondingly, we 

use and k, to denote the streamwise wavenumber and the spanwise wavenumber, 

Figure 7.2. Blade curvilinear coordinate system 
(77̂ ,77J and associated wavenumber {k^,k,) 

respectively. 

If we use a cylinder of radius 

cut through the propeller blade 

with cylinder axis parallel to the 

propeller axis, the blade section 

profile will closely fit onto the 

cylinder surface. Unwrapping the 

cylinder surface onto a flat plane 

forms a right-angled triangle as 

Figure 7.3. Geometric pitch triangle and 
hydrodynamic velocity triangle (the arrow 
shows the direction of fluid velocity) , pitch 
angle Pp, hydrodynamic angle and attack 
angle a 
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shown in Fig. 7.3. The adjacent side of the triangle is the circumference Inr^ of the 

cylinder circular end. The opposite side is the advanced distance (pitch distance), P , of 

a point along the helicoidal chord line when the point rotates with a full circular angle. 

The hypotenuse forms part of the blade section chord line as shown in Fig. 7.3. The 

angle formed between the adjacent side and the hypotenuse is referred to as the 

geometric pitch angle jip. 

Figure 7.3 also shows the velocity triangle formed from the propeller forward flight 

velocity JJ, the blade section rotational velocity Qrg, and the resultant inflow velocity 

C/o, given by 

U,=4U'+{Q.r,f (7.5) 

From this velocity triangle, shown in Fig. 7.3, the relative inflow angle fifj can be 

obtained by 

=tan-^(t//Qro) (7.6) 

Finally, the attack angle of the blade section is given by 

a = Pp - Pfj (7.7) 

7.3 Unsteady Blade Surface Pressure Estimation 

We assume that the blade section develops the same surface pressure distribution as an 

isolated airfoil with the same local inflow velocity , the same angle of attack a , and 

the same sectional geometry. Here the local incoming velocity at the blade section of 

radius ^ is used instead of the airfoil incoming velocity U . Under this assumption, the 

pressure, ^ ^ ( y o f Eq. (4.30) on the blade surface can be written in terms of an 

integral over wavenumber-frequency components (A:̂ , A:,, (»q ) of the incident surface 

pressure of the form 
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ft(y'.r) = (7.8) 
—CO—00—CO 

where CDQ is the source angular frequency measured in the blade fixed coordinate 

system. 

The turbulence wall pressure Pf(y,T) is measured in the blade fixed coordinate system, 

which we now denote by Pf('y^,T) . The surface pressure varies along the chord 

direction of the blade-section airfoil. This variation is accommodated in the position-

dependent function, which we now indicate by . Note that /^(y*,k,aJo) 

varies in the streamwise direction as well as the blade spanwise direction because the 

incoming velocity UQ and the angle of attack a vary along the rotor radius . For an 

airfoil of uniform profile, (y,k,«(,) = 1 along the airfoil trailing edge. However, for a 

rotating blade, y^(y^,k,6)q) 9̂  1 along the blade trailing edge. To allow for this 

situation, equation (4.29) must be reformulated as 

/ / (y\k,£yo) = 

/p ( y k , i / p ( y , k , ( y \ k , ) , y* on the turbulence side 

-\fp{YTE,k,CD^)H^(y\k,6)o), y* not on the turbulence side 

(7.9) 

where y ^ takes coordinate value of y^ at the trailing edge, in the coordinate system of 

VTE =(0'7/) • Note that the quantities M^, /3Q, ju^, K in Eq. (7.9) take their 

local blade section values at radius ^ . 

When the transfer fimction of Eq. (4.27), which is valid for a single airfoil, is 

applied to a multi-bladed rotor, an inherent assumption is made that the blade surface 

pressure due to the scattering of sound by adjacent blades can be neglected. However, if 

the incident surface pressure spectrum is measured on a rotating blade surface with 
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adjacent blades present (Carley and Fitzpatrick, 2000), the scattering effects of adjacent 

blades will have been included in the incident pressure spectrum. On the other hand, we 

shall emphasize that the effects of multiblade geometry on sound radiation are always 

included in the later derived formulation by integrating over all the blade surface. 

7.4 Important Identities for the Derivation of the 

Frequency-domain Formulation 

In this section, mathematical identities will be presented to assist further derivation of 

the frequency-domain theory developed in the next section for making rotor self-noise 

prediction. 

As described in Section 1.2.3, volume-displacement sources due to the blade thickness 

and quadrupole sources outside the blade surface are only important at high relative flow 

speeds close to the sound speed. We shall therefore confine our attention to the sound 

radiation due to the unsteady blade forces exerted by the blade surface on the adjacent 

fluid, caused by turbulence interaction with the airfoil and its trailing edge. Thus, we are 

concerned only with the second term of Eq.(2.5), which we now denote by 

= r (7.10) 

The difficulty arises in the evaluation of Eq. (7.10) because the emission time r is 

implicitly included within its integrand. In order to avoid this difficulty, the following 

key steps will be employed to reformulate the governing equations in the frequency 

domain. Equation (7.10) is expressed in the moving, aircraft-fixed coordinate system. 

The cylindrical coordinate system described by Eqs.(7.1) and (7.2) will be employed for 

convenience. It is natural to express the observation point x = (xj,r,^') in the moving 

reference frame, while the source point y* = (;^i,''o'^o) is expressed in the blade-fixed 

coordinate system, thereby allowing simple integration of the source distribution over 

the blade surface, as required by Eq. (7.10). The coordinate transform (7.4) will 
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therefore be appUed to Eq. (7.10), but the coordinate transform (7.3), which is related to 

the observation point, will not. With the above considerations, the mean-flow corrected 

distance R in the Green function of Eq.(2.13), in which the observation point 

x = (x^,r,d') is expressed in the moving coordinate system and the source point 

= (>"1,̂ 0 »^o) expressed in the blade-fixed coordinates, becomes 

cos(^o —Q.T — 9'y\ (7.11) 

Note that only the source-time variable r appears inside the expression for R , and not 

the observation time t. Fourier transformation of Eq. (7.10) with respect to t using the 

Green function of Eq.(2.13) can therefore be carried out explicitly to give 

i f j R 

where X = y^-x^ , R^ = + rl - Irr^ cos(6'o - Q r - 6'') , and /J. = KIdefined 

after Eq.(2.14). Equation (7.12) can be revmtten as an integral over a separable fimction 

of and Ro by using the identity (Gradshteyn and Ryzhik (1965)) 

1 , = i r \ e " ' ' ' H » \ R „ 4 n ' - k l ) d K (7.13) 

where is the zero order Hankel function of the first kind. In what follows we shall 

also make use of the identity: 

+r^ - 2 r r , o o s { e „ - n r - e ' ) ) = (7.14) 

where 
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Kq= =min{r,ro}, ^ =max{r,^} (7.15,7.16,7.17) 

and denotes the order Bessel function of the first kind. The useful aspect of 

Eq.(7.14) is that r now only appears in a complex exponential term, which allows the 

integration of Eq. (7.10) with respect to r to be readily performed. 

7.5 Radiation Transfer Function and Pressure 

Spectrum 

Consider a rotor comprising Nf, blades. Substituting the Green function of Eq.(2.13) 

into Eq. (7.10) for the radiated pressure due to a single blade surface gives 

-S{t+ {R + M{y^ -^ i ) ) -^ ] 
ATCR j3 CQ 

dS{Y)dT (7.18) 

Fourier transforming Eq. (7.18) with respect to t gives the acoustic pressure due to a 

single blade as 

p{x,co) = — \p{x,t)e""'dt 
2%-_i 

C7 19) 

An Ik j-' dy^ R 
dS{y)dr 

Substituting Eqs. (7.12) to (7.14) into Eq. (7.19), and noting that on a blade 

surface =Si{rQ,G^) and hence dS{y) = ^jl + ( d y ^ + ( ^ i / f r^dO^dr^, leads 

to 
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d 

m=-oo _oo 

r^de^dr^dt 

where g'"{x,rQ,kQ,(jo) is defined as 

(7.20) 

-im0' (7 21) 

The blade loading f j in Eq.(7.20) is related to the surface pressure by 

f ( y * , 0 = -i i j?,(y*,r) (7.22) 

where n = is the unit normal vector pointing inwards from the blade surface. 

Substituting Eq. (7.8) and Eq. (7.22) into Eq. (7.20) allows p{x,co) to be expressed in 

the form, 

p (x ,o )= ^ ^p{x,k^,k„o})dk^dk, (723) 

where p{x,k^,k,,co) is the contribution to the radiated pressure from each wavenumber 

component of boundary layer pressure at frequency a . Each of these components can be 

related to the Fourier components of the incident surface pressure via a transfer function 

Hp{x,k^,k„a),co^) defined by 

^(%, a;) = (x, A:,, A), 600 )^; (7.24) 
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From Eqs. (7.20), (7.23) and (7.24), H is given by 

Si \ 
1 + 2X1 

+ i . ^ 1 

5{(OQ -q) + mQ) 

(7 25) 

where we have used the identity 

< (̂00 - 0 + /»Q) = ^ (7.26) 

Equation (7.25) only requires integration over a single blade surface S^. In order to 

include the effect of all blades, we denote the 9̂  -dependent terms in Eq. (7.25) by 

J(k,tj,+k,n,) 

(7.27) 

which for a single blade lies within the finite range of blade angles -9„<9Q<0^ as 

shown in Fig.7.4. 

blade i 

blade i+l 

yi 

Figure 7.4 Definition of blade angle 



Chapter VII: Rotor Broadband Noise Prediction: General Formulation 126 

It will be shown to be useful to express Fj as a Fourier series expansion in the form of 

Fj{y\K,K,k„co,co^) = ^Fj(ro,ko,k^,k„o},o)o)e' (7.28) 

with Fourier coefficients Fj given by 

Fj(r ,̂k ,̂k ,̂k„a>,a>a) = ^ (7.29) 

Substituting Eq. (7.28) into Eq. (7.25), and summing over N,, blades, H becomes 

Hp(x,k^,k^,0},0}^) = — ^ ^ j r^SicOo-CO + mQ) 
OTT l~—co 00 r. 

f i{k^ + IJM)FI (ro ,k^,k^,k„co,a)^) + F^ {r^ ,k^,k^,k„03,C0^) 
dr. 

i m A y , 7 7 7 \ 

H F^ (î Q,kQ,k ,̂k ,̂0),(OQ) 

(7.30) 

where and r, are the radii of the blade root and blade tip, and ju,̂  = + m. The 

term 5,^ is the blade-number amplifying factor, defined by 

l-e' 'NbMlm 

l - e ' •MlmSc 
(7.31) 

where 0̂  = 2^„ is the blade angle defined in Fig.7.4, and A/m - ^ • For 

overlapping blades the surface integral of Eq. (7.30) should include the overlapped 

blades and both sides of each blade surface. 
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The integration of with respect to 6̂  in Eq. (7.30) gives 

4 = (2 / ) so that |5,„,/g| = 2;r|sin(//,„;r)/(/^,„;r)|. Since and 

P-im =Ni,l + m must both take integer values, it can be seen that \B,^Ig\^0 only for 

= 0 , and is zero for all other values. Thus, m = -NJ , (/ = 0,1,2,-••), and so 

h^im - 2^ • Equation (7.30) therefore reduces to 

Hp(x,k^,k„a),a)^)= ^Hi{x,k^,k„co,a)^)5{io^-co + mn) (7.32) 

where the transfer function i / , due to the Fourier series component is given by 

i ^ 
Hj{x,k^,k„(0,(0Q) = — Jro j 

fd 

im J J J , 
H (/"q,kQ,k̂ ,k̂ ,CL),O}Q) 

(̂̂ 0 (̂ 0 ^0) -^2 ('b 5 ̂ 0 ' ^ 0 ) -

0̂ 
g'"(%,f;„&o,d))d&odf% 

(733) 

where m = -NJ . It can be seen that the term H, can be interpreted as the transfer 

function between the radiated acoustic pressure at the observation point and the 

harmonic pressure component on the blade surface of frequency COQ and wavenumbers 

k^, k^. The Fourier coefficients Fj serve as weighting factor in the transfer function of 

Eq.(7.33). Substituting Eqs. (7.27) and (7.29) into Eq. (7.33), the transfer function H, 

can be reformulated as 

Hf (x,k^,k„6),(D^) = ——^ j j J[(/(Atq + /yM)ni + (5/dr^) + ng {imj)) 
4 - (7J4) 

y gKko+fJM)yi 
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Note that the relation dS(y^) = dS{y) is used in the derivation of Eq. (7.34) since the 

area element is invariant under the coordinate transformation of Eq. (7.4). Equation 

(7.34) shows that the transfer function i/ , is an integration over a rotor blade surface, 

and the integrand involves the normal vector of blade geometry, the pressure source on 

the blade surface, and a form of Green fimction for rotating sources. 

Substituting Eq. (7.32) into Eqs. (7.23), (7.24) and performing the integration with 

respect to 0)^, the expression for the radiated pressure is of the form 

00 00 00 

p(x,«) = X j k,,k,,a),(D + NJQ){k^,k„co + N^lQ)dk^dk, (7.35) 
/ = —C0_5Q_OQ 

Equations (7.34) and (7.35) show that the pressure received at frequency at is due to the 

blade surface pressure at the frequencies, = a) + NJQ. , which corresponds to 

frequencies shifted by the blade passing frequencies, co^ = NJQ., where I takes all 

integer values. For broadband excitation, the radiated pressure p may be regarded as a 

random process which is most suitably expressed as a power spectral density, defined by 

Spp{x,co')5{Q)'-co) = E\P*{x, a') p{x, a)] (7.36) 

Inserting Eq. (7.35) into Eq. (7.36), making use of the statistical orthogonal relationship 

of Eq. (3.4), and integrating the result with respect to co', gives the final result for the 

power spectrum of the radiated pressure as 

% 00 00 
(x,®) = X J Jl^^/(x,k^,k„Q},co + Ni,lQ.)\^ (k^,k„co + Njn)dk^dk, (7.37) 

/=—00—oO 

Equation (7.36) reveals that the source spectrum evaluated in the blade-fixed reference 

frame Sq^{k ,̂k ,̂a)Q) appears shifted in frequency by multiples of the blade passing 

frequency in the moving frame, {k^,k,,co + NJQ.). 
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For frozen turbulence, substituting Eqs. (3.11) and (3.30) into Eq. (7.37) and integrating 

the result with respect to gives the radiated pressure spectrum in the form 

^ C /=-'»-oo 

where k^ ={co + N^IQ)IU^, =CJJQ - c „ + ( 0 . 7 Q / ; ) ^ . Note that for the position-

dependent function , a reference point should preferably be taken at the trailing edge 

at 0.7 of the rotor disk radius. 
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Chapter VIII 

Rotor Broadband Noise Prediction; 

Benchmark Problem 

8.1 Introduction 

In this Chapter, the Category 2 benchmark problem of the 3̂"̂  CAA Workshop (see 

Category 2—Rotor Noise, 1999) is used as a test case to provide verification of the 

frequency-domain formulation for propeller noise described in Chapter VII. The 

Category 2 benchmark problem is concerned with the tonal noise generated by a 

hypothetical rotor, which is represented by a rotating body force distribution specified 

over a volume. The body force distribution is chosen so that its radiation has an analytic 

solution which can be used for the purpose of comparison. Two equivalent formulations 

will be presented for numerical computation. Mean flow effects on the directivity of the 

radiated sound are also discussed in this chapter, which are not accounted for in the 

benchmark analytic solution. 

8.2 Description of the Benchmark Problem 

The Category 2 benchmark problem relates to the sound field generated by an open 

rotor. The rotor is represented by a rotating body force distribution (see Category 

2—Rotor Noise, 1999). In our notation, this steady body force distribution is prescribed 

by 
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ny) = - ^ 
(138.6)/, , %,/d 31 

>1 

(8.1) 

where = 8 is the blade number, (Z) is the Bessel function of order , 

=9.64742, d is the blade span and BJ{y,T) = BJ{y)e""'''^ is a steady body force 

component in the j - coordinate direction described in the Category 2 benchmark 

problem, and COQ=N^Q. is the source frequency. Equation (8.1) may be rewritten in the 

form 

y ( y , r ) = y(y)e"^' = ,Wt(%+ar) (8.2) 

where /(j*/,,^) is the steady body force distribution ^(y) without the -dependent 

term . Note that Eqs. (8.1) and (8.2) are expressed in the moving reference system 

y = (>'i>^o'̂ o) (airplane-fixed coordinate system) rather than the blade-fixed coordinate 

system y'' ={y„r^,OQ). 

Substituting Eq. (8.2) into Eq. (2.3) and neglecting terms related to the boundary surface, 

the integral of Eq.(2.3) becomes 

p{x,t) = £ ^^^y{y„r^)e"''^'e""''G{x,t\y,T)dydT 
v(r) 

(8 3) 

Now substituting the Green function of Eq. (2.13) into Eq. (8.3), the radiated sound 

pressure due to the rotating body force distribution is given by 

j^(x,t) = £ j j j r ( > ' i , ^ 0 ^ + {R +M{y,-x,))-t 
v(r) 

dydt (8.4) 
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Fourier transforming Eq. (8.4) with respect to t gives the frequency domain solution in 

the form 

1 " 
p{x,a)) = — \p{iL,t)e"^'dt 

= f , y ^ d y d T 
47V In R 

1 1 f r T r 1 
J- 1 I rrr*/ x tN,ai. K/>!+/•»)-\T A in 

where E = R +M(y^-x^), jU = k/ , ic = a / CQ, o) is the observation frequency, and 

R is the mean-flow corrected distance given by 

R = +r^ -2rr^ cos{6'^ -0')] (8.6) 

in which both observation point x = (x^,r,0') and source point y = (>'i,''o'̂ o) ^re 

expressed in the moving reference frame (airplane-fixed coordinate system). The main 

difference here from the last Chapter (see Section 7.5) is that the source coordinate is 

independent of the source time r in Eq. (8.5). In the last chapter, 

J/] = S-(rQ,0g) = S-(rQ,0g +Qz-) is a function of r in the moving reference frame because 

the integration of Eq. (7.19) has to be carried out over the two-dimensional blade 

surface. Since the distance R in Eq. (8.5) is independent of the source time r , the 

integration of Eq. (8.5) with respect to r can be performed to give 

f(][,a))== (8.7) 
4;? jR 

Fourier fransformation of Eq. (8.7) with respect to a> give the radiated acoustic pressure 

in the time domain as 

= •^e"^dy e'"-"' (8.8) 
4® iif R 
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Equation (8.8) suggests that the radiated noise from a rotating body force distribution 

may be obtained by integrating the source distribution over the source volume in the 

moving reference frame rather than the blade-fixed coordinate system. This concise form 

of Eq. (8.8) with the integration expressed in the moving reference frame is 

computationally more efficient than the expression presented below with the integration 

expressed in the blade-fixed coordinate system. However, it is more natural to perform 

the integration in the blade-fixed coordinate system while the observer remains in the 

moving reference frame. Furthermore, for the purpose of verifying the formulations 

derived in the last chapter, we now derive an alternative frequency domain formulation 

with the integration expressed in the blade-fixed coordinate system. 

Substituting the coordinate fransformation of Eq. (7.4) into Eq.(8.5), the radiated 

pressure in the frequency domain is given by 

47V ITT R 

where the mean-flow corrected distance now becomes 

~X\Y + +̂ 0̂  — cos(̂ Q —Qr —^')] (8.10) 

in which source point y* = ();,,^,^Q) is expressed in the blade- fixed coordinate system. 

Now substituting Eqs. (7.13) and (7.14) into Eq. (8.9), the radiated pressure is obtained 

in the T -variable separated form as 

. ^ In T 

0 -r (g 11) 



Chapter VTII: Rotor Broadband Noise Prediction: Benchmark Problem 134 

where Sf is the projected area of the rotating volume around the blade in the y^-r 

plane, g'" is defined by Eq. (7.21). Integrating Eq. (8.11) with respect to T and noting 

that 

J I 0 , 

gives 

Kx, ®) = 2 JJf . f-o ( £ e ' " " * " " g " (i . 1 
^ sr 

In the time domain, equation (8.13) becomes 

p(x,t)=j ljny,.d £e"'"'^'"g-(x,r„,k„.m)dt„ 
4 L 

r^dy^drf^ d{co + N^Q) (8.13) 

(8.M) 

where co^-Nf^Q., Numerical calculations show Eqs. (8.8) and (8.14) give identical 

results but Eq. (8.8) is much more efficient for numerical computation than Eq. (8.14). 

This is because the -integration involved in Eq. (8.14) is slow to converge especially 

in the case of the singularity arising in the Hankel function appearing in g " . The 

consistency of Eqs.(8.8) and (8.14) indicate that an approximation may exist for the 

radiated pressure expressed in the non-rotating reference frame under some conditions, 

such as if the coordinate is approximately independent of the 0̂  coordinate. 

8.3 Numerical Results 

The frequency domain method (FDM) of Eq. (8.14) is compared with the analytical 

solutions of Tam (1999). Figures 8.1 and 8.3 show comparisons of the rotor noise 
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directivities at two different tip speed Mach number, Q = Qcf/Cg . The definition of 

directivity for the Category 2 problem is 

D(Y) = 101og 10 (8 15) 

where R ^ - R ^ / d is the non-dimensional distance, R^ =^Jxf+r^ , T is the polar 

angle measured &om the - axis, and the overbar denotes time averaging. For 

numerical calculations, we take R^ = 10 and 6*' = 0. It can be seen from Figs.8.1 and 8.3 

that the agreement between the FDM solution and the analytical solution is excellent, 

with no discemable difference being observed between them. This agreement provides 

verification of the fi-equency domain formulation presented in the last chapter. 

Tam's analytical solution (1999) is only valid for noise radiation without mean flow. 

However, mean flow effects on radiated sound are included in the frequency-domain 

formulation of Eq. (8.14). Figures 8.2 and 8.4 show the directivity of rotor noise for 

different forward flight Mach numbers, M = U/CQ, for the two tip speed Mach numbers 

of Q = 0.85 and Q = 1.15 respectively. It can be seen that the directivities change 

significantly, not only with the forward flight speed, but also with tip speed. 
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Analysis 

270 

Figure 8.1 Directivity of body-force rotor noise, FDM result compared with 
analytical solution, M=0.0, Q = 0.85 
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Figure 8.2 Directivity of body-force rotor noise for two forward flight 
Mach numbers of 0.6 and 0.8 at rotational speed Q = 0.85 
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Analysis 

270 

Figure 8.3 Directivity of body-force rotor noise, FDM result compared with 
analytical solution, M=0.0, Q = 1.15 

FDM,M=0.8 
FDM.M^O.6 

270 

Figure 8.4 Directivity of body-force rotor noise for two forward flight 
Mach numbers of 0.6 and 0.8 at rotational speed Q = 1.15 
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Figure 8.5 shows the field-point mesh for the contour plot of sound pressure level (SPL) 

shown in Figs (8.6) to (8.9). The rotor is located within the blank area of the "+" sign. 

The dimensions of the mesh are I6d in the %- direction and lOJ in the y- direction. 

Figures 8.6 to 8.9 are the sound pressure level in dB for different forward flight Mach 

numbers of M=0.0, 0.4, 0.6, 0.8 at the tip speed Mach number of Q = 0.85. The SPL in 

dB is represented by the colour at the corresponding grid point. The flight direction is 

opposite to the %-axis indicated in the figures. 

Figure 8.5 Mesh for SPL map, rotor located at the blank area of the "+" sign 
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Figure 8.6 Map of sound pressure level (dB), M=0.0, Q = 0.85 
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Figure 8.7 Map of sound pressure level (dB), M=0.4, Q = 0.85 
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Figure 8.8 Map of sound pressure level (dB), M=0.6, Q = 0.85 
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Figure 8.9 Map of sound pressure level (dB), M=0.8, Q = 0.85 



Chapter IX: Rotor Broadband Noise Prediction: Far-field Approximation 141 

Chapter IX 

Rotor Broadband Noise Prediction; 

Far-field Approximation 

9.1 Introduction 

In Chapter VII, a general frequency-domain formulation of broadband self-noise 

radiation from a free field rotor is developed that is valid both in the near field and in the 

far field. We now consider approximations to this result, which whilst only being valid 

in the far field, has the advantage of being simpler to compute. The results derived in 

this Chapter for far field radiation are shown to reduce to the classical solution due to 

Gutin (1936) for tonal noise when the flight speed is set to zero and the source integral is 

confined to the projected disk of the rotating blades. 

9.2 Far Field Approximation for the Prediction of 

Rotor Broadband Self-noise 

The starting point for the derivation of the far field approximation is Eq. (7.19). Here we 

rewrite it as 

p ( x , f j / , ( y , r ) e " - ^ G ( x , y ) d S ( y ) d T (9.1) 
2!f '-r " dy, 
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When 7=1 , the derivative of Green function G in Eq. (9.1) is given by 

d 
• G (X , y) = [ - + Af )]G (X , y) (9.2) 

while for 7 = 2,3, 

3/% 
G (x, y) = - ^ ( ^ - z/y) k - r cos(^o - G (x, y) 

XV K 
(9.3) 

G(x ,y) - - :^ (—-z" / / ) rr^ sin(6'o -6'')G(x,y) (9.4) 

We now make the far field approximations that ^ , where R̂  = -y/xf + jB^r^ 

is the flow corrected distance from the origin of the source to the observation point, as 

/ b b b \ 

(yi,.y2 ,)'3) 

Figure 9.1. Relationship between distances R, R̂  and polar angle y/, 

Note that the distances R, R^ shown in the figure are for p = \ 
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shown in Fig.9.1. 

Expanding the expression for R of Eq. (7.11), and ignoring terms of second order give 

i? « cosy/ + siny/cos(^o ~ ^')] (9.5) 

where CQS\I/ = X^IR^ and sin^ = r/i?^. Substituting Eqs. (9.2) to (9.5) into Eq. (9.1) 

and ignoring the second order terms in Eqs. (9.2) ~ (9.4), one obtains 

p{x,o>) = ^ i ^ I | J { - / , (y, rm, - X, ) / i i . + M ] 
R^ 

+ /R (y, [ - ̂ 0/K + sin y/ cos(^0 - 0')]- fo (y, t)J3^ sin i// sin(^o - G')} (9.6) 

i(OT i f i M - i n [ y ^ Z 0 S i i r + p rosintycos(go-@' xe e 

where f j , and denote the forces per unit area exerted by the rotor blades in the 

y , , VQ, 6Q directions, respectively. Here, the usual far field approximation is made 

whereby IjR is replaced by l/i?jbut the phase factors are retained. The forces in Eq. 

(9.6) are related to the blade surface pressures of Eq. (7.8) by 

' f r 

- A 

JD. 

(9.7) 

Inserting Eqs. (7.8) and (9.7) into Eq. (9.6) gives an expression for the radiated pressure 

in the form 

p{\,(D) = I J ^Hp{x,k^,k„co,a)Q)p,ik^,k„(aQ)da)^dk^dk, (9.8) 

with the transfer function H^ given by 
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Hp{^,k„k„co,co^) = ^ ^ -xJ/R, +M] 

+ [ - + siny/cos(6'o - d ' ) \ - s i n y / s i n ( ^ Q -6'')} (9.9) 

where /J. = KI as defined in Chapter II. The expression above for H^ can be written 

in a form more suitable for computation by noting the generating function (Gradshteyn 

andRyzhik, 1965; Goldstein, 1976) 

g-(Zcose ̂  ^ (9.10) 

for the Bessel function (Z) of the first kind, together with the following generating 

functions for the derivatives of Eq. (9.10) with respective to 9 and Z : 

sin<9e-'̂ '̂ '' = - ^ (9.11) 

cose = — Z 
m=-co 

§ / . ( Z ) - y _ , ( Z ) g-6.(g+,/2) (9.12) 

Substituting these identities into Eq. (9.9) and performing the integration with respect to 

T gives 
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(X, ) = ̂  Jj I; j- [A^+U] 
5 . m = - c o 

+ n^/3'' -r^/R^ + / s in^ 
m 

+ ngfi V«(Z)e 
Arr„ 

+ r^dr^dO^ dipj^-co- mQ) 

(9 13) 

where Z = Kr^smy/. Analogous to the steps leading to Eq. (7.27) and Eq. (7.33), we 

denote the 0̂  -dependent terms in the integrand of Eq. (9.13) by 

Fjiy\k^,k„co,co^) = 

n. 

2 ^ \2 
+ 

1 

(9.14) 

and expand F.(y\k^,k^,a>,coQ) as a Fourier series in the form of 

Fj{y\k^,k„co,o)^) = Y,Fj{r^,k^,k^,(0,(0^)e' '(*/%%% (9 15) 

with Fourier coefficients P' given by 

a -e„ 

Substituting Eq. (9.15) into Eq. (9.13), and summing over blades, the transfer 

function H^ becomes 
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/=—CO m = — C O . 

i? 

+ zsm^ 
Z J ^ ( Z ) , 

s 

m 
r^dr^ 

(9.17) 

where and r, are the radii of the blade root and blade tip. The term 5,^ is the blade-

number amphfying factor defined by Eq. (7.31). The 6'o-dependent integration Ig is 

defined by 

= (IOQ (9.18) 

where = {7r/d^)l-m . Following the same analysis as in Section 7.5, one has 

^imh ~ 
\27T , m = NJ 

m ^ NJ 
(9 19) 

Substituting Eq. (9.19) into Eq. (9.17), the transfer function reduces to 

Hp(x,k^,k,,co,a)o) = Y,H,(x,k^,k„Q),c0Q)S((0Q-co-mQ) (9.20) 
/=—oo 

with the 'mode' transfer function H, given by 
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2^. 

+ F2 ifo CO, 0)q)P 

+ ))y^ (Z) 

(9.21) 

where m = NJ rather than m = -NJ. as described in Section 7.5. 

Substituting Eq. (9.21) into Eqs. (9.20) and (9.8), and performing the integration with 

respect to co ,̂ the expression for the radiated pressure may be written in the form 

00 * 00 

p{x,®) = X j k^,k,,Q),co + A^j/Q){k^,k,,Q) + NJQ)dk^dk, (9.22) 
/=—CO—00—oo 

Following the same steps leading to Eq. (7.37), the power spectrum of the far field 

pressure is given by 

00 00 00 
Spp(x,®) = X f J l ^ / k „ k „ a ) , o } + NJQ.f {k^,k^,co + N^lQ)dk^dk^ (9.23) 

/=—CO_0Q_gQ 

The corresponding expression for frozen turbulence is obtained by substituting Eqs. 

(3.11) and (3.30) into Eq. (9.23) and integrating the result with respect to k^. The 

radiated pressure spectrum of Eq. (9.23) reduces to 

^^(x,a)) = ^ + (9.24) 
/ = - M - C O 

where k̂  ={co + NiJ.^)IU^, =cJ-^o = + (0.7Qr,)^ . Note that the reference 

point for the position-dependent fimction is taken at the trailing edge at 0.7 of the 

rotor disk radius. 
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Equations (9.23) and (9.24) are computationally more efficient than Eqs (7.37) and 

(7.38) since the mode transfer function Hj of Eq. (9.21) differs fi-om Eq. (7.33) in two 

important respects: (i) the integration with respect to is eliminated; (ii) equation 

(9.21) only involves the Bessel function of the first kind and hence the singularity 

involved in Eq. (7.21) is removed. 

9.3 Numerical Scheme for the Evaluation of the Mode 

Transfer Function Hj 

To predict rotor broadband self-noise radiation using equations (9.23) and (9.24), the 

main difficulty arises fi-om the calculation of the mode transfer function H; . The 

numerical scheme proposed here is based on the fact that, as presented in Section 5.5, 

the hydrodynamic wavelength of boundary layer turbulence is usually smaller than the 

acoustic wavelength. This fact is used to split the integration required in Eq. (9.21) into 

three parts: one is the term independent of the blade surface coordinates and can 

therefore be taken out fi"om the integrand; another is related to the acoustic term, and the 

third is the hydrodynamic term. The acoustic term can be taken out fi-om the integration 

over the small element facet to allow the remaining term (the hydrodynamic term) in the 

integration to be performed analytically, thereby speeding up the computation time. 

Substituting Eq. (9.14) into Eq. (9.16), one obtains the source Fourier coefficients as 

ni[(yi-Xi)/Rs+M] 

n. (9.25) 

X +*,?, )g'A(M-cosy))', H + 
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Substituting Eq. (9.25) into Eq. (9.21) gives the mode transfer function as 

R. 
'- + M 

r^/R^-isiny/ 
KK 

x e i(,k,r!,+k,ri,) ifi{M-cosi//)y^ -iN^Wo g-"^"V^(Z)^5'(y') 

(9.26) 

Using a procedure similar to that followed in Section 5.5, the blade surface is discretized 

into finite triangular elements. Under the assumption that the acoustic wavelength is 

much larger than the element scale, the numerical expression of equation (9.26) 

approximates to 

(9.27) 
«=1 

where I(x,co) is the term related to the observation coordinates and is independent of 

the blade surface geometry 

7(x, o) = (9.28) 

Note that the integrand of Eq. (9.26) may be split into two parts. One varies with the 

acoustic wavelength, which may be called the influence coefficient of source strength 

/„ . Another is related to the hydrodynamic wavelength, which is called the source 

strength l " . The influence coefficient of source strength is defined by 
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R: 
'- + M 

R 
j-ismi// 

Z" 7 . (2" ) 
(9.29) 

+ 7^(2") 
JCVfy, 

where n = is the unit inward normal vector of element n , Z" = sin^y 

and y* = {y1,rQ,9^} is the coordinates of the centre of the element w. Once the centre 

coordinates of element n is known, equation (9.29) can be calculated easily. Combining 

Eqs. (9.26) and (9.27), the source strength l " is defined as an integral on the surface of 

element n given by 

(9.30) 

where S„ is the surface area of the element facet on the blade surface. Equation 

(9.30) differs firom equation (5.36) by the additional term . This term cannot be 

included in Eq.(9.29) since it cannot be assumed to be constant within the element for 

large m = NJ . If the source has a component that matches with the mode modulating 

pattern of , the source contribution will be amplified. 

Two methods were attempted in the evaluation of the integral in Eq. (9.30). One is a 

purely numerical method which is computationally slow. The other is an analytic 

method for which a linear relation between jĵ  and 0̂  has to be established. This 

relationship is described below. If we use a cylinder of radius cut through the 

propeller blade with cylinder axis parallel to the propeller axis, the blade section profile 

will closely fit on the cylinder surface. Unwrapping the cylinder surface onto a flat plane 

forms a blade section profile as shown in Fig. 9.2. In Fig. 9.2, and represent, 

respectively, the abscissa and ordinate of a typical point of the upper surface of the 

airfoil section, and C is the centre of an element on the blade surface. The coordinate 
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of the section upper or lower Une is a function of as shown in Fig. 9.2. The 

streamwise curvilinear coordinate rĵ  can be calculated from 

= 7c + 1- 1 + (9 31) 

where is the azimuthal angle of the cylindrical coordinates, 6̂  and are 

respectively the azimuthal angle 9̂  and streamwise curvilinear coordinate t]̂  at the 

Figure 9.2 Relationship between curvilinear coordinates rĵ  , circumferential 

length , rectangle coordinate and blade section pitch angle on a flatten 

plane of cylinder surface at radius . 9̂  is the azimuthal angle of the cylindrical 

coordinates and 9̂  is the angle at element centre. (x„ ,y^) is rectangle coordinates 

for airfoil profile 

element centre C. In general, the relation between 77̂  and 9̂  is complicated. However, if 

the element size is small, the arc length within elements can be replaced by a straight 

line to connect the points. Following this approximation, we have 

(9J2) 
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where is the blade section pitch angle, which is a known value once the blade 

geometry is determined, and <9 is the tangent angle, which may be calculated from 

3 = t2tn~^{dy^ldx^) of the airfoil profile. Under this approximation, a linear relation 

between and 6̂  is obtained by substituting Eq. ( 9.32) into Eq. (9.31) 

cos(y5„ - 3) 
^ 0 - ; 7 c ) (9.33) 

'"o 

Substituting Eq. (9.33) into Eq. (9.30) gives the following expression for the source 

strength coefficient / f 

s„ 

where =k^ -mcos{/3p -3)! r^. Substituting Eq. (7.9) into Eq. (9.34) and performing 

the integration of Eq. (9.34) gives the analytic integration scheme in the form of Eq. 

(9.35). For y* on the turbulence side 

+ k (y t, k, G)o) - i (y rf, k, (A:,̂ , ̂ ,)} 
(9.35a) 

For y^ not on the turbulence side 

2 
(9.35b) 



Chapter IX: Rotor Broadband Noise Prediction: Far-field Approximation 153 

where a = i{K + . The t e r m s , A : , , © o ) and l"^(k,^,k,) can be 

calculated using Eqs. (5.38) and (5.39), whose arguments are now a function of the 

element-centre position. 
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Appendix 9.A Reduction of the Far-field Expression to 

Gutin's Solution 

This appendix demonstrates the consistency of the formulation of propeller noise with 

the classical solution due to Gutin (1936). Gutin's solution was concerned with the tonal 

noise due to steady blade surface pressures, which forms the mean thrust and drag forces 

acting on the blade. When the pressure exerted by the blade surface is steady, the forces 

per unit area exerted by the blade in Eq. (9.7) can be rewritten as 

JT Ml 

' A > ~ — < 

7 . 

A(y ' ) (9.A.1) 

where /?,(y^)is now the steady pressure on the blade surface. Substituting Eq. (9.A.1) 

into Eq. (9.6) to replace the unsteady forces f j , and , the radiated pressure in a 

form analogous to Eq.(9.8) without integrating over frequency and wavenumber 

components is given by 

p(x,co) = h(x,co) (9.A.2) 

where the function is defined as 

= I -X,)/R, +M] 

+ +sirn//cos(0Q-0')]-ng^^ siny/sin(^g -^ ' )} (9.A.3) 

n cos(y+̂  rosm(ycos(%-g' X A C y ' K ' g 
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Note that, unUke the transfer function , the function has dimensions of pressure 

p . This is due to the oscillating part, ^ of the unsteady pressure in Eq. (9.9) 

being replaced by the steady pressure p,(y^) in Eq. (9.A.3). Following the same 

derivation procedure leading to Eqs. (9.20) and (9.26), the far field pressure of the 

radiated tonal noise is of the form, 

p(x, co)=^hi (x, a))5{a) + mQ) 
/=—00 

(9.A.4) 

with the mode function hj given by 

hi{x,co) = J, k. -^1) 
AtvR, I f - " . R. 

r^jR, -isini// + n, 
Kr^ 

(9.A.5) 

where m-NJ. 

Consider the case in which the forward flight speed U and the force in the radial 

direction are set to zero, and the integration is confined to the projected disk of the 

rotating plane, therefore y^{r^,0Q) = 0 and dS{y'') = r^dO^dr^. Substituting the following 

parameters 

M = 0, P = \, iu = K = NJQ./Cq (9.A.6) 

into Eq. (9.A.5), one obtains 
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IJ 
(9.A.7) 

Equation (9.A.7) is identical to the classical Gutin's solution presented by Goldstein 

(1976, Eqn (3.115)) for the same case except for a sign difference in the exponential 

term . This sign difference gives no difference to the radiated pressure amplitude. 

Gutin's result has been substantiated by experiment. The reduction of Eq (9.22) to this 

classical result provides verification of the proposed formulation. 
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Chapter X 

Rotor Broadband Noise Prediction: 

Far-field Tone Noise 

10.1 Introduction 

In this Chapter, the frequency-domain formulation of rotor noise radiation will be 

adapted to predict tonal noise. In this case, the source is a steady pressure distribution on 

the blade surface. Since the steady pressures can be easily determined from wing section 

theory and measured airfoil lift curves, this tonal noise prediction provides an alternative 

method of validating the frequency-domain formulation derived in the last Chapter. The 

predicted tone noise will be compared against experimental data obtained by Trebble for 

a 1/5^ scale model propeller (Trebble, 1987a). 

10.2 Experimental Arrangement and Geometric 

Parameters of R212 Model Propeller 

The experimental results for tonal noise radiation used to validate the theory are reported 

by Trebble (1987a). The noise measurements of the four-bladed Dowty Rotol R212 

propeller (NACA 16 sections) are made at 1/5^ scale in the RAE (Royal Aircraft 

Establishment) 1.5 metre acoustic tunnel. The propeller was mounted on the propeller 

test rig, which is capable of drive-speeds up to 10000 rev/min, as shown in Fig. 10.1. 
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Figure 10.1 Test arrangement for R212 propeller, figure from Trebble (1987a) 

blade radius station chord thickness ratio camber Twist angle 

2%/Z) c [mm] tic Cn Pj [degree] 

0.2 40.1 (12399 0.325 31.0 

45.0 0.224 0.463 25 j 

0.3 4&5 0.181 0^35 21.2 

0.45 5Z6 0.121 0^90 11.0 

0.6 526 0.087 0.575 3.4 

0.7 503 0.072 0.550 0.0 

0.8 45J 0.063 0.520 -2.7 

0.9 3&3 0.061 &468 -4.7 

0.95 302 0.059 OjJ3 -5.6 

0.975 2&7 0.059 &468 -6.0 

1.0 226 0.059 &468 -6.4 

Table 10.1 Geometric parameters of the R212 propeller 

The main geometric parameters of the model propeller are listed in Table 10.1. The 

diameter of the 1/5^ scale model propeller is D = 0.73m. In Table 10.1, 2r^ ID is the 

blade section radius station (radius ratio); t/cis the blade section thickness ratio relative 
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to the section chord c; is the blade twist angle relative to that at the 0.70 radius 

station which is the standard position for setting the blade angle; and the camber Q is 

used to express the design lift coefficient (ideal lift coefficient) for the blade section. 
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Figure 10.2 NACA 16-section profile at blade radius Ir^l D = 0.45 

Figure 10.2 shows the NACA 16-section profile at blade radius I r^ /D = 0.45 obtained 

from Eqs.(10.5) and (10.6) below. The fine solid line between the upper- and lower-

surface is the airfoil mean line. The NACA 16-section mean line is designed to obtain a 

uniform chordwise load distribution (mean-line designation a = 1). According to Abbott 

(1959) and Lindsey (1948), the mean line can be expressed as 

y, Inf+ (l + a t a a - « ] (10.1) 

where is the mean-line ordinate normalised on the chord and ^ is the distance along 

the chord normalized on chord. The camber angle i9o is the gradient of with respect 

to ^ , given by 

tan - - — C „ [in ̂  - ln(l - ^)] 
dg An 

(1&2) 
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The thickness distribution of the NACA 16-series airfoils was designed to produce a 

shape having very low induced velocities and thus having high critical Mach numbers. 

The ordinates for the basic (or symmetrical) profile of the 16-series airfoils can be 

obtained from the following equations 

=-(0.989665^'/" -0.239250^-0.041000^" -0.559400^"), for ^ <0.5 (10.3) 

y, =-[0.01-H2.325(1-^)-3.42(1-^)" +1.46(1-^"] , for ^ > 0.5 (10.4) 

where is the ordinate non-dimensionalized on the chord measured normal to the 

camber line. If and represent, respectively, the abscissa and ordinate of a typical 

point of the upper surface of the airfoil section, the upper -surface coordinates are given 

by the following relations: 

p . = ^ - y , s i n 5 „ (10.5) 

The corresponding expressions for the lower-surface coordinates are 

+ (10.6) 

hi the following Section, the focus is placed on the tonal noise generation from the 

dipole source due to steady blade surface pressure. The thickness noise was assumed to 

be negligible for the reason discussed in the Section 1.2.3. 

10.3 Reduction of the Far-field Formulation to Predict 

the Tonal Noise 

The frequency-domain formulation of Eq. (9.23) is a general far-field formula that is 

valid for broadband noise prediction. It can also be used for tone noise prediction. The 
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tonal noise pressure due to the steady pressure distribution on the blade surface is given 

by Eq. (9.A.4). Fourier transforming Eq.(9.A.4) with respect to cd gives the radiated 

pressure in the time domain of the form 

p{x,t)= ^p{x,co)e ""'dco=^h,{x,a>)e" Wn (10.7) 

where 

4nR 

-n^p' 

R. 

r^jR, -zsin^i/-
Z J.(Z) , Kn 

xA(y X e-'"^"V^(Z)6/J(y'') 

(10.8) 

where againZ = Kr^smy/, JU = k ! , k = NJQ./Cq, m = N J , and p,(y'')is the steady 

pressure distribution on the blade surface. Most fans have a blade skew angle equal to 

zero, or at least very small. In this case « ( « j , »#). The second term in the big 

bracket of Eq. (10.8) can therefore be ignored. Noting the Bessel fLmction property 

J_^ ( -Z) = (Z), we have the approximate result 

h_iix,o))^hJ{x,o}) (lo.so 

where the superscript indicates the complex conjugate. The pressure at the I blade 

passing frequency is defined as 

(10.10) 

The function A, can be rewritten in the complex exponential form h, = . Equation 

(10.10) then becomes 
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=2|Ajcos(7V,/Q + ̂ ) (10.11) 

with the mean-square value given by 

^ = i(2|A,|y=2|/,,f (10.12) 

The sound pressure level at the I blade passing frequency is therefore given by 

SPi = 3 + 2 0 1 o g i o ^ , / = 1,2,3,.- (10.13) 
Pref 

where =2x10 Pa. Note that A, can be calculated numerically in the same way as 

the transfer function Hj discussed in Section 9.3 of Chapter IX. 

10.4 Prediction of Steady Surface Pressure Distribution 

In this Section we use Abbott's (1959) wing section theory and measured airfoil lift 

curves (Lindsey, Stevenson and Daley, 1948) to determine the steady pressure 

distribution p,{y'') on the blade surface. This pressure distribution will be used in the 

next section to predict the tonal noise of an R212 propeller, which was measured by 

Trebble (1987a). 

Trebble's investigations of R212 propeller noise were made at propeller rotational 

speeds n of 3750 and 8000 rev/min at axial stream speeds U of 30 m/s and 50 m/s for 

blade setting angles of 9.3°, 17.3°,22.4°,27.3° and 34.9°. Here we focus on the 

noise radiation at n -7000 rev/min, U -50 m/s and =17.3°. The blade setting 

angle is defined as the twist angle at 0.70 radius station. The relation between pitch 

angle, twist angle and setting angle is 
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FIP — (10.14) 

For n = 7000 rev/min, U = 50 m/s, = 17.3°, we have Q = 2mi /60 = 733.0rad/s. The 

corresponding blade section Mach numbers Mir^) = U Q / a n d angles of attack air^) 

are summarized in Table 10.2 below 

blade station 

2%/D 

section Mach numbers attack angles 

a(ro) (degree) 

section lift coefficients 

Q 

0.2 0.21 5.24 0.45 

0.25 0.24 6.02 0.60 

0.3 0.27 6^8 0.72 

0.45 0^8 5.75 0.84 

0.6 0.49 3.40 0.76 

0.7 0.56 2.35 0.83 

0.8 0.64 1.45 0.81 

0.9 0.71 0.77 

0.95 0.75 0.57 0.73 

0.975 0.77 0.45 0.71 

1.0 0.79 0.31 

Table 10.2 Section Mach numbers, angles of attack 
and lift coefficients of R212 propeller 

In Table 10.2, the section lift coefficients C, at each blade section are obtained by 

interpolation of the measured airfoil lift curves (Lindsey, Stevenson and Daley, 1948) 

according to the section design lift coefficients, thickness ratios, Mach numbers and 

angles of attack. 

According to Abbott's wing section theory (Abbott and Von Doenhoff, 1959), the 

velocity distribution due to steady non-uniform mean flow around an airfoil is 

considered to be composed of three independent components: 
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(1) The velocity distribution, V/UQ, corresponding to the velocity distribution over the 

basic thickness form at zero angle of attack. For different thickness ratios, values of 

V/UQ can be obtained from the tabulated data in Appendix I of Abbott's book (Abbott 

and Von Doenhoff, 1959). 

(2) The velocity distribution, AV/UQ, corresponding to the load distribution of mean line 

at its ideal angle of attack, a,.. When Q = 1.0, <% = 0, the velocity ratio AV/UQ = 0.25 

is given in Appendix II of Abbott's (1959) book. For any other value of Q , one should 

use AV/UQ = 0.25Q. 

(3) The velocity distribution, Av̂  / [/g, corresponding to the additional load distribution 

associated with non-zero angle of attack. For the lift coefficient C, =1.0, values of 

Av̂  /[/q are given in the tabulated data in Appendix I of Abbott's book (Abbott and 

Von Doenhoff, 1959). For C, 9̂  1.0, the ratio Av̂  /[/„ must be assigned some value by 

multiplying the originally calculated values (i.e. tabulated data for C, = 1.0) of this ratio 

by a factor C, - Q . 

The velocity increment ratios Av/C/g and Av„ /[/„ are added to the velocity ratio v/t/g 

to obtain the total velocity at one point from which the pressure coefficient IT is 

obtained (Abbott and Von Doenhoff, 1959), thus 

^_p^+0.5p^Ul-p, V , r Av 
+ — + 

Uo [Uo Uo) 
(10.15) 

where =10^ Pa is the atmosphere pressure. In Eq. (10.15), the values of AV/UQ and 

Av̂  / UQ are positive on the suction side and negative on the pressure side. When 

Eq.(10.15) is applied to a real propeller, the velocity increment ratios Av/t/g and 

Av„ / UQ should be multiplied by a correction factor to include the effect of reduced 

angle of attack due to the induced velocity produced by the three-dimensional propeller 
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(Blake, 1986). The correction factor should be adjusted so that the calculated thrust 

coefficient of the propeller is consistent with the measured thrust coefficient. After 

considering this correction factor, Eq. (10.15) becomes 

n = - + 

U. 
fc 

^ Av Av ^ + 
U, 0 y 

(10.16) 

Numerical tests show that the radiated propeller tone noise is not sensitive to the 

correction factor From Eq. (10.16), the steady pressure distribution p,iy'') can be 

calculated from 

Pt (y*) - Pa + (1 ~ n) (10.17) 

Figure 10.3 below shows the mesh of the suction side of the R212 propeller used for 

making tone noise predictions. The propeller is meshed with 2596 triangle elements and 

1320 nodes. Figure 10.4 shows the colour contour map of the pressure coefficient IT for 

the suction side of the R212 propeller. An enlarged map around the blade root part is 

shown in Figure 10.5 to allow a clearer view. Figure 10.6 is the colour contour map of 

the pressure coefficient H for the pressure side with an enlarged view shown in Figure 

10.7 around the blade root. 

Figure 10.3 The mesh of suction side of R212 propeller 
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3.64-0061 
default_Fringe: 

Max 1,77+000 @ N d 39 
Min 1.03-006 ® N d 788 

Figure 10.4 The colour contour map of the pressure 
coefficient H for the suction side 

1,77+000 

1.65+000 

1.53+000 

1.12+000 

1.30+000 

1 . 1 8 + 0 0 0 

1.06+000 

9.44-001 

8.26-001 

7.08-001 

5.90-001 

4.72-001 

3.54-001 

2.36-001 

1.18-001 

3.64-0061 
defaulLFr inge: 

Max 1.77+000 ® N d 39 
Min 4.03-006 ® N d 786 

Figure 10.5 An enlarged map of Fig. 10.4 around blade root 
part to allow a clear view 
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1.01-0061 
default_Fringe: 

Maxl.50+000 ® N d 8 2 
Min 1.03-006 ® N d 788 

Figure 10.6 The colour contour map of the pressure 
coefficient H for the pressure side 

i.so+oooL] 

4.04-0061 
default_Fringe; 

Max 1.50^000 ® N d 82 
Min 4.03-006 @Nd 788 

Figure 10.7 An enlarged map of Fig. 10.6 around blade root 
part to allow a clear view 
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10.5 Comparison of Tone Noise Predictions with 

Experimental Data 

Noise measurements made by Trebble (1987a) were made in the plane of the propeller 

disc at a distance 2r = 4.17Z) from the propeller axis. Figure 10.8 shows the measured 

noise spectrum reproduced from Trebble's paper. The SPL value at the blade passing 

frequency and its harmonics are indicated. Table 10.3 is a comparison of the predicted 

sound pressure levels (SPL) with the measured SPL in dB for the first 11 blade passing 

frequencies. Figure 10.9 shows a comparison of the predicted and measured tone noise. 

For each blade passing frequency, the left red line is the predicted SPL, and the right 

black line is the measured SPL. Table 10.3 and Fig. 10.9 show that the error between the 

predicted SPL and measured SPL is generally within 2 dB except at the first-order blade 

passing frequency. This agreement provides reassuring verification of the far-field 

formulation. The over-estimated error at the first-order blade pass frequency may arise 

from the differences between the far-field assumption, on which the far-field formula is 

based, and the measurement point, which may not be far enough from the propeller to 

justify use of the far field approximation. Additional error is infroduced by the use of 

two-dimensional airfoil theory to estimate the blade surface pressure, which does not 

include three- dimensional effects. 

120 
dB 

SPL 

100 

8 0 • 

60 

1114 

Cp = 0064 
Ct = 0080 

106-5 
t 98-6 

103-4 
I 91 3 

96 5 

16 3.2 4.8 / kHz 6 4 

Figure 10.8 Measured noise spectrum at 2 r / D = 4.17, =17.3°, 

n = 7000 rev/min, U = 50 m/s. 
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Blade pass frequency 

(kHz) 

Predicted SPL 

(dB) 

Measured SPL 

(dB) 

0.467 11&9 111.4 

0.933 112.7 110.9 

1.400 lOTa 10&5 

L867 103.5 103.4 

2.333 993 9&6 

2.800 953 9&5 

3.267 91.3 9L3 

3.733 87J 863 

4.200 83.4 84.1 

4.677 79.4 7&5 

5J33 753 763 

Table 10.3 Comparison between predicted sound pressure levels (SPL) 
and the measured SPL 

120 

SPL, dB 
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80 -

60 -

40 

20 

Predic ted 
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0 1 2 3 4 5 6 

Blade passing frequency/ kHz 

Figure 10.9 Tone noise comparison, left red line is the predicted 
SPL, right black line is measured SPL, = 1.522 m 
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Figure 10.10 shows the predicted SPL directivity (in dB) of the line spectrum at blade 

passing frequencies o f / = 466.7 Hz, 1400.0Hz, and 2333.0Hz. The polar angle T is 

measured from the x, -axis (%, axis is opposite to forward flight direction), the observer 

distance = 50 m is measured from the coordinate origin in the %2=0 plane. The 

main lobes are in the direction vertical to the forward flight direction with null radiation 

occurring on the axis. The width of the main radiation lobe becomes increasingly narrow 

as the blade passing frequency increases. Similar directivity behaviour was predicted by 

Garrick and Watkins (1954). 

- 46B.7HZ 

1400.0Hz 

2333.0Hz 

Figure 10.10 SPL directivity (in dB) of line spectrum of R212 1/5"' scale 
model, = 50 m, U =50.0m/s, n =7000 rev/min. 
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Chapter XI: 

Rotor Broadband Noise Prediction: 

Far-field Self Noise 

11.1 Introduction 

In this Chapter, the frequency-domain formulations of rotor noise presented in Chapter 

IX will be used to make self-noise predictions of the R212 propeller described in 

Chapter X. To validate the 

theoretical approach for broadband 

self-noise prediction, the predicted 

self-noise will be compared against 

the experimental data obtained by 

Trebble (1987b). The full-scale 

propeller shown in Fig. 11.1 will be 

used for comparison in this Chapter 

rather than the 1/5-scale model 

propeller discussed in Chapter X. 

This is because the self-noise 

radiation is higher due to a larger 

chord length in the full-scale 

propeller case. Parameter studies will 

also be presented in this Chapter, 

whereby the variation in self-noise is 

predicted against various blade 

9 

Figure 11.1. Test arrangement for R212 
full-scale propeller, from Trebble (1987b) 
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setting angles, angles of attack, chord length, blade number, and blade tip Mach number. 

The main geometric parameters of the full-scale propeller are identical to those of the 

1/5-scale model propeller listed in Table 10.1, but with dimensions five times larger. The 

diameter of the full-scale propeller is Z) = 3.66 m. The blade geometry and angle of 

attack are described by Eqs. (10.5), (10.6), (10.14) and (7.7). To use Eq. (9.34) for 

numerical calculation, the tangent angle 3 and the coordinate rĵ  of the NACA 16-

series airfoil must first be determined. The tangent angle 3 may be expressed in the 

form 

dx, di! di 

The necessary derivatives required in Eq. (11.1) may be obtained by performing the 

chain derivative of Eq. (10.5) 

(11.2) 
d^ 

(11.2) 

From Eqs. (10.3) and (10.4), we have 

^ = -(0.4948325^'' '-0.23925-0.082^-1.6782^'), for ^<0 .5 (11.3) 

^ = -[-2.325+ 6.84(1-^)-4.38(1-^) '] , for # > 0.5 (11.4) 
d^ c 

Finally, 
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d cos _ Ci- tan cos (11.5) 

_ Cji cos i9o 

4 a r f ( l - f ) 
(116) 

The corresponding expressions for the airfoil lower surface may be written as 

dx, d^ / d^ 
(11.7) 

where 

(11.8) 

(119) 

The Tĵ  - coordinate can be calculated from 

V s = C ^ ^ ^ M D Y J ^ D ^ or = C ^ ^L + {DY,/D^YD^ (11.10) 

Figure 11.2 below shows a pressure-side mesh (/?^ - 20.1° ) used to perform the 

msmmm ' i • - - [AT'[7-yr 

ma 

Figure 11.2. Mesh for numerical calculation of R212 Propeller, pressure side 
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numerical integration of Eq. (9.26). This mesh has 25mm maximum element dimension, 

which is valid for frequencies less than 1300Hz. This corresponds to 1298 triangle 

elements meshed on each side of the blade surfaces. 

The unsteady blade loading, which constitutes the aerodynamic sound sources, is 

predicted using modifications to Amiet's thin aerofoil theory described in Chapter IV, in 

combination with the prediction of the boundary layer surface pressure frequency -

wavenumber spectrum discussed in Chapter III. This is obtained by combining the 

wavenumber spectrum of Eq. (3.11) due to Corcos, the frequency spectrum of equations 

(3.23) and (3.24) due to Chou and George, and the boundary thickness prediction 

method of equations (3.33) to (3.35) due to Brooks given in Chapter III. For 

computational efficiency, the frozen gust assumption is made. 

11.2 Comparison of Predicted SPL Spectrum with 

Experimental Data 

In this section the theory developed in Chapter IX is compared against the experimental 

results reported by Trebble(1987b). Figure 11.3 below shows a comparison between the 

predicted SPL spectral density in the transverse plane (i.e., 90° to the axis), 5.49m from 

the axis (black broken line), and the measured noise spectrum (solid line). Also shown is 

the background noise spectrum (light broken line) to indicate the quality of the measured 

data. The calculations are taken at a rotational speed of n = 1000 rev/min, forward flight 

speed of 17 = 30 m/s, and a blade setting angle of = 20.1° . 

The sound pressure level (SPL) is defined in decibels referred to =2x10"^ PA, 

based on an analysis bandwidth A/ of 11 Hz 

^ f 2 ( x , / ) = lOlog.o (11.11) 
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where the factor An accounts for (i) converting to a single sided (0 < ® < oo) spectrum 

and (ii) converting from radian frequency to a 1 Hz bandwidth. 

— measured 

- - background noise 

— calculated, tr ipped 

" calculated, untripped 

200 300 400 500 600 700 800 900 1000 1100 1200 1300 

Frequency,Hz 

Figure 11.3. Comparison of measured and predicted broadband self-noise from a 

R212 propeller at = 5A9m from the axis in the plane of the propeller, with 

rotational speed n =1000 rev/min, forward flight speed [7 = 30 m/s, blade setting 

angle /3^ = 20 .1° . Light broken line is the background noise spectrum. 

Agreement between predictions and measurements at frequencies above about 700Hz 

are generally within 6dB. Below 700Hz, agreement is generally poorer. This may be due 

to the large background noise levels at these low frequencies. However, spectral shape is 

closely predicted. The underestimated error over the whole frequency range may be due 

to the differences between the far-field assumption, on which the far-field formula is 

based, and the measurerfient point, which may not be far enough from the propeller to 

justify the use of the far field approximation. Additional error is introduced by making 

the frozen turbulence assumption, which is now known to underestimate the radiated 

noise, as shown in Fig. 6.29. The third possible reason for the error is that the surface 

pressure spectrum and the boundary layer thickness, which determine the acoustic 

source on blade surface, are measured on NACA 0012 airfoil rather than NACA 16 
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series airfoil of which the R212 propeller is made. To assess the sensitivity of changes in 

the noise prediction to the source spectrum, the spectrum of the radiated pressure (dotted 

line) due to tripped boundary layer turbulence is also plotted in Fig 11.3. The tripped 

boundary layer thickness used here is that measured by Brooks, Pope and Marcolini 

(1989) for a NACA 0012 airfoil. Boundary layer turbulence tripping was achieved by 

placing random distributions of grit (nominal particle diameter of 0.29 mm with an 

application density of about 380 particles/cm^) in strips from the leading edge to 20 

percent chord. Figure 11.3 predicts a 3 dB increase in noise radiation due to tripping of 

the boundary layer turbulence. It indicates that the radiated noise is sensitive to the 

details of the boundary layer spectrum, for example, the location of the transition to 

turbulent flow. 

Figures 11.4 and 11.5 show comparisons between the measured and predicted broadband 

self-noise for blade setting angles of = 17.3°, 22.4°. hi both cases, the agreement is 

better than 9dB above 700Hz, and better than 14dB below it. 
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Figure 11.4. Comparison of measured and predicted broadband self-noise from a 
R212 propeller at = 5.49m from the axis in the plane of the propeller, with 
rotational speed n -1000 rev/min, forward flight speed U = 30 m/s, blade setting 
angle =17.3° . Light broken line shows the background noise spectrum. 
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Figure 11.5. Comparison of measured and predicted broadband self-noise from a 
R212 propeller at = 5.49m from the axis in the plane of the propeller, with 
rotational speed n =1000 rev/min, forward flight speed U = 30 m/s, blade setting 
angle = 22.4°. Light broken line is the background noise spectrum. 

11.3 Predicted Directivity of R212 Propeller Self-noise 

In this section the theory in Chapter IX is used to predict the polar directivity of the 

broadband noise radiated by the propeller. The directivity is defined by 

£)(T,^y) = 101og 10 
JL—>00 Pref 

(11.12) 

where x = (i?^ cos Y, 0, sin is the observation coordinates, ^ is the polar angle 

measured from the Xj axis, and the observer distance R^ is measured from the 

coordinate origin as shown in Fig. 11.6. For numerical calculations, we take R^ = 100 m. 

For a finite value of R^ , the directivity D(Y, co) is related to the SPL spectrum of 

Eq . ( l l . l l )by 
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CO) = SPL -10 logjo A / + 1 0 logio Rj (11.13) 

Figure 11,6. Observation distance and polar angle . 

Figures 11.7 to 11.9 show the self noise directivities in decibels of the R212 propeller in 

a IHz bandwidth with centre frequencies of 300Hz, 600Hz, and 900Hz respectively. In 

order to allow a clearer presentation of the directivities, the predicted values of 

are subtracted by 56, 52, 52dB respectively. Clearly, the broadband self-noise 

directivity is fundamentally different from the single-frequency directivities due to a 

steady body-force distribution shown in Fig. 8.1 and due to a steady blade surface 

pressure distribution shown in Fig. 10.10. In Figs. 11.7 to 11.9, the main lobes of the 

broadband self-noise directivities are located along the propeller axis, while the main 

lobes of the single-frequency directivities are in the direction transverse to the propeller 

axis. This may provide a way of discriminating the broadband self-noise from other 

sources of noise when processing propeller noise measurements. It also suggests that 

duct liners may be inefficient for reducing broadband self-noise radiation. On the other 

hand, the self-noise directivities exhibit greater omni-directional behaviour compared 

with that of tonal noise if one notes that the variation of DQV,(D) in Figs 11.7 to 11.9 is 

less than about 15dB over the entire range of polar angles. 
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Figure 11.7. Directivity ,co)-56.Q (in dB) at 300Hz of R212 propeller for an 

axial flow velocity [/=30ni/s, blade rotational speed of n = 1000 rev/min, 
R, =100m, =17.3° 

1=600Hz 

270 

Figure 11.8. Directivity ,co)-S1.0 (in dB) at 600Hz of R212 propeller for an 

axial flow velocity t/=30m/s, blade rotational speed of « = 1000 rev/min, 
=100m, =17.3° 
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f̂ gooHz 

Figure 11.9. Directivity Z) (^ ,6>)-52 .0 (in dB) at 900Hz of R212 propeller for 

an axial flow velocity [/=30m/s, blade rotational speed of n = 1000 rev/min, 
R, -100 m, =17.3° 

11.4 Parameter Study of Propeller Broadband 

Self-noise 

The theory in Chapter IX has been used to undertake a parametric study of the 

broadband self-noise radiation from propellers with variations in fan tip speed, number 

of blades, chord, and blade setting angles. Figure 11.10 shows a prediction of the 

pressure spectrum for various blade-setting angles at = 5.49m from the propeller 

axis, in the plane of the propeller. 

Figure 11.10 shows that increasing the blade setting angle increases self-noise 

radiation. This is simply because at a larger angle of attack, the boundary layer thickness 

is increased and hence the unsteady surface pressure is greater. For each degree of 

increase in the blade-setting angle, the noise is predicted to increase by about 1.4dB, 

except for the largest blade-setting angle of = 32.1°. This is because the flow will be 

separated at the highest blade angles and the radiated noise will be much higher than that 

predicted above, which assumes attached boundary layers. 
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Figure 11.10. Predictions of the Broadband self-noise of R212 propeller at 
= 5.49m from propeller axis in the plane of the propeller. Axial flow velocity is 

C/=30m/s, shaft rotational speed is « = 1000 rev/min, in an l l H z analysis 
bandwidth 
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Figure 11.11. Predicted broadband noise of R212 propeller at = 100 m for 

various blade tip Mach numbers M,^, in an l l H z analysis bandwidth, =17.3° 
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Figure 11.11 shows the predicted dependence of the broadband noise frequency 

spectrum on the blade tip Mach number for the R212 propeller. Note that in each 

case, the angular speed Q of the propeller and the forward flight speed U are adjusted 

to keep the tip section attack angle unchanged at a = 2°. Consistent with measurement 

and classical trailing edge noise theory, the mean square pressure is found to scale very 

closely with the fifth power of the blade tip Mach number. 

Figure 11.12. Geometry of one-chord 
propeller 

We now consider self-noise radiation 

from two hypothetical propellers 

conceived specifically for the parametric 

study presented here. One has the same 

geometry as the R212 propeller discussed 

above but with the twist angle chosen 

such that a constant attack angle of four 

degrees is obtained at an axial flow 

velocity of U=30m/s and a shaft 

rotational speed n = 1000 rev/min. We 

refer to this geometry as the 'one-chord' 

propeller. The blade number of this one-

+ chord propeller is = 12 . The other 

propeller has the same geometry with the 

same constant attack angle of four degree 

as the one-chord propeller, but with a 

chord length of three times greater than 

that of the one-chord propeller. We refer 

to as the 'three-chord' propeller. However 

this three-chord propeller has only 4 
blades so that both the 'one-chord' propeller and the 'three-chord propeller' have approximately the same thrust area. Figures 11.12 and 11.13 show the geometry of these two propellers used in the calculation. 

Figure 11.13. Geometry of three-chord 
propeller 
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Since the two propellers have the same angle of attack, they should be able to provide 

roughly the same thrust. However their noise levels are predicted to differ appreciably, 

as shown in Fig. 11.14, where the dashed line shows the SPL for the twelve-blade 'one-

chord' propeller and the solid line denotes the SPL of the four-blade 'three-chord' 

propeller. The calculations are made at ~ 5.49m from the propeller axis in the plane 
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200 300 400 500 600 700 800 900 1000 1100 1200 1300 
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Figure 11.14. Self-noise comparison between one-chord propeller and three-chord 
propeller at = 5.49 m from propeller axis in the plane of the propeller. Axial flow 

velocity is (7 = 30 m/s, shaft rotational speed is n = 1000 rev/min, in a l l H z analysis 
bandwidth. 

of the propeller with an axial flow velocity of U=3QmJs, a shaft rotational speed of 

n = lOOOrev/min, and an 1 IHz analysis bandwidth. Figure 11.14 shows that the propeller 

with small chord and large blade number radiates lower noise, especially at the lower 

frequencies, where a difference in SPL of more than lOdB is observed. 

The main difference between the R212 propeller and the 'one-chord' propeller is the 

blade twist angle. With the blade setting angle equal to =17.3°, the attack angle of 

the R212 propeller varies from 10.2° at the blade root to 2.0° at the blade tip for an axial 

flow velocity of t/=30m/s and a shaft rotational speed n - lOOOrev/min. The 'one-chord' 
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propeller, however, has a constant attack angle of 4.0°. Noting that the blade tip section 

has a higher speed than the root section, and that the airfoil lift depends on both the 

attack angle and the airfoil velocity, these two propellers should deliver roughly the 

same thrust if the 'one-chord' propeller has the same number of blades (equal to four) as 

the R212 propeller. Figure 11.15 shows a comparison between the self-noise due to this 

change of attack angle at an observation distance of = 5.49m from the propeller axis 

in the plane of the propeller. The sound pressure level is calculated in an 11 Hz 

bandwidth. The propeller with constant angle of attack is predicted to radiate a SPL of 4 

to 6dB lower at low frequencies, and about 2 dB lower noise levels at higher 

frequencies. 
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Figure 11.15. Self-noise comparison between propellers of constant angle of attack 
and non-constant angle of attack at = 5.49 m from propeller axis in the plane of 
the propeller. Axial flow velocity is U = 30m/s, shaft rotational speed is n = 1000 

rev/min, in a l l H z analysis bandwidth. 

The computation time for numerical prediction presented above is 256.2 minutes per 

frequency per observation point for the four-blade three-chord propeller while for the 

four-blade one-chord propeller, the computation takes only 67 minutes per frequency per 

observation point on a 1.2 GHz PC. However for the twelve-blade one-chord propeller, 

the computation takes 27.7 minutes per frequency per observation point. The 

computation code was written in FORTRAN 90. 



Chapter XI: Rotor Broadband Noise Prediction: Far-field Self Noise 185 

It is useful to make a study to see which part of the blade source makes large 

contribution to the self-noise radiation. If it turns out that the blade tip source is 

dominant due to the higher Mach number near to the blade tip, then a large saving in 

computation time will be possible for a small loss in accuracy. Figure 11.16 shows a 

comparison of the blade surface source contribution for a R212 propeller with the same 

parameters used in Fig. 11.4. The dotted line and the line with circles show the noise 

contribution from the pressure side and the suction side respectively. Note that the R212 

suction side:2rQ/D=0.2~1.0 
suction side:2rg/D=0.4~1.0 
suction side:2rQ/D=0.6~1.0 
suction side:2rg/D=0.8-1.0 
pressure side:2rp/D=0.2~1.0 

"200 300 400 500 600 700 800 900 1000 1100 1200 1300 
Frequency,Hz 

Figure 11.16. Comparison of blade surface source contribution for a R212 
propeller at = 5.49m from the axis in the plane of the propeller, with rotational 
speed M = 1000 rev/min, forward flight speed U = 30 m/s, blade setting angle 

= 17.3°, the propeller has hub radius Ir^t D = 0 .2. 

propeller has hub radius Ir^l D •= 0.2. More than 10 dB differences between these two 

curves indicate that the contribution from the suction side is dominant. The line with 

crosses, the dashed line and the solid line show the noise contributions from the blade 

segments on the suction side between non-dimensional radii lr^lD= 0.2-1.0, 
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2r„ / D =0.6-1.0, and Ir^ / D =0.8-1.0 respectively. It can be seen that the tip segment 

between Ir^ ID =0.8-1.0 makes a noise contribution that is at least 8 dB lower than the 

complete suction-side surface. This draws no conclusion that the noise contribution from 

the blade tip segment is dominant because the large attack angle (see Table 10.2 on page 

163) produces thick boundary layer turbulence at the blade root therefore a large source 

contribution. However the conclusion that the main source contribution comes from the 

suction side is useful for the saving in computation time. The computation time saved by 

computing the source contribution from only suction side is 24 minutes per frequency 

per observation point on a 1.0 GHz PC. 
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Chapter XII 

Conclusions 

12.1 Acoustic Source Prediction 

An engineering model for the determination of the acoustic source due to boundary layer 

turbulence developed on an airfoil or blade surface has been developed. In this model, 

the relationship between the spectrum of scattered pressure due to the trailing edge and 

the spectrum due to the incident pressure is clearly established. The unsteady blade 

loading, which constitutes the aerodynamic sound sources, is predicted by combining 

single-airfoil theory, the representation of the turbulence wavenumber spectrum 

proposed by Corcos (1963), and the measured boundary layer turbulence parameters 

(that is boundary layer frequency spectrum of point pressure on the blade surface, 

boundary-layer- turbulence integral scales, and boundary layer thickness). Using the 

measured pressure spectrum as an input quantity forms an important basis for a robust, 

accurate engineering model on the rotor self-noise prediction. Accuracy of the model 

depends on how the boundary-layer-turbulence parameters are measured. Ideally they 

should be measured on the rotating blade surface with adjacent blades present. When 

these parameters are measured on a single airfoil surface, a cascade model in which the 

effects of adjacent airfoils are included may be more pertinent than the single-airfoil 

theory presented in this thesis. However the use of a cascade model may not allow a 

concise closed-form solution for airfoil surface pressure prediction, which is crucial for 

reducing the computation time to reasonable limits when making rotor broadband noise 

prediction. 
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12.2 Airfoil Self-noise Prediction 

A frequency domain formulation has been developed for making airfoil self noise 

predictions. It is valid for arbitrary airfoil geometries at small, but non-zero angles of 

attack. Moreover, the solution is valid in both near and far fields. It is shown to reduce to 

Amiet's analytic solution when the airfoil collapses to a flat plate with large span and the 

measurement point is taken to the far field. 

A numerical scheme for the evaluation of the integral formula on an arbitrary airfoil 

surface has been presented. Numerical predictions of broadband self-noise show 

reasonable agreement with Brook empirical prediction, which is based on experimental 

data. Broadband self-noise predictions are made for both frozen and non-frozen 

boundary layer turbulence. Non-frozen turbulence is shown to generate higher noise 

radiation than frozen turbulence at high frequency. However, the difference is generally 

less than 3 dB, suggesting that the frozen-gust assumption is a reasonable assumption for 

broadband noise predictions 

Broadband noise directivity has been predicted for a flat-plate, a NACA 0012 and a 

NACA 0024 airfoil. The directivities are asymmetric due to the non-zero angle of attack 

assumed in the study. The results reveal that Mach number has an important influence 

on the magnitude and directivity of broadband self-noise radiation. The directivity 

predictions due to a single harmonic component of turbulence for a flat plate airfoil are 

shown to be in excellent agreement with Amiet's analytic solution. 

12.3 Rotor Self-noise Prediction 

A generalized frequency domain formulation has been developed for making rotor 

broadband noise predictions. It can be used for making broadband and tonal noise 

predictions, and is valid in both the near field and the far field. This general formulation 

has been validated by comparison with the analytic solution of the 3"̂  CAA benchmark 

problem of the far field noise due to a prescribed source distribution of a rotating body 

force. 
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A simplified expression for the self-noise radiation in the far field has been derived. This 

fi-equency domain formulation is computationally far more efficient than the general 

formulation. It can be used for fi-ozen and non-frozen turbulence. The far-field 

formulation is shown to reduce to the classic Gutin solution of propeller tonal noise 

prediction when the steady surface pressure distribution is confined to the propeller-

projected disc. 

These two formulations provide insight into the mechanisms by which the unsteady 

surface pressure is shifted by the blade passing frequency to radiate a continuous 

pressure spectrum. The main difference from previous work is that the source 

distribution is integrated over the real blade surface to provide more accurate prediction. 

Previous theory for broadband noise prediction performed source integration over the 

projected disk of the rotating blades only. Although Hanson's helicoidal surface theory 

(Hanson, 1983), which was used for tone noise prediction, may be potentially extended 

to broadband noise prediction, the source integration is confined mean-chord surface. 

This leads to significant phase error at high frequency near the propeller axial direction 

(Hanson, 1980). However, broadband self-noise has shown to be important in the axial 

direction with source frequency shifted by the blade passing frequency. 

The numerical method for making airfoil noise predictions is extended to rotating 

blades. The validation is performed from predictions of the measured broadband noise 

from an R212 propeller. Absolute sound pressure level predictions are generally better 

than 10 dB. Good agreement between the specfral shapes of the measured and predicted 

noise spectrum is obtained. The tonal noise predicted by the method also shows very 

good agreement with the R212 propeller experimental data. 

The broadband self-noise directivity is predicted to be significantly different from the 

pure-tone noise directivities. The main lobe of broadband self-noise directivity is in the 

direction of the propeller axis while the main lobe of the pure-tone noise directivity is 

normal to the propeller axis. 

Parameter studies on rotor self-noise prediction show that a propeller with large blade 

number and constant attack angle along the blade radius radiates lower self-noise 
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compared with propellers with small blade number and non-constant attack angle. A 

prediction of the pressure spectrum in the plane of the propeller for various blade-setting 

angles shows that for each degree of increase in blade-setting angle, the sound pressure 

level increases by 1.4 dB. The predicted dependence of the broadband noise frequency 

spectrum is predicted to scale very closely with the fifth power of the blade tip Mach 

number. 
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