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Solar Proton Eveits (SPEs) pose a significant radiation hazard to spacecraft within and beyond 

the magnetosphere, but cnrrently diere is no c^abihty to predict these events more than 24 hours 

before they occur. This thesis develops a classification tgiproach for the prediction of SPEs with 

a 48-hour lead time, and addresses the fact that very little work has been done on examining SPE 

forecasting methods with longer lead times than current flare-association techniques allow. 

Development of the technique has been based on a uniform dataset that covers 3 solar cycles and 

more than 30 decades of continuous q)acecraA observations, and has used solar x-ray fluxes and 

solar radio fluxes as predictor variables. 

By comparing dmes of SPE occurrence to times at v^ch the solar proton flux was at a 

background level it has been shown that SPEs are associated with increased levels of solar x-ray 

flux and solar radio flux, and that these increases are, on average, signiGcant up to 5 days prior 

to SPE occurrence. Using these variables as inputs neural models have generated 65% success 

rates for SPE prediction with a 48-hour lead time, extending the lead time of existing models by 

a day or more. A neural model has been coded to operate in real-time and represents the only 

autonomous SPE forecast model with a 48-hour lead time that does not require human 

supervision. Assessing the model over a 12-month operational period Aowed it to have superior 

SPE detection capability to the current 2-day forecast operated by the Space Environment 

Centre. 

Success of the classiGcation technique was limited by the fact that solar x-ray flares were found 

to exhibit similar precursors to SPEs, although this meant that the model could in fact be used to 

forecast flares to a greater success than SPEs. Additional findings showed that the correction of 

radio flux observations for centre-to-limb dependence may offer the potential for more accurate 

forecasting ability on a timescale of d^s. 

11 



TABLE OF CONTENTS 

1. INTRODUCTION 1 

2. SOLAR PROTON EVENTS 3 

2.1 SOLAR PROTON MONITORING 3 

2.2 THE EFFECTS OF SOLAR PROTONS 4 

2.3 SOLAR PROTON MODELLING. 6 

2.4 THE FLARE PARADimt 8 

2.5 PRECURSORS AND ASSOCIATIONS 11 

2.6 SOLAR PROTON PREDICTION 14 

2 6.7 f 

2 6.2 Garc/a 77 

2 6.3 TTze f yoA/e/M wffA Nare f f 78 

2.7 ANEWPARTICLEPREDICTIONMODEL 19 

3. A NEW PREDICTION MODEL 20 

3.1 THE NATURE OF SPES 20 

3.2 THE CURRENT FORECASTING APPROACH. 23 

3.3 THE REQUIREMENTS OF A NEW SPE FORECAST MODEL 24 

3.4 ALTERNATIVE FORECASTING APPROACHES 25 

J. 4 7 f 2 J 

2 TMg .S'grzgjT f reafzcff OM 27 

3. j .,4;:y)/'oacA 2& 

3.5 SELECTION OF A FORECASTING APPROACH 29 

4. TIME SERIES PREDICTION OF SOLAR PROTON FLUX 30 

4.1 ARIMA TIME SERIES MODELLING 30 

7.7 DgfenMmmg OM y47(7M4 TMOiafe/. J2 

4.2 METHOD 34 

4.3 RESULTS 35 

3.7 3 j 

^.3.2 Derh/affOM 36 

3.3 .̂ 7^7A^ 7^g^r/»aMcg 3& 

4.4 SUMMARY 42 

iii 



5. A CLASSIFICATION APPROACH TO SPE PREDICTION 43 

5.1 BINARY REPRESENTATION OF SPES 43 

5.2 THE CLASSIFICATION APPROACH 44 

J. 2 7 

5.3 NEURAL NETWORKS AS A CLASSIFICATION TECHNIQUE 47 

j. j . 7 MLf '/P 

j. 3.2 .A/eAf 

3.3 ZzMgar 7(ggre 

J. j. ̂  f Co/?y 

6. DATASET 59 

6.1 SOLAR PROTON DATA 59 

67 .7 7%e 

6.7.2 7%g JP 

6.7.5 jS'o/ar f mfoM T^efrzeva/ 60 

6.2 A PROTON EVENT LISTING 60 

6.2 7 f & <̂7 

& 2 2 fro^on (̂ 2 

2 3 f gno(/ 7, W/ig 

6.3 EXTRACTION OF PRECURSOR DATA 67 

6.3.7 ,9oZar ̂ 7 6 ^ Da/a 67 

6. j. 2 ,$o/w 7(Wf o Dara. 68 

6.4 FLARE ASSOCIATIONS 68 

6.5 DETRENDING OF THE SOLAR CYCLE 71 

6.6 SUMMARY OF DATASET 74 

7. DEVELOPMENT OF A CLASSIFICATION PREDICTION MODEL 76 

7.1 METHOD 76 

7.7.7 77 

7.2 RESULTS 80 

7.2 7 7/^«f 7?e 80 

7.2 2 Da/ayg/ Ff/fermg 8 j 

7.2 j Co/^gMraf fo» 8^ 

7.2. f rmc^a/ CoT/̂ OMe/zff v4»a/yĵ fj' 8P 
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THE DEVELOPMENT OF A SOLAR PROTON EVENT PREDICTION MODEL 

1. INTRODUCTION 

Solar Proton Events (SPEs) are sporadic solar emissions of high energy particles and 

pose a significant hazard to both earth orbiting and interplanetary spacecraft. The 

occurrence of an SPE can cause proton fluxes in geostationary orbit to rise rapidly by 

several orders of magnitude and remain elevated for several days, causing effects that 

range &om increased errors in spacecraft memory to permanent latch-ups in electronic 

instruments. The high energy protons that constitute SPEs are also a large potential risk 

to future manned missions involving Lunar or Martian exploration, and their occurrence 

is also thought to contribute to radiation doses at aircraft altitudes. 

Whilst relatively accurate models exist to estimate radiation doses in space over 

timescales of years there is little provision for the accurate real-time prediction of SPEs. 

Currently, only two real-time SPE forecast models are in use, operated by the Space 

Environment Centre (SEC), and their usefulness is limited in that both of these models 

require an x-ray flare to occur before an SPE prediction can be made. This 

fundamentally limits the lead time of SPE forecasts to several hours, and as a result their 

occurrence is often without adequate warning, and their impact to operations is high. 

This thesis is concerned with the development of a new SPE prediction model which 

aims to make SPE predictions with longer lead times than current methods by using 

inputs that are not from discrete x-ray flares. The work addresses the fact that the 

prediction of SPEs without using x-ray flares has never been attempted, hence it is 

currently unknown whether or not SPE-precursors other than flares exist. The advantage 

in developing such an approach is that lead times are no longer limited to the physical 

time difference between x-rays and particles arriving at earth, (which is typically less 

than 12-hours), allowing more time for appropriate measures to be taken. The typical 

role of an SPE forecast service is to alert spacecraft operators to a likelihood of satellite 

anomalies, but if forecasts can be made with a suitable accuracy and lead time it may 

eventually be feasible to delay spacecraft launches or EVAs, and could serve as a 

warning to manned excursions on the lunar or Martian surfaces that may be several days 

travel 6om suitable radiation shelters. 

The following work begins by looking at our current understanding of SPEs, and 

examines the models that are currently in use by the SEC to predict their occurrence. By 

evaluating the shortcomings of these existing real-time forecast models a blue print for a 

_ 
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new model is drawn, and then a number of different approaches are discussed as to how 

the new model might be implemented. This concludes with a preference towards 

empirical rather than physical modelling and the thesis goes on to develop both a time 

series forecasting approach and a classification approach involving neural networks. 

It is concluded after applying autoregressive and moving average (ARIMA) techniques 

to a proton flux time-series that SPEs are better represented as discrete occurrences, 

which allow the proton flux to be represented as a binary time series. A classification 

approach has then been adopted in order to predict the time series by using solar x-rays 

and solar radio flux as predictors variables. This leads to the optimisation of an MLP 

configuration which uses the ratio of GOES solar x-ray fluxes as inputs to generate SPE 

forecasts with a 48-hour lead time. The model is subsequently coded to ESA software 

standards to operate in real-time and has been assessed over a 12-month period. It 

represents the only autonomous prediction model that currently exists with a 48-hour 

lead time. 

The development of the classification model utilises a dataset spanning approximately 3 

decades, and in addition to allowing the creation of a model, has also enabled the 

behaviour of solar x-ray flux and solar radio flux to be examined prior to the occurrence 

of over 100 SPEs. This has resulted in the tentative identification of possible longer 

term precursors to SPEs in solar x-ray and radio flux that have not been previously 

reported. Solar x-ray fluxes are shown on average to be higher prior to SPEs, and SPEs 

are shown to coincide with peaks in a 27-day periodicity in the 2800Mhz solar radio 

flux. It is also suggested that spatially resolved measurements of solar radio flux, which 

can be corrected for observer location, may reveal a more accurate correlation between 

radio flux peaks and SPE occurrence. 

The thesis concludes by comparing the performance of the neural classiGcation model 

with that of the SEC 2-day forecast over the same operational period, where it is shown 

that the neural model has far superior SPE prediction capability. The performance of the 

classification model is found to be hmited by the fact that the solar x-ray flux and solar 

radio flux prior to flares with no SPE association exhibit similar behaviour as at prior to 

SPE occurrence. Findings from throughout the work and an examination of the 

classification models' behaviour are used to provide comments concerning directions of 

future research in this area, and include analysis of the model as an x-ray flare forecaster. 
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2. SOLAR PROTON EVENTS 

This chapter reviews the current understanding of SPEs by examining their physical 

nature and their origin. The problems posed by SPEs are discussed, as are their known 

precursors and associations, and existing models for SPE forecasting and solar proton 

fluence estimation are examined in detail. The chapter ends by summarising the 

limitations of current real-time SPE forecasting tools, and provides evidence to suggest 

that alternative prediction approaches could be developed. 

2.1 Solar Proton Monitoring 

Solar Proton Events (SPEs) consist of atomic particles, predominantly protons, that are 

accelerated in the solar atmosphere to extremely high energies up to GeV ranges 

a/kf 1994]. Solar protons have been monitored indirectly via muon and neutron 

monitors since circa 1930, but such techniques were only able to detect very high energy 

protons (500MeV and above) via secondary particles seen as increases in cosmic ray 

intensity. Atmospheric balloons and sounding rockets enabled more sensitive 

measurements to be taken, but since the mid 1960s (corresponding to solar cycle 20) 

solar particle fluxes have been monitored at energies ranging from 1 to 500 MeV by 

space borne instruments on board the Interplanetary Monitoring Platform (IMP) 

spacecraft and Greosynchronous Observational Environment Satellites (CKDES) 

aWiSmarf, 1995b]. 

The IMP and GOES platforms have provided valuable, uniform datasets over a 

continuous time span of decades (GOES platforms have been operational since 1974, 

and IMP platforms since 1963) and they have provided the basis for many solar proton 

studies over the past 30 years. The GOES satellites are used continually by the Space 

Environment Centre (SEC) to monitor solar x-rays and the proton flux environment in 

geostationary orbit, and it is often these measurements that first indicate that a solar 

proton event is in progress. 

SPEs are typified by a rapid rise in the geostationary proton flux, usually by several 

orders of magnitude over a few hours, followed by a slow decay to background levels 

over a period of a few days. Das et al. studied proton events between 1955 and 1985 and 

reported rise times of up to 55 hours, but usually less than 20 hours, and durations of 

between 10 and 120 hours aW 1987]. Events later in 
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history however show that the large SPE of October 1989 caused the geostationary 

>10MeV proton flux to remain elevated for over 30 days. 

There is no universally agreed definition as to Wiat constitutes an SPE but the SEC 

defines one as occurring if the >10MeV proton flux (as measured by GOES satellites) is 

greater than 1.0 pfii, and remains above this level for 3 consecutive 5-minute 

observations. This definition appears to stem &om user group requirements in that it is 

protons of energies greater than lOMeV that pose hazards to satellite components. The 

peak fluxes and fluences of SPEs vaiy over several orders of magnitude: on rare 

occasions >10MeV peak fluxes reach lO'̂ pfu, and >10 MeV event fluences of 10̂ ^ 

protons/cm^ were recorded for the August 1972 event 

aW&Yvg/TwzM, 1990b]. 

Shea and Smart performed a study based on highly energetic events (those detectable at 

ground level) between 1955 and 1986 but found no pattern in their occurrence other than 

a general association with solar activity in that there were more solar proton events 

during solar activity maximum than minimum awcf .SAea, 1989]. Calendar years 

were found to contain between 1 and 16 SPEs depending on their position in a solar 

cycle. It was also noted that SPEs tended to occur in episodes of activi^, with one 

active region producing a series of m^or flares with associated proton emissions as it 

passed across the central meridian. 

2.2 The EGects of Solar Protons 

The effects of solar activity on earth based systems were first recorded in 1860 when, 

due to induced currents from a geomagnetic storm, telegraph lines between Boston and 

Portland could be used without need 6)r batteries [Aewa/f, 1861]. The increased reliance 

on electrical and space based technology means that today's systems are even more 

vulnerable to solar activity, one famous instance being the destruction of electrical 

transformers in Canada due to Ground Induced Currents (GICs) in 1989. Over the past 

20 years the term 'Space Weather" has been coined to define the behaviour of Sun-Earth 

interactions, of which SPEs are just one facet of solar emissions, along with CMEs, radio 

and x-ray flares, and interplanetary shocks, all of which can be geo-eflective. However, 

whilst SPEs are sometimes associated with geomagnetic storms, their largest impact is 

on the near earth space environment and the systems which operate within it. 
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The arrival of energetic particles at earth can cause the >IOMeV proton flux at 

geostationary oibit to increase by several orders of magnitude and reach fluxes of 

lO'̂ pfu. Typical consequences experienced by spacecraft are a rapid and permanent 

degradation in solar panel performance, and an increase in the number of Single Event 

Upsets (SEUs) aW 1992], Z/awfgMfe, 

aW 1994], BrwcAer, aW BarfA, 

1996]. SEUs are caused by single heavy ions penetrating sensitive areas of circuitry and 

can cause sufficient electrical charge to change the logic state of the device. SEUs often 

appear as memory errors and are reversible by rebooting onboard software, but if they 

occur in critical areas can result in permanent latch-ups, rendering instruments or sub-

systems unusable 1994]. 

Wilkinson reports that a family of geostationary spacecraft experienced 1 SEU per hour 

in relation to September 1989 solar proton emissions and in October of the same year 

GOES spacecraft suffered star sensor outage and major loss of solar panel output due to 

the direct result of another large SPE 1994]. The TDRS-1 spacecraft also 

exhibited significant increases in SEU rates relating to proton events during 1989, 1991 

and 1992 [iSTzeaaW&Marf, 1998], aWDar/mg, 

1991]. 

SPEs also pose a serious hazard to manned missions. It is calculated that the SPE of 

October 1989 would have almost tripled the current annual radiation allowance for 

NASA astronauts behind 2g/cm^ of shielding [T/ecAmaM, A'wMc/zef, oW 1991]. 

Heckman et al. have examined scenarios for possible future missions in which astronauts 

may be working on the surface of the moon or Mars, and suggest the requirement for a 

SPE prediction with a lead time suitable to allow a radiation shelter to be reached 

PPagMer, aW ^wzc/z&y,]. The PROTONS prediction model for SPE 

occurrence (operated by the Space Environment Centre) was developed prior to the 

Apollo lunar missions for the specific purpose of providing a hazard warning for lunar 

astronauts. 

Very recently, the impact of SPEs and solar radiation on airline flights has become an 

issue with aircraft operators and radiological protection agencies. Research by 

O'Sullivan et al. addresses the fact that biological damage 6om neutrons may have been 

underestimated and states that the radiation doses received &om flying at higher 

subsonic altitudes are unknown [OW/h/a/i, 2001], [O W/zvaM, 
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ATeggan, FZoo(̂  7b/M7Mâ z»o, 1999]. A current study is 

flying high energy radiation monitors on selected commercial flights in order to quanti^ 

the radiation field, but the occurrence of a SPE is known to enhance the ambient particle 

conditions 2%o«, 1999]. 

2.3 Solar Proton Modelling 

Of particular importance at the beginning of the space era was the need to try and 

estimate the radiation dose that spacecraft would experience during their lifetime, and 

the availability of proton data from IMP satellites provided an opportunity for 

quantitative analysis of SPE fluence. 

King was the first to use early satellite data to study SPE fluences, and using data 

pertaining to solar cycle 20 (1964-1976) he found that the radiation dose at lAU was 

dictated entirely by contributions from SPEs, or, more specifically, the occurrence of a 

single, large fluence SPE (the August 1972 event). King went on to develop a model to 

predict the proton fluence for cycle 21, basing it on the events that had occurred during 

cycle 20 and the predicted sunspot maximum for cycle 21 1974]. Data pertaining 

to cycles 19 and 20 seemed to indicate that proton fluence was directly related to the 

maximum sunspot number of a cycle. 

Time would show however that King had based his model on too small a dataset, and 

this is an inherent problem when attempting to draw conclusions &om solar proton 

studies. Their low occurrence 6equency and the further division of SPEs into their 

respective solar cycles means that decades must pass before reliable statements about 

their distributions can be made. 

Following Kings' attempt at trying to predict proton fluences, later work by Feynman et 

al studied the distribution of fluences from SPEs occurring between 1956 and 1986, 

incorporating solar cycles 19, 20 and 21 [Feyw/MaM, 

1990b]. In studying the distribution of SPE fluences Feynman made no 

distinction between solar cycles, treating the dataset as one population, with the result 

that the SPE fluences formed a continuous distribution. Exceptionally large fluence 

SPEs, previously thought by King to be anomalous events, were now shown to belong to 

the same distribution as smaller fluence SPEs. Feynman found that the distribution of 

event fluences could be approximated at higher fluences by a power law. Small (low 
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fluence) events were found to occur far more frequently than high fluence events and 

prevented an accurate power law fit of the entire distribution, although the fitting 

functions (power laws) were biased to model the large fluence event probabilities as it is 

these events that dictate the proton fluence over a suitably long time span. 

Feymnan's study also revealed a pattern in that the significant m^ority of solar proton 

fluence was produced during a period spanning 6om 3 years before to 4 years after the 

time of solar sunspot maximum, defined to the nearest month. This finding is supported 

by Shea and Smart, who note that the majority of SPEs occur through the second through 

eighth years after sunspot minimum aW 1989]. Feynman called this 7-year 

period the active years of a solar cycle and concluded that when estimating the proton 

fluence over a given time it was only necessary to consider the active years: the 

remaining years could be ignored as they gave only a small contribution to proton 

fluence in relation to active years. Using Monte Carlo methods Feynman generated 

curves based on the SPE distribution that showed the probability of exceeding a given 

proton fluence over different time spans (mission lengths). Feynman revises the work by 

including data up to 1991 and calculates probability curves for different energies, 

formalising the model as the JPL-91 Interplanetary Proton Fluence Model [Fgyn/MaM, 

aW 1993], which is widely accepted as the industry standard for 

proton fluence estimation. 

It is worth noting that the Feynman model was created in response to a need to be able to 

predict the radiation dose during a spacecraft lifetime. However, the notion of 7-active 

years is not realistic, and if a mission lasting 4 years happens to fall in the 4 non-active 

years between solar cycles it will have zero predicted radiation dose. Clearly, the 

Feynman model is only valid if the m^ority of a spacecraft mission falls into the seven 

active years of a cycle. In addition a study by Stassinopoulos et al. since the JPL-91 

model has shown that 'non solar active years' can still contain significant SPEs, and in a 

few instances have also had higher annual proton fluences than supposed active years 

Gee, awf Barf/z, 1996]. This again 

highlights the fact that the concept of active years is really only valid as a probabilistic 

model over long time spans. It also shows that SPEs do occur outside 'active years', 

with the implication that a discrete SPE forecasting ^)proach cannot limit itself to just 

the active years of a cycle. 

7 
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More recent work has revised the proton fluence power laws aW 

1996], fgyMTMaw, a/W G., 1996], feynmaM, ef a/. 1996] and 

others have used extreme value theory and Poisson distributions to generate more 

accurate and more simplistic probabilistic models for total dose prediction 

aW 1998], 1996], but in 

essence such models are only revisions to a curve fitting exercise. They may allow 

proton fluence to be predicted more accurately over timescales of years, but say nothing 

about wAg/z a specific SPE will occur. 

2.4 The Flare Paradigm 

The classical picture of SPE propagation to earth is based within a flare paradigm, and 

assumes particles to emanate from the location of a flare site where they then diffuse 

through space along magnetic field lines emanating &om the sun. Burlaga describes a 

process for anisotropic diffusion in which particles are produced at a point source on the 

sun and diffuse to a^acent solar longitudes whilst at the same time diffusion proceeds 

more rapidly along interplanetary magnetic field lines away from the sun 

1967]. 

This diSusion process means that for a SPE to 'occur' at earth, solar protons must travel 

along magnetic field lines that connect the sun to the earth. More specifically, the 

diffusion model predicts that both the magnitude of solar proton flux seen at earth and 

the onset time are dependent on the heliolongitude of the particle source [BarowcA, Groj?, 

1971]. This has been verified observationally by a number of authors, most 

notably Shea and Smart, who show that the m^ority of SPEs seen at earth are related to 

flare sites on the western limb of the sun [,̂ /zea a/zc/ S'marf, 1995a], [S'mwf oW 5'Aga, 

1989]. 

Cane et al. found that x-ray flares associated with SPEs could be grouped into two 

categories via their soft x-ray profiles (i.e. their profiles in the GOES 1-8A channel), 

these being 'impulsive' x-ray flares, which displayed fast rise and decay times of the 

order of 10 minutes, and 'gradual flares' which exhibited a much longer exponential 

decay. Impulsive flares were shown to have small volumes and to occur low in the 

corona, with gradual flares occurring at much greater coronal heights. [Ca/ze, 

aW Fb/zrofgm'mgg, 1986]. Cane et al. found that particle emissions associated with 

impulsive flares tended to have a h i ^ ratio of electrons but generated a relatively low 
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proton content and only occurred at well magnetically connected flare sites. By contrast 

SPEs associated with gradual x-ray flares had much higher proton energies, occurred at 

any solar longitude, and were also associated with coronal and interplanetary shocks. 

The link between gradual x-ray flares and significant SPEs is corroborated in 

independent studies by Garcia, who identifies Gradual Hard X-ray flares as having a 

high correlation with SPEs [Garc/a, 1994a], [Garc/a, FarM/A, Ar^/rngg/",]. Garcia 

also examined the electron temperature distribution of x-ray flares, and found that cooler 

flares with lower x-ray intensities had a higher association with SPEs, whereas hotter x-

ray flares were not proton associated. Garcia theorised that gradual x-ray flares, as 

purported by Cane, belonged to this cooler, proton associated population, but also found 

that at high intensities the distributions merged: i.e. high temperature, high intensity 

flares could still result in associated particles [Garc/a, 1994a]. At the same time, 

Kiplinger was examining the energy spectra of proton associated flares, and noted that x-

ray flares that exhibited gradual hardening in energy spectra over their peak and decay 

were always associated with energetic SPEs 1995]. Kiplinger fbimd that the 

behaviour of the energy spectra could be used to reliably predict whether or not an x-ray 

flare would result in associated protons, and theorised that flares with a hardening 

spectra were signatures of high energy electron and proton acceleration. Garcia and 

Kiplinger pooled their findings and found that large flares with SPE associations and 

progressively hardening spectra could have an impulsive stage of high electron 

temperature similar to that of non-proton associated x-ray flares which masked the 

characteristic low temperature usually seen in gradual proton associated flares [Gorc/a 

AT/p/mge/", 1996]. Garcia and Kiplinger concluded that impulsive flare behaviour 

could occur just prior to a gradual flare event, with the effect of masking the ^ i c a l 

gradual-flare temperature signature, and state that the fact that progressive hardening in 

energy spectra is still present suggests that a common acceleration process is present in 

all flares. 

In summary Garcia and Kiplinger imply that SPEs are directly caused by energetic 

flares, and provide strong evidence that flare characteristics are good indicators of SPE 

occurrence. However, other findings indicate that coronal mass ejections (CMEs) may be 

the physical cause of SPEs rather than flares 1995]. Kahler et al. fbimd that 

96% of energetic SPEs could be associated with the occurrence of a CME [ATaA/er, 

6'AggZey, AToo/Mg/z, Mzgz/frg, ybwoj'gMvmge, aW 1984], 
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which are themselves highly correlated with the occurrence of gradual x-ray flares 

[ATaMer, 1992]. This is also supported by Sheeley et al., who found that for a given x-

ray event the probability of an associated CME is a strongly increasing function of x-ray 

flare duration 1983]. The occurrence of a long 

duration x-ray flare is therefore a good indicator of both a CME and an energetic particle 

event, although there is no conclusive evidence as to which is the actual cause of a SPE. 

It is believed by some that flares play no physical role at all in causing SPEs, and that 

their supposed importance has been caused by the fact that they are relatively easy to 

monitor, (and have indeed been monitored since the 1930s). It is probably true that 

associations between SPEs and other phenomena have been overlooked due to the 

assumed role of flares, but Garcia and Kiplinger have proven that flare characteristics 

can be used to determine whether associated particles will be seen after a flare, and this 

will hold regardless of whether or not flares are the true cause of SPEs. 

The relative particle abundances measured during SPEs indicate that there are probably 

two families of SPEs which emanate &om two different regions of the corona, 

1988] and which relate to the two different types of flare association 

Mzfo/z, Mzzz/r, aW Zhtygr, 1997]. Tanaka suggests that long duration 

x-ray flares are indicative of flares occurring high in the corona in areas of open and 

non-complex magnetic Geld topologies 1987]. The mechanism of particle 

acceleration is thought to be due to magnetohydrodynamic shock wave propagation over 

large areas, and would explain the lack of correlation between gradual x-ray events and 

the sun-earth connection longitude. Impulsive flares with particle associations occur low 

in the corona and occur at well magnetically connected sites. Garcia postulates that if an 

impulsive flare is energetic enough it may allow particles to break their magnetic 

containment, giving rise to a low coronal source SPE. This concept is supported by 

Kahler's 'Big Flare Syndrome' which essentially states that any very energetic flare will 

have associated particles [ATaA/er, 1982b]. Although Garica and Kiplinger give evidence 

to suggest that the same (flare) acceleration mechanism is common in both impulsive 

and gradual cases, it is likely that the additional MHD wave acceleration process in the 

latter case is far more important in determining the severity of SPEs seen at earth. 

It has also been accepted that interplanetary shocks play a fimdamental role in SPEs by 

modifying the energy of particles that have been produced in earlier flares [Cawe, 

FbMmfg/zvmgg, 1991], 1988]. This 
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realisation stems Aom the observed behaviour of proton flux during large fluence events, 

which oAen exhibit several augmentations in proton flux associated with the passage of 

interplanetary shocks Mw/Zer/Mg/Zf/z, afK/ 

AToMfor, 1993], aW 1993]. Fundamentally this means 

that any model attempting to predict the flux of a proton event must also account for the 

effects of 'post-injection' interplanetary shock particle acceleration. 

The argument as to whether it is CMEs or flares that cause SPEs is ongoing. Garcia and 

Kiplinger describe spectral hardening in x-ray flares as a manifestation of a particle 

acceleration process, providing strong evidence that flares are inextricably linked to 

SPEs, yet others infer that the high correlation between SPEs and CMEs must imply a 

physical link between SPEs and CMEs. However, in terms of wanting to predict the 

occurrence of a SPE it may not be necessary to debate their true physical cause. Garcia 

and Kiplinger have proven that flare characteristics can be used to determine whether 

associated particles will be seen after a flare, and this will hold regardless of whether or 

not flares are the true cause of SPEs. Purely 6om a forecasting viewpoint it is sufficient 

to identi^ and 'harness' precursors to SPEs so that forecasts can be made. 

Understanding the physical processes that cause SPEs is obviously desirable and may 

help to construct a forecasting model, but knowledge of these mechanisms is not 

mandatory to the success of a prediction technique. 

2.5 Precursors and Associations 

SPEs are nearly always co-incident with a solar x-ray flare, and as discussed above, it is 

widely held that particles are produced, (if not also accelerated) at the site of a flare. The 

radial emission of electromagnetic radiation at the speed of light as opposed to the 

diffusion of particles along open magnetic field lines gives rise to a delay between 

monitoring an x-ray flare and monitoring associated particles, hence flares are observed 

as precursors to SPEs. The delay between monitoring an x-ray flare and monitoring 

particles is variable, dependent upon the energy to which particles have been accelerated, 

and can vary between several hours, or just several minutes for very high energy 

particles (>500MeV) aW 1989]. Flares however are a very common 

phenomena, with a typical occurrence 6equency of several per day during solar 

maximum, the reality being that less than 1% of all flares produce associated particles at 
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earth. The occurrence of a flare can therefore never be used as a unique indicator that an 

SPE will occur. 

In addition to the flare characteristics described in the previous section radio bursts 

associated with flares have also been shown as having SPE associations [AjoA/er, 19&2a]. 

Impulsive x-ray flares show strong association with Type m radio bursts, and gradual x-

ray flares with Type H and Type IV radio drifts, which are indicative of a shock moving 

away 6om the sun , Mrgw/rg, Fbwoj'g/n/mge, 1986], 

Bg/zz, 1995]. Uddin et al. studied the radio associations &om a 

sample of 52 proton associated flares and found that Type II, m , and IV radio emissions 

were present in 70% of cases [LWm, aW Fgr/wa, 1990]. Use of this correlation 

is made in current forecasting methods, but the fact remains that the presence or absence 

of a given radio burst type cannot be used as a unique requirement for a SPE. Uddin also 

finds for example that 38% of proton flares exhibit type I radio burst emissions. 

It was mentioned in 2.3 that King modelled proton fluence as a function of sunspot 

number, but studies since 1970 have shown this to be a falsehood. Feynman et al. 

considers proton fluence between 1956 and 1985 and fails to Rnd a relation between the 

solar cycle integrated proton flux and the maximum sunspot number of the cycle, and 

also on a year-by-year basis &nds no correlation between the annual integrated solar flux 

and annual proton fluence a/W 1990a]. 

Gabriel also shows poor correlation between sunspot number and annual proton fluence 

[GaArieZ, G., 1996] and a corroborative conclusion is also reached 

by Shea and Smart, who found that the annual occurrence rate of SPEs did not correlate 

well with the average annual sunspot number over solar cycles 19, 20 and 21 aW 

1992]. 

In an auto correlative approach Gabriel et al studied the occurrence frequency of SPEs 

by approximating SPEs occurring during cycles 19, 20 and 21 as unit pulses [GaAr/g/, 

.Evaw, aW 1990]. Whilst peaks in spectral power at near 154 and near 50 

days were found, no level of significance was attributed to the findings, hence it is 

impossible to draw any conclusions. In addition, the tendency for events to occur in 

episodes of activity as an active region passes across the solar disk [6'Aga 

1990] means that SPEs from one initial source may have been included as separate 

events, where it may have been more appropriate to consider only the first injection. 

Nevertheless, the authors postulate that the observed 154 day periodicity may either be 
— 
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due to the correlation between SPEs and Ha flares, which have also been measured as 

having similar occurrence periodicity, or a more fundamental origin of solar activity 

connected to the periodic re-emergence of magnetic flux and modes of solar oscillation 

[O/fver, aW BaW/M, 1998], [Ca/ze, a W Fb/z 1998]. 

As the significance of the periodicities cannot be quantified though it is impossible to 

take these theories as anything more than speculation. 

Solar flares, and hence by association SPEs, are known to originate 6om active regions, 

consisting of local areas of complex, developing magnetic topology, which manifest as 

sunspots in visible light. Uddin et al calculated the cumulative flare index for 45 active 

regions that produced SPEs, and noted that a sharp rise in the cumulative flare index was 

often a precursor to SPE occurrence [LWm, faWe, aw/ 1990]. Importantly, the 

rise in cumulative flare index occurs over a timescale of days, implying that SPEs might 

be forecast without the need for a single x-ray flare, but Uddin makes no comparison to 

active regions that do not produce SPEs hence it is unknown as to whether sharp rises in 

cumulative flare index occur commonly when unrelated to SPEs. In a similar study 

Chakravorti does compare 171 proton to 200 non-proton producing active regions, and 

finds that the latter have a higher distribution of flare index values, but does not state 

how the flare indices have been collected: i.e. it is unknown if these are maximum values 

over active period life, or an average value aW 

1991]. Nevertheless, the result still implies that active region characteristics can be 

associated with SPEs. In addition, Chakravorti et al also find that the Ca-II plage index, 

the radio emission flux and the maximum intensity of 9.1cm radio flux associated with 

proton producing active regions pass through a maximum on the day of SPE occurrence 

in 70% of cases with values decreasing for days before and after. This observed 

behaviour again implies that SPEs might be forecast on a timescale of days. 

In very recent work by Canfield et al. the appearance of Sigmoid shapes in x-ray images 

of the corona has been identified as a precursor to solar eruptions, and more speciGcally 

CMEs f 2000]. MHD simulations show that the sigmoid 

forms when twisted magnetic fields combine in a reconnection mechanism, but the 

technique requires the magnetic structure to be seen 'end-on' for the sigmoid to be 

visible. Cleary this limits its usefulness as a practical precursor, and in addition it is not 

a unique pre-requisite for a CME, with only a 65% correlation with solar eruptions. 
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The current approach to SPE forecasting is to use x-ray flare characteristics to determine 

whether or not an x-ray Hare is proton producing, but the findings by Chakravorti and 

Uddin described above strongly suggest that the characteristics of active regions (rather 

than discrete flares) may allow an SPE to be forecast a matter of days in advance, well 

before the traditional 'proton-Gare' occurs. 

2.6 Solar Proton Prediction 

Probabilistic models such as JPL-91can provide an estimate with given confidence levels 

of the proton fluence that will be received over a number of years but do not address the 

immediate real-time hazards that SPEs pose because they do not predict when a specific 

event will occur. This means that SPEs currently have a large impact on real-time 

spacecraft operations and will pose a significant potential threat to future manned 

missions. 

The current way to minimise the effects of SPEs is to design and use radiation hardened 

components, but this entails high costs, whereas an ability to alert operators to possible 

satellite errors could be more cost effective aW 1998]. The threat posed by 

SPEs to future interplanetaiy missions is already appreciated 1993], and a 

reliable warning system would allow time for exploration teams to reach shelter or 

p o s ^ n e a sortie. Even though protected by the earth's magnetic field, manned missions 

in Low Earth Orbit still experience higher radiation levels during SPEs, and again, the 

ability to forewarn of the occurrence of an SPE with suitable lead time and confidence 

could allow EVAs or even spacecraft launches to be rescheduled. 

The immediate hazard that SPEs pose to spacecraft and manned missions requires the 

need for real-time forecasting models rather than probabilistic, long-term dose models. 

These real-time models need to be capable of predicting when an SPE will occur with 

enough lead time to take any mitigating action. The SEC has recognised the need for 

such real-time SPE forecasts and currently operates two models. 

2.6.1 The PROTONS model 

The PROTONS model entered operational service in 1972 and was developed in 

association with the Apollo lunar missions in order to provide an alert/waming service 

for energetic particles for manned missions 1988]. It was developed at a time 
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when solar observations were still predominantly ground based and when solar 

mechanisms were poorly understood, and as a result the model is based on heuristic 

equations and empirical formulae derived from observed data 

1991], [BaZcA aW ATzmcAĝ ,]. The PROTONS model is based firmly in the flare 

paradigm and is based on the concepts described previously in which energetic particles 

are produced at a flare site and then diffuse to and along interplanetary magnetic field 

lines connecting the sun and the earth. 

The PROTONS model uses a solar flare to make two distinct predictions: the first is 

whether or not an SPE will occur, and the second is the >IOMeV peak proton flux and 

arrival time of the particles should an event occur. When a flare occurs, PROTONS can 

be run, and takes as inputs the time integrated x-ray flux of the flare &om the GOES 

instruments, the solar longitude and latitude of the flare, the current Ap index, and the 

presence of any type n and type IV solar radio bursts occurring in association with the 

flare. 

The probability of a SPE following a flare is estimated by combining individual 

probabilities relating to diGerent characteristics of the flare, thus the probability of there 

being a proton event takes the form: 

P(SPE) = P(l)xP(2) xP(3) 

Where P(l) relates to the peak x-ray flux of the flare, P(2) relates to the type of radio 

burst associated with the flare, and P(3) relates to the magnitude of the predicted peak 

particle Gux (a larger predicted proton flux indicates a higher probability that the proton 

event will actually occur). The probabilities for each term have been derived empirically 

and are based on experience with the model during 1974-1985. A proton event has a 

high probability of occurring if either Type n or Type IV radio bursts are observed, and 

the peak flux of the x-ray flare is high (greater than M6 level). Details of the 

probabilities used in the model are given by Balch [Ba/cA, 1999]. Clearly, the probability 

of seeing an SPE after a flare has occurred is based purely on an empirical correlation 

between historical flare characteristics and SPE associations. 

Predictions for expected peak proton flux are based on an empirically derived power law 

relating time integrated x-ray flux to observed peak proton flux. The value is corrected 

for the heliographic location of the x-ray flare, which attenuates the e)q)ected flux as a 

function of degrees from the sub earth point according to anisotropic diffusion theory. 

— 
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The sub-earth point (helio-longitude) is itself a function of solar wind speed, for which 

the Ap index is used as a surrogate. Rise-time is also estimated 6om the flare location, 

and is a function of the distance between the flare site and sub-earth point. 

Later additions were added to the model to account for the effects of interplanetary 

shocks giving rise to post iiyection particle acceleration. The modification however is 

relatively simple, and is again empirically based, simply stating that if a flare of 

sufficient size has occurred in the past 48 hours further correction factors are calculated 

based on the integrated flux of this Hare. The eSect is to increase the predicted particle 

flux and reduce tbe predicted rise time for the current SPE prediction. 

PROTONS has been in real-time operation since 1972 which has enabled validation on a 

large amount of solar data, although the most recent verification and analysis was 

performed by Balch using 88 proton events with flare precursors occurring between 

1988 and 1997 [Ba/cA, 1999]. Balch finds that the predicted proton flux has an error of 

approximately one order of magnitude compared to the observed flux, and that the 

predicted lead times frequently vary by more than 50% j&om the observed lead times. 

More fundamentally, Balch found that the flare location was not useful in predicting the 

peak flux of a proton event, and that the PROTONS model for peak proton flux 

prediction was marginally improved when the correction factor for flare heliolongitude 

was removed. Similarly, a slight improvement was also found when the correction for 

previous x-ray flare activity was removed. The significant errors in flux and lead-time 

predictions and the fact that 'correction factors' actually worsen performance reflect the 

simplistic diffusion model of particle propagation that PROTONS uses, and suggest that 

the empirical relations between x-ray flare energy and observed proton flux need to be 

revisited. 

Balch also examined the accuracy of the model in predicting the occurrence of SPEs by 

comparing the predicted probability of there being an SPE with the actual observed 

frequency of SPEs, and found PROTONS to significantly over predict: e.g. model 

predictions of 40% and 50% for event probabilities actually had only a 21% chance of 

being associated with an event [Ba/cA, 1999]. In an earlier study Heckman carried out 

an analysis of the model for 1989 in terms of a 'yes/no' forecast derived by taking all 

probabilities > 50% as a "yes' and all those < 50% as a 'no'. During 1989 only 5 out of 21 

events were missed, resulting in a hit-rate of 76%, but in 16 cases an SPE was predicted 
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when none occurred, causing Heckman to state that the model generates a relatively 

large proportion of false alarms [/fgcAzwaM, 1991]. 

PROTONS is a model Wiich relies on relatively simple physics and empirical relations 

between x-ray flares and SPEs. In terms of predicting whether an SPE will occur or not, 

performance is reasonable, but the quantitative outputs such as occurrence probability, 

peak proton flux and rise dme have significant error, reflecting the simplistic physical 

origins of the model. 

2.6.2 The Garcia Model 

The Garcia model again exists under the flare paradigm but is based on the more recent 

findings discussed in 2.4 in which Garcia found proton producing x-ray flares to have a 

low temperature distribution at low peak fluxes [Garc/a, 1994a]. Garcia fitted 

probability curves to the observed distributions, allowing the probability of an SPE 

occurring to be calculated from flare electron temperature and peak x-ray flux. 

This model is cuirently being evaluated on real-time data on SEC web space* using x-

ray fluxes and flare temperatures calculated &om GOES satellite data [Gwcza, 1994b] 

and has yet to be formally evaluated. However, Garcia shows that the two distributions 

of low and high temperature merge at high fluxes, indicating that in some instances the 

model will not be able to distinguish between proton and non-proton flares. 

It is interesting to note that Kiplinger's findings, which were also discussed in 2.4 

relating to the evolution of spectral hardness during x-ray flares, have not been used to 

create a particle prediction model, even though Kiplinger performed a test in \\i]ich he 

was able to successfully identify 96% of proton producing flares purely through analysis 

of their x-ray spectra 1995]. The most probable reason for this is that the 

spectral hardening of the x-rays must be examined over the decay period of the flare, by 

which time protons associated with the flare may already be arriving at earth: i.e. the 

technique only permits a post-event association to be made and cannot be used as a 

practical prediction method. 

* http://sec.noaa.gov/-sgreer/gprot/mdex.html 
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2.6.3 The Problem with Flare Paradigm Prediction Models 

It is evident that the only particle prediction models that are in current operation rely on 

the characteristics of a single, discrete x-ray flare in order to make a prediction. The 

approach taken is to look at an x-ray flare and decide whether or not it is going to be 

proton producing. Whilst there may be a physical argument against using flares as a 

predictor because they are not the true physical cause of particles (as discussed in 2.4), 

there is also a more fundamental, practical drawback to the technique in that particles 

can arrive just several minutes after the occurrence of a proton flare oW SAea, 

1989]. Typically, particles will arrive within several hours of an associated x-ray flare, 

meaning that the PROTONS, Garcia and any other technique using flare characteristics 

will always have lead times that are physically limited to just a few hours, and in some 

instances, for very energetic particles (which are arguably the most desirable to be able 

to forecast), there will be ahnost no lead time at all. 

Secondly, flare paradigm models do not allow an SPE to occur without there first being a 

flare, whereas real observations show that it is possible for an SPE to occur without an 

apparent x-ray flare. In Heckman's appreciation of the performance of PROTONS 

during 1989 he finds that a proton event was not predicted because it occurred without a 

flare [/fgcAmoM, 1991], hence there was no reason (and no inputs) to 

run the model. Whilst these instances are relatively uncommon it still hig^i^ts another 

inherent limitation with current particle forecasting methods. 

Future interplanetary missions or human expeditions to Mars or the Moon are likely to 

require some kind of solar particle warning service, but the current lead times, and 

accuracies that are offered by such models may not be sufficient to allow an acceptable 

level of risk 1993]. A recent work commissioned by the European Space 

Agency set out to quanti^ the current Space Weather requirements within the European 

Community and identiGed a need to predict solar particles for satellite operators and 

manned missions with forecasts of 1 to several days ahead with target reliabilities of 

A,2001]. 

The SEC does issue the probability of an SPE occurring for 1, 2 and 3 days ahead, but 

these probabilities are generated by a human forecaster and not by an analytical model. 

Forecasts are based on a number of factors including magnetic complexity of active 

regions, active region area, H-alpha and white light structure, heliographic position of 

active regions, coronal structure, radio emission characteristics and whether or not active 
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regions are in growth or decay 1993]. These predictions are intended to 

serve as a general outlook, but analysis by Heckman shows that the predicted 

probabilities bear almost no relation to the observed occurrence of SPEs: i.e. these 

forecasts have no reliability whatsoever. 

2.7 A New Particle Prediction Model 

It has been shown that current SPE forecasting models are deficient. PROTONS exhibits 

significant error in rise time and peak flux predictions, and the underlying physics on 

which it is based is overly simplistic. Predictions of whether or not an SPE will occur 

are of reasonable reliability, but the pre-requisite of an x-ray flare by both PROTONS 

and the Garcia model limits lead-times and treats SPEs uniquely within a flare paradigm. 

The need to forecast SPEs several days ahead has been identified, yet the flare-based 

models cannot achieve this, and alternative forecasting techniques are subjective and 

highly inaccurate on such a time-scale. 

There is evidence however to suggest that precursors to SPEs other than the classical 

solar flare may be present, and may allow events to be forecast on a timescale of days. 

As was discussed earlier in 2.5, Uddin et al found solar radio flux 6om active regions to 

pass through a maximum on the day of an SPE, yet these findings have not been taken 

further: the behaviour of other solar variables, such as x-ray flux, has not been studied on 

a timescale of days relative to SPEs, (possibly due to the well established belief that 

flares/CMEs are the first and only precursors to SPEs) and importantly, no attempt has 

been made to create an SPE forecasting model that does not use a discrete x-ray flare as 

an input. 

The existence of several decades of in-situ high quality solar measurements provides an 

excellent opportunity to address the 'gap' in the current SPE prediction approach by 

providing an opportunity to try and identify longer term precursors to SPEs. Via this 

approach it may be possible to develop a prediction model that does not require 

characteristics of a discrete flare as inputs, hence permitting the generation of forecasts 

with longer lead times. In addition the wide availability of near-real time data fi-om 

satellites provides an excellent resource &om which to evaluate and operate such a 

model. If successful, such a technique would go some way to realising the particle 

forecast lead-time requirements that have been identified by ESA and which would be 

required by future manned space missions. 
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3. A NEW PREDICTION IVIODEL 

This chapter examines the nature of SPE occurrence with reference to specific examples. 

By examining the limitations of current prediction techniques it sets requirements for a 

new forecasting model and difkrent approaches are then discussed as to how these 

requirements can be met. 

3.1 The Nature of SPEs 

In order to begin the development process for a new SPE prediction technique it is useful 

to examine the occurrence of an SPE in order to characterise the phenomenon in more 

detail. Since the existence of space borne particle monitors SPEs have been observed via 

the instruments of the IMP and GOES satellite platforms. The Space Environment 

Monitor payload on board the GOES satellites also contains solar x-ray detectors, 

allowing solar x-ray activity to be observed in parallel with particle fluxes. 

Measurements &om GOES are available in near real-time as a space weather monitoring 

service, and are the means today by which SPEs are most commonly observed and 

analysed. 

Figure 3-1 shows an SPE which occurred at near mid-day on the 14*'' February 1986 as 

recorded by monitors on the GOES-6 spacecraft. Prior to the SPE the >10MeV proton 

flux is at a relatively constant level of approximately lO 'p.f u. The SPE manifests as a 

sudden increase in flux over two hours to a level of -lO^p.fu, followed by a more 

gradual increase to approximately 10̂  p.f u. over a further 6 hours. The elevated flux 

levels then decay to background over a period of 3 days (although the tail of the event is 

not shown in the figure). An examination of the solar x-ray flux shows an x-ray flare to 

occur just prior to the onset of the SPE. The time delay between the peak of the x-ray 

flare and the onset of the SPE is approximately 2 hours. 
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Figure 3-1 Typical occurrence of an SPE with associated x-ray flare during February 1986 as 

captured by monitors on the GOES-6 spacecraft. 

Figure 3-2 and Figure 3-3 show similar plots for two more arbitrarily chosen SPEs, one 

from November 1988, the other from July 1989. In both instances the >10MeV proton 

flux is again at a relatively constant background level of-lO'^p.fu. prior to the event. 

The SPE manifests as a sudden sharp increase in the proton flux level. In the July 1989 

example (Figure 3-2) the SPE is associated with an impulsive x-ray flare of > ICT* 

watts/m^ peak flux, but there is no measurable delay between the x-ray flare peak and the 

onset of the SPE. In the November 1988 example the onset of the SPE does not appear 

to have any x-ray flare association at all. 
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Figure 3-2 An SPE with associated x-ray flare on 25*'' July 1989 

GOES-7 SPACE EMVIROMMEMT MOHITOB 76.1"W (5-Min Augs) 
X-rays Movember 1988 
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Figure 3-3 an SPE with no associated x-ray flare on November 8*** 1988 

The specific flux-time profile of SPEs, as discussed in the previous chapter, is a function 

of the heliographic position of the particle source with respect to the earth and also 
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dependent on the presence of interplanetary shocks, but in the general case all SPEs are 

similar in that they are typified by a sudden enhancement in proton Oux which rises to a 

maximum over a period of several hours. Prior to an SPE the >10MeV proton flux is at 

a relatively constant background level o f - lO'^p.f u. 

3.2 The Current Forecasting Approach 

The current approach to SPE forecasting is to determine whether or not an x-ray flare is 

likely to produce protons by examining characteristics of the x-ray flare. Analysis of the 

PROTONS model during 1989 by Heckman shows that the technique makes a correct 

forecast in 78% of cases 1991], hence the accuracy is 

actually very reasonable, but the technique has two fundamental drawbacks. These are 

the lead-time of predictions and the requirement that an x-ray flare must occur for an 

SPE to occur. 

For the PROTONS model, the lead time for an SPE prediction is a fimction of flare 

location and energy. Based on this information the model predicts a rise time for the 

SPE, which is the time between the x-ray flare peak and the maximum >10MeV proton 

flux of the SPE. Typically an SPE will take between 1 and 24 hours to reach its 

maximum flux, but in practice, as can be seen from the previous examples, significant 

particle fluxes are still observed within 0-6 hours of flare occurrence, well before the 

peak proton flux is reached. This means that the PROTONS model can eHectively only 

produce forecasts a few hours before an SPE begins. The Garcia model suffers from 

exactly the same problem in that an x-ray flare has to peak before a prediction can be 

made (the model uses x-ray flare temperature and peak flux in order to make a forecast). 

The fact that existing models use flare characteristics in order to make predictions also 

means that an x-ray flare must occur for an SPE to be predictable. Based on the dataset 

used later in this study, 93% of SPEs occur in association with an x-ray flare, so in 

practice flare based are justified, but fundamentally it still means that an SPE can occur 

without there being any inputs on which to run a forecasting model. Clearly, flare based 

SPE prediction models are incapable of predicting SPEs that occur without an x-ray 

flare. 
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3.3 The Requirements of a New SPE Forecast Model 

It has been shown that flare based SPE forecasting models can give predictions with 

reasonable accuracy, but as they need to wait for a flare to occur and peak be&re they 

can make a forecast, significant proton fluxes can be seen within minutes of a forecast 

being made. A new prediction approach should address this by producing forecasts wilh 

lead times of the order of a day or more (i.e. 24-hours before significant proton fluxes 

are seen). Such a period would allow a realistic time for any mitigating action to be 

taken, especially in the case of manned missions. For example, intensive spacecraft 

operations could be postponed rather than risk incurring an anomaly part way through a 

procedure that might leave a spacecraft in an undesirable conGguration. In addition, 

sensitive equipment could be turned off completely rather than risk spurious 

commanding or degraded operation. In the case of maimed surface exploration of the 

moon astronauts would require time to reach a radiation shelter. 

Integral to the operation of an SPE forecasting model is the ability to operate in real time 

meaning that any inputs that are used must be available with a minimum lag 6om real-

time. Inputs that require a significant amount of time to calculate or retrieve will eat into 

the lead time of the model and reduce its capability. The requirements of a new SPE 

forecasting model are summarised in Table 3-1. The exact outputs &om a new 

prediction model have not been stipulated, and will in part depend on the modelling 

technique that is employed. 

* Provide lead times greater than current flare association models 

(24 hours +) 

" The model must be capable of real time operation 

(i.e. input variables must be available in real-time or near real-time) 

Table 3-1 : Requirements for a new SPE prediction model. 

The aim to produce forecasts with >24hours lead time implies that discrete x-ray flares 

cannot be used as inputs to a model, hence any new model will be a departure 6om the 

classical flare association models that currently exist. It is important to note that to date. 
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no attempt has been made to predict an SPE without requiring an x-ray flare, hence the 

development of a 'long' lead time model will be the first investigation of its kind. 

It is also important to define what is meant by SPE prediction. For the basis of this study 

the goal is to predict the sudden onset of an SPE. The prediction of quantitative 

characteristics of an SPE, such as peak flux and total fluence are not objectives. 

3.4 Alternative Forecasting Approaches 

The requirements for a new prediction model can potentially be met by a number of 

methods. One broad method is via a physics based model whereas another is via the 

empirical route relying on correlations between SPEs and other observed variables. 

Potential techniques are discussed below. 

3.4.1 Physical Model 

A physical model attempts to describe a process by understanding the basic mechanisms 

that govern it. Such an approach requires the physical processes to be identified and 

understood to such a level that they can be modelled mathematically from first principles 

and driving variables need to be identified so that they can be used as inputs to the 

model. 

In terms of modelling solar proton events there are several potential different 

mechanisms that would need to be considered, corresponding to different stages in SPE 

occurrence. Speculatively these might be classified as a pre-injection phase, in which 

active regions are evolving, an acceleration stage, in which particles are iiyected and 

accelerated within the corona, a solar propagation stage, in which particles travel through 

the solar atmosphere, and an interplanetary propagation stage, in which particles travel 

along interplanetary magnetic field lines and are potentially re-accelerated by further 

shocks. Table 3-2 summarises these potential mechanisms, tentatively identifies their 

physical processes, and speculates as to what the required input variables might be for 

the relevant models of each process. 
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Development of Magnetic Magnetic Eeld strength 

active region Evolution Solar Rotation awfCagoMfo, 2003;&;6MaM, active region 
2001;/4ta;q/{y. 2001,fnejf owf 

complexity Helio lat/long 
2002] 

Shedding of Thermal Magnetic Seld strength 

magnetic structure Magnetic Solar Rotation 1988] 

Helio lat/long 

Impulsive Thermal Driving aiergy (W rang. 

particle acceleration Particle population 2002;AA/kr. 1998] 

MHD Shock Thermal Driving Energy [Prjnot 2000a; 

particle acceleration Magnetic Particle population owf ZuAc, 2000b] 

CME characteristics 

Particle propagation Particle DiSusion Helio lat/long [aofcA. 1999;Ajmc/:ef (W Zw'ct/, 

around the Magnetic Field Topology 1999;/fwang wW ffoMg, 2001] 

sun/corona Solar Wind Speed 

Particle propagation Particle Diffusion IP Magnetic Fidd CAen, 

through Solar Wind Speed I996;CAenan(fGa77«n, 1993] 

interplanetary space Post acceleration particle 

energies 

Interplanetary shock Thermal IP Magnetic Field 1990;A}z/kMM«k, 1995] 

acceleration of Particle Energies 

particles IP CME Propagation 

Table 3-2 Possible mechanisms and inputs to be incorporated in a physical SPE prediction model. 

An intrmsic problem with the physical approach is that the arrival of an SPE at earth is 

the culmination of a number of linked physical processes which are all complex in 

nature. Input variables at each stage of the model may need to be measured directly, or 

they may be outputs from a preceding stage of the model, in which case errors may 

propagate throughout the entire modelled process. 
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It is important to note that the PROTONS model already uses anisotropic diffusion 

theory to model the transport of particles around and away &om the sun, yet as discussed 

previously, results are in significant error to observations because the presence of 

interplanetary shocks is not physically modelled at all 1999]. This indicates that 

the physical processes need to be modelled accurately rather than approximated by 

simpler theory. Similarly, there is evidence to suggest that the presence of coronal holes 

situated between particle injection sites and the sun-earth connection point modulates the 

particle flux seen at earth aW 1999], suggesting that it may be 

necessary to model the whole of the solar magnetic field before accurate predictions 

about particle fluxes at earth can be made. The physical approach is confounded further 

by the fact that some of the physical mechanisms for particle acceleration are still being 

argued, and hence cannot be modelled with any certainty 1999], 

1990]. 

Even if a physical model were to be created that did accurately describe particle 

acceleration and propagation, it still may not be capable of SPE prediction. SPE 

prediction requires the acceleration process itself to be predicted, which in turn means 

that the dynamics and energy of the suns surface magnetic field must be measured and 

modelled to such a degree that accurate extrapolations concerning its future evolution 

can be made. Essentially this means that flares themselves must be predicted 

(presumably from magnetic field configurations). Whilst such a task may not be 

impossible, it is likely to require high resolution measurements of active regions and the 

use of MHD simulations to model multiple, complex magnetic structures. It is highly 

ambitious to expect to achieve an integrated prediction model with real-time capability 

using such an approach. 

3.4.2 Time Series Prediction 

A time series prediction technique attempts to predict future values of a time series &om 

past values of the same time series. One class of time series model is the Autoregressive 

Integrated Moving Average (ARIMA) model, which has been developed most notably 

by Box and Jenkins [ 1976]. The technique is powerful, being applicable to non-

stationary series, and is capable of producing accurate forecasts. It also benefits &om 

having a structured, formal approach that is well understood and documented. 
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The ARJMA approach as applied to SPE forecasting will treat the problem as one of 

time series prediction in \̂ %ich past values of pu-oton flux are used to forecast future 

values. This means that output from the model will consist of quantitative values of 

proton flux. This is an inherent benefit of the technique, but at the same time, such a 

model can only be successful if the sudden enhancements in proton flux due to SPEs are 

actually predictable 6om the proton flux itself There is no documented evidence of SPE 

precursors being present in the proton flux, and the earher examples in Figure 3-1 to 

Figure 3-3 would appear to support this, showing the proton flux prior to SPE 

occurrence as being at a relatively unchanging background level. 

However, despite the fact that the proton flux is not thought to contain SPE precursors, 

ARIMA models do provide a powerful approach to forecasting problems in general and, 

providing that a series is deterministic to some degree, allow accurate forecasts to be 

made. Although one might not expect SPEs to be predictable from a time series 

approach, the benefits of a formal ARIMA technique mean that if such a model were 

successful it would be relatively easy to implement operationally. In addition, the large 

amount of historical proton data that is readily available, &om GOES satellites for 

example, also means that obtaining sufficient measurements on which to base an 

ARIMA model is not an issue, hence a time-series model can be created without need for 

a large investment in resources. 

3.4.3 Alternative Classification Approach 

An alternative approach to SPE prediction is to try and relate the behaviour of solar 

variables to the occurrence of a proton event. In principle the concept is not dissimilar to 

that of existing flare association models, but the important difference is that inputs would 

not be restricted to discrete x-ray flares. Inputs would be taken over longer periods of 

time, days before an SPE occurs. 

Such a technique could potentially harness the longer term SPE related behaviour 

reported by Chakravorti et al, who found the solar radio flux &om active regions to rise 

prior to an SPE and pass through a maximum on the day of an SPE. The behaviour of 

other solar variables, such as the solar x-ray flux, could be considered over a similar time 

period, (although the inputs to any such operational model would be restricted to data 

that is available in real-time, or near real-time). 
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The development of a correlative approach would require a list of SPEs in order that data 

pertaining to their occurrence times can be obtained. This data could then be perused in 

order to try and quantify any precursive behaviour to an SPE, with the aim of 

establishing the basis for a forecasting technique. 

3.5 Selection of a Forecasting Approach 

The previous section has considered three broad approaches that could be adopted in 

order to generate a new SPE forecasting model that meets the defined requirements. 

The physical approach, whilst perhaps having the highest potential for accurate 

forecasting, probably has the lowest chance of success. The effort required to understand 

and simulate some of the key processes in SPE production means that emphasis will be 

placed on modelling a process and not on producing a real-time prediction tool. Given 

the current understanding of the underlying physics that govern SPE's and solar flares it 

is highly unlikely that a physical model can be designed, built and validated within the 

envisioned time frame. 

The time-series prediction approach offers potential gains in terms of accuracy and the 

benefit of a formal method that is well understood. The likelihood of the technique 

succeeding is probably quite low as there is no evidence to suggest that the proton flux 

contains precursors to SPEs, but as the ARIMA technique has never been applied to a 

solar proton flux time series before the result will have value regardless of its success 

and provide a good opportunity to characterise the proton flux time series further. An 

ARIMA technique represents a good point at which to begin forecast model 

development. 

A classification approach would attempt to correlate the behaviour of solar quantities 

with the occurrence of an SPE and the development of the required dataset also provides 

an opportunity to look for the existence of SPE precursors in different solar variables. 

However, implementation of an ARIMA technique as a first step will allow the proton 

time series to be analysed in more detail and may help implementation of a classification 

approach at a later stage. 
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4. TllVIE SERIES PREDICTION OF SOLAR PROTON FLUX 

This chapter performs a time series analysis of the >10MeV solar proton flux over solar 

cycle 22. Background to the ARIMA modelling technique is given, followed by its 

application to the observed proton flux time series. ARIMA models are then assessed 

and conclusions drawn as to their accuracy and suitability to the problem. 

4.1 ARIMA Time Series Modelling 

The ARIMA technique assumes a time series to be composed of a deterministic 

component and a non-deterministic component (i.e. a random noise contribution). 

Mathematically, the value of a time series at time t (xt) can thus be written as: 

= / / f + & 4-1 

where p* is the deterministic mean of the process at time t and Gt is a random error 

component. 

ARIMA models are based on the supposition that successive observations within a time 

series can be represented by a linear combination of independent variables derived &om 

previous values in the time series. In the simplest case a white noise process can be 

represented by independent random variables that are drawn 6om a normal probability 

distribution of mean 0 and variance cr, which can be written as: 

Xf — / / - |- - 1 4 - ^ 2 6 / - 2 4 - . . . 
4-2 

where jCt is the value of the series at time t, Yj ^re constants, Sty are the independent 

variables and is a constant determining the average of the process. This form of time 

series model is a linear filter, and is the base form of model which Box and Jenkins have 

developed into the ARIMA class of models [ 1976]. A time series can be adequately 

modelled using relatively few parameters of the infinite series. 
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A special case of the linear filter, is the autoregressive process in which the current 

observation, is regressed on previous values of the series: This can be 

expressed mathematically as: 

Xf — ^ - 1 -|- - 2 ^ 4 -

and is termed an autoregressive process of order 'p% abbreviated AR(p), Wiere ^ is a 

constant and Gt a random noise component. 

Consideration of the linear filter (4-2) with only the first q weights non zero results in the 

other finite process: 

where 8j are weights, p is a constant and Et.j are independent variables representing the 

random component at time t-j. This is a moving average process of order q, abbreviated 

MA(q). 

In constructing the model for a time series the inclusion of both autoregressive and 

moving average terms can lead to a more efficient and accurate model than using either 

of the two forms alone. This results in the combined autoregressive-moving average 

model (ARMA) model of order (p,q): 

^ -1 + - 2 4 - . . . + f 

— 1 — ^ 2 8 2 — . . . — ^ 5 - g 4" 8 
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The application of the AR, MA and ARMA processes is applicable only to stationary 

time series, stationarity meaning that the joint distributions of any set of Xti, Xa, , 

X&,... are unchanged if the times tl, t2,... .tk are shifted by some value 's \ 

In practice, time series may be non-stationaiy in mean, or non stationary in mean and 

slope, but can be made stationary by deriving a time series from the difference between 

consecutive terms in the series. A non-stationary time series can sometimes be reduced 

to a stationary series by applying a suitable degree of differencing. Differencing can be 

expressed using the diSerence operator V and is shovm in equations 4.6 and 4.7 for the 

and 2"̂  differences: 

Time series models of non-stationary series can sometimes be constructed by 

substituting Xt with a suitable difference term in equation 4.5 to produce an 

autoregressive integrated moving average process (ARIMA) of order (p,d,q). Such a 

model represents the d*̂  difference of the original non-stationary time series as a process 

containing p autoregressive and q moving average parameters. 

4.1.1 Determining an ARIMA model 

A first approximation to the form of ARIMA time series model for a given series is 

made through analysis of historical data, in particular by examining the autocorrelation 

function of the sample, defined as: 

f=l 4-8 

'* - N 

(x,-xf 
I ' 
/ = ! 
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Where rk is the autocorrelation co-efBcient, and N the length of the sample time 

series. The autocorrelation is the correlation between the original series, and a copy of 

the series displaced by a lag of 'k' time intervals The partial autocorrelation function is 

also useful in determining the form of the model, and can be estimated 6om the 

autocorrelation coefficients. It is defined in 4-9. 

A t = 
7=1 

t - 1 4 - 9 

7=1 

The sample partial autocorrelation fimction is the correlation between the elements Xt 

and Xt-k on the set of intervening values X],X2 ..Xt*+i. It measures the dependence 

between x* and Xt̂ c after the effect of intervening values has been removed. 

Plotting the autocorrelation and partial autocorrelation functions allows the behaviour of 

the sample's fimctions to be compared with theoretical autocorrelation patterns of AR 

and MA processes (shown in Table 4-1). AR and MA components of a time series model 

can then be chosen according to those that are best suggested by the observed 

autocorrelations. 

Model Autocorrelation Function Partial Autocorrelation Function 

AR(p) Tails off Cuts of after lag p 

MA(q) Cuts of after lag q Tails off 

ARMA(p,q) Tails ofF Tails ofF 

Table 4-1 Behaviour of theoretical Autocorrelation and Partial Autocorrelation Functions for AR 

and MA processes. 

After identiGcation of the form of ARIMA process, least squares estimates of the model 

coefficients are found by regression with the sample data. The adequacy of the model 

can be assessed by examining the residuals which should resemble white noise (i.e. a 

random error with zero mean) if the model is correct. The autocorrelations of the 

33 



The Development o f a S o l a r P r o t o n Even t Pred ic t ion M o d e l 

residuals should be zero for all lags greater than one. Non zero correlation coefficients 

indicate that the model may benefit from additional AR or MA terms [Montgomery D.C., 

Johnson, and Gardiner J.S., 1990]. 

4.2 Method 

An ARIMA model has been constructed based on the daily averaged >10MeV integrated 

proton flux measured by GOES satellites over the active period of solar cycle 22 

(corresponding to 26/5/1987 to 25/5/1994). A plot of the time series is given in Figure 

4-1. A daily averaged time resolution has been used in order to generate a time series 

that incorporates several SPEs whilst keeping a manageable size of dataset. It can be 

seen from the Figure that the proton time series is bursty in nature, with SPEs 

manifesting as sporadic enhancements in the flux level. 

1.00E+04 

i.ooe-03 

% I.OOEKX) 

1.00B01 

1.00G-02 
1000 1500 

Day of Active Cycle (starting 26^87) 

Figure 4-1: Variation of >10MeV Integrated proton flux during active period of solar cycle 22. 

Data was checked for erroneous or missing values but none were found in the daily 

averaged GOES data for the period in question. This reflects the high resolution and 

quality of data available from the GOES satellites. 

A sample of the time series was taken on which to base the ARIMA model, consisting of 

the first 1200 days of the series. Literature states that ARIMA models should be based 

on at least 60 measurements, hence this criteria is more than satisfied by the sample 

length [Montgomery B.C., Johnson, and Gardiner J.S., 1990]. It can be seen from 

Figure 4-1 that the first 1200 days of the series contain several enhancements of greater 

than 1.0 p. fu., which would be recognised as SPEs under the SEC definition. 
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In the first stage of analysis the sample time series was assessed via examination of the 

autocorrelation function in order to determine stationarity. A suitable degree of 

differencing was then applied to achieve stationarity. 

The autocorrelation functions for the differenced time series were then examined in 

order to determine a form of ARIMA model. Table 4-1 summarises how the behaviour 

of the autocorrelation fimction corresponds to theoretical AR and MA processes. 

Coefficients for the ARIMA models were calculated using an iterative routine in 

MINITAB (a commercially available statistics soAware package), and different forms of 

the model were generated in order to provide a comparison. The accuracy of models 

was assessed using the normalised root mean square error, defined as: 

where is the total number of examples in the test set, x, is the actual Ah value, y; is the 

predicted Ah value and cr is the standard deviation of the actual values &om their mean. 

A NRMSE of 1.0 is equivalent to using the mean of the data as a predictor whereas a 

NRMSE of 0 indicates a perfect fit. 

In its standard form an ARIMA model will predict one time-step ahead, but forecasts of 

more than one time step can be made by running the model with predicted values as 

inputs. Forecasts were thus generated for 1,2, 3 and 4 days ahead and compared against 

NRMSE values for persistence. 

4.3 Results 

4J.1 Stationarity transformation 

The stationarity of the sample time series was assessed by examining the autocorrelation 

function, which should rapidly die away to zero if the series is stationary. The standard 

error of the autocorrelation function was used to identify significant non-zero terms. 

Figure 4-2 plots the autocorrelation function, calculated using MTNTTAB, for the 

original sample time series. The autocorrelation fimction does not die away rapidly, 
— 
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indicating that the time series is non-stationary. Taking the difference of the series 

was found to produce stationarity, as can be seen from the behaviour of the respective 

autocorrelation function in Figure 4-2. 
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Figure 4-2 Time series plot and Autocorrelation function for >10MeV proton flux time series and 

the 1®* difference of the original time series. The standard error of the autocorrelation functions is 

plotted as a limit in order to determine significantly non-zero terms. 

4.3.2 Derivation of ARIMA model 

Examination of the autocorrelation and partial autocorrelation functions with respect to 

the behaviour detailed in Table 4-1 was used to infer a form for the ARIMA model. The 

autocorrelation functions for the 1®' difference are plotted below in Figure 4-3. Standard 

error margins have been used in order to identify significantly non-zero terms. 
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Figure 4-3 Autocorrelation and Partial Autocorrelation functions for the 1®* difference of the 
>10MeV proton flux time series. 
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It would appear to a first approximation that the autocorrelation fimction becomes zero 

after three lags, whereas the partial autocorrelation function has non-zero terms beyond 

the 5th lag. Whilst this does not clearly represent any of the theoretical trends described 

in Table 4-1 it can be tentatively approximated by an ARIMA(0,1,3) model, (i.e. the 

autocorrelation cuts off after 3 lags whilst the partial autocorrelation tails off). An 

alternative interpretation is that both the autocorrelation and partial autocorrelation 

functions tail off, indicating a model with both auto-regressive and moving average 

terms. An ARIMA(3,1,3) model has therefore also been created. 

ARIMA(0,1,3) and AR]MA(3,1,3) models were fitted to the sample data using 

MINITAB to perform least squares regression. The form of each model with their 

respective coefficients is summarised in Table 4-2. For completeness, and to act as a 

comparison, ARIMA models of form (012) and (Oil) were also constructed. 
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ARIMA(013) = 

^ -0.0002 

01 410344 

02 0 2916 

03 a i 9 9 9 

" (92,S,__2 -

(Xi -0.531 
0% -0 0 1 8 

(%3 -0.499 
0, -&529 

02 O j # 7 

03 0 2 5 1 

y\]RLD\/L4L(0i:2) JCt — jJ, "f" - 0^£,_^ - 6'2^(-2 

8i 

82 

-0.0002 

-0.0:21 

0.221 

jAJRLlA/[/l(011) JC, = /Lf --

81 

4).0002 

-&115 

Table 4-2 Summary of ARIMA model form and coefficients after identification of possible models 

from examination of the sample autocorrelation functions. 

43.3 ARIMA Model Performance 

.AJAer fitticyr eawzh iiioctel to thus samqple tlie fjltA/tSE eiior vvzis calciiLatecl. ]%{;sults are 
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value of the proton flux as a forecast for the following value. 
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Model 
Persistence 

ARIMA(Oll) 
ARIMA(012) 
ARIMA(013) 
ARIMA(313) 

NRMSE 
a 5 5 2 
0.549 
0.538 
0.530 
0.518 

Table 4-3 Comparison of NRMSE for different ARIMA models and persistence calculated from the 

sample time series. 

It can be seen that the sequential addition of MA terms to the model has given small 

improvements in accuracy, as has the addition of three AR terms. However, the NRMSE 

remains relatively high in all cases and indicates that none of the models actually provide 

an accurate forecast. The addition of three AR terms has resulted in only a 2% 

improvement in the NRMSE, suggesting that the form of ARIMA model cannot be 

significantly improved by adding further terms. Further terms will add additional 

complexity for veiy small gain in accuracy. 

The best ARIMA model of those constructed is of (313) form with a NRMSE of 0.518, 

although this is only marginally superior to the NRMSE of persistence. Figure 4-4 

shows the actual time series with the ARIMA(313) forecast plotted simultaneously for a 

period of approximately 100 days. 
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Figure 4-4 Predicted >10Mev Proton Flux and forecast >10MeV Proton flux using ARIMA(313) for 

a 125-day sequence of the time series. 
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Figure 4-4 shows that the resting proton flux (&oni around 930 days in the plot) is 

modelled well with almost zero error, but the large enhancements are not forecast at all. 

It is the sudden commencements of SPEs that dictate the high NRMSE of the model, and 

it can be seen that in each of the four m^or peaks (i.e. SPEs) the model lags the 

observed values, responding with a high forecast value only after high values have 

actually occurred and are used as inputs to the model. Success of the ARIMA technique 

is based on the principle that a time series is deterministic: i.e. that future values in the 

time series are related to current values of the time series. This appears to be the case 

when the proton flux is at a resting background, but is evidently not the case when an 

SPE enhancement occurs. Intuitively it is no surprise that the ARIMA model performs 

poorly in this respect as an inspection of the time series showed that tbe SPE 

enhancements were sudden, not trend-like, and appeared to have no dependence on the 

low background levels that preceded the enhancements. 

The ARIMA(313) model has been extrapolated in order to provide forecasts for 2 to 4 

days ahead by using the predicted times series as an input to the model. This is standard 

procedure for generating ARIMA forecasts for greater than 1 time step ahead. KRMSE 

errors for the 1-4 day forecasts are given in Table 4-4, and the predicted time series are 

plotted in Figure 4-5. 

Forecast Lead NRMSE 
+1 Day 0.518 
+2 Day 0.760 
+3 Day 0.892 
+4 Day 0.983 

Table 4-4 NRMSE for ARIMA(313) model when extrapolating to higher lead times. 
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Figure 4-5 : +1, +2, +3, and +4 day ARIMA(313) time series forecasts for an arbitrary 100 day 

period plotted against the observed proton flux. 

It can be seen that the forecasts rapidly break down when extrapolated to higher lead 

times. This is borne out in both the NRMSE, which approaches 1 for lead times of 

greater than two days, and the time series plot of the predicted flux, which tends to 

exhibit significant oscillation and deviation from the observed flux for lead times of 

greater than two days. It can be noted that none of the sudden enhancements in the 

observed proton flux are predicted by the model: there is always a lag. 

The behaviour of the extrapolated predicted series shown in Figure 4-5 suggests that it is 

difficult to obtain lead times of more than a few steps ahead using ARIMA techniques, at 

least when applied to solar proton flux. The use of high resolution data, for example 1-

hour averages, may improve the fit of ARIMA models as the higher sampling rate will 

result in a smoother transition between consecutive flux values during an SPE, although 

importantly, the initial enhancement itself is still likely to resemble a step increase, even 

on an hourly timescale. The problem though with using high resolution data is that the 

ARIMA technique can only predict 1-timestep ahead, and to generate longer lead times a 

series of extrapolations needs to be made on predicted values. The results fi'om daily 
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averages show that a large error is introduced and permeates quickly when extrapolating 

predictions, making forecasts of more than 2 or three time steps ahead very inaccurate. 

1-hour averages are therefore not likely to be accurate when attempting to extrapolate to 

24 time steps ahead or more (as would be required for a 1-day lead time). 

4.4 Summary 

The daily >10MeV proton flux time series over a 1200 day period commencing in May 

1987 was found to be non-stationary, but could be made stationary by taking the 1^ 

difference of the series. 

Application of ARIMA time series forecast methods was applied to the diSerenced 

proton flux and is the first time that an ARIMA technique has been documented for the 

use of a solar proton flux time series. The technique did not result in an accurate 

forecasting model. ARIMA models were found to be only marginally better than 

persistence for a 1-day lead time, and had high NRMSEs of the order of 0.52 (for a 1-day 

lead time). 

Increasing lead times by extrapolating forecasts on predicted data resulted in a 

significant loss in accuracy and NRMSEs approached I for predictions of greater than 2 

dme steps ahead. The use of higher resolution data may improve the fit of an ARIMA 

model, but it will be impossible to extrapolate to long lead times without introducing a 

significant error. 

The high ISlRMSE was found to be dictated by large enhancements in the observed 

proton flux that were not predicted by the ARIMA models. The ARIMA model lags 

observations and only responds with high predicted values after an enhancement has 

occurred. The implication is that solar proton events are not predictable &om a proton 

flux time series, meaning that the values of proton flux prior to SPEs are not indicative 

of the fact that an SPE is about to occur. 

The ARIMA time series prediction technique fails to produce accurate results because it 

fails to predict the sudden onset of an SPE. Examination of the proton flux time series 

confirms that SPEs resemble significant step enhancements in a relatively invariant 

background flux level. 
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5. A CLASSIFICATION APPROACH TO SPE PREDICTION 

This chapter revisits the concept of a classification prediction model in which it is 

intended to correlate the behaviour of solar variables with the occurrence of an SPE. 

Results from the previous chapter are drawn on in order to show that SPEs can be 

approximated as discrete phenomena, and a classification approach to the prediction 

problem is outlined in detail with reference to neural network models as classification 

tools. 

5.1 Binary Representation of SPEs 

The previous chapter found that SPEs were not predictable &om a proton flux time series 

because their occurrence was sudden rather than trend-like. The nature of SPEs 

therefore suggests that they are better represented as discrete occurrences rather than as 

trends in a continuous flux-time profile. Whilst the flux and fluence of an SPE do vary 

significantly between different events, all SPEs are common in that their flux and 

fluence is significantly greater than background, and their commencement is often 

sudden, equivalent to a step impulse. It can be noted that both the PROTONS and Garcia 

models make a yes/no probability prediction as to whether an event will occur or not, 

further justifying the representation of SPEs as discrete phenomena. 

Taking this a step further, the proton flux time series can be reduced to a binary series, 

composed of SPEs and non-SPEs. Figure 5-1 plots the proton flux time series for 1991 

(chosen arbitrarily) in conjunction with a 'binary' time series, which has classified daily 

proton flux values of >1.0 p.fu. as 'SPEs' and daily flux values of <1.0 p.fu. as 'non-

SPE' values. (A daily averaged flux level of >1.0 p.fu. was used to identify SPEs in a 

previous listing of SPEs, which is why it has been used here for this illustrative 

example*). It can be seen that such a representation clearly identifies all the significant 

peaks in the proton flux time series. 

* Dr. Stephen Gabriel, private communication. 

— 
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Figure 5-1 Daily proton flux time series during 1991 represented as a binary series of'SPEs' and 

'non-SPEs'. 

Given that the primary aim is to predict the onset of an SPE (rather than a flux or fluence 

value) it does not matter that a binary time series does not represent specific flux values. 

The binary series simply identifies points in time at which the proton flux is deemed 

significantly high to warrant forecasting as an SPE occurrence. 

5.2 The Classification Approach 

The representation of SPEs as discrete events lends itself well to a classification 

approach to the forecasting problem, in which there are just two possible forecasts; that 

of an SPE or a non-SPE. The aim is to distinguish between these cases using input 

variables taken from before the time of the event. This is analogous to current flare 

forecasting models which predict the likelihood of an SPE from the characteristics of an 

x-ray flare. 

In principle the technique will take inputs at time't ' over a given time window of length 

'w'. The input window stretches back in time to time t-w, and is used to make a 

prediction for time t+T, where T is the lead time of the model. The technique can easily 

be applied to a rolling timeline by moving the input window forward in time by some 
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increment, dt, to produce a prediction for time t+dt+T. This is summarised in Table 5-1 

and shown graphically in Figure 5-2. Note that this technique always has a constant lead 

time, unlike current SPE prediction models, which either do not stipulate a lead time 

(Garcia model), or which have a variable lead time dependent on the inputs (PROTONS 

model). 

Run Time 

f = f n 

Input window span 

(/ — w) >it — tg) 

Prediction time 

t = tQ+T 

(t = + ls.t - w ) >{t = A / ) t -tQ + ht + T 

z' = ?o+2A? {t = tQ+2dd-w) >{t = t^+2/S.t^ + T 

Table 5-1 : Principle of the classification technique showing the t ime span of the input window 

relative to the time for which a prediction is made, applied to a rolling timeline. 

Input window 

t+T 

Input window 
AT 

lead-time 

t-w+AT t+AT t+AT+T 

Figure 5-2 Graphical illustration of the proposed classification forecast model applied to an 

arbitrary time series (in this case solar x-ray flux) at time't' and at t ime 't+dt', where 'dt' is the step 

time of the model. A binary 'SPE'/'Non-SPE' forecast is issued for time t+T. 
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The approach benefits 6om a relatively simple problem structure in that the possible 

outputs are restricted to just two categories. Success of the technique will of course 

depend on the existence of some behaviour or precursor in the input variables that allows 

the cases of 'SPE' and 'non-SPE' to be differentiated between. 

The construction of such a classification model must be based on historical data, and will 

require the collection of examples for each of the possible outcome categories. 

Specifically this means that a list of SPEs and their occurrence times will be needed, and 

correspondingly, a list of times at which no SPE occurred is required. Solar quantities 

(i.e. potential predictor-variables) must then be collected at these times (or more exactly, 

just prior to these times), to create a dataset of input windows pertaining to the classes of 

'SPE' and 'non-SPE'. The aim is that a comparison of the predictor variables during the 

input windows will show a difference in behaviour and allow the two cases of 'SPE' and 

'non-SPE' to be differentiated between. 

5.2.1 Input Variables 

Clearly, the input variables to the classification model need to have the potential to 

contain behaviour related to an SPE, but there are also signiGcant practical issues to 

consider. The dataset on which the model is constructed will be based on as many SPEs 

as possible, and hence will span several decades. As consistency and uniformity of the 

predictor variables is highly important this implies that candidate variables should also 

have a long monitoring history, ideally of the order of decades. The intention to develop 

a real-time forecasting model also means that in order to be operational, any input 

variables that are used must be available in real-time or as near to as possible. 

An obvious choice of input variable is GOES x-ray data. GOES x-ray sensors have been 

operational since 1974, and from 1986 onwards data is available in an o9-the-shelf 

product. Recent measurements are available on-line &om the SEC with an approximate 

delay of 10 minutes from real-time. As well as satisfying practical requirements, solar x-

ray data has the obvious flare relation to SPEs (although in the classification model the 

input window would end well before any classical 'proton producing' flare), and in 

addition the ratio of the two GOES x-ray channels is a measure of the spectral hardness 

of solar emissions, which has been strongly associated with SPE occurrence [Ar/p/mger, 

1995]. 
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Another candidate for use as an input variable is the solar radio flux, which has been 

shown to reach a maxima on the day of SPE occurrence and therefore may have potential 

for forecasting SPEs on a timescale of days aW 1987]. 

Solar radio fluxes have been monitored routinely by ground based observatories since 

the 1940s and archived daily averages exist 6om this time, hence there is little problem 

in obtaining values for a large number of SPEs. Being of minimum 1-day resolution 

solar radio flux values are published for the preceding calendar date (effectively a 1-day 

lag &om the current time), which is not ideal for real-time operation, but the potential 

link between solar radio Gux activity and SPEs still means that they are worth 

considering as an input variable. 

5.3 Neural Networks as a Classification Technique 

Neural networks provide a novel and potentially powerful solution to the classification 

problem that has been set-up in order to try and forecast SPEs. Their constituent 

component - the node - is extremely simple to model, yet by combining a large number 

of these into an organised structure, the resultant network is capable of solving relatively 

complex problems. 

Fundamentally, neural networks differ 6om conventional modelling techniques in that 

their solutions are learnt and not programmed. Knowledge is gained by presenting a 

network with existing examples, and via a learning algorithm the free parameters within 

the network are adjusted such that specific input vectors are mapped onto the desired 

responses. Such an approach means that no detailed statistical model is made for the 

input data: it is the raw dataset itself that is used to derive the network's parameters. 

Typically, neural networks are often applied to problems in which the inter dependency 

of variables is unknown and when there is little a-priori knowledge of a system. 

A principle advantage in the use of neural networks is that they are capable of producing 

non-linear solutions, and this may have particular benefits when the inputs to a model are 

known to originate &om non-linear mechanisms (as is probably the case in solar particle 

phenomenon). Classification problems in which classes are not linearly separable cannot 

be solved by linear techniques, but can be solved by neural models 1999]. This 

ability of neural networks has been borne out in classification models for remote sensing, 

in which neural models have been shown to outperform linear regression techniques for 

certain datasets 2000], [fao/a, 1995]. 
— 
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Another advantage of neural networks is their ability to easily incorporate inputs &om 

different sources. The use of predictor variables which have very different orders of 

magnitude can cause errors when calculating the coefficients in linear regression models 

and give uneven weighting of parameters in the model. By contrast, inputs to a neural 

model are scaled to within the same limits by the input layer of nodes, allowing many 

inputs to be incorporated easily, regardless of their origin or data-type (i.e. numerical 

value or discrete class-value). 

The use of neural networks in conjunction with solar activity is not new, although it is a 

recent area of development. Gothoskar, describes an artificial intelligence technique for 

the detection of interplanetary disturbances, in which neural networks are trained to 

recognise disturbed power spectra in radio scintillations aW 

1995], and in the late 1990s Costello developed a model (which is currently operational 

on SEC web-space®) to run in real-time using a neural algorithm to predict the Kp index 

6om solar wind parameters 2001]. A similar model is presented by Gleisner 

et al which uses RBF networks to predict local disturbances in the geomagnetic field 

from solar wind velocity oW IwMokWf, 2001]. In very recent work, two 

independent studies have used ANNs to predict DST indices, reporting smaller errors 

than with existing models G/ewMgr, awf 2002] 

OA/aAo, 2002], and a neural pattern recognition algorithm has been used to 

identic solar flares from full disk images in order to act as an unsupervised flare patrol 

system GoTwez, 2002]. 

Given that neural techniques have ahready been successfully applied to the prediction of 

space weather variables, their use in the prediction of SPEs is an obvious progression. 

This is especially true taking into account the fact that the problem has been set-up as 

one of classification (an area in which neural networks have been shown to excel) and 

that there is no a-priori knowledge of the relation between the predictor variables and 

SPEs. 

' http.//www. sec.noaa.gov/rpc/costdlo/ 
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5.3.1 MLP Networks 

Neural networks are composed of perceptrons, which constitute artificial models of 

biological neurons. The concept of the perceptron was proposed by Rosenblatt and 

forms the basis for neural network theory 1958]. 

Each perceptron is composed of a set of input links, a summing junction and an 

activation function. Each input link has an associated weight such that the signal at 

the input of linky connected to perceptron A: is multiplied by weight w;̂ . The summing 

junction adds each of the inputxweight products and passes the result to the activation 

fimction The result of the activation function is then passed out of the perceptron as an 

output. The arrangement is summarised in Figure 5-3. 

Fixed input = +1 

Activation 
function 

Inputs < 

20— 

Summing 
junction 

Output 

% 

Synaptic 
weights 

(including bias) 

Figure 5-3 Representation of the Perceptron 

The activation function defines the perceptron output as a fimction of the sum of the 

perceptron inputs, and wtilst it can be a linear function, the non-linearity of a neural 

network is achieved by using a non-linear activation function. The sigmoid function is 

commonly used for this purpose, and is defined as: 

(g(v) = 
1 

1 + exp(-m/) 
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in which a is a slope parameter defining the rate of change of q)(v) with respect to (v), 

where v is the sum of the perceptron inputs. A graph of the sigmoid function is given in 

Figure 5-4. 
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Figure 5-4 The sigmoid function. 

By convention, each perceptron is modelled as always having one of its inputs fixed at 1 

with weight wO. This serves as a bias, which has the e fkc t of shifting the activation 

fimction along the x-axis, such that the threshold is non-zero. The efkct of the 

activation fimction is to map the sum of the perceptrons' inputs to an output value of 

between 0 and 1. In the case of the sigmoid function the mapping is a continuous 

function, and is thus differentiate: a property which allows use of the back propagation 

learning algorithm in the Multi Layer Perceptron network (as shown below). 

The Multi Layer Perceptron (MLP) class of neural networks is composed of an input 

layer of source nodes, an output layer of perceptrons and any number of hidden layers of 

perceptrons between the two. Source nodes serve to receive external inputs to the 

network and transmit them to the first hidden layer: they have no computational value. 

Outputs &om the first hidden layer are then passed to the next hidden layer and so on. 

The output from the output-layer constitutes the overall response of the network to the 

input signal. The addition of hidden layers of perceptrons increases the number of 

dimensions of node interactions, essentially adding degrees of &eedom to the network 

enabling higher order statistics to be extracted &om the inputs. An example of an MLP 

structure is given in Figure 5-5. 
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Output 

Input Vector 

Input Layer Hidden Layers Output Layer 

Figure 5-5 Example of M L P a r c h i t e c t u r e 

The MLP network adapts its free parameters, i.e. its weights, to learn a solution via the 

principle of error correction learning. Given that an MLP network receives an input 

vector %(») at iteration », it will produce an output vector equal to y(M). Comparing the 

output vector to the desired response (/(») produces an error signal, g(M) where: 

The weights of a network must be altered so as to reduce the error of the network output. 

Figure 5-6 shows the variation of the squared error with weight values for a simple 2-

weight system. Before training commences the weights are set at small random values 

placing the system at any point on the error surface. During training the network seeks to 

adapt its weights so as to follow the steepest descent of the error surface. 
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that gives 
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Figure 5-6 Visualisation of error surface for a 2-vveight system 

The learning process is implemented computationally via the back propagation 

algorithm. The process is a supervised learning technique that requires a training 

dataset, such that each input vector has an associated target output that can be compared 

against the actual output of the network. During the training process each input vector 

within the training dataset is presented at random to the network and an output is 

produced by propagating the input signal forwards through the network. An error signal 

is then derived by comparing the network output to the target response, and this signal is 

propagated backwards through the network, permitting the network weights to be altered 

by a small amount such that the error signal is minimised on following forward passes. 

The presentation of training examples continues (cycling through the training set) until 

values for the weights stabilise and a steady state is reached. 

The back propagation algorithm is stated without proof as: 

( ^ + 1 ) = 7 / ( 8 ( M ) 5-1 

Where Awy{n+1) represents the change in weight y for pattern n+1. T| is a learning 

coefficient which determines the step size used to traverse the error surface. is defined 

as -^E/8netj and is the rate of change in error (E) with respect to the sum of the inputs for 

node y (nelj). Oi is the output &om node / and aAx'y{n) is a momentum term that adds a 

proportion of the previous weight change (the proportion being dependent on the value 
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of a). The weight change for the pattern n+1 is thus dependent on the previous weight 

change for pattern n and prevents oscillation of the weight changes due to local error 

minima. 

A derivation and detailed implementation of the back propagation algorithm can be 

found in 1999]. The algorithm is a generalised form of the Widrow-Hoff rule 

1960]. 

5.3.2 Radial Basis Function Networks 

The Radial Basis Function (RBF) approach works on the same principle as an MLP 

network, but treats the problem as one of curve fitting in multi dimensional space. Input 

vectors to an RBF network are projected via non-linear functions into a high-order multi-

dimensional space, the principle being that once a pattern classification problem is cast 

into a high-dimensional space it is more likely to have a linearly separable solution. 

An RBF network usually has only three layers: an input layer of nodes which receive the 

input vector, a hidden layer, in which each node consists of a function that acts as the 

basis for the projection of the input vector into hidden space, and an output layer, in 

which the resulting points in the hidden-space are mapped back onto meaningful values. 

In the case of a binary classification problem an RBF network performs a mapping from 

an /Mo dimensional input space to a one dimensional output space such that: 

> 9 1 ' 

The mapping takes the form of a hyper-surface, T in which the output is given as a multi 

dimensional fimction of the input vector The aim, via the fitting of a curve to a set of 

training data, is to find the Amction which approximates this surface. Specifically, in the 

RBF technique, the function takes the form of a linear sum of functions given by: 

F ( x ) = | i w ; < » ( | | x - c , | | ) 
5-2 

;=1 

Where (p(. .) is a set of mi arbitrary functions, denoted radial-basis functions, positioned 

at centres Q. (Typical radial basis functions might be a cubic function (p(r) = r̂  ,or the 
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Cauchy function (p(r) = (l+r^) ' ). W| are coefficients chosen so as to minimise the error 

E: 

AT 

5-3 
;=1 

Where is the desired response vector firom input vector Xi. For a training set of N 

examples, consisting of N input vectors x;, and N target responses di, values for the 

coefficients, Wi, can be found by solving the resulting set of linear equations: 

^12 1̂/M "̂ 1 

^ 2 
= 

^7/2 

5-4 

qm = d 

w = 

5̂ 5 

5-6 

The complexity of the surface function is controlled by the number of centres. At 

maximum the number of centres can equal the number of input vectors in the training 

set, resulting in a highly complex hyper-plane which passes through every point in the 

dataset, but this is rarely desirable as it leads to any noise in the dataset also being 

modelled. The optimal number of centres can be found via experimentation for any 

given problem. The complexity and inherent form of the hyper surface can also be 

altered via the use of different types of RBF functions. 

The locations for the centres fimctions can be determined at random, but superior 

generalisation can result if the centres functions' locations in multi dimensional space 

are chosen based on properties of the training set. The k-means clustering algorithm 
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provides a method for achieving this, and results in centres being placed only at points in 

multidimensional space \^ere significant data are present. 

The k-means algorithm proceeds by drawing an input vector from the training set and 

computing the Euclidean distance in multidimensional space between this point and all 

available centres in order to find the closest centre. The position of this centre is then 

a{yusted by a small amount so as to bring it closer to the point of the input vector. The 

iteration continues until there is negligible change in the centre positions, the result of 

the algorithm being that the centres drift towards regions in multidimensional space 

where there is a large density of data points. The RBF fimctions are therefore placed in 

regions where it is important to model the hyper-plane more accurately. 

5.33 Linear Regression 

Linear regression represents a classical-statistics alternative to the problem of SPE 

prediction via classification. Linear regression is typically applied within the scope of 

experimental measurements in which it is desired to find a function relating variable x to 

output y. Given a scatter plot of variable y as a fimction of x, regression methods can be 

used to derive the equation for the line of best fit equating y as a function of x. The 

technique can be extrapolated to accommodate any number of input variables in which it 

is desired to know y as a function of Xi, xz, ...., and is termed multiple linear 

regression. 

The method of multiple linear regression obtains coefficients for the linear equation 

defining a criterion variable 'y' as a fimction of predictor variables (Xi, X2, . . ., 

such that: 

Y = bo + b i X i + bzXz + bsXg + + bpXp 5.7 

The coefficients bo, b],.... ,bp are derived from a dataset, (equivalent to a training 

dataset), of 'n' observations, where each observation consists of "p' predictor variables 

and one criterion variable. The coefRcents are found by minimising the squared error of 

the function. The objective fimction T' can thus be defined as: 

F = minimise = m i n ^ 
2 

f=l 
bo 5-8 
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where / indicates the observation and y the speciGc predictor variable. The equation is 

solved by taking the (p+1) derivatives of the objective function with respect to all the 

b/'s, setting them to zero and solving for the unknowns. The result is a set of (p+1) 

simultaneous equations which can be solved for all ky (j = 0, 1,... p). 

5.3.4 Principal Components Analysis 

The technique of principal components analysis (PCA) can be used as a data pre-

processing tool in order to produce a dataset that is more receptive to a neural or linear 

classification technique. The process of a principal components analysis identifies the 

primary constructs within a dataset, allowing noise to be removed and the total number 

of dimensions within a dataset to be reduced without significant loss of information. 

Given an untransfbrmed dataset matrix X of N rows (examples) and m dimensions 

(columns) the corresponding correlation matrix of X is given by: 

R = XX 
In the ideal case R will consist of a diagonal matrix indicating that there is zero inter-

correlation between the predictor variables of the dataset. In practice this is rarely the 

case and some non-diagonal elements may be significantly non-zero, indicating a high 

inter-correlation between variables. This can lead to irrational coefficients when building 

models, poor performance, and an overly numerous number of input variables (i.e. 

overly complex models). 

The aim of a PCA is to create a new dataset A with a diagonal correlation matrix by 

projecting the original dataset X onto a set of axes, termed principal components. Matrix 

A is therefore determined by having minimum inter-correlation between predictor 

variables (and thus maximum variance contained within separate predictor variables). 

Given the pre-requisite to find a diagonal correlation matrix of A, 9 ,̂ the aim is to find a 

matrix Q such that: 

W = Q'RQ 
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where R is the correlation matrix of the original dataset. A unique solution is given 

subject to the constraint that that the vectors of Q are orthogonal to each other and leads 

to the expression: 

R Q = Q ^ 

where Q is composed of the eigenvectors of R ( [qi,q2, .... Qm ] ) , and W is a diagonal 

matrix with the squares of the eigenvalues as elements of the principal diagonal. A full 

derivation of the principal components solution is given by Haykin 1999]. 

The projected dataset matrix A is then given by: 

A = Q^X = X^Q 

with each row of A, (a) being related to each row of X, (x), by: 

a = [x\,x^g2' 

where X is a dataset of m dimensions (columns). A dataset of new'm' dimensional 

vectors is thus created by projecting each row of the original dataset using the 

eigenvectors calculated from R (the correlation matrix of the original dataset X). 

Each element, i.e. dimension, of the new vector, a, is a principal component, the yth 

principal component being given by: 

^ 4 ; y = y, 2, m 

Each principal component is thus composed of a contribution &om every one of the 

original dimensions of vector x, the weight of contribution being determined by the 

values of the elements within eigenvector qj 

Given a vector % o f ' m ' dimensions (i.e. of length m), it can be reconstructed from the 

principal components as: 

x = Q a = 2 ] a q 
J 

j=l 

However, an approximation to x can be obtained by truncating the expansion to: 
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/ 

j=i 

where /<«%. The original vector x of length'm' can thus be represented by a transformed 

vector of length T (i.e. a vector of fewer dimensions). 

The amount of variation expressed by each eigenvector g is measured by the value of its 

corresponding eigenvalue (i.e. the values within the matrix T), thus the dominant 

eigenvalues correspond to tbe principal components that represent the m^ority of 

variation in the untransfbrmed dataset. A significant amount of the variation is usually 

accounted for by only a small number of the total eigenvectors, thus the variation within 

the initial dataset can be expressed relatively accurately by a transformed dataset of far 

fewer dimensions, (each dimension being one of the significant principal components). 

Eigenvectors with low eigenvalues simply represent noise within the dataset. 

Performing a PCA allows a dimension-reduction of the number of inputs within each 

input vector, whilst at the same time, increasing the signal to noise ratio of any 

(potentially) useful variation. 
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6. DATASET 

This chapter describes the construction of a dataset on Wiich the classification model 

described previously can be based. Principally it defines a list of SPE occurrences and a 

list of times at which the proton flux is at a background level. Solar x-ray and radio flux 

measurements have then been gathered at these times to provide predictor data relating 

to the two cases. 

6.1 Solar Proton Data 

Solar protons have been monitored by space borne instruments since 1963 and as a result 

there is a large amount of historical data available from which to source events from. 

Space borne solar proton data is available from two prime sources: 

6.1.1 The IMP Spacecraft 

The Interplanetary Monitoring Platform (IMP) series of satellites have been operational 

since 1963 and are equipped with a solar proton monitor capable of monitoring protons 

in the >1, >2, >4, >10, >30 and >60 MeV energy bands and above. The IMP satellites 

have been operational in a highly elliptic earth orbit with a 12 day period and apogee and 

perigee at -45 and -25 earth radii respectively. The orbit intentionally enters and exits 

the earth's magnetosheath and magnetotail meaning that measurements can be taken 

directly in the solar wind outside the influence of the earth's magnetic field. The 

energetic particle data fi-om the IMP satellites is taken in the solar wind part and the non 

solar wind part of the orbit, although the dataset itself makes no distinction as to where 

the satellite was when measurements were made. IMP satellite data can be retrieved and 

plotted free of charge 6om the OMNI-web data site facility operated by NASA. Proton 

data is available in a minimum resolution of 1-hour averages. 

6.1.2 The GOES Spacecraft 

The SMS/GOES (Geosynchronous Operational Environmental Satellites) series of 

spacecraft occupy a geo-stationary orbit at an altitude of 6.67 earth radii and are located 

between 75° and 135° West longitude. The main payload is an earth facing visual and 

infrared imager for terrestrial weather forecasts, but in addition the satellites carry a 

Space Environment Monitor (SEM) instrument package equipped to monitor solar x-
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rays, solar particles (alpha particles protons and electrons) and the earth's magnetic Geld. 

The SEM has provided data continuously since July 1974, although o&the-shelf data is 

available only 6om 1986 onwards. The Energetic Particle Sensor measures proton flux 

in numerous energy bands ranging Aom >0.6 to >685 MeV. The X-ray sensor (XRS) 

consists of an ion chamber detector providing whole-sun x-ray fluxes for the 0.5-to-4 A 

(XS channel) and l-to-8 A (XL channel) wavelength bands. 

6 . U Solar Proton Data Retrieval 

IMP proton data was sourced directly 6om the OMNIWEB data site from which a 

minimal resolution of 1-hour averages could be viewed and downloaded. 

GOES proton data was purchased on CD 6om the NGDC. Data from 1986 onwards was 

available as an off the shelf data product with a minimal resolution of 5-minute averages. 

In addition to this, archived GOES data was purchased covering the initial operation 

period of the GOES satellites between 1974—1986. Archived data from this period was 

not in a ready to use format and needed extensive processing before it could be used. 

This consisted of a binary-to-ASCH conversion, followed by a de-multiplexing routine 

to recover 3-second resolution values from the raw data stream. 5-minute and higher 

order averages were then calculated from the 3-second data. The procedures were 

performed via custom written C-code. 

6.2 A Proton Event Listing 

Data from the IMP and GOES satellites has been taken and used to construct a list of 

SPEs over the period spanning from 1965 to 1999. The task was facilitated by making 

use of a pre-existing list of SPEs derived &om IMP satellite data spanning from 1965 -

1989, in which a calendar day was said to contain a proton event if the >10 MeV daily 

averaged flux exceeded 1.0 pfii*. A proton event was defined as continuing until the 

daily averaged flux fell below this threshold and remained there for 1-day. This listing 

was obtained from Dr. Stephen Gabriel and originates 6om an earlier study of proton 

fluences on which the JPL-91 model was partly based. 

pfu = proton flux unit = protons/cm s sr 

— 
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For the period spanning 1986 - 1999 GOES proton data were found to be of superior 

quality and resolution to IMP proton data. For this reason GOES proton data was used 

to derive a list spanning the period from 1986 to 1999. SPEs were identified by plotting 

the GOES data and recording times at which the >10 MeV proton flux was greater than 

l.Opfii. 

Amalgamating the two lists resulted in an SPE listing which covered the period 1965-

1999, encompassing 284 events over two and a half solar cycles. During the period 

1986-1989 in which the lists overlapped, the lists were compared closely in order that no 

event was duplicated. 

It is important to note that the IMP definition for an SPE is different to that which the 

SEC uses for its forecasting services, and reflects the fact that the JPL-91 model was 

primarily interested in modelling the proton yZwewcg contribution &om SPEs. The 

NGDC defines an SPE as having occurred if the >10MeV integrated proton yZzfx; is 

greater than 10 pfii for 3 consecutive 5-minute readings. The NGDC definition thus has 

a higher flux threshold by 1 order of magnitude but does not consider the fluence of an 

event. In the m^ority of cases an SPE will fall into both definitions, but the IMP 

definition is the most conservative in terms of flux. In order to maximise the size of the 

dataset, and to take advantage of the existing list, the IMP definition was preferred. The 

disadvantage is that small SPEs may pollute a dataset in which it is only important to 

consider large SPEs. This was addressed at a later stage by providing a way to filter out 

small SPEs. 

6.2.1 Start Times of Proton Events 

For the purposes of real-time prediction it was deemed important to pinpoint the start of 

a proton-flux enhancement in order to correlate accurately with other solar variables. The 

existing IMP list only determined proton events to their calendar day of occurrence, and 

it was felt that a higher degree of accuracy was required. The start time of an event was 

thus defined as: 

fwo /zoz/r w/Y/zm w/r/c/z mfegraZ w/ffA a 

The different orbits occupied by the GOES and IMP spacecraft mean that an SPE can be 

monitored at one platform before it is seen at the other. It was therefore necessary to 
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standardise proton data to one platform, and given that GOES x-ray measurements were 

to be used as a predictor the start times for the SPEs were all found in GOES proton 

data. 

The integral >10MeV proton flux was plotted from GOES data archives for all proton 

events occurring after 1974 (i.e. even those events deGned from the IMP listing). This 

ensured that the start times were all based on data 6om the GOES platform and would be 

co-ordinated with x-ray measurements from the GOES x-ray monitors. 

For proton events that could be plotted from both GOES data and IMP data a 

comparison was made between event start times, and it was found that in over 75% of 

cases the difference between these start times was less than 2 hours. Thus, in the &w 

instances where start times could not be derived &om GOES data, a start time was 

derived by plotting DviP data from the OMNIWEB data site. Prior to 1974 no GOES 

data is available hence start times were not found for any SPEs which occurred prior to 

this. 

6.2.2 Classification of Proton Events 

In an effort to sustain a good quality dataset each of the proton events were classified as 

belonging to one of five classes according to the character of their flux time curves. 

These classes were purely qualitative but were created to serve as a method of filtering 

out any proton events that were small or badly deGned. The five classes are described 

below: 
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Class 1 - Suitably Well Defined 

The Event has a distinct start and is easily distinguishable from background levels 

I 

CIA881 B/BfT 14*1 Feb 19* 

/ 1 

4̂ ^ 
Time I Multiples of 5 minutes 

Class 2 - Gradual Rise 

The event has a gradual rise to its peak flux spanning several hours and is susceptible to 

error in the definition of its start time. 

1.00E+00 

I 

GLA882EVBfT lOh Apr 1069 

2305 2505 a w 31% 
Time / PAiltiples of 6 minutes 
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Class 3 - Not Well Defined 

The proton flux from en event is below the SEC threshold of 10 pfu, or data quality is 

poor and renders the start time of the event difficult to pinpoint. 

1 .OOE+02 

1.00E+01 

I 1.00E+00 

i 

C 1.00E-01 

CLA883EVB4T I 
10th Feb 1986 

2^8 2#G 2 ^ 2 ^ 2 ^ 
Time / Multiples of 5 minutes 

3193 3293 3393 

Class 4 - In Tail 

The proton event occurs in the tail of a previous event and is not an isolated 

enhancement. 

1.00E+02 

2 1,OOE+O1 

A I.OOE+OO 

1.00E-01 

CLASS 4 EVENT 
16th Dec 1986 

Enhancement during an ensuing event 

4033 4233 4433 4633 

Time / Multiples of 5 minutes 

4833 5033 
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Class 5 - Unsuitable 

The event is non-existent or bad/missing data spans the start time of the event. 

As mentioned above, the definition of proton events by the IMP listing has a threshold 

one order of magnitude below that of the SPE definition used by the SEC. This means 

that the current event listing contains some events that are too small to warrant 

inclusions as SPEs under the SEC definition. It is important to note that a significant 

proton event will always be recognised whatever the definition, and it is only with 'low 

flux' proton events (with a peak flux o f -1 pfu) where there may be uncertainty as to the 

existence of an event. This type o f ' low-fluxVpoorly defined event is marked as class 3, 

so any uncertainty about the dataset can be eliminated by filtering out events of class 3 to 

leave only well defined events with good signatures. 

One reason for including 'small' events as SPEs is due to the fact that the observed flux 

profile of an SPE is a function of observer location, hence a small SPE at earth may 

manifest as a larger SPE at a different location in the earths oibit. Also, it is possible 

that all SPEs, regardless of their peak flux, could have precursors of similar magnitude, 

hence failure to include 'small' SPEs may unnecessarily deplete the dataset. 

In compiling the dataset events of class 4 or 5 were filtered out immediately. Events of 

class 2 and 3 were left in the dataset for potential removal at a later stage in the analysis. 

The exclusion of class 5 events is self explanatory. The exclusion of class 4 events was 

performed to try and restrict the dataset to the first instance of particle iigections during a 

sequence of activity. SPEs that immediately follow an ongoing SPE could be due to 

interplanetary shock enhancement of existing solar protons rather than a separate 

iigection. Such 'SPEs' are therefore unlikely to exhibit a correlation with other solar 

quantities (in particular x-rays), meaning that their inclusion in the dataset could corrupt 

any patterns in predictor variable behaviour. The total event list contained 284 SPEs 

occurring between 1965 and 1999. 

To avoid comparing predictor variables 6om solar minimum with those from solar 

maximum (and thus detecting a solar min-max difference as opposed to an SPE / non-

SPE difference) the study was restricted to SPEs occurring in solar active years as 

defined by Feynman et al. aW 1990b], 
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these being the periods spanning from 2 years before to 4 years after the year of solar 

maximum of each solar cycle. Active year periods are given in Table 6-1. Table 6-2 

lists the number of SPEs per category for solar minimum and solar maximum periods. It 

can be seen that the m^ority of SPEs occur during solar active years, so limiting the 

study to solar maximum periods does not significantly reduce the size of the SPE 

dataset. 

Solar Cycle Solar Maximum Period of Active Years 

20 1968.9 1966.9-1973.9 
21 1979.9 1977.9-1984.9 
22 1989.9 1987.9-1994.9 
23 2001.2 1998.2-

Table 6-1 Times of solar maximum and periods of active years for solar cycles 20-23 [Feynman, 

Armstrong, Daogibner, and Silverman, 1990b]. 

Classification Type Number of Events 
Solar Max Solar Min 

1 - Suitably Well Defined 93 19 
2 - Gradual Rise 20 1 
3 - Poorly Defined 32 4 
4 - Occurrence in Tail 4 1 
5 - Unsuitable 33 2 
Not Found (GOES satellites not operational) 66 9 

Totals 248 36 

Total 284 

Table 6-2 Breakdown of the total SPE list in terms of event 'class' as defined above. 

The SPE listing is given in full in Appendix A. 

6.2.3 Quiet Period Listing 

The development of a binary classification technique required the collection of data 

pertaining to the two possible outcomes, thus it was necessary to compile a contrasting 

list of occurrence times corresponding to points in time at which no SPE occurred. 

These occurrences have been termed 'quiet periods' (QPs) and were defined as: 
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m ff/we af wA/cA fAe > 7OA/e F / m / g g r a r e g / / ? % % wow a/ o 

^acAgroww/ / e W a W /z6K/ 6eeM yor af /eayf 70 

Quiet periods were generated by marking 'non-quiet' periods on a proton flux timeline 

spanning &om 1974 to 1999 and taking points at random G-om the remaining periods. 

All quiet periods were from solar active years (as defined in Table 6-1) and were taken at 

least ten days &om the end of an SPE. 340 quiet periods were generated in total. The 

figure is essentially arbitrary, but as more Quiet Periods occur in reality than SPEs it was 

deemed important to have a larger number of Quiet Periods than SPEs available for use 

in the study. A fiill listing of Quiet Periods is given in Appendix D. 

6.3 Extraction of Precursor Data 

With a list of times corresponding to the cases of SPEs and Quiet Periods predictor 

variables were collected to provide examples pertaining to each case. 

6.3.1 GOES Solar X-Ray Data 

The GOES satellites monitor solar x-rays in the 0.5-to-4 A (XS channel) and the l-to-8 

A (XL channel) wavelengths in units of Watts/m^. GOES solar x-ray data exists as an 

off-the-shelf data product 6om 1986-1999, providing x-ray fluxes with a minimum 

resolution of 5-minutes. Archived GOES x-ray data was purchased to cover the period 

1974-1986 and code was written to extract the data and process the 3-second raw values 

into 5-minute averages. X-ray flux data between 1974 to 1986 was found to be of poorer 

quality than the off-the-shelf data and contained several large data gaps and a higher 

level of noise. 

X-ray data was extracted for time windows placed about the occurrence time of SPEs 

and QPs. C-code was written which took a list of times as an input, and then hunted 

through x-ray data, searching for the periods to extract. XS fluxes, XL fluxes (in 

Watts/m^) and the ratio of the XS/XL channels were extracted for each SPE and QP in 5-

minute resolution, and further C-code was written to process the data extractions into 24, 

12, 6, 3 and 1 hour averages. The length of the extraction window typically spanned 

from -120 hours to +48 hours relative to the start time of each SPE and QP, although 

this could be easily altered to generate different extraction window lengths. Error 

checking algorithms were employed to ensure that each 5-minute average was based on 
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at least 70% good data, and erroneous spikes in the data were removed (this was mainly 

used to increase the quality of the archived GOES x-ray flux data &om 1974-1986). 

Note that GOES x-ray data could only be extracted for SPEs occurring after January 

1974 as prior to this GOES satellites were not operational. 

6.3.2 Solar Radio Data 

2800Mhz solar radio flux data was sourced from the NGDC web-site*, consisting of 

daily averages 6-om 1947 to 1999 in units of 10'̂ ^ J.s'\m"^.Hertz"\ Values for the radio 

flux up to 1991 were based on measurements from a ground based radio telescope near 

Ottawa. Since 1991 measurements have been based on observations 6om the radio 

telescope in Penticton, B.C., Canada. Ac^usted radio flux values were used, which 

corrected for the variation in sun-earth distance. 

Again, C-code was written to process a list of times and hunt through the radio data 

extracting radio fluxes for a time window centred on the occurrence time of each SPE 

and QP. Fluxes were extracted in daily average resolution for a period spanning from 

81 days to +81 days relative to each occurrence. 

6.4 Flare Associations 

Findings by Reames and others which suggest that there are two groups of SPEs (as 

described in section 2.5) indicate that it may be useful to segregate SPEs according to 

their x-ray flare associations. Specifically, significant SPEs have been found to have a 

strong association with long duration X-ray flares, therefore it is possible that this type 

of event may have stronger precursors in x-rays than SPES associated with impulsive 

flares. 

GOES x-ray flux plots were viewed to assess the temporal flare associations for each 

SPE. This was restricted to SPEs which occurred after January 1986 as prior to this 

GOES x-ray data were not available as an official data product and could not be viewed 

without significant processing effort. 

http://www.ngdc.noaa.gov/stp/SOLAR/FLUX/flux.html 

— 
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If an SPE occurred within a few hours of an x-ray flare the flare was taken as being 

proton associated and was assigned as being either an impulsive flare or a long duration 

flare. Impulsive flares were defined as having a duration of minutes to 2 hours and took 

the form of an impulsive rise and decay in the GOES XL channel (l-SA). LDX flares 

were defined as having a duration of >2 hours and were characterised by a steep increase 

in the XL flux followed by a gradual decay to background levels. Flare associations 

were made for 97 SPEs occurring in solar active years after January 1986, the 

breakdown of which is given in Table 6-3. A full listing is given in Appendix C. 

Flare Association Number of SPEs 

Impulsive 30 

Long Duration 60 

No apparent flare association 7 

Table 6-3 impulsive and long duration flare associations for SPEs occurring in solar active years 

after January 1986. 

In addition to classi^ng x-ray flares as long duration or impulsive further x-ray flare 

associations were made according to the NGDC category of x-ray flare. The NGDC 

categorises flares according to the order of magnitude of the peak burst intensity (I) 

measured at the earth in the GOES 1 to 8 Angstrom band (XL) as shown in Table 6-4. 

X-Ray Flare Class Peak burst intensity range (I) / W/m^ 

B I<1.0E-06 
C 1.0E-06<-I<1.0E-05 
M 1.0E-05<=I< l.OE-04 
X I>= l.OE-04 

Table 6-4 X-ray flare categories as defined by the NGDC. 

Flare listings of every monitored x-ray flare are freely available on-line and were 

downloaded for the years 1986 to 1999. By matching the occurrence times of SPEs to 

the occurrence times of x-ray flares on the NGDC lists, flare categories of proton 

associated flares were derived. For cases when several flares occurred around the start 

time of an SPE, GOES x-ray data were plotted and viewed by eye in order to identify the 
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flare most likely to be proton associated. Flare associations were found for 98 SPEs 

occurring in solar active years after January1986 according to Table 6-5. 

X-Ray Flare Class Frequency 
B None 
C 10 
M 46 
X 35 

None 7 

Table 6-5 X-Ray flare categories for 98 SPEs occurring in solar active years after January 1986. 

A full listing is given in Appendix B. 
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6.5 Detrending of the Solar Cycle 

Solar x-ray flux and solar radio flux vary significantly over the 11 year solar cycle, as 

shown below in Figure 6-1 and Figure 6-2, and although the study was limited to solar 

active years only, this 7 year period still exhibits a significant amount of variation due to 

the long term solar cycle. 

The use of precursor data that contains the solar cycle trend may result in periods closer 

to solar minimum being compared to periods closer to solar maximum, hence there will 

be a difference in measured fluxes simply due to their relative positions in the solar 

cycle. This may mask the presence of any real SPE precursors, hence it was desirable to 

remove the solar cycle trend from the x-ray and radio flux data. 

1.00E-03 

1.00Ê  

>» 1.00E-07 

1.00E-09 

1.00E-11 

^ Mm 
Days from Sep 1986 

3000 3500 

Figure 6-1 Variation in X-ray flux in the GOES XS and XL channels over solar cycle 22 (Sep86 -

Apr-96). 
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01/01/62 24/06/67 14/12/72 06/06/78 27/11/83 19/05/89 09/11/94 01/05/00 

Date 

Figure 6-2 Variation in solar radio flux over cycles 2 0 , 2 1 , 2 2 and 23. 

Limiting the periods of consideration to the 7-active years of the cycle reduces the 

visibility of this trend, but in order to eliminate it completely the trend over the 7 active 

years of each cycle was approximated by regression with a 2°^ order polynomial. 

For each solar cycle, the trend function was subtracted from the absolute value of 

measured flux to produce a detrended value. Trend functions for each solar cycle are 

summarised below in Table 6-6. 

Solar x-ray data from solar cycle 21 (1977.9-1984.9) was sourced from the archived 

GOES measurements and was found to consist of data from 6 different satellites, the first 

of which were of early design and relatively unreliable. Cross validation of 

measurements between the satellites revealed significant calibration differences between 

sensors (particularly during the SMS to GOES transition in 1976-1977), resulting in poor 

continuity of a uniform dataset. This, coupled with sparse and poor quality data from 

1974-1979, rendered calculation of an accurate trend for solar cycle 21 impossible. 

Detrending of solar x-ray data was thus limited to measurements from post 1986, which 

only incorporated solar cycles 22 and 23. 
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Cycle 22 X-Rays 

CYCLE 22 

^ .1 ^ 0 W 1 ia 
Standardised Time (Days from October 1986) 

Cycle 23 X-Rays 

CYCLE 23 

Standardised time (Days from 1998} 

XS Trend 

y = -0.488x^ - 0.3308X - 7.2391 

XL Trend 

y = -0.431 - 0.3145x - 5.6282 

XS Trend 

y = -D.1139x^ + 0.2299X - 7 .6175 

XL Trend 

y = -0.114x^ + 0.1987x - 5 .9587 

Table 6-6 Trend functions for GOES solar x-rays over the active years of solar cycles 22 and 23. 

Cycle 23 is approaching maximum and is not yet complete. 

Radio flux data was of consistent quality and solar cycle detrending could be carried out 

for all data post 1966 (i.e. the epoch at which the SPE listing began). 
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CyClE20 

0 Oj 1 

Standardised Time / Days from June 1966 

CYCLE 21 

Standardised Time / Days from June 1977 

CYCLE 22 CYCLE 23 

Standardised Time / Days from June 1 * 7 Standardised Time/Days frwn June 1997 

Cycle Active Years Equation 

Cycle 20 1/6/66-31/12/73 y = -17.598x2 - 12.109X + 148.96 

Cycle 21 1/6/77-31/12/84 y = -40.595x2 + 4.8356X + 205.41 

Cycle 22 1/6/87-28/2/94 y = -46.714x2 - 4.8164X + 207.03 

Cycle 23 1/6/97-31/12/99 y = -0.782x2 + 25.725X + 131.91 

Table 6-7 Trend functions for 2800Mhz solar radio flux over the active years of solar cycles 20, 21 

and 22 and 23. 

6.6 Summary of Dataset 

A list of 284 SPEs was derived from IMP and GOES solar proton data, spanning the 

period from 1965 to 1999. Any events that could not be identified due to missing data or 

due to their occurrence being associated with a recent SPE were removed from the 

dataset. To provide a contrasting case, a list of 340 Quiet Periods was generated relating 

to instances in time at which an SPE did not occur and the >10MeV proton flux had been 

at background for at least 10 days. Instances of SPEs and Quiet Periods were limited to 

solar active years to prevent the comparison of periods from solar maximum and solar 

minimum. 

74 



THE DEVELOPMENT OF A SOLAR PROTON EVENT PREDICTION MODEL 

GOES x-ray fluxes in Watts/m^ in the XS and XL channels and the 2800Mhz solar radio 

flux in units of 10'̂ ^ J.s'\m'^.Hertz'^ were extracted at the times of SPEs and Quiet 

Periods. Solar radio flux was extracted for all events occurring since 1965, whereas 

GOES x-ray data could only be extracted for SPEs occurring after 1974. 

For SPEs occurring after January 1986 flare associations were made, categorising the 

flare ajs impulsive or gradual. The NGDC flare category was also recorded and would 

enable the SPE listing to be segregated by flare association at a later stage. 
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7. DEVELOPIVIENT OF A CLASSIFICATION PREDICTION MODEL 

This chapter describes the method used to develop an SPE forecast classiGcation model 

based on the concepts detailed in Chapter 5. Classification models were optimised by 

altering input configurations, changing key parameters in the models and by selectively 

filtering the listing of SPEs. MLP neural networks were compared with RBF models and 

a linear classification technique. 

7.1 Method 

A default configuration of the classification model was arbitrarily adopted by deGning an 

input window of length 72-hours and a lead time of 48-hours. Lead time was 

deliberately chosen to be significantly greater than that offered by current SPE 

forecasting models. The averaging period within the 72-hour iuput window was varied 

between 1 and 12 hours. 

Input Vector 
72 hours 

Lead Time 
48hrs 

' 1 1 ' 1 1 1 1 
1 Time 

Figure 7-1 Default input configuration with a 72-hour input window and a 48-hour lead time. 

The logio of the ratio of the solar x-ray fluxes was used as the predictor variable input. 

Taking the ratio of the XS/XL fluxes combines the two values into one dimension, 

reducing the complexity compared to two separate input vectors, and the XS/XL ratio is 

also a measure of the spectral hardness of solar x-ray emissions. Garcia and Kiplinger 

have shown certain variations in spectral hardness during an x-ray flare to be indicative 

of an SPE [AT/p/mger, 1995] [Garc/a a/iaf 1996]. 

MLP models were used to assess different input configurations due to the speed with 

which they could be constructed. The learning algorithm waa halted when the training 
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error stabilised, which typically occurred between 10,000 and 80,000 training epochs* 

depending on the size of training set used. An example of training output from the 

network soAeware is given in Appendix E. After determining an optimal input 

configuration MLP models were compared to RBF and Linear classification models. 

7.1.1 Model Generation 

Classification models were constructed using examples from the dataset described in the 

previous chapter. The total dataset was split into a training set and a test set. Neural 

models learned solutions on the training set and were then tested with the unseen test 

data. In cases where a Principal Components Analysis was used the derived statistics of 

the training set were used to transform the test set. A summary of the procedure is given 

in Table 7-1 and is shown schematically in Figure 7-2. 

Procedure for Model Generation 

1 Divide dataset into a training set and a query set. 

2 ' Perform PCA on training set 

3 Train Model with training data 

4 * Apply previous PCA transformation to test set 

5 Run Model with test data 

6 Evaluate performance 

Table 7-1 Summary of procedure for generating classification model, ("where applicable). 

The number of examples of SPEs and Quiet Periods in the training set was always held 

equal in order to prevent biasing the training towards a particular outcome. For example, 

given 99 quiet periods and 1 SPE a 1% error can be achieved by simply classi^ng all 

examples as QPs, although clearly such an approach is not intelligent for SPE prediction. 

Using equal numbers of examples ensured that any learned solution would be due to 

some real difference between examples. Other options to this approach are addressed 

later. 

* 1 training epoch passes after each example in the training set has been presented once to the network. 
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1. PaM(tk)ntobU 
dataŝ  mk) 

training and query 

2. N o r m a k e 
Training Set 

5. N o r m a b e query 
set using ^ a t b d c e 
from traWng set 

3. Perform PCA an^ys i s 
and project onto pnnc#3ai 

components 

4. Train Model 

SELECT PRINCIPAL 
COMPONENTS TO 
USEA8IWUTS 

Store Stats 
(average and s.d.) 

Store PCA results 

SELECT PRINCIPAL 
COMPONENTS TO 
USE AS INPUTS 

TRAIN 
PCA PROJECTED 

PCA PROJECTED 
QUERY 

QUERY 

TRAIN 

6. Pro)ect quwy set onto 
prmdpal components using 
PCA resuRs of training set 

Figure 7-2 Schematic diagram showing the process for the construction of a classification model. 

So Aware 

MLP neural models were created using Neu&ame v4.0. This is an off-the-shelf neural 

network package from 'NCS Manufacturing Intelligence' running on Windows and 

enables MLP networks to be created via a graphical user interface. Neuframe was run 

on a PC platform with a 500MHz Intel Celeron Processor. 

RBF models were developed using software written by QinetiQ (formerly DERA). The 

software, denoted TSAR (Time Series Analysis Routine), was composed of a series of 

C-code modules and was command line driven in a UNIX environment. 

Linear models were created in both MS Excel and MINITAB. 

Input Scmliny 

Input scaling was performed within the respective neural network software packages, 

with the eGEect that each input is scaled to a value of between 0 and 1. To allow for the 
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test dataset containmg values slightly larger than the training dataset headroom of 10% 

was given in the training scale (effectively mapping the largest training value to 0.9 and 

the smallest to 0.1). 

Training Targets 

The supervised learning techniques employed by all models required target values for 

the two classes of SPE and QP. Input vectors corresponding to SPEs were given target 

values of 100 and input vectors corresponding to QPs were given target values of 0. 

During the model construction process target values were also scaled linearly to between 

0 and 1, thus the choice of values to represent the two classes is arbitrary. Training 

targets o f - 1 and +1 for example will be scaled to the same training targets as 0 and 100. 

The Neu6ame software also enabled 'text' training targets to be assigned to the input 

vectors instead of numerical values. Text targets allow discrete outputs to be specified 

as opposed to a continuous value. 

Assessment of Performance 

Models were assessed by analysing their response to each vector in the test set. Outputs 

of equal to or greater than 50 were interpreted as an SPE classification and outputs of 

less than 50 were interpreted as a QP classification. The effect of vaiying the decision 

threshold was addressed at a later stage. 

The performance of a given model was measured by counting the number of examples in 

the test set that were classified correctly and then expressing this as a percentage of the 

test set. Note that there is only one degree of freedom in the model output as the model 

must generate one of only two possible outcomes. The niunber of SPE forecasts 

therefore also determines the number of QP forecasts. 

Cross Validation 

A cross validation technique was employed in order to ensure that a representative figure 

for performance was measured for each model. For a given configuration the training 

and test process was repeated 10 times, with a different combination of training and 

query data drawn &om the same dataset. The performance for each model was 

measured as the average performance &om the 10 variations. Cross validation measures 

the robustness of the model and takes into account the natural variation in performance 

from different training/query set combinations. 
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7.2 Results 

7.2.1 Input Resolution 

The time resolution of the input window for the default configuration was varied 

between 1-hour and 12-hours in order to determine the resolution giving optimum 

performance. The number of inputs to the model is dependent on the time resolution of 

the input vector, as shown in Table 7-2. 

Time Average of the -120 to -48 Number of inputs to 
hour x-ray ratio window. network 

12 hour 6 
6 hour 12 
4 hour 18 
1 hour 72 

Table 7-2 The number of elements in the input vector for different time resolutions of the input 

window. 

For each input resolution the size of the training set was varied between 30 and 240 

examples (always keeping an equal ratio of SPEs and Quiet Periods) in order to find the 

optimum. This accounted for the fact that the number of free parameters (weights) 

within each network was also changing with the input resolution. Networks with a 

greater number of inputs were expected to require a larger training set in order to 

represent the larger number of possible input permutations. The combination of input 

resolution and training set size resulting in the highest performance were selected for 

further development. 

Table 7-3 gives results for MLP neural models using input resolutions of 1, 4, 6 and 12 

hours respectively. No data pre-processing was performed on the dataset other than 

taking logs of the values. Highlighted rows show the training set size giving the highest 

success rate for each input resolution. The network structure in Table 7-3 denotes the 

number of nodes in each layer of the model. The number of nodes in the first layer is 

dictated by the number of inputs to the model (which is dependent on the time 

resolution), and the number of nodes in the hidden layer is a default value chosen by the 

Neuframe software, based on the number of nodes in the input layer. Models were 

trained with discrete text targets of 'event' and 'quiet period' hence there are 2 nodes in 

the output layer. 
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12 HOUR AVERAGES (6 inputs, network structure of 6:3; 1) 

Training Set Size EVENTS / % QPS/% OVERALL/% 

- r, » 30 56.5 ±7.5 55.3 ±7.4 ^ 55.9 ±1 .7 

60 54.5 ±10.4 48.9 ±7.0 51.7±5.I 

120 57.7 ±12.0 45,4 ±7.5 51.5 ±5.1 

180 54.0 ±13.5 39.0 ±7.8 46.5 ± 6.5 

240 51.6 ±19.6 30.3 ±7.2 40.9 ±12.3 

6 HOUR AVERAGES (12 inputs, network structure 12:4:2) 

Training Set Size EVENTS/% QPS/% OVERALL/% 

30 53.7 ±5.8 51.2 ±6.7 52.5 ±4.1 

60 56.4 ±9.4 51.4 ± 9.6 53.9 ±3.9 

^ 120 54.9 ±61 - 1 ' r- 54,5 ± 13 

180 5 2 J ± i o 4 53.8 ±8.1 53.0 ±3 .8 

240 46.6 ± 12.5 55.8 ±7.0 51.2 ±6.0 

4 HOUR AVERAGES (18 inputs, network structure 18:5:2) 

Training Set Size EVENTS/% QPS/% OVERALL/ % 

30 53.5 ±11.4 49.8 ±11.3 51.6 ±4.3 

, 60 . 57.0 ±6 9 • 53.4 ± 7 7 > 55.2±23^ 

120 50.0 ±3 .7 57.6 ±4.8 53.8 ±2.3 

180 51.0 ±11.3 55.6 ±6.0 53.3 ±4.1 

240 55.0 ±9.6 53.8 ±3.5 54.4 ±3 .9 

1 HOUR AVERAGES (72 inputs, network structure 72:7:2) 

Training Set Size EVENTS/% QPS/% OVERALL/ % 

30 48.0 ±8.4 51.6±io.i 49.8 ±3 .7 

60 50.7 ±8.5 55.2 ±4.3 53.0 ±5.0 

120 53.0 ±7.2 52.6 ±9.2 52.8 ±3.5 

180 51.5 ± 6.6 54.0 ±4.9 52.7 ±3.6 

240 58.4 ±12 1 49.6 ± 6 6 - r > 54.0±51 

Table 7-3 Classification success for the default model configuration (72-hour input window, 48 hour 

lead time) for varying time resolutions and training set sizes. 

Results from Table 7-3 are plotted below in Figure 7-3. 
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Figure 7-3 Plot of average classification success as a function of training set size for differing input 

resolutions. Training error as a function of training set size is also shown. Error bars denote 1 

standard deviation. 

Classification success for all models was measured to be between 50 and 55%. Given 

that if the model were to output 'event' and 'quiet period' at random one would expect a 

50% classification success, the performance of the technique is not significantly better 

than random expectation. This would appear to indicate that the problem is ill-posed; i.e. 

there is little differentiation between the examples of quiet periods and the examples of 

SPEs in the dataset. 

Performance was found to be independent of the size of the training set, implying that 

models trained as well on 30 examples as they did on much larger training sets of 120 

and 240 examples. The only case in which this was not true was when using 12-hour 

resolution inputs, where larger training sets of greater than 60 examples were found to 

cause the model to generate a large proportion of 'undefined' outputs, resulting in low 

performance. These 'Undefined' outputs occurred as a result of using discrete class 
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targets of 'event' and 'quiet period', and occurred when input vectors could not be 

satisfactorily mapped onto either of the two training classes. 

As to why a 12-hour input resolution causes poor performance, the 12-hour input 

network has only 6 inputs and a small network structure with a low number of free 

parameters (weights). This means it is difGcult for the model to approximate the 

variation observed within large training sets. The implication is that the training data 

contains no clear patterns or has contradictory examples which result in the model fitting 

a 'neutral average' that tends to map all input vectors to a similar output. This is 

supported by the high training error that is observed for 12-hour averages and large 

training sets. 

Performance variation between models of different input resolution was not significant, 

being within 1 standard deviation of the cross-validation variation. However, the highest 

performance of the tested configurations was generated by 12-hour resolution inputs and 

a training set of 30 examples, hence this configuration was selected as the benchmark for 

further development. The advantage of using such a small training set is that a larger 

number of examples can be used to test the model, lending the test results a higher 

statistical significance. 

7.2.2 Dataset Filtering 

The SPE dataset was next filtered to study the effect of including only certain types of 

SPEs. In the first instance, class-3 (small) SPEs as deGned in Chapter 6 were removed 

6om the dataset in order to leave only significant SPEs of class-1 and class-2. In the 

second instance the SPE listing was filtered so as to include only SPEs associated with 

long duration x-ray flares. Thirdly, the x-ray dataset was detrended as described in 

section 6.5 to assess the e@ect of removing the long term solar cycle trend from the 

inputs. All dataset Altering was performed in conjunction with the optimal MLP model 

configuration determined in the previous section (7.2.1) - i.e. the model giving highest 

overall classification success. Results are given below in Table 7-4 and expressed 

graphically in Figure 7-4. 
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Model Events / % QPs/% Overall / % 

Benchmark 12 hour inputs. 56.5 ±7.5 55.3 ±7.4 55.9 ±1.7 

Removal of class 3 events &om dataset 54.5 ±11.0 53.3 ±6.1 53.9 ±6.2 

Filtered list to include only events associated 
with long duration x-rays 

58.6 ±11.9 56.7 ±7.6 57.6 ±5.9 

Removal of solar cycle trend from XS/XL 
inputs. 

58.2 ±5.8 49.9^:5.5 54.0 ± 3.6 

Table 7-4 Results from filtering SPE dataset to remove class-3 events and to leave only SPEs 

associated with long duration x-ray flares. Error denotes 1 standard deviation. 
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Figure 7-4 Graphical comparisons of different MLF model configurations shown in Table 7-4. Error 

bars denote the standard error. 

The removal of small (Class-3) SPEs 6om the dataset had a slight but not signiGcant 

detrimental effect on performance, indicating that the inclusion of small SPEs in the 

dataset was not a cause of general poor performance. By showing that the classification 

ability of the technique is not improved by limiting the dataset to well defined SPEs it is 

also implied that well defined SPEs are not preceded by well defined precursors (at least 

during the input window being considered). 
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Filtering the dataset so as to include only SPEs associated with long duration x-ray flares 

marginally increased classification success by 1.7% over the benchmark model. Whilst 

not significant, the result suggests that SPEs associated with LDX flares are more 

distinguishable from quiet periods than a group of SPEs with mixed flare associations. 

This implies that SPEs associated with LDX flares may have better defined precursors in 

the XS/XL ratio during the input window. The reason why this filtering is successful 

probably stems fi-om the fact that the dataset has been filtered with respect to the 

behaviour of the variable (i.e. it is guaranteed in the filtered dataset that all 

examples of SPEs coincide with long duration x-ray flares). Although the input window 

does not include the x-ray flare itself^ it is composed of a value derived j&om x-ray flux 

measurements, and it is known that a flare does occur, hence the model may be detecting 

precursors to the flare. By comparison, when filtering out small SPEs &om the dataset 

no consideration is given to the predictor variable and it is unknown whether or not a 

significant x-ray flare occurs at the time of the SPE. 

The detrending of a time series prior to analysis is a common practice, designed to 

isolate local fluctuations from long term trends. Removing the long-term solar cycle 

trend from the XS/XL ratio was found to produce a 54.0% classification success. This is 

1.9% lower than the benchmark model. The result suggests that the presence of the solar 

cycle trend in the inputs may have been slightly beneficial. One explanation for this is 

that SPEs have a general association with the solar cycle. Knowing that the XS/XL ratio 

is higher during solar maximum than solar minimum, the model could classify 'high' 

value input windows as SPEs and 'low' value input windows as quiet periods, and via 

the general association between SPEs and solar maximum the strategy would probably 

identify more than 50% of cases correctly. The fact that detrending the inputs has still 

resulted in a comparable performance to trended inputs indicates that the technique was 

not simply using a solar cycle association in order to fimction, and suggests that real 

SPE/non-SPE differences may be present. 

7.2.3 Multiple Model Configuration 

As an experiment, a novel approach was used to combine the outputs &om different 

models into one prediction with the aim of increasing performance. This configuration 

has been termed a multiple-model. The technique created 10 different models from 10 

_ 



THE DEVELOPMENT OF A SOLAR PROTON EVENT PREDICTION MODEL 

different random choices of training data and then queried each model simultaneously 

with the same set of test data. This caused 10 responses for each example in the test set, 

and a 'm^ority decision' was made as to the overall outcome. Figure 7-5 below shows a 

schematic diagram of the multiple model format. 

networks response 

event 

event 

event 

event 

event 

event 

( ^ i e t p e n o ^ 

([q^etpeMo^ 

([quietpeMo^ 

Overall 
prediction 

most frequent 
output 

Figure 7-5 Schematic diagram showing configuration of the 'multiple model'. 

Multiple model configurations were created for the filtered SPE listings described above, 

and their performance compared against that of the average 'single' MLP model. Note 

that the multiple model required 10 models to be trained for 1 test set, hence the build 

time was considerable and required a significant amount of data preparation. For this 

reason a maximum of two multiple models were created for each SPE listing. Whilst this 

does not rigorously assess the variability in performance due to dataset variation, it does 

serve to indicate the approximate variance in performance that can be expected. 

Results are shown below in Figure 7-6. The average performance of each of the 

individual networks composing the multiple model is also given to show the 

improvement offered by the multiple model configuration 
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Figure 7-6 Multiple model performance in conjunction with dataset filtering and detrending. Points 

show the difference between multiple model performance and the average performance of the 

constituent MLP networks. 

Multiple models of the standard configuration (12-hour inputs, no pre-processing or 

filtering) were found to generate a 61.0% and 62.7% classification success respectively. 

Given that the average individual network for the same configuration has only a 55.9% 

average success rate this indicates that a significant performance benefit is gained from 

simultaneously querying several models with one input vector and taking a majority 

response as the overall classification. The multiple model was assessed with a test set 

composed of 50 SPEs and 100 QPs, and a chi squared analysis showed that a 61% 

classification success was significant to a 99% confidence level. This demonstrates to a 

high degree of uncertainty that the model output is not random. An example of the Chi-

Squared calculation is given in Appendix F. 

Using an SPE dataset with only LDX flare associated SPEs has much the same effect 

with the multiple model as with single network models in that performance is increased 

from a non-filtered dataset by the order of 2%. The use of a detrended dataset also has a 

comparable effect as in the single models, reducing performance by around 2% from the 

benchmark. It can be seen that the effects of filtering and detrending the dataset are 

cumulative to the benefit of a multiple model configuration. 
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The effect of the multiple model configuration is to increase the classification ability of 

the technique &om the 55% success level to the 62% success level. The results &om 

duplicate multiple models indicate that the high success rates are reproducible and are 

not simply due to 'lucky' training-query set combinations. In all cases the performance 

of the multiple model using a m^ority vote is superior to the average performance of its 

constituent individual networks. 

Whilst the presence of a solar cycle trend in the input data appears to offer a 

performance benefit it may be causing the technique to operate differently to how it was 

intended. Instead of using a difference between the cases of SPE and quiet periods to 

make classifications, models may be using an association between solar maximum and 

SPEs, causing high value input windows to be mapped to 'SPE' classes. The general 

association between SPEs and solar maximum could then result in a greater than 50% 

success rate, even though the technique is not actually detecting specific SPE 

'precursors'. To ensure that the technique could only use SPE/non-SPE differences to 

assign classes further development was limited to detrended inputs, in which the long 

term solar cycle had been removed. 

A decision was also made to use datasets that contained all SPEs, rather than only LDX 

flare related SPEs. Whilst a dataset containing only LDX flare associated SPEs results 

in higher performance, it also restricts the scope of the model by implying that it can 

only predict SPEs associated with long duration x-ray flares. This goes against the core 

requirements that were set during the conceptual design of the model, where it was stated 

that the model should not be dependent on the occurrence of a speciGc solar 

phenomenon. It is possible, for example, to have significant SPEs that are associated 

with large impulsive flares [Garc/a, 1994a], but these would be excluded &om the study 

if only LDX flare related events were considered. By encompassing all occurrences of 

SPEs in the dataset the model is 'universal' in its treatment of SPEs and is not confined 

to predicting SPEs of one origin. 

A multiple model achieved a performance of 60% using detrended data and a non-

filtered dataset (i.e. a dataset containing all SPEs, regardless of association), therefore a 

significant classification success is still achievable even with these 'constraints' in place. 

88 



THE DEVELOPMENT OF A SOLAR PROTON EVENT PREDICTION MODEL 

7.2.4 Principal Components Analysis 

The Principal Components Analysis (PCA) technique was described in detail in Chapter 

5. The technique allows the dataset to be collapsed into fewer dimensions without 

significant loss of information, meaning that the number of inputs to the model can be 

reduced (reducing complexity) whilst at the same time increasing the signal to noise 

ratio. 

The use of a PCA required the test set to be projected using coefficients derived from the 

training set. For this reason one would intuitively expect the success of the technique to 

be greater when the training set is more representative of the test set, and this is more 

likely to be the case when the training set is large. 

This supposition is contrary to the findings in section 7.2.1 in which no PCA was used 

where smaller training sets were found to be as good as larger training sets. To 

determine the effect of training set size a further training set size optimisation was 

performed in conjunction with a principal components analysis. 

A PCA was performed on a model using 12-hour resolution inputs, detrended values of 

the XS/XL ratio and a dataset containing all SPEs. Models were created using training 

sets of 30, 60, 90 and 120 examples. After determining the optimum training set size for 

12-hour resolution inputs, the same training set size was used for an equivalent model 

using 3-hour resolution inputs. Results are given below in Figure 7-7. 
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Figure 7-7 Classification success as a function of training set size for MLP models using principal 

components analysis projection of the dataset. Error bars denote the standard error. 
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It is clear that performance increases with the size of training set. Maximum 

classification success is achieved with the largest training set of 120 examples. 3-hour 

resolution inputs were found to be superior to 12-hour resolution inputs for the optimum 

training set size. 

The use of a principal components analysis has resulted in a signiGcant performance 

increase over the same model with no PCA. Figure 7-4 shows that a MLP network using 

detrended 12-hour inputs and no PCA has a 54% average classiGcation success, whereas 

it can be seen 6om Figure 7-7 that the same model with a PCA has a 57.6% 

classification success. This is increased further to 59.4% when 3-hour resolution inputs 

are used with the PCA. It can also be noted that these figures are for individual 

networks, therefore a further performance increase can be expected if a multiple model 

configuration were to be used. 

Further scope exists for increasing the success of the technique by optimising the number 

of principal components that are used as inputs to the model. It may only be necessary to 

use a small number of principal components to express the useful variation within the 

dataset. The 3-hour resolution model had a total of 24 principal components, and the 

number of these used as inputs was varied in stages between 3 and 24. Results are given 

below in Figure 7-8. 
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Figure 7-8 Classification success as a function of number of principal component inputs for ML? 

network using 3-hour resolution inputs. Error bars denote standard error. 

Optimal classiGcation success was generated when using the first 6 principal 

components of the 24 as inputs. With 3 inputs it would seem that not enough information 

is given to the model, whereas with more than 6 principal components it would appear 

that the extra input channels do not contain useful information. 

7.2.5 Lead Time 

The lead time of the technique was varied between 6 and 64 hours by moving the input 

window with respect to the time of the SPE or quiet period. This was perfbrmed for the 

optimal PCA model described above, i.e. an MLP model using the first 6 principal 

components as inputs from a 3-hour resolution input window. Results are plotted in 

Figure 7-9. 
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Figure 7-9 Variation in classification success as a function of lead time for the optimal PCA MLP 

model. Error bars denote standard error. 

Classification success remains roughly constant regardless of lead-time, and surprisingly 

does not increase when the input window is moved significantly closer to the time of the 

outcome. Maximum classification success was found to occur with a 48-hour lead time, 

but would seem to drop away significantly if the lead time is increased further. 

Figure 7-9 would appear to indicate that there is no benefit in moving the input window 

closer to the time of the SPE or quiet period, although this is likely to change if the 

inputs were brought forward so that they included the x-ray flare itself that is associated 

with the SPE. This would of course defeat the object of a long lead-time model. 

7.2.6 Standardisation of the Input Window 

The use of a second order polynomial to approximate the solar cycle variation results in 

the solar x-ray flux being zero meaned over the 7 year active period of solar maximum. 

This means that over a short period of time, e.g. 72-hours, the solar x-ray flux may have 

a non-zero mean dependent on the current level of solar x-ray activity with respect to the 

current solar cycle trend average. 
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As an alternative method of detrending, models were developed based on individually 

standardised input windows. Each input vector was standardised by subtracting the 

average and dividing by the standard deviation, resulting in all training and test examples 

being zero-meaned. 

The performance of the two detrending methods was compared using MLP models in 

conjunction with a PCA and 3-hour resolution inputs of the XS/XL ratio. Results are 

given below in Table 7-5. 

Model Overall / % 

Solar Cycle Detrended 62.6 ±5.0 

Row Normalised 51.8 ±4.6 

Table 7-5 Comparison between solar cycle detrending and row normalising. 

It can be seen that independent row normalising produces a classification success that is 

signiGcantly worse than solar cycle detrending, and is not in fact significantly better than 

random (i.e. 50%). The result shows that the classification ability of the technique must 

stem from the variation of the XS/XL with respect to the solar cycle average. 

7.2.7 Radial Basis Function Models 

Radial Basis Function neural network models were constructed to act as a comparison to 

the MLP networks. Models were based on the optimal configuration identified 

previously for the MLP models, i.e. a 48-hour lead time, detrended XS/XL inputs and a 

principal components analysis. 

Before comparing MLP and RBF models, the parameters of the RBF model were 

optimised. The training set was fixed at 120 examples (60 SPEs and 60 Quiet Periods), 

and the number of centres was varied incrementally between 10 and 120. A thin plate 

splines function was used as the centres function. This was performed for 12-hour and 3-

hour resolution inputs. Results are plotted below in Figure 7-10. 
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Figure 7-10 Variation in classification success with number of centres for RBF model using a 

principal components analysis and detrended XS/XL inputs in 3 and 12-hour resolution input 

windows. Error bars denote standard error. 

As for the MLP models, 3-hour resolution inputs were found to give consistently 

superior performance to 12-hour resolution inputs. 

Optimal classification success was given by using just 10 centres in the RBF model. No 

benefit is gained by a more complex fitting surface fi"om a larger number of centres. 

This is probably due to the use of the k-means clustering algorithm for centres 

placement. This places the centres functions in their most efficient locations in the 

network subspace, meaning that additional centres functions offer little benefit. 

Although increasing the number of centres will have resulted in a more complex fitting 

surface, the results from Figure 7-10 show that the generalisation is worse, suggesting 

that additional centres functions are only fitting noise. 

Centres Function Optimisation 

The type of centres function was optimised using those available within the TSAR 

software. RBF models using 3-hour resolution inputs and 10 centres were created for 8 

different centres functions. Results are plotted below in Figure 7-11. 
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Figure 7-11 Classification success for different centres functions using an RBF model, arranged in 

order of effectiveness. Error bars denote standard error. 

No m^or difference was found between centre function types, although the best 

performance was generated by the thin plate splines function: a function of the form: 

( p { r ) = r ^ l o g r 

(in which 'r' is tbe Euclidean distance between a point in space and the point at which 

the centre function is placed). Using the thin plate splines as the centres fimction the 

RBF model was found to generate a 64.1% classification success. 

7.2.8 MLP, RBF and Linear Model Comparison 

The MLP and RBF models developed above were compared with an equivalent linear 

model. All used 3-hour resolution inputs, detrended data, and a principal components 

analysis. Figure 7-12 shows the optimisation of each model for the number of principal 

component inputs. 
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Figure 7-12 Classification success as a function of number of principal component inputs for MLP, 

RBF and Linear models using 3-hour resolution inputs. Error bars denote standard error. 

For all model types optimal performance is given with 6 principal components as inputs. 

The optimal model of each type is compared below in Figure 7-13. 
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Figure 7-13 Comparison of optimal models (which use the first 6 PCs as inputs) for MLP, RBF and 

linear model types. Error bars denote standard error. 
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The value of the standard error means that the difkrence between model types is not 

significant, therefore the choice of classification technique is not a performance driver. 

RBF models generated the highest performance, closely followed by linear models. 

MLP models were found to produce the lowest performance. 

One reason for the success of the RBF technique could be the relative ease with which 

its structure was optimised, in that it was possible to perform an optimisation for the 

number of centres. This is relatively easy in the case of the RBF model because the 

network structure contains only one hidden layer. The number of nodes in this layer is 

the number of centres. 

No equivalent optimisation was performed in the case of the MLP model, as this would 

have meant vaiying the number of hidden nodes in the network. The problem with this 

is that both the number of hidden layers and the number of nodes per layer are variable, 

resulting in a potentially limitless number of network structures. 

The f ^ t that a linear model performs comparably to the non-linear techniques implies 

that the classification technique is not non-linear, or at least can be well approximated by 

a linear model. Whilst one can postulate that solar mechanisms are probably non-linear, 

the problem posed here is far abstracted firom a physical process, and is simply trying to 

group input vectors as belonging to one of two classes, therefore it is perhaps not 

surprising that the linear technique performs well. 

The fact that all model types perform to a similar level indicates that the success of the 

technique is primarily due to the content of the dataset. This means that SPE precursors 

may well be present in the XS/XL ratio. 

7.3 Summary 

This chapter has presented the first development stage of the classification technique, 

which was restricted to the use of the XS/XL ratio as inputs. Goals were to identify the 

effects of filtering and detrending the dataset, and to compare the performance &om 

different model types. 

Filtering the dataset so as to include only SPEs related to long duration x-ray flares was 

found to marginally improve classification success of initial models. This Altering was 

not adopted for further development though as it was felt that it compromised the 

validity of the technique by imposing the pre-requisite of an x-ray flare. 
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Detrended data was identified for use in the development of the models to ensure that the 

solar cycle variation in the inputs was not being used as a means to distinguish between 

the cases of 8PE and quiet period. A comparison between solar cycle detrended inputs 

and locally normalised inputs revealed the latter to have very low performance. This 

indicated that the variation of the input with respect to the value of the local solar cycle 

average was important in determining the classification of an input vector. 

A principal components analysis was found to be effective with large training sets, and 

gave superior performance with 3-hour resolution inputs. MLP, RBF and Linear models 

were all found to generate superior performance when using the 6rst 6 principal 

components as inputs. The optimal configuration, irrespective of model type, consisted 

of 3-hour averages, the detrended log of the XS/XL ratio as inputs and a principal 

components analysis. 

The difference between model types was not found to be signiGcant, although the best 

performance was generated by the RBF network, followed by the linear and MLP 

models. These generated average classification success rates of 65.0%, 64.3% and 

62.5% respectively. 

A multiple model configuration was found to significantly increase the classification 

ability of the approach for all input configurations and SPE filtered listings. The 

performance of a multiple model was always found to be greater than the average 

performance of its constituent networks, suggesting that the PCA optimised RBF model 

may generate even higher performance than 65% when acting in a multiple model 

configuration. 

The apparent success at predicting SPEs 48 hours in advance, even though limited, is 

surprising considering that no discrete x-ray flare is used as an input. This suggests the 

existence of SPE precursors on a timescale of days prior to SPE occurrence - a Gnding 

that has not been documented elsewhere. 

The following chapter examines the behaviour of the solar x-ray ratio, the XS and XL 

fluxes and the solar radio flux, and compares the performance of models using these 

different variables as inputs. A quantitative analysis of the behaviour of the XS/XL ratio 

may help to explain the behaviour of the model and identify specific differences between 

the cases of SPEs and quiet periods that prove the existence of new SPE precursors. 
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8. PREDICTOR VARIABLE ANALYSIS 

A classification technique has been shown to have limited success for SPE and Quiet 

Period prediction when using logm of the XS/XL ratio as an input from between -120 

and -48 hours relative to the outcome. This chapter examines the behaviour of solar x-

rays for the SPE and Quiet Period case by plotting the XS and XL fluxes as a fimction of 

time, and identifies points at which the distributions are significantly difkrent using the 

F-statistic Similar analyses are performed for the 2800Mhz solar radio flux with the aim 

of identifying any behaviour that can be associated with SPE occurrence. MLP 

classification models have been created using the different predictor variables as inputs 

in order to determine their relative performance. 

8.1 Method 

Detrended x-ray fluxes from the XS and XL channels were extracted in 3-hour resolution 

for a time period spanning -720 hours (27 days) to + 48 hours relative to each quiet 

period and SPE in the dataset. At each 3-hour interval the average value of the flux was 

calculated for the SPE examples and quiet period examples, allowing an average flux-

time plot to be made for each of the two cases. X-ray plots were based on 97 SPEs and 

192 quiet periods occurring between 1986 and 1999 inclusive. (The full listing of SPEs 

is given in Appendix C.) 

A similar extraction was performed using daily resolution x-ray fluxes, for a period 

spanning -81 days to +81 days relative to each event. 81 days is approximately equal to 

3 solar rotations, and allowed flux-time plots to be generated over a longer time period 

for the SPEs and quiet periods. 

Daily resolution 2800Mhz solar radio flux was also extracted for ±81 days relative to 

each SPE and quiet period occurrence. The existence of solar radio data &om 1940 

onwards allowed data extractions for the full list of SPEs, such that plots were based on 

253 SPEs occurring between 1965 and 1999 and 340 quiet periods chosen at random 

between 1977 and 1999. 

At each point in time the F-statistic was calculated to measure the statistical significance 

of any difference between the SPE and quiet period averages. The F-statistic is defined 

as: 
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p _ 8-1 

" M S , 

where MSb is the mean square difference between the distributions, and MSw is the mean 

square difference within each distribution. Given k distributions, with each distribution 

containing n; observations, the sum of squares between (SSy) and the sum of squares 

within (SSw) are defined as: 

S S , = j ; ^ n ^ ( X j - X y 

J=l 

t "v _ 

g-2 

8-3 

The mean squares between and the mean squares within each distribution are thus 

calculated as: 

MS, = SS, /(k -1) 8-" 

M S „ = S S J ( N - k ) S-5 

where N is the total number of observations across all distributions. 

The value of the F-statistic measured the statistical significance of the difference 

between the SPE and quiet period means and allowed points in time at which the two 

distributions were most different to be identified. 

8.2 Results 

8.2.1 Behaviour of Solar X-rays 

Figure 8-1 displays flux time plots for the detrended XS and XL x-ray fluxes and the 

XS/XL ratio for -720 hours to +48 hours relative to each SPE and quiet period. Figure 

8-2 plots the F-statistic as a function of time for the XS, XL and XS/XL distributions. 
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and shows the statistical significance of the difkrence between the SPE and quiet period 

averages. 

It can be seen from Figure 8-1 that the x-ray fluxes and ratio for the SPE case have a 

significant peak at close to time zero due to the x-ray flares that the SPEs are associated 

with. The average x-ray ratio and fluxes for the SPE case appear to rise from 

approximately 240 hours prior to event occurrence, whereas no similar increase is 

present in the quiet case. A study of the F-statistics in Figure 8-2 shows the two 

distributions to be significantly different in the means to a 99% confidence level from 

approximately 140 hours prior to occurrence. A rise in solar x-ray flux over several days 

prior to SPE occurrence has not been previously documented and would appear to be a 

new result. 

It can be noted that the models developed in the previous chapter used inputs from -120 

hours to -48hours, and this does appear to be a prime period during which the SPE and 

quiet period distributions are significantly different. 

A comparison between the XS, XL and XS/XL ratio channels in Figure 8-1 shows a 

more consistent separation of the distributions in the XS and XL fluxes than in the ratio. 

In particular, quiet periods in the ratio show a greater level of variation than in either the 

XS or XL channels, and this appears to be why the F-stadstic is lower for the x-ray ratio 

at some points close to the event occurrence time (e.g. at approximately -90 and -50 

hours). 

To some extent Figure 8-1 also indicates a small peak in the SPE x-ray flux at around 

700 hours prior to occurrence. This is approximately 27 days (the solar rotation period) 

prior to occurrence, and may indicate that the activity at time zero is related to a 

recurring active region. A study of the F-statistic shows that the degree of separation 

between the two distributions at around -700hours is significant, and is strongest in the 

x-ray ratio. It would generally appear that the x-ray ratio is more volatile than the XS or 

XL fluxes. 
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Figure 8-1 Average value of detrended XS, XL and XS/XL x-ray ratio prior to SPEs and quiet 

periods. Error bars denote standard error, and for clarity are only displayed for the SPE case. 
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Figure 8-2 F-statistic plotted as a function of time for the XS, XL and XS/XL ratio showing the 

significance of any difference between the SPE and quiet period average. 
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The variation in x-ray intensity as a function of central meridian distance is presented by 

Donnelly et al. and shown in Figure 8-3. It shows that for a Central Meridian Distance 

(CMD) angle of less than 90 degrees the measured x-ray flux is relatively independent of 

the x-ray source location [DonneZ/y aW 1990]. 100% of x-ray emissions will 

reach the observer right up until the source has rotated past the solar limb, at which point 

attenuation occurs rapidly. 

The GOES x-ray detectors measure x-ray flux 6om the entire solar disk, but 98% of this 

flux is known to be contributed from active regions 1988]. As 98% of the 

solar x-ray flux is composed &om active regions, and as the solar x-ray flux is not 

attenuated until sources reach the solar limbs, the GOES x-ray flux is predominantly a 

measure of active region emission over time - a fact that does not seem to have been 

stated in any other study. This means that the x-ray flux behaviour in Figure 8-1 is 

predominantly due to changes in active region emissions rather than the changing CMD 

of the x-ray source. The behaviour of the solar x-ray flux prior to SPEs, i.e. a general 

increase in flux over time, could therefore be explained by the notion of a developing 

active region that reaches an activity peak at the time of an SPE. The GOES 

measurements cannot of course distinguish between contributions from active regions 

that are present on the solar disk at the same time. 
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Figure 8-3 Dependence of transmitted solar emissions on the central meridian distance for different 

wavelengths as presented by Donnelly et al. [Donnelly and Puga, 1990] 

104 



THE DEVELOPMENT OF A SOLAR PROTON EVENT PREDICTION MODEL 

Figure 8-4 shows the variation in the SPE and quiet period averages over a time span of 

+3 solar rotations (81 days) relative to the time of occurrence. The relatively sudden 

increase in x-ray flux for the SPE case at around -10 days could be due to the 

reappearance of an active region on the eastern limb (at a CMD angle of -90°) which 

would rapidly switch from 0 to near 100% transmission based on the dependence shown 

in Figure 8-3. 

It can be seen that there is an apparent peak in the SPE case for all 3 plots, centred at 

around -27 days, again supporting the theory that activity at time zero is related to a 

rotating active region. There is no significant difference between distributions at greater 

than one solar rotation prior to occurrence however, indicating that any recurrence in x-

ray activity is limited to the most recent solar rotation. The separation between the SPE 

and quiet period averages is similar in all of the x-ray channels. 
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Figure 8-4 Variation in average XS, XL and the XS/XL ratio for SPEs and quiet periods over the 
period -81 to + 81 days relative to each event. Error bars denote standard error and for clarity are 

only plotted for the quiet case. 
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8.2.2 The Behaviour of Solar Radio Flux 

Figure 8-5 plots the SPE and quiet period averages for the 2800Mhz solar radio flux 

between ±81 days relative to event occurrence time. F-statistics for the distribution are 

given in Figure 8-6. 

The average radio flux associated with SPEs exhibits a strong 27-day periodicity, 

passing through a maximum at time zero (the time of the SPE) and at 27-day intervals 

either side of time zero. The periodic fluctuation is clearly visible for 2 solar rotations 

prior to the event to 1 solar rotation post event. The F-statistic (Figure 8-6) near to the -

52, -27, 0 and +27 day points shows the distributions to be different in the mean to a 

greater than 99% certainty. The SPE radio peak at t ime zero is larger than the 

neighbouring peaks. SPE occurrence has not previously been associated with peaks in a 

27-day periodicity in the solar radio flux, and this would appear to be another new result. 

The radio flux associated with quiet periods also exhibits an approximate 27-day 

periodicity. Figure 8-7 displays the same data after normalising each example in the 

dataset, and rules out the possibility that the peaks are simply due to a handful of large 

examples weighting the 'SPE case' average. After normalising, distinct peaks are still 

seen at ± 27 days &om the time of an SPE, and the f lux associated with non-SPE 

examples is near a minimum at time zero. The high values of the F-statistic in Figure 

8-6 indicate a significant separation of the distributions at certain points in time, and 

suggest that the radio flux may be a good predictor variable for the classification model. 

The behaviour of the SPE radio flux could be explained by the concept of a long lived 

active region which develops and decays over several solar rotations, producing an SPE 

when it is at a maximum activity level. By contrast, quiet periods may be associated with 

times at which there are no significant active regions on the earth facing solar disk, 

corresponding to a minimum in the averaged radio flux. Note that after +27 days the 

SPE and quiet period averages are not significantly different, which could be due to the 

decay of SPE-associated active regions, and/or the development of active regions at 

previously 'quiet' heliolongitudes. The idea of a developing active region being 

associated with an SPE is supported by findings from Mursula and Zieger, who show 

that solar stream structures (from the magnetic fields of active regions) have a lifetime of 

around 4 solar rotations Zzeger, 1996]: this lifespan is directly consistent 
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with the SPE-case of Figure 8-5 that exhibits four peaks between -54 and +27 days, and 

certainly suggests that active regions are the cause of the periodicity. 

-SPE Average 

-QP Average 

Relative Time / Days 

Figure 8-5 Variation in average detrended solar radio flux for SPEs and QPs for -81 days to +81 

days relative to each event. Error bars denote standard error. 

-27 0 27 

Relative Time / Days 

Figure 8-6 F-statistic plotted as a function of time for solar radio data, showing the statistical 

significance of the difference between the SPE and QP average. 
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-27 0 27 
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Figure 8-7 Variation in average detrended solar radio flux for SPEs and QPs after normalising each 

example in the dataset. 

The variability in the solar radio flux over the 27-day solar rotation can be partly 

explained by the optical thickness properties of the solar atmosphere shown in Figure 

8-3. A constant power radio source will be attenuated significantly as soon as it drifts 

beyond 30 degrees of the central meridian distance, and will be attenuated by a factor of 

0.5 by the time it reaches the solar limb. Clearly, a 27-day periodicity can be explained 

by a constant power source in conjunction with a varying CMD angle. 

However, the radio flux plots in Figure 8-5 show the average solar radio flux to be at a 

maximum at the time of an SPE, when it is highly unlikely that the active regions 

producing the SPEs will be at a central CMD location. (Shea and Smart {Shea and 

Smart, 1994] show that most SPEs occur west of 60° heliolongitude, indicating radio 

attenuation factors of at least 0,65 from Figure 8-3). 

If radio flux maxima at time zero are assumed to emanate from predominantly limb-

situated active regions it means that the observed variation in solar radio flux must be 

due to variations in the emitted flux as well as the varying CMD of the source location. 

The fact that a radio flux peak is seen even though the emitted flux is probably 

attenuated by a factor of -0.65 indicates that at the time of an SPE the emitted flux is 

high enough to negate the increased attenuation from the solar atmosphere. Studying 

Figure 8-5, the central peak is placed approximately 2-days to the left of time zero. This 
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could be explained by an active region that reaches the solar central angle - 2 days prior 

to time zero (giving maximum transmitted flux) and then produces maximum emitted 

flux (associated with an SPE) at time zero after it has passed the central CMD. 

With the ability to measure radio flux spatially from a single active region alone a 

correction could be applied for the observer location angle which may yield a better 

correlation between radio flux peaks and SPE occurrence. The current radio flux data 

contains a variation due to changing CMD angle and a variation due to the source 

emission flux changing, but these are currently inseparable because measurements are 

not spatially resolved. Given that a radio flux peak is seen despite a probable attenuation 

of -0 .65 the emitted flux must be very high at that time, therefore removal of the 

observer location dependency may reveal a better defined peak in the radio flux that is 

highly correlated with the occurrence of an SPE. 

The existence of radio flux peaks at 27-day intervals prior to and aAer the occurrence of 

an SPE provides new evidence for a strong association between SPEs and the 

development of an active region. The finding is in direct agreement with Chakravorti et 

al, who studied the relation between active region characteristics and SPE occurrences 

based on 171 proton events observed between 1966 and 1984 Day, 

awf 1991]. The Chakravorti study plotted the daily solar radio flux as a 

fimction of time for ±7days relative to the occurrence of an SPE and found the radio flux 

from active regions to pass through a maximum on the day o f an SPE in 70% of cases. 

The study did not however consider the behaviour of the radio flux over longer periods, 

and the results of Figure 8-5 are the first time that SPE occurrence has been shown to 

coincide with peaks in a 27-day periodicity in the solar radio flux. 

Figure 8-5 does of course plot the 'average' case for the SPE examples. In order to 

better quantify the correlation between SPES and radio flux peaks, the time between a 

local radio flux peak and the occurrence time of an SPE was found to the nearest day for 

149 SPEs occurring after 1986. Data was binned and the histogram in Figure 8-8 shows 

the percentage of SPEs in the dataset as a function of the t ime from any local radio flux 

maximum. Figure 8-9 plots the same distribution as a cumulative 6equency graph. 
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Figure 8-8 Histogram showing percentage of SPEs that occur within 'X' days of a local radio flux 

maximum. 
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Figure 8-9 cumulative frequency plot showing percentage of SPEs that occur within 'X' days of a 

local radio flux peak. 

It can be seen that over 25% of SPEs occur within ±1.5 days of a local radio flux peak, 

and 51% of SPEs occur within ±4.5 days of a local radio flux peak (taking into account 

the bin widths). The correlation is not as high as that reported by Chakravorti et al. 

(70%), but still shows a clear correlation (the difference in results may be due to the fact 

that Chakravorti used spatially resolved measurements from individual active regions, 

although the study is not specific in its exact source of data). If the radio flux peaks 

belong to a 27-day periodic fluctuation, then this means that over half of the SPEs occur 
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within a time frame of 4.5/27*100 = 17% of the period. Theoretically, knowing when 

the last radio flux peak occurred it would be possible to calculate when the next peak 

will occur, and assign an SPE risk of occurrence at this time. This assumes however that 

a 27-day periodicity continually exists in the radio f lux, and evidence for this is 

inconclusive, as discussed below. 

A study by Kane et al. examining the variation of solar variables in relation to the solar 

rotation period found the 10.7cm (2800Mhz) solar radio power flux spectra to exhibit 

peaks at 24.6, 18.2 and 14.3 days, although no degree of statistical certainly is attributed 

to the findings [ATa/zg, a W Trh/gcfz, 1995]. It is also difficult to view these 

figures as a good indicator of the periodic behaviour o f the solar radio flux as the 

analysis was based on only 128 days of data, which is only 5 solar rotations, and is veiy 

small compared to the evolutionary timescale of the 11 year solar cycle . 

Whilst there is some evidence 6 o m other studies for a near 27-day periodicity in the 

solar radio flux (e.g. a W f z/ga, 1990]), the strong 27-day periodicity of Figure 

8-5 could be due to the fact that the analysis is a superposed epoch analysis. Figure 8-5 

was created by averaging superimposed extractions for 253 SPEs over an approximate 

35 year span, synchronising each SPE occurrence at a point in time. In reali^, active 

regions are known to occur simultaneously, giving rise to periodicities other than a 

simple 27-days. (For example, Mursula and Zieger examined the power spectra of a 

number of solar variables over a 20 year time span and concluded that 13.5 day 

periodicities were the result of two solar active regions approximately 180 degrees apart 

awf Zfeggr, 1996]). It is possible that significant 27-day periodicities exist 

only when emissions are dominated temporarily by a single active region lasting a few 

solar rotations, and this may explain why a 27-day periodicity was not dominant in 

Kane's study. 

8.2 J Performance Comparison of Predictor Variables 

Examination of the radio and x-ray flux has given a useful visualisation of the predictor 

variable behaviour and has identified points in time that can offer optimal potential as 

inputs to the classification model. In this section, models were tested with different 

predictor variables, chosen based on their F-statistics. 

For each predictor variable (XS, XL, XS/XL and the radio flux), 3-hour time intervals 

between - 7 2 0 and —48 hours were ranked by the F-statistic. (24 intervals were chosen so 
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as to be consistent with the models developed in the previous chapter, which took input 

vectors of 24 elements in the form of 3-hour averages over the 72-hour input window). 

Table 8-1 shows the top 24 time intervals for each predictor variable, ranked according 

to their corresponding F-statistic. 

XS XL XS/XL Radio 

Time/Hours F-stat Time/Hours F-stat Time/Hours F-stat Time/Days F-stat 

-120 yp.pj -114 7P.22 -120 7 7 . 2 8 -3 2 7 6 9 

-96 -117 77.49 -126 7 7 . 7 6 -4 2 2 5 8 

-123 yy.pj -120 77.33 -96 7 6 . 7 9 -5 2 2 3 5 

-117 77.77 -105 77.27 -78 76 .77 -6 78.27 

-105 77.jp -96 77.02 -123 7 6 . 3 7 -28 7 6 8 0 

-126 7 1 8 6 -111 7d.28 -102 7 6 . 2 0 -27 75.84 

-102 7^.82 -66 75.69 -150 75.97 -7 7 4 8 8 

-111 7^.JP -123 75.53 -171 7 4 . 7 6 -29 73.98 

-78 7 4 -93 75.29 -54 7 4 . 4 4 -30 73.90 

-150 7 4 2 7 -69 7 4 7 2 -168 7 3 . 8 3 -26 73.76 

-75 7 J. 22 -90 73.94 -117 7 2 9 4 -31 7 2 4 7 

-54 7 2 -108 73.67 -606 7 2 6 0 -8 77.82 

-168 7 2 J 7 -72 73.44 -174 7 2 J 6 -25 70.99 

-114 7 2 7 8 -75 73.09 -105 77. J 2 -32 70.23 

-93 7 2 0 0 -87 77.48 -75 70. -57 9.23 

-99 77.P7 -99 70.68 -99 70 .39 -9 9.77 

-72 77 . j7 -126 70.62 -222 9 . J 4 -24 8.70 

-108 77.28 -102 70.37 -144 9 . 2 9 -55 8.20 

-69 77.72 -84 70.33 -324 9 . 2 2 -58 8.79 

-171 7 7. OP -78 9.78 -111 9 .7 J -33 8.07 

-66 70.35 -63 9.58 -147 8 . 6 3 -56 7.82 

-144 &PP -150 8.93 -702 7 .8 J -10 6.68 

-51 8.54 -51 8.76 -654 7 .67 -59 6 3 9 

-174 8.50 -168 8.64 -720 7 .44 -54 6 3 4 

Table 8-1 Top 24 time intervals for each predictor variable ranked according to the F-statistic. 
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An MLP network classification model was created for each predictor variable in 

conjunction with a principal components analysis, and the first 6 principal components 

of the transformed predictor dataset were used as inputs to the network. Models were 

trained on 60 SPEs and 60 Quiet Periods and tested with the remaining 37SPEs and 113 

Quiet Periods. In addition to creating a model for each o f the predictor variables in 

Table 8-1, two further predictor sets were created. The first combined the XS and XL 

values by using the first 12 ranked time intervals of each o f the XS and XL predictors; 

the second combined the XS/XL ratio and the solar radio f lux by taking the top 12 

ranked time intervals from each predictor. It can be noted that some of the inputs are 

actually &om the time of the previous solar rotation (around - 7 0 0 hours). Table 8-2 

gives the average and standard deviation in performance of each MLP model 

configuration. 

Inputs Classification Success / % t o 

Blanket XS/XL Ratio 62.6 ± 5.0 

XS 61.9 ±3.4 

XL 59.8 ±3.5 

X S a n d X L 6 1 . 7 ± 2 . 9 

XS/XL Ratio 64.7 ±2 .6 

Radio Flux 58.8 ±3 .7 

XS/XL Ratio and Radio 
Flux 

63.3 ±3 .4 

Table 8-2 Average performance of MLP classification models using different predictor variables as 

inputs. Uncertainty is one standard deviation. 

It can be seen that all o f the predictor variables generated very similar performance, with 

differences between models all being within one standard deviation. 

The figure for the blanket XS/XL ratio denotes the MLP model from the previous 

chapter which used inputs from - 1 2 0 to - 4 8 hours. The performance of this model is 

only marginally below the performance average for the XS /XL inputs chosen via the F-

statistics. This is probably because the blanket input vector already included the 

m^ority of time intervals with high F-statistics, and coupled with a principal 
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components analysis, the negative effect of any 'poor' inputs on performance is also 

reduced. 

The XS and XL predictors gave similar performance, but were slightly inferior to the x-

ray ratio. This is a little surprising as the individual XS and XL channels generally 

exhibited higher F-statistics than the XS/XL ratio, as can be seen in Table 8-1, The ratio 

may be beneficial due to some form of coupling between inputs that is not readily visible 

from the graph but is exploitable by the network. 

Use of the radio flux data as inputs generated the worst performance, which is surprising 

considering the relatively high F-statistics and seemingly large differences between the 

SPE and quiet period distributions in Figure 8-5. The reason for the comparatively poor 

performance must stem from some inseparability of the SPE and QP distributions. The 

F-statistic for the radio data is lent significance from the relatively large sample size, 

which reduces the uncertainty in the sample mean (i.e. the standard error) but 

examination of the standard deviation shows that there is still significant scatter about 

the SPE and quiet period means. Figure 8-10 plots the radio flux curves with error bars 

denoting standard deviation as opposed to standard error, where it can be seen that the 

distributions are no longer clearly separable. 
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Figure 8-10 Variation in average detrended solar radio flux for SPEs and QPs for -81 days to +81 

days relative to each event. Error bars denote standard deviation. 
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The same is true of the other predictor variables too, as is borne out by Figure 8-11 

which shows the standard deviation as error bars on the SPE and quiet period cases for 

the XS/XL ratio. 

— S P E Average 

— QP Average 

XS/XL RATIO — S P E Average 

— QP Average 

° -0.4 

S -0.6 < 

-720 -672 -624 -576 -528 -480 -432 -384 -336 -288 -240 -192 -144 

Relative Time / Hours 

-48 0 48 

Figure 8-11 Variation in average XS/XL ratio as a function of time for SPEs and quiet periods. 

Error bars denote standard deviation. 

Whilst the means of the distributions can be shown to be significantly different, there is 

still a high degree of scatter about the means, meaning that the distributions are not 

readily separable. This is undoubtedly the fundamental reason why classification ability 

is limited to the low 60% level: the inseparability is an inherent property of the dataset. 

8.3 Summary 

This chapter has visualised the behaviour of different predictor variables for the cases of 

SPEs and quiet periods and has performed a statistical analysis in order to quantify 

differences between the distributions. The effectiveness of different predictor variables 

has been compared by utilising them in MLP classification models, and the performance 

has been explained with respect to the properties of the predictor variable distributions. 
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Although GOES x-ray detectors measure flux &om the full solar disk, this is almost 

totally composed of emissions from active regions. A s the solar x-ray flux is not 

significantly attenuated by CMD angles of <90 degrees it means that GOES x-ray 

detectors are monitoring the variation in active region emissions over time. 

Via the F-statistic it has been determined that the distributions for SPEs and quiet 

periods in XS, XL and the XS/XL ratio are significantly different in the mean to a 

greater than 99% certainty days before event occurrence. In the SPE case the average x-

ray flux (and ratio) rises in comparison to the quiet period case Grom around 140 hours 

prior to time zero. A variation in solar x-rays over a timescale of days has not been 

previously documented in association with SPEs, and this is a new result. 

Small peaks in the x-ray fluxes and ratio for the SPE case are present at around - 7 2 0 

hours, suggesting that the activity at time zero is recurrent and related to a developing 

active region. Evidence in solar x-rays for SPEs being related to recurring active regions 

has not been published elsewhere. 

The average radio flux associated with SPEs exhibited a strong 27-day periodicity, 

passing through a maximum at the time of the event. This is the first time that SPEs 

have been associated with a 27-day periodicity in the solar radio flux, and builds on the 

findings of Chakravorti et al. who also found the solar radio flux to peak on the day of an 

SPE 1991]. 

The 27-day recurrence in radio activity for the SPE case suggests that SPEs are related to 

active regions which develop over several solar rotations. This is supported by Mursula 

and Zieger, who found solar stream structures firom active regions to last for around 4 

solar rotations [MwrWaaWZfegg/', 1996]. 

Analysis of the SPE dataset found 51% of SPEs to occur within 4.5 days of a local radio 

flux maximum, but the presence of any permanent 27-day periodicity in the solar radio 

flux has not been ascertained. Kane et al. did not find a 27-day periodicity to be 

dominant in samples of the solar radio flux, but this may have been due to small sample 

sizes [XoTze, a W Trfvecf;, 1995]. Equally, the 27-day periodicity may only be 

present for a few solar rotations when SPE producing active regions are developing. 

An examination of the 2800Mhz solar radio flux for the cases of SPEs and quiet periods 

has shown the SPE case average to differ significantly in the mean 6 o m the quiet period 

case up to two solar rotations prior to event occurrence. The average radio flux for quiet 
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periods was found to be lower than that associated with SPEs, and was found to pass 

through a minimum at close to the time of the quiet period. 

Selection of inputs using the F-statistics was found to give a small but not significant 

improvement to performance. A model using blanket inputs o f the XS/XL ratio between 

-120 and - 4 8 hours gave a 62.6% average classification success compared to 64.7% for 

XS/XL inputs chosen using the F-statistic. The blanket input model probably performs 

comparably because the m^ority of time intervals within the blanket input already have 

high F-statistics. Use of a principal components analysis has also minimised the 

negative contribution from any 'poor' inputs. 

A comparison of predictor variables showed minimal difference in performance between 

input types. The XS/XL ratio was found to give the highest classiGcation success of 

64.7%, and radio data was found to generate the lowest classification success of 58.8%. 

Combining radio and XS/XL inputs was not found to be beneficial. 

Performance is thought to be limited to around the low 60% level due to the inherent 

inseparability of the SPE and quiet period distributions. The distribution averages have 

been shown to be significantly different to a high level of conGdence (lent by the large 

sample sizes), but scatter about the means is very high and generates significant overlap 

of the distributions. 

Whilst performance of the classification technique appears to be limited to around the 

60-65% level, such a degree of success is still an achievement considering a 48-hour lead 

time and the fact that a discrete x-ray flare is not needed as an input. A figure of >60% 

is still in line with recent ESA guidelines for SPE prediction requirements, and such a 

technique may still be useful for applications where the negative consequences of wrong 

predictions are small. 
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9. REAL TllVIE IMPLEIVIENTATION OF CLASSIFICATION IVIODEL 

A main goal of the research activity was to produce a real t ime SPE prediction tool. This 

chapter describes the implementation of MLP networks within a real-time JAVA 

soAware &amework and assesses their performance and behaviour over a 12-month 

period by using skill scores developed 6 o m terrestrial weather forecast models. The 

results and behaviour of the classification forecasting approach are explained further by 

considering the effects of solar x-ray flares, Wiich are found to exhibit similar 

'precursive' behaviour to SPEs. 

9.1 The Real Time Model 

A real time model was created by configuring the optimal MLP neural network model 

developed in chapter 7 to use real-time data &om the GOES satellites. The model took 

3-hour averages of the logio detrended GOES XS/XL ratio over a 72-hour period to form 

an input vector. The first 6 principal components of the transformed input vector where 

than taken as inputs to the network in order to make forecasts with a 48 hour lead time. 

Earlier testing showed this model to have a 62.6% classification success rate. 

Although in chapter 7 RBF models were found to have slightly superior performance to 

MLP models they were part of a larger analysis package called TSAR, ("id the RBF 

networks could not be extracted as stand alone objects. B y contrast, MLP models 

developed in Neu&ame could be extracted as raw code and oGered a faster and easier 

way of incorporating models into a real-time framework. The performance difference 

between MLP and RBF models was shown to be of the order o f 3%, which is within one 

standard deviation of the natural variation. The choice of model type is therefore not 

thought to be significant. 

Models using inputs selected using the F-statistic in Chapter 8 were examined after the 

real-time model had been developed, and hence were not available for consideration. 

(However, it was shown in Chapter 8 that models using the XS/XL ratio chosen using 

the F-statistic were only 2% better than the blanket ratio input, therefore any 

performance gain from using the F-statistic in a real-time model will again not be 

significant). 
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9.1.1 Software Architecture 

One of the principal requirements of the model vyas the retrieval of remote data in real 

time. This led to the software being written in JAVA due to its superior ability to handle 

internet connections. JAVA also has the benefit of being non-platfbrm specific. 

The software was denoted 'Predictor of Proton Events' (POPE) and was written as a 

stand-alone program in accordance with ESA software standards for small projects*. 

POPE was designed so that prediction models could be 'bolted' to a real-time retrieval 

6amework with minimal effort, therefore f^ilitating the implementation of any other 

prediction models at a future stage. Compliance with ESA software standards 

necessitated the creation of a software specification document and a user requirements 

manual. These can be found in Appendices G and H and give a detailed presentation of 

the software architecture and specific code modules. A schematic diagram of the 

software process is given in Figure 9-1. 

The prediction model within POPE consisted of 10 MLP models acting in parallel to 

form a multiple model configuration. The distinct tasks carried out by POPE can be 

broken down as follows: 

# Retrieval of real-time GOES satellite data from a remote ftp site. 

# Creation of a continuous data file made by stitching together several GOES data 

files. 

# Detrending of x-ray data to remove the long term solar cycle trend. 

# Creation of a delay vector from continuous GOES x-ray data. 

# Pre-processing of the delay vector (normalising, PCA and scaling) 

# Running a neural network with the processed delay vector as an input. 

# Interpreting and recording the network outputs and other information relevant to each 

prediction. 

ESA Software Standard PSS-05 
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Figure 9-1 Schematic diagram of real time model process. 

POPE places the process within a control loop which repeats every 60 minutes, creating 

predictions along a rolling time line at the rate of 1 per hour. The repeating interval was 

chosen so as to be smaller than the resolution to which the start times of SPEs were 

found in the training dataset. (The start times of SPEs were found to the nearest 2-hours). 

Each time the model runs the output file records the numerical output from each of the 

10 component MLP networks and, using a decision boundary of '50% records the 

number of networks &om 10 that are predicting an SPE 48-hours 6 o m the run time. A 

thorough description of the POPE output can be found in the user manual in the 

appendix. 
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POPE was put into real-time operation during December 2001 utilising x-ray ratio data 

from the GOES-8 satellite as inputs. Since then approximately 12-months of output data 

has been generated, allowing an initial assessment of operational performance to be 

made. 

9.2 Performance of the Real Time Model 

The predictions made by POPE between 3/12/01 and 16/12/02 have been assessed by 

breaking down the observed proton flux time series into a binary time series of SPES 

and Quiet Periods with 1-hour resolution. The observed series has then been compared 

against the POPE forecast. Within the training set the start times of SPEs had been 

found to the nearest two hours, hence the predictions from the POPE model had a lead 

time of 48-hours, ± 2 hours. 

9.2.1 Method 

The output from POPE that was used to assess its performance consisted of an integer of 

between 0 and 10, representing the number of networks from 10 which had an output of 

>50, i.e. the nimiber of networks &om 10 which were predicting an SPE in 48-hours 

time. This is a 'm^ority vote' output, \\%ich was shown previously to be superior to a 

single network. 

Over the period of operation 1-hour resolution GOES-8 proton data was examined and 

an SPE was defined as occurring if the hourly averaged >10MeV integrated proton flux 

was greater than 1.0 p.f u. for 12 consecutive hours. This is consistent with the way in 

which SPEs were defined in the original training set. The start time of each SPE was 

taken as the time at which the hourly averaged proton f lux was Grst above 1.0 p.fu. 

SPEs were identified as ending when the hourly averaged >10MeV integral proton flux 

fell below 1.0 p.fu. for 12 consecutive hours. The POPE prediction for each SPE was 

taken as the highest output from the model from within ± 2 hours of the SPE start time. 

Data collected during an ongoing SPE was ignored, thus the POPE model was assessed 

on its ability to predict the initial onset of an SPE. 

Observed values with a >10MeV hourly averaged proton flux of less than 1.0 p.fu. 

which occurred at least 6 hours after the end of an SPE were classed as instances of quiet 
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periods. The prediction for each quiet period was taken as the highest output from the 

model from within ± 2 hours of the quiet period. 

Outputs from the POPE model were only utilised if they were based on an input delay 

vector that did not contain a significant amount of missing data (due to data gaps &om 

GOES). An input vector was deemed unsuitable if any of its component 3-hour averages 

contained more than 50% missing data. 

The 48-hour forecast from the model was matched to each observed value of the hourly 

averaged >10MeV integrated proton flux. The forecast consisted of an integer of 

between 0 and 10 and the threshold used to interpret the forecast was altered in order to 

examine the effect on SPE and quiet period classification success rates. 

Statistic Definition 

Prob. of Detection 'Yes' PODy a/(a+c) Proportion of 'Yes' observations that 
were correctly forecast 

Prob. of Detection 'No' PODn d/(d+b) Proportion of 'No' observations that 
were correctly forecast 

False Alarm Ratio FAR b(a+b) Proportion of 'Yes' forecasts that were 
incorrect 

Bias (a+b)/(a+c) Ratio of number of 'Yes' forecasts to 
number of 'Yes' observations 

Critical success index CSI a(a+b+c) Proportion of hits either forecast or 
observed. 

True Skill Statistic TSS PODy+PODn-1 Measures ability to discriminate 
between 'Yes' and 'No'. 

Heidke skill score HSS (a+d-Ci)/(N-Ci) Percent correct, corrected by those 
expected correct by chance 

Gilbert skill score GSS (a-Cz)/ (a+b+c-Ci) CSI, corrected by number of hits 
expected by chance(C2). 

Where: N A+b+c+d Total number of events 

Ci C2+(b+d)(c+d)/N Number expected correct by chance 

C2 (a+c)(a+b)/N 

a 

b 

c 

d 

Number of hits expected by chance 

Number of Hits ('Yes' forecast and 
'Yes' observed) 

False Alarms ('Yes' forecast but not 
observed). 

Misses ('No' Forecast and 'Yes' 
observed) 

Correct Nulls ('No' Forecast and 'No' 
observed) 

Table 9-1 Description of statistics utilised to compute skill scores. (Taken from {Smith, Dryer, Ort, 

andMurtagh, 2000]) 
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The POPE model has been compared to the SEC 2-day forecast model over exactly the 

same operational period. The SEC 2-day forecast is based on human judgement and 

experience and consists of a probability of SPE occurrence in two days. In order to 

compare the models statistical skill scores have been calculated based on methods 

presented by Smith et al. who derive skill scores for an interplanetary shock prediction 

model D/yer, Orf, awf A&rfagA, 2000]. Skill scores are summarised in Table 

9-1. 

9.2.2 Results 

Since the commencement of real-time operation in December 2001 13 SPEs were found 

to have occurred. These are shown in Table 9-2 along with their observed fluence and 

the highest output from POPE within ±2 hours of the SPE start time. 

ID Start Time Duration / Hours Fluence / p/cm^ POPE Output 

1 26/12/01 6:00 49 3.54E+08 10 

2 29/12/01 5:00 17 2.35E+07 10 

3 30/12/01 21:00 119 2.33E+08 8 

4 10/01/02 20:00 67 1.03E+08 9 

5 18/03/02 13:00 32 3.23E+07 2 

6 21/04/02 2:00 113 2.84E+09 6 

7 22/05/02 18:00 44 1.05E+08 5 

8 16/07/02 18:00 46 1.02E4-08 1 

9 22/07/02 7:00 97 8.31E+07 Model Down* 

10 22/08/02 4:00 20 1.65E+07 Model Down* 

11 24/08/02 1:00 60 3.13E+08 10 

12 07/09/02 7:00 19 2.55E+07 10 

13 09/11/02 19:00 34 1.42E+08 9 

"Due to internet server losing connection to GOES data site. 

Table 9-2 SPEs identified during the period of real-time operation. 
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For two SPEs the POPE model was not running, but for the remaining 11 SPEs the 

POPE output was at least 6 in all but three cases. Using a m ^ o r i ^ vote of 5 or more to 

indicate an SPE, the POPE model correctly predicts 9 of the 11 SPEs. This indicates 

excellent SPE prediction ability, but a true measure of performance can only be made by 

considering the success rate for quiet period detection as wel l as SPE detection. 

6249 quiet periods were observed during the POPE operational periods and Table 9-3 

shows the classification success for each category for different threshold interpretations 

of the POPE output. (The POPE output is an integer from 1-10 indicating the number of 

networks that are predicting an SPE). 

Threshold >5for SPE >6 for SPE >7 for SPE > 8 for SPE >9 for SPE 

SPEs 6 o m 11 8 7 7 6 4 

QPs 6 o m 6249 2158 2711 3345 4120 5123 

SPEs / % 72.7 63.6 63.6 54.5 36.4 

Q P s / % 34.5 43.4 53.5 65.9 82.0 

Average / % 53.6 53.5 58.6 60.2 59.2 

Table 9-3 Classification success for real-time POPE model for different threshold interpretations of 

the multiple model output. Average success is shown in bold. 

A >5 threshold generates a high SPE classification rate (72.7%) but only identifies 

34.5% of quiet periods correctly, indicating that quiet periods tend to be misclassified as 

SPEs by the model. Optimal overall success of 60.2% is achieved when the threshold is 

set to >8, i.e. more than 8 of the 10 networks need to be predicting an SPE before the 

overall model output can be interpreted as an SPE forecast. The fact that a high 

threshold generates optimal average success indicates that the model has generally over 

predicted, meaning that the model has a tendency to generate high outputs for Quiet 

Periods. 

Varying the threshold used to interpret the multiple model output can act as a way to bias 

the output to specific user needs. If the consequences of a false alarm can be tolerated a 

lower threshold can be adopted to miss fewer SPEs, whereas if a low false alarm ratio is 

important a high threshold can be implemented with the risk of missing more SPEs. In 

real terms quiet periods occur far more frequently than SPEs. Observations during the 
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trial period indicate a ratio of 1:700 for their respective occurrence rates, hence a model 

that is biased towards correctly identifying quiet periods will be correct a larger 

proportion of times. 

The POPE model was based on 10 MLP neural networks which had an average 

classification success of 62.6% when exposed to the test set during development. 

Operational success is 60.2%, indicating that the models have performed comparably in 

real-time operation. This validates the success rates that were obtained during testing, 

although it must be noted that the sample size of SPEs in real-time operation is small and 

may not be an accurate measure of SPE prediction ability. 

Table 9-4 shows a contingency table for the POPE classification model using >8 as the 

decision threshold. The SEC 2-day forecast was examined over exactly the same 

operational period as POPE, and by categorising probabilities of ^ . 5 as an 'SPE' 

prediction and probabilities of <0.5 as quiet periods a direct comparison has been made 

between the two techniques. Table 9-5 is a contingency table for the SEC 2-day 

forecast. For completeness a contingency table for the PROTONS model is given in 

Table 9-6 but pertains to performance during the calendar year of 1989. 

POPE Model Event Observed POPE Model 

Yes No 

Event Forecast Yes 6 2129 Event Forecast 

No 5 4120 

Table 9-4 Contingency table for real-time operation of POPE model, Dec2001-Dec2002. 

SEC 2-Day 
Forecast 

Event Observed SEC 2-Day 
Forecast 

Yes No 

Event Forecast Yes 1 4 Event Forecast 

No 12 332 

Table 9-5 Contingency table for real-time operation of SEC 2-day SPE forecast, Dec2001 -Dec2()02. 
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PROTONS 
Model 

Event Observed 

Yes No 

Event Forecast Yes 17 16 

No 5 63 

Table 9-6 Contingency table for real-time operation of SEC PROTONS model during 1989 

[Heckman, Kunches, and Allen, 1991]. 

Table 9-1 summarises the statistical formulas as presented by Smith et al. for the 

appraisal of interplanetary shock prediction models based on a 2-categoiy forecast 

D/yer, Orr, 2000]. The statistical skill scores have been calculated 

for POPE based on the contingency table of Table 9-4 and are shown in Table 9-7. Skill 

scores have also been calculated for the PROTONS model and the SEC 2-Day forecast 

based on their respective contingency tables. The skill statistics serve as a formal method 

for model comparison, and can also be used to infer the behaviour of a model. 

Statistic POPE SEC 2-Day PROTONS 

Number ofHits ('Yes' forecast and 'Yes' 
observed) 

a 6 1 17 

False Alarms ('Yes' forecast but not 
observed). 

b 2129 4 16 

Misses ('No' Forecast and 'Yes' observed) c 5 12 5 
Correct Nulls ('No' Forecast and 'No' 

observed) 
d 4120 332 63 

Prob. of Detection 'Yes' PODy (1545 0.077 0.773 

Prob. of Detection 'No' PODn 0.659 0.988 0.797 

False Alarm Ratio FAR 0 997 0.800 0.485 

Bias 194.091 0 3 8 5 1.500 

Critical success index CSI 0.003 0.059 0.447 

True Skill Statistic TSS 0.205 0.065 0.570 

Heidke skill score HSS 0 002 0.092 0.483 

Gilbert skill score GSS 0.001 0.048 0.318 

Total number of events N 6260 349 101 

Number e)g)ected correct by chance Ci 4121.503 331.372 60.376 

Number of hits expected by chance C2 3.752 0.186 7.188 

Table 9-7 Skill score statistics for POPE and PROTONS calculated from contingency tables. 
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The skill scores for POPE in terms of the Critical Success Index (CSI), Heidke Skill 

Score (HSS) and Gilbert Skill Score (GSS) are all close to zero, which indicates poor 

performance, and indeed these values are lower than the same scores from the 2-day 

SEC forecast model. 

The reason why the POPE model generates low skill scores is predominantly due to the 

regime in which it operates. In the case of the POPE model SPEs account for only 0.14% 

of the total observations, meaning that it only takes a small percentage of Quiet Periods 

to be misclassifled to form a large proportion of the total SPE forecasts. For example, 

even if 99.9% of the 6249 Quiet Periods are forecast correctly, 6 Quiet Periods are still 

misclassifled as being SPEs, which equates to 50% o f the total number of SPE 

predictions. In fact. Table 9-7 shows a false alarm ratio of 0 .997 for POPE, which shows 

that 99.7% of SPE predictions were fWse alarms. The large imbalance between the 

number of observed SPEs and observed Quiet Periods means that the skill scores for 

POPE are highly sensitive to false alarms. The imbalance in SPE and QP outcomes is a 

property of the dataset though, therefore any model operating in such a regime is 

inherently likely to produce a large number of false alarms. 

The SEC 2-day forecast is the most directly comparable to the POPE model in that it 

predicts the likelihood of an SPE for the same lead time. The CSI, HSS and GSS skill 

scores for the SEC 2-day forecast are roughly an order o f magnitude greater than for 

POPE, apparently indicating superior performance, but the difference in skill scores can 

in fact be attributed to the difference in operating regimes between the models. The 

POPE model makes 24 forecasts per day, whereas the SEC forecast is issued only once 

per day. The result is that the POPE model must predict far more quiet periods (an order 

of magnitude more) than the SEC forecast for the same number of observed SPEs, hence 

POPE is inherently more likely to generate false alarms and thus generate lower skill 

scores. The order of magnitude difference in skill scores can be directly attributed to the 

order of magnitude difference between the QP:SPE ratio in the observed outcomes for 

each model. 

A fairer measure of 'skill' is given by the True Skill Score (TSS), which measures the 

ability of the model to discriminate between the two outcomes irrespective of the relative 

frequency of the outcomes in the observed distribution. It is not weighted by the total 
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number of correct predictions, but by the percentage of each category that is predicted 

correctly. It can be seen from Table 9-7 that POPE scores approximately 3 times h i ^ e r 

than the SEC 2-day forecast, indicating that it is in fact better at distinguishing between 

SPEs and Quiet Periods. In effect the SEC 2-day forecast predicts a Quiet Period in 

nearly all cases (as can be seen &om its contingency table) and only predicted 1 of 13 

SPEs during the trial period, hence it can never be regarded as a reliable predictor of 

SPEs. However, because nearly all days are Quiet Periods it actually means that the SEC 

2-day forecast is correct far more often than the POPE model, and this is why it scores 

well in the other skill statistics. In practice, the POPE model would be best suited to 

applications in which it is more important to predict SPEs than quiet periods, i.e. 

applications in which false alarms can be tolerated 

The PROTONS model is not directly comparable to the POPE model because it has an 

effective lead time of just 0-6 hours to SPE onset, but it does represent the best available 

forecast tool for SPEs at the moment in terms of prediction accuracy. The skill scores 

for PROTONS are higher than for POPE and the SEC 2-day forecast, although this can 

in part be attributed once again to a diSerence in operating regimes. The PROTONS 

model is run only after a significant x-ray flare has occurred, hence it is only run at times 

^^iien there is an increased likelihood of an SPE occurring (and hence a reduced 

likelihood of no SPE occurring) and it can be seen from the contingency tables that SPE 

occurrences make up 28% of observations for PROTONS, compared to just 0.14% for 

POPE. The more equal observed ratio of the two outcomes means that the PROTONS 

model is less prone to generating false alarms, and this is borne out by the false alarm 

ratio in Table 9-7, but the relatively good performance caimot be entirely attributed to 

the operating regime. The True Skill Score for PROTONS is still over twice that of 

POPE and shows that the technique is at least 'semi-intelligent' rather than just playing 

to the statistics of the observed distribution like the SEC 2-day forecast. 

The POPE model is better at predicting SPEs than the current SEC 2-day forecast, but 

the PROTONS model still represents the best model in terms o f forecast accuracy. 

The POPE model needs to be improved by reducing the number of quiet periods that are 

classified as SPEs whilst at the same time maintaining a high SPE detection rate. One 

method of doing this is to change the regime in which the model operates in order to 

better balance the ratio of observed QPs to SPEs: a lower frequency of predictions would 

result in fswer observed quiet periods for the same number of observed events. 
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However, given that the current model has been trained using input vectors &om exactly 

48-hours±2hours prior to event occurrence it is difficult to justi:^ a forecast repeat time 

that is greater than the resolution to which the SPE start t imes were found. Predictions 

made by POPE are effectively only valid for a 4 hour period, hence the minimum run-

frequency is 6 forecasts per day for continuous coverage of the timeline. Assuming that 

a 4 hour repeat cycle is adopted this would quarter the total number of forecasts from 24 

per day to just 6, but even so, based on contingency Table 9 -4 , around 500 misclassified 

Quiet Periods would still occur, which is over 80 times the number of observed SPEs, 

and would still result in a very high false alarm ratio. Rather than trying to alter the 

operating regime of POPE it is perhaps better to try and understand why the model 

produces so many false alarms in the first place. 

One advantage that POPE does have over existing forecasting techniques (both the 2-day 

forecast and PROTONS) is that it is completely autonomous and requires no 

supervision, 'decision to run' or other human input. The POPE model is not susceptible 

to the subjectivity of human judgement and can be left to run in the background with no 

requirement for an operator. This means that POPE has attractively low resource 

requirements and is easy to install and integrate within a space weather forecasting 

service. 

9.3 Summary 

This chapter has described the implementation of an MLP neural network model into a 

real-time framework and has assessed its performance as an operational SPE forecasting 

tool. The model was designated "Predictor of Proton Events' (POPE) and skill score 

statistics were used to compare the model against existing SPE forecasts made by the 

SEC. 

During a 12-month period between December 2001 and December 2002 11 SPEs 

occurred whilst the POPE model was operational. 6 of the 11 events (55%) were 

successfully predicted, as were 4120 of 6249 quiet periods (66%). 

The POPE model was compared to the SEC 2-day forecast over exactly the same 

operational period and was found to have a True Skill Score over 3 times greater, 

indicating a better ability to distinguish between SPEs and Quiet Periods. The POPE 
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model is an improvement over the existing 2-day lead time forecast for SPEs in that it 

has superior discrimination. 

The current 2-day SPE forecasts made by the SEC are strongly biased to Non-SPE 

prediction with virtually no SPE prediction capability, with the result that 1 of 13 SPEs 

(8%) and 332 of 336 quiet periods (99%) were forecast correctly over the operational 

period. The SEC 2-day forecast is nearly always a Quiet Period, hence is correct in 

nearly all cases, but the model has very little ability at forecasting an SPE. 

Despite a better true skill score, the POPE model output w a s found to be wrong more 

often than the 2-day SEC model by virtue of the fact that significantly more quiet periods 

than SPEs are present in the observed proton flux timeline. This observed distribution 

led the number of misclassified quiet periods to be very large in comparison to the 

number of correctly forecast SPEs and produced a very high false alarm ratio which 

governed the skill score statistics (other than the True Skill Score). 

The SEC PROTONS model still offers the highest accuracy for SPE forecasting with 

forecast success rates of 77% for SPEs and 80% for Quiet Periods respectively, but 

achieves this by trading lead time and imposing the pre-requisite of a solar x-ray flare. 

This compares to success rates of 55% and 66% respectively for 2-day forecasts made by 

POPE. 

The performance of the POPE model suffered due to the regime in which it operated. It 

was identified that the POPE model could be improved by reducing the number of false 

alarms as a fact ion of the total number of SPE predictions. 

The POPE model in its current form still offers significant potential as a real-time 

operational forecast tool and is superior to the current 2-day SEC SPE forecast. One 

signiGcant advantage of the POPE model is the beneGt o f being able to operate 

autonomously without the need for human input or supervision, which could be 

favourable in some applications. 
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10. CONSIDERATION OF X-RAY FLARES 

SPEs are known to have a strong association with solar x-ray flares, and this is borne out 

by the earlier result &om chapter 6 in which 91 of 98 SPEs could be temporally matched 

to x-ray flare occurrences. 

This high association between SPEs and solar x-ray flares means that when x-ray data 

was extracted based on the start times of SPEs, it was also, b y proxy, extracted about the 

time of a solar x-ray flare. No consideration of x-ray activity was made in defining the 

quiet periods within the training set, but it is probable that n o x-ray flares were present at 

time zero in the quiet period case. Consequently this means that during training the 

neural networks may have been learning to distinguish between the cases of 'x-ray flare' 

and 'no x-ray flare' as opposed to 'SPE' and 'non-SPE\ I f this is the case then it may 

explain the high false alarm rate of the real-time POPE model. The model may have 

been triggered into giving SPE predictions by the relatively common occurrence of solar 

x-ray flares. 

In order to test this hypothesis the POPE model has been tested with a large dataset of 

query inputs pertaining to times at which an x-ray flare occurred at time 0, but no proton 

event occurred. This has been contrasted with the model's response to an equivalent 

dataset of quiet periods which were selected at random with no consideration of x-ray 

activity. The behaviour of solar x-rays prior to x-ray flares has also been studied and is 

compared to the behaviour of solar x-rays prior to SPEs. 

To try and account for the occurrence of x-ray flares the POPE models were re-trained 

using quiet periods taken at the times of non-proton x-ray flares. In addition, the 

abundance of quiet periods in relation to SPEs in the observed data was reproduced 

within the training set to see if this improved the ability to predict quiet periods 

correctly. 

10.1 X-ray flare dataset 

As described in section 6.4 flare listings from the SEC allowed flare associations to be 

made for all SPEs occurring after 1986. These flare listings identified times at which x-

ray flares occurred but with no associated proton event. 
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Considering solar active years between 1986 and 1999, a total of 17731 x-ray flares of 

class X, M and C were recorded. 91 of these flares could b e associated with the onset of 

an SPE and were classified as being proton associated. A further 4840 flares were found 

to occur during an SPE, or within 3 days of the end of an SPE, and these were removed 

6 o m the dataset. The remaining 12800 flares were designated 'quiet flares' as they were 

associated with background levels of solar proton flux. The breakdown of the flares is 

given in Table 10-1 and Table 10-2. 

SPE associated Flares Quiet flares 

X-Ray Flare 
Class 

Number % of Sample Number % of Sample 

C 10 10.2 11400 89.1 

M 46 46.9 1327 10.4 

X 35 35.7 73 0.6 

No flare 7 7.1 -

Total 98 12800 

Table 10-1 Solar x-ray flares with SPE associations and no SPE associations occurring in solar 

active years between 1986 and 1999. 

X-Ray Flare 
Class 

Percentage of all 
Flares 

Percentage of Flares 
associated with SPEs 

Percentage of 
SPEs accounted 

for 

C 

M 

X 

All 

88.5% 

10.7% 

0.8% 

100.0% 

0.1% 

3.4% 

32.4% 

0.7% 

10.2% 

46.9% 

35.7% 

92.9% 

Table 10-2 Proportional breakdown of solar x-ray flares occurring in solar active years between 

1986 and 1999 with the proportion of SPEs that can be associated with them. 

The statistical breakdown of the sample shows that overall, whilst 92.9% of SPEs can be 

associated with x-ray flares, only 0.7% of x-ray flares can actually be associated with 

SPEs. The correlation is clearly not 1:1 hence SPEs caimot be predicted simply by 

successfully predicting a flare. 
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However, it is interesting to note as an aside that whilst X class flares constitute only 

0.8% of all flares, 32.4% of these flares can be associated wi th SPEs. This suggests that 

if X-ray flares could be forecast successfully it would f o l l o w that there is a 32.4% 

chance of an SPE also occurring. 

10.2 Model response to x-ray flares 

10.2.1 Method 

Using the x-ray flare listings from the SEC a test set o f 5843 quiet periods was 

constructed, consisting of detrended x-ray ratio extractions w i th a 'quiet flare' at time 0, 

1.e. an x-ray flare occurred at time 0 with no associated proton event. The proportion of 

flares within the test dataset was kept approximately equal to the sample proportions of 

Table 10-1 and is given below in Table 10-3. 

Quiet Flare Type Number of examples 

C 5184 

M 624 

X 35 

total 5843 

Table 10-3 Dataset of quiet flares for which predictor data was extracted. 

A further 3000 examples were generated by selecting times at random between 1986 and 

1999 and extracting detrended x-ray ratio values. These examples represent times at 

which no attempt has been made to place a solar x-ray flare at time 0 in the extraction 

window. The POPE model was queried with the 'quiet flare' dataset and the 'random 

quiet period' dataset and the classification success rates were compared. 

10.2.2 Results 

The POPE output was interpreted using a threshold o f >8 , this being previously 

identified as optimal in section 9.2.2, i.e. as long as 2 or more networks were indicating a 

quiet period, the overall response from POPE was taken as a quiet period. Results are 

given in Table 10-4. 
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Quiet Flares Successfully Random Quiet Periods 
Forecast as QPs Successfully Forecast as QPs 

X Flares 60.0% 

M Flares 59.1% 

C Flares 66.1% 

Total 61.8% 90.5% 

Table 10-4 POPE performance with test set of 5843 quiet flares and 3000 random quiet periods. 

A comparison of success rates indicates that quiet periods that coincide with flares are 

often misclassified as SPEs whereas times at which there is no x-ray flare are 

successfully predicted as quiet periods. 

When examining the classification rates by flare type there is little difference in success 

rates, indicating that even small flares cause the model to forecast an SPE. For the 

randomly selected quiet periods it can be assumed that there is generally no flare at time 

zero, and in these cases classification success is very high at >90%. The result indicates 

that it is highly likely that the large number of false alarms produced by the POPE model 

are caused by x-ray flare precursors being wrongly identified as SPE precursors. 

10.3 Retraining with quiet flares 

A possible solution to x-ray flares being falsely interpreted as SPEs is to re-train the 

POPE models with quiet periods specifically taken at the times of x-ray flares in the 

hope that the network can learn to differentiate between 'quiet flares' and x-ray flares 

associated with SPEs. 

103.1 Method 

A dataset was constructed using 98 SPEs and 660 'quiet flares' occurring in solar active 

years between 1986 and 1999. The ratio of flare categories within the quiet flare dataset 

was kept approximately equal to that in the observed sample o f Table 10-2. The dataset 

was divided into a training and a test set in which the ratio o f SPEs to quiet periods was 
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kept at 1:1 in the training set. A breakdown of the dataset set is given below in Table 

10-5. 

SPE Dataset Quiet Flare Dataset 

Train Query Total Train Query Total 

X flare association 21 14 35 1 10 11 

M Flare association 28 18 46 7 70 77 

C Flare association 6 4 10 52 520 572 

No Flare association 4 3 7 - - -

Total 59 39 98 6 0 600 660 

Table 10-5 Dataset proportions on which the POPE networks were retrained. 

10 permutations of the training and query sets were used to retrain and test the 10 

component MLP networks of POPE. 

10.3.2 Results 

The 10 retrained networks were assessed individually and the average classification 

success was recorded. This is compared against the classification success when 

randomly selected quiet periods were used (i.e. the result from section 7.2.8) in Table 

10-6 below. 

Using quiet flares 
in training set 

Us ing random quiet periods 
in training set 

SPE Classification Success 66.4% 69.5% 

Quiet Period classification 34.9% 55.8% 
success 

Average Overall classification SO.6% 62.6% 
success 

Table 10-6 Comparison of performance between POPE MLP models when trained with randomly 

selected quiet periods and when trained with 'quiet flare' periods. 

It can be seen that when the MLP networks are trained using quiet periods that have x-

ray flare associations the classification success drops to 50%, which is no different to the 

performance expected from a random output. 
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The result indicates that the network cannot learn to differentiate between x-ray flares 

with proton associations and x-ray flares which have n o proton associations. This 

suggests that the behaviour of the predictor variable prior to x-ray flares is the same 

regardless of whether or not the flare is associated with an SPE. 

10.4 Consideratioii of quiet period abundance 

Another possible way to try and reduce the false alarm rate i s to condition the model to 

quiet periods by using a training set that contains representative proportions of SPEs and 

quiet periods. By running on a rolling time line at a rate o f 1 prediction per hour it has 

been shown that only 0.14% of the observations seen by P O P E are SPEs hence more 

than 99% of occurrences are quiet periods. It may be beneficial to increase the ratio of 

quiet periods to events in the training set in order to reproduce the observed ratio more 

closely. 

10.4.1 Method 

The 98 SPEs 6 o m Table 10-5 were divided to produce a training set of 59 examples, 

necessitating approximately 3000 quiet periods in order to f o r m a training set composed 

of 2% events. (This is close to the observed ratio of 1%, but could not be reproduced 

exactly as it would have required an impractically large data extraction). 2922 quiet 

periods with flare associations were placed with the 59 SPEs to form the training dataset, 

with a fiu-ther 2921 quiet flare periods serving as test data. A summary of the dataset is 

given below in Table 10-7. 

SPE Dataset Quiet Period Dataset 

Train Query Total Train Query Total 

X flare association 21 14 35 18 17 35 

M Flare association 28 18 46 3 1 2 312 624 

C Flare association 6 4 10 2 5 9 2 2592 5184 

N o Flare association 4 3 7 - " -

Total 59 39 98 2 9 2 2 2921 5184 

Table 10-7 Summary of the dataset in which the proportion of SPEs in the training set was set at 

approximately 2%. 
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The 10 component MLP networks within POPE were retrained and tested using 10 

different random permutations of the dataset shown above. 

10.4.2 Results 

The average classification success of the test set was calculated and is summarised below 

in Table 10-8. 

SPE: QP training ratio of 2:100 

SPE Classification Success 0 . 0 % 

Quiet Period classification 100.0% 
success 

Average Overall classification 50.0% 
success 

Table 10-8 Average classification performance of POPE component networks when trained using a 

training set of 2% SPE examples. 

It is obvious Aom the result that increasing the proportion o f quiet periods in the dataset 

does not allow the model to learn effectively. The significantly larger proportion of 

quiet periods means that minimum training error is produced if the model simply 

produces '0' for each example, as this will correctly identify 9 8 % of the training set. 

A review of the numerical outputs fi-om the networks indicated that '0' was indeed 

produced for eveiy example in the test set during the query phase. In real-time operation 

such a model would actually be correct most of the time, s imply because quiet periods 

occur most of the time, but such an approach is clearly not intelligent. 

10.5 Behaviour of predictor variables prior to x-ray flares 

The previous results show that the classification technique cannot adequately distinguish 

between cases of quiet flares and proton associated flares. In order to quantify the 

behaviour of the predictor variables prior to x-ray flares the XS/XL ratio has been 

plotted over the input window for the cases of quiet x-ray flares and compared to the 

case of SPEs and to the case of randomly selected quiet periods. 
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10.5.1 Method 

The average XS/XL ratio over the period -120 hours to -48hours was calculated for the 

dataset of quiet x-ray flares shown in Table 10-3. This is compared to the average 

behaviour of the SPE case (computed from the 98 SPEs in Table 10-1) and the average 

behaviour of 3000 randomly selected quiet periods (i.e. quiet periods which were not 

specifically based around the time of an x-ray flare). In addition, the detrended solar 

radio flux was also extracted and plotted for the same cases over a period spanning -81 

to +81 days relative to time zero of the input window. 

10.5.2 Results 

Figure 10-1 below compares the variation in the average XS/XL for the cases of SPEs, 

randomly selected quiet periods and quiet periods associated with an x-ray flare (of class 

X, M or C) at time 0. 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6 

-0.7 

SPE average 
random quiet period average 

- • -quiet flare average 

SPE average 
random quiet period average 

- • -quiet flare average 

T 

"--J / 
r -

i 

-132 -120 -108 -96 -84 -72 -60 
Time Relative to SPE or Quiet Period / Hours 

-48 -36 

Figure 10-1 Comparison of XS/XL ratio over the input window for the cases of SPE, quiet flare 

periods and randomly selected quiet periods. Error bars denote one standard deviation and for 

clarity are shown only for the SPE case. 

It is clear from Figure 10-1 that the quiet flare average lies between the random quiet 

period average and the SPE average, thus it is bound to represent a classification 

problem for a model which has only been trained on cases of SPEs and random quiet 

periods. Figure 10-2 shows the same comparison in the 2800Mhx solar radio flux. 

139 



The Development o f a S o l a r P r o t o n Even t P red ic t i on M o d e l 

SPE Ave rage 

Quiet F l a r e Average 

Random Quiet Period Average 
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Figure 10-2 Comparison of detrended 2800Mhz radio flux over ±81 days relative to the time of event 

for the cases of SPE, quiet flare, and randomly selected quiet periods. Error bars denote standard 

error. 

Figure 10-2 shows a similar situation with the solar radio flux in that the quiet flare case 

is somewhere between the SPE and than the randomly selected quiet period case. This 

again shows that the behaviour of solar variables prior to x-ray flares is similar to that 

prior to SPEs. It follows that future development may benefit from the use of three 

training classes, corresponding to cases of 'Flare with SPE', 'Flare with no SPE' and 

'Quiet' (i.e. no flare and no SPE). 

As an aside. Figure 10-3 shows the behaviour of the average solar radio flux classified 

by flare type for the dataset of quiet x-ray flares (i.e. 5843 x-ray flares with no proton 

associations). 
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Figure 10-3 Variation in average detrended solar radio flux for quiet flares of class X, M and C. 

Error bars denote standard error and for clarity are shown only for the C-class case. 

It is interesting to note that there is an apparent difference in the observed level of radio 

flux between flare classes, with X class flares correlating to higher levels of flux than M 

class flares, and M class flares correlating to higher levels of flux than C class flares, all 

of the order of 20 days prior to flare occurrence. The standard deviation is very large in 

proportion to the observed periodic variation, indicating that the use of the periodic and 

systematic variation as a predictor would be difficult, but the distributions do 

nevertheless show potential for a flare forecasting capability, relating higher radio flux 

levels to x-ray flares of greater magnitude. 

10.6 Potential as a flare forecast model 

The fact that the classification model was apparently triggered by x-ray flare 'precursors' 

suggested that it may have some use as a flare forecasting model as opposed to an SPE 

forecasting model. In order to test if this was true, a second analysis of the real-time 

POPE model forecast was performed by comparing the output of the model with the 

occurrence of x-ray flares. 
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10.6.1 Method 

Over the period of real-time operation (December 2001 to December 2002) the GOES-8 

hourly soft x-ray flux (i.e. the l-SA channel) was scanned and any hourly periods with a 

flux greater than 1x10'^ watts/m^ were marked as 'x-ray events'. This flux threshold is 

equivalent to class M flares or greater. Hourly periods with a flux less than the threshold 

were marked as 'quiet'. 

114 x-ray flare events were identified over this period, 9 3 of which occurred whilst 

POPE was running (for 21 of the x-ray flare events the POPE model was inactive, 

primarily due to drop-outs in internet access or intolerable gaps in GOES satellite data). 

Predictions &om POPE were only considered if they were based on input delay vectors 

with no more than 50% missing data in each 3-hour interval. Hourly periods for which 

no GOES x-ray data was available were removed from the dataset. The prediction for 

each valid time interval was taken as the highest output from the model 6 o m within ± 2 

hours of the current time. 

Output from POPE consisted of an integer between 0 and 10, representing the number of 

networks from 10 that were predicting an event (in this case taken to be an x-ray flare of 

class M or above) in 48-hours time. A threshold analysis was performed in order to 

determine the optimal decision boundary, and skill scores were calculated from a 

contingency table. These have been compared against the POPE scores for SPE 

forecasting. 

10.6.2 Results 

The performance of the POPE multiple model is shown be low in Table 10-9 for different 

threshold values. 

Threshold >5fbr flare >6 for flare >7 for flare > 8 for Gare >9 for flare 

Flares from 93 78 75 70 69 39 

QPs 6 o m 6699 2235 2839 3549 4385 5450 

Flares / % 83.9 80.6 75.3 74.2 41.9 

Q P s / % 33.4 42.4 53.0 65.5 81.4 

Average / % 58.6 61.5 64.1 69.8 61.6 

Table 10-9 Classification success for real-time POPE model when asked to classify the occurrence of 

an M-class or greater x-ray event as opposed to an SPE. 
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As with the SPE detection model, optimal success occurs with a threshold of >8, 

meaning that 9 or 10 of the 10 constituent networks need t o forecast an event (x-ray 

flare) before the overall POPE output is taken as being a positive-occurrence prediction. 

It can already be noted that the model has a 69.8% overall success rate which is greater 

than the 60.1% success rate of the SPE forecast model 

Table 10-10 shows the contingency table for the >8 threshold and Table 10-11 shows the 

skill score for the POPE flare model in comparison to the POPE SPE model. 

Event Observed 

Yes No 

Event Forecast Yes 69 (74%) 2314 (35%) Event Forecast 

No 24 (26%) 4385 (65%) 

Table 10-10 Contingency table for real-time operation of POPE model, Dec2001 -Dec2002 for the 

forecast of M-cIass or greater x-ray flare events. 

Statistic P O P E SPE POPE Flare 

Number of Hts ('Yes' forecast and 'Yes' observed) A 6 69 

False Alarms ('Yes' forecast but not observed). B 2129 2314 

Misses ('No' Forecast and 'Yes' observed) C 5 24 

Correct Nulls ('No' Forecast and 'No' observed) D 4120 4385 

Prob. of Detection 'Yes' PODy 0.545 0.742 

Prob. of Detection 'No' PODn 0 659 0.655 

False Alann Ratio FAR 0.997 0.971 

Bias 194.091 25.624 

Critical success index CSI 0 .003 0.029 

True Skill Statistic TSS 0.205 0.397 

Heidke skill score HSS 0.002 0.030 

Gilbert skill score GSS 0.001 (X015 

Total number of events N 6260 6792 

Number expected correct by chance c, 4121 .503 4381.259 

Number of hits expected by chance C2 3.752 32.629 

Table 10-11 Comparison of performance and skill statistics for POPE SPE forecast model and 

POPE as a >M class flare prediction model. 
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Examination of the skill scores shows that when operating as a flare prediction model the 

Heidke and Gilbert skill scores have a 10 fold improvement, hence the model does 

perform better, but the skill scores are still very low. The problem is again a relatively 

large proportion of false alarms. 

Although the model correctly identifies 65.5% of quiet periods, the 34.5% that are miss-

classified represent 2314 instances, which is very large compared to the actual number of 

observed flare-events (93), and it is this which ultimately dictates the skill scores. 

However, despite low skill scores the model is the only example of a 2-day autonomous 

flare forecast tool and may be useful for applications which have no serious 

consequences for false alarms. 

10.7 Summary 

The fact that SPEs have a strong correlation with solar x-ray flares means that neural 

models may have been trained to distinguish between cases o f x-ray flare and no x-ray 

flare as opposed to SPE and no-SPE. This hypothesis was put forward as a way of 

explaining the high false alarm rate in the real-time POPE model, Wiich forecast many 

more SPEs than were observed. 

By considering x-ray flares that were observed by the SEC monitoring network between 

1986 and 1999 it was shown that 92.9% of SPEs had flare associations, but only 0.7% of 

all x-ray flares were associated with SPEs. 32.4% of X class x-ray flares were found to 

be associated with SPEs even though this flare category only accounted for 0.8% of all 

flares. This indicates that if X class flares can be predicted accurately the probability of 

an SPE occurring is known. The same is also true for M class flares, although only 3.4% 

of M-class flares were found to have proton associations. 

When the POPE model was queried with a dataset of over 5000 quiet periods selected so 

as to have an x-ray flare at time zero only 62% of the quiet periods were classified 

correctly. This compared to a 91% classification success when quiet periods were 

selected at random, indicating that it is highly likely that x-ray flares are causing the 

model to produce SPE forecasts. 

Retraining the POPE networks using quiet period examples selected at the times of solar 

x-ray flares produced a 51% overall success rate showing that the neural models were 
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unable to leam to differentiate between x-ray flares associated with SPEs and x-ray 

flares associated with quiet periods. 

Reproducing the observed quiet period to SPE ratio in the training set did not produce an 

intelligent model, and simply caused quiet periods to be predicted for all input vectors. 

An examination of the XS/XL ratio prior to quiet x-ray flares showed the average value 

to be somewhere between the cases of 'SPE' and quiet period. A similar examination of 

the 2800Mhz solar radio flux showed that prior to x-ray flares flux levels had a similar 

magnitude and periodicity to the SPE case. All evidence suggests that x-ray flares 

associated with quiet periods have a similar precursive behaviour in x-rays and radio flux 

to SPE associated flares. 

Theorising that x-ray flares were the primary source of false alarms the POPE real-time 

model was reassessed as a forecaster of >M class x-ray flares. Overall classification 

success was measured at 69.8% and was greater than when operating as an SPE forecast 

model. This represents the only autonomous 2-day lead t ime flare forecast model in 

operation. Performance as a flare forecaster was still hampered by a high false alarm 

rate. 
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11. SUMIVIARY AND CONCLUSIONS 

This section summarises the evolution of work contained in the thesis and highlights the 

primary findings. Avenues of future work are suggested and overall conclusions stated. 

11.1 Summary 

Current models to predict SPEs use characteristics of a discrete x-ray flare in order to 

produce a forecast, but the lead-times of such forecasts are limited in that significant 

proton flux can be observed within minutes of an x-ray flare peak. The need for 

forecasts with longer lead times may be required for manned missions of an 

interplanetary nature, and would serve as a useful tool for spacecraft operations in 

general. 

This thesis addresses the fact that very little research has been conducted into developing 

SPE forecasting techniques that do not require an x-ray flare as a precursor. As an 

output, it has aimed to produce a forecast model with lead-times greater than that offered 

by current SPE prediction models. 

Key to the development of a prediction methodology has been the use of a large dataset 

encompassing over 200 Solar Proton Events over a 3-decade time span. In addition, use 

has been made of GOES satellite observations to provide a uniform solar x-ray data 

source over a 25-year period, and ground station observations have provided continuous 

measurement of solar radio flux for over 50 years. 

The work has succeeded in creating a real-time SPE forecast model with a 48-hour lead 

time that can operate autonomously using inputs from live GOES satellite measurements 

of solar x-ray flux. The technique uses a classification approach to the forecast problem 

and is based around the fact that solar x-ray fluxes are, on average, higher several days 

prior to SPEs than at times when no SPE occurs. 

11.2 Main Findings 

Application of an ARIMA time series forecasting method to the >10MeV daily proton 

flux time series showed that SPEs are not deterministic in the sense that their occurrence 
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cannot be predicted 6 o m prior values of proton flux. This would appear to be the first 

time that this result has been formally documented. 

Due to the discrete nature of solar proton events the solar proton flux time series can be 

approximated as a binary series composed of quiet periods and SPEs. In this way it has 

been possible to forecast SPEs using a classification approach. 

Based on a sample of 97 SPEs the average GOES x-ray f luxes in both the XS(0.4-4A) 

and XL(1-8A) channels were found to rise 6 o m around 150 hours prior to the 

occurrence of an SPE. No rise in flux was observed in the cases of quiet periods. A 

comparison of the distributions showed them to be different in the mean to a 99% 

confidence level up to 150 hours prior to SPE occurrence. A similar finding was 

observed in the 2800Mhz solar radio flux. 

The average solar radio flux associated with SPEs was found to contain a strong 27-day 

periodicity over a 162-day span centred on the event, with the occurrence of an SPE 

coinciding with a peak in the radio flux average. B y contrast, quiet periods 

approximately coincided with a minimum in the average solar radio flux. Previous work 

by Chakravorti et al. Day, a W 7PP7] has identified solar 

radio flux from active regions as passing through a maximum on the day of an SPE, but 

did not identify a 27-day periodicity in the flux. Evidence of a 27-day periodicity 

coinciding with SPE occurrence is also present to a lesser extent in the average solar x-

ray flux. The correlation between SPEs and peaks in a 27-day periodicity has not been 

published elsewhere, but is almost certainly due to the fact that SPEs originate &om 

active regions on the solar surface which evolve over a number of solar revolutions. 

Knowing that solar radio flux G-om a source near the solar limb is significantly 

attenuated by the solar atmosphere, it is surprising that radio flux peaks are still seen at 

the time of an SPE; for an SPE to be monitored at earth it generally originates from a 

region towards the western solar limb. Use of spatially resolved radio flux measurements 

corrected for the observer location may therefore reveal a much higher correlation 

between solar radio flux peaks and SPE occurrence. 

The development of a classification model proved that the differences between SPE and 

Quiet Period distributions in solar x-rays (specifically the solar x-ray ratio) could be 

harnessed to give a limited prediction capability with a 2-day lead time. During 
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development, highest performance was given by an RBF model which classified 65% of 

examples correctly. 

The output of the thesis has been POPE: a real-time variant o f the classification model 

capable of autonomous operation on a rolling timeline with a 48-hour lead time. 

Assessing the model over a 12 month period showed it to have superior SPE detection 

capability to the Space Environment Centre's 2-day forecast model. POPE is the only 

autonomous SPE forecast model with a 48-hour lead time. 

The SEC PROTONS model still represents the best in terms o f SPE forecast accuracy. 

Whereas POPE predicted 55% of SPEs correctly during real-time operation, PROTONS 

is capable of forecasting 77% of SPEs successfully and has a much lower incidence of 

false alarms. 

The operation of an SPE forecast model on a rolling timeline has been shown to be 

inherently problematic because significantly more quiet periods are observed than SPEs. 

As a result, the POPE model generates a large proportion o f false alarms (during real 

time operation 99.7% of SPE forecasts were false alarms). In order to be effective in 

practice such a model needs to be able to identify quiet periods to a high degree of 

certainty. 

The POPE model is superior to the SEC 2-Day model for applications in which it is 

more important to detect SPEs than to minimise false alarms. During real-time operation 

POPE can be expected to forecast 55% of SPEs and 66% of quiet periods successfully. 

X-ray flares of class C and higher are also shown to be associated with increased levels 

of x-ray flux and solar radio flux several days prior to their occurrence. This is a new 

finding, but shows that increases in x-ray and radio flux are not specific to SPE 

occurrence. This hinders the prediction of SPEs when using the classification approach, 

as precursors to x-ray flares are mistakenly classified as SPEs by the model. This 

accounts for the high number of false alarms produced by the POPE classification 

method. It also means that precursors exist which potentially enable the forecasting of x-

ray flares with lead-times of several days. 

X class x-ray flares constitute only 0.8% of all flares yet 34% of them can be associated 

with SPEs. This means that the occurrence of x-ray flares can be used to infer the 

occurrence of an SPE. Specifically, if an X class x-ray flare can be forecast with 

certainty then there is a corresponding 34% probability of an SPE also occurring. 
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Analysis of the POPE model as a flare forecast tool showed superior performance to 

when acting as an SPE forecaster. During a 12-month period 74% of x-ray flares of class 

MO or greater were forecast correctly, although a high false alarm rate was still observed 

in that 97% of flare predictions were false alarms. 

11.3 Future Work 

The limiting factor to the 2-day lead time classification technique has been the 

inseparability of the two classes in the predictor variables, whether this be solar x-ray 

fluxes, the x-ray ratio or solar radio fluxes. It stems fi-om the fact that solar x-ray flares 

at the times of quiet periods exhibit similar precursors to the times of SPEs. If the 

technique is to be improved, it needs to incorporate knowledge that can allow more 

accurate classification of the predictor variables. 

Combining forecaster experience with the model output may help to eliminate some 

false alarms when it is evident that there are no dangerous active regions on the solar 

disk, and this information could eventually be formalised as another input to the model. 

One possible flaw with the current approach is that the inputs consist of flux-values and 

there is no feature extraction in terms of the dominant frequencies that are present in the 

solar x-ray or radio fluxes. Examination of the radio flux at the times of events revealed 

a strong near 27-day periodicity co-incident with the time of an SPE, which may be 

hamessable as a predictor, and to a lesser extent a similar pattern was seen in the x-ray 

flux. The obvious step is to use a Fourier analysis to identify frequencies within the 

input window, although the delay vectors would need to cover several solar rotations in 

order to reveal any 27-day periodicity. If SPEs are associated with active regions that 

last for about 4 solar rotations, this could be shown by correlating periods of 27-day 

periodicity with SPE occurrence via a wavelet analysis o f the historical radio flux 

timeline. The problem with relying on periodicities as a predictor however is that they 

are a manifestation of a rotating active region, and if two or more active regions are 

present simultaneously, separated by varying degrees of longitude, it is likely to generate 

miscellaneous frequencies in the observed predictor variables. The spatial resolution of 

input data pertaining to specific active regions is Aerefore another desirable addition to 

149 



THE DEVELOPMENT OF A SOLAR PROTON EVENT PREDICTION MODEL 

the model, as this would allow separation of flux contributions 6 o m active regions that 

are present at the same time. 

The current model utilises full disk solar measurements o f x-ray flux, and although this 

is actually a good measure of active region activity, it carmot distinguish between 

different active regions. The ability to measure flux 6 o m specific active regions could 

yield a much higher correlation between predictor flux behaviour and SPE occurrence, 

and other spatial measurements, such as the heliolongitude o f the active region, could be 

used as inputs. One problem that may be present in the current dataset is that in order to 

monitor an SPE at earth the particle injection site generally needs to be west of the solar 

central angle, whereas the electromagnetic nature of the predictor fluxes means that they 

are observed regardless of their source location. Some 'proton flares' may therefore 

have been observed as 'quiet periods' simply because the earth was not suitably 

magnetically cormected to the particle iigection site, but short of surrounding the sun 

with a ring of observing platforms it is difficult to see h o w this possibility might be 

addressed. 

Whilst the full disk measurements utilised in this study caimot identify specific active 

regions, they have the advantage of being in a state of continuous monitoring, and the 

facility to have an uninterrupted observation should not be underestimated: especially if 

it is to be used as an input to a real-time model. Instruments providing spatially resolved 

measurements are unlikely to be dedicated and coverage o f any one source will be 

intermittent. The lifetime of such instruments is also likely to be short compared to the 

observation span necessary to build a large dataset of SPE associated observations. 

One of the most promising findings from the study was the fact that radio flux maxima 

coincided with the occurrence day of an SPE, despite the fact that the observed flux was 

probably significantly attenuated by the solar atmosphere. If spatially resolved radio 

flux measurements could be obtained for proton producing active regions, the 

observations could be corrected for heliographic position in relation to the solar central 

angle. The result may give a much stronger correlation between radio flux peaks and 

SPE occurrence with the potential to relate levels of solar radio flux quantitatively to 

SPE characteristics. Observations have already shown that more than 70% of SPEs 

occur within 6 days of a radio flux peak, and the nature of the radio flux variation gives 

the potential for forecasts with lead times of days. 
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11.4 Conclusions 

SPEs are not deterministic when attempting to forecast them as part of a continuous 

proton flux time series, but can be approximated as binary events on a timeline. This 

lends itself well to forecasting via a classification approach. 

On average, increases in solar x-ray flux, the solar x-ray ratio and the 2800Mhz solar 

radio flux are present from 150 hours prior to SPE occurrence. This allows the potential 

forecast of SPEs with a lead time of days. Increases in average x-ray and radio flux 

levels also occur prior to x-ray flares though and are not a unique precursor to SPEs. 

A classification technique can correctly predict an SPE or quiet period 65% of the time 

with a 48-hour lead time using the logio GOES XS/XL ratio as inputs over a 72-hour 

period. 

The quiet period and SPE distributions in the x-ray and radio fluxes are significantly 

different in their means, but contain a high degree of scatter about their means that limits 

their seperability. The poor seperability of the predictor variables stems 6 o m the fact 

that x-ray flares at the times of quiet periods exhibit similar precursors to the times of 

SPEs, and it is this which limits the success of the classification technique. 

A real-time classification model had superior SPE detection capability to the 2-day SPE 

forecast model operated by the Space Environment Centre and is the only autonomous 

real-time model in operation with a 48-hour lead time. It can be expected to forecast 

55% of SPEs and 66% of Quiet Periods correctly. 

As the POPE model requires no human supervision and little computational power, it is 

easy to install operationally and does not require large resources. 

The concept of a rolling timeline SPE forecast necessitates the accurate prediction of 

Quiet Periods as these are seen far more &equently than SPEs. The real-time POPE 

model generates too many false alarms to be used as a reliable SPE forecaster, but is 

superior to the SEC 2-day forecast for applications in which false alarms can be 

tolerated. 

Future work should try and correlate spatially resolved solar radio data to SPE 

occurrence. Correction of active region solar radio flux for centre-to-limb dependence 

may yield a higher correlation between radio flux maxima and SPEs, allowing the 

potential forecast of SPEs with several days lead time. 



Appendix A 

Listing of SPEs 1965 -1999 



ID 

> 
TJ 

1 
Q . 

X > 

SOURCE Year CYCLE IMP IMP GOES GOES Loq >10 MeV Loo >30 MeV Loa>60 MeV M End Duration/ GOES 
Date Time Date Time fluence fluence fluence Days Class 

1 IMP 1965 Min 06/02/65 Not found NA NA 7.216365 6.39658 5.877708 36 38 3 Not Found 
2 IMP 1965 MIn 06/10/65 Not found NA NA 6.110174 5.245238 4.698481 278 278 1 Not Found 
3 IMP 1966 Min 25/03/66 Not found NA NA 6.979613 5.866953 5.166057 83 83 1 Not Found 
4 IMP 1966 Min 08/07/66 Not found NA NA 7.799832 6.458149 5.688936 188 190 3 Not Found 
5 IMP 1966 Min 28/08/66 Not found NA NA 7.700318 6.471249 5.725919 240 243 4 Not Found 
6 IMP 1966 Min 03/09/66 Not found NA NA 8.982993 6.820341 5.873943 245 251 7 Not Found 
7 IMP 1966 Min 15/09/66 Not found NA NA 7.220159 5.896061 5.096421 257 260 4 Not Found 
8 IMP 1967 Max 13/01/67 Not found NA NA 6.411204 4.482882 3.336753 12 12 1 Not Found 
9 IMP 1967 Max 29/01/67 Not found NA NA 9.041084 7.2031 6.33129 28 41 14 Not Found 

10 IMP 1967 Max 15/02/67 Not found NA NA 6.316074 5.32128 4.698481 45 45 1 Not Found 
11 IMP 1967 Max 01/03/67 Not found NA NA 6.615164 6.032235 5.666152 59 60 2 Not Found 
12 IMP 1967 Max 13/03/67 Not found NA NA 7.147725 6.379722 5.899641 71 72 2 Not Found 
13 IMP 1967 Max 25/05/67 Not found NA NA 8.888905 7.734024 7.159836 144 150 7 Not Found 
14 IMP 1967 Max 07/06/67 Not found NA NA 7.191969 6.797125 6.605682 157 160 4 Not Found 
15 IMP 1967 Max 15/06/67 Not found NA NA 6.447343 6.273518 6.255308 165 166 2 Not Found 
16 IMP 1967 Max 03/11/67 Not found NA NA 6 863739 6.33041 6.218138 306 307 2 Not Found 
17 IMP 1967 Max 13/11/67 Not found NA NA 7.145302 6.738068 6.697347 316 321 6 Not Found 
18 IMP 1967 Max 04/12/67 Not found NA NA 7.378343 6.93538 6.654712 337 339 3 Not Found 
19 IMP 1967 Max 17/12/67 Not found NA NA 7.104651 6.739874 6.585585 350 353 4 Not Found 
20 IMP 1968 Max 18/07/68 Not found NA NA 6.092628 5.975243 5.9328 48 48 1 Not Found 
21 IMP 1968 Max 28/03/68 Not found NA NA 7.389832 6.588391 6.589607 87 87 1 Not Found 
22 IMP 1968 Max 27/04/68 Not found NA NA 6.501106 6.270747 6.227454 117 118 2 Not Found 
23 IMP 1968 Max 10/06/68 Not found NA NA 8.46067 7.082219 6.691342 161 163 3 Not Found 

24 IMP 1968 Max 08/07/68 Not found NA NA 7.658662 6.927539 6.839249 189 196 8 Not Found 

25 IMP 1968 Max 27/09/68 Not found NA NA 7.622423 7.160521 6.947839 270 276 7 Not Found 

26 IMP 1968 Max 05/10/68 Not found NA NA 7.497821 6.68855 6.369171 278 280 3 Not Found 

27 IMP 1968 Max 30/10/68 Not found NA NA 6.23438 5.772916 5.750053 303 303 1 Not Found 

28 IMP 1968 Max 01/11/68 Not found NA NA 8.312575 7.283353 6.712783 305 310 6 Not Found 

29 IMP 1968 Max 19/11/68 Not found NA NA 9.006618 8.325674 7.560716 323 328 6 Not Found 

30 IMP 1968 Max 04/12/68 Not found NA NA 8.361691 7.599726 6.984967 338 345 8 Not Found 

31 IMP 1969 Max 24/01/69 Not found NA NA 6.26872 5.889421 5.848637 24 24 1 Not Found 

32 IMP 1969 Max 26/02/69 Not found NA NA 7.873438 7.458379 7.1638 56 60 5 Not Found 

33 IMP 1969 Max 22/03/69 Not found NA NA 6.794635 6.276272 6.147658 80 81 2 Not Found 

34 IMP 1969 Max 31/03/69 Not found NA NA 9.362601 8.396566 7.750698 89 113 25 Not Found 

35 IMP 1969 Max 26/09/69 Not found NA NA 7.251361 6.552391 6.466282 268 272 5 Not Found 

36 IMP 1969 Max 15/10/69 Not found NA NA 6.169262 5.890636 5.78546 287 287 1 Not Found 
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37 IMP 1969 Max 03/11/69 Not found NA NA 8.804021 8,316406 7.677445 306 312 7 Not Found 

38 IMP 1969 Max 25/11/69 Not found NA NA 6.531268 6,312185 6.134021 328 329 2 Not Found 
39 IMP 1969 Max 21/12/69 Not found NA NA 6.384028 5,994287 5.80951 354 354 1 Not Found 

40 IMP 1970 Max 29/01/70 Not found NA NA 7.431748 6,933955 6.64232 29 33 5 Not Found 

41 IMP 1970 Max 07/03/70 Not found NA NA 7.82375 6,514578 6,357529 65 68 4 Not Found 

42 IMP 1970 Max 14/03/70 Not found NA NA 6.714242 6,282714 6,114542 82 83 2 Not Found 

43 IMP 1970 Max 17/03/70 Not found NA NA 6.479768 6,1385 6,081437 85 86 2 Not Found 

44 IMP 1970 Max 20/03/70 Not found NA NA 7,903721 7,479033 7,095135 88 93 6 Not Found 

45 IMP 1970 Max 31/05/70 Not found NA NA 7.082998 6,215275 6,078299 150 151 2 Not Found 

46 IMP 1970 Max 27/06/70 Not found NA NA 6.468693 5.841224 5,74841 177 177 1 Not Found 

47 IMP 1970 Max 08/07/70 Not found NA NA 6.538151 6.22437 6,066323 188 189 2 Not Found 

48 IMP 1970 Max 24/07/70 Not found NA NA 7.53362 6.345836 6,203631 204 206 3 Not Found 

49 IMP 1970 Max 14/08/70 Not found NA NA 8.268135 7.009128 6.734259 225 233 9 Not Found 

50 IMP 1970 Max 06/11/70 Not found NA NA 7.806134 6.764726 6.549872 309 313 5 Not Found 

51 IMP 1970 Max 14/12/70 Not found NA NA 6.445657 6.018092 6.097553 347 348 2 Not Found 

52 IMP 1970 Max 25/12/70 Not found NA NA 7.134021 6.816976 6.651252 358 363 6 Not Found 

53 IMP 1971 Max 25/01/71 Not found NA NA 9.171914 8.532643 7.800945 25 30 6 Not Found 

54 IMP 1971 Max 03/03/71 Not found NA NA 6.20891 5.927261 5.8605 92 92 1 Not Found 

55 IMP 1971 Max 07/03/71 Not found NA NA 7.49421 6.713512 6.414848 96 98 3 Not Found 

56 IMP 1971 Max 22/04/71 Not found NA NA 6.223244 5.927818 5.858545 111 111 1 Not Found 

57 IMP 1971 Max 17/05/71 Not found NA NA 6.958449 6,364714 6.187093 136 137 2 Not Found 

58 IMP 1971 Max 02/09/71 Not found NA NA 8.581896 8,2233 7.803295 244 251 8 Not Found 

59 IMP 1971 Max 05/10/71 Not found NA NA 6.701304 6,518597 6.316757 277 278 2 Not Found 

60 IMP 1972 Max 07/03/72 Not found NA NA 6.410471 6,069147 6.010695 66 66 1 Not Found 

61 IMP 1972 Max 19/04/72 Not found NA NA 7.450195 6,614363 6.510376 109 111 3 Not Found 

62 IMP 1972 Max 29/04/72 Not found NA NA 7.874636 7,094529 6.921141 149 155 7 Not Found 

63 IMP 1972 Max 09/06/72 Not found NA NA 6.977731 6,618922 6.497222 160 162 3 Not Found 

64 IMP 1972 Max 17/06/72 Not found NA NA 7.362469 6,566051 6.468212 168 170 3 Not Found 

65 IMP 1972 Max 20/07/72 Not found NA NA 10.05404 9,697925 8.351868 201 234 34 Not Found 

66 IMP 1972 Max 31/10/72 Not found NA NA 7.540873 6.518597 6.367959 304 305 2 Not Found 

67 IMP 1972 Max 11/12/72 Not found NA NA 7.017089 5.540873 5.536783 345 345 1 Not Found 

68 IMP 1973 Max 13/04/73 Not found NA NA 6.750053 6.08957 5.943134 102 103 2 Not Found 

69 IMP 1973 Max 01/05/73 Not found NA NA 7.052339 6.86419 6.72236 120 122 3 Not Found 

70 IMP 1973 Max 31/07/73 Not found NA NA 6.725032 6.395749 6.266683 211 213 3 Not Found 

71 IMP 1973 Max 08/09/73 Not found NA NA 7.313103 6.63221 6.453195 250 253 4 Not Found 

72 IMP 1973 Max 04/11/73 Not found NA NA 6.437124 5.970222 5.755054 307 307 1 Not Found 

73 IMP 1974 Min 01/01/74 Not found NA NA 7,65062 7.641028 7.603925 1 1 1 Not Found 

74 IMP 1974 MIn 15/01/74 Not found NA NA 7.084941 7.084941 7.084941 15 15 1 Not Found 
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75 IMP 1974 Min 10/06/74 Not found NA NA 6.384028 5.572282 5.565923 160 160 1 Not Foi 
76 IMP 1974 Min 03/07/74 6 03/07/74 18 8.519125 7.557476 7.409665 184 189 6 1 
77 IMP 1974 Min 11/09/74 0 11/09/74 2 8.308539 7.458706 7.185773 254 260 7 1 
78 IMP 1974 Min 20/09/74 0 20/09/74 0 8.090144 7.322897 7.152862 263 271 9 1 
79 IMP 1974 Min 05/11/74 14 05/11/74 16 7.084941 6.520023 6.276522 309 310 2 1 
80 IMP 1975 Min 21/08/75 14 no data no data 6 739015 6.344927 6.17371 233 234 2 5 
81 IMP 1976 Min 30/04/76 18 30/04/76 22 8.005139 7.545866 7.286996 121 123 3 1 
82 IMP 1976 Min 22/08/76 12 22/08/76 14 6.951651 6.377158 6.174973 235 236 2 1 
83 IMP 1977 Min 09/09/77 no data 09/09/77 8 7.217567 6.567713 6.48797 252 257 6 5 
84 IMP 1977 Min 17/09/77 0 19/09/77 0 8.470643 7.672291 7.407253 260 264 5 1 
85 IMP 1977 Min 24/09/77 6 24/09/77 8 7.924745 7.481592 7.274297 267 270 4 1 
86 IMP 1977 Min 12/10/77 2 12/10/77 4 6.406791 5.96769 5.825304 285 285 1 3 
87 IMP 1977 Max 22/11/77 10 22/11/77 10 8.47042 7.913751 7.659076 326 329 4 1 
88 IMP 1978 Max 02/01/78 0 no data no data 6.833683 6.431748 6.293642 2 4 3 5 
89 IMP 1978 Max 13/02/78 6 13/02/78 8 9.168236 8.263391 7.982632 44 49 6 1 
90 IMP 1978 Max 08/04/78 4 08/04/78 4 6.114905 5.671207 5.610911 98 98 1 5 
91 IMP 1978 Max 11/04/78 14 11/04/78 16 7.80377 7.205398 6.891545 101 103 3 1 
92 IMP 1978 Max 17/04/78 2 17/04/78 8 9.383636 8.568271 8.267117 107 129 23 5 
93 IMP 1978 Max 31/05/78 no data 31/05/78 12 7.221549 6.260774 6.1834 151 153 3 1 
94 IMP 1978 Max 23/06/78 0 23/06/78 12 7.711227 6.744399 6.657626 174 177 4 2 
95 IMP 1978 Max 12/07/78 12 13/07/78 0 7.343005 6.532238 6.414121 193 197 5 1 
96 IMP 1978 Max 08/09/78 2 08/09/78 2 6.261033 5.735561 5.63232 251 251 1 5 
97 IMP 1978 Max 23/09/78 10 23/09/78 12 9.451284 8.708781 8.338565 266 271 6 1 
98 IMP 1978 Max 08/10/78 20 09/10/78 22 6.742441 6.144289 5.987061 282 283 2 1 
99 IMP 1978 Max 10/11/78 2 10/11/78 6 7.218709 6.269987 6.226895 314 316 3 2 

100 IMP 1978 Max 11/12A78 22 12/12/78 0 6.703176 6.070753 6.050663 346 348 3 5 
101 IMP 1979 Max 17/02/79 20 17/02/79 20 7.150001 6.597301 6.433316 48 51 4 1 
102 IMP 1979 Max 02/03/79 0 02/03/79 12 7.060209 6.526244 6.429649 61 65 5 5 
103 IMP 1979 Max 10/03/79 12 no event no event 6.37418 5.898451 5.847968 70 71 2 5 
104 IMP 1979 Max 14/03/79 18 14/03/79 20 6.156297 5.567203 5.548941 74 74 1 5 

105 IMP 1979 Max 03/04/79 6 03/04/79 16 7.311726 6.300541 6.217853 93 95 3 1 

106 IMP 1979 Max 06/06/79 16 06/06/79 18 8.42835 7.338811 7.254075 157 160 4 1 

107 IMP 1979 Max 05/07/79 22 05/07/79 20 7.282714 6.29651 6.200076 187 189 3 3 

108 IMP 1979 Max 01/08/79 12 no event no event 6.52266 6.32218 6.203041 218 220 3 5 

109 IMP 1979 Max 19/08/79 10 19/08/79 8 8.789176 8.059016 7 785923 231 241 11 1 

110 IMP 1979 Max 08/09/79 10 08/09/79 12 6.501106 6.082609 5.919952 251 252 2 3 

111 IMP 1979 Max 10/09/79 20 no event no event 6.471886 6.038753 5.891243 254 255 2 5 

112 IMP 1979 Max 14/09/79 12 15/09/79 10 8.545221 8.113236 7.948849 258 271 14 2 
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113 IMP 1979 Max 16/11/79 0 16/11/79 0 7.516448 6.539378 6.374379 320 321 2 1 
114 IMP 1980 Max 11/01/80 6 no event no event 6.223244 5.496621 5.48443 11 11 1 5 
115 IMP 1980 Max 06/02/80 no data 06/02/80 12 6.169262 5.610911 5.489042 38 38 1 1 
116 IMP 1980 Max 04/04/80 16 04/04/80 16 6.716965 6.151999 5.986088 96 97 2 1 
117 IMP 1980 Max 17/07/80 22 18/07/80 0 8.054215 7.12897 7.053133 200 203 4 1 
118 IMP 1980 Max 23/07/80 6 continuation continuation 6.771322 5.974243 5.935544 205 207 3 5 
119 IMP 1980 Max 06/08/80 18 06/08/80 22 6.295794 5.705969 5.529878 220 220 1 5 
120 IMP 1980 Max 15/10/80 10 15/10/80 12 7.446332 6.690093 6.520308 289 294 6 1 
121 IMP 1980 Max 14/11/80 22 14/11/80 22 6.643178 6.11054 5.958449 320 322 3 5 
122 IMP 1980 Max 23/11/80 20 23/11/80 22 6.828815 6.040474 5.861798 329 330 2 1 
123 IMP 1980 Max 30/11/80 0 no event no event 6.295794 5.462234 5.42133 335 335 1 5 
124 IMP 1980 Max 02/12/80 0 no event no event 6.077116 5.357943 5.341075 337 337 1 5 
125 IMP 1981 Max 18/02/81 no event no data no data 8.823184 8.823184 8.823184 49 49 1 5 
126 IMP 1981 Max 30/03/81 8 30/03/81 8 7.434704 6.786771 6.611258 89 95 7 1 
127 IMP 1981 Max 10/04/81 18 10/04/81 18 7.83918 7.246844 6.975243 100 102 3 1 
128 IMP 1981 Max 15/04/81 18 16/04/81 0 7.073548 6.26361 6.184635 105 108 4 4 
129 IMP 1981 Max 24/04/81 14 no data no data 9.039925 8.359314 8.2215 114 147 34 5 
130 IMP 1981 Max 20/07/81 14 20/07/81 14 7.857957 7.112072 6.787541 201 203 3 1 
131 IMP 1981 Max 24/07/81 16 24/07/81 18 6.876457 5.921649 5.86567 205 206 2 4 
132 IMP 1981 Max 10/08/81 0 09/08/81 18 7.066323 6.051083 5.952177 221 222 2 2 
133 IMP 1981 Max 06/09/81 20 no data no data 6.796146 5.821053 5.813875 250 251 2 5 
134 IMP 1981 Max 19/09/81 0 19/09/81 4 6.986575 6.325089 6.174973 262 265 4 5 
135 IMP 1981 Max 24/09/81 0 no data no data 6.107605 5.48751 5.437124 267 267 1 5 
136 IMP 1981 Max 08/10/81 2 08/10/81 2 9.313321 8.669065 8.370259 281 294 14 1 
137 IMP 1981 Max 10/11/81 no data 10/11/81 18 6.341075 5.438844 5.403079 315 315 1 3 
138 IMP 1981 Max 15/11/81 0 15/11/81 2 6.061029 5.518597 5.397451 319 319 1 5 

139 IMP 1981 Max 23/11/81 no data 23/11/81 14 6.217567 5.47174 5.391749 328 328 1 3 
140 IMP 1981 Max 05/12/81 18 05/12/81 20 6.702241 5.827414 5.781579 340 341 2 3 
141 IMP 1981 Max 10/12/81 4 10/12/81 2 7.837812 6.781423 6.601099 344 345 2 1 
142 IMP 1981 Max 29/12/81 no data 27/12/81 14 6.788539 5.847968 5.81315 362 363 2 1 
143 IMP 1982 Max 02/01/82 no data 02/01/82 8 8.471886 8.470292 8.470292 2 2 1 5 

144 IMP 1982 Max 31/01/82 no data 31/01/82 2 9.075352 8.292377 7.987595 31 39 9 1 

145 IMP 1982 Max 07/03/82 2 07/03/82 4 7.096798 6.257399 6.115628 66 67 2 1 

146 IMP 1982 Max 30/03/82 no data 31/03/82 4 6.084941 5,435397 5.410472 90 90 1 5 

147 IMP 1982 Max 04/06/82 12 07/06/82 0 7.815969 7.326337 7.184141 156 168 13 2 

148 IMP 1982 Max 18/06/82 20 continuation continuation 6.044323 5.499616 5.454025 170 170 1 5 

149 IMP 1982 Max 28/06/82 no data 28/06/82 4 6.5748 6.200076 6.000925 179 179 1 3 

150 IMP 1982 Max 10/07/82 0 11/07/82 2 8.845667 7.881014 7.703745 191 200 10 2 



> 
•a •a <D 3 Q. 
X > 
(In 

151 IMP 1982 Max 22/07/82 22 22/07/82 20 8.053132 7.101266 6.852428 204 207 4 
152 IMP 1982 Max 04/09/82 12 05/09/82 0 7.133674 6.034419 5.987546 248 249 2 
153 IMP 1982 Max 21/10/82 no event no data no data 6.856581 6.855268 6.855268 294 294 1 
154 IMP 1982 Max 24/10/82 bad data no data no data 6.330189 6.309881 6.309881 297 297 1 
155 IMP 1982 Max 22/11/82 18 22/11/82 20 8.999072 8.292955 8.009654 326 355 30 
156 IMP 1983 Max 25/12/82 12 26/12/82 6 8.332892 7.453991 7,236601 360 0 7 
157 IMP 1983 Max 03/02/83 8 03/02/83 8 8.013904 6.897616 6,789536 34 36 3 
158 IMP 1983 Max 15/04/83 10 15/04/83 12 6.139527 5.891243 5.680162 105 105 1 
159 IMP 1983 Max 15/06/83 0 15/06/83 4 7.133674 6.627567 6.369171 166 168 3 
160 IMP 1984 Max 31/01/84 no data 31/01/84 16 6.092628 5 489042 5.458969 32 32 1 
161 IMP 1984 Max 16/02/84 10 16/02/84 8 8.13826 7.404549 7.504221 47 55 9 
162 IMP 1984 Max 12/03/84 0 12/03/84 0 7.473633 6,828885 6,606383 72 77 6 
163 IMP 1984 Max 25/04/84 no data 25/04/84 8 9.118032 8.571347 8.444193 116 127 12 
164 IMP 1984 Max 13/05/84 0 12/05/84 22 6.253207 5.485972 5.479768 134 135 2 
165 IMP 1984 Max 24/05/84 0 24/05/84 6 6.666151 5.805839 5.78854 145 146 2 
166 IMP 1985 MIn 22/01/85 0 22/01/85 2 6.897258 6.368566 6,123859 22 23 2 
167 IMP 1985 MIn 24/04/85 12 24/04/85 10 7.908637 6.990207 6,834719 114 117 4 
168 IMP 1985 Min 09/07/85 0 09/07/85 2 7.27377 6.624555 6,343219 190 190 1 
169 IMP 1986 MIn 04/02/86 8 04/02/86 10 8.130089 7.597659 7,437589 36 42 7 
170 GOES 1986 MIn NA NA 06/02/86 8 not found not found not found NA NA 4 
171 IMP 1986 Min 14/02/86 10 14/02/86 14 8.430577 7.63112 7,356098 45 49 5 
172 IMP 1986 Min 06/03/86 16 06/03/86 18 6.596825 6.011155 5,930039 65 66 2 
173 IMP 1986 Min 04/05/86 10 04/05/86 12 6.205985 5.755882 5,643178 125 125 1 
174 IMP 1987 Min 07/11/87 22 08/11/87 0 7.381685 6.432271 6,303833 312 313 2 
175 IMP+GOES 1988 Max 30/12/87 2 29/12/87 22 8.000643 7.073787 6.824245 364 6 9 

176 GOES 1988 Max NA NA 02/01/88 23 not found not found not found NA NA 6 
177 IMP+GOES 1988 Max 25/03/88 22 25/03/88 23 6.726805 6.216709 6,046447 85 86 2 
178 IMP 1988 Max 26/03/88 no event no event no event 6.788539 5.518597 5,51429 109 109 1 
179 IMP + GOES 1988 Max 30/06/88 4 30/06/88 10 6.594432 5.995718 5,843935 182 182 1 
180 IMP + GOES 1988 Max 24/08/88 0 24/08/88 5 7.154319 6.401211 6.368364 238 243 6 
181 IMP+GOES 1988 Max 05/10/88 0 04/10/88 22 6.239843 5.563354 5.534034 279 279 1 
182 IMP+GOES 1988 Max 12/10/88 4 12/10/88 6 6.146313 5.730329 5.608595 288 288 1 
183 IMP+GOES 1988 Max 08/11/88 12 08/11/88 14 6.847968 6.403265 6.195591 314 315 2 

184 GOES 1988 Max NA NA 14/11/88 0 not found not found not found NA NA 1 

185 IMP+GOES 1988 Max 14/12/88 14 14/12/88 13 7.84797 7.086645 6.951492 350 356 7 

186 IMP 1988 Max 27/12/88 no event 27/12/88 no event 6.081046 5.723252 5,657938 361 361 1 

187 IMP+GOES 1989 Max 04/01/89 20 04/01/89 23 6.415935 5.641028 5,588392 5 5 1 

188 GOES 1989 max NA NA 18/01/89 9 not found not found not found NA NA 1 
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189 IMP 1989 Max 03/02/89 no event? data gap data gap 7.891243 5.442264 5.431923 34 34 1 
190 IMP+GOES 1989 Max 07/03/89 0 07/03/89 17 8.577053 7.621657 7.43056 67 75 9 
191 IMP+GOES 1989 Max 17/03/89 14 17/03/89 19 8,850903 7.846762 7.661324 77 79 3 
192 IMP+GOES 1989 Max 23/03/89 20 23/03/89 20 7.276272 6.451531 6.239572 82 84 3 
193 IMP+GOES 1989 Max 09/04/89 18 10/04/89 18 8.213692 7.230321 7.102236 101 106 6 
194 IMP+GOES 1989 Max 22/04/89 2 22/04/89 21 6.696589 6.386359 6.151334 113 115 3 
195 GOES 1989 Max NA NA 01/05/89 19 not found not found not found NA NA 9 
196 IMP+GOES 1989 Max 05/05/89 continuation 04/05/89 continuation 7.513856 6.645424 6.564512 121 128 8 
197 IMP+GOES 1989 Max 20/05/89 14 20/05/89 13 7.395938 6.801764 6.699707 141 148 8 
198 IMP+GOES 1989 Max 18/06/89 14 18/06/89 15 6.587173 6.196492 5.986575 169 170 2 
199 IMP+GOES 1989 Max 29/06/89 2 29/06/89 4 6.683106 5.946881 5.910205 180 182 3 
200 GOES 1989 Max NA NA 29/06/89 23 not found not found not found NA NA 2 
201 IMP+GOES 1989 Max 25/07/89 data gap 25/07/89 8 7.172127 6.718771 6.443624 206 207 2 
202 IMP+GOES 1989 Max 12/08/89 data gap 12/08/89 15 9.838331 9.258839 8.920182 225 249 25 
203 IMP+GOES 1989 Max 12/09/89 10 12/09/89 14 7.434877 6.657419 6.452696 255 259 5 
204 IMP 1989 Max 18/09/89 continuation 18/09/89 0 6.129145 5.560768 5.449023 261 261 1 
205 IMP+GOES 1989 Max 29/09/89 12 29/09/89 12 9.532503 9.111428 8.848455 272 288 17 
206 IMP+GOES 1989 Max 19/10/89 12 19/10/89 13 10.1186 9.675262 9.471343 292 313 22 
207 IMP+GOES 1989 Max 15/11/89 6 15/11/89 7 7.484893 7.050663 6.814019 319 324 6 
208 IMP+GOES 1989 Max 18/11/89 18 18/11/89 19 6.069147 5.613215 5.499616 326 326 1 
209 IMP+GOES 1989 Max 26/11/89 12 26/11/89 21 9.141598 8.306908 8.027667 331 339 9 
210 GOES 1989 Max NA NA 30/11/89 14 Not found Not found Not found NA NA 6 
211 GOES 1990 Max NA NA 19/03/90 6 Not found Not found Not found NA NA 3 
212 GOES 1990 Max NA NA 28/03/90 15 Not found Not found Not found NA NA 3 
213 GOES 1990 Max NA NA 07/04/90 7 Not found Not found Not found NA NA 3 

214 GOES 1990 Max NA NA 16/04/90 0 Not found Not found Not found NA NA 8 
215 GOES 1990 Max NA NA 28/04/90 5 Not found Not found Not found NA NA 2 
216 GOES 1990 Max NA NA 07/05/90 10 Not found Not found Not found NA NA 6 
217 GOES 1990 Max NA NA 15/05/90 18 Not found Not found Not found NA NA 7 
218 GOES 1990 Max NA NA 21/05/90 23 Not found Not found Not found NA NA 3 
219 GOES 1990 Max NA NA 24/05/90 21 Not found Not found Not found NA NA 9 
220 GOES 1990 Max NA NA 12/06/90 8 Not found Not found Not found NA NA 3 
221 GOES 1990 Max NA NA 13/07/90 18 Not found Not found Not found NA NA 2 

222 GOES 1990 Max NA NA 26/07/90 1 Not found Not found Not found NA NA 5 

223 GOES 1990 Max NA NA 31/07/90 0 Not found Not found Not found NA NA 7 

224 GOES 1990 Max NA NA 23/10/90 11 Not found Not found Not found NA NA 2 

225 GOES 1990 Max NA NA 11/11/90 6 Not found Not found Not found NA NA 1 

226 GOES 1990 Max NA NA 23/12/90 11 Not found Not found Not found NA NA 3 
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265 GOES 1997 Min NA NA 04/11/97 6 Not found Not found Not found NA NA 3 1 
266 GOES 1997 Min NA NA 06/11/97 12 Not found Not found Not found NA NA 6 4 
267 GOES 1997 Min NA NA 14/11/97 0 Not found Not found Not found NA NA 1 3 
268 GOES 1998 Max NA NA 20/04/98 12 Not found Not found Not found NA NA 7 1 
269 GOES 1998 Max NA NA 30/04/98 2 Not found Not found Not found NA NA 2 3 
270 GOES 1998 Max NA NA 02/05/98 14 Not found Not found Not found NA NA 3 1 
271 GOES 1998 Max NA NA 06/05/98 8 Not found Not found Not found NA NA 2 1 
272 GOES 1998 Max NA NA 09/05/98 6 Not found Not found Not found NA NA 3 1 
273 GOES 1998 Max NA NA 16/06/98 4 Not found Not found Not found NA NA 3 3 
274 GOES 1998 Max NA NA 22/08/98 10 Not found Not found Not found NA NA 3 3 
275 GOES 1998 Max NA NA 24/08/98 23 Not found Not found Not found NA NA 8 1 
276 GOES 1998 Max NA NA 24/09/98 19 Not found Not found Not found NA NA 2 1 
277 GOES 1998 Max NA NA 30/09/98 15 Not found Not found Not found NA NA 5 1 
278 GOES 1998 Max NA NA 19/10/98 0 Not found Not found Not found NA NA 2 3 
279 GOES 1998 Max NA NA 06/11/98 6 Not found Not found Not found NA NA 3 1 
280 GOES 1998 Max NA NA 14/11/98 7 Not found Not found Not found NA NA 4 1 
281 GOES 1999 Max NA NA 20/01/99 22 Not found Not found Not found NA NA 6 1 
282 GOES 1999 Max NA NA 24/04/99 16 Not found Not found Not found NA NA 3 1 
283 GOES 1999 Max NA NA 04/05/99 0 Not found Not found Not found NA NA 4 2 
284 GOES 1999 Max NA NA 01/06/99 22 Not found Not found Not found NA NA 7 1 
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X-Ray Flare Class Associations for SPEs 



ID GOES GOES Duration / Class cvcle Start Max End Long Lat ODtic 
Date Time Days Time Time Time 

ODtic 

1 29/12/87 22 9 1 Max 2322 2353 2322 836 E34 SF 
2 02/01/88 23 6 1 Max 2111 2409 2135 S34 W18 38 
3 25/03/88 23 2 1 Max 2141 2220 2154 

4 30/06/88 10 1 1 Max 904 916 906 S16 E22 28 
5 24/08/88 5 6 2 Max 1757E 1831D 1800 N24 E90 

6 04/10/88 22 1 3 Max 1226 1254 1238 

7 12/10/88 6 1 1 Max 0457E 061OD 502 S20 W66 2N 
8 08/11/88 14 2 1 Max 1228 1414D 1248U N16 W07 2F 
9 14/11/88 0 1 3 Max 2252E 2405D 2309 S23 W27 1N 
10 14/12/88 13 7 1 Max 1337E 1354D 1337 N30 E63 18 
11 04/01/89 23 1 1 Max 1738 1748D 1738U N24 E67 SF 
12 18/01/89 9 1 3 max 702 713 0707U S30 W65 IF 
13 07/03/89 17 9 2 Max 1447E 1545D 1454 N32 E65 28 
14 17/03/89 19 3 1 Max 1729E 1932D 1737 N33 W60 28 
15 23/03/89 20 3 1 Max 1925 2126 1948U N18 W28 38 
16 10/04/89 18 6 2 Max 0044E 0239D 59 N35 E29 48 
17 22/04/89 21 3 2 Max 247 255 252 

18 01/05/89 19 9 3 Max 108 115 0110U N28 E60 SN 
19 20/05/89 13 8 1 Max 929 1308 1155 

20 18/06/89 15 2 1 Max NO FLARE ASSOCIATION 

21 29/06/89 4 3 1 Max 0254E 051 OD 315 N28 W28 1N 
22 29/06/89 23 2 Max 2108 2350 2118U N28 W44 28 
23 25/07/89 8 2 1 Max 0839E 0908D 843 N25 W84 2N 
24 12/08/89 15 25 1 Max 1357E 16110 1424 S16 W37 28 
25 12/09/89 14 5 1 Max 435 1057 814 

26 18/09/89 0 1 1 Max 1831E 19260 1848 N14 W54 IF 
27 29/09/89 12 17 1 Max 1047 1435 1133 

28 19/10/89 13 22 1 Max 1229E 2013 1255 S27 E10 48 
29 15/11/89 7 6 1 Max 0638E 0920D 705 N11 W26 38 
30 18/11/89 19 1 1 Max 1551E 1900D 1639 S30 W16 38 
31 26/11/89 21 9 Max 1756E 2240 1931 N25 W03 28 
32 30/11/89 14 6 1 Max 1145E 1504 1225 N24 W52 38 
33 19/03/90 6 3 1 Max 0439E 0620D 508 N31 W43 28 
34 28/03/90 15 3 1 Max 0731E 0948D 745 S04 W37 2N 
35 07/04/90 7 3 1 Max NO FLARE ASSOCIATION 

36 16/04/90 0 8 1 Max 255 345 0255U N32 E57 28 
37 28/04/90 5 2 1 Max 2227 2438 2426 

38 07/05/90 10 6 Max 54 0104D 0055U S06 W83 SF 
39 15/05/90 18 7 Max 1246E 16130 1310 N42 E38 38 
40 21/05/90 23 3 1 Max 2212E 2339D 2217 N35 W36 28 
41 24/05/90 21 9 1 Max 2046E 21450 2049 N33 W78 18 
42 12/06/90 8 3 1 Max 455 0735D 529 N10 W33 28 
43 13/07/90 18 2 1 Max 959 1242 1130 

44 26/07/90 1 5 1 Max 2223E 25290 2324 S15 E55 2N 
45 31/07/90 0 7 2 Max 0633E 08470 732 N20 E45 28 
46 23/10/90 11 2 3 Max NO FLARE ASSOCIATION 

47 11/11/90 6 1 3 Max 0446E 0454D 449 N10 E18 SF 
48 23/12/90 11 3 3 Max 943 10290 1001 N i l W68 28 
49 25/01/91 21 9 2 Max 0630E 06380 630 S16 E78 SF 
50 08/02/91 10 2 1 Max 629 911 748 

51 25/02/91 12 2 1 Max 0809E 09300 822 S16 W80 2N 
52 23/03/91 8 8 1 Max 2243E 23170 2245 S26 E28 38 
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53 31/03/91 22 3 3 Max 1927 2359 2034 

54 10/06/91 15 2 3 Max 0254E 357 346 N39 E10 SF 
55 13/05/91 3 3 1 Max 103 222 144 

56 18/05/91 16 10 1 Max 0506E 0748D 546 N32 W85 28 
57 31/05/91 9 21 3 Max 2214E 2443D 2343 N05 E38 28 
58 15/06/91 9 7 1 Max 0633E 1117D 831 N33 W69 38 
59 30/06/91 0 14 2 Max 1539E 1549D 1543 N28 E90 SF 
60 07/07/91 5 7 1 Max 0120E 206 131 N26 E03 28 
61 25/08/91 15 6 2 Max 0031E 0503D 49 N24 E77 28 
62 30/09/91 6 3 3 Max 1513E 1739D 1531 S21 E32 48 
63 28/10/91 6 2 1 Max 0538E 0658D 549 S13 E15 38 
64 30/10/91 7 2 1 Max 0611E 0903D 621 SOS W25 38 
65 06/02/92 22 3 1 Max 928 1432 1028 S13 W10 28 
66 27/02/92 12 2 3 Max 922 1303 1256 N06 W02 38 
67 07/03/92 14 5 3 Max NO FLARE ASSOCIATION 

68 15/03/92 9 3 3 Max 121 350 146 S14 E29 38 
69 09/05/92 0 4 2 Max 1537E 1856D 1540U S26 E08 48 
70 25/06/92 21 7 1 Max 1947 2229 2011U N09 W67 28 
71 04/08/92 15 4 1 Max 629 825 702 S09 E68 1N 
72 30/10/92 19 10 1 Max 1702 2203 1730 S22 W61 28 
73 23/11/92 19 2 3 Max 2018 2101D 2029U 308 W89 SF 
74 29/11/92 11 2 3 Max 1230 1250 1233 S16 W01 1N 
75 04/03/93 13 3 3 Max 1016 1106 1017 N10 W23 1N 
76 06/03/93 22 4 3 Max 2014 2218 2033 S04 E29 38 
77 12/03/93 19 3 1 Max 1648 2042 1820 SOO W51 38 
78 15/05/93 0 2 3 Max 2154 2458D 2253 N19 W48 28 
79 07/06/93 16 2 1 Max 1354 1712 1422 S10 W30 28 
80 24/06/93 20 5 3+2 Max 719 0946D 0741U S11 E64 28 
81 20/02/94 2 3 1 Max 138 138 308 N09 W02 38 
82 20/04/98 12 7 1 Max 938 1118 1021 

83 30/04/98 2 2 3 Max 1606 1659 1637 S18 E20 

84 02/05/98 14 3 1 Max 1331 1351 1342 315 W15 38 
85 06/05/98 8 2 1 Max 758 820 809 S11 W65 1N 
86 09/05/98 6 3 1 Max 304 355 340 

87 16/06/98 4 3 3 Max 1803 1928 1842 

88 22/08/98 10 3 3 Max 2357 16 9 N42 E51 28 
89 24/08/98 23 8 1 Max 2150 2235 2212 N35 E09 38 
90 24/09/98 19 2 1 Max 640 731 713 N18 E09 38 
91 30/09/98 15 5 1 Max 1300 1345 1900 

92 19/10/98 0 2 3 Max NO FLARE ASSOCIATION 

93 06/11/98 6 3 1 Max 1900 2012 1955 N22 W18 

94 14/11/98 7 4 1 Max 2055 2102 2059 N19 W59 SF 
95 20/01/99 22 6 1 Max 1906 2100 2004 

96 24/04/99 16 3 1 Max NO FLARE ASSOCIATION 

97 04/05/99 0 4 2 Max 536 632 602 N15 E32 2N 
98 01/06/99 22 7 1 Max NO FLARE ASSOCIATION 
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GOES Class of X-rav Flare GOES Class of X-rav 

Date Date Flare 
32141.00 LDE IIMIKM LDE 
02/01/88 LDE 23/12/90 impulsive 

25/03/88 Impulsive 25/01/91 LDE 
30/06/88 Impulsive 08/02/91 LDE 

24/08/88 LDE 25/02/91 LDE 
04/10/88 Impulsive 23/03/91 LDE 

12/10/88 Impulsive 31/03/91 LDE 
08/11/88 LDE 03/04/91 impulsive 

14M1K8 Impulsive 10/05/91 LDE 

14/12/88 Impulsive 13/05/91 LDE 
27/12/88 Impulsive 18/05/91 LDE 

04/01/89 LDE 31/05/91 impulsive 

18/01/89 LDE 15/06/91 LDE 

07/03/89 LDE 30/06/91 LDE 

17/03/89 Impulsive 07/07/91 LDE 

23/03/89 LDE 25/08/91 LDE 

10/04/89 LDE 30/09/91 LDE 

22/04/89 Impulsive 28/10/91 impulsive 

01/05/89 Impulsive 30/10/91 LDE 

20/05/89 LDE 06/02/92 LDE 

18/06/89 Impulsive 27/02/92 LDE 

20/06/89 Impulsive 07/03/92 no flare 

29/06/89 Impulsive 15/03/92 LDE 

29/06/89 LDE 09/05/92 LDE 

25/07/89 impulsive 25/06/92 LDE 

12/08/89 LDE 04/08/92 impulsive 

12/09/89 LDE 30/10/92 LDE 

16/09/89 LDE 23/11/92 LDE 

29/09/89 LDE 29/11/92 LDE 

19/10/89 LDE 04/03/93 impulsive 

15/11/89 impulsive 06/03/93 LDE 

18/11/89 LDE 12/03/93 LDE 

26/11/89 LDE 20/04/98 LDE 

30/11/89 LDE 02/05/98 LDE 

03/02/90 impulsive 06/05/98 LDE 

19/03/90 LDE 24/08/98 LDE 

28/03/90 LDE 24/09/98 no flare 

07/04/90 n o f m e 30/09/98 LDE 

16/04/90 LDE 06/11/98 LDE 

28/04/90 no flare 14/11/98 impulsive 

07/05/90 impulsive 20/01/99 LDE 

15/05/90 LDE 24/04/99 no flare 

21/05/90 impulsive 04/05/99 LDE 

24/05/90 impulsive 27/05/99 impulsive 

12/06/90 LDE 01/06/99 impulsive 

13/07/90 LDE 11/06/99 impulsive 

26/07/90 LDE 
31/07/90 LDE 
13/08/90 impulsive 
25/08/90 n o M a ^ 
23/10/90 no flare 
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Listing of Quiet Periods 



ID Date Time ID Date Time ID Date Time 
1 05/12/77 0 54 02/02/80 0 107 29/08/82 0 
2 06/12/77 0 55 26/02/80 0 108 12/10/82 0 
3 10/12/77 0 56 28/02/80 0 109 15/10/82 0 
4 14/12/77 0 57 05/03/80 0 110 16/10/82 0 
5 22/12/77 0 58 19/03/80 0 111 11/11/82 0 
6 30/01/78 0 59 21/03/80 0 112 12/11/82 0 
7 01/03/78 0 60 22/03/80 0 113 11/01/83 0 
8 04/03/78 0 61 31/03/80 0 114 17/01/83 0 
9 07/03/78 0 62 15/04/80 0 115 19/02/83 0 
10 08/03/78 0 63 18/04/80 0 116 25 /02 /83 0 
11 10/03/78 0 64 30/04/80 0 117 03/03/83 0 
12 15/03/78 0 65 06/05/80 0 118 15/03/83 0 
13 25/03/78 0 66 29/05/80 0 119 22 /03 /83 0 
14 01/04/78 0 67 30/05/80 0 120 23 /03 /83 0 
15 27/05/78 0 68 02/06/80 0 121 26 /03 /83 0 
16 28/05/78 0 69 23/06/80 0 122 27 /03 /83 0 
17 12/06/78 0 70 29/08/80 0 123 29 /03 /83 0 
18 15/06/78 0 71 01/09/80 0 124 30/03/83 0 
19 20/06/78 0 72 20/09/80 0 125 09/04/83 0 
20 01/08/78 0 73 23/09/80 0 126 11/04/83 0 
21 30/09/78 0 74 02/10/80 0 127 03/05/83 0 
22 31/10/78 0 75 04/10/80 0 128 19/05/83 0 
2 3 04/11/78 0 76 06/10/80 0 129 08/06/83 0 
24 03/12/78 0 77 1 i M 0 # 0 0 130 30/06/83 0 
25 28/12/78 0 78 12/10/80 0 131 04/07/83 0 
26 30/12/78 0 79 05/11/80 0 132 10/07/83 0 
27 01/01/79 0 80 1 1 H 1 # 0 0 133 12/07/83 0 
28 02/01/79 0 81 02/01/81 0 134 16/07/83 0 
29 12/01/79 0 82 07/02/81 0 135 21/07/83 0 
30 14/01/79 0 83 14/06/81 0 136 28 /07 /83 0 
31 18/01/79 0 84 21/06/81 0 137 11/08/83 0 
32 30/01/79 0 85 23/06/81 0 138 17/08/83 0 
33 28/03/79 0 86 26/06/81 0 139 18/08/83 0 
34 18/04/79 0 87 27/06/81 0 140 21/08/83 0 
35 25/04/79 0 88 03/07/81 0 141 25/10/83 0 
36 13/05/79 0 89 06/07/81 0 142 30/10/83 0 
37 21/05/79 0 90 07/07/81 0 143 05/11/83 0 
38 29/05/79 0 91 09/07/81 0 144 14M1/83 0 
39 02/06/79 0 92 15/07/81 0 145 18/11/83 0 
40 24/06/79 0 93 26/08/81 0 146 26/11/87 0 
41 25/06/79 0 94 01/09/81 0 147 01/12/87 0 
42 20/07/79 0 95 17/09/81 0 148 09/12/87 0 
43 25/07/79 0 96 19/02/82 0 149 28/12/87 0 
44 14/08/79 0 97 23/03/82 0 150 20/01/88 0 
45 16/10/79 0 98 15/04/82 0 151 08/02/88 0 
46 21/10/79 0 99 16/04/82 0 152 13/02/88 0 
47 24/10/79 0 100 21/04/82 0 153 19/02/88 0 

48 09/11/79 0 101 27/04/82 0 154 27/02/88 0 
49 11/11/79 0 102 28/04/82 0 155 07/03/88 0 
50 14/11/79 0 103 02/06/82 0 156 09/03/88 0 
51 04/12/79 0 104 05/06/82 0 157 12/03/88 0 
52 21/12/79 0 105 15/08/82 0 158 18/03/88 0 
53 21/01/80 0 106 19/08/82 0 159 21/03/88 0 
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ID Date Time ID Date Time ID D a t e Time 
160 10/04/88 0 212 31/07/91 0 264 21/02/93 0 
161 13/04/88 0 213 04/08/91 0 265 01/03/93 0 
162 22/04/88 0 214 05/08/91 0 266 29/03/93 0 
163 10/05/88 0 215 10/08/91 0 267 31/03/93 0 
164 11/05/88 0 216 19/11/91 0 268 04/04/93 0 
165 16/05/88 0 217 27/11/91 0 269 16/04/93 0 
166 26/05/88 0 218 06/12/91 0 270 21/04/93 0 
167 01/06/88 0 219 17/12/91 0 271 06/05/93 0 
168 12/06/88 0 220 20/12/91 0 272 09/05/93 0 
169 16/06/88 0 221 22/12/91 0 273 11/05/93 0 
170 24/06/88 0 222 29/12/91 0 274 12/05/93 0 
171 18/07/88 0 223 01/01/92 0 275 14/05/93 0 
172 25/07/88 0 224 15/01/92 0 276 30/05/93 0 
173 30/07/88 0 225 20/01/92 0 277 02/06/93 0 
174 19/09/88 0 226 23/01/92 0 278 03/06/93 0 
175 22/09/88 0 227 24/02/92 0 279 06/06/93 0 
176 29/09/88 0 228 14/03/92 0 280 17/06/93 0 
177 02/10/88 0 229 21/04/92 0 281 17/07/93 0 
178 07/11/88 0 230 26/04/92 0 282 18/07/93 0 
179 27/02/89 0 231 27/04/92 0 283 07/08/93 0 
180 01/03/89 0 232 03KXV92 0 284 09/08/93 0 
181 09/04/89 0 233 06/05/92 0 285 13/08/93 0 
182 14/06/89 0 234 07/05/92 0 286 16/08/93 0 
183 24/07/89 0 235 06/06/92 0 287 21/08/93 0 
184 08/08/89 0 236 09/06/92 0 288 09/09/93 0 
185 1 8 ^ 2 # 9 0 237 18/06/92 0 289 22/09/93 0 
186 08/01/90 0 238 20/07/92 0 290 26/09/93 0 
187 16/01/90 0 239 21/07/92 0 291 05/10/93 0 
188 22/01/90 0 240 23K)7V92 0 292 15/11/93 0 
189 24/01/90 0 241 25/07/92 0 293 18/11/93 0 
190 07/03/90 0 242 29/07/92 0 294 19/11/93 0 
191 08/03/90 0 243 31A]7V92 0 295 23/11/93 0 
192 26/06/90 0 244 02/08/92 0 296 01/04/98 0 
193 29/06/90 0 245 20/08/92 0 297 13/06/98 0 
194 25/09/90 0 246 21/08/92 0 298 30/06/98 0 
195 28/09/90 0 247 15/09/92 0 299 02/07/98 0 
196 04/10/90 0 248 17/09/92 0 300 03/07/98 0 
197 19/10/90 0 249 18/09/92 0 301 05/07/98 0 
198 23/11/90 0 250 22/09/92 0 302 13/07/98 0 
199 24^1 /90 0 251 24/09/92 0 303 16/07/98 0 
200 01/12/90 0 252 02/10/92 0 304 24/07/98 0 
201 1 1 ^ ^ # 0 0 253 10/10/92 0 305 25/07/98 0 
202 09/01/91 0 254 29/10/92 0 306 20/08/98 0 
203 13/03/91 0 255 14/12/92 0 307 12/09/98 0 
204 16/03/91 0 256 17M2m2 0 308 28/09/98 0 
205 20/03/91 0 257 i a M 2 # 2 0 309 31/10/98 0 
206 25/04/91 0 258 26/12/92 0 310 01/11/98 0 
207 12/05/91 0 259 03/01/93 0 311 03/11/98 0 
208 28/05/91 0 260 07^1 /93 0 312 28/11/98 0 
209 30/05/91 0 261 27^1 /93 0 313 05/12/98 0 
210 26/07/91 0 262 31KH/93 0 314 11/12/98 0 
211 28/07/91 0 263 05/02/93 0 315 14/12/98 0 
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ID Date Time 
316 23/12/98 0 
317 26/12/98 0 
318 18/02/99 0 
319 28/02/99 0 
320 17/03/99 0 
321 21/03/99 0 
322 04/04/99 0 
323 14/04/99 0 
324 17/04/99 0 
325 19/04/99 0 
326 19/05/99 0 
327 25/06/99 0 
328 27/06/99 0 
329 15/07/99 0 
330 28/07/99 0 
331 04/08/99 0 
332 18/08/99 0 
333 24/08/99 0 
334 27/08/99 0 
335 29/08/99 0 
336 30/08/99 0 
337 06/09/99 0 
338 09/09/99 0 
339 14/09/99 0 
340 23/09/99 0 
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The figure below shows a screen print from the Neuframe software giving the 
learning and momentum rates used in all MLP networks. 
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During the training process the training error was monitored as a function of training 
epochs. Typically, the training error for any given network configuration fell rapidly 
to begin with and then stabilised as the number of training epochs increased. Training 
was defined as being complete when the training error remained approximately 
constant, which typically occurred between 25000 and 75000 epochs depending on 
the complexity of the network. An example of the training error evolution is given in 
the figure below and pertains to network 6 of the POPE model. 
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Attempts to train networks for a very large number of epochs (>75000) often resulted 
in the training error becoming unstable and the learning process being halted. This is 
thought to be due to the learning algorithm reaching the minimum point on the error 
surface, and then iteratively stepping around it and in so doing climbing away from 
the error minimum. For some networks instability was reached at <50,000 training 
epochs. In these cases training was reset and performed for a number of epochs just 
below that which triggered instability. 
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A Chi-Squared analysis was performed to determine the probability of a given 
network success rate being produced through chance alone; i.e. is a random output 
from the model likely to produce any of the observed success rates. 

The Chi Squared test statistic is a function of the observed and expected 
frequencies of a distribution as shown below. 

i=\ & 

where %c is the computed value of a random variable having a distribution with v 
degrees of freedom; O, and E, are the observed and expected frequencies within the 
fth category and is the total number of discrete categories. Via a look-up table the 
computed value of can be used to find the probability that the observed distribution 
is the same as the expected distribution. 

In this specific SPE classification problem there are 4 discrete categories, determined 
by the possible combinations of forecasts and observations: 

1. SPE Forecast, SPE Observed. 

2. SPE Forecast, Quiet Period Observed. 

3. Quiet Period Forecast, Quiet Period Observed. 

4. Quiet Period Forecast, SPE Observed. 

Example 

A chi-squared analysis was performed for a multiple model network configuration 
which was found to have an overall classification success rate of 61%. It was desired 
to know the probability of this success rate being produced through chance alone. A 
random prediction by the model would be expected to identify half of the SPEs and 
half of the Quiet Periods within the query set. The model in question was queried with 
a test set containing 137 SPEs and 288 Quiet Periods. 
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For a random output the expected distribution is: 

Expected distribution 
from a random output 

Forecast 

SPE QP 

Observed 
SPE 68.5 68.5 

Observed 
QP 144 144 

For the measured classification success rate of 61% the distribution was: 

Measured 
Distribution 

Forecast 

SPE SPE 

Observed 
SPE 84 53 

Observed 
QP 112 176 

Computing the chi-squared statistic for the two distributions gives: 

= (84-68.5)^/68.5 + (53-68.5^/68.5 + (112-144)^/144 + (176-144)^/144 

= 20.57 

Look-up tables for a distribution with 1 degree of freedom show the value to 
correspond to the .001 significance level; i.e. the observed success rate has a less than 
0 .1% probability of occurring if the output 6om the model were random. 
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5 
University 
of Southampton 

Software Specification Document 

Title: Predictor Of Proton Events (POPE) Software Specification Document 

DERA Contract No: CU009-0000001987 

Prepared by: Gareth Patrick, University of Southampton, Astronautics Research 
Group 

Date: November 2001 

Abstract: 

This document identifies the key software requirements for a real-time solar proton 
event prediction model that will be developed from neural network techniques 
investigated under DERA contract CU009-0000001987 by the University of 
Southampton Astronautics Research Group. Included in the document is a 
description of the process to be coded, and descriptions of the components that will 
constitute the software. 
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1 Introduction 

1.1 Contractual 
This document has been constructed under Wodc Package 4 (WP4) of DERA Contract 
CU009-0000001987 (Neural Network Prediction of Solar Energetic Particle Events) 
by The University of Southampton Astronautics Research Group. 

1.2 Purpose of document 
This document describes the software requirements and architectural design of a real-
time solar proton prediction model "Predictor of Proton Events" (POPE) generated 
6om the neural networks optimised in previous work [1] of the same contract. 

1.3 Definitions, acronyms and abbreviations 
ESA European Space Agency 

GOES Geosynchronous Observational Environmental Satellites 

JDK Java Development Kit 

MLP Multi Layer Perceptron 

NGDC National Geophysical Data Centre 

PCA Principal Components Analysis 

POPE Predictor Of Proton Events 

URL Universal Resource Locator 

UTC Universal Coordinated Time 

1.4 References 
[1] Report on Work Package 3, Comparison of Non-Linear Models for the Prediction 
of Solar Proton Events and GOES >2MeV Trapped Electron Flux, GarefA f 

[2] Java How to Program, Third Edition, Dezfg/ published by Prentice Hall 

[3] GOES x-ray data site: http://www.sec.noaa.gov/ftpmenu/lists/xray.html 

1.5 Overview of the document 
This document describes the key requirements of the software, a description of the 
process to be implemented, the top-level design of the software and a brief description 
of the modules that will compose the software. 

2 Model description 
POPE is based on previous investigations which developed MLP neural networks to 
predict the occurrence of solar proton events using solar x-rays from GOES satellites 
as inputs. Given x-ray input data networks will predict 'yes' or 'no' as to the 
occurrence of a proton event in 48-hours time. 

POPE will access real-time GOES satellite data (available from the NGDC ftp site[3]) 
and process it for input to a neural network model developed in WP3. The output 
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&om the neural network will be interpreted and recorded with the potential of making 
it available as a space weather forecasting service. 

Earlier work showed that a greater potential for success was achieved when several 
differently trained networks of the same type were connected in parallel and fed the 
same query vector as an input. This creates several outputs for the same input, and 
allows the number of 'yes' and 'no' predictions to be counted separately and 
interpreted. 

Figure 1 shows a schematic diagram of the model structure. X-ray data is obtained 
6om the NGDC and detrended for the long term solar cycle (based on a polynomial 
calculated &om historical data). The detrended input vector is fed to 10 MLP 
networks. In each case the input vector is projected onto principal components, using 
coefficients derived 6om each of the 10 different training that sets were used to 
develop the MLP networks. The inputs are then scaled using scales derived from the 
training sets and fed as inputs to the MLP networks. Outputs are then de-scaled and 
interpreted as being either a 'yes' or a 'no'. The number of yes and no predictions are 
counted and recorded, as is the time of the model-run and the time for which the 
prediction is valid. 

Collect remote 
x-ray data 

WATT \ 
1-HOUR AND 

REPEAT 

START 

NGDC 

DETREND 

Query 
and de-scale 

PCA 
and Scale 

CREATE 
INPUT 

VECTOR 

RECORD 
OVERALL 

PREDICTION 

Log Output and run-time to file 

Figure 1 S c h e m a t i c D i a g r a m of P O P E model 

3 Specific requirements 

3.1 Functional requirements 
This section contains the software requirements that have been defined in order to 
establish the scope of the project and identify the key characteristics of the POPE 
software. 
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SRI Model must use real-time GOES x-ray data 

SR2 MLP neural network models developed in WP-3 must be 
integrated into the software 

SR3 Model should be able to run as a stand-alone application 

SR4 Model inputs and outputs should be recorded in output files to 
enable validation and analysis of network behaviour 

SR5 Software should have the ability to run in an automated way 

SR6 It should be possible to integrate other future models into the 
software with minimal a(^ustment to the code. (i.e. it should be 
possible to 'plug-in' new models to a real-time fi-amework). 

Table 1 Software Requirements 

3.2 Performance requirements 
Each prediction run should be able to execute su#ciently fast so that predictions are 
timely. The 48-hour prediction lead time means that practically there is no 
performance requirement. 

3.3 Interface requirements 
There is no requirement to interface with POPE once it has begun execution. Key 
variables concerning network conGguration can be altered in a configuration text file. 
Other variables within the soAware will be set in the source code before the program 
is compiled and run. Unless adding other prediction models or changing the source of 
input data it should not be necessary to alter the source code. 

3.4 Operational requirements 
POPE will need to be running on a machine which has a constant internet connection. 

3.5 Resource requirements 
In order to develop source code for MLP networks it is necessary to extract code 6om 
the commercial neural network package ''NeuA'ame" version 4. This is not required 
to run POPE, but will be used to produce source code for specific MLP networks. 

3.6 Verification requirements 
Code shall be verified during the construction stage by comparing source code MLP 
network outputs with the same networks in Neuframe. 

3.7 Acceptance testing requirements 
None. The soAware is intended as a validation project within itself. 

3.8 Documentation requirements 
Software User Manual and Software Specification Document. 
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3.9 Portability requirements 
Code will be developed on a PC running windows 98, although it is desirable for 
POPE to be able to run under Windows and UNIX environments. 

3.10 Quality Requirements 
Code shall be written and documented in accordance with ESA software engineering 
standards for small projects (ESA PPS-05-0). 

3.11 Reliability requirements 
There is no significant consequence resulting from the program crashing. Reliability 
shall be made as high as possible within the time frame allocated. 

3.12 Maintainability requirements 
Code shall be written in JAVA (version 1.3.01). There will be no use of deprecated 
fimctions and detailed information will be contained in the source code relating to 
areas of code that have potential for modification. 

4 System Design 

4.1 Design Method 
POPE wiU be coded in JAVA using an object oriented approach as described in 
"JAVA How to Program", Deitel and Deitel. JAVA facilitates the use of remote data 
and is platform independent. 

4.2 Decomposition Description 
Figure 2 below outlines the software structure that will be used to achieve the stated 
requirements. Six software classes will be developed for specific stages of the 
process. 
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URLRetriever.java 

• Connect to remote site 

• Create local copy of datafile 

URLRetriever.java 

• Connect to remote site 

• Create local copy of datafile 

Detrender.java 

• Detrend X-ray Ratio 

• Return result 

• Obtain current System Time 

• Build URL addresses 

• Retrelve remote data 

• Create continuous data file 

RealTimeData.java 

• Obtain current System Time 

• Build URL addresses 

• Retreive remote data 

• Create continuous data file 

RealTimeData.java 

For each network in the array: 

• Normalise the input vector 

• Project input vector on 
principal components 

• Scale input vector 

• Interrogate Neural Network 

• Un-scale network output 

• De-normalise network output 

• Return result 

• Instantiate array of Neural 
Network Objects 

• Take the required x-ray data 
from the continuous file and 
average It to create an input 
vector 

• Check for bad or missing data 

• Detrend the x-ray data 

• Query neural nets 

• Collate network responses 

• Write to output file 

Prediction Model.java 

Main 

• Instantiate RealTimeData objects 

• Instantiate PredictonModel object 

Execute 'Run' loop: 

Sleep for 1 -hour 

PredictlonApplication.java 

• Run Model 

• Get Proton Data 

• Get X-ray Data 

Figure 2 Software Architecture Diagram 

PredictionApplication.java contains the main Ainction which will instantiate a 
PredictionApplication object. The PredictionApplication object will create two 
instances of the RealTimeData object (one for accessing GOES x-ray data and one for 
GOES proton data), and one instance of a PredictionModel object. 

A looping thread is started within the PredictionModel object which will perform the 
tasks of retrieving remote data, querying the neural models and writing output to a 
data file. The thread will then enter a sleep mode for 1-hour, after which it will begin 
the sequence again, unless halted by terminating the program. 

The RealTimeData class will deal specifically with obtaining real-time GOES data. It 
will contain methods to calculate the current UTC time from the system time, and will 
generate filenames for GOES 5-min x-ray or proton data using the current UTC time. 
Retrieval of the remote data will be performed via a URLRetriever object. The 
URLRetriever class contacts a given URL address and creates a local copy of the Gle 
that is found there. GOES data files 6om several days will be collated into one file. 

Although the models use only x-ray data as an input, real time data will be retrieved 
for protons also. This will be saved to an output file to allow a ready comparison 
between the model output and the >10MeV proton flux. 
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Once real-time data has been retrieved the prediction model will be run. The 
PredictionModel class will contain instance variables relating to the configuration of 
the model, such as the length of delay vector required, the time average of delay 
vector required and the lead-time. Based on these variables the raw delay vector is 
created &om the continuous GOES data file. 

Instances of NeuralNet objects are created within the PredictionModel object. This 
allows an array of different NeuralNet objects to be created for the same model 
characteristics. It is possible to just use one neural network, but by creating an array 
of 10 NeuralNet objects a multiple model configuration will be used, whereby 10 
difkrently trained networks can be queried with the same input vector. 

The NeuralNet class will contain variables and methods specific to each MLP neural 
network, such as weight vectors, training set characteristics and PCA coefRcients. 
Each NeuralNet object will receive the input vector created in the PredictionModel 
object, then normahse, project and scale the vector before sending it as an input to the 
MLP network itself The output shall be un-scaled and de-normalised before being 
returned to the PredictionModel object. 

The PredictionModel object will produce and update an output file containing the 
model outputs, time, input vector and recent GOES x-ray and proton fluxes. This file 
can be read into other spreadsheet software for analysis. 

After running the PredictionModel the thread will enter a sleep model for 1-hour 
before repeating the process and generating a new prediction. If desired, the source 
code can be altered by the user to use a sleep time different to 1-hour. 

5 Component Description 

5.1 PredictionApplication.java 

5.1.1 Type 
Class 

5.1.2 Function 
The PredictionApplication class will contain the 'main' method and the thread of top-
level program execution calls to get remote real-time data, query the network models 
and create an output file. The thread will be placed in a repeating loop which sleeps 
for 1-hour after each execution. This class controls the top-level program sequence. 

5.1.3 Interfaces 

The program will be started 6om a command line in the operating system being used 
(MS-DOS in windows). A commentary will be written to screen as the statements in 
the run-thread relating to the main stages of the software process are executed. 

The run-thread will call RealTimeData methods in order to retrieve data for the 
current UTC time. The run-thread will call PredictionModel methods in order to 
produce an input vector 6om the real-time data and query the MLP networks 

5.1.4 Dependencies 

For the run-thread to finish executing and reach the sleep mode all components of the 
process must have completed successfully. 
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5.1.5 Processing 
The main method will instantiate a PredictionApplication object and invoke its run 
method. Real time GOES proton and x-ray data will be retrieved via RealTimeData 
objects inside the run method, and a PredictionModel object will be used to query 
MLP networks with the real-time data. This will end the run method, and a sleep 
mode will ensue for 1-hour. The run-method will then repeat. This will continue 
indefinitely until the program is terminated by killing the process B-om the operating 
system. 

5.1.6 Data 
The PredictionApplication object contains two instances of a RealTimeData object 
and one instance of a PredictionModel object. No actual data processing is performed 
with PredictionApplication though - it acts only to control the processing sequence 
and repeating loop. 

5.1.7 Resources 
None 

5.2 RealTimeData java 

5.2.1 Type 
Class 

5.2.2 Function 
Will create URL addresses and retrieve several days worth of GOES x-ray or proton 
data relative to the current system time and collate it into a continuous file (of 5 
minute averages) ordering the data so that the most recent is at the top of the file. The 
class will also contain any other methods relating to the compilation of averages 6om 
recent GOES data. 

5.2.3 Interfaces 
RealTimeData methods will be called from the run-thread in the 
PredictionApplication class 

Methods of RealTimeData will read local copies of GOES x-ray and proton data files 
to collate into one file. The collated file will be saved as a local file. 

URL addresses will be passed to methods of a URLRetriever object for retrieval. 

5.2.4 Dependencies 

Some Methods of the class will require local copies of the GOES real-time data files. 
These files will need to be retrieved and of the expected format. 

5.2.5 Processing 
RealTimeData will calculate the current UTC time from the system time. 

RealTimeData will be able to create file name strings and URL addresses 6om the 
UTC time. 

RealTimeData will be able to calculate recent flux averages from retrieved GOES 
data for protons and x-rays. 
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RealTimeData will be able to collate several 1-day GOES data files into one file to 
provide a continuous record. 

5.2.6 Data 
RealTimeData will require the exact file stems relating to the GOES data files (e.g. 
G8_xr5m.txt) and the number of days for which data should be retrieved for, relative 
to the current UTC time. The exact file format of GOES data will also be required in 
order to read data correctly. 

5.2.7 Resources 
Internet Connection for remote file retrieval 

5.3 URLRethever.java 

5.3.1 Type 
class 

5.3.2 Function 
Create a local copy of a URL address. 

5.3.3 Interfaces 
A URL address will be passed to a URLRetriever method. The file at a URL address 
will be saved as a local copy. 

A configuration file must be read containing the correct proxies for use of a remote 
connection. 

5.3.4 Dependencies 

Internet connection proxies must be set correctly. 

5.3.5 Processing 
The system properties will need to be modified to use proxy internet settings (host and 
port). 

5.3.6 Data 
URLRetriever will require proxy internet settings to modify system properties. 

URLRetriever will require the local directory and filename to save a URL to. 

5.3.7 Resources 

Internet connection. 

5.4 PredictionModel.java 

5.4.1 Type 
Class 

5.4.2 Function 
This class will contain all variables and methods for a specific prediction model 
configuration, such as size and averaging period of input vector and lead-time. This 
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class will contain methods to create an input vector from a file of continuous GOES 
data and will send this input vector as a query to a neural network. 

5.4.3 Interfaces 
Methods &om the class will read a continuous file of GOES x-ray data in order to 
create the desired input vector. 

The input vector will be passed to a Detrender method and a detrended input vector 
received. 

A detrended input vector will be passed to NeuralNet objects as a query. 

PredictionModel will receive the output 6om NeuralNet objects. 

A PredictionModel method will write data to an output file. 

5.4.4 Dependencies 

A continuous file of GOES 5-minute x-ray data must have been created by a 
RealTimeData object. 

A detrender object must be instantiated with correct detrending coefficients. 

5.4.5 Processing 

When creating the input delay vector 5-minute averages will be converted into 3-hour 
averages. Checks will be made for bad or missing data and the number of non-valid 
data points recorded. 

Within the PredictionModel object an array of NeuralNet objects will be instantiated. 
For each NeuralNet object weights, training set statistics and scaling coefficients will 
need to be initialised. 

A header shall be written to the output file, which will contain the UTC date, time and 
Julian Day at which the model ran, the UTC date, time and Julian Day of the model 
prediction, a copy of the raw x-ray input vector, the number of missing data values in 
the 5-minute x-ray data, the numerical output of each MLP network, the number of 
networks predicting an event in 48-hours time and the previous 1-hours averages of 
GOES x-ray and >10MeV proton fluxes. 

The results file will be appended each time the run-thread completes a cycle. 

5.4.6 Data 
The PredictionModel object will require the lead-time, delay vector length and input 
average for the desired configuration. (In this case, these are 48 hours, 72 hours and 3 
hours respectively). 

The weights matrices, training set statistics (average and standard deviation of each 
input dimension) and the scaling coefficients will be required for each NeuralNet 
object instantiated within PredictionModel. 

5.4.7 Resources 
None 
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5.5 Detrender.java 

5.5.1 Type 
Class 

5.5.2 Function 
To detrend the GOES x-ray ratio data by removing the long term solar cycle variation. 

5.5.3 Interfaces 
Detrender.java will receive 5-minute x-ray data and will return the detrended x-ray 
time series. 

5.5.4 Dependencies 

CoefRcients defining the detrending function (a second order polynomial) will need to 
be set. 

5.5.5 Processing 
Detrender will receive a raw x-ray ratio data as a time series, and calculate the trend 
function at each point along the time series. The trend will then be subtracted fi-om 
the raw values to generate a detrended time series. 

5.5.6 Data 
Detrender will require the coefficients of the 2°"̂  order polynomial function. 

It is envisioned that the detrending fimction for the solar cycle will be calculated 
(externally) by plotting the x-ray ratio as a function of Julian Day and then fitting a 
2"^ order polynomial using least squares. To ensure accuracy of the coefBcients the 
Julian day will need to be standardised by subtracting the average and dividing by the 
standard deviation. These values of the average and standard deviation will be needed 
by the class so that the current Julian Day can be standardised in the same way when 
calculating the detrending function. 

5.5.7 Resources 

None 

5.6 NeuralNet.java 

5.6.1 Type 
Class 

5.6.2 Function 
To feed an input vector to a MLP neural network and obtain an output. This class wiU 
contain all the variables and methods that define a single MLP network, such as 
weights matrices, scaling coefficients and number of layers and nodes. 

5.6.3 Interfaces 
Each NeuralNet object will receive the detrended input vector created by a 
PredictionModel object. An output will be returned to the PredictionModel object. 
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A file will be read by a NeuralNet object containing the Principal Component 
Analysis coefficients. 

5.6.4 Dependencies 

Before a NeuralNet ot^ect can be queried values for weights and scaling coefRcients 
will need to be set. 

If a principal components analysis is to be performed then a file containing its 
coefficients in the correct format needs to be present. 

5.6.5 Processing 

The NeuralNet object will take the input vector created by a PredictionModel object 
and perform a normalisation and a PCA projection. The correct number of principal 
components will be selected to form the final input vector, and this will be scaled 
using coefficients derived from the original training set. The scaled input vector will 
be passed through a MLP network structure with weights set and the output un-scaled 
and de-normalised. 

5.6.6 Data 

Each NeuralNet object will require a weights matrix, the number of layers and 
number of nodes per layer in the MLP network, the average and standard deviation of 
each dimension in the original training set (to allow normalisation), the PCA 
projection coefficients and the coefGcients of the input scale that map inputs to values 
of between 0 and 1. 

5.6.7 Resources 
None 

6 Feasibility and Resource Estimates 
Software will be built using the Java Development Kit version 1.3.101 available free 
6om Sun Microsystems. Development will be carried out on a PC running Windows 
98 and Borland Jbuilder (University Edition). Neural networks will be implemented 
by extracting code from Neu6ame version 4. 

The minimal requirement to maintain the code will be an installation of JDK 1.3.1 01 
and the ability to edit text files, although a Java development package will facilitate 
code editing. 

In order to run, the software will require an MS-DOS prompt via a Windows 
operating system and a constant internet connection. A server type machine would 
provide a suitable platform. Although developed in Windovys it is expected that 
POPE will be able to run on a UNIX/Linux platform as well. 
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7 Software Requirements vs Components Traceability Matrix 

SRI SR2 SR3 SR4 SR5 SR6 

PredictionApplicadon.java y y 

RealTimeDataj ava 

URLRetrie ver.j ava y 

PredictionModel.java / 

Detrenderjava 

NeuralNetjava y 

Table 2 Software Requirements vs. Components Traceability Matrix 
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1 Introduction 

1.1 Intended Readership 
The Software User Manual should be read by anyone intending to install, use 
or modify POPE, or for anyone wishing to understand the process supported 
by POPE. 

1.2 Applicability Statement 
This SUM applies to version one of POPE, completed February 5th 2002. 

1.3 Acronyms 

SUM Software User Manual 

POPE Predictor of Proton Events 

NGEX] National Geophysical Data Centre 

MLP Multi Layer Perceptron 

SPE Solar Proton Event 

GOES Geosynchronous Observational Environment Satellite 

UTC Universally Coordinated Time 

1.4 References 
[1] Work Package 3 Report "Comparison of Non-Linear Models for the 
Prediction of Solar Proton Events and GOES >2MeV Trapped Electron Flux 

Gareth Patrick, July 2001. 

1.5 Purpose 
This document gives an overview of the process that is supported by POPE 
and describes in detail how the code operates. It also contains instructions on 
how to install and run POPE and gives explanations of the output files that 
are produced by POPE. In addition, reference information is given 
concerning the source code and how to implement further prediction models 
within the existing software. 

POPE was written in order to validate prediction models created under 
previous work packages of the contract. The software implements MLP 
neural networks into a real-time &amework in order to create a real-time SPE 
prediction model. POPE obtains GOES satellite x-ray data from a remote ftp 
site and processes it for input to a prediction model. Neural networks are 
then queried and predict whether or not a SPE will occur in 48-hours time. 
Results are written to an output file. 

POPE has been designed so that additional models can be coded and plugged 
into the real-time Aamework with minimum effort, and can serve as a 
validation platform for any type of model using GOES satellite data as 
inputs. 
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1.6 How to use this document 
Section 2 provides a description of the software architecture and process, and 
should be read by a user wishing to understand how POPE operates and the 
individual tasks it actually performs. 

Specific installation and ruiming instructions are given in sections 3 and 4 
and should be read prior to installation. Section 4 also includes problems 
which may be encountered when attempting to run the software. 

Section 5 is a reference section and is intended for developers wishing to 
modify the existing code. Instructions are given on how to create and 
implement neural networks from Neuframe and how the software has been 
designed so as to allow different models to be plugged into the real-time 
interface. 

A detailed description of each class and method is not given in this 
document, but is available in the form of HTML documentation files created 
fi-om the source files using the facility. These files are contained 
within the 'documentation' folder. Extensive comments are given in the 
source code and the javadoc files, and only an overview of the classes will be 
given in this document. 

1.7 Related Documents 
Software Specification Manual. 

2 POPE Overview 

2.1 Process Overview 
POPE has been written to implement in real-time MLP neural network 
models that were developed in Work Package 3 of the contract [1]. These 
models use the ratio of the two GOES x-ray channels as an input over a 72-
hour period, and require access to several days worth of real-time GOES x-
ray data. Figure 1 below shows a schematic diagram of the basic process to 
be supported. 
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Figure 1 Schematic diagram of the basic process to be supported. 

Once data has been obtained it must be pre-processed in a number of stages 
and then fed to the neural networks. Each neural network will generate an 
output and predict whether or not a SPE will occur in 48-hours time. A 
prediction will be generated once every 60 minutes using the latest GOES 
satellite data. An array of 10 differently trained neural networks will be fed 
the same input vector to create 10 different responses to the same query. 
Development work showed that better performance was generally achieved 
when the outputs 6om several networks were combined in order to produce a 
'majority vote' predictioiL 

2.2 Description of neural networit prediction model 
MLP networks were created under WP-3 using a training set of 60 events and 
60 quiet periods. The aim was to train a network to differentiate between the 
case of 'event' and 'quiet period' by using x-ray data from well before the 
event itself Networks were assessed using unseen data and were found to 
predict the outcome correctly in 65% of cases. Individual network 
performance measurements are given in Appendix A. 

The neural network prediction models that are implemented in this code take 
the ratio of the two GOES x-ray channels (XS/)3v) as an input and predict 
'yes' or 'no' as to \^ether or not an event will occur in 4&-hours time. 

The x-ray ratio is detrended to remove the long term solar cycle trend. This 
trend function is calculated by Stting a 2°̂  order polynomial to the x-ray ratio 
over the active period of the current solar cycle. The detrended x-ray ratio is 
calculated by subtracting the trend from the actual value of the ratio at each 
point in time. 

The input vector to the neural network consists of a delay vector of detrended 
XS/XL spanning 6om -120 to -48 hours relative to current time, broken into 
24 3-hour intervals. This is shown schematically in Figure 2. 
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Figure 2 Input vector to the neural model 

The input vector must be normalised and projected onto principal axes via a 
PCA technique. The statistics used for normalising the input vector and the 
coefficients used to perform the projection are derived from the training set 
that was used to build the neural model. The first six principal components 
are taken as the input vector to the neural network. 

Each element of the input vector is scaled to a new value of between 0 and 1 
using the same scale that was applied to the training set. The network is then 
queried and produces a numerical output which is un-scaled and de-
normalised prior to interpretation. Networks have been trained using a value 
of 0 to represent a quiet period and a value of 100 to represent an event, thus 
a decision threshold of 50 is used to interpret the network output. A value of 
>50 indicates that an event will occur in 48-hours time, a value of <50 
indicates that no event will occur in 48-hours time. 

By feeding the same delay vector to several differently trained networks 
several different predictions can be generated for 1 case. Previous 
experience has shown that slightly higher success is achieved if the outputs 
from several networks are combined to form a 'majority vote' as to whether 
or not the outcome is an 'event' or not. 

2.3 Software Overview 
POPE has been written using six JAVA classes which each perform specific 
stages of the process. The distinct tasks carried out by POPE can be broken 
down as follows; 

• Retrieval of real-time GOES satellite data from a remote ftp site. 
(Performed by URLRetriever.java) 

• Creation of a data file made by stitching together several GOES data 
files. (Performed by RealTimeData.java) 

• Detrending of x-ray data to remove the long term solar cycle trend. 
(Performed by Detrender.java) 
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# Creation of a delay vector &om continuous GOES x-ray data. 
(Performed by PredictionModel.java) 

# Pre-processing of the delay vector (normalising, PCA and scaling), and 
running a neural network model with the processed delay vector. 
(Performed by NeuralNet.java) 

# Interpreting and recording the network outputs and other information 
relevant to each prediction. 
(Performed by PredictionModel.java) 

# A control loop Wiich repeats the prediction process every 60 minutes. 
(Performed by PredictionApplication.java) 

A more detailed description of the software execution stages are given in the 
following section 

2.4 Software Architecture 
Figure 3 is a software flow-diagram displaying the interaction between 
classes and the specific tasks that are carried out each time a prediction 
process is run. Grey boxes indicate input and/or output files that are 
accessed or created during each run cycle. 

Control of the run process is governed by PredictionApplication.java. This 
class contains the main function which runs a prediction once every 60 
minutes via a repeating loop. Each prediction nm consists of three main 
tasks; retrieving x-ray data, retrieving proton data and running the model. 
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The retrieval of GOES data is performed by a RealTimeData object. This 
obtains the current UTC time from the system clock then creates filenames 
for GOES x-ray or proton data for the current day and the preceding 5 days. 
These URL addresses are then passed to a URLRetriever object which 
accesses the URL and saves the GOES files as local copies. In order to 
access remote data from behind a firewall it may be necessary to use proxy 
settings. This information is provided by the user in the PAConfig.ini file 
which is accessed by the URLRetriever object at run-time. Once GOES data 
files for the current day and previous 5-days have been retrieved the 
RealTimeData object removes their headers and stitches the files together to 
form a continuous data file with the most recent data at the top of the file. 
The ultimate purpose of the RealTimeData otyect is to create a continuous 
data file which can be processed further by other objects. 

After retrieving GOES x-ray and proton data the prediction model is run. 
(Note that the prediction models implemented here use only the ratio of the 
GOES x-ray channels as an input, but by also retrieving proton data the 
current proton flux can be recorded in an output file to allow a comparison 
with the model output). 

The prediction model is defined by the PredictionModel object. This reads in 
the continuous 5-minute resolution x-ray data file that was created by the 
RealTimeData object and detrends the XS/XL ratio using the detrending 
fimction defined within the Detrender object. The PredictionModel object 
then creates a delay vector from the detrended 5-minute resolution x-ray 
ratio, consisting of 24 3-hour averages from the 72 hour period prior to the 
current UTC time. The PredictionModel object serves to create the delay 
vector that will be passed to a neural network. For reference the delay vector 
is saved in a temporary file. 

Contained within the PredictionModel object is an array of 10 NeuralNet 
objects which define 10 different MLP networks that are all queried with the 
same delay vector. Upon creation each NeuralNet object is initialised with a 
matrix of weights, the average and standard deviation of the training set on 
which the model was based (to allow the delay vector to be normalised) and 
the coefficients of the scale that is applied to the projected delay vector to 
produce values of between 0 and 1. 

Each NeuralNet object is passed the detrended input vector created by the 
PredictionModel object, and normalises it according to the training set 
statistics. The normalised vector is then projected using PCA coefficients 
which are read A-om a coefficient file, and which have been derived 6om the 
training set. The first six principal components are taken as inputs to the 
network and are scaled using the scaling coefficients derived 6om the 
training set. The network output is then un-scaled and de-normalised to 
produce a final output which is returned to the PredictionModel object. For 
reference, temporary files containing the normalised delay vector and the 
projected delay vector are created. 

The PredictionModel object collates the outputs S-om the 10 NeuralNet 
objects and records the number of networks tMt are predicting an event in 
48-hours time. The result is printed to screen and appended to a results file 
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with other relevant information, including current values of x-ray and proton 
flux. 

The run process is now complete and the software enters a sleep mode for 
sixty minutes, after Wiich another data retrieval and model-run will be 
per&rmed. 

3 Installation Instructions 

3.1 Minimum Requirements 
POPE must be installed on a machine which has constant internet access. 

POPE can be installed under a Windows environment (via an MS-DOS 
prompt) or a UNIX/Linux environment. 

The platform will require an installation of Java SDK version 1.3.1 or above, 
available 6om j ava. sun. com. 

3.2 Components 
The POPE software should consist of the files shown in Table I. 

Filename Description 

PredictionApplication.j ava 
RealTimeData. j ava 
URLRetriever.j ava 
PredictionModel.j ava 
Detrender.java 
NeuralNetjava 
PAConGg.ini 
Detrend.ini 

coeff^l20fql.txt 
coefF_120fq2.txt 
coeff^l 20fq3.txt 
coe8^120fq4.txt 
coef^l20fq5.txt 
coe]^120fq6.txt 
coef^l20fq7.txt 
coef^l 20fq8.txt 
coefI^120fq9.txt 
coefI^120fql0.txt 

Class source file 

Class source file 
Class source file 

Class source file 
Class source file 
Class source file 

Holds proxy internet settings 
Holds the detrending function coefficients and 
normalising statistics 
Holds PCA coefficients for network 1 
Holds PCA coefficients for network 2 
Holds PCA coefficients for network 3 
Holds PCA coefficients for network 4 
Holds PCA coefGcients for network 5 
Holds PCA coefficients for network 6 
Holds PCA coefficients for network 7 
Holds PCA coefficients for network & 
Holds PCA coefficients for network 9 
Holds PCA coefGcients for network 10 

Table 1 Files needed for POPE installation 
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3.3 Installing POPE 
Place all of the POPE files into a single directory o n the hard drive. If in 
windows, open an MS-DOS prompt and change directory to the one that 
contains the POPE files. If in UNIX/Linux use a command window. 

To compile the software type: 

javac P r e d i c t i o n A p p l i c a t i o n . j a v a 

3.4 Altering the PAConfig.ini file 
The PAConfig.ini file contains proxy settings that will be required to access 
the internet firom behind a firewall. Information required is the name of the 
proxy host and the number of the proxy port. If unknown this information 
can be obtained from a web browser operating on the same machine, or the 
system administrator. Alter the PAConfig.ini Ale so as to read: 

proxyHost = Ma/Me 

proxyPort = MZ/fwAgr 

If the platform being used can access the internet directly then no proxy 
settings are required and the PAConfig.ini file should read: 

proxyHost = 

proxyPort = 

(i.e. the values are set to null). 

At run-time the PAconfig.ini file will be accessed and the system properties 
changed to reflect the proxy host and proxy port information given. 

4 Using POPE 

4.1 Starting POPE 
Open an MS-DOS prompt and change directory to the one containing the 
POPE files. To run the program type: 

Java PredictionApplication 

A message will appear stating that the POPE run thread has begun and GOES 
x-ray and proton data files will be downloaded 6 o m the NGDC ftp site. 
Messages will appear stating which files are being downloaded. Depending 
on the speed of the internet connection it may take several seconds to 
download each file. 

After all files have been downloaded a message will appear stating that the 
prediction model is being run with real time data. The number of networks 
that are predicting an event will be shown along with the current UTC time 
and the time for which the prediction is valid. The message 'waiting for next 
prediction cycle' will then appear and the program wil l enter a sleep mode 
for 60 minutes before repeating the process. 

Note that POPE requires no other inputs Aom the user. Any modification to 
the program (such as sleep-time for example) must be made to the source 
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code, and then the program recompiled using the installation instructions 
above. 

4.2 Stopping POPE 
POPE has been designed to run indefinitely and will make predictions once 
every sixty minutes until the program is halted. To stop POPE running the 
process must be killed, which can be done by pressing Ctrl-C whilst the MS-
DOS window is open. 

Some users may prefer to disable the repeating loop in the source code and 
run POPE within a task-manager program. POPE will terminate after each 
prediction run, meaning the program will not be running continually, and the 
sleep interval will be controlled by the task manager. Instructions on how to 
disable the loop structure in the source code are given in section 5. 

4.3 Output Files 
Table 2 lists the files that are produced by POPE each time a prediction-run 
is performed. Most files simply provide a way to check that the correct pre-
processing is being applied to the delay vector and have only been produced 
for reference purposes during development. 

Filename Description 

yyyymmdd_G8xr_5m. txt 

yyyymmdd_G8part_5m.txt 

Continuous5minuteXray.tmp 

Continuous5minuteProtons.tmp 

AveragedData. tmp 

Normaliseddv.tmp 

Prqj ectedDv. tmp 

Output, txt 

Downloaded GOES x-ray 81e (contained in the 
'retrieved' directory). 

Downloads GOES proton file (contained in the 
'retrieved' directory). 

Contains continuous GOES x-ray data from 
current UTC time to 5 days previous. 

Contains continuous GOES proton data from 
current UTC time to 1 day previous. 

Contains the input vector derived from Real-time 
data consisting of the detrended values of XS/XL. 

Contains the input vector after it has been 
normalised by a NeuralNet object. Note that each 
network in the airay overwrites the 
Normaliseddv.tmp 61e each time it runs. 

Contains the input vector after it has been 
projected using PCA coefGcients of a NeuralNet 
object. Note that each network in the array 
overwrites the ProjectedDv.tmp file each time it 
runs. 

Contains the Network Outputs, the time of each 
run and other relevant information - see below. 

Table 2 Files produced by POPE during each prediction run. 

Each time a prediction run is made, information is saved to the Output txt 
file. The exact information recorded is given below in Table 3. 
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Column Heading 

Model run time 

Julian Day run time 

Prediction time 

Julian day 
prediction time 

DV1-DV24 

NETI-NETIO 

ERR1-ERR24 

Example Description 

EVENTS 

PROTONS 

Current Time 

XS 

XL 

Ratio 

05/02/2002 14:25 

52310.601 

07/02/2002 14:25 

52312.601 

-0.760 

61.652 

00 

-0.840 

05/02/2002 1425 

-8.109 

-5.945 

-2.168 

Date and UTC time of the most recent 
GOES data entry' 

Julian Day of the most recent GOES 
data entry 

Date and UTC time for which the 
prediction is valid for (calculated by 
adding the lead time to the model run 
time) 

Julian Day of the time for which the 
prediction is valid. 

Contains each of the 24 elements of the 
detrended delay vector that is passed to 
each network as an input. 

The numerical output of each of the 10 
networks. 

The number of missing 5-minute data 
points in each of the 3-hour intervals of 
the delay vector (maximum of 36). 
This enables the user to see when 
missing data might be affecting the 
model output. 

The number of networks &om 10 that 
are predicting an event in 48-hours 
time. 

Logio of the average >10MeV proton 
flux for the past 1-hour relative to the 
model run time. 

Same as model run time, but placed at 
the left hand of the table for easier 
reference. 

Logio of the average 0.4-4A x-ray flux 
in W/m^ for the past 1-hour relative to 
the model run time. 

Logio of the average l-SA x-ray Sux in 
W/m^ for the past 1-hour relative to the 
model run time. 

Logio of the average XS/XL ratio for 
the past 1-hour relative to the model run 
time. 

Table 3 Description of information in Output.txt 

The Output.txt file is tab delimited to facilitate import into other software 
(e.g. Microsoft Excel). 

The most recent GOES data file entry usually lags the current UTC time by 
around 10 minutes. 
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4.4 Data Quality 
POPE checks GOES files for missing data and prints a message to the screen 
if any 5-minute values are missing from the delay vector. Each 3-hour 
interval is composed of 36 5-minute averages, hence there is some tolerance 
for loss of data. If more than 50% of the 5-minute averages are missing from 
an interval then a warning is printed to screen. 

The precise number of missing data points in each element of the delay 
vector is recorded in the Output.txt 61e and can be used to ascertain when the 
network outputs may be affected by loss of data. 

4.5 Maintaining the detrending function 
The neural networks implemented in POPE require the XS/XL ratio to be 
detrended prior to being processed. Detrending is performed by a Detrender 
object which uses a 2'̂ '' order polynomial to model the long term solar cycle 
variation in the XS/XL ratio over the active years of the solar cycle (i.e. the 4 
years prior to solar maximum to the 2 years after solar maximum). The 
coefRcients that define the polynomial are contained within the Detrend.ini 
file. As time progresses the detrending function will fit recent data less 
accurately and will need to be recalculated and the coefficients updated in the 
Detrend.ini file. 

POPE is set to use GOES-8 satellite data hence vAen computing the trend it 
is important to use x-ray data fi-om the same satellite. To compute the trend 
retrieve daily x-ray averages from the SPlDR-2 data site* and standardise the 
Julian Day number by subtracting the average Julian day and dividing by the 
standard deviation (this is necessary in order to calculate the coefficients 
accurately when fitting a function to the data). Plot XS/XL as a function of 
Julian Day and fit a second order polynomial to the data. (This has can be 
done in Microsoft Excel), which will be of form: 

Open the Detrend.ini file and update the information. Each coefficient will 
need to be altered as will the average and standard deviation of the Julian 
Day that was used to calculate the detrending fimction. There is no need to 
stop POPE when altering the Detrend.ini file. 

In addition enter the date to which the detrending function was calculated. 
POPE uses this information to check to see when the detrending function 
runs to and issues a warning when the detrending function is more than 30 
days old. Save the Detrend.ini file after altering the information. The current 
trending fimction is based on x-ray data from GOES-8 over the period 
1/8/1997 to 31/12/2001. 

Note that the SPIDR-2 web site only contains x-ray data up to the end of the 
last month. To calculate a detrending function right up to the current day it 
will be necessary to manually download and process 5-minnute data directly 

* http://spidr.ngdc.noaa.gov/ 
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from the GOES ftp site^. Methods within the RealTimeData object can be 
used to create a file of daily averages up to the current day. 

In practice, the detrending function will not be significantly affected by new 
data within the current solar cycle (23) and experience has shown that the 
network outputs do not significantly alter when the detrending function is 
updated. The detrending function is likely to become far more critical at the 
beginning of a new solar cycle when there is little data to fit, and the addition 
of new data will significantly affect the trend. 

4.6 Interpreting the predictions 
Networks were trained with target values of 0 for quiet periods and 100 for 
events, hence a threshold value of 50 has been used to interpret the network 
output. For each prediction run POPE records the numerical output of each 
neural network and counts the number of networks that have an output of 
>50, i.e. the number of networks that are predicting an event. 

By studying the output from POPE it may be found that a different 
interpretation of the network responses gives a better success rate, but as yet 
POPE has not been operating long enough to provide a useful dataset. 

Testing results during development are summarised in Appendix A and show 
that on average each network had a 65% classification success rate, hence 
one would only expect the output from POPE to be correct 65% of the time 
at best. 

POPE is intended to validate the MLP models further, and brief experience 
shows that 5 or more of the 10 networks regularly predict an event when 
none is seen, indicating a tendency to over predict. Further validation is 
required before any conclusions can be drawn, but realistically the models 
are not expected to perform any better than during testing. 

4.7 Run-time problems 

4.7.1 Loss of internet access 

POPE does not check for an internet connection and will hang indefinitely if 
it runs with no internet access. If attempting to retrieve files when there is no 
internet access (for example, if a server is down) POPE will eventually 
terminate and will need to be restarted from the command line. Note that the 
Output.txt file is not overwritten by POPE if it is restarted. 

4.7.2 Contaminated download files 

It is possible for downloaded GOES data files to become corrupted during 
download if the connection is poor. A contaminated data file may also be 
downloaded if the incorrect proxy settings are used, in which case a html 
error page will be saved under a GOES data fUe name. Check the GOES 
data Gles (yyyymmdd_G8xr_5m.txt) in the 'retrieved' directory to ensure 
that they contain the correct data in the expected format. 

http .//www. sec. noaa. gov/Apmenu/lists/xray. html 
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To minimise internet connection time POPE checks to see if local files 6om 
prior to 2 days ago already exist before attempting to download them. If one 
of these 61es is contaminated then it will not be replaced when POPE is 
restarted. To ensure that new files are downloaded clear the 'retrieved' 
directory before restarting POPE. 

4.7.3 Incorrect proxy settings 

If the PAConfig.ini file contains the wrong proxy settings then POPE will 
retrieve a html error page instead of the GOES data file and cause the 
program to crash. Check the most recent GOES data file to ensure that it 
contains GOES data and ensure the proxy settings are correct. 

4.7.4 Incorrect System Clock 

In order to retrieve current GOES data POPE obtains the current local time 
fi-om the system and calculates the UTC time to generate the GOES URL 
filenames. If the system time is slightly fast POPE may try and retrieve a file 
that does not yet exist on the NGDC server if a retrieval is made shortly after 
UTC midnight. This will cause an error message to be saved under the 
GOES local filename and POPE will crash. This can be avoided by ensuring 
that the system clock is as accurate as possible. (Note that the system clock 
need only be set to local time as POPE automatically calculates the UTC 
time depending on the regional system settings). 

5 Software Reference 
This section contains an overview of each class. For a detailed explanation 
of the classes, methods and variables refer to the javadoc html files contained 
in the documentation folder of the installation. Further information is also 
included as comments in the source code. 

5.1 Class Overviews 

5.1.1 PredictionAppllcation.java 

Contains the main method which instantiates a PredictionApplication object 
and starts its run thread. After execution the run thread sleeps for 60 minutes 
before repeating. RealTimeData objects and a PredictionApplication object 
are instantiated in the PredictionApplication object. 

5.1.2 RealTimeData.java 

Retrieves several days worth of GOES x-ray or proton real-time data relative 
to the current system time and can collate it into a continuous file of 5 minute 
averages ordering the data so that the most recent is at the top of the 61e. 
GOES URL filenames are created by taking the local system time and 
converting it into UTC time. A URLRetriever object is used to retrieve the 
files 6om the URLs. The class also contains methods to perform various 
averaging processes on GOES data files. 
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Constructor 
RealTimeData ( int d a y s - , String datatype) 

Days - the number of days for which GOES data will be retrieved. 

D a t a t y p e - determines whether x-ray or proton data files will be retrieved. 
Datatype must be either '^x-rays" or "protons". 

Methods 
AppendOutputFile (String NewOut^utLine^ String 
Filename) 

Adds a new data line to an output file. 

CreateContinuousFile() 

Creates a continuous 5-minute file of retrieved GOES data by reading the 
retrieved files and writing the data to one file in reverse order so that newest 
data is at the top of the file. 

CreateFileStrings() 

Uses the UTC time derived from the current system time to create filenames 
for the remote GOES data files. 

GetUTCTimeO 

Gets the local system time and generates the UTC time based on the GMT 
and DST offsets between the local time zone and UTC. 

lastHourOfProton() 

Calculates the latest 1-hour average of GOES proton data, 

las tHourOfXRay() 

Calculates the latest 1-hour average of X-ray Data (XS, XL and Ratio) 

loglO(double x) 

Receives x and returns double value for loglO(x) 
RetrieveData() 

Retrieves the GOES data files from the designated address for the required 
number of days and puts the data into one continuous file. 

setContinuousFile(String newname) 
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Sets the name of the continuous 5-minute file produced by stitching GOES 
files together. 

setFileStern(String newstem) 

Sets the filestem for the data files being retrieved: e.g. _G10part_5m.txt 

setPrevDays(int days) 

Sets the number of days for which data files will be retrieved relative to the 
current date. 

Additional Developers Methods 
Several methods have been included in the class which are not used by POPE 
but which may be of significant use if attempting to develop or modify POPE 
further. 

StockDailyXrays(int startyear, int startmonth, int 
startday, int endyear, int endmonth, int endday) 

Calculates the daily averages of GOES X-ray data for every day between the 
current date and a date in the past (providing remote data files exist) This is 
designed to allow a data file to be built up 6om which a detrending function 
can be calculated. 

dailyXrayAverages() 

Calculates the daily average of XS, XL and XS/XL Ratio from a date two 
days ago relative to the current day. It was intended to run this method once 
eveiy calendar day to create an updating file of x-ray data from which a 
detrending function could be dynamically calculated. This would prevent 
having to calculate the detrending function manually and alter the source 
code within the Detrender object. 

dailyXrayAverages(String DailyGOESFile) 

Calculates the daily x-ray average of XS and XL for the supplied data file 
and ammends the result to a file named DailyXrayAverages.txt. A variation 
of the above method. 
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5.1.3 URLRetriever.java 

Function 
GOES to a URL address and makes a local copy of the Hie that is found 
there. By default the local files are saved to a directory called 'retrieved' 
within the POPE installation folder. 

Constructor 
URLRetriever (String U R L a d d r e s s String 
localcopyname) 

U R L a d d r e s s - The URLaddress of the file to be downloaded. 

L o c a l c o p y n a m e - The filename which the local copy will be saved under. 

Methods 
CreateDirectory() 

Method to create a new directory. 

SetProxy() 

Sets the system properties for internet connection (proxyhost and proxyport) 
by reading the PAconfig.ini file. 

5.1.4 PredictionModel.java 

Function 
This class implements a prediction model of any desired window length, 
input average or lead-time by building the relevant delay vector from the 
continuous GOES x-ray data file created by the RealTimeDataObject. 

The PredictionModel object contains a Detrender object to detrend the 5-
minute GOES data prior to building the delay vector and NeuralNet objects 
which process the delay vector and perform the prediction. 

Constructor 
PredictionModel (int lilinlengthi int A v e P e r i o d i n t 
Itime1 String N a m e ) 

W i n l e n g t h - t h e length of the delay vector in hours that is to be built &om 
5-minute GOES data. 

AvePeriod - the averaging interval in hours of the delay vector that is to 
be built 6om 5-minute GOES data 

I t i m e - the lead-time of the model. Used to generate the time for which the 
prediction is valid. 

N ame - a reference name for the model. 
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Methods 
AppendResultsFile (String NewOutputLine) 

Adds a new dataline to the output 61e of the prediction model. 

AverageTheData() 

Computes the averages from the 5-minute data to form the required delay 
vector of length 'windowlength' and resolution 'Averagingperiod' 

CreateHeader() 

Method to create a header for the output, txt file 

interpret_output(double[][] ResultArray) 

Converts the numerical network output to the text association of either an 
"Event" or a "Quiet" period using the value of'threshold'. 

runModel() 

Runs the model using the latest downloaded data as a query. 

SetScales(NeuralNet NetworkArray[]) 

Sets the values of M and C in y=inx+c for the scales in each NeuralNet 
object within a PredicitonModel. 

SetStatistics (NeuralNet NetworkArray [ ] ) 

Sets the statistics for each NeuralNet object within a PredictionModel. These 
are used to standardise the input data. 

SetWeights(NeuralNet NetworkArray[]) 

Sets the weights for each NeuralNet otyect within a PredictionModel. 

5.1.5 Detrender.java 

Function 
Will detrend an 'x' vs 'y" series using a user defined function, i.e. will 
calculate y - f(y) at each value of x, v\iiere f(y) is specified by the user. The 
class is designed to receive the 5-minute values of the XS/XL ratio, indexed 
with Julian Day, and detrend them. 

Constructor 
Detrender(double tCli double yCli String filename) 
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t [ I - the array holding the time values 

y [ ] - the array holding the values f(t) 

f i l e n a m e - t h e name of the file holding the trend function coefGcients and 
related information. 

The time values in the received array are standardised using the statistics of 
the detrending function. (These need to be soft coded in the source code by 
the user). 

Methods 
SetCoefficients(double coeffone, double coefftwo, 
double constant) 

Sets the coefficients of the detrending function 

trend_function(double t, String name) 

Calculates the detrending function at each point in t ime using the coefGcient 
file provided. 

loglO(double x) 

Receives x and returns double value for log]o(x) 

5.1.6 NeuralNet.java 

Function 
Designed to take a delay vector and process it in the stages of: normalising, 
PCA projection and scaling, and then feed the processed vector as an input to 
an MLP neural network. 

Constructor 
NeuralNet (String MName-, String PCAname boolean 
needPCAi int PCs) 

MName - the name of the model as an identifier 

PCAname - the file holding the PCA coefficients 

needPCA - true indicates that a PCA projection should be performed after 
standardizing the input vector, false indicates that no PCA projection is 
required. 

P Cs - the number of principal components to be used as inputs to the model. 

Methods 
D@normali8e_ou^ut (double normalised) 
Denormalises the output from the network to a 'real' value. 
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descaler(double y) 

Receives the raw network output (double) and descales it according to the 
training target scale. 

Interrogate_Network(double InputVector [ ], double 
OutputVector[]) 

A modified code extraction 6om Neuframe. This method gives the processed 
and scaled input vector to the network and calculates the network output. 

normalise_delay_vector (double raw_dv_vector []) 

Normalises the delay vector with using the average and standard dev of each 
element in the training set. 

PCAProjection(int dvlength) 

Takes a (normalised) delay vector and performs a PCA projection by reading 
a file of coefficients. All principal axes are projected onto. Outputs the 
resulting vector to a .tmp file holding the projected delay vector 

run_query(double raw_dv_vector[]) 

Takes the raw input vector produced by a PredictionModel object and 
processes and scales the vector according to the attributes set in the 
constructor. The processed and scaled vector is then passed to the 
InterrogateNetwork method. 

scaler(double x) 

Returns a scaled value based on the scale used by Neuframe (y = mx +c) 

setNormalStats(double ave[], double sd []) 

Sets the normalising statistics required to normalise the raw delay vector 

setScales(double m, double k) 

Sets the values for M and C in the input scaling function y = mx + c 

setWeights(double weights[][]) 

Sets the weights matrix for the network 
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5.2 Disabling the repeat cycle 
By default POPE runs continually in an infinite process that sleeps for sixty 
minutes between prediction runs. Whilst this means that POPE can be 
started and 'forgotten' it is usually not a good practice to run a process that 
has no termination, and some users may wish to disable the sleep cycle and 
run POPE in 'single prediction mode' via a task manager. Once the sleep-
loop is removed POPE will terminate after each prediction run and will need 
restarting to perform another prediction. 

To disable the repeating loop open the PredicitonApplicationJava file in an 
editor and go the run() method. Delete the while(true) loop and the 
associated brackets and delete the 'try' and 'catch' blocks and everything 
contained within them. 

Save the file and recompile using the command: 

javac P r e d i c t i o n A p p l i c a t i o n . j a v a 

POPE can be started by typing 

java P r e d i c t i o n A p p l i c a t i o n 

at the MS-DOS prompt and will terminate after a prediction has been made. 
A task manager can be used to run the program at set times, and results will 
be saved to the Output.txt file. Note that the Output.txt file is not overwritten 
when POPE restarts. 

5.3 Implementing a new prediction model 
POPE has been written to allow further prediction models to be implemented 
with minimum effort. Provided that a model is to use GOES x-ray data as an 
input only new PredictionModel and new NeuralNet objects need be created. 
Although implementation of new models has been facilitated, modification 
of the existing source code will be required. 

5.3.1 Building a new delay vector 

The PredictionModel object will build the required delay vector firom the 
continuous GOES 5-minute x-ray file using the delay vector characteristics 
that are supplied to the PredictionModel object at construction. For example, 
if the model being implemented requires a delay vector of length 12-hours, 
averaging period 2 hours and lead-time 6 hours a PredictionModel object 
could be instantiated using: 

new PredictionModeK15T S i fcn M o d e l N a m e ) i 

Ensure that enough GOES x-ray data is being compiled into the continuous 
file by the RealTimeData objects. (If not it may be necessary to change the 
number of days for which data is retrieved in the RealTimeData constructor). 
PredictionModel objects should be created in the PredictionApplication runQ 
method. 
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5.3.2 Building a new /̂ILP neural network 
The NeuralNet object contains methods and variables specific to an 
individual MLP neural network. The MLP models implemented here were 
developed in Neuframe v. 4 and a JAVA code extraction was performed on 
the trained networks. 

To implement a new MLP network within POPE it is first necessary to 
extract the JAVA code from Neu&ame. The extracted code contains errors 
and must be modified slightly for it to work (please refer to the comments in 
the source code above the Interrogate Network method). The Neuframe 
extraction forms the Interrogate Network method within NeuralNet, and the 
class variables from the Neuframe extraction become class variables within 
NeuralNet. Further comments are given in the NeuralNet.Java source code. 

Each NeuralNet object requires a specific set of weights, a specific set of 
statistics that relate to the training set and a specific set of coefficients that 
relate to the scaling functions. When a new NeuralNet object is instantiated 
these variables must be set using the relevant ' s e t ' methods of the 
NeuralNet class. The weights matrix can be obtained directly from the 
Neuframe extraction. The normalising statistics must be obtained from the 
network training set, and the scaling coefficients must be calculated from the 
scales used in Neufi-ame. (Neuframe does not display the scaling coefficients 
and these must be deduced manually via the information displayed in the 
scaling properties window. The scaling is linear and of the form y = mx + c 
vAere y is the scaled output and x is the un-scaled value). 

If a principal components analysis is to be performed each NeuralNet object 
will require a text file containing the matrix of projection coefficients. This 
matrix is derived 6om the training set. The number of principal components 
taken as inputs by the neural network is defined in the NeuralNet constructor. 
Refer to the html ym/Woc files for full details of the NeuralNet constructor. 

5.3.3 Summary of how to implement a new prediction model 

* Create a new PredictionModel object in the PredictionApplication 
run () method with the required delay vector characteristics. 

» Within the PredictionModel constructor instantiate a new NeuralNet 
object. 

* Set the weights, normalising statistics and scaling coefficients of the 
NeuralNet object. 

» If a PC A projection is required ensure that a text file containing the 
coefficient matrix is present in the POPE directory and that it has been 
referenced correctly in the NeuralNet constructor. 

* The model can be run using the r u n _ m o d e l ( ) method of 
PredictionModel but this will have to be modified slightly as it is 
currently written to run an array of NeuralNet objects as opposed to just 
one NeuralNet object. 
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6 Appendix A 
Neural network test performance results prior to inclusion in 
POPE 
Summary of method 

A dataset was compiled consisting of 97 events and 173 quiet periods. This 
was randomly divided into a training set of 60 events and 60 quiet periods 
and a query set of 37 events and 113 quiet periods. The process was repeated 
10 times to generate 10 random combinations of training and query data. 

Each dimension of the training set was normalised and a PCA performed in 
order to project the training set onto its principal axes. The first six principal 
components were then taken as an input vector to a MLP network in 
Neu&ame. 

Each query set was normalised and PCA projected using the statistics and 
coefficients derived from the respective training set and was used to test each 
of the trained networks. Results are given below. 

Results 

Network Events classified 
correctly / % 

Quiet periods classified 
correctly / % 

Overall classification 
Success/% 

Net 1 86.5 42.5 64.5 
Net 2 73.0 61.1 67.0 
Nets 81.1 45.1 63.1 
Net 4 83.8 46.9 65.3 
Nets 75.7 39.8 57.7 
Net 6 75.7 38.9 57.3 
Net 7 81.1 55.8 68.4 
Nets 67.6 58.4 63.0 
Nets 62.2 61.9 62.1 
Net 10 59.5 57.5 58.5 
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1998. 

14. CanGeld, R. C., H. S. Hudson, and A. A. Pevstov, Sigmoids as Precursors of Solar 
Eruptions, /SEE rm/wacf/oTw OM Mawma S'cfgMcg, 28, 1786-1794, 2000. 

15. Cargill, P. J., J. Chen, D. S. Spicer, and S. T. Zalesak, Magnetohydrodynamic Simulations 
of the Motion of Magnetic Flux Tubes Through a Magnetized Plasma, Jowma/ q/" 
Ggqp^ffco^y(gj^garcA-.5^acgf^.;fCj!, 101,4855-4870, 1996. 



16. Chakravord, T. B., T. K. Das, A. K. Sen, and M. K. Dasgupta, Some Studies of Solar 
Proton Events in Relation to Active Region Characteristics, 

42, 165-170, 1991. 

17. Chen, J. and D. A. Garren, Interplanetary Magnetic Clouds - Topology and Driving 
Mechanism, Geqp/iyffco/ TfefgarcA 20, 2319-2322, 1993. 

18. CipoUini, P. C. G. D. M. G. R., Retrieval of Sea Water Optically Active Parameters 6om 
hyperspectral data by means of generalised radial basis function neural networks., 
TEEE on Geofc/gMcg oW 2000. 

19. Cline, K. S., N. H. Bmmmell, and F. Cattaneo, On the Formation of Magnetic Structures 
by the Combined Action of Velocity Shear and Magnetic Buoyancy, 
Jow/Tzo/, 588, 630-644, 2003. 

20. Costello, K. The CosteUo Model. http://www.sel.noaa.gov/rpG/costello/index.html 2001. 

21. Das, T. K., T. B. Chakraborty, and M. K. Dasgupta, Studies of Some Aspects of Solar 
Proton Events and Related Phenomena, q/" q/" 

38, 206-210, 1987. 

22. Donnelly, R. F. and L. C. Puga, 13-Day Periodicity and the Center-to-Limb Dq)eadaice of 
Uv, Euv, and X-Ray-Emission of Solar-Activity, 6'o/a/' 130, 369-390, 
1990. 

23. Feynman, J., T. P. Armstrong, L. Daogibner, and S. Silverman, Solar Proton Events 
During Solar-Cycles 19, 20, and 21, 126, 385-401, 1990a. 

24. Feynman, J., T. P. Armstrong, L. Daogibner, and S. Silverman, New Interplanetary Proton 
Fluence Model, JowrMo/ 27, 403-410, 1990b. 

25. Feynman, J., G. Spitale, J. Wang, and S. Gabriel, Interplanetary Proton Fluence Model -
Jpl 1991, GeqpAy^fca/ 98, 13281-13294, 
1993. 

26. Gabriel, S., R. Evans, and J. Feynman, Periodicities in the Occurrence Rate of Solar Proton 
Events, 128, 415-422, 1990. 

27. Gabriel, S. B. and J. Feynman, Power-Law Distribution for Solar Energetic Proton Events, 
165, 337-346, 1996. 

28. Gabriel, S. B., Feynman, J., and Spitale G. Solar Energetic Particle Events: Statistical 
Modelling and Prediction. ESA Symposium Proceedings on "Environment 
Modelling for Space-based Applications. SP-392. 96. 

29. Garcia, H. A., Temperature and Hard X-Ray Signatures for Energetic Proton Evaits, 
VbwrMa/, 420, 422-432, 1994a. 

30. Garcia, H. A., Temperature and Emission Measure From Goes SoA-X-Ray Measuranents, 
154, 275-308, 1994b. 

31. Garcia, H. A., Famik, F., and Kiplinger, A. L. Hard X - R ^ Spectroscopy for Proton Flare 
Prediction Spie - Int Soc Optical Engineering. Proceedings of the Society of 
Photo-Optical Instrumentation Engineers (Spie). 

http://www.sel.noaa.gov/rpG/costello/index.html


32. Garcia, H. A. and Kiplinger, A. L. Low-Temperature Soft X-Ray Flares, Spectrally 
Hardening Hard X- Ray Flares, and Energetic Interplanetary Protons. 95, 91-99. 
96. Astronomical Society of the PaciSc Conkrence Series. 

33. Gleisner, H. and H. Lnndstedt, A Neural Network-Based Local Model for Prediction of 
Geomagnetic Disturbances, Vbwmo/ f Ayffca, 106, 
8425-8433, 2001. 

34. Gothoskar, P. and S. Khobragade, Detection of Interplanetary Activity Using ArtiGcial 
Neural Networks, q/"fAe yja'fyoMOfM/ca/ .S'ocfgfy, 277, 1274-
1278, 1995. 

35. Haykin, S. Neural Networks, a comprehensive foundation. Haykin, S. Neural Networks, a 
comprehensive foundation. 99. Prentice Hall. 

36. Heckman, G. Prediction of Solar Particle Events for Exploration Class Missions. 
Biological Effects and Physics of Solar and Galactic Cosmic Radiation. 243, 89-
100. 93. Plenum Press Div Plenum Publishing Corp. Nate Advanced Science 
Institutes Series, Series a. Life Sciences. 

37. Heckman, G. R. Solar Proton Event Forecasts. Interplanetary Particle Environment 
Conference Proceedings, pp 91-100. 88. JPL publication 88-28. 

38. Heckman, G. R., J. M. Kunches, and J. H. Allen, Prediction and Evaluation of Solar 
Particle Events Based on Precursor Information, m 
Vol. 12, (2)313-(2)320, 1991. 

39. Heckman, G. R., W. J. Wagner, J. W. Hirman, and J. M. Hunches, Strategies for Dealing 
with Solar Particle Events in Missions Beyond the Magentosphere, Advances in 

TZeaeafcA, 9, 275-280. 

40. Home R. B. Space Weather Parameters Required by the Users and Synthesis of User 
Requirements wpl300 and wpl400 (Version 3.1). 2001. 

41. Huang, Y. N. and S. J. Wang, Two-Step Coronal Transport of Solar Flare Particles From 
Magnetic Multipolahty Sources in a Flare Region, 18, 
304-306, 2001. 

42. Kahler, S. W., Radio-Burst Characteristics of Solar Proton Flares, JbwrMaZ, 
261, 710-719, 1982a. 

43. Kahler, S. W., The Role of the Big Flare Syndrome in Correlations of Solar Energetic 
Proton Fluxes and Associated Microwave Burst Parameters, JbwT-Ma/ 

87, 3439-3448, 1982b. 

44. Kahler, S. W., Solar-Flares and Coronal Mass Ejections, o/W 
30, 113-141, 1992. 

45. Kahler, S. W., N. R. Sheeley, R. A. Howard, M. J. Koomen, D. J. Michels, R. E. Mcguire, 
T. T. Vonrosenvinge, and D. V. Reames, Associations Between Coronal Mass Ejections 
and Solar Energetic Proton Events, VbwrMo/ q/" Ggqp/^fzca/ .Rg^ygarcA-̂ ^acg f , 89, 
9683-9693,1984. 



46. Kallenrode, M. B. Particle Acceleration at Interplanetary Shocks - Observations at a Few 
Tens of Kev Vs Some Tens of Mev. 15(8-9), 375-384. 95. Advances ia Space 
Research. 

47. KaUenrode, M. B., G. Wibberenz, H. Kunow, R. MuUermellin, V. Stolpovskii, and N. 
Kontor, Multi-SpacecraA Observations of Particle Events and Interplanetary 
Shocks During November December 1982, 147, 377-410, 1993. 

48. Kahnan, B., Submergence of Magnetic Flux in Interaction o f Sunspot Groups, 
371, 731-737, 2001. 

49. Kane, R. P., E. R. Depaula, and N. B. Trivedi, Variations of Solar Euv, Uv and 
Ionospheric FofZ Related to the Solar Rotation Period, 

13, 717-723, 1995. 

50. King, J. H., Solar Proton Fluences for 1977-1983 space missions, Jbwma/ q/'^acgcrq^ 
11,401, 1974. 

51. KipUnger, A. L., Comparative-Studies of Hard X-Ray Spectral Evolution in Solar- Flares 
With High-Energy Proton Events Observed at Earth, vifO-qpAyg/ca/ Vowrmo/, 453, 
973-986,1995. 

52. Kunches, J. M. and R. D. Zwickl, The Effects of Coronal Holes on the Propagation of 
Solar Energetic Protons, (̂fzafzoMMgaywrg/MgMfly, 30, 281-286, 1999. 

53. Lundstedt, H., H. Gleisner, and P. Wiutoft, Operational Forecasts of the Geomagnetic Dst 
Index, GgcpAyj:fca/7(eggarcA Z,gfrgM, 29, art. no.-2181, 2002. 

54. Meyer, J., G. Wibberenz, and M. B. Kallenrode, Time-Development of Proton Energy-
Spectra in Solar Energetic Particle Events, m .^acg T ĝ̂ gorcA, 13, 363-
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