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Solar Proton Events (SPEs) pose a significant radiation hazard to spacecraft within and beyond
the magnetosphere, but currently there is no capability to predict these events more than 24 hours
before they occur. This thesis develops a classification approach for the prediction of SPEs with
a 48-hour lead time, and addresses the fact that very little work has been done on examining SPE
forecasting methods with longer lead times than current flare-association techniques allow.
Development of the technique has been based on a uniform dataset that covers 3 solar cycles and
more than 30 decades of continuous spacecraft observations, and has used solar x-ray fluxes and

solar radio fluxes as predictor variables.

By comparing times of SPE occurrence to times at which the solar proton flux was at a
background level it has been shown that SPEs are associated with increased levels of solar x-ray
flux and solar radio flux, and that these increases are, on average, significant up to 5 days prior
to SPE occurrence. Using these variables as inputs neural models have generated 65% success
rates for SPE prediction with a 48-hour lead time, extending the lead time of existing models by
a day or more. A neural model has been coded to operate in real-time and represents the only
autonomous SPE forecast model with a 48-hour lead time that does not require human
supervision. Assessing the model over a 12-month operational period showed it to have superior
SPE detection capability to the current 2-day forecast operated by the Space Environment

Centre.

Success of the classification technique was limited by the fact that solar x-ray flares were found
to exhibit similar precursors to SPEs, although this meant that the model could in fact be used to
forecast flares to a greater success than SPEs. Additional findings showed that the correction of
radio flux observations for centre-to-limb dependence may offer the potential for more accurate

forecasting ability on a timescale of days.
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1. INTRODUCTION

Solar Proton Events (SPEs) are sporadic solar emissions of high energy particles and
pose a significant hazard to both earth orbiting and interplanetary spacecraft. The
occurrence of an SPE can cause proton fluxes in geostationary orbit to rise rapidly by
several orders of magnitude and remain elevated for several days, causing effects that
range from increased errors in spacecraft memory to permanent latch-ups in electronic
instruments. The high energy protons that constitute SPEs are also a large potential risk
to future manned missions involving Lunar or Martian exploration, and their occurrence

is also thought to contribute to radiation doses at aircraft altitudes.

Whilst relatively accurate models exist to estimate radiation doses in space over
timescales of years there is little provision for the accurate real-time prediction of SPEs.
Currently, only two real-time SPE forecast models are in use, operated by the Space
Environment Centre (SEC), and their usefulness is limited in that both of these models
require an x-ray flare to occur before an SPE prediction can be made. This
fundamentally limits the lead time of SPE forecasts to several hours, and as a result their

occurrence is often without adequate warning, and their impact to operations is high.

This thesis is concerned with the development of a new SPE prediction model which
aims to make SPE predictions with longer lead times than current methods by using
inputs that are not from discrete x-ray flares. The work addresses the fact that the
prediction of SPEs without using x-ray flares has never been attempted, hence it is
currently unknown whether or not SPE-precursors other than flares exist. The advantage
in developing such an approach is that lead times are no longer limited to the physical
time difference between x-rays and particles arriving at earth, (which is typically less
than 12-hours), allowing more time for appropriate measures to be taken. The typical
role of an SPE forecast service is to alert spacecraft operators to a likelihood of satellite
anomalies, but if forecasts can be made with a suitable accuracy and lead time it may
eventually be feasible to delay spacecraft launches or EVAs, and could serve as a
warning to manned excursions on the lunar or Martian surfaces that may be several days

travel from suitable radiation shelters.

The following work begins by looking at our current understanding of SPEs, and
examines the models that are currently in use by the SEC to predict their occurrence. By

evaluating the shortcomings of these existing real-time forecast models a blue print for a
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new model is drawn, and then a number of different approaches are discussed as to how
the new model might be implemented. This concludes with a preference towards
empirical rather than physical modelling and the thesis goes on to develop both a time

series forecasting approach and a classification approach involving neural networks.

It is concluded after applying autoregressive and moving average (ARIMA) techniques
to a proton flux time-series that SPEs are better represented as discrete occurrences,
which allow the proton flux to be represented as a binary time series. A classification
approach has then been adopted in order to predict the time series by using solar x-rays
and solar radio flux as predictors variables. This leads to the optimisation of an MLP
configuration which uses the ratio of GOES solar x-ray fluxes as inputs to generate SPE
forecasts with a 48-hour lead time. The model is subsequently coded to ESA software
standards to operate in real-time and has been assessed over a 12-month period. It
represents the only autonomous prediction model that currently exists with a 48-hour

lead time.

The development of the classification model utilises a dataset spanning approximately 3
decades, and in addition to allowing the creation of a model, has also enabled the
behaviour of solar x-ray flux and solar radio flux to be examined prior to the occurrence
of over 100 SPEs. This has resulted in the tentative identification of possible longer
term precursors to SPEs in solar x-ray and radio flux that have not been previously
reported. Solar x-ray fluxes are shown on average to be higher prior to SPEs, and SPEs
are shown to coincide with peaks in a 27-day periodicity in the 2800Mhz solar radio
flux. It is also suggested that spatially resolved measurements of solar radio flux, which
can be corrected for observer location, may reveal a more accurate correlation between

radio flux peaks and SPE occurrence.

The thesis concludes by comparing the performance of the neural classification model
with that of the SEC 2-day forecast over the same operational period, where it is shown
that the neural model has far superior SPE prediction capability. The performance of the
classification model is found to be limited by the fact that the solar x-ray flux and solar
radio flux prior to flares with no SPE association exhibit similar behaviour as at prior to
SPE occurrence. Findings from throughout the work and an examination of the
classification models’ behaviour are used to provide comments concerning directions of

future research in this area, and include analysis of the model as an x-ray flare forecaster.
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2. SOLAR PROTON EVENTS

This chapter reviews the current understanding of SPEs by examining their physical
nature and their origin. The problems posed by SPEs are discussed, as are their known
precursors and associations, and existing models for SPE forecasting and solar proton
fluence estimation are examined in detail. The chapter ends by summarising the
limitations of current real-time SPE forecasting tools, and provides evidence to suggest

that alternative prediction approaches could be developed.

2.1 Solar Proton Monitoring

Solar Proton Events (SPEs) consist of atomic particles, predominantly protons, that are
accelerated in the solar atmosphere to extremely high energies up to GeV ranges [Shea
and Smart, 1994]. Solar protons have been monitored indirectly via muon and neutron
monitors since circa 1930, but such techniques were only able to detect very high energy
protons (500MeV and above) via secondary particles seen as increases in cosmic ray
intensity. Atmospheric balloons and sounding rockets enabled more sensitive
measurements to be taken, but since the mid 1960s (corresponding to solar cycle 20)
solar particle fluxes have been monitored at energies ranging from 1 to 500 MeV by
space borne instruments on board the Interplanetary Monitoring Platform (IMP)
spacecraft and Geosynchronous Observational Environment Satellites (GOES) [Shea

and Smart, 1995b).

The IMP and GOES platforms have provided valuable, uniform datasets over a
continuous time span of decades (GOES platforms have been operational since 1974,
and IMP platforms since 1963) and they have provided the basis for many solar proton
studies over the past 30 years. The GOES satellites are used continually by the Space
Environment Centre (SEC) to monitor solar x-rays and the proton flux environment in
geostationary orbit, and it is often these measurements that first indicate that a solar

proton event is in progress.

SPEs are typified by a rapid rise in the geostationary proton flux, usually by several
orders of magnitude over a few hours, followed by a slow decay to background levels
over a period of a few days. Das et al. studied proton events between 1955 and 1985 and
reported rise times of up to 55 hours, but usually less than 20 hours, and durations of

between 10 and 120 hours [Das, Chakraborty, and Dasgupta, 1987]. Events later in
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history however show that the large SPE of October 1989 caused the geostationary

>10MeV proton flux to remain elevated for over 30 days.

There is no universally agreed definition as to what constitutes an SPE but the SEC
defines one as occurring if the >10MeV proton flux (as measured by GOES satellites) is
greater than 1.0 pfu, and remains above this level for 3 consecutive 5-minute
observations. This definition appears to stem from user group requirements in that it is
protons of energies greater than 10MeV that pose hazards to satellite components. The
peak fluxes and fluences of SPEs vary over several orders of magnitude: on rare
occasions >10MeV peak fluxes reach 104pfu, and >10 MeV event fluences of 10"
protons/cm2 were recorded for the August 1972 event [Feynman, Armstrong, Daogibner,

and Silverman, 1990Db].

Shea and Smart performed a study based on highly energetic events (those detectable at
ground level) between 1955 and 1986 but found no pattern in their occurrence other than
a general association with solar activity in that there were more solar proton events
during solar activity maximum than minimum [Smart and Shea, 1989]. Calendar years
were found to contain between 1 and 16 SPEs depending on their position in a solar
cycle. It was also noted that SPEs tended to occur in episodes of activity, with one
active region producing a series of major flares with associated proton emissions as it

passed across the central meridian.

2.2 The Effects of Solar Protons

The effects of solar activity on earth based systems were first recorded in 1860 when,
due to induced currents from a geomagnetic storm, telegraph lines between Boston and
Portland could be used without need for batteries [Stewarr, 1861]. The increased reliance
on electrical and space based technology means that today’s systems are even more
vulnerable to solar activity, one famous instance being the destruction of electrical
transformers in Canada due to Ground Induced Currents (GICs) in 1989. Over the past
20 years the term 'Space Weather' has been coined to define the behaviour of Sun-Earth
interactions, of which SPEs are just one facet of solar emissions, along with CMEs, radio
and x-ray flares, and interplanetary shocks, all of which can be geo-effective. However,
whilst SPEs are sometimes associated with geomagnetic storms, their largest impact is

on the near earth space environment and the systems which operate within it.
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The arrival of energetic particles at earth can cause the >10MeV proton flux at
geostationary orbit to increase by several orders of magnitude and reach fluxes of
1O4pfu. Typical consequences experienced by spacecraft are a rapid and permanent
degradation in solar panel performance, and an increase in the number of Single Event
Upsets (SEUs) [Shea, Smart, Allen, and Wilkinson, 1992], [Vampola, Lauriente,
Wilkinson, Allen, and Albin, 1994], [Stassinopoulos, Brucker, Adolphsen, and Barth,
1996]. SEUs are caused by single heavy ions penetrating sensitive areas of circuitry and
can cause sufficient electrical charge to change the logic state of the device. SEUs often
appear as memory errors and are reversible by rebooting onboard software, but if they
occur in critical areas can result in permanent latch-ups, rendering instruments or sub-

systems unusable [Tranquille, 1994].

Wilkinson reports that a family of geostationary spacecraft experienced 1 SEU per hour
in relation to September 1989 solar proton emissions and in October of the same year
GOES spacecraft suffered star sensor outage and major loss of solar panel output due to
the direct result of another large SPE [Wilkinson, 1994]. The TDRS-1 spacecraft also
exhibited significant increases in SEU rates relating to proton events during 1989, 1991
and 1992 [Shea and Smart, 1998)], [Wilkinson, Daughtridge, Stone, Sauer, and Darling,
1991].

SPEs also pose a serious hazard to manned missions. It is calculated that the SPE of
October 1989 would have almost tripled the current annual radiation allowance for
NASA astronauts behind 2g/cm” of shielding [Heckman, Kunches, and Allen, 1991].
Heckman et al. have examined scenarios for possible future missions in which astronauts
may be working on the surface of the moon or Mars, and suggest the requirement for a
SPE prediction with a lead time suitable to allow a radiation shelter to be reached
[Heckman, Wagner, Hirman, and Hunches,]. The PROTONS prediction model for SPE
occurrence (operated by the Space Environment Centre) was developed prior to the
Apollo lunar missions for the specific purpose of providing a hazard warning for lunar

astronauts.

Very recently, the impact of SPEs and solar radiation on airline flights has become an
issue with aircraft operators and radiological protection agencies. Research by
O’Sullivan et al. addresses the fact that biological damage from neutrons may have been
underestimated and states that the radiation doses received from flying at higher

subsonic altitudes are unknown [O'sullivan, Zhou, and Flood, 2001}, [O'sullivan, Zhou,
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Heinrich, Roesler, Donnelly, Keegan, Flood, and Tommasino, 1999]. A current study is
flying high energy radiation monitors on selected commercial flights in order to quantify
the radiation field, but the occurrence of a SPE is known to enhance the ambient particle

conditions [O'sullivan and Zhou, 1999].

2.3 Solar Proton Modelling

Of particular importance at the beginning of the space era was the need to try and
estimate the radiation dose that spacecraft would experience during their lifetime, and
the availability of proton data from IMP satellites provided an opportunity for

quantitative analysis of SPE fluence.

King was the first to use early satellite data to study SPE fluences, and using data
pertaining to solar cycle 20 (1964-1976) he found that the radiation dose at 1AU was
dictated entirely by contributions from SPEs, or, more specifically, the occurrence of a
single, large fluence SPE (the August 1972 event). King went on to develop a model to
predict the proton fluence for cycle 21, basing it on the events that had occurred during
cycle 20 and the predicted sunspot maximum for cycle 21 [King, 1974]. Data pertaining
to cycles 19 and 20 seemed to indicate that proton fluence was directly related to the

maximum sunspot number of a cycle.

Time would show however that King had based his model on too small a dataset, and
this is an inherent problem when attempting to draw conclusions from solar proton
studies. Their low occurrence frequency and the further division of SPEs into their
respective solar cycles means that decades must pass before reliable statements about

their distributions can be made.

Following Kings’ attempt at trying to predict proton fluences, later work by Feynman et
al studied the distribution of fluences from SPEs occurring between 1956 and 1936,
incorporating solar cycles 19, 20 and 21 [Feynman, Armstrong, Daogibner, and
Silverman, 1990b]. In studying the distribution of SPE fluences Feynman made no
distinction between solar cycles, treating the dataset as one population, with the result
that the SPE fluences formed a continuous distribution. Exceptionally large fluence
SPEs, previously thought by King to be anomalous events, were now shown to belong to
the same distribution as smaller fluence SPEs. Feynman found that the distribution of

event fluences could be approximated at higher fluences by a power law. Small (low
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fluence) events were found to occur far more frequently than high fluence events and
prevented an accurate power law fit of the entire distribution, although the fitting
functions (power laws) were biased to model the large fluence event probabilities as it is

these events that dictate the proton fluence over a suitably long time span.

Feynman’s study also revealed a pattern in that the significant majority of solar proton
fluence was produced during a period spanning from 3 years before to 4 years after the
time of solar sunspot maximum, defined to the nearest month. This finding is supported
by Shea and Smart, who note that the majority of SPEs occur through the second through
eighth years after sunspot minimum [Smart and Shea, 1989]. Feynman called this 7-year
period the active years of a solar cycle and concluded that when estimating the proton
fluence over a given time it was only necessary to consider the active years: the
remaining years could be ignored as they gave only a small contribution to proton
fluence in relation to active years. Using Monte Carlo methods Feynman generated
curves based on the SPE distribution that showed the probability of exceeding a given
proton fluence over different time spans (mission lengths). Feynman revises the work by
including data up to 1991 and calculates probability curves for different energies,
formalising the model as the JPL-91 Interplanetary Proton Fluence Model [Feynman,
Spitale, Wang, and Gabriel, 1993], which is widely accepted as the industry standard for

proton fluence estimation.

It is worth noting that the Feynman model was created in response to a need to be able to
predict the radiation dose during a spacecraft lifetime. However, the notion of 7-active
years is not realistic, and if a mission lasting 4 years happens to fall in the 4 non-active
years between solar cycles it will have zero predicted radiation dose. Clearly, the
Feynman model is only valid if the majority of a spacecraft mission falls into the seven
active years of a cycle. In addition a study by Stassinopoulos et al. since the JPL-91
model has shown that ‘non solar active years’ can still contain significant SPEs, and in a
few instances have also had higher annual proton fluences than supposed active years
[Stassinopoulos, Brucker, Nakamura, Stauffer, Gee, and Barth, 1996]. This again
highlights the fact that the concept of active years is really only valid as a probabilistic
model over long time spans. It also shows that SPEs do occur outside ‘active years’,
with the implication that a discrete SPE forecasting approach cannot limit itself to just

the active years of a cycle.
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More recent work has revised the proton fluence power laws [Gabriel and Feynman,
19961, [Gabriel, Feynman, and Spitale G., 1996}, [Gabriel, Feynman, et al. 1996] and
others have used extreme value theory and Poisson distributions to generate more
accurate and more simplistic probabilistic models for total dose prediction [Xapsos,
Summers, and Burke, 1998), [Xapsos, Summers, Shapiro, and Burke, 1996], but in
essence such models are only revisions to a curve fitting exercise. They may allow
proton fluence to be predicted more accurately over timescales of years, but say nothing

about when a specific SPE will occur.

2.4 The Flare Paradigm

The classical picture of SPE propagation to earth is based within a flare paradigm, and
assumes particles to emanate from the location of a flare site where they then diffuse
through space along magnetic field lines emanating from the sun. Burlaga describes a
process for anisotropic diffusion in which particles are produced at a point source on the
sun and diffuse to adjacent solar longitudes whilst at the same time diffusion proceeds
more rapidly along interplanetary magnetic field lines away from the sun [Burlaga,

1967).

This diffusion process means that for a SPE to ‘occur’ at earth, solar protons must travel
along magnetic field lines that connect the sun to the earth. More specifically, the
diffusion model predicts that both the magnitude of solar proton flux seen at earth and
the onset time are dependent on the heliolongitude of the particle source [Barouch, Gros,
and Massa, 1971]. This has been verified observationally by a number of authors, most
notably Shea and Smart, who show that the majority of SPEs seen at earth are related to

flare sites on the western limb of the sun [Shea and Smart, 1995a), [Smart and Shea,

1989].

Cane et al. found that x-ray flares associated with SPEs could be grouped into two
categories via their soft x-ray profiles (i.e. their profiles in the GOES 1-8A channel),
these being ‘impulsive’ x-ray flares, which displayed fast rise and decay times of the
order of 10 minutes, and ‘gradual flares’ which exhibited a much longer exponential
decay. Impulsive flares were shown to have small volumes and to occur low in the
corona, with gradual flares occurring at much greater coronal heights. [Cane, Mcguire,
and Vonrosenvinge, 1986]. Cane et al. found that particle emissions associated with
impulsive flares tended to have a high ratio of electrons but generated a relatively low
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proton content and only occurred at well magnetically connected flare sites. By contrast
SPEs associated with gradual x-ray flares had much higher proton energies, occurred at

any solar longitude, and were also associated with coronal and interplanetary shocks.

The link between gradual x-ray flares and significant SPEs is corroborated in
independent studies by Garcia, who identifies Gradual Hard X-ray flares as having a
high correlation with SPEs [Garcia, 1994a), [Garcia, Farnik, and Kiplinger,]. Garcia
also examined the electron temperature distribution of x-ray flares, and found that cooler
flares with lower x-ray intensities had a higher association with SPEs, whereas hotter x-
ray flares were not proton associated. Garcia theorised that gradual x-ray flares, as
purported by Cane, belonged to this cooler, proton associated population, but also found
that at high intensities the distributions merged: i.e. high temperature, high intensity
flares could still result in associated particles [Garcia, 1994a]. At the same time,
Kiplinger was examining the energy spectra of proton associated flares, and noted that x-
ray flares that exhibited gradual hardening in energy spectra over their peak and decay
were always associated with energetic SPEs [Kiplinger, 1995]. Kiplinger found that the
behaviour of the energy spectra could be used to reliably predict whether or not an x-ray
flare would result in associated protons, and theorised that flares with a hardening
spectra were signatures of high energy electron and proton acceleration. Garcia and
Kiplinger pooled their findings and found that large flares with SPE associations and
progressively hardening spectra could have an impulsive stage of high electron
temperature similar to that of non-proton associated x-ray flares which masked the
characteristic low temperature usually seen in gradual proton associated flares [Garcia
and Kiplinger, 1996]. Garcia and Kiplinger concluded that impulsive flare behaviour
could occur just prior to a gradual flare event, with the effect of masking the typical
gradual-flare temperature signature, and state that the fact that progressive hardening in

energy spectra is still present suggests that a common acceleration process is present in

all flares.

In summary Garcia and Kiplinger imply that SPEs are directly caused by energetic
flares, and provide strong evidence that flare characteristics are good indicators of SPE
occurrence. However, other findings indicate that coronal mass ejections (CMEs) may be
the physical cause of SPEs rather than flares [Reames, 1995]. Kahler et al. found that
96% of energetic SPEs could be associated with the occurrence of a CME [Kahler,

Sheeley, Howard, Koomen, Michels, Mcguire, Vonrosenvinge, and Reames, 1984],
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which are themselves highly correlated with the occurrence of gradual x-ray flares
[Kahler, 1992]. This is also supported by Sheeley et al., who found that for a given x-
ray event the probability of an associated CME is a strongly increasing function of x-ray
flare duration [Sheeley, Howard, Koomen, and Michels, 1983]. The occurrence of a long
duration x-ray flare is therefore a good indicator of both a CME and an energetic particle
event, although there is no conclusive evidence as to which is the actual cause of a SPE.
It is believed by some that flares play no physical role at all in causing SPEs, and that
their supposed importance has been caused by the fact that they are relatively easy to
monitor, (and have indeed been monitored since the 1930s). It is probably true that
associations between SPEs and other phenomena have been overlooked due to the
assumed role of flares, but Garcia and Kiplinger have proven that flare characteristics
can be used to determine whether associated particles will be seen after a flare, and this

will hold regardless of whether or not flares are the true cause of SPEs.

The relative particle abundances measured during SPEs indicate that there are probably
two families of SPEs which emanate from two different regions of the corona, [Reames,
1988] and which relate to the two different types of flare association [Reames, Barbier,
Vonrosenvinge, Mason, Mazur, and Dwyer, 1997]. Tanaka suggests that long duration
x-ray flares are indicative of flares occurring high in the corona in areas of open and
non-complex magnetic field topologies [Zanaka, 1987]. The mechanism of particle
acceleration is thought to be due to magnetohydrodynamic shock wave propagation over
large areas, and would explain the lack of correlation between gradual x-ray events and
the sun-earth connection longitude. Impulsive flares with particle associations occur low
in the corona and occur at well magnetically connected sites. Garcia postulates that if an
impulsive flare is energetic enough it may allow particles to break their magnetic
containment, giving rise to a low coronal source SPE. This concept is supported by
Kahler’s ‘Big Flare Syndrome’ which essentially states that any very energetic flare will
have associated particles [Kahler, 1982b]. Although Garica and Kiplinger give evidence
to suggest that the same (flare) acceleration mechanism is common in both impulsive
and gradual cases, it is likely that the additional MHD wave acceleration process in the

latter case is far more important in determining the severity of SPEs seen at earth.

It has also been accepted that interplanetary shocks play a fundamental role in SPEs by
modifying the energy of particles that have been produced in earlier flares [Cane,

Reames, and Vonrosenvinge, 1991], [Cane, Reames, and Vonrosenvinge, 1988]. This
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realisation stems from the observed behaviour of proton flux during large fluence events,
which often exhibit several augmentations in proton flux associated with the passage of
interplanetary shocks [Kallenrode, Wibberenz, Kunow, Mullermellin, Stolpovskii, and
Kontor, 1993, [Meyer, Wibberenz, and Kallenrode, 1993]. Fundamentally this means
that any model attempting to predict the flux of a proton event must also account for the

effects of ‘post-injection’ interplanetary shock particle acceleration.

The argument as to whether it is CMEs or flares that cause SPEs is ongoing. Garcia and
Kiplinger describe spectral hardening in x-ray flares as a manifestation of a particle
acceleration process, providing strong evidence that flares are inextricably linked to
SPEs, yet others infer that the high correlation between SPEs and CMEs must imply a
physical link between SPEs and CMEs. However, in terms of wanting to predict the
occurrence of a SPE it may not be necessary to debate their true physical cause. Garcia
and Kiplinger have proven that flare characteristics can be used to determine whether
associated particles will be seen after a flare, and this will hold regardless of whether or
not flares are the true cause of SPEs, Purely from a forecasting viewpoint it is sufficient
to identify and ‘harness’ precursors to SPEs so that forecasts can be made.
Understanding the physical processes that cause SPEs is obviously desirable and may
help to construct a forecasting model, but knowledge of these mechanisms is not

mandatory to the success of a prediction technique.

2.5 Precursors and Associations

SPEs are nearly always co-incident with a solar x-ray flare, and as discussed above, it 1s
widely held that particles are produced, (if not also accelerated) at the site of a flare. The
radial emission of electromagnetic radiation at the speed of light as opposed to the
diffusion of particles along open magnetic field lines gives rise to a delay between
monitoring an x-ray flare and monitoring associated particles, hence flares are observed
as precursors to SPEs. The delay between monitoring an x-ray flare and monitoring
particles is variable, dependent upon the energy to which particles have been accelerated,
and can vary between several hours, or just several minutes for very high energy
particles (>500MeV) [Smart and Shea, 1989]. Flares however are a very common
phenomena, with a typical occurrence frequency of several per day during solar

maximum, the reality being that less than 1% of all flares produce associated particles at

11



THE DEVELOPMENT OF A SOLAR PROTON EVENT PREDICTION MODEL

earth. The occurrence of a flare can therefore never be used as a unique indicator that an

SPE will occur.

In addition to the flare characteristics described in the previous section radio bursts
associated with flares have also been shown as having SPE associations [Kahler, 1982a].
Impulsive x-ray flares show strong association with Type III radio bursts, and gradual x-
ray flares with Type Il and Type IV radio drifts, which are indicative of a shock moving
away from the sun , [Cawne, Mcguire, and Vonrosenvinge, 1986], [Aschwanden,
Montello, Dennis, and Benz, 1995]. Uddin et al. studied the radio associations from a
sample of 52 proton associated flares and found that Type II, III, and IV radio emissions
were present in 70% of cases [Uddin, Pande, and Verma, 1990]. Use of this correlation
is made in current forecasting methods, but the fact remains that the presence or absence
of a given radio burst type cannot be used as a unique requirement for a SPE. Uddin also

finds for example that 38% of proton flares exhibit type I radio burst emissions.

It was mentioned in 2.3 that King modelled proton fluence as a function of sunspot
number, but studies since 1970 have shown this to be a falsehood. Feynman et al.
considers proton fluence between 1956 and 1985 and fails to find a relation between the
solar cycle integrated proton flux and the maximum sunspot number of the cycle, and
also on a year-by-year basis finds no correlation between the annual integrated solar flux
and annual proton fluence [Feynman, Armstrong, Daogibner, and Silverman, 1990a].
Gabriel also shows poor correlation between sunspot number and annual proton fluence
[Gabriel, Feynman, and Spitale G., 1996] and a corroborative conclusion is also reached
by Shea and Smart, who found that the annual occurrence rate of SPEs did not correlate
well with the average annual sunspot number over solar cycles 19, 20 and 21 [Shea and

Smart, 1992].

In an auto correlative approach Gabriel et al studied the occurrence frequency of SPEs
by approximating SPEs occurring during cycles 19, 20 and 21 as unit pulses [Gabriel,
Evans, and Feynman, 1990]. Whilst peaks in spectral power at near 154 and near 50
days were found, no level of significance was attributed to the findings, hence it is
impossible to draw any conclusions. In addition, the tendency for events to occur in
episodes of activity as an active region passes across the solar disk [Shea and Smart,
1990] means that SPEs from one initial source may have been included as separate
events, where it may have been more appropriate to consider only the first injection.

Nevertheless, the authors postulate that the observed 154 day periodicity may either be
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due to the correlation between SPEs and Ha flares, which have also been measured as
having similar occurrence periodicity, or a more fundamental origin of solar activity
connected to the periodic re-emergence of magnetic flux and modes of solar oscillation
[Oliver, Ballester, and Baudin, 1998), [Cane, Richardson, and Von Rosenvinge, 1998].
As the significance of the periodicities cannot be quantified though it is impossible to

take these theories as anything more than speculation.

Solar flares, and hence by association SPEs, are known to originate from active regions,
consisting of local areas of complex, developing magnetic topology, which manifest as
sunspots in visible light. Uddin et al calculated the cumulative flare index for 45 active
regions that produced SPEs, and noted that a sharp rise in the cumulative flare index was
often a precursor to SPE occurrence [Uddin, Pande, and Verma, 1990]. Importantly, the
rise in cumulative flare index occurs over a timescale of days, implying that SPEs might
be forecast without the need for a single x-ray flare, but Uddin makes no comparison to
active regions that do not produce SPEs hence it is unknown as to whether sharp rises in
cumulative flare index occur commonly when unrelated to SPEs. In a similar study
Chakravorti does compare 171 proton to 200 non-proton producing active regions, and
finds that the latter have a higher distribution of flare index values, but does not state
how the flare indices have been collected: i.e. it is unknown if these are maximum values
over active period life, or an average value [Chakravorti, Das, Sen, and Dasgupta,
1991]. Nevertheless, the result still implies that active region characteristics can be
associated with SPEs. In addition, Chakravorti et al also find that the Ca-Il plage index,
the radio emission flux and the maximum intensity of 9.1cm radio flux associated with
proton producing active regions pass through a maximum on the day of SPE occurrence
in 70% of cases with values decreasing for days before and after. This observed

behaviour again implies that SPEs might be forecast on a timescale of days.

In very recent work by Canfield et al. the appearance of Sigmoid shapes in x-ray images
of the corona has been identified as a precursor to solar eruptions, and more specifically
CMEs [Canfield, Hudson, and Pevstov, 2000]. MHD simulations show that the sigmoid
forms when twisted magnetic fields combine in a reconnection mechanism, but the
technique requires the magnetic structure to be seen ‘end-on’ for the sigmoid to be
visible. Cleary this limits its usefulness as a practical precursor, and in addition it is not

a unique pre-requisite for a CME, with only a 65% correlation with solar eruptions.
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The current approach to SPE forecasting is to use x-ray flare characteristics to determine
whether or not an x-ray flare is proton producing, but the findings by Chakravorti and
Uddin described above strongly suggest that the characteristics of active regions (rather
than discrete flares) may allow an SPE to be forecast a matter of days in advance, well

before the traditional ‘proton-flare’ occurs.

2.6 Solar Proton Prediction

Probabilistic models such as JPL-91can provide an estimate with given confidence levels
of the proton fluence that will be received over a number of years but do not address the
immediate real-time hazards that SPEs pose because they do not predict when a specific
event will occur. This means that SPEs currently have a large impact on real-time
spacecraft operations and will pose a significant potential threat to future manned

missions,

The current way to minimise the effects of SPEs is to design and use radiation hardened
components, but this entails high costs, whereas an ability to alert operators to possible
satellite errors could be more cost effective [Shea and Smart, 1998]. The threat posed by
SPEs to future interplanetary missions is already appreciated [Heckman, 1993], and a
reliable warning system would allow time for exploration teams to reach shelter or
postpone a sortie. Even though protected by the earth’s magnetic field, manned missions
in Low Earth Orbit still experience higher radiation levels during SPEs, and again, the
ability to forewarn of the occurrence of an SPE with suitable lead time and confidence

could allow EVAs or even spacecraft launches to be rescheduled.

The immediate hazard that SPEs pose to spacecraft and manned missions requires the
need for real-time forecasting models rather than probabilistic, long-term dose models.
These real-time models need to be capable of predicting when an SPE will occur with
enough lead time to take any mitigating action. The SEC has recognised the need for

such real-time SPE forecasts and currently operates two models.

2.6.1 The PROTONS model
The PROTONS model entered operational service in 1972 and was developed in

association with the Apollo lunar missions in order to provide an alert/warning service

for energetic particles for manned missions [Heckman, 1988]. It was developed at a time
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when solar observations were still predominantly ground based and when solar
mechanisms were poorly understood, and as a result the model is based on heuristic
equations and empirical formulae derived from observed data ([Heckman, Kunches, and
Allen, 1991], [Balch and Kunches,]. The PROTONS model is based firmly in the flare
paradigm and is based on the concepts described previously in which energetic particles
are produced at a flare site and then diffuse to and along interplanetary magnetic field

lines connecting the sun and the earth.

The PROTONS model uses a solar flare to make two distinct predictions: the first is
whether or not an SPE will occur, and the second is the >10MeV peak proton flux and
arrival time of the particles should an event occur. When a flare occurs, PROTONS can
be run, and takes as inputs the time integrated x-ray flux of the flare from the GOES
instruments, the solar longitude and latitude of the flare, the current Ap index, and the
presence of any type II and type IV solar radio bursts occurring in association with the

flare.

The probability of a SPE following a flare is estimated by combining individual
probabilities relating to different characteristics of the flare, thus the probability of there

being a proton event takes the form:
P(SPE)=P(1) x P(2) xP(3)

Where P(1) relates to the peak x-ray flux of the flare, P(2) relates to the type of radio
burst associated with the flare, and P(3) relates to the magnitude of the predicted peak
particle flux (a larger predicted proton flux indicates a higher probability that the proton
event will actually occur). The probabilities for each term have been derived empirically
and are based on experience with the model during 1974-1985. A proton event has a
high probability of occurring if either Type II or Type IV radio bursts are observed, and
the peak flux of the x-ray flare is high (greater than M6 level). Details of the
probabilities used in the model are given by Balch [Balch, 1999]. Clearly, the probability
of seeing an SPE after a flare has occurred is based purely on an empirical correlation

between historical flare characteristics and SPE associations.

Predictions for expected peak proton flux are based on an empirically derived power law
relating time integrated x-ray flux to observed peak proton flux. The value is corrected
for the heliographic location of the x-ray flare, which attenuates the expected flux as a

function of degrees from the sub earth point according to anisotropic diffusion theory.
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The sub-earth point (helio-longitude) is itself a function of solar wind speed, for which
the Ap index is used as a surrogate. Rise-time is also estimated from the flare location,

and is a function of the distance between the flare site and sub-earth point.

Later additions were added to the model to account for the effects of interplanctary
shocks giving rise to post injection particle acceleration. The modification however is
relatively simple, and is again empirically based, simply stating that if a flare of
sufficient size has occurred in the past 48 hours further correction factors are calculated
based on the integrated flux of this flare. The effect is to increase the predicted particle

flux and reduce the predicted rise time for the current SPE prediction.

PROTONS has been in real-time operation since 1972 which has enabled validation on a
large amount of solar data, although the most recent verification and analysis was
performed by Balch using 88 proton events with flare precursors occurring between
1988 and 1997 [Balch, 1999]. Balch finds that the predicted proton flux has an error of
approximately one order of magnitude compared to the observed flux, and that the

predicted lead times frequently vary by more than 50% from the observed lead times.

More fundamentally, Balch found that the flare location was not useful in predicting the
peak flux of a proton event, and that the PROTONS model for peak proton flux
prediction was marginally improved when the correction factor for flare heliolongitude
was removed. Similarly, a slight improvement was also found when the correction for
previous x-ray flare activity was removed. The significant errors in flux and lead-time
predictions and the fact that ‘correction factors’ actually worsen performance reflect the
simplistic diffusion model of particle propagation that PROTONS uses, and suggest that
the empirical relations between x-ray flare energy and observed proton flux need to be

revisited.

Balch also examined the accuracy of the model in predicting the occurrence of SPEs by
comparing the predicted probability of there being an SPE with the actual observed
frequency of SPEs, and found PROTONS to significantly over predict: e.g. model
predictions of 40% and 50% for event probabilities actually had only a 21% chance of
being associated with an event [Balch, 1999]. In an earlier study Heckman carried out
an analysis of the model for 1989 in terms of a 'yes/no' forecast derived by taking all
probabilities > 50% as a 'yes' and all those < 50% as a 'no'. During 1989 only 5 out of 21

events were missed, resulting in a hit-rate of 76%, but in 16 cases an SPE was predicted
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when none occurred, causing Heckman to state that the model generates a relatively

large proportion of false alarms [Heckman, Kunches, and Allen, 1991].

PROTONS is a model which relies on relatively simple physics and empirical relations
between x-ray flares and SPEs. In terms of predicting whether an SPE will occur or not,
performance is reasonable, but the quantitative outputs such as occurrence probability,
peak proton flux and rise time have significant error, reflecting the simplistic physical

origins of the model.

2.6.2 The Garcia Model

The Garcia model again exists under the flare paradigm but is based on the more recent
findings discussed in 2.4 in which Garcia found proton producing x-ray flares to have a
low temperature distribution at low peak fluxes [Garcia, 1994a]. Garcia fitted
probability curves to the observed distributions, allowing the probability of an SPE

occurring to be calculated from flare electron temperature and peak x-ray flux.

This model is currently being evaluated on real-time data on SEC web space® using x-
ray fluxes and flare temperatures calculated from GOES satellite data [Garcia, 1994b]
and has yet to be formally evaluated. However, Garcia shows that the two distributions
of low and high temperature merge at high fluxes, indicating that in some instances the

model will not be able to distinguish between proton and non-proton flares.

It is interesting to note that Kiplinger’s findings, which were also discussed in 2.4
relating to the evolution of spectral hardness during x-ray flares, have not been used to
create a particle prediction model, even though Kiplinger performed a test in which he
was able to successfully identify 96% of proton producing flares purely through analysis
of their x-ray spectra [Kiplinger, 1995]. The most probable reason for this is that the
spectral hardening of the x-rays must be examined over the decay period of the flare, by
which time protons associated with the flare may already be arriving at earth: i.e. the
technique only permits a post-event association to be made and cannot be used as a

practical prediction method.

* http://sec.noaa.gov/~sgreer/gprot/index html
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2.6.3 The Problem with Flare Paradigm Prediction Models

It is evident that the only particle prediction models that are in current operation rely on
the characteristics of a single, discrete x-ray flare in order to make a prediction. The
approach taken is to look at an x-ray flare and decide whether or not it is going to be
proton producing. Whilst there may be a physical argument against using flares as a
predictor because they are not the true physical cause of particles (as discussed in 2.4),
there is also a more fundamental, practical drawback to the technique in that particles
can arrive just several minutes after the occurrence of a proton flare [Smart and Shea,
1989]. Typically, particles will arrive within several hours of an associated x-ray flare,
meaning that the PROTONS, Garcia and any other technique using flare characteristics
will always have lead times that are physically limited to just a few hours, and in some
instances, for very energetic particles (which are arguably the most desirable to be able

to forecast), there will be almost no lead time at all.

Secondly, flare paradigm models do not allow an SPE to occur without there first being a
flare, whereas real observations show that it is possible for an SPE to occur without an
apparent x-ray flare. In Heckman’s appreciation of the performance of PROTONS
during 1989 he finds that a proton event was not predicted because it occurred without a
flare [Heckman, Kunches, and Allen, 1991], hence there was no reason (and no inputs) to
run the model. Whilst these instances are relatively uncommon it still highlights another

inherent limitation with current particle forecasting methods.

Future interplanetary missions or human expeditions to Mars or the Moon are likely to
require some kind of solar particle warning service, but the current lead times, and
accuracies that are offered by such models may not be sufficient to allow an acceptable
level of risk [Heckman, 1993]. A recent work commissioned by the European Space
Agency set out to quantify the current Space Weather requirements within the European
Community and identified a need to predict solar particles for satellite operators and
manned missions with forecasts of 1 to several days ahead with target reliabilities of

65% [Horne R. B., 2001].

The SEC does issue the probability of an SPE occurring for 1, 2 and 3 days ahead, but
these probabilities are generated by a human forecaster and not by an analytical model.
Forecasts are based on a number of factors including magnetic complexity of active
regions, active region area, H-alpha and white light structure, heliographic position of
active regions, coronal structure, radio emission characteristics and whether or not active
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regions are in growth or decay [Heckman, 1993]. These predictions are intended to
serve as a general outlook, but analysis by Heckman shows that the predicted
probabilities bear almost no relation to the observed occurrence of SPEs: i.e. these

forecasts have no reliability whatsoever.

2.7 A New Particle Prediction Model

It has been shown that current SPE forecasting models are deficient. PROTONS exhibits
significant error in rise time and peak flux predictions, and the underlying physics on
which it is based is overly simplistic. Predictions of whether or not an SPE will occur
are of reasonable reliability, but the pre-requisite of an x-ray flare by both PROTONS
and the Garcia model limits lead-times and treats SPEs uniquely within a flare paradigm.
The need to forecast SPEs several days ahead has been identified, yet the flare-based
models cannot achieve this, and alternative forecasting techniques are subjective and

highly inaccurate on such a time-scale.

There is evidence however to suggest that precursors to SPEs other than the classical
solar flare may be present, and may allow events to be forecast on a timescale of days.
As was discussed earlier in 2.5, Uddin et al found solar radio flux from active regions to
pass through a maximum on the day of an SPE, yet these findings have not been taken
further: the behaviour of other solar variables, such as x-ray flux, has not been studied on
a timescale of days relative to SPEs, (possibly due to the well established belief that
flares/CMESs are the first and only precursors to SPEs) and importantly, no attempt has
been made to create an SPE forecasting model that does not use a discrete x-ray flare as

an input.

The existence of several decades of in-situ high quality solar measurements provides an
excellent opportunity to address the ‘gap’ in the current SPE prediction approach by
providing an opportunity to try and identify longer term precursors to SPEs. Via this
approach it may be possible to develop a prediction model that does not require
characteristics of a discrete flare as inputs, hence permitting the generation of forecasts
with longer lead times. In addition the wide availability of near-real time data from
satellites provides an excellent resource from which to evaluate and operate such a
model. If successful, such a technique would go some way to realising the particle
forecast lead-time requirements that have been identified by ESA and which would be

required by future manned space missions.
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3. A NEw PREDICTION MODEL

This chapter examines the nature of SPE occurrence with reference to specific examples.
By examining the limitations of current prediction techniques it sets requirements for a
new forecasting model and different approaches are then discussed as to how these

requirements can be met.

3.1 The Nature of SPEs

In order to begin the development process for a new SPE prediction technique it is useful
to examine the occurrence of an SPE in order to characterise the phenomenon in more
detail. Since the existence of space borne particle monitors SPEs have been observed via
the instruments of the IMP and GOES satellite platforms. The Space Environment
Monitor payload on board the GOES satellites also contains solar x-ray detectors,
allowing solar x-ray activity to be observed in parallel with particle fluxes.
Measurements from GOES are available in near real-time as a space weather monitoring

service, and are the means today by which SPEs are most commonly observed and

analysed.

Figure 3-1 shows an SPE which occurred at near mid-day on the 14™ February 1986 as
recorded by monitors on the GOES-6 spacecraft. Prior to the SPE the >10MeV proton
flux is at a relatively constant level of approximately 10"p.f.u. The SPE manifests as a
sudden increase in flux over two hours to a level of ~10'p.fu, followed by a more
gradual increase to approximately 10* p.fu. over a further 6 hours. The elevated flux
levels then decay to background over a period of 3 days (although the tail of the event is
not shown in the figure). An examination of the solar x-ray flux shows an x-ray flare to
occur just prior to the onset of the SPE. The time delay between the peak of the x-ray
flare and the onset of the SPE is approximately 2 hours.
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Figure 3-1 Typical occurrence of an SPE with associated x-ray flare during February 1986 as

captured by monitors on the GOES-6 spacecraft.

Figure 3-2 and Figure 3-3 show similar plots for two more arbitrarily chosen SPEs, one
from November 1988, the other from July 1989. In both instances the >10MeV proton
flux is again at a relatively constant background level of ~10™'p.fu. prior to the event.
The SPE manifests as a sudden sharp increase in the proton flux level. In the July 1989
example (Figure 3-2) the SPE is associated with an impulsive x-ray flare of > 10
watts/m” peak flux, but there is no measurable delay between the x-ray flare peak and the

onset of the SPE. In the November 1988 example the onset of the SPE does not appear

to have any x-ray flare association at all.
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Figure 3-2 An SPE with associated x-ray flare on 25™ July 1989
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Figure 3-3 an SPE with no associated x-ray flare on November 8™ 1988

The specific flux-time profile of SPEs, as discussed in the previous chapter, is a function

of the heliographic position of the particle source with respect to the earth and also
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dependent on the presence of interplanetary shocks, but in the general case all SPEs are
similar in that they are typified by a sudden enhancement in proton flux which rises to a
maximum over a period of several hours. Prior to an SPE the >10MeV proton flux is at

a relatively constant background level of ~ 107'p.fu.

3.2 The Current Forecasting Approach

The current approach to SPE forecasting is to determine whether or not an x-ray flare is
likely to produce protons by examining characteristics of the x-ray flare. Analysis of the
PROTONS model during 1989 by Heckman shows that the technique makes a correct
forecast in 78% of cases [Heckman, Kunches, and Allen, 1991], hence the accuracy is
actually very reasonable, but the technique has two fundamental drawbacks. These are
the lead-time of predictions and the requirement that an x-ray flare must occur for an

SPE to occur.

For the PROTONS model, the lead time for an SPE prediction is a function of flare
location and energy. Based on this information the model predicts a rise time for the
SPE, which is the time between the x-ray flare peak and the maximum >10MeV proton
flux of the SPE. Typically an SPE will take between 1 and 24 hours to reach its
maximum flux, but in practice, as can be seen from the previous examples, significant
particle fluxes are still observed within 0-6 hours of flare occurrence, well before the
peak proton flux is reached. This means that the PROTONS model can effectively only
produce forecasts a few hours before an SPE begins. The Garcia model suffers from
exactly the same problem in that an x-ray flare has to peak before a prediction can be

made (the model uses x-ray flare temperature and peak flux in order to make a forecast).

The fact that existing models use flare characteristics in order to make predictions also
means that an x-ray flare must occur for an SPE to be predictable. Based on the dataset
used later in this study, 93% of SPEs occur in association with an x-ray flare, so in
practice flare based are justified, but fundamentally it still means that an SPE can occur
without there being any inputs on which to run a forecasting model. Clearly, flare based
SPE prediction models are incapable of predicting SPEs that occur without an x-ray

flare.
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3.3 The Requirements of a New SPE Forecast Model

It has been shown that flare based SPE forecasting models can give predictions with
reasonable accuracy, but as they need to wait for a flare to occur and peak before they
can make a forecast, significant proton fluxes can be seen within minutes of a forecast
being made. A new prediction approach should address this by producing forecasts with
lead times of the order of a day or more (i.e. 24-hours before significant proton fluxes
are seen). Such a period would allow a realistic time for any mitigating action to be
taken, especially in the case of manned missions. For example, intensive spacecraft
operations could be postponed rather than risk incurring an anomaly part way through a
procedure that might leave a spacecraft in an undesirable configuration. In addition,
sensitive equipment could be turned off completely rather than risk spurious
commanding or degraded operation. In the case of manned surface exploration of the

moon astronauts would require time to reach a radiation shelter.

Integral to the operation of an SPE forecasting model is the ability to operate in real time
meaning that any inputs that are used must be available with a minimum lag from real-
time. Inputs that require a significant amount of time to calculate or retrieve will eat into
the lead time of the model and reduce its capability. The requirements of a new SPE
forecasting model are summarised in Table 3-1. The exact outputs from a new
prediction model have not been stipulated, and will in part depend on the modelling

technique that is employed.

Requirements for a new SPE prediction model

o Provide lead times greater than current flare association models
(24 hours +)
e The model must be capable of real time operation

(i.e. input variables must be available in real-time or near real-time)

Table 3-1 : Requirements for a new SPE prediction model.

The aim to produce forecasts with >24hours lead time implies that discrete x-ray flares
cannot be used as inputs to a model, hence any new model will be a departure from the

classical flare association models that currently exist. It is important to note that to date,
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no attempt has been made to predict an SPE without requiring an x-ray flare, hence the

development of a ‘long’ lead time model will be the first investigation of its kind.

It is also important to define what is meant by SPE prediction. For the basis of this study
the goal is to predict the sudden onset of an SPE. The prediction of quantitative

characteristics of an SPE, such as peak flux and total fluence are not objectives.

3.4 Alternative Forecasting Approaches

The requirements for a new prediction model can potentially be met by a number of
methods. One broad method is via a physics based model whereas another is via the
empirical route relying on correlations between SPEs and other observed variables.

Potential techniques are discussed below.

3.4.1 Physical Model

A physical model attempts to describe a process by understanding the basic mechanisms
that govern it. Such an approach requires the physical processes to be identified and
understood to such a level that they can be modelled mathematically from first principles
and driving variables need to be identified so that they can be used as inputs to the

model.

In terms of modelling solar proton events there are several potential different
mechanisms that would need to be considered, corresponding to different stages in SPE
occurrence. Speculatively these might be classified as a pre-injection phase, in which
active regions are evolving, an acceleration stage, in which particles are injected and
accelerated within the corona, a solar propagation stage, in which particles travel through
the solar atmosphere, and an interplanetary propagation stage, in which particles travel
along interplanetary magnetic field lines and are potentially re-accelerated by further
shocks. Table 3-2 summarises these potential mechanisms, tentatively identifies their
physical processes, and speculates as to what the required input variables might be for

the relevant models of each process.
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Mechanism o be Processes Possible Input Variables Related References
Modelled involved
Development of Magnetic Magnetic field strength [Reames, 2002,Cline, Brummell,
active region Evolution Solar Rotation and Cattaneo, 2003:Kalman,
lexi . 2001;4kasofu, 2001; Priest and
complexity Helio lat/long Forbes, 2002]
Shedding of Thermal Magnetic field strength [Bieber and Rust, 1995;Moore,
magnetic structure Magnetic Solar Rotation 1988]
Helio lat/long
Impulsive Thermal Driving energy (Wu, Wang, Xu, and Tang,
particle acceleration Particle population 2002:Miller, 1998]
MHD Shock Thermal Driving Energy [Vrsnak and Lulic, 2000a; Vrsnak
particle acceleration Magnetic Particle population and Lulie, 20000]
CME characteristics
Particle propagation  Particle Diffusion Helio lat/long [Balch, 1999, Kunches and Zwickl,
[ ; We 2001
around the Magnetic Field Topology 1999; Huang and Weng, 2001]
sun/corona Solar Wind Speed
Particle propagation  Particle Diffusion IP Magnetic Field [Cargill, Chen, Spicer, and Zalesak,
. ; d Gar: 1993
through Solar Wind Speed 1996;Chen and Garren, 1993]
interplanetary space Post acceleration particle
energies
Interplanetary shock Thermal 1P Magnetic Field [Reames, 1990;Kallenrode, 1995]
acceleration of Particle Energies
particles IP CME Propagation

Table 3-2 Possible mechanisms and inputs to be incorporated in a physical SPE prediction model.

An intrinsic problem with the physical approach is that the arrival of an SPE at earth is

the culmination of a number of linked physical processes which are all complex in

nature. Input variables at each stage of the model may need to be measured directly, or

they may be outputs from a preceding stage of the model, in which case errors may

propagate throughout the entire modelled process.
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It is important to note that the PROTONS model already uses anisotropic diffusion
theory to model the transport of particles around and away from the sun, yet as discussed
previously, results are in significant error to observations because the presence of
interplanetary shocks is not physically modelled at all [Balc/, 1999]. This indicates that
the physical processes need to be modelled accurately rather than approximated by
simpler theory. Similarly, there is evidence to suggest that the presence of coronal holes
situated between particle injection sites and the sun-earth connection point modulates the
particle flux seen at earth [Kunches and Zwickl, 1999], suggesting that it may be
necessary to model the whole of the solar magnetic field before accurate predictions
about particle fluxes at earth can be made. The physical approach is confounded further
by the fact that some of the physical mechanisms for particle acceleration are still being
argued, and hence cannot be modelled with any certainty [Reames, 1999], [Reames,

1990].

Even if a physical model were to be created that did accurately describe particle
acceleration and propagation, it still may not be capable of SPE prediction. SPE
prediction requires the acceleration process itself to be predicted, which in turn means
that the dynamics and energy of the suns surface magnetic field must be measured and
modelled to such a degree that accurate extrapolations concerning its future evolution
can be made. Essentially this means that flares themselves must be predicted
(presumably from magnetic field configurations). Whilst such a task may not be
impossible, it is likely to require high resolution measurements of active regions and the
use of MHD simulations to model multiple, complex magnetic structures. It is highly
ambitious to expect to achieve an integrated prediction model with real-time capability

using such an approach.

3.4.2 Time Series Prediction

A time series prediction technique attempts to predict future values of a time series from
past values of the same time series. One class of time series model is the Autoregressive
Integrated Moving Average (ARIMA) model, which has been developed most notably
by Box and Jenkins [ 1976]. The technique is powerful, being applicable to non-
stationary series, and is capable of producing accurate forecasts. It also benefits from

having a structured, formal approach that is well understood and documented.
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The ARIMA approach as applied to SPE forecasting will treat the problem as one of
time series prediction in which past values of proton flux are used to forecast future
values. This means that output from the model will consist of quantitative values of
proton flux. This is an inherent benefit of the technique, but at the same time, such a
model can only be successful if the sudden enhancements in proton flux due to SPEs are
actually predictable from the proton flux itself. There is no documented evidence of SPE
precursors being present in the proton flux, and the earlier examples in Figure 3-1 to
Figure 3-3 would appear to support this, showing the proton flux prior to SPE

occurrence as being at a relatively unchanging background level.

However, despite the fact that the proton flux is not thought to contain SPE precursors,
ARIMA models do provide a powerful approach to forecasting problems in general and,
providing that a series is deterministic to some degree, allow accurate forecasts to be
made. Although one might not expect SPEs to be predictable from a time series
approach, the benefits of a formal ARIMA technique mean that if such a model were
successful it would be relatively easy to implement operationally. In addition, the large
amount of historical proton data that is readily available, from GOES satellites for
example, also means that obtaining sufficient measurements on which to base an
ARIMA model is not an issue, hence a time-series model can be created without need for

a large investment in resources.

3.4.3 Alternative Classification Approach

An alternative approach to SPE prediction is to try and relate the behaviour of solar
variables to the occurrence of a proton event. In principle the concept is not dissimilar to
that of existing flare association models, but the important difference is that inputs would
not be restricted to discrete x-ray flares. Inputs would be taken over longer periods of

time, days before an SPE occurs.

Such a technique could potentially harness the longer term SPE related behaviour
reported by Chakravorti et al, who found the solar radio flux from active regions to rise
prior to an SPE and pass through a maximum on the day of an SPE. The behaviour of
other solar variables, such as the solar x-ray flux, could be considered over a similar time
period, (although the inputs to any such operational model would be restricted to data

that is available in real-time, or near real-time).
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The development of a correlative approach would require a list of SPEs in order that data
pertaining to their occurrence times can be obtained. This data could then be perused in
order to try and quantify any precursive behaviour to an SPE, with the aim of

establishing the basis for a forecasting technique.

3.5 Selection of a Forecasting Approach

The previous section has considered three broad approaches that could be adopted in

order to generate a new SPE forecasting model that meets the defined requirements.

The physical approach, whilst perhaps having the highest potential for accurate
forecasting, probably has the lowest chance of success. The effort required to understand
and simulate some of the key processes in SPE production means that emphasis will be
placed on modelling a process and not on producing a real-time prediction tool. Given
the current understanding of the underlying physics that govern SPE’s and solar flares it
is highly unlikely that a physical model can be designed, built and validated within the

envisioned time frame.

The time-series prediction approach offers potential gains in terms of accuracy and the
benefit of a formal method that is well understood. The likelihood of the technique
succeeding is probably quite low as there is no evidence to suggest that the proton flux
contains precursors to SPEs, but as the ARIMA technique has never been applied to a
solar proton flux time series before the result will have value regardless of its success
and provide a good opportunity to characterise the proton flux time series further. An
ARIMA technique represents a good point at which to begin forecast model

development.

A classification approach would attempt to correlate the behaviour of solar quantities
with the occurrence of an SPE and the development of the required dataset also provides
an opportunity to look for the existence of SPE precursors in different solar variables.
However, implementation of an ARIMA technique as a first step will allow the proton
time series to be analysed in more detail and may help implementation of a classification

approach at a later stage.
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4. TIME SERIES PREDICTION OF SOLAR PROTON FLUX

This chapter performs a time series analysis of the >10MeV solar proton flux over solar
cycle 22. Background to the ARIMA modelling technique is given, followed by its
application to the observed proton flux time series. ARIMA models are then assessed

and conclusions drawn as to their accuracy and suitability to the problem.

4.1 ARIMA Time Series Modelling

The ARIMA technique assumes a time series to be composed of a deterministic
component and a non-deterministic component (i.e. a random noise contribution).

Mathematically, the value of a time series at time t (x;) can thus be written as:

Xt:/Llr+& 4-1

where L is the deterministic mean of the process at time t and g is a random error

component.

ARIMA models are based on the supposition that successive observations within a time
series can be represented by a linear combination of independent variables derived from
previous values in the time series. In the simplest case a white noise process can be
represented by independent random variables that are drawn from a normal probability

distribution of mean 0 and variance o, which can be written as:

4-2

Xe = U W&+ W& -1+ Y& -2 ...

where x; is the value of the series at time t, y; are constants, €. are the independent
variables and u is a constant determining the average of the process. This form of time
series model is a linear filter, and is the base form of model which Box and Jenkins have
developed into the ARIMA class of models [ 1976). A time series can be adequately

modelled using relatively few parameters of the infinite series.
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A special case of the linear filter, is the autoregressive process in which the current
observation, xi, is regressed on previous values of the series: x.y, x..,..., X.p. ThiS can be

expressed mathematically as:
.X}:§+¢o)&+¢1X:-1+¢2xt“2+...+@xf_p+g, 4-3

and is termed an autoregressive process of order ‘p’, abbreviated AR(p), where & is a
constant and g; a random noise component.

Consideration of the linear filter (4-2) with only the first q weights non zero results in the

other finite process:

XI:ﬂ+&”00&_01&—1”92&-—2"\.."“¢q&—q 4-4

where 0; are weights, p is a constant and & are independent variables representing the
random component at time t-j. This is a moving average process of order q, abbreviated
MA(q).

In constructing the model for a time series the inclusion of both autoregressive and
moving average terms can lead to a more efficient and accurate model than using either
of the two forms alone. This results in the combined autoregressive-moving average

model (ARMA ) model of order (p,q):

XI:§+¢]x1—1+¢ZXt—2+...+mt—p

“91&—1—92&—2“...—¢q&—q+& 4-5
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The application of the AR, MA and ARMA processes is applicable only to stationary
time series, stationarity meaning that the joint distributions of any set of Xy, Xo, .....,

K, ... are unchanged if the times t1, 12, ... .tk are shifted by some value ‘s’

In practice, time series may be non-stationary in mean, or non stationary in mean and
slope, but can be made stationary by deriving a time series from the difference between
consecutive terms in the series. A non-stationary time series can sometimes be reduced
to a stationary series by applying a suitable degree of differencing. Differencing can be

expressed using the difference operator V and is shown in equations 4.6 and 4.7 for the

1% and 2™ differences:

I difference: \/x, = x T X 6
2" difference: sz, = X:— 25’614 —X,_5 7

Time series models of non-stationary series can sometimes be constructed by
substituting x, with a suitable difference term V¢ in equation 4.5 to produce an
autoregressive integrated moving average process (ARIMA) of order (p.d,q). Such a
model represents the d™ difference of the original non-stationary time series as a process

containing p autoregressive and g moving average parameters.

4.1.1 Determining an ARIMA model

A first approximation to the form of ARIMA time series model for a given series is
made through analysis of historical data, in particular by examining the autocorrelation

function of the sample, defined as:

Z (¥, — F)(¥,., — F)

Z (xt _55)2

1=1

v, =
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Where 1, is the k™ autocorrelation co-efficient, and N the length of the sample time
series. The autocorrelation is the correlation between the original series, and a copy of
the series displaced by a lag of ‘k’ time intervals The partial autocorrelation function is
also useful in determining the form of the model, and can be estimated from the

autocorrelation coefficients. It 1s defined in 4-9.

k-1
Ve = z¢k—1j V-1
Do = ]k_—ll 4.9
1- ¢k—1j ¥,
j=1

The sample partial autocorrelation function is the correlation between the elements X,
and x.x on the set of intervening values x;.X3...Xu+1. It measures the dependence

between x; and x. after the effect of intervening values has been removed.

Plotting the autocorrelation and partial autocorrelation functions allows the behaviour of
the sample’s functions to be compared with theoretical autocorrelation patterns of AR
and MA processes (shown in Table 4-1). AR and MA components of a time series model

can then be chosen according to those that are best suggested by the observed

autocorrelations.
Model Autocorrelation Function  Partial Autocorrelation Function
AR(p) Tails off Cuts of after lag p
MA(q) Cuts of after lag q Tails off
ARMA(p,q) Tails off Tails off

Table 4-1 Behaviour of theoretical Autocorrelation and Partial Antocorrelation Functions for AR

and MA processes.

After identification of the form of ARIMA process, least squares estimates of the model
coefficients are found by regression with the sample data. The adequacy of the model
can be assessed by examining the residuals which should resemble white noise (i.e. a

random error with zero mean) if the model is correct. The autocorrelations of the
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residuals should be zero for all lags greater than one. Non zero correlation coefficients
indicate that the model may benefit from additional AR or MA terms [Montgomery D.C.,
Johnson, and Gardiner J.S., 1990].

4.2 Method
An ARIMA model has been constructed based on the daily averaged >10MeV integrated

proton flux measured by GOES satellites over the active period of solar cycle 22
(corresponding to 26/5/1987 to 25/5/1994). A plot of the time series is given in Figure
4-1. A daily averaged time resolution has been used in order to generate a time series
that incorporates several SPEs whilst keeping a manageable size of dataset. It can be
seen from the Figure that the proton time series is bursty in nature, with SPEs

manifesting as sporadic enhancements in the flux level.
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Day of Active Cycle (starting 26/5/87)

Figure 4-1: Variation of >10MeV Integrated proton flux during active period of solar cycle 22.

Data was checked for erroneous or missing values but none were found in the daily
averaged GOES data for the period in question. This reflects the high resolution and
quality of data available from the GOES satellites.

A sample of the time series was taken on which to base the ARIMA model, consisting of
the first 1200 days of the series. Literature states that ARIMA models should be based
on at least 60 measurements, hence this criteria is more than satisfied by the sample
length [Montgomery D.C., Johnson, and Gardiner J.S., 1990]. It can be seen from
Figure 4-1 that the first 1200 days of the series contain several enhancements of greater

than 1.0 p.fu., which would be recognised as SPEs under the SEC definition.
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In the first stage of analysis the sample time series was assessed via examination of the
autocorrelation function in order to determine stationarity. A suitable degree of

differencing was then applied to achieve stationarity.

The autocorrelation functions for the differenced time series were then examined in
order to determine a form of ARIMA model. Table 4-1 summarises how the behaviour

of the autocorrelation function corresponds to theoretical AR and MA processes.

Coefficients for the ARIMA models were calculated using an iterative routine in
MINITAB (a commercially available statistics software package), and different forms of
the model were generated in order to provide a comparison. The accuracy of models

was assessed using the normalised root mean square error, defined as:

Zn: (i = y)’

NRMSE = || -——
no

where ‘»’ is the total number of examples in the test set, x; is the actual ith value, y; is the
predicted ith value and o is the standard deviation of the actual values from their mean.
A NRMSE of 1.0 is equivalent to using the mean of the data as a predictor whereas a
NRMSE of 0 indicates a perfect fit.

In its standard form an ARIMA model will predict one time-step ahead, but forecasts of
more than one time step can be made by running the model with predicted values as

inputs. Forecasts were thus generated for 1, 2, 3 and 4 days ahead and compared against

NRMSE values for persistence.

4.3 Results

4.3.1 Stationarity transformation
The stationarity of the sample time series was assessed by examining the autocorrelation
function, which should rapidly die away to zero if the series is stationary. The standard

error of the autocorrelation function was used to identify significant non-zero terms.

Figure 4-2 plots the autocorrelation function, calculated using MINITAB, for the

original sample time series. The autocorrelation function does not die away rapidly,
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indicating that the time series is non-stationary. Taking the 1% difference of the series
was found to produce stationarity, as can be seen from the behaviour of the respective

autocorrelation function in Figure 4-2.
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Figure 4-2 Time series plot and Autocorrelation function for >10MeV proton flux time series and
the 1* difference of the original time series. The standard error of the autocorrelation functions is

plotted as a limit in order to determine significantly non-zero terms.

4.3.2 Derivation of ARIMA model

Examination of the autocorrelation and partial autocorrelation functions with respect to
the behaviour detailed in Table 4-1 was used to infer a form for the ARIMA model. The
autocorrelation functions for the 1* difference are plotted below in Figure 4-3. Standard

error margins have been used in order to identify significantly non-zero terms.
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Figure 4-3 Autocorrelation and Partial Autocorrelation functions for the 1% difference of the

>10MeV proton flux time series.

It would appear to a first approximation that the autocorrelation function becomes zero
after three lags, whereas the partial autocorrelation function has non-zero terms beyond
the 5th lag. Whilst this does not clearly represent any of the theoretical trends described
in Table 4-1 it can be tentatively approximated by an ARIMA(0,1,3) model. (i.e. the
autocorrelation cuts off after 3 lags whilst the partial autocorrelation tails off). An
alternative interpretation is that both the autocorrelation and partial autocorrelation
functions tail off, indicating a model with both auto-regressive and moving average

terms. An ARIMA(3,1,3) model has therefore also been created.

ARIMA(0,1,3) and ARIMA(3,1,3) models were fitted to the sample data using
MINITAB to perform least squares regression. The form of each model with their
respective coefficients is summarised in Table 4-2. For completeness, and to act as a

comparison, ARIMA models of form (012) and (011) were also constructed.
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ARIMA(O13)  xi=x,, +u+¢e —0¢,_—0,6_,—0¢,,
7 -0.0002
, -0.0344
0, 02916
; 0.1999
ARIMA(313) X=X togx,  voL,x, ,tox, e -6,
- 6’25}—2 - 93‘9:-3
o, -0.531
o, -0.018
oy -0.499
0, -0.529
0, 0.697
p, 0.251
ARIMA(012)  xi=pu+¢g —0¢&,_ —6b,¢,_,
7 -0.0002
9, -0.021
6, 0221
ARIMA(011) Xx=U+e—-0¢
1 -0.0002
g, -0.115

Table 4-2 Summary of ARIMA mode! form and coefficients after identification of possible models

from examination of the sample autocorrelation functions.

4.3.3 ARIMA Model Performance

After fitting each model to the sample the NRMSE error was calculated. Results are

shown in Table 4-3.

Persistence has been used as a benchmark, and uses the current

value of the proton flux as a forecast for the following value.
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Model NRMSE
Persistence 0552
ARIMA(011) 0.549
ARIMA(012) 0.538
ARIMA(013) 0.530
ARIMA(313) 0.518

Table 4-3 Comparison of NRMSE for different ARIMA models and persistence calculated from the
sample time series.
It can be seen that the sequential addition of MA terms to the model has given small
improvements in accuracy, as has the addition of three AR terms. However, the NRMSE
remains relatively high in all cases and indicates that none of the models actually provide
an accurate forecast. The addition of three AR terms has resulted in only a 2%
improvement in the NRMSE, suggesting that the form of ARIMA model cannot be
significantly improved by adding further terms. Further terms will add additional

complexity for very small gain in accuracy.

The best ARIMA model of those constructed is of (313) form with a NRMSE of 0.518,
although this is only marginally superior to the NRMSE of persistence. Figure 4-4
shows the actual time series with the ARIMA(313) forecast plotted simultaneously for a

period of approximately 100 days.

o —e—Log of 10MeV Proton
Flux
——ARIMA(3,1,3)

Error

Log10 >10Mev Proton Flux / PFU

850 870 890 910 930 950
Days of active period

Figure 4-4 Predicted >10Mev Proton Flux and forecast >10MeV Proton flux using ARIMA(313) for

a 125-day sequence of the time series.
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Figure 4-4 shows that the resting proton flux (from around 930 days in the plot) is
modelled well with almost zero error, but the large enhancements are not forecast at all.
It is the sudden commencements of SPEs that dictate the high NRMSE of the model, and
it can be seen that in each of the four major peaks (i.e. SPEs) the model lags the
observed values, responding with a high forecast value only after high values have
actually occurred and are used as inputs to the model. Success of the ARIMA technique
is based on the principle that a time series is deterministic: i.e. that future values in the
time series are related to current values of the time series. This appears to be the case
when the proton flux is at a resting background, but is evidently not the case when an
SPE enhancement occurs. Intuitively it is no surprise that the ARIMA model performs
poorly in this respect as an inspection of the time series showed that the SPE
enhancements were sudden, not trend-like, and appeared to have no dependence on the

low background levels that preceded the enhancements.

The ARIMA(313) model has been extrapolated in order to provide forecasts for 2 to 4
days ahead by using the predicted times series as an input to the model. This is standard
procedure for generating ARIMA forecasts for greater than 1 time step ahead. NRMSE
errors for the 1-4 day forecasts are given in Table 4-4, and the predicted time series are

plotted in Figure 4-5.

Forecast Lead NRMSE

+1 Day 0.518
+2 Day 0.760
+3 Day 0.892
+4 Day 0.983

Table 4-4 NRMSE for ARIMA(313) model when extrapolating to higher lead times.
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Figure 4-5 : +1, +2, +3, and +4 day ARIMA(313) time series forecasts for an arbitrary 100 day

period plotted against the observed proton flux.

It can be seen that the forecasts rapidly break down when extrapolated to higher lead
times. This is borne out in both the NRMSE, which approaches 1 for lead times of
greater than two days, and the time series plot of the predicted flux, which tends to
exhibit significant oscillation and deviation from the observed flux for lead times of
greater than two days. It can be noted that none of the sudden enhancements in the

observed proton flux are predicted by the model: there is always a lag.

The behaviour of the extrapolated predicted series shown in Figure 4-5 suggests that it is
difficult to obtain lead times of more than a few steps ahead using ARIMA techniques, at
least when applied to solar proton flux. The use of high resolution data, for example 1-
hour averages, may improve the fit of ARIMA models as the higher sampling rate will
result in a smoother transition between consecutive flux values during an SPE, although
importantly, the initial enhancement itself is still likely to resemble a step increase, even
on an hourly timescale. The problem though with using high resolution data is that the
ARIMA technique can only predict 1-timestep ahead, and to generate longer lead times a

series of extrapolations needs to be made on predicted values. The results from daily
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averages show that a large error is introduced and permeates quickly when extrapolating
predictions, making forecasts of more than 2 or three time steps ahead very inaccurate.
1-hour averages are therefore not likely to be accurate when attempting to extrapolate to

24 time steps ahead or more (as would be required for a 1-day lead time).

4.4 Summary

The daily >10MeV proton flux time series over a 1200 day period commencing in May
1987 was found to be non-stationary, but could be made stationary by taking the 1%

difference of the series.

Application of ARIMA time series forecast methods was applied to the differenced
proton flux and is the first time that an ARIMA technique has been documented for the
use of a solar proton flux time series. The technique did not result in an accurate
forecasting model. ARIMA models were found to be only marginally better than
persistence for a 1-day lead time, and had high NRMSE:s of the order of 0.52 (for a 1-day

lead time).

Increasing lead times by extrapolating forecasts on predicted data resulted in a
significant loss in accuracy and NRMSEs approached 1 for predictions of greater than 2
time steps ahead. The use of higher resolution data may improve the fit of an ARIMA
model, but it will be impossible to extrapolate to long lead times without introducing a

significant error.

The high NRMSE was found to be dictated by large enhancements in the observed
proton flux that were not predicted by the ARIMA models. The ARIMA model lags
observations and only responds with high predicted values after an enhancement has
occurred. The implication is that solar proton events are not predictable from a proton
flux time series, meaning that the values of proton flux prior to SPEs are not indicative

of the fact that an SPE is about to occur.

The ARIMA time series prediction technique fails to produce accurate results because it
fails to predict the sudden onset of an SPE. Examination of the proton flux time series
confirms that SPEs resemble significant step enhancements in a relatively invariant

background flux level.
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5. A CLASSIFICATION APPROACH TO SPE PREDICTION

This chapter revisits the concept of a classification prediction model in which it is
intended to correlate the behaviour of solar variables with the occurrence of an SPE.
Results from the previous chapter are drawn on in order to show that SPEs can be
approximated as discrete phenomena, and a classification approach to the prediction
problem is outlined in detail with reference to neural network models as classification

tools.

5.1 Binary Representation of SPEs

The previous chapter found that SPEs were not predictable from a proton flux time series
because their occurrence was sudden rather than trend-like. The nature of SPEs
therefore suggests that they are better represented as discrete occurrences rather than as
trends in a continuous flux-time profile. Whilst the flux and fluence of an SPE do vary
significantly between different events, all SPEs are common in that their flux and
fluence is significantly greater than background, and their commencement is often
sudden, equivalent to a step impulse. It can be noted that both the PROTONS and Garcia
models make a yes/no probability prediction as to whether an event will occur or not,

further justifying the representation of SPEs as discrete phenomena.

Taking this a step further, the proton flux time series can be reduced to a binary series,
composed of SPEs and non-SPEs. Figure 5-1 plots the proton flux time series for 1991
(chosen arbitrarily) in conjunction with a ‘binary’ time series, which has classified daily
proton flux values of >1.0 p.fu. as ‘SPEs’ and daily flux values of <1.0 p.fu. as ‘non-
SPE’ values. (A daily averaged flux level of >1.0 p.f.u. was used to identify SPEs in a
previous listing of SPEs, which is why it has been used here for this illustrative
example™). It can be seen that such a representation clearly identifies all the significant

peaks in the proton flux time series.

* Dr. Stephen Gabriel, private communication.
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Figure 5-1 Daily proton flux time series during 1991 represented as a binary series of ‘SPEs’ and
‘non-SPEs’.

Given that the primary aim is to predict the onset of an SPE (rather than a flux or fluence
value) it does not matter that a binary time series does not represent specific flux values.
The binary series simply identifies points in time at which the proton flux is deemed

significantly high to warrant forecasting as an SPE occurrence.

5.2 The Classification Approach

The representation of SPEs as discrete events lends itself well to a classification
approach to the forecasting problem, in which there are just two possible forecasts: that
of an SPE or a non-SPE. The aim is to distinguish between these cases using input
variables taken from before the time of the event. This is analogous to current flare
forecasting models which predict the likelihood of an SPE from the characteristics of an

x-ray flare.

In principle the technique will take inputs at time ‘t” over a given time window of length
‘w’. The input window stretches back in time to time t-w, and is used to make a
prediction for time t+T, where T is the lead time of the model. The technique can easily

be applied to a rolling timeline by moving the input window forward in time by some
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increment, dt, to produce a prediction for time t+dt+T. This is summarised in Table 5-1
and shown graphically in Figure 5-2. Note that this technique always has a constant lead
time, unlike current SPE prediction models, which either do not stipulate a lead time

(Garcia model), or which have a variable lead time dependent on the inputs (PROTONS

model).
Run Time Input window span Prediction time
t=t (t=t,—w)—(t=1t) t=t,+T

t=t,+ A (t=ty,+At—w)—>(@t=t,+At) t=ty+At+T

t=t,+2At  (t=t,+ 20 —w)—>(t=t, +2At)  t=t,+2At+T

Table 5-1 : Principle of the classification technique showing the time span of the input window

relative to the time for which a prediction is made, applied to a rolling timeline.
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Figure 5-2 Graphical illustration of the proposed classification forecast model applied to an
arbitrary time series (in this case solar x-ray flux) at time ‘t’ and at time ‘t+dt’, where ‘dt’ is the step

time of the model. A binary ‘SPE’/’Non-SPE’ forecast is issued for time t+T.
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The approach benefits from a relatively simple problem structure in that the possible
outputs are restricted to just two categories. Success of the technique will of course
depend on the existence of some behaviour or precursor in the input variables that allows

the cases of ‘SPE’ and ‘non-SPE’ to be differentiated between.

The construction of such a classification model must be based on historical data, and will
require the collection of examples for each of the possible outcome categories.
Specifically this means that a list of SPEs and their occurrence times will be needed, and
correspondingly, a list of times at which no SPE occurred is required. Solar quantities
(i.e. potential predictor-variables) must then be collected at these times (or more exactly,
just prior to these times), to create a dataset of input windows pertaining to the classes of
‘SPE’ and ‘non-SPE’. The aim is that a comparison of the predictor variables during the
input windows will show a difference in behaviour and allow the two cases of ‘SPE’ and

‘non-SPE’ to be differentiated between.

5.2.1 Input Variables

Clearly, the input variables to the classification model need to have the potential to
contain behaviour related to an SPE, but there are also significant practical issues to
consider. The dataset on which the model is constructed will be based on as many SPEs
as possible, and hence will span several decades. As consistency and uniformity of the
predictor variables is highly important this implies that candidate variables should also
have a long monitoring history, ideally of the order of decades. The intention to develop
a real-time forecasting model also means that in order to be operational, any input

variables that are used must be available in real-time or as near to as possible.

An obvious choice of input variable is GOES x-ray data. GOES x-ray sensors have been
operational since 1974, and from 1986 onwards data is available in an off-the-shelf
product. Recent measurements are available on-line from the SEC with an approximate
delay of 10 minutes from real-time. As well as satisfying practical requirements, solar x-
ray data has the obvious flare relation to SPEs (although in the classification model the
input window would end well before any classical ‘proton producing’ flare), and in
addition the ratio of the two GOES x-ray channels is a measure of the spectral hardness
of solar emissions, which has been strongly associated with SPE occurrence [Kiplinger,

1995].
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Another candidate for use as an input variable is the solar radio flux, which has been
shown to reach a maxima on the day of SPE occurrence and therefore may have potential
for forecasting SPEs on a timescale of days [Das, Chakraborty, and Dasgupta, 1987].
Solar radio fluxes have been monitored routinely by ground based observatories since
the 1940s and archived daily averages exist from this time, hence there is little problem
in obtaining values for a large number of SPEs. Being of minimum 1-day resolution
solar radio flux values are published for the preceding calendar date (effectively a 1-day
lag from the current time), which is not ideal for real-time operation, but the potential
link between solar radio flux activity and SPEs still means that they are worth

considering as an input variable.

5.3 Neural Networks as a Classification Technique

Neural networks provide a novel and potentially powerful solution to the classification
problem that has been set-up in order to try and forecast SPEs. Their constituent
component — the node — is extremely simple to model, yet by combining a large number
of these into an organised structure, the resultant network is capable of solving relatively

complex problems.

Fundamentally, neural networks differ from conventional modelling techniques in that
their solutions are learnt and not programmed. Knowledge is gained by presenting a
network with existing examples, and via a learning algorithm the free parameters within
the network are adjusted such that specific input vectors are mapped onto the desired
responses. Such an approach means that no detailed statistical model is made for the
input data: it is the raw dataset itself that is used to derive the network's parameters.
Typically, neural networks are often applied to problems in which the inter dependency

of variables is unknown and when there is little a-priori knowledge of a system.

A principle advantage in the use of neural networks is that they are capable of producing
non-linear solutions, and this may have particular benefits when the inputs to a model are
known to originate from non-linear mechanisms (as is probably the case in solar particle
phenomenon). Classification problems in which classes are not linearly separable cannot
be solved by linear techniques, but can be solved by neural models [Haykin, 1999]. This
ability of neural networks has been borne out in classification models for remote sensing,
in which neural models have been shown to outperform linear regression techniques for

certain datasets [Cipollini, 2000], [Paola, 1995].
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Another advantage of neural networks is their ability to easily incorporate inputs from
different sources. The use of predictor variables which have very different orders of
magnitude can cause errors when calculating the coefficients in linear regression models
and give uneven weighting of parameters in the model. By contrast, inputs to a neural
model are scaled to within the same limits by the input layer of nodes, allowing many
inputs to be incorporated easily, regardless of their origin or data-type (i.e. numerical

value or discrete class-value).

The use of neural networks in conjunction with solar activity is not new, although itisa
recent area of development. Gothoskar, describes an artificial intelligence technique for
the detection of interplanetary disturbances, in which neural networks are trained to
recognise disturbed power spectra in radio scintillations [Gothoskar and Khobragade,
1995], and in the late 1990s Costello developed a model (which is currently operational
on SEC web-space@) to run in real-time using a neural algorithm to predict the Kp index
from solar wind parameters [Costello, 2001]. A similar model is presented by Gleisner
et al which uses RBF networks to predict local disturbances in the geomagnetic field
from solar wind velocity [Gleisner and Lundstedt, 2001]. In very recent work, two
independent studies have used ANNs to predict DST indices, reporting smaller errors
than with existing models [Lundstedt, Gleisner, and Wintoft, 2002] [ Watanabe, Sagawa,
Ohtaka, and Shimazu, 2002], and a neural pattern recognition algorithm has been used to
identify solar flares from full disk images in order to act as an unsupervised flare patrol

system [Borda, Mininni, Mandrini, Gomez, Bauer, and Rovira, 2002].

Given that neural techniques have already been successfully applied to the prediction of
space weather variables, their use in the prediction of SPEs is an obvious progression.
This is especially true taking into account the fact that the problem has been set-up as
one of classification (an area in which neural networks have been shown to excel) and
that there is no a-priori knowledge of the relation between the predictor variables and

SPEs.

© http://www.sec.noaa.gov/rpc/costello/
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5.3.1 MLP Networks
Neural networks are composed of perceptrons, which constitute artificial models of
biological neurons. The concept of the perceptron was proposed by Rosenblatt and

forms the basis for neural network theory [Rosenblatt, 1958].

Each perceptron is composed of a set of input links, a summing junction and an
activation function. Each input link has an associated weight such that the signal xj at
the input of link / connected to perceptron £ is multiplied by weight wy. The summing
junction adds each of the inputxweight products and passes the result to the activation
function. The result of the activation function is then passed out of the perceptron as an

output. The arrangement is summarised in Figure 5-3.

-
X
Activation
x function
2
Output
Inputs < @() e y:

Summing
junction

Synaptic
weights
(including bias)

Figure 5-3 Representation of the Perceptron

The activation function defines the perceptron output as a function of the sum of the
perceptron inputs, and whilst it can be a linear function, the non-linearity of a neural
network is achieved by using a non-linear activation function. The sigmoid function is

commonly used for this purpose, and is defined as:

1
w0) = 1+ exp(—av)
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in which a is a slope parameter defining the rate of change of ¢(v) with respect to (v),
where v is the sum of the perceptron inputs. A graph of the sigmoid function is given in

Figure 5-4.

Increasing
a

-0 -8 -6 4 -2 0 2 4 6 8 10

Figure 5-4 The sigmoid function.

By convention, each perceptron is modelled as always having one of its inputs fixed at 1
with weight w0. This serves as a bias, which has the effect of shifting the activation
function along the x-axis, such that the threshold is non-zero. The effect of the
activation function is to map the sum of the perceptrons' inputs to an output value of
between 0 and 1. In the case of the sigmoid function the mapping is a continuous
function, and is thus differentiable: a property which allows use of the back propagation

learning algorithm in the Multi Layer Perceptron network (as shown below).

The Multi Layer Perceptron (MLP) class of neural networks is composed of an input
layer of source nodes, an output layer of perceptrons and any number of hidden layers of
perceptrons between the two. Source nodes serve to receive external inputs to the
network and transmit them to the first hidden layer: they have no computational value.
Outputs from the first hidden layer are then passed to the next hidden layer and so on.
The output from the output-layer constitutes the overall response of the network to the
input signal. The addition of hidden layers of perceptrons increases the number of
dimensions of node interactions, essentially adding degrees of freedom to the network
enabling higher order statistics to be extracted from the inputs. An example of an MLP

structure is given in Figure 5-5.
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Input Layer Hidden Layers Output Layer

Figure 5-5 Example of MLP architecture

The MLP network adapts its free parameters, i.e. its weights, to learn a solution via the
principle of error correction learning. Given that an MLP network receives an input
vector x(#) at iteration #, it will produce an output vector equal to y(n). Comparing the

output vector to the desired response d(#) produces an error signal, e(n) where:

e(n) =d(n) - y(n)

The weights of a network must be altered so as to reduce the error of the network output.
Figure 5-6 shows the variation of the squared error with weight values for a simple 2-
weight system. Before training commences the weights are set at small random values
placing the system at any point on the error surface. During training the network seeks to

adapt its weights so as to follow the steepest descent of the error surface.
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Figure 5-6 Visualisation of error surface for a 2-weight system

The learning process is implemented computationally via the back propagation
algorithm. The process is a supervised learning technique that requires a training
dataset, such that each input vector has an associated target output that can be compared
against the actual output of the network. During the training process each input vector
within the training dataset is presented at random to the network and an output is
produced by propagating the input signal forwards through the network. An error signal
is then derived by comparing the network output to the target response, and this signal s
propagated backwards through the network, permitting the network weights to be altered
by a small amount such that the error signal is minimised on following forward passes.
The presentation of training examples continues (cycling through the training set) until

values for the weights stabilise and a steady state is reached.

The back propagation algorithm is stated without proof as:
— 51
Aw,(n+1)=n(0,0,) + ahw,(n)

Where Aw;(n+1) represents the change in weight i for pattern n+1. n is a learning
coefficient which determines the step size used to traverse the error surface. &;is defined
as -OE/Onet; and is the rate of change in error (E) with respect to the sum of the inputs for
node j (net). o; is the output from node i and aAw;(n) is a momentum term that adds a

proportion of the previous weight change (the proportion being dependent on the value
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of o). The weight change for the pattern n+1 is thus dependent on the previous weight
change for pattern n and prevents oscillation of the weight changes due to local error

minima.

A derivation and detailed implementation of the back propagation algorithm can be
found in [Haykin, 1999]. The algorithm is a generalised form of the Widrow-Hoff rule
[Widrow and Hoff, 1960].

5.3.2 Radial Basis Function Networks

The Radial Basis Function (RBF) approach works on the same principle as an MLP
network, but treats the problem as one of curve fitting in multi dimensional space. Input
vectors to an RBF network are projected via non-linear functions into a high-order multi-
dimensional space, the principle being that once a pattern classification problem is cast

into a high-dimensional space it is more likely to have a linearly separable solution.

An RBF network usually has only three layers: an input layer of nodes which receive the
input vector, a hidden layer, in which each node consists of a function that acts as the
basis for the projection of the input vector into hidden space, and an output layer, in

which the resulting points in the hidden-space are mapped back onto meaningful values.

In the case of a binary classification problem an RBF network performs a mapping from

an my dimensional input space to a one dimensional output space such that:

R — > R!

The mapping takes the form of a hyper-surface, I' in which the output is given as a multi
dimensional function of the input vector. The aim, via the fitting of a curve to a set of
training data, is to find the function which approximates this surface. Specifically, in the

RBF technique, the function takes the form of a linear sum of functions given by:

F) =3 wo(x-e)

Where ¢(..) is a set of m; arbitrary functions, denoted radial-basis functions, positioned

at centres C;. (Typical radial basis functions might be a cubic function ¢(r) =  ,or the
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Cauchy function o(r) = ( 1+r%)" ). w; are coefficients chosen so as to minimise the error
L

N 2

EZZ(F(Xi)”‘di) 53

i=1

Where d; 1s the desired response vector from input vector x; For a training set of N
examples, consisting of N input vectors x; and N target responses d;, values for the

coefficients, w;, can be found by solving the resulting set of linear equations:

Oy Py e Dy | W d,
Py P o Doy | W2 | d,
s - . . . - - 5-4
D1 Pwz o Pum || W | _dN_

W :d 5.5

5-6

w=g¢'d

The complexity of the surface function is controlled by the number of centres. At
maximum the number of centres can equal the number of input vectors in the training
set, resulting in a highly complex hyper—plane which passes through every point in the
dataset, but this is rarely desirable as it leads to any noise in the dataset also being
modelled. The optimal number of centres can be found via experimentation for any
given problem. The complexity and inherent form of the hyper surface can also be

altered via the use of different types of RBF functions.

The locations for the centres functions can be determined at random, but superior
generalisation can result if the centres functions’ locations in multi dimensional space

are chosen based on properties of the training set. The k-means clustering algorithm
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provides a method for achieving this, and results in centres being placed only at points in

multidimensional space where significant data are present.

The k-means algorithm proceeds by drawing an input vector from the training set and
computing the Euclidean distance in multidimensional space between this point and all
available centres in order to find the closest centre. The position of this centre is then
adjusted by a small amount so as to bring it closer to the point of the input vector. The
iteration continues until there is negligible change in the centre positions, the result of
the algorithm being that the centres drift towards regions in multidimensional space
where there is a large density of data points. The RBF functions are therefore placed in

regions where it is important to model the hyper-plane more accurately.

5.3.3 Linear Regression

Linear regression represents a classical-statistics alternative to the problem of SPE
prediction via classification. Linear regression is typically applied within the scope of
experimental measurements in which it is desired to find a function relating variable x to
output y. Given a scatter plot of variable y as a function of x, regression methods can be
used to derive the equation for the line of best fit equating y as a function of x. The
technique can be extrapolated to accommodate any number of input variables in which it
is desired to know 'y' as a function of X, Xp, ...., Xp and is termed multiple linear

regression.

The method of multiple linear regression obtains coefficients for the linear equation

defining a criterion variable 'y' as a function of 'P' predictor variables (Xi X, ..., Xp)

such that:
Y= bo + b1X1 + bzXz + b3X3 o + prp 5.7
The coefficients b, by,.... ,b, are derived from a dataset, (equivalent to a training

dataset), of 'n' observations, where each observation consists of 'p' predictor variables
and one criterion variable. The coefficents are found by minimising the squared error of

the function. The objective function 'F' can thus be defined as:

2
n v
F =minimise ) e’ =min§_:(bO +>b.X, ~y,} 5.8
i1 7=
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where 7 indicates the observation and j the specific predictor variable. The equation is
solved by taking the (p+1) derivatives of the objective function with respect to all the
b;’s, setting them to zero and solving for the unknowns. The result is a set of (p+1)

simultaneous equations which can be solved for all b; j =0, 1,... p).

5.3.4 Principal Components Analysis

The technique of principal components analysis (PCA) can be used as a data pre-
processing tool in order to produce a dataset that is more receptive to a neural or linear
classification technique. The process of a principal components analysis identifies the
primary constructs within a dataset, allowing noise to be removed and the total number

of dimensions within a dataset to be reduced without significant loss of information.

Given an untransformed dataset matrix X of N rows (examples) and m dimensions

(columns) the corresponding correlation matrix of X is given by:

R =Xxx"

In the ideal case R will consist of a diagonal matrix indicating that there is zero inter-
correlation between the predictor variables of the dataset. In practice this is rarely the
case and some non-diagonal elements may be significantly non-zero, indicating a high
inter-correlation between variables. This can lead to irrational coefficients when building
models, poor performance, and an overly numerous number of input variables (i.e.

overly complex models).

The aim of a PCA is to create a new dataset A with a diagonal correlation matrix by
projecting the original dataset X onto a set of axes, termed principal components. Matrix
A is therefore determined by having minimum inter-correlation between predictor

variables (and thus maximum variance contained within separate predictor variables).

Given the pre-requisite to find a diagonal correlation matrix of A, W, the aim is to find a

matrix Q such that:

¥=QRQ
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where R is the correlation matrix of the original dataset. A unique solution is given

subject to the constraint that that the vectors of Q are orthogonal to each other and leads

to the expression:

RQ=QY

where Q is composed of the eigenvectors of R ( [q1,92, ... qm ] ), and W is a diagonal
matrix with the squares of the eigenvalues as elements of the principal diagonal. A full

derivation of the principal components solution is given by Haykin [Haykin, 1999].

The projected dataset matrix A is then given by:
T T
A=Q"X=X"Q

with each row of A, (a) being related to each row of X, (x), by:

T T T
a=[x Q1> X Qpoeeeene 5 X qu

where X is a dataset of m dimensions (columns). A dataset of new ‘m’ dimensional
vectors 1s thus created by projecting each row of the original dataset using the

eigenvectors calculated from R (the correlation matrix of the original dataset X).

Each element, i.e. dimension, of the new vector, a, is a principal component, the jth

principal component being given by:

T
a,=Xq, ;-;2.m

Each principal component is thus composed of a contribution from every one of the
original dimensions of vector x, the weight of contribution being determined by the

values of the elements within eigenvector g;.

Given a vector x of “m’ dimensions (i.e. of length m), it can be reconstructed from the

principal components as:
m
x=Qa= Zajqj
J=1

However, an approximation to x can be obtained by truncating the expansion to:
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/
X= Qa = Zajqj
j=1

where /<m. The original vector x of length ‘m’ can thus be represented by a transformed

vector of length ‘I’ (i.e. a vector of fewer dimensions).

The amount of variation expressed by each eigenvector ¢ is measured by the value of its
corresponding eigenvalue (i.e. the values within the matrix ¥), thus the dominant
eigenvalues correspond to the principal components that represent the majority of
variation in the untransformed dataset. A significant amount of the variation is usually
accounted for by only a small number of the total eigenvectors, thus the variation within
the initial dataset can be expressed relatively accurately by a transformed dataset of far
fewer dimensions, (each dimension being one of the significant principal components).

Eigenvectors with low eigenvalues simply represent noise within the dataset.

Performing a PCA allows a dimension-reduction of the number of inputs within each
input vector, whilst at the same time, increasing the signal to noise ratio of any

(potentially) useful variation.
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6. DATASET

This chapter describes the construction of a dataset on which the classification model
described previously can be based. Principally it defines a list of SPE occurrences and a
list of times at which the proton flux is at a background level. Solar x-ray and radio flux
measurements have then been gathered at these times to provide predictor data relating

to the two cases.

6.1 Solar Proton Data

Solar protons have been monitored by space borne instruments since 1963 and as a result
there is a large amount of historical data available from which to source events from.

Space borne solar proton data is available from two prime sources:

6.1.1 The IMP Spacecraft

The Interplanetary Monitoring Platform (IMP) series of satellites have been operational
since 1963 and are equipped with a solar proton monitor capable of monitoring protons
in the >1, >2, >4, >10, >30 and >60 MeV energy bands and above. The IMP satellites
have been operational in a highly elliptic earth orbit with a 12 day period and apogee and
perigee at ~45 and ~25 earth radii respectively. The orbit intentionally enters and exits
the earth’s magnetosheath and magnetotail meaning that measurements can be taken
directly in the solar wind outside the influence of the earth’s magnetic field. The
energetic particle data from the IMP satellites is taken in the solar wind part and the non
solar wind part of the orbit, although the dataset itself makes no distinction as to where
the satellite was when measurements were made. IMP satellite data can be retrieved and
plotted free of charge from the OMNI-web data site facility operated by NASA. Proton

data is available in a minimum resolution of 1-hour averages.

6.1.2 The GOES Spacecraft

The SMS/GOES (Geosynchronous Operational Environmental Satellites) series of
spacecraft occupy a geo-stationary orbit at an altitude of 6.67 earth radii and are located
between 75° and 135° West longitude. The main payload is an earth facing visual and
infrared imager for terrestrial weather forecasts, but in addition the satellites carry a

Space Environment Monitor (SEM) instrument package equipped to monitor solar x-
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rays, solar particles (alpha particles protons and electrons) and the earth’s magnetic field.
The SEM has provided data continuously since July 1974, although off-the-shelf data is
available only from 1986 onwards. The Energetic Particle Sensor measures proton flux
in numerous energy bands ranging from >0.6 to >685 MeV. The X-ray sensor (XRS)
consists of an ion chamber detector providing whole-sun x-ray fluxes for the 0.5-to-4 A

(XS channel) and 1-to-8 A (XL channel) wavelength bands.

6.1.3 Solar Proton Data Retrieval

IMP proton data was sourced directly from the OMNIWEB data site from which a

minimal resolution of 1-hour averages could be viewed and downloaded.

GOES proton data was purchased on CD from the NGDC. Data from 1986 onwards was
available as an off the shelf data product with a minimal resolution of 5-minute averages.
In addition to this, archived GOES data was purchased covering the initial operation
period of the GOES satellites between 1974-1986. Archived data from this period was
not in a ready to use format and needed extensive processing before it could be used.
This consisted of a binary-to-ASCII conversion, followed by a de-multiplexing routine
to recover 3-second resolution values from the raw data stream. S-minute and higher
order averages were then calculated from the 3-second data. The procedures were

performed via custom written C-code.

6.2 A Proton Event Listing

Data from the IMP and GOES satellites has been taken and used to construct a list of
SPEs over the period spanning from 1965 to 1999. The task was facilitated by making
use of a pre-existing list of SPEs derived from IMP satellite data spanning from 1965 -
1989, in which a calendar day was said to contain a proton event if the >10 MeV daily
averaged flux exceeded 1.0 pfu’. A proton event was defined as continuing until the
daily averaged flux fell below this threshold and remained there for 1-day. This listing
was obtained from Dr. Stephen Gabriel and originates from an earlier study of proton

fluences on which the JPL-91 model was partly based.

* pfu = proton flux unit = protons/cm’ s sr
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For the period spanning 1986 — 1999 GOES proton data were found to be of superior
quality and resolution to IMP proton data. For this reason GOES proton data was used
to derive a list spanning the period from 1986 to 1999. SPEs were identified by plotting
the GOES data and recording times at which the >10 MeV proton flux was greater than

1.0 pfu.

Amalgamating the two lists resulted in an SPE listing which covered the period 1965-
1999, encompassing 284 events over two and a half solar cycles. During the period
1986-1989 in which the lists overlapped, the lists were compared closely in order that no

event was duplicated.

It is important to note that the IMP definition for an SPE is different to that which the
SEC uses for its forecasting services, and reflects the fact that the JPL-91 model was
primarily interested in modelling the proton fluence contribution from SPEs. The
NGDC defines an SPE as having occurred if the >10MeV integrated proton flux is
greater than 10 pfu for 3 consecutive 5-minute readings. The NGDC definition thus has
a higher flux threshold by 1 order of magnitude but does not consider the fluence of an
event. In the majority of cases an SPE will fall into both definitions, but the IMP
definition is the most conservative in terms of flux. In order to maximise the size of the
dataset, and to take advantage of the existing list, the IMP definition was preferred. The
disadvantage is that small SPEs may pollute a dataset in which it is only important to
consider large SPEs. This was addressed at a later stage by providing a way to filter out

small SPEs.

6.2.1 Start Times of Proton Events

For the purposes of real-time prediction it was deemed important to pinpoint the start of
a proton-flux enhancement in order to correlate accurately with other solar variables. The
existing IMP list only determined proton events to their calendar day of occurrence, and
it was felt that a higher degree of accuracy was required. The start time of an event was

thus defined as:

“The two hour period within which the >10MeV integral proton flux associated with a

proton event begins to rise above background” .

The different orbits occupied by the GOES and IMP spacecraft mean that an SPE can be

monitored at one platform before it is seen at the other. It was therefore necessary to
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standardise proton data to one platform, and given that GOES x-ray measurements were

to be used as a predictor the start times for the SPEs were all found in GOES proton

data.

The integral >10MeV proton flux was plotted from GOES data archives for all proton
events occurring after 1974 (i.e. even thosc events defined from the IMP listing). This
ensured that the start times were all based on data from the GOES platform and would be

co-ordinated with x-ray measurements from the GOES x-ray monitors.

For proton events that could be plotted from both GOES data and IMP data a
comparison was made between event start times, and it was found that in over 75% of
cases the difference between these start times was less than 2 hours. Thus, in the few
instances where start times could not be derived from GOES data, a start time was
derived by plotting IMP data from the OMNIWEB data site. Prior to 1974 no GOES
data is available hence start times were not found for any SPEs which occurred prior to

this.

6.2.2 Classification of Proton Events

In an effort to sustain a good quality dataset each of the proton events were classified as
belonging to one of five classes according to the character of their flux time curves.
These classes were purely qualitative but were created to serve as a method of filtering
out any proton events that were small or badly defined. The five classes are described

below:
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Class 1 — Suitably Well Defined

The Event has a distinct start and is easily distinguishable from background levels
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Class 2 — Gradual Rise

The event has a gradual rise to its peak flux spanning several hours and is susceptible to

error in the definition of its start time.
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Class 3 — Not Well Defined

The proton flux from en event is below the SEC threshold of 10 pfu, or data quality is

poor and renders the start time of the event difficult to pinpoint.
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Class 4 — In Tail

The proton event occurs in the tail of a previous event and is not an isolated

enhancement.
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Class 5 — Unsuitable

The event is non-existent or bad/missing data spans the start time of the event.

As mentioned above, the definition of proton events by the IMP listing has a threshold
one order of magnitude below that of the SPE definition used by the SEC. This means
that the current event listing contains some events that are too small to warrant
inclusions as SPEs under the SEC definition. It is important to note that a significant
proton event will always be recognised whatever the definition, and it is only with ‘low
flux’ proton events (with a peak flux of ~1 pfu) where there may be uncertainty as to the
existence of an event. This type of ‘low-flux’/poorly defined event is marked as class 3,
so any uncertainty about the dataset can be eliminated by filtering out events of class 3 to

leave only well defined events with good signatures.

One reason for including ‘small’ events as SPEs is due to the fact that the observed flux
profile of an SPE is a function of observer location, hence a small SPE at earth may
manifest as a larger SPE at a different location in the earths orbit. Also, it is possible
that all SPEs, regardless of their peak flux, could have precursors of similar magnitude,

hence failure to include ‘small” SPEs may unnecessarily deplete the dataset.

In compiling the dataset events of class 4 or 5 were filtered out immediately. Events of
class 2 and 3 were left in the dataset for potential removal at a later stage in the analysis.
The exclusion of class 5 events is self explanatory. The exclusion of class 4 events was
performed to try and restrict the dataset to the first instance of particle injections during a
sequence of activity. SPEs that immediately follow an ongoing SPE could be due to
interplanetary shock enhancement of existing solar protons rather than a separate
injection. Such ‘SPEs’ are therefore unlikely to exhibit a correlation with other solar
quantities (in particular x-rays), meaning that their inclusion in the dataset could corrupt
any patterns in predictor variable behaviour. The total event list contained 284 SPEs

occurring between 1965 and 1999.

To avoid comparing predictor variables from solar minimum with those from solar
maximum (and thus detecting a solar min-max difference as opposed to an SPE / non-
SPE difference) the study was restricted to SPEs occurring in solar active years as
defined by Feynman et al. [Feyn)nan, Armstrong, Daogibner, and Silverman, 1990b],
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these being the periods spanning from 2 years before to 4 years after the year of solar
maximum of each solar cycle. Active year periods are given in Table 6-1. Table 6-2
lists the number of SPEs per category for solar minimum and solar maximum periods. It
can be seen that the majority of SPEs occur during solar active years, so limiting the

study to solar maximum periods does not significantly reduce the size of the SPE

dataset.

Solar Cycle  Solar Maximum  Period of Active Years

20 1968.9 1966.9-1973.9
21 1979.9 1977.9-1984.9
22 1989.9 1987.9-1994.9
23 2001.2 1998.2-

Table 6-1 Times of solar maximum and periods of active years for solar cycles 20-23 [Feynman,

Armstrong, Daogibner, and Silverman, 1990b].

Classification Type Number of Events
Solar Max Selar Min
1 — Suitably Well Defined 93 19
2 — Gradual Rise 20 1
3 — Poorly Defined 32 4
4 — QOccurrence in Tail 4 1
5 — Unsuitable 33 2
Not Found (GOES satellites not operational) 66 9
Totals 248 36
Total 284

Table 6-2 Breakdown of the total SPE list in terms of event “class’ as defined above.

The SPE listing is given in full in Appendix A.

6.2.3 Quiet Period Listing

The development of a binary classification technique required the collection of data
pertaining to the two possible outcomes, thus it was necessary to compile a contrasting
list of occurrence times corresponding to points in time at which no SPE occurred.

These occurrences have been termed ‘quiet periods’ (QPs) and were defined as:
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“Points in time at which the GOES > 10MeV integrated proton flux was at a

background level and had been so for at least 10 days”

Quiet periods were generated by marking ‘non-quiet’ periods on a proton flux timeline
spanning from 1974 to 1999 and taking points at random from the remaining periods.
All quiet periods were from solar active years (as defined in Table 6-1) and were taken at
least ten days from the end of an SPE. 340 quiet periods were generated in total. The
figure is essentially arbitrary, but as more Quiet Periods occur in reality than SPEs it was
deemed important to have a larger number of Quiet Periods than SPEs available for use

in the study. A full listing of Quiet Periods is given in Appendix D.

6.3 Extraction of Precursor Data

With a list of times corresponding to the cases of SPEs and Quiet Periods predictor

variables were collected to provide examples pertaining to each case.

6.3.1 GOES Solar X-Ray Data

The GOES satellites monitor solar x-rays in the 0.5-to-4 A (XS channel) and the 1-to-8
A (XL channel) wavelengths in units of Watts/m>. GOES solar x-ray data exists as an
off-the-shelf data product from 1986-1999, providing x-ray fluxes with a minimum
resolution of 5-minutes. Archived GOES x-ray data was purchased to cover the period
1974-1986 and code was written to extract the data and process the 3-second raw values
into 5-minute averages. X-ray flux data between 1974 to 1986 was found to be of poorer
quality than the off-the-shelf data and contained several large data gaps and a higher

level of noise.

X-ray data was extracted for time windows placed about the occurrence time of SPEs
and QPs. C-code was written which took a list of times as an input, and then hunted
through x-ray data, searching for the periods to extract. XS fluxes, XL fluxes (in
Watts/mz) and the ratio of the XS/XL channels were extracted for each SPE and QP in 5-
minute resolution, and further C-code was written to process the data extractions into 24,
12, 6, 3 and 1 hour averages. The length of the extraction window typically spanned
from —120 hours to +48 hours relative to the start time of each SPE and QP, although
this could be easily altered to generate different extraction window lengths. Error

checking algorithms were employed to ensure that each 5-minute average was based on
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at least 70% good data, and erroneous spikes in the data were removed (this was mainly

used to increase the quality of the archived GOES x-ray flux data from 1974-1986).

Note that GOES x-ray data could only be extracted for SPEs occurring after January

1974 as prior to this GOES satellites were not operational.

6.3.2 Seolar Radio Data

2800Mhz solar radio flux data was sourced from the NGDC web-site®, consisting of
daily averages from 1947 to 1999 in units of 107 J.s" m™ Hertz. Values for the radio
flux up to 1991 were based on measurements from a ground based radio telescope near
Ottawa. Since 1991 measurements have been based on observations from the radio
telescope in Penticton, B.C., Canada. Adjusted radio flux values were used, which

corrected for the variation in sun-earth distance.

Again, C-code was written to process a list of times and hunt through the radio data
extracting radio fluxes for a time window centred on the occurrence time of each SPE
and QP. Fluxes were extracted in daily average resolution for a period spanning from —

81days to +81days relative to each occurrence.

6.4 Flare Associations

Findings by Reames and others which suggest that there are two groups of SPEs (as
described in section 2.5) indicate that it may be useful to segregate SPEs according to
their x-ray flare associations. Specifically, significant SPEs have been found to have a
strong association with long duration X-ray flares, therefore it is possible that this type
of event may have stronger precursors in x-rays than SPES associated with impulsive

flares.

GOES x-ray flux plots were viewed to assess the temporal flare associations for each
SPE. This was restricted to SPEs which occurred after January 1986 as prior to this
GOES x-ray data were not available as an official data product and could not be viewed

without significant processing effort.

* http://www.ngdc.noaa.gov/stp/SOLAR/FLUX/flux. html
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If an SPE occurred within a few hours of an x-ray flare the flare was taken as being
proton associated and was assigned as being either an impulsive flare or a long duration
flare. Impulsive flares were defined as having a duration of minutes to 2 hours and took
the form of an impulsive rise and decay in the GOES XL channel (1-8A). LDX flares
were defined as having a duration of >2 hours and were characterised by a steep increase
in the XL flux followed by a gradual decay to background levels. Flare associations
were made for 97 SPEs occurring in solar active years after January 1986, the

breakdown of which is given in Table 6-3. A full listing is given in Appendix C.

Flare Association Number of SPEs
Impulsive 30
Long Duration 60
No apparent flare association 7

Table 6-3 impulsive and long duration flare associations for SPEs occurring in selar active years

after January 1986.

In addition to classifying x-ray flares as long duration or impulsive further x-ray flare
associations were made according to the NGDC category of x-ray flare. The NGDC
categorises flares according to the order of magnitude of the peak burst intensity (I)

measured at the earth in the GOES 1 to 8 Angstrom band (XL) as shown in Table 6-4.

X-Ray Flare Class Peak burst intensity range (I) / W/m®

B I<1.0E-06
C 1.0E-06 <=1<1.0E-05
M 1.0E-05 <=1< 1.0E-04
X I>=1.0E-04

Table 6-4 X-ray flare categories as defined by the NGDC.

Flare listings of every monitored x-ray flare are freely available on-line and were
downloaded for the years 1986 to 1999. By matching the occurrence times of SPEs to
the occurrence times of x-ray flares on the NGDC lists, flare categories of proton
associated flares were derived. For cases when several flares occurred around the start

time of an SPE, GOES x-ray data were plotted and viewed by eye in order to identify the
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flare most likely to be proton associated. Flare associations were found for 98 SPEs

occurring in solar active years after January1986 according to Table 6-5.

X-Ray Flare Class Frequency
B None
C 10
M 46
X 35
None 7

Table 6-5 X-Ray flare categories for 98 SPEs occurring in solar active years after January 1986.

A full listing is given in Appendix B.
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6.5 Detrending of the Solar Cycle

Solar x-ray flux and solar radio flux vary significantly over the 11 year solar cycle, as
shown below in Figure 6-1 and Figure 6-2, and although the study was limited to solar
active years only, this 7 year period still exhibits a significant amount of variation due to

the long term solar cycle.

The use of precursor data that contains the solar cycle trend may result in periods closer
to solar minimum being compared to periods closer to solar maximum, hence there will
be a difference in measured fluxes simply due to their relative positions in the solar
cycle. This may mask the presence of any real SPE precursors, hence it was desirable to

remove the solar cycle trend from the x-ray and radio flux data.

1.00E-03

1.00E-05

1.00E-07 A

"”l? ""
Jms gy W“\Wmm,
“WMW“" i 1

1005_09 ;nl. P I

Log10 X-ray Flux / Wnf#

1.00E-11 + T T T T T T
0 500 1000 1500 2000 2500 3000 3500

Figure 6-1 Variation in X-ray flux in the GOES XS and XL channels over solar cycle 22 (Sep86 —
Apr-96).
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Figure 6-2 Variation in solar radio flux over cycles 20, 21, 22 and 23.

Limiting the periods of consideration to the 7-active years of the cycle reduces the
visibility of this trend, but in order to eliminate it completely the trend over the 7 active

years of each cycle was approximated by regression with a 2™ order polynomial.

For each solar cycle, the trend function was subtracted from the absolute value of
measured flux to produce a detrended value. Trend functions for each solar cycle are

summarised below in Table 6-6.

Solar x-ray data from solar cycle 21 (1977.9-1984.9) was sourced from the archived
GOES measurements and was found to consist of data from 6 different satellites, the first
of which were of early design and relatively unreliable. Cross validation of
measurements between the satellites revealed significant calibration differences between
sensors (particularly during the SMS to GOES transition in 1976-1977), resulting in poor
continuity of a uniform dataset. This, coupled with sparse and poor quality data from
1974-1979, rendered calculation of an accurate trend for solar cycle 21 impossible.
Detrending of solar x-ray data was thus limited to measurements from post 1986, which

only incorporated solar cycles 22 and 23.
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Cycle 22 X-Rays

XS Trend
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&
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Cycle 23 X-Rays
2TcveEn S x| | XS Trend
? - y = -0.1139x% + 0.2299x - 7.6175
‘é‘ = y=-0114x%+ 0 1987 - 5 9587 |
£ |
: XL Trend
?
- y=-0.1 14x%+0.1987x - 5.9587

-2 -15 -1 05 0 05 1 15 2
Standardised Time (Days from Jan 1998)

Table 6-6 Trend functions for GOES solar x-rays over the active years of solar cycles 22 and 23.

Cycle 23 is approaching maximum and is not yet complete.

Radio flux data was of consistent quality and solar cycle detrending could be carried out

for all data post 1966 (i.e. the epoch at which the SPE listing began).
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Cycle Active Years Equation
Cycle 20 1/6/66 — 31/12/73 y = -17.598x2 - 12.109x + 148.96
Cycle 21 1/6/77 - 31/12/84 y = -40.595x2 + 4.8356x + 205.41
Cycle 22 1/6/87 — 28/2/94 y = -46.714x2 - 4.8164x + 207.03
Cycle 23 1/6/97 — 31/12/99 y = -0.782x2 + 25.725x + 131.91

Table 6-7 Trend functions for 2800Mhz solar radio flux over the active years of solar cycles 20, 21
and 22 and 23.

6.6 Summary of Dataset

A list of 284 SPEs was derived from IMP and GOES solar proton data, spanning the
period from 1965 to 1999. Any events that could not be identified due to missing data or
due to their occurrence being associated with a recent SPE were removed from the
dataset. To provide a contrasting case, a list of 340 Quiet Periods was generated relating
to instances in time at which an SPE did not occur and the >10MeV proton flux had been
at background for at least 10 days. Instances of SPEs and Quiet Periods were limited to
solar active years to prevent the comparison of periods from solar maximum and solar

minimum.
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GOES x-ray fluxes in Watts/m? in the XS and XL channels and the 2800Mhz solar radio
flux in units of 10%* J.s'.m? Hertz! were extracted at the times of SPEs and Quiet
Periods. Solar radio flux was extracted for all events occurring since 1965, whereas

GOES x-ray data could only be extracted for SPEs occurring after 1974.

For SPEs occurring after January 1986 flare associations were made, categorising the
flare as impulsive or gradual. The NGDC flare category was also recorded and would

enable the SPE listing to be segregated by flare association at a later stage.
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7. DEVELOPMENT OF A CLASSIFICATION PREDICTION MODEL

This chapter describes the method used to develop an SPE forecast classification model
based on the concepts detailed in Chapter 5. Classification models were optimised by
altering input configurations, changing key parameters in the models and by selectively
filtering the listing of SPEs. MLP neural networks were compared with RBF models and

a linear classification technique.

7.1 Method

A default configuration of the classification model was arbitrarily adopted by defining an
input window of length 72-hours and a lead time of 48-hours. Lead time was
deliberately chosen to be significantly greater than that offered by current SPE
forecasting models. The averaging period within the 72-hour input window was varied

between 1 and 12 hours.

Input Vector Lead Time
72 hours 48hrs

H T T 1 T 1T
Time

Figure 7-1 Default input configuration with a 72-hour input window and a 48-hour lead time.

The log)o of the ratio of the solar x-ray fluxes was used as the predictor variable input.
Taking the ratio of the XS/XL fluxes combines the two values into one dimension,
reducing the complexity compared to two separate input vectors, and the XS/XL ratio is
also a measure of the spectral hardness of solar x-ray emissions. Garcia and Kiplinger
have shown certain variations in spectral hardness during an x-ray flare to be indicative

of an SPE [Kiplinger, 1995] [Garcia and Kiplinger, 1996].

MLP models were used to assess different input configurations due to the speed with

which they could be constructed. The learning algorithm was halted when the training
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error stabilised, which typically occurred between 10,000 and 80,000 training epochs*®
depending on the size of training set used. An example of training output from the
network softeware is given in Appendix E. After determining an optimal input

configuration MLP models were compared to RBF and Linear classification models.

7.1.1 Model Generation

Classification models were constructed using examples from the dataset described in the
previous chapter. The total dataset was split into a training set and a test set. Neural
models learned solutions on the training set and were then tested with the unseen test
data. In cases where a Principal Components Analysis was used the derived statistics of
the training set were used to transform the test set. A summary of the procedure 1s given

in Table 7-1 and is shown schematically in Figure 7-2.

Procedure for Model Generation

Divide dataset into a training set and a query set.
Perform PCA on training set

Train Model with training data

Apply previous PCA transformation to test set
Run Model with test data

Evaluate performance

N R W =

Table 7-1 Summary of procedure for generating classification model. (*where applicable).

The number of examples of SPEs and Quiet Periods in the training set was always held
equal in order to prevent biasing the training towards a particular outcome. For example,
given 99 quiet periods and 1 SPE a 1% error can be achieved by simply classifying all
examples as QPs, although clearly such an approach is not intelligent for SPE prediction.
Using equal numbers of examples ensured that any learned solution would be due to
some real difference between examples. Other options to this approach are addressed

later.

* 1 training epoch passes after each example in the training set has been presented once to the network.
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Figure 7-2 Schematic diagram showing the process for the construction of a classification model.

Software

MLP neural models were created using Neuframe v4.0. This is an off-the-shelf neural
network package from ‘NCS Manufacturing Intelligence’ running on Windows and
enables MLP networks to be created via a graphical user interface. Neuframe was run

on a PC platform with a S00MHz Intel Celeron Processor.

RBF models were developed using software written by QinetiQ (formerly DERA). The
software, denoted TSAR (Time Series Analysis Routine), was composed of a series of

C-code modules and was command line driven in a UNIX environment.

Linear models were created in both MS Excel and MINITAB.

Input Sealing
Input scaling was performed within the respective neural network software packages,

with the effect that each input is scaled to a value of between 0 and 1. To allow for the
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test dataset containing values slightly larger than the training dataset headroom of 10%
was given in the training scale (effectively mapping the largest training value to 0.9 and

the smallest to 0.1).

Training Targets

The supervised learning techniques employed by all models required target values for
the two classes of SPE and QP. Input vectors corresponding to SPEs were given target
values of 100 and input vectors corresponding to QPs were given target values of 0.
During the model construction process target values were also scaled linearly to between
0 and 1, thus the choice of values to represent the two classes is arbitrary. Training
targets of —1 and +1 for example will be scaled to the same training targets as 0 and 100.
The Neuframe software also enabled ‘text’ training targets to be assigned to the input
vectors instead of numerical values. Text targets allow discrete outputs to be specified

as opposed to a continuous value.

Assessment of Performance

Models were assessed by analysing their response to each vector in the test set. Outputs
of equal to or greater than 50 were interpreted as an SPE classification and outputs of
less than 50 were interpreted as a QP classification. The effect of varying the decision

threshold was addressed at a later stage.

The performance of a given model was measured by counting the number of examples in
the test set that were classified correctly and then expressing this as a percentage of the
test set. Note that there is only one degree of freedom in the model output as the model
must generate one of only two possible outcomes. The number of SPE forecasts

therefore also determines the number of QP forecasts.

Cross Validation

A cross validation technique was employed in order to ensure that a representative figure
for performance was measured for each model. For a given configuration the training
and test process was repeated 10 times, with a different combination of training and
query data drawn from the same dataset. The performance for each model was
measured as the average performance from the 10 variations. Cross validation measures
the robustness of the model and takes into account the natural variation in performance

from different training/query set combinations.
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7.2 Results

7.2.1 Input Resolution

The time resolution of the input window for the default configuration was varied
between 1-hour and 12-hours in order to determine the resolution giving optimum
performance. The number of inputs to the model is dependent on the time resolution of

the input vector, as shown in Table 7-2.

Time Average of the —-120 to —48 Number of inputs to

hour x-ray ratio window. network
12 hour 6
6 hour 12
4 hour 18
1 hour 72

Table 7-2 The number of elements in the input vector for different time resolutions of the input

window.

For each input resolution the size of the training set was varied between 30 and 240
examples (always keeping an equal ratio of SPEs and Quiet Periods) in order to find the
optimum. This accounted for the fact that the number of free parameters (weights)
within each network was also changing with the input resolution. Networks with a
greater number of inputs were expected to require a larger training set in order to
represent the larger number of possible input permutations. The combination of input
resolution and training set size resulting in the highest performance were selected for

further development.

Table 7-3 gives results for MLP neural models using input resolutions of 1, 4, 6 and 12
hours respectively. No data pre-processing was performed on the dataset other than
taking logs of the values. Highlighted rows show the training set size giving the highest
success rate for each input resolution. The network structure in Table 7-3 denotes the
number of nodes in each layer of the model. The number of nodes in the first layer is
dictated by the number of inputs to the model (which is dependent on the time
resolution), and the number of nodes in the hidden layer is a default value chosen by the
Neuframe software, based on the number of nodes in the input layer. Models were
trained with discrete text targets of ‘event” and ‘quiet period” hence there are 2 nodes in

the output layer.
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12 HOUR AVERAGES (6 inputs, network structure of 6:3:1)

Training Set Size EVENTS /% QPS /% OVERALL/ %
P 565475 553474 L Bt
60 54.5 104 48.9 +70 517451
120 57.7 £120 454 +75 51.5 %51
180 540135 39.0+78 46.5 65
240 51.6 +196 30.3+72 409 £123
6 HOUR AVERAGES (12 inputs, network structure 12:4:2)
Training Set Size EVENTS /% QPS /% OVERALL/ %
30 53.7 538 51.2 67 52.5 +41
60 56.4 +94 514 96 53.9 39
120 54.0 78 54.9 161 545113
180 52.3 +104 53.8 +8.1 53.0 £33
240 46.6 +125 55.8 £70 51.2 60
4 HOUR AVERAGES (18 inputs, network structure 18:5:2)
Training Set Size EVENTS /% QPS /% OVERALL/ %
30 535114 49.8 £113 51.6 43
60 57.0 £69 CS34a1n o SsDas
120 50.0 37 57.6 £48 53.8+23
180 51.0 113 55.6 +6.0 533 x41
240 55.0 £96 53.8 £35 544 £39
1 HOUR AVERAGES (72 inputs, network structure 72:7:2)
Training Set Size EVENTS /% QPS /% OVERALL/ %
30 48.0 +84 51.6 £10.1 49.8 +37
60 50.7 +85 552 +43 53.0 x50
120 53.0 72 52.6 £92 52.8 £35
180 51.5 66 54.0 £49 52.7 36
240 584 x121 496166 540251

Table 7-3 Classification success for the default model configuration (72-hour input window, 48 hour

lead time) for varying time resolutions and training set sizes.

Results from Table 7-3 are plotted below in Figure 7-3.
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Figure 7-3 Plot of average classification success as a function of training set size for differing input
resolutions. Training error as a function of training set size is also shown. Error bars denote 1

standard deviation.

Classification success for all models was measured to be between 50 and 55%. Given
that if the model were to output ‘event’ and ‘quiet period’ at random one would expect a
50% classification success, the performance of the technique is not significantly better
than random expectation. This would appear to indicate that the problem is ill-posed: i.e.
there is little differentiation between the examples of quiet periods and the examples of

SPEs in the dataset.

Performance was found to be independent of the size of the training set, implying that
models trained as well on 30 examples as they did on much larger training sets of 120
and 240 examples. The only case in which this was not true was when using 12-hour
resolution inputs, where larger training sets of greater than 60 examples were found to
cause the model to generate a large proportion of ‘undefined’ outputs, resulting in low

performance. These ‘Undefined’ outputs occurred as a result of using discrete class
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targets of ‘event’ and ‘quiet period’, and occurred when input vectors could not be

satisfactorily mapped onto either of the two training classes.

As to why a 12-hour input resolution causes poor performance, the 12-hour input
network has only 6 inputs and a small network structure with a low number of free
parameters (weights). This means it is difficult for the model to approximate the
variation observed within large training sets. The implication is that the training data
contains no clear patterns or has contradictory examples which result in the model fitting
a ‘neutral average’ that tends to map all input vectors to a similar output. This is
supported by the high training error that is observed for 12-hour averages and large

training sets.

Performance variation between models of different input resolution was not significant,
being within 1 standard deviation of the cross-validation variation. However, the highest
performance of the tested configurations was generated by 12-hour resolution inputs and
a training set of 30 examples, hence this configuration was selected as the benchmark for
further development. The advantage of using such a small training set is that a larger
number of examples can be used to test the model, lending the test results a higher

statistical significance.

7.2.2 Dataset Filtering

The SPE dataset was next filtered to study the effect of including only certain types of
SPEs. In the first instance, class-3 (small) SPEs as defined in Chapter 6 were removed
from the dataset in order to leave only significant SPEs of class-1 and class-2. In the
second instance the SPE listing was filtered so as to include only SPEs associated with
long duration x-ray flares. Thirdly, the x-ray dataset was detrended as described 1n
section 6.5 to assess the effect of removing the long term solar cycle trend from the
inputs. All dataset filtering was performed in conjunction with the optimal MLP model
configuration determined in the previous section (7.2.1) — i.e. the model giving highest
overall classification success. Results are given below in Table 7-4 and expressed

graphically in Figure 7-4.

&3



THE DEVELOPMENT OF A SOLAR PROTON EVENT PREDICTION MODEL

Model Events/%  QPs/%  Overall/ %
Benchmark 12 hour inputs. 56.5+75 553x74 559 %17
Removal of class 3 events from dataset 54.5 110 533 z61 53.9 z62
Filtered list to include only events associated  58.6 =119 56.7 +76 57.6 +59

with long duration x-rays

Removal of solar cycle trend from XS/XL 582+58 499x55 540+36
inputs.

Table 7-4 Results from filtering SPE dataset to remove class-3 events and to leave only SPEs

associated with long duration x-ray flares. Error denotes 1 standard deviation.
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Figure 7-4 Graphical comparisons of different MLP model configurations shown in Table 7-4. Error

bars denote the standard error.

The removal of small (Class-3) SPEs from the dataset had a slight but not significant
detrimental effect on performance, indicating that the inclusion of small SPEs in the
dataset was not a cause of general poor performance. By showing that the classification
ability of the technique is not improved by limiting the dataset to well defined SPEs it is
also implied that well defined SPEs are not preceded by well defined precursors (at least

during the input window being considered).
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Filtering the dataset so as to include only SPEs associated with long duration x-ray flares
marginally increased classification success by 1.7% over the benchmark model. Whilst
not significant, the result suggests that SPEs associated with LDX flares are more
distinguishable from quiet periods than a group of SPEs with mixed flare associations.
This implies that SPEs associated with LDX flares may have better defined precursors in
the XS/XL ratio during the input window. The reason why this filtering is successful
probably stems from the fact that the dataset has been filtered with respect to the
behaviour of the predictor variable (i.e. it is guaranteed in the filtered dataset that all
examples of SPEs coincide with long duration x-ray flares). Although the input window
does not include the x-ray flare itself, it is composed of a value derived from x-ray flux
measurements, and it is known that a flare does occur, hence the model may be detecting
precursors to the flare. By comparison, when filtering out small SPEs from the dataset
no consideration is given to the predictor variable and it is unknown whether or not a

significant x-ray flare occurs at the time of the SPE.

The detrending of a time series prior to analysis is a common practice, designed to
isolate local fluctuations from long term trends. Removing the long-term solar cycle
trend from the XS/XL ratio was found to produce a 54.0% classification success. This is
1.9% lower than the benchmark model. The result suggests that the presence of the solar
cycle trend in the inputs may have been slightly beneficial. One explanation for this 1is
that SPEs have a general association with the solar cycle. Knowing that the XS/XL ratio
is higher during solar maximum than solar minimum, the model could classify ‘high’
value input windows as SPEs and ‘low’ value input windows as quiet periods, and via
the general association between SPEs and solar maximum the strategy would probably
identify more than 50% of cases correctly. The fact that detrending the inputs has still
resulted in a comparable performance to trended inputs indicates that the technique was
not simply using a solar cycle association in order to function, and suggests that real

SPE/non-SPE differences may be present.

7.2.3 Multiple Model Configuration

As an experiment, a novel approach was used to combine the outputs from different
models into one prediction with the aim of increasing performance. This configuration

has been termed a multiple-model. The technique created 10 different models from 10
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different random choices of training data and then queried each model simultaneously
with the same set of test data. This caused 10 responses for each example in the test set,
and a 'majority decision' was made as to the overall outcome. Figure 7-5 below shows a

schematic diagram of the multiple model format.

networks  response

J

quiet period

Overall
iction
quiet period predic
quiet period =
most frequent
output

quiet period

N

Figure 7-5 Schematic diagram showing configuration of the ‘multiple model’.

Multiple model configurations were created for the filtered SPE listings described above,
and their performance compared against that of the average ‘single’ MLP model. Note
that the multiple model required 10 models to be trained for 1 test set, hence the build
time was considerable and required a significant amount of data preparation. For this
reason a maximum of two multiple models were created for each SPE listing. Whilst this
does not rigorously assess the variability in performance due to dataset variation, it does

serve to indicate the approximate variance in performance that can be expected.

Results are shown below in Figure 7-6. The average performance of each of the
individual networks composing the multiple model is also given to show the

improvement offered by the multiple model configuration.
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Figure 7-6 Multiple model performance in conjunction with dataset filtering and detrending. Points
show the difference between multiple model performance and the average performance of the
constituent MLP networks.

Multiple models of the standard configuration (12-hour inputs, no pre-processing or
filtering) were found to generate a 61.0% and 62.7% classification success respectively.
Given that the average individual network for the same configuration has only a 55.9%
average success rate this indicates that a significant performance benefit is gained from
simultaneously querying several models with one input vector and taking a majority
response as the overall classification. The multiple model was assessed with a test set
composed of 50 SPEs and 100 QPs, and a chi squared analysis showed that a 61%
classification success was significant to a 99% confidence level. This demonstrates to a
high degree of uncertainty that the model output is not random. An example of the Chi-

Squared calculation is given in Appendix F.

Using an SPE dataset with only LDX flare associated SPEs has much the same effect
with the multiple model as with single network models in that performance is increased
from a non-filtered dataset by the order of 2%. The use of a detrended dataset also has a
comparable effect as in the single models, reducing performance by around 2% from the
benchmark. It can be seen that the effects of filtering and detrending the dataset are

cumulative to the benefit of a multiple model configuration.
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The effect of the multiple model configuration is to increase the classification ability of
the technique from the 55% success level to the 62% success level. The results from
duplicate multiple models indicate that the high success rates are reproducible and are
not simply due to ‘lucky’ training-query set combinations. In all cases the performance
of the multiple model using a majority vote is superior to the average performance of its

constituent individual networks.

Whilst the presence of a solar cycle trend in the input data appears to offer a
performance benefit it may be causing the technique to operate differently to how it was
intended. Instead of using a difference between the cases of SPE and quiet periods to
make classifications, models may be using an association between solar maximum and
SPEs, causing high value input windows to be mapped to ‘SPE’ classes. The general
association between SPEs and solar maximum could then result in a greater than 50%
success rate, even though the technique is not actually detecting specific SPE
‘precursors’. To ensure that the technique could only use SPE/mon-SPE differences to
assign classes further development was limited to detrended inputs, in which the long

term solar cycle had been removed.

A decision was also made to use datasets that contained all SPEs, rather than only LDX
flare related SPEs. Whilst a dataset containing only LDX flare associated SPEs results
in higher performance, it also restricts the scope of the model by implying that it can
only predict SPEs associated with long duration x-ray flares. This goes against the core
requirements that were set during the conceptual design of the model, where it was stated
that the model should not be dependent on the occurrence of a specific solar
phenomenon. It is possible, for example, to have significant SPEs that are associated
with large impulsive flares [Garcia, 1994a], but these would be excluded from the study
if only LDX flare related events were considered. By encompassing all occurrences of
SPEs in the dataset the model is ‘universal® in its treatment of SPEs and is not confined

to predicting SPEs of one origin.

A multiple model achieved a performance of 60% using detrended data and a non-
filtered dataset (i.c. a dataset containing all SPEs, regardless of association), therefore a

significant classification success is still achievable even with these ‘constraints’ in place.

88



THE DEVELOPMENT OF A SOLAR PROTON EVENT PREDICTION MODEL

7.2.4 Principal Components Analysis
The Principal Components Analysis (PCA) technique was described in detail in Chapter

5. The technique allows the dataset to be collapsed into fewer dimensions without
significant loss of information, meaning that the number of inputs to the model can be
reduced (reducing complexity) whilst at the same time increasing the signal to noise

ratio.

The use of a PCA required the test set to be projected using coefficients derived from the
training set. For this reason one would intuitively expect the success of the technique to
be greater when the training set is more representative of the test set, and this is more

likely to be the case when the training set is large.

This supposition is contrary to the findings in section 7.2.1 in which no PCA was used
where smaller training sets were found to be as good as larger training sets. To
determine the effect of training set size a further training set size optimisation was

performed in conjunction with a principal components analysis.

A PCA was performed on a model using 12-hour resolution inputs, detrended values of
the XS/XL ratio and a dataset containing all SPEs. Models were created using training
sets of 30, 60, 90 and 120 examples. After determining the optimum training set size for
12-hour resolution inputs, the same training set size was used for an equivalent model

using 3-hour resolution inputs. Results are given below in Figure 7-7.
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Figure 7-7 Classification success as a function of training set size for MLP models using principal

components analysis projection of the dataset. Error bars denote the standard error.
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It is clear that performance increases with the size of training set. Maximum
classification success is achieved with the largest training set of 120 examples. 3-hour
resolution inputs were found to be superior to 12-hour resolution inputs for the optimum

training set size.

The use of a principal components analysis has resulted in a significant performance
increase over the same model with no PCA. Figure 7-4 shows that a MLP network using
detrended 12-hour inputs and no PCA has a 54% average classification success, whereas
it can be seen from Figure 7-7 that the same model with a PCA has a 57.6%
classification success. This is increased further to 59.4% when 3-hour resolution inputs
are used with the PCA. It can also be noted that these figures are for individual
networks, therefore a further performance increase can be expected if a multiple model

configuration were to be used.

Further scope exists for increasing the success of the technique by optimising the number
of principal components that are used as inputs to the model. It may only be necessary to
use a small number of principal components to express the useful variation within the
dataset. The 3-hour resolution model had a total of 24 principal components, and the
number of these used as inputs was varied in stages between 3 and 24. Results are given

below in Figure 7-8.
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Figure 7-8 Classification success as a function of number of principal component inputs for MLP

network using 3-hour resolution inputs. Error bars denote standard error,

Optimal classification success was generated when using the first 6 principal
components of the 24 as inputs. With 3 inputs it would seem that not enough information
is given to the model, whereas with more than 6 principal components it would appear

that the extra input channels do not contain useful information.

7.2.5 Lead Time

The lead time of the technique was varied between 6 and 64 hours by moving the input
window with respect to the time of the SPE or quiet period. This was performed for the
optimal PCA model described above, i.e. an MLP model using the first 6 principal
components as inputs from a 3-hour resolution input window. Results are plotted in

Figure 7-9.
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Figure 7-9 Variation in classification success as a function of lead time for the optimal PCA MLP
model. Error bars denote standard error.
Classification success remains roughly constant regardless of lead-time, and surprisingly
does not increase when the input window is moved significantly closer to the time of the
outcome. Maximum classification success was found to occur with a 48-hour lead time,

but would seem to drop away significantly if the lead time is increased further.

Figure 7-9 would appear to indicate that there is no benefit in moving the input window
closer to the time of the SPE or quiet period, although this is likely to change if the
inputs were brought forward so that they included the x-ray flare itself that is associated

with the SPE. This would of course defeat the object of a long lead-time model.

7.2.6 Standardisation of the Input Window

The use of a second order polynomial to approximate the solar cycle variation results in
the solar x-ray flux being zero meaned over the 7 year active period of solar maximum.
This means that over a short period of time, e.g. 72-hours, the solar x-ray flux may have
a non-zero mean dependent on the current level of solar x-ray activity with respect to the

current solar cycle trend average.
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As an alternative method of detrending, models were developed based on individually
standardised input windows. Each input vector was standardised by subtracting the
average and dividing by the standard deviation, resulting in all training and test examples

being zero-meaned.

The performance of the two detrending methods was compared using MLP models in
conjunction with a PCA and 3-hour resolution inputs of the XS/XL ratio. Results are

given below in Table 7-5.

Model Overall / %
Solar Cycle Detrended 62.6 50
Row Normalised 51.8 46

Table 7-5 Comparison between solar cycle detrending and row normalising.

It can be seen that independent row normalising produces a classification success that is
significantly worse than solar cycle detrending, and is not in fact significantly better than
random (i.e. 50%). The result shows that the classification ability of the technique must

stem from the variation of the XS/XL with respect to the solar cycle average.

7.2.7 Radial Basis Function Models

Radial Basis Function neural network models were constructed to act as a comparison to
the MLP networks. Models were based on the optimal configuration identified
previously for the MLP models, i.e. a 48-hour lead time, detrended XS/XL inputs and a

principal components analysis.

Before comparing MLP and RBF models, the parameters of the RBF model were
optimised. The training set was fixed at 120 examples (60 SPEs and 60 Quiet Periods),
and the number of centres was varied incrementally between 10 and 120. A thin plate
splines function was used as the centres function. This was performed for 12-hour and 3-

hour resolution inputs. Results are plotted below in Figure 7-10.
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Figure 7-10 Variation in classification success with number of centres for RBF model using a
principal components analysis and detrended XS/XL inputs in 3 and 12-hour resolution input

windows. Error bars denote standard error.

As for the MLP models, 3-hour resolution inputs were found to give consistently

superior performance to 12-hour resolution inputs.

Optimal classification success was given by using just 10 centres in the RBF model. No
benefit is gained by a more complex fitting surface from a larger number of centres.
This is probably due to the use of the k-means clustering algorithm for centres
placement. This places the centres functions in their most efficient locations in the
network subspace, meaning that additional centres functions offer little benefit.
Although increasing the number of centres will have resulted in a more complex fitting
surface, the results from Figure 7-10 show that the generalisation is worse, suggesting

that additional centres functions are only fitting noise.

Centres Function Optimisation
The type of centres function was optimised using those available within the TSAR

software. RBF models using 3-hour resolution inputs and 10 centres were created for 8

different centres functions. Results are plotted below in Figure 7-11.
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Figure 7-11 Classification success for different centres functions using an RBF model, arranged in

order of effectiveness. Error bars denote standard error.

No major difference was found between centre function types, although the best

performance was generated by the thin plate splines function: a function of the form:

o(r)=r’logr

(in which ‘r’ is the Euclidean distance between a point in space and the point at which
the centre function is placed). Using the thin plate splines as the centres function the

RBF model was found to generate a 64.1% classification success.

7.2.8 MLP, RBF and Linear Model Comparison

The MLP and RBF models developed above were compared with an equivalent linear
model. All used 3-hour resolution inputs, detrended data, and a principal components

analysis. Figure 7-12 shows the optimisation of each model for the number of principal

component inputs.
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Figure 7-12 Classification success as a function of number of principal component inputs for MLP,

RBF and Linear models using 3-hour resolution inputs. Error bars denote standard error.

For all model types optimal performance is given with 6 principal components as inputs.

The optimal model of each type is compared below in Figure 7-13.
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Figure 7-13 Comparison of optimal models (which use the first 6 PCs as inputs) for MLP, RBF and

linear model types. Error bars denote standard error.
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The value of the standard error means that the difference between model types is not
significant, therefore the choice of classification technique is not a performance driver,
RBF models generated the highest performance, closely followed by linear models.

MLP models were found to produce the lowest performance.

One reason for the success of the RBF technique could be the relative ease with which
its structure was optimised, in that it was possible to perform an optimisation for the
number of centres. This is relatively easy in the case of the RBF model because the
network structure contains only one hidden layer. The number of nodes in this layer is

the number of centres.

No equivalent optimisation was performed in the case of the MLP model, as this would
have meant varying the number of hidden nodes in the network. The problem with this
is that both the number of hidden layers and the number of nodes per layer are variable,

resulting in a potentially limitless number of network structures.

The fact that a linear model performs comparably to the non-linear techniques implies
that the classification technique is not non-linear, or at least can be well approximated by
a linear model. Whilst one can postulate that solar mechanisms are probably non-linear,
the problem posed here is far abstracted from a physical process, and is simply trying to
group input vectors as belonging to one of two classes, therefore it is perhaps not

surprising that the linear technique performs well.

The fact that all model types perform to a similar level indicates that the success of the
technique is primarily due to the content of the dataset. This means that SPE precursors

may well be present in the XS/XL ratio.

7.3 Summary

This chapter has presented the first development stage of the classification technique,
which was restricted to the use of the XS/XL ratio as inputs. Goals were to identify the
effects of filtering and detrending the dataset, and to compare the performance from

different model types.

Filtering the dataset so as to include only SPEs related to long duration x-ray flares was
found to marginally improve classification success of initial models. This filtering was
not adopted for further development though as it was felt that it compromised the

validity of the technique by imposing the pre-requisite of an x-ray flare.
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Detrended data was identified for use in the development of the models to ensure that the
solar cycle variation in the inputs was not being used as a means to distinguish between
the cases of SPE and quiet period. A comparison between solar cycle detrended inputs
and locally normalised inputs revealed the latter to have very low performance. This
indicated that the variation of the input with respect to the value of the local solar cycle

average was important in determining the classification of an input vector.

A principal components analysis was found to be effective with large training sets, and
gave superior performance with 3-hour resolution inputs. MLP, RBF and Linear models
were all found to generate superior performance when using the first 6 principal
components as inputs. The optimal configuration, irrespective of model type, consisted
of 3-hour averages, the detrended log of the XS/XL ratio as inputs and a principal

components analysis.

The difference between model types was not found to be significant, although the best
performance was generated by the RBF network, followed by the linear and MLP
models. These generated average classification success rates of 65.0%, 64.3% and

62.5% respectively.

A multiple model configuration was found to significantly increase the classification
ability of the approach for all input configurations and SPE filtered listings. The
performance of a multiple model was always found to be greater than the average
performance of its constituent networks, suggesting that the PCA optimised RBF model
may generate even higher performance than 65% when acting in a multiple model

configuration.

The apparent success at predicting SPEs 48 hours in advance, even though limited, is
surprising considering that no discrete x-ray flare is used as an input. This suggests the
existence of SPE precursors on a timescale of days prior to SPE occurrence — a finding

that has not been documented elsewhere.

The following chapter examines the behaviour of the solar x-ray ratio, the XS and XL
fluxes and the solar radio flux, and compares the performance of models using these
different variables as inputs. A quantitative analysis of the behaviour of the XS/XL ratio
may help to explain the behaviour of the model and identify specific differences between

the cases of SPEs and quiet periods that prove the existence of new SPE precursors.
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8. PREDICTOR VARIABLE ANALYSIS

A classification technique has been shown to have limited success for SPE and Quiet
Period prediction when using logio of the XS/XL ratio as an input from between —120
and —48 hours relative to the outcome. This chapter examines the behaviour of solar x-
rays for the SPE and Quiet Period case by plotting the XS and XL fluxes as a function of
time, and identifies points at which the distributions are significantly different using the
F-statistic Similar analyses are performed for the 2800Mhz solar radio flux with the aim
of identifying any behaviour that can be associated with SPE occurrence. MLP
classification models have been created using the different predictor variables as inputs

in order to determine their relative performance.

8.1 Method

Detrended x-ray fluxes from the XS and XL channels were extracted in 3-hour resolution
for a time period spanning —720 hours (27 days) to + 48 hours relative to each quiet
period and SPE in the dataset. At each 3-hour interval the average value of the flux was
calculated for the SPE examples and quiet period examples, allowing an average flux-
time plot to be made for each of the two cases. X-ray plots were based on 97 SPEs and
192 quiet periods occurring between 1986 and 1999 inclusive. (The full listing of SPEs
is given in Appendix C.)

A similar extraction was performed using daily resolution x-ray fluxes, for a period
spanning —81 days to +81days relative to each event. 81 days is approximately equal to
3 solar rotations, and allowed flux-time plots to be generated over a longer time period

for the SPEs and quiet periods.

Daily resolution 2800Mhz solar radio flux was also extracted for +81 days relative to
each SPE and quiet period occurrence. The existence of solar radio data from 1940
onwards allowed data extractions for the full list of SPEs, such that plots were based on
253 SPEs occurring between 1965 and 1999 and 340 quiet periods chosen at random
between 1977 and 1999.

At each point in time the F-statistic was calculated to measure the statistical significance

of any difference between the SPE and quiet period averages. The F-statistic is defined

as:
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where MS,, is the mean square difference between the distributions, and MS,, is the mean
square difference within each distribution. Given k distributions, with each distribution
containing n; observations, the sum of squares between (SSy) and the sum of squares
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The mean squares between and the mean squares within each distribution are thus

calculated as:
MS, =SS, [(k-1) 8-4
MS, =SS, /(N —-k) 85

where N is the total number of observations across all distributions.

The value of the F-statistic measured the statistical significance of the difference
between the SPE and quiet period means and allowed points in time at which the two

distributions were most different to be identified.

8.2 Results

8.2.1 Behaviour of Solar X-rays

Figure 8-1 displays flux time plots for the detrended XS and XL x-ray fluxes and the
XS/XL ratio for ~720 hours to +48 hours relative to each SPE and quiet period. Figure
8-2 plots the F-statistic as a function of time for the XS, XL and XS/XL distributions,
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and shows the statistical significance of the difference between the SPE and quiet period

averages.

It can be seen from Figure 8-1 that the x-ray fluxes and ratio for the SPE case have a
significant peak at close to time zero due to the x-ray flares that the SPEs are associated
with. The average x-ray ratio and fluxes for the SPE case appear to rise from
approximately 240 hours prior to event occurrence, whereas no similar increase is
present in the quiet case. A study of the F-statistics in Figure 8-2 shows the two
distributions to be significantly different in the means to a 99% confidence level from
approximately 140 hours prior to occurrence. A rise in solar x-ray flux over several days
prior to SPE occurrence has not been previously documented and would appear to be a

new result,

It can be noted that the models developed in the previous chapter used inputs from -120
hours to -48hours, and this does appear to be a prime period during which the SPE and

quiet period distributions are significantly different.

A comparison between the XS, XL and XS/XL ratio channels in Figure 8-1 shows a
more consistent separation of the distributions in the XS and XL fluxes than in the ratio.
In particular, quiet periods in the ratio show a greater level of variation than in either the
XS or XL channels, and this appears to be why the F-statistic is lower for the x-ray ratio
at some points close to the event occurrence time (e.g. at approximately —90 and —50

hours).

To some extent Figure 8-1 also indicates a small peak in the SPE x-ray flux at around
700 hours prior to occurrence. This is approximately 27 days (the solar rotation period)
prior to occurrence, and may indicate that the activity at time zero is related to a
recurring active region. A study of the F-statistic shows that the degree of separation
between the two distributions at around —700hours is significant, and is strongest in the
x-ray ratio. It would generally appear that the x-ray ratio is more volatile than the XS or

XL fluxes.
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Figure 8-1 Average value of detrended XS, XL and XS/XL x-ray ratio prior to SPEs and quiet

periods. Error bars denote standard error, and for clarity are only displayed for the SPE case.
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Figure 8-2 F-statistic plotted as a function of time for the XS, XL, and XS/XL ratio showing the

significance of any difference between the SPE and quiet period average.
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The variation in x-ray intensity as a function of central meridian distance is presented by
Donnelly et al. and shown in Figure 8-3. It shows that for a Central Meridian Distance
(CMD) angle of less than 90 degrees the measured x-ray flux is relatively independent of
the x-ray source location [Donnelly and Puga, 1990]. 100% of x-ray emissions will
reach the observer right up until the source has rotated past the solar limb, at which point

attenuation occurs rapidly.

The GOES x-ray detectors measure x-ray flux from the entire solar disk, but 98% of this
flux is known to be contributed from active regions [Wagner, 1988]. As 98% of the
solar x-ray flux is composed from active regions, and as the solar x-ray flux is not
attenuated until sources reach the solar limbs, the GOES x-ray flux is predominantly a
measure of active region emission over time - a fact that does not seem to have been
stated in any other study. This means that the x-ray flux behaviour in Figure 8-1 is
predominantly due to changes in active region emissions rather than the changing CMD
of the x-ray source. The behaviour of the solar x-ray flux prior to SPEs, i.e. a general
increase in flux over time, could therefore be explained by the notion of a developing
active region that reaches an activity peak at the time of an SPE. The GOES
measurements cannot of course distinguish between contributions from active regions

that are present on the solar disk at the same time.
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Figure 8-3 Dependence of transmitted solar emissions on the central meridian distance for different

wavelengths as presented by Donnelly et al. [Donnelly and Puga, 1990]
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Figure 8-4 shows the variation in the SPE and quiet period averages over a time span of
13 solar rotations (81 days) relative to the time of occurrence. The relatively sudden
increase in x-ray flux for the SPE case at around -10 days could be due to the
reappearance of an active region on the eastern limb (at a CMD angle of ~90°) which
would rapidly switch from 0 to near 100% transmission based on the dependence shown

in Figure 8-3.

It can be seen that there is an apparent peak in the SPE case for all 3 plots, centred at
around —27 days, again supporting the theory that activity at time zero is related to a
rotating active region. There is no significant difference between distributions at greater
than one solar rotation prior to occurrence however, indicating that any recurrence in X-
ray activity 1s limited to the most recent solar rotation. The separation between the SPE

and quiet period averages is similar in all of the x-ray channels.
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Figure 8-4 Variation in average XS, XL and the XS/XL ratio for SPEs and quiet periods over the
period —81 to + 81 days relative to each event. Error bars denote standard error and for clarity are

only plotted for the quiet case.
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8.2.2 The Behaviour of Solar Radioc Flux
Figure 8-5 plots the SPE and quiet period averages for the 2800Mhz solar radio flux

between +81 days relative to event occurrence time. F-statistics for the distribution are
given in Figure 8-6.

The average radio flux associated with SPEs exhibits a strong 27-day periodicity,
passing through a maximum at time zero (the time of the SPE) and at 27-day intervals
either side of time zero. The periodic fluctuation is clearly visible for 2 solar rotations
prior to the event to 1 solar rotation post event. The F-statistic (Figure 8-6) near to the —
52, -27, 0 and +27 day points shows the distributions to be different in the mean to a
greater than 99% certainty. The SPE radio peak at time zero is larger than the
neighbouring peaks. SPE occurrence has not previously been associated with peaks in a

27-day periodicity in the solar radio flux, and this would appear to be another new result.

The radio flux associated with quiet periods also exhibits an approximate 27-day
periodicity. Figure 8-7 displays the same data after normalising each example in the
dataset, and rules out the possibility that the peaks are simply due to a handful of large
examples weighting the ‘SPE case’ average. After normalising, distinct peaks are still
seen at + 27 days from the time of an SPE, and the flux associated with non-SPE
examples is near a minimum at time zero. The high values of the F-statistic in Figure
8-6 indicate a significant separation of the distributions at certain points in time, and

suggest that the radio flux may be a good predictor variable for the classification model.

The behaviour of the SPE radio flux could be explained by the concept of a long lived
active region which develops and decays over several solar rotations, producing an SPE
when it is at a maximum activity level. By contrast, quiet periods may be associated with
times at which there are no significant active regions on the earth facing solar disk,
corresponding to a minimum in the averaged radio flux. Note that after +27 days the
SPE and quiet period averages are not significantly different, which could be due to the
decay of SPE-associated active regions, and/or the development of active regions at
previously ‘quiet’ heliolongitudes. The idea of a developing active region being
associated with an SPE is supported by findings from Mursula and Zieger, who show
that solar stream structures (from the magnetic fields of active regions) have a lifetime of
around 4 solar rotations [Mursula and Zieger, 1996]: this lifespan is directly consistent
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with the SPE-case of Figure 8-5 that exhibits four peaks between —54 and +27 days, and

certainly suggests that active regions are the cause of the periodicity.
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Figure 8-5 Variation in average detrended solar radio flux for SPEs and QPs for —81 days to +81

days relative to each event. Error bars denote standard error.

30

25 4

N
o
L

F-statistic
o

0 27 54 81

Relative Time / Days

Figure 8-6 F-statistic plotted as a function of time for solar radio data, showing the statistical

significance of the difference between the SPE and QP average.
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Figure 8-7 Variation in average detrended solar radio flux for SPEs and QPs after normalising each
example in the dataset.

The variability in the solar radio flux over the 27-day solar rotation can be partly

explained by the optical thickness properties of the solar atmosphere shown in Figure

8-3. A constant power radio source will be attenuated significantly as soon as it drifts

beyond 30 degrees of the central meridian distance, and will be attenuated by a factor of

0.5 by the time it reaches the solar limb. Clearly, a 27-day periodicity can be explained

by a constant power source in conjunction with a varying CMD angle.

However, the radio flux plots in Figure 8-5 show the average solar radio flux to be at a
maximum at the time of an SPE, when it is highly unlikely that the active regions
producing the SPEs will be at a central CMD location. (Shea and Smart [Shea and
Smart, 1994] show that most SPEs occur west of 60° heliolongitude, indicating radio

attenuation factors of at least 0.65 from Figure 8-3).

If radio flux maxima at time zero are assumed to emanate from predominantly limb-
situated active regions it means that the observed variation in solar radio flux must be
due to variations in the emitted flux as well as the varying CMD of the source location.
The fact that a radio flux peak is seen even though the emitted flux is probably
attenuated by a factor of ~0.65 indicates that at the time of an SPE the emitted flux is
high enough to negate the increased attenuation from the solar atmosphere. Studying

Figure 8-5, the central peak is placed approximately 2-days to the left of time zero. This
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could be explained by an active region that reaches the solar central angle ~2 days prior
to time zero (giving maximum transmitted flux) and then produces maximum emitted

flux (associated with an SPE ) at time zero after it has passed the central CMD.

With the ability to measure radio flux spatially from a single active region alone a
correction could be applied for the observer location angle which may yield a better
correlation between radio flux peaks and SPE occurrence. The current radio flux data
contains a variation due to changing CMD angle and a variation due to the source
emission flux changing, but these are currently inseparable because measurements are
not spatially resolved. Given that a radio flux peak is seen despite a probable attenuation
of ~0.65 the emitted flux must be very high at that time, therefore removal of the
observer location dependency may reveal a better defined peak in the radio flux that is

highly correlated with the occurrence of an SPE.

The existence of radio flux peaks at 27-day intervals prior to and after the occurrence of
an SPE provides new evidence for a strong association between SPEs and the
development of an active region. The finding is in direct agreement with Chakravorti et
al, who studied the relation between active region characteristics and SPE occurrences
based on 171 proton events observed between 1966 and 1984 [Chakravorti, Das, Sen,
and Dasgupta, 1991]. The Chakravorti study plotted the daily solar radio flux as a
function of time for +7days relative to the occurrence of an SPE and found the radio flux
from active regions to pass through a maximum on the day of an SPE in 70% of cases.
The study did not however consider the behaviour of the radio flux over longer periods,
and the results of Figure 8-5 are the first time that SPE occurrence has been shown to

coincide with peaks in a 27-day periodicity in the solar radio flux.

Figure 8-5 does of course plot the ‘average’ case for the SPE examples. In order to
better quantify the correlation between SPES and radio flux peaks, the time between a
local radio flux peak and the occurrence time of an SPE was found to the nearest day for
149 SPEs occurring after 1986. Data was binned and the histogram in Figure 8-8 shows
the percentage of SPEs in the dataset as a function of the time from any local radio flux

maximum. Figure 8-9 plots the same distribution as a cumulative frequency graph.

110



THE DEVELOPMENT OF A SOLAR PROTON EVENT PREDICTION MODEL

30 " s s

25

n
o

-
o

% of Proton Events (from 149)
5

n

-15 -12 -9 -6 -3 0 3
Days between SPE occurrence and local Radio Maximum

Figure 8-8 Histogram showing percentage of SPEs that occur within ‘X’ days of a local radio flux

maximum.

Cumulative Frequency
g8 8

0 3 6 9 12 15
Days relative to Radio Peak within which event occurs

Figure 8-9 cumulative frequency plot showing percentage of SPEs that occur within ‘X’ days of a
local radio flux peak.
It can be seen that over 25% of SPEs occur within £1.5 days of a local radio flux peak,
and 51% of SPEs occur within +4.5 days of a local radio flux peak (taking into account
the bin widths). The correlation is not as high as that reported by Chakravorti et al.
(70%), but still shows a clear correlation (the difference in results may be due to the fact
that Chakravorti used spatially resolved measurements from individual active regions,
although the study is not specific in its exact source of data). If the radio flux peaks

belong to a 27-day periodic fluctuation, then this means that over half of the SPEs occur
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within a time frame of 4.5/27%100 = 17% of the period. Theoretically, knowing when
the last radio flux peak occurred it would be possible to calculate when the next peak
will occur, and assign an SPE risk of occurrence at this time. This assumes however that
a 27-day periodicity continually exists in the radio flux, and evidence for this is

inconclusive, as discussed below.

A study by Kane et al. examining the variation of solar variables in relation to the solar
rotation period found the 10.7cm (2800Mhz) solar radio power flux spectra to exhibit
peaks at 24.6, 18.2 and 14.3 days, although no degree of statistical certainty is attributed
to the findings [Kane, Depaula, and Trivedi, 1995]. It is also difficult to view these
figures as a good indicator of the periodic behaviour of the solar radio flux as the
analysis was based on only 128 days of data, which is only 5 solar rotations, and is very

small compared to the evolutionary timescale of the 11 year solar cycle .

Whilst there is some evidence from other studies for a near 27-day periodicity in the
solar radio flux (e.g. [Donnelly and Puga, 1990]), the strong 27-day periodicity of Figure
8-5 could be due to the fact that the analysis is a superposed epoch analysis. Figure 8-5
was created by averaging superimposed extractions for 253 SPEs over an approximate
35 year span, synchronising each SPE occurrence at a point in time. In reality, active
regions are known to occur simultaneously, giving rise to periodicities other than a
simple 27-days. (For example, Mursula and Zieger examined the power spectra of a
number of solar variables over a 20 year time span and concluded that 13.5 day
periodicities were the result of two solar active regions approximately 180 degrees apart
[Mursula and Zieger, 1996]). It is possible that significant 27-day periodicities exist
only when emissions are dominated temporarily by a single active region lasting a few
solar rotations, and this may explain why a 27-day periodicity was not dominant in

Kane’s study.

8.2.3 Performance Comparison of Predictor Variables

Examination of the radio and x-ray flux has given a useful visualisation of the predictor
variable behaviour and has identified points in time that can offer optimal potential as
inputs to the classification model. In this section, models were tested with different

predictor variables, chosen based on their F-statistics.

For each predictor variable (XS, XL, XS/XL and the radio flux), 3-hour time intervals

between —720 and —48 hours were ranked by the F-statistic. (24 intervals were chosen so
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as to be consistent with the models developed in the previous chapter, which took input
vectors of 24 elements in the form of 3-hour averages over the 72-hour input window),
Table 8-1 shows the top 24 time intervals for each predictor variable, ranked according

to their corresponding F-statistic.

XS XL XS/XL Radio

Time/Hours  F-stat | Time/Hours F-stat Time/Hours  F-stat | Time/Days  F-stat
-120 19.95 -114 19.22 -120 17.28 -3 27.69
-96 18.94 -117 17.49 -126 17.16 -4 22.58
-123 17.95 -120 17.33 -96 16.79 -5 22.35
-117 17.71 -105 17.27 -78 16.71 -6 18.21
-105 17.59 -96 17.02 -123 16.37 -28 16.80
-126 15.86 -111 16.28 -102 16.20 =27 15.84
-102 14.82 -66 15.69 -150 15.91 -7 14.88
-111 14.59 -123 15.53 -171 14.76 -29 13.98
-78 14.58 -93 15.29 -54 14.44 -30 13.90
-150 14.21 -69 14.72 -168 13.83 -26 13.16
-75 13.22 -90 13.94 -117 12.94 -31 12.47
-54 12.53 -108 13.61 -606 12.60 -8 11.82
-168 12.37 -72 13.44 -174 12.56 -25 10.99
-114 12.18 =75 13.09 -105 11.52 -32 10.23
-93 12.00 -87 11.48 -75 10.85 -57 9.23
-99 11.91 -99 10.68 -99 10.39 -9 9.17
=72 11.37 -126 10.62 =222 9.54 -24 8.70
-108 11.28 -102 10.37 -144 9.29 -55 8.20
-69 11.12 -84 10.33 -324 9.22 -58 8.19
-171 11.09 =78 9.78 -111 9.15 -33 8.01
-66 10.35 -63 9.58 -147 8.63 -56 7.82
-144 8.99 -150 8.93 -702 7.85 -10 6.68
-51 8.54 -51 8.76 -654 7.67 -59 6.39
-174 8.50 -168 8.64 =720 7.44 -54 6.34

Table 8-1 Top 24 time intervals for each predictor variable ranked according to the F-statistic.
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An MLP network classification model was created for each predictor variable in
conjunction with a principal components analysis, and the first 6 principal components
of the transformed predictor dataset were used as inputs to the network. Models were
trained on 60 SPEs and 60 Quiet Periods and tested with the remaining 37SPEs and 113
Quiet Periods. In addition to creating a model for each of the predictor variables in
Table 8-1, two further predictor sets were created. The first combined the XS and XL
values by using the first 12 ranked time intervals of each of the XS and XL predictors;
the second combined the XS/XL ratio and the solar radio flux by taking the top 12
ranked time intervals from each predictor. It can be noted that some of the inputs are
actually from the time of the previous solar rotation (around —700 hours). Table 8-2

gives the average and standard deviation in performance of each MLP model

configuration.

Inputs Classification Success / % to

Blanket XS/XL Ratio 62.6 +50

XS 61.9+34

XL 59.8+35

XS and XL 61.7+29

XS/XL Ratio 64.7+2.6

Radio Flux 58.8 +3.7

XS/XL Ratio and Radio 63.3+34

Flux

Table 8-2 Average performance of MLP classification models using different predictor variables as

inputs. Uncertainty is one standard deviation.

It can be seen that all of the predictor variables generated very similar performance, with

differences between models all being within one standard deviation.

The figure for the blanket XS/XL ratio denotes the MLP model from the previous
chapter which used inputs from —120 to —48 hours. The performance of this model is
only marginally below the performance average for the XS/XL inputs chosen via the F-
statistics. This is probably because the blanket input vector already included the

majority of time intervals with high F-statistics, and coupled with a principal
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components analysis, the negative effect of any ‘poor’ inputs on performance is also

reduced.

The XS and XL predictors gave similar performance, but were slightly inferior to the x-
ray ratio. This is a little surprising as the individual XS and XL channels generally
exhibited higher F-statistics than the XS/XL ratio, as can be seen in Table 8-1. The ratio
may be beneficial due to some form of coupling between inputs that is not readily visible

from the graph but is exploitable by the network.

Use of the radio flux data as inputs generated the worst performance, which is surprising
considering the relatively high F-statistics and seemingly large differences between the
SPE and quiet period distributions in Figure 8-5. The reason for the comparatively poor
performance must stem from some inseparability of the SPE and QP distributions. The
F-statistic for the radio data is lent significance from the relatively large sample size,
which reduces the uncertainty in the sample mean (i.e. the standard error) but
examination of the standard deviation shows that there is still significant scatter about
the SPE and quiet period means. Figure 8-10 plots the radio flux curves with error bars
denoting standard deviation as opposed to standard error, where it can be seen that the

distributions are no longer clearly separable.
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Figure 8-10 Variation in average detrended solar radio flux for SPEs and QPs for —81 days to +81

days relative to each event. Error bars denote standard deviation.
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The same is true of the other predictor variables too, as is borne out by Figure 8-11
which shows the standard deviation as error bars on the SPE and quiet period cases for
the XS/XL ratio.
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Figure 8-11 Variation in average XS/XL ratio as a function of time for SPEs and quiet periods.

Error bars denote standard deviation.

Whilst the means of the distributions can be shown to be significantly different, there is
still a high degree of scatter about the means, meaning that the distributions are not
readily separable. This is undoubtedly the fundamental reason why classification ability

is limited to the low 60% level: the inseparability is an inherent property of the dataset.

8.3 Summary

This chapter has visualised the behaviour of different predictor variables for the cases of
SPEs and quiet periods and has performed a statistical analysis in order to quantify
differences between the distributions. The effectiveness of different predictor variables
has been compared by utilising them in MLP classification models, and the performance

has been explained with respect to the properties of the predictor variable distributions.
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Although GOES x-ray detectors measure flux from the full solar disk, this is almost
totally composed of emissions from active regions. As the solar x-ray flux is not
significantly attenuated by CMD angles of <90 degrees it means that GOES x-ray

detectors are monitoring the variation in active region emissions over time.

Via the F-statistic it has been determined that the distributions for SPEs and quiet
periods in XS, XL and the XS/XL ratio are significantly different in the mean to a
greater than 99% certainty days before event occurrence. In the SPE case the average x-
ray flux (and ratio) rises in comparison to the quiet period case from around 140 hours
prior to time zero. A variation in solar x-rays over a timescale of days has not been

previously documented in association with SPEs, and this is a new resulit.

Small peaks in the x-ray fluxes and ratio for the SPE case are present at around —~720
hours, suggesting that the activity at time zero is recurrent and related to a developing
active region. Evidence in solar x-rays for SPEs being related to recurring active regions

has not been published elsewhere.

The average radio flux associated with SPEs exhibited a strong 27-day periodicity,
passing through a maximum at the time of the event. This is the first time that SPEs
have been associated with a 27-day periodicity in the solar radio flux, and builds on the
findings of Chakravorti et al. who also found the solar radio flux to peak on the day of an

SPE [Chakravorti, Das, Sen, and Dasgupta, 1991].

The 27-day recurrence in radio activity for the SPE case suggests that SPEs are related to
active regions which develop over several solar rotations. This is supported by Mursula
and Zieger, who found solar stream structures from active regions to last for around 4

solar rotations [Mursula and Zieger, 1996].

Analysis of the SPE dataset found 51% of SPEs to occur within 4.5 days of a local radio
flux maximum, but the presence of any permanent 27-day periodicity in the solar radio
flux has not been ascertained. Kane et al. did not find a 27-day periodicity to be
dominant in samples of the solar radio flux, but this may have been due to small sample
sizes [Kane, Depaula, and Trivedi, 1995]. Equally, the 27-day periodicity may only be

present for a few solar rotations when SPE producing active regions are developing.

An examination of the 2800Mhz solar radio flux for the cases of SPEs and quiet periods
has shown the SPE case average to differ significantly in the mean from the quiet period

case up to two solar rotations prior to event occurrence. The average radio flux for quiet
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periods was found to be lower than that associated with SPEs, and was found to pass

through a minimum at close to the time of the quiet period.

Selection of inputs using the F-statistics was found to give a small but not significant
improvement to performance. A model using blanket inputs of the XS/XL ratio between
—120 and —48 hours gave a 62.6% average classification success compared to 64.7% for
XS/XL inputs chosen using the F-statistic. The blanket input model probably performs
comparably because the majority of time intervals within the blanket input already have
high F-statistics. Use of a principal components analysis has also minimised the

negative contribution from any “poor’ inputs.

A comparison of predictor variables showed minimal difference in performance between
input types. The XS/XL ratio was found to give the highest classification success of
64.7%, and radio data was found to generate the lowest classification success of 58.8%.

Combining radio and XS/XL inputs was not found to be beneficial.

Performance is thought to be limited to around the low 60% level due to the inherent
inseparability of the SPE and quiet period distributions. The distribution averages have
been shown to be significantly different to a high level of confidence (lent by the large
sample sizes), but scatter about the means is very high and generates significant overlap

of the distributions.

Whilst performance of the classification technique appears to be limited to around the
60-65% level, such a degree of success is still an achievement considering a 48-hour lead
time and the fact that a discrete x-ray flare is not needed as an input. A figure of >60%
is still in line with recent ESA guidelines for SPE prediction requirements, and such a
technique may still be useful for applications where the negative consequences of wrong

predictions are small.
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9. REAL TIME IMPLEMENTATION OF CLASSIFICATION MODEL

A main goal of the research activity was to produce a real time SPE prediction tool. This
chapter describes the implementation of MLP networks within a real-time JAVA
software framework and assesses their performance and behaviour over a 12-month
period by using skill scores developed from terrestrial weather forecast models. The
results and behaviour of the classification forecasting approach are explained further by
considering the effects of solar x-ray flares, which are found to exhibit similar

‘precursive’ behaviour to SPEs.

9.1 The Real Time Model

A real time model was created by configuring the optimal MLP neural network model
developed in chapter 7 to use real-time data from the GOES satellites. The model took
3-hour averages of the log;, detrended GOES XS/XL ratio over a 72-hour period to form
an input vector. The first 6 principal components of the transformed input vector where
than taken as inputs to the network in order to make forecasts with a 48 hour lead time.

Earlier testing showed this model to have a 62.6% classification success rate.

Although in chapter 7 RBF models were found to have slightly superior performance to
MLP models they were part of a larger analysis package called TSAR, and the RBF
networks could not be extracted as stand alone objects. By contrast, MLP models
developed in Neuframe could be extracted as raw code and offered a faster and easier
way of incorporating models into a real-time framework. The performance difference
between MLP and RBF models was shown to be of the order of 3%, which is within one
standard deviation of the natural variation. The choice of model type is therefore not

thought to be significant.

Models using inputs selected using the F-statistic in Chapter 8 were examined after the
real-time model had been developed, and hence were not available for consideration.
(However, it was shown in Chapter 8 that models using the XS/XL ratio chosen using
the F-statistic were only 2% better than the blanket ratio input, therefore any
performance gain from using the F-statistic in a real-time model will again not be

significant).
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9.1.1 Software Architecture

One of the principal requirements of the model was the retrieval of remote data in real
time. This led to the software being written in JAVA due to its superior ability to handle

internet connections. JAVA also has the benefit of being non-platform specific.

The software was denoted ‘Predictor of Proton Events’ (POPE) and was written as a
stand-alone program in accordance with ESA software standards for small projects*.
POPE was designed so that prediction models could be ‘bolted’ to a real-time retrieval
framework with minimal effort, therefore facilitating the implementation of any other
prediction models at a future stage. Compliance with ESA software standards
necessitated the creation of a software specification document and a user requirements
manual. These can be found in Appendices G and H and give a detailed presentation of

the software architecture and specific code modules. A schematic diagram of the

software process is given in Figure 9-1.

The prediction model within POPE consisted of 10 MLP models acting in parallel to
form a multiple model configuration. The distinct tasks carried out by POPE can be

broken down as follows:
e Retrieval of real-time GOES satellite data from a remote ftp site.

e Creation of a continuous data file made by stitching together several GOES data

files.
e Detrending of x-ray data to remove the long term solar cycle trend.
e Creation of a delay vector from continuous GOES x-ray data.
e Pre-processing of the delay vector (normalising, PCA and scaling)
e Running a neural network with the processed delay vector as an input.

e Interpreting and recording the network outputs and other information relevant to each

prediction.

" ESA Software Standard PSS-05
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Figure 9-1 Schematic diagram of real time model process.

POPE places the process within a control loop which repeats every 60 minutes, creating
predictions along a rolling time line at the rate of 1 per hour. The repeating interval was
chosen so as to be smaller than the resolution to which the start times of SPEs were

found in the training dataset. (The start times of SPEs were found to the nearest 2-hours).

Each time the model runs the output file records the numerical output from each of the
10 component MLP networks and, using a decision boundary of ‘50°, records the
number of networks from 10 that are predicting an SPE 48-hours from the run time. A

thorough description of the POPE output can be found in the user manual in the

appendix.
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POPE was put into real-time operation during December 2001 utilising x-ray ratio data
from the GOES-8 satellite as inputs. Since then approximately 12-months of output data
has been generated, allowing an initial assessment of operational performance to be

made.

9.2 Performance of the Real Time Model
The predictions made by POPE between 3/12/01 and 16/12/02 have been assessed by

breaking down the observed proton flux time series into a binary time series of SPES
and Quiet Periods with 1-hour resolution. The observed series has then been compared
against the POPE forecast. Within the training set the start times of SPEs had been

found to the nearest two hours, hence the predictions from the POPE model had a lead

time of 48-hours, + 2 hours.

9.2.1 Method

The output from POPE that was used to assess its performance consisted of an integer of
between 0 and 10, representing the number of networks from 10 which had an output of
>50, i.e. the number of networks from 10 which were predicting an SPE in 48-hours
time. This is a ‘majority vote’ output, which was shown previously to be superior to a

single network.

Over the period of operation 1-hour resolution GOES-8 proton data was examined and
an SPE was defined as occurring if the hourly averaged >10MeV integrated proton flux
was greater than 1.0 p.fu. for 12 consecutive hours. This is consistent with the way in
which SPEs were defined in the original training set. The start time of each SPE was
taken as the time at which the hourly averaged proton flux was first above 1.0 p.fu.
SPEs were identified as ending when the hourly averaged >10MeV integral proton flux
fell below 1.0 p.f.u. for 12 consecutive hours. The POPE prediction for each SPE was
taken as the highest output from the model from within £ 2 hours of the SPE start time.
Data collected during an ongoing SPE was ignored, thus the POPE model was assessed

on its ability to predict the initial onset of an SPE.

Observed values with a >10MeV hourly averaged proton flux of less than 1.0 p.fu

which occurred at least 6 hours after the end of an SPE were classed as instances of quiet
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periods. The prediction for each quiet period was taken as the highest output from the

model from within + 2 hours of the quiet period.

Outputs from the POPE model were only utilised if they were based on an input delay
vector that did not contain a significant amount of missing data (due to data gaps from
GOES). An input vector was deemed unsuitable if any of its component 3-hour averages

contained more than 50% missing data.

The 48-hour forecast from the model was matched to each observed value of the hourly
averaged >10MeV integrated proton flux. The forecast consisted of an integer of
between 0 and 10 and the threshold used to interpret the forecast was altered in order to

examine the effect on SPE and quiet period classification success rates.

Statistic Definition
Prob. of Detection *Yes”  PODy a/(a+c) Proportion of ‘Yes’ observations that
were correctly forecast
Prob. of Detection ‘No’ PODn d/(d+b) Proportion of ‘No’ observations that
were correctly forecast
False Alarm Ratio FAR b(a+b) Proportion of ‘Yes’ forecasts that were
incorrect
Bias (atb)/(atc) Ratio of number of ‘Yes’ forecasts to
number of ‘Yes’ observations
Critical success index CSI a(atb+c) Proportion of hits either forecast or
observed.
True Skill Statistic TSS PODy+PODn-1  Measures ability to  discriminate
between ‘Yes” and ‘No’.
Heidke skill score HSS (at+d-C;)/((N-C;) Percent correct, corrected by those
expected correct by chance
Gilbert skill score GSS (a-Cy)/(atb+c-C,) CSL corrected by number of hits
expected by chance(C,).
Where: N A+b+ct+d Total number of events
C Co+(b+d)(c+d)/N  Number expected correct by chance
C (atc)(atb)/N Number of hits expected by chance
a Number of Hits (‘Yes’ forecast and
“Yes’ observed)
b False Alarms (‘Yes’ forecast but not
observed).
c Misses (‘No’ Forecast and ‘Yes’
observed)
d Correct Nulls (“No’ Forecast and ‘No’
observed)

Table 9-1 Description of statistics utilised to compute skill scores. (Taken from [Smith, Dryer, Ort,
and Murtagh, 2000])
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The POPE model has been compared to the SEC 2-day forecast model over exactly the
same operational period. The SEC 2-day forecast is based on human judgement and
experience and consists of a probability of SPE occurrence in two days. In order to
compare the models statistical skill scores have been calculated based on methods
presented by Smith et al. who derive skill scores for an interplanetary shock prediction
model [Smith, Dryer, Ort, and Murtagh, 2000]. Skill scores are summarised in Table
9-1.

9.2.2 Results
Since the commencement of real-time operation in December 2001 13 SPEs were found
to have occurred. These are shown in Table 9-2 along with their observed fluence and

the highest output from POPE within £2 hours of the SPE start time.

D Start Time Duration / Hours ~ Fluence / p/cm®  POPE Output
1 26/12/01 6:00 49 3.54E+08 10

2 29/12/01 5:00 17 2.35E+07 10

3 30/12/01 21:00 119 2.33E+08 8

4 10/01/02 20:00 67 1.03E+08 9

5 18/03/02 13:00 32 3.23E+07 2

6 21/04/02 2:00 113 2.84E+09 6

7 22/05/02 18:00 44 1.05E+08 5

g 16/07/02 18:00 46 1.02E+08 1

9 22/07/02 7:00 97 8.31E+07 Model Down*
10 22/08/02 4:00 20 1.65E+07 Model Down*
11 24/08/02 1:00 60 3.13E+08 10

12 07/09/02 7:00 19 2.55E+07 10

13 09/11/02 19:00 34 1.42E+08 9

*Due to internet server losing connection to GOES data site.

Table 9-2 SPEs identified during the period of real-time operation.
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For two SPEs the POPE model was not running, but for the remaining 11 SPEs the
POPE output was at least 6 in all but three cases. Using a majority vote of 5 or more to
indicate an SPE, the POPE model correctly predicts 9 of the 11 SPEs. This indicates
excellent SPE prediction ability, but a true measure of performance can only be made by

considering the success rate for quiet period detection as well as SPE detection.

6249 quiet periods were observed during the POPE operational periods and Table 9-3
shows the classification success for each category for different threshold interpretations
of the POPE output. (The POPE output is an integer from 1-10 indicating the number of
networks that are predicting an SPE).

Threshold >5for SPE >6 for SPE ~ >7 for SPE =~ >8 for SPE  >9 for SPE
SPEs from 11 8 7 7 6 4
QPs from 6249 2158 2711 3345 4120 5123
SPEs / % 72.7 63.6 63.6 54.5 36.4
QPs/ % 34.5 43.4 53.5 65.9 82.0
Average / % 53.6 53.5 58.6 60.2 59.2

Table 9-3 Classification success for real-time POPE model for different threshold interpretations of

the multiple model output. Average success is shown in bold.

A >5 threshold generates a high SPE classification rate (72.7%) but only identifies
34.5% of quiet periods correctly, indicating that quiet periods tend to be misclassified as
SPEs by the model. Optimal overall success of 60.2% is achieved when the threshold is
set to >8, i.e. more than 8 of the 10 networks need to be predicting an SPE before the
overall model output can be interpreted as an SPE forecast. The fact that a high
threshold generates optimal average success indicates that the model has generally over
predicted, meaning that the model has a tendency to generate high outputs for Quiet

Periods.

Varying the threshold used to interpret the multiple model output can act as a way to bias
the output to specific user needs. If the consequences of a false alarm can be tolerated a
lower threshold can be adopted to miss fewer SPEs, whereas if a low false alarm ratio is
important a high threshold can be implemented with the risk of missing more SPEs. In

real terms quiet periods occur far more frequently than SPEs. Observations during the
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trial period indicate a ratio of 1:700 for their respective occurrence rates, hence a model
that is biased towards correctly identifying quiet periods will be correct a larger

proportion of times.

The POPE model was based on 10 MLP neural networks which had an average
classification success of 62.6% when exposed to the test set during development.
Operational success is 60.2%, indicating that the models have performed comparably in
real-time operation. This validates the success rates that were obtained during testing,
although it must be noted that the sample size of SPEs in real-time operation is small and

may not be an accurate measure of SPE prediction ability.

Table 9-4 shows a contingency table for the POPE classification model using >8 as the
decision threshold. The SEC 2-day forecast was examined over exactly the same
operational period as POPE, and by categorising probabilities of >0.5 as an ‘SPE’
prediction and probabilities of <0.5 as quiet periods a direct comparison has been made
between the two techniques. Table 9-5 is a contingency table for the SEC 2-day
forecast. For completeness a contingency table for the PROTONS model is given in

Table 9-6 but pertains to performance during the calendar year of 1989.

POPE Model Event Observed
Yes No
Event Forecast Yes 6 2129
No 5 4120

Table 9-4 Contingency table for real-time operation of POPE model, Dec2001-Dec2002.

SEC 2-Day Event Observed
Forecast
Yes No
Event Forecast Yes 1 4
No 12 332

Table 9-5 Contingency table for real-time operation of SEC 2-day SPE forecast, Dec2001-Dec2002.
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PROTONS Event Observed
Model
Yes No
Event Forecast Yes 17 16
No 5 63

Table 9-6 Contingency table for real-time operation of SEC PROTONS model during 1989

[Heckman, Kunches, and Allen, 1991].

Table 9-1 summarises the statistical formulas as presented by Smith et al. for the

appraisal of interplanetary shock prediction models based on a 2-category forecast

[Smith, Dryer, Ort, and Murtagh, 2000]. The statistical skill scores have been calculated

for POPE based on the contingency table of Table 9-4 and are shown in Table 9-7. Skill
scores have also been calculated for the PROTONS model and the SEC 2-Day forecast

based on their respective contingency tables. The skill statistics serve as a formal method

for model comparison, and can also be used to infer the behaviour of a model.

Statistic POPE SEC 2-Day PROTONS
Number of Hits (‘Yes’ forecast and ‘Yes’ a 6 1 17
observed)
False Alarms (*Yes’ forecast but not b 2129 4 16
observed).
Misses (‘No’ Forecast and ‘Yes’ observed) c 5 12 5
Correct Nulls (‘No’ Forecast and ‘No’ 4120 332 63
observed)
Prob. of Detection ‘Yes” PODy 0.545 0.077 0.773
Prob. of Detection ‘No’  PODn 0.659 0.988 0.797
False Alarm Ratio  FAR 0.997 0.800 0.485
Bias 194.091 0.385 1.500
Critical success index  (CS] 0.003 0.059 0.447
True Skill Statistic ~ TSS 0.205 0.065 0.570
Heidke skill score  HSS 0.002 0.092 0.483
Gilbert skill score  GSS 0.001 0.048 0.318
Total number of events N 6260 349 101
Number expected correct by chance Cq 4121.503 331.372 60.376
Number of hits expected by chance C, 3.752 0.186 7.188

Table 9-7 Skill score statistics for POPE and PROTONS calculated from contingency tables.
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The skill scores for POPE in terms of the Critical Success Index (CSI), Heidke Skill
Score (HSS) and Gilbert Skill Score (GSS) are all close to zero, which indicates poor
performance, and indeed these values are lower than the same scores from the 2-day

SEC forecast model.

The reason why the POPE model generates low skill scores is predominantly due to the
regime in which it operates. In the case of the POPE model SPEs account for only 0.14%
of the total observations, meaning that it only takes a small percentage of Quiet Periods
to be misclassified to form a large proportion of the total SPE forecasts. For example,
even if 99.9% of the 6249 Quiet Periods are forecast correctly, 6 Quiet Periods are still
misclassified as being SPEs, which equates to 50% of the total number of SPE
predictions. In fact, Table 9-7 shows a false alarm ratio of 0.997 for POPE, which shows
that 99.7% of SPE predictions were false alarms. The large imbalance between the
number of observed SPEs and observed Quiet Periods means that the skill scores for
POPE are highly sensitive to false alarms. The imbalance in SPE and QP outcomes 1s a
property of the dataset though, therefore any model operating in such a regime 1s

inherently likely to produce a large number of false alarms.

The SEC 2-day forecast is the most directly comparable to the POPE model in that it
predicts the likelihood of an SPE for the same lead time. The CSI, HSS and GSS skill
scores for the SEC 2-day forecast are roughly an order of magnitude greater than for
POPE, apparently indicating superior performance, but the difference in skill scores can
in fact be attributed to the difference in operating regimes between the models. The
POPE model makes 24 forecasts per day, whereas the SEC forecast is issued only once
per day. The result is that the POPE model must predict far more quiet periods (an order
of magnitude more) than the SEC forecast for the same number of observed SPEs, hence
POPE is inherently more likely to generate false alarms and thus generate lower skill
scores. The order of magnitude difference in skill scores can be directly attributed to the
order of magnitude difference between the QP:SPE ratio in the observed outcomes for

each model.
A fairer measure of ‘skill’ is given by the True Skill Score (TSS), which measures the

ability of the model to discriminate between the two outcomes irrespective of the relative

frequency of the outcomes in the observed distribution. It is not weighted by the total
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number of correct predictions, but by the percentage of each category that is predicted
correctly. It can be seen from Table 9-7 that POPE scores approximately 3 times higher
than the SEC 2-day forecast, indicating that it is in fact better at distinguishing between
SPEs and Quiet Periods. In effect the SEC 2-day forecast predicts a Quiet Period in
nearly all cases (as can be seen from its contingency table) and only predicted 1 of 13
SPEs during the trial period, hence it can never be regarded as a reliable predictor of
SPEs. However, because nearly all days are Quiet Periods it actually means that the SEC
2-day forecast is correct far more often than the POPE model, and this is why it scores
well in the other skill statistics. In practice, the POPE model would be best suited to
applications in which it is more important to predict SPEs than quiet periods, i.e.

applications in which false alarms can be tolerated.

The PROTONS model is not directly comparable to the POPE model because it has an
effective lead time of just 0-6 hours to SPE onset, but it does represent the best available
forecast tool for SPEs at the moment in terms of prediction accuracy. The skill scores
for PROTONS are higher than for POPE and the SEC 2-day forecast, although this can
in part be attributed once again to a difference in operating regimes. The PROTONS
model is run only after a significant x-ray flare has occurred, hence it is only run at times
when there is an increased likelihood of an SPE occurring (and hence a reduced
likelihood of no SPE occurring) and it can be seen from the contingency tables that SPE
occurrences make up 28% of observations for PROTONS, compared to just 0.14% for
POPE. The more equal observed ratio of the two outcomes means that the PROTONS
model is less prone to generating false alarms, and this is borne out by the false alarm
ratio in Table 9-7, but the relatively good performance cannot be entirely attributed to
the operating regime. The True Skill Score for PROTONS is still over twice that of
POPE and shows that the technique is at least ‘semi-intelligent’ rather than just playing
to the statistics of the observed distribution like the SEC 2-day forecast.

The POPE model is better at predicting SPEs than the current SEC 2-day forecast, but

the PROTONS model still represents the best model in terms of forecast accuracy.

The POPE model needs to be improved by reducing the number of quiet periods that are
classified as SPEs whilst at the same time maintaining a high SPE detection rate. One
method of doing this is to change the regime in which the model operates in order to
better balance the ratio of observed QPs to SPEs: a lower frequency of predictions would

result in fewer observed quiet periods for the same number of observed events.
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However, given that the current model has been frained using input vectors from exactly
48-hours+2hours prior to event occurrence it 1s difficult to justify a forecast repeat time
that is greater than the resolution to which the SPE start times were found. Predictions
made by POPE are effectively only valid for a 4 hour period, hence the minimum run-
frequency 1s 6 forecasts per day for continuous coverage of the timeline. Assuming that
a 4 hour repeat cycle is adopted this would quarter the total number of forecasts from 24
per day to just 6, but even so, based on contingency Table 9-4, around 500 misclassified
Quiet Periods would still occur, which is over 80 times the number of observed SPEs,
and would still result in a very high false alarm ratio. Rather than trying to alter the
operating regime of POPE it is perhaps better to try and understand why the model

produces so many false alarms in the first place.

One advantage that POPE does have over existing forecasting techniques (both the 2-day
forecast and PROTONS) is that it is completely autonomous and requires no
supervision, ‘decision to run’ or other human input. The POPE model is not susceptible
to the subjectivity of human judgement and can be left to run in the background with no
requirement for an operator. This means that POPE has attractively low resource
requirements and is easy to install and integrate within a space weather forecasting

service.

9.3 Summary

This chapter has described the implementation of an MLP neural network model into a
real-time framework and has assessed its performance as an operational SPE forecasting
tool. The model was designated Predictor of Proton Events' (POPE) and skill score

statistics were used to compare the model against existing SPE forecasts made by the

SEC.

During a 12-month period between December 2001 and December 2002 11 SPEs
occurred whilst the POPE model was operational. 6 of the 11 events (55%) were

successfully predicted, as were 4120 of 6249 quiet periods (66%).

The POPE model was compared to the SEC 2-day forecast over exactly the same
operational period and was found to have a True Skill Score over 3 times greater,

indicating a better ability to distinguish between SPEs and Quiet Periods. The POPE
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model is an improvement over the existing 2-day lead time forecast for SPEs in that it

has superior discrimination.

The current 2-day SPE forecasts made by the SEC are strongly biased to Non-SPE
prediction with virtually no SPE prediction capability, with the result that 1 of 13 SPEs
(8%) and 332 of 336 quiet periods (99%) were forecast correctly over the operational
period. The SEC 2-day forecast is nearly always a Quiet Period, hence is correct in

nearly all cases, but the model has very little ability at forecasting an SPE.

Despite a better true skill score, the POPE model output was found to be wrong more
often than the 2-day SEC model by virtue of the fact that significantly more quiet periods
than SPEs are present in the observed proton flux timeline. This observed distribution
led the number of misclassified quiet periods to be very large in comparison to the
number of correctly forecast SPEs and produced a very high false alarm ratio which

governed the skill score statistics (other than the True Skill Score).

The SEC PROTONS model still offers the highest accuracy for SPE forecasting with
forecast success rates of 77% for SPEs and 80% for Quiet Periods respectively, but
achieves this by trading lead time and imposing the pre-requisite of a solar x-ray flare.
This compares to success rates of 55% and 66% respectively for 2-day forecasts made by

POPE.

The performance of the POPE model suffered due to the regime in which it operated. It
was identified that the POPE model could be improved by reducing the number of false

alarms as a fraction of the total number of SPE predictions.

The POPE model in its current form still offers significant potential as a real-time
operational forecast tool and is superior to the current 2-day SEC SPE forecast. One
significant advantage of the POPE model is the benefit of being able to operate
autonomously without the need for human input or supervision, which could be

favourable in some applications.
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10. CONSIDERATION OF X-RAY FLARES

SPEs are known to have a strong association with solar x-ray flares, and this is borne out
by the earlier result from chapter 6 in which 91 of 98 SPEs could be temporally matched

to x-ray flare occurrences.

This high association between SPEs and solar x-ray flares means that when x-ray data
was extracted based on the start times of SPEs, it was also, by proxy, extracted about the
time of a solar x-ray flare. No consideration of x-ray activity was made in defining the
quiet periods within the training set, but it is probable that no x-ray flares were present at
time zero in the quiet period case. Consequently this means that during training the
neural networks may have been learning to distinguish between the cases of ‘x-ray flare’
and ‘no x-ray flare’ as opposed to ‘SPE’ and ‘non-SPE’. If this is the case then it may
explain the high false alarm rate of the real-time POPE model. The model may have
been triggered into giving SPE predictions by the relatively common occurrence of solar

x-ray flares.

In order to test this hypothesis the POPE model has been tested with a large dataset of
query inputs pertaining to times at which an x-ray flare occurred at time 0, but no proton
event occurred. This has been contrasted with the model’s response to an equivalent
dataset of quiet periods which were selected at random with no consideration of x-ray
activity. The behaviour of solar x-rays prior to x-ray flares has also been studied and is

compared to the behaviour of solar x-rays prior to SPEs.

To try and account for the occurrence of x-ray flares the POPE models were re-trained
using quiet periods taken at the times of non-proton x-ray flares. In addition, the
abundance of quiet periods in relation to SPEs in the observed data was reproduced
within the training set to see if this improved the ability to predict quiet periods

correctly.

10.1 X-ray flare dataset

As described in section 6.4 flare listings from the SEC allowed flare associations to be
made for all SPEs occurring after 1986. These flare listings identified times at which x-

ray flares occurred but with no associated proton event.
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Considering solar active years between 1986 and 1999, a total of 17731 x-ray flares of

class X, M and C were recorded. 91 of these flares could be associated with the onset of

an SPE and were classified as being proton associated. A further 4840 flares were found

to occur during an SPE, or within 3 days of the end of an SPE, and these were removed

from the dataset. The remaining 12800 flares were designated ‘quiet flares’ as they were

associated with background levels of solar proton flux. The breakdown of the flares is

given in Table 10-1 and Table 10-2.

SPE associated Flares Quiet flares
X-Ray Flare Number % of Sample Number % of Sample
Class
C 10 10.2 11400 89.1
M 46 46.9 1327 10.4
X 35 357 73 0.6
No flare 7 7.1 - -
Total 98 12800

Table 10-1 Solar x-ray flares with SPE associations and no SPE associations occurring in solar

active years between 1986 and 1999,

X-Ray Flare Percentage of all Percentage of Flares Percentage of
Class Flares associated with SPEs SPEs accounted
for
C 88.5% 0.1% 10.2%
M 10.7% 3.4% 46.9%
X 0.8% 32.4% 35.7%
All 100.0% 0.7% 92.9%

Table 10-2 Proportional breakdown of solar x-ray flares occurring in solar active years between

1986 and 1999 with the proportion of SPEs that can be associated with them.

The statistical breakdown of the sample shows that overall, whilst 92.9% of SPEs can be

associated with x-ray flares, only 0.7% of x-ray flares can actually be associated with

SPEs. The correlation is clearly not 1:1 hence SPEs cannot be predicted simply by

successfully predicting a flare.
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However, it is interesting to note as an aside that whilst X class flares constitute only
0.8% of all flares, 32.4% of these flares can be associated with SPEs. This suggests that
if X-ray flares could be forecast successfully it would follow that there is a 32.4%

chance of an SPE also occurring.

10.2 Model response to x-ray flares

10.2.1 Method

Using the x-ray flare listings from the SEC a test set of 5843 quiet periods was
constructed, consisting of detrended x-ray ratio extractions with a ‘quiet flare’ at time 0,
i.e. an x-ray flare occurred at time 0 with no associated proton event. The proportion of
flares within the test dataset was kept approximately equal to the sample proportions of

Table 10-1 and is given below in Table 10-3.

Quiet Flare Type Number of examples

C 5184

M 624

X 35
total 5843

Table 10-3 Dataset of quiet flares for which predictor data was extracted.

A further 3000 examples were generated by selecting times at random between 1986 and
1999 and extracting detrended x-ray ratio values. These examples represent times at
which no attempt has been made to place a solar x-ray flare at time O in the extraction
window. The POPE model was queried with the ‘quiet flare’ dataset and the ‘random

quiet period” dataset and the classification success rates were compared.

10.2.2 Results

The POPE output was interpreted using a threshold of >8, this being previously
identified as optimal in section 9.2.2, i.e. as long as 2 or more networks were indicating a
quiet period, the overall response from POPE was taken as a quiet period. Results are

given in Table 10-4.
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Quiet Flares Successfully Random Quiet Periods
Forecast as QPs Successfully Forecast as QPs
X Flares 60.0% -
M Flares 59.1% -
C Flares 66.1% -
Total 61.8% 90.5%

Table 10-4 POPE performance with test set of 5843 quiet flares and 3000 random quiet periods.

A comparison of success rates indicates that quiet periods that coincide with flares are
often misclassified as SPEs whereas times at which there is no x-ray flare are

successfully predicted as quiet periods.

When examining the classification rates by flare type there is little difference in success
rates, indicating that even small flares cause the model to forecast an SPE. For the
randomly selected quiet periods it can be assumed that there is generally no flare at time
zero, and in these cases classification success is very high at >90%. The result indicates
that it is highly likely that the large number of false alarms produced by the POPE model

are caused by x-ray flare precursors being wrongly identified as SPE precursors.

10.3 Retraining with quiet flares

A possible solution to x-ray flares being falsely interpreted as SPEs is to re-train the
POPE models with quiet periods specifically taken at the times of x-ray flares in the
hope that the network can learn to differentiate between ‘quiet flares’ and x-ray flares

associated with SPEs.

10.3.1 Method

A dataset was constructed using 98 SPEs and 660 ‘quiet flares’ occurring in solar active
years between 1986 and 1999. The ratio of flare categories within the quiet flare dataset
was kept approximately equal to that in the observed sample of Table 10-2. The dataset

was divided into a training and a test set in which the ratio of SPEs to quiet periods was
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kept at 1:1 in the training set. A breakdown of the dataset set is given below in Table

10-5.

SPE Dataset Quiet Flare Dataset
Train  Query Total | Train Query Total
X flare association 21 14 35 1 10 11
M Flare association 28 18 46 7 70 77
C Flare association 6 4 10 52 520 572
No Flare association 4 3 7 - - -
Total 59 39 98 60 600 660

Table 10-5 Dataset proportions on which the POPE networks were retrained.

10 permutations of the training and query sets were used to retrain and test the 10

component MLP networks of POPE.

10.3.2 Results
The 10 retrained networks were assessed individually and the average classification
success was recorded. This is compared against the classification success when

randomly selected quiet periods were used (i.e. the result from section 7.2.8) in Table

10-6 below.

Using quiet flares  Using random quiet periods

in training set in training set
SPE Classification Success 66.4% 69.5%
Quiet Period classification 34.9% 55.8%
success
Average Overall classification 50.6% 62.6%
success

Table 10-6 Comparison of performance between POPE MLP models when trained with randomly

selected quiet periods and when trained with ‘quiet flare’ periods.
It can be seen that when the MLP networks are trained using quiet periods that have x-
ray flare associations the classification success drops to 50%, which is no different to the

performance expected from a random output.
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The result indicates that the network cannot learn to differentiate between x-ray flares
with proton associations and x-ray flares which have no proton associations. This
suggests that the behaviour of the predictor variable prior to x-ray flares is the same

regardless of whether or not the flare is associated with an SPE.

10.4 Consideration of quiet period abundance

Another possible way to try and reduce the false alarm rate is to condition the model to
quiet periods by using a training set that contains representative proportions of SPEs and
quiet periods. By running on a rolling time line at a rate of 1 prediction per hour it has
been shown that only 0.14% of the observations seen by POPE are SPEs hence more
than 99% of occurrences are quiet periods. It may be beneficial to increase the ratio of

quiet periods to events in the training set in order to reproduce the observed ratio more

closely.

10.4.1 Methed

The 98 SPEs from Table 10-5 were divided to produce a training set of 59 examples,
necessitating approximately 3000 quiet periods in order to form a training set composed
of 2% events. (This is close to the observed ratio of 1%, but could not be reproduced
exactly as it would have required an impractically large data extraction). 2922 quiet
periods with flare associations were placed with the 59 SPEs to form the training dataset,
with a further 2921 quiet flare periods serving as test data. A summary of the dataset is

given below in Table 10-7.

SPE Dataset Quiet Period Dataset
Train Query Total | Train Query Total
X flare association 21 14 35 18 17 35
M Flare association 28 18 46 312 312 624
C Flare association 6 4 10 2592 2592 5184
No Flare association 4 3 7 - - -
Total 59 39 98 2922 2921 5184

Table 10-7 Summary of the dataset in which the proportion of SPEs in the training set was set at

approximately 2%.
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The 10 component MLP networks within POPE were retrained and tested using 10

different random permutations of the dataset shown above.

10.4.2 Results
The average classification success of the test set was calculated and is summarised below

in Table 10-8.

SPE: QP training ratio of 2:100

SPE Classification Success 0.0%
Quiet Period classification 100.0%
success
Average Overall classification 50.0%
success

Table 10-8 Average classification performance of POPE component networks when trained using a

training set of 2% SPE examples.

It is obvious from the result that increasing the proportion of quiet periods in the dataset
does not allow the model to learn effectively. The significantly larger proportion of
quiet periods means that minimum training error is produced if the model simply

produces ‘0 for each example, as this will correctly identify 98% of the training set.

A review of the numerical outputs from the networks indicated that ‘0’ was indeed
produced for every example in the test set during the query phase. In real-time operation
such a model would actually be correct most of the time, simply because quiet periods

occur most of the time, but such an approach is clearly not intelligent.

10.5 Behaviour of predictor variables prior to x-ray flares

The previous results show that the classification technique cannot adequately distinguish
between cases of quiet flares and proton associated flares. In order to quantify the
behaviour of the predictor variables prior to x-ray flares the XS/XL ratio has been
plotted over the input window for the cases of quiet x-ray flares and compared to the

case of SPEs and to the case of randomly selected quiet periods.
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10.5.1 Method

The average XS/XL ratio over the period —120 hours to —48hours was calculated for the
dataset of quiet x-ray flares shown in Table 10-3. This is compared to the average
behaviour of the SPE case (computed from the 98 SPEs in Table 10-1) and the average
behaviour of 3000 randomly selected quiet periods (i.e. quiet periods which were not
specifically based around the time of an x-ray flare). In addition, the detrended solar
radio flux was also extracted and plotted for the same cases over a period spanning —81

to +81 days relative to time zero of the input window.

10.5.2 Results
Figure 10-1 below compares the variation in the average XS/XL for the cases of SPEs,
randomly selected quiet periods and quiet periods associated with an x-ray flare (of class

X, M or C) at time 0.
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Figure 10-1 Comparison of XS/XL ratio over the input window for the cases of SPE, quiet flare
periods and randomly selected quiet periods. Error bars denote one standard deviation and for
clarity are shown only for the SPE case.

It is clear from Figure 10-1 that the quiet flare average lies between the random quiet
period average and the SPE average, thus it is bound to represent a classification
problem for a model which has only been trained on cases of SPEs and random quiet

periods. Figure 10-2 shows the same comparison in the 2800Mhx solar radio flux.
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Figure 10-2 Comparison of detrended 2800Mhz radio flux over 181 days relative to the time of event

for the cases of SPE, quiet flare, and randomly selected quiet periods. Error bars denote standard

error.

Figure 10-2 shows a similar situation with the solar radio flux in that the quiet flare case
is somewhere between the SPE and than the randomly selected quiet period case. This
again shows that the behaviour of solar variables prior to x-ray flares is similar to that
prior to SPEs. It follows that future development may benefit from the use of three
training classes, corresponding to cases of ‘Flare with SPE’, ‘Flare with no SPE’ and

‘Quiet’ (1.e. no flare and no SPE).

As an aside, Figure 10-3 shows the behaviour of the average solar radio flux classified

by flare type for the dataset of quiet x-ray flares (i.e. 5843 x-ray flares with no proton

associations).
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Figure 10-3 Variation in average detrended solar radio flux for quiet flares of class X, M and C.
Error bars denote standard error and for clarity are shown only for the C-class case.
It is interesting to note that there is an apparent difference in the observed level of radio
flux between flare classes, with X class flares correlating to higher levels of flux than M
class flares, and M class flares correlating to higher levels of flux than C class flares, all
of the order of 20 days prior to flare occurrence. The standard deviation is very large in
proportion to the observed periodic variation, indicating that the use of the periodic and
systematic variation as a predictor would be difficult, but the distributions do
nevertheless show potential for a flare forecasting capability, relating higher radio flux

levels to x-ray flares of greater magnitude.

10.6 Potential as a flare forecast model

The fact that the classification model was apparently triggered by x-ray flare ‘precursors’
suggested that it may have some use as a flare forecasting model as opposed to an SPE
forecasting model. In order to test if this was true, a second analysis of the real-time
POPE model forecast was performed by comparing the output of the model with the

occurrence of x-ray flares.
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10.6.1 Method

Over the period of real-time operation (December 2001 to December 2002) the GOES-8
hourly soft x-ray flux (i.e. the 1-8A channel) was scanned and any hourly periods with a
flux greater than 1x10” watts/m* were marked as ‘x-ray events’. This flux threshold is
equivalent to class M flares or greater. Hourly periods with a flux less than the threshold

were marked as ‘quiet’.

114 x-ray flare events were identified over this period, 93 of which occurred whilst
POPE was running (for 21 of the x-ray flare events the POPE model was inactive,
primarily due to drop-outs in internet access or intolerable gaps in GOES satellite data).
Predictions from POPE were only considered if they were based on input delay vectors
with no more than 50% missing data in each 3-hour interval. Hourly periods for which
no GOES x-ray data was available were removed from the dataset. The prediction for

each valid time interval was taken as the highest output from the model from within =2

hours of the current time.

Output from POPE consisted of an integer between 0 and 10, representing the number of
networks from 10 that were predicting an event (in this case taken to be an x-ray flare of
class M or above) in 48-hours time. A threshold analysis was performed in order to
determine the optimal decision boundary, and skill scores were calculated from a
contingency table. These have been compared against the POPE scores for SPE

forecasting.

10.6.2 Results
The performance of the POPE multiple model is shown below in Table 10-9 for different

threshold values.

Threshold >5Sfor flare  >6 for flare  >7 for flare  >8 for flare  >9 for flare
Flares from 93 78 75 70 69 39
QPs from 6699 2235 2839 3549 4385 5450

Flares / % 83.9 80.6 75.3 74.2 41.9

QPs/ % 334 42 4 53.0 65.5 81.4
Average / % 58.6 61.5 64.1 69.8 61.6

Table 10-9 Classification success for real-time POPE model when asked to classify the occurrence of

an M-class or greater x-ray event as opposed to an SPE.
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As with the SPE detection model, optimal success occurs with a threshold of >8,
meaning that 9 or 10 of the 10 constituent networks need to forecast an event (x-ray
flare) before the overall POPE output is taken as being a positive-occurrence prediction.
It can already be noted that the model has a 69.8% overall success rate which is greater

than the 60.1% success rate of the SPE forecast model

Table 10-10 shows the contingency table for the >8 threshold and Table 10-11 shows the
skill score for the POPE flare model in comparison to the POPE SPE model.

Event Observed
Yes No
Event Forecast Yes 69 (74%) 2314 (35%)
No 24 (26%) 4385 (65%)

Table 10-10 Contingency table for real-time operation of POPE model, Dec2001-Dec2002 for the

forecast of M-class or greater x-ray flare events.

Statistic POPE SPE POPE Flare
Number of Hits (‘Yes’ forecast and ‘Yes’ observed) A 6 69
False Alarms (‘Yes’ forecast but not observed). B 2129 2314
Misses (“No’ Forecast and ‘Yes’ observed) C 5 24
Correct Nulls (‘No’ Forecast and ‘No’ observed) D 4120 4385
Prob. of Detection “Yes’  PODy 0.545 0.742
Prob. of Detection ‘No” PODn 0.659 0.655
False Alarm Ratio  FAR 0.997 0.971
Bias 194.091 25.624
Critical success index CSI 0.003 0.029
True Skill Statistic  TSS 0.205 0.397
Heidke skill score  HSS 0.002 0.030
Gilbert skill score  (GSS 0.001 0.015
Total number of events N 6260 6792
Number expected correct by chance C, 4121.503 4381.259
Number of hits expected by chance C, 3.752 32.629

Table 10-11 Comparison of performance and skill statistics for POPE SPE forecast model and

POPE as a >M class flare prediction model.
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Examination of the skill scores shows that when operating as a flare prediction model the
Heidke and Gilbert skill scores have a 10 fold improvement, hence the model does
perform better, but the skill scores are still very low. The problem is again a relatively

large proportion of false alarms.

Although the model correctly identifies 65.5% of quiet periods, the 34.5% that are miss-
classified represent 2314 instances, which is very large compared to the actual number of
observed flare-events (93), and it is this which ultimately dictates the skill scores.
However, despite low skill scores the model is the only example of a 2-day autonomous
flare forecast tool and may be useful for applications which have no serious

consequences for false alarms.

10.7 Summary

The fact that SPEs have a strong correlation with solar x-ray flares means that neural
models may have been trained to distinguish between cases of x-ray flare and no x-ray
flare as opposed to SPE and no-SPE. This hypothesis was put forward as a way of
explaining the high false alarm rate in the real-time POPE model, which forecast many

more SPEs than were observed.

By considering x-ray flares that were observed by the SEC monitoring network between
1986 and 1999 it was shown that 92.9% of SPEs had flare associations, but only 0.7% of
all x-ray flares were associated with SPEs. 32.4% of X class x-ray flares were found to
be associated with SPEs even though this flare category only accounted for 0.8% of all
flares. This indicates that if X class flares can be predicted accurately the probability of
an SPE occurring is known. The same is also true for M class flares, although only 3.4%

of M-class flares were found to have proton associations.

When the POPE model was queried with a dataset of over 5000 quiet periods selected so
as to have an x-ray flare at time zero only 62% of the quiet periods were classified
correctly. This compared to a 91% classification success when quiet periods were
selected at random, indicating that it is highly likely that x-ray flares are causing the

model to produce SPE forecasts.

Retraining the POPE networks using quiet period examples selected at the times of solar

x-ray flares produced a 51% overall success rate showing that the neural models were
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unable to learn to differentiate between x-ray flares associated with SPEs and x-ray

flares associated with quiet periods.

Reproducing the observed quiet period to SPE ratio in the training set did not produce an

intelligent model, and simply caused quiet periods to be predicted for all input vectors.

An examination of the XS/XL ratio prior to quiet x-ray flares showed the average value
to be somewhere between the cases of ‘SPE’ and quiet period. A similar examination of
the 2800Mhz solar radio flux showed that prior to x-ray flares flux levels had a similar
magnitude and periodicity to the SPE case. All evidence suggests that x-ray flares
associated with quiet periods have a similar precursive behaviour in x-rays and radio flux

to SPE associated flares.

Theorising that x-ray flares were the primary source of false alarms the POPE real-time
model was reassessed as a forecaster of >M class x-ray flares. Overall classification
success was measured at 69.8% and was greater than when operating as an SPE forecast
model. This represents the only autonomous 2-day lead time flare forecast model in
operation. Performance as a flare forecaster was still hampered by a high false alarm

rate.
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11. SUMMARY AND CONCLUSIONS

This section summarises the evolution of work contained in the thesis and highlights the

primary findings. Avenues of future work are suggested and overall conclusions stated.

11.1 Summary

Current models to predict SPEs use characteristics of a discrete x-ray flare in order to
produce a forecast, but the lead-times of such forecasts are limited in that significant
proton flux can be observed within minutes of an x-ray flare peak. The need for
forecasts with longer lead times may be required for manned missions of an
interplanetary nature, and would serve as a useful tool for spacecraft operations in

general.

This thesis addresses the fact that very little research has been conducted into developing
SPE forecasting techniques that do not require an x-ray flare as a precursor. As an
output, it has aimed to produce a forecast model with lead-times greater than that offered

by current SPE prediction models.

Key to the development of a prediction methodology has been the use of a large dataset
encompassing over 200 Solar Proton Events over a 3-decade time span. In addition, use
has been made of GOES satellite observations to provide a uniform solar x-ray data
source over a 25-year period, and ground station observations have provided continuous

measurement of solar radio flux for over 50 years.

The work has succeeded in creating a real-time SPE forecast model with a 48-hour lead
time that can operate autonomously using inputs from live GOES satellite measurements
of solar x-ray flux. The technique uses a classification approach to the forecast problem
and is based around the fact that solar x-ray fluxes are, on average, higher several days

prior to SPEs than at times when no SPE occurs.

11.2 Main Findings

Application of an ARIMA time series forecasting method to the >10MeV daily proton

flux time series showed that SPEs are not deterministic in the sense that their occurrence
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cannot be predicted from prior values of proton flux. This would appear to be the first

time that this result has been formally documented.

Due to the discrete nature of solar proton events the solar proton flux time series can be
approximated as a binary series composed of quiet periods and SPEs. In this way it has

been possible to forecast SPEs using a classification approach.

Based on a sample of 97 SPEs the average GOES x-ray fluxes in both the XS(0.4-4A)
and XL(1-8A) channels were found to rise from around 150 hours prior to the
occurrence of an SPE. No rise in flux was observed in the cases of quiet periods. A
comparison of the distributions showed them to be different in the mean to a 99%
confidence level up to 150 hours prior to SPE occurrence. A similar finding was

observed in the 2800Mhz solar radio flux.

The average solar radio flux associated with SPEs was found to contain a strong 27-day
periodicity over a 162-day span centred on the event, with the occurrence of an SPE
coinciding with a peak in the radio flux average. By contrast, quiet periods
approximately coincided with a minimum in the average solar radio flux. Previous work
by Chakravorti et al. [Chakravorti, Das, Sen and Dasgupta, 1991] has identified solar
radio flux from active regions as passing through a maximum on the day of an SPE, but
did not identify a 27-day periodicity in the flux. Evidence of a 27-day periodicity
coinciding with SPE occurrence is also present to a lesser extent in the average solar x-
ray flux. The correlation between SPEs and peaks in a 27-day periodicity has not been
published elsewhere, but is almost certainly due to the fact that SPEs originate from

active regions on the solar surface which evolve over a number of solar revolutions.

Knowing that solar radio flux from a source near the solar limb is significantly
attenuated by the solar atmosphere, it is surprising that radio flux peaks are still seen at
the time of an SPE; for an SPE to be monitored at earth it generally originates from a
region towards the western solar limb. Use of spatially resolved radio flux measurements
corrected for the observer location may therefore reveal a much higher correlation

between solar radio flux peaks and SPE occurrence.

The development of a classification model proved that the differences between SPE and
Quiet Period distributions in solar x-rays (specifically the solar x-ray ratio) could be

harnessed to give a limited prediction capability with a 2-day lead time. During
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development, highest performance was given by an RBF model which classified 65% of

examples correctly.

The output of the thesis has been POPE: a real-time variant of the classification model
capable of autonomous operation on a rolling timeline with a 48-hour lead time.
Assessing the model over a 12 month period showed it to have superior SPE detection
capability to the Space Environment Centre’s 2-day forecast model. POPE is the only

autonomous SPE forecast model with a 48-hour lead time.

The SEC PROTONS model still represents the best in terms of SPE forecast accuracy.
Whereas POPE predicted 55% of SPEs correctly during real-time operation, PROTONS

is capable of forecasting 77% of SPEs successfully and has a much lower incidence of

false alarms.

The operation of an SPE forecast model on a rolling timeline has been shown to be
inherently problematic because significantly more quiet periods are observed than SPEs.
As a result, the POPE model generates a large proportion of false alarms (during real
time operation 99.7% of SPE forecasts were false alarms). In order to be effective in
practice such a model needs to be able to identify quiet periods to a high degree of

certainty.

The POPE model is superior to the SEC 2-Day model for applications in which it is
more important to detect SPEs than to minimise false alarms. During real-time operation

POPE can be expected to forecast 55% of SPEs and 66% of quiet periods successfully.

X-ray flares of class C and higher are also shown to be associated with increased levels
of x-ray flux and solar radio flux several days prior to their occurrence. This is a new
finding, but shows that increases in x-ray and radio flux are not specific to SPE
occurrence. This hinders the prediction of SPEs when using the classification approach,
as precursors to x-ray flares are mistakenly classified as SPEs by the model. This
accounts for the high number of false alarms produced by the POPE classification
method. It also means that precursors exist which potentially enable the forecasting of x-

ray flares with lead-times of several days.

X class x-ray flares constitute only 0.8% of all flares yet 34% of them can be associated
with SPEs. This means that the occurrence of x-ray flares can be used to infer the
occurrence of an SPE. Specifically, if an X class x-ray flare can be forecast with

certainty then there is a corresponding 34% probability of an SPE also occurring.
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Analysis of the POPE model as a flare forecast tool showed superior performance to
when acting as an SPE forecaster. During a 12-month period 74% of x-ray flares of class
MO or greater were forecast correctly, although a high false alarm rate was still observed

in that 97% of flare predictions were false alarms.

11.3 Future Work

The limiting factor to the 2-day lead time classification technique has been the
inseparability of the two classes in the predictor variables, whether this be solar x-ray
fluxes, the x-ray ratio or solar radio fluxes. It stems from the fact that solar x-ray flares
at the times of quiet periods exhibit similar precursors to the times of SPEs. If the
technique is to be improved, it needs to incorporate knowledge that can allow more

accurate classification of the predictor variables.

Combining forecaster experience with the model output may help to eliminate some
false alarms when it is evident that there are no dangerous active regions on the solar

disk, and this information could eventually be formalised as another input to the model.

One possible flaw with the current approach is that the inputs consist of flux-values and
there is no feature extraction in terms of the dominant frequencies that are present in the
solar x-ray or radio fluxes. Examination of the radio flux at the times of events revealed
a strong near 27-day periodicity co-incident with the time of an SPE, which may be
harnessable as a predictor, and to a lesser extent a similar pattern was seen in the x-ray
flux. The obvious step is to use a Fourier analysis to identify frequencies within the
input window, although the delay vectors would need to cover several solar rotations in
order to reveal any 27-day periodicity. If SPEs are associated with active regions that
last for about 4 solar rotations, this could be shown by correlating periods of 27-day
periodicity with SPE occurrence via a wavelet analysis of the historical radio flux
timeline. The problem with relying on periodicities as a predictor however is that they
are a manifestation of a rotating active region, and if two or more active regions are
present simultaneously, separated by varying degrees of longitude, it is likely to generate
miscellaneous frequencies in the observed predictor variables. The spatial resolution of

input data pertaining to specific active regions is therefore another desirable addition to
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the model, as this would allow separation of flux contributions from active regions that

are present at the same time.

The current model utilises full disk solar measurements of x-ray flux, and although this
is actually a good measure of active region activity, it cannot distinguish between
different active regions. The ability to measure flux from specific active regions could
yield a much higher correlation between predictor flux behaviour and SPE occurrence,
and other spatial measurements, such as the heliolongitude of the active region, could be
used as inputs. One problem that may be present in the current dataset is that in order to
monitor an SPE at earth the particle injection site generally needs to be west of the solar
central angle, whereas the electromagnetic nature of the predictor fluxes means that they
are observed regardless of their source location. Some ‘proton flares’ may therefore
have been observed as ‘quiet periods’ simply because the earth was not suitably
magnetically connected to the particle injection site, but short of surrounding the sun
with a ring of observing platforms it is difficult to see how this possibility might be

addressed.

Whilst the full disk measurements utilised in this study cannot identify specific active
regions, they have the advantage of being in a state of continuous monitoring, and the
facility to have an uninterrupted observation should not be underestimated: especially if
it is to be used as an input to a real-time model. Instruments providing spatially resolved
measurements are unlikely to be dedicated and coverage of any one source will be
intermittent. The lifetime of such instruments is also likely to be short compared to the

observation span necessary to build a large dataset of SPE associated observations.

One of the most promising findings from the study was the fact that radio flux maxima
coincided with the occurrence day of an SPE, despite the fact that the observed flux was
probably significantly attenuated by the solar atmosphere. If spatially resolved radio
flux measurements could be obtained for proton producing active regions, the
observations could be corrected for heliographic position in relation to the solar central
angle. The result may give a much stronger correlation between radio flux peaks and
SPE occurrence with the potential to relate levels of solar radio flux quantitatively to
SPE characteristics. Observations have already shown that more than 70% of SPEs
occur within 6 days of a radio flux peak, and the nature of the radio flux variation gives

the potential for forecasts with lead times of days.
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11.4 Conclusions

SPEs are not deterministic when attempting to forecast them as part of a continuous
proton flux time series, but can be approximated as binary events on a timeline. This

lends itself well to forecasting via a classification approach.

On average, increases in solar x-ray flux, the solar x-ray ratio and the 2800Mhz solar
radio flux are present from 150 hours prior to SPE occurrence. This allows the potential
forecast of SPEs with a lead time of days. Increases in average x-ray and radio flux

levels also occur prior to x-ray flares though and are not a unique precursor to SPEs.

A classification technique can correctly predict an SPE or quiet period 65% of the time
with a 48-hour lead time using the log;o GOES XS/XL ratio as inputs over a 72-hour

period.

The quiet period and SPE distributions in the x-ray and radio fluxes are significantly
different in their means, but contain a high degree of scatter about their means that limits
their seperability. The poor seperability of the predictor variables stems from the fact
that x-ray flares at the times of quiet periods exhibit similar precursors to the times of

SPEs, and it is this which limits the success of the classification technique.

A real-time classification model had superior SPE detection capability to the 2-day SPE
forecast model operated by the Space Environment Centre and is the only autonomous
real-time model in operation with a 48-hour lead time. It can be expected to forecast

55% of SPEs and 66% of Quiet Periods correctly.

As the POPE model requires no human supervision and little computational power, it is

easy to install operationally and does not require large resources.

The concept of a rolling timeline SPE forecast necessitates the accurate prediction of
Quiet Periods as these are seen far more frequently than SPEs. The real-time POPE
model generates too many false alarms to be used as a reliable SPE forecaster, but is
superior to the SEC 2-day forecast for applications in which false alarms can be

tolerated.

Future work should try and correlate spatially resolved solar radio data to SPE
occurrence. Correction of active region solar radio flux for centre-to-limb dependence
may yield a higher correlation between radio flux maxima and SPEs, allowing the

potential forecast of SPEs with several days lead time.
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Appendix A
Listing of SPEs 1965 -1999
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SOURCE

IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
iMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP

Year

1965
1965
1966
1966
1966
1966
1966
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1968
1968
1968
1968

1968
1968
1968
1968
1968
1968
1968
1969
1969
1969
1969
1969
1969

CYCLE

Min
Min
Min
Min
Min
Min
Min
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max

IMP_
Date
06/02/65
06/10/65
25/03/66
08/07/66
28/08/66
03/09/66
15/09/66
13/01/67
29/01/67
15/02/67
01/03/67
13/03/67
25/05/67
07/06/67
15/06/67
03/11/67
13/11/67
04/12/67
17112067
18/07/68
28/03/68
27/04/68
10/06/68
08/07/68
27/09/68
05/10/68
30/10/68
01/11/68
19/11/68
04/12/68
24/01/69
26/02/69
22/03/69
31/03/69
26/09/69
15/10/69

IMP_
Time
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found

GOES GOES Log >10 MeV Log >30 MeV

_Date Time fluence fluence
NA NA 7.216365 6.39658
NA NA 6.110174 5.245238
NA NA 6.979613 5.866953
NA NA 7.799832 6.458149
NA NA 7.700318 6.471249
NA NA 8.982993 6.820341
NA NA 7.220159 5.896061
NA NA 6.411204 4.482882
NA NA 9.041084 7.2031
NA NA 6.316074 5.32128
NA NA 6.615164 6.032235
NA NA 7.147725 6.379722
NA NA 8.888905 7.734024
NA NA 7.191969 6.797125
NA NA 6.447343 6.273518
NA NA 6.863739 6.33041
NA NA 7.145302 6.738068
NA NA 7.378343 6.93538
NA NA 7.104651 6.739874
NA NA 6.092628 5.975243
NA NA 7.389832 6.588391
NA NA 6.501106 6.270747
NA NA 8.46067 7.082219
NA NA 7.658662 6.927539
NA NA 7.622423 7.160521
NA NA 7.497821 6.68855
NA NA 6.23438 5.772916
NA NA 8.312575 7.283353
NA NA 9.006618 8.325674
NA NA 8.361691 7.599726
NA NA 6.26872 5.889421
NA NA 7.873438 7.458379
NA NA 6.794635 6.276272
NA NA 9.362601 8.396566
NA NA 7.251361 6.552391
NA NA 6.169262 5.890636

Log>60 MeV
fluence
5.877708
4698481
5.166057
5.688936
5.725919
5.873943
5.096421
3.336753
6.33129
4698481
5.666152
5.899641
7.159836
6.605682
6.255308
6.218138
6.697347
6.654712
6.585585
5.9328
6.589607
6.227454
6.691342
6.839249
6.947839
6.369171
5.750053
6.712783
7.560716
6.984967
5.848637
7.1638
6.147658
7.750698
6.466282
5.78546

st

36
278
83
188
240
245
257
12
28
45
59
7
144
157
165
306
316
337
350
48
87
17
161
189
270
278
303
305
323
338
24
56
80
89
268
287

End Duration/

38
278
83
190
243
251
260
12
41
45
60
72
150
160
166
307
321
339
353
48
87
118
163

196
276
280
303
310
328
345

24

60

81
113
272
287

Days
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GOES
Class
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found

Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
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37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
7

72
73
74

IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP

1969
1969
1969
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1971

1971

1971

1971

1971

1971

1971

1972
1972
1972
1972
1972
1972
1972
1972
1973
1973
1973
1973
1973
1974
1974

Max
Max
Max
Max
Max

Max
Max
Max
Max
Max
Max

Max
Max
Max
Max
Max
Max

Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Min
Min

03/11/69
25/11/69
21/12/69
29/01/70
07/03/70
14/03/70
17/03/70
20/03/70
31/05/70
27/06/70
08/07/70
24/07/70
14/08/70
06/11/70
14/12/70
25/12/70
25/01/71

03/03/71

07/03/71

22/04/71

17/05/71

02/09/71

05/10/71

07/03/72
19/04/72
29/04/72
09/06/72
17/06/72
20/07/72
31/10/72
1112172
13/04/73
01/05/73
31/07/73
08/09/73
04/11/73
01/01/74
15/01/74

Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

8.804021
6.531268
6.384028
7.431748
7.82375
6.714242
6.479768
7.903721
7.082998
6.468693
6.538151
7.53362
8.268135
7.806134
6.445657
7.134021
9.171914
6.20891
7.49421
6.223244
6.958449
8.581896
6.701304
6.410471
7.450195
7.874636
6.977731
7.362469
10.05404
7.540873
7.017089
6.750053
7.052339
6.725032
7.313103
6.437124
7.65062
7.084941

8.316406
6.312185
5.994287
6.933955
6.514578
6.282714
6.1385
7.479033
6.215275
5.841224
6.22437
6.345836
7.009128
6.764726
6.018092
6.816976
8.532643
5.927261
6.713512
5.927818
6.364714
8.2233
6.518597
6.069147
6.614363
7.094529
6.618922
6.566051
9.697925
6.518597
5.540873
6.08957
6.86419
6.395749
6.63221
5.970222
7.641028
7.084941

7.677445
6.134021
5.80951
6.64232
6.357529
6.114542
6.081437
7.095135
6.078299
5.74841
6.066323
6.203631
6.734259
6.549872
6.097553
6.651252
7.800945
5.8605
6.414848
5.858545
6.187093
7.803295
6.316757
6.010695
6.510376
6.921141
6.497222
6.468212
8.351868
6.367959
5.536783
5.943134
6.72236
6.266683
6.453195
5.755054
7.603925
7.084941

306
328
354
29
65
82
85
88
150
177
188
204
225
309
347
358
25
92

11
136
244
277

66
109
149
160
168
201
304
345
102
120
211
250
307

15

312
329
354

33

68

83

86

93
151
177
189
206
233
313
348
363

30

92

98
111
137
251
278

66
11
155
162
170
234
305
345
103
122
213
253
307
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75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112

IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP

1974
1974
1974
1974
1974
1975
1976
1976
1977
1977
1977
1977
1977
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1978
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

Min
Min
Min
Min
Min
Min
Min
Min
Min
Min
Min
Min
Max
Max
Max
Max
Max
Max
Max
Max

Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max

10/06/74
03/07/74
11/09/74
20/09/74
05/11/74
21/08/75
30/04/76
22/08/76
09/08/77
17/09/77
24/09/77
12110777
2211177
02/01/78
13/02/78
08/04/78
11/04/78
17/04/78
31/05/78
23/06/78
12/07/78
08/09/78
23/09/78
08/10/78
10/11/78
1112178
17102179
02/03/79
10/03/79
14/03/79
03/04/79
06/06/79
05/07/79
01/08/79
19/08/79
08/09/79
10/09/79
14/09/79

Not found
6
0
0
14
14
18
12
no data
0
6

-i
o N

~ OO

-
kS

no data

12

10
20

22
20

12
18

16
22
12
10
10
20
12

NA
03/07/74
11/09/74
20/09/74
05/11/74

no data

30/04/76
22/08/76
09/09/77
19/09/77
24/09/77
12/10/77
22111177
no data

13/02/78
08/04/78
11/04/78
17/04/78
31/05/78
23/06/78
13/07/78
08/09/78
23/09/78
09/10/78
10/11/78
12112178
17102179
02/03/79
no event
14/03/79
03/04/79
06/06/79
05/07/79
no event
19/08/79
08/09/79
no event
15/09/79

NA
18
2
0
16
no data
22
14
8
0
8
4
10
no data
8
4
16
8
12
12
0
2
12
22
6
0
20
12
no event
20
16
18
20
no event
8
12
no event
10

6.384028
8.519125
8.308539
8.090144
7.084941
6.739015
8.005139
6.951651
7.217567
8.470643
7.924745
6.406791
8.47042
6.833683
9.168236
6.114905
7.80377
9.383636
7.221549
7.711227
7.343005
6.261033
9.451284
6.742441
7.218709
6.703176
7.150001
7.060209
6.37418
6.156297
7.311726
8.42835
7.282714
6.52266
8.789176
6.501106
6.471886
8.545221

5.572282
7.557476
7.458706
7.322897
6.520023
6.344927
7.545866
6.377158
6.567713
7.672291
7.481592
5.96769
7.913751
6.431748
8.263391
5.671207
7.205398
8.568271
6.260774
6.744399
6.532238
5.735561
8.708781
6.144289
6.269987
6.070753
6.597301
6.526244
5.898451
5.567203
6.300541
7.338811
6.29651
6.32218
8.059016
6.082609
6.038753
8.113236

5.565923
7.409665
7.185773
7.152862
6.276522
6.17371
7.286996
6.174973
6.48797
7.407253
7.274297
5.825304
7.659076
6.293642
7.982632
5.610911
6.891545
8.267117
6.1834
6.657626
6.414121
5.63232
8.338565
5.987061
6.226895
6.050663
6.433316
6.429649
5.847968
5.548941
6.217853
7.254075
6.200076
6.203041
7.785923
5.919952
5.891243
7.948849

160
184
254
263
309
233
121
235
252
260
267
285
326

44

98
101
107
151
174
193
251
266
282
314

346
48
61
70
74
93

157

187

218

231

251

254

258

160
189
260
271
310
234
123
236
257
264
270
285
329

49

98
103
129
153
177
197
251
271
283
316
348

51

65

7

74

95
160
189
220
241
252
255
271
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113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
148
149
150

IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP

IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP

1979
1980
1980
1980
1980
1980
1980
1980
1980
1980
1980
1980
1981
1981
1981
1981
1981
1981
1981
1981
1981
1981
1981
1981
1981
1981

1981
1981
1981
1981
1982
1982
1982
1982
1982
1982
1982
1982

Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max

16/11/79
11/01/80
06/02/80
04/04/80
17/07/80
23/07/80
06/08/80
15/10/80
14/11/80
23/11/80
30/11/80
02/12/80
18/02/81
30/03/81
10/04/81
15/04/81
24/04/81
20/07/81
24/07/81
10/08/81
06/09/81
19/09/81
24/09/81
08/10/81
10/11/81
15/111/81

23111/81
05/12/81
10/12/81
29/12/81
02/01/82
31/01/82
07/03/82
30/03/82
04/06/82
18/06/82
28/06/82
10/07/82

0
6
no data
16
22
6
18
10
22
20
0
0
no event
8
18
18
14
14
16
0
20
0
0
2
no data

0

no data
18
4
no data
no data
no data
2
no data
12
20
no data
0

16/11/79
no event
06/02/80
04/04/80
18/07/80
continuation
06/08/80
15/10/80
14/11/80
23/11/80
no event
no event
no data
30/03/81
10/04/81
16/04/81
no data
20/07/81
24/07/81
09/08/81
no data
19/09/81
no data
08/10/81
10/11/81
15/11/81

23/11/81
05/12/81
10/12/81
27/112/81
02/01/82
31/01/82
07/03/82
31/03/82
07/06/82
continuation
28/06/82
11/07/82

0
no event
12
16
0
continuation
22
12
22
22
no event
no event
no data
8
18
0
no data
14
18
18
no data
4
no data
2
18

continuation
4
2

7.516448
6.223244
6.169262
6.716965
8.054215
6.771322
6.295794
7.446332
6.643178
6.828815
6.295794
6.077116
8.823184
7.434704
7.83918
7.073548
9.039925
7.857957
6.876457
7.066323
6.796146
6.986575
6.107605
9.313321
6.341075
6.061029

6.217567
6.702241
7.837812
6.788539
8.471886
9.075352
7.096798
6.084941
7.815969
6.044323
6.5748
8.845667

6.539378
5.496621
5.610911
6.151999
7.12897
5.974243
5.705969
6.690093
6.11054
6.040474
5.462234
5.357943
8.823184
6.786771
7.246844
6.26361
8.359314
7.112072
5.921649
6.051083
5.821053
6.325089
5.48751
8.669065
5.438844
5.518597
5.47174
5.827414
6.781423
5.847968
8.470292
8.292377
6.257399
5.435397
7.326337
5.499616
6.200076
7.881014

6.374379
5.48443
5.489042
5.986088
7.053133
5.935544
5.529878
6.520308
5.958449
5.861798
5.42133
5.341075
8.823184
6.611258
6.975243
6.184635
8.2215
6.787541
5.86567
5.952177
5.813875
6.174973
5.437124
8.370259
5.403079
5.397451

5.391749
5.781579
6.601099
5.81315
8.470292
7.987595
6.115628
5.410472
7.184141
5.454025
6.000925
7.703745

320
11
38
96

200

205

220

289

320

329

335

337
49
89

100

106

114

201

205

221

250

262

267

281

315

319

328

340

344

362

31
66

156
170
179
191

321
11
38
97

203

207

220

294

322

330

335

337
49
95

102

108

147

203

206

222

251

265

267

294

315

319

328

341

345

363

39
67
90
168
170
179
200
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151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
IMP
GOES
IMP
IMP
IMP
IMP
IMP+GOES
GOES
IMP+GOES
IMP
IMP + GOES
IMP + GOES
IMP+GOES
IMP+GOES
IMP+GOES
GOES
IMP+GOES
IMP
IMP+GOES
GOES

1982
1982
1982
1982
1982
1983
1983
1983
1983
1984
1984
1984
1984
1984
1984
1985
1985
1985
1986
1986
1986
1986
1986
1987
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1989
1989

Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Min

Min

Min

Min

Min

Min

Min

Min

Min

Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
max

22/07/82
04/09/82
21/10/82
24/10/82
22/11/82
25/12/82
03/02/83
15/04/83
15/06/83
31/01/84
16/02/84
12/03/84
25/04/84
13/05/84
24/05/84
22/01/85
24/04/85
09/07/85
04/02/86
NA
14/02/86
06/03/86
04/05/86
07/11/87
30/12/87
NA
25/03/88
26/03/88
30/06/88
24/08/88
05/10/88
12/10/88
08/11/88
NA
14/12/88
27/12/88
04/01/89
NA

22
12
no event
bad data
18
12
8
10
0
no data
10
0
no data
0
0
0
12
0
8
NA
10
16
10
22
2
NA
22
no event
4
0
0
4
12
NA
14
no event
20
NA

22/07/82
05/09/82
no data
no data
22/11/82
26/12/82
03/02/83
15/04/83
15/06/83
31/01/84
16/02/84
12/03/84
25/04/84
12/05/84
24/05/84
22/01/85
24/04/85
09/07/85
04/02/86
06/02/86
14/02/86
06/03/86
04/05/86
08/11/87
29/12/87
02/01/88
25/03/88
no event
30/06/88
24/08/88
04/10/88
12/10/88
08/11/88
14/11/88
14/12/88
27/12/88
04/01/89
18/01/89

20
0
no data
no data
20

23
no event
10
5
22
6
14
0
13
no event
23
9

8.053132
7.133674
6.856581
6.330189
8.999072
8.332892
8.013904
6.139527
7.133674
6.092628
8.13826
7.473633
9.118032
6.253207
6.666151
6.897258
7.908637
7.27377
8.130089
not found
8.430577
6.596825
6.205985
7.381685
8.000643
not found
6.726805
6.788539
6.594432
7.154319
6.239843
6.146313
6.847968
not found
7.84797
6.081046
6.415935
not found

7.101266
6.034419
6.855268
6.309881
8.292955
7.453991
6.897616
5.891243
6.627567
5.489042
7.404549
6.828885
8.571347
5.485972
5.805839
6.368566
6.990207
6.624555
7.597659
not found
7.63112
6.011155
5.755882
6.432271
7.073787
not found
6.216709
5.518597
5.995718
6.401211
5.563354
5.730329
6.403265
not found
7.086645
5.723252
5.641028
not found

6.852428
5.987546
6.855268
6.309881
8.009654
7.236601
6.789536
5.680162
6.369171
5.458969
7.504221
6.606383
8.444193
5.479768
5.78854
6.123859
6.834719
6.343219
7.437589
not found
7.356098
5.930039
5.643178
6.303833
6.824245
not found
6.046447
5.51429
5.843935
6.368364
5.534034
5.608595
6.195591
not found
6.951492
5.657938
5.588392
not found

204
248
294
297
326
360
34
105
166
32
47
72
116
134
145
22
114
190
36
NA
45
65
125
312
364

207
249
294
297
355

36
105
168

32

55

77
127
135
146

23
117
190

42

NA

49

66
125
313

6

NA NA

85
109
182
238
279
288
314

86
109
182
243
279
288
315

NA NA

350
361
5

356
361
5

NA NA
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189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221

222
223
224
225
226

IMP
IMP+GOES
IMP+GOES
IMP+GOES
IMP+GOES
IMP+GOES

GOES
IMP+GOES
IMP+GOES
IMP+GOES
IMP+GOES

GOES
IMP+GOES
IMP+GOES
IMP+GOES

IMP
IMP+GOES
IMP+GOES
IMP+GOES
IMP+GOES
IMP+GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

GOES

1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990

Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max

Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max

03/02/89
07/03/89
17/03/89
23/03/89
09/04/89
22/04/89
NA
05/05/89
20/05/89
18/06/89
29/06/89
NA
25/07/89
12/08/89
12/09/89
18/09/89
29/09/89
19/10/89
15/11/89
18/11/89
26/11/89
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

no event?
0
14
20
18
2
NA
continuation
14
14
2
NA
data gap
data gap
10
continuation
12
12
6
18
12
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

data gap
07/03/89
17/03/89
23/03/89
10/04/89
22/04/89
01/05/89
04/05/89
20/05/89
18/06/89
29/06/89
29/06/89
25/07/89
12/08/89
12/09/89
18/09/89
29/09/89
19/10/89
15/11/89
18/11/89
26/11/89
30/11/89
19/03/90
28/03/90
07/04/90
16/04/90
28/04/90
07/05/90
15/05/90
21/05/90
24/05/90
12/06/90
13/07/90
26/07/90
31/07/90
23/10/90
11/11/90
23/12/90

data gap
17
19
20
18
21
19
continuation
13
15
4
23
8
15
14
0
12
13
7
19
21
14
6
15
7
0
5
10
18
23
21
8
18
1
0
11
6
11

7.891243
8.577053
8.850903
7.276272
8.213692
6.696589
not found
7.513856
7.395938
6.587173
6.683106
not found
7172127
9.838331

7.434877
6.129145
9.532503

10.1186

7.484893
6.069147
9.141598
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found

5.442264
7.621657
7.846762
6.451531
7.230321
6.386359
not found
6.645424
6.801764
6.196492
5.946881
not found
6.718771
9.258839
6.657419
5.560768
9.111428
9.675262
7.050663
5613215
8.306908
Not found
Not found
Not found
Not found

Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found

5.431923
7.43056
7.661324
6.239572
7.102236
6.151334
not found
6.564512
6.699707
5.986575
5.910205
not found
6.443624
8.920182
6.452696
5.449023
8.848455
9.471343
6.814019
5.499616
8.027667
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found

34
67
77
82
101
113
NA
121
141
169
180
NA
206
225
255
261
272
292
319
326
331
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

34
75
79
84
106
115
NA
128
148
170
182
NA
207
249
259
261
288
313
324
326
339
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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YN
VN
VN
VN
YN
VN
YN
VN
YN
YN
VN
VN

VYN
YN
YN
VN
YN
VYN
YN
VYN
VN
VN
VN
VN
VN
YN
VN
YN
VN
YN
VN
VN
YN
YN
VN
VN
VN
YN

VN
VN
VN
YN
VN
VN
VN
VN

VN

WN
VYN
VN
VN
VN
VN
VN
¥N
VN

2222

YN
VN
VN
YN
VN
YN
YN
VN
VN
VN
YN
VN
VN
VN

punoj JoN
punoy JoN
punoj JoN
punoyj JoN
punoyj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoy JoN
punoy JoN
punoj JoN
punoj joN
punoj jJoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoy JoN
punoj JoN
puno} JoN
punoj JoN
punoj JoN
punoj JoN
punoy JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
puNoj JoN
punoj JoN
punoj JoN

punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
puno} JoN
punoy JoN
punoy JoN
punoj JoN
punoy JoN
punoj JoN
punoj JoN
punoy JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoy JoN
punoy JoN
punoy JoN
punoj JoN
punoj JoN
punoj joN
punoj JoN
puno} 1oN
punoy JoN
punoy JoN
punoj JoN
punoy JoN

punoj JoN
punoj JoN
punoy JoN
punoy JoN
punoj JoN
punoj JoN
punoj JoN
punoy JoN
punoj JoN
punoj JoN
punoj JoN
puno} JoN
punoj JoN
punoy JoN
punoy JoN
punoy JoN
punoy JoN
punoy JoN
punoy JoN
punoj JoN
punoy JoN
punoy JoN
puno} JoN
punoy JoN
punoj JoN
punoj JoN
punoj JoN
punoy JoN
punoj JoN
punoj JoN
punoj JoN
punoy JoN
punoy JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
punoj JoN
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§6/01/0C
§6/v0/2C
¥6/01/61
¥6/20/0C
€6/60/52
£6/90/vC
€6/90/L0
£€6/50/51
£6/€0/C1
£6/20/90
€6/€0/¥0
c6/Liiee

a6/l 1/ee
Z6/01/0€
26/80/%0
£6/90/5¢
26/50/60
C6/e0/G 1
Z6/€0/L0
Z6/20/.c
26/20/90
16/01/0€
16/01/8¢C
16/60/0€
16/80/S52
16/L0/L0
16/90/0€
16/90/G}
16/G0/1€
16/G0/81
16/S0/ct
16/G0/01
16/¥0/€0
16/€0/1€
le/eo/ee
16/20/SC
16/20/80
16/10/82

vN
VN
VN
VN
VN
VN
YN
VN
YN
VN
VN
VN
VN
VN
YN
YN
YN
VN
VN
VN
VN
VN
VN
VN
YN
VN
VN
VN
VN
YN
VN
YN
VN
VN
VN
VN
VN
VN

YN
VN
YN
VN
VN
VN
YN
VN
VN
VN
YN
WN

VN
VN
VN
VN
YN
VN
VN
YN
VN
VN
VN
YN
VN
VN
VN
VN
VN
YN
VN
YN
YN
VN
YN

VN
VN

uN
un
uiN
Xep
Xep
Xepw
Xew
xepw
Xep
Xep
Xepw
Xep

Xep
Xep
xep
Xep
Xep
Xep
Xep
Xe
Xep
Xepw
Xep
Xep
Xep
xep
Xep
Xep
xep
Xepw
Xepw
Xew
Xepw
Xepw
Xep
Xep
Xep
Xep

G661
§661
V661
V661
€661
€661
€661
€661
€661
€661
€661
2661

2661
2661
2661
2661
2661
2661
c661
2661
2661
1661
1661
1661
1661
1661
1661
1661
1661
1661
1661
1661
1661
1661
1661
1661
1661
1661

S309
S309
$309
$309
$309
$309
S309
$309
S309
$309
S309
S309

$309
S309
$309
$309
S309
$309
$309
S309
$309
S309
S309
S309
$309
$309
S309
$309
$309
S309
$309
S309
S309
$309
S309
S309
S309
$309

y9¢
€92
474
192
092
6GC
86¢
LGS
96¢
114
14T
£6¢C

(414
162
0se
(5174
8¥c
Lve
e} 74
sve
1444
eve
e
Ive
ove
6¢€C
8€C
YAXA
9€e
1%
1474
1374
[4%4
354
(1174
62C
82¢c
Lzc
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265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES
GOES

1997
1997
1997
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1999
1999
1999
1999

Min
Min
Min
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max

NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

04/11/97
06/11/97
14/11/97
20/04/98
30/04/98
02/05/98
06/05/98
09/05/98
16/06/98
22/08/98
24/08/98
24/09/98
30/09/98
19/10/98
06/11/98
14/11/98
20/01/99
24/04/99
04/05/99
01/06/99

Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found

Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found

Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found
Not found

NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Appendix B
X-Ray Flare Class Associations for SPEs
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G a g b AR DR R D DR D DR WWWWW W W W

GOES  GOES Duration/ Class
Date  Time  Days
29/12/87 22 9
02/01/88 23 6
25/03/88 23 2
30/06/88 10 1
24/08/88 5 6
04/10/88 22 1
12/10/88 6 1
08/11/88 14 2
14/11/88 0 1
14/12/88 13 7
04/01/89 23 1
18/01/89 9 1
07/03/89 17 9
17/03/89 19 3
23/03/89 20 3
10/04/89 18 6
22/04/89 21 3
01/05/89 19 9
20/05/89 13 8
18/06/89 15 2
29/06/89 4 3
29/06/89 23 2
25/07/89 8 2
12/08/89 15 25
12/09/89 14 5
18/09/89 0 1
29/09/89 12 17
19/10/89 13 22
15/11/89 7 6
18/11/89 19 1
26/11/89 21 9
30/11/89 14 6
19/03/90 6 3
28/03/90 15 3
07/04/90 7 3
16/04/90 0 8
28/04/90 2
07/05/90 10 6
15/05/90 18 7
21/05/90 23 3
24/05/90 21 9
12/06/90 8 3
13/07/90 18 2
26/07/90 1 5
31/07/90 0 7
23/10/90 11 2
11/11/90 6 1
23/12/90 1 3
25/01/91 21 9
08/02/91 10 2
25/02/91 12 2
23/03/91 8 8

1
1
1
1
2
3
1
1
3
1
1
3
2
1
1
2
2
3
1
1
1
3
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
3
1
1
1
1
1
2
3
3
3
2
1
1
1

cycle

Max
Max
Max
Max
Max

Max
Max
Max
Max
Max
max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max

Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max
Max

Start Max End
2322 2353 2322
2111 2409 2135
2141 2220 2154
204 916 906
1757E  1831D 1800
1226 1254 1238
0457E 0610D 502
1228  1414D 1248U
2252E 2405D 2309
1337E  1354D 1337
1738  1748D 1738U
702 713 0707V
1447E  1545D 1454
1729E  1932D 1737
1925 2126 1948U
0044E 0239D 59
247 255 252
108 115 0110U
929 1308 1155
NO FLARE ASSOCIATION
0254E 0510D 315
2108 2350 2118U
0839E 0908D 843
1357E  1611D 1424
435 1057 814
1831E  1926D 1848
1047 1435 1133
1229E 2013 1255
0638E 09200 705
1551E  1900D 1639
1756E 2240 1931
1145E 1504 1225
0439E 0620D 508
0731E  0948D 745
NO FLARE ASSOCIATION
255 345  0255U
2227 2438 2426
54  0104D 0055U
1246E  1613D 1310
2212E  2339D 2217
2046E 2145D 2049
455  0735D 529
959 1242 1130
2223E 25290 2324
0633E 0847D 732
NO FLARE ASSOCIATION
0446E 0454D 449
943 10290 1001
0630E 0638D 630
629 911 748
0809E 0930D 822
2243E 2317D 2245
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S36
S34

S16
N24

N16
S§23
N30
N24
S30
N32
N33
N18
N35

N28

N28
N28
N25
S16

N14

S§27
N11
S30
N25
N24
N31
S04

N32

S06
N42
N35
N33
N10

S15
N20

N10
N11
S16

S16
S26

Lat QOptical

E34
w18

E22
E90

W66
wo7
wa7
E63
E67
W65
E65
weéo
was
E29

E60

was
W44
ws4
W37

W54

E10
W26
W16
wo3
W52
w43
W37

E57

ws3
E38
W36
W78
W33

E55
E45

E18
wes
E78

W80
E28

SF
3B

2B

2N
2F
1N
1B
SF
1F
2B
2B
3B
4B

SN

1N
2B
2N
2B

1F

4B
3B
3B
2B
3B
2B
2N

2B

SF
3B
2B
1B
2B

2N
2B

SF
2B
SF

2N
3B



53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

31/03/91
10/05/91
13/05/91
18/05/91
31/05/91
15/06/91
30/06/91
07/07/91
25/08/91
30/09/91
28/10/91
30/10/91
06/02/92
27102/92
07/03/92
15/03/92
09/05/92
25/06/92
04/08/92
30/10/92
23/11/92
29/11/92
04/03/93
06/03/93
12/03/93
15/05/93
07/06/93
24/06/93
20/02/94
20/04/98
30/04/98
02/05/98
06/05/98
09/05/98
16/06/98
22/08/98
24/08/98
24/09/98
30/09/98
19/10/98
06/11/98
14/11/98
20/01/99
24/04/99
04/05/99
01/06/99
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— -
SN

PN DE W OAON ONNWOO N

-t
o

\l-tawmhwwwwmummwwwﬂwmwwmxswmm

Max

536

Max NO FLARE ASSOCIATION

632 602

3 Max 1927 2359 2034
3 Max  0254E 357 346
1 Max 103 222 144
1 Max O0506E 0748D 546
3 Max 2214E 2443D 2343
1 Max 0633E 1117D 831
2 Max 1539E 1549D 1543
1 Max 0120E 206 131
2 Max 0031E 0503D 49
3 Max 1513E 1739D 1531
1 Max 0538E 0658D 549
1 Max 0611E 0903D 621
1 Max 928 1432 1028
3 Max 922 1303 1256
3 Max NO FLARE ASSOCIATION
3 Max 121 350 146
2 Max 1537E 1856D 1540U
1 Max 1947 2229 2011U
1 Max 629 825 702
i Max 1702 2203 1730
3 Max 2018 2101D 2029U
3 Max 1230 1250 1233
3 Max 1016 1106 1017
3 Max 2014 2218 2033
1 Max 1648 2042 1820
3 Max 2154 2458D 2253
1 Max 1354 1712 1422
3+2  Max 719 0946D 0741U
1 Max 138 138 308
1 Max 938 1118 1021
3 Max 1606 1659 1637
1 Max 1331 1351 1342
1 Max 758 820 809
1 Max 304 355 340
3 Max 1803 1928 1842
3 Max 2357 16 9
1 Max 2150 2235 2212
1 Max 640 731 713
1 Max 1300 1345 1900
3 Max NO FLARE ASSOCIATION
1 Max 1900 2012 1955
1 Max 2055 2102 2059
1 Max 1906 2100 2004
1
2
1

Appendix B-2

Max NO FLARE ASSOCIATION

N39

N32
NO5
N33
N28
N26
N24
S21
S$13
S08
S13
NO6

S14
§26
NO9
S09
S22
S08
S$16
N10
S04
S00
N19
S$10
S11
NO9

S18
S$15
S11

N42
N35
N18

N22
N19

N15

E10

Ws5
E38
W69
E90
EO03
E77
E32
E15
W25
W10
W02

E29
EO08
W67
E68
W61
W89
Wo1
wa3
E29
W51
w48
W30
E64
Wo02

E20
w15
W65

E51
E09
EO09

W18
W59

E32

SF

2B
2B
3B
SF
2B
2B
4B
3B
3B
2B
3B

3B
4B
2B
1N
2B
SF
1N
1N
3B
3B
2B
2B
2B
3B

3B
1N

2B
3B
3B

SF

2N



Appendix C

Impulsive and Gradual X-Ray Flare Associations for
SPEs



GOES Class of X-ray Flare

Date
32141.00
02/01/88
25/03/88
30/06/88
24/08/88
04/10/88
12/10/88
08/11/88
14/11/88
14/12/88
27112/88
04/01/89
18/01/89
07/03/89
17/03/89
23/03/89
10/04/89
22/04/89
01/05/89
20/05/89
18/06/89
20/06/89
29/06/89
29/06/89
25/07/89
12/08/89
12/09/89
16/09/89
29/09/89
19/10/89
15/11/89
18/11/89
26/11/89
30/11/89
08/02/20
19/03/90
28/03/20
07/04/90
16/04/90
28/04/90
07/05/90
15/05/90
21/05/90
24/05/90
12/06/90
13/07/90
26/07/90
31/07/90
13/08/90
25/08/90
23/10/90

LDE
LDE
Impulsive
Impulsive
LDE
Impulsive
Impulsive
LDE
Impulsive
Impulsive
Impulsive
LDE
LDE
LDE
Impulsive
LDE
LDE
Impulsive
Impulsive
LDE
Impulsive
Impulsive
Impulsive
LDE
impulsive
LDE
L.DE
LDE
LDE
L.DE
impulsive
LDE
LDE
LDE
impulsive
LDE
LDE
no flare
LDE
no flare
impulsive
LDE
impulsive
impulsive
LDE
LDE
LDE
LDE
impulsive
no flare
no flare
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GOES
Date
11/11/90
23/12/90
25/01/91
08/02/91
25/02/91
23/03/91
31/03/91
03/04/91
10/05/91
13/05/91
18/05/21
31/05/91
15/06/91
30/06/91
07107191
25/08/91
30/09/91
28/10/91
30/10/91
086/02/92
27102192
07/03/92
15/03/92
09/05/92
25/06/92
04/08/92
30/10/92
2311192
29/11/92
04/03/93
06/03/93
12/03/93
20/04/98
02/05/98
06/05/98
24/08/98
24/09/98
30/09/98
06/11/98
14/11/98
20/01/99
24/04/99
04/05/99
27/05/99
01/06/99
11/06/99

Class of X-ray
Flare
LDE
impulsive
LDE
LDE
LDE
LDE
LDE
impulsive
LDE
LDE
LDE
impulsive
I|.DE
LDE
LDE
LDE
LDE
impulsive
LDE
|.DE
LDE
no flare
LDE
LDE
LDE
impulsive
LDE
LDE
LDE
impulsive
LDE
LDE
LDE
LDE
LDE
LDE
no flare
LDE
LDE
impulsive
LDE
no flare
LDE
impulsive
impulsive
impulsive




Appendix D
Listing of Quiet Periods



Date
05/12177
06/12/77
10112177
1412177
22112177
30/01/78
01/03/78
04/03/78
07/03/78
08/03/78
10/03/78
15/03/78
25/03/78
01/04/78
27/05/78
28/05/78
12/06/78
15/06/78
20/06/78
01/08/78
30/09/78
31/10/78
04/11/78
03/12/78
28M12/78
30/12/78
01/01/79
02/01/79
12/01/79
14/01/79
18/01/79
30/01/79
28/03/79
18/04/79
25/04/79
13/05/79
21/05/79
29/05/79
02/08/79
24/08/79
25/06/79
20/07179
25/07179
14/08/79
16/10/79
21110179
24/10/79
09/11/79
1111179
14/11779
04/12179
2112179
21/01/80

Time

OOOOOOOOOOOOOOOOC)OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

100
101
102
103
104
105
106

Date Time
02/02/80
26/02/80
28/02/80
05/03/80
19/03/80
21/03/80
22/03/80
31/03/80
15/04/80
18/04/80
30/04/80
06/05/80
29/05/80
30/05/80
02/06/80
23/06/80
29/08/80
01/09/80
20/09/80
23/09/80
02/10/80
04/10/80
06/10/80
11/10/80
12/10/80
05/11/80
11/11/80
02/01/81
07/02/81
14/06/81
21/06/81
23/06/81
26/06/81
27/06/81
03/07/81
06/07/81
07/07/81
09/07/81
15/07/81
26/08/81
01/09/81
17/09/81
19/02/82
23/03/82
15/04/82
16/04/82
21/04/82
27104/82
28/04/82
02/06/82
05/06/82
15/08/82
19/08/82

OOOOC)OOC)OOOOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOOOOOOOOOOOO
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D
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Date
29/08/82
12/10/82
15/10/82
16/10/82
11/11/82
12/11/82
11/01/83
17/61/83
19/02/83
25/02/83
03/03/83
15/03/83
22/03/83
23/03/83
26/03/83
27/03/83
29/03/83
30/03/83
09/04/83
11/04/83
03/05/83
19/05/83
08/06/83
30/06/83
04/07/83
10/07/83
12/07/83
16/07/83
21/07/83
28/07/83
11/08/83
17/08/83
18/08/83
21/08/83
25/10/83
30/10/83
05/11/83
14/11/83
18/11/83
26/11/87
01112/87
09112187
28/12/87
20/01/88
08/02/88
13/02/88
19/02/88
27/02/88
07/03/88
09/03/88
12/03/88
18/03/88
21/03/88

-]
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOOOIg‘
[}



D
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

Date
10/04/88
13/04/88
22/04/88
10/05/88
11/05/88
16/05/88
26/05/88
01/06/88
12/06/88
16/06/88
24/06/88
18/07/88
25107188
30/07/88
19/09/88
22/09/88
29/09/88
02/10/88
07/11/88
27102/89
01/03/89
09/04/8%9
14/06/89
24/07/89
08/08/8%
18/12/89
08/01/90
16/01/90
22101790
24/01/80
07/03/90
08/03/90
26/08/90
29/06/90
25/09/90
28/09/90
04/10/90
19/10/90
23/11/90
24/11/90
01/12/90
11/12/90
09/01/91
13/03/91
16/03/91
20/03/91
25/04/91
12/05/91
28/05/91
30/05/91
26/07/91
28/07/91

Time

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOOODOOOOOOOOOOO

D
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

Date Time
31/07/91
04/08/91
05/08/91
10/08/91
19/11/91
27/11/91
06/12/91
17/12/91
20/12/91
22112191
29/12/91
01/01/92
15/01/92
20/01/92
23/01/92
24/02/92
14/03/92
21/04/92
26/04/92
27104/92
03/05/92
06/05/92
07/05/92
06/06/92
09/06/92
18/06/92
20/07/92
21107192
23/07/92
25/07/92
29/07/92
31/07/92
02/08/92
20/08/92
21/08/92
15/09/92
17109/92
18/09/92
22/09/92
24/09/92
02/10/92
10/10/92
29/10/92
14/12/92
17112192
18/12/92
26/12/92
03/01/93
07/01/93
27/01/93
31/01/83
05/02/93

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOOO
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D
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

Date
21/02/93
01/03/93
29/03/93
31/G3/93
04/04/93
16/04/93
21/04/93
06/05/93
09/056/23
11/05/93
12/05/93
14/05/93
30/05/93
02/06/93
03/06/93
06/06/93
17/06/93
17/07/93
18/07/93
07/08/93
09/08/93
13/08/93
16/08/93
21/08/93
08/09/93
22/09/93
26/09/93
056/10/93
15/11/93
18/11/93
19/11/93
23/11/93
01/04/98
13/06/98
30/06/98
02/07/98
03/07/98
05/07/98
13/07/98
16/07/98
24/07/98
25/07/98
20/08/98
12/09/28
28/09/98
31/10/98
01/11/98
03/11/98
28/11/98
05/12/98
11/12/98
14/12/98

o



D
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

Date
23/12/98
26/12/98
18/02/99
28/02/99
17/03/99
21/03/99
04/04/99
14/04/99
17/04/99
19/04/99
19/05/99
25/06/99
27/06/99
15/07/99
28/07/99
04/08/99
18/08/99
24/08/99
27/08/99
29/08/99
30/08/99
06/09/99
09/09/99
14/09/99
23/09/99

Time

OOOOOOOOOOOOOOOOOOOOOOOOO
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Appendix E
Neuframe Learning Algorithm Parameters



The figure below shows a screen print from the Neuframe software giving the
learning and momentum rates used in all MLP networks.

BB oo

}blaéi 'Pm‘p.e';tiex :

During the training process the training error was monitored as a function of training ;
epochs. Typically, the training error for any given network configuration fell rapidly i
to begin with and then stabilised as the number of training epochs increased. Training

was defined as being complete when the training error remained approximately

constant, which typically occurred between 25000 and 75000 epochs depending on

the complexity of the network. An example of the training error evolution is given in

the figure below and pertains to network 6 of the POPE model.
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Attempts to train networks for a very large number of epochs (>75000) often resulted
in the training error becoming unstable and the learning process being halted. This is
thought to be due to the learning algorithm reaching the minimum point on the error
surface, and then iteratively stepping around it and in so doing climbing away from
the error minimum. For some networks instability was reached at <50,000 training
epochs. In these cases training was reset and performed for a number of epochs just
below that which triggered instability.
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Appendix F
Chi-Squared Analysis Method



A Chi-Squared analysis was performed to determine the probability of a given
network success rate being produced through chance alone; i.e. is a random output
from the model likely to produce any of the observed success rates.

The Chi Squared test statistic y. is a function of the observed and expected
frequencies of a distribution as shown below,

k O"““E 2
v =)
ra

I

where 7. is the computed value of a random variable having a y? distribution with v
degrees of freedom; O; and E; are the observed and expected frequencies within the
ith category and £ is the total number of discrete categories. Via a look-up table the
computed value of ¥ can be used to find the probability that the observed distribution
is the same as the expected distribution.

In this specific SPE classification problem there are 4 discrete categories, determined
by the possible combinations of forecasts and observations:

1. SPE Forecast, SPE Observed.

2. SPE Forecast, Quiet Period Observed.

3. Quiet Period Forecast, Quiet Period Observed.
4. Quiet Period Forecast, SPE Observed.

Example

A chi-squared analysis was performed for a multiple model network configuration
which was found to have an overall classification success rate of 61%. It was desired
to know the probability of this success rate being produced through chance alone. A
random prediction by the model would be expected to identify half of the SPEs and
half of the Quiet Periods within the query set. The model in question was queried with
a test set containing 137 SPEs and 288 Quiet Periods.
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For a random output the expected distribution is:

Expected distribution Forecast
from a random output
SPE QP
SPE 68.5 68.5
Observed
QP 144 144

For the measured classification success rate of 61% the distribution was:

Measured Forecast
Distribution
SPE SPE
SPE 84 53
Observed
QP 112 176

Computing the chi-squared statistic for the two distributions gives:

Ye = (84-68.5)%/68.5 + (53-68.5)7/68.5 + (112-144)*/144 + (176-144)%/144
=20.57

Look-up tables for a distribution with 1 degree of freedom show the y. value to
correspond to the .001 significance level; i.e. the observed success rate has a less than
0.1% probability of occurring if the output from the model were random.
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Appendix G
POPE Software Specification Document



University
of Southampton

Software Specification Document

Title: Predictor Of Proton Events (POPE) Software Specification Document
DERA Contract No: CU009-0000001987

Prepared by: Gareth Patrick, University of Southampton, Astronautics Research
Group

Date: November 2001

Abstract:

This document identifies the key software requirements for a real-time solar proton
event prediction model that will be developed from neural network techniques
investigated under DERA contract CU009-0000001987 by the University of
Southampton Astronautics Research Group.  Included in the document is a
description of the process to be coded, and descriptions of the components that will
constitute the software.
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1 Introduction

1.1 Contractual

This document has been constructed under Work Package 4 (WP4) of DERA Contract
CU009-0000001987 (Neural Network Prediction of Solar Energetic Particle Events)
by The University of Southampton Astronautics Research Group.

1.2 Purpose of document

This document describes the software requirements and architectural design of a real-
time solar proton prediction model “Predictor of Proton Events” (POPE) generated
from the neural networks optimised in previous work [1] of the same contract.

1.3 Definitions, acronyms and abbreviations

ESA European Space Agency

GOES Geosynchronous Observational Environmental Satellites
JDK Java Development Kit

MLP Multi Layer Perceptron

NGDC National Geophysical Data Centre

PCA Principal Components Analysis

POPE Predictor Of Proton Events

URL Universal Resource Locator

UTC Universal Coordinated Time

1.4 References

[1] Report on Work Package 3, Comparison of Non-Linear Models for the Prediction
of Solar Proton Events and GOES >2MeV Trapped Electron Flux, Gareth Patrick,

Steve Gabriel.
[2] Java How to Program, Third Edition, Deitel & Deitel, published by Prentice Hall

[3] GOES x-ray data site: http://www.sec.noaa.gov/ftpmenu/lists/xray. html

1.5 Overview of the document

This document describes the key requirements of the software, a description of the
process to be implemented, the top-level design of the software and a brief description
of the modules that will compose the software.

2 DModel description

POPE is based on previous investigations which developed MLP neural networks to
predict the occurrence of solar proton events using solar x-rays from GOES satellites
as inputs. Given x-ray input data networks will predict ‘yes’ or ‘no’ as to the
occurrence of a proton event in 48-hours time.

POPE will access real-time GOES satellite data (available from the NGDC ftp site[3])
and process 1t for input to a neural network model developed in WP3. The output
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from the neural network will be interpreted and recorded with the potential of making
it available as a space weather forecasting service.

Earlier work showed that a greater potential for success was achieved when several
differently trained networks of the same type were connected in parallel and fed the
same query vector as an input. This creates several outputs for the same input, and
allows the number of ‘yes’ and ‘no’ predictions to be counted separately and

interpreted.

Figure 1 shows a schematic diagram of the model structure. X-ray data is obtained
from the NGDC and detrended for the long term solar cycle (based on a polynomial
calculated from historical data). The detrended input vector is fed to 10 MLP
networks. In each case the input vector is projected onto principal components, using
coefficients derived from each of the 10 different training that sets were used to
develop the MLP networks. The inputs are then scaled using scales derived from the
training sets and fed as inputs to the MLP networks. Outputs are then de-scaled and
interpreted as being either a ‘yes’ or a ‘no’. The number of yes and no predictions are
counted and recorded, as is the time of the model-run and the time for which the
prediction is valid.

Collect remote

/—‘\\ ///—~\ X-ray data
\_ START .

‘\‘\w// S | E
— | NGDC |
//Li\ % //WAIT ™~
{ DETREND ) e \ 1-HOUR AND /}
\ / . REPEAT
PCA Query A

1
]
{
{
|
i
|
1
|

and Scale  and de-scale

\i
OVERALL |
PREDICTION |

,,,\,\\ //

Log Output and run-time to file

Figure 1 Schematic Diagram of POPE model

3 Specific requirements

3.1 Functional requirements

This section contains the software requirements that have been defined in order to
establish the scope of the project and identify the key characteristics of the POPE

software.
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Requirement ID | Description

SR1 Model must use real-time GOES x-ray data

SR2 MLP neural network models developed in WP-3 must be
integrated into the software

SR3 Model should be able to run as a stand-alone application

SR4 Model inputs and outputs should be recorded in output files to
enable validation and analysis of network behaviour

SR5 Software should have the ability to run in an automated way

SR6 It should be possible to integrate other future models into the

software with minimal adjustment to the code. (i.e. it should be
possible to ‘plug-in” new models to a real-time framework).

Table 1 Software Requirements

3.2 Performance requirements

Each prediction run should be able to execute sufficiently fast so that predictions are
timely. The 48-hour prediction lead time means that practically there is no
performance requirement.

3.3 Interface requirements

There is no requirement to interface with POPE once it has begun execution. Key
variables concerning network configuration can be altered in a configuration text file.
Other variables within the software will be set in the source code before the program
is compiled and run. Unless adding other prediction models or changing the source of
input data it should not be necessary to alter the source code.

3.4 Operational requirements

POPE will need to be running on a machine which has a constant internet connection.

3.5 Resource requirements

In order to develop source code for MLP networks it is necessary to extract code from
the commercial neural network package “Neuframe” version 4. This is not required
to run POPE, but will be used to produce source code for specific MLP networks.

3.6 Verification requirements

Code shall be verified during the construction stage by comparing source code MLP
network outputs with the same networks in Neuframe.

3.7 Acceptance testing requirements

None. The software is intended as a validation project within itself.

3.8 Documentation requirements

Software User Manual and Software Specification Document.
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3.9 Portability requirements

Code will be developed on a PC running windows 98, although it is desirable for
POPE to be able to run under Windows and UNIX environments.

3.10Quality Requirements

Code shall be written and documented in accordance with ESA software engineering
standards for small projects (ESA PPS-05-0).

3.11 Reliability requirements

There is no significant consequence resulting from the program crashing. Reliability
shall be made as high as possible within the time frame allocated.

3.12Maintainability requirements

Code shall be written in JAVA (version 1.3.01). There will be no use of deprecated
functions and detailed information will be contained in the source code relating to
areas of code that have potential for modification.

4 System Design

4.1 Design Method

POPE will be coded in JAVA using an object oriented approach as described in
“JAVA How to Program”, Deitel and Deitel. JAVA facilitates the use of remote data

and is platform independent.

4.2 Decomposition Description

Figure 2 below outlines the software structure that will be used to achieve the stated
requirements. Six software classes will be developed for specific stages of the

process.
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PredictionApplication.java

Main RealTimeData.java
+ Instantiate RealTimeData objects

« Instantiate PredictonModel object + Obtain current System Time

« Build URL addresses URLRetriever.java
» Retreive remote data | —» - Connecttoremote site

« Create local copy of datafile

Execute 'Run’ loop: « Create continuous data file

» Get X-ray Data

RealTimeData.java

« Obtain current System Time
« Build URL addresses URLRetriever.java

- Retreive remote data | | - Connectioremote site

« Get Proton Data )
« Create local copy of datafile

« Create continuous data file

Detrender.java
PredictionModel.java 1+ Detrend X-ray Ratio
« Return result

+ Run Model

« Instantiate array of Neural
Network Objects
« Take the required x-ray data .
from the continuous file and NeuraiNet.java

. average it fo create an input

< Sleep for 1-hour > vector For each network in the array:

« Check for bad or missing data « Normalise the input vector
« Detrend the x-ray data « Project input vector on

incipal
+ Query neural nets | Principa components

. i i
+ Collate network responses Scale input vector
« Interrogate Neural Network

« Write to output file
» Un-scale network output

+» De-normalise network output

» Return result

Figure 2 Software Architecture Diagram

PredictionApplication.java contains the main function which will instantiate a
PredictionApplication object.  The PredictionApplication object will create two
instances of the RealTimeData object (one for accessing GOES x-ray data and one for
GOES proton data), and one instance of a PredictionModel object.

A looping thread is started within the PredictionModel object which will perform the
tasks of retrieving remote data, querying the neural models and writing output to a
data file. The thread will then enter a sleep mode for 1-hour, after which it will begin
the sequence again, unless halted by terminating the program.

The RealTimeData class will deal specifically with obtaining real-time GOES data. It
will contain methods to calculate the current UTC time from the system time, and will
generate filenames for GOES 5-min x-ray or proton data using the current UTC time.
Retrieval of the remote data will be performed via a URLRetriever object. The
URLRetriever class contacts a given URL address and creates a local copy of the file
that is found there. GOES data files from several days will be collated into one file.

Although the models use only x-ray data as an input, real time data will be retrieved
for protons also. This will be saved to an output file to allow a ready comparison
between the model output and the >10MeV proton flux.
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Once real-time data has been retrieved the prediction model will be run. The
PredictionModel class will contain instance variables relating to the configuration of
the model, such as the length of delay vector required, the time average of delay
vector required and the lead-time. Based on these variables the raw delay vector is
created from the continuous GOES data file.

Instances of NeuralNet objects are created within the PredictionModel object. This
allows an array of different NeuralNet objects to be created for the same model
characteristics. It is possible to just use one neural network, but by creating an array
of 10 NeuralNet objects a multiple model configuration will be used, whereby 10
differently trained networks can be queried with the same input vector.

The NeuralNet class will contain variables and methods specific to each MLP neural
network, such as weight vectors, training set characteristics and PCA coefficients.
Each NeuralNet object will receive the input vector created in the PredictionModel
object, then normalise, project and scale the vector before sending it as an input to the
MLP network itself. The output shall be un-scaled and de-normalised before being
returned to the PredictionModel object.

The PredictionModel object will produce and update an output file containing the
model outputs, time, input vector and recent GOES x-ray and proton fluxes. This file
can be read into other spreadsheet software for analysis.

After running the PredictionModel the thread will enter a sleep model for 1-hour
before repeating the process and generating a new prediction. If desired, the source
code can be altered by the user to use a sleep time different to 1-hour.

5 Component Description
5.1 PredictionApplication.java

5.1.1 Type
Class

5.1.2 Function

The PredictionApplication class will contain the ‘main’ method and the thread of top-
level program execution calls to get remote real-time data, query the network models
and create an output file. The thread will be placed in a repeating loop which sleeps
for 1-hour after each execution. This class controls the top-level program sequence.

5.1.3 Interfaces

The program will be started from a command line in the operating system being used
(MS-DOS in windows). A commentary will be written to screen as the statements in
the run-thread relating to the main stages of the software process are executed.

The run-thread will call RealTimeData methods in order to retrieve data for the
current UTC time. The run-thread will call PredictionModel methods in order to
produce an input vector from the real-time data and query the MLP networks

5.1.4 Dependencies
For the run-thread to finish executing and reach the sleep mode all components of the
process must have completed successfully.
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5.1.5 Processing

The main method will instantiate a PredictionApplication object and invoke its run
method. Real time GOES proton and x-ray data will be retrieved via RealTimeData
objects inside the run method, and a PredictionModel object will be used to query
MLP networks with the real-time data. This will end the run method, and a sleep
mode will ensue for 1-hour. The run-method will then repeat. This will continue
indefinitely until the program is terminated by killing the process from the operating
system.

5.1.6 Data

The PredictionApplication object contains two instances of a RealTimeData object
and one instance of a PredictionModel object. No actual data processing is performed
with PredictionApplication though - it acts only to control the processing sequence
and repeating loop.

5.1.7 Resources
None

5.2 RealTimeData.java

521 Type
Class

5.2.2 Function

Will create URL addresses and retrieve several days worth of GOES x-ray or proton
data relative to the current system time and collate it into a continuous file (of 5
minute averages) ordering the data so that the most recent is at the top of the file. The
class will also contain any other methods relating to the compilation of averages from

recent GOES data.

5.2.3 Interfaces
RealTimeData methods will be called from the run-thread in the
PredictionApplication class

Methods of RealTimeData will read local copies of GOES x-ray and proton data files
to collate into one file. The collated file will be saved as a local file.

URL addresses will be passed to methods of a URLRetriever object for retrieval.

5.2.4 Dependencies

Some Methods of the class will require local copies of the GOES real-time data files.
These files will need to be retrieved and of the expected format.

5.2.5 Processing
RealTimeData will calculate the current UTC time from the system time.

RealTimeData will be able to create file name strings and URL addresses from the
UTC time.

RealTimeData will be able to calculate recent flux averages from retrieved GOES
data for protons and x-rays.
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RealTimeData will be able to collate several 1-day GOES data files into one file to
provide a continuous record.

5.2.6 Data

RealTimeData will require the exact file stems relating to the GOES data files (e.g.
G8 xr5m.txt) and the number of days for which data should be retrieved for, relative
to the current UTC time. The exact file format of GOES data will also be required in
order to read data correctly.

5.2.7 Resources
Internet Connection for remote file retrieval

5.3 URLRetriever.java

5.3.1 Type
class

5.3.2 Function
Create a local copy of a URL address.

5.3.3 Interfaces
A URL address will be passed to a URLRetriever method. The file at a URL address
will be saved as a local copy.

A configuration file must be read containing the correct proxies for use of a remote
connection.

5.3.4 Dependencies
Internet connection proxies must be set correctly.

5.3.5 Processing
The system properties will need to be modified to use proxy internet settings (host and
port).

5.3.6 Data
URLRetriever will require proxy internet settings to modify system properties.

URLRetriever will require the local directory and filename to save a URL to.

5.3.7 Resources
Internet connection.

5.4 PredictionModel.java

54.1 Type
Class

5.4.2 Function

This class will contain all variables and methods for a specific prediction model
configuration, such as size and averaging period of input vector and lead-time. This
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class will contain methods to create an input vector from a file of continuous GOES
data and will send this input vector as a query to a neural network.

5.4.3 Interfaces
Methods from the class will read a continuous file of GOES x-ray data in order to
create the desired input vector.

The input vector will be passed to a Detrender method and a detrended input vector
received.

A detrended input vector will be passed to NeuralNet objects as a query.
PredictionModel will receive the output from NeuralNet objects.

A PredictionModel method will write data to an output file.

5.4.4 Dependencies
A continuous file of GOES 5-minute x-ray data must have been created by a
RealTimeData object.

A detrender object must be instantiated with correct detrending coefficients.

5.4.5 Processing

When creating the input delay vector 5-minute averages will be converted into 3-hour
averages. Checks will be made for bad or missing data and the number of non-valid
data points recorded.

Within the PredictionModel object an array of NeuralNet objects will be instantiated.
For each NeuralNet object weights, training set statistics and scaling coefficients will
need to be initialised.

A header shall be written to the output file, which will contain the UTC date, time and
Julian Day at which the model ran, the UTC date, time and Julian Day of the model
prediction, a copy of the raw x-ray input vector, the number of missing data values in
the 5-minute x-ray data, the numerical output of each MLP network, the number of
networks predicting an event in 48-hours time and the previous 1-hours averages of
GOES x-ray and >10MeV proton fluxes.

The results file will be appended each time the run-thread completes a cycle.

5.46 Data

The PredictionModel object will require the lead-time, delay vector length and input
average for the desired configuration. (In this case, these are 48 hours, 72 hours and 3

hours respectively).

The weights matrices, training set statistics (average and standard deviation of each
input dimension) and the scaling coefficients will be required for each NeuralNet
object instantiated within PredictionModel.

5.4.7 Resources
None
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5.5 Detrender.java

5.5.1 Type
Class

5.5.2 Function
To detrend the GOES x-ray ratio data by removing the long term solar cycle variation.

5.5.3 Interfaces
Detrender java will receive S-minute x-ray data and will return the detrended x-ray
time series.

5.5.4 Dependencies
Coefficients defining the detrending function (a second order polynomial) will need to
be set.

5.5.5 Processing

Detrender will receive a raw x-ray ratio data as a time series, and calculate the trend
function at each point along the time series. The trend will then be subtracted from
the raw values to generate a detrended time series.

556 Data

Detrender will require the coefficients of the 2™ order polynomial function.

It is envisioned that the detrending function for the solar cycle will be calculated
(externally) by plotting the x-ray ratio as a function of Julian Day and then fitting a
2™ order polynomial using least squares. To ensure accuracy of the coefficients the
Julian day will need to be standardised by subtracting the average and dividing by the
standard deviation. These values of the average and standard deviation will be needed
by the class so that the current Julian Day can be standardised in the same way when
calculating the detrending function.

5.5.7 Resources
None

5.6 NeuralNet java

56.1 Type
Class

5.6.2 Function

To feed an input vector to a MLP neural network and obtain an output. This class will
contain all the variables and methods that define a single MLP network, such as
weights matrices, scaling coefficients and number of layers and nodes.

5.6.3 Interfaces

Each NeuralNet object will receive the detrended input vector created by a
PredictionModel object. An output will be returned to the PredictionModel object.
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A file will be read by a NeuralNet object containing the Principal Component
Analysis coefficients.

5.6.4 Dependencies
Before a NeuralNet object can be queried values for weights and scaling coefficients
will need to be set.

If a principal components analysis is to be performed then a file containing its
coefficients in the correct format needs to be present.

5.6.5 Processing

The NeuralNet object will take the input vector created by a PredictionModel object
and perform a normalisation and a PCA projection. The correct number of principal
components will be selected to form the final input vector, and this will be scaled
using coefficients derived from the original training set. The scaled input vector will
be passed through a MLP network structure with weights set and the output un-scaled
and de-normalised.

5.6.6 Data

Each NeuralNet object will require a weights matrix, the number of layers and
number of nodes per layer in the MLP network, the average and standard deviation of
each dimension in the original training set (to allow normalisation), the PCA
projection coefficients and the coefficients of the input scale that map inputs to values
of between 0 and 1.

5.6.7 Resources
None

6 Feasibility and Resource Estimates

Software will be built using the Java Development Kit version 1.3.1_01 available free
from Sun Microsystems. Development will be carried out on a PC running Windows
98 and Borland Jbuilder (University Edition). Neural networks will be implemented
by extracting code from Neuframe version 4.

The minimal requirement to maintain the code will be an installation of JDK 1.3.1_01
and the ability to edit text files, although a java development package will facilitate
code editing.

In order to run, the software will require an MS-DOS prompt via a Windows
operating system and a constant internet connection. A server type machine would
provide a suitable platform. Although developed in Windows it is expected that
POPE will be able to run on a UNIX/Linux platform as well.
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7 Software Requirements vs Components Traceability Matrix

SR1 | SR2 |SR3 |SR4 | SR5 | SR6
PredictionApplication. java v v
RealTimeData java v
URLRetriever java v
PredictionModel java v 4
Detrender.java v
NeuralNet.java v v

Table 2 Software Requirements vs. Components Traceability Matrix
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1 Introduction

1.1 Intended Readership

The Software User Manual should be read by anyone intending to install, use
or modify POPE, or for anyone wishing to understand the process supported
by POPE.

1.2 Applicability Statement
This SUM applies to version one of POPE, completed February Sth 2002.

1.3 Acronyms

SUM Software User Manual

POPE Predictor of Proton Events

NGDC National Geophysical Data Centre

MLP Multi Layer Perceptron

SPE Solar Proton Event

GOES Geosynchronous Observational Environment Satellite
uUTC Universally Coordinated Time

1.4 References

[1] Work Package 3 Report “Comparison of Non-Linear Models for the
Prediction of Solar Proton Events and GOES >2MeV Trapped Electron Flux
“, Gareth Patrick, July 2001.

1.5 Purpose

This document gives an overview of the process that is supported by POPE
and describes in detail how the code operates. It also contains instructions on
how to install and run POPE and gives explanations of the output files that
are produced by POPE. In addition, reference information is given
concerning the source code and how to implement further prediction models
within the existing software.

POPE was written in order to validate prediction models created under
previous work packages of the contract. The software implements MLP
neural networks into a real-time framework in order to create a real-time SPE
prediction model. POPE obtains GOES satellite x-ray data from a remote ftp
site and processes it for input to a prediction model. Neural networks are
then queried and predict whether or not a SPE will occur in 48-hours time.
Results are written to an output file.

POPE has been designed so that additional models can be coded and plugged
into the real-time framework with minimum effort, and can serve as a
validation platform for any type of model using GOES satellite data as
inputs.
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1.6 How to use this document

Section 2 provides a description of the software architecture and process, and
should be read by a user wishing to understand how POPE operates and the
individual tasks it actually performs.

Specific installation and running instructions are given in sections 3 and 4
and should be read prior to installation. Section 4 also includes problems
which may be encountered when attempting to run the software.

Section 5 is a reference section and is intended for developers wishing to
modify the existing code. Instructions are given on how to create and
implement neural networks from Neuframe and how the software has been
designed so as to allow different models to be plugged into the real-time

interface.

A detailed description of each class and method is not given in this
document, but is available in the form of HTML documentation files created
from the source files using the javadoc facility. These files are contained
within the ‘documentation’ folder. Extensive comments are given in the
source code and the javadoc files, and only an overview of the classes will be
given in this document.

1.7 Related Documents
Software Specification Manual.

2 POPE Overview

2.1 Process Overview

POPE has been written to implement in real-time MLP neural network
models that were developed in Work Package 3 of the contract [1]. These
models use the ratio of the two GOES x-ray channels as an input over a 72-
hour period, and require access to several days worth of real-time GOES x-
ray data. Figure 1 below shows a schematic diagram of the basic process to
be supported.
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Figure 1 Schematic diagram of the basic process to be supported.

Once data has been obtained it must be pre-processed in a number of stages
and then fed to the neural networks. Each neural network will generate an
output and predict whether or not a SPE will occur in 48-hours time. A
prediction will be generated once every 60 minutes using the latest GOES
satellite data. An array of 10 differently trained neural networks will be fed
the same input vector to create 10 different responses to the same query.
Development work showed that better performance was generally achieved
when the outputs from several networks were combined in order to produce a
'majority vote' prediction.

2.2 Description of neural network prediction model

MLP networks were created under WP-3 using a training set of 60 events and
60 quiet periods. The aim was to train a network to differentiate between the
case of ‘event” and ‘quiet period’ by using x-ray data from well before the
event itself. Networks were assessed using unseen data and were found to
predict the outcome correctly in 65% of cases. Individual network
performance measurements are given in Appendix A.

The neural network prediction models that are implemented in this code take
the ratio of the two GOES x-ray channels (XS/XL) as an input and predict
‘yes’ or ‘no’ as to whether or not an event will occur in 48-hours time.

The x-ray ratio is detrended to remove the long term solar cycle trend. This
trend function is calculated by fitting a 2™ order polynomial to the x-ray ratio
over the active period of the current solar cycle. The detrended x-ray ratio is
calculated by subtracting the trend from the actual value of the ratio at each
point in time.

The input vector to the neural network consists of a delay vector of detrended
XS/XL spanning from —120 to 48 hours relative to current time, broken into
24 3-hour intervals. This is shown schematically in Figure 2.

Appendix H-5



-120 hours -48 hours

Figure 2 Input vector to the neural model

The input vector must be normalised and projected onto principal axes via a
PCA technique. The statistics used for normalising the input vector and the
coefficients used to perform the projection are derived from the training set
that was used to build the neural model. The first six principal components
are taken as the input vector to the neural network.

Each element of the input vector is scaled to a new value of between 0 and 1
using the same scale that was applied to the training set. The network is then
queried and produces a numerical output which is un-scaled and de-
normalised prior to interpretation. Networks have been trained using a value
of 0 to represent a quiet period and a value of 100 to represent an event, thus
a decision threshold of 50 is used to interpret the network output. A value of
>50 indicates that an event will occur in 48-hours time, a value of <50
indicates that no event will occur in 48-hours time.

By feeding the same delay vector to several differently trained networks
several different predictions can be generated for 1 case. Previous
experience has shown that slightly higher success is achieved if the outputs
from several networks are combined to form a ‘majority vote’ as to whether
or not the outcome is an ‘event’ or not.

2.3 Software Overview

POPE has been written using six JAVA classes which each perform specific
stages of the process. The distinct tasks carried out by POPE can be broken
down as follows:

e Retrieval of real-time GOES satellite data from a remote ftp site.
(Performed by URLRetriever.java)

e Creation of a data file made by stitching together several GOES data
files. (Performed by RealTimeData.java)

e Detrending of x-ray data to remove the long term solar cycle trend.
(Performed by Detrender.java)
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e Creation of a delay vector from continuous GOES x-ray data.
(Performed by PredictionModel java)

e Pre-processing of the delay vector (normalising, PCA and scaling), and
running a neural network model with the processed delay vector.
(Performed by NeuralNet.java)

e Interpreting and recording the network outputs and other information
relevant to each prediction.
(Performed by PredictionModel.java)

e A control loop which repeats the prediction process every 60 minutes.
(Performed by PredictionApplication.java)

A more detailed description of the software execution stages are given in the
following section

2.4 Software Architecture

Figure 3 is a software flow-diagram displaying the interaction between
classes and the specific tasks that are carried out each time a prediction
process is run. Grey boxes indicate input and/or output files that are
accessed or created during each run cycle.

Control of the run process is governed by PredictionApplication java. This
class contains the main function which runs a prediction once every 60
minutes via a repeating loop. Each prediction run consists of three main
tasks; retrieving x-ray data, retrieving proton data and running the model.

Appendix H-7



g-H xipuaddy

PredictionApplication.java
RealTimeData.java URLRetriever.java

+ Obtain current System Time 7| > Set Proxies

« Build URL addresses + Connect to remote site

* Retreive remote data + Create local copies of datafiles |

+ Create continuous data file

Main
« Instantiate RealTimeData objects
+ Instantiate PredictonMode! object

Execute 'Run' loop:

« Get X-ray Data

3 | URLRetriever.java
RealTimeData.java ~~P Set Proxies
 Get Proton Data + Obtain current System Time + Connect to remO_te site .
+ Build URL addresses « Create local copies of datafiles .
+ Retreive remote data T
+ Create continuous data file | ™

* Run Model .
H e (essains | X
P am
: i ¢ e NeuralNet java
| « Instantiate array of Neural | Coefficent
Sleep for 1-hour i || Network Objects i E Detrend.in File For each network in the array:

| L-—\-p Take the required x-ray data ! - < Norialiss e it Vector i _
[ from the continuous file and | e L . S I Normalise tmp
‘ average it to create an input | r» Project input vector on to
! vector i principalcomponents. |
1
| « Check for bad or missing data - « Scale input vector
« Detrend the x-ray data D;::;:“;:‘"}:f « Interrogate Neural Network
« Query neural nets Retum sulty © * Un-scale network output
i . re: i
! + Collate network responses S + De-normalise network output
t-—--1p Calculate fast hourly average of * Return resut

proton flux

+Wite to output file B R W RN

Figure 3 Schematic Diagram showing software architecture, interfacing and file outputs.




The retrieval of GOES data is performed by a RealTimeData object. This
obtains the current UTC time from the system clock then creates filenames
for GOES x-ray or proton data for the current day and the preceding 5 days.
These URL addresses are then passed to a URLRetriever object which
accesses the URL and saves the GOES files as local copies. In order to
access remote data from behind a firewall it may be necessary to use proxy
settings. This information is provided by the user in the PAConfig.ini file
which is accessed by the URLRetriever object at run-time. Once GOES data
files for the current day and previous 5-days have been retrieved the
RealTimeData object removes their headers and stitches the files together to
form a continuous data file with the most recent data at the top of the file.
The ultimate purpose of the RealTimeData object is to create a continuous
data file which can be processed further by other objects.

After retrieving GOES x-ray and proton data the prediction model is run.
(Note that the prediction models implemented here use only the ratio of the
GOES x-ray channels as an input, but by also retrieving proton data the
current proton flux can be recorded in an output file to allow a comparison
with the model output).

The prediction model is defined by the PredictionModel object. This reads in
the continuous 5-minute resolution x-ray data file that was created by the
RealTimeData object and detrends the XS/XL ratio using the detrending
function defined within the Detrender object. The PredictionModel object
then creates a delay vector from the detrended 5-minute resolution x-ray
ratio, consisting of 24 3-hour averages from the 72 hour period prior to the
current UTC time. The PredictionModel object serves to create the delay
vector that will be passed to a neural network. For reference the delay vector
1s saved in a temporary file.

Contained within the PredictionModel object is an array of 10 NeuralNet
objects which define 10 different MLP networks that are all queried with the
same delay vector. Upon creation each NeuralNet object is initialised with a
matrix of weights, the average and standard deviation of the training set on
which the model was based (to allow the delay vector to be normalised) and
the coefficients of the scale that is applied to the projected delay vector to
produce values of between 0 and 1.

Each NeuralNet object is passed the detrended input vector created by the
PredictionModel object, and normalises it according to the training set
statistics. The normalised vector is then projected using PCA coefficients
which are read from a coefficient file, and which have been derived from the
training set. The first six principal components are taken as inputs to the
network and are scaled using the scaling coefficients derived from the
training set. The network output is then un-scaled and de-normalised to
produce a final output which is returned to the PredictionModel object. For
reference, temporary files containing the normalised delay vector and the
projected delay vector are created.

The PredictionModel object collates the outputs from the 10 NeuralNet
objects and records the number of networks that are predicting an event in
48-hours time. The result is printed to screen and appended to a results file
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with other relevant information, including current values of x-ray and proton
flux.

The run process is now complete and the software enters a sleep mode for
sixty minutes, after which another data retrieval and model-run will be

performed.

3 Installation Instructions
3.1 Minimum Requirements
POPE must be installed on a machine which has constant internet access.

POPE can be installed under a Windows environment (via an MS-DOS
prompt) or a UNIX/Linux environment.

The platform will require an installation of Java SDK version 1.3.1 or above,
available from java.sun.com.

3.2 Components
The POPE software should consist of the files shown in Table 1.

Filename Description

PredictionApplication.java  Class source file

RealTimeData.java Class source file

URLRetriever.java Class source file

PredictionModel java Class source file

Detrender java Class source file

NeuralNet. java Class source file

PAConfig.ini Holds proxy internet settings

Detrend.ini Holds the detrending function coefficients and
normalising statistics

coeff 120fql.txt Holds PCA coefficients for network 1

coeff 120fq2.txt Holds PCA coefficients for network 2

coeff 120fqg3.txt Holds PCA coefficients for network 3

coeff 120fq4.txt Holds PCA coefficients for network 4

coeff 120fq5.txt Holds PCA coefficients for network 5

coeff 120fg6.txt Holds PCA coefficients for network 6

coeff 120fq7.txt Holds PCA coefficients for network 7

coeff 120fq8.txt Holds PCA coefficients for network 8

coeff 120fg9.txt Holds PCA coefficients for network 9

coeff 120fq10.txt Holds PCA coefficients for network 10

Table 1 Files needed for POPE installation
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3.3 Installing POPE

Place all of the POPE files into a single directory on the hard drive. If in
windows, open an MS-DOS prompt and change directory to the one that
contains the POPE files. If in UNIX/Linux use a command window.

To compile the software type:
javac PredictionApplication. java

3.4 Altering the PAConfig.ini file

The PAConfig.ini file contains proxy settings that will be required to access
the internet from behind a firewall. Information required is the name of the
proxy host and the number of the proxy port. If unknown this information
can be obtained from a web browser operating on the same machine, or the
system administrator. Alter the PAConfig.ini file so as to read:

proxyHost = name of proxy host

proxyPort number _of proxy port

If the platform being used can access the internet directly then no proxy
settings are required and the PAConfig.ini file should read:

proxyHost =
proxyPort =
(i.e. the values are set to null).

At run-time the PAconfig.ini file will be accessed and the system properties
changed to reflect the proxy host and proxy port information given.

4 Using POPE

4.1 Starting POPE

Open an MS-DOS prompt and change directory to the one containing the
POPE files. To run the program type:

Java PredictionApplication

A message will appear stating that the POPE run thread has begun and GOES
x-ray and proton data files will be downloaded from the NGDC ftp site.
Messages will appear stating which files are being downloaded. Depending
on the speed of the internet connection it may take several seconds to
download each file.

After all files have been downloaded a message will appear stating that the
prediction model is being run with real time data. The number of networks
that are predicting an event will be shown along with the current UTC time
and the time for which the prediction is valid. The message ‘waiting for next
prediction cycle” will then appear and the program will enter a sleep mode
for 60 minutes before repeating the process.

Note that POPE requires no other inputs from the user. Any modification to
the program (such as sleep-time for example) must be made to the source
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code, and then the program recompiled using the installation instructions
above.

4.2 Stopping POPE

POPE has been designed to run indefinitely and will make predictions once
every sixty minutes until the program is halted. To stop POPE running the
process must be killed, which can be done by pressing Ctrl-C whilst the MS-
DOS window is open.

Some users may prefer to disable the repeating loop in the source code and
run POPE within a task-manager program. POPE will terminate after each
prediction run, meaning the program will not be running continually, and the
sleep interval will be controlled by the task manager. Instructions on how to
disable the loop structure in the source code are given in section 5.

4.3 Output Files

Table 2 lists the files that are produced by POPE each time a prediction-run
is performed. Most files simply provide a way to check that the correct pre-
processing is being applied to the delay vector and have only been produced
for reference purposes during development.

Filename Description
yyyymmdd G8xr Sm.txt Downloaded GOES x-ray file (contained in the
h - ‘retrieved’ directory).
yyyymmdd G8part Sm.txt Downloads GOES proton file (contained in the
- o ‘retrieved’ directory).
Continuous5SminuteXray.tmp Contains continuous GOES x-ray data from

current UTC time to 5 days previous.

ContinuousSminuteProtons.tmp Contains continuous GOES proton data from
current UTC time to 1 day previous.

AveragedData.tmp Contains the input vector derived from Real-time
data consisting of the detrended values of XS/X1..

Normaliseddv,tmp Contains the input vector after it has been
normalised by a NeuralNet object. Note that each
network in the array overwrites the
Normaliseddv.tmp file each time it runs.

ProjectedDv.tmp Contains the input vector after it has been
projected using PCA coefficients of a NeuralNet
object. Note that each network in the array
overwrites the ProjectedDv.tmp file each time it
runs.

Output.txt Contains the Network Outputs, the time of each
run and other relevant information — see below.

Table 2 Files produced by POPE during each prediction run.

Each time a prediction run is made, information is saved to the Output.txt
file. The exact information recorded is given below in Table 3.
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Column Heading

Example

Description

Model run time

Julian Day run time

Prediction time

Julian day
prediction time

DV1-DV24

NETI - NET10

ERR1 - ERR24

EVENTS

PROTONS

Current Time

XS

XL

Ratio

05/02/2002 14:25

52310.601

07/02/2002 14:25

52312.601

-0.760

61.652

00

-0.840

05/02/2002 1425

-8.109

-5.945

-2.168

Date and UTC time of the most recent
GOES data entry’

Julian Day of the most recent GOES
data entry

Date and UTC time for which the
prediction is valid for (calculated by
adding the lead time to the model run
time)

Julian Day of the time for which the
prediction is valid.

Contains each of the 24 elements of the
detrended delay vector that is passed to
each network as an input.

The numerical output of each of the 10
networks.

The number of missing S-minute data
points in each of the 3-hour intervals of
the delay vector (maximum of 36).

This enables the user to see when
missing data might be affecting the
model output.

The number of networks from 10 that
are predicting an event in 48-hours
time.

Log, of the average >10MeV proton
flux for the past 1-hour relative to the
model run time.

Same as model run time, but placed at
the left hand of the table for easier
reference.

Logy, of the average 0.4-4A x-ray flux
in W/m? for the past 1-hour relative to
the model run time.

Log;, of the average 1-8A x-ray flux in
W/m? for the past 1-hour relative to the
model run time.

Logyy of the average XS/XL ratio for
the past 1-hour relative to the model run
time.

Table 3 Description of information in Qutput.txt

The Output.txt file is tab delimited to facilitate import into other software

(e.g. Microsoft Excel).

" The most recent GOES data file entry usually lags the current UTC time by

around 10 minutes.
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4.4 Data Quality

POPE checks GOES files for missing data and prints a message to the screen
if any S-minute values are missing from the delay vector. Each 3-hour
interval is composed of 36 5-minute averages, hence there is some tolerance
for loss of data. If more than 50% of the 5-minute averages are missing from
an interval then a warning is printed to screen.

The precise number of missing data points in each element of the delay
vector is recorded in the Output.txt file and can be used to ascertain when the
network outputs may be affected by loss of data.

4.5 Maintaining the detrending function

The neural networks implemented in POPE require the XS/XL ratio to be
detrended prior to being processed. Detrending is performed by a Detrender
object which uses a 2™ order polynomial to model the long term solar cycle
variation in the XS/XL ratio over the active years of the solar cycle (i.e. the 4
years prior to solar maximum to the 2 years after solar maximum). The
coefficients that define the polynomial are contained within the Detrend.ini
file. As time progresses the detrending function will fit recent data less
accurately and will need to be recalculated and the coefficients updated in the
Detrend.ini file.

POPE is set to use GOES-8 satellite data hence when computing the trend it
is important to use x-ray data from the same satellite. To compute the trend
retrieve daily x-ray averages from the SPIDR-2 data site® and standardise the
Julian Day number by subtracting the average Julian day and dividing by the
standard deviation (this is necessary in order to calculate the coefficients
accurately when fitting a function to the data). Plot XS/XL as a function of
Julian Day and fit a second order polynomial to the data. (This has can be
done in Microsoft Excel), which will be of form:

COEFF1*X’ + COEFF2*X + CONST

Open the Detrend.ini file and update the information. Each coefficient will
need to be altered as will the average and standard deviation of the Julian
Day that was used to calculate the detrending function. There is no need to
stop POPE when altering the Detrend.ini file.

In addition enter the date to which the detrending function was calculated.
POPE uses this information to check to see when the detrending function
runs to and issues a warning when the detrending function is more than 30
days old. Save the Detrend.ini file after altering the information. The current
trending function is based on x-ray data from GOES-8 over the period
1/8/1997 to 31/12/2001.

Note that the SPIDR-2 web site only contains x-ray data up to the end of the
last month. To calculate a detrending function right up to the current day it
will be necessary to manually download and process 5-minnute data directly

* http://spidr.ngdc.noaa.gov/
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from the GOES fip site”. Methods within the RealTimeData object can be
used to create a file of daily averages up to the current day.

In practice, the detrending function will not be significantly affected by new
data within the current solar cycle (23) and experience has shown that the
network outputs do not significantly alter when the detrending function is
updated. The detrending function is likely to become far more critical at the
beginning of a new solar cycle when there is little data to fit, and the addition
of new data will significantly affect the trend.

4.6 Interpreting the predictions

Networks were trained with target values of 0 for quiet periods and 100 for
events, hence a threshold value of 50 has been used to interpret the network
output. For each prediction run POPE records the numerical output of each
neural network and counts the number of networks that have an output of
>50, i.e. the number of networks that are predicting an event.

By studying the output from POPE it may be found that a different
interpretation of the network responses gives a better success rate, but as yet
POPE has not been operating long enough to provide a useful dataset.

Testing results during development are summarised in Appendix A and show
that on average each network had a 65% classification success rate, hence
one would only expect the output from POPE to be correct 65% of the time

at best.

POPE is intended to validate the MLP models further, and brief experience
shows that 5 or more of the 10 networks regularly predict an event when
none is seen, indicating a tendency to over predict. Further validation is
required before any conclusions can be drawn, but realistically the models
are not expected to perform any better than during testing.

4.7 Run-time problems

4.7.1 Loss of internet access

POPE does not check for an internet connection and will hang indefinitely if
it runs with no internet access. If attempting to retrieve files when there is no
internet access (for example, if a server is down) POPE will eventually
terminate and will need to be restarted from the command line. Note that the
Output.txt file is not overwritten by POPE if it is restarted.

4.7.2 Contaminated download files

It is possible for downloaded GOES data files to become corrupted during
download if the connection is poor. A contaminated data file may also be
downloaded if the incorrect proxy settings are used, in which case a html
error page will be saved under a GOES data file name. Check the GOES
data files (yyyymmdd G8xr 5m.txt) in the ‘retrieved’ directory to ensure
that they contain the correct data in the expected format.

¥ http://www.sec.noaa.gov/ftpmenu/lists/xray. html
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To minimise internet connection time POPE checks to see if local files from
prior to 2 days ago already exist before attempting to download them. If one
of these files is contaminated then it will not be replaced when POPE is
restarted. To ensure that new files are downloaded clear the ‘retrieved’
directory before restarting POPE.

4.7.3 Incorrect proxy settings

If the PAConfig.ini file contains the wrong proxy settings then POPE will
retrieve a html error page instead of the GOES data file and cause the
program to crash. Check the most recent GOES data file to ensure that it
contains GOES data and ensure the proxy settings are correct.

4.7.4 Incorrect System Clock

In order to retrieve current GOES data POPE obtains the current local time
from the system and calculates the UTC time to generate the GOES URL
filenames. If the system time is slightly fast POPE may try and retrieve a file
that does not yet exist on the NGDC server if a retrieval is made shortly after
UTC midnight. This will cause an error message to be saved under the
GOES local filename and POPE will crash. This can be avoided by ensuring
that the system clock is as accurate as possible. (Note that the system clock
need only be set to local time as POPE automatically calculates the UTC
time depending on the regional system settings).

5 Software Reference

This section contains an overview of each class. For a detailed explanation
of the classes, methods and variables refer to the javadoc html files contained
in the documentation folder of the installation. Further information is also
included as comments in the source code.

5.1 Class Overviews

5.1.1 PredictionApplication.java

Contains the main method which instantiates a PredictionApplication object
and starts its run thread. After execution the run thread sleeps for 60 minutes
before repeating. RealTimeData objects and a PredictionApplication object
are instantiated in the PredictionApplication object.

5.1.2 RealTimeData.java

Retrieves several days worth of GOES x-ray or proton real-time data relative
to the current system time and can collate it into a continuous file of 5 minute
averages ordering the data so that the most recent is at the top of the file.
GOES URL filenames are created by taking the local system time and
converting it into UTC time. A URLRetriever object is used to retrieve the
files from the URLs. The class also contains methods to perform various
averaging processes on GOES data files.
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Constructor
RealTimeData(int days-. String datatype)

Days — the number of days for which GOES data will be retrieved.

Datatype — determines whether x-ray or proton data files will be retrieved.
Datatype must be either “x-rays” or “protons”.

Methods
AppendOutputFile (String NewOutputLine, String
Filename)

Adds a new data line to an output file.

CreateContinuousFile ()

Creates a continuous 5-minute file of retrieved GOES data by reading the
retrieved files and writing the data to one file in reverse order so that newest
data is at the top of the file.

CreateFileStrings()

Uses the UTC time derived from the current system time to create filenames
for the remote GOES data files.

GetUTCTime ()

Gets the local system time and generates the UTC time based on the GMT
and DST offsets between the local time zone and UTC.

lastHourOfProton ()
Calculates the latest 1-hour average of GOES proton data.

lastHourOfXRay ()
Calculates the latest 1-hour average of X-ray Data (XS, XL and Ratio)

logl0 (double x)

Receives x and returns double value for log10(x)

RetrieveData ()

Retrieves the GOES data files from the designated address for the required
number of days and puts the data into one continuous file.

setContinuousFile (String newname)
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Sets the name of the continuous 5-minute file produced by stitching GOES
files together.

setFileStem(String newstem)

Sets the filestem for the data files being retrieved: e.g. _G10part Sm.txt

setPrevDays (int days)

Sets the number of days for which data files will be retrieved relative to the
current date.

Additional Developers Methods

Several methods have been included in the class which are not used by POPE
but which may be of significant use if attempting to develop or modify POPE
further.

StockDailyXrays (int startyear, int startmonth, int
startday, int endyear, int endmonth, int endday)

Calculates the daily averages of GOES X-ray data for every day between the
current date and a date in the past (providing remote data files exist) This is
designed to allow a data file to be built up from which a detrending function
can be calculated.

dailyXrayAverages ()

Calculates the daily average of XS, XL and XS/XL Ratio from a date two
days ago relative to the current day. It was intended to run this method once
every calendar day to create an updating file of x-ray data from which a
detrending function could be dynamically calculated. This would prevent
having to calculate the detrending function manually and alter the source
code within the Detrender object.

dailyXrayAverages (String DailyGOESFile)

Calculates the daily x-ray average of XS and XL for the supplied data file
and ammends the result to a file named DailyXrayAverages.txt. A variation
of the above method.
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5.1.3 URLRetriever.java

Function

GOES to a URL address and makes a local copy of the file that is found
there. By default the local files are saved to a directory called ‘retrieved’
within the POPE installation folder.

Constructor

URLRetriever(String URLaddress- String
localcopyname)

URLaddress — The URLaddress of the file to be downloaded.

Localcopyname — The filename which the local copy will be saved under.

Methods
CreateDirectory ()

Method to create a new directory.

SetProxy ()

Sets the system properties for internet connection (proxyhost and proxyport)
by reading the PAconfig.ini file.

5.1.4 PredictionModel.java

Function

This class implements a prediction model of any desired window length,
input average or lead-time by building the relevant delay vector from the
continuous GOES x-ray data file created by the RealTimeDataObject.

The PredictionModel object contains a Detrender object to detrend the 5-
minute GOES data prior to building the delay vector and NeuralNet objects
which process the delay vector and perform the prediction.

Constructor
PredictionModel(int Winlength-. int AvePeriod. int
ltime~ String Name)

Winlength - the length of the delay vector in hours that is to be built from
5-minute GOES data.

AvePeriod - the averaging interval in hours of the delay vector that is to
be built from 5-minute GOES data

ltime - the lead-time of the model. Used to generate the time for which the
prediction is valid.

Name - a reference name for the model.
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Methods
AppendResultsFile (String NewOutputLine)

Adds a new dataline to the output file of the prediction model.

AverageTheData ()

Computes the averages from the 5-minute data to form the required delay
vector of length 'windowlength' and resolution 'AveragingPeriod'

CreateHeader ()

Method to create a header for the output.txt file

interpret output(double[] [] ResultArray)

Converts the numerical network output to the text association of either an
"Event" or a "Quiet" period using the value of 'threshold'.

runModel ()

Runs the model using the latest downloaded data as a query.

SetScales (NeuralNet NetworkArrayl[]l)

Sets the values of M and C in y=mx-+c for the scales in each NeuralNet
object within a PredicitonModel.

SetStatistics (NeuralNet NetworkArray[])

Sets the statistics for each NeuralNet object within a PredictionModel. These
are used to standardise the input data.

SetWeights (NeuralNet NetworkArrayl[])
Sets the weights for each NeuralNet object within a PredictionModel.

5.1.5 Detrender.java

Function

Will detrend an 'x' vs 'y' series using a user defined function. i.e. will
calculate y - f(y) at each value of x, where f(y) is specified by the user. The
class is designed to receive the 5-minute values of the XS/XL ratio, indexed
with Julian Day, and detrend them.

Constructor
Detrender(double tL1. double y[I. String filename)

Appendix H-20



t L1 - the array holding the time values
yI[ 1 - the array holding the values f{t)

filename — the name of the file holding the trend function coefficients and
related information.

The time values in the received array are standardised using the statistics of
the detrending function. (These need to be soft coded in the source code by

the user).

Methods
SetCoefficients (double coeffone, double coefftwo,
double constant)

Sets the coefficients of the detrending function

trend function(double t, String name)

Calculates the detrending function at each point in time using the coefficient
file provided.

logl0 (double =x=)

Receives x and returns double value for log;o(x)

5.1.6 NeuralNet.java

Function
Designed to take a delay vector and process it in the stages of: normalising,
PCA projection and scaling, and then feed the processed vector as an input to

an MLP neural network.

Constructor
NeuralNet(String MName. String PCAname- boolean
needPCA+ int P(Cs)

MName - the name of the model as an identifier
PCAname - the file holding the PCA coefficients

needPCA - true indicates that a PCA projection should be performed after
standardizing the input vector, false indicates that no PCA projection is
required.

PCs - the number of principal components to be used as inputs to the model.

Methods
Denormalise output (double normalised)

Denormalises the output from the network to a 'real’ value.
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descaler (double y)

Receives the raw network output (double) and descales it according to the
training target scale.

Interrogate Network (double InputVectoxr[], double
OutputVector[])

A modified code extraction from Neuframe. This method gives the processed
and scaled input vector to the network and calculates the network output.

normalise delay vector(double raw_dv_vector[])

Normalises the delay vector with using the average and standard dev of each
element in the training set.

PCAProjection(int dvlength)

Takes a (normalised) delay vector and performs a PCA projection by reading
a file of coefficients. All principal axes are projected onto. Outputs the
resulting vector to a .tmp file holding the projected delay vector

run_query (double raw_dv_vector[])

Takes the raw input vector produced by a PredictionModel object and
processes and scales the vector according to the attributes set in the
constructor. The processed and scaled vector is then passed to the
Interrogate Network method.

scaler (double x)

Returns a scaled value based on the scale used by Neuframe (y = mx +¢)

setNormalStats (double ave[], double sdl])

Sets the normalising statistics required to normalise the raw delay vector

setScales (double m, double k)

Sets the values for M and C in the input scaling function y =mx + ¢

setWeights (double weights[][])

Sets the weights matrix for the network
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5.2 Disabling the repeat cycle

By default POPE runs continually in an infinite process that sleeps for sixty
minutes between prediction runs. Whilst this means that POPE can be
started and ‘forgotten’ it is usually not a good practice to run a process that
has no termination, and some users may wish to disable the sleep cycle and
run POPE in ‘single prediction mode’ via a task manager. Once the sleep-
loop is removed POPE will terminate after each prediction run and will need
restarting to perform another prediction.

To disable the repeating loop open the PredicitonApplication.java file in an
editor and go the run() method. Delete the while(true) loop and the
associated brackets and delete the ‘try’ and ‘catch’ blocks and everything
contained within them.

Save the file and recompile using the command:
javac PredictionApplication. java
POPE can be started by typing
java PredictionApplication

at the MS-DOS prompt and will terminate after a prediction has been made.
A task manager can be used to run the program at set times, and results will
be saved to the Output.txt file. Note that the Output.txt file is not overwritten
when POPE restarts.

5.3 Implementing a new prediction model

POPE has been written to allow further prediction models to be implemented
with minimum effort. Provided that a model is to use GOES x-ray data as an
input only new PredictionModel and new NeuralNet objects need be created.
Although implementation of new models has been facilitated, modification
of the existing source code will be required.

5.3.1 Building a new delay vector

The PredictionModel object will build the required delay vector from the
continuous GOES 5-minute x-ray file using the delay vector characteristics
that are supplied to the PredictionModel object at construction. For example,
if the model being implemented requires a delay vector of length 12-hours,
averaging period 2 hours and lead-time 6 hours a PredictionModel object
could be instantiated using:

new PredictionModel(l2. 2+ k. ModelName)s:

Ensure that enough GOES x-ray data is being compiled into the continuous
file by the RealTimeData objects. (If not it may be necessary to change the
number of days for which data is retrieved in the Real TimeData constructor).
PredictionModel objects should be created in the PredictionApplication run()
method.
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5.3.2 Building a new MLP neural network

The NeuralNet object contains methods and variables specific to an
individual MLP neural network. The MLP models implemented here were
developed in Neuframe v.4 and a JAVA code extraction was performed on
the trained networks.

To implement a new MLP network within POPE it is first necessary to
extract the JAVA code from Neuframe. The extracted code contains errors
and must be modified slightly for it to work (please refer to the comments in
the source code above the Interrogate Network method). The Neuframe
extraction forms the Interrogate Network method within NeuralNet, and the
class variables from the Neuframe extraction become class variables within
NeuralNet. Further comments are given in the NeuralNet.java source code.

Each NeuralNet object requires a specific set of weights, a specific set of
statistics that relate to the training set and a specific set of coefficients that
relate to the scaling functions. When a new NeuralNet object is instantiated
these variables must be set using the relevant ‘set’ methods of the
NeuralNet class. The weights matrix can be obtained directly from the
Neuframe extraction. The normalising statistics must be obtained from the
network training set, and the scaling coefficients must be calculated from the
scales used in Neuframe. (Neuframe does not display the scaling coefficients
and these must be deduced manually via the information displayed in the
scaling properties window. The scaling is linear and of the formy = mx + ¢
where y is the scaled output and x is the un-scaled value).

If a principal components analysis is to be performed each NeuralNet object
will require a text file containing the matrix of projection coefficients. This
matrix is derived from the training set. The number of principal components
taken as inputs by the neural network is defined in the NeuralNet constructor.
Refer to the html javadoc files for full details of the NeuralNet constructor.

5.3.3 Summary of how to implement a new prediction model

o Create a new PredictionModel object in the PredictionApplication
run () method with the required delay vector characteristics.

o Within the PredictionModel constructor instantiate a new NeuralNet
object.

o Set the weights, normalising statistics and scaling coefficients of the
NeuralNet object.

o If a PCA projection is required ensure that a text file containing the
coefficient matrix is present in the POPE directory and that it has been
referenced correctly in the NeuralNet constructor.

o The model can be run using the run_model() method of
PredictionModel but this will have to be modified slightly as it is
currently written to run an array of NeuralNet objects as opposed to just
one NeuralNet object.
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6 Appendix A

Neural network test performance results prior to inclusion in
POPE

Summary of method

A dataset was compiled consisting of 97 events and 173 quiet periods. This
was randomly divided into a training set of 60 events and 60 quiet periods
and a query set of 37 events and 113 quiet periods. The process was repeated
10 times to generate 10 random combinations of training and query data.

Each dimension of the training set was normalised and a PCA performed in
order to project the training set onto its principal axes. The first six principal
components were then taken as an input vector to a MLP network in
Neuframe.

Each query set was normalised and PCA projected using the statistics and
coefficients derived from the respective training set and was used to test each
of the trained networks. Results are given below.

Results
Network Events classified Quiet periods classified Overall classification
correctly / % correctly / % Success / %

Net 1 86.5 42.5 64.5
Net 2 73.0 61.1 67.0
Net 3 81.1 451 63.1
Net 4 83.8 46.9 65.3
Net 5 75.7 39.8 57.7
Net 6 75.7 38.9 57.3
Net 7 81.1 55.8 68.4
Net 8 67.6 58.4 63.0
Net 9 62.2 61.9 62.1
Net 10 59.5 57.5 58.5
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