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Laminated composites and sandwich structures are increasingly being used in different 

engineering applications such as in aeronautical, marine and offshore structures where high 

stiffness, light weight, good corrosion resistance and temperature stability are the primary 

issues. During their service life, these structures experience extreme loadings and harsh 

environmental conditions potentially leading to structural damage. This could significantly 

reduce mechanical strength and result in performance degradation of the structure. 

Therefore, in order to maintain the performance of the structure, localisation and quantification 

of the damage is a promising research area. Since the determination of the severity and the 

location of the damage is an inverse and non-unique problem, an intelligent algorithm is needed 

to perform the damage detection analysis. 

This study presents a damage detection algorithm, which uses vibration-based analysis data 

obtained from beam-like structures to locate and quantify the damage by using artificial neural 

networks. The inputs and the corresponding outputs required to train the neural networks are 

obtained from the finite element analyses for different vibration modes of the beams. Multi-

layer feedforward backpropogation neural networks have been designed and trained by using 

different damage scenarios. After validation of the neural networks, new damage cases obtained 

from finite element and experimental analyses have been introduced and neural networks have 

been tested for location and severity predictions. 

The results from the neural networks depict that severity and location of the damage can be 

predicted by using as input the global (natural frequencies) and the local (strain or curvature 

mode shapes) dynamic behaviour of the beam-like structures. 
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Chapter One INTRODUCTION 

Non-Destructive Inspection (NDI) techniques [1-1] are generally used to investigate the 

critical changes in structural parameters so that an unexpected failure can be prevented before it 

can occur. These so called local and visual methods concentrate on a part of the structure and in 

order to perform the inspection, the structure may need to be taken out of service. In order to 

apply these techniques, the location of the damage needs to be known and it should be 

accessible for inspection. Since these damage identification techniques also require a large 

amount of human involvement that affects the accuracy of the testing, they prove to be 

expensive to implement. The main challenge in NDI applications is to design a structural health 

monitoring system that is capable of detecting the damage signature in service life of the 

structure without a priori information about the location of the damage. This is accomplished 

via integrated sensors and employing an intelligent algorithm having pattern recognition 

capabilities which are capable of analysing the damage characteristics. Moreover, by using these 

kinds of early warning systems, the risk of more serious failure of the structure and the overall 

maintenance cost can be reduced by excluding unnecessary inspection activities. 

1.1 Damage Identification in Structures 

Damage identification can be divided into four hierarchical levels [1-2] as follows: 

Level#l: Determination that damage exists in the structure 

Level#2: Investigation of the location of the damage 

Level#3; Quantification of the severity of the damage 

Level#4: Prediction of the remaining service life (i.e. residual life) of the structure 

Vibration-based analysis data indicates the existence of the damage (Level#l) when it is 

used as an input pattern to the analysis. Localisation (Level#2) and quantification (Level#3) of 

the damage can only be obtained if vibration-based input is provided with a structural model 

and an identification algorithm. A prediction of residual life of the structure (Level#4) requires 



Chapter 1 Introduction 

further analysis including fracture mechanics, structural design assessment and fatigue-life 

analysis. 

Another way of classification in damage identification is that Level#l is considered as a 

forward problem since the damage can be modelled mathematically and vibration response of 

the structure provides the necessary information about the existence of damage. On the other 

hand, Level#2 and Level#3 damage identifications are in the inverse problem category. This is 

because the damage signature might be the same for different extents of damage occurring at 

different geometrical locations of the structure, making the problem non-unique. Therefore, 

Artificial Neural Networks (ANNs) can be designed and trained through a learning process by 

non-linear parameterised mapping between the input and the output sets via their highly 

interconnected processing elements to extract features. They can also be used to classify and 

describe the patterns from the possible damage scenarios in the damage assessment applications. 

1.2 Objectives 

The primary aim of this work is to develop a technique which is applicable in 

quantification and localisation of the damage (Level#l, 2 and 3) by using vibration-based 

analysis features as an input to artificial neural networks via distributed strain sensors bonded to 

surface or embedded into structure. The technique starts from the basic assumption that damage 

can be directly related to a decrease of stiffness in the structure and identifies the structural 

damage with limited amount of distributed sensors. 

The specific objectives of the present work can be summarised as follows: 

> To identify damage in structures from changes in their vibration responses 

> To measure patterns providing global and local information about damage 

characteristics 

> To investigate the effectiveness of the features introduced to different ANN 

architectures as various input-output pairs for damage quantification and localisation 

> To achieve better understanding about simulation of a damage and its effect on 

structural dynamic behaviour 

> To validate the technique by numerical (finite element) and experimental means 

> To demonstrate the feasibility of using embedded fibre Bragg grating (FBG) 

sensors for strain measurements especially in sandwich structures 
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1.3 Overview of the Proposed Approach 

In order to achieve the main objectives of this research mentioned in the previous 

section, a deep knowledge should be gained in various areas. Figure 1.1 summarises these areas 

by highlighting the novelty and main contributions to knowledge in italics. 

Introducing experimentally obtained damage 
sensitive signatures to ANNs 

Input: 
Geometrical and material properties. 
Boundary conditions. 

Input: 
• Design and manufacturing of beam-like 
specimens with surface bonded strain gauges 
and embedded FBG strain sensors. 

Verification: 
• Need to validate the method used for damage assessment 
by numerical and experimental means. 

Experimental Work: 
• Necessity to gain knowledge on dynamic 
analysis of beam-like structures by using 
different measuring techniques. 

-Embedded FBGs and surface bonded strain 
gauges for distributed sensing. 
• Introducing damage into beam-like 
structures (i.e. slot or debonding) 
• Dynamic analysis performed on steel 
and GFRP sandwich beam-like structures. 

Finite Element Analysis: 
• Require accurate FEMfor intact and 
damaged isotropic, FRP laminated 
composites and sandwich structures that 
show good agreement with experimental 
results under static loading and dynamic 
vibratory motion. 
• Selection of element type for FEM. 
• Determination of optimum locations for 
maximum sensing from the sensors used in 
experimental work. 

Analysis: 
" Creating different damage scenarios on beam-like structures (isotropic steel, FRP 
laminated composite and GFRP sandwich). 
" FEA for natural frequencies, mode shapes and their derivatives (i.e. curvature). 
• Extraction and selection of damage sensitive signals. 
• Using artificial neural networks as an information-processing algorithm in damage 
identification. 

• Knowledge gained on effects of local damage on dynamic behaviour of beam-like structures. 
• Showing the dependency of the global (natural frequencies) and local (strain or curvature 
mode shapes) vibration-based signatures on location and severity of the damage. 
• Testing the efficacy of these features for damage identification. 
' Checking the robustness of these patterns under noisy conditions. 
• Information gathered on design and effectiveness of artificial neural networks when vibration-
based data is used as an input feature. 

Final Outcomes: 

Figure 1.1 General overview of the proposed approach 



Chapter Two LITERATURE REVIEW 

2.1 Introduction 

Any kind of damage adversely affects the current and future performance of the 

structure and therefore it must be carefully investigated before it results in a catastrophic failure. 

There are different methods available for structural inspection and performance monitoring. 

These methods can be categorised as local and global. The former which concentrates on 

specific part of the structure is categorised as NDI technique [2-1]. In order to perform an NDI, 

structure should be taken out of service on a regular basis without having a priori information 

about the damage; that is a costly procedure. On the other hand, the latter is independent from 

the location of the damage and can be performed by measuring changes in the structural 

dynamic characteristics. Therefore, these global damage detection techniques are becoming 

more popular recently and, therefore, have been reviewed by several researchers [2-2], [2-3], 

[2-4], [2-5], [2-6]. 

2.2 Features and Methods in Vibration-based Damage Identification 

Previous investigators have utilised vibration-based analyses to generate features that 

can be used to predict severity as well as location of the damage and this can be helpful to 

ascertain which feature will be most efficient and practical in predicting damage characteristics. 

In the following section, detection methods will be categorised and briefly explained 

considering the data obtained from the experimental and numerical analyses and the technique 

used to post process the data for damage assessment will be outlined. 

2,2.1 Natural Frequency Changes 

There is a large amount of literature on damage detection by using changes in 

frequencies. In this section, methods using natural frequency changes as a damage signature are 
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reviewed. All types of structural damage reduce the stiffness of the structure locally and any 

changes of stiffness cause change in the natural frequencies and structural damping. Since the 

measurement of natural frequencies is easier than that of changes in damping of a structure, 

damage can be detected from dynamic analysis aiming at natural frequencies. Additionally, 

determination of the damage from frequency measurements is quite convenient since an 

arbitrarily chosen single point is enough to perform the modal analysis to obtain dynamic 

characteristics of the structure. 

One of the earliest research has been done by Cawley and Adams [2-7]. The authors 

used frequency measurement method via finite element analysis (FEA) for various types of 

damage in composite materials. Structural damage was numerically modelled either by reducing 

the stiffness of the element or setting it to zero that leads to reduction in natural frequencies. 

Since frequency changes tended to be small, large number of mode pairs was used. It can be 

concluded from the numerical analyses that reduction in frequencies shows the existence of the 

damage. Inada et al. [2-8] proposed a damage identification method using natural frequency 

change and response surfaces in order to localise and quantify the damage. In this approach, 

natural frequencies were used for damage identification and response surfaces were used to 

obtain approximate expressions indicating damage location and length. First, damage 

identification of a carbon fibre reinforced plastic (CFRP) cantilever beam was conducted. Then, 

same analysis was also performed with CFRP cantilever plate to show the applicability of the 

proposed method. Finally, good agreement between actual and predicted damage parameters 

(stiffness degradation, location and size of the damage) was achieved. 

Zak et al. [2-9] applied finite element method to find the effects of closing delamination 

on vibrating laminated composite plate. Eight-layer graphite/epoxy cantilever composite plate 

was used for numerical calculations to investigate the influence of the location and the length of 

delamination on natural frequencies. In order to verify the accuracy of the model and the 

numerical results, an experiment with impulse excitation was performed on composite plate 

with mid-plane delamination. Authors concluded that if the length of the delamination grows 

and its position changes, the natural frequencies decrease and vibration modes are also affected. 

Valdes and Soutis [2-10] also investigated the effect of delamination on the modal frequencies 

of laminated composite beams and examined the performance of piezoelectric materials as 

sensor/actuator pair. In the analysis, the authors used eight-ply carbon/epoxy prepreg cantilever 

laminated beam having a small Teflon film inserted during the manufacturing. A sharp thin 

scalpel blade introduced into the mid-plane and two piezoelectric elements were used for self-

sensing and actuating applications. They extended the effect of damage by repeatedly pushing 
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the blade against the delamination front and observed that the delamination area was gradually 

extended from the free edge until it covered almost all of the specimen width. The changes of 

the modal frequencies of the specimen compared to those of the non-delaminated one showed a 

good indication of the degree of damage, especially at high frequency levels. 

Lakshmi and Jebaraj [2-11] proposed a new technique based on the percentage change 

in natural frequencies in the first five modes to identify the presence of through thickness cracks 

and their locations along a cantilever aluminium beam. They also performed sensitivity analyses 

on bending, torsional and strain mode shapes by considering the effects on local modal 

parameters due to crack for different crack depths at different locations. It was observed from 

the analyses that the absolute percentage change in frequencies increases as the depth of the 

crack increases. Additionally, this change is maximum if the crack is located at the peak/trough 

of the strain mode and it is minimum if the crack is located at the node of strain mode. In Hu et 

al. [2-12], the authors developed two different algorithms to assess structural damage using 

modal test data. The first algorithm avoided the employment of the analytical global stiffness 

and mass matrices that led to approximate estimation of the damage extent; on the other hand, in 

the second algorithm, analytical mass matrix was employed, which gave completely accurate 

prediction for the damage extent. A 10-bay planar truss structure was used for FEA and the 

multiple damage cases were simulated with reduction in the stifftiess of the selected elements in 

the bays. In experimental work, a clamped-clamped aluminium beam with saw cut was used as 

a test specimen on which modal analysis was performed to obtain natural frequencies and mode 

shapes. The authors concluded that with the increase of the number of the frequencies and 

modes, the accuracy in the detection of damage location and prediction of damage extent 

become better and the selection of modes is also critical for the successful multiple damage 

identification. 

2.2.2 Displacement and Curvature (Strain) Mode Shape Changes 

As mode shapes can be obtained both experimentally and by numerical means, damage 

detection techniques which use this concept have been studied by several researchers. 

Ren and De Roeck [2-13] proposed a technique to predict the damage location and 

severity based on changes in frequencies and mode shapes of vibration of simple and continuous 

beams with number of different damage scenarios. Structural characteristics before and after the 

damage that was simulated by reducing the stiffness of assumed elements including multiple 

damage cases were calculated with FEA. The technique was also tested with the existence of 
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numerically generated noise. The authors (Ren and De Roeck [2-14]) applied this algorithm on 

reinforced concrete beams and performed an experiment to establish the relation between 

damage and changes of the structural dynamic characteristics. Static tests were aimed to 

produce the successive damage on the central zone of the beam with almost uniform damage 

intensity. On the other hand, dynamic tests were aimed at finding natural frequencies and modes 

with the help of impact hammer and accelerometers. The authors finally concluded that the 

proposed method could be applicable to simple structures for damage localisation. Ahmadian et 

al. [2-15] examined a method which uses measured displacement data and a finite element 

model (FEM) to locate damage in uniform beam structures. Damage was modelled by either 

changing the flexural rigidity of the selected elements or creating a discretisation error by 

varying the length of the elements. Since the method uses a combination of measured 

displacements, it is capable of locating the damage correctly. 

Friswell et al. [2-16] applied a genetic algorithm by using vibration data based on 

changes in frequency and mode shapes to identify the position of one or more damage sites in a 

uniform cantilever beam and to estimate the extent of the damage at these sites. The theory is 

based on the optimisation of objective (error) function obtained from analytical and measured 

data with the genetic algorithm. The simulation results showed that the algorithm is robust to 

systematic errors in the measured data and powerful in damage localisation for single damage 

site compared to multiple one. Fox [2-17] applied the Modal Assurance Criterion (MAC) on 

natural frequency data obtained from finite element analyses of intact and damaged beams. 

Although changes in natural frequency indicated that damage might be present in the structure 

and MAC gave useful indication of the relative extend to which modes were affected by the 

damage, these two approaches were not sufficient to locate the damage. Therefore, the author 

used a relative difference function based on intact and damaged mode shapes to assess the 

damage. It was concluded from the analyses that mode shape information was required to 

determine the location of the damage. Pandey et al. [2-18] performed modal analyses with 

cantilever and simply supported beams and used curvature mode shape parameter for damage 

detection. In this method, curvature mode shapes were obtained numerically from the 

displacement mode shapes by using a central difference approximation. Damage was modelled 

as a percentage reduction in stiffness of one of the elements in the finite element model. The 

results demonstrated that the absolute difference between the curvature mode shape of the intact 

and that of the damaged beam was a good indicator to detect and locate the damage, since the 

maximum absolute difference occurred in the damage zone. 
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Yuen [2-19] developed a numerical method using finite element modelling technique to 

establish the fundamental relationship between damage location, damage size and 

eigenparameters (i.e. displacement and rotation). A cantilever beam having damage zone with 

reduced stiffness was used as a model and eigenparameters were estimated by using each 

eigenvalue as a normalisation factor. Since the rotation eigenparameter took a step jump in a 

value when crossing over the damage zone and the displacement eigenparameter changed its 

slope at the same location, the proposed method showed that definitive characteristics were 

related to the location and extent of damage. Ratcliffe [2-20] extended the research and used 

one-dimensional Laplacian operator on the discrete first bending mode shape of a finite element 

free-free beam with 50% damage on one of its elements in FEM. Since the damage was severe, 

this operator indicated the location of the damage. But, for less severe damage, the Laplacian 

was not that powerful to indicate the damage and it retained its characteristic shape. For this 

reason, a method calculating the difference between the cubic polynomial and Laplacian was 

developed. It was observed that this modified Laplacian method provided the necessary 

information to identify the location of the damage from mode shape data although damage was 

less severe compared to one used for Laplacian operator. Ho and Ewins [2-21] presented a 

numerical analysis, so called damage index, comparing the curvatures of the in-service structure 

and those of the baseline at every measurement location. In the analysis, first three transverse 

vibration mode shapes were considered and different damage configurations were used by 

reducing the thickness at a particular location. Damage index was performed for four different 

numerical studies, namely measurement noise, spatial resolution of the mode shapes, damage 

severity and changes to boundary conditions to investigate the effects of these parameters on the 

accuracy of predicting the location of the damage. It was observed from the numerical results 

that noise level constraints and higher resolution of mode shapes increase the sensitivity of the 

damage index to damage. 

Pai and Young [2-22] used the boundary effect detection method [2-23] for location 

detection of damage by using structural operational deflection mode shapes via scanning laser 

vibrometer measurements. Experiments were performed using single frequency excitation at the 

chosen frequency on cantilever and simply supported beams with different damage types, 

including cracks and internal holes at different locations. The experimental results showed that 

high frequency operational deflection mode shapes are better than low frequency ones for 

locating the damage. The authors also concluded that the proposed method provides damage 

indicators with different levels of accuracy for different levels of inspection but a clear damage 

signal is always needed for extraction of the data. Cornwell et al [2-24] generalised this 
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method, which is based on strain energy and developed for beam-like structures, to plate-like 

structures having two-dimensional curvature. The modified method uses mode shape 

information of the structure before and after the damage to detect and locate the damage. It was 

assumed during the analyses that mode shapes were known exactly on a very fine grid of 

sensors but in actual practice this is not the case. Therefore, calculation of derivatives and 

integrals when the mode shapes were known at relatively small number discrete locations was 

the main drawback of the study. Researchers also focussed on curvature mode shapes by 

considering higher and multiple modes. 

Wahab and Roeck [2-25] proposed a curvature damage factor by performing an 

averaging over absolute differences in curvature mode shapes of a continuous beam for the first 

five modes and applied this technique to a real bridge to evaluate and locate the damage. 

Damage was simulated as a percentage reduction in stiffness of one of the elements of the beam 

FEM. They concluded that modal curvatures of lower modes are more accurate than those of 

higher ones and extensive measurement grid throughout the structure is needed to get a good 

estimation for the modal curvatures. Waldron et al. [2-26] aimed at quantifying the damage 

from operational deflection mode shapes (ODSs) by scanning laser doppler vibrometer. The 

angle between healthy and damaged normalised ODS was used as a damage signature in the 

analysis. Aluminium beams having fatigue crack grown in a tension machine was used in 

experimental work and the damage was simulated as stiffness reduction in FEA. The authors 

investigated the effects of loading, frequency range of excitation and the boundary conditions on 

detection of damage and performed sensitivity analyses of translational and rotational ODSs. 

Experimental work and FEA denoted that rotational ODSs give better accuracy in lower and 

higher modes although they are difficult to measure compared to translational ODSs. 

Additionally, it was perceived that visibility of the damage effect on ODS considerably 

increases when the damage is near or at an anti-nodal point for the higher frequency modes. The 

authors also concluded that higher frequencies are better indicator for damage detection and 

location prediction. 

10 
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2.2.3 Frequency and Time-Frequency Analyses 

The following researchers concentrated on obtaining frequency response function (FRF) 

of structures and in this way they investigated additional features that could be used for damage 

identification. In this section, research areas including wavelet analysis and electrical impedance 

methods are also reviewed. 

Jian et al. [2-27] used Folyvinlydine Fluoride (PVDF) piezoelectric patches for damage 

detection in composite material. Unidirectional, four-ply laminated cantilever plates with 

surface bonded and embedded piezoelectric patches were used as test specimens under 

mechanical pulse delivered by a marble rolling down an inclined through and striking the plate. 

During the experiment, changes in frequency response spectrum of the delaminated composite 

plates were monitoried. The spectra showed distinct shifts in the vibrational frequencies to 

lower as delamination size increased. The analyses also showed that very little change in the 

frequencies occurred until the delamination became very large and ,therefore, it was concluded 

from the observations that a full-width delamination is required to significantly reduce the 

frequencies of the lower modes. Lee and Shin [2-28] presented a new algorithm, which requires 

natural frequencies and mode shapes of the intact structure and FRF of the damaged structure to 

predict the location and the magnitude of the damage. The structures used in the analyses were 

cantilever and simply supported Euler Bernoulli beams. Damage was modelled as change in 

stiffness by degradation of the elastic modulus at various extents along the beam span. FRFs 

were obtained by varying excitation frequency as well as measurement point to obtain sufficient 

number of equations. Then the algorithm reduced the domain of the problem by searching for 

damaged free zones and removing them from the spatial domain of the problem to leave 

damaged zones only. The effect of noise on the algorithm was also considered. The authors 

concluded that FRF provides more information on damage in a desired frequency range than 

modal data and better accuracy can be achieved by including higher modes. 

Sampaio et al. [2-29] extended the theory [2-18] to all frequencies in the measurement 

range and used FRF data rather than just mode shape data in the calculation of curvatures to 

predict the existence, location and the extent of the damage. The authors performed a numerical 

study on ten degrees of freedom lumped mass model for four different levels of damage and 

applied the same theory on a real bridge structure. Damage was modelled as change in stiffness 

in the numerical analyses and as cuts in the web and flange of the girder of the bridge in the 

experiment. The influence of the frequency, input force location and the noise effect were also 

investigated in the study. The results indicated that for wider frequency ranges the difference in 

I I 



Chapter 2 Literature Review 

the curvatures of the damaged and intact model become less significant due to frequency shift. 

The method worked better in the range before the first anti-resonance or resonance, whichever 

comes first. The authors also observed that the method is quite insensitive to noise and the effect 

of the position of the exciting force is not important from the damage detection performance 

point of view. 

Castellini and Revel [2-30] demonstrated the measurement capabilities of laser doppler 

vibrometer in damage detection and characterisation technique. FEM was used to produce the 

data related to large variety of delaminations with reduced level of noise with ideal excitation 

conditions and to test the algorithm before its final application to real experimental case. FEM 

of the delamination was represented by a cavity obtained with two pyramids with same square 

bases and opposite vertices. Then, vibration information in each node of the mesh was obtained 

from FEA. Parallel to FEA, laser doppler vibrometer was used to measure vibration data from 

experiments. Finally, the proposed algorithm, which was based on the root mean square values 

and standard deviation of the FRFs was tested with both numerical and experimental data for 

damage characterisation. Sunders et al. [2-31] developed a theory to detect, locate and quantify 

damage in composite structures from changes in the measured modal response of the structure. 

Internal-state variable theory, which relates the current values of the stress to the current value 

of the strain through elastic moduli, was used to describe the constitutive behaviour of the 

cantilever composite beam. The authors also derived damage detection equations that can be 

solved to provide the unknown damage parameters (location and magnitude of the damage) by 

using combined experimental and analytical methods. Their numerical and experimental work 

on a laminated beam in the intact state and in three additional states of progressive damage 

showed that the proposed method is feasible for damage detection in viscously damped 

composite beams with transverse cracking. 

Fukunaga et al. [2-32] used first order approximation technique for numerical 

prediction of transient response of electrical potential changes on sensors for location prediction 

and an iterative estimation scheme for solving non-linear optimisation problems based on 

quadratic programming technique to predict damage extent. Numerical studies were performed 

on carbon epoxy cantilever composite beam. Reduction in the elastic moduli by the same 

portion in all directions of one of the element in FEM model was used to simulate the damage. 

Since electrical potential change in time domain does not provide any distinguishable features 

for the location and the extent of the damage, all data was transferred to frequency domain by 

using fast Fourier transform technique. The authors also investigated the robustness of the 

technique by enlarging the response and adding white noise in the time domain. It can be 

12 



Chapter 2 Literature Review 

concluded from their analysis that the accuracy of the approach strongly depends on reliable 

modal data of the intact structure. Kessler et al. [2-33] used FRF method for the in situ detection 

of damage in composite materials. They concentrated on structural health monitoring aspects of 

the frequency response method and used it as a candidate to predict the existence of the damage 

in graphite/epoxy panels. They introduced different types of damage including delamination, 

fatigue induced damage and a drilled hole to specimens. Finite element simulations for modal 

response and frequency response analyses by using scanning laser vibrometer were also 

performed and the effect of the damage on frequency response was investigated by obtaining the 

first six natural frequencies of the damaged specimens. The results demonstrated that the 

method could not extract damage type, size, location and orientation information since several 

combinations of these features could yield identical responses. On the other hand, it can provide 

good insight as to the global condition of the system and can be implemented cheaply. 

In addition to frequency-based analyses, time-frequency analysis (i.e. wavelets) is also 

used as a tool to extract features that can provide additional information about the damage 

characteristics. Wavelet decomposition is a successive approximation method that adds more 

and more projections onto detail spaces spanned by wavelets and their shifts at different scales. 

Wavelet decomposition divides up the time scale plane in such a way that high-frequency 

activity is described with very sharp time resolution. These capabilities of wavelet make it 

popular in signal processing applications. 

The approach and solution procedure of damage identification by intelligent signal 

processing was outlined by Staszewski [2-34]. The author also referred to data pre-processing, 

feature extraction and selection, pattern recognition and data/information fusion by giving 

examples from wavelet and neural network applications on composite materials. Wu et al. [2-

35] performed an experimental work on different composite beams having different damage 

types (i.e. cracks and delamination) with surface bonded piezoelectric (lead zirconate titanate 

PZT) patches by stimulating them at the third modal frequency. After obtaining amplitude-

frequency of the output sampling signals from PZT sensors, wavelet packets were used to obtain 

eight auto regression spectra on these signals to extract and recognise the characteristic signal, 

which can be used as an input for neural network for the characterisation of the damage on 

composite beams. The authors concluded that this method is effective for damage 

characterisations but it should be generalised and implemented to identify the location and 

magnitude of the damage as well. Okafor and Dutta [2-36] used wavelet transforms to detect 

structural damage on an aluminium cantilever beam. Damage was simulated as a stiffness 

reduction in FEA and created by machining a notch on the specimen. The displacement data 

13 
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corresponding to the first three modes were obtained by scanning laser vibrometer and analysed 

with the wavelet transform. The authors concluded that single damage was accurately located by 

using wavelet decomposition of the finite element test beam and the experimental beam mode 

shapes. It was also pointed out that the magnitude of the wavelet coefficient at the location of 

the damage increased linearly with the increase in the amount of damage. 

Electrical impedance technique (Lopes et al. [2-37]), which utilises the 

electromechanical coupling property of PZT material based on high frequency structural 

excitation, is also used as an effective method for structural health monitoring because of its 

easy implementation and simple structural evaluation. The authors used model-based damage 

detection procedure by modelling damage as a reduction of stiffness in FEM and two cuts with 

different depths in the real test structure with surface bonded PZT patches. The damage metric, 

a function of the severity and the distance between the damage and the PZTs, indicated that 

damage can be localised by impedance technique and quantified by model-based detection 

algorithm using model generation by optimisation scheme. The same approach was also used on 

an aluminium cubic frame structure [2-38] to identify structural damage. 

2.3 Artificial Neural Network Applications 

It can be seen from the previous researches that change in natural frequencies helps to 

characterise the severity of the damage. However, locating the damage from the changes in 

natural frequencies alone is difficult as modal frequencies are global properties of the structure 

and hence cannot provide spatial information about structural changes. In order to overcome this 

drawback additional features, such as displacement or curvature mode shapes, which provide 

spatial information about the damage, can be used. In addition to these parameters, other 

methods including frequency, time-frequency and impedance methods are also available to 

obtain extra features related to damage characteristics and to detect structural damage. The 

analyses performed on structures under dynamic loading showed that for better estimation of 

severity and location of the damage, multiple modes should also be considered. Since each 

natural frequency and the corresponding mode are affected to different extents depending on the 

location of the damage, analyses become too complicated to be handled. Therefore, Artificial 

Neural Networks (ANNs) can be used in the post processing of vibration-based data to extract 

the features and to solve this inverse and non-unique pattern recognition problem. 
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Waszczyszyn and Ziemianski [2-39] summarised the application areas of back-

propagation neural networks (BPNNs) and discussed some problems where ANN can be used in 

the analyses. They mainly concentrated on data selection and processing, design of BPNNs and 

the accuracy of neuro-computing. The conclusion drawn from their numerical and experimental 

work is that ANNs are suitable to the analysis of problems with noisy or incomplete data and 

they can be efficiently applied to process the experimental data where there are not known 

mathematical models or given a priori relationship between the input and the output data. 

Worden and Tomlinson [2-40] also used BPNN to identify (i.e. locate and quantify) the damage 

in a cantilever aluminium beam and plate structures. Damage was modelled with local stiffness 

reduction by deleting groups of elements from FEM. The authors used four different sets of data 

(first and second mode shapes and Yuen function for the first mode shape and curvature of the 

first mode) to train the ANN. The finite element simulation and ANN results showed that the 

curvature of the first mode of vibration appears to provide the best data for damage 

identification. However, the Yuen functions did not supply any useful information and proved 

to be unsuitable for training of BPNN. In Worden and Burrows [2-41], the authors developed an 

algorithm using iterative insertion/detection method, genetic algorithm and simulated annealing 

to optimise the location and the number of the sensors for the fault detection. Optimal sensor 

distributions obtained from each method were used in ANN. Three different damage severities 

at different locations on a cantilever plate were simulated by removing small groups of elements 

in the FEM or setting their Young's modulus to zero. Mode shapes and curvature values were 

supplied to multi-layer perceptron (MLP) model in the training and location predictions were 

performed for the simulated damage. 

Mukherjee and Ravindra [2-42] investigated the power of ANNs in early damage 

detection. A cantilever aluminium beam with different crack intensities at different locations 

was used in the analysis and strain time histories were obtained by performing a transient 

dynamic analysis with impulse excitation. Since strain time histories contain a very large 

number of data points which are difficult to handle, a compression tool was used to convert time 

histories to Haar values and these values are used as input to ANN for location and extent 

estimation of the damage. They observed from the time histories that the damage at the root 

region has more severe effect on the natural period of the structure, stiffness loss due to damage 

at the root is higher and the strains generally increase with the increasing damage intensity. 

Zang and Imregun [2-43] presented a method for an efficient and accurate reduction of the FRF 

data so that ANN technique can be applied routinely to structural damage detection. They 

performed principal component analysis on FRF data obtained from railway wheels subjected to 
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random dynamic loads during their operation. An ANN was trained with this dimensionally 

reduced and noise filtered data. The experimental results indicated that although the extension 

of the methodology to damage location is somewhat more difficult, the use of ANN with FRF 

data which is reduced via principal component analysis provides necessary information about 

the existence of the damage. 

Another research (Zapico et al. [2-44]) aimed at assessing the damage from measured 

modal parameters by using ANNs. The authors modelled two-storey steel frame and steel-

concrete floor structures by using FEM and performed modal testing on real structures to obtain 

natural frequencies and mode shapes. MLP type ANN was trained to localise and find the 

amount of damage in the structures by using different combinations of natural frequencies and 

mode shapes as input. The FEA and experimental results showed that both input and output 

parameters should be correctly selected since too many parameters could affect the 

generalisation of MLP network by creating different combinations of damage leading to similar 

modal results. In Xu et al. [2-45], an adaptive MLP technique was used for the detection of 

horizontal cracks hiding inside the carbon and glass epoxy anisotropic laminated plate. The 

excited surface displacement response and the crack parameters (crack size and location) were 

used as input and output pair for the ANN respectively. The results of the numerical study 

indicated that the longer and shallower the crack is, the more significant the distortion would be 

in the surface displacement response. They also concluded that MLP technique is very effective 

for the damage detection in the presence of the noise in response data. 

Ball and Worden [2-46] concentrated on the application of ANN as a low-pass filter on 

vibration data to reduce its noise content. By using auto-associative training, an ANN is trained 

to replicate the given input at the output layer with a smaller number of nodes in the 

intermediate or hidden layers than in the input/output layers. By this algorithm, ANN is forced 

to perform some sort of data compression or filtering of the signals as they propagate from the 

input layer to the output layer. The case study testing the filter capabilities of ANN indicated 

that the use of ANN as a filter is severely restricted since there are so many limitations on the 

topology and the parameters affecting the performance of the network. In their other study, 

Worden and Ball [2-47] applied ANN as a tool for the condition monitoring of a simple two-

dimensional cantilever framework structure. The eigenvectors (horizontal and vertical modal 

deflections in FEM) of the structure with ten different fault severities in the first, second and 

third modes were used to train an ANN with and without added random noise. It was shown that 

the use of modal quantities instead of using strain pattern allows the use of a more compact 

ANN architecture resulting in less computational work. Worden et al. [2-48] used auto-
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associative neural network for the detection and classification of damage in machines (gearbox 

and a ball bearing) by using experimental vibration data. Four (progressive removal of 25%, 

50%, 75% and 100% of one of tooth face width) and five different damage scenarios (new ball-

bearing, completely broken outer race, broken cage with one loose element, damaged cage with 

four loose elements and badly worn ball-bearing) were created on gearbox and ball bearing 

respectively. The results showed that spectral information alone is inadequate for unambiguous 

classification and further post-processing is needed for more accurate and better condition 

monitoring. A static load application (Worden et al. [2-49]) was also performed to predict the 

position of a fault in a framework structure using ANN. The damage was created by removing a 

member of the framework in the experiment and simulated by giving a very low Young's 

modulus for that member in the FEM. Sets of strain data were obtained from strain gauges 

attached to the framework under different static loading and these data sets were presented to 

the network which was trained with finite element simulation data in order to locate the fault in 

the structure. The study showed that ANN trained with noise-corrupted data could successfully 

locate faults in the structures. 

Sensburg et al. [2-50] performed three different case studies on aluminium cantilever 

beam, plate and a carbon fibre composite fin with a rudder. For each case, different damage 

scenarios were created both experimentally and simulated by using finite element software. The 

proposed method requires measured mode shapes and modal frequencies of the damaged 

structure from undamped normal modes of vibration. Structural defects are found and located by 

an iterative optimisation procedure minimising the structural changes to match the modes and 

frequencies of the damaged structure. Both FEA and test results indicated that damage could be 

detected from dynamic test data by using ANN. Kudva et al. [2-51] presented a damage 

detection scheme to estimate the size and location of the damage by using strain values at 

discrete locations on an aluminium stiffened panel under uniaxial compression. They used ANN 

as a pattern recogniser and trained it with strain values obtained from distributed set of sensors 

located on the damaged structure. The authors also determined the strain pattern corresponding 

to the intact structure by using FEA. The results showed that location detection is easier than 

size estimation and use of hierarchical ANN (i.e. a network trained and simulated in two steps: 

first step for size and approximate location of the damage and second step for exact location 

prediction of the damage) is more efficient than using one big network. Islam and Craig [2-52] 

modelled various length delaminations in Kevlar-epoxy composite beam by using FEM and 

performed modal analysis for the first five natural frequencies of cantilever composite test 

specimens with surface bonded piezoelectric sensors and actuators. The authors trained an ANN 
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using numerical model and tested for location and size prediction of delamination by using data 

having natural frequencies of the beam obtained from both experiment and by FEA. The 

simulation results showed that predicted and actual values of the size and the location of 

delamination were quite close to each other. Okafor et al. [2-53] presented experimental and 

theoretical work to investigate the effect of delaminations on modal frequencies of glass epoxy 

composite beam. They inserted a Teflon film into the mid-plane of the laminate to create 

delamination and performed modal testing to obtain natural frequencies. The first four 

normalised modal frequencies were used as an input to ANN for the prediction of non-

dimensional delamination length. It is observed from the analyses that modal frequencies 

degrade with the increasing delamination size and this can be used as a signature to assess the 

delamination. 

Roberts et al. [2-54] used ANN to find the correlations between the local forging 

conditions (temperature, strain rate and local strain, as input) and extent of damage (as output) 

that occurred on the surface of aluminium metal matrix composite brakes. This particular 

application of ANN showed that although three parameters are not sufficient to describe damage 

evolution in composite forging, ANN is able to make sensible predictions of the damage 

locations. Yun and Bahng [2-55] proposed an approach for the estimation of parameters of two-

span planar truss and multi-storey frame using BPNN particularly for the case with noisy and 

incomplete measurement of the modal data. The data supplied as an input pattern to ANN in the 

training was the natural frequencies and mode shapes of the structure. The numerical analyses 

indicated that the accuracy of the estimation for the stiffness matrix of the system could be 

improved by imposing noise during the training with intensity similar to the measurement noise 

level and by including additional measurement information (i.e. rotational degrees of freedom). 

Pandey and Barai [2-56] used MLP with backpropagation learning algorithm to identify 

damage in a twenty-one-bar truss structure simulating a bridge. The authors used ANN to 

identify the damage zone from vertical displacements under static load of five nodal forces. 

Damage was modelled by stiffness reduction, which is a function of cross-sectional area of the 

members. All patterns were generated with the help of finite element software and used for the 

training of two different ANN architectures. The authors mentioned how difficult it is to design 

an ANN by choosing a proper topology and all other parameters (learning rate, momentum, 

error tolerance, etc.) which are directly affecting the performance of the ANN. From the 

numerical simulation results, it was concluded that MLP model is quite appropriate for 

structural damage identification. By considering different architectures of ANNs used in the 

analysis, the one having two hidden layers showed better performance compared to that with 
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single layer. Barai and Pandey [2-57] also investigated the performance of the generalised delta 

rule used as a separate case in the training of ANNs for damage identification. The authors used 

strain data in the training and simulation of ANN and observed that strain measurement taken 

together with displacement measurement significantly improved the performance of the ANN. 

Seo and Lee [2-58] used the electrical resistance change as a damage parameter in fatigue 

damage of CFRP laminates. ANN was also used as a tool to investigate the electrical resistance 

damage parameter, fatigue life and stiffness reduction. In the designed ANN, electrical 

resistance was used as input and either stiffness or fatigue cycle was used as a separate output. It 

was observed during the fatigue test that measured stiffness and electrical resistance change 

showed similar trends of change and good agreement was achieved between the predicted 

values obtained from ANN and experimental study. 

2.4 Sensors for Vibration Analysis and Damage Detection 

2.4.1 Smart Materials 

The following researchers used smart materials such as piezoelectrics (PZT), shape 

memory alloys (SMA) etc. as sensory material to record dynamic responses and detect the 

damage occurred in structures. 

Chiu et al. [2-59] performed a set of numerical analyses to investigate whether the 

concept of smart structures can be used to detect damage in the repair itself as well as monitor 

damage growth in the parent structure. An array of piezoceramic elements was used to detect 

disbonds of adhesive layer between the repair boron/epoxy doubler and an aluminium plate 

structure. Two different signal analysis techniques (mechanical impedance and transfer 

function) were assessed to determine the presence of any disbond in the adhesive layer. In the 

mechanical impedance technique, the piezoceramic sensors/actuators distributed over the 

structure were actuated in turn and the mechanical impedance at the drive point was determined. 

On the other hand, in the transfer function technique, the piezoceramic actuators were actuated 

individually and the transfer function between the actuator and the rest of the sensors was 

calculated. The information obtained from the piezoceramic showed that the magnitude of the 

impedance and that of the transfer function decrease with increasing disbond size. 

Chattopadhyay et al. [2-60] investigated the effects of delamination on the dynamic response of 

smart composite plate by using root mean square values of the plate response to an impulsive 

19 



Chapter 2 Literature Review 

disturbance. The FEM used in the analysis was delaminated cantilever composite plate with five 

pairs of surface bonded piezoelectric actuators. The results showed that in the presence of the 

delamination, natural frequencies of the plate changed since there was a small reduction in the 

structural stiffness due to delamination. Additionally, root mean square values of the response 

of the delaminated plate turned out to be higher than that of the non-delaminated one and the 

dramatic jumps in these values in the delamination boundaries were observed. 

Wang and Chang [2-61] proposed an active structural health monitoring system for 

impact damage detection in composite structures by using a built-in network of PZTs. The 

system used was capable of analysing the difference in sensor signals recorded in two different 

times (reference and damaged state), detecting the presence of damage and also identifying the 

location and extent of it. The authors performed experiments with graphite/epoxy composite 

plates on which damage was introduced by quasi-static impact. Then, in order to find the 

spectral components of time domain signals, swept frequency method and joint time-frequency 

analysis were used. The authors concluded that input energy, input frequencies, size of the 

damage and size of the piezoceremic patch were the major factors affecting the results during 

the experiment. Ogisu et al. [2-62] investigated an integrated health monitoring system with 

embedded SMA foil sensor and actuator in CFRP laminated panel to suppress transverse crack 

propagation and delamination. They performed adhesive property, tensile, compressive, and 

interlaminar shear strength tests on different panels with embedded SMA foils. It was 

experimentally found that the interlaminar adhesive strength must be improved in order to avoid 

failure initiating at the interface between the SMA foil and CFRP smart panel. Further 

investigations on the relationship between electrical resistance and strain of SMA showed that 

SMA foils are possible candidates for sensor application for health monitoring in composite 

structures. 

Since the determination of the location, size and the number of sensors on the structure 

is one of the most important stages in the design which directly affects the performance of the 

algorithm using these sensors, several researchers focused on the optimisation problem to find 

the best location and size for smart materials used as sensors to achieve better vibration sensing 

and actuators for more effective vibration control of beam-like structures [2-63], [2-64], [2-65], 

[2-66], [2-67]. 
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2.4.2 Fibre Optic Strain Sensors 

In fibre optic sensing, the response to external influence is deliberately enhanced so that 

the resulting change in optical radiation can be used as a measure of the external perturbation. 

Fibre optic sensors (FOS) serve as transducers and convert measurands like temperature, strain, 

rotation or electric and magnetic currents into corresponding change in the optical radiation. 

FOSs have a number of advantages with respect to conventional strain sensors when 

they are applied to smart structure on-line health monitoring applications. Since these sensors 

are very light in weight, large number of them can be used without greatly increasing the mass 

of the structure and without significantly modifying the passive mechanical and dynamic 

properties of the host structure. A single fibre may have many sensors and this reduces the 

number of connections and increases reliability. Because of their small size, chemical and 

physical compatibility with materials, they can also easily be embedded in composite materials 

in a non-obtrusive manner that does not degrade structural integrity. 

They can be used either as localised sensors that determine the measurand over a 

specific segment of the optical fibre and similar in the sense of conventional strain sensors or as 

distributed sensors, each element of which is used both for measurement and data transmission. 

These sensors can simultaneously sense more than one parameter (strain, temperature, etc.) with 

high bandwidth and the outputs can be multiplexed for high-speed data transmission resulting in 

a fast response time. Since FOSs are insensitive to electromagnetic interference and can 

withstand harsh environments, they are one of the best candidates for marine and aeronautical 

applications. 

Considering the numerous advantages mentioned above, several investigators have 

opted for FOSs over other smart materials for damage detection and long time structural health 

monitoring. 

Okabe et al. [2-68] performed an experiment on CFRP composite beam with embedded 

Fibre Bragg grating (FBG) sensors to detect the transverse cracks from the change in the form 

of the reflection spectrum. In the analysis, uncoated FBG sensors were embedded between 

0-degree ply in order not to deteriorate the strength and the stiffness of the CFRP and also 

located on the border of 90-degree ply where the transverse cracks appeared. During the 

experiment, quasi-static tensile load was applied to the specimen at room temperature. 

Reflection spectra were measured and change in the spectrum caused by the occurrence of the 

transverse cracks was investigated. Since FBG sensors are very sensitive to non-uniform strain 

distribution influencing the reflection spectrum along the entire length of the gratings, these 
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types of sensors have a potential for detecting damage. The results showed that the occurrence 

of transverse cracks could be detected from the change in the reflection spectrum and the FBG 

sensors used in the experiment could detect only transverse cracks around the sensors. 

Therefore, as a design criterion, FOSs should be embedded in the points where cracks are 

expected to occur earlier than other points. Green et al. [2-69] worked on the embedded FOSs in 

composite materials to produce self-monitoring components for aerospace and marine 

applications. They concentrated on the local disturbances to the composite structure caused by 

embedded sensors since sensors themselves cause perturbations in the strain field within the 

material and this causes localised strain indication errors. The theoretical and experimental 

works showed that a suitable coating, good adhesion between the optical fibre and the laminated 

matrix, a precision contact between the sensor system and the input circuitry of the monitoring 

instrumentation are required in order to minimise the effect of the embedded fibre on the overall 

mechanical performance of a part and decrease the strain reading inaccuracy. 

Dakai et al. [2-70] performed an experiment to investigate the curing effect on optical 

parameters of FOSs. Tests on composite structures with FOSs before and after the curing 

process showed that since the fibre optic coating became softened and the total length of the 

fibre optic became shortened after curing, great additional loss was generated. The authors also 

created new idea of a self-repairing network with hollow optic fibres filled with transparent 

glue, double ingredient epoxy resin, so as to repair the damage effectively and automatically. 

When the structure is damaged, the liquid core optic fibre will be damaged and the glue will 

flow out changing the output light signal. Then, damage location, type and extent will be shown 

by data acquisition system and controlled by exciting the array of SMAs, which can restore their 

previous shape. Additionally, if the transparency of the composite material is good, untouched 

measurement method can be used to detect the damage as well. Johnson et al. [2-71] employed 

multi-channel distributed strain measurement system with FBG sensors to monitor the structural 

dynamical response of a high-speed air cushion surface effect catamaran. The structure was 

constructed from sandwich material of a porous core and fibre-reinforced polymers and 

experienced normal ship vibrations, bending motions and wave slamming that may cause large 

scale damage. Two different techniques, scanning Fabry-Perot filter technique (suitable up to 

several hundred Hz with relatively high strain levels) and interferomatric technique (typically 

used for signals in the tens of kHz range to capture low amplitude and high frequency impact 

induced strains in the structure) were used to detect the strain-induced shifts in the Bragg 

wavelengths. The analysis of the data obtained from a group of sensors bounded to the surface 

of the structure in various locations with epoxy showed that FBGs are suitable measuring 
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system for low frequency, high amplitude strains due to bending of the hull as well as small 

amplitude, high frequency vibrations originating from the propulsion system. 

Rippert et al. [2-72] used multi-mode based FOSs embedded into CFRP prepreg 

composites to measure the microbendings. The optical signal obtained from the sensor contains 

information not only on the strains in the structure due to loading but also on the elastic energy. 

This means, strain releases whenever damage occurs on the base structure. During the 

experiment, time and time-frequency analyses of the signal were performed using the short time 

Fourier transform. Acoustic waves, which were produced by the damage initiation, were also 

identified by modal acoustic emission. An adaptive filter was used to remove excessive noise 

and spectral subtraction techniques were applied to see the expected optical events more clearly. 

The experimental results indicated that the sensor could detect the initiation of the damage and 

characterise its frequency content. Han et al. [2-73] performed an experimental study with 

polarimetric optical fibres, which were specially integrated into the structure for vibration 

monitoring. The test specimen used in the experiment was a clamped-clamped sandwich plate 

with electro-rheological material inside. Two different types of sensor were attached to the 

structure by an adhesive. One of the fibre optic sensors was of integrated type and the other was 

of localised type. In order to determine the optimal location for these sensors, mode shapes, 

slopes and curvature distributions were obtained. Specimens were excited in a frequency range 

covering their first natural frequency. The experimental results indicated that integrated FOS is 

better than a localised sensor since the integrated one provides a relatively clear signal in 

spectral analysis. 

Bhatia et al. [2-74] developed a technique for detection of edge induced and local 

internal delamination caused by cyclic loading of graphite-epoxy prepreg composite panel with 

[90/0/0/±45]s ply orientation. They used two extrinsic Fabry-perot interforemetric sensor pairs, 

one bonded at each face of the structure and the other embedded between the two pairs of 

adjacent [0/0] plies and parallel to graphite fibre direction of the plies. Such a configuration 

minimises the size of the local resin-rich region surrounding embedded elements. During the 

experiment, output from two embedded sensors was used to determine whether delamination 

occurred at any interface. Then, in order to determine the survivability of the sensors during the 

composite lay-up and curing, ultrasonic detection test was performed. Finally, the authors 

proposed that several multiplexed sensors could be used to determine the delamination locations 

in multi-layered composites. Davis et al. [2-75] investigated the dynamic strain characteristics 

of a cantilever beam with wavelength division multiplexed FBGs. Three surface bounded 

sensors were oriented to obtain strain information at different locations. During the experiments. 
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the first three vibration modes were considered. The first sensor was placed at the root of the 

beam to read strain from all vibration modes and the second sensor was placed at a node point 

of the third vibration mode and the third was mounted at a node point of the second vibration 

mode. This provides different sensitivities to the modes for each grating. After exciting the 

beam in its first three vibration modes, three peaks corresponding to natural frequencies of the 

beam were obtained from the FOSs. They also performed static deformation tests on this beam 

to obtain shape functions. Comparison between experimental and measured beam mode shapes 

showed good agreement with each other. 

2.5 Summary 

In this section, references in the literature review (i.e. numbers in brackets) are 

classified by considering numerical and experimental studies on various structures (Table 2.1), 

features extracted from vibration-based analysis (Table 2.2) and different levels of damage 

assessment (Table 2.3). After giving an introductory information about simulation of damage in 

finite element and experimental analysis (Table 2.4), different types of vibration sensors (Table 

2.5) are compared between each other on the basis of application areas, their advantages and 

their main drawbacks. 
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Table 2.1 Damage detection on different structures 
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Table 2.2 Features and tools in damage detection 
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Table 2.3 Features for different levels of damage assessment 
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Table 2.4 Damage types and model l ing 

S i m u l a t i o n of D i f f e r e n t D a m a g e T y p e s 

Finite Element Analysis Experimentally 
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• Percentage reduction in thickness 
• Percentage reduction in cross-section of 

the model 

• Cutting with jewellers saw 
• Removing material from the 

surface 

W) 

Delamination 
• Additional boundary conditions by using 

spring elements 
• Creating a cavity in the model 

• Introducing a thin Teflon foil or 
Fluorinate Ethylene Propylene 
into structure 

• Pushing with a sharp and thin 
scalpel against the delamination 
front and forcing it to grow 

CQ 
a 
OS 

Q 

Fatigue, 
Transverse 
and Matrix 

Cracks 

Percentage reduction in stiffness of the 
elements 

Using tensile test machine under 
cyclic load 

Crush 
D a m a g e 

Percentage reduction in stiffness of the 
elements 

Pressing with steel ball into 
structure by using hydraulic press 

Impact 
Damage 

Impulse loading in very short time 

• Impact with mallet 
• A marble rolling down an 

inclined through and striking the 
structure 
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Table 2.5 Comparison of sensory equipment 

Sensors for Vibration Analysis and Damage Detection 

Application Areas Advantages Drawbacks 

Acceleromeier 
Acceleration history, 
Frequency and FRF 
measurements 

Simple, easy to use, 
suitable for high frequency 
applications 

Not suitable for light 
weight structures and 
online applications, 
interference with 
electro-magnetic fields 

Vibrometer 
Velocity history, 
Frequency and FRF 
measurements 

Non-contacting 
measurement, accurate 

Not suitable for online 
applications 

Strain Gauges 
Dynamic strain history 
and static strain 
measurements 

Inexpensive, easy and 
simple procedure for 
bonding 

Heavy and massive 
wiring, sensitive to 
temperature changes, 
interference with 
electro-magnetic fields 

s * 

PVDF* and 
PZT** 

By covering the 
structure, an active 
surface can be obtained. 
Suitable for impact 
damage detection and it 
is also used as an 
actuator 

Inexpensive, suitable for 
online, distributing and 
embedding applications, 
short response time and 
light in weight 

Create a gap between 
layers of composite 
laminate in embedding 
applications 

§ 
CZJ To control low frequency 

vibrations of flexible 
bodies and to achieve an 
active damage control as 
a sensor and an actuator 

Suitable for online 
applications, available as 
thin wires, mesh can be 
obtained by embedding 
into structure (distributing) 
and light in weight 

Modelling difficulties, 
not well known 
material and physical 
properties 

Dynamic strain history, 
frequency and FRF 
measurements, static 
strain and shape function 
measurements, curvature 
modes, load history 
measurements, cure 
monitoring in composite 
structures and long term 
structural health 
monitoring 

High accuracy and high 
speed data transmission, 
suitable for online and 
embedding applications, 
immunity to electro-
magnetic interference, 
multiplexing capabilities, 
wide bandwidth, light in 
weight, it responds only 
strain if temperature 
compensation is applied, 
linear response, it can 
withstand high 
temperatures and other 
harsh environments 

Delicate and expensive, 
requires laser source 

*Polyvinlydine Fluoride, ** Lead Zirconate Titanate Piezoelectrics, 

^Shape Memory Alloy, ^^Fibre Optic Sensor 
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2.6 Conclusions 

A brief literature review on features obtained from vibration-based analyses, damage 

detection methods, tools and sensors used for vibration analyses and damage detection was 

presented in this chapter. The following conclusions can be drawn from this review; 

> Natural frequency shift is extensively used to predict the existence of damage. 

Since the measurements of natural frequencies are independent from the location of the 

excitation and the measurement point, they can easily be obtained by using frequency response 

functions methods. As the changes in frequencies provide only global information about the 

dynamic characteristics of the structure, one is not able to relate these changes to the location, 

severity and type of damage. Therefore, in order to perform a complete damage assessment in 

the structures, other parameters giving local information about damage such as displacement or 

curvature (strain) mode shapes should also be included in the analyses. As this involves 

measurement of strains, one has to use electrical strain gauges, piezoelectric materials, shape 

memory alloys or fibre optic strain sensors. 

> Since strain mode shapes are more effective in prediction of location and severity 

of damage than displacement ones, it is convenient to obtain them from distributed strain 

sensing systems. Considering their superiorities (Table 2.5) to conventional strain gauges, fibre 

optic strain sensors are quite promising in strain sensing applications especially in composite 

material applications. Moreover, in order to have cost effective solutions in strain sensing for 

maximum efficiency, the number and the location of the sensors should be optimised. 

> Various researchers have suggested that in order to achieve better accuracy in the 

damage detection, multiple and higher modes should be considered. The difficulty here is that 

damage detection is an inverse and non-unique problem since different damage types could be 

responsible for the same changes in the dynamic behaviour of the stmcture depending on their 

location and extent. Therefore, an intelligent algorithm capable of dealing with noisy and 

incomplete data should be adapted to system for damage detection. Artificial neural networks 

are the best candidates for these applications because of their suitability for self-adaptiveness 

and applicability to problems that do not have an algorithmic solution or for which an 

algorithmic solution is too complicated to be found. Additionally, ANNs can serve as a data 

reduction tool when long time or frequency histories are available. 
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> Designing an ANN is in itself an important subject since selection of features 

extracted from vibration-based analyses and used as input-output pairs for training, topology of 

the neural network and internal parameters in the simulation are crucial from the performance 

point of view. Experiments have shown that strain sensors away from the damage are not 

effective and do not supply relevant information about damage. But use of ANN can solve this 

problem by using the information coming from the other sensors as well. The majority of 

damage detection methods require modelling either mathematically or by using finite element 

analysis. 

Therefore, most researchers concentrate on isotropic beam or plate-like structures in 

their studies since modelling of both main structure itself and damage is easier compared to 

laminated composite and sandwich structures. Laminated composite and sandwich structures are 

extensively used in aeronautical, marine and civil engineering applications. Hence, one of the 

aims of this study is to impart the existing methods, based on vibration-based analyses, using 

fibre optic strain sensors and artificial neural networks, and implement them in real practical use 

for structural health monitoring and damage detection, especially on composite and sandwich 

structures. 
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Chapter Three RESEARCH PROBLEM 

3.1 Introduction 

In model-dependent vibration-based damage detection approach, it is essential to have 

an accurate numerical model of the intact structure. Based on this model, a damaged structure is 

created by considering different damage scenarios; the effects of the damage on the structural 

response and dynamic characteristics are investigated. Then, parameters providing necessary 

information about the damage characteristics are extracted and compared with the undamaged 

reference model. Thus, the first step in damage identification is monitoring of these parameters 

during in-service life of the structure. In order to monitor dynamic behaviour of the structure, 

vibration sensors are required. After considering various application dependent criteria about 

type, number and location of these sensors, a data management scheme needs to be 

implemented. This procedure includes obtaining and processing of the data by extracting 

features, filtering and compressing them and storing the necessary information that can be used 

as input for the detection algorithm. Finally, the designed intelligent algorithm is used to detect, 

locate and quantify the damage in the structure. 

3.2 Solution Methodology 

The procedure can be divided into three main parts; numerical analysis based on finite 

element modelling, experimental analysis and verification of the method. This is illustrated in 

Fig. 3.1. 

In the numerical analysis part, fixed-free beam-like models (steel, fibre reinforced 

plastic laminated composite and sandwich beams) were generated by using finite element 

software (ANSYS 6.1®) and the damaged models were created from these undamaged models 

by using different damage scenarios. After obtaining the models, static and dynamic finite 

element analyses are performed. The aim of the static analyses on the steel and sandwich beams 

is to find the strain values at particular locations where strain gauges and FBG strain sensors are 
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located. These numerical strain data obtained from undamaged finite element models are then 

compared to experimental analysis results in order to calibrate gauges and FBG strain sensor 

and to check structural coupling between the beam and the sensors. The dynamic analyses are 

aimed to find global (natural frequencies) and local (curvature and strain mode shapes) vibration 

characteristics of the structures. After performing sensitivity analysis on these vibration data, 

some features such as, reduction in natural frequencies due to damage and maximum absolute 

differences in curvature mode shapes between the undamaged and damaged structures, are 

extracted. An artificial noise has been added to these features in order to simulate experimental 

uncertainties. Finally, all data are normalised before introducing them to ANNs. After designing 

different ANNs for damage localisation and quantification, the input-output pairs obtained from 

FRP laminated beam model are introduced to these neural networks for training and validation 

of the algorithm. A set of test cases is also used for severity and location prediction of the 

damage. 

In the second part, cantilever steel and sandwich beams with real structural damage are 

used in experimental static and dynamic analyses. Static analyses are performed by using 

surface bonded strain gauges and FBG strain sensors on an intact steel beam for calibration 

purposes. In the dynamic analyses, miniature piezoelectric accelerometers are used to obtain 

frequency response amplitudes, from which resonant frequencies and damping ratios can be 

extracted. Having found the resonant frequencies, intact and damaged beam specimens have 

been excited at those particular frequencies to obtain dynamic strain mode shapes via the 

distributed strain gauges. Finally, all theoretical, finite element and experimental analysis results 

are compared with each other. 

In the final part, an experimentally validated damage detection algorithm, which uses 

combination of global and local vibration-based analysis data as input to ANNs for location and 

severity prediction of damage in isotropic beam structures, is presented before generalising it for 

damage assessment of sandwich beam structures with embedded FBG strain sensors. 
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Figure 3.1 Outline of the method and procedure 
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Chapter Four THEORETICAL MODELLING 

4.1 Introduction 

In order to investigate the dynamic behaviour of the structure, free vibration 

characteristics are of primary importance. Hence, in this chapter, equations of motion for 

transverse vibration of a beam-like structure are derived with corresponding boundary 

conditions. Solution for natural frequencies, displacement and curvature mode shapes are 

presented by following a successive set of simplifications from introduced theoretical 

background for laminated composite and sandwich plates. After presenting an overview about 

possible damage types and mechanisms in structures, the analysis tool selected for damage 

detection is reviewed reflecting its application areas, capabilities and design criteria. 

4.2 Dynamic Characteristics of Structures 

There are two main composite panel topologies namely; single-skin fibre-reinforced 

composites and sandwich panels. FRP laminated materials are composed of two distinct phases. 

One phase (fibre) acts as reinforcement of a second phase, so called matrix. These two phases of 

composite must be carefully chosen so as to obtain a material which is structurally efficient. 

Since the choice of materials (fibre and matrix), volume fraction, layer orientation, number of 

layers in the specified direction, thickness of the individual layers, type of the layer and the 

stacking sequence of the layers are the primary parameters in the designing process, composites 

can be fabricated for particular application to achieve a specific demand. Additionally, their low 

weight, high stiffness, high strength, low thermal expansion, low (or high) rate of heat transfer, 

electrical conductivity (or non-conductivity), corrosion resistance and longer fatigue life make 

them one of the strongest candidate and most commonly used material in aerospace, marine and 

offshore, civil, automotive, medical and military applications [4-1], [4-2], [4-3]. On the other 

hand, a sandwich structure which consists of three distinct layers (i.e. the bottom face, top face 

and the core) is a special form of laminated composite structure. The thin stiff faces act together 
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to form an efficient stress couple that counteracts the external bending moment and thick, light 

and considerably weak core (i.e. relative to the skin) resists shear and stabilises the faces against 

buckling or wrinkling. The main advantage of sandwich construction is that the strength and 

stiffness can be increased without a corresponding increase in the weight [4-4]. Figure 4.1 

shows schematic drawing of laminated composite and sandwich structures. 

Fibre 
Direction Top Skin 

Bottom Skin 

(a) OO 
Figure 4.1 Schematic drawing of structures (a) Laminated composite (b) Sandwich 

In this section, in order to investigate the behaviour of composite ([4-5], [4-6]) and 

sandwich structures, basic theories of plates are briefly reviewed by presenting the formulation 

and the assumptions considering different geometrical and material criteria in the calculations. 

These theories can be found in four main categories: 

i) Classical thin plate theory (CPT) 

ii) First order shear deformation theory (FSDT) 

iii) Higher order shear deformation theory (HSDT) 

iv) Theory of three-dimensional elasticity (3-D) 

In most applications, the thickness of the plate is small compared to the planar 

dimensions and hence two-dimensional theories (i, ii, and iii) are frequently used. 

In classical thin plate theory (CPT, [4-7], [4-8]) the transverse shear effects are 

neglected according to Kirchhoff assumption assuming that the lines perpendicular to the mid-

plane before deformation remain perpendicular after deformation. This means the in-plane 

displacements are assumed to vary linearly through thickness and the transverse displacement is 
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assumed to be constant through the thickness of the plate. Displacement components in CPT are 

defined as follows; 

"i (:K, y, z) = ^ z 

= z (4.1) 

where uj and Wj are in-plane displacements in x and y direction respectively and U3 is the 

displacement in the thickness direction (z direction), u and v are mid-plane translation 

components and the partial derivative of w with respect to x and y are the rotation angles. This 

theory is adequate for analysis of thin plates, especially when transverse deformation is 

negligible. If the structure in the analysis is fibre reinforced composite laminate, the extension 

of CPT, which is classical laminated plate theory (CLPT), is used for the analysis of thin plates. 

In this case since the total number of displacement variables does not depend on the number of 

layers in the laminate, it is suitable for the analysis of thinner laminates. However, the weakness 

in the theory is that fibre reinforced composites where elastic modulus along the fibre direction 

is significantly higher than the effective transverse shear moduli are susceptible to thickness 

failures and therefore CLPT is not recommended to be used for composites that are likely to fail 

in transverse shear or delamination. 

The more general form of the displacement field (Eq. 4.2) considers the effect of 

transverse shear on the bending of elastic plates that leads to the development of the first order 

shear deformation theory (FSDT, [4-9], [4-10]). The FSDT is more commonly known as "the 

Mindlin plate theory". 

»2 .y, - ^2 ' ^ (4 2) 

where rotational angles are replaced with more general form of variables (^ , ,^2) including 

shear. FSDT yields a constant value of transverse shear strain through the thickness of the plate 

and thus requires shear correction factors. For composite laminates these factors generally 

depend on ply orientation, lamination scheme, geometry and boundary conditions. This theory 
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does not consider the effects of cross-sectional warping, which plays an important role in 

sandwich structures with stiff face and weak core and results in an unrealistic variation of the 

transverse shear stress through thickness of the laminate. 

The higher order shear deformation theories (HSDT, [4-11], [4-12], [4-13] [4-14], 

[4-15]) are based on assumed higher order expressions of the displacement field. The most 

general form (up to and including third order) for HSDT is "Reddy's strain consistent third 

order theory" [4-7] and defined as: 

Ui(x,y,z) - u(x,y) + a• z• — + z + A - - + y • z^' -0^ 
ck 

where and ^2 are rotations of a transverse normal about y and x axes, respectively and 

y/i and 6", are undetermined functions. Depending on the constants (i.e. tracers, and 

Xi), classical, first, second and third order theories can be obtained. For example, 

a = 0, = = =7 j = 0 gives second-order theory and 

a = 0, = 1, X-O,/ = 1, A, - - 0, 0,= —^({z), + — ) and 6', = —^{(f>2 + — ) gives 

third-order theory of Reddy. The major drawback of the conventional HSDT lies in that it is 

unable to satisfy the interlaminar continuity from layer to layer and stress equilibrium over the 

lateral surfaces without regard to the transverse normal stress. 

Three-dimensional theories (3-D, [4-16], [4-17], [4-18]) use three-dimensional 

displacement fields with various edge boundary conditions in terms of double Fourier series in 

X, y in-plane and polynomials in z out-of-plane coordinates as follows: 
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u' 

w2C%j/,z)= (4 44 
j,m,n 

z ) = ^ i k m n Z y W f T m W f r . W r 

where k is the layer number. 

By using energy variational approach, small strains are expressed in terms of displacements as: 

^ 2 

^ ' 
^zz " 

^ 3 1 
& ' 

/jcz = 
ck la;"' 

0W2 
dx 

I 

(4j) 
OZl'\ OU'y Otl-x OU] OU') C)Xl-\ 

Y yz 

where B 's and 7 ' s are normal and shear strains respectively. The relation between strain and 

stress (cTy ) for general anisotropic material is 

(fy =C%w "Cw vdiere (4 6) 

having 21 independent stiffness constants. For more special cases such as, orthotropic (9 

constants), orthotropic material with transverse isotropy (5 constants) and isotropic material (2 

constants), the number of independent stiffness constants reduces. The generalised equations of 

motion can be derived by using following energy equations (Eq. 4.7) considering each layer and 

the boundary conditions. 

^ j j A:,/ = z , 

T ' ; . ' ' . (4.7) 

where V and T are the strain and kinetic energy components respectively and subscript t and 

variable P indicate time derivative of the terms in the equation and the total number of layers 

respectively. 

40 



Chapter 4 Theoretical Modelling 

Since the solution of Eq. 4.7 is beyond the scope of this study, the solution for natural vibration 

of special case (cantilever isotropic beam) is given by considering further simplifications from 

vibration of plate structures. 

The governing equation for natural vibration of an isotropic plate can be expressed with 

the following homogenous equation: 

D 
d'^w d'^w d^w 

+ p-h—— = 0 where D = — (4.8) 
6 ^ 120-K^) 

where h, p and v are the modulus of elasticity, thickness, density and Poisson's ratio of the 

beam respectively. Since beams have variation only in one direction, fourth-order differential 

equation of motion can be simplified considering an elemental length of beam undergoing 

vibratory motion so as to find the lateral vibration characteristics of the uniform beam structures 

[4-19], [4-20], [4-21], [4-22]. Hence, Eq. 4.8 can be simplified by using following relations: 

EI 
d^w a2 

+ p-A—^ = 0 where E-I = D-b , v = 0 (4.9) 

where b, A and I are the width, cross-sectional area and second moment of area of the beam 

respectively. A new variable can be assigned for w as Y{x,t) having spatial variable in x 

direction only. For free vibration solution, separation of variables can be used as: 

(4.io) 

or it can be in the form of 

i 

if the structure vibrates in a number of modes. Considering equations (4.10) and (4.11), 

y, y{t), i and N are mode shape, a function of time, mode number and the total number of 

modes respectively. In free vibration case equation (4.12) defines the total transverse 

deformation of the structure. 
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N 

= I I 4 ? / (;:) sin(G),Y + ) (4.12) 

Substituting equation (4.12) into (4.9) gives 

—T ~ P' 'y - 0 where (3'' - and co = Ijtf 
dk* 

(413) 

where ® and / are the natural frequencies of the beam measured in rad/s and Hz, respectively. 

The general solution for equation (4.13) is in the form of 

= C;Cos(,&i;) + C2sin(/&) + C^cos^/k) + C4sinh(0c) (414) 

where C,, C2, C3 and C4 are the constants to be determined from boundary conditions. For fixed-

free beam (Eq. 4.15) having a length ofZ 

at X = 0, y(0) = 0: 
& 

and at x = Z, 
%=0 Jc=Z, 

(415) 
.T=Z, 

Applying equation (4.15) on (4.14), the transcendental equation for /lean be expressed as: 

cos(/l)cosh(A) + 1 = 0 where X = pL . (4.16) 

The solution of this equation gives the natural frequencies of the fixed-free beam as, 

f , 
V m 

m- pA (417) 

and for the first three modes; A, =1.87510407 = 4.69409113 - 7.8547574 

where / , l , and m are the natural frequency (in Hertz), dimensionless parameter which is a 

function of the boundary conditions and mass per unit length of the beam respectively. 
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The shape of the natural modes is calculated from following equation: 

Y j = COSh(^ x) - C0S(^ x) - Kf s inh (^ %) - s i n ( ^ x) 

XT, = 0.73409514, = 1.018467319 r , = 0.999224497 

(4J8) 

where k's are the constants depending on the boundary conditions. 

Figure 4.2 shows the first three normalised displacement mode shapes of the fixed-free beam 

plotted using Eq. 4.18. 

Mode 1 
Mode 2 
Mode 3 

-1 5 1 
0 0.2 &3 &G 07 09 1 

Normalised Location [x/LJ 

Figure 4.2 Normalised displacement mode shapes of fixed-free beam 

The curvature mode shapes (Eq. 4.19) can be obtained by taking the second spatial 

derivative of the non-dimensional displacement mode shape equation (Eq. 4.18). 

Y 

cosh(—x) + cos(—x) - sr.f sinh(—x) + sin(—x) (4.19) 
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The first three normalised curvature mode shapes (y" = - ^ — y ) of the fixed-free beam are 

shown in Fig. 4.3. 

Mode 1 
Mode 2 
Mode 3 

% 0.5 

0 &1 02 &3 &G 07 &8 09 1 
Normalised Location (x/Lj 

Figure 4.3 Normalised curvature mode shapes of fixed-free beam 

4.3 Damage Mechanisms in Structures 

Damage may be in different forms in various structures resulting from a number of 

causes. Considering isotropic structures, the type of the damage mostly observed is a crack that 

changes the dynamic characteristics of the structure under vibratory motion. On the other hand 

in composite structures, there are two main types of failure mechanisms in a single lamina: 

micromechanical and macromechanical. 

Micromechanical failures take the forms of transverse matrix cracking due to a brittle 

matrix and a relatively strong interface, fibre-matrix debonding due to weak interface, shear 

fractures caused by relatively ductile matrix and strong interface and fibre failures such as, fibre 

breakage, fibre pullout and fibre buckling (i.e. kinking) [4-1]. 

Macromechanical failures can be implemented by four widely used failure theories 

valid for individual homogeneous laminae with orthotropic material properties, namely: 

Maximum stress, maximum strain, Tsai-Hill and Tsai-Wu [4-2]. Failure analysis of a laminate 

is much more difficult than that of a single lamina. The main three definitions of failure used in 
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this case are initial (first-ply) failure, ultimate laminate failure and interlaminar failure. In 

sandwich structures, delamination between the face and the core material is one of the most 

common types of damage since this is the interface where two different materials meet and 

generally they have the tendency of separation from each other under vibration. 

Definition of the damage is one of the most important criteria to be considered during 

the designing stage of a detection algorithm. The term damage detection used in this thesis is to 

express the use of measured or simulated structural dynamic responses (or their derivatives) in 

detecting changes in the condition of the structure. 

Throughout the thesis, different types of local structural damage are created 

experimentally and simulated numerically by using finite element analysis tool. In order to 

detect these damage, model-dependent vibration-based analyses are performed on different 

beam-like structures considering the effect of the damage on vibration characteristics of the 

structure. Depending on the size of the structure and the damage and the number of parameters 

monitored during in-service life of the structure, large number of sensors may be required. This 

brings the necessity of a damage detection algorithm that can handle large number of sensors 

and the complex signals generated from these sensors by using analytically generated data 

simulating possible damage scenarios. 

4.4 Damage Detection Algorithm 

Investigation of structural damage is a pattern recognition problem. This is an important 

component of both data pre-processing and decision making and it can be categorised in three 

different groups. These are namely: Statistical (or decision theoretic), syntactic (or structural) 

and neural network based approaches. Statistical approaches are on the basis of probability and 

probability density functions for characterisation. On the other hand, syntactic pattern 

recognition approach uses interrelationship or interconnections of features providing structural 

information for classification and description. Finally, neural network based approaches 

including hierarchical structures, clustering, pattern association and learning are the black-box 

implementation of pattern recognition algorithms [4-23]. 

The algorithm adopted here is based on ANN, an information-processing algorithm that 

is inspired by the way which brain processes information. As the brain has multiple neurons 

working together in parallel to process information, similarly an ANN can be configured and 
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trained through a learning process by non-linear parameterised mapping between the input and 

the output sets via their highly interconnected processing elements [4-24], [4-25], [4-26], [4-27]. 

The main advantages of ANNs are their applicability to problems that do not have an 

algorithmic solution or for which an algorithmic solution is too complicated to be found. 

Besides this, ANN offers other capabilities like self-adaptiveness, generalisation and abstraction 

capabilities. In recent years, they have been widely used to investigate the estimate damage in 

isotropic and composites structures. In the following sections, brief theoretical background 

about ANN will be given. 

4.4.1 General Neuron Model 

Since ANNs have been inspired and influenced by the human biological nervous 

system, the best way to understand the structures of a general artificial neuron is to make an 

analogy with a typical biological neuron. Neuron, the basic computing element of the biological 

system, is a small cell composed of a nucleus, soma (cell body of the neuron), axon (neurons' 

output channel), dendrites (neurons' input receptors for coming signals) and synapses 

(interconnection points between neurons which couple the axon with the dendrite of another 

cell). Neurons receive electrochemical stimuli from multiple sources and respond by generating 

electric pulses transmitted to other neurons via their dendrites' synapses. The magnitude of the 

signal received by a neuron from another depends on the efficiency of the synaptic transmission 

and if enough active inputs are received at once then the neuron will be activated and fired by 

propagating a sequence of action potential spikes down the axon to either excite or inhibit other 

neurons; if not, then the neuron will remain in its interactive, quiet state. Figure 4.4 shows a 

biological neuron. 

Dendrites 

Axon 

^ 0 ^ ^napses (Cell Bodyy Nucleus 
Soma 

Figure 4.4 A biological neuron 
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On the other hand, the corresponding artificial neuron has a set of inputs 

with associated weights ( ). These inputs applied to artificial neurons are summed in 

the next level providing a neuron output (net = ). Then, a threshold operation by using 

I 

activation functions (such as, step, linear, ramp, hyperbolic tangent, sigmoid, etc.) is performed 

on the net signal and the final output signal transferred to other neurons is calculated. An 

artificial neuron model is shown in Fig. 4.5. 

Y—' 
Inputs 

net 

/ 
out = f {net) 

— O u t p u t 

Summation Activation 
Function 

Weights 

Figure 4.5 An artificial neuron 

4.4.2 Design of ANNs 

ANNs can be categorised in different subgroups considering their architecture, direction and 

type of connection, learning strategies and methods. Single-layer network is the simplest ANN, 

which is a group of neurons providing a simple output from a weighted sum of the inputs. By 

connecting neurons of single-layers in series, multi-layer ANN is obtained. ANNs may have a 

type of connection between the neurons either within the same layer (intralayer networks) or 

between different layers (interlayer networks). If the information is fed in one direction (from 

input to output) by using weights then it is called feedforward (nonrecurrent) network. On the 

other hand in feedback (recurrent) networks, the final output is calculated by using connections 

extending from output layer to layer of inputs. Since ANNs have the ability of learning, which is 

achieved via training, they can be categorised as supervised and unsupervised by considering 

training methods. The main aim of training the network is to adjust the weights so that 

introducing a set of inputs produces the desired set of outputs. Supervised training requires a 

pair of input and desired output (target) vectors sequentially applied by calculating the 
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difference (error) and feeding back through the network and changing the weights according to 

an algorithm that minimises the error. In contrast with supervised training, unsupervised training 

does not need any target vectors and it uses an algorithm that modifies the network weights in 

such a way that similar vectors are clustered into same classes as an output pattern. In those 

types of training methods, learning is achieved by examining different sample data or the 

environment. 

As multi-layer neural networks are quite powerful in solving pattern recognition 

problems and can be trained to approximate any function arbitrarily well, they are selected and 

used in this study. The reason for adopting supervised type of learning with feedforward 

backpropagation is from the fact that the inputs and desired outputs (i.e. targets) are known for 

samples in the training data, which is generated using FEA from different damage scenarios. 

Since backpropagation algorithm adjusts the connections only between the layers, the designed 

ANNs have interlayer type of connection. Figure 4.6 shows the classification of ANNs with 

most popular learning methods. 

Architecture types 

• Single-layer networks 

• Multi-layer networks 

Direction of connections 

• Feedforward networks 

• Feedback networks 

Types of connections 

• Interlaver connection networks 

• Intralayer connection networks 

Types of learning strategies 

• Supervised 

• Unsupervised 

Types of learning methods 

• Error Correction 

> Perceptron 

> Backpropagation 

> AD ALINE (Adaptive linear neural element) 

• Hebbian 

> Hopfield 

• Competitive 

> LVQ (Learning vector quantization) 

• Stochastic 

^ Boltzman Machine 

Figure 4.6 Classification of ANNs [Bold underlined used in this study] 
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4.4.3 Multi-layer Feedforward BPNNs 

Multi-layer feedforward ANN with backpropagation (so called pattern associator) 

[4-28], [4-29] used in this thesis is one of the most common neural network having supervised 

learning strategy and error correction learning method (generalised delta rule) with applicability 

in classification, pattern recognition, prediction and optimisation applications. 

Multi-layer networks have three layers: an input layer, output layer and a layer in 

between which is not connected directly to the input or the output so called the hidden layer if 

more than three-layers are used. There is always one input and one output layer but there might 

be more than one hidden layers in multi-layer networks. Each layer has its own nodes 

depending on the number of input-output pairs and the topology of the network. The learning 

rule in multi-layer perceptrons is called the "generalised delta rule" or generally 

"backpropagation rule". Figure 4.7 shows the schematic representation of the variables and the 

architecture of the multi-layer neural network. 

Figure 4.7 Multilayer neural network architecture 

The theoretical calculations and the implementation of the algorithm are given by 

considering the optimisation procedure based on gradient descent that adjusts the weights in 

order to reduce the system error. During the learning phase, input and output pairs are 

introduced to the network and the training pattern propagates from input layer to output layer 

(i.e. feedforward). The computed output is compared with the desired output (target) values and 

the error values are calculated. When the process is repeated a number of times (i.e. training), 
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those error values are fed in the backward direction from output to input layer (i.e. 

backpropagation) to modify the weights until the total output error converges to a minimum or 

until some limit is reached in the number of training iterations (i.e. epochs). 

As can be seen from Fig. 4.7, the very first step in the calculations is selecting input 

data, o, ( / = 1,2,...,« ), for training and initialising the weights randomly. Then, net input at the 

node in layer j { j -1,2,..., m ) and k{k-1,2,..., r ) are calculated as. 

i=! 1=1 
0L20) 

and the respective outputs of node j and k after performing the calculations by using activation 

function are 

Oy =/(Mgry) and (4 21) 

In this analysis, the threshold non-linear node function used is sigmoid activation (Fig. 4.8) 

which is continuous and differentiable everywhere and it is mathematically expressed as: 

/ {net) = 
iH-g-"" 

(4.22) 

jinet) 0.5 

Figure 4.8 Sigmoid activation function 

The training is processed by introducing input-output pairs and stabilising the weights in such a 

way that the square of the error, E/ot, in the system (Eq. 4.23) is minimised and hence the 

outputs, , converged to desired target values, ^ . 
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== Tvhere jC' = - o f ) " (4.23) 
^ p=l ^ i = l 

where p denotes the number of training patterns. The minimum error between the output and the 

target values is computed by taking the derivative of the function and introducing the 

learning parameter, 7 (note that the superscript p is dropped for simplicity, i.e. E^ = E). The 

error in weights between input and the hidden nodes and between hidden and the output nodes 

are calculated respectively as: 

Aw.j = and Aw^ = . (4.24) 
^ 'ch,,, * a*,,; 

Using the chain rule for the partial derivative calculation 

dE dE dneti. dE d 

V 
o where Ŝ . = — — (4.25) 

therefore equation (4.24) can be rewritten as 

Awji = y^SjOj and Aw .̂j = ijSi^Oj . (4.26) 

Here, the calculation of <? is a recursive process and obtained by using chain rule and 

equation (4.26). 

v/here = (4.27) 
ck^ (zngf* (%)* corgf* 

hence 

- " ( 4 (4.28) 

and following similar procedure for the internal nodes 
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W y (4.29) 
k~l 

All weights are modified accordingly by using equation (4.30) in the training process 

introducing each input-output set to ANN. 

w"™ = W°'f + zlw = W°lf + TjS jOj 
(^3m 

Parallel to training, another set of data is also used to monitor the error during the validation. 

Finally, new test cases are introduced to ANNs for further predictions. 

The design and application of the proposed multi-layer feedforward backpropagation 

ANNs used for damage detection in FRP laminated beams, validation of the method on steel 

beams and application to sandwich beams are extensively explained in Chapter 7, Chapter 8, 

and Chapter 9, respectively. 
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Chapter Five EXPERIMENTAL DESIGN 

5.1 Introduction 

The dynamic characteristics of the structures are investigated by performing three 

different experiments. The first one used a digital vibration controller to measure and record the 

acceleration response of the structure under different excitations covering a certain range of 

frequencies, which can then be used to obtain resonant frequencies and damping ratios of the 

beams. In the second experiment, a signal-conditioning amplifier is used to measure dynamic 

strains at eight different locations from which strain mode shapes of the structure can be 

obtained. The third test uses fibre optic Bragg grating interrogation system (FBGIS) to record 

strain trom surface bonded and embedded fibre Bragg grating (FBG) strain sensors. The 

following sections will also outline the experimental set-up considering individual units and the 

characteristics of the transducers used during the experiments by describing different excitation 

types and the specimens used in the analyses. 

5.2 Experimental Set-up for Vibration Testing 

Three main units are used during the vibration testing performed on intact and damaged 

beams via electro-dynamic vibration generator [5-1]. These are namely: 

(a) Digital vibration controller with data acquisition unit for acceleration measurements [5-2] 

(b) Signal-conditioning amplifier with data acquisition system for strain measurements with 

electrical resistance strain gauges. 

(c) Fibre optic Bragg grating interrogation system with fibre Bragg grating strain sensors. 

Figure 5.1 shows the experimental set-up for vibration testing. This experimental set-up 

is used to determine frequency response functions, resonant frequencies, dynamic strain 

histories and strain mode shapes of the cantilever intact and damaged beams. 
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Accelerometer (Monitor) 
FBG Strain Sensors 

Clamp _ _ 
Accelerometer f l I / 

Power 
Amplifier 

Digital Vibration Controller 
& Data Acquisition Unit 

PC 

Electro-dynamic 
Vibration Generator 

Signal 
Conditioning 

Amplifier 

(Control) 

Strain 
Gauges 

PC 

Fibre Optic Bragg Grating 
Interrogation System 

Data 
Acquisition 
Unit 

Figure 5.1 Experimental set-up for vibration testing 

5.2.1 Acceleration Measurement 

A four-channel (one input channel for controlling and three output channels for 

monitoring) digital vibration controller with data acquisition unit is used to measure acceleration 

amplitude histories from two channels including both input (control excitation) and output 

(dynamic behaviour of the specimen). The software has the capabilities of post-processing the 

data, plotting the amplitude of input and output signals in frequency domain and zooming to 

peak values for more accurate prediction of the resonant frequencies. 

5.2.2 Strain Measurement with Strain Gauges 

A Measurements Group Model 2000 signal-conditioning amplifier having 10 channels 

is used to amplify the signals from strain gauges. The strain readings are recorded by using 

National Instruments VXI A/D acquisition system as change in voltage. The excitation level is 
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set to 2 V that is equivalent to 1000 //g- and then the bridge is balanced. In order to find 

calibrated and measured strain values, the following equations [5-3] are used: 

a* 10* 
= r. /n.x ^here = 59.94kO, = 120O, = 2.11 (5.1) 

a ( a g + { k ^ / z ) ) 

r/AEm,/ \vhere fwdam&d =0, %%,, ==2T/ (5.2) 

In Aese equations, A:, and are the gauge factor of strain gauge, 

strain gauge resistance, calibration resistor, calibration voltage, voltage reading from loaded 

strain gauge, calibrated strain and measured strain respectively. 

5.2.3 Strain Measurement with FBG Strain Sensors 

A Fibre Optic Bragg Grating Interrogation System is used with in-house software that 

provides simultaneous strain and temperature measurements under static and dynamic loading 

by using dual-wavelength superimposed FBG method [5-4]. Assuming that the strain and 

temperature are essentially independent and the wavelength shifts in strain and temperature are 

linear, Eq. 5.3 can be used in the calculation of strain and temperature from wavelength shifts. 

AAg = ^Ae ' (5.3) 

where and A r are the Bragg wavelength shift, strain and temperature 

sensitivities of FBG and change in strain and temperature respectively. During the analysis, 

is assumed as zero (i.e. no temperature compensation) and is taken as 1.24 [5-4] which 

is an average value for FBG sensors made from standard telecoms fibre. The verification of 

FBGIS and its limitations under dynamic and static loading conditions are given in Appendix A 

and partly in Appendix B respectively. 

5.3 Transducers 

The available sensors for vibration measurements were outlined in Chapter 2 by 

considering their effectiveness and application areas. In this section, experimental dynamic 
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analyses performed by using piezoelectric accelerometers [5-5], surface bonded strain gauges 

and fibre optic strain sensors (FOS) are explained and brief technical information about their 

characteristics is also given. 

5.3.1 Accelerometers 

Two accelerometers are used during the experimental analysis. One of the 

accelerometers (ISOTRON® PE Accelerometer, LDS 2256-100) [5-6] is used to control the 

input excitation amplitude supplied to the electro-dynamic vibration generator and the other 

(PCB Piezotronics, 352 Ml 19) [5-7] is used to monitor the output acceleration amplitude from 

the specimen. The sensitivities of the accelerometers are 99.2 mV/g and 9.90 mV/g respectively. 

The accelerometer monitoring the response of the beam is attached on the centre line at the free 

end of the beam using mounting wax. This location of the accelerometer is selected from among 

several locations considered because it gives sufficient responses for all first three modes. 

5.3.2 Strain Gauges 

Eight single element electrical resistance gauges (FLA 3-11) [5-8] with gauge length of 

3mm, nominal resistance of 120 O ± 0.3 and a gauge factor of 2.11 are used to measure the 

direct strain on the surface of the beams. The distributed surface bonded strain gauges, which 

are numbered from the one closer to free end of the beam, can be seen from Fig. 6.3. The detail 

information about the spatial location of the gauges along the beam will be given in the finite 

element analysis for curvature mode shape section (Section 6.4.2). 

5.3.3 Fibre Optic Sensors 

The significant advantages of FOSs over conventional accelerometers and strain gauges 

were outlined in Section 2.4.2 and Table 2.5. There are varieties of FOSs available for strain 

sensing. In this particular application, FBGs [5-4], [5-9], [5-10] are used since they are able to 

perform absolute strain measurements with good linearity. FBG strain sensors are created in an 

optical fibre by periodically modulating the core refractive index over a short length along the 

fibre. When a section of fibre containing a grating is subjected to axial strain or to temperature 

change, the grating spacing and the refractive index change. This change affects the Bragg 

wavelength and it acts as sensor to detect strain (Eq. 5.3), 
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5.4 Excitation 

There are several experimental techniques available in order to measure and estimate 

the dynamic characteristics of the structures. These techniques generally use an external 

excitation given to the structure to acquire a dynamic response. During the analyses, three 

different types of excitation (frequency sweep, constant frequency and random excitation) are 

applied via the electro-dynamic vibration generator controlled by the digital vibration control 

system. Impact excitation is also given to specimens using an instrumented hammer. 

5.4.1 Frequency Sweep Excitation 

The purpose of the frequency sweep (i.e. sine sweep) excitation is to identify the 

response of a test piece to vibration across a range of frequencies. In this way, resonant 

frequencies of the test specimen can be investigated. The sweep rate can be entered to the 

system as a time per complete frequency sweep or directly as a rate (Hz/s). Uni-directional type 

sine sweep with linear incremental sweep rate from low frequency limit to higher level of 

frequency is used as an excitation during the experimental modal analysis aiming to investigate 

the first three resonant frequencies of the beams. 

5.4.2 Constant Frequency Excitation 

This type of excitation can be applied with constant acceleration input operating at a 

single frequency. After obtaining resonant frequencies of the test specimen by using sine sweep, 

corresponding displacement or strain mode shapes can be extracted by applying constant 

frequency excitation at each resonant frequency of interest. 

5.4.3 Random Excitation 

During the random test, the test specimen is subjected to vibration consisting of 

constantly and randomly (i.e. continuous random noise with Gaussian distribution) varying 

levels of frequencies within a specified range. One of the most important parameters in random 

test is bandwidth value which is used to determine the highest frequency that can be displayed 

while the test is running. The "best fit" option in the software is used during the test since it 

automatically sets the bandwidth to the value that accommodates the entire profile. Broadband 
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excitation of 10 Hz to 710 Hz covering the first three modes of vibration is given to test 

structure. The output of random test is the power spectral density (PSD) of the signal, a measure 

of power within each IHz band of the test spectrum, in gn^/Hz for that frequency point, gn 

denoting the acceleration due to gravity g. 

5.4.4 Impact Excitation 

Impact excitation with instrumented hammer can be used to excite the structures in 

different frequency and force levels. During the analysis, ENDEVCO Model 28981A modal 

hammer [5-11] set is used. The load cell in the head of the hammer detects the magnitude of the 

force felt by the impactor and this force is equal and opposite to that experienced by the 

structure. The stiffness of the hammer tip is very important from the frequency range point of 

view. Since the stiffer tip makes the duration of the pulse shorter, the higher frequency range 

can be covered by the impact. This instrumented hammer has three different tips (aluminium, 

rubber, plastic) to tailor the input force pulse and built-in signal conditioner/amplifier with 

switchable gain of 1 or 10. The gain for the instrumented hammer is used as 10 and the 

aluminium tip having a voltage sensitivity of 0.227 mV/N is chosen. The applied force can be 

calculated from the output by using equation 5.4. The details of the modal analysis performed 

on sandwich structures are given in Appendix B. 

Force = [ N ] (5.4) 
Voltage Sensitivity 

5.5 Test Specimens 

5.5.1 Steel Beam Specimens 

Intact (control) and damaged steel beams (Figs. 6.3 and 6.4) are used during the 

experimental dynamic analysis. These two specimens have identical geometrical and material 

properties shown in Table 5.1. The damage is created by removing the material from the 

surface of the specimen across the whole width at 205mm away from the fixed end in order to 

obtain a 2mm deep and 10mm wide slot on the lower part of the beam. Surface bonded 
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distributed strain gauges are used for measurement of both dynamic and static responses; on the 

other hand, static test for calibration of the system is performed by using FBG strain sensors. 

Table 5.1 Geometrical and material properties of steel specimen 

Length [m] 0.450 

WkKhBm] &040 

Thickness [m] 0.003 

Elastic Modulus [Pa] 207.10® 

Density [kg/m^] 7850 

Poisson's ratio 0.33 

5.5.2 Sandwich Beam Specimens 

Another set of intact and damaged specimens used during the analysis comprises 

sandwich beams with GFRP skin and foam core cell. The manufacturing process, geometrical 

and material properties, embedding process of FBG strain sensors and dynamic analysis 

performed on these beams are explained in Chapter 9 in detail. 
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Chapter Six ISOTROPIC BEAM STRUCTURE 

6.1 Introduction 

In model-dependent vibration-based analyses, it is important to have an accurate 

numerical model before performing the experiments. Since closed-form solution is available for 

modal analysis of the intact isotropic beam-like structures, a uniform (450mm x 40mm x 3 mm) 

steel beam (£• = 207.10® Pa, /? = 7850kg/m^, v = 0.33) is a very good candidate for 

calibration of the experimental set-up and preliminary applications of the proposed damage 

detection method before applying it to different structures which are more complicated to model 

such as laminated composites or sandwich structures. 

6.2 Frequency Analysis 

Theoretical, numerical and experimental modal analyses are performed to find the first 

three natural frequencies of intact and damaged fixed-free steel beams. Theoretical calculation 

is only carried out for intact uniform beam. In numerical analysis, finite element models of 

intact and damaged steel beams are created by using commercial software package, ANSYS 

6.1® [6-1]. In this section, not only modelling of the beam-like steel structure but also simulation 

of the damage introduced to this structure is addressed. After performing an experimental modal 

analysis, results are compared with those obtained from numerical calculations in order to verify 

the finite element beam models and to check the accuracy of the measuring instruments used 

during the experiment. 

6.2.1 Theoretical Calculation 

The first three bending natural frequencies of a cantilever steel beam can be calculated 

theoretically by using equation (4.17). The results are tabulated in Table 6.1. 
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Table 6.1 First three natural frequencies of intact cantilever beam (Theoretical Solution) 

Mode No Natural Frequency [Hz] 

1^'Bending 12.2893 

2"''Bending 77.0156 

S"'Bending 215.6461 

6.2.2 Finite Element Modelling and Analysis 

In the finite element modelling of the steel beam, three different element types 

(BEAM3, SHELL63 and SOLID45 [6-2]) are used. Shear deflection is not included in models 

using BEAM3 and SHELL63 type of elements. Figure 6.1 shows finite element models of 

cantilever beam in isometric view. Due to the difficulties in showing finer mesh densities, 6x45 

and 6x90x3 mesh densities are shown in Fig. 6.1 for shell and solid elements models, 

respectively. SHELL63 type elements are selected for meshing and further analyses since local 

damage can be modelled by using these four-node quadrilateral two-dimensional elements 

either by changing their stiffness or thickness at particular locations. Since shell elements have 

six degrees of freedom (three translational and three rotational) at each node, cantilever 

boundary condition can also be modelled more realistically by constraining all degrees of 

freedoms of the nodes located at the root of the beam. The first three bending natural 

frequencies of the intact cantilever beam for different mesh densities are also obtained in order 

to check the mesh independency. Since the variation in natural frequencies is less than 1% 

between 12x180 (i.e. 12 and 180 element divisions along the width and the length of the beam 

respectively) and 24x260 mesh densities, the former having 2160 elements is used for all latter 

simulations. After performing modal analysis for the first three bending natural frequencies, 

results obtained from different models are compared with closed-form solution in Table 6.2. 

Table 6.2 First three natural frequencies of intact cantilever beam (FEA) 

Natural Frequency [Hz] 

Beam Elements Shell Elements Solid Elements 

MbdeNo M 12x 180 6 x 9 0 x 3 

1®'Bending 12.289 12382 12.395 1®'Bending 
(-0.0024) (&7543) (0.8601) 

2"''Bending 
77.011 77^78 77.668 

2"''Bending 
(-0.0060) (0.7302) (0.8471) 

3"" Bending 
215^2 217390 217.69 

3"" Bending 
(-0.0121) (0.8087) (0.9478) 

[Number in parenthesis shows the percentage difference between theoretical and FEA results] 
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(a) 

i ' 

(b) 

(c) 

Figure 6.1 Finite element models of steel cantilever beam 

(a) Beam elements (b) Shell elements (c) Solid elements 
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A structural damage of 2mm deep and 10mm wide slot along whole width of the beam 

located at 205mm away from the fixed end is simulated. This damage can be modelled in three 

different ways by using beam, shell and solid elements. Damage is introduced by changing 

thickness, cross-sectional area and second moment of area of the selected elements in the model 

where beam elements are used. In shell elements, the thickness of the beam is modified at the 

location of the damage and new reduced thickness information is given to finite element model 

(FEM) as 1 mm. Finally, same damage is modelled geometrically using three-dimensional solid 

elements. Figure 6.2 shows the location and the zoom view of the damage in FEM of the beam 

with solid elements. A 6x45x3-mesh density is used for demonstration. 

205mm 

10mm 

0 
(a) # ) 

Figure 6.2 Damaged beam with solid elements (a) Damage location (b) Zoom view 

Modal analyses are also performed numerically on damaged beams modelled by beam, 

shell and solid elements and the results for the first three natural frequencies are tabulated in 

Table 6.3. 

Table 6.3 First three natural frequencies of damaged cantilever beam (FEA) 

Natural Frequency [Hz] 

Beam Elements Shell Elements Solid Elements 

Mode No 90 12x 180 6 x 9 0 x 3 

1 ® Bending 

2"̂  Bending 

3"" Bending 

10.538 

58.859 

210.80 

10J38 

60327 

212369 

10.683 

60.054 

213.470 
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6.2.3 Experimental Analysis 

Two steel beams having same geometrical (450mm x 40mm x 3mm) and material 

properties are used during the experimental modal analysis. One of the beams is selected as 

control specimen (intact structure, Fig. 6.3) and the other is used as a damaged beam (Fig. 6.4) 

having a 2mm deep and 10mm wide slot which is created by removing the material from the 

surface of the specimen along whole width at 205mm away from the fixed end. The distributed 

surface bonded strain gauges are numbered starting from the one closer to free end of the beam 

(Fig. 6.3). The detailed information about the spatial location of the gauges along the beam is 

given in Fig. 6.9. 

In order to find the first three resonant frequencies of the intact and damaged cantilever 

beams, frequency sweep excitation is applied in the range of 3 - 253 Hz with an increment of 

0.5 Hz. This range is estimated from theoretical and finite element modal analysis results. The 

excitation amplitude is set to 0.5g throughout the sweep and controlled by an accelerometer 

mounted to electro-dynamic vibration generator. The output signal coming from the test 

specimen is also monitored with another accelerometer which is attached along the centre line at 

the free end of the beam. This location of the accelerometer is selected from among several 

locations considered because it gives sufficient responses for all three modes. 

Figures 6.5 and 6.6 show half of the peak-to-peak values of the acceleration amplitude 

of intact and damaged specimens with increasing frequency respectively. The numbers near 

each peak response level indicate experimentally obtained resonant frequencies. All frequencies 

for the damaged and intact beam are also tabulated and compared with FEA results in Table 

6.4. 

Table 6.4 First three natural frequencies of intact and damaged beams [Hz] 

Finite Element Analysis 

(Shell Elements, 12x180) 

Experimental Results 

Mode No 
Intact 
Beam 

Damaged 
Beam 

fiitimngccl 

fintacl 

Intact 
Beam 

Damaged 
Beam 

fikmogcd 

fmtact 

r'Bending 12J82 10J38 0.8672 1L8 9.2 0.7796 

2"̂  Bending 77.578 60.327 0.7776 711 5&5 0.6908 

3"* Bending 217.390 212369 0.9769 205.6 200^8 0.9766 
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Effective length of the 
beam = 450 mm 

Cantilever end 

& 
Figure 6.3 Intact steel beam specimen with distributed strain gauges 

Damaged Steel 
Specimen 

Electro-dynamic 
Vibration Generator 

ifeti-i 

Figure 6.4 Damaged steel beam specimen on the test rig 

66 



Chapter 6 Isotropic Beam Structure 
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11.8 Hz 
73.1 Hz 
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5 0 . 0 0 0 1 0 0 . 0 0 1 5 0 . 0 0 2 0 0 . 0 0 2 5 0 . 0 0 
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Figure 6.5 Frequency response of intact cantilever beam 

c o 
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200.8 Hz 

50.5 Hz 
9.2 Hz 
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Figure 6.6 Frequency response of damaged cantilever beam 
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6.3 Damping Analysis 

All structures have different amount of damping which brings the system to equilibrium 

at higher or lower amplitudes depending on the magnitudes of the damping forces. Damping 

ratio is especially important for forced vibration analysis. The aim of this section is to find the 

damping ratio ( ^ ) o f the intact and damaged steel beams. The first three modes are of primary 

interest in damping analysis. Frequency response amplitude of each mode is taken and damping 

ratios are estimated from the half-power bandwidth method [6-3]. In order to find the damping 

ratios from the frequency response function (FRF), the resonant frequency (/,.g,) and two 

frequencies ( / j and f j ) on either side of the resonant frequency for which the amplitude is _1_ 
V2 

times the resonant amplitude should be found. Figure 6.7 shows estimation of material damping 

by using half-power bandwidth method in the first bending mode. 

Peak resonance amplitude 
26.840 gnpk 

Peak resonance amplitude 

Peak resonance 
occurs at 

y;^=11.3Hz 

18.987 gn pk 

c 
0) 

y^=11.18Hz /2 = 11.48Hz 

5 . 0 0 0 0 5 . 0 0 0 0 7 , 0 0 0 0 0 . 0 0 0 0 9 . 0 0 0 0 1 0 . 0 0 0 1 1 . 0 0 0 1 2 . 0 0 0 1 3 . 0 0 0 1 4 . 0 0 0 1 5 . 0 0 0 

Freq (Hz) 

Figure 6.7 Estimation of material damping from half-power bandwidth method 

(Steel beam, Bending Mode) 

Damping ratios obtained using Eq. 6.1 in the range of the first three resonant 

frequencies for intact and damaged beams are tabulated in Table 6.5. These values are used in 

finite element harmonic analysis of the steel beam. (Section 6.4.2.2) 
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Bandwidth - / , 
(&1) 

Table 6.5 Damping ratios of intact and damaged steel beams 

Mode No 

1®'Bending 

2"" Bending 

3"* Bending 

Intact Beam 

0.01327 

0.01273 

0.00414 

Damaged Beam 

0.03591 

(X01337 

0.00373 

6.4 Curvature (Strain) Mode Shape Analysis 

During the analyses, curvature mode shapes are obtained in three different ways. The 

following flowchart (Fig. 6.8) shows the procedure followed and applied on steel beam in order 

to achieve curvature or strain mode shapes. 

THEORY 

Steel Beam 
2" Derivative of Deflected Shapes 

Curvature Mode 
Shapes 

Steel Beam Curvature Mode 
Shapes 

FINITE ELEMENT 
ANALYSIS 

Steel Beam 

Modal Normalised 
Displacement 
Mode Shapes 

Central Difference Curvature Mode 
Shapes Analysis 

Normalised 
Displacement 
Mode Shapes 

Approximation 

Curvature Mode 
Shapes 

Harmonic Analysis Nodal Strain 
Values 

Curvature Mode 
Shapes 

Nodal Strain 
Values 

Curvature Mode 
Shapes 

EXPERIMENT 

Steel Beam 
Specimen 

Frequency 
Sweep 

Excitation 
Frequencies 

Constant 
Frequency 

Excitation 
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Figure 6.8 Methods to obtain curvature (strain) mode shapes 
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6.4.1 Theoretical Solution for Curvature Mode Shapes 

As explained in Section 4.2, normalised curvature mode shapes can be obtained 

theoretically by using Eq. 4.19 for uniform, homogeneous, slender single-span beams having 

isotropic elastic material properties. Hence, the intact steel beam used in the analyses satisfies 

these conditions, the data plotted in Fig. 4.3 is the solution for curvature mode shapes of this 

cantilever beam. The theoretical results are also shown in Fig. 6.13 for comparison purposes. 

6.4.2 Finite Element Analysis for Curvature Mode Shapes 

The curvature mode shapes of the steel beam are obtained by using two different FEA 

approaches. The first approach is free vibration modal analysis from which normalised 

displacement mode shapes are calculated. Then, central difference approximation [2-18] is 

applied on normalised displacement mode shapes by using equation (6.2) in the calculation of 

curvature mode shapes. 

- 2 v , +v ,_ , ) 
71 (62) 

where v. , v., h and i are the curvature, normalised transverse displacement, the distance 

between two collocation points in the FEM and the number of collocation points along the beam 

model respectively. The second approach is harmonic analysis based on frequency sweep 

excitation. Since this is a forced vibration analysis, nodal strain values are available from FEA. 

This means that there is no need to use normalised displacement mode shapes and central 

difference approximation in the calculation of curvature mode shapes which can be obtained 

directly from finite element nodal strain data. 

6.4.2.1 Free Vibration 

In this part of the analysis, modal analysis is performed on finite element model of the 

steel beam in order to obtain displacement mode shapes for the first three natural modes. 

Normalised displacement mode shapes are used as an input data for Eq. 6.2 to calculate 

curvature mode shapes. Since this equation is valid for equally spaced collocation points, more 

number of nodes which are evenly distributed and located along the centre line of the beam are 

selected from FEM to increase the accuracy and smoothness of the curvature mode shapes. 
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Then, curvature values at eight different collocation points (Fig. 6.9) where strain gauges are 

located on the beam test specimen are selected and normalised with respect to curvature value at 

Location 8. 

045 

Cantilever 
^ End Damage 

&03 8 

0J6 

&205 

&25 

&30 

0J5 

&40 

Figure 6.9 Collocation points on damaged beam [Not to scale, Dimensions in meter] 

6.4.2.2 Forced Vibration 

In this part of the analysis, harmonic analysis is performed by sweeping frequency with 

0.5 Hz increment within different ranges of each mode of intact and damaged FEM of the steel 

beam structure. Mode superposition method in ANSYS® is used with constant modal damping 

ratio and stepped forcing frequency in a specified frequency range by superimposing the first 20 

modes. The experimentally obtained damping ratio of each mode (Table 6.5) is specified 

accordingly during the analysis. Magnitude of the excitation force during the analysis is taken as 

0.5g in the vicinity of the first mode resonance and 0.75g for the second and third mode 

resonance vicinities. Figures 6.10 and 6.11 show elastic strain values from eight different 

locations (Fig. 6.9) obtained by sweeping the frequency across first, second and third bending 

resonant frequencies on intact and damaged beams respectively. Then, frequency range and 

sweep rate are reduced and strains corresponding to resonant frequencies are zoomed in order to 

achieve higher accuracy in the analysis. In order to obtain the normalised strain mode shapes 

from FRF, maximum strain values (i.e. peak values occurring at resonant frequencies) are 

selected, normalised with respect to nodal strain value at Location 8. These strains values are 

also plotted in Figs. 6.13 and 6.14 for the intact and damaged beams respectively and compared 

with the results obtained from theory and experimental analysis in the results and comparison 

section (Section 6.4.4). 

71 



Chapter 6 Isotropic Beam Structure 

Location 8 
Location 7 
Location G 
Location 5 
L o c a t i o n 4 
Location 3 
Location 2 
Location 1 

X 10 

8 10 
F r e q u e n c y [Hz ] 

(a) 

Location 8 
Location 7 
Location G 
L o c a t i o n 5 
Location 4 
L o c a t i o n 3 
Location 2 
Location 1 

^ 80 K 
Frequency [Hz] 

Location 8 
L o c a t i o n 7 
Location G 
L o c a t i o n 5 
Location 4 
L o c a t i o n 3 
Location 2 
L o c a t i o n 1 

2 0 6 2 0 8 2 1 0 212 214 216 2 1 8 220 
Frequency [Hz] 

2 2 2 224 2 2 6 

(c) 

Figure 6.10 Strain values for intact steel beam for different frequency ranges 

(a) 1-20 Hz (b) 70-90 Hz (c) 205-225 Hz 
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Figure 6.11 Strain values for damaged steel beam for different frequency ranges 

(a) 1-20 Hz (b) 50-70 Hz (c) 205-225 Hz 
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6.4.3 Experimental Analysis for Strain Mode Shapes 

After obtaining the resonant frequencies numerically, experimental modal analysis ([6-

4], [6-5]) is also performed so as to obtain the dynamic strain mode shapes of intact and 

damaged beams excited at those particular resonant frequencies. During the dynamic strain 

analysis, sampling rate and sample length are taken as of 800s'* and 4000 respectively 

corresponding to 5s strain measurements. The amplitude of the constant acceleration input given 

to electro-dynamic vibration generator operating at fundamental resonant frequency is taken as 

0.5g during the dynamic strain experiment. Figure 6.12 shows the voltage output of eight strain 

gauges in the first mode of the intact beam. These voltage values are converted to strain and 

normalised with respect to strain gauge number 8, which is the closest strain gauge to the fixed 

end of the beam. Same procedure is followed for the second and third mode of the intact and the 

damaged beams with amplitude of 0J5g constant acceleration input. All normalised strain mode 

shapes of intact and damaged beams (Figs. 8.12 and 8.13) obtained from experimental strain 

time histories (Figs. 8.6 - 8.11) are plotted and shown in Chapter 8. 
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Fig. 6.12 (continued over) 
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Figure 6.12 Voltage output of eight strain gauges in the first mode (Intact Beam) 

6.4,4 Results and Comparisons 

In this section, all theoretical and finite element (i.e. shell elements) analysis results are 

presented and compared to each other for the steel cantilever beam. Throughout the analyses, 

the first three natural modes are of primary interest for the calculation of curvature or strain 

mode shapes. Figure 6.13 shows normalised absolute curvature mode shapes of the intact beam 

obtained considering eight different locations corresponding to locations of strain gauges along 

the beam specimen. Normalisation is performed with respect to location 8, which provides a 

reasonable finite amount of strain for all three modes, in order to investigate the relative change 

in curvature at eight different locations. 
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Figure 6.13 Normalised absolute curvature mode shapes of intact steel beam 

(a) Mode 1 (b) Mode 2 (c) Mode 3 
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Figure 6.14 Normalised absolute curvature mode shapes of damaged steel beam 

(a) Mode 1 (b) Mode 2 (c) Mode 3 
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It can be seen from Fig. 6.13 that the curvature results are quite close to each other for 

the intact beam. Same approach and analyses performed on intact beam are also applied to 

damaged beam (Fig. 6.14). Although the general trend is similar in change in curvature along 

the beam, the values show slight differences at the damage location between the two different 

finite element analyses. On the other hand, the same point (location 5 or sensor number 5) 

shows a sudden change in the curvature making it discontinuous at that particular location 

where the damage is located. The effect of severity and location of the damage on absolute 

differences in curvature mode shapes between intact and damaged structures will be 

investigated in section 7.4 by performing sensitivity analysis on FEA data of laminated 

composite beams. 

6.5 Static Strain Analysis 

6.5.1 Strain Gauges 

A Static strain experiment is performed on the steel beam specimen in order to calibrate 

the strain gauges. A mass of 200 gram is applied at the free end of the beam along the centre 

line and strain data are recorded from eight different gauges (Fig. 6.3). Since the output of the 

strain-conditioning unit is voltage, MATLAB® [6-6] program is used to post process the data for 

the calculation of the normal strains (Eqs. 5.1 and 5.2). In order to verify the strain 

measurements obtained from strain gauges, FEA is also performed with static load of 1.962N 

(equivalent to 200g mass). Table 6.6 shows the FEA results (shell elements, 12x180 mesh 

density) obtained at eight different locations along the intact beam under static loading. The 

comparison of the finite element and experimental static strain analysis results can be seen from 

Fig. 6.15. 

Table 6.6 Finite element static strain analysis results 

Location Strain [10"®s] 

1 7.9421 
2 15.799 
3 23.696 
4 3L594 
5 38.703 
6 45.811 
7 55.261 
8 63J08 
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Figure 6.15 Static strain analysis results (FEA - Experimental) 

6.5.2 FBG Strain Sensors 

Another steel beam (450mm x 40mm x 3 mm) having three surface bonded strain 

gauges and three FBG strain sensors located at lower and upper surface of the structure is used 

for calibration purpose. The accuracy and the linearity of the FBGIS, consistency and 

repeatability of the measurements with FBG strain sensors are also checked by performing static 

strain experiment. Figure 6.16 shows the location of the strain gauges and the FBG strain 

sensors along the beam. 

4 
FBG Strain Sensors 

0.090 

J 0.205 

2 1 Strain 
Gauges 

0335 

Figure 6.16 Location of strain gauges and FBG strain sensors 

[Not to scale, dimensions in meter] 

An incremental static load of 140, 240, 340 and 440 gram are applied along the centre 

line of the beam at the free end and strain variations in three FBG strain sensors are recorded. 

The changes in strain values of the FBG strain sensors due to static loads are shown in Fig. 

6.17. The discontinuity in strain history occurs at the instant of application of the static load. 
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Finite element and experimental strain analysis by using electrical resistance gauges are also 

performed with 140-gram load. The tabulated form of the results can be seen in Table 6.7. 
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Figure 6.17 Strain measurement with FBGs 

Static load of (a) 140 gram (b) 240 gram (c) 340 gram (d) 440 gram 

Table 6.7 Strain analysis results with 140-gram static load 

Location FEA [lO-̂ E] Strain Gauges [lO'^s] FBG Strain Sensors [10"®8] 

1 12.7170 11.5627 9.1231 

2 27.0914 26.4292 23.1294 

3 39.7584 36.6438 38.1370 
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6.6 Conclusions 

In this chapter, vibration characteristics of intact and damaged isotropic beams were 

investigated. It can be seen from the summary section (Table 2,1) in the literature review 

chapter that there are numerous investigations concentrated on the calculation of natural 

frequencies and/or displacement modes shapes (or curvature mode shapes, Laplacian, etc.) in 

the determination of damage in isotropic structures. Table 6.8 shows studies on isotropic beam 

structures and the features including both frequency changes and curvature mode shapes 

obtained from free vibration analysis. 

Table 6.8 Studies on isotropic beam structures and features 

Studies on Isotropic Beam 
Structures 

[11] [12] [13] [15] [16] [17] [18] 
[19] [20] [21] [22] [23] [25] [26] 
[28] [36] [39] [40] [42] [53] [58] 

Frequency Changes 
[11] [12] [13] [17] 
[18] [19] [20] [28] 

Curvature Mode Shapes or [18] [19] [20] [21] 
Strain History [22] [23] [25] 

Both Frequency Changes and 
Curvature (Strain) Mode Shapes 

[18] [19] [20] 

[Numbers in brackets are references from Chapter 2] 

In this study, beams were modelled using finite element analysis and specimens were 

manufactured with surface bonded strain gauges and FBG strain sensors. Dynamic analyses 

were performed with different excitations aiming at natural frequencies and local dynamic strain 

histories. During the analysis, the first three natural modes of the beams were of primary 

interest. Both numerical and experimental results showed that there was a strong 

correspondence between the existence of the damage and reduction in frequencies depending on 

the natural mode of interest (Table 6.4). 

Curvature modes were calculated numerically not only using second derivative of the 

deflected mode shape from continuous beam theory and modal analyses followed by central 

difference approximation in free vibration (in references [2-18], [2-19], [2-20]) but also by using 

forced vibration under harmonic excitation providing local (nodal) strain values. The results 

from numerical work were compared to strain mode shapes obtained experimentally using 

electro-dynamic vibration generator and eight distributed strain gauges along the span of the 
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beams. In order to compare curvature and strain variations along the beam span, the data was 

normalised with respect to the gauge, which is closest to root of the beam (i.e. at location eight). 

Change in curvature along intact beam obtained from experimental analysis (Fig. 8.12) showed 

good agreement with the ones obtained from numerical analyses (Fig. 6.13). On the other hand, 

in the damaged beam case, both numerical results (Figs. 6.14) showed some variations from the 

experimental one (Fig. 8.13) especially at the location of the damage due to the local change in 

thickness. 

Considering the strain data (Fig. 6.17) from surface bonded FBG strain sensors, it can 

be concluded that filtering of the noise is an important issue for further analysis. Additionally, 

FBG strain data under static loading condition provides slightly different values although strain 

analysis results obtained from strain gauges and FEA are quite close to each other. 

It can finally be concluded from numerical and experimental analyses that the 

modelling of the real damage in FEA, the method used in the calculation of the curvature mode 

shapes, structural coupling between the sensors (or gauges) and the host structure, the noise 

content in the data are the most important factors affecting the accuracy of the analysis results. 
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7.1 Introduction 

This chapter investigates the effectiveness of the combination of global (changes in 

natural frequencies) and local (curvature mode shapes) vibration-based analysis data as input for 

ANNs for location and severity prediction of damage in FRP laminates [7-1], [7-2]. Since the 

dynamic behaviour of isotropic structure (steel beam) has already been analysed in Chapter 6, 

an FRP composite beam is selected as a base structure for further analyses before investigating 

the behaviour of sandwich structures. A finite element analysis tool has been used to obtain the 

dynamic characteristics of intact and damaged cantilever laminated composite beams for the 

first three natural modes. Different damage scenarios have been introduced by reducing the 

local stiffness of the selected elements at different locations along the finite element model of 

the beam structure. After performing the sensitivity analyses aimed at finding the necessary 

parameters for the damage detection, different input-output sets have been introduced to various 

ANNs. In order to check the robustness of the input used in the analysis, random noise has been 

generated numerically and added to noise-free data during the training of the ANNs. Finally, 

trained feed-forward backpropagation ANNs have been tested using new damage cases and 

checks have been made for severity and location prediction of the damage. 

7.2 Frequency Analysis 

An intact cantilever composite beam model used in the analysis is made up of four-

layer, equal thickness, symmetric cross-ply [0°/90°/90°/0°] laminae with following normalised 

geometrical and dimensionless elastic orthotropic properties. 

— = 10, ^: = ioo (7J^ 
w t 
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: ^ = 40, G, 
0.6, ^ 0.5, V 12 ' 2 3 ' 13 025 (7.2) 

L, w and t are the length, width and total thickness of the beam and E's, G's and v ' s are 

elastic moduli, shear moduli and the Poisson's ratio respectively. These elastic constants are 

selected to simulate high modulus FRP composites similar to those in the work of Mallikarjuna 

and Kant [7-3]. 

7.2.1 Finite Element Modelling and Analysis 

A three-dimensional linear layered structural shell element with eight nodes, SHELL99 

[6-2], is selected to model the layered composite beam. Figure 7.1 shows the finite element 

mesh of the composite beam with shell elements (2x20-mesh density). 

0.551 
--.Damage 

0.11 

Figure 7.1 Finite element model of cantilever composite beam (Top view) 

In order to validate the modelling approach with the results from [7-3] and [7-4], 

geometry (square, simply supported, symmetric, cross-ply, equal thickness composite plate) 

similar to their case is used with the same material properties (Eq. 7.2). 100 elements (10x10) 

are used in the finite element model and the dynamic analysis is performed to find the first 

dimensionless natural frequency of the plate structure. Table 7.1 shows the results of modal 

analysis performed with this plate and it can be seen that the present ANSYS model gives good 

agreement with the previous published work. 

The composite cantilever beam model was thus derived by changing the geometry and 

boundary condition from the validated plate model outlined in the previous paragraph. Four 

different mesh densities having 40, 80, 200 and 800 elements are used to perform mesh 
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independence studies of the intact beam model by performing modal analysis aiming at the first 

three bending natural frequencies. The results obtained from these cases showed less than 0.1 

per cent difference in the computed frequencies; hence the mesh density of 40 elements having 

165 nodes is used for all subsequent simulations in order not to increase the computational time. 

Each element has six degrees of freedom corresponding to three translations and three rotations 

at each node. In order to satisfy the cantilever boundary condition at the root of the beam, all 

nodal displacements and rotations are made equal to zero. 

Table 7.1 Dimensionless fundamental frequency of composite plate 

Dimensionless 
Frequency 

% Difference from 
Closed Form Solution 

Closed Form Solution [7-4] 15j:70 -

Higher-Order Shear Theory [7-3] 15.090 -1.17 

First-Order Shear Theory-FEA [7-3] 15.073 -L29 

Present ANSYS result 15^:15 -0J60 

7.2.2 Damage Scenarios 

The main aim of modelling a non-dimensional FRP laminated composite beam is to 

create a vibration-based analysis data base having natural frequencies and curvature mode 

shapes from the first three modes of the intact and damaged beams when the local damage is 

introduced with twenty one different damage severities at six different spatial locations along 

the span of the beam. 

7.2.2.1 Severity of Damage 

Structural damage is modelled as local reduction in stiffness of the selected elements by 

changing the modulus of elasticity. In order to make the system sensitive enough to detect less 

severe damage, a 2.5 per cent incremental reduction is used between the intact and the damaged 

beam up to 25 per cent stiffness reduction (i.e. 10 different damage severities). For more severe 

damage, the incremental reduction in stiffness is chosen as 5 per cent from 25 per cent to 80 per 

cent local damage (i.e. 11 different damage severities). Therefore, totally 21 different damage 

85 



Chapter 7 Laminated Composite Beam Structure 

scenarios are created by local stiffness reduction in FEM. The assumption made here is that the 

effect of the damage results in a local reduction in the stiffness which is modelled by reducing 

the material properties of the selected elements in all directions by the same amount. 

7.2.2.2 Location of Damage 

Six different locations are selected along the span of the beam in order to introduce 

different damage severities. These locations are 0.22, 0.35Z, 0.45Z, 0.552, 0.65Z and 0.82 away 

from the fixed end. The width and the length of the damage are kept constant during the 

analyses as 0.12 that corresponds to four elements in FEM. In Fig. 7.1, the location of the 

damage (grey area in circle) has been taken as 0.552 as an example. 

After performing modal analysis, 126 different natural frequency reductions (21 

different damage severities at 6 different locations) are obtained for each mode of the damaged 

beam with respect to that of intact one. All these variations in natural frequencies for different 

damage scenarios from the first three natural modes will be investigated in the sensitivity 

analysis and feature extraction section (Section 7.4). 

7.3 Curvature Mode Shape Analysis 

A finite element modal analysis has been performed in Section 7.2 to find the first three 

undamped natural frequencies and corresponding normalised displacement mode shapes of the 

cantilever laminated composite beam. Eleven points along the centre line of the beam are 

selected to obtain one-dimensional curvature mode shapes. In Fig. 7.1, the white dots show the 

locations of these collocation points along the beam. During the analysis, curvature mode 

shapes are calculated from displacement mode shapes by using equation (6.2) at these 

collocation points. Since the length of each element in the finite element model is constant along 

the beam and the absolute differences between the curvature mode shapes of the intact and the 

damaged structures are of primary interest, the h^ term in equation (6.2) appears as a constant 

scaling factor and has been taken as unity for the sake of simplicity in the curvature 

calculations. Since 126 different damage scenarios are created for the composite beam, the 

curvature mode shapes corresponding to these cases are not shown here. All variations in 

absolute differences between intact and damaged curvature mode shapes along the beam with 

different stiffness reductions at various locations will be presented in the next section. 
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7.4 Sensitivity Analyses and Feature Extraction 

7.4.1 Percentage Reduction in Natural Frequencies 

By considering the variations of the percentage reduction in the frequencies for the first 

three natural modes, the effect of the severity and the location of the damage on natural 

frequencies are investigated. The percentage reduction in natural frequencies with twenty-one 

different severities of the damage at six different locations along the beam in three different 

modes can be seen in Fig. 7.2. From the variations and trends in this figure, it can be concluded 

that the reduction in natural frequencies increases with the increasing severity. 

Mode* 

10 20 30 40 50 GO 70 
Dmmage Sav#Ai#s (% Reduction in SUOh«#s) 

H — Mode#1 

Modê  
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Fig. 7.2 (continued over) 
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Figure 7.2 Percentage reduction in natural frequencies for different damage locations; 

Damage located at (a) 0.20Z (b) 0.35Z (c) 0.45Z (d) 0.55Z (e) 0.652 (Q 0.80Z 

As it can be seen in Fig. 7.2a, there is a higher reduction in natural frequency in Mode 1 

when the damage is near the root of the beam (i.e. at 0.22). On the other hand, in Fig. 7.2b, 

almost all modes are affected approximately up to same extent. Figs. 7.2c and d show that 

Mode 2 is much more influenced when the damage is located around mid-span (i.e. at 0.452 and 

0.552) of the beam. It can be seen from Fig. 7.2e that reduction in natural frequency in Mode 2 

and Mode 3 are almost same when the damage located at 0.652. Finally, when the damage is 

located at 0.802 (Fig. 7.2f), there is more reduction in frequency in Mode 3 than those in Mode 

2 and Mode 1. This indicates that it is important to consider more than one mode of the beam 

since, depending on the location of the damage different natural modes of the beam are affected 

to different extents in the reduction of frequency. 

7.4.2 Absolute Differences in Curvature Mode Shapes 

After considering the effects of natural frequency reduction, the effectiveness of 

absolute differences in curvature mode shape between the intact and the damaged composite 

beams is investigated. Since three different modes of vibration and six different damage 

locations are considered during the analyses, totally eighteen different variations are obtained 

from absolute differences in curvature mode shapes between the intact and the damaged beams. 

These variations are shown from Figs. 7.3 to 7.5 for six different locations of the damage at the 

first three natural modes. 
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It can be seen from Figs 7.3 to 7.5 that the maximum absolute difference occurs near 

damage location. Therefore, the maximum value of the absolute difference in curvature and its 

corresponding location along the beam obtained from three different modes would be additional 

information serving as input to the ANN in the quantification and localisation of the damage. 

7.4.3 pre-processing of Features 

After deciding on the features extracted from the model-dependent vibration-based 

data, some necessary pre-processing is performed. Normalisation of the input-output pairs and 

addition of artificial noise to different input data are presented in this section. The main aim of 

the pre-processing is to arrange the data in such a way that it can easily be introduced to damage 

identification algorithm as input-output pairs. 

7.4.3.1 Normalisation of Data 

As input data should not be too close to 0 or 1 in order to avoid numerical difficulties, 

the first three natural frequencies of the beam are normalised by calculating the ratio of natural 

frequencies of the damaged beams to that of intact one. Since small reductions in stiffness lead 

to small changes in natural frequencies, thus giving values close to 1, an additional 

normalisation [2-45] is performed by using the following equation; 

_ X,. - f k . 
= —where a = 1.1 , /? = 0.9, / = 1,2..126 (7.3) 

ca,. - /3K ̂  

Here, x- is the data (reduction in natural frequencies) to be normalised, Xj is the 

normalised form of the data and a and P stand for the normalisation constants. Maximum 

absolute differences in the curvature mode shape data are also normalised using equation (7.3). 

There is no need to normalise the location data since it is readily available as percentage of the 

beam length, which is between 0 and 1 (Fig. 7.1). 
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7.4.3.2 Addition of Artificial Noise 

Artificial noise is created by using a random number generator, randn, in MATLAB®. 

Randn generates random numbers with a normal distribution having zero mean, variance and 

standard deviation of one. Using equation (7.4), different percentages of noise are added to 

normalised frequency and maximum differences in curvature mode shape data. 

Noise Noise Free 1 + -^randn (n) 
100 

(7.4) 

Here, n and A are the number of random entries in the noise-free data and the percentage noise 

added to noise-free data respectively. Since natural frequency measurements are more reliable 

and robust than strain (or curvature) mode shape measurements that require distributed sensors 

in real applications, higher level of percentage noise is added to maximum absolute differences 

to curvature mode shape data compared to normalised frequency data to simulate the 

experimental uncertainties. 

7.5 Simulation of ANN for Damage Detection 

In this study, a supervised feed-forward multi-layer backpropagation ANN in 

MATLAB® Neural Network Toolbox [7-5] is used to estimate the severity and location of the 

damage in beam-like laminated composite structures, 

7.5.1 Designed ANNs for Damage Detection 

Since the aim of the analysis is to investigate the effectiveness of the vibration-based 

analysis inputs in ANN applications for the severity and location prediction of the damage, 

different combinations of input data from the first three natural modes of the composite beam 

are introduced to ANNs. The effects of multiple modes on predictions of ANNs are also 

investigated in Appendix C justifying the use of three modes. 

The size of the ANN is veiy important since small networks cannot represent the system 

while larger networks can be over-trained. Hence optimisation in the size of the network is 

crucial and this is generally obtained by a trial and error method. Therefore, different neural 

networks with one hidden layer are designed to maximise performance in the prediction of the 
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severity and location of the damage. The studies on using one and two hidden layers are 

discussed in Appendix D, justifying the use of one hidden layer ANN. Table 7.2 shows all the 

ANNs designed and used in the analyses with a variety of input and output pairs. Values 

(separated with semicolon) used in the architecture column of Table 7.2 show the total number 

neurons in the input, hidden and output layers respectively. 

Table 7.2 ANNs used in the analyses 

Input Output Architecture 

1. RNF DS 3:6:1 

2. KNF DL 3:6:1 

3. RNF DS&DL 3:8:2 

4. MADC DS 3:6:1 

5. MADC DL 3:6:1 

6. MADC DS&DL 3:8:2 

7. RNF&MADC DS 6:9:1 

8. RNF&MADC DL 6:9:1 

9. RNF&MADC DS&DL 6:12:2 

10. MADC&LOC DS 6:9:1 

11. MADC&LOC DL 6:9:1 

12. MADC&LOC DS&DL 6:12:2 

13. RNF&MADC&LOC DS 9:18:1 

14. RNF&MADC&LOC DL 9:18:1 

15. RNf&MADC&LOC DS&DL 9:18:2 

7.5.2 Noise-free Input Data 

The most important criterion in the selection of the training samples is to find the ideal 

set that can represent the total possible samples in the space. In this analysis, 126 different 

damage scenarios are generated by using 21 different reductions in stiffness at 6 different 

locations throughout the beam. 100 input-output pairs, chosen at random, are given to the ANN 

for training and the rest of the input-output pairs are used to check the generalisation of the 

learning during the validation process. 
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7.5.3 Input Data with Noise 

One of the most important problems with the use of the backpropagation algorithm is 

the generalisation of learning capability. Therefore artificial random noise has been added to 

data used in the noise-free case in order to achieve a better generalisation during the training of 

ANNs and to simulate the experimental uncertainties numerically. Table 7.3 shows the different 

percentages of noise combinations added to frequency and maximum absolute differences in 

curvature mode shape data. 

Table 7.3 Addition of percentage noise to input data 

Input Data 
Percentage Noise ( A ) on 

Input Data 
RNF MADC 

RNF 0.5 -

RNF 1 -

RNF 2 -

MADC&LOC - 1 

MADC&LOC - 3 

MADC&LOC - 5 

RNF&MADC&LOC 0.5 1 

RNF&MADC&LOC 1 3 

RNF&MADC&LOC 2 5 

First, 100 copies of each input data from the first three natural modes are obtained and 

different noise histories having same percentage level are added. This process simulates the fact 

that each mode has its own energy level and can only be obtained separately from the others. 

Since totally 126 different damage scenarios are used in the analyses with 100 copies, final 

input data having 10000 and 2600 entries is introduced to selected ANNs (RNF, MADC&LOC, 

and RNF&MADC&LOC in Table 7.3) during the training and validation runs respectively. 

7.5.4 Test cases for ANNs 

Sixteen different cases are used to test the trained neural networks, as shown in Table 

7.4. In the first eight cases, the damage locations are selected from training sets while in the 
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other eight cases, new locations are considered. In both cases, eight new reductions in stiffness 

are introduced to ANNs. After completing simulations with different ANN architectures, three 

networks (First, eleventh and fifteenth ANNs in Table 7.2) are selected on the basis of 

minimum mean square error and better convergence with the increase in number of epochs 

during the training. An additional set of three networks (second, fourth and fifth ANNs in Table 

7.2) is also used for the prediction performance comparisons. 

Table 7.4 Test cases for ANNs 

Reduction in Location 
Stiffness [%] [L] 

8 0.55 
14 &20 
21 &80 
37 &45 
42 035 
53 &65 
62 &20 
73 0.65 
8 &50 
14 0.60 
21 OJO 
37 0J5 
42 0.25 
53 &40 
62 OJO 
73 0J4 

7.6 Artificial Neural Network Predictions 

7.6.1 Noise-free Case 

7.6.1.1 Damage Severity Predictions 

In the first ANN (RNF-DS), the reduction in natural frequencies is given as an input and 

severity of the damage is predicted as an output. In this training run, the mean square error is 

reduced to a value lower than 10"̂  after 10000 epochs. Here, epoch denotes the number of times 

the same training input set introduced to the ANN. In Fig. 7.6a, the trend of the mean square 

error (MSB) can be seen with increasing number of epochs. Considering the error between the 

training (black solid line) and the validation sets (grey solid line) during the learning process, it 

can be concluded that the generalisation is almost achieved. The first test with three inputs 
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(reduction in natural frequencies from three natural modes) is performed on 16 different cases. 

Figure 7.6b shows the results of the neural network regarding prediction of the severity of the 

damage. The symbols, circles and crosses, indicate the first and the last eight test cases used in 

Table 7.4 respectively. The dotted lines lying on both sides of the centre line indicate a 5 per 

cent deviation from the target values. 

Valtdaimn 
- Trainmq 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
10000 Epochs 

0 1 &2 0 3 0 4 0 5 &B 0 7 &8 &9 1 

(a) (b) 

Figure 7.6 ANN results for severity predictions (Input: RNF, Output: DS) 

(a) Mean square error with number of epochs (b) Severity predictions 

The fourth ANN test run (MADC-DS) is performed to predict the severity of the 

damage by using maximum absolute differences in curvature mode shape from the first three 

modes. Severity predictions for this particular test case can be seen in Fig. 7.7. 

0 1 0 2 0,3 0.4 0.5 0 6 0 7 0.8 0 . 9 

Figure 7.7 ANN results for severity predictions (Input: MADC, Output: DS) 
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7.6.1.2 Damage Location Predictions 

In the second ANN (RNF-DL), the reduction in natural frequencies is given as an input 

and location of the damage is predicted as an output. Since the input introduced to the ANN is 

not directly related with the output to be predicted, the generalisation is not achieved. Figures 

7.8a and b show the performance of the ANN during the learning and the location predictions 

for the test cases respectively. 

VaWdslion : 

—— 1 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
10000 Epochs 

(a) (b) 

Figure 7.8 ANN results for location predictions (Input: RNF, Output: DL) 

(a) Mean square error with number of epochs (b) Location predictions 

The fifth ANN test run (MADC-DL) is for the location prediction of the damage by 

using maximum absolute differences in curvature mode shape data as input. Figure 7.9 shows 

the location predictions for this particular test case. 

1 

0.9 

0.8 

0 7 

I 0 . 6 

] 0.5 

I Q.4 

0.3 

0.2 

0.1 

0 

+ 

-

-

-

0 1 0 2 0 3 0 4 0 5 0 6 0 7 Oa Oa 

Figure 7.9 ANN results for location predictions (Input: MADC, Output: DL) 
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The eleventh ANN test run (MADC&LOC-DL) is for the prediction of location of 

damage. In this case, the maximum absolute differences in curvature mode shape and their 

corresponding locations along the beam are given as an input to the ANN. Since the input 

features, the maximum absolute differences and their corresponding locations, are good 

indicators for the location prediction of the damage, the mean square error is reduced to below 

10"̂ . A slight difference is observed in the error residual between the training and validation. 

The prediction of this ANN can be seen in Fig. 7.10. Although almost all the predictions are 

within 5 per cent limit, first eight predictions (shown with circles) are quite accurate compared 

to the last eight test case predictions. This means a better generalisation is needed for higher 

accuracy. 

? 0.6 

s 0.5 

0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1 

Figure 7.10 ANN results for location predictions (Input; MADC&LOC, Output: DL) 

7.6.1.3 Both Damage Severity and Location Predictions 

The fifteenth ANN test run (RNF&MADC&LOC-DS&DL) involved in training is 

performed with nine inputs namely: reduction in natural frequencies, maximum absolute 

differences in curvature mode shape and their corresponding locations along the beam from the 

first three natural modes. In this case, severity and the location of the damage are predicted. 

Since the input and output pairs are larger in size and the association between the features is 

much more complicated compared to previous runs, the mean square error values for both the 

training and validation reach a value between 10"'' and 10"̂  after 10000 epochs. Due to the 

inherent complexity of the test, bigger difference between the training and the validation error 

values occurred at the end of the training. The results show that there is a slight overestimation 

in the prediction of severity (Fig. 7.11a). On the other hand, in the prediction of location of the 

damage, the outputs are closer to target values with acceptable deviations (Fig. 7.11b). 
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-5 0.5 

(a) 0 ) 

Figure 7.11 ANN results for severity and location predictions (Input: RNF&MADC&LOC) 

(a) Severity predictions (Output: DS) (b) Location predictions (Output: DL) 

7.6.2 Noise Polluted Data 

In this section, only three ANNs having best performance in the prediction of severity 

and location of the damage in noise-free case (First, eleventh and fifteenth ANNs in Table 7.2) 

are selected and tested for new damage scenarios (Table 7.4) with addition of percentage noise 

(Table 7.3). 

7.6.2.1 Damage Severity Predictions 

Figure 7.12 shows the severity predictions of the first ANN (RNF-DS) with three 

different levels of added artificial noise. It can be seen from Fig. 7.12 that increase in 

percentage noise level adversely affects the severity predictions. 

7.6.2.2 Damage Location Predictions 

Location predictions of the eleventh ANN (MADC&LOC-DL) with three different 

levels of added artificial noise is shown in Fig. 7.13. It can be seen from the figure that location 

predictions for the damage are more accurate than severity predictions when maximum absolute 

differences in curvature mode shape and location information are introduced to ANN as input 

although the noise levels are relatively higher than the ones used on the normalised frequency 

data. 
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CU 0 3 &4 0 5 0 6 &7 &8 &9 
Targel 
(a) 

S 0.4 

0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 7.12 ANN results for severity predictions with an addition of noise 

(Input: RNF, Output; DS) (a) 0.5% Noise (b) 1% Noise (c) 2% Noise 
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Q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0 .9 1 

(a) 

(b) 

CU OJ 0̂  04 oa &G 07 oa &9 

(c) 

Figure 7.13 ANN results for location predictions with an addition of noise 

(Input: MADC&LOC, Oulput: DL) (a) 1% Noise (b) 3% Noise (c) 5% Noise 
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7.6.2.3 Both Damage Severity and Location Predictions 

Further analyses concentrate on the effects of different noise combinations on frequency 

and maximum absolute differences in curvature mode shape data for the prediction of severity 

and location of the damage by single neural network (RNF&MADC&LOC-DS&DL) having all 

three inputs from first three natural modes of the beam as an input. ANN predictions with the 

noise-polluted data can be seen from Figs. 7.14 to 7.16. In these three figures, the noise 

combination is gradually increased on frequency and maximum absolute differences in 

curvature mode shape data. It can be concluded from the figures that although predictions are in 

the acceptable region with a couple of under and overestimations at lower noise level 

combinations, the location predictions are more accurate and robust than severity predictions 

using single ANN with all inputs at higher level of noise combinations. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Target 

(a) 

0 01 &2 03 04 05 06 &7 &B &9 1 
Target 

(b) 

Figure 7.14 ANN predictions with noise combination of 0.5% on RNF and 1% on MADC 

(a) Severity predictions (b) Location predictions 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

"E 0.5 

P 0.4 

(a) (b) 

Figure 7.15 ANN predictions with noise combination of 1% on RNF and 3% on MADC 

(a) Severity predictions (b) Location predictions 
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D 0.1 0.2 0.3 0.4 O.S O.B 0.7 0.8 0.9 0 0.1 0 . 2 0.3 0.4 O.S 0.6 0.7 O.B 0.9 1 

Figure 7.16 ANN predictions with noise combination of 2% on RNF and 5% on MADC 

(a) Severity predictions (b) Location predictions 

7.7 Conclusions 

In this chapter, features extracted from vibration-based analysis on beam-like composite 

laminate were used in order to predict the severity and location of the damage and to investigate 

the effectiveness of these features as input to feed-forward backpropagation neural networks. 

In literature, local and global patterns (i.e. curvature mode shapes and natural 

frequencies) obtained either from experimental work or numerically simulated vibration 

analysis data were used in ANN applications (Table 7.5) in order to detect damage in composite 

beam structures. However, there is no particular study found in the literature considering 

different combinations of the vibration analysis data as input to ANN. 

Table 7.5 Studies on composite beam structures and features for ANN applications 

Studies on Composite Structures 

[7] [8] [9] [10] [12] [14] 
[27] [30] [31] [32] [33] 
[35] [44] [45] [50] [52] 
[53] [54] [59] [60] [61] 

Frequency Changes 
[44] [50] 

[52] [53] [55] 

Curvature Mode Shapes or 
Strain History 

[44] [50] [54] 

Both Frequency Changes and 
Curvature (Strain) Mode Shapes 

[50] 

In different case studies, [Numbers in brackets are references f rom Chapter 2] 
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In this chapter, different input-output pairs have been generated from various damage 

scenarios and used for the training and validation of different types of ANNs either noise-free or 

with an addition of percentage artificial noise to simulate the experimental uncertainties. The 

results obtained using new test cases show that selection of features considered as an input data 

is crucial in the accuracy of prediction of damage. In addition to the selected features, the level 

of the artificial noise added to input data is also very important from the generalisation and 

robustness point of view of the designed ANNs. It can be concluded that although reduction in 

natural frequencies is considered as an indicator for the existence of the damage and its severity, 

it did not provide any useful information about the location of the damage. On the other hand, 

maximum absolute differences in curvature mode shapes and their corresponding locations 

along the beam served as better indicators for the location of the damage. Therefore, these 

features were used as separate input for the ANNs. 

When the combination of these three features (i.e. reduction in natural frequencies, 

maximum absolute differences in curvature mode shapes and their corresponding locations) are 

introduced to ANNs, the results regarding severity and location of the damage are not as 

promising as the ones obtained with individual inputs. Hence it can be concluded that two 

separate ANNs function more efficiently than one trained ANN using all the combined inputs in 

the noise-free case. On the other hand, when the increased level of noise-polluted data 

introduced as an input, whilst training, ANNs provided more accurate and robust predictions in 

the localisation of the damage compared to damage quantification. 

Finally, the severity and location predictions of various ANNs trained with different 

combinations of vibration-based analysis data showed that the features extracted and used as an 

input and the level of noise on these features play an important role in the accuracy of the 

predictions of ANNs for structural damage detection. 
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8.1 Introduction 

This chapter presents an experimentally validated damage detection algorithm using 

combination of global and local vibration-based analysis data as input to ANNs for location and 

severity prediction of damage in isotropic beam structures [8-1]. The global parameters refer to 

change in natural frequencies and the local parameters refer to change in curvature (in FEA) or 

strain (in experimental study) mode shapes of the structure in the first three natural modes. In 

FEA, different damage scenarios have been introduced by reducing the local thickness of the 

selected elements at different locations along the FEM of the beam structure. The necessary 

features for damage detection have been selected by performing sensitivity analyses and 

different input-output sets have been introduced to various ANNs. In order to check the 

robustness of the input data used in the analysis and simulate the experimental uncertainties, 

artificial random noise has been generated numerically and added to noise-free data during the 

training of the ANNs. In the experimental analysis, two steel beams with eight surface-bonded 

distributed electrical strain gauges and an accelerometer mounted at the tip have been used to 

obtain modal parameters such as resonant frequencies and strain mode shapes. Finally, 

experimentally obtained data has been introduced to trained ANNs in order to predict severity 

and location of the damage. 

8.2 Finite Element Modelling 

8.2.1 Frequency Analysis of Intact Beam 

The steel beam (Fig. 6.3) is modelled by using four-node quadrilateral two-dimensional 

linear structural shell element, SHELL63, with ANSYS 6.1® commercial software. First three 

bending natural frequencies of the intact cantilever beam for different mesh densities are 

obtained in order to check mesh independency. Since the variation in natural frequencies is less 
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than 1% between 4x90 (i.e. 4 and 90 element divisions along the width and the length of the 

beam respectively) and 16x360 mesh densities, the former having 360 elements, is used for all 

later simulations by considering the computational efficiency. After performing modal analysis 

for the first three bending natural frequencies, results obtained from models having different 

mesh densities are compared to closed-form solution (Eq. 4.17) in Table 8.1. The number in 

parentheses shows the percentage difference between theoretical and FEA results. 

Table 8.1 First three natural frequencies of intact beam [Hz] 

Mode No Closed-form Solution 
Shell Elements 

4x90 16x360 

1®'Bending 

2"̂  Bending 

3"" Bending 

12.2893 

77.0156 

215^461 

12.3859 
(0.7860) 
77.6044 
(0.76^15) 
2rA5093 
(0.8640) 

123818 
(0.7527) 
77.5748 
(0.7261) 
2173731 
(0.8008) 

8.2.2 Damage Scenarios 

Local damage is introduced with 32 damage severities at 15 different spatial locations 

along the span of the beam i.e. 480 different damage scenarios. Structural damage is modelled 

as a local reduction in thickness of the selected elements. The incremental reduction in thickness 

is chosen as 2.5% up to 80% local damage. The locations of the damage are at different 

percentages away from the cantilever end, shown in Table 8.2. The width (10mm) and the 

length (40mm) of the damage are kept constant during the analysis corresponding to two 

elements in span wise and four elements in the width direction in FEM. In Fig. 8.1, the FEM of 

the damaged beam with a 2mm deep slot corresponding to 66.67% reduction in thickness at the 

location of 0.45562 is shown as occurs in the experimental analysis. 

Table 8.2 Different damage locations 

Normalised spatial location 
from root [L] 

0.044 OJO 0^4 
OTO 0J4 o^m 
CU4 0J4 0.64 
020 0^4 OJO 
024 0^0 0J4 
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Damage 
area 

Centre Line 
\ o d e s 

Centre Line 
Figure 8.1 FEM of cantilever steel beam 

8.2.3 Modal Analysis of Damaged Beam 

A normal mode dynamic analysis is performed to find the first three undamped natural 

frequencies and their corresponding displacement mode shapes of the cantilever beam. Table 

8.3 shows the first three natural frequencies of the intact and the damaged beam (2mm deep slot 

at the location of 0.4556L), which is used in experimental study for comparison and validation. 

91 points along the centre line of the beam are selected from FEM in order to obtain one-

dimensional displacement mode shapes. During the analysis, curvature mode shapes are 

calculated by using central difference approximation (Eq. 6.2). All modal analysis data (natural 

frequencies and corresponding curvature mode shapes) is presented in the feature extraction 

section. 

Table 8.3 First three natural frequencies of intact and damaged beam [Hz] 

Finite Element Analysis Results 

Intact Damaged fdamaged 

Mode No Beam Beam fintad 

r 'Bending 123859 1&7415 0.8672 

2°''Bending 77.6044 60.3581 0.7778 

3 "'Bending 217.5093 212.4555 0.9768 

8.3 Feature Extraction 

In the first part of this analysis, the effect of the severity and the location of the damage 

on the first three natural frequencies of the structure are investigated. Figure 8.2 shows the 
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percentage reduction in natural frequencies with 32 different severities at selected 8 different 

locations. It can be seen from the Fig. 8.2 that different vibration modes are affected to different 

extents due to the reduction in thickness, depending on the location of the damage. This 

illustrates the need to consider more than one vibration mode for improved damage prediction. 

In the second part, the variation of the magnitude of the absolute differences in curvature mode 

shapes between the intact and the damaged beam is considered at the same locations in mode 1, 

2 and 3 respectively. Figures 8.3-8.5 show these variations in the first, second and third modes 

respectively. In these figures, each collocation point corresponds to location of the strain gauges 

used in the experiment and they are numbered accordingly. 
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Figure 8.2 Percentage reduction in natural frequencies for different damage locations; 

Damage located at (a) 0.24Z (b) 03L (c) 0.34Z (d) 0.44Z (e) 0.542 (f) 0.6L 

(g) 0.64Z (h) 0.74Z 

8.4 Experimental Study 

To validate the numerical method proposed for quantification and localisation of the 

damage in Chapter 7, an experimental study was carried out on steel beam specimens. Beam 

specimens, experimental procedure, modal analysis aiming resonant frequencies (Table 6.4) 

and strain mode shapes have been described in detail in section 6.2.3. Therefore, in this section, 

the strain outputs of eight strain gauges in the first three modes of the intact and damaged beams 

are obtained by using signal conditioning amplifier under constant frequency excitation at each 

resonant frequency of interest and shown in Figs. 8.6-8.11. 

Normalisation over strain histories obtained from seven strain gauges is performed with 

respect to strain gauge at location 8, which provides reasonable finite amount of strain for all 

three modes, in order to investigate the relative change in damaged beam curvatures at eight 

different locations with respect to intact ones. Figures 8.12 and 8.13 show normalised strain 

mode shapes of intact and damaged beams respectively. Since the additional features extracted 

from vibration-based analysis are the maximum absolute differences in normalised strain mode 

shapes between the intact and the damaged beams, Fig. 8.14 is obtained from Figs. 8.12 and 

8.13 and used as an input to ANN for severity and location predictions. The maximum values 

are also shown in Fig. 8.14. 
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Figure 8.7 Strain output of eight strain gauges in the second mode (Intact Beam) 
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Figure 8.12 Normalised experimental strain mode shapes of intact beam 
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Figure 8.13 Normalised experimental strain mode shapes o f damaged beam 
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8.5 Application of ANNs 

8.5.1 Design, Training and Validation of ANNs 

The A N N s used for the verification are selected f rom T a b l e 7.2 and tabulated in Table 

8.4 showing different combinations of input and output pairs. In this analysis, 480 different 

damage scenarios are generated by using 32 different reduct ions in thickness of the selected 

elements at 15 different locations throughout the beam. 450 input-output pairs are given to the 

A N N for training and the rest of the input-output pairs are used to check the generalisation of 

the learning during the validation process in noise-free case. An artificial random noise has been 

added (Eq. 7.4) to noise-free data (normalised frequency and m a x i m u m differences in curvature 

mode shape data) in order to simulate the experimental uncertainties numerically. In data with 

noise case, 50 copies of normalised natural frequencies (when R N F is an input) and 25 copies of 

normalised natural frequencies, maximum absolute differences in curvature mode shapes and 

the location corresponding to maximum absolute difference in curvature mode shape (when 

M A D C & L O C and R N F & M A D C & L O C are as inputs) are obtained and artificial noise has been 

added on each copy with different histories. Table 7.3 shows different percentages of noise 

combinations added to normalised frequency and maximum absolute differences in curvature 

mode shape data. Since totally 480 different damage scenarios a re used in the analyses, in case 

of RNF, 22500 and 1500 entries are introduced for training and validation respectively. 

Similarly, 11250 and 750 entries are used for training and validation of both M A D C & L O C and 

RNF&MADC&LOC. 

Table 8.4 A N N s used in the verification ana lyses 

Input Output Archi tecture 

L RNF DS 3:6:1 

2. MADC DL 3:6:1 

3. MADC&LOC DL 6:9:1 

4. MADC&LOC DS&DL 6:12:2 

5. RNF&MADC&LOC DS&DL 9:18:2 
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8.5.2 Predictions of ANNs 

In this section, the severity and location predictions for noise-free case (Figs. 8.15-8.19) 

are shown in detail by considering the training, validation sets and the variation in mean square 

error with increasing number of epochs. In the prediction related graphs, the circle denotes the 

prediction for the case when the experimental damage is the input and dotted lines lying on both 

sides of the centre line indicate a 5% deviation f rom the target value. 

The training performance of the first A N N (RNF-DS) can be seen in Fig. 8.15a 

considering the trend in mean square error values during training. Figure 8.15b shows the 

prediction of this A N N regarding the severity of the damage. 
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Figure 8.15 A N N results for severity prediction (Input: RNF, Output: DS) 
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Figure 8.16 A N N results for location prediction (Input: M A D C , Output: DL) 
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In the second and third ANNs, the location of the damage is predicted by using two 

different input data, which are M A D C (Fig. 8.16) and M A D C & L O C (Fig. 8.17) respectively. It 

can be seen f rom Figs. 8.16 and 8.17 that better generalisation (Fig. 8.17a) and prediction (Fig. 

8.17b) are achieved by providing the location information. 
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Figure 8.17 A N N results for location prediction (Input: M A D C & L O C , Output: DL) 

(a) Mean square error with number of epochs (b) Loca t ion prediction 
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Figure 8.18 A N N results for severity and location prediction (Input: M A D C & L O C ) 

(a) Severity prediction (Output: DS) (b) Location predict ion (Output: DL) 

Since the input features, the maximum absolute d i f ferences in strain mode shapes 

between the intact and the damaged beams and their locations, a re good indicators for location 

prediction of the damage, next test run is performed by using these features as an input for both 

severity (Fig. 8.18a) and location (Fig. 8.18b) predictions. In the f ina l test run, the severity (Fig. 
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19a) and location (Fig. 19b) of the damage are predicted b y introducing inputs namely, 

reduction in natural frequencies, maximum absolute d i f ferences in curvature mode shape 

between the intact and the damaged beams and their corresponding locations along the beams 

f rom the first three natural modes. 
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Figure 8.19 A N N results for severity and location prediction (Input : R N F & M A D C & L O C ) 

(a) Severity prediction (Output: DS) (b) Location prediction (Output: DL) 

The results for noise-free (Table 8.5) and for additional artificial noise (Table 8.6) 

cases are tabulated for performance comparison. It can be concluded f rom Table 8.6 that more 

accurate results are obtained in location predictions ( M A D C & L O C - D L ) for the damage than 

severity predictions (RNF-DS), although the noise levels are comparably higher than the ones 

used on R N F data. When the gradually increased noise combinat ions applied to the normalised 

frequency and maximum absolute differences in curvature m o d e shape are used in the 

prediction of both severity and location of the damage, better est imations (i.e. deviation within 

are achieved in location predictions compared to severity at each levels of artificial noise. 

Table 8.5 Predictions of ANNs (Noise-free case) 

Input Output Target Predict ion % Deviation 

RNF DS 0.6667 &6653 &14 

MADC DL 0.4556 0.4866 -3J0 

MADC&LOC DL 0.4556 0.4656 -LOO 

MADC&LOC DS&DL 0.6667 0.4556 0.6291 0.4610 3.76 -0.54 

RNF&MADC&LOC DS&DL 0.6667 0.4556 0.7123 0.4375 ^L56 LSI 

Deviation = [Target - Prediction] 
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Table 8.6 Predictions of ANNs (Additional artificial noise case) 

Input (Noise % ) Output Target Prediction % Deviation 

RNF (0.5%) DS 0.6667 0.6541 1/26 

RNF(1%) DS 0.6667 116908 -2.41 

RNF(2%) DS 0.6667 (17157 -440 

MADC&LOC (1%) DL 0/1556 (14613 -0.57 

MADC&LOC (3%) D L 0.4556 0.4471 0.85 

IVLALCHCVklJOC (594) DL 0.4556 (14142 4T4 

RNF&MADC&LOC 

(0.594 dk 194) 
DS&DL 0.6667 0.4556 0J1&2 0.4319 -445 2J7 

RNf&MADC&LOC 

(194 jk 394) 
D S & D L 0.6667 0.4556 0.7836 0.4712 -11.69 -1.56 

RNF&MADC&LOC 

(294 jk 594) 
I)S6kDL 0.6667 0.4556 0.8057 0.4507 43jW &49 

Deviation = [Target - Prediction] 

8.6 Conclusions 

An experimentally validated damage detection algorithm using features extracted from 

vibration-based analysis data as input to ANNs for location and severity prediction of damage in 

a steel beam structure was presented. Different damage scenarios have been created by reducing 

the local thickness of the selected elements at different locations and simulated vibration 

responses have been introduced to ANNs with and without artificial noise during the training. 

The sensitivity analysis has also been performed on extracted features by using different 

vibration modes considering the effect of damage location and severity before introducing them 

to ANNs. In this study, the test data (i.e. resonant frequencies and strain mode shapes) has been 

obtained from the intact and damaged steel beam with a local d a m a g e of 2 m m deep (66.67% 

reduction in thickness) and 10mm wide slot at 205mm (0.4556Z) away f rom the fixed end by 

using an accelerometer mounted at the tip and eight surface-bonded distributed electrical strain 

gauges along the centre line. It can be concluded from the A N N predictions that the better 

accuracy has been achieved in severity predictions than the location ones in noise-free case. On 

the other hand, introducing an artificial noise on noise-free data has adversely affected the 

severity predictions although the results are still accurate for the location predictions obtained 

from each A N N used in the verification by using an experimental data. 
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Chapter Nine SANDWICH BEAM STRUCTURE 

9.1 Introduction 

Because of light-weight, high strength, easy fabrication, long term durability and 

excellent corrosion resistance, GFRP sandwich structures with foam core are widely used in 

marine and offshore structures. However, internal defects and damage (details in Chapter 4, 

section 4.3) may be difficult to observe by visual inspection, thus making prevention of serious 

damage difficult. This can dramatically affect the overall strength and stiffness of these 

structures and might lead a complete failure. One of the primary issues here is to show the 

feasibility of improvement in the reliability of composite sandwich structures by monitoring 

their internal strain conditions. Therefore, this chapter presents the fabrication of sandwich 

beam structures with embedded FBG strain sensors, vibration-based analysis performed on 

these structures and A N N predictions for quantification and localisation of the damage. 

The static analysis (details in Appendix B) performed on a sandwich beam specimen 

shows that embedded FBG strain sensors provide accurate local strain information. On the other 

hand, the strain measurements performed under dynamic excitation with multiple gratings are 

limited due to the restrictions of the fibre optic Bragg grating interrogation system (FBGIS) 

(details in Appendix A). 

The limitations of the interrogation system can be summarised as follows; 

> When the system is used with single fibre Bragg grating, it allows 

measurements up to approximately 1 kHz sampling frequency. Since the sampling frequency 

should be at least two times higher than the highest fi-equency of interest (i.e. cut-off frequency), 

the interrogation system can be used with single fibre Bragg grating in order to obtain dynamic 

strain history up to 500Hz. 

> The system supports multiple continuous strain measurements in real-time up to 

eight fibre Bragg gratings. The measurement range of the system is also dependent on the 
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number of Bragg gratings used. The higher number of Bragg grat ings used in a single optical 

fibre, the lower the scanning rate of the interrogation system. Another factor that plays an 

important role in dynamic measurements is the number of sampling points used to track the 

reflective peak of a particular FBG strain sensor. In order t o obtain better accuracy, the 

sampling points per peak should be increased. This has the e f fec t of decreasing the scanning 

frequency. Working with lower scanning frequency limits the ability to identify the higher 

frequencies of interest and makes it difficult to identify the h igher strain mode shapes f rom 

multiple F B G strain sensors as the system can provide strain measurements f rom 8 gratings up 

to 150Hz. The further details regarding scanning frequency of mult iple Bragg gratings are given 

in Appendix A. 

> Experimental observations show that the faster the scanning frequency, the 

more noise is introduced into the measured strain data f rom the interrogation system. 

> Before performing any dynamic tests, the laser source needs to be left for a 

certain period of t ime to settle to constant operating temperature. A warm-up sequence also 

needs to be performed. These two factors are very important as they compensate the drift in 

strain measurement . 

9.2 Material and Geometrical Properties of Sandwich Beam 

9.2.1 Core Material 

Linear polymer foam (Core-Cell® A500) [9-1] is used dur ing the manufacturing of 

sandwich beam specimens. This type of foam core provides excel lent st iffness and structural 

integrity under dynamic loading with low weight. Core-Cell is non-fr iable , tough and rigid core 

that has high impact strength and high shear elongation. This core material is also suitable for 

resin inftision with vacuum bagging technique. The foam core used in the analysis has following 

material properties (details in Appendix E): 

=131.13x10^ Pa, /Ocore =144 .8 k g / m \ = 0.32 ( a s sumed) . 
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9.2.2 Skin Material 

9.2.2.1 Matrix 

The material properties of the resin system are not very high compared to most metals 

but when it is combined with reinforcing fibres such as glass, exceptional properties can be 

obtained. The epoxy system (Prime 20 epoxy infusion system [9-2]) provides excellent material 

properties f rom ambient temperature cures (i.e. lab envi ronment) and moderate temperature 

postcures (50°C). Epoxy resins bond well to the Core-Cell foam with mechanical bond only as 

there is no chemical interaction. One of the most advantageous propert ies of the epoxy is its low 

shrinkage during cure that minimises internal stresses. Epoxy resins have also good water and 

chemical resistance providing high electrical insulation. Dur ing the manufacturing, standard 

hardener [9-2] with mix ratio of 100:25 by weight is used. The densit ies of the resin (before and 

after cure) and the density of the hardener are as follows: 

/^resin-before cure — ^ . 1 2 7 g / c m , / ' res in-af ter cure — 1 . 1 4 8 g/ciTl , 

/ ^ h a r d e n e r = 0 9 8 3 g / c m \ 

9.2.2.2 Fibre Reinforcement 

The reinforcing fibre (UT-E500 [9-2]) used during the sandwich structure construction 

is the unidirectional (UD) glass fibre. Since orthotropic material propert ies are needed for FEA 

of laminated composites, some of the material properties are approximated from the values 

widely used in the literature. The following combined material propert ies (i.e. fibre and resin) of 

the glass-fibre are used during the analysis. 

E , = 3 3 . 1 8 x 1 0 ^ Pa, ^ 2 = ^ 3 = 5 . 6 9 x 1 0 ^ Pa, 

G,2 = Gj3 = 2.91 X10^ Pa, G23 = 1.17x10^ Pa (assumed) 

v,2 = v,3 = V23 = 0.267, = 2031.26 kg/m^ (details in Appendix E). 
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9.2.3 Geometrical Properties 

The sandwich beam structure (450mm x 40.5mm x 14.6mm) used during the analysis 

has four equal layers of U D glass fibre with layer orientation of [0°/90°]g and total thickness of 

1.3mm on each side of 12mm thick linear polymer foam core. F igure 9.1 shows the schematic 

view of the layer orientation of GFRP sandwich structure. 

GFRP ^ 
Upper Skin 

Foam Core 

y GFRP 
Lower Skin 

Figure 9.1 Schematic view of the layer orientation of G F R P sandwich structure 

9.3 Experimental Analysis 

9.3.1 Fabrication of the Sandwich Beam Specimens with Embedded FOSs 

In this section, the procedure for the integration of sensor network (i.e. optical fibre 

with various number of F B G strain sensors) into GFRP sandwich composite structure is 

described in detail considering bonding, location (Appendix F) and alignment issues of the 

sensors. FOSs are embedded between the core and laminated skin during manufacturing. The 

main aim of embedding FOSs at this particular location is owed to the fact that there is a high 

tendency of separation (i.e. debonding) between the GFRP laminated skin and foam core in 

sandwich structures under transverse vibration. Considering the layer orientation of the GFRP 

laminated skin ([0/90];), which is made up of four equal layers o f U D glass fibre material, the 

optical f ibres are positioned on the upper surface of the core and paral lel to 0° glass fibre on the 

skin. This configuration minimises the size of the local resin-rich region [9-3, 9-4], which 

typically surrounds the embedded optical fibres and degrades the strength of the structure. As 

resin infusion technique by vacuum bagging is used during the manufactur ing of sandwich 

specimens, it is an important issue to keep the fibre in its or iginal position when the resin 
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infuses into the vacuum bag. During infusion, the whole material is in liquid resin that might 

easily dislocate the position of the optical fibre. Therefore, in order to keep the optical fibre in 

its original aligned position and not to create any impurities within the structure, an epoxy resin 

is used to pre-bond the optical fibre sensor to the core at particular selected points shown in Fig. 

9.2. Since the FOS is thin and transparent, the path of the F O S is indicated in Fig. 9.2. 

Cleaved IgM 

- Path of the Opt̂ q%P|bM:2 

Figure 9.2 Pre-bonded optical fibre 

J.-' 

1-

Protected 
Optical Fibre 

Figure 9.3 Thin plastic tube for the protection of F O S 

After solving the alignment problem of the FOS, the second issue is to avoid potential back 

reflection fi-om the cleaved end that pollutes the reflected Bragg wavelengths. Therefore, a 

curved-form (Fig. 9.2) is created near the cleaved end of the optical fibre to reduce the intensity 

of the back-reflected light significantly. The optical fibre embedded into the structure is very 
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delicate and fragile that extra covers (a thin plastic tube, Fig. 9.3) are used to take the sensor out 

through the thickness of the sandwich beam specimen and to give it a bit more flexibility. Since 

the main aim is to manufacture a GFRP skin sandwich beam specimen, pre-bonded FOS is 

covered with another four layers of U D glass fibre (Fig. 9.4). By using non-sticking film bags, 

the rest of the optical fibre at the exposed end, which is used to connect the sensors to the 

interrogation system, is also sealed and shown in Fig. 9.5. 

I 

Figure 9.4 Embedded optical fibres coming out f r o m material 

Non-Sticking 
Films 

Figure 9,5 Optical fibres sealed in non-sticking f i lm 

After taking out the F O S firom the layer between core and U D glass fibre, the whole panel (Fig. 

9.6) is sealed by using sealant tape, covered with vacuum bagging f i lm and then the resin is 

infused. Af te r infusion, the panel is left for curing at room temperature for approximately 15 
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hours. Finally, the beam specimen is cut by using diamond-coated saw. One of the sandwich 

beam specimens manufactured by using the method explained above is shown in Fig. 9.7. 

acuum 
Bagging Film Sealant Tape embedded 

ical Fibres 

Sandwich Panel 

Figure 9.6 Sandwich panel under vacuum bag 

Figure 9.7 Sandwich beam specimen with embedded FOS 

9.3.2 Curing Effect on FOS 

The change in positions of the peaks (i.e. the reflectivity) of the wavelengths is 

monitored before and after the curing process in order to investigate the effects of curing on 

strain measurements. Figures 9.8 and 9.9 show the curing effect on two different fibres having 

six Bragg gratings embedded into sandwich structure. 
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Figure 9.8 Curing effect on Fibre N o : l (a) before curing (b) after curing 
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Figure 9.9 Curing effect on Fibre No;2 (a) before curing (b) after curing 
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It can be concluded f rom the Figs. 9.8 and 9.9 that the e f fec t of curing on sensors leads 

the peak of the Bragg wavelengths to shift to lower values and to decrease their intensities since 

the curing of the resin creates a residual stress over and around the optical fibre. As the Bragg 

wavelength of the first sensor (S I ) has shifted a value that a lmost overlaps with one of the 

reference gratings (Re f l ) , the measurements f rom this particular sensor cannot be obtained. 

Thus, one of the important issues is to write the gratings in such a way that they are spaced in 

wavelength domain both f rom each other and from the reference gratings in order to avoid 

overlapping. 

9.3.3 Introducing of Damage 

During the manufactur ing process, a Teflon tape is inserted between the foam core and 

the GFRP skin along the length of the sandwich beam. In order to create two different damage 

extents, the length of the Teflon tape is increased from 30mm to 40mm by keeping its width 

constant as 40 .5mm that is equal to width of the specimen. By removing the upper surface of the 

skin and the Teflon tape, the final form of the damaged sandwich test specimen is obtained. 

Table 9.1 shows the location and the extent of the damage introduced to sandwich beam 

specimens. The locations are measured from the fixed end to the centre of the damage. 

Table 9.1 Extent and location of the damage 

Damage Extent Location 
Number [mm] [mm] 

1 30 70 

2 30 300 
3 40 170 
4 40 200 

9.3.4 Frequency Measurements 

The first three resonant frequencies of the intact and four damaged beams are obtained 

under random excitation in the range of lOHz to 710Hz. Figures 9.10 to 9.12 show peak-to-

peak response of the accelerometer attached to surface of the intact and selected damaged beams 

(i.e. beams with damage number 1 and 2 in Table 9.1). Intact, damaged and corresponding 

normalised resonant frequencies of these cantilever sandwich spec imens are also tabulated in 
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Table 9.2. An extensive modal analysis performed on sandwich beam specimen is given in 

Appendix B. 
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Figure 9.10 Frequency response of intact sandwich beam 
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Figure 9.11 Frequency response of damaged sandwich beam 

(Damage located at 70mm with an extent of 3 0 m m ) 
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Figure 9.12 Frequency response of damaged sandwich beam 

(Damage located at 300mm with an extent of 30mm) 

Table 9.2 First three resonant frequencies [Hz] (Experimental) 

Mode N o 
Intact 

Beam 

Damaged Beam 

Damage at 70mm Damage at 300mm 

fdcimagcd 

fim act 

Damage at 70mm Damage at 300mm 

r ' B e n d i n g 40.5 18.3 37^ 0.4518 0.9284 

2"''Bending 243.6 23&0 146.5 0.9770 0.6014 

3"" Bending 5&18 54Z5 455 j 0^%93 0J802 

9.4 Finite Element Modelling and Analysis 

Three dimensional higher order solid elements (SOLID95 for core and SOLID191for 

GFRP laminated skin) are selected to model the sandwich beam. In order to validate the model 

(i.e. combination of SOLID95 and SOLID 191) with the results f rom [G-1, G-2], FEA is 

performed with graphite/epoxy-aluminium sandwich plate (details in Appendix G). Having 

decided the element types, boundary condition effect on F E M of sandwich beam is also 

138 



Chapter 9 Sandwich Beam Structure 

investigated (details in Appendix H). The final form of the sandwich beam model can be seen in 

Fig. 9.13. 

Cantilever 
End 

Damage 
Fxtent 

Damage 
Location 

G F R ^ 
Skin Foam 

Core 

Figure 9.13 Finite element model of sandwich beam (isometric view) 

The model has 90 and 6 element divisions along the length and the width respectively and it has 

one element through the thickness in both upper and lower skin and the foam core. The FEM 

has 1620 elements (i.e. 1080 S 0 L I D 1 9 1 and 540 SOLID95 elements) with 9163 nodes. This 

mesh density is used for all further simulations in order not to increase the computational time 

as the results obtained f rom two other models having di f ferent mesh densities (i.e. 3240 

elements with 18253 nodes and 4320 elements with 21413 nodes) provided less than 0.1 per 

cent difference in the computed natural frequencies. 

9.4.1 Modelling of Damage 

The damage is model led by removing the elements located at the upper surface with 

different extents (Fig. 9.13). In finite element modelling, 5 d i f ferent damage severities (i.e. 10, 

20, 30, 40 and 50mm extent) are simulated at 26 different locations (i.e. locations away from 

fixed end between 50mm and 300mm by increment of 10mm) a long the beam. Therefore, 130 

different damage scenarios are created on different models. F igures 9.14a to b show FEM of 
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two different damaged beams. The damage samples in Figs. 9.14a and b have the damage 

extent of 30mm and they are 70mm and 300 mm away f rom cantilever end respectively. 

Damage 

, Damage 

0 0 (b) 

Figure 9.14 Finite element models of damaged beams 

(a) Damage located at 70mm (b) Damage located at 300mm 

9.4.2 Finite Element Frequency Analysis 

The natural frequencies of intact beam and damaged (130 damage cases) are obtained 

from the first three vertical bending modes. The damaged natural frequencies are normalised 

with respect to the intact ones in order to consider the effect of frequency reduction due to 

damage. The first three natural frequencies of intact and two selected damaged beams obtained 

f rom FEA are tabulated in Table 9.3. 

Table 9.3 Natural frequencies details [Hz] (FEA) 

Mode No 
Intact 

Beam 

Damaged Beam 

Damage at 70mm Damage at 300mm 

fdamagei! 

fin! act 

Damage at 70mm Damage at 300mm 

1®' Bending 4645 2L16 43.62 0.4507 0.9291 

2"''Bending 25L12 243.75 16&12 0.9707 0.6376 

3"" Bending 59L90 573^5 457.69 0.9683 117733 

As it can be seen f rom Tables 9.2 and 9.3 that the experimental ly obtained reductions in 

resonant frequencies f rom the first three modes show strong agreement (i.e. less than 4% 

deviation) with the ones obtained from FEA for two different d a m a g e located at 70mm and 

300mm with an extent of 30mm. 
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9.4.3 Sensitivity Analysis on Changes in Frequency 

Since 5 different damage extents at 26 different damage locations are not enough to 

create a complete training input set for ANNs, damage scenarios are extended by interpolating 

(i.e. linear interpolation) the normalised natural frequencies fo r the damage extents between 

10mm and 50mm by an increment of 1mm which gives 41 different damage extents at 26 

different damage locations along the beam. Finally, the normalised natural frequencies f rom 

1066 damage cases are obtained from the first three vertical bending modes and their variations 

are shown in Fig. 9.15. 

9.5 ANN Predictions 

Reduction in natural frequencies is given as input fea ture to three different ANNs 

(Table 9.4) to predict the severity and the location of the damage. 1000 and 66 input-output 

pairs are introduced to A N N s in the training and the validation runs respectively. In the first 

training run (RNF-DS), the mean square error (Fig. 16a) is reduced to a value of 1.85 10"* after 

5000 epochs. The corresponding regression plot of this run can b e seen in Fig. 16b. The second 

A N N training run (RNF-DL) is for the location prediction of the damage. Figures 9.17a and b 

show training and validation performance of this A N N with increasing epochs (i.e. mean square 

error value of 7,50 10'^ after 5000 epochs) and the corresponding regression plot respectively. 

The final run aims to train the designed A N N (RNF-DS&DL) fo r both damage quantification 

and localisation. Since the feature (RNF) does not provide enough information related to both 

damage severity and location at the same time in single ANN, the mean square error value (Fig. 

9.18a) reaches to a value of 3.95-10"'' after 5000 epochs that is the highest among the others. 

Figure 9.18b and c show regression plots for damage severity and location respectively for this 

particular A N N run. The value, R, in the regression plots is the correlation coefficient between 

the outputs (i.e. predicted values) and targets and it shows the measure of how well the variation 

in the output is explained by targets. That means, the closer to va lue of 1, the better the fit and 

the correlation it indicates. 

Table 9.4 A N N s used in the damage prediction of sandwich beam 

Input Output Architecture 

1. RNF DS 3:6:1 

2. RNF D L 3:6:1 

3. R N F DS&DL 3:8:2 
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Figure 9.15 Variation of normalised natural f requencies 

(a) Mode 1 (b) Mode 2 (c) Mode 3 
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Figure 9.16 Training and validation of A N N (Input: RNF, Output: DS) 

(a) Mean square error with number of epochs (b) Regression plot 
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Figure 9.17 Training and validation of A N N (Input: RNF, Output: DL) 

(a) Mean square error with number of epochs (b) Regression plot 
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Figure 9.18 Training and validation of A N N (Input: R N F , Output: DS&DL) 

(a) Mean square error with number of epochs 

(b) Regression plot for damage severity (c) Regression p lo t for damage location 

Having completed the training of ANNs, experimentally obtained data is introduced in 

order to predict damage size (extent) and its location along the sandwich beam specimens. All 

the test results of these ANNs are tabulated in Table 9.5. 

Table 9.5 Damage size and location predict ions 

INPUT OUTPUT 

Experimental Damage 

[TARGETS] 

Size [mm] Location [mm] 

A N N Test Results 

[PREDICTIONS]' 

Size [mm] Location [mm] 

R N F DS 30 70 36.8 (22.7) -

R N F DS 30 300 32.5 (8.3) -

RNF D L 30 70 - 75.4 (7.7) 

RNF D L 30 300 - 303.7 (1.2) 

R N F DS&DL 30 70 35.3 (17.7) 93.2 (33.1) 

R N F DS&DL 30 300 38.6 (28.7) 292.1 (2.6) 

R N F DS 40 170 42.9 (7.3) -

RNF DS 40 200 42.0 (5.0) -

RNF D L 40 170 - 189.2(11.3) 

R N F D L 40 200 - 227.0 (13.5) 

R N F DS&DL 40 170 40.6 (1.5) 159.7 (6.0) 

RNF DS&DL 40 200 42.5 (6.2) 218.8 (9.4) 

Numbers in parentheses denote % deviation from target values 
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9.6 Conclusions 

In this chapter, the fabrication of sandwich beam structures with embedded FBG strain 

sensors was presented with the results of the dynamic analyses performed on them. Results were 

considered in the context of predictions regarding quantification and localisation of the damage. 

Since creating an accurate FEM is one of the most important issues in model-dependent 

vibration-based analysis for damage identification, the dynamic analysis results for the 

sandwich test specimens were compared to those obtained from FEA. The comparative data 

shown in Tables 9.2 and 9.3 clearly validated the numerical models. 

Following the validation of the numerical study, experimental dynamic analyses were 

carried out on sandwich test specimens with embedded FBG strain sensors. It can be concluded 

from the analyses (details in Appendices A and B) that the FBGIS used in the experimental 

study provided accurate dynamic and static strain measurements from limited number of FBG 

strain sensors. However, the frequency domain of experimental interest was predetermined by 

the geometrical dimensions of the sandwich beams. For the intact and damaged beams 

investigated in this study, the frequency range was between 18Hz and 600Hz. (Figs. 9.10 -

9.12). Since the highest frequency of interest is approximately 600Hz, a superior FBGIS that 

supports dynamic strain measurements from multiple FBGs to a minimum 1.2kHz sampling 

frequency is required in order to investigate the first three strain modes shapes of the sandwich 

test specimens. Therefore, experimental reduction in frequency information obtained from intact 

and damaged sandwich beams was introduced to numerically trained ANNs in order to predict 

extent and location of the damage (Table 9.5). 

It can be seen from the Figs. 9.16 and 9.17 that lower MSB (i.e. 7.50-10"^) and higher R 

(i.e. 0.994) values were obtained in the location predictions. This indicates that a better 

generalisation was achieved in localisation than quantification of the damage during the training 

and validation of the ANNs. When experimentally obtained frequency data was introduced to 

ANN for severity prediction (i.e. RNF-DS), the predicted values showed slight overestimation 

for both damage sizes of 30mm and 40mm. On the other hand, the ANN trained for damage 

location prediction (i.e. RNF-DL) provided more accurate estimation for the location of the 

30mm damage size rather than that of the 40mm one. This is contrary to the observation in 

Chapter 7 where this combination (i.e. RNF-DL) did not provide good prediction for damage 

location. However, one should note that the extent of damage in the sandwich beam is different. 

Final test run (RNF-DS&DL, Fig. 9.18) was performed for both severity and location 

estimation of the damage. As it can be seen from Table 9.5, although the ANN predicted the 
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size of the damage quite accurately, under and over estimations were observed in damage 

location predictions. Despite the numerous factors that affect the accuracy of the vibration-

based analysis performed on intact and damaged sandwich beams (details in Appendix I), the 

damage location and severity predictions obtained from the ANNs are close to target values 

with acceptable deviations. 
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10,1 Achievements 

In this thesis, damage identification in beam-like structures has been performed by 

using vibration-based analysis and artificial neural networks. The term "damage identification" 

is used here to indicate the use of measured vibration-based structural response in detecting 

changes in the condition of the structure. These changes are assumed to vary due to the extent 

and the location of the damage occurring in the structure. Thus, one of the main challenges in 

damage identification based on response measurements is to locate and quantify the damage 

from the limited number of locations monitored by sensors (Chapter 3). 

The most important conclusions of this work are summarised and its new contributions 

are highlighted in the following paragraphs. 

The first part of the study concentrated on finite element modelling and analyses of 

intact and damaged cantilever beams since the accurate finite element model is essential for 

vibration-based damage assessment methods using model-dependent approach. As one of the 

objectives of the present work is to identify damage in structures from changes in their vibration 

responses, damaged beam models have been generated through local stiffness or thickness 

changes at different locations with various severities from intact models (i.e. control structures). 

After performing dynamic analyses, which provide natural frequencies, displacements and 

curvature mode shapes by using previously generated damage scenarios, sensitivity analyses 

have been performed in order to investigate the effects of varying locations and extents of 

damage on eigenparameters. 

Having obtained vibration-based analysis patterns mentioned above, damage prediction 

indicators (i.e. features) have been selected. The first feature used in the damage identification 

analyses was reduction in natural frequencies (i.e. RNF) due to damage. Depending on the 

location of the damage, different modes of the beam could be affected to different extents by 

making the problem non-unique. Therefore, the study focused on the effect of multiple modes 
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by considering the first three natural modes of the beams in the analyses. It can be concluded 

from the sensitivity analyses performed on beams having different extents of damage at 

different locations along the span of the beams that the percentage reduction in natural 

frequencies increase with the increasing severity of the damage. Additionally, considering a 

particular mode of vibration, when damage is located at or close to higher curvature point, the 

percentage reduction in natural frequency due to damage is considerably higher than the one 

observed when the damage is located at or near to one of the nodal points of that curvature 

mode shape. 

As eigenfrequencies are a global property of a structure, absolute differences between 

curvature mode shapes of the intact and the damaged beams have also been investigated to 

provide extra information in the prediction of the location of the damage. It is found from the 

sensitivity analyses that, by and large, the maximum values of the absolute differences in 

curvature modes occur near damage location. Thus, the maximum values of the absolute 

differences in curvature mode shapes (i.e. MADC) and their spatial location along the beam (i.e. 

LOG) have also been used for localisation and quantification of the damage together with 

reduction in natural frequencies. The main reason for choosing only the maximum values of the 

absolute differences in curvature mode shapes is to keep number of vibration-based analysis 

features as low as possible and yet obtain a high accuracy in the location and severity 

predictions by improving the damage assessment method. 

In literature (Chapter 2), local and global patterns (i.e. curvature mode shapes and 

natural frequencies. Table 2.2 and 7.5) obtained either from numerical or experimental 

vibration analyses data have been used in ANN applications as input in the damage detection of 

beam structures. However, there is no particular study found in the literature dealing with 

composite structures regarding different combinations of the features extracted from vibration 

analysis data and using them as input to ANN to investigate the severity and location of the 

damage. Therefore, based on the results of sensitivity analyses performed on intact and 

damaged composite beams, the damage sensitive features (i.e. RNF, MADC and LOC) from 

vibration-based data obtained from the first three modes have been introduced to ANNs [7-1]. 

Since the aim of these analyses (Chapter 7) has been to investigate the effectiveness of these 

features and their different combinations in the damage identification process as training set to 

ANNs, normalised geometrical and dimensionless elastic properties of FRP laminated 

composite structures have been used in the finite element analysis. 
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The ANNs designed and used during the analyses are multi-layer feedforward neural 

networks with backpropagation learning. These types of ANNs are also called pattern associator 

and frequently used for classification and prediction purposes. Initially, fifteen different neural 

networks with single hidden layer have been designed for the prediction of severity (as a single 

output), location (as a single output) and both severity and location in single neural network 

having two outputs. Before introducing this vibration data to ANNs, a pre-processing has also 

been performed in order to arrange the data in such a way that ANNs can use them directly as 

input-output pairs. The first step in pre-processing is the normalisation of input and output pairs. 

After normalisation, it is necessary to add artificial noise to noise-free input data at some 

percentages to check the generalisation of the neural network and to simulate the experimental 

uncertainties. 

The detailed analysis considering the performance of multi-hidden-layer ANNs has also 

been examined and compared with the one having a single hidden layer. The analyses 

performed on two-hidden-layer ANNs have been shown in Appendix D. Considering the 

computational time issue and the general fact that an ANN with single hidden layer can be 

trained to solve pattern recognition problems, single hidden layer ANNs have been selected and 

used throughout the analyses. As the number of neurons in the input and the output layers have 

been restricted with the data introduced to ANNs during the training, only the number of 

neurons in the hidden layer could be adjusted to optimise the performance of the designed 

ANNs. Thus, different ANN architectures have been tested. Based on this, a particular group of 

network configurations has been selected to use in further simulations as they have provided the 

best estimations for both localisation and quantification of the damage. The number of epochs 

has also been adjusted in such a way that the best convergence in MSB could be achieved 

during the training and validation of the ANNs. 

As mentioned earlier, it is important to provide vibration signatures from multiple 

modes to solve the non-unique and inverse damage detection problem. Hence, the effects of 

multiple vibration modes on the predictions of ANNs have also been investigated. The noise-free 

features extracted from each individual mode of vibration have been introduced to single-

hidden-layer ANNs. Four different ANNs (RNF, MADC, MADC&LOC and 

RNF&MADC&LOC as input features) have been selected for training. By comparing their 

performance, it can be concluded that generalisation and accuracy in predictions improved as 

the number of features increased through the addition of higher modes. Full details of this 

particular analysis can be found in Appendix C. 
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The results obtained from ANN predictions performed on laminated composite beams 

regarding damage severity and location indicated that neural networks with single output (i.e. 

either location (DL) or severity (DS)) operated more accurately than neural networks with 

combined outputs (i.e. both severity and location (DS&DL)). The level of artificial noise on 

input data also affected the predictions and accurate results have been obtained in the 

localisation of the damage as compared to damage quantification when the increased level of 

noise-polluted data has been introduced to ANNs. Finally, it can be concluded from the 

predictions of the ANNs that the vibration-based patterns, extracted features, effect of noise on 

these features, architecture and training of the ANNs are the most important factors played an 

important role in the accuracy of the structural damage assessment method. The numerical 

analyses results of the present study [7-2] could serve as a benchmark for future investigators in 

selecting ANN as a damage detection tool. 

Having gained an extensive knowledge about the damage detection by vibration-based 

analysis via ANN on numerically generated data with artificial damage scenarios, experimental 

analysis has been dealt with both intact and damaged isotropic beam specimens with distributed 

surface bonded strain gauges (Chapter 6). First, structural responses of steel beams have been 

obtained by using miniature accelerometer under both frequency sweep and random excitation. 

Then, constant frequency excitation was applied at each resonant frequency of interest to obtain 

dynamic strain mode shapes at these particular frequencies. The experimental vibration data 

agreed well with the numerically obtained results for isotropic beams especially for intact case. 

However, the experimental results obtained from the damaged steel beam showed some 

variations at the damage location regarding the dynamic strain data. The possible reasons for 

this deviation could be from the method used in the calculations of curvature modes, the way of 

modelling of the structural damage and from the other source of errors involved during the 

experimental analysis. The damage detection algorithm that uses combination of global and 

local vibration-based analysis data as input to ANNs for location and severity prediction of the 

damage in isotropic beam structures via distributed surface bonded electrical strain gauges has 

also been validated experimentally [8-1]. The predictions of the ANNs regarding the damage 

severity and location provided reasonable accuracy, albeit for one test case only (Chapter 8). 

In the final part of the experimental study (Chapter 9), GFRP sandwich beam structures 

with embedded FOSs have been manufactured via resin infusion technique by vacuum bagging. 

Considering their advantages (Table 2.5) on conventional electrical strain gauges, FOS with 

multiple Bragg gratings have been selected and used to monitor internal static and dynamic 

strain in sandwich beam structures. The GFRP sandwich structure used throughout the analyses 
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has polymer foam core covered with four equal layers of uni-directional glass fibre with layer 

orientation of [0/90]s on each side. FOSs have been embedded between core and laminated skin 

during the manufacturing. The main reason of embedding FOSs at this particular location is 

owed to the fact that there is a high tendency of separation between the GFRP laminated skin 

and foam core in sandwich structures under transverse vibration as this is the interface where 

two different materials meet. By positioning FOS parallel to 0° glass fibre on the skin, the size 

of the local resin-rich region surrounding the embedded FOS has been minimised. 

After embedding optical fibres, the effect of curing on FBG strain sensors has also been 

investigated by monitoring the changes in positions of the peaks (i.e. the reflectivity) of the 

wavelengths. It was observed from the cure monitoring that the peak of the Bragg wavelengths 

shifted to lower values and their intensities decreased as the curing of the resin created residual 

stresses over and around the optical fibres. As the Bragg wavelength of the first sensor 

overlapped with one of the reference gratings, the measurements from this particular sensor 

could not be obtained. Thus, the FBGs should be written in a way that they are spaced in 

wavelength domain both from each other and from the reference gratings in order to avoid 

overlapping. 

Having manufactured the sandwich beam specimens, analyses have been performed to 

investigate the capabilities of the FBGIS and the effectiveness of the FBG sensors on static and 

dynamic strain measurements. The static analysis (Appendix B) performed on GFRP sandwich 

beams showed that embedded FBG strain sensors have provided accurate local strain. On the 

other hand, dynamic strain history (Appendix A) obtained from multiple FBG strain sensors is 

restricted with the capabilities of the FBGIS. Hence, experimental validation of the damage 

detection algorithm on GFRP sandwich beam-like structures has been achieved by introducing 

reduction in natural frequency information to ANNs. The ANNs trained for the damage 

identification with FEA data have been tested by using an experimental input and accurate 

location and severity estimations have been obtained with acceptable deviations from the 

desired target values. 

A list of publications arising from this research is given in Appendix J. 
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10.2 Future Work 

The following suggestions are made for future research: 

> Generalisation of the proposed algorithm to two-dimensional structures with sensor 

optimisation 

As one-dimensional beam-like structures were used throughout the study, the work can be 

expanded by generalising and applying the algorithm to two-dimensional plates or shell 

structures. This requires a strain sensor network that can provide double curvature information 

under dynamic loading conditions. This brings the necessity of optimisation in number of 

sensors and their locations. The key point in selection and use of sensors for structural health 

monitoring is to install them in such a way that the dynamic mechanical characteristics of the 

host structure are not significantly modified. Therefore, the optimisation procedure is one of the 

crucial stages in the design of health monitoring system and it plays an important role from the 

final design and maintenance point of view. 

> Inclusion of horizontal bending and torsion modes in the analysis 

This thesis addressed the application of the vibration-based damage identification method by 

using only the vertical bending modes of vibration of the beam-like structures. Depending on 

the behaviour of the damage, different types of vibration modes might provide additional 

information in the detection, localisation and quantification of the damage when they are 

introduced as input feature to ANNs. 

> Inclusion of multiple damage scenarios 

The damage identification method proposed here considers single damage case. The further 

research requires the investigation of more damage sensitive features from multiple damage 

scenarios as there is always a possibility of having more than one damage in the structure. 

> Investigation of the residual life of a structure 

Since distributed strain information was obtained and served as one of the damage sensitive 

features, it can also be used to obtain stress information that might be combined with various 

fracture mechanics criteria and fatigue analysis in the determination of the remaining life of the 

structure. Depending on the type and the loading condition, structural health monitoring and 
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damage detection methods can be improved to investigate higher levels of damage assessment 

such as Level#4 (Section 1.1). 

> Application of the technique to real structures 

As the damage detection technique used in this study was applied to small-scale models and test 

specimens in controlled laboratory environment with artificially introduced damage, there is a 

need to implement the technique to real aeronautical, civil, marine and off-shore structures 

having complex shape and boundary conditions with unknown environmental and operational 

conditions in their service life. 
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Chapter Eleven CONCLUDING REMARKS 

A damage identification technique using model-dependent vibration-based analyses has 

been developed and employed in quantification and localisation of damage in beam-like 

structures. The approach adopted is based on the use of measured vibration data from 

accelerometers, surface bonded strain gauges and embedded fibre Bragg grating (FBG) strain 

sensors to identify different extents of damage at various locations along the structures via 

artificial neural networks (ANNs). 

Finite element models of steel, fibre reinforced plastic (FRP) laminated composites, and 

foam-core sandwich beam-like structures were produced and modal analyses were performed on 

models with artificially generated damage scenarios in order to obtain input-output data sets for 

training of ANNs. A group of features providing both global and local damage information were 

extracted and introduced to ANNs with different combination in the form of normalised relative 

changes between healthy and damaged structures. As one of the aims of the technique adopted 

here was to test the efficacy of selected vibration signatures, ANNs were chosen as information-

processing algorithms for the solution of this non-unique and inverse pattern recognition 

problem. The results of the numerical simulations showed that both selected features and the 

level of artificial noise added to them are very important from the generalisation and robustness 

point of view of the designed ANNs. 

As sensors used for vibration measurements become increasingly inexpensive, a 

structure can be densely populated with them, making damage easier to quantify and localise by 

providing more information. Hence, experiments were performed by using surface bonded 

strain gauges and embedded FBG strain sensors in beam-like structures to collect information 

about the condition of the host structure and to estimate location and seventy of damage with 

numerically trained ANNs. It has been observed from the experimental work of damage 

detection that there is strong correspondence between the selected features and the ANNs 

predictions regarding the location and seventy of damage. 
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Chapter 11 Concluding Remarks 

It can also be concluded from the proposed approach that better localisation of damage 

was achieved without compromising the accuracy in damage quantification predictions. Finally, 

the study proved that a combination of global and local vibration-based damage sensitive 

features measured from beam-like sensory structures used as input to ANNs from multiple 

modes is very effective in identifying damage patterns. 
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Appendix A FIBRE OPTIC BRAGG GRATING INTERROGATION 
SYSTEM 

One of the important factor plays an important role during the dynamic strain 

measurements is the determination of the scanning frequency for the fibre optic Bragg grating 

interrogation system (FBGIS) so that it could scan multiple FBG sensors fast enough to capture 

high frequency excitation. Therefore, the intention of this appendix is to provide the dynamic 

strain measurement results obtained from sandwich cantilever beam and in this way to verify the 

dynamic measurement capabilities of the interrogation system and show its' limitations. 

The sandwich beam used in the experiment has a length of 450mm and a width of 

40.5mm with a total thickness of 14.6mm, which includes a core thickness of 12mm and a 

laminated skin thickness of 1.3mm on either side of the core. The laminated skin consists of 

four equal layers with a layer orientation of [0/90 ]s. FBG sensors were embedded between the 

core and the upper laminated skin at 30mm, 70mm, 130mm and 170mm from the root in order 

to monitor dynamic strain along the beam. The cantilever sandwich beam is vibrated by random 

excitation and following strain histories (Fig. A.l) are recorded from the embedded FBG 

sensors individually. Then, FFT of the strain histories are calculated and shown in Fig, A.2. 

Sensors are numbered starting from the one closer to cantilever end of the beam. 

E a 

1 l a 2 
SwnpBnQ Poinia rS 2 

Sampling Points 

Fig. A . l (continued over) 
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5 ^ 

SampKng Pom1# 

E a 

1 

Smnplmg PoiNm 

Figure A.l Strain histories of four sensors. 
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Figure A.2 Frequency spectrum of four sensors. 

The frequency response (Fig. A.3) of the specimen under random excitation is also 

obtained from an accelerometer mounted near root of the beam. The numbers near each peak 

response indicate experimentally obtained resonant frequencies. 
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It can be seen from the Fig. A.2 that the scanning rate of the FBGIS is capable of 

capturing the frequency content accurately from individual FBG strain sensors at excitation 

level just over 250Hz as the frequencies corresponding to maximum amplitude values match 

with the resonant frequencies obtained from the accelerometer (Fig. A.3). Therefore the 

interrogation system can be used for further experimental analysis aiming to measure dynamic 

strain from limited number of FBG strain sensors embedded into sandwich beam structure. 
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Figure A.3 Frequency response of a sandwich beam. 

The following calculations show the steps followed to calculate the scanning frequency 

for the FBGIS with eight FBG strain sensors. 

Scanning frequency for one point [Hz]: / : 
Czio*) 

[dioclk X (3 6 + blanks)] 

where; 

dioclk [ns] = The digital clock set in the interrogation system = 500 (optimum) 

blanks = The buffer spacing = 128 (optimum) 
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[500X(36+ 128)] Hz 

Scanning period for one point [s]: t - y 

r = ! — ^ = 4.110-58 
24J9 103 

Scanning period for n number of FBG sensors [s]: sensors = 2 • in,)-{samppts)-{dithpts)-t 

where; 

n = number of FBG sensors = 8 

rit = total number of FBG sensors including 2 reference gratings - n+2 = 10 

samppts = the number of sampling points used to track the reflective peak of a particular 

Bragg grating = 2 (optimum) 

dithpts = dither points to track the changes in the centre wavelength = 2 

Scanning period for eight FBG sensors: ĝsensors = 2 (lO) (2) (2) 4.1 10"^ =3.28 10"̂  s 

Scanning frequency for n number of FBG sensors [Hz]; / , ^ n sensors 
sensors 

Scanning frequency for eight FBG sensors: /gsensors = ly = 304.878 Hz 
3.28 • 10 

As the sampling frequency should be at least two times higher than the highest 

frequency of interest, interrogation system can be used with eight FBG strain sensors to obtain 

dynamic strain up to 150Hz that is much lower than the second resonant frequency of the 

sandwich beam specimen. 

172 



Appendix B MODAL AND STATIC STRAIN ANALYSIS OF 
SANDWICH BEAM SPECIMEN 

In modal analysis part, the resonant frequencies of cantilever sandwich beam (450mm x 

40.5mm x 14.6mm) are investigated by applying impact and frequency sweep type excitations 

and the corresponding response of the beam is monitored by using piezoelectric accelerometer. 

In static strain analysis part, the local strain value is obtained from an electrical resistance strain 

gauge and FBG strain sensors. Finally, both experimentally obtained dynamic and static 

analysis results are compared to FEA ones. 

B . l M o d a l Ana lys is 

B . l . l Est imation of Frequency Response Function 

The mathematical basis of frequency analysis [B-1, B-2, B-3, 6-4, 6-5] is the Fourier 

Transform taking different forms that depends on the type of signal analysed. In this analysis, 

since the signal is discrete in both time and frequency domains. Discrete Fourier Transform 

(DFT) is used. Lets be a sampled time function (or sequence), the forward transform of this 

signal is expressed as; 

1 T-i _ jlsit 
= (B.l) 

where N is the number of time samples (or frequency components) and — is the simple scaling 

factor. In discrete Fourier transform, to obtain N number of frequency components, complex 

multiplication must be done. On the other hand, another calculation procedure, which is called 

as Fast Fourier Transform (FFT), provides the same result with a number of complex 

multiplications of the order Mog2#. This means, FFT algorithm reduces the computation time 
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drastically. The discretisation of the originally continuous time history can cause a phenomenon 

called aliasing where a high frequency signal is sampled and takes on the appearance of a lower 

frequency. To avoid aliasing, a sampling r a t e , , which is given by = ^ , can be chosen in 

such a way that it is at least two times greater than the cut-off (highest frequency of interest) 

frequency. Therefore, the upper frequency limit of a digital signal called Nyquist frequency (or 

folding frequency) is half of the sampling frequency and taken as 5000 Hz. Since, the first three 

bending natural frequencies are lower than 5 kHz, this value can be accepted as a cut-off 

frequency. Here At is the time interval and the reciprocal of the total time (?) gives the analysis 

resolution. All the values used during the analysis are tabulated in Table B.l. 

Table B.l Parameters used during the analysis 

Parameters Value 

Time interval, At 0.0001 s 

Total time, T 3 s 

Total data recorded, N 30000 

Sampling frequency, 10000 H z 

Nyquist Frequency, 5000 H z 

Analysis resolution, Af 0333 H k 

In dual-channel frequency analysis, there are two signals and for each signal the time 

function is transformed by using FFT algorithm to a complex spectrum. The squared amplitudes 

of a number of such instantaneous spectra are averaged in an averaging buffer to give the "auto-

spectrum" for that particular signal (Eqs. B.2 and B.3). If the instantaneous spectra of both 

channels are used then "cross-spectrum" can be obtained by using equation (B.4). Another 

important parameter called coherence, the ratio of the square of the magnitude of the averaged 

cross-spectrum between the force and the response to the product of the averaged autospectra of 

the force and the response, gives a measure of the degree of the linear dependency between the 

two signals as a function of frequency (Eq. B.5). 

'Sx%(jf)== Km ^ Q3 2) 
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'S';y(/) = J im ^ 
T-^co T 

(B3) 

^ ^ ( / ) = lim E 
T^co T 

08 4) 

0 ^ / % , ( / ) < 1 

Uncorrected Data Correlated Data 

CB5) 

After obtaining cross- and auto-spectrums, the normalisation of the cross-spectrum with 

input and output auto-spectrum, i7 j ( / ) (Eq. B.6) (Eq. B.7) type estimators can be 

obtained respectively. On the other hand, Hy(f)type estimator is based upon the concept of 

total least squares that is shown to be the maximum likelihood estimator for frequency response 

function H ( f ) of a linear time-invariant system (Eq. B.8). 

^ l ( / ) 03 6) 

03 7) 

(B.8a) 

' * ( / ) = [ s „ ( f ) • ' ' ( f ) - s„ (-/;]' + f / ; f • i ' ( f ) (B.8b) 

r C / ) = 
(/) 

6'j3._no&e(/) 
(]3.8c) 

Figure B.l shows the schematic representation of obtaining frequency response function 

estimators. 

175 



Appendix B Modal and Static Strain Analysis of Sandwich Beam Specimen 
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Figure B.l Schematic representation of calculating the frequency response function estimators 

B.1.2 Experimental Resonant Frequencies from Estimators 

The first three vertical and two horizontal bending resonant frequencies are obtained by 

using impact hammer and monitoring the response from a piezoelectric accelerometer mounted 

to tip of the beam. Figures B-2 and B-3 show force and acceleration time histories, calculated 

estimators and coherence in the estimation of vertical and horizontal resonant frequencies of the 

cantilever sandwich beam respectively. Table B.2 presents these resonant frequencies in a 

tabulated form. 
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Figure B.2 Vertical bending resonant frequency estimation 

(a) Force time history (b) Acceleration time history 

(c) HI estimator (d) % estimator (e) estimator (f) Coherence 
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Figure B.3 Horizontal bending resonant frequency estimation 

(a) Force time history (b) Acceleration time history 

(c) HI estimator (d) H2 estimator (e) H estimator (f) Coherence 
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Table B.2 Resonant frequencies from estimators 

Mode No Resonant Frequencies [Hz] 

r'Vertical Bending 4 L 0 

r'Horizontal Bending 80 0 

2"'' Vertical Bending 23&0 

2"'' Horizontal Bending 4 9 6 ^ 

3"* Vertical Bending 5 8 ^ 0 

B.1.3 Experimental Resonant Frequencies from Frequency Sweep 

In the second part of the modal analysis, resonant frequencies are estimated by 

sweeping the frequency via electro-dynamic shaker in the frequency range of lOHz to 810Hz 

(for the first three vertical bending resonant frequencies), 5Hz to 125Hz (for the first horizontal 

bending resonant frequency) and 185Hz to 515Hz (for the second horizontal bending resonant 

frequency). The corresponding frequency responses are shown in Figs. B.4 to B.6 and the 

resonant frequencies are tabulated in Table B.3. 

1237.0 Hz 

573.5 Hz 

40.5 Hz 

Freq (Hz) 

Figure B.4 Vertical frequency response of sandwich beam (10 Hz to 810 Hz) 
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82.0 Hz 

Freq (Hz) 

Figure B.5 Horizontal frequency response of sandwich beam (5 Hz to 125 Hz) 

484.0 Hz 

Freq {Hz) 

Figure B,6 Horizontal frequency response of sandwich beam (185 Hz to 515 Hz) 

Table B.3 Resonant frequencies from frequency sweep 

Mode No Resonant Frequencies [Hz] 

1®'Vertical Bending 4&5 

r'Horizontal Bending 8 2 0 

2"̂  Vertical Bending 2 3 7 ^ 

2"^ Horizontal Bending 4 8 4 ^ 

S"' Vertical Bending 5 7 1 5 
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B.1.4 Natura l Frequencies from F E A 

The normal mode dynamic analysis is performed on FEM of cantilever sandwich beam. 

The details about the modelling of the beam, geometrical and material properties, selection of 

element type and boundary condition effect are given in Appendices E, G and H. The first six 

natural frequencies obtained from FEA are tabulated in Table B.4. 

Table B.4 Natural frequencies from FEA 

Mode No Natural Frequencies [Hz] 

1®'Vertical Bending 4 5 j K 5 

1 Horizontal Bending 82jW0 

2"̂ * Vertical Bending 249.901 

Torsion 275^61 

2"'' Horizontal Bending 484.809 

3"" Vertical Bending 591.268 

In order to investigate the effect of the 4-gram piezoelectric accelerometer mounted at 

the tip of the beam, a concentrated mass is modelled by using MASS21 type of element in the 

FEM. The natural frequencies of the sandwich beam with the existence of concentrated mass are 

given in a tabulated form in Table B.5. 

Table B.5 Natural frequencies from FEA with 4-gram mass 

Mode No Natural Frequencies [Hz] 

1®'Vertical Bending 4 3 3 9 0 

1 Horizontal Bending 7&315 

2"'' Vertical Bending 239.483 

Torsion 2 7 2 7 0 4 

2"̂  Horizontal Bending 464.032 

3"" Vertical Bending 570.669 
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B.2 Stat ic S t ra in Analysis 

B .2.1 Measurements by Strain Gauge 

In order to verify FEM of the sandwich beam, the static strain analysis is performed by 

bonding a strain gauge to upper surface of the structure on the centre line at location of 100mm 

away from the root. A static load of 1000-gram is applied from the tip of the beam. A single 

element electrical resistance gauge (FLA 3-23) with gauge length of 3mm, nominal resistance of 

120 0 ± 0.3 and a gauge factor of 2.15 is used to measure the strain on the surface of the beam. 

The strain gauge and the beam structure can be seen in Fig. B.7. The local strain is calculated by 

using equations (5.1) and (5.2) as; 

=100mml 295.81 yUe 

Figure B.7 Sandwich beam with surface bonded electrical strain gauge 

Same FEM used in dynamic analysis is chosen for the analysis of the static strain under 

9.8 IN point force in negative Z direction creating a tension on the upper surface of the 

cantilever sandwich beam. Figure B.8 shows the beam model and strain distribution along the 

beam length. The nodal strain in X direction at location of 100mm away from the root of the 

beam is also obtained for the sake of comparison as this is the location where the strain gauge is 

bonded to the test specimen. 
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Figure B.8 Strain distribution along the sandwich beam 

The difference between experimental and numerical local strain (i.e. 9.48 jus) is due to 

the estimated material properties in FEM, misalignment of the electrical strain gauge from the 

centre line of the beam and the adhesive bonding between the electrical strain gauge and the 

surface of the beam. 

B.2.2 Measurements by F B G Strain Sensors 

An analysis was carried out to establish the ability and accuracy of the FBGIS to 

measure strain under static loading conditions. It involved setting up a cantilever sandwich 

beam containing six FBG strain sensors located between the core and GFRP laminated skin at 

30mm, 70mm, 130mm, 170mm, 210mm and 260mm from the cantilever end. A number of 

weights were applied to the tip of the beam in order to obtain its static curvature shape and the 

resulting strain was measured using the FBGIS. Figure B.9a shows a comparison of the 

measured normalised strain, with respect to the first sensor measurement, under four different 

static loads (i.e. 1kg, 1.1kg, 1.2kg and 1.3kg) with the results obtained from FEA simulation of 

a similar sandwich beam. 

It can be seen from Fig. B.9a that the FBG sensors exhibit the same behaviour under 

different loading conditions proving the repeatability of the measurement process within the 

elastic deformation range of the beam. Even though the FBG measurements do not exactly 
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match with the linear profile of the FEA result, the measurements are evenly distributed around 

it. A linear regression analysis is also performed on the FBG results (Fig. B.9b) and it indicates 

a close match with the profile of the FEA analysis. 
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Figure B.9 Comparison of FBG strain sensor measurements with FEA 

(a) Normalised strain values for different static load (b) Linear regression curves 

The slight deviation from the ideal FEA profile can be the result of many factors. 

Primarily it can be attributed to the manufacturing process. This involves initial bonding of the 

fibre containing the FBG sensors to the core creating resin rich area before the final infusion 

process takes place. Therefore, when the final manufacturing step is taken and the resin is 

infused, some areas of the optical fibre come into contact with the GFRP skin and some areas 

come into contact with the foam core. Consequently, this type of coupling is not represented in 

the FEM as it assumes perfect coupling between the GFRP skin and the core. Hence, there 

would be a discrepancy between the measured FBG strain sensor results and the FEA ones. 
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Appendix C EFFECTS OF MULTIPLE MODES ON PREDICTIONS 
OF ARTIFICIAL NEURAL NETWORKS 

The aim of this appendix is to present the effects of multiple modes on predictions of 

ANNs. The features extracted from individual modes of vibration are introduced to single 

hidden layer ANNs that have been trained and tested by using noise-free data sets in Chapter 7, 

section 7.5.1. Table C.l shows the tabulated form of the ANNs used during the analysis. 

Table C.l ANN architectures and input-output pairs 

Input Output Architecture Epoch 

1. R N F ( r ' Mode only) DS 1:6:1 2000 

2. R N F ( r ' and 2"" Modes) DS 2:6:1 2000 

3. R N F 2"" and 3"" Modes) DS 3:6:1 2000 

4. MADC (T' Mode only) D L 1:6:1 2000 

5. M A D C (1" and 2"" Modes) D L 2:6:1 2000 

6. M A D C ( r \ 2"" and S"" Modes) D L 3:6:1 2000 

7. M A D C & L O C ( r ' Mode only) DL 2:9:1 2000 

8. M A D C & L O C (1" and 2"" Modes) DL 4:9:1 2000 

9. M A D C & L O C (1", 2"" and 3"" Modes) DL 6:9:1 2000 

10. R N F & M A D C & L O C (1" Mode only) D S & D L 3:18:2 4000 

11. R N F & M A D C & L O C (1'' and 2"" Modes) D S & D L 6:18:2 4000 

12. R N F & M A D C & L O C (1'% 2"^ and 3"* Modes) D S & D L 9:18:2 4000 

As it can be seen from Table C.l that mainly four ANNs are trained. In order to make the 

comparison easy in the generalisation of ANNs, the number of epochs are kept constant (i.e. 

2000) when RNF, MADC and MADC&LOC are introduced as input features. Since 

R N F & M A D C & L O C (iC^, and 12* ANNs in Table C . l ) has large number of input data 

compared to other ANNs, number of epoch is set to 4000 for these three networks. Figures 

C.1-12 show severity and location predictions of ANNs with different input and output pairs. 
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Figure C.l ANN results for severity predictions. Input: RNF (]/' Mode only) and Output: DS 

(a) Mean square error with number of epochs (b) Severity predictions 
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Figure C.2 ANN results for severity predictions. Input: RNF (1^ and 2"̂  Modes) and 

Output: DS (a) Mean square error with number of epochs (b) Severity predictions 
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Figure C.3 ANN results for severity predictions. Input; RNF (1®', 2"'' and 3"' Modes) and 

Output: DS (a) Mean square error with number of epochs (b) Severity predictions 
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Figure C.4 ANN results for location predictions. Input: MADC (1 '̂ Mode only) and Output: DL 

(a) Mean square error with number of epochs (b) Location predictions 
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Figure C.5 ANN results for location predictions. Input: MADC (T' and 2""" Modes) and 

Output: DL (a) Mean square error with number of epochs (b) Location predictions 
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Figure C.6 ANN results for location predictions. Input: MADC (T', 2""̂  and 3"" Modes) and 

Output: DL (a) Mean square error with number of epochs (b) Location predictions 
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Figure C.7 ANN results for location predictions. Input; MADC&LOC (1^ Mode only) and 

Output: DL (a) Mean square error with number of epochs (b) Location predictions 
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Figure C.8 ANN results for location predictions. Input; MADC&LOC (T' and 2'"" Modes) and 

Output; DL (a) Mean square error with number of epochs (b) Location predictions 
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Figure C.9 ANN results for location predictions. Input; MADC&LOC (1®', 2"'' and 3"" Modes) 

and Output; DL (a) Mean square error with number of epochs (b) Location predictions 
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In the first set of training and test runs (ANNs No:l, 2 and 3 in Table C.l), RNF, which 

is obtained from r ' mode, combination of 1®' and 2"'' modes and all three modes, was used input 

feature for DS prediction. As it can be seen from Figs. C.l to C.3, the predictions are in 

acceptable 5% deviation range from the target values when multiple modes are introduced. 

Moreover, a continuous decrease was achieved in MSB value (2000 number of epochs) from 

single mode input to all three modes (Figs. C.la-3a). 

The second set of training and test runs (ANNs No;4, 5 and 6 in Table C.l) was 

performed by using maximum absolute differences in curvature (MADC) mode shape data. 

Since the input data (i.e. information from r ' mode only) was not enough for complete 

generalisation, the predictions regarding DL showed large variation from the target values. MSB 

reached to an approximate value of 3.2 • 10"^ after 2000 epochs (Fig. C.4a). 
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(b) 

Figure C.IO ANN results for location and severity prediction. Input;RNF&MADC&LOC 

(1̂ ' Mode only) and Output: DS&DL (a) Mean square error with number of epochs 

(b) Severity predictions (c) Location predictions 
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Introducing of MADC obtained from both T' and 2"'̂  modes improved generalisation (Fig. 

C.5b) by pulling MSE down to 4.4- lOT^ (Fig. C.5a). Finally, MADC from all three modes of 

vibration was used as input for DL predictions and MSE converged to its lowest value of 

8.6-10 ^ as it can be seen from Fig. C.6a. The corresponding DL predictions are shown in Fig. 

C.6b. 

The improvement in DL predictions was achieved by addition of location information to 

MADC. That means, MADC&LOC was used in the third set of training and test runs (ANNs 

No:7, 8 and 9 in Table C . l ) . M S E values were reduced to 10"^ (Figs. C.7a-9a) and almost all 

predictions laid within 5% limit by providing better generalisation compared to the ones 

obtained from ANNs No:4, 5 and 6 in Table C.l. 
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Figure C . l l ANN results for location and severity predictions. Input:RNF&MADC&LOC 

(T' and 2"'' Modes) and Output: DS&DL (a) Mean square error with number of epochs 

(b) Severity predictions (c) Location predictions 
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Figure C.12 ANN results for location and severity predictions. Input:RNF&MADC&LOC 

(T', 2"̂  and 3'̂  Modes) and Output; DS&DL (a) Mean square error with number of epochs 

(b) Severity predictions (c) Location predictions 

The final set of networks (ANNs No: 10, 11 and 12 in Table C.l) involved in training 

and test runs used RNF&MADC&LOC as input parameter for both DS and DL predictions, in 

this case, there are slight over and under estimations in DS predictions (Figs. C.10b-12b) which 

were improved by including higher modes. Considering DL predictions, the outputs are closer 

to target values with acceptable deviations (Figs. C.10c-12c). 
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Appendix D DESIGN OF ARTIFICIAL NEURAL NETWORK 
ARCHITECTURE 

The aim of this section is to present a comparative study performed on ANNs that have 

different number of hidden layers with different number of neuron combinations in each hidden 

layer. During the analysis, ANNs with two hidden layers are designed, tested for damage 

detection and their predictions are compared with each other and the ANNs with single hidden 

layer used in Chapter?, section 7.5.1. All ANNs in this section trained by using noise-free data 

sets. Figures D.l and D.2 show the schematic view of one and two-layer ANNs designed by 

using MATLAB® Neural Network Toolbox [7-5] respectively. 
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Figure D.l ANN with single hidden layer (Architecture 3:6:1) 
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Figure D.2 ANN with two hidden layers (Architecture 3:6:6:1) 
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The detail information about the input-output (Table 7.2) and the test (Table 7.4) data 

sets are already given in Chapter 7, sections 7.4 and 7.5. Only the ANNs showed best 

performance during the training are selected for two-hidden-layer architecture applications. All 

ANNs used during the analysis are tabulated in Table D.l. 

Table D.l ANN architectures with two hidden layers 

Input Output Architecture Number of Epoch 

1. R N F DS 3:6:6:1 10000 

2. R N F DS 3:6:6:1 2001 

3. R N F DS 3:6:3:1 10000 

4. RNF DS 3:6:3:1 3150 

5. M A D C & L O C D L 6:9:9:1 10000 

6. M A D C & L O C D L 6:9:9:1 1351 

7. M A D C & L O C D L 6:9:6:1 10000 

8. M A D C & L O C D L 6:9:6:1 1001 

9. R N F & M A D C & L O C D S & D L 9:18:18:2 10000 

10. IUM%WdADC&LOC D S & D L 9:18:18:2 2401 

11. R N F & M A D C & L O C D S & D L 9:18:9:2 10000 

12. Rr#%UWADC&LOC D S & D L 9:18:9:2 3201 

The first four ANNs use reduction in natural frequency (RNF) as an input for the 

damage severity (DS) predictions. The performance of these ANNs during the training process 

and their severity predictions can be seen from Figs. D.3 to D.6. 
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Figure D.3 ANN (3:6:6:1) results for severity predictions (Input:RNF, Output:DS) 

(a) Mean square error with 10000 number of epochs (b) Severity predictions 
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(a) (b) 

Figure D.4 ANN (3:6:6:1) results for severity predictions (Input:RNF, Output:DS) 

(a) Mean square error with 2001 number of epochs (b) Severity predictions 

It can be concluded from Figs. D.3 and D.4 that early stopping (i.e. 2001 epochs) in the 

training provides acceptable accuracy in the predictions (1®' and 2"̂  ANNs in Table D.l) when 

RNF-DS is used with two-hidden-layer ANN that has equal number of neurons in each hidden 

layer. When the number of neurons in the second hidden layer is reduced to half (3"* and 4^ 

ANNs in Table D.l), the predictions of the ANN trained for higher number of epochs are better 

than that of the one trained up to 3151 number of epochs. Figures D.5 and D.6 show the 

prediction results of these ANNs respectively. 
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Figure D.5 ANN (3:6:3:1) results for severity predictions (Input:RNF, Output:DS) 

(a) Mean square error with 10000 number of epochs (b) Severity predictions 
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Figure D.6 ANN (3:6:3:1) results for severity predictions (Input:RNF, Output:DS) 

(a) Mean square error with 3151 number of epochs (b) Severity predictions 

Second group of ANNs are the ones used maximum absolute differences in curvature 

mode shapes and their corresponding locations along the beam as input for the location 

detection of the damage. It can easily be seen from the Figs. D.7a and D.8a that MSB values 

drop to values around 10'̂ . This shows that the input features introduced to ANN are directly 

related to the output set, which is location of the damage. Same sensitivity analyses regarding 

the number of neurons in the hidden layer and the number of epochs during the training are also 

performed on these two-hidden-layer ANNs (5"", 6*, 7"' and 8"' ANNs in Table D.l). Prediction 

results are s h o w n in Figs. D.7b-10b. 
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Figure D.7 ANN (6:9:9:1) results for severity predictions (Input:MADC&LOC, Output:DL) 

(a) Mean square error with 10000 number of epochs (b) Location predictions 
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Figure D.8 ANN (6:9:9:1) results for severity predictions (Input:MADC&LOC, Output:DL) 

(a) Mean square error with 1351 number of epochs (b) Location predictions 
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Figure D.9 ANN (6:9:6:1) results for severity predictions (Input:MADC&LOC, Output:DL) 

(a) Mean square error with 10000 number of epochs (b) Location predictions 
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Figure D.IO ANN (6:9:6:1) results for severity predictions (Input:MADC&LOC, Output:DL) 

(a) Mean square error with 1001 number of epochs (b) Location predictions 
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The final group of ANNs (9"", 10"\ ll"' and 12"' ANN in Table D.l) are trained by 

using all combined inputs namely; reduction in natural frequencies, maximum absolute 

differences in curvature mode shape and their corresponding locations along the beam from the 

first three natural modes for the detection of damage location and severity at the same time. The 

severity and location predictions of the two-hidden-layer ANNs that have 18 neurons in each 

hidden layer can be seen from Figs. D . l l and D.12. Although there are couple of over and 

under estimations in the localisation of the damage, ANNs that are trained up to 10000 and 2401 

number of epochs provide better accuracy as compared to quantification of the damage. 

31 &2 0 3 0 4 ^ 0 6 0 7 0 8 &9 1 02 0 3 0 4 0 5 &6 &7 0 

(a) (b) 

Figure D . l l ANN (9:18:18:2) results with 10000 number of epochs 

(Input:RNF&MADC&LOC, Output: DS&DL) (a) Severity predictions (b) Location predictions 

0,1 0.2 0.3 0,4 0,5 0 6 0,7 

(a) (b) 

Figure D.12 ANN (9:18:18:2) results with 2401 number of epochs 

(Input:RNF&MADC&LOC, Output: DS&DL) (a) Severity predictions (b) Location predictions 
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In the second part of the analysis, ANNs that use same data set (i.e. 

RNF&MADC&LOC) as input are redesigned by reducing the number of neurons in the second 

hidden layer from 18 to 9. It can be seen from Figs. D.13 and D.14 that the predictions of these 

two ANNs (ll"^ and 12^ ANNs in Table D.l) regarding the severity and location of the damage 

are as accurate as the 9"̂  and lO"' ANNs in Table D.l 
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(a) (b) 

Figure D.13 ANN (9:18:9:2) results with 10000 number of epochs 

(Input:RNF&MADC&LOC, Output: DS&DL) (a) Severity predictions (b) Location predictions 
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(a) (b) 

Figure D.14 ANN (9:18:9:2) results with 3201 number of epochs 

(Input:RNF&MADC&LOC, Output: DS&DL) (a) Severity predictions (b) Location predictions 

Finally all predictions obtained from different ANNs with two hidden layers are 

compared with the ones with single hidden layer (Figs. 7.6, 7.10 and 7.11 in Chapter 7, section 

7.5.1). 
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The following conclusions can be drawn from this analysis: 

> The performance (i.e. change in MSB value with increasing epochs) of the ANNs 

used in the analysis is in the range of 10'̂  and 10"̂  with slight differences. This means that 

generalisation is almost achieved in all ANNs considering the trend in MSB during the training 

and validation process. 

> Providing more input-output data sets for the training may improve the 

generalisation of these two-hidden-layer ANNs. 

> The difference in MSB value between the validation and training performance 

curves after certain number of epochs plays an important role in the generalisation and the 

predictions for the damage identification. 

> Considering the computation time issue and the general fact that single hidden layer 

ANNs can be trained to approximate any functions arbitrarily well and be also used to solve 

pattern recognition problems, the ANNs with single hidden layer are selected and used for 

further applications in the analysis (Chapter 7, 8 and 9). 
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Appendix E DETERMINATION OF MATERIAL PROPERTIES OF 
SANDWICH STRUCTURE 

E . l S k i n D e n s i t y E s t i m a t i o n ( B u r n - o f f Tes t ) 

Since the density of the skin is one of the most important parameters affecting the 

dynamic characteristics of the sandwich structure, fibre volume ratio, which can be used for 

more accurate density estimation, is determined by performing a bum-off test. The four-layer 

([0°/90°/90°/0°]) GFRP laminae sample (60mm x 40mm x 1.53mm) selected for the test has 

been kept in the muffle furnace at the temperature of 650°C for 3 hours. 

Total mass o f the sample laminae: = 5.87 g 

Volume of the sample laminae: F̂ omposite = 6x4x0.153 = 3.672 cm^ 

Mass of the glass fibre after burn-off: = 4.31 g 

Mass o f the matrix: -TMgbr, = 1 5 6 g 

Density o f the matrix: cm, = I 148 g/cm^ 

Volume of the matrix: K -1.35889 cm^ 
/I 1 1 
r resin-aAw cure ^ ' 

Volume fraction of the matrix: = Knatra _ 1-35889 _ q j y 
^composi te 3 . 6 7 2 

Volume fraction of the fibre: = 1 - A,„atrix =1-0.37 = 0.63 
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Density of the Glass Fibre [E-1]: = 2.55 g/cm^ 

Density of the GFRP skin: P s k i n ^ f i b r e ^ P f i b r e ^ m a t r i x ^ / ^ m a t r i x 

= 0.63 X 2.55 + 0.37x1.148 = 2.03126 g/cm^ 

E.2 Core Density and Modulus of Elasticity Estimation 

During the analysis double-cut core cell, which has two cuts 0° and 90° made on each 

side intersecting in the centre, is used. Since the pre-cuts are filled with resin during the 

infusion, the core density increases drastically after curing. The effect of the cured resin is 

investigated and the density of the core is modified accordingly. Figures E.l and E.2 show the 

core material before and after resin infusion. The effect of the infused resin can be seen from 

Fig. E.2. 

(a) (b) 

Figure E.l Core material before resin infusion (a) Top view (b) Side view 

GFRP Skin 

Resin rich 
pre-cuts 

Figure E.2 Core material after resin infusion (Side view) 

201 



Appendix E Determination of Material Properties of Sandwich Structure 

As the core material has 2% of air bubble and 3% of pre-cuts in volume, 5% of the core 

is assumed to be filled with resin in total after infusion process. Hence, the modified density of 

the core can be calculated as follows; 

r - , 1 Pcoxe / ^ c o r e - m a n u f a c t u r e r ^ 0 , 9 5 + / ^ r e s i n - a f t e r cure ^ 0 . 0 5 
Density or the core: 

= 0.092 X 0.95 +1.148 X 0.05 = 0.1448 g/cm^ 

The modulus of elasticity of the core is also calculated by assuming a 20% increase in 

its value [9-1] due to pre-cuts filled with resin after infusion. 

Modulus of elasticity of the core: 

- ^ c o r e ~ • ^ c o r e - m a m i f a c t i i r e r X 1.2 = 109.28 X 1.2 = 131.13 MPa . 
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Appendix F DETERMINATION OF SENSOR LOCATIONS IN 
BEAM-LIKE STRUCTURES 

Determination of sensor locations plays an important role in maximum sensing of strain 

along the beam structure. The approach used in the analysis is to find the locations 

corresponding to maximum and zero curvature (i.e. nodal points) along the beam. Since strain is 

directly related to curvature (i.e. second spatial derivative of the displacement mode shape), 

modal analysis is used to find the locations of the sensors. The analysis is performed on 450mm 

long cantilever beam shown in Fig. F.l. 

Fixed end (Root) Free end (Tip) 

-> X L 

Figure F.l Cantilever beam 
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Figure F.2 First five normalised displacement mode shapes of the fixed-free beam 
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Appendix F Determination of Sensor Locations in Beam-lil<e Structures 

First of all, normalised displacement mode shapes (Fig. F.2) are obtained and used in the 

calculation of the curvature modes (Fig. F.3) in the first five natural modes of cantilever beam. 

Since both positive and negative curvatures are equally effective in the dynamic analysis, the 

absolute values of the curvature modes are plotted in Fig. F.4 in order to find the maximum and 

nodal curvature locations. 
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Figure F.3 First five normalised curvature mode shapes of the fixed-free beam 
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Figure F.4 First five absolute curvature mode shapes of the fixed-free beam 
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These locations are also tabulated in Table F.l considering the first five bending modes of the 

beam. 

Table F.l Maximum and nodal curvature locations 

Mode No 

Maximum Curvature 

Location [x/L] 

Curvature Node 

Location [x/L] 

1®'Bending 0 -

2'"* Bending 0,&52 Oj^ 

3"* Bending 0, 0.30, 0.70 0.13, 0.49 

4* Bending 0, 0.22, 0.50, 0.80 0.09, 0.35, 0.65 

5* Bending 0, 0.18, 0.38, 0.62, 0.84 0.07, 0.27, 0.50, 0.72 

Another important point in determination of the location of the sensors is to find spatial 

locations along the span of the beam in such a way that they provide enough sensitivity for 

different modes of vibration. This is especially important when frequency sweep excitation is 

applied. Thus, the first five absolute curvature mode shapes are added to each other and the 

envelope in Fig. F.5 is obtained. 

w 0,5 
0 .790 0 .185 0 .410 0 .585 

0.3 0.4 0.5 0.6 0.7 

Normal ised Locat ion [x/L] 

Figure F.5 Summation of absolute curvature mode shapes of the fixed-free beam 
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Appendix F Determination of Sensor Locations in Beam-like Structures 

The normalised locations (such as 0.185, 0.410, 0.585 and 0.790) corresponding to peak points 

where the amplitude of the summation of the curvature modes are considerably high can be seen 

from the Fig. F.5. Finally, the locations of the fibre optic sensors are decided and tabulated in 

Table F.2 with their actual locations along the beam and their corresponding most sensitive 

mode(s) by using the data in Fig F.4 and Table F.l . 

Table F.2 Location of the sensors and most sensitive corresponding mode(s) 

Normalised Actual Most Sensitive 

Location [x/L] Location [mm] Mode 

&0333 15 r , 2"", 3"", < 5* 

0.1777 80 5*, 4* 

0.3000 135 grd 

0.3777 170 g&gd 

0.5000 225 2nd 

0.6000 270 5*, 2^ 

0.7000 315 grd 

0.8111 365 4*, 5* 
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Appendix G SELECTION OF ELEMENT TYPE FOR MODELLING 
OF SANDWICH STRUCTURE 

Free vibration analysis of rectangular plate with cantilever edge is performed by using a 

package program, ANSYS 6.1®, to select the most suitable type of element(s) for modelling of 

composite sandwich structure. The graphite/epoxy-aluminium sandwich plate (0.152m x 

0.076m X 0.00204m) [G-1, G-2, G-3] with eight plies of graphite/epoxy placed symmetrically 

about a sheet of aluminium (2024-T3) is used during the FEA. The material properties of the 

graphite/epoxy face with a nominal ply thickness of 0.13mm and the 1mm thick aluminium core 

are as follows: 

Orthotropic material properties of graphite/epoxy: 

E] = 128.0 GPa, Ez = ^3 =11.0 GPa, G12 = G13 = 4.48 GPa,G23 = 1-53 GPa, 

^12 - ^ 1 3 = ^23 = 0.25, p = 1500 kg / m^ 

Isotropic material properties of aluminium: 

5̂" = 68.9 GPa, k=0.30, /) = 2770kg/m" 

The first five modes [G-3] of vibration of the sandwich plate are obtained by using 

different types of elements with various mesh densities. The results are tabulated in each section 

and summarised at the end. 

G.l Shell Element (SHELL99) for Configurations of [O^/Aljx, [0/± 45/90/AI]s and 

[ ± 4 5 / + 4 5 / A I ] s 

The advantage of using SHELL99 is that 6 DOF per node (i.e. 3 translational and 3 

rotational) allows modelling of cantilever boundary condition more realistically. On the other 

hand, damage can only be modelled by reducing the thickness or stiffness of the particular layer 
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of interest, which is not suitable for debonding or delamination modelling applications. 

Additionally, inter laminar strain output is not available in this type of element. Figure G.l 

shows FEM of the cantilever sandwich plate meshed by SHELL99. 

The first five natural frequencies of sandwich plate with SHELL99 ( 8 x 4 mesh density): 

[04/A1]s Configuration; 

f, =108.0 Hz, f; = 226.7 Hz, = 674.3 Hz, = 877.2 Hz, f; = 1147.9 Hz 

[0/ ± 45/90/Al]s Configuration; 

f, =80.5Hz, f2=310.2Hz, f3=500.8Hz, f4=1022.2Hz, f3=1398.6Hz 

[ ± 45/+45/Al]s Configuration; 

f, =58.0Hz, f2=351.7Hz, f3=374.6Hz, f4=1015.8Hz, f ;=1169.7Hz 

The corresponding mode shapes are shown in Figs. G.4 - G.6. 

I 

Figure G.l Finite element model of cantilever sandwich plate 

(SHELL99, 8 x 4 mesh density, top view) 
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G.2 Solid Elements (SOLID46 and SOLID191) for [O4/AI]; Configuration 

G.2.1 Modelling with SOLID46 

By using SOLID46 (an 8-node brick element), damage can be modelled not only by 

changing the geometry but also by reducing the stiffness of the particular layer of interest. One 

of the disadvantages of SOLID46 is that 3 DOF per node (i.e. translational DOF only) makes 

modelling of boundary condition (fixed-end) inaccurate. Moreover, inter laminar strain output is 

not available if one solid element is used through the thickness. 

The first five natural frequencies of sandwich plate with SOLID46: 

a) Mesh density of 8 x 4 x 1 * 

yi=108.3Hz, y2=239.7Hz, y^=700.3Hz, / , = 9 9 4 . 8 H z , _/^=1275.8Hz 

b) Mesh density of 40 x 20 x 1* 

y;=108.0Hz, / , = 2 2 6 . 6 H z , y^=674.6Hz, / , = 8 7 6 . 9 H z , y^=1145.8Hz 

G.2.2 Modelling with SOLID191 

SOLID 191 has an additional centre node on each edge of the 3-D solid element. This 

provides more number of nodes by keeping the number of elements constant compared to the 

model created by using SOLID46. Figure G.2 shows FEM of the cantilever sandwich plate 

meshed by solid elements. 

The first five natural frequencies of sandwich plate with S0LID191: 

a) Mesh density of 8 x 1 x 1* 

yi=108.3Hz, _/^=227.2Hz, y^=676.4Hz, / , = 8 8 0 . 1 H z , y^=1152.1Hz 

b) Mesh density of 40 x 20 x 1* 

/ , =108.1Hz, /2=226.6Hz, y^=675.2Hz, y;=877.8Hz, y;;=1146.7Hz 

One solid element through the thickness 
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Figure G.2 Finite element model of cantilever sandwich plate 

(Solid elements, 8 x 4 x 1 mesh density, isometric view) 

G.3 Mixed Solid Elements (SOLID45 for core and SOLID46 for face modelling) 

Since both solid elements have the same number of nodes at each face of the element 

(i.e. 4 nodes), SOLID45 with isotropic material properties can be used in the modelling of core 

together with layered orthotropic solid element, SOLID46, which is chosen to model 

graphite/epoxy face of the sandwich plate. The model has three different blocks stacked on top 

of each other; One block for each face with four layers of lamina and another block at the centre 

for the modelling of isotropic core. The layer configuration is defined layer-by-layer from 

bottom to top. The bottom layer is designated as the first layer, and additional layers are stacked 

from bottom to top in the positive normal direction of the element coordinate system. Figure 

G.3 shows FEM of the cantilever sandwich plate meshed by mixed solid elements. 

G.3.1 [OyAljs Configuration 

a) Mesh density of 8 x 4 x 3 

_/;=108.4Hz, _/^=250.2Hz, y^=702.2Hz, / ,=1079 .3Hz , y;=1390.3Hz 
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b) Mesh density of 40 x 20 x 3 

/ ;=108.1Hz, /2=227.2Hz, _/^=675.6Hz, / , = 8 8 0 . 1 H z , y^=1147.2Hz 

Since the core is ahnost twice as thick as the faces, 2 and 1-element division are used for the 

core and the each face respectively for better accuracy in case (c). 

c) Mesh density of 40 x 20 x 4 

/ ;=108.1Hz, y2=227.2Hz, y;=675.7Hz, _/:,=880.2Hz, y;;=l]47.3Hz 

Then, mesh density in thickness direction is increased by using 4 and 1 -element division for the 

core and the each face respectively. In addition to this, the element division is also doubled 

along the length and width of the plate. The results of this particular model is as follows: 

d) Mesh density of 80 x 40 x 6 

y;=108.0Hz, y2=226.8Hz, y^=674.8Hz, y:,=878.2Hz, y^=1143.5Hz 

Further analyses are performed by using two different layer orientations of the faces of the 

sandwich plate. 

G.3.2 [0/± 45/90/Al]s Configuration 

a) Mesh density of 8 x 4 x 3 

y;=81.5Hz, / ;=338.1Hz, y3=524.1Hz, /^=1215.0Hz, y^=1571.5Hz 

b) Mesh density of 40 x 20 x 3 

yi=80 .6H/ , / , = 3 1 0 . 6 H z , y^=500.9Hz, / , = I 0 2 4 . 2 H z , y;;=1398.7Hz 

G.3.3 [ ± 4 5 / + 45/Al]s Conf igurat ion 

a) Mesh density of 8 x 4 x 3 

/ = 6 1 . 2 H z , /2=379.3Hz, /^=406.5Hz, /^=11825.0Hz, y^=I375.7Hz 

b) Mesh density of 40 x 20 x 3 

y;=58.0Hz, /2=352.0Hz, _/;=374.7Hz, / , = 1 0 1 7 . 9 H z , y^=1170.8Hz 
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(a) 

(b) 

Figure G.3 Finite element model of cantilever sandwich plate 

(Mixed solid elements, 8 x 4 x 3 mesh density) (a) Isometric view (b) Zoom view 
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G.4 Mixed Solid Elements (SOLID95 for core and SOLID191 for face 

modelling) 

This section presents the first five natural frequencies of the sandwich plate obtained 

from FEM using higher order 3-D solid elements (SOLID95 and SOLID 191). The way of 

creating the mesh is same as the one described in Section G.3 for the element types of SOLID45 

and SOLID46. 

G.4.1 [04/A1]s Configuration 

a)Mesh density of 8 x 4 x 3 

f, =108.3Hz, f2=227.9Hz, f3=681.0Hz, f4=887.1Hz, f3=1171.6Hz 

b) Mesh density of 16 x 8 x 3 

f, =108.1Hz, f2=227.0Hz, f3=675.3Hz, f4=878 .8Hz, f3=1147.5Hz 

G.4.2 [0/ + 45/90/A!]s C o n f i g u r a t i o n 

a) Mesh density of 8 x 4 x 3 

f i=80.9Hz, f2=312.2H/ , f3=506.2Hz, f4=1034.9Hz, f;=1435.5Hz 

b) Mesh density of 16 x 8 x 3 

f i=80.6Hz, f2=309.8Hz, f3=50I.0Hz, f4=1021.4Hz, f ;=1396.7Hz 

G.4.3 [ + 45/ + 45/AI]s Configuration 

a) Mesh density of 8 x 4 x 3 

f;=58.9Hz, f2=358.8Hz, f3=378.5Hz, f4=1060.0Hz, fg=1190.5Hz 

b) Mesh density of 16 x 8 x 3 

f;=58.1Hz, f 2 = 352.3 Hz, f^^ 374.4 Hz, f̂  = 1018.2 Hz, f ; = 1169.4 Hz 
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G.5 Summary and Comparison of the Results 

Finally, all case studies performed by using different element types with various mesh 

densities on sandwich plate that has different layer orientations for the graphite/epoxy faces are 

summarised in Table G.l. 

Table G.l Comparison of the first five natural frequencies of the sandwich plate [Hz] 

Experiment FEM FEM FEM Present Present Present 

4-node 9-node SHELL99 S0LID45 S0LID95 

Mode ( 8 x 4 ) ( 8 x 4 ) ( 8 x 4 ) &SOLID46 &SOLID191 

No [G-1] [G-1] [G-2] [G-2] 0 4 x 2 0 x 3 ) ( 1 6 x 8 x 3 ) 

[O4/AI], 

1 10L7 108.8 1074 10&2 108.0 lO&l lO&l 

2 228.8 22^6 2273 226.7 227.2 2274 

3 63L9 680.2 68L3 6710 6743 675.6 6713 

4 86^0 885.6 887J 879.6 877.2 880J 878 8 

5 1129.0 1168.0 1168.8 1147.4 1147.9 1147.2 114%5 

[0/±45/90/Al], 

1 754 8L16 8&6 8&0 80.5 8&6 8&6 

2 30Z0 313.8 312.6 31L9 31&2 310^6 309.8 

3 469^ 5011 505.4 5014 50&8 5004 5014 

4 983^ 10310 1037.3 1028.3 1022.2 1024.2 102L4 

5 1306.0 143&0 1435.4 1399.8 1398.6 1398.7 1396.7 

[±45/T45/Al]: 

1 5&3 5 8 j 5&2 574 58.0 584 5&1 

2 35L6 3547 356.6 352.8 35L7 3524 3523 

3 358X) 37^6 37&3 37^4 3746 374.7 3744 

4 1006.0 1029.0 1047.6 1020.6 1015.8 10174 1018.2 

5 1113.0 1187.0 1189.7 1179.2 1169.7 117&8 1169.4 
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(a) Natural Frequency of 108.0 Hz (b) Natural Frequency of 226.7 Hz 

(c) Natural Frequency of 674.3 Hz (d) Natural Frequency of 877.2 Hz 

(e) Natural Frequency of 1147.9 Hz 

Figure G.4 The first five mode shapes of cantilever plate modelled by SHELL99 

([O4/AI]; configuration) 
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(a) Natural Frequency of 80.5 Hz (b) Natural Frequency of 310.2 Hz 

M m 

(c) Natural Frequency of 500.8 Hz 

m m 

^ 0 
" 4 •••• .:t-

(d) Natural Frequency of 1022.2 Hz 

(e) Natural Frequency of 1398.6 Hz 

Figure G.5 The first five mode shapes of cantilever plate modelled by SHELL99 

([0/ ± 45/90/Al]s configuration) 
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(a) Natural Frequency of 58.0 Hz (b) Natural Frequency of 351.7 Hz 

' -f s 

> - 1 

: N 

w 
" N 

(c) Natural Frequency of 374.6 Hz (d) Natural Frequency of 1015.8 Hz 

(e) Natural Frequency of 1169.7 Hz 

Figure G.6 The first five mode shapes of cantilever plate modelled by SHELL99 

([± 45/+45/Al]s configuration) 
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The fo l lowing conclusions can be drawn from Table G . l : 

> The results obtained from models meshed with mixed solid elements provide 

acceptable accuracy. 

> Since solid elements are quite stiff compared to 6-DOF shell elements, finer mesh 

densities are used in the modelling with solid elements. 

> In normal mode dynamic analysis, combination of SOLID95 and SOLID 191 

provides same accuracy with that of SOLID45 and SOLID46 although the mesh density used in 

SOLID45&SOLID46 model is much finer than the one used in model with 

SOLID95&SOLID191 elements. 

> Since the results obtained from models with solid elements converge to ones 

obtained from models with SHELL99, it can be concluded that the required mesh densities are 

achieved in solid element models. 

> The cantilever boundary condition is modelled by using two different types of 

element, shell and solid, which have 6-DOF and 3-DOF respectively. Acceptable results are 

obtained from each model. 

Finally, combination of SOLID95 and S0LID191 is selected for meshing of sandwich 

beam for further analysis. 
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Appendix H BOUNDARY CONDITION EFFECT ON FEM OF 
SANDWICH BEAM 

In this section, the effect of the boundary condition on FEM of the sandwich beam 

structure used in Chapter 9 is investigated. Since core to face thickness ratio of the sandwich 

beam is approximately 9.23 which gives a total thickness of 14.6mm, the modelling of the 

cantilever boundary condition requires extra attention in order to simulate experimental fixing 

condition realistically. Figure H.l shows sandwich beam specimen mounted to steel clamp. 

14.6 mm 

80 mm 

Figure H.l Steel clamp and sandwich beam specimen 

It can be seen from the Fig. H.1 that the left-end of the specimen is free and only the upper 

and the lower surfaces are touching to steel clamp. Therefore, three different FEMs with various 

boundary conditions are used to simulate this experimental clamp. Figures H.2 to H.4 show 

these boundary conditions which are namely: 

• Boundary Condition No:l (BC #1): Fully clamped at the root, i.e. all DOFs are equal to 

zero at location where X = 0 
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• Boundary Condition No:2 (BC #2): Fixed at the upper and lower edge, i.e. all DOFs 

are equal to zero at location where X = 0 & Z = 0 and X = 0 & Z = beam total thickness 

• Boundary Condition No:3 (BC #3): Fixed at the upper and lower surface, i.e. all DOFs 

are equal to zero at location where X = 0 & Z = 0 and X = 0 & Z = beam total thickness 

and 0 < Y < 80mm. Another beam (530mm x 40.5mm x 14.6mm), which is 80mm 

longer than the ones used in BC #2 and BC #3, is modelled in order to define this 

particular boundary condition. 

Figure H.2 Boundary condition No: 1 (Isometric zoom view) 

Figure H.3 Boundary condition No:2 (Isometric zoom view) 
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80 mm 

(a) 
Figure H.4 Boundary condition No;3 (a) Isometric view (b) Side zoom view 

Normal mode dynamic analysis is performed on these three different FEMs to find the 

first three bending natural frequencies. The analysis results are summarised in Table H I 

Table H.l First three natural frequencies of sandwich beam 

Natural Frequency [Hz] 

Mode No BC#1 BC#2 BC#3 

Bending 46.944 45.865 46.741 

2"'* Bending 25L109 249.901 250.826 

3'^''Bending 591.850 59L268 59L567 

It can be seen from Table H.l that the first three bending natural frequencies of models 

with various boundary conditions are quite close to each other. Since the model with BC #3 has 

1888 more nodes and 384 more elements than the other two models (BC #1 and BC #2), it is not 

practical to use this model (BC #3) as it increases the computational time gradually. Model with 

BC #2 is selected for further analysis since it allows internal nodes at the root to move freely as 

it is in experimental clamp. 
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In this section, errors and uncertainties [I-l, 1-2] inherent in the measurement of the 

parameters that are used during the static and dynamic analysis of beam-like structures are 

investigated. The main assumptions made during these analyses and the other source of errors 

are outlined in order to identify dominant errors, and hence to provide a guide to improve the 

experimental work. 

I . l Precision of the Measurements 

It is a fact that all measured values cannot be exact. The uncertainty in the measurement 

can arise either from limitations of the instruments or from statistical fluctuations in the quantity 

being measured. The main aim is to estimate the level of this uncertainty (so-called "absolute 

uncertainty"). Another quantity called "relative uncertainty" is the precision of the measurement 

(I.l) and shows the effect (or significance) of the absolute uncertainty. 

n W TT ^ ^ /r. • • \ Absolute Uncertainty „ 
Relative Uncertainty (Precision) = — (I.l) 

Measured Value 

Since one of the sandwich specimen used in the experimental analysis has dimensions of 

450.0mm X 40.5mm X 14.60mm, the following precision can be obtained from each 

measurements: 

• Ruler [0-500mm ± 0.5mm]; Used to measure the length of the specimen. 

Precision of the measurement along the width - ~ =±1.1-10"^ =0 .11% 
450.0 

® Vernier Caliper [0-150mm± 0.1mm]; Used to measure the width of the specimen. 

Precision of the measurement along the width - ~ = ±2.5 10'^ = 0.25 % 
40.5 
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Micrometer [0-2 5 mm ± 0.01mm]: Used to measure the thickness of the specimen. 

Precision of the measurement along the thickness = = ±6.85 1 0 = 0.0685 % 
14.60 

• Balance (Digital Display) [0-1500g± O.Olg]: Used to weigh the glass fibre used in burn-off 

test (Section E.l). 

Mass of the glass fibre after burn-off: =4.31 g 

Precision of the measurement in weigth of the fibre = ^ = +2.32 • 10 ^ = 0.232 % 
4 J 1 

After measuring three dimensions (60mm x 40mm x 1.53mm) and the mass of the 

specimen (i.e. the one used in burn-off test), the precision in density calculation can be obtained 

as follows: 

Precision of the density of GFRP laminae sample 

= % A Length + % A Width + % A Thickness + % A Mass 

= ± M x l O O + ^ ^ x l O O + ^ ^ x l O O +0.232 
60.0 40.0 1.53 

= 2.97% 

• Voltmeter (Digital Display) [0-1000V + O.OIV]: Used to measure the output voltage coming 

from signal conditioning unit. During the calibration, excitation level was set to 2 V (i.e. 

calibration voltage) that is equivalent to lOOO/yg. Therefore, every ± O.OIV change causes 

± 10 yUg change in strain reading. The measured strain values also depend on the gauge factor, 

resistance of the strain gauge used in the analysis, calibration resistor and the voltage reading 

from loaded strain gauge (Section 5.2.2). 

1.2 Main Assumptions and Other Source of Errors 

The errors in the measurement can be either reading errors depending on the finest scale 

division or the calibration errors that are systematic errors (i.e. accuracy) coming from 

measurement devices. The other type of error associated with a directly measured quantity is 
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called the "reading error" and for a digital instrument, it is ± one-half of the last digit. The 

objective of a good experiment is to minimise both the errors of precision and accuracy in order 

to obtain accurate results that can be used to verify the numerical model. Here are the main 

assumptions made and the other source of errors involved during the experimental and 

numerical analysis. 

1.2.1 Experimental Analysis 

> The size of the intact and that of the damaged beams were assumed equal. 

> The width and the thickness of the beams were assumed uniform along the length. 

> Although surface roughness of the GFRP sandwich beam specimen and adhesive 

used to bond strain gauges affected the measured strain, perfect bonding (i.e. good structural 

coupling) was assumed between strain gauges and the host structure. 

> The strain gauges bonded on the surface of beams and the embedded FOSs were 

assumed to be aligned and located along the centre line of the specimens (i.e. no misalignment). 

> Although temperature of the laboratory was assumed constant, a slight change in 

strain was observed when strain gauges were used during the dynamic strain measurements. 

This was due to heat transfer between electro-dynamic shaker and the surface-bonded strain 

gauges. This change was considerable low (i.e. insignificant) when embedded FOSs were used 

during dynamic analysis. 

> The electromagnetic interference between surface-bonded strain gauges and 

electro-dynamic shaker affected dynamic strain measurements by causing random fluctuations. 

Since FOSs are insensitive to electromagnetic field, more accurate results were obtained 

compared to surface-bonded strain gauges. 

> Torque-wrench was used to tighten the bolts holding the specimen in the clamp in 

order to reduce the boundary condition effect when different specimens were used for frequency 

analysis. The soft core of the sandwich specimen made the use of torque-wrench quite difficult. 
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> Since it was difficult to control the input force given to electro-dynamic shaker 

during low-frequency forced vibration applications, an extra noise was introduced to system. 

> The weight and the location of 4-gram piezoelectric-accelerometer affected the 

resonant frequency measurements. This effect is investigated by changing the location of the 

accelerometer along the span of the beam and by performing random vibration analysis to find 

the first three resonant frequencies. Accelerometer is bonded on the upper surface of the 

sandwich beam at 10 different normalised locations from 0.1 to 1 (i.e. tip of the beam) with O.IZ 

increment. The variations in these resonant frequencies are shown in Figs. I.l to 1.3 for the 

intact and the damaged sandwich beam having 40mm-length damage located at 200 mm away 

from fixed-end. 

0 .2 0.4 O.B 

Locat ion [L] 

06 
Locat ion [L] 

Figure 1.1 Variation in the first resonant frequency due to accelerometer location 

(a) Intact Beam (b) Damaged Beam 
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Figure 1.2 Variation in the second resonant frequency due to accelerometer location 

(a) Intact Beam (b) Damaged Beam 
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Figure 1.3 Variation in the third resonant frequency due to accelerometer location 

(a) Intact Beam (b) Damaged Beam 

As it can be seen from Figs. I.l to 1.3 that each frequency of interest (i.e. in each mode) 

varies within certain range. The effect of this variation can be reduced by normalising the 

resonant frequencies of the damaged beam with respect to that of the intact one and it is shown 

in Fig. 1.4. 
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Figure 1.4 Normalised resonant frequencies in the first three modes 

1.2.2 Numerical Analysis (FEA) 

> Some of the material properties were assumed by approximating the values taken 

from statistics. 

> Equal thickness was assumed for individual layers of GFRP laminae in FEM. 
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> Debonding was modelled by removing selected elements from the upper surface of 

GFRP sandwich beam structure in FEA in order to simulate the damage. 

> There is also a rounding-off error that is more effective in successive calculations 

during the numerical analysis. 
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