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Laminated composites and sandwich structures are increasingly being used in different
engineering applications such as in aeronautical, marine and offshore structures where high
stiffness, light weight, good corrosion resistance and temperature stability are the primary
issues. During their service life, these structures experience extreme loadings and harsh
environmental conditions potentially leading to structural damage. This could significantly

reduce mechanical strength and result in performance degradation of the structure.

Therefore, in order to maintain the performance of the structure, localisation and quantification
of the damage is a promising research area. Since the determination of the severity and the
Jocation of the damage is an inverse and non-unique problem, an intelligent algorithm is needed

to perform the damage detection analysis.

This study presents a damage detection algorithm, which uses vibration-based analysis data
obtained from beam-like structures to locate and quantify the damage by using artificial neural
networks. The inputs and the corresponding outputs required to train the neural networks are
obtained from the finite element analyses for different vibration modes of the beams. Multi-
layer feedforward backpropogation neural networks have been designed and trained by using
different damage scenarios. After validation of the neural networks, new damage cases obtained
from finite element and experimental analyses have been introduced and neural networks have

been tested for location and severity predictions.

The results from the neural networks depict that severity and location of the damage can be
predicted by using as input the global (natural frequencies) and the local (strain or curvature

mode shapes) dynamic behaviour of the beam-like structures.
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Chapter One INTRODUCTION

Non-Destructive Inspection (NDI) techniques [1-1] are generally used to investigate the
critical changes in structural parameters so that an unexpected failure can be prevented before it
can occur. These so called local and visual methods concentrate on a part of the structure and in
order to perform the inspection, the structure may need to be taken out of service. In order to
apply these techniques, the location of the damage needs to be known and it should be
accessible for inspection. Since these damage identification techniques also require a large
amount of human involvement that affects the accuracy of the testing, they prove to be
expensive to implement. The main challenge in NDI applications is to design a structural health
monitoring system that is capable of detecting the damage signature in service life of the
structure without a priori information about the location of the damage. This is accomplished
via integrated sensors and employing an intelligent algorithm having pattern recognition
capabilities which are capable of analysing the damage characteristics. Moreover, by using these
kinds of early warning systems, the risk of more serious failure of the structure and the overall

maintenance cost can be reduced by excluding unnecessary inspection activities.

1.1 Damage Identification in Structures

Damage identification can be divided into four hierarchical levels [1-2] as follows:
Level#1: Determination that damage exists in the structure
Level#2: Investigation of the location of the damage
Level#3: Quantification of the severity of the damage

Level#4: Prediction of the remaining service life (i.e. residual life) of the structure

Vibration-based analysis data indicates the existence of the damage (Level#1) when it is
used as an input pattern to the analysis. Localisation (Level#2) and quantification (Level#3) of
the damage can only be obtained if vibration-based input is provided with a structural model

and an identification algorithm. A prediction of residual life of the structure (Level#4) requires
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further analysis including fracture mechanics, structural design assessment and fatigue-life
analysis.

Another way of classification in damage identification is that Level#1 is considered as a
forward problem since the damage can be modelled mathematically and vibration response of
the structure provides the necessary information about the existence of damage. On the other
hand, Level#2 and Level#3 damage identifications are in the inverse problem category. This is
because the damage signature might be the same for different extents of damage occurring at
different geometrical locations of the structure, making the problem non-unique. Therefore,
Artificial Neural Networks (ANNs) can be designed and trained through a learning process by
non-linear parameterised mapping between the input and the output sets via their highly
interconnected processing elements to extract features. They can also be used to classify and

describe the patterns from the possible damage scenarios in the damage assessment applications.

1.2 Objectives

The primary aim of this work is to develop a technique which is applicable in
quantification and localisation of the damage (Level#1, 2 and 3) by using vibration-based
analysis features as an input to artificial neural networks via distributed strain sensors bonded to
surface or embedded into structure. The technique starts from the basic assumption that damage
can be directly related to a decrease of stiffness in the structure and identifies the structural

damage with limited amount of distributed sensors.

The specific objectives of the present work can be summarised as follows:

» To identify damage in structures from changes in their vibration responses

» To measure patterns providing global and local information about damage
characteristics

» To investigate the effectiveness of the features introduced to different ANN
architectures as various input-output pairs for damage quantification and localisation

» To achieve better understanding about simulation of a damage and its effect on
structural dynamic behaviour

» To validate the technique by numerical (finite element) and experimental means

» To demonstrate the feasibility of using embedded fibre Bragg grating (FBG)

sensors for strain measurements especially in sandwich structures
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1.3 Overview of the Proposed Approach

In order to achieve the main objectives of this research mentioned in the previous
section, a deep knowledge should be gained in various areas. Figure 1.1 summarises these areas

by highlighting the novelty and main contributions to knowledge in italics.

Input: Input:
*  Geometrical and material properties. <« *  Design and manufacturing of beam-like
s Boundary conditions. specimens with surface bonded strain gauges
and embedded FBG strain sensors.
¥
‘ T

Experimental Work:
" Necessity to gain knowledge on dynamic
analysis of beam-like structures by using
different measuring techniques.

-Embedded FBGs and surface bonded strain
gauges for distributed sensing.

Finite Element Analysis:

»  Require accurate FEM for intact and
damaged isotropic, FRP laminated
composites and sandwich structures that
show good agreement with experimental

results under static loading and dynamic * Introducing damage into beam-like
vibratory motion. . ,

; structures (i.e. slot or debonding)
" Selecno’n Of_ element typ efor F. EM = Dynamic analysis performed on steel
" Determination of optimum locations for and GFRP sandwich beam-like structures.

maximum sensing from the sensors used in
experimental work.

v

Introducing experimentally obtained damage
sensitive signatures to ANNs

[ ]

Analysis:
*  Creating different damage scenarios on beam-like structures (isotropic steel, FRP

laminated composite and GFRP sandwich).

= FEA for natural frequencies, mode shapes and their derivatives (i.e. curvature).

»  Extraction and selection of damage sensitive signals.

»  Using artificial neural networks as an information-processing algorithm in damage
identification.

¥

»  Need to validate the method used for damage assessment

by numerical and experimental means.

]

Final Outcomes:

»  Knowledge gained on effects of local damage on dynamic behaviour of beam-like structures.

»  Showing the dependency of the global (natural frequencies) and local (strain or curvature
mode shapes) vibration-based signatures on location and severity of the damage.

»  Testing the efficacy of these features for damage identification.

s Checking the robustness of these patterns under noisy conditions.

»  [nformation gathered on design and effectiveness of artificial neural networks when vibration-
based data is used as an input feature.

Figure 1.1 General overview of the proposed approach




Chapter Two LITERATURE REVIEW

2.1 Introduction

Any kind of damage adversely affects the current and future performance of the
structure and therefore it must be carefully investigated before it results in a catastrophic failure.
There are different methods available for structural inspection and performance monitoring.
These methods can be categorised as local and global. The former which concentrates on
specific part of the structure is categorised as NDI technique [2-1]. In order to perform an NDI,
structure should be taken out of service on a regular basis without having a priori information
about the damage; that is a costly procedure. On the other hand, the latter is independent from
the location of the damage and can be performed by measuring changes in the structural
dynamic characteristics. Therefore, these global damage detection techniques are becoming

more popular recently and, therefore, have been reviewed by several researchers [2-2], [2-3],

[2-4], [2-5], [2-6].

2.2  Features and Methods in Vibration-based Damage Identification

Previous investigators have utilised vibration-based analyses to generate features that
can be used to predict severity as well as location of the damage and this can be helpful to
ascertain which feature will be most efficient and practical in predicting damage characteristics.
In the following section, detection methods will be categorised and briefly explained
considering the data obtained from the experimental and numerical analyses and the technique

used to post process the data for damage assessment will be outlined.

2.2.1 Natural Frequency Changes

There is a large amount of literature on damage detection by using changes in

frequencies. In this section, methods using natural frequency changes as a damage signature are
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reviewed. All types of structural damage reduce the stiffness of the structure locally and any
changes of stiffness cause change in the natural frequencies and structural damping. Since the
measurement of natural frequencies is easier than that of changes in damping of a structure,
damage can be detected from dynamic analysis aiming at natural frequencies. Additionally,
determination of the damage from frequency measurements is quite convenient since an
arbitrarily chosen single point is enough to perform the modal analysis to obtain dynamic
characteristics of the structure.

One of the earliest research has been done by Cawley and Adams [2-7]. The authors
used frequency measurement method via finite element analysis (FEA) for various types of
damage in composite materials. Structural damage was numerically modelled either by reducing
the stiffness of the element or setting it to zero that leads to reduction in natural frequencies.
Since frequency changes tended to be small, large number of mode pairs was used. It can be
concluded from the numerical analyses that reduction in frequencies shows the existence of the
damage. Inada et al. [2-8] proposed a damage identification method using natural frequency
change and response surfaces in order to localise and quantify the damage. In this approach,
natural frequencies were used for damage identification and response surfaces were used to
obtain approximate expressions indicating damage location and length. First, damage
identification of a carbon fibre reinforced plastic (CFRP) cantilever beam was conducted. Then,
same analysis was also performed with CFRP cantilever plate to show the applicability of the
proposed method. Finally, good agreement between actual and predicted damage parameters
(stiffness degradation, location and size of the damage) was achieved.

Zak et al. [2-9] applied finite element method to find the effects of closing delamination
on vibrating laminated composite plate. Eight-layer graphite/epoxy cantilever composite plate
was used for numerical calculations to investigate the influence of the location and the length of
delamination on natural frequencies. In order to verify the accuracy of the model and the
numerical results, an experiment with impulse excitation was performed on composite plate
with mid-plane delamination. Authors concluded that if the length of the delamination grows
and its position changes, the natural frequencies decrease and vibration modes are also affected.
Valdes and Soutis [2-10] also investigated the effect of delamination on the modal frequencies
of laminated composite beams and examined the performance of piezoelectric materials as
sensor/actuator pair. In the analysis, the authors used eight-ply carbon/epoxy prepreg cantilever
laminated beam having a small Teflon film inserted during the manufacturing. A sharp thin
scalpel blade introduced into the mid-plane and two piezoelectric elements were used for self-

sensing and actuating applications. They extended the effect of damage by repeatedly pushing
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the blade against the delamination front and observed that the delamination area was gradually
extended from the free edge until it covered almost all of the specimen width. The changes of
the modal frequencies of the specimen compared to those of the non-delaminated one showed a
good indication of the degree of damage, especially at high frequency levels.

Lakshmi and Jebaraj [2-11] proposed a new technique based on the percentage change
in natural frequencies in the first five modes to identify the presence of through thickness cracks
and their locations along a cantilever aluminium beam. They also performed sensitivity analyses
on bending, torsional and strain mode shapes by considering the effects on local modal
parameters due to crack for different crack depths at different locations. It was observed from
the analyses that the absolute percentage change in frequencies increases as the depth of the
crack increases. Additionally, this change is maximum if the crack is located at the peak/trough
of the strain mode and it is minimum if the crack is located at the node of strain mode. In Hu et
al. [2-12], the authors developed two different algorithms to assess structural damage using
modal test data. The first algorithm avoided the employment of the analytical global stiffness
and mass matrices that led to approximate estimation of the damage extent; on the other hand, in
the second algorithm, analytical mass matrix was employed, which gave completely accurate
prediction for the damage extent. A 10-bay planar truss structure was used for FEA and the
multiple damage cases were simulated with reduction in the stiffness of the selected elements in
the bays. In experimental work, a clamped-clamped aluminium beam with saw cut was used as
a test specimen on which modal analysis was performed to obtain natural frequencies and mode
shapes. The authors concluded that with the increase of the number of the frequencies and
modes, the accuracy in the detection of damage location and prediction of damage extent
become better and the selection of modes is also critical for the successful multiple damage

identification.
2.2.2 Displacement and Curvature (Strain) Mode Shape Changes

As mode shapes can be obtained both experimentally and by numerical means, damage
detection techniques which use this concept have been studied by several researchers.

Ren and De Roeck [2-13] proposed a technique to predict the damage location and
severity based on changes in frequencies and mode shapes of vibration of simple and continuous
beams with number of different damage scenarios. Structural characteristics before and after the
damage that was simulated by reducing the stiffness of assumed elements including multiple

damage cases were calculated with FEA. The technique was also tested with the existence of
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numerically generated noise. The authors (Ren and De Roeck [2-14]) applied this algorithm on
reinforced concrete beams and performed an experiment to establish the relation between
damage and changes of the structural dynamic characteristics. Static tests were aimed to
produce the successive damage on the central zone of the beam with almost uniform damage
intensity. On the other hand, dynamic tests were aimed at finding natural frequencies and modes
with the help of impact hammer and accelerometers. The authors finally concluded that the
proposed method could be applicable to simple structures for damage localisation. Ahmadian ez
al. [2-15] examined a method which uses measured displacement data and a finite element
model (FEM) to locate damage in uniform beam structures. Damage was modelled by either
changing the flexural rigidity of the selected elements or creating a discretisation error by
varying the length of the elements. Since the method uses a combination of measured
displacements, it is capable of locating the damage correctly.

Friswell et al. [2-16] applied a genetic algorithm by using vibration data based on
changes in frequency and mode shapes to identify the position of one or more damage sites in a
uniform cantilever beam and to estimate the extent of the damage at these sites. The theory is
based on the optimisation of objective (error) function obtained from analytical and measured
data with the genetic algorithm. The simulation results showed that the algorithm is robust to
systematic errors in the measured data and powerful in damage localisation for single damage
site compared to multiple one. Fox [2-17] applied the Modal Assurance Criterion (MAC) on
natural frequency data obtained from finite element analyses of intact and damaged beams.
Although changes in natural frequency indicated that damage might be present in the structure
and MAC gave useful indication of the relative extend to which modes were affected by the
damage, these two approaches were not sufficient to locate the damage. Therefore, the author
used a relative difference function based on intact and damaged mode shapes to assess the
damage. It was concluded from the analyses that mode shape information was required to
determine the location of the damage. Pandey er al. [2-18] performed modal analyses with
cantilever and simply supported beams and used curvature mode shape parameter for damage
detection. In this method, curvature mode shapes were obtained numerically from the
displacement mode shapes by using a central difference approximation. Damage was modelled
as a percentage reduction in stiffness of one of the elements in the finite element model. The
results demonstrated that the absolute difference between the curvature mode shape of the intact
and that of the damaged beam was a good indicator to detect and locate the damage, since the

maximum absolute difference occurred in the damage zone.



Chapter 2 Literature Review

Yuen [2-19] developed a numerical method using finite element modelling technique to
establish the fundamental relationship between damage location, damage size and
eigenparameters (i.e. displacement and rotation). A cantilever beam having damage zone with
reduced stiffness was used as a model and eigenparameters were estimated by using each
eigenvalue as a normalisation factor. Since the rotation eigenparameter took a step jump in a
value when crossing over the damage zone and the displacement eigenparameter changed its
slope at the same location, the proposed method showed that definitive characteristics were
related to the location and extent of damage. Ratcliffe [2-20] extended the research and used
one-dimensional Laplacian operator on the discrete first bending mode shape of a finite element
free-free beam with 50% damage on one of its elements in FEM. Since the damage was severe,
this operator indicated the location of the damage. But, for less severe damage, the Laplacian
was not that powerful to indicate the damage and it retained its characteristic shape. For this
reason, a method calculating the difference between the cubic polynomial and Laplacian was
developed. It was observed that this modified Laplacian method provided the necessary
information to identify the location of the damage from mode shape data although damage was
less severe compared to one used for Laplacian operator. Ho and Ewins [2-21] presented a
numerical analysis, so called damage index, comparing the curvatures of the in-service structure
and those of the baseline at every measurement location. In the analysis, first three transverse
vibration mode shapes were considered and different damage configurations were used by
reducing the thickness at a particular location. Damage index was performed for four different
numerical studies, namely measurement noise, spatial resolution of the mode shapes, damage
severity and changes to boundary conditions to investigate the effects of these parameters on the
accuracy of predicting the location of the damage. It was observed from the numerical results
that noise level constraints and higher resolution of mode shapes increase the sensitivity of the
damage index to damage.

Pai and Young [2-22] used the boundary effect detection method [2-23] for location
detection of damage by using structural operational deflection mode shapes via scanning laser
vibrometer measurements. Experiments were performed using single frequency excitation at the
chosen frequency on cantilever and simply supported beams with different damage types,
including cracks and internal holes at different locations. The experimental results showed that
high frequency operational deflection mode shapes are better than low frequency ones for
locating the damage. The authors also concluded that the proposed method provides damage
indicators with different levels of accuracy for different levels of inspection but a clear damage

signal is always needed for extraction of the data. Cornwell et al. [2-24] generalised this
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method, which is based on strain energy and developed for beam-like structures, to plate-like
structures having two-dimensional curvature. The modified method uses mode shape
information of the structure before and after the damage to detect and locate the damage. It was
assumed during the analyses that mode shapes were known exactly on a very fine grid of
sensors but in actual practice this is not the case. Therefore, calculation of derivatives and
integrals when the mode shapes were known at relatively small number discrete locations was
the main drawback of the study. Researchers also focussed on curvature mode shapes by
considering higher and multiple modes.

Wahab and Roeck [2-25] proposed a curvature damage factor by performing an
averaging over absolute differences in curvature mode shapes of a continuous beam for the first
five modes and applied this technique to a real bridge to evaluate and locate the damage.
Damage was simulated as a percentage reduction in stiffness of one of the elements of the beam
FEM. They concluded that modal curvatures of lower modes are more accurate than those of
higher ones and extensive measurement grid throughout the structure is needed to get a good
estimation for the modal curvatures. Waldron et al. [2-26] aimed at quantifying the damage
from operational deflection mode shapes (ODSs) by scanning laser doppler vibrometer. The
angle between healthy and damaged normalised ODS was used as a damage signature in the
analysis. Aluminium beams having fatigue crack grown in a tension machine was used in
experimental work and the damage was simulated as stiffness reduction in FEA. The authors
investigated the effects of loading, frequency range of excitation and the boundary conditions on
detection of damage and performed sensitivity analyses of translational and rotational ODSs.
Experimental work and FEA denoted that rotational ODSs give better accuracy in lower and
higher modes although they are difficult to measure compared to translational ODSs.
Additionally, it was perceived that visibility of the damage effect on ODS considerably
increases when the damage is near or at an anti-nodal point for the higher frequency modes. The
authors also concluded that higher frequencies are better indicator for damage detection and

location prediction.

10
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2.2.3 Frequency and Time-Frequency Analyses

The following researchers concentrated on obtaining frequency response function (FRF)
of structures and in this way they investigated additional features that could be used for damage
identification. In this section, research areas including wavelet analysis and electrical impedance
methods are also reviewed.

Jian et al. [2-27] used Polyvinlydine Fluoride (PVDF) piezoelectric patches for damage
detection in composite material. Unidirectional, four-ply laminated cantilever plates with
surface bonded and embedded piezoelectric patches were used as test specimens under
mechanical pulse delivered by a marble rolling down an inclined through and striking the plate.
During the experiment, changes in frequency response spectrum of the delaminated composite
plates were monitoried. The spectra showed distinct shifts in the vibrational frequencies to
lower as delamination size increased. The analyses also showed that very little change in the
frequencies occurred until the delamination became very large and ,therefore, it was concluded
from the observations that a full-width delamination is required to significantly reduce the
frequencies of the lower modes. Lee and Shin [2-28] presented a new algorithm, which requires
natural frequencies and mode shapes of the intact structure and FRF of the damaged structure to
predict the location and the magnitude of the damage. The structures used in the analyses were
cantilever and simply supported Euler Bernoulli beams. Damage was modelled as change in
stiffness by degradation of the elastic modulus at various extents along the beam span. FRFs
were obtained by varying excitation frequency as well as measurement point to obtain sufficient
number of equations. Then the algorithm reduced the domain of the problem by searching for
damaged free zones and removing them from the spatial domain of the problem to leave
damaged zones only. The effect of noise on the algorithm was also considered. The authors
concluded that FRF provides more information on damage in a desired frequency range than
modal data and better accuracy can be achieved by including higher modes.

Sampaio et al. [2-29] extended the theory [2-18] to all frequencies in the measurement
range and used FRF data rather than just mode shape data in the calculation of curvatures to
predict the existence, location and the extent of the damage. The authors performed a numerical
study on ten degrees of freedom lumped mass model for four different levels of damage and
applied the same theory on a real bridge structure. Damage was modelled as change in stiffness
in the numerical analyses and as cuts in the web and flange of the girder of the bridge in the
experiment. The influence of the frequency, input force location and the noise effect were also

investigated in the study. The results indicated that for wider frequency ranges the difference in
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the curvatures of the damaged and intact model become less significant due to frequency shift.
The method worked better in the range before the first anti-resonance or resonance, whichever
comes first. The authors also observed that the method is quite insensitive to noise and the effect
of the position of the exciting force is not important from the damage detection performance
point of view.

Castellini and Revel [2-30] demonstrated the measurement capabilities of laser doppler
vibrometer in damage detection and characterisation technique. FEM was used to produce the
data related to large variety of delaminations with reduced level of noise with ideal excitation
conditions and to test the algorithm before its final application to real experimental case. FEM
of the delamination was represented by a cavity obtained with two pyramids with same square
bases and opposite vertices. Then, vibration information in each node of the mesh was obtained
from FEA. Parallel to FEA, laser doppler vibrometer was used to measure vibration data from
experiments. Finally, the proposed algorithm, which was based on the root mean square values
and standard deviation of the FRFs was tested with both numerical and experimental data for
damage characterisation. Sunders et al. [2-31] developed a theory to detect, locate and quantify
damage in composite structures from changes in the measured modal response of the structure.
Internal-state variable theory, which relates the current values of the stress to the current value
of the strain through elastic moduli, was used to describe the constitutive behaviour of the
cantilever composite beam. The authors also derived damage detection equations that can be
solved to provide the unknown damage parameters (location and magnitude of the damage) by
using combined experimental and analytical methods. Their numerical and experimental work
on a laminated beam in the intact state and in three additional states of progressive damage
showed that the proposed method is feasible for damage detection in viscously damped
composite beams with transverse cracking.

Fukunaga er al. [2-32] used first order approximation technique for numerical
prediction of transient response of electrical potential changes on sensors for location prediction
and an iterative estimation scheme for solving non-linear optimisation problems based on
quadratic programming technique to predict damage extent. Numerical studies were performed
on carbon epoxy cantilever composite beam. Reduction in the elastic moduli by the same
portion in all directions of one of the element in FEM model was used to simulate the damage.
Since electrical potential change in time domain does not provide any distinguishable features
for the location and the extent of the damage, all data was transferred to frequency domain by
using fast Fourier transform technique. The authors also investigated the robustness of the

technique by enlarging the response and adding white noise in the time domain. It can be
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concluded from their analysis that the accuracy of the approach strongly depends on reliable
modal data of the intact structure. Kessler ef al. [2-33] used FRF method for the in situ detection
of damage in composite materials. They concentrated on structural health monitoring aspects of
the frequency response method and used it as a candidate to predict the existence of the damage
in graphite/epoxy panels. They introduced different types of damage including delamination,
fatigue induced damage and a drilled hole to specimens. Finite element simulations for modal
response and frequency response analyses by using scanning laser vibrometer were also
performed and the effect of the damage on frequency response was investigated by obtaining the
first six natural frequencies of the damaged specimens. The results demonstrated that the
method could not extract damage type, size, location and orientation information since several
combinations of these features could yield identical responses. On the other hand, it can provide
good insight as to the global condition of the system and can be implemented cheaply.

In addition to frequency-based analyses, time-frequency analysis (i.e. wavelets) is also
used as a tool to extract features that can provide additional information about the damage
characteristics. Wavelet decomposition is a successive approximation method that adds more
and more projections onto detail spaces spanned by wavelets and their shifts at different scales.
Wavelet decomposition divides up the time scale plane in such a way that high-frequency
activity is described with very sharp time resolution. These capabilities of wavelet make it
popular in signal processing applications.

The approach and solution procedure of damage identification by intelligent signal
processing was outlined by Staszewski [2-34]. The author also referred to data pre-processing,
feature extraction and selection, pattern recognition and data/information fusion by giving
examples from wavelet and neural network applications on composite materials. Wu ef al. [2-
35] performed an experimental work on different composite beams having different damage
types (i.e. cracks and delamination) with surface bonded piezoelectric (lead zirconate titanate
PZT) patches by stimulating them at the third modal frequency. After obtaining amplitude-
frequency of the output sampling signals from PZT sensors, wavelet packets were used to obtain
eight auto regression spectra on these signals to extract and recognise the characteristic signal,
which can be used as an input for neural network for the characterisation of the damage on
composite beams. The authors concluded that this method is effective for damage
characterisations but it should be generalised and implemented to identify the location and
magnitude of the damage as well. Okafor and Dutta [2-36] used wavelet transforms to detect
structural damage on an aluminium cantilever beam. Damage was simulated as a stiffness

reduction in FEA and created by machining a notch on the specimen. The displacement data
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corresponding to the first three modes were obtained by scanning laser vibrometer and analysed
with the wavelet transform. The authors concluded that single damage was accurately located by
using wavelet decomposition of the finite element test beam and the experimental beam mode
shapes. It was also pointed out that the magnitude of the wavelet coefficient at the location of
the damage increased linearly with the increase in the amount of damage.

Electrical impedance technique (Lopes et al [2-37]), which utilises the
electromechanical coupling property of PZT material based on high frequency structural
excitation, is also used as an effective method for structural health monitoring because of its
easy implementation and simple structural evaluation. The authors used model-based damage
detection procedure by modelling damage as a reduction of stiffness in FEM and two cuts with
different depths in the real test structure with surface bonded PZT patches. The damage metric,
a function of the severity and the distance between the damage and the PZTs, indicated that
damage can be localised by impedance technique and quantified by model-based detection
algorithm using model generation by optimisation scheme. The same approach was also used on

an aluminium cubic frame structure [2-38] to identify structural damage.

23 Artificial Neural Network Applications

It can be seen from the previous researches that change in natural frequencies helps to
characterise the severity of the damage. However, locating the damage from the changes in
natural frequencies alone is difficult as modal frequencies are global properties of the structure
and hence cannot provide spatial information about structural changes. In order to overcome this
drawback additional features, such as displacement or curvature mode shapes, which provide
spatial information about the damage, can be used. In addition to these parameters, other
methods including frequency, time-frequency and impedance methods are also available to
obtain extra features related to damage characteristics and to detect structural damage. The
analyses performed on structures under dynamic loading showed that for better estimation of
severity and location of the damage, multiple modes should also be considered. Since each
natural frequency and the corresponding mode are affected to different extents depending on the
location of the damage, analyses become too complicated to be handled. Therefore, Artificial
Neural Networks (ANNs) can be used in the post processing of vibration-based data to extract

the features and to solve this inverse and non-unique pattern recognition problem.
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Waszczyszyn and Ziemianski [2-39] summarised the application areas of back-
propagation neural networks (BPNNs) and discussed some problems where ANN can be used in
the analyses. They mainly concentrated on data selection and processing, design of BPNNs and
the accuracy of neuro-computing. The conclusion drawn from their numerical and experimental
work is that ANNs are suitable to the analysis of problems with noisy or incomplete data and
they can be efficiently applied to process the experimental data where there are not known
mathematical models or given a priori relationship between the input and the output data.
Worden and Tomlinson [2-40] also used BPNN to identify (i.e. locate and quantify) the damage
in a cantilever aluminium beam and plate structures. Damage was modelled with local stiffness
reduction by deleting groups of elements from FEM. The authors used four different sets of data
(first and second mode shapes and Yuen function for the first mode shape and curvature of the
first mode) to train the ANN. The finite element simulation and ANN results showed that the
curvature of the first mode of vibration appears to provide the best data for damage
identification. However, the Yuen functions did not supply any useful information and proved
to be unsuitable for training of BPNN. In Worden and Burrows [2-41], the authors developed an
algorithm using iterative insertion/detection method, genetic algorithm and simulated annealing
to optimise the location and the number of the sensors for the fault detection. Optimal sensor
distributions obtained from each method were used in ANN. Three different damage severities
at different locations on a cantilever plate were simulated by removing small groups of elements
in the FEM or setting their Young’s modulus to zero. Mode shapes and curvature values were
supplied to multi-layer perceptron (MLP) model in the training and location predictions were
performed for the simulated damage.

Mukherjee and Ravindra [2-42] investigated the power of ANNs in early damage
detection. A cantilever aluminium beam with different crack intensities at different locations
was used in the analysis and strain time histories were obtained by performing a transient
dynamic analysis with impulse excitation. Since strain time histories contain a very large
number of data points which are difficult to handle, a compression tool was used to convert time
histories to Haar values and these values are used as input to ANN for location and extent
estimation of the damage. They observed from the time histories that the damage at the root
region has more severe effect on the natural period of the structure, stiffness loss due to damage
at the root is higher and the strains generally increase with the increasing damage intensity.
Zang and Imregun [2-43] presented a method for an efficient and accurate reduction of the FRF
data so that ANN technique can be applied routinely to structural damage detection. They

performed principal component analysis on FRF data obtained from railway wheels subjected to

15



Chapter 2 Literature Review

random dynamic loads during their operation. An ANN was trained with this dimensionally
reduced and noise filtered data. The experimental results indicated that although the extension
of the methodology to damage location is somewhat more difficult, the use of ANN with FRF
data which is reduced via principal component analysis provides necessary information about
the existence of the damage.

Another research (Zapico ef al. [2-44]) aimed at assessing the damage from measured
modal parameters by using ANNs. The authors modelled two-storey steel frame and steel-
concrete floor structures by using FEM and performed modal testing on real structures to obtain
natural frequencies and mode shapes. MLP type ANN was trained to localise and find the
amount of damage in the structures by using different combinations of natural frequencies and
mode shapes as input. The FEA and experimental results showed that both input and output
parameters should be correctly selected since too many parameters could affect the
generalisation of MLP network by creating different combinations of damage leading to similar
modal results. In Xu et al. [2-45], an adaptive MLP technique was used for the detection of
horizontal cracks hiding inside the carbon and glass epoxy anisotropic laminated plate. The
excited surface displacement response and the crack parameters (crack size and location) were
used as input and output pair for the ANN respectively. The results of the numerical study
indicated that the longer and shallower the crack is, the more significant the distortion would be
in the surface displacement response. They also concluded that MLP technique is very effective
for the damage detection in the presence of the noise in response data.

Ball and Worden [2-46] concentrated on the application of ANN as a low-pass filter on
vibration data to reduce its noise content. By using auto-associative training, an ANN is trained
to replicate the given input at the output layer with a smaller number of nodes in the
intermediate or hidden layers than in the input/output layers. By this algorithm, ANN is forced
to perform some sort of data compression or filtering of the signals as they propagate from the
input layer to the output layer. The case study testing the filter capabilities of ANN indicated
that the use of ANN as a filter is severely restricted since there are so many limitations on the
topology and the parameters affecting the performance of the network. In their other study,
Worden and Ball [2-47] applied ANN as a tool for the condition monitoring of a simple two-
dimensional cantilever framework structure. The eigenvectors (horizontal and vertical modal
deflections in FEM) of the structure with ten different fault severities in the first, second and
third modes were used to train an ANN with and without added random noise. It was shown that
the use of modal quantities instead of using strain pattern allows the use of a more compact

ANN architecture resulting in less computational work. Worden er al. [2-48] used auto-
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associative neural network for the detection and classification of damage in machines (gearbox
and a ball bearing) by using experimental vibration data. Four (progressive removal of 25%,
50%, 75% and 100% of one of tooth face width) and five different damage scenarios (new ball-
bearing, completely broken outer race, broken cage with one loose element, damaged cage with
four loose elements and badly worn ball-bearing) were created on gearbox and ball bearing
respectively. The results showed that spectral information alone is inadequate for unambiguous
classification and further post-processing is needed for more accurate and better condition
monitoring. A static load application (Worden et al. [2-49]) was also performed to predict the
position of a fault in a framework structure using ANN. The damage was created by removing a
member of the framework in the experiment and simulated by giving a very low Young’s
modulus for that member in the FEM. Sets of strain data were obtained from strain gauges
attached to the framework under different static loading and these data sets were presented to
the network which was trained with finite element simulation data in order to locate the fault in
the structure. The study showed that ANN trained with noise-corrupted data could successfully
locate faults in the structures.

Sensburg et al. [2-50] performed three different case studies on aluminium cantilever
beam, plate and a carbon fibre composite fin with a rudder. For each case, different damage
scenarios were created both experimentally and simulated by using finite element software. The
proposed method requires measured mode shapes and modal frequencies of the damaged
structure from undamped normal modes of vibration. Structural defects are found and located by
an iterative optimisation procedure minimising the structural changes to match the modes and
frequencies of the damaged structure. Both FEA and test results indicated that damage could be
detected from dynamic test data by using ANN. Kudva et al. [2-51] presented a damage
detection scheme to estimate the size and location of the damage by using strain values at
discrete locations on an aluminium stiffened panel under uniaxial compression. They used ANN
as a pattern recogniser and trained it with strain values obtained from distributed set of sensors
located on the damaged structure. The authors also determined the strain pattern corresponding
to the intact structure by using FEA. The results showed that location detection is easier than
size estimation and use of hierarchical ANN (i.e. a network trained and simulated in two steps:
first step for size and approximate location of the damage and second step for exact location
prediction of the damage) is more efficient than using one big network. Islam and Craig [2-52]
modelled various length delaminations in Kevlar-epoxy composite beam by using FEM and
performed modal analysis for the first five natural frequencies of cantilever composite test

specimens with surface bonded piezoelectric sensors and actuators. The authors trained an ANN
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using numerical model and tested for location and size prediction of delamination by using data
having natural frequencies of the beam obtained from both experiment and by FEA. The
simulation results showed that predicted and actual values of the size and the location of
delamination were quite close to each other. Okafor er al. [2-53] presented experimental and
theoretical work to investigate the effect of delaminations on modal frequencies of glass epoxy
composite beam. They inserted a Teflon film into the mid-plane of the laminate to create
delamination and performed modal testing to obtain natural frequencies. The first four
normalised modal frequencies were used as an input to ANN for the prediction of non-
dimensional delamination length. It is observed from the analyses that modal frequencies
degrade with the increasing delamination size and this can be used as a signature to assess the
delamination.

Roberts et al. [2-54] used ANN to find the correlations between the local forging
conditions (temperature, strain rate and local strain, as input) and extent of damage (as output)
that occurred on the surface of aluminium metal matrix composite brakes. This particular
application of ANN showed that although three parameters are not sufficient to describe damage
evolution in composite forging, ANN is able to make sensible predictions of the damage
locations. Yun and Bahng [2-55] proposed an approach for the estimation of parameters of two-
span planar truss and multi-storey frame using BPNN particularly for the case with noisy and
incomplete measurement of the modal data. The data supplied as an input pattern to ANN in the
training was the natural frequencies and mode shapes of the structure. The numerical analyses
indicated that the accuracy of the estimation for the stiffness matrix of the system could be
improved by imposing noise during the training with intensity similar to the measurement noise
level and by including additional measurement information (i.e. rotational degrees of freedom).

Pandey and Barai [2-56] used MLP with backpropagation learning algorithm to identify
damage in a twenty-one-bar truss structure simulating a bridge. The authors used ANN to
identify the damage zone from vertical displacements under static load of five nodal forces.
Damage was modelled by stiffness reduction, which is a function of cross-sectional area of the
members. All patterns were generated with the help of finite element software and used for the
training of two different ANN architectures. The authors mentioned how difficult it is to design
an ANN by choosing a proper topology and all other parameters (learning rate, momentum,
error tolerance, etc.) which are directly affecting the performance of the ANN. From the
numerical simulation results, it was concluded that MLP model is quite appropriate for
structural damage identification. By considering different architectures of ANNs used in the

analysis, the one having two hidden layers showed better performance compared to that with
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single layer. Barai and Pandey [2-57] also investigated the performance of the generalised delta
rule used as a separate case in the training of ANNs for damage identification. The authors used
strain data in the training and simulation of ANN and observed that strain measurement taken
together with displacement measurement significantly improved the performance of the ANN.
Seo and Lee [2-538] used the electrical resistance change as a damage parameter in fatigue
damage of CFRP laminates. ANN was also used as a tool to investigate the electrical resistance
damage parameter, fatigue life and stiffness reduction. In the designed ANN, electrical
resistance was used as input and either stiffness or fatigue cycle was used as a separate output. It
was observed during the fatigue test that measured stiffness and electrical resistance change
showed similar trends of change and good agreement was achieved between the predicted

values obtained from ANN and experimental study.

2.4 Sensors for Vibration Analysis and Damage Detection

2.4.1 Smart Materials

The following researchers used smart materials such as piezoelectrics (PZT), shape
memory alloys (SMA) etc. as sensory material to record dynamic responses and detect the
damage occurred in structures.

Chiu et al. [2-59] performed a set of numerical analyses to investigate whether the
concept of smart structures can be used to detect damage in the repair itself as well as monitor
damage growth in the parent structure. An array of piezoceramic elements was used to detect
disbonds of adhesive layer between the repair boron/epoxy doubler and an aluminium plate
structure. Two different signal analysis techniques (mechanical impedance and transfer
function) were assessed to determine the presence of any disbond in the adhesive layer. In the
mechanical impedance technique, the piezoceramic sensors/actuators distributed over the
structure were actuated in turn and the mechanical impedance at the drive point was determined.
On the other hand, in the transfer function technique, the piezoceramic actuators were actuated
individually and the transfer function between the actuator and the rest of the sensors was
calculated. The information obtained from the piezoceramic showed that the magnitude of the
impedance and that of the transfer function decrease with increasing disbond size.
Chattopadhyay et al. [2-60] investigated the effects of delamination on the dynamic response of

smart composite plate by using root mean square values of the plate response to an impulsive
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disturbance. The FEM used in the analysis was delaminated cantilever composite plate with five
pairs of surface bonded piezoelectric actuators. The results showed that in the presence of the
delamination, natural frequencies of the plate changed since there was a small reduction in the
structural stiffness due to delamination. Additionally, root mean square values of the response
of the delaminated plate turned out to be higher than that of the non-delaminated one and the
dramatic jumps in these values in the delamination boundaries were observed.

Wang and Chang [2-61] proposed an active structural health monitoring system for
impact damage detection in composite structures by using a built-in network of PZTs. The
system used was capable of analysing the difference in sensor signals recorded in two different
times (reference and damaged state), detecting the presence of damage and also identifying the
location and extent of it. The authors performed experiments with graphite/epoxy composite
plates on which damage was introduced by quasi-static impact. Then, in order to find the
spectral components of time domain signals, swept frequency method and joint time-frequency
analysis were used. The authors concluded that input energy, input frequencies, size of the
damage and size of the piezoceremic patch were the major factors affecting the results during
the experiment. Ogisu ef al. [2-62] investigated an integrated health monitoring system with
embedded SMA foil sensor and actuator in CFRP laminated panel to suppress transverse crack
propagation and delamination. They performed adhesive property, tensile, compressive, and
interlaminar shear strength tests on different panels with embedded SMA foils. It was
experimentally found that the interlaminar adhesive strength must be improved in order to avoid
failure initiating at the interface between the SMA foil and CFRP smart panel. Further
investigations on the relationship between electrical resistance and strain of SMA showed that
SMA foils are possible candidates for sensor application for health monitoring in composite
structures.

Since the determination of the location, size and the number of sensors on the structure
is one of the most important stages in the design which directly affects the performance of the
algorithm using these sensors, several researchers focused on the optimisation problem to find
the best location and size for smart materials used as sensors to achieve better vibration sensing
and actuators for more effective vibration control of beam-like structures [2-63], [2-64], [2-65],

[2-66], [2-67].
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2.4.2 Fibre Optic Strain Sensors

In fibre optic sensing, the response to external influence is deliberately enhanced so that
the resulting change in optical radiation can be used as a measure of the external perturbation.
Fibre optic sensors (FOS) serve as transducers and convert measurands like temperature, strain,
rotation or electric and magnetic currents into corresponding change in the optical radiation.

FOSs have a number of advantages with respect to conventional strain sensors when
they are applied to smart structure on-line health monitoring applications. Since these sensors
are very light in weight, large number of them can be used without greatly increasing the mass
of the structure and without significantly modifying the passive mechanical and dynamic
properties of the host structure. A single fibre may have many sensors and this reduces the
number of connections and increases reliability. Because of their small size, chemical and
physical compatibility with materials, they can also easily be embedded in composite materials
in a non-obtrusive manner that does not degrade structural integrity.

They can be used either as localised sensors that determine the measurand over a
specific segment of the optical fibre and similar in the sense of conventional strain sensors or as
distributed sensors, each element of which is used both for measurement and data transmission.
These sensors can simultaneously sense more than one parameter (strain, temperature, etc.) with
high bandwidth and the outputs can be multiplexed for high-speed data transmission resulting in
a fast response time. Since FOSs are insensitive to electromagnetic interference and can
withstand harsh environments, they are one of the best candidates for marine and aeronautical
applications.

Considering the numerous advantages mentioned above, several investigators have
opted for FOSs over other smart materials for damage detection and long time structural health
monitoring.

Okabe et al. [2-68] performed an experiment on CFRP composite beam with embedded
Fibre Bragg grating (FBG) sensors to detect the transverse cracks from the change in the form
of the reflection spectrum. In the analysis, uncoated FBG sensors were embedded between
0-degree ply in order not to deteriorate the strength and the stiffness of the CFRP and also
located on the border of 90-degree ply where the transverse cracks appeared. During the
experiment, quasi-static tensile load was applied to the specimen at room temperature.
Reflection spectra were measured and change in the spectrum caused by the occutrence of the
transverse cracks was investigated. Since FBG sensors are very sensitive to non-uniform strain

distribution influencing the reflection spectrum along the entire length of the gratings, these
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types of sensors have a potential for detecting damage. The results showed that the occurrence
of transverse cracks could be detected from the change in the reflection spectrum and the FBG
sensors used in the experiment could detect only transverse cracks around the sensors.
Therefore, as a design criterion, FOSs should be embedded in the points where cracks are
expected to occur earlier than other points. Green et al. [2-69] worked on the embedded FOSs in
composite materials to produce self-monitoring components for aerospace and marine
applications. They concentrated on the local disturbances to the composite structure caused by
embedded sensors since sensors themselves cause perturbations in the strain field within the
material and this causes localised strain indication errors. The theoretical and experimental
works showed that a suitable coating, good adhesion between the optical fibre and the laminated
matrix, a precision contact between the sensor system and the input circuitry of the monitoring
instrumentation are required in order to minimise the effect of the embedded fibre on the overall
mechanical performance of a part and decrease the strain reading inaccuracy.

Dakai et al. [2-70] performed an experiment to investigate the curing effect on optical
parameters of FOSs. Tests on composite structures with FOSs before and after the curing
process showed that since the fibre optic coating became softened and the total length of the
fibre optic became shortened after curing, great additional loss was generated. The authors also
created new idea of a self-repairing network with hollow optic fibres filled with transparent
glue, double ingredient epoxy resin, so as to repair the damage effectively and automatically.
When the structure is damaged, the liquid core optic fibre will be damaged and the glue will
flow out changing the output light signal. Then, damage location, type and extent will be shown
by data acquisition system and controlled by exciting the array of SMAs, which can restore their
previous shape. Additionally, if the transparency of the composite material is good, untouched
measurement method can be used to detect the damage as well. Johnson et al. [2-71] employed
multi-channel distributed strain measurement system with FBG sensors to monitor the structural
dynamical response of a high-speed air cushion surface effect catamaran. The structure was
constructed from sandwich material of a porous core and fibre-reinforced polymers and
experienced normal ship vibrations, bending motions and wave slamming that may cause large
scale damage. Two different techniques, scanning Fabry-Perot filter technique (suitable up to
several hundred Hz with relatively high strain levels) and interferomatric technique (typically
used for signals in the tens of kHz range to capture low amplitude and high frequency impact
induced strains in the structure) were used to detect the strain-induced shifts in the Bragg
wavelengths. The analysis of the data obtained from a group of sensors bounded to the surface

of the structure in various locations with epoxy showed that FBGs are suitable measuring
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system for low frequency, high amplitude strains due to bending of the hull as well as small
amplitude, high frequency vibrations originating from the propulsion system.

Rippert et al. [2-72] used multi-mode based FOSs embedded into CFRP prepreg
composites to measure the microbendings. The optical signal obtained from the sensor contains
information not only on the strains in the structure due to loading but also on the elastic energy.
This means, strain releases whenever damage occurs on the base structure. During the
experiment, time and time-frequency analyses of the signal were performed using the short time
Fourier transform. Acoustic waves, which were produced by the damage initiation, were also
identified by modal acoustic emission. An adaptive filter was used to remove excessive noise
and spectral subtraction techniques were applied to see the expected optical events more clearly.
The experimental results indicated that the sensor could detect the initiation of the damage and
characterise its frequency content. Han et al. [2-73] performed an experimental study with
polarimetric optical fibres, which were specially integrated into the structure for vibration
monitoring. The test specimen used in the experiment was a clamped-clamped sandwich plate
with electro-rheological material inside. Two different types of sensor were attached to the
structure by an adhesive. One of the fibre optic sensors was of integrated type and the other was
of localised type. In order to determine the optimal location for these sensors, mode shapes,
slopes and curvature distributions were obtained. Specimens were excited in a frequency range
covering their first natural frequency. The experimental results indicated that integrated FOS is
better than a localised sensor since the integrated one provides a relatively clear signal in
spectral analysis.

Bhatia et al. [2-74] developed a technique for detection of edge induced and local
internal delamination caused by cyclic loading of graphite-epoxy prepreg composite panel with
[90/0/0/+45]; ply orientation. They used two extrinsic Fabry-perot interforemetric sensor pairs,
one bonded at each face of the structure and the other embedded between the two pairs of
adjacent [0/0] plies and parallel to graphite fibre direction of the plies. Such a configuration
minimises the size of the local resin-rich region surrounding embedded elements. During the
experiment, output from two embedded sensors was used to determine whether delamination
occurred at any interface. Then, in order to determine the survivability of the sensors during the
composite lay-up and curing, ultrasonic detection test was performed. Finally, the authors
proposed that several multiplexed sensors could be used to determine the delamination locations
in multi-layered composites. Davis et al. [2-75] investigated the dynamic strain characteristics
of a cantilever beam with wavelength division multiplexed FBGs. Three surface bounded

sensors were oriented to obtain strain information at different locations. During the experiments,
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the first three vibration modes were considered. The first sensor was placed at the root of the
beam to read strain from all vibration modes and the second sensor was placed at a node point
of the third vibration mode and the third was mounted at a node point of the second vibration
mode. This provides different sensitivities to the modes for each grating. After exciting the
beam in its first three vibration modes, three peaks corresponding to natural frequencies of the
beam were obtained from the FOSs. They also performed static deformation tests on this beam
to obtain shape functions. Comparison between experimental and measured beam mode shapes

showed good agreement with each other.

2.5 Summary

In this section, references in the literature review (i.e. numbers in brackets) are
classified by considering numerical and experimental studies on various structures (Table 2.1),
features extracted from vibration-based analysis (Table 2.2) and different levels of damage
assessment (Table 2.3). After giving an introductory information about simulation of damage in
finite element and experimental analysis (Table 2.4), different types of vibration sensors (Table
2.5) are compared between each other on the basis of application areas, their advantages and

their main drawbacks.
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Table 2.1 Damage detection on different structures
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Table 2.2 Features and tools in damage detection
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Table 2.3 Features for different levels of damage assessment

Levels of Damage Assessment
Existence Location Severity Type
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Table 2.4 Damage types and modelling

Simulation of Different Damage Types

Finite Element Analysis Experimentally
o Setting stiffness of the elements to zero
Hole e Removing area or deleting elements from | Drilling
the model
e Percentage reduction in stiffness of the
Saw cut, elements e Cutting with jewellers saw
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% | Delamination | spring elements . . .
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Table 2.5 Comparison of sensory equipment

Sensors for Vibration Analysis and Damage Detection

Application Areas

Advantages

Drawbacks

Acceleration history,

Simple, easy to use,

Not suitable for light
weight structures and

Accelerometer | Frequency and FRF suitable for high frequency | online applications,
measurements applications interference with
electro-magnetic fields
Velocity histor . . .
. Y story, Non-contacting Not suitable for online
Vibrometer | Frequency and FRF .
measurement, accurate applications
measurements

Strain Gauges

Dynamic strain history
and static strain
measurements

Inexpensive, easy and
simple procedure for
bonding

Heavy and massive
wiring, sensitive to
temperature changes,
interference with
electro-magnetic fields

By covering the
structure, an active
surface can be obtained.

Inexpensive, suitable for
online, distributing and

Create a gap between

measurements, cure
monitoring in composite
structures and long term
structural health
monitoring

weight, it responds only
strain if temperature
compensation is applied,
linear response, it can
withstand high
temperatures and other
harsh environments
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speed data transmission,
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frequency and FRF embedding applications,
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strain and shape function | magnetic interference,
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FOs & modes, load history wide bandwidth, light in Delicate and expensive,

requires laser source

*Polyvinlydine Fluoride, * Lead Zirconate Titanate

YShape Memory Alloy, YFibre Optic Sensor

Piezoelectrics,
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2.6 Conclusions

A brief literature review on features obtained from vibration-based analyses, damage
detection methods, tools and sensors used for vibration analyses and damage detection was

presented in this chapter. The following conclusions can be drawn from this review:

> Natural frequency shift is extensively used to predict the existence of damage.
Since the measurements of natural frequencies are independent from the location of the
excitation and the measurement point, they can easily be obtained by using frequency response
functions methods. As the changes in frequencies provide only global information about the
dynamic characteristics of the structure, one is not able to relate these changes to the location,
severity and type of damage. Therefore, in order to perform a complete damage assessment in
the structures, other parameters giving local information about damage such as displacement or
curvature (strain) mode shapes should also be included in the analyses. As this involves
measurement of strains, one has to use electrical strain gauges, piezoelectric materials, shape

memory alloys or fibre optic strain sensors.

> Since strain mode shapes are more effective in prediction of location and severity
of damage than displacement ones, it is convenient to obtain them from distributed strain
sensing systems. Considering their superiorities (Table 2.5) to conventional strain gauges, fibre
optic strain sensors are quite promising in strain sensing applications especially in composite
material applications. Moreover, in order to have cost effective solutions in strain sensing for

maximum efficiency, the number and the location of the sensors should be optimised.

» Various researchers have suggested that in order to achieve better accuracy in the
damage detection, multiple and higher modes should be considered. The difficulty here is that
damage detection is an inverse and non-unique problem since different damage types could be
responsible for the same changes in the dynamic behaviour of the structure depending on their
location and extent. Therefore, an intelligent algorithm capable of dealing with noisy and
incomplete data should be adapted to system for damage detection. Artificial neural networks
are the best candidates for these applications because of their suitability for self-adaptiveness
and applicability to problems that do not have an algorithmic solution or for which an
algorithmic solution is too complicated to be found. Additionally, ANNs can serve as a data

reduction tool when long time or frequency histories are available.
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> Designing an ANN is in itself an important subject since selection of features
extracted from vibration-based analyses and used as input-output pairs for training, topology of
the neural network and internal parameters in the simulation are crucial from the performance
point of view. Experiments have shown that strain sensors away from the damage are not
effective and do not supply relevant information about damage. But use of ANN can solve this
problem by using the information coming from the other sensors as well. The majority of
damage detection methods require modelling either mathematically or by using finite element

analysis.

Therefore, most researchers concentrate on isotropic beam or plate-like structures in
their studies since modelling of both main structure itself and damage is easier compared to
laminated composite and sandwich structures. Laminated composite and sandwich structures are
extensively used in aeronautical, marine and civil engineering applications. Hence, one of the
aims of this study is to impart the existing methods, based on vibration-based analyses, using
fibre optic strain sensors and artificial neural networks, and implement them in real practical use
for structural health monitoring and damage detection, especially on composite and sandwich

structures.
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3.1 Introduction

In model-dependent vibration-based damage detection approach, it is essential to have
an accurate numerical model of the intact structure. Based on this model, a damaged structure is
created by considering different damage scenarios; the effects of the damage on the structural
response and dynamic characteristics are investigated. Then, parameters providing necessary
information about the damage characteristics are extracted and compared with the undamaged
reference model. Thus, the first step in damage identification is monitoring of these parameters
during in-service life of the structure. In order to monitor dynamic behaviour of the structure,
vibration sensors are required. After considering various application dependent criteria about
type, number and location of these sensors, a data management scheme needs to be
implemented. This procedure includes obtaining and processing of the data by extracting
features, filtering and compressing them and storing the necessary information that can be used
as input for the detection algorithm. Finally, the designed intelligent algorithm is used to detect,

locate and quantify the damage in the structure.

3.2 Solution Methodology

The procedure can be divided into three main parts: numerical analysis based on finite
element modelling, experimental analysis and verification of the method. This is illustrated in
Fig. 3.1.

In the numerical analysis part, fixed-free beam-like models (steel, fibre reinforced
plastic laminated composite and sandwich beams) were generated by using finite element
software (ANSYS 6.1%) and the damaged models were created from these undamaged models
by using different damage scenarios. After obtaining the models, static and dynamic finite
element analyses are performed. The aim of the static analyses on the steel and sandwich beams

is to find the strain values at particular locations where strain gauges and FBG strain sensors are
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located. These numerical strain data obtained from undamaged finite element models are then
compared to experimental analysis results in order to calibrate gauges and FBG strain sensor
and to check structural coupling between the beam and the sensors. The dynamic analyses are
aimed to find global (natural frequencies) and local (curvature and strain mode shapes) vibration
characteristics of the structures. After performing sensitivity analysis on these vibration data,
some features such as, reduction in natural frequencies due to damage and maximum absolute
differences in curvature mode shapes between the undamaged and damaged structures, are
extracted. An artificial noise has been added to these features in order to simulate experimental
uncertainties. Finally, all data are normalised before introducing them to ANNs. After designing
different ANNSs for damage localisation and quantification, the input-output pairs obtained from
FRP Jaminated beam model are introduced to these neural networks for training and validation
of the algorithm. A set of test cases is also used for severity and location prediction of the
damage.

In the second part, cantilever steel and sandwich beams with real structural damage are
used in experimental static and dynamic analyses. Static analyses are performed by using
surface bonded strain gauges and FBG strain sensors on an intact steel beam for calibration
purposes. In the dynamic analyses, miniature piezoelectric accelerometers are used to obtain
frequency response amplitudes, from which resonant frequencies and damping ratios can be
extracted. Having found the resonant frequencies, intact and damaged beam specimens have
been excited at those particular frequencies to obtain dynamic strain mode shapes via the
distributed strain gauges. Finally, all theoretical, finite element and experimental analysis results
are compared with each other.

In the final part, an experimentally validated damage detection algorithm, which uses
combination of global and local vibration-based analysis data as input to ANNSs for location and
severity prediction of damage in isotropic beam structures, is presented before generalising it for

damage assessment of sandwich beam structures with embedded FBG strain sensors.
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4.1 Introduction

In order to investigate the dynamic behaviour of the structure, free vibration
characteristics are of primary importance. Hence, in this chapter, equations of motion for
transverse vibration of a beam-like structure are derived with corresponding boundary
conditions. Solution for natural frequencies, displacement and curvature mode shapes are
presented by following a successive set of simplifications from introduced theoretical
background for laminated composite and sandwich plates. After presenting an overview about
possible damage types and mechanisms in structures, the analysis tool selected for damage

detection is reviewed reflecting its application areas, capabilities and design criteria.

4.2  Dynamic Characteristics of Structures

There are two main composite panel topologies namely; single-skin fibre-reinforced
composites and sandwich panels. FRP laminated materials are composed of two distinct phases.
One phase (fibre) acts as reinforcement of a second phase, so called matrix. These two phases of
composite must be carefully chosen so as to obtain a material which is structurally efficient.
Since the choice of materials (fibre and matrix), volume fraction, layer orientation, number of
layers in the specified direction, thickness of the individual layers, type of the layer and the
stacking sequence of the layers are the primary parameters in the designing process, composites
can be fabricated for particular application to achieve a specific demand. Additionally, their low
weight, high stiffness, high strength, low thermal expansion, low (or high) rate of heat transfer,
electrical conductivity (or non-conductivity), corrosion resistance and longer fatigue life make
them one of the strongest candidate and most commonly used material in aerospace, marine and
offshore, civil, automotive, medical and military applications [4-1], [4-2], [4-3]. On the other
hand, a sandwich structure which consists of three distinct layers (i.e. the bottom face, top face

and the core) is a special form of laminated composite structure. The thin stiff faces act together
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to form an efficient stress couple that counteracts the external bending moment and thick, light
and considerably weak core (i.e. relative to the skin) resists shear and stabilises the faces against
buckling or wrinkling. The main advantage of sandwich construction is that the strength and
stiffness can be increased without a corresponding increase in the weight [4-4]. Figure 4.1

shows schematic drawing of laminated composite and sandwich structures.
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Figure 4.1 Schematic drawing of structures (a) Laminated composite (b) Sandwich

In this section, in order to investigate the behaviour of composite ([4-5], [4-6]) and
sandwich structures, basic theories of plates are briefly reviewed by presenting the formulation
and the assumptions considering different geometrical and material criteria in the calculations.

These theories can be found in four main categories:

i) Classical thin plate theory (CPT)

i) First order shear deformation theory (FSDT)
iii) Higher order shear deformation theory (HSDT)
iv) Theory of three-dimensional elasticity (3-D)

In most applications, the thickness of the plate is small compared to the planar

dimensions and hence two-dimensional theories (i, ii, and iii) are frequently used.

In classical thin plate theory (CPT, [4-7], [4-8]) the transverse shear effects are
neglected according to Kirchhoff assumption assuming that the lines perpendicular to the mid-
plane before deformation remain perpendicular after deformation. This means the in-plane

displacements are assumed to vary linearly through thickness and the transverse displacement is
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assumed to be constant through the thickness of the plate. Displacement components in CPT are

defined as follows:

ow
ul(x>yaz) -"'u(x,)’)“a;'z

u2<x,y,z)=v(x,y>~%”--z @.1)

”3(x>J’»Z) = w(x,y)

where u; and u, are in-plane displacements in x and y direction respectively and u; is the
displacement in the thickness direction (z direction). # and v are mid-plane translation
components and the partial derivative of w with respect to x and y are the rotation angles. This
theory is adequate for analysis of thin plates, especially when transverse deformation is
negligible. If the structure in the analysis is fibre reinforced composite laminate, the extension
of CPT, which is classical laminated plate theory (CLPT), is used for the analysis of thin plates.
In this case since the total number of displacement variables does not depend on the number of
layers in the laminate, it is suitable for the analysis of thinner laminates. However, the weakness
in the theory is that fibre reinforced composites where elastic modulus along the fibre direction
is significantly higher than the effective transverse shear moduli are susceptible to thickness
failures and therefore CLPT is not recommended to be used for composites that are likely to fail

in transverse shear or delamination.

The more general form of the displacement field (Eq. 4.2) considers the effect of
transverse shear on the bending of elastic plates that leads to the development of the first order
shear deformation theory (FSDT, [4-9], [4-10]). The FSDT is more commonly known as “the
Mindlin plate theory”.

ul(xayaz) - u(x,y)-—¢1 "z
”2(x>y72)=v(an’)"¢2 "z
u3(x:y92) ZW(X:J’)

4.2)

where rotational angles are replaced with more general form of variables (4,4, ) including

shear. FSDT yields a constant value of transverse shear strain through the thickness of the plate
and thus requires shear correction factors. For composite laminates these factors generally

depend on ply orientation, lamination scheme, geometry and boundary conditions. This theory
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does not consider the effects of cross-sectional warping, which plays an important role in
sandwich structures with stiff face and weak core and results in an unrealistic variation of the

transverse shear stress through thickness of the laminate.

The higher order shear deformation theories (HSDT, [4-11], [4-12], [4-13] [4-14],
[4-15]) are based on assumed higher order expressions of the displacement field. The most

general form (up to and including third order) for HSDT is “Reddy’s strain consistent third

order theory” [4-7] and defined as:
— ow 2 3.
ul(xayaz)-*”(st’)“"a'Z'-'a +f 2+ A7y Y276
X
, N ow ) 3
uz(x,y,z):V(x,y)+a-z-—é;+ﬁ-z-¢2+/'L'z Wy ty-z7 -0, 4.3)

u3(xayaz)=w(xay)+ﬂ’l 'Z'I//S +yl 'Zzl -93

where @4, and ¢, are rotations of a transverse normal about y and x axes, respectively and
v, and 6, are undetermined functions. Depending on the constants (i.e. tracers, o, 8,4, 4,,7 and

1), classical, first, second and third order theories can be obtained. For example,

a=0,8=1,A=1y =4 =y, =0 gives second-order theory and
4 ow 4 ow
a=0,0=1LA=0,y=0L 1 =y,=0, 8, =——(¢ +—)and 0, = — (¢, +—) gives
ﬂ e Z’l 4 1 3h2 (¢1 ax) 2 3h2 (¢2 ax) g

third-order theory of Reddy. The major drawback of the conventional HSDT lies in that it is
unable to satisfy the interlaminar continuity from layer to layer and stress equilibrium over the

lateral surfaces without regard to the transverse normal stress.

Three-dimensional theories (3-D, [4-16], [4-17], [4-18]) use three-dimensional
displacement fields with various edge boundary conditions in terms of double Fourier series in

X, y in-plane and polynomials in z out-of-plane coordinates as follows:
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where k is the layer number.

By using energy variational approach, small strains are expressed in terms of displacements as:
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where £’s and y’s are normal and shear strains respectively. The relation between strain and

stress (o, ) for general anisotropic material is

1
0, =Cy, &y Where &, =>7u (4.6)

having 21 independent stiffness constants. For more special cases such as, orthotropic (9
constants), orthotropic material with transverse isotropy (5 constants) and isotropic material (2
constants), the number of independent stiffness constants reduces. The generalised equations of
motion can be derived by using following energy equations (Eq. 4.7) considering each layer and

the boundary conditions.

P
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p=l 7 »

where V and T are the strain and kinetic energy components respectively and subscript ¢ and
variable P indicate time derivative of the terms in the equation and the total number of layers

respectively.
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Since the solution of Eq. 4.7 is beyond the scope of this study, the solution for natural vibration
of special case (cantilever isotropic beam) is given by considering further simplifications from

vibration of plate structures.

The governing equation for natural vibration of an isotropic plate can be expressed with

the following homogenous equation:

4 4 4 2 3
9 L 62W2+aff +p-h§—2w=0 where D:——E—]?-T (4.8)
't axfoy’ oy t 12(0-v7)

where E, h, p andv are the modulus of elasticity, thickness, density and Poisson’s ratio of the

beam respectively. Since beams have variation only in one direction, fourth-order differential
equation of motion can be simplified considering an elemental length of beam undergoing
vibratory motion so as to find the lateral vibration characteristics of the uniform beam structures

[4-19], [4-20], [4-21], [4-22]. Hence, Eq. 4.8 can be simplified by using following relations:

4 2
EI a—{f +p-A§~;1=o where E-I=D-b , v=0 (4.9)
Ox ot

where b, A and I are the width, cross-sectional area and second moment of area of the beam

respectively. A new variable can be assigned for w as Y(x,#) having spatial variable in x

direction only. For free vibration solution, separation of variables can be used as:
Y(x,0)=y(x)¥(1) (4.10)

or it can be in the form of

UEHEDPACIAG) @.11)

if the structure vibrates in a number of modes. Considering equations (4.10) and (4.11),

¥, y(t), iand N are mode shape, a function of time, mode number and the total number of

modes respectively. In free vibration case equation (4.12) defines the total transverse

deformation of the structure.
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N
Y(x,0)= ) 45,(x)sin(w; +4,) . (4.12)

Substituting equation (4.12) into (4.9) gives

d‘y

2
?’J‘ﬂ4}~’:o where S* =£%1£— and o = 27f (4.13)

where ® and f are the natural frequencies of the beam measured in rad/s and Hz, respectively.

The general solution for equation (4.13) is in the form of
¥(x)=C,cos(fx)+ C,sin(fx) + C,cosh(fx) + C,sinh(Sx) (4.14)

where C,, C, C; and Cy are the constants to be determined from boundary conditions. For fixed-

free beam (Eq. 4.15) having a length of L

2~ 3~
at x=0, 50)=0=2] andatx=1, 53-% :o:?-—{- (4.15)
ox x=0 x=L Ox x=L
Applying equation (4.15) on (4.14), the transcendental equation for Acan be expressed as:
cos(A)cosh(A)+1=0 where 1 =L . (4.16)
The solution of this equation gives the natural frequencies of the fixed-free beam as,
2 (EIV: y
.= L ——— m=
S =t [ m ) P (4.17)

and for the first three modes; 4, =1.87510407 A, =4.69409113 A, =7.8547574
where f;, 4,and m are the natural frequency (in Hertz), dimensionless parameter which is a

function of the boundary conditions and mass per unit length of the beam respectively.
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The shape of the natural modes is calculated from following equation:

~ X A A A A
y(—) = cosh(—x) —cos(—x) - K,.'isinh(—‘ x)—sin(— x)J
L L L L L (4.18)

x, =0.73409514, «, =1.018467319 «,; =0.999224497

where « ’s are the constants depending on the boundary conditions.

Figure 4.2 shows the first three normalised displacement mode shapes of the fixed-free beam

plotted using Eq. 4.18.
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Figure 4.2 Normalised displacement mode shapes of fixed-free beam

The curvature mode shapes (Eq. 4.19) can be obtained by taking the second spatial

derivative of the non-dimensional displacement mode shape equation (Eq. 4.18).

dzi(—’f) )
———a;il—:— = %{cosh(%— x)+ cos(% X))~k (sinh(% x)+ sin(—ji_j- x)ﬂ (4.19)
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2 32~
The first three normalised curvature mode shapes (¥” =~/1L7a—;zi) of the fixed-free beam are

i

shown in Fig. 4.3.
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Figure 4.3 Normalised curvature mode shapes of fixed-free beam

4.3  Damage Mechanisms in Structures

Damage may be in different forms in various structures resulting from a number of
causes. Considering isotropic structures, the type of the damage mostly observed is a crack that
changes the dynamic characteristics of the structure under vibratory motion. On the other hand
in composite structures, there are two main types of failure mechanisms in a single lamina:
micromechanical and macromechanical.

Micromechanical failures take the forms of transverse matrix cracking due to a brittle
matrix and a relatively strong interface, fibre-matrix debonding due to weak interface, shear
fractures caused by relatively ductile matrix and strong interface and fibre failures such as, fibre
breakage, fibre pullout and fibre buckling (i.e. kinking) [4-1].

Macromechanical failures can be implemented by four widely used failure theories
valid for individual homogeneous laminae with orthotropic material properties, namely:
Maximum stress, maximum strain, Tsai-Hill and Tsai-Wu [4-2]. Failure analysis of a laminate

is much more difficult than that of a single lamina. The main three definitions of failure used in
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this case are initial (first-ply) failure, ultimate laminate failure and interlaminar failure. In
sandwich structures, delamination between the face and the core material is one of the most
common types of damage since this is the interface where two different materials meet and
generally they have the tendency of separation from each other under vibration.

Definition of the damage is one of the most important criteria to be considered during
the designing stage of a detection algorithm. The term damage detection used in this thesis is to
express the use of measured or simulated structural dynamic responses (or their derivatives) in
detecting changes in the condition of the structure.

Throughout the thesis, different types of local structural damage are created
experimentally and simulated numerically by using finite element analysis tool. In order to
detect these damage, model-dependent vibration-based analyses are performed on different
beam-like structures considering the effect of the damage on vibration characteristics of the
structure. Depending on the size of the structure and the damage and the number of parameters
monitored during in-service life of the structure, large number of sensors may be required. This
brings the necessity of a damage detection algorithm that can handle large number of sensors
and the complex signals generated from these sensors by using analytically generated data

simulating possible damage scenarios.

4.4  Damage Detection Algorithm

Investigation of structural damage is a pattern recognition problem. This is an important
component of both data pre-processing and decision making and it can be categorised in three
different groups. These are namely: Statistical (or decision theoretic), syntactic (or structural)
and neural network based approaches. Statistical approaches are on the basis of probability and
probability density functions for characterisation. On the other hand, syntactic pattern
recognition approach uses interrelationship or interconnections of features providing structural
information for classification and description. Finally, neural network based approaches
including hierarchical structures, clustering, pattern association and learning are the black-box
implementation of pattern recognition algorithms [4-23].

The algorithm adopted here is based on ANN, an information-processing algorithm that
is inspired by the way which brain processes information. As the brain has multiple neurons

working together in parallel to process information, similarly an ANN can be configured and
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trained through a learning process by non-linear parameterised mapping between the input and
the output sets via their highly interconnected processing elements [4-24], [4-25], [4-26], [4-27].

The main advantages of ANNs are their applicability to problems that do not have an
algorithmic solution or for which an algorithmic solution is too complicated to be found.
Besides this, ANN offers other capabilities like self-adaptiveness, generalisation and abstraction
capabilities. In recent years, they have been widely used to investigate the estimate damage in
isotropic and composites structures. In the following sections, brief theoretical background

about ANN will be given.

4.4.1 General Neuron Model

Since ANNs have been inspired and influenced by the human biological nervous
system, the best way to understand the structures of a general artificial neuron is to make an
analogy with a typical biological neuron. Neuron, the basic computing element of the biological
system, is a small cell composed of a nucleus, soma (cell body of the neuron), axon (neurons’
output channel), dendrites (neurons’ input receptors for coming signals) and synapses
(interconnection points between neurons which couple the axon with the dendrite of another
cell). Neurons receive electrochemical stimuli from multiple sources and respond by generating
electric pulses transmitted to other neurons via their dendrites’ synapses. The magnitude of the
signal received by a neuron from another depends on the efficiency of the synaptic transmission
and if enough active inputs are received at once then the neuron will be activated and fired by
propagating a sequence of action potential spikes down the axon to either excite or inhibit other
neurons; if not, then the neuron will remain in its interactive, quiet state. Figure 4.4 shows a

biological neuron.
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Figure 4.4 A biological neuron
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On the other hand, the corresponding artificial neuron has a set of inputs ( x;,x,,...x, )

with associated weights (w,,w,,...w, ). These inputs applied to artificial neurons are summed in

the next level providing a neuron output (et = Zw,xi ). Then, a threshold operation by using

1
activation functions (such as, step, linear, ramp, hyperbolic tangent, sigmoid, etc.) is performed
on the net signal and the final output signal transferred to other neurons is calculated. An

artificial neuron model is shown in Fig. 4.5.
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Figure 4.5 An artificial neuron

4.4.2 Design of ANNs

ANNs can be categorised in different subgroups considering their architecture, direction and
type of connection, learning strategies and methods. Single-layer network is the simplest ANN,
which is a group of neurons providing a simple output from a weighted sum of the inputs. By
connecting neurons of single-layers in series, multi-layer ANN is obtained. ANNs may have a
type of connection between the neurons either within the same layer (intralayer networks) or
between different layers (interlayer networks). If the information is fed in one direction (from
input to output) by using weights then it is called feedforward (nonrecurrent) network. On the
other hand in feedback (recurrent) networks, the final output is calculated by using connections
extending from output layer to layer of inputs. Since ANNs have the ability of learning, which is
achieved via training, they can be categorised as supervised and unsupervised by considering
training methods. The main aim of training the network is to adjust the weights so that
introducing a set of inputs produces the desired set of outputs. Supervised training requires a

pair of input and desired output (target) vectors sequentially applied by calculating the
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difference (error) and feeding back through the network and changing the weights according to
an algorithm that minimises the error. In contrast with supervised training, unsupervised training
does not need any target vectors and it uses an algorithm that modifies the network weights in
such a way that similar vectors are clustered into same classes as an output pattern. In those
types of training methods, learning is achieved by examining different sample data or the
environment.

As multi-layer neural networks are quite powerful in solving pattern recognition
problems and can be trained to approximate any function arbitrarily well, they are selected and
used in this study. The reason for adopting supervised type of learning with feedforward
backpropagation is from the fact that the inputs and desired outputs (i.e. targets) are known for
samples in the training data, which is generated using FEA from different damage scenarios.
Since backpropagation algorithm adjusts the connections only between the layers, the designed
ANNSs have interlayer type of connection. Figure 4.6 shows the classification of ANNs with

most popular learning methods.

Architecture types
*  Single-layer networks

= Multi-layer networks

Direction of connections
»  Feedforward networks
= Feedback networks

Types of connections
= Interlaver connection networks

= Intralayer connection networks
Types of learning strategies
= Supervised
= Unsupervised
Types of learning methods
= Error Correction
» Perceptron
> Backpropagation
» ADALINE (Adaptive linear neural element)
*  Hebbian
» Hopfield
«  Competitive
» LVQ (Learning vector quantization)
= Stochastic
» Boltzman Machine

Figure 4.6 Classification of ANNs [Bold underlined used in this study]

48



Chapter 4 Theoretical Modelling

4.4.3 Multi-layer Feedforward BPNNs

Multi-layer feedforward ANN with backpropagation (so called pattern associator)
[4-28], [4-29] used in this thesis is one of the most common neural network having supervised
learning strategy and error correction learning method (generalised delta rule) with applicability
in classification, pattern recognition, prediction and optimisation applications.

Multi-layer networks have three layers: an input layer, output layer and a layer in
between which is not connected directly to the input or the output so called the hidden layer if
more than three-layers are used. There is always one input and one output layer but there might
be more than one hidden layers in multi-layer networks. Each layer has its own nodes
depending on the number of input-output pairs and the topology of the network. The learning
rule in multi-layer perceptrons is called the “generalised deita rule” or generally
“backpropagation rule”. Figure 4.7 shows the schematic representation of the variables and the

architecture of the multi-layer neural network.
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¥l S = =O=—
. . .0, . . :
N N
A= 2/ 210
— -
4w, Awy; k

Figure 4.7 Multilayer neural network architecture

The theoretical calculations and the implementation of the algorithm are given by
considering the optimisation procedure based on gradient descent that adjusts the weights in
order to reduce the system error. During the learning phase, input and output pairs are
introduced to the network and the training pattern propagates from input layer to output layer
(i.e. feedforward). The computed output is compared with the desired output (target) values and

the error values are calculated. When the process is repeated a number of times (i.e. training),

49



Chapter 4 Theoretical Modelling

those error values are fed in the backward direction from output to input layer (i.e.
backpropagation) to modify the weights until the total output error converges to a minimum or

until some limit is reached in the number of training iterations (i.e. epochs).

As can be seen from Fig. 4.7, the very first step in the calculations is selecting input

data,o, (i =1,2,...,n), for training and initialising the weights randomly. Then, net input at the

node in layerj (j =1.2,...,m ) and k (k =1,2,...,r ) are calculated as,

n m
net, =Y w0, and net, =Y w0, (4.20)
=1

Jl

and the respective outputs of node j and £ after performing the calculations by using activation

function are
0; = f(net;) and o, = f(net;). 4.21)

In this analysis, the threshold non-linear node function used is sigmoid activation (Fig. 4.8)

which is continuous and differentiable everywhere and it is mathematically expressed as:

f(net) = _ . (4.22)
I+

—net
e

Sflnet) 0.5

Figure 4.8 Sigmoid activation function

The training is processed by introducing input-output pairs and stabilising the weights in such a

way that the square of the error, E,;, in the system (Eq. 4.23) is minimised and hence the

outputs, o, , converged to desired target values, ¢, .
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lot

:%ZP:E" where E7 -1 y (tkp—o,f)z (4.23)

p=l1 2 k=1

where p denotes the number of training patterns. The minimum error between the output and the
target values is computed by taking the derivative of the function E? and introducing the
learning parameter,77 (note that the superscript p is dropped for simplicity, i.e. E#=E). The
error in weights between input and the hidden nodes and between hidden and the output nodes

are calculated respectively as:

OE OF
Aw, =-n and Aw,, =-7 . (4.24)
Ji iy

Using the chain rule for the partial derivative calculation

9k = OF onely _ zw,q 0, ————oj where 6, = —oF (4.25)
Owy  Onet, Ow, 8net,C 6w,g Onet, Onet,

therefore equation (4.24) can be rewritten as
Aw,; =16 ,0,and Awy, =15,0; . (4.26)

Here, the calculation of §is a recursive process and obtained by using chain rule and

equation (4.26).

5, = "ajik = -soi ai‘;’;k where —ka- =, -0, )and o fl(net,) (4.27)
hence

8, =—(t, —0, )fi (net,) (4.28)

and following similar procedure for the internal nodes
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8, = f](net;)> 0w, (4.29)
k=]

All weights are modified accordingly by using equation (4.30) in the training process

introducing each input-output set to ANN.

new old

_ .0l
=Wy +iji~wﬁ +775j0,.

new __ _ old ., old
Wy =Wy +Aw,g =Wy, +775k0j

w
(4.30)

Parallel to training, another set of data is also used to monitor the error during the validation.

Finally, new test cases are introduced to ANNs for further predictions.

The design and application of the proposed multi-layer feedforward backpropagation
ANNs used for damage detection in FRP laminated beams, validation of the method on steel
beams and application to sandwich beams are extensively explained in Chapter 7, Chapter 8,

and Chapter 9, respectively.
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5.1 Introduction

The dynamic characteristics of the structures are investigated by performing three
different experiments. The first one used a digital vibration controller to measure and record the
acceleration response of the structure under different excitations covering a certain range of
frequencies, which can then be used to obtain resonant frequencies and damping ratios of the
beams. In the second experiment, a signal-conditioning amplifier is used to measure dynamic
strains at eight different locations from which strain mode shapes of the structure can be
obtained. The third test uses fibre optic Bragg grating interrogation system (FBGIS) to record
strain from surface bonded and embedded fibre Bragg grating (FBG) strain sensors. The
following sections will also outline the experimental set-up considering individual units and the
characteristics of the transducers used during the experiments by describing different excitation

types and the specimens used in the analyses.

5.2  Experimental Set-up for Vibration Testing

Three main units are used during the vibration testing performed on intact and damaged

beams via electro-dynamic vibration generator [5-1]. These are namely:

(a) Digital vibration controller with data acquisition unit for acceleration measurements [5-2]
(b) Signal-conditioning amplifier with data acquisition system for strain measurements with
electrical resistance strain gauges.

(c) Fibre optic Bragg grating interrogation system with fibre Bragg grating strain sensors.
Figure 5.1 shows the experimental set-up for vibration testing. This experimental set-up

is used to determine frequency response functions, resonant frequencies, dynamic strain

histories and strain mode shapes of the cantilever intact and damaged beams.
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. FBG Strain Sensors
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Figure 5.1 Experimental set-up for vibration testing

5.2.1 Acceleration Measurement

A four-channel (one input channel for controlling and three output channels for
monitoring) digital vibration controller with data acquisition unit is used to measure acceleration
amplitude histories from two channels including both input (control excitation) and output
(dynamic behaviour of the specimen). The software has the capabilities of post-processing the
data, plotting the amplitude of input and output signals in frequency domain and zooming to

peak values for more accurate prediction of the resonant frequencies.
5.2.2 Strain Measurement with Strain Gauges
A Measurements Group Model 2000 signal-conditioning amplifier having 10 channels

is used to amplify the signals from strain gauges. The strain readings are recorded by using

National Instruments VXI A/D acquisition system as change in voltage. The excitation level is
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set to 2 V that is equivalent to 1000 ue and then the bridge is balanced. In order to find
calibrated and measured strain values, the following equations [5-3] are used:
R, -10°

€ ol = £ where R, =59.94kQ, R, =120Q, K =2.11 5.1
R TR Rt < : (5.1)

Voa e
lugmeasured = (V [Vdd )/ugca/ where Vunloaded ::O’ Vcal =2V (5 2)
al ~ 7 unloaded

In these equations, K, Ry, R, V5 Visteas Ecar 304 € ,upmeq are the gauge factor of strain gauge,

strain gauge resistance, calibration resistor, calibration voltage, voltage reading from loaded

strain gauge, calibrated strain and measured strain respectively.
5.2.3 Strain Measurement with FBG Strain Sensors

A Fibre Optic Bragg Grating Interrogation System is used with in-house software that
provides simultaneous strain and temperature measurements under static and dynamic loading
by using dual-wavelength superimposed FBG method [5-4]. Assuming that the strain and
temperature are essentially independent and the wavelength shifts in strain and temperature are

linear, Eq. 5.3 can be used in the calculation of strain and temperature from wavelength shifts.
Adg =K, As+ K, AT (5.3)

where Ad;, K, ,K,;,Ae and AT are the Bragg wavelength shift, strain and temperature
sensitivities of FBG and change in strain and temperature respectively. During the analysis,
K, is assumed as zero (i.e. no temperature compensation) and X, is taken as 1.24 [5-4] which

is an average value for FBG sensors made from standard telecoms fibre. The verification of
FBGIS and its limitations under dynamic and static loading conditions are given in Appendix A

and partly in Appendix B respectively.

53 Transducers

The available sensors for vibration measurements were outlined in Chapter 2 by

considering their effectiveness and application areas. In this section, experimental dynamic
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analyses performed by using piezoelectric accelerometers [5-5], surface bonded strain gauges
and fibre optic strain sensors (FOS) are explained and brief technical information about their

characteristics is also given.
5.3.1 Accelerometers

Two accelerometers are used during the experimental analysis. One of the
accelerometers (ISOTRON® PE Accelerometer, LDS 2256-100) [5-6] is used to control the
input excitation amplitude supplied to the electro-dynamic vibration generator and the other
(PCB Piezotronics, 352 M119) [5-7] is used to monitor the output acceleration amplitude from
the specimen. The sensitivities of the accelerometers are 99.2 mV/g and 9.90 mV/g respectively.
The accelerometer monitoring the response of the beam is attached on the centre line at the free
end of the beam using mounting wax. This location of the accelerometer is selected from among

several locations considered because it gives sufficient responses for all first three modes.

5.3.2 Strain Gauges

Eight single element electrical resistance gauges (FLA 3-11) [5-8] with gauge length of
3mm, nominal resistance of 120 Q £ 0.3 and a gauge factor of 2.11 are used to measure the
direct strain on the surface of the beams. The distributed surface bonded strain gauges, which
are numbered from the one closer to free end of the beam, can be seen from Fig. 6.3. The detail
information about the spatial location of the gauges along the beam will be given in the finite

element analysis for curvature mode shape section (Section 6.4.2).

5.3.3 Fibre Optic Sensors

The significant advantages of FOSs over conventional accelerometers and strain gauges
were outlined in Section 2.4.2 and Table 2.5. There are varieties of FOSs available for strain
sensing. In this particular application, FBGs [5-4], [5-9], [5-10] are used since they are able to
perform absolute strain measurements with good linearity. FBG strain sensors are created in an
optical fibre by periodically modulating the core refractive index over a short length along the
fibre. When a section of fibre containing a grating is subjected to axial strain or to temperature
change, the grating spacing and the refractive index change. This change affects the Bragg

wavelength and it acts as sensor to detect strain (Eq. 5.3).
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5.4 Excitation

There are several experimental techniques available in order to measure and estimate
the dynamic characteristics of the structures. These techniques generally use an external
excitation given to the structure to acquire a dynamic response. During the analyses, three
different types of excitation (frequency sweep, constant frequency and random excitation) are
applied via the electro-dynamic vibration generator controlled by the digital vibration control

system. Impact excitation is also given to specimens using an instrumented hammer.

5.4.1 Frequency Sweep Excitation

The purpose of the frequency sweep (i.e. sine sweep) excitation is to identify the
response of a test piece to vibration across a range of frequencies. In this way, resonant
frequencies of the test specimen can be investigated. The sweep rate can be entered to the
system as a time per complete frequency sweep or directly as a rate (Hz/s). Uni-directional type
sine sweep with linear incremental sweep rate from low frequency limit to higher level of
frequency is used as an excitation during the experimental modal analysis aiming to investigate

the first three resonant frequencies of the beams.

5.4.2 Constant Frequency Excitation

This type of excitation can be applied with constant acceleration input operating at a
single frequency. After obtaining resonant frequencies of the test specimen by using sine sweep,
corresponding displacement or strain mode shapes can be extracted by applying constant

frequency excitation at each resonant frequency of interest.

54.3 Random Excitation

During the random test, the test specimen is subjected to vibration consisting of
constantly and randomly (i.e. continuous random noise with Gaussian distribution) varying
levels of frequencies within a specified range. One of the most important parameters in random
test is bandwidth value which is used to determine the highest frequency that can be displayed
while the test is running. The “best fit” option in the software is used during the test since it

automatically sets the bandwidth to the value that accommodates the entire profile. Broadband

57



Chapter 5 Experimental Design

excitation of 10 Hz to 710 Hz covering the first three modes of vibration is given to test
structure. The output of random test is the power spectral density (PSD) of the signal, a measure

of power within each 1Hz band of the test spectrum, in gn? /Hz for that frequency point, gn

denoting the acceleration due to gravity g.

5.4.4 Impact Excitation

Impact excitation with instrumented hammer can be used to excite the structures in
different frequency and force levels. During the analysis, ENDEVCO Model 28981A modal
hammer [5-11] set is used. The load cell in the head of the hammer detects the magnitude of the
force felt by the impactor and this force is equal and opposite to that experienced by the
structure. The stiffness of the hammer tip is very important from the frequency range point of
view. Since the stiffer tip makes the duration of the pulse shorter, the higher frequency range
can be covered by the impact. This instrumented hammer has three different tips (aluminium,
rubber, plastic) to tailor the input force pulse and built-in signal conditioner/amplifier with
switchable gain of 1 or 10. The gain for the instrumented hammer is used as 10 and the
aluminium tip having a voltage sensitivity of 0.227 mV/N is chosen. The applied force can be
calculated from the output by using equation 5.4. The details of the modal analysis performed

on sandwich structures are given in Appendix B.

Peak Voltage N] (5.4)

Force = —=—
Voltage Sensitivity

5.5  Test Specimens

5.5.1 Steel Beam Specimens

Intact (control) and damaged steel beams (Figs. 6.3 and 6.4) are used during the
experimental dynamic analysis. These two specimens have identical geometrical and material
properties shown in Table 5.1. The damage is created by removing the material from the
surface of the specimen across the whole width at 205mm away from the fixed end in order to

obtain a 2mm deep and 10mm wide slot on the lower part of the beam. Surface bonded
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distributed strain gauges are used for measurement of both dynamic and static responses; on the

other hand, static test for calibration of the system is performed by using FBG strain sensors.

Table 5.1 Geometrical and material properties of steel specimen

Length [m] 0.450
Width [m] 0.040
Thickness [m] 0.003
Elastic Modulus [Pa] 207.10°
Density [kg/m’] 7850
Poisson’s ratio 0.33

5.52 Sandwich Beam Specimens

Another set of intact and damaged specimens used during the analysis comprises
sandwich beams with GFRP skin and foam core cell. The manufacturing process, geometrical
and material properties, embedding process of FBG strain sensors and dynamic analysis

performed on these beams are explained in Chapter 9 in detail.
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Chapter Six  ISOTROPIC BEAM STRUCTURE

6.1 Introduction

In model-dependent vibration-based analyses, it is important to have an accurate
numerical model before performing the experiments. Since closed-form solution is available for
modal analysis of the intact isotropic beam-like structures, a uniform (450mm x 40mm x 3mm)
steel beam (E =207.10° Pa, p =7850 kg/m3, v=033) is a very good candidate for
calibration of the experimental set-up and preliminary applications of the proposed damage
detection method before applying it to different structures which are more complicated to model

such as laminated composites or sandwich structures.

6.2  Frequency Analysis

Theoretical, numerical and experimental modal analyses are performed to find the first
three natural frequencies of intact and damaged fixed-free steel beams. Theoretical calculation
is only carried out for intact uniform beam. In numerical analysis, finite element models of
intact and damaged steel beams are created by using commercial software package, ANSYS
6.1°[6-1]. In this section, not only modelling of the beam-like steel structure but also simulation
of the damage introduced to this structure is addressed. After performing an experimental modal
analysis, results are compared with those obtained from numerical calculations in order to verify
the finite element beam models and to check the accuracy of the measuring instruments used

during the experiment.
6.2.1 Theoretical Calculation
The first three bending natural frequencies of a cantilever steel beam can be calculated

theoretically by using equation (4.17). The results are tabulated in Table 6.1.
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Table 6.1 First three natural frequencies of intact cantilever beam (Theoretical Solution)

Mode No  Natural Frequency [Hz]

1% Bending 12.2893
2" Bending 77.0156
3" Bending 215.6461

6.2.2 Finite Element Modelling and Analysis

In the finite element modelling of the steel beam, three different element types
(BEAM3, SHELL63 and SOLID45 [6-2]) are used. Shear deflection is not included in models
using BEAM3 and SHELL63 type of elements. Figure 6.1 shows finite element models of
cantilever beam in isometric view. Due to the difficulties in showing finer mesh densities, 6x45
and 6x90x3 mesh densities are shown in Fig. 6.1 for shell and solid elements models,
respectively. SHELL63 type elements are selected for meshing and further analyses since local
damage can be modelled by using these four-node quadrilateral two-dimensional elements
either by changing their stiffness or thickness at particular locations. Since shell elements have
six degrees of freedom (three translational and three rotational) at each node, cantilever
boundary condition can also be modelled more realistically by constraining all degrees of
freedoms of the nodes located at the root of the beam. The first three bending natural
frequencies of the intact cantilever beam for different mesh densities are also obtained in order
to check the mesh independency. Since the variation in natural frequencies is less than 1%
between 12x180 (i.e. 12 and 180 element divisions along the width and the length of the beam
respectively) and 24x260 mesh densities, the former having 2160 elements is used for all latter
simulations. After performing modal analysis for the first three bending natural frequencies,

results obtained from different models are compared with closed-form solution in Table 6.2.

Table 6.2 First three natural frequencies of intact cantilever beam (FEA)

Natural Frequency [Hz]
Beam Elements  Shell Elements  Solid Elements

Mode No 90 12 x 180 6x90x3

1% Bending 12.289 12.382 12.395
(-0.0024) (0.7543) (0.8601)

ond Bending 77.011 77.578 77.668
(-0.0060) (0.7302) (0.8471)

31 Bending 215.62 217.390 217.69
(-0.0121) (0.8087) (0.9478)

[Number in parenthesis shows the percentage difference between theoretical and FEA results]
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e

(2)

(b)

Figure 6.1 Finite element models of steel cantilever beam

(a) Beam elements (b) Shell elements (c) Solid elements

(©)

63




Chapter 6 /sotropic Beam Structure

A structural damage of 2mm deep and 10mm wide slot along whole width of the beam
located at 205mm away from the fixed end is simulated. This damage can be modelled in three
different ways by using beam, shell and solid elements. Damage is introduced by changing
thickness, cross-sectional area and second moment of area of the selected elements in the model
where beam elements are used. In shell elements, the thickness of the beam is modified at the
location of the damage and new reduced thickness information is given to finite element model
(FEM) as 1 mm. Finally, same damage is modelled geometrically using three-dimensional solid
elements. Figure 6.2 shows the location and the zoom view of the damage in FEM of the beam

with solid elements. A 6x45x3-mesh density is used for demonstration.

(2) (b)

Figure 6.2 Damaged beam with solid elements (a) Damage location (b) Zoom view

Modal analyses are also performed numerically on damaged beams modelled by beam,

shell and solid elements and the results for the first three natural frequencies are tabulated in

Table 6.3.

Table 6.3 First three natural frequencies of damaged cantilever beam (FEA)

Natural Frequency [Hz]

Beam Elements  Shell Elements  Solid Elements

Mode No 90 12 x 180 6x90x3
1 Bending 10.538 10.738 10.683
2" Bending 58.859 60.327 60.054
3“Bending 210.80 212.369 213.470
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6.2.3 Experimental Analysis

Two steel beams having same geometrical (450mm x 40mm x 3mm) and material
properties are used during the experimental modal analysis. One of the beams is selected as
control specimen (intact structure, Fig. 6.3) and the other is used as a damaged beam (Fig. 6.4)
having a 2Zmm deep and 10mm wide slot which is created by removing the material from the
surface of the specimen along whole width at 205mm away from the fixed end. The distributed
surface bonded strain gauges are numbered starting from the one closer to free end of the beam
(Fig. 6.3). The detailed information about the spatial location of the gauges along the beam is
given in Fig. 6.9.

In order to find the first three resonant frequencies of the intact and damaged cantilever
beams, frequency sweep excitation is applied in the range of 3 — 253 Hz with an increment of
0.5 Hz. This range is estimated from theoretical and finite element modal analysis results. The
excitation amplitude is set to 0.5g throughout the sweep and controlled by an accelerometer
mounted to electro-dynamic vibration generator. The output signal coming from the test
specimen is also monitored with another accelerometer which is attached along the centre line at
the free end of the beam. This location of the accelerometer is selected from among several
locations considered because it gives sufficient responses for all three modes.

Figures 6.5 and 6.6 show half of the peak-to-peak values of the acceleration amplitude
of intact and damaged specimens with increasing frequency respectively. The numbers near
each peak response level indicate experimentally obtained resonant frequencies. All frequencies

for the damaged and intact beam are also tabulated and compared with FEA results in Table

6.4.

Table 6.4 First three natural frequencies of intact and damaged beams [Hz]

Finite Element Analysis Experimental Results
(Shell Elements, 12x180)
Intact Damaged Saamaged Intact Damaged Saamagea
MOde NO Beam Beall’l f;nlncl Beam Beam .f;nlact
1* Bending 12.382 10.738 0.8672 11.8 9.2 0.7796
2" Bending 77.578 60.327 0.7776 73.1 50.5 0.6908
3“Bending  217.390 212.369 0.9769 205.6 200.8 0.9766
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Figure 6.3 Intact steel beam specimen with distributed strain gauges

Damaged Steel
Specimen

Figure 6.4 Damaged steel beam specimen on the test rig
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Figure 6.5 Frequency response of intact cantilever beam
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Figure 6.6 Frequency response of damaged cantilever beam
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6.3 Damping Analysis

All structures have different amount of damping which brings the system to equilibrium
at higher or lower amplitudes depending on the magnitudes of the damping forces. Damping
ratio is especially important for forced vibration analysis. The aim of this section is to find the
damping ratio (£ ) of the intact and damaged steel beams. The first three modes are of primary
interest in damping analysis. Frequency response amplitude of each mode is taken and damping
ratios are estimated from the half-power bandwidth method [6-3]. In order to find the damping

ratios from the frequency response function (FRF), the resonant frequency ( f,,, ) and two

frequencies ( f;and f,) on either side of the resonant frequency for which the amplitude is 71:
2

times the resonant amplitude should be found. Figure 6.7 shows estimation of material damping

by using half-power bandwidth method in the first bending mode.

20.000
) Peak resonance
Peak resonance amplitude occurs at
26.840 gn pk Sres=11.3Hz
2000 | 1 peak resonance amplitude
No) 18.987 gn pk
=
o
<
=
10.900
f2 =11.48 Hz
oL

5.0000 £.0000 7.0000 6.0000 2.0000 10.000 11.000 12.000 13.000 14.000 15.008

Freq (Hz)

Figure 6.7 Estimation of material damping from half-power bandwidth method

(Steel beam, 1% Bending Mode)

Damping ratios obtained using Eq. 6.1 in the range of the first three resonant
frequencies for intact and damaged beams are tabulated in Table 6.5. These values are used in

finite element harmonic analysis of the steel beam. (Section 6.4.2.2)
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_ BandWwidth _ f, - f,
zﬁ‘es 2fre 3

g (6.1)

Table 6.5 Damping ratios of intact and damaged steel beams

Mode No Intact Beam Damaged Beam
1¥Bending 0.01327 0.03591
2" Bending 0.01273 0.01337
3" Bending 0.00414 0.00373

6.4  Curvature (Strain) Mode Shape Analysis

During the analyses, curvature mode shapes are obtained in three different ways. The
following flowchart (Fig. 6.8) shows the procedure followed and applied on steel beam in order

to achieve curvature or strain mode shapes.

THEORY

2™ Derivative of Deflected Shapes

Steel Beam »| Curvature Mode

Shapes
FINITE ELEMENT
ANALYSIS -
Modal Normallsed Central Difference Curvature Mode
Analysis Displacement Approximation Shapes
Steel Beam y Mode Shapes pp
FEM .
Harmonic Analysis _ Nodal Strain | Curvature Mode
Values Shapes
EXPERIMENT Frequency Counstant
Steel Beam Sweep w| Frequencies Freque.ncy o | Dynamic Strain Values
Specimen Excitation Excitation from each Strain Gauge
¥
Strain Mode Shapes

Figure 6.8 Methods to obtain curvature (strain) mode shapes
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6.4.1 Theoretical Solution for Curvature Mode Shapes

As explained in Section 4.2, normalised curvature mode shapes can be obtained
theoretically by using Eq. 4.19 for uniform, homogeneous, slender single-span beams having
isotropic elastic material properties. Hence, the intact steel beam used in the analyses satisfies
these conditions, the data plotted in Fig. 4.3 is the solution for curvature mode shapes of this

cantilever beam. The theoretical results are also shown in Fig. 6.13 for comparison purposes.
6.4.2 Finite Element Analysis for Curvature Mode Shapes

The curvature mode shapes of the steel beam are obtained by using two different FEA
approaches. The first approach is free vibration modal analysis from which normalised
displacement mode shapes are calculated. Then, central difference approximation [2-18] is
applied on normalised displacement mode shapes by using equation (6.2) in the calculation of

curvature mode shapes.

" (Vi” - 2vi + vi—l)
v, = - (6.2)

P

!

1]
where vV, , V,, h and i are the curvature, normalised transverse displacement, the distance

between two collocation points in the FEM and the number of collocation points along the beam
model respectively. The second approach is harmonic analysis based on frequency sweep
excitation. Since this is a forced vibration analysis, nodal strain values are available from FEA.
This means that there is no need to use normalised displacement mode shapes and central
difference approximation in the calculation of curvature mode shapes which can be obtained

directly from finite element nodal strain data.

6.4.2.1 Free Vibration

In this part of the analysis, modal analysis is performed on finite element model of the
steel beam in order to obtain displacement mode shapes for the first three natural modes.
Normalised displacement mode shapes are used as an input data for Eq. 6.2 to calculate
curvature mode shapes. Since this equation is valid for equally spaced collocation points, more
number of nodes which are evenly distributed and located along the centre line of the beam are

selected from FEM to increase the accuracy and smoothness of the curvature mode shapes.
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Then, curvature values at eight different collocation points (Fig. 6.9) where strain gauges are

located on the beam test specimen are selected and normalised with respect to curvature value at

Location 8.
B 0.45
Cantilever
End Damage
4‘
2 0.03 8 7 6 5 4 3 2 1
0.10 o

B 0.16 o
- 0.205 o
- 0.25 o
B 0.30 o
» 0.35 .
- 0.40 o

Figure 6.9 Collocation points on damaged beam [Not to scale, Dimensions in meter]

6.4.2.2 Forced Vibration

In this part of the analysis, harmonic analysis is performed by sweeping frequency with
0.5 Hz increment within different ranges of each mode of intact and damaged FEM of the steel
beam structure. Mode superposition method in ANSYS® is used with constant modal damping
ratio and stepped forcing frequency in a specified frequency range by superimposing the first 20
modes. The experimentally obtained damping ratio of each mode (Table 6.5) is specified
accordingly during the analysis. Magnitude of the excitation force during the analysis is taken as
0.5g in the vicinity of the first mode resonance and 0.75g for the second and third mode
resonance vicinities. Figures 6.10 and 6.11 show elastic strain values from eight different
locations (Fig. 6.9) obtained by sweeping the frequency across first, second and third bending
resonant frequencies on intact and damaged beams respectively. Then, frequency range and
sweep rate are reduced and strains corresponding to resonant frequencies are zoomed in order to
achieve higher accuracy in the analysis. In order to obtain the normalised strain mode shapes
from FRF, maximum strain values (i.e. peak values occurring at resonant frequencies) are
selected, normalised with respect to nodal strain value at Location 8. These strains values are
also plotted in Figs. 6.13 and 6.14 for the intact and damaged beams respectively and compared
with the results obtained from theory and experimental analysis in the results and comparison

section (Section 6.4.4).
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Figure 6.10 Strain values for intact steel beam for different frequency ranges
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Figure 6.11 Strain values for damaged steel beam for different frequency ranges
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6.4.3 Experimental Analysis for Strain Mode Shapes

After obtaining the resonant frequencies numerically, experimental modal analysis ([6~
4], [6-5]) is also performed so as to obtain the dynamic strain mode shapes of intact and
damaged beams excited at those particular resonant frequencies. During the dynamic strain
analysis, sampling rate and sample length are taken as of 800s” and 4000 respectively
corresponding to 5s strain measurements. The amplitude of the constant acceleration input given
to electro-dynamic vibration generator operating at fundamental resonant frequency is taken as
0.5g during the dynamic strain experiment. Figure 6.12 shows the voltage output of eight strain
gauges in the first mode of the intact beam. These voltage values are converted to strain and
normalised with respect to strain gauge number 8, which is the closest strain gauge to the fixed
end of the beam. Same procedure is followed for the second and third mode of the intact and the
damaged beams with amplitude of 0.75g constant acceleration input. All normalised strain mode
shapes of intact and damaged beams (Figs. 8.12 and 8.13) obtained from experimental strain

time histories (Figs. 8.6 — 8.11) are plotted and shown in Chapter 8.
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Fig. 6.12 (continued over)
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Figure 6.12 Voltage output of eight strain gauges in the first mode (Intact Beam)

6.4.4 Results and Comparisons

In this section, all theoretical and finite element (i.e. shell elements) analysis results are
presented and compared to each other for the steel cantilever beam. Throughout the analyses,
the first three natural modes are of primary interest for the calculation of curvature or strain
mode shapes. Figure 6.13 shows normalised absolute curvature mode shapes of the intact beam
obtained considering eight different locations corresponding to locations of strain gauges along
the beam specimen. Normalisation is performed with respect to location 8, which provides a
reasonable finite amount of strain for all three modes, in order to investigate the relative change

in curvature at eight different locations.
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It can be seen from Fig. 6.13 that the curvature results are quite close to each other for
the intact beam. Same approach and analyses performed on intact beam are also applied to
damaged beam (Fig. 6.14). Although the general trend is similar in change in curvature along
the beam, the values show slight differences at the damage location between the two different
finite element analyses. On the other hand, the same point (location 5 or sensor number 5)
shows a sudden change in the curvature making it discontinuous at that particular location
where the damage is located. The effect of severity and location of the damage on absolute
differences in curvature mode shapes between intact and damaged structures will be
investigated in section 7.4 by performing sensitivity analysis on FEA data of laminated

composite beams.

6.5  Static Strain Analysis

6.5.1 Strain Gauges

A Static strain experiment is performed on the steel beam specimen in order to calibrate
the strain gauges. A mass of 200 gram is applied at the free end of the beam along the centre
line and strain data are recorded from eight different gauges (Fig. 6.3). Since the output of the
strain-conditioning unit is voltage, MATLAB® [6-6] program is used to post process the data for
the calculation of the normal strains (Egs. 5.1 and 5.2). In order to verify the strain
measurements obtained from strain gauges, FEA is also performed with static load of 1.962N
(equivalent to 200g mass). Table 6.6 shows the FEA results (shell elements, 12x180 mesh
density) obtained at eight different locations along the intact beam under static loading. The

comparison of the finite element and experimental static strain analysis results can be seen from

Fig. 6.15.

Table 6.6 Finite element static strain analysis results

Location  Strain [10€]

7.9421
15.799

23.696
31.594
38.703
45811
55.261
63.708

0 1 N B W
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Figure 6.15 Static strain analysis results (FEA — Experimental)

6.5.2 FBG Strain Sensors

Another steel beam (450mm x 40mm x 3mm) having three surface bonded strain
gauges and three FBG strain sensors located at lower and upper surface of the structure is used
for calibration purpose. The accuracy and the linearity of the FBGIS, consistency and
repeatability of the measurements with FBG strain sensors are also checked by performing static
strain experiment. Figure 6.16 shows the location of the strain gauges and the FBG strain

sensors along the beam.
FBG Strain Sensors
0. 090 1 Strain
Gauges
- 0205
0.335

il

Figure 6.16 Location of strain gauges and FBG strain sensors

[Not to scale, dimensions in meter]

An incremental static load of 140, 240, 340 and 440 gram are applied along the centre
line of the beam at the free end and strain variations in three FBG strain sensors are recorded.
The changes in strain values of the FBG strain sensors due to static loads are shown in Fig.

6.17. The discontinuity in strain history occurs at the instant of application of the static load.
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Finite element and experimental strain analysis by using electrical resistance gauges are also

performed with 140-gram load. The tabulated form of the results can be seen in Table 6.7.
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Figure 6.17 Strain measurement with FBGs

Static load of (a) 140 gram (b) 240 gram (c) 340 gram (d) 440 gram

Table 6.7 Strain analysis results with 140-gram static load

FEA [10°%] Strain Gauges [10°€] FBG Strain Sensors [107%]

Location
1 12.7170 11.5627 9.1231
2 27.0914 26.4292 23.1294
3 39.7584 36.6438 38.1370

80



Chapter 6 /sotropic Beam Structure

6.6 Conclusions

In this chapter, vibration characteristics of intact and damaged isotropic beams were
investigated. It can be seen from the summary section (Table 2.1) in the literature review
chapter that there are numerous investigations concentrated on the calculation of natural
frequencies and/or displacement modes shapes (or curvature mode shapes, Laplacian, etc.) in
the determination of damage in isotropic structures. Table 6.8 shows studies on isotropic beam
structures and the features including both frequency changes and curvature mode shapes

obtained from free vibration analysis.

Table 6.8 Studies on isotropic beam structures and features

[11}[12][13] [15]) [16][17]{18]

Studies on Isotropic Beam

[191]20] [21] [22] [23] [25] [26]
Structures [28] [36] [39] [40] [42] [53] [58]

(117 [12] {13} {17}

Frequency Changes [18] [19] [20] [28]
Curvature Mode Shapes or [18]1[19] {20] [21]
Strain History (2211237 [25]
Both Frequency Changes and [18] [19] [20]

Curvature (Strain) Mode Shapes

[Numbers in brackets are references from Chapter 2]

In this study, beams were modelled using finite element analysis and specimens were
manufactured with surface bonded strain gauges and FBG strain sensors. Dynamic analyses
were performed with different excitations aiming at natural frequencies and local dynamic strain
histories. During the analysis, the first three natural modes of the beams were of primary
interest. Both numerical and experimental results showed that there was a strong
correspondence between the existence of the damage and reduction in frequencies depending on
the natural mode of interest (Table 6.4).

Curvature modes were calculated numerically not only using second derivative of the
deflected mode shape from continuous beam theory and modal analyses followed by central
difference approximation in free vibration (in references [2-18], [2-19], [2-20]) but also by using
forced vibration under harmonic excitation providing local (nodal) strain values. The results
from numerical work were compared to strain mode shapes obtained experimentally using

electro-dynamic vibration generator and eight distributed strain gauges along the span of the
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beams. In order to compare curvature and strain variations along the beam span, the data was
normalised with respect to the gauge, which is closest to root of the beam (i.e. at location eight).
Change in curvature along intact beam obtained from experimental analysis (Fig. 8.12) showed
good agreement with the ones obtained from numerical analyses (Fig. 6.13). On the other hand,
in the damaged beam case, both numerical results (Figs. 6.14) showed some variations from the
experimental one (Fig. 8.13) especially at the location of the damage due to the local change in
thickness.

Considering the strain data (Fig. 6.17) from surface bonded FBG strain sensors, it can
be concluded that filtering of the noise is an important issue for further analysis. Additionally,
FBG strain data under static loading condition provides slightly different values although strain
analysis results obtained from strain gauges and FEA are quite close to each other.

It can finally be concluded from numerical and experimental analyses that the
modelling of the real damage in FEA, the method used in the calculation of the curvature mode
shapes, structural coupling between the sensors (or gauges) and the host structure, the noise

content in the data are the most important factors affecting the accuracy of the analysis results.
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Chapter Seven LAMINATED COMPOSITE BEAM STRUCTURE

7.1 Introduction

This chapter investigates the effectiveness of the combination of global (changes in
natural frequencies) and local (curvature mode shapes) vibration-based analysis data as input for
ANNSs for location and severity prediction of damage in FRP laminates [7-1], [7-2]. Since the
dynamic behaviour of isotropic structure (steel beam) has already been analysed in Chapter 6,
an FRP composite beam is selected as a base structure for further analyses before investigating
the behaviour of sandwich structures. A finite element analysis tool has been used to obtain the
dynamic characteristics of intact and damaged cantilever laminated composite beams for the
first three natural modes. Different damage scenarios have been introduced by reducing the
local stiffness of the selected elements at different locations along the finite element model of
the beam structure. After performing the sensitivity analyses aimed at finding the necessary
parameters for the damage detection, different input-output sets have been introduced to various
ANN:S. In order to check the robustness of the input used in the analysis, random noise has been
generated numerically and added to noise-free data during the training of the ANNs. Finally,
trained feed-forward backpropagation ANNs have been tested using new damage cases and

checks have been made for severity and location prediction of the damage.

7.2  Frequency Analysis

An intact cantilever composite beam model used in the analysis is made up of four-
layer, equal thickness, symmetric cross-ply [0°/90°/90°/0°] laminae with following normalised

geometrical and dimensionless elastic orthotropic properties.

-5:10, L 100 (7.1)
w t
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=L =1 =49, 9&:9—3:0.6, £}éé-zo.s, Vi, =Vy =v5 =0.25 (7.2)
E E 12 23 13
2 3

£,

L, w and ¢ are the length, width and total thickness of the beam and £’s, G’s and v ’s are
elastic moduli, shear moduli and the Poisson’s ratio respectively. These elastic constants are
selected to simulate high modulus FRP composites similar to those in the work of Mallikarjuna

and Kant [7-3].

7.2.1 Finite Element Modelling and Analysis
A three-dimensional linear layered structural shell element with eight nodes, SHELL99

[6-2], is selected to model the layered composite beam. Figure 7.1 shows the finite element

mesh of the composite beam with shell elements (2x20-mesh density).

0.55L

.
T —

Figure 7.1 Finite element model of cantilever composite beam (Top view)

In order to validate the modelling approach with the results from [7-3] and [7-4],
geometry (square, simply supported, symmetric, cross-ply, equal thickness composite plate)
similar to their case is used with the same material properties (Eq. 7.2). 100 elements (10x10)
are used in the finite element model and the dynamic analysis is performed to find the first
dimensionless natural frequency of the plate structure. Table 7.1 shows the results of modal
analysis performed with this plate and it can be seen that the present ANSYS model gives good
agreement with the previous published work.

The composite cantilever beam model was thus derived by changing the geometry and
boundary condition from the validated plate model outlined in the previous paragraph. Four

different mesh densities having 40, 80, 200 and 800 elements are used to perform mesh
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independence studies of the intact beam model by performing modal analysis aiming at the first
three bending natural frequencies. The results obtained from these cases showed less than 0.1
per cent difference in the computed frequencies; hence the mesh density of 40 elements having
165 nodes is used for all subsequent simulations in order not to increase the computational time.
Each element has six degrees of freedom corresponding to three translations and three rotations
at each node. In order to satisfy the cantilever boundary condition at the root of the beam, all

nodal displacements and rotations are made equal to zero.

Table 7.1 Dimensionless fundamental frequency of composite plate

Dimensionless % Difference from
Frequency Closed Form Solution
Closed Form Solution [7-4] 15.270 -
Higher-Order Shear Theory [7-3] 15.090 -1.17
First-Order Shear Theory-FEA [7-3] 15.073 -1.29
Present ANSYS result 15.215 -0.360

7.2.2 Damage Scenarios

The main aim of modelling a non-dimensional FRP laminated composite beam is to
create a vibration-based analysis data base having natural frequencies and curvature mode
shapes from the first three modes of the intact and damaged beams when the local damage is
introduced with twenty one different damage severities at six different spatial locations along

the span of the beam.

7.2.2.1 Severity of Damage

Structural damage is modelled as local reduction in stiffness of the selected elements by
changing the modulus of elasticity. In order to make the system sensitive enough to detect less
severe damage, a 2.5 per cent incremental reduction is used between the intact and the damaged
beam up to 25 per cent stiffness reduction (i.e. 10 different damage severities). For more severe
damage, the incremental reduction in stiffness is chosen as 5 per cent from 25 per cent to 80 per

cent local damage (i.e. 11 different damage severities). Therefore, totally 21 different damage
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scenarios are created by local stiffness reduction in FEM. The assumption made here is that the
effect of the damage results in a local reduction in the stiffness which is modelled by reducing

the material properties of the selected elements in all directions by the same amount.

7.2.2.2 Location of Damage

Six different locations are selected along the span of the beam in order to introduce
different damage severities. These locations are 0.2L, 0.35L, 0.45L, 0.55L, 0.65L and 0.8 away
from the fixed end. The width and the length of the damage are kept constant during the
analyses as 0.1L that corresponds to four elements in FEM. In Fig. 7.1, the location of the
damage (grey area in circle) has been taken as 0.55L as an example.

After performing modal analysis, 126 different natural frequency reductions (21
different damage severities at 6 different locations) are obtained for each mode of the damaged
beam with respect to that of intact one. All these variations in natural frequencies for different
damage scenarios from the first three natural modes will be investigated in the sensitivity

analysis and feature extraction section (Section 7.4).

7.3  Curvature Mode Shape Analysis

A finite element modal analysis has been performed in Section 7.2 to find the first three
undamped natural frequencies and corresponding normalised displacement mode shapes of the
cantilever laminated composite beam. Eleven points along the centre line of the beam are
selected to obtain one-dimensional curvature mode shapes. In Fig. 7.1, the white dots show the
locations of these collocation points along the beam. During the analysis, curvature mode
shapes are calculated from displacement mode shapes by using equation (6.2) at these
collocation points. Since the length of each element in the finite element model is constant along
the beam and the absolute differences between the curvature mode shapes of the intact and the
damaged structures are of primary interest, the h® term in equation (6.2) appears as a constant
scaling factor and has been taken as unity for the sake of simplicity in the curvature
calculations. Since 126 different damage scenarios are created for the composite beam, the
curvature mode shapes corresponding to these cases are not shown here. All variations in
absolute differences between intact and damaged curvature mode shapes along the beam with

different stiffness reductions at various locations will be presented in the next section.
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7.4

7.4.1

Sensitivity Analyses and Feature Extraction

Percentage Reduction in Natural Frequencies

By considering the variations of the percentage reduction in the frequencies for the first

three natural modes, the effect of the severity and the location of the damage on natural

frequencies are investigated. The percentage reduction in natural frequencies with twenty-one

different severities of the damage at six different locations along the beam in three different

modes can be seen in Fig. 7.2. From the variations and trends in this figure, it can be concluded

that the reduction in natural frequencies increases with the increasing severity.
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Figure 7.2 Percentage reduction in natural frequencies for different damage locations:

Damage located at (a) 0.20L (b) 0.35L (c) 0.45L (d) 0.55L (e) 0.65L (f) 0.80L

As it can be seen in Fig. 7.2a, there is a higher reduction in natural frequency in Mode 1
when the damage is near the root of the beam (i.e. at 0.2L). On the other hand, in Fig. 7.2b,
almost all modes are affected approximately up to same extent. Figs. 7.2¢ and d show that
Mode 2 is much more influenced when the damage is located around mid-span (i.e. at 0.45L and
0.55L) of the beam. It can be seen from Fig. 7.2e that reduction in natural frequency in Mode 2
and Mode 3 are almost same when the damage located at 0.65L. Finally, when the damage is
located at 0.80L (Fig. 7.2f), there is more reduction in frequency in Mode 3 than those in Mode
2 and Mode 1. This indicates that it is important to consider more than one mode of the beam
since, depending on the location of the damage different natural modes of the beam are affected

to different extents in the reduction of frequency.

7.4.2  Absolute Differences in Curvature Mode Shapes

After considering the effects of natural frequency reduction, the effectiveness of
absolute differences in curvature mode shape between the intact and the damaged composite
beams is investigated. Since three different modes of vibration and six different damage
locations are considered during the analyses, totally eighteen different variations are obtained
from absolute differences in curvature mode shapes between the intact and the damaged beams.

These variations are shown from Figs. 7.3 to 7.5 for six different locations of the damage at the

first three natural modes.
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Chapter 7 Laminated Composite Beam Structure

It can be seen from Figs 7.3 to 7.5 that the maximum absolute difference occurs near
damage location. Therefore, the maximum value of the absolute difference in curvature and its
corresponding location along the beam obtained from three different modes would be additional

information serving as input to the ANN in the quantification and localisation of the damage.

7.4.3 Pre-Processing of Features

After deciding on the features extracted from the model-dependent vibration-based
data, some necessary pre-processing is performed. Normalisation of the input-output pairs and
addition of artificial noise to different input data are presented in this section. The main aim of
the pre-processing is to arrange the data in such a way that it can easily be introduced to damage

identification algorithm as input-output pairs.

7.4.3.1 Normalisation of Data

As input data should not be too close to 0 or 1 in order to avoid numerical difficulties,
the first three natural frequencies of the beam are normalised by calculating the ratio of natural
frequencies of the damaged beams to that of intact one. Since small reductions in stiffness lead
to small changes in natural frequencies, thus giving values close to 1, an additional

normalisation [2-45] is performed by using the following equation:

Xi=———  wherea =11, B=009 i=12.126 (7.3)

'lImX Imlll

Here, x; is the data (reduction in natural frequencies) to be normalised, X; is the
normalised form of the data and aand [ stand for the normalisation constants. Maximum

absolute differences in the curvature mode shape data are also normalised using equation (7.3).
There is no need to normalise the location data since it is readily available as percentage of the

beam length, which is between 0 and 1 (Fig. 7.1).
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7.4.3.2 Addition of Artificial Noise

Artificial noise is created by using a random number generator, 7andn, in MATLAB®.
Randn generates random numbers with a normal distribution having zero mean, variance and
standard deviation of one. Using equation (7.4), different percentages of noise are added to

normalised frequency and maximum differences in curvature mode shape data.
A
Da[aWith Noise — ‘DataNoise Free 1+ ml‘aﬂdn (n) (7‘4)

Here, n and A are the number of random entries in the noise-free data and the percentage noise
added to noise-free data respectively. Since natural frequency measurements are more reliable
and robust than strain (or curvature) mode shape measurements that require distributed sensors
in real applications, higher level of percentage noise is added to maximum absolute differences
to curvature mode shape data compared to normalised frequency data to simulate the

experimental uncertainties.

7.5  Simulation of ANN for Damage Detection

In this study, a supervised feed-forward multi-layer backpropagation ANN in
MATLAB® Neural Network Toolbox [7-5] is used to estimate the severity and location of the

damage in beam-like laminated composite structures.

7.5.1 Designed ANNs for Damage Detection

Since the aim of the analysis is to investigate the effectiveness of the vibration-based
analysis inputs in ANN applications for the severity and location prediction of the damage,
different combinations of input data from the first three natural modes of the composite beam
are introduced to ANNs. The effects of multiple modes on predictions of ANNs are also
investigated in Appendix C justifying the use of three modes.

The size of the ANN is very important since small networks cannot represent the system
while larger networks can be over-trained. Hence optimisation in the size of the network is
crucial and this is generally obtained by a trial and error method. Therefore, different neural

networks with one hidden layer are designed to maximise performance in the prediction of the
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severity and location of the damage. The studies on using one and two hidden layers are
discussed in Appendix D, justifying the use of one hidden layer ANN. Table 7.2 shows all the
ANNSs designed and used in the analyses with a variety of input and output pairs. Values
(separated with semicolon) used in the architecture column of Table 7.2 show the total number

neurons in the input, hidden and output layers respectively.

Table 7.2 ANNSs used in the analyses

Input Output  Architecture
1. RNF DS 3:6:1
2. RNF DL 3:6:1
3. RNF DS&DL 3:8:2
4. MADC DS 3:6:1
5. MADC DL 3:6:1
6. MADC DS&DL 3:8:2
7. RNF&MADC DS 6:9:1
8. RNF&MADC DL 6:9:1
9. RNF&MADC DS&DL 6:12:2
10. MADC&LOC DS 6:9:1
11. MADC&LOC DL 6:9:1
12. MADC&LOC DS&DL 6:12:2
13.  RNF&MADC&LOC DS 9:18:1
14. RNF&MADC&LOC DL 9:18:1
15. RNF&MADC&LOC DS&DL 9:18:2

7.5.2 Noise-free Input Data

The most important criterion in the selection of the training samples is to find the ideal
set that can represent the total possible samples in the space. In this analysis, 126 different
damage scenarios are generated by using 21 different reductions in stiffness at 6 different
locations throughout the beam. 100 input-output pairs, chosen at random, are given to the ANN
for training and the rest of the input-output pairs are used to check the generalisation of the

learning during the validation process.
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7.5.3 Input Data with Noise

One of the most important problems with the use of the backpropagation algorithm is
the generalisation of learning capability. Therefore artificial random noise has been added to
data used in the noise-free case in order to achieve a better generalisation during the training of
ANNSs and to simulate the experimental uncertainties numerically. Table 7.3 shows the different
percentages of noise combinations added to frequency and maximum absolute differences in

curvature mode shape data.

Table 7.3 Addition of percentage noise to input data

Percentage Noise (A ) on

Input Data
RNF MADC
RNF 0.5 -
RNF 1 -
RNF 2 -
MADC&LOC - 1
MADC&LOC - 3
MADC&LOC - 5
RNF&MADC&LOC 0.5 1
RNF&MADC&LOC 1 3
RNF&MADC&LOC 2 5

First, 100 copies of each input data from the first three natural modes are obtained and
different noise histories having same percentage level are added. This process simulates the fact
that each mode has its own energy level and can only be obtained separately from the others.
Since totally 126 different damage scenarios are used in the analyses with 100 copies, final
input data having 10000 and 2600 entries is introduced to selected ANNs (RNF, MADC&LOC,
and RNF&MADC&LOC in Table 7.3) during the training and validation runs respectively.

7.5.4 Test cases for ANNs

Sixteen different cases are used to test the trained neural networks, as shown in Table

7.4. In the first eight cases, the damage locations are selected from training sets while in the
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other eight cases, new locations are considered. In both cases, eight new reductions in stiffness
are introduced to ANNSs. After completing simulations with different ANN architectures, three
networks (First, eleventh and fifteenth ANNs in Table 7.2) are selected on the basis of
minimum mean square error and better convergence with the increase in number of epochs
during the training. An additional set of three networks (second, fourth and fifth ANNs in Table

7.2) is also used for the prediction performance comparisons.

Table 7.4 Test cases for ANNs

Reduction in Location
Stiffness [%%] L]
8 0.55
14 0.20
21 0.80
37 0.45
42 0.35
53 0.65
62 0.20
73 0.65
8 0.50
14 0.60
21 0.30
37 0.75
42 0.25
53 0.40
62 0.30
73 0.40

7.6 Artificial Neural Network Predictions

7.6.1 Noise-free Case

7.6.1.1 Damage Severity Predictions

In the first ANN (RNF-DS), the reduction in natural frequencies is given as an input and
severity of the damage is predicted as an output. In this training run, the mean square error is
reduced to a value lower than 107 after 10000 epochs. Here, epoch denotes the number of times
the same training input set introduced to the ANN. In Fig. 7.6a, the trend of the mean square
error (MSE) can be seen with increasing number of epochs. Considering the error between the
training (black solid line) and the validation sets (grey solid line) during the learning process, it

can be concluded that the generalisation is almost achieved. The first test with three inputs
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(reduction in natural frequencies from three natural modes) is performed on 16 different cases.
Figure 7.6b shows the results of the neural network regarding prediction of the severity of the
damage. The symbols, circles and crosses, indicate the first and the last eight test cases used in
Table 7.4 respectively. The dotted lines lying on both sides of the centre line indicate a 5 per

cent deviation from the target values.
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Figure 7.6 ANN results for severity predictions (Input: RNF, Output: DS)
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The fourth ANN test run (MADC-DS) is performed to predict the severity of the
damage by using maximum absolute differences in curvature mode shape from the first three

modes. Severity predictions for this particular test case can be seen in Fig. 7.7.
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Figure 7.7 ANN results for severity predictions (Input: MADC, Output: DS)
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7.6.1.2 Damage Location Predictions

In the second ANN (RNF-DL), the reduction in natural frequencies is given as an input
and location of the damage is predicted as an output. Since the input introduced to the ANN is
not directly related with the output to be predicted, the generalisation is not achieved. Figures
7.8a and b show the performance of the ANN during the learning and the location predictions

for the test cases respectively.
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Figure 7.8 ANN results for location predictions (Input: RNF, Output: DL)

(a) Mean square error with number of epochs (b) Location predictions

The fifth ANN test run (MADC-DL) is for the location prediction of the damage by
using maximum absolute differences in curvature mode shape data as input. Figure 7.9 shows

the location predictions for this particular test case.
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Figure 7.9 ANN results for location predictions (Input: MADC, Output: DL)
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The eleventh ANN test run (MADC&LOC-DL) is for the prediction of location of
damage. In this case, the maximum absolute differences in curvature mode shape and their
corresponding locations along the beam are given as an input to the ANN. Since the input
features, the maximum absolute differences and their corresponding locations, are good
indicators for the location prediction of the damage, the mean square error is reduced to below
10”. A slight difference is observed in the error residual between the training and validation.
The prediction of this ANN can be seen in Fig. 7.10. Although almost all the predictions are
within 5 per cent limit, first eight predictions (shown with circles) are quite accurate compared

to the last eight test case predictions. This means a better generalisation is needed for higher

accuracy.
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Figure 7.10 ANN results for location predictions (Input: MADC&LOC, Output: DL)

7.6.1.3 Both Damage Severity and Location Predictions

The fifteenth ANN test run (RNF&MADC&LOC-DS&DL) involved in training is
performed with nine inputs namely: reduction in natural frequencies, maximum absolute
differences in curvature mode shape and their corresponding locations along the beam from the
first three natural modes. In this case, severity and the location of the damage are predicted.
Since the input and output pairs are larger in size and the association between the features is
much more complicated compared to previous runs, the mean square error values for both the
training and validation reach a value between 10 and 10 after 10000 epochs. Due to the
inherent complexity of the test, bigger difference between the training and the validation error
values occurred at the end of the training. The results show that there is a slight overestimation
in the prediction of severity (Fig. 7.11a). On the other hand, in the prediction of location of the

damage, the outputs are closer to target values with acceptable deviations (Fig. 7.11b).
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Figure 7.11 ANN results for severity and location predictions (Input: RNF&MADC&LOC)
(a) Severity predictions (Output: DS) (b) Location predictions (Output: DL)

7.6.2 Noise Polluted Data

In this section, only three ANNs having best performance in the prediction of severity
and location of the damage in noise-free case (First, eleventh and fifteenth ANNs in Table 7.2)

are selected and tested for new damage scenarios (Table 7.4) with addition of percentage noise

(Table 7.3).

7.6.2.1 Damage Severity Predictions
Figure 7.12 shows the severity predictions of the first ANN (RNF-DS) with three

different levels of added artificial noise. It can be seen from Fig. 7.12 that increase in

percentage noise level adversely affects the severity predictions.

7.6.2,.2 Damage Location Predictions
Location predictions of the eleventh ANN (MADC&LOC-DL) with three different

levels of added artificial noise is shown in Fig. 7.13. It can be seen from the figure that location
predictions for the damage are more accurate than severity predictions when maximum absolute
differences in curvature mode shape and location information are introduced to ANN as input

although the noise levels are relatively higher than the ones used on the normalised frequency

data.
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7.6.2.3 Both Damage Severity and Location Predictions

Further analyses concentrate on the effects of different noise combinations on frequency
and maximum absolute differences in curvature mode shape data for the prediction of severity
and location of the damage by single neural network (RNF&MADC&LOC-DS&DL) having all
three inputs from first three natural modes of the beam as an input. ANN predictions with the
noise-polluted data can be seen from Figs. 7.14 to 7.16. In these three figures, the noise
combination is gradually increased on frequency and maximum absolute differences in
curvature mode shape data. It can be concluded from the figures that although predictions are in
the acceptable region with a couple of under and overestimations at lower noise level
combinations, the location predictions are more accurate and robust than severity predictions

using single ANN with all inputs at higher level of noise combinations.
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Figure 7.16 ANN predictions with noise combination of 2% on RNF and 5% on MADC
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7.7 Conclusions

In this chapter, features extracted from vibration-based analysis on beam-like composite
laminate were used in order to predict the severity and location of the damage and to investigate
the effectiveness of these features as input to feed-forward backpropagation neural networks.

In literature, local and global patterns (i.e. curvature mode shapes and natural
frequencies) obtained either from experimental work or numerically simulated vibration
analysis data were used in ANN applications (Table 7.5) in order to detect damage in composite
beam structures. However, there is no particular study found in the literature considering

different combinations of the vibration analysis data as input to ANN.

Table 7.5 Studies on composite beam structures and features for ANN applications

(71 (8] [9] [10] [12][14]
[27] [30] [31] [32] [33]

Studies on Composite Structures [35] [44] [45] [50] [52]
[53]1[54][59] [60] [61]
[44] [50]
Frequency Changes [52] [53] [55]
Curvature Mode Shapes or
Strain History [441[50] [54]
Both Frequency Changes and [50]

Curvature (Strain) Mode Shapes

"In different case studies, [Numbers in brackets are references from Chapter 2]
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In this chapter, different input-output pairs have been generated from various damage
scenarios and used for the training and validation of different types of ANNs either noise-free or
with an addition of percentage artificial noise to simulate the experimental uncertainties. The
results obtained using new test cases show that selection of features considered as an input data
is crucial in the accuracy of prediction of damage. In addition to the selected features, the level
of the artificial noise added to input data is also very important from the generalisation and
robustness point of view of the designed ANNS. It can be concluded that although reduction in
natural frequencies is considered as an indicator for the existence of the damage and its severity,
it did not provide any useful information about the location of the damage. On the other hand,
maximum absolute differences in curvature mode shapes and their corresponding locations
along the beam served as better indicators for the location of the damage. Therefore, these
features were used as separate input for the ANNSs.

When the combination of these three features (i.e. reduction in natural frequencies,
maximum absolute differences in curvature mode shapes and their corresponding locations) are
introduced to ANNSs, the results regarding severity and location of the damage are not as
promising as the ones obtained with individual inputs. Hence it can be concluded that two
separate ANNSs function more efficiently than one trained ANN using all the combined inputs in
the noise-free case. On the other hand, when the increased level of noise-polluted data
introduced as an input, whilst training, ANNs provided more accurate and robust predictions in
the localisation of the damage compared to damage quantification.

Finally, the severity and location predictions of various ANNs trained with different
combinations of vibration-based analysis data showed that the features extracted and used as an
input and the level of noise on these features play an important role in the accuracy of the

predictions of ANNs for structural damage detection.
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Chapter Eight EXPERIMENTAL VALIDATION OF THE METHOD

8.1 Introduction

This chapter presents an experimentally validated damage detection algorithm using
combination of global and local vibration-based analysis data as input to ANNs for location and
severity prediction of damage in isotropic beam structures [8-1]. The global parameters refer to
change in natural frequencies and the local parameters refer to change in curvature (in FEA) or
strain (in experimental study) mode shapes of the structure in the first three natural modes. In
FEA, different damage scenarios have been introduced by reducing the local thickness of the
selected elements at different locations along the FEM of the beam structure. The necessary
features for damage detection have been selected by performing sensitivity analyses and
different input-output sets have been introduced to various ANNs. In order to check the
robustness of the input data used in the analysis and simulate the experimental uncertainties,
artificial random noise has been generated numerically and added to noise-free data during the
training of the ANNS. In the experimental analysis, two steel beams with eight surface-bonded
distributed electrical strain gauges and an accelerometer mounted at the tip have been used to
obtain modal parameters such as resonant frequencies and strain mode shapes. Finally,
experimentally obtained data has been introduced to trained ANNSs in order to predict severity

and location of the damage.

8.2  Finite Element Modelling

8.2.1 Frequency Analysis of Intact Beam

The steel beam (Fig. 6.3) is modelled by using four-node quadrilateral two-dimensional
linear structural shell element, SHELL63, with ANSYS 6.1® commercial software. First three
bending natural frequencies of the intact cantilever beam for different mesh densities are

obtained in order to check mesh independency. Since the variation in natural frequencies is less
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than 1% between 4x90 (i.e. 4 and 90 element divisions along the width and the length of the
beam respectively) and 16x360 mesh densities, the former having 360 elements, is used for all
later simulations by considering the computational efficiency. After performing modal analysis
for the first three bending natural frequencies, results obtained from models having different
mesh densities are compared to closed-form solution (Eq. 4.17) in Table 8.1. The number in

parentheses shows the percentage difference between theoretical and FEA results.

Table 8.1 First three natural frequencies of intact beam [Hz]

Shell Elements

Mode No  Closed-form Solution 4%90 16x360
1" Bending 12.2893 (155)886509) (1&;;;2 178)
2" Bending 77.0156 (707.-76604454; (707..75276418)
ot oo il G

8.2.2 Damage Scenarios

Local damage is introduced with 32 damage severities at 15 different spatial locations
along the span of the beam i.e. 480 different damage scenarios. Structural damage is modelled
as a local reduction in thickness of the selected elements. The incremental reduction in thickness
is chosen as 2.5% up to 80% local damage. The locations of the damage are at different
percentages away from the cantilever end, shown in Table 8.2. The width (10mm) and the
length (40mm) of the damage are kept constant during the analysis corresponding to two
elements in span wise and four elements in the width direction in FEM. In Fig. 8.1, the FEM of
the damaged beam with a 2mm deep slot corresponding to 66.67% reduction in thickness at the

location of 0.4556L is shown as occurs in the experimental analysis.

Table 8.2 Different damage locations

Normalised spatial location
from root [L]

0.044 0.30 0.54
0.10 0.34 0.60
0.14 0.40 0.64
0.20 0.44 0.70
0.24 0.50 0.74
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Centre Line

8.2.3 Modal Analysis of Damaged Beam

A normal mode dynamic analysis is performed to find the first three undamped natural
frequencies and their corresponding displacement mode shapes of the cantilever beam. Table
8.3 shows the first three natural frequencies of the intact and the damaged beam (2mm deep slot
at the location of 0.4556L), which is used in experimental study for comparison and validation.
91 points along the centre line of the beam are selected from FEM in order to obtain one-
dimensional displacement mode shapes. During the analysis, curvature mode shapes are
calculated by using central difference approximation (Eq. 6.2). All modal analysis data (natural
frequencies and corresponding curvature mode shapes) is presented in the feature extraction

section.

Table 8.3 First three natural frequencies of intact and damaged beam [Hz]

Finite Element Analysis Results

Intact Damaged Samagea
Mode No Beam Beam Sintact
1*Bending 12.3859 10.7415 0.8672

2™Bending  77.6044 60.3581 0.7778
3“Bending  217.5093  212.4555 0.9768

8.3 Feature Extraction

In the first part of this analysis, the effect of the severity and the location of the damage

on the first three natural frequencies of the structure are investigated. Figure 8.2 shows the
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percentage reduction in natural frequencies with 32 different severities at selected 8 different

locations. It can be seen from the Fig. 8.2 that different vibration modes are affected to different

extents due to the reduction in thickness, depending on the location of the damage. This

illustrates the need to consider more than one vibration mode for improved damage prediction.

In the second part, the variation of the magnitude of the absolute differences in curvature mode

shapes between the intact and the damaged beam is considered at the same locations in mode 1,

2 and 3 respectively. Figures 8.3-8.5 show these variations in the first, second and third modes

respectively. In these figures, each collocation point corresponds to location of the strain gauges

used in the experiment and they are numbered accordingly.
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8.4  Experimental Study

To validate the numerical method proposed for quantification and localisation of the
damage in Chapter 7, an experimental study was carried out on steel beam specimens. Beam
specimens, experimental procedure, modal analysis aiming resonant frequencies (Table 6.4)
and strain mode shapes have been described in detail in section 6.2.3. Therefore, in this section,
the strain outputs of eight strain gauges in the first three modes of the intact and damaged beams
are obtained by using signal conditioning amplifier under constant frequency excitation at each
resonant frequency of interest and shown in Figs. 8.6-8.11.

Normalisation over strain histories obtained from seven strain gauges is performed with
respect to strain gauge at location 8, which provides reasonable finite amount of strain for all
three modes, in order to investigate the relative change in damaged beam curvatures at eight
different locations with respect to intact ones. Figures 8.12 and 8.13 show normalised strain
mode shapes of intact and damaged beams respectively. Since the additional features extracted
from vibration-based analysis are the maximum absolute differences in normalised strain mode
shapes between the intact and the damaged beams, Fig. 8.14 is obtained from Figs. 8.12 and

8.13 and used as an input to ANN for severity and location predictions. The maximum values

are also shown in Fig. 8.14.
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118



Chapter 8 Experimental Validation of the Method

Stege Gauge NoB

150+ J
100 B
z =
g 8
@ 7}
g e
2 8
£ o =
B ]
=1 2
g s B
m £
<
100 | E R
150 F 4
200 L 2 L : L . . g . . ) s . . L
0 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500
Sampling Paints Sampling Points
Stsan Gauge Nob
200 v T T - - 200 T
= =
g B
7] 17}
3 e
] g
s £
o o
E 3
a a
< <
L : L . L L L 200 - . ) : . L i
500 1000 1500 2000 2500 3000 3500 4000 a 500 1000 1500 2000 2500 3000 3500 4000
Sampling Paints Sampling Points
tan Bauge Nod
T £
g 8
@ @
] 3
£ R
b3 2
-] 3
2 2
H H
< <
L : L : L L . 0 N s 2 s N )
500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Sampling Points Sampling Points
Stras Gauge No:2 n Gauge Mozl
00 T g T 200 L — T
= =
& ]
@ (7]
2 e
g 2
5 z
] 8
2 2
g =
< <
-150 K B
. L

200 L : - i . s . R . . . L .
a 500 1000 1500 2000 2500 3000 3500 4000 500 1600 1500 2000 2500 3000 3500 4000
Sampling Points Sampling Points

Figure 8.11 Strain output of eight strain gauges in the third mode (Damaged Beam)

119



Chapter 8 Experimental Validation of the Method

Norrnalised Strain Values

2 o o -
= o wm - N .
T T " T :
I 1, 1 1 t L

o
%]
T

1

L 1 1
5 4 3 2 1
Stewn Souys Numbsr

(a)

O
W
~
o

Normalised Strain Values

1 i 1 1 1
UB 7 B 5 4 3 2 1

Straine Bauyy Number

(b

—
S
T

1

[
T
1

=1
fn )
—T

Nommalised Strain Values

o
om

T
1

04r 1
02¢f 7
0 L 1 1 L i 1
B 7 6 5 4 3 2 1
Stran Gauge Number
©

Figure 8.12 Normalised experimental strain mode shapes of intact beam

(a) Mode 1 (b) Mode 2 (c) Mode 3

120



Chapter 8 Experimental Validation of the Method

F°S
~r

N
T

Normalised Strain Values
w

B 7 B 5 4 3 2 1
Sitrain Fauge Number

(a)

Normalised Strain Values
w =N
.

N
T
'

G i} L il L
8 7 B 5 4 3 2 1

Steavir: Daagge Number

(b

Normalised Strain Values
[

n ! ! A L
5

Steaw Fauge Number

()
Figure 8.13 Normalised experimental strain mode shapes of damaged beam

(a) Mode 1 (b) Mode 2 (c) Mode 3

121



Chapter 8 Experimental Validation of the Method

6 S T T T T T
- Max: 5.3355
S5l .
@
>
B
5
in4 )
@Ay
']
R
o
£3r 1
=2
=z
£
a
B 1
£
a
giF i
=3
o
g L
< 09 \7 T o
£ 1 4 1 L
) 7 & 5 4 3 2 1
Strain Sauge Number
(a)
8 — T T T T !
n
S5} 7
o
=
£
5
& 4r i
3 Max: 3.4661
€ 3} 1
o
=z
i3
g 2f ]
g
2
aQ
eftr )
=
o
ur
2 L
o 3
i —t L ~L L L
5 7 B 5 4 3 2 1
Stram Savge Number
(b)
6 T T T T T '
wm
S8t ]
3
=
@
A 1
=
2
©
£ 3} |
=
=z
B
3 '
3 Max: 1.5573
£
21r i
=
o
2 Ty
<l B
! L 1 — L L
8 7 B 5 4 3 2 1
Strasry Bauge Number
(c)

Figure 8.14 Absolute differences in experimental strain mode shapes between the intact and

damaged beams (a) Mode 1 (b) Mode 2 (c) Mode 3

122



Chapter 8 Experimental Validation of the Method

8.5  Application of ANNs

8.5.1 Design, Training and Validation of ANNs

The ANNSs used for the verification are selected from Table 7.2 and tabulated in Table
8.4 showing different combinations of input and output pairs. In this analysis, 480 different
damage scenarios are generated by using 32 different reductions in thickness of the selected
elements at 15 different locations throughout the beam. 450 input-output pairs are given to the
ANN for training and the rest of the input-output pairs are used to check the generalisation of
the learning during the validation process in noise-free case. An artificial random noise has been
added (Eq. 7.4) to noise-free data (normalised frequency and maximum differences in curvature
mode shape data) in order to simulate the experimental uncertainties numerically. In data with
noise case, 50 copies of normalised natural frequencies (when RNF is an input) and 25 copies of
normalised natural frequencies, maximum absolute differences in curvature mode shapes and
the location corresponding to maximum absolute difference in curvature mode shape (when
MADC&LOC and RNF&MADC&LOC are as inputs) are obtained and artificial noise has been
added on each copy with different histories. Table 7.3 shows different percentages of noise
combinations added to normalised frequency and maximum absolute differences in curvature
mode shape data. Since totally 480 different damage scenarios are used in the analyses, in case
of RNF, 22500 and 1500 entries are introduced for training and validation respectively.
Similarly, 11250 and 750 entries are used for training and validation of both MADC&LOC and

RNF&MADC&LOC.

Table 8.4 ANNSs used in the verification analyses

Input Output  Architecture
1. RNF DS 3:6:1
2. MADC DL 3:6:1
3. MADC&LOC DL 6:9:1
4. MADC&LOC DS&DL 6:12:2
5. RNF&MADC&LOC DS&DL 9:18:2
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8.5.2 Predictions of ANNs

In this section, the severity and location predictions for noise-free case (Figs. 8.15-8.19)
are shown in detail by considering the training, validation sets and the variation in mean square
error with increasing number of epochs. In the prediction related graphs, the circle denotes the
prediction for the case when the experimental damage is the input and dotted lines lying on both
sides of the centre line indicate a 5% deviation from the target value.

The training performance of the first ANN (RNF-DS) can be seen in Fig. 8.15a
considering the trend in mean square error values during training. Figure 8.15b shows the

prediction of this ANN regarding the severity of the damage.
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In the second and third ANNS, the location of the damage is predicted by using two
different input data, which are MADC (Fig. 8.16) and MADC&LOC (Fig. 8.17) respectively. It
can be seen from Figs. 8.16 and 8.17 that better generalisation (Fig. 8.17a) and prediction (Fig.

8.17b) are achieved by providing the location information.
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Figure 8.18 ANN results for severity and location prediction (Input: MADC&LOC)
(a) Severity prediction (Output: DS) (b) Location prediction (Output: DL)

Since the input features, the maximum absolute differences in strain mode shapes
between the intact and the damaged beams and their locations, are good indicators for location
prediction of the damage, next test run is performed by using these features as an input for both

severity (Fig. 8.18a) and location (Fig. 8.18b) predictions. In the final test run, the severity (Fig.
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19a) and location (Fig. 19b) of the damage are predicted by introducing inputs namely,
reduction in natural frequencies, maximum absolute differences in curvature mode shape

between the intact and the damaged beams and their corresponding locations along the beams

from the first three natural modes.
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Figure 8.19 ANN results for severity and location prediction (Input: RNF&MADC&LOC)

(a) Severity prediction (Output: DS) (b) Location prediction (Output: DL)

The results for noise-free (Table 8.5) and for additional artificial noise (Table 8.6)
cases are tabulated for performance comparison. It can be concluded from Table 8.6 that more
accurate results are obtained in location predictions (MADC&LOC-DL) for the damage than
severity predictions (RNF-DS), although the noise levels are comparably higher than the ones
used on RNF data. When the gradually increased noise combinations applied to the normalised
frequency and maximum absolute differences in curvature mode shape are used in the
prediction of both severity and location of the damage, better estimations (i.e. deviation within

3%) are achieved in location predictions compared to severity at each levels of artificial noise.

Table 8.5 Predictions of ANNs (Noise-free case)

Input Output Target Prediction % Deviation’
RNF DS 0.6667 0.6653 0.14
MADC DL 0.4556 0.4866 -3.10
MADC&LOC DL 0.4556 0.4656 -1.00
MADC&LOC DS&DL  0.6667 0.4556 0.6291 0.4610| 3.76 -0.54
RNF&MADC&LOC DS&DL 0.6667 0.4556 0.7123 0.4375 | -4.56 1.81

Deviation = [Target — Prediction]
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Table 8.6 Predictions of ANNs (Additional artificial noise case)

Input (Noise %) Output Target Prediction % Deviation’
RNF (0.5%) DS 0.6667 0.6541 1.26
RNF (1%) DS 0.6667 0.6908 -2.41
RNF (2%) DS 0.6667 0.7157 -4.90
MADC&LOC (1%) DL 0.4556 0.4613 -0.57
MADC&LOC (3%) DL 0.4556 0.4471 0.85
MADC&LOC (5%) DL 0.4556 0.4142 4.14
RNF&MADC&LOC

DS&DL  0.6667 0.4556 0.7162 0.4319 | 495 237
(0.5% & 1%)
RNF&MADC&LOC

DS&DL  0.6667 0.4556 0.7836 0.4712 | -11.69 -1.56
(1% & 3%)
RNF&MADC&LOC

DS&DL  0.6667 0.4556 0.8057 0.4507 | -13.90  0.49
2% & 5%)

"Deviation = [Target — Prediction]
8.6 Conclusions

An experimentally validated damage detection algorithm using features extracted from
vibration-based analysis data as input to ANNs for location and severity prediction of damage in
a steel beam structure was presented. Different damage scenarios have been created by reducing
the local thickness of the selected elements at different locations and simulated vibration
responses have been introduced to ANNs with and without artificial noise during the training.
The sensitivity analysis has also been performed on extracted features by using different
vibration modes considering the effect of damage location and severity before introducing them
to ANNSs, In this study, the test data (i.e. resonant frequencies and strain mode shapes) has been
obtained from the intact and damaged steel beam with a local damage of 2mm deep (66.67%
reduction in thickness) and 10mm wide slot at 205mm (0.4556L) away from the fixed end by
using an accelerometer mounted at the tip and eight surface-bonded distributed electrical strain
gauges along the centre line. It can be concluded from the ANN predictions that the better
accuracy has been achieved in severity predictions than the location ones in noise-free case. On
the other hand, introducing an artificial noise on noise-free data has adversely affected the
severity predictions although the results are still accurate for the location predictions obtained

from each ANN used in the verification by using an experimental data.
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Chapter Nine SANDWICH BEAM STRUCTURE

9.1 Introduction

Because of light-weight, high strength, easy fabrication, long term durability and
excellent corrosion resistance, GFRP sandwich structures with foam core are widely used in
marine and offshore structures. However, internal defects and damage (details in Chapter 4,
section 4.3) may be difficult to observe by visual inspection, thus making prevention of serious
damage difficult. This can dramatically affect the overall strength and stiffness of these
structures and might lead a complete failure. One of the primary issues here is to show the
feasibility of improvement in the reliability of composite sandwich structures by monitoring
their internal strain conditions. Therefore, this chapter presents the fabrication of sandwich
beam structures with embedded FBG strain sensors, vibration-based analysis performed on
these structures and ANN predictions for quantification and localisation of the damage.

The static analysis (details in Appendix B) performed on a sandwich beam specimen
shows that embedded FBG strain sensors provide accurate local strain information. On the other
hand, the strain measurements performed under dynamic excitation with multiple gratings are
limited due to the restrictions of the fibre optic Bragg grating interrogation system (FBGIS)
(details in Appendix A).

The limitations of the interrogation system can be summarised as follows:

> When the system is used with single fibre Bragg grating, it allows
measurements up to approximately 1 kHz sampling frequency. Since the sampling frequency
should be at least two times higher than the highest frequency of interest (i.e. cut-off frequency),
the interrogation system can be used with single fibre Bragg grating in order to obtain dynamic

strain history up to 5S00Hz.

> The system supports multiple continuous strain measurements in real-time up to

eight fibre Bragg gratings. The measurement range of the system is also dependent on the
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number of Bragg gratings used. The higher number of Bragg gratings used in a single optical
fibre, the lower the scanning rate of the interrogation system. Another factor that plays an
important role in dynamic measurements is the number of sampling points used to track the
reflective peak of a particular FBG strain sensor. In order to obtain better accuracy, the
sampling points per peak should be increased. This has the effect of decreasing the scanning
frequency. Working with lower scanning frequency limits the ability to identify the higher
frequencies of interest and makes it difficult to identify the higher strain mode shapes from
multiple FBG strain sensors as the system can provide strain measurements from 8 gratings up
to 150Hz. The further details regarding scanning frequency of multiple Bragg gratings are given

in Appendix A.

> Experimental observations show that the faster the scanning frequency, the

more noise is introduced into the measured strain data from the interrogation system.

> Before performing any dynamic tests, the laser source needs to be left for a
certain period of time to settle to constant operating temperature. A warm-up sequence also
needs to be performed. These two factors are very important as they compensate the drift in

strain measurement.

9.2  Material and Geometrical Properties of Sandwich Beam

9.2.1 Core Material

Linear polymer foam (Core-Cell® A500) [9-1] is used during the manufacturing of
sandwich beam specimens. This type of foam core provides excellent stiffness and structural
integrity under dynamic loading with low weight. Core-Cell is non-friable, tough and rigid core
that has high impact strength and high shear elongation. This core material is also suitable for
resin infusion with vacuum bagging technique. The foam core used in the analysis has following

material properties (details in Appendix E):

E.., =131.13x10°Pa, p,,, =144.8 kg/m’, v . =0.32 (assumed).

core
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9.2.2 Skin Material

9.2.2.1 Matrix

The material properties of the resin system are not very high compared to most metals
but when it is combined with reinforcing fibres such as glass, exceptional properties can be
obtained. The epoxy system (Prime 20 epoxy infusion system [9-2]) provides excellent material
properties from ambient temperature cures (i.e. lab environment) and moderate temperature
posteures (50°C). Epoxy resins bond well to the Core-Cell foam with mechanical bond only as
there is no chemical interaction. One of the most advantageous properties of the epoxy is its low
shrinkage during cure that minimises internal stresses. Epoxy resins have also good water and
chemical resistance providing high electrical insulation. During the manufacturing, standard
hardener [9-2] with mix ratio of 100:25 by weight is used. The densities of the resin (before and

after cure) and the density of the hardener are as follows:

=1.127 glem’, P, ioostier cure = 1.148 glem?,

P resin—before cure

Drardener = 0.983 glem’.

9.2.2.2 Fibre Reinforcement

The reinforcing fibre (UT-E500 [9-2]) used during the sandwich structure construction
is the unidirectional (UD) glass fibre. Since orthotropic material properties are needed for FEA
of laminated composites, some of the material properties are approximated from the values
widely used in the literature. The following combined material properties (i.e. fibre and resin) of

the glass-fibre are used during the analysis.

E, =33.18x10° Pa, E, = E; =5.69x10° Pa,
Gy, =Gp3 =2.91x10° Pa, G,; =1.17x10° Pa (assumed)

Vip =Vi3 =y, = 0267, py. =2031.26 kg/m® (details in Appendix E).
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9.2.3 Geometrical Properties

The sandwich beam structure (450mm x 40.5mm x 14.6mm) used during the analysis
has four equal layers of UD glass fibre with layer orientation of [0°/90"], and total thickness of

1.3mm on each side of 12mm thick linear polymer foam core. Figure 9.1 shows the schematic

view of the layer orientation of GFRP sandwich structure.

GFRP \\N [90 ]

Upper Skin =—— —_  [90°]
[0° ]
Foam Core [O ]
[90°]

\\\\\\\\\\[0 ] Loggfgkin

Figure 9.1 Schematic view of the layer orientation of GFRP sandwich structure

9.3 Experimental Analysis
9.3.1 Fabrication of the Sandwich Beam Specimens with Embedded FOSs

In this section, the procedure for the integration of sensor network (i.e. optical fibre
with various number of FBG strain sensors) into GFRP sandwich composite structure is
described in detail considering bonding, location (Appendix F) and alignment issues of the
sensors. FOSs are embedded between the core and laminated skin during manufacturing. The
main aim of embedding FOSs at this particular location is owed to the fact that there is a high
tendency of separation (i.e. debonding) between the GFRP laminated skin and foam core in
sandwich structures under transverse vibration. Considering the layer orientation of the GFRP
laminated skin ([0/90];), which is made up of four equal layers of UD glass fibre material, the
optical fibres are positioned on the upper surface of the core and parallel to 0° glass fibre on the
skin. This configuration minimises the size of the local resin-rich region [9-3, 9-4], which
typically surrounds the embedded optical fibres and degrades the strength of the structure. As
resin infusion technique by vacuum bagging is used during the manufacturing of sandwich

specimens, it is an important issue to keep the fibre in its original position when the resin
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infuses into the vacuum bag. During infusion, the whole material is in liquid resin that might
easily dislocate the position of the optical fibre. Therefore, in order to keep the optical fibre in
its original aligned position and not to create any impurities within the structure, an epoxy resin
is used to pre-bond the optical fibre sensor to the core at particular selected points shown in Fig.

9.2. Since the FOS is thin and transparent, the path of the FOS is indicated in Fig. 9.2.

Figure 9.3 Thin plastic tube for the protection of FOS

After solving the alignment problem of the FOS, the second issue is to avoid potential back
reflection from the cleaved end that pollutes the reflected Bragg wavelengths. Therefore, a
curved-form (Fig. 9.2) is created near the cleaved end of the optical fibre to reduce the intensity

of the back-reflected light significantly. The optical fibre embedded into the structure is very
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delicate and fragile that extra covers (a thin plastic tube, Fig. 9.3) are used to take the sensor out
through the thickness of the sandwich beam specimen and to give it a bit more flexibility. Since
the main aim is to manufacture a GFRP skin sandwich beam specimen, pre-bonded FOS is
covered with another four layers of UD glass fibre (Fig. 9.4). By using non-sticking film bags,
the rest of the optical fibre at the exposed end, which is used to connect the sensors to the

interrogation system, is also sealed and shown in Fig. 9.5.

Figure 9.5 Optical fibres sealed in non-sticking film

After taking out the FOS from the layer between core and UD glass fibre, the whole panel (Fig.
9.6) is sealed by using sealant tape, covered with vacuum bagging film and then the resin is

infused. After infusion, the panel is left for curing at room temperature for approximately 15
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hours. Finally, the beam specimen is cut by using diamond-coated saw. One of the sandwich

beam specimens manufactured by using the method explained above is shown in Fig. 9.7.

Figure 9.6 Sandwich panel under vacuum bag

Figure 9.7 Sandwich beam specimen with embedded FOS

9.3.2 Curing Effect on FOS

The change in positions of the peaks (i.e. the reflectivity) of the wavelengths is
monitored before and after the curing process in order to investigate the effects of curing on
strain measurements. Figures 9.8 and 9.9 show the curing effect on two different fibres having

six Bragg gratings embedded into sandwich structure.
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It can be concluded from the Figs. 9.8 and 9.9 that the effect of curing on sensors leads
the peak of the Bragg wavelengths to shift to lower values and to decrease their intensities since
the curing of the resin creates a residual stress over and around the optical fibre. As the Bragg
wavelength of the first sensor (S1) has shifted a value that almost overlaps with one of the
reference gratings (Refl), the measurements from this particular sensor cannot be obtained.
Thus, one of the important issues is to write the gratings in such a way that they are spaced in
wavelength domain both from each other and from the reference gratings in order to avoid

overlapping.
9.3.3 Introducing of Damage

During the manufacturing process, a Teflon tape is inserted between the foam core and
the GFRP skin along the length of the sandwich beam. In order to create two different damage
extents, the length of the Teflon tape is increased from 30mm to 40mm by keeping its width
constant as 40.5mm that is equal to width of the specimen. By removing the upper surface of the
skin and the Teflon tape, the final form of the damaged sandwich test specimen is obtained.
Table 9.1 shows the location and the extent of the damage introduced to sandwich beam

specimens. The locations are measured from the fixed end to the centre of the damage.

Table 9.1 Extent and location of the damage

Damage Extent Location
Number [mm] [mm)]

1 30 70

2 30 300

3 40 170

4 40 200

9.3.4 Frequency Measurements

The first three resonant frequencies of the intact and four damaged beams are obtained
under random excitation in the range of 10Hz to 710Hz. Figures 9.10 to 9.12 show peak-to-
peak response of the accelerometer attached to surface of the intact and selected damaged beams
(i.e. beams with damage number 1 and 2 in Table 9.1). Intact, damaged and corresponding

normalised resonant frequencies of these cantilever sandwich specimens are also tabulated in
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Table 9.2. An extensive modal analysis performed on sandwich beam specimen is given in

Appendix B.
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Table 9.2 First three resonant frequencies [Hz] (Experimental)
Damaged Beam ./;Iumage:l
I ntaCt /;m act
Mode No Beam Damage at 70mm  Damage at 300mm Damage at 70mm Damage at 300mm
1* Bending 40.5 18.3 37.6 0.4518 0.9284
2" Bending  243.6 238.0 146.5 0.9770 0.6014
3" Bending 583.8 542.5 455.5 0.9293 0.7802

9.4  Finite Element Modelling and Analysis

Three dimensional higher order solid elements (SOLID95 for core and SOLID191for
GFRP laminated skin) are selected to model the sandwich beam. In order to validate the model
(i.e. combination of SOLID95 and SOLIDI191) with the results from [G-1, G-2], FEA is
performed with graphite/epoxy-aluminium sandwich plate (details in Appendix G). Having

decided the element types, boundary condition effect on FEM of sandwich beam is also
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investigated (details in Appendix H). The final form of the sandwich beam model can be seen in

Fig. 9.13.

End

Location

Figure 9.13 Finite element model of sandwich beam (isometric view)

The model has 90 and 6 element divisions along the length and the width respectively and it has
one element through the thickness in both upper and lower skin and the foam core. The FEM
has 1620 elements (i.e. 1080 SOLID191 and 540 SOLID95 elements) with 9163 nodes. This
mesh density is used for all further simulations in order not to increase the computational time
as the results obtained from two other models having different mesh densities (i.e. 3240
elements with 18253 nodes and 4320 elements with 21413 nodes) provided less than 0.1 per

cent difference in the computed natural frequencies.

9.4.1 Modelling of Damage

The damage is modelled by removing the elements located at the upper surface with
different extents (Fig. 9.13). In finite element modelling, 5 different damage severities (i.e. 10,
20, 30, 40 and 50mm extent) are simulated at 26 different locations (i.e. locations away from
fixed end between 50mm and 300mm by increment of 10mm) along the beam. Therefore, 130

different damage scenarios are created on different models. Figures 9.14a to b show FEM of
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two different damaged beams. The damage samples in Figs. 9.14a and b have the damage

extent of 30mm and they are 70mm and 300 mm away from cantilever end respectively.

(2) (b)
Figure 9.14 Finite element models of damaged beams

(a) Damage located at 70mm (b) Damage located at 300mm

9.4.2 Finite Element Frequency Analysis

The natural frequencies of intact beam and damaged (130 damage cases) are obtained
from the first three vertical bending modes. The damaged natural frequencies are normalised
with respect to the intact ones in order to consider the effect of frequency reduction due to
damage. The first three natural frequencies of intact and two selected damaged beams obtained

from FEA are tabulated in Table 9.3.

Table 9.3 Natural frequencies details [Hz] (FEA)

Damaged Beam f dmmaged
IntaCt j;n/ncl
Mode No Beam Damage at 70mm Damage at 300mm  Damage at 70mm Damage at 300mm
1¥Bending 46.95 21.16 43.62 0.4507 0.9291
2" Bending 251.12 243.75 160.12 0.9707 0.6376
3" Bending 591.90 573.15 457.69 0.9683 0.7733

As it can be seen from Tables 9.2 and 9.3 that the experimentally obtained reductions in
resonant frequencies from the first three modes show strong agreement (i.e. less than 4%
deviation) with the ones obtained from FEA for two different damage located at 70mm and

300mm with an extent of 30mm.
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9.4.3 Sensitivity Analysis on Changes in Frequency

Since 5 different damage extents at 26 different damage locations are not enough to
create a complete training input set for ANNs, damage scenarios are extended by interpolating
(i.e. linear interpolation) the normalised natural frequencies for the damage extents between
10mm and 50mm by an increment of 1mm which gives 41 different damage extents at 26
different damage locations along the beam. Finally, the normalised natural frequencies from
1066 damage cases are obtained from the first three vertical bending modes and their variations

are shown in Fig. 9.15.

9.5 ANN Predictions

Reduction in natural frequencies is given as input feature to three different ANNs
(Table 9.4) to predict the severity and the location of the damage. 1000 and 66 input-output
pairs are introduced to ANNs in the training and the validation runs respectively. In the first
training run (RNF-DS), the mean square error (Fig. 16a) is reduced to a value of 1.85:10™ after
5000 epochs. The corresponding regression plot of this run can be seen in Fig. 16b. The second
ANN training run (RNF-DL) is for the location prediction of the damage. Figures 9.17a and b
show training and validation performance of this ANN with increasing epochs (i.e. mean square
error value of 7.50-10° after 5000 epochs) and the corresponding regression plot respectively.
The final run aims to train the designed ANN (RNF-DS&DL) for both damage quantification
and localisation. Since the feature (RNF) does not provide enough information related to both
damage severity and location at the same time in single ANN, the mean square error value (Fig.
9.18a) reaches to a value of 3.95-10 after 5000 epochs that is the highest among the others.
Figure 9.18b and ¢ show regression plots for damage severity and location respectively for this
particular ANN run. The value, R, in the regression plots is the correlation coefficient between
the outputs (i.e. predicted values) and targets and it shows the measure of how well the variation
in the output is explained by targets. That means, the closer to value of 1, the better the fit and

the correlation it indicates.

Table 9.4 ANNs used in the damage prediction of sandwich beam

Input Output Architecture
1. RNF DS 3:6:1
2. RNF DL 3:6:1
3. RNF DS&DL 3:8:2
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Having completed the training of ANNs, experimentally obtained data is introduced in
order to predict damage size (extent) and its location along the sandwich beam specimens. All

the test results of these ANNSs are tabulated in Table 9.5.

Table 9.5 Damage size and location predictions

Experimental Damage ANN Test Results
[TARGETS] [PREDICTIONST
INPUT OUTPUT  Size [mm] Location [mm]  Size [mm] Location [mm]
RNF DS 30 70 36.8 (22.7) -
RNF DS 30 300 32.5(8.3) -
RNF DL 30 70 - 75.4 (7.7)
RNF DL 30 300 - 303.7 (1.2)
RNF DS&DL 30 70 353 (17.7) 93.2 (33.1)
RNF DS&DL 30 300 38.6 (28.7) 292.1 (2.6)
RNF DS 40 170 42.9 (7.3) -
RNF DS 40 200 42.0(5.0) -
RNF DL 40 170 - 189.2 (11.3)
RNF DL 40 200 - 227.0 (13.5)
RNF DS&DL 40 170 40.6 (1.5) 159.7 (6.0)
RNF DS&DL 40 200 42.5 (6.2) 218.8 (9.4)

"Numbers in parentheses denote % deviation from target values
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9.6 Conclusions

In this chapter, the fabrication of sandwich beam structures with embedded FBG strain
sensors was presented with the results of the dynamic analyses performed on them. Results were
considered in the context of predictions regarding quantification and localisation of the damage.
Since creating an accurate FEM is one of the most important issues in model-dependent
vibration-based analysis for damage identification, the dynamic analysis results for the
sandwich test specimens were compared to those obtained from FEA. The comparative data
shown in Tables 9.2 and 9.3 clearly validated the numerical models.

Following the validation of the numerical study, experimental dynamic analyses were
carried out on sandwich test specimens with embedded FBG strain sensors. It can be concluded
from the analyses (details in Appendices A and B) that the FBGIS used in the experimental
study provided accurate dynamic and static strain measurements from limited number of FBG
strain sensors. However, the frequency domain of experimental interest was predetermined by
the geometrical dimensions of the sandwich beams. For the intact and damaged beams
investigated in this study, the frequency range was between 18Hz and 600Hz. (Figs. 9.10 -
9.12). Since the highest frequency of interest is approximately 600Hz, a superior FBGIS that
supports dynamic strain measurements from multiple FBGs to a minimum 1.2kHz sampling
frequency is required in order to investigate the first three strain modes shapes of the sandwich
test specimens. Therefore, experimental reduction in frequency information obtained from intact
and damaged sandwich beams was introduced to numerically trained ANNs in order to predict
extent and location of the damage (Table 9.5).

It can be seen from the Figs. 9.16 and 9.17 that lower MSE (i.e. 7.50-10”) and higher R
(i.e. 0.994) values were obtained in the location predictions. This indicates that a better
generalisation was achieved in localisation than quantification of the damage during the training
and validation of the ANNs. When experimentally obtained frequency data was introduced to
ANN for severity prediction (i.e. RNF-DS), the predicted values showed slight overestimation
for both damage sizes of 30mm and 40mm. On the other hand, the ANN trained for damage
location prediction (i.e. RNF-DL) provided more accurate estimation for the location of the
30mm damage size rather than that of the 40mm one. This is contrary to the observation in
Chapter 7 where this combination (i.e. RNF-DL) did not provide good prediction for damage
location. However, one should note that the extent of damage in the sandwich beam is different.

Final test run (RNF-DS&DL, Fig. 9.18) was performed for both severity and location
estimation of the damage. As it can be seen from Table 9.5, although the ANN predicted the
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size of the damage quite accurately, under and over estimations were observed in damage
location predictions. Despite the numerous factors that affect the accuracy of the vibration-
based analysis performed on intact and damaged sandwich beams (details in Appendix I), the
damage location and severity predictions obtained from the ANNs are close to target values

with acceptable deviations.
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Chapter Ten  DISCUSSION

10.1 Achievements

In this thesis, damage identification in beam-like structures has been performed by
using vibration-based analysis and artificial neural networks. The term “damage identification”
is used here to indicate the use of measured vibration-based structural response in detecting
changes in the condition of the structure. These changes are assumed to vary due to the extent
and the location of the damage occurring in the structure. Thus, one of the main challenges in
damage identification based on response measurements is to locate and quantify the damage

from the limited number of locations monitored by sensors (Chapter 3).

The most important conclusions of this work are summarised and its new contributions

are highlighted in the following paragraphs.

The first part of the study concentrated on finite element modelling and analyses of
intact and damaged cantilever beams since the accurate finite element model is essential for
vibration-based damage assessment methods using model-dependent approach. As one of the
objectives of the present work is to identify damage in structures from changes in their vibration
responses, damaged beam models have been generated through local stiffness or thickness
changes at different locations with various severities from intact models (i.e. control structures).
After performing dynamic analyses, which provide natural frequencies, displacements and
curvature mode shapes by using previously generated damage scenarios, sensitivity analyses
have been performed in order to investigate the effects of varying locations and extents of
damage on eigenparameters.

Having obtained vibration-based analysis patterns mentioned above, damage prediction
indicators (i.e. features) have been selected. The first feature used in the damage identification
analyses was reduction in natural frequencies (i.e. RNF) due to damage. Depending on the
location of the damage, different modes of the beam could be affected to different extents by

making the problem non-unique. Therefore, the study focused on the effect of multiple modes
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by considering the first three natural modes of the beams in the analyses. It can be concluded
from the sensitivity analyses performed on beams having different extents of damage at
different locations along the span of the beams that the percentage reduction in natural
frequencies increase with the increasing severity of the damage. Additionally, considering a
particular mode of vibration, when damage is located at or close to higher curvature point, the
percentage reduction in natural frequency due to damage is considerably higher than the one
observed when the damage is located at or near to one of the nodal points of that curvature
mode shape.

As eigenfrequencies are a global property of a structure, absolute differences between
curvature mode shapes of the intact and the damaged beams have also been investigated to
provide extra information in the prediction of the location of the damage. It is found from the
sensitivity analyses that, by and large, the maximum values of the absolute differences in
curvature modes occur near damage location. Thus, the maximum values of the absolute
differences in curvature mode shapes (i.e. MADC) and their spatial location along the beam (i.e.
LOC) have also been used for localisation and quantification of the damage together with
reduction in natural frequencies. The main reason for choosing only the maximum values of the
absolute differences in curvature mode shapes is to keep number of vibration-based analysis
features as low as possible and yet obtain a high accuracy in the location and severity
predictions by improving the damage assessment method.

In literature (Chapter 2), local and global patterns (i.e. curvature mode shapes and
natural frequencies, Table 2.2 and 7.5) obtained either from numerical or experimental
vibration analyses data have been used in ANN applications as input in the damage detection of
beam structures. However, there is no particular study found in the literature dealing with
composite structures regarding different combinations of the features extracted from vibration
analysis data and using them as input to ANN to investigate the severity and location of the
damage. Therefore, based on the results of sensitivity analyses performed on intact and
damaged composite beams, the damage sensitive features (i.e. RNF, MADC and LOC) from
vibration-based data obtained from the first three modes have been introduced to ANNs [7-1].
Since the aim of these analyses (Chapter 7) has been to investigate the effectiveness of these
features and their different combinations in the damage identification process as training set to
ANNs, normalised geometrical and dimensionless elastic properties of FRP laminated

composite structures have been used in the finite element analysis.
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The ANNs designed and used during the analyses are multi-layer feedforward neural
networks with backpropagation learning. These types of ANNs are also called pattern associator
and frequently used for classification and prediction purposes. Initially, fifteen different neural
networks with single hidden layer have been designed for the prediction of severity (as a single
output), location (as a single output) and both severity and location in single neural network
having two outputs. Before introducing this vibration data to ANNs, a pre-processing has also
been performed in order to arrange the data in such a way that ANNs can use them directly as
input-output pairs. The first step in pre-processing is the normalisation of input and output pairs.
After normalisation, it is necessary to add artificial noise to noise-free input data at some
percentages to check the generalisation of the neural network and to simulate the experimental
uncertainties.

The detailed analysis considering the performance of multi-hidden-layer ANNs has also
been examined and compared with the one having a single hidden layer. The analyses
performed on two-hidden-layer ANNs have been shown in Appendix D. Considering the
computational time issue and the general fact that an ANN with single hidden layer can be
trained to solve pattern recognition problems, single hidden layer ANNs have been selected and
used throughout the analyses. As the number of neurons in the input and the output layers have
been restricted with the data introduced to ANNs during the training, only the number of
neurons in the hidden layer could be adjusted to optimise the performance of the designed
ANNSs. Thus, different ANN architectures have been tested. Based on this, a particular group of
network configurations has been selected to use in further simulations as they have provided the
best estimations for both localisation and quantification of the damage. The number of epochs
has also been adjusted in such a way that the best convergence in MSE could be achieved
during the training and validation of the ANNSs.

As mentioned earlier, it is important to provide vibration signatures from multiple
modes to solve the non-unique and inverse damage detection problem. Hence, the effects of
multiple vibration modes on the predictions of ANNs have also been investigated. The noise-free
features extracted from each individual mode of vibration have been introduced to single-
hidden-layer ~ANNs. Four different ANNs (RNF, MADC, MADC&LOC and
RNF&MADC&LOC as input features) have been selected for training. By comparing their
performance, it can be concluded that generalisation and accuracy in predictions improved as
the number of features increased through the addition of higher modes. Full details of this

particular analysis can be found in Appendix C.

150



Chapter 10 Discussion

The results obtained from ANN predictions performed on laminated composite beams
regarding damage severity and location indicated that neural networks with single output (i.e.
either location (DL) or severity (DS)) operated more accurately than neural networks with
combined outputs (i.e. both severity and location (DS&DL)). The level of artificial noise on
input data also affected the predictions and accurate results have been obtained in the
localisation of the damage as compared to damage quantification when the increased level of
noise-polluted data has been introduced to ANNs. Finally, it can be concluded from the
predictions of the ANNS that the vibration-based patterns, extracted features, effect of noise on
these features, architecture and training of the ANNs are the most important factors played an
important role in the accuracy of the structural damage assessment method. The numerical
analyses results of the present study [7-2] could serve as a benchmark for future investigators in
selecting ANN as a damage detection tool.

Having gained an extensive knowledge about the damage detection by vibration-based
analysis via ANN on numerically generated data with artificial damage scenarios, experimental
analysis has been dealt with both intact and damaged isotropic beam specimens with distributed
surface bonded strain gauges (Chapter 6). First, structural responses of steel beams have been
obtained by using miniature accelerometer under both frequency sweep and random excitation.
Then, constant frequency excitation was applied at each resonant frequency of interest to obtain
dynamic strain mode shapes at these particular frequencies. The experimental vibration data
agreed well with the numerically obtained results for isotropic beams especially for intact case.
However, the experimental results obtained from the damaged steel beam showed some
variations at the damage location regarding the dynamic strain data. The possible reasons for
this deviation could be from the method used in the calculations of curvature modes, the way of
modelling of the structural damage and from the other source of errors involved during the
experimental analysis. The damage detection algorithm that uses combination of global and
local vibration-based analysis data as input to ANNs for location and severity prediction of the
damage in isotropic beam structures via distributed surface bonded electrical strain gauges has
also been validated experimentally [8-1]. The predictions of the ANNs regarding the damage
severity and location provided reasonable accuracy, albeit for one test case only (Chapter 8).

In the final part of the experimental study (Chapter 9), GFRP sandwich beam structures
with embedded FOSs have been manufactured via resin infusion technique by vacuum bagging.
Considering their advantages (Table 2.5) on conventional electrical strain gauges, FOS with
multiple Bragg gratings have been selected and used to monitor internal static and dynamic

strain in sandwich beam structures. The GFRP sandwich structure used throughout the analyses
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has polymer foam core covered with four equal layers of uni-directional glass fibre with layer
orientation of [0/90]; on each side. FOSs have been embedded between core and laminated skin
during the manufacturing. The main reason of embedding FOSs at this particular location is
owed to the fact that there is a high tendency of separation between the GFRP laminated skin
and foam core in sandwich structures under transverse vibration as this is the interface where
two different materials meet. By positioning FOS parallel to 0" glass fibre on the skin, the size
of the local resin-rich region surrounding the embedded FOS has been minimised.

After embedding optical fibres, the effect of curing on FBG strain sensors has also been
investigated by monitoring the changes in positions of the peaks (i.e. the reflectivity) of the
wavelengths. It was observed from the cure monitoring that the peak of the Bragg wavelengths
shifted to lower values and their intensities decreased as the curing of the resin created residual
stresses over and around the optical fibres. As the Bragg wavelength of the first sensor
overlapped with one of the reference gratings, the measurements from this particular sensor
could not be obtained. Thus, the FBGs should be written in a way that they are spaced in
wavelength domain both from each other and from the reference gratings in order to avoid
overlapping.

Having manufactured the sandwich beam specimens, analyses have been performed to
investigate the capabilities of the FBGIS and the effectiveness of the FBG sensors on static and
dynamic strain measurements. The static analysis (Appendix B) performed on GFRP sandwich
beams showed that embedded FBG strain sensors have provided accurate local strain. On the
other hand, dynamic strain history (Appendix A) obtained from multiple FBG strain sensors is
restricted with the capabilities of the FBGIS. Hence, experimental validation of the damage
detection algorithm on GFRP sandwich beam-like structures has been achieved by introducing
reduction in natural frequency information to ANNs. The ANNs trained for the damage
identification with FEA data have been tested by using an experimental input and accurate
location and severity estimations have been obtained with acceptable deviations from the

desired target values.

A list of publications arising from this research is given in Appendix J.
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10.2 Future Work
The following suggestions are made for future research:

» Generalisation of the proposed algorithm to two-dimensional structures with sensor
optimisation

As one-dimensional beam-like structures were used throughout the study, the work can be
expanded by generalising and applying the algorithm to two-dimensional plates or shell
structures. This requires a strain sensor network that can provide double curvature information
under dynamic loading conditions. This brings the necessity of optimisation in number of
sensors and their locations. The key point in selection and use of sensors for structural health
monitoring is to install them in such a way that the dynamic mechanical characteristics of the
host structure are not significantly modified. Therefore, the optimisation procedure is one of the
crucial stages in the design of health monitoring system and it plays an important role from the

final design and maintenance point of view.

> Inclusion of horizontal bending and torsion modes in the analysis
This thesis addressed the application of the vibration-based damage identification method by
using only the vertical bending modes of vibration of the beam-like structures. Depending on
the behaviour of the damage, different types of vibration modes might provide additional
information in the detection, localisation and quantification of the damage when they are

introduced as input feature to ANNS.

> Inclusion of multiple damage scenarios
The damage identification method proposed here considers single damage case. The further
research requires the investigation of more damage sensitive features from multiple damage

scenarios as there is always a possibility of having more than one damage in the structure.

> Investigation of the residual life of a structure
Since distributed strain information was obtained and served as one of the damage sensitive
features, it can also be used to obtain stress information that might be combined with various
fracture mechanics criteria and fatigue analysis in the determination of the remaining life of the

structure. Depending on the type and the loading condition, structural health monitoring and
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damage detection methods can be improved to investigate higher levels of damage assessment

such as Level#4 (Section 1.1).

> Application of the technique to real structures
As the damage detection technique used in this study was applied to small-scale models and test
specimens in controlled laboratory environment with artificially introduced damage, there is a
need to implement the technique to real aeronautical, civil, marine and off-shore structures

having complex shape and boundary conditions with unknown environmental and operational

conditions in their service life.
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A damage identification technique using model-dependent vibration-based analyses has
been developed and employed in quantification and localisation of damage in beam-like
structures. The approach adopted is based on the use of measured vibration data from
accelerometers, surface bonded strain gauges and embedded fibre Bragg grating (FBG) strain
sensors to identify different extents of damage at various locations along the structures via

artificial neural networks (ANNs).

Finite element models of steel, fibre reinforced plastic (FRP) laminated composites, and
foam-core sandwich beam-like structures were produced and modal analyses were performed on
models with artificially generated damage scenarios in order to obtain input-output data sets for
training of ANNs. A group of features providing both global and local damage information were
extracted and introduced to ANNs with different combination in the form of normalised relative
changes between healthy and damaged structures. As one of the aims of the technique adopted
here was to test the efficacy of selected vibration signatures, ANNs were chosen as information-
processing algorithms for the solution of this non-unique and inverse pattern recognition
problem. The results of the numerical simulations showed that both selected features and the
level of artificial noise added to them are very important from the generalisation and robustness

point of view of the designed ANNSs.

As sensors used for vibration measurements become increasingly inexpensive, a
structure can be densely populated with them, making damage easier to quantify and localise by
providing more information. Hence, experiments were performed by using surface bonded
strain gauges and embedded FBG strain sensors in beam-like structures to collect information
about the condition of the host structure and to estimate location and severity of damage with
numerically trained ANNs. It has been observed from the experimental work of damage
detection that there is strong correspondence between the selected features and the ANNs

predictions regarding the location and severity of damage.
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It can also be concluded from the proposed approach that better localisation of damage
was achieved without compromising the accuracy in damage quantification predictions. Finally,
the study proved that a combination of global and local vibration-based damage sensitive
features measured from beam-like sensory structures used as input to ANNs from multiple

modes is very effective in identifying damage patterns.
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Appendix A FIBRE OPTIC BRAGG GRATING INTERROGATION
SYSTEM

One of the important factor plays an important role during the dynamic strain
measurements is the determination of the scanning frequency for the fibre optic Bragg grating
interrogation system (FBGIS) so that it could scan multiple FBG sensors fast enough to capture
high frequency excitation. Therefore, the intention of this appendix is to provide the dynamic
strain measurement results obtained from sandwich cantilever beam and in this way to verify the
dynamic measurement capabilities of the interrogation system and show its’ limitations.

The sandwich beam used in the experiment has a length of 450mm and a width of
40.5mm with a total thickness of 14.6mm, which includes a core thickness of 12mm and a
laminated skin thickness of 1.3mm on either side of the core. The laminated skin consists of
four equal layers with a layer orientation of [0/90];. FBG sensors were embedded between the
core and the upper laminated skin at 30mm, 70mm, 130mm and 170mm from the root in order
to monitor dynamic strain along the beam. The cantilever sandwich beam is vibrated by random
excitation and following strain histories (Fig. A.1) are recorded from the embedded FBG
sensors individually. Then, FFT of the strain histories are calculated and shown in Fig. A.2.

Sensors are numbered starting from the one closer to cantilever end of the beam.
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Fig. A.1 (continued over)
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Figure A.1 Strain histories of four sensors.
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Figure A.2 Frequency spectrum of four sensors.

The frequency response (Fig. A.3) of the specimen under random excitation is also
obtained from an accelerometer mounted near root of the beam. The numbers near each peak

response indicate experimentally obtained resonant frequencies.
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Appendix A Fibre Optic Bragg Grating Interrogation System

It can be seen from the Fig. A.2 that the scanning rate of the FBGIS is capable of
capturing the frequency content accurately from individual FBG strain sensors at excitation
level just over 250Hz as the frequencies corresponding to maximum amplitude values match
with the resonant frequencies obtained from the accelerometer (Fig. A.3). Therefore the
interrogation system can be used for further experimental analysis aiming to measure dynamic

strain from limited number of FBG strain sensors embedded into sandwich beam structure.
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Figure A.3 Frequency response of a sandwich beam.
The following calculations show the steps followed to calculate the scanning frequency
for the FBGIS with eight FBG strain sensors.

(2-10%)
dioclk x (36 + blanks )]

Scanning frequency for one point [Hz]: f = [

where;

dioclk [ns] = The digital clock set in the interrogation system = 500 (optimum)

blanks = The buffer spacing = 128 (optimum)
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1n°
f:[ 2100) ___9439.10° Hz

500 (36 +128)]
Scanning period for one point [s]: ¢ = 1

1

t= = 4.1.10"s
24.39-10

Scanning period for n number of FBG sensors [s]: £, oo = 2° (7, )- (samppts)- (dithpts)-t
where;

n =number of FBG sensors = §

n, = total number of FBG sensors including 2 reference gratings = n+2 = 10

samppts = the number of sampling points used to track the reflective peak of a particular
Bragg grating = 2 (optimum)

dithpts = dither points to track the changes in the centre wavelength = 2
Scanning petiod for eight FBG sensors: fg . =2+ (10)-(2)-(2)-4.1-107° =3.28-107 s

Scanning frequency for n number of FBG sensors [Hz]: £, oo = !

n sensors

Scanning frequency for eight FBG sensors: fg neors = 3—2&;_1?; =304.878 Hz

As the sampling frequency should be at least two times higher than the highest
frequency of interest, interrogation system can be used with eight FBG strain sensors to obtain
dynamic strain up to 150Hz that is much lower than the second resonant frequency of the

sandwich beam specimen.
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Appendix B MODAL AND STATIC STRAIN ANALYSIS OF
SANDWICH BEAM SPECIMEN

In modal analysis part, the resonant frequencies of cantilever sandwich beam (450mm x
40.5mm x 14.6mm) are investigated by applying impact and frequency sweep type excitations
and the corresponding response of the beam is monitored by using piezoelectric accelerometer.
In static strain analysis part, the local strain value is obtained from an electrical resistance strain
gauge and FBG strain sensors. Finally, both experimentally obtained dynamic and static

analysis results are compared to FEA ones.

B.1  Modal Analysis

B.1.1 Estimation of Frequency Response Function

The mathematical basis of frequency analysis [B-1, B-2, B-3, 6-4, 6-5] is the Fourier
Transform taking different forms that depends on the type of signal analysed. In this analysis,
since the signal is discrete in both time and frequency domains, Discrete Fourier Transform
(DFT) is used. Lets g(%,) be a sampled time function (or sequence), the forward transform of this

signal is expressed as;

l N-1 —ji’ﬂ'i
G(fk)=—]\72g(fn)e ¥ (B.1)
n=0

where N is the number of time samples (or frequency components) and —]lif—is the simple scaling

factor. In discrete Fourier transform, to obtain N number of frequency components, N’ complex
multiplication must be done. On the other hand, another calculation procedure, which is called
as Fast Fourier Transform (FFT), provides the same result with a number of complex

multiplications of the order Nog,N. This means, FFT algorithm reduces the computation time
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drastically. The discretisation of the originally continuous time history can cause a phenomenon

called aliasing where a high frequency signal is sampled and takes on the appearance of a lower
frequency. To avoid aliasing, a sampling rate, £, , which is given by f, :211—’ can be chosen in
f

such a way that it is at least two times greater than the cut-off (highest frequency of interest)
frequency. Therefore, the upper frequency limit of a digital signal called Nyquist frequency (or
folding frequency) is half of the sampling frequency and taken as 5000 Hz. Since, the first three
bending natural frequencies are lower than 5 kHz, this value can be accepted as a cut-off
frequency. Here At is the time interval and the reciprocal of the total time (7) gives the analysis

resolution. All the values used during the analysis are tabulated in Table B.1.

Table B.1 Parameters used during the analysis

Parameters Value
Time interval, A¢ 0.0001 s
Total time, T 3s
Total data recorded, N 30000
Sampling frequency, f, 10000 Hz
Nyquist Frequency, f,,, 5000 Hz
Analysis resolution, Af 0.333 Hz

In dual-channel frequency analysis, there are two signals and for each signal the time
function is transformed by using FFT algorithm to a complex spectrum. The squared amplitudes
of a number of such instantaneous spectra are averaged in an averaging buffer to give the “auto-
spectrum” for that particular signal (Eqs. B.2 and B.3). If the instantaneous spectra of both
channels are used then “cross-spectrum” can be obtained by using equation (B.4). Another
important parameter called coherence, the ratio of the square of the magnitude of the averaged
cross-spectrum between the force and the response to the product of the averaged autospectra of
the force and the response, gives a measure of the degree of the linear dependency between the

two signals as a function of frequency (Eq. B.5).

2
S (f) = Tlir}nw E E(I%_)L (B.2)
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0

Y 2
Sy ()= lim EI——Z(—;Q’— (B.3)

o)
Sy (f) = lim E—— " (B.4)
T T
2
Sy ()]
02 =t <1 B.5)
o=y 8,0
Uncorrelated Data Correlated Data

After obtaining cross- and auto-spectrums, the normalisation of the cross-spectrum with
input and output auto-spectrum, H;(f)(Eq. B.6) and H, (f) (Eq. B.7) type estimators can be
obtained respectively. On the other hand, H,(f)type estimator is based upon the concept of

total least squares that is shown to be the maximum likelihood estimator for frequency response

function H(f)of a linear time-invariant system (Eq. B.8).

H(f)= -i—’z%—; (B.6)
Hy(f) = M (B.7)
Sxy ()
H,(f)= Sp() —K(sz) S?X) W) (B.8a)
yx
W(f) =[Sl f)r(F) =S, ()] +4Sy (£ -x(f) (B.8b)
K(f) _ Syy_noise ) (B.8C)

Sy _noise(f)

Figure B.1 shows the schematic representation of obtaining frequency response function

estimators.
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Figure B.1 Schematic representation of calculating the frequency response function estimators

B.1.2 Experimental Resonant Frequencies from Estimators

The first three vertical and two horizontal bending resonant frequencies are obtained by
using impact hammer and monitoring the response from a piezoelectric accelerometer mounted
to tip of the beam. Figures B-2 and B-3 show force and acceleration time histories, calculated
estimators and coherence in the estimation of vertical and horizontal resonant frequencies of the
cantilever sandwich beam respectively. Table B.2 presents these resonant frequencies in a

tabulated form.
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Figure B.2 Vertical bending resonant frequency estimation

(a) Force time history (b) Acceleration time history

(c) H, estimator (d) H; estimator (e) H, estimator (f) Coherence
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Table B.2 Resonant frequencies from estimators

Mode No Resonant Frequencies [Hz]
1* Vertical Bending 41.0
1* Horizontal Bending 80.0
2" Vertical Bending 238.0
2" Horizontal Bending 496.0
3" Vertical Bending 584.0

B.1.3 Experimental Resonant Frequencies from Frequency Sweep

In the second part of the modal analysis, resonant frequencies are estimated by
sweeping the frequency via electro-dynamic shaker in the frequency range of 10Hz to §10Hz
(for the first three vertical bending resonant frequencies), SHz to 125Hz (for the first horizontal
bending resonant frequency) and 185Hz to 515Hz (for the second horizontal bending resonant
frequency). The corresponding frequency responses are shown in Figs. B.4 to B.6 and the

resonant frequencies are tabulated in Table B.3.

40.5 Hz 237.0 Hz

573.5 Hz

100.00 20000 200,00 4p0. 00 509,00 60060 20000 00,00
Freq (H?)

an pk

Figure B.4 Vertical frequency response of sandwich beam (10 Hz to 810 Hz)
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Figure B.5 Horizontal frequency response of sandwich beam (5 Hz to 125 Hz)
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Figure B.6 Horizontal frequency response of sandwich beam (185 Hz to 515 Hz)

Table B.3 Resonant frequencies from frequency sweep

Mode No Resonant Frequencies [Hz]
1* Vertical Bending 40.5
1¥ Horizontal Bending 82.0
2" Vertical Bending 237.0
2" Horizontal Bending 484.0
3" Vertical Bending 573.5
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B.1.4 Natural Frequencies from FEA

The normal mode dynamic analysis is performed on FEM of cantilever sandwich beam.
The details about the modelling of the beam, geometrical and material properties, selection of
element type and boundary condition effect are given in Appendices E, G and H. The first six

natural frequencies obtained from FEA are tabulated in Table B.4.

Table B.4 Natural frequencies from FEA

Mode No Natural Frequencies [Hz]
1* Vertical Bending 45.865
1* Horizontal Bending 82.840
2" Vertical Bending 249.901
Torsion 275.161
2" Horizontal Bending 484.809
3" Vertical Bending 591.268

In order to investigate the effect of the 4-gram piezoelectric accelerometer mounted at
the tip of the beam, a concentrated mass is modelled by using MASS21 type of element in the

FEM. The natural frequencies of the sandwich beam with the existence of concentrated mass are

given in a tabulated form in Table B.5.

Table B.S Natural frequencies from FEA with 4-gram mass

Mode No Natural Frequencies [Hz]
1* Vertical Bending 43.390
1* Horizontal Bending 78.315
2" Vertical Bending 239.483
Torsion 272.704
2" Horizontal Bending 464.032

3' Vertical Bending 570.669
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B.2  Static Strain Analysis

B.2.1 Measurements by Strain Gauge

In order to verify FEM of the sandwich beam, the static strain analysis is performed by
bonding a strain gauge to upper surface of the structure on the centre line at location of 100mm
away from the root. A static load of 1000-gram is applied from the tip of the beam. A single
element electrical resistance gauge (FLA 3-23) with gauge length of 3mm, nominal resistance of
120 © £ 0.3 and a gauge factor of 2.15 is used to measure the strain on the surface of the beam.
The strain gauge and the beam structure can be seen in Fig. B.7. The local strain is calculated by
using equations (5.1) and (5.2) as:

£ =295.81 ue

x =100 mml experimental

Figure B.7 Sandwich beam with surface bonded electrical strain gauge

Same FEM used in dynamic analysis is chosen for the analysis of the static strain under
9.81N point force in negative Z direction creating a tension on the upper surface of the
cantilever sandwich beam. Figure B.8 shows the beam model and strain distribution along the
beam length. The nodal strain in X direction at location of 100mm away from the root of the
beam is also obtained for the sake of comparison as this is the location where the strain gauge is

bonded to the test specimen.
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Figure B.8 Strain distribution along the sandwich beam

The difference between experimental and numerical local strain (i.e. 9.48 us ) is due to

the estimated material properties in FEM, misalignment of the electrical strain gauge from the
centre line of the beam and the adhesive bonding between the electrical strain gauge and the

surface of the beam.

B.2.2 Measurements by FBG Strain Sensors

An analysis was carried out to establish the ability and accuracy of the FBGIS to
measure strain under static loading conditions. It involved setting up a cantilever sandwich
beam containing six FBG strain sensors located between the core and GFRP laminated skin at
30mm, 70mm, 130mm, 170mm, 210mm and 260mm from the cantilever end. A number of
weights were applied to the tip of the beam in order to obtain its static curvature shape and the
resulting strain was measured using the FBGIS. Figure B.9a shows a comparison of the
measured normalised strain, with respect to the first sensor measurement, under four different
static loads (i.e. 1kg, 1.1kg, 1.2kg and 1.3kg) with the results obtained from FEA simulation of
a similar sandwich beam.

It can be seen from Fig. B.9a that the FBG sensors exhibit the same behaviour under
different loading conditions proving the repeatability of the measurement process within the

elastic deformation range of the beam. Even though the FBG measurements do not exactly
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match with the linear profile of the FEA result, the measurements are evenly distributed around
it. A linear regression analysis is also performed on the FBG results (Fig. B.9b) and it indicates

a close match with the profile of the FEA analysis.
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Figure B.9 Comparison of FBG strain sensor measurements with FEA

(a) Normalised strain values for different static load (b) Linear regression curves

The slight deviation from the ideal FEA profile can be the result of many factors.
Primarily it can be attributed to the manufacturing process. This involves initial bonding of the
fibre containing the FBG sensors to the core creating resin rich area before the final infusion
process takes place. Therefore, when the final manufacturing step is taken and the resin is
infused, some areas of the optical fibre come into contact with the GFRP skin and some areas
come into contact with the foam core. Consequently, this type of coupling is not represented in
the FEM as it assumes perfect coupling between the GFRP skin and the core. Hence, there

would be a discrepancy between the measured FBG strain sensor results and the FEA ones.
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Appendix C EFFECTS OF MULTIPLE MODES ON PREDICTIONS
OF ARTIFICIAL NEURAL NETWORKS

The aim of this appendix is to present the effects of multiple modes on predictions of
ANNs. The features extracted from individual modes of vibration are introduced to single
hidden layer ANNs that have been trained and tested by using noise-free data sets in Chapter 7,

section 7.5.1. Table C.1 shows the tabulated form of the ANNs used during the analysis.

Table C.1 ANN architectures and input-output pairs

Input Output Architecture Epoch

1. RNF (1" Mode only) DS 1:6:1 2000
2. RNF (1* and 2™ Modes) DS 2:6:1 2000
3. RNF (1%, 2" and 3" Modes) DS 3:6:1 2000
4. MADC (1* Mode only) DL 1:6:1 2000
5. MADC (1" and 2" Modes) DL 2:6:1 2000
6. MADC (1%, 2™ and 3™ Modes) DL 3:6:1 2000
7. MADC&LOC (1" Mode only) DL 2:9:1 2000
8. MADC&LOC (1% and 2™ Modes) DL 4:9:1 2000
9. MADC&LOC (1%, 2" and 3™ Modes) DL 6:9:1 2000
10. RNF&MADC&LOC (1% Mode only) DS&DL 3:18:2 4000
11. RNF&MADC&LOC (1% and 2™ Modes) DS&DL 6:18:2 4000
12.  RNF&MADC&LOC (1%, 2" and 3 Modes) ~ DS&DL 9:18:2 4000

As it can be seen from Table C.1 that mainly four ANNs are trained. In order to make the
comparison easy in the generalisation of ANNs, the number of epochs are kept constant (i.e.
2000) when RNF, MADC and MADC&LOC are introduced as input features. Since
RNF&MADC&LOC (10", 11™ and 12™ ANNs in Table C.1) has large number of input data
compared to other ANNs, number of epoch is set to 4000 for these three networks. Figures

C.1-12 show severity and location predictions of ANNs with different input and output pairs.
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In the first set of training and test runs (ANNs No:1, 2 and 3 in Table C.1), RNF, which
is obtained from 1* mode, combination of 1% and 2™ modes and all three modes, was used input
feature for DS prediction. As it can be seen from Figs. C.1 to C.3, the predictions are in
acceptable 5% deviation range from the target values when multiple modes are introduced.
Moreover, a continuous decrease was achieved in MSE value (2000 number of epochs) from
single mode input to all three modes (Figs. C.1a-3a).

The second set of training and test runs (ANNs No:4, 5 and 6 in Table C.1) was
performed by using maximum absolute differences in curvature (MADC) mode shape data.
Since the input data (i.e. information from 1% mode only) was not enough for complete

generalisation, the predictions regarding DL showed large variation from the target values. MSE

reached to an approximate value of 3.2- 1072 after 2000 epochs (Fig. C.4a).
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Figure C.10 ANN results for location and severity prediction. Input:RNF&MADC&LOC
(1* Mode only) and OQutput: DS&DL (a) Mean square error with number of epochs

(b) Severity predictions (¢) Location predictions
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Introducing of MADC obtained from both 1% and 2" modes improved generalisation (Fig.
C.5b) by pulling MSE down to 4.4- 1073 (Fig. C.5a). Finally, MADC from all three modes of
vibration was used as input for DL predictions and MSE converged to its lowest value of
8.6-10 % as it can be seen from Fig. C.6a. The corresponding DL predictions are shown in Fig.

C.6b.

The improvement in DL predictions was achieved by addition of location information to

MADC. That means, MADC&LOC was used in the third set of training and test runs (ANNs

No:7, 8 and 9 in Table C.1). MSE values were reduced tolO_4 (Figs. C.7a-9a) and almost all
predictions laid within 5% limit by providing better generalisation compared to the ones

obtained from ANNs No:4, 5 and 6 in Table C.1.
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The final set of networks (ANNs No:10, 11 and 12 in Table C.1) involved in training
and test runs used RNF&MADC&LOC as input parameter for both DS and DL predictions. in
this case, there are slight over and under estimations in DS predictions (Figs. C.10b-12b) which
were improved by including higher modes. Considering DL predictions, the outputs are closer

to target values with acceptable deviations (Figs. C.10c-12¢).
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Appendix D DESIGN OF ARTIFICIAL NEURAL NETWORK
ARCHITECTURE

The aim of this section is to present a comparative study performed on ANNs that have
different number of hidden layers with different number of neuron combinations in each hidden
layer. During the analysis, ANNs with two hidden layers are designed, tested for damage
detection and their predictions are compared with each other and the ANNs with single hidden
layer used in Chapter7, section 7.5.1. All ANNSs in this section trained by using noise-free data
sets. Figures D.1 and D.2 show the schematic view of one and two-layer ANNs designed by

using MATLAB® Neural Network Toolbox [7-5] respectively.

Activation Activation
function 1 function 2

Input layer Hidden layer Output layer
with 6 neurons

Figure D.1 ANN with single hidden layer (Architecture 3:6:1)

Activation Activation Activation
function 1 function 2 function 3

Input layer Hidden layer 1 Hidden layer 2 Output layer
with 6 neurons with 6 neurons

Figure D.2 ANN with two hidden layers (Architecture 3:6:6:1)
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Appendix D Design of Artificial Neural Network Architecture

The detail information about the input-output (Table 7.2) and the test (Table 7.4) data

sets are already given in Chapter 7, sections 7.4 and 7.5. Only the ANNs showed best

performance during the training are selected for two-hidden-layer architecture applications. All

ANNSs used during the analysis are tabulated in Table D.1.

Table D.1 ANN architectures with two hidden layers

Input Output Architecture  Number of Epoch
1. RNF DS 3:6:6:1 10000
2. RNF DS 3:6:6:1 2001
3. RNF DS 3:6:3:1 10000
4. RNF DS 3:6:3:1 3150
5. MADC&LOC DL 6:9:9:1 10000
6. MADC&LOC DL 6:9:9:1 1351
7. MADC&LOC DL 6:9:6:1 10000
8. MADC&LOC DL 6:9:6:1 1001
9. RNF&MADC&LOC DS&DL 9:18:18:2 10000
10. RNF&MADC&LOC DS&DL 9:18:18:2 2401
11. RNF&MADC&LOC DS&DL 9:18:9:2 10000
12. RNF&MADC&IL.OC DS&DL 9:18:9:2 3201

The first four ANNs use reduction in natural frequency (RNF) as an input for the

damage severity (DS) predictions. The performance of these ANNs during the training process

and their severity predictions can be seen from Figs. D.3 to D.6.
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Figure D.3 ANN (3:6:6:1) results for severity predictions (Input:RNF, Output:DS)

(a) Mean square error with 10000 number of epochs (b) Severity predictions
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tean Square Error

training provides acceptable accuracy in the predictions (1** and 2™ ANNs in Table D.1) when
RNF-DS is used with two-hidden-layer ANN that has equal number of neurons in each hidden
layer. When the number of neurons in the second hidden layer is reduced to half (3" and 4"
ANNs in Table D.1), the predictions of the ANN trained for higher number of epochs are better
than that of the one trained up to 3151 number of epochs. Figures D.5 and D.6 show the
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Figure D.4 ANN (3:6:6:1) results for severity predictions (Input:RNF, Output:DS)
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It can be concluded from Figs. D.3 and D.4 that early stopping (i.e. 2001 epochs) in the

prediction results of these ANNs respectively.
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Figure D.5 ANN (3:6:3:1) results for severity predictions (Input:RNF, Output:DS)

(a) Mean square error with 10000 number of epochs (b) Severity predictions
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Figure D.6 ANN (3:6:3:1) results for severity predictions (Input:RNF, Output:DS)

(a) Mean square error with 3151 number of epochs (b) Severity predictions

Second group of ANNSs are the ones used maximum absolute differences in curvature
mode shapes and their corresponding locations along the beam as input for the location
detection of the damage. It can easily be seen from the Figs. D.7a and D.8a that MSE values
drop to values around 10, This shows that the input features introduced to ANN are directly
related to the output set, which is location of the damage. Same sensitivity analyses regarding
the number of neurons in the hidden layer and the number of epochs during the training are also

performed on these two-hidden-layer ANNs (5™, 6", 7" and 8" ANNs in Table D.1). Prediction

results are shown in Figs. D.7b-10b.
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The final group of ANNs (9%, 10", 11™ and 12" ANN in Table D.1) are trained by

using all combined inputs namely; reduction in natural frequencies, maximum absolute

differences in curvature mode shape and their corresponding locations along the beam from the

first three natural modes for the detection of damage location and severity at the same time. The

severity and location predictions of the two-hidden-layer ANNs that have 18 neurons in each

hidden layer can be seen from Figs. D.11 and D.12. Although there are couple of over and

under estimations in the localisation of the damage, ANNs that are trained up to 10000 and 2401

number of epochs provide better accuracy as compared to quantification of the damage.
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ANNSs same data set (i.e.

RNF&MADC&LOC) as input are redesigned by reducing the number of neurons in the second

that use

In the second part of the analysis,
hidden layer from 18 to 9. It can be seen from Figs. D.13 and D.14 that the predictions of these
two ANNs (11" and 12" ANNs in Table D.1) regarding the severity and location of the damage

are as accurate as the 9" and 10™ ANNs in Table D.1.
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Figure D.13 ANN (9:18:9:2) results with 10000 number of epochs
(Input:RNF&MADC&LOC, Output: DS&DL) (a) Severity predictions (b) Location predictions
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Figure D.14 ANN (9:18:9:2) results with 3201 number of epochs
(Input:RNF&MADC&LOC, Output: DS&DL) (a) Severity predictions (b) Location predictions

Finally all predictions obtained from different ANNs with two hidden layers are

compared with the ones with single hidden layer (Figs. 7.6, 7.10 and 7.11 in Chapter 7, section

7.5.1).
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The following conclusions can be drawn from this analysis:

> The performance (i.e. change in MSE value with increasing epochs) of the ANNs
used in the analysis is in the range of 10 and 10 with slight differences. This means that
generalisation is almost achieved in all ANNs considering the trend in MSE during the training

and validation process.

» Providing more input-output data sets for the training may improve the

generalisation of these two-hidden-layer ANNs.

» The difference in MSE value between the validation and training performance
curves after certain number of epochs plays an important role in the generalisation and the

predictions for the damage identification.

> Considering the computation time issue and the general fact that single hidden layer
ANNs can be trained to approximate any functions arbitrarily well and be also used to solve
pattern recognition problems, the ANNs with single hidden layer are selected and used for

further applications in the analysis (Chapter 7, 8 and 9).
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Appendix E DETERMINATION OF MATERIAL PROPERTIES OF
SANDWICH STRUCTURE

E.1  Skin Density Estimation (Burn-off Test)

Since the density of the skin is one of the most important parameters affecting the
dynamic characteristics of the sandwich structure, fibre volume ratio, which can be used for

more accurate density estimation, is determined by performing a burn-off test. The four-layer
([0°/90°/90°/0°]) GFRP laminae sample (60mmx40mmx 1.53mm) selected for the test has

been kept in the muffle furnace at the temperature of 650°C for 3 hours.

Total mass of the sample laminae: 7,066 = Mpresmanic = 2-87 8

Volume of the sample laminae: V. =6x4x0.153=3.672 cm’
Mass of the glass fibre after burn-off: my,  =4.31g

Mass of the matrix: #,,,: = Meomposite — Mipe =1-96 8

Density of the matrix: 0, .q_sner cure = 1.148 g/em’

Volume of the matrix: V... = My 156 =1.35889 cm’
Presin-after cure 48
Volume fraction of the matrix: &, = Vi 135889 _ 0.37
Vcomposite 3 672

Volume fraction of the fibre: kg, =1-Fk, 0 =1-0.37=0.63
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Appendix E Determination of Material Properties of Sandwich Structure

Density of the Glass Fibre [E-1]:  pg,.. = 2.55 g/lem®

pskin = kﬁbre X Pfibre + krnatnx x pmatrix

Density of the GFRP skin:
=0.63%x2.55+0.37x1.148 = 2.03126 g/cm’

E.2  Core Density and Modulus of Elasticity Estimation

During the analysis double-cut core cell, which has two cuts 0°and 90° made on each
side intersecting in the centre, is used. Since the pre-cuts are filled with resin during the
infusion, the core density increases drastically after curing. The effect of the cured resin is
investigated and the density of the core is modified accordingly. Figures E.1 and E.2 show the

core material before and after resin infusion. The effect of the infused resin can be seen from

Fig. E.2.

(@)

Figure E.1 Core material before resin infusion (a) Top view (b) Side view

Figure E.2 Core material after resin infusion (Side view)
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Appendix E Determination of Material Properties of Sandwich Structure

As the core material has 2% of air bubble and 3% of pre-cuts in volume, 5% of the core
is assumed to be filled with resin in total after infusion process. Hence, the modified density of

the core can be calculated as follows;

X 095 + presin- after cure X 005
=0.092x0.95+1.148x 0.05 = 0.1448 g/cm’

IDCOTC - pcore-manufacturer

Density of the core:

The modulus of elasticity of the core is also calculated by assuming a 20% increase in

its value [9-1] due to pre-cuts filled with resin after infusion.

Modulus of elasticity of the core:

E,.=E

core core-manufacturer

x1.2=109.28x1.2=131.13 MPa.
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Appendix F DETERMINATION OF SENSOR LOCATIONS IN
BEAM-LIKE STRUCTURES

Determination of sensor locations plays an important role in maximum sensing of strain
along the beam structure. The approach used in the analysis is to find the locations
corresponding to maximum and zero curvature (i.e. nodal points) along the beam. Since strain is
directly related to curvature (i.e. second spatial derivative of the displacement mode shape),
modal analysis is used to find the locations of the sensors. The analysis is performed on 450mm

long cantilever beam shown in Fig. F.1.

Fixed end (Root) Free end (Tip)

AN\

> x L

Figure F.1 Cantilever beam

Normalised Amplitude

1 1 i 1 1 1 t
0 0.1 g2 03 04 05 08 07 og 08

Normalised Lacation [x/L]

Figure F.2 First five normalised displacement mode shapes of the fixed-free beam
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Appendix F Defermination of Sensor Locations in Beam-like Structures

First of all, normalised displacement mode shapes (Fig. F.2) are obtained and used in the
calculation of the curvature modes (Fig. F.3) in the first five natural modes of cantilever beam.
Since both positive and negative curvatures are equally effective in the dynamic analysis, the

absolute values of the curvature modes are plotted in Fig. F.4 in order to find the maximum and

nodal curvature locations.
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Figure F.3 First five normalised curvature mode shapes of the fixed-free beam
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Figure F.4 First five absolute curvature mode shapes of the fixed-free beam
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Appendix F Determination of Sensor Locations in Beam-like Structures

These locations are also tabulated in Table F.1 considering the first five bending modes of the

beam.

Table F.1 Maximum and nodal curvature locations

Maximum Curvature Curvature Node
Mode No Location [x/L] Location [x/L]
1* Bending 0 -
2" Bending 0,0.52 0.21
3" Bending 0, 0.30, 0.70 0.13, 0.49
4" Bending 0, 0.22, 0.50, 0.80 0.09, 0.35, 0.65
5"Bending 0, 0.18, 0.38, 0.62, 0.84 0.07, 0.27, 0.50, 0.72

Another important point in determination of the location of the sensors is to find spatial
locations along the span of the beam in such a way that they provide enough sensitivity for
different modes of vibration. This is especially important when frequency sweep excitation is
applied. Thus, the first five absolute curvature mode shapes are added to each other and the

envelope in Fig. F.5 is obtained.
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Figure F.5 Summation of absolute curvature mode shapes of the fixed-free beam
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The normalised locations (such as 0.185, 0.410, 0.585 and 0.790) corresponding to peak points
where the amplitude of the summation of the curvature modes are considerably high can be seen
from the Fig. F.5. Finally, the locations of the fibre optic sensors are decided and tabulated in
Table F.2 with their actual locations along the beam and their corresponding most sensitive

mode(s) by using the data in Fig F.4 and Table F.1.

Table F.2 Location of the sensors and most sensitive corresponding mode(s)

Normalised Actual Most Sensitive

Location [x/L] Location [mm] Mode
0.0333 15 15, 2m¢ 31 4 5t
0.1777 80 5t 4t
0.3000 135 3¢
0.3777 170 5t 3w
0.5000 225 2n
0.6000 270 5t ond
0.7000 315 31
0.8111 365 4t 5t
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Appendix G SELECTION OF ELEMENT TYPE FOR MODELLING
OF SANDWICH STRUCTURE

Free vibration analysis of rectangular plate with cantilever edge is performed by using a
package program, ANSYS 6.1%, to select the most suitable type of element(s) for modelling of
composite sandwich structure. The graphite/epoxy—aluminium sandwich plate (0.152m x
0.076m x 0.00204m) [G-1, G-2, G-3] with eight plies of graphite/epoxy placed symmetrically
about a sheet of aluminium (2024-T3) is used during the FEA. The material properties of the
graphite/epoxy face with a nominal ply thickness of 0.13mm and the Imm thick aluminium core

are as follows:

Orthotropic material properties of graphite/epoxy:
E] =128.0 GPa, E2 = E3 =110 GPa, G12 = G13 =448 GPa, G23 =153 GPa,

vip = Vi3 = v3 = 025, p=1500kg/m’

Isotropic material properties of aluminium:

E =689 GPa, v=030, p=2770 kg/m’

The first five modes [G-3] of vibration of the sandwich plate are obtained by using
different types of elements with various mesh densities. The results are tabulated in each section

and summarised at the end.

G.1  Shell Element (SHELL99) for Configurations of [04/Al]s, [0/+45/90/Al]s and
[+ 45/F45/Al)s

The advantage of using SHELL99 is that 6 DOF per node (i.e. 3 translational and 3
rotational) allows modelling of cantilever boundary condition more realistically. On the other

hand, damage can only be modelled by reducing the thickness or stiffness of the particular layer
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Appendix G Selection of Element Type for Modelling of Sandwich Structure

of interest, which is not suitable for debonding or delamination modelling applications.
Additionally, inter laminar strain output is not available in this type of element. Figure G.1
shows FEM of the cantilever sandwich plate meshed by SHELL99.

The first five natural frequencies of sandwich plate with SHELL99 (8 x 4 mesh density):

[04/Al]; Configuration:
f, =108.0Hz, f, =226.7Hz, f,=6743Hz, f,=8772Hz, f,=11479Hz

[0/ + 45/90/Al], Configuration:
f, =80.5Hz, f,=310.2Hz, f,=500.8Hz, f,=1022.2Hz, f;=1398.6Hz

[£45/F 45/Al]; Configuration:
f, =58.0Hz, f,=351.7Hz, f;=374.6Hz, f,=1015.8Hz, f;=1169.7Hz

The corresponding mode shapes are shown in Figs. G.4 — G.6.

Figure G.1 Finite element model of cantilever sandwich plate

(SHELL99, 8§ x 4 mesh density, top view)
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G.2  Solid Elements (SOLID46 and SOLID191) for [04/Al]; Configuration

G.2.1 Modelling with SOLID46

By using SOLID46 (an 8-node brick element), damage can be modelled not only by
changing the geometry but also by reducing the stiffness of the particular layer of interest. One
of the disadvantages of SOLID46 is that 3 DOF per node (i.e. translational DOF only) makes
modelling of boundary condition (fixed-end) inaccurate. Moreover, inter laminar strain output is

not available if one solid element is used through the thickness.
The first five natural frequencies of sandwich plate with SOLID46:

a) Mesh density of 8 x 4 x 17
51 =1083Hz, f,=2397Hz, f,=7003Hz, f,=9948Hz, f;=1275.8Hz

b) Mesh density of 40x20x 1
f,=108.0Hz, f,=226.6Hz, f,=674.6Hz, f, =8769Hz, f; =11458Hz

G.2.2 Modelling with SOLID191
SOLID191 has an additional centre node on each edge of the 3-D solid element. This

provides more number of nodes by keeping the number of elements constant compared to the

model created by using SOLID46. Figure G.2 shows FEM of the cantilever sandwich plate

meshed by solid elements.
The first five natural frequencies of sandwich plate with SOLID191:

a) Mesh density of 8x 1 x 1°
f1=1083Hz, f,=2272Hz, f,=6764Hz, f, =880.1Hz, f;=1152.1Hz

b) Mesh density of 40x 20 x 1
fi=108.1Hz, f, =226.6Hz, f,=6752Hz, f, =877.8Hz, f;=1146.7Hz

" One solid element through the thickness
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Figure G.2 Finite element model of cantilever sandwich plate

(Solid elements, 8 x 4 x 1 mesh density, isometric view)

G.3 Mixed Solid Elements (SOLID4S5 for core and SOLID46 for face modelling)

Since both solid elements have the same number of nodes at each face of the element
(i.e. 4 nodes), SOLID45 with isotropic material properties can be used in the modelling of core
together with layered orthotropic solid element, SOLID46, which is chosen to model
graphite/epoxy face of the sandwich plate. The model has three different blocks stacked on top
of each other: One block for each face with four layers of lamina and another block at the centre
for the modelling of isotropic core. The layer configuration is defined layer-by-layer from
bottom to top. The bottom layer is designated as the first layer, and additional layers are stacked
from bottom to top in the positive normal direction of the element coordinate system. Figure

G.3 shows FEM of the cantilever sandwich plate meshed by mixed solid elements.

G.3.1 [04/Al]; Configuration
a) Mesh density of 8 x4 x 3
f,=1084Hz, f,=2502Hz, f,=7022Hz, f,=1079.3Hz, f;=1390.3Hz
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b) Mesh density of 40 x 20 x 3
J1=108.1Hz, f, =2272Hz, f,=6756Hz, f,=880.1Hz, f;=11472Hz

Since the core is almost twice as thick as the faces, 2 and 1-element division are used for the

core and the each face respectively for better accuracy in case (c).

¢) Mesh density of 40 x 20 x 4
Ji=108.1Hz, f,=2272Hz, f,=6757Hz, f,=880.2Hz, f;=11473Hz

Then, mesh density in thickness direction is increased by using 4 and 1-element division for the
core and the each face respectively. In addition to this, the element division is also doubled

along the length and width of the plate. The results of this particular model is as follows:

d) Mesh density of 80 x 40 x 6
fi =108.0Hz, f, =2268Hz, f,=6748Hz, f, =878.2Hz, f;=1143.5Hz

Further analyses are performed by using two different layer orientations of the faces of the

sandwich plate.

G.3.2 [0/ 45/90/Al]; Configuration
a) Mesh density of 8 x 4 x 3
fi=81.5Hz, f,=338.1Hz, f,=524.1Hz, f,=1215.0Hz, f;=1571.5Hz

b) Mesh density of 40 x 20 x 3
fi=80.6Hz, f,=3106Hz, f,=5009Hz, f, =10242Hz, f;=1398.7Hz

G.3.3 [+45/F45/Al]; Configuration
a) Mesh density of § x 4 x 3
fi=612Hz, f,=3793Hz, f,=4065Hz, f, =11825.0Hz, f;=1375.7Hz

b) Mesh density of 40 x 20 x 3
/1 =58.0Hz, f,=352.0Hz, f,=3747Hz, f,=10179Hz, f;=1170.8Hz
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(a)

(b)

Figure G.3 Finite element model of cantilever sandwich plate

(Mixed solid elements, 8 x 4 x 3 mesh density) (a) Isometric view (b) Zoom view
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G.4 Mixed Solid Elements (SOLID95 for core and SOLID191 for face
modelling)

This section presents the first five natural frequencies of the sandwich plate obtained
from FEM using higher order 3-D solid elements (SOLID95 and SOLID191). The way of

creating the mesh is same as the one described in Section G.3 for the element types of SOLID45

and SOLIDA46.

G.4.1 [04/Al]; Configuration
a) Mesh density of § x 4 x 3
f, =108.3Hz, f,=2279Hz, f,=681.0Hz, f,=887.1Hz, f;=1171.6Hz

b) Mesh density of 16 x 8 x 3
f, =108.1Hz, f, =227.0Hz, f,=6753Hz, f, =878.8Hz, f; =1147.5Hz

G.4.2 [0/+45/90/Al]; Configuration
a) Mesh density of § x4 x 3
f, =809Hz, f,=3122Hz, f,=5062Hz, f,=10349Hz, f,=14355Hz

b) Mesh density of 16 x 8 x 3
f, =80.6Hz, f,=309.8Hz, f,=501.0Hz, f,=1021.4Hz, f;=1396.7Hz

G.4.3 [£45/F45/Al]; Configuration
a) Mesh density of 8 x4 x 3
fi =589Hz, f,=3588Hz f;=3785Hz, f,=1060.0Hz, f;=1190.5Hz

b) Mesh density of 16 x 8 x 3
f, =58.1Hz, f,=3523Hz, f,=3744Hz, f,=10182Hz, f;=1169.4Hz
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G.S5

Summary and Comparison of the Results

Finally, all case studies performed by using different element types with various mesh

densities on sandwich plate that has different layer orientations for the graphite/epoxy faces are

summarised in Table G.1.

Table G.1 Comparison of the first five natural frequencies of the sandwich plate [Hz]

Experiment FEM FEM FEM Present Present Present
4-node 9-node SHELL99 SOLID45 SOLID95
Mode 8x4) (8x4) 8x4) &SOLID46  &SOLID191
No [G-1] [G-1] [G-2] [G-2] (40x20x3) (16x8x3)
[04/Al],
1 101.7 108.8 1079 108.2 108.0 108.1 108.1
2 229.0 228.8 2276 2273 226.7 227.2 227.0
3 631.9 680.2 681.3 675.0 674.3 675.6 675.3
4 865.0 885.6 8873 879.6 877.2 880.1 878.8
5 1129.0 1168.0 11688 11474 1147.9 1147.2 1147.5
[0/ 4 45/90/Al],
1 75.9 81.16 80.6 80.0 80.5 80.6 80.6
2 302.0 313.8 3126 311.9 310.2 310.6 309.8
3 469.6 505.1 5054 501.0 500.8 500.9 501.0
4 983.0 1035.0 1037.3 10283 1022.2 1024.2 1021.4
5 1306.0 1438.0 14354 1399.8 1398.6 1398.7 1396.7
[£45/F45/Al];
1 58.3 58.5 58.2 57.9 58.0 58.0 58.1
2 351.6 3547 356.6 352.8 351.7 352.0 3523
3 358.0 379.6 3783 377.4 374.6 374.7 374.4
4 1006.0 1029.0 1047.6 1020.6 1015.8 1017.9 1018.2
5 1113.0 1187.0 11897 1179.2 1169.7 1170.8 1169.4
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(a) Natural Frequency of 108.0 Hz (b) Natural Frequency of 226.7 Hz

(c) Natural Frequency of 674.3 Hz (d) Natural Frequency of 877.2 Hz

(e) Natural Frequency of 1147.9 Hz

Figure G.4 The first five mode shapes of cantilever plate modelled by SHELL99
([04/Al]; configuration)
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(a) Natural Frequency of 80.5 Hz (b) Natural Frequency of 310.2 Hz

(c) Natural Frequency of 500.8 Hz (d) Natural Frequency of 1022.2 Hz

(e) Natural Frequency of 1398.6 Hz

Figure G.5 The first five mode shapes of cantilever plate modelled by SHELL99
([0/ £ 45/90/Al]; configuration)
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(b) Natural Frequency of 351.7 Hz

(c) Natural Frequency of 374.6 Hz (d) Natural Frequency of 1015.8 Hz

(e) Natural Frequency of 1169.7 Hz

Figure G.6 The first five mode shapes of cantilever plate modelled by SHELL99
([£45/F 45/A1], configuration)
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The following conclusions can be drawn from Table G.1:

» The results obtained from models meshed with mixed solid elements provide

acceptable accuracy.

> Since solid elements are quite stiff compared to 6-DOF shell elements, finer mesh

densities are used in the modelling with solid elements.

> In normal mode dynamic analysis, combination of SOLID95 and SOLID191
provides same accuracy with that of SOLID45 and SOLID46 although the mesh density used in
SOLID45&SOLID46 model is much finer than the one used in model with
SOLID95&SOLID191 elements.

> Since the results obtained from models with solid elements converge to ones
obtained from models with SHELL99, it can be concluded that the required mesh densities are

achieved in solid element models.

» The cantilever boundary condition is modelled by using two different types of
element, shell and solid, which have 6-DOF and 3-DOF respectively. Acceptable results are

obtained from each model.

Finally, combination of SOLID95 and SOLID191 is selected for meshing of sandwich

beam for further analysis.
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Appendix H BOUNDARY CONDITION EFFECT ON FEM OF
SANDWICH BEAM

In this section, the effect of the boundary condition on FEM of the sandwich beam
structure used in Chapter 9 is investigated. Since core to face thickness ratio of the sandwich
beam is approximately 9.23 which gives a total thickness of 14.6mm, the modelling of the
cantilever boundary condition requires extra attention in order to simulate experimental fixing

condition realistically. Figure H.1 shows sandwich beam specimen mounted to steel clamp.

Figure H.1 Steel clamp and sandwich beam specimen

It can be seen from the Fig. H.1 that the left-end of the specimen is free and only the upper
and the lower surfaces are touching to steel clamp. Therefore, three different FEMs with various
boundary conditions are used to simulate this experimental clamp. Figures H.2 to H.4 show

these boundary conditions which are namely:

=  Boundary Condition No:1 (BC #1): Fully clamped at the root, i.e. all DOFs are equal to

zero at location where X =0
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Boundary Condition No:2 (BC #2): Fixed at the upper and lower edge, i.e. all DOFs

are equal to zero at location where X =0 & Z = 0 and X = 0 & Z = beam total thickness

Boundary Condition No:3 (BC #3): Fixed at the upper and lower surface, i.e. all DOFs
are equal to zero at location where X =0 & Z =0 and X = 0 & Z = beam total thickness
and 0 <Y < 80mm. Another beam (530mm x 40.5mm x 14.6mm), which is 80mm
longer than the ones used in BC #2 and BC #3, is modelled in order to define this

particular boundary condition.

Figure H.3 Boundary condition No:2 (Isometric zoom view)
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(a) (®)

Figure H.4 Boundary condition No:3 (a) Isometric view (b) Side zoom view

Normal mode dynamic analysis is performed on these three different FEMs to find the

first three bending natural frequencies. The analysis results are summarised in Table H.1.

Table H.1 First three natural frequencies of sandwich beam

Natural Frequency [Hz]

Mode No BC#1 BC #2 BC#3
1" Bending 46.944 45.865 46.741
2" Bending 251.109 249.901 250.826
3“Bending 591.850 591.268 591.567

It can be seen from Table H.1 that the first three bending natural frequencies of models

with various boundary conditions are quite close to each other. Since the model with BC #3 has

1888 more nodes and 384 more elements than the other two models (BC #1 and BC #2), it is not

practical to use this model (BC #3) as it increases the computational time gradually. Model with

BC #2 is selected for further analysis since it allows internal nodes at the root to move freely as

it is in experimental clamp.
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In this section, errors and uncertainties [I-1, I-2] inherent in the measurement of the
parameters that are used during the static and dynamic analysis of beam-like structures are
investigated. The main assumptions made during these analyses and the other source of errors
are outlined in order to identify dominant errors, and hence to provide a guide to improve the

experimental work.
1.1 Precision of the Measurements

It is a fact that all measured values cannot be exact. The uncertainty in the measurement
can arise either from limitations of the instruments or from statistical fluctuations in the quantity
being measured. The main aim is to estimate the level of this uncertainty (so-called “absolute
uncertainty”). Another quantity called “relative uncertainty” is the precision of the measurement

(1.1) and shows the effect (or significance) of the absolute uncertainty.

Absolute Uncertainty )
Measured Value '

Relative Uncertainty (Precision) =

Since one of the sandwich specimen used in the experimental analysis has dimensions of

450.0mmx 40.5mm x 14.60mm, the following precision can be obtained from each

measurements:

e Ruler [0-500mm + 0.5mm]: Used to measure the length of the specimen.

+
Precision of the measurement along the width = ;5—(())2 =+1.1.107° =0.11%

e Vernier Caliper [0-150mm £ 0.1lmm]: Used to measure the width of the specimen.

+
Precision of the measurement along the width = % =42.5-107 =0.25%
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e Micrometer [0-25mm + 0.01mm]: Used to measure the thickness of the specimen.

+0.01 =+6.85-10"% =0.0685 %

Precision of the measurement along the thickness =

e Balance (Digital Display) [0-1500g+0.01g]: Used to weigh the glass fibre used in burn-off
test (Section E.I).

Mass of the glass fibre after burn-off: mg,, =4.31¢g

+
= 0'?1 =42.32:-107° =0232%

Precision of the measurement in weigth of the fibre =

After measuring three dimensions (60mmx40mmx 1.53mm) and the mass of the
specimen (i.e. the one used in burn-off test), the precision in density calculation can be obtained

as follows:

Precision of the density of GFRP laminae sample
% A Length + % A Width + % A Thickness + % A Mass

n

£05 100 + 292100 + £99 100 + 0232
60.0 0.0 3

=297%

in

e Voltmeter (Digital Display) [0-1000V £ 0.01V]: Used to measure the output voltage coming
from signal conditioning unit. During the calibration, excitation level was set to 2 V (i.e.

calibration voltage) that is equivalent to 1000 ue. Therefore, every +0.01V change causes
+10 pe change in strain reading. The measured strain values also depend on the gauge factor,

resistance of the strain gauge used in the analysis, calibration resistor and the voltage reading
from loaded strain gauge (Section 5.2.2).
1.2 Main Assumptions and Other Source of Errors

The errors in the measurement can be either reading errors depending on the finest scale

division or the calibration errors that are systematic errors (i.e. accuracy) coming from

measurement devices. The other type of error associated with a directly measured quantity is
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called the "reading error" and for a digital instrument, it is + one-half of the last digit. The
objective of a good experiment is to minimise both the errors of precision and accuracy in order
to obtain accurate results that can be used to verify the numerical model. Here are the main
assumptions made and the other source of errors involved during the experimental and

numerical analysis.
1.2.1  Experimental Analysis
» The size of the intact and that of the damaged beams were assumed equal.
» The width and the thickness of the beams were assumed uniform along the length.

» Although surface roughness of the GFRP sandwich beam specimen and adhesive
used to bond strain gauges affected the measured strain, perfect bonding (i.e. good structural

coupling) was assumed between strain gauges and the host structure.

» The strain gauges bonded on the surface of beams and the embedded FOSs were

assumed to be aligned and located along the centre line of the specimens (i.e. no misalignment).

> Although temperature of the laboratory was assumed constant, a slight change in
strain was observed when strain gauges were used during the dynamic strain measurements.
This was due to heat transfer between electro-dynamic shaker and the surface-bonded strain
gauges. This change was considerable low (i.e. insignificant) when embedded FOSs were used

during dynamic analysis.

» The electromagnetic interference between surface-bonded strain gauges and
electro-dynamic shaker affected dynamic strain measurements by causing random fluctuations.
Since FOSs are insensitive to electromagnetic field, more accurate results were obtained

compared to surface-bonded strain gauges.

» Torque-wrench was used to tighten the bolts holding the specimen in the clamp in
order to reduce the boundary condition effect when different specimens were used for frequency

analysis. The soft core of the sandwich specimen made the use of torque-wrench quite difficult.
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> Since it was difficult to control the input force given to electro-dynamic shaker

during low-frequency forced vibration applications, an extra noise was introduced to system.

> The weight and the location of 4-gram piezoelectric-accelerometer affected the
resonant frequency measurements. This effect is investigated by changing the location of the
accelerometer along the span of the beam and by performing random vibration analysis to find
the first three resonant frequencies. Accelerometer is bonded on the upper surface of the
sandwich beam at 10 different normalised locations from 0.1 to 1 (i.e. tip of the beam) with 0.1L
increment. The variations in these resonant frequencies are shown in Figs. I.1 to L3 for the
intact and the damaged sandwich beam having 40mm-length damage located at 200 mm away

from fixed-end.
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Figure 1.1 Variation in the first resonant frequency due to accelerometer location

(a) Intact Beam (b) Damaged Beam
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Figure 1.2 Variation in the second resonant frequency due to accelerometer location

(a) Intact Beam (b) Damaged Beam
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Figure 1.3 Variation in the third resonant frequency due to accelerometer location

(a) Intact Beam (b) Damaged Beam

As it can be seen from Figs. 1.1 to 1.3 that each frequency of interest (i.e. in each mode)
varies within certain range. The effect of this variation can be reduced by normalising the
resonant frequencies of the damaged beam with respect to that of the intact one and it is shown

in Fig. 1.4.
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Figure 1.4 Normalised resonant frequencies in the first three modes

1.2.2  Numerical Analysis (FEA)

> Some of the material properties were assumed by approximating the values taken

from statistics.

» Equal thickness was assumed for individual layers of GFRP laminae in FEM.
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» Debonding was modelled by removing selected elements from the upper surface of

GFRP sandwich beam structure in FEA in order to simulate the damage.

» There is also a rounding-off error that is more effective in successive calculations

during the numerical analysis.
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