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In this thesis we provide examples of a new approach to the field of finite geometries,
namely by considering the conformal embedding of a finite geometry into a Riemann
surface. A finite geometry is a particular arrangement of a finite number of points
and lines satisfying some well known axioms. We will cover the first two examples
of the family of Hadamard designs, which are the Fano plane and the 3-biplane.

Riemann surfaces and dessins are introduced and explained in chapter one. We
explore their common relationship to cocompact Fuchsian groups and display some
results regarding the calculation of their automorphisms groups. We also describe

the three most common geometric representations of a dessin: those by Cori, James

and Walsh.

Chapter two is divided into two different parts. In the first one we cover the
family of finite groups PSL(2,p) where p is a prime number, particularly for the
cases where p € {5,7,11}. In the second part of the chapter we introduce the family
of Hecke groups H? and their special congruence subgroups, with special regards

to the cases where ¢ = 3 and g = 5.

In chapter three we cover finite geometries and their properties. Projective
planes and biplanes are studied in different sections paying special attention to the

Fano plane as our chosen representative for the projective planes and the 3-biplane.

Finally in chapter four we make extensive use of all the preliminar material
by finding and describing several conformal embeddings of the Fano plane and
the 3-biplane into Riemann surfaces, especially into those Riemann surfaces with
automorphism group isomorphic to PSL(2,p) and that can be uniformized by a

special congruence subgroup of HY.



To Concha and Naira

“Y miro

y al mirar,

miro al Sur siempre.
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Preface

A map, or more generally a dessin, is a particular arrangement of faces, vertices
and edges that have a very rich and widely explored relationship with Riemann
surfaces and Fuchsian triangle groups. See for example [JS1], [Sch] and [Wal].
The theory that originally covered conformal embeddings of maps into Riemann
Surfaces, has been progressively expanded to embrace an ever increasing class of
subjects, such as anticonformal embeddings of hypermaps into Klein surfaces and
their relationship with N.E.C. triangle groups (see [BS] or [IS]). In chapter one
we introduce Riemann surfaces, Fuchsian groups, dessins and some of their prop-

erties and relationships, since they constitute the foundation stone of the examples

displayed in chapter four.

It was first observed by Walsh [Wal] in 1975 that it is possible to embed the
incidence relation of the Fano plane as a map into a torus. In 1986 [Si4] Singerman
described another embedding of the Fano plane as a regular dessin into a Riemann
surface. A regular dessin is one possesing the highest possible symmetry in a surface,
and Singerman’s embedding proved particularly interesting, since it linked together
three well known and widely studied objects: the Fano plane, Klein’s quartic and
their automorphism groups which are isomorphic to PSL(2,7). Furthermore it
is possible to describe the bits of that embedding by means of the cusp set of
the action of T'(7) on the upper half plane, where I'(7) stands for the principal

congruence subgroup of level seven of the modular group.

All objects highlighted in Singerman’s embedding are exceptional on their own
rights. Klein’s quartic, among other interesting properties, is the Hurwitz surface

with the smallest genus (a Hurwitz surface is one that attains Hurwitz’s upper
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bound for the number of automorphisms of a surface, which is 84(¢g — 1) for g > 2)
and therefore it is a highly symmetric surface. The Fano plane is the smallest
finite projective plane, and arises as the projective space over the field Z,, while
PSL(2,7) enjoys a special status within the PSL(2,p) family that is only shared

by PSL(2,5) and PSL(2,11) as it was proven in a result due to Evariste Galois.

What we have done is to fully explore what we considered to be the parallel case
to the Fano plane embedding described by D. Singerman, finding some intriguing
and beautiful relationships on our way. Since Singerman’s embedding fully covers
PSL(2,7), we have been guided by the idea of exploring the remaining case in
Galois’ result, which is PSL(2,11), finding objects that relate to each other in a
similar way to those involved with PSL(2,7). As a starting point for our work,
I have to acknowledge a very inspirational paper by Konstant: ‘The graph of the

truncated Icosahedron and the last letter of Galois’ (see [Ko]).

Starting then with PSL(2,11) we chose the 3-biplane as the best candidate
for a structure to embed for several reasons. The first one is because it is a finite
geometry with automorphism group isomorphic to PSL(2,11), which is a necessary
condition and that is fairly similar to the Fano plane. Both of them, the Fano
plane and the 3-biplane are the smallest examples of Hadamard designs, and the
symmetric arrangement of the 55 flags structure of the 3-biplane into 11 blocks of
5 flags closely resembles the 21 flags, 7 blocks of 3 flags of the Fano plane. On the
other hand, there is a clear relationship between the flags set of the 3-biplane and
the vertices of a truncated icosahedron (which is basically the relationship between
PSL(2,11) and its subgroups isomorphic to As = PSL(2,5)), and that relationship

mirrors that of the Fano plane and the truncated cube (which is again that between

PSL(2,7) and its S4 subgroups).

In spite of finding examples of 3-biplane conformal embeddings as a regular
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dessin, we thought it more appropriate to drop some hypothesis in the embedding in
order to find examples with the rich structure underlying Singerman’s embedding.
Our main example is therefore no longer a dessin, since the components of the
complement of the embedded graph in the surface are not simply connected. This
is highlighted by the fact that we do not use a triangle group, but a Fuchsian group

with three periods and signature (1, +,[5, 5, 11]).

When we explore this example we realized that H® emerges in a natural way
to play a role similar to that of H® in the Fano plane case, further enhancing
the singular nature of these two embeddings, since H3 and H® stand in a class
of their own within H? as the only two Hecke groups with a cusp set equal to
Q(\,) U{oo}. As a last idea, we use the action of H®(4 — /5) to describe the flags

of the embedding, and the vertex set of the truncated icosahedron that relates to

it.



Chapter One

Riemann Surfaces and Dessins

In the first half of this chapter we introduce the concept of Riemann surface
and provide some preliminary definitions and results. For a broader introduction
to Riemann surfaces see either [Mir] or [JS2]. The notion of compact Riemann

surface will be explored following two different but closely related approaches:
- as 2-manifolds with an analytic structure,

- as the quotient by the action of a cocompact Fuchsian group.
Issues related to Fuchsian and NEC groups have also been discussed within
the first part of the chapter.

In the second half we have examined the general properties of dessins and their

conformal embeddings into Riemann surfaces.

A more general approach to the subject by substituting Riemann surfaces with

Klein surfaces has been outlined, and references to the topic of dessins embedding

in Klein surfaces are provided.
1.1. Riemann surfaces

Roughly, a Riemann surface is a space which, locally, looks like an open set in
the complex plane. To make the concept of “looks like” a bit more mathematical,

we need to define a chart on a topological space X.

A chart on a two dimensional topological space X is a homeomorphism
¢i Ui — Vi

where U; C X is an open set in X, and V; C C is an open set in the complex plane.
The open subset U; is called the domain of the chart ¢;. We say that the chart ¢;
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is centred at p € U; if ¢;(p) = 0, and it is easy to see that all a chart does is to give

local complex coordinates in its domain.

As the charts are local homeomorphisms, they can be inverted, and we will call
bij = g0 ;" (Ui N Uy) = bl (Ui N T)

the transition function between ¢; and ¢;. Two charts are analytically compatible if
the transition function between both of them is analytic or if the intersection of their
domains is empty. A set of charts {¢; : U; — V;} on X is called an analytic atlas
(also called a complex atlas) on X if {U,} is an open cover of X and all the charts

in the set are compatible. We will call the charts in an analytic atlas analytically

compatible charts (or complex charts).

It is easy to define an equivalence relation within the atlases of X, two atlases
A and B are equivalent if every chart of one is compatible with every chart of the
other, and an equivalence class of analytic atlases is called a complex structure (or

analytic structure) on the surface X.

Definition 1.1.1. A second countable, connected, Hausdorff topological space

with a complex structure is called a Riemann surface.

Although the previous definition allows non-compact surfaces, throughout this

work we will usually mean a “compact Riemann surface” every time we refer to a

Riemann surface.

We can induce local orientations around each point of a Riemann surface by
"pull-back” of the orientation of the complex plane via a local chart. These local
orientations are well defined, independent of the choice of chart in the atlas and
they induce a global orientation on the Riemann surface S0 that the concept of

"clockwise” and ”anticlockwise” rotation around a point in a Riemann surface is

well defined.

Given two Riemann surfaces X and Y with complex atlases @ and ¥, we can

define analytic mappings between X and Y in terms of their charts.

Definition 1.1.2. Let X and Y be Riemann surfaces with complex atlases
¢ ={¢;: U; — V;} and ¥ = {¢; : U; — V;} respectively. We say that the map
f: X — Y is analytic at p € X if there exist analytic charts ¢; : U; — V; with
p € U; and o; : U; — V; with f(p) € U; such that ¢; o f o ¢; * is an analytic

function at ¢;(p).



A map will be analytic in X if and only if it is analytic at every point of X. By
definition, if a map is analytic at p, it is analytic in a neighbourhood of p. Using

similar principles, we can define meromorphic and analytic functions on Riemann

surfaces.

It is easy to see that the complex plane C admits a complex structure and so
is a Riemann surface (although not a compact one). By means of the stereographic
projection, the one point compactification of C, ¥ = CU{oc} also forms a Riemann
surface which is called the Riemann Sphere. Analytic and meromorphic functions
on a Riemann surface X (in the traditional sense of complex analysis) can be
thought of as being analytic mappings from X to C and X respectively in the sense

of Riemann surfaces.

If a Riemann surface locally looks like an open set in the complex plane, there is
a more general object, that we will cover for the sake of completeness called a Klein
surface, for a thorough introduction to Klein surfaces see [AG]. A Klein surface

has the property of being locally like an open set in the closed upper half-plane,
Ct={a+bi : a,beR and b > 0}.

with the subspace topology that C* inherits from the usual topology on C.
Since there are two different classes of open sets in the upper half plane: those
that intersect its boundary, and those that are contained in the interior of the upper

half plane, we need to define transition functions that cope with this characteristic.

We will say that a complex function f is antianalytic (or anticonformal) if
0f/0z =0, and f will be called dianalytic if it is either analytic or antianalytic in-
each connected component of its domain. It is easy to see that a function that is
both analytic and antianalytic in the same connected component of the domain, is
constant on that component. We can generalize the concept of analytic chart to
that of dianalytic chart on X: a homeomorphism ¢; : U; — V;, where U; is an open
subset of X and V; is an open subset of either C or C*. If ¢; is centred at p € X and
V; is an open set of CT but not of C, we will say that p is in the boundary of X (we
use 8X to refer to the boundary of X). Two charts will be dianalytically compatible
if their transition functions are dianalytic, and a set of charts {¢; : U; — V;} on X

is called a dianalytic atlas on X if {U;} is an open cover of X and all the transition

functions are dianalytic.



Two dianalytic atlases A and B will be dianalytically equivalent if AU B is
a dianalytic atlas (that is, if every chart of one is dianalytically compatible with

every chart of the other), and an equivalence class of dianalytic atlases on X is a

dianalytic structure on X.

Definition 1.1.3. A 2-manifold X with a dianalytic structure A on X will be

called a Klein surface.

According to the previous definition, any Riemann surface is in fact a Klein
surface, since any analytic atlas is dianalytic, and any open set of C is homeomorphic
to an open set in C*. To avoid confusion, we will reserve the term “Klein surface”
to its traditional meaning, that is, any surface X with a dianalytic structure that is
not orientable or has at least one boundary component, and we will use “Riemann
surface” to refer to Klein surfaces that are orientable and have no boundary. In
general, Klein surfaces will be assumed to be compact. As we have already stated

we will mainly study symmetric Riemann surfaces throughout this work.

Let f : X — Y be an analytic map defined at p which is not constant, then
(see [Mir]) there is a unique integer m > 1 such that there are local analytic charts
¢; and ¢; centred at p and f(p) respectively, such that 1; o f o gbi_l(z) = 2™, We
will call m the multiplicity of f at p. The multiplicity of a map at one point is
independent of the choice of charts, and by taking an element y € Y we can define
the degree of f at y as the sum of the multiplicities of f at the points of X mapping

to y:

dy(f)= > multy(f)

pEf~(y)

The degree of f at y is constant, independent of y, and so we will just call it

the degree of f.

Given an analytic function f: X — Y of degree n, there is a finite set of points
C(f) c Ysothat |[f™ (y)|=nforanyy € Y —=C(f) and 1 < |[f~!(y)| < n for every
y € C(f), [ is then an n-sheeted covering, branched if C(f) # ( and unbranched
otherwise. The elements of C(f) are called the critical values or branch points of f,
the elements z € X with multiplicity greater than one are called the critical points
or ramification points of f, and those with multiplicity one are called regular points.

Both, the set of critical values and of critical points are finite.
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Definition 1.1.4. Two Riemann surfaces X and Y are conformally equivalent

or isomorphic if there exist an analytic bijection f: X — Y.

Proposition 1.1.5. An analytic map between compact Riemann surfaces is

an isomorphism if and only if it has degree one.

Proof See Corollary 4.10 in [Mir].

An analytic bijection f: X — X is called an orientation preserving automor-
phism of X, and the set Aut™(X) of all orientation preserving automorphisms of
X forms a group under composition. Every Riemann surface is orientable, and we
will define two different classes of automorphisms, those that preserve orientation
(conformal automorphisms), and those that reverse orientation (or anti-conformal
automorphisms). The latter being of capital importance when dealing with sym-

metric Riemann surfaces.

Definition 1.1.6. A Riemann surface R is called symmetric if we can define

an anticonformal involution ¢ : R — R.

For the cases when R is symmetric, we call Aut(R) (or Aut(R)) the group of

dianalytic automorphisms of R, it is clear that
[Aut(R) : Autt(R)] =2
if R is symmetric and it is 1 otherwise.
1.2. Fuchsian groups and NEC groups

In this section we will introduce the main features of discrete groups of plane

isometries, regarding as a plane P one of the following spaces:

e The hyperbolic plane U/ with automorphism group

Aut(U) = PGL(2,R)  Aut*(U) = PSL(2,R)

e The sphere X, with automorphism group

Aut(2) = PGL(2,C)  Aut* () = PGL(2,C)

e The Euclidean plane C with automorphism group

Aut(C) = AfF(1,C) Aut™(C) = Aff(1,C).



Where the bar above the groups means that we extend their natural action
using complex conjugation.
In this work we will make the standard abuse of notation and use matrices

az + b
cz+d

a b
<C d) to refer to maps z —>

and for a field K we will call

GL(Q,K):{<2 2) la,b,c,de K, ad—bc#0 (modK)}

PGL(Z,K):S%%?TK—ZWhere/\EK~{O}
SL(Q,K)z{(CCL z) la,bc,de K, ad—bc=1 (modK)}
 SL(2,K)
PSL(Q,K)———W

The reason for giving a special consideration to these three Riemann surfaces,

will become clear after the following well known theorems:

The Uniformisation Theorem 1.2.1. Every simply connected Riemann
surface is conformally equivalent to the hyperbolic plane U/, the sphere % or the

Euclidean plane C.

The above theorem is due to F. Klein, H. Poincaré and P. Koebe, for a proof

using modern notation see [Bea2]. A proof of the theorem below is easily obtained -

from results in [JS2] §4.19 and §5.7.

Theorem 1.2.2. Let R be a compact Riemann surface, then there is a discrete
subgroup G of Aut*(Pg) (where Ppg is either U, ¥ or C), acting on Pg without
fixed points, such that R is isomorphic to the quotient space Pr/G.

Given a group G of plane isometries, we will say that it is non orientable if
it contains any orientation reversing isometries (if it contains reflections or glide
reflections), otherwise G is an orientable group. The set of all the orientation
preserving isometries of a given non orientable group G is itself a subgroup of G of
index two, and we will usually refer to it as G*. A discrete subgroup of PSL(2,R)
is called a Fuchsian group, and a discrete subgroup of Aut™(P) with a compact
quotient space (a cocompact group) is a crystallographic group. Crystallographic

groups may have torsion.



We can classify the elements of PSL(2,R) (and therefore the elements of any
Fuchsian group) by the number of fixed points in U, this classification can be done

in terms of the trace of the matrices.

We will say that an element M = (? 2) € PSL(2,R) is

- elliptic if the action of M fixes two conjugate points in C, one of them is in /.
We have that tr(M) = |a +d| < 2.

- parabolic if the action of M fixes only one point on RU {oc}, |a + d| = 2.

- hyperbolic if M fixes two points in R U {occ}, we get that |a + d| > 2.

It is worth thinking of elliptic elements as finite order rotations about a point
in the open upper-half plane, while parabolic elements can be seen as infinite order

rotations about a point in R U {co} and hyperbolic elements as translations in the

closed upper-half plane.

Any fixed point by a parabolic element of a Fuchsian group G is called a cusp
(or parabolic point), and the set of all cusps by elements of G is called the cusp set
of G. The number of orbits of the action of G in its cusp set is called the parabolic

class number of GG.

A point a € RU {co} is a limit point of a Fuchsian group I' if there is a z € U
and a sequence G = g1, g2,..., gn,-.. with g; € I' such that the sequence

G(z) = g1(z), g2(z),..., gn(®),...

converges to a. The set of all limits points of T' is L(I"), the limit set of I'. Every
point a fixed by a parabolic or hyperbolic element of I" is a limit point of I'. If we
call O(T') = R — L(T") the ordinary set of ', we will say that the Fuchsian group I'
is of the first kind if O(T') is empty, otherwise we will say that I' is of the second
kind. If T is of the second kind, then L(T") is nowhere dense in R. We will only deal

with first kind Fuchsian groups.

By the uniformisation theorem, we know that for each Riemann surface R,
there is a set of torsion free crystallographic groups Gr = {G;} that uniformize
R, these groups are called surface groups of R, and it can be proved that Gg is a
class of conjugate groups in Autt(P) so that R is isomorphic to R’ if and only if

Gr =GR



A fundamental region for a crystallographic group G is a closed, connected
subset F' of P such that:

- for every point « € P there is a point y € F such that z € Gy.

- No two points in the interior of F' are in the same G orbit.

- F is locally finite, that is, any compact set C' C P intersects only finitely
many images of F.

It is easy to see that if R is uniformized by G, and F is a fundamental region

for G, then (see for example [JS2] Th. 5.9.6.):

Pro I

G G’

A fundamental polygon is a special type of fundamental region whose boundary
is a union of geodesic segments that we call the sides of the polygon. Given any
fundamental polygon £ and s a side of P then there is precisely one side of P that
we call § and one element g € G so that g(s) = 5 (it is possible that s = 3) and

g(P) is adjacent to P along s. We say that s and § are paired by g.

Fundamental polygons are very useful to find presentations for subgroups of
Fuchsian groups by means of a technique known as Reidemeister-Schreier’s method.
It can be proved [Bea] that given P a fundamental polygon for the Fuchsian group
I', the side pairings elements of P generate I', so we can associate to the fundamental

polygon P a set of generators for I'
¢ = {/817182’ s a/BTL}

consisting of side pairings elements of P.

Suppose that we have a subgroup A < I' and we call Cr a whole set of right
coset representatives for A in T' so that N B
I'= u Ac,
ceCr
(|| denotes disjoint union), we say that Cr is a (right) Schreier transversal for A

in I' if whenever cicy...c, 1s a word in ® with cies...c, € Cg then we have that
C1C2...Ch_1 € Ch.

Once we have a Schreier transversal for A in I', we can describe a set of
generators for A. For any element g € I' there is a unique r € Cpg such that

Ar = Ag and we call g = r. Then the set
B = {T‘,B(;‘—B)_l | r € Re, B € QD}

8



generates A and is called a set of Schreier generators for A in I'.

With a set of Schreier generators and transversals, we can find a presentation

for A in I". We assume that " has presentation < X | R > and we call
R={ere™! [c€ Cg, r € R}.

If we write the elements of R in terms of those in B and call this new set Rg, a

presentation for A is given by < B | Rp >.

Example 1.2.3. We will calculate a set of Schreier generators for the Fuchsian

group A = (1;[3,3,7]) inside I = [3,4, 7] where I" has presentation

<A BC|A*=B*=C"=ABC=1>.

We have that @ = {A, C} is a set of generators for T’ while
Cr={1,A,C,C* ....,C%

constitutes a Schreier transversal for A in I', and we get the following diagram (see

Theorem 1.2.5. and Example 1.2.6.)

ACS AA AC AC® ACP AC* A AC?

o L I I R P

AA A AC AC? AC3 AC* ACP ACS

«< (L { L [ 1l [ |

AA AC AC? AC? AC* AC® AC® A
for the action of A and C on the right cosets of A.
We can now easily calculate the set of Schreier generators, if we delete obvious
repetitions, like elements inverses, we get:

B={CAC™Y,C*AC3,C3AC™5,C*AC™*,C°A,C°AC 2 ACA™}

and we have that A has presentation < B | R >, where I are the relations of I'.
In order to get a standard presentation for A we might have to consider changing
the generators in B by some of its conjugates in A, that has been done in the last

section of chapter four, where this particular pair of groups have been considered.



The following result shows how to construct a fundamental polygon for A < T.

Theorem 1.2.4. Let A < I be a pair of finitely generated Fuchsian groups
such that I has fundamental polygon P and Cp is a right Schreier transversal for
A in I'. Then a fundamental polygon for A is

P = U rP

r€R¢e
and the sides of P’ are paired by the Schreier generators corresponding to Re¢.

Let now R = P/G for some G € G, then if we call Ny (G) the normaliser of
G in Aut™(P), we have that (see Theorem 5.9.4. in [JS2]):

A
G >

and furthermore, any group of orientation preserving automorphisms of R is iso-

morphic to N/G, for some group N < Aut™*(P) so that G< N.

Aut™(R)

As we have mentioned before, the group of automorphisms of P contains orien-
tation reversing elements as well, so we may consider what happens when we allow
orientation reversing elements in the previous theory. Although there is no generic
name for a discrete subgroup of Aut(P) with orientation reversing elements, we will
be mainly concerned with crystallographic groups, and in this case we use NEC
as an acronym for Non Euclidean Crystallographic, referring to cocompact discrete

subgroups of Aut(P).

We will follow with groups terminology the same rules already stated for sur-
faces, and therefore we will call crystallographic groups those NEC groups that
contain no orientation reversing element, reserving the name proper NEC group (or
just NEC group) for those which do. If G' is an NEC group, its canonical Fuch-
stan subgroup is GT. Since the set of Riemann surfaces arising from the action of
Euclidean and spherical groups is very limited in scope (for instance, no surface of
genus g > 2 is formed in such a way), we may sometimes use the word “Fuchsian”

in a general way to refer to a group that contains no orientation reversing elements,

although it may not be a hyperbolic group.
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A Riemann surface R admits an antianalytic involution if the normaliser of

G € Ggr in Aut(P) contains orientation reversing elements. If this is the case, we
have that:
N(G)

Aut(R) = —

It is obvious that N (G) = NT(G) (where we define NT(G) := N(G)*), and
that NT(G) = N(G) if and only if R is not symmetric.

A special class of crystallographic groups are triangle groups. A (proper NEC)
triangle group is defined as the group of isometries generated by the reflections on
the side of a triangle with angles 7, - and Z and is represented by I'(l,m,n),
which we will usually shorten to (I, m,n) if no confussion arises. We will say that
a triangle group is spherical, Fuclidean or hyperbolic if T + - + Z is greater than,

equal to or smaller than .

The canonical Fuchsian group of a triangle group, is also called a triangle
group, and in that case the group is defined as the group generated by rotations of
order n, m and [ at the vertices of a triangle of angles 7, Z and Z. In general it
will be easy to know from the context if we are talking about orientation preserving
or reversing groups, and we will use I'[l, m,n] to denote a Fuchsian triangle group

and I'(l, m,n) to denote a proper NEC triangle group.

It is clear that:
r'*(l,m,n) =T[l,m,n].

The importance of triangle groups will become apparent in the next section, due
to its relationship to the Belyl functions (see [JS3] and [Sch]) and the fundamental
groups of maps and hypermaps. We can define a triangle group using only algebraic

terms as the group with the following presentation:
L(l,m,n) =<z,y,2z | 2* =y> = 2" = (zy)' = (y2)" = (22)" = 1 >
I[l,m,n]=<a,bc|la'=b"=c"=abc=1>

Macbeath and Wilkie proved that for each crystallographic (or NEC) group
G with compact quotient space there is a signature and a “marked polygon” from
which a canonical presentation for G may be derived, a marked polygon being a
fundamental polygon for G together with the identifications on the boundary of
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F produced by the action of G. See [Wil], [Mac]; the explanation here has been
taken from [Wat]. The presentation for G is given by:

m; _ 2 ik — -1 _ __
< :Ei,cjk,ej,ap,bq ! T, = = (Cjkmlcjk) ik = Cjoe;Cjt; €5~ = AD =1>

Where A = 27...20€1...65, t=1...1, j=1.5 k=0.%¢;, p=1.g, ¢=1.h
with 7>0, 7>0, t; >0, g>0, he€{0,9}, njx >2, m; > 2 and:

- D = arbiay by o agbgag bt if h=g.
- D =a}..al if h #g.

The numbers m,; are called the proper periods of the group, while the nj’s
are the link periods, and will correspond to the branch points lying inside the
quotient space or in its boundary respectively. The quotient space -g— has genus g
and is orientable if h = ¢ and non orientable otherwise. The number of boundary
components of the quotient space is s. If s = 0 and there are no proper periods, G
is a crystallographic surface group, while if s # 0 and there are no proper or link

periods, then G is an NEC surface group.

Periods m; (or m;) can be infinity, in which case the relations of the form
z® =1 (or (cjk-1¢jk)°° = 1) are omitted from the presentation. Any finite order

element of G is either conjugate to a:zf or to (cjr—1¢k)? (for a certain i, j, k, f),
therefore if G is a Fuchsian group, all its finite order elements are conjugate to its

elliptic generators.

To every presentation (and therefore to every group) we can associate a signa-

ture which will be

(g;+; [ma, cymp; {11, oy 1ty )y ooy (Ms1y ooy Mgt ) )
in the orientable case, and

(g;—;[m1, ooy me]; {(n11, s N1ty )y oos (M1, o, sty ) })

in the non-orientable. When r = 3, s = 0 and g = 0 we have the Fuchsian triangle
group I'[my,m2, m3], while if r = 0, g = 0, s = 1 and t; = 3, we get the NEC

triangle group that we have called I'(n11, n12, n13).
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Singerman [Si3] determined the hyperbolic area of a fundamental region of a

NEC group G. In the orientable case it is:

M(G):2W<2g—2+8+i<l"%)+%i j (1_—1—>>

=1 7=1k=1

while in the non-orientable case is:

d 1 1 1
o=ar(o-rror -2+ EE(- L)
w(G) 7r<g +8+Zl -y +ZZ 1 :
=1 j=1k=1
The particular case of the first formula, that covers the case where G does not
have any boundary components (s = 0) and therefore no link periods is usually
known as Riemann-Hurwitz formula. It follows from Theorem 1.2.4. that if Gy is

a subgroup of GG of index k, then

We will end the present section with a Theorem by David Singerman [Sil]
concerning subgroups of Fuchsian groups with finite index. Although the original
theorem is more general, we will only use it for cocompact Fuchsian groups. This
theorem allows us to work out the signature of the subgroup, given the signature
of the big group and the actions of its generators on the cosets of the subgroup. A

generalization of it for NEC groups was done by Hoare [Ho].

Singerman Theorem 1.2.5. Let G be a Fuchsian group with signature
(g;lma, ... ,mg])
then G contains a subgroup F' of finite index N and signature
(hs[n11,M12, <o 3 Mpys «ev s My M2y oov 5 Npp )

if and only if:
. There is a permutation group H < S¥ transitive on N points and an epimor-
phism © : G — H so that the permutations ©(z;) has cycles of length m,; and

precisely p; other cycles whose lengths are m;/n;1, ... ,m;/nip,,
L B(F)
w(G) T N.
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Example 1.2.6. Let G be the group [3, 4, 7] with presentation as in Example
1.2.3. and consider the map © : G — S® given by:

A (1,7,2)(4,5,8)(3)(6)
B (1,2,5,8)(3,7,6,4)
C s (1)(2,3,4,5,6,7,8)

If we call ©(G) = H it is immediate that we are mapping G onto a transitive
subgroup of S8 ©(A) has two cycles of length 3 that produce no other periods
in F and two cycles of length 1 that produce two 3 periods in F. ©(B) produce
no period of F since all its cycles have length 4, on the other hand ©(C) induces
a 7 period in F' since it has got one cycle of length 1. We have seen that F' has
signature (g;[3,3,7]) and the condition p(F') = 8u(G) implies that g = 1.

1.3. Maps

In this section we want to explore the relationship between maps and hyper-
maps. We will define maps and hypermaps over Riemann surfaces and explain
the geometric and algebraic approach to these objects. A current term, due to
Grothendieck, to refer to both maps and hypermaps is “dessin d’enfants” or just

dessin. For an introduction to maps theory see [JS1], for a discussion of the wide

scope of dessin theory see [Sch].

Intuitively, a map is a decomposition of a surface into polygonal two-cells
or faces. That leaves a structure on the surface composed by the interior of the
polygons (faces), edges and vertices that constitute the map, for an easy example
of these we can think of the platonic solids as maps on the surface of the sphere,

picture Fig. 1.1. a) below depicts the map on the sphere induced by a tetrahedron.

The set of vertices and edges of the map constitute a graph which is embedded
into the surface. Although we will allow a very general class of graph, we will
require the graph to be connected and that to every vertex there is only a finite
number of incident edges, this number is the valency of the vertex. Our graph can
contain edges with one or two vertices, the edges with two vertices correspond to
our everyday perception of an edge, as for the edges with only one vertex, they can
either be a loop or a free edge, the difference being that a loop is homeomorphic
to a circle, while a free edge is homeomorphic to a segment. Every face would

be surrounded by a finite number of edges, and this number is the valency of the
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face, faces should be simply-connected. An allowed graph is a graph satisfying the

previous conditions. For a picture of a generic map on a sphere see Fig. 1.1. b)

Fig. 1.1. Two examples of maps on the sphere

A hypergraph is a generalization of this idea where we allow any finite number
of vertices to lie on an edge. We will meet some hypergraphs when we describe
finite geometries in chapter three. Our only restriction on the structure of the
hypergraph is that it is connected, and that to every vertex there is only a finite
number of incident edges. We can define a (hyper) graph isomorphism as a bijection
f between the vertex sets of two (hyper)graphs that induces a bijection between

the edges set so that the incidence structure is preserved, that is, if
PeE < f(P)e f(E)

where P is any vertex contained in the edge E.

We will start with the topological approach to a map, then describe the al-
gebraic structure of it, and use algebraic notions to generalize the concept of map
to that of a hypermap. Nevertheless, after the topological and the algebraic ap-
proaches have been explained, we will need to provide maps with a richer structure,

namely the analytic structure of their underlying Riemann surface.

Definition 1.3.1. A map M on a compact surface X is an embedding of an
allowed graph G into X such that the components of X — G are simply-connected.
We call the components of X — G the faces of M.

Definition 1.3.2. A topological map Top(M) is a triple (G, V), S) where G is
an allowed graph, V its set of vertices and S is the underlying surface.
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Definition 1.3.3. Let e be an edge of a map M with endpoints e; and es
(that are identified in the case of loops), and let m be a point in e which is not e;
nor e;. We can now divide e into two segments m; and mg. A dart of a map M
is a pair consisting of a vertex and an incident segment. If there are no free edges

then every edge has two darts.

In Fig. 1.2. we can see the three different kinds of edges on a map with their

corresponding darts.

Fig. 1.2. Loop, standard edge and free edge

We can associate an algebraic structure to the topological construction de-
scribed above. We will first consider the map M with its set of darts that we will
call Q7F, the superscript © means that we are working with maps on orientable
structures, since we are only interested in Riemann surfaces, we will not cover the
“definition of maps for Klein surfaces, for a survey of that topic see [BS] and [IS].
We define two permutations of Q1 as follows:

- 1o consists of cycles formed by going round each vertex in an anticlockwise
direction.

- 71 is the product of the transpositions that interchange the two darts on an
edge or loop, and fix the dart on a free edge.

The product 79 = r17y ! consist of cycles which define anticlockwise rotations
of the darts about each face of M. If we let G =< rg, 71 > be the group generated
by ro and r1, G4 is a subgroup of SQ+,the group of permutations on the elements
of O, that is transitive because the graph underlying M is connected. G, is the
monodromy group of M, we could have called it the oriented monodromy group,
but as we have already stated, we will only consider maps on orientable surfaces.

We define the algebraic map of M to be:

(Alg M)t = (G, Q% 7ro,71).
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Example 1.3.4. The tetrahedron in Fig. 1.1.a) has QT = {n | n =1...12} as
its set of darts, and the permutations are:

ro — (1,2,3)(4,5,6)(7,8,9)(10, 11, 12)

r1 — (1,9)(2,11)(3,6)(4,10)(5,7)(8,12)

ry — (1,8,11)(2,10,6)(3,5,9)(4,12,7)

Example 1.3.5. The map in Fig. 1.1.b) has Qt = {n | n = 1...15} as its set

of darts. The permutations are:
ro — (1,2,3,4,5)(6,7,8)(9,10,11,12)(13, 14, 15)
r1 — (1,11)(2)(3)(4,15)(5,6)(7,14)(8,9)(10,13)(12)
ro — (1,10, 15, 3,2)(4,14,6)(5,8,12,11)(7,13,9)

Definition 1.3.6. We define an algebraic map as a quadruple:

AT = (G+,Q+7ro,'r1)

59" generated by r¢ and 71, and where r; is a product of disjoint transpositions.

We call 7o = ri75 . To any oriented algebraic map A, there is a topological map

M so that Algt (M) = AT,

If 7o and 73 have orders m and n respectively, we say that M (resp. A™) has
type (m,n), that is, the l.c.m. of the valencies of vertices and faces are m and n

respectively.

Given the triangle group I'[m, 2, n] with a presentation of the form:

I[m,2,n] =<a,b|a™ =b*=(ba )" =1 >

and a map M of type (m,n) with Algt (M) = (G4, ", ro, 1), we can define an
epimorphism 6 : I'[m, 2, n] — G4 sending a to 7o and b to ;.

Let G = {g € G4]ag = o} be the stabiliser of & € QF, then M = 671(G )
is called a fundamental group of M in I'[m,2,n]. A different choice of dart o will
yield a group conjugated to M in I'[m, 2, n], hence to every map M of type (m,n),

we can associate a conjugacy class of fundamental groups in I'[m, 2, n] (see [JS1]).

Next, we identify Q7 with the set of right M-cosets in I'[m, 2, n] by the bijection
Mh — «a(hf). Taking M* = Ker(f), the core of M (the intersection of all the
conjugates of M by elements of I'), we can identify G. with the quotient group
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I[m, 2,n]/M* by M*g — g6 so that the action of a (respectively b) corresponds to
the permutation ro (respec. r1) in G4. In this way we see that any finite index

subgroup M < [m, 2,n] is a fundamental group of some oriented map.

It is possible to generalize the concept of dart, so that we can define maps
on Klein surfaces, this generalization relates in a natural way to the inclusion of

crystallographic triangle groups into NEC triangle groups, see [BS].

Another important property of a fundamental group M of a map M is that

the surface S in which the map is embedded is uniformized (not uniquely) by M in

the sense that:

U

SM.

1%

To every topological map corresponds an algebraic map, and from any algebraic
map we can recover a topological map. Unfortunately, this relationship does not
make both categories equivalent, since there are many ways of altering a topological
map via an homeomorphism of the underlying surface without a counterpart in the
side of algebraic maps. We want to have a geometrical definition of map that
allows us to translate results from the algebraic category to the geometrical one,
and in order to do so, we need to define maps on surfaces in such a way that the
isomorphisms between them correspond to isomorphisms between their underlying
surfaces. These maps when considered on Riemann surfaces were originally called
Riemann maps by [JS], we will call them analytic maps, since their isomorphisms
correspond to mappings that preserve the analytic structure of their underlying

surfaces. The first step to define them is to define universal maps and quotients of

maps.

The NEC triangle group I'(2,m,n) acts naturally on P and has a triangle T
of angles a = 5, b = = and c = I as its fundamental polygon. If we draw a dart
on the side ab, and let I" act on ab with that dart, we get a map on P with all the
edges of the same length and such that all vertices have order m and all faces have

order n, this is the universal topological map M of type (m,n).

Let M = (G,V,S) be a topological map of type (m,n), then there is an
algebraic map A = Alg(M) associated with it, from where we can calculate a
fundamental group M of M. We have seen that M < (2,m,n) and therefore M

acts on the universal map M of type (m,n) sending vertices to vertices, edges
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to edges and face centres to face centres. The quotient of this action is a map
M of type (m,n) which is naturally embedded in the surface S by the covering
P — % and which is topologically equivalent to M. M is an analytic map of

M.

Any analytic map, is in particular a topological map. We have proved that to
any algebraic map A there is at least one topological map M so that A = Alg(M).

Definition 1.3.7. Two maps M and M’ of type (m,n) embedded in the sur-
faces S and S’ are called analytically equivalent if there is an analytic isomorphism
f:8—9
between the surfaces that takes the set of vertices, edges and faces of M to the set

of vertices, edges and faces of M’ respectively.

If we consider the definition of an algebraic map, there is no reason why we
should restrict ourselves to quadruples where r; has order two, and not consider
groups where this condition is dropped. In fact, this property corresponds to the
fact that the edges have only two vertices, so by allowing a higher order in r;, we will
study maps whose edges contain more than two vertices, and whose fundamental
group is a finite index subgroup of the triangle group [l,n, m|. Those objects are

what we call oriented hypermaps.

1.4. Hypermaps

Definition 1.4.1. An oriented algebraic hypermap A consists of a finite set of
objects Q7 that we will call the bits (or brins) of A, together with two permutations
ro,T1 € S and a group G4 =< rg,71 > such that G, is transitive in Q.

(As before we will drop the word “orientable” since we will only consider Rie-
mann surfaces). We call G, the monodromy group of the hypermap 4. The cycles
ro and 71 correspond to hypervertices and hyperedges in precisely the same way as
the cycles generating the monodromy group of a map corresponds to vertices and
edges, while the permutation ro = (ro71) ! corresponds to hyperfaces. The hyper-
map is represented by the quadruple (G4, Q%,7¢,71), and if r; has order [; we say

that A has type (lg,11,12). The degree of A is equal to |QF].

We extend the notion of fundamental group to hypermaps by considering the
natural epimorphism 6 : T'[lg, l1,l2] — G4 in the same way as we did with maps. We

therefore can define a fundamental group of A to be M = 071(G,). We will use
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the word algebraic dessin to refer to either an oriented algebraic map or hypermap
indistinctly.

Although from the algebraic point of view there is little difference between a
map and a hypermap, it is not intuitively immediate how to view a map on a surface
when we allow each edge to meet as many vertices as necessary, several authors
have suggested different ways of doing it, we will first give an abstract definition of

topological hypermap on Riemann surfaces and then describe the representations

by Cori, James and Walsh.

Definition 1.4.2. A topological hypermap H on a Riemann surface S is a
triple (S, E, V) where E and V are closed subsets of S such that:

a) QT := ENYV is a non-empty finite set. QT is called the set of bits (or brins).

b) EUYV is connected.

¢) The components of £ and V' are homeomorphic to closed discs. The compo-

nents of F are called hyperedges while the component of V' are the hypervertices.

d) The components of S — (EUV) are homeomorphic to open discs and are called
hyperfaces.
We will call topological dessin an object which is either a topological map or

hypermap on a Riemann or Klein surface.
For an explanation of dessins on Klein surfaces see [IS].

The Cori representation

In the Cori representation (see [Co]) hypervertices and hyperedges are rep-
resented by closed polygons called 0O-faces and 1-faces respectively (we will colour
0-faces with a light grey and 1-faces with a dark grey), each polygon having as many
sides as the length of the cycle it represents, while hyperfaces are represented by
open polygons called 2-faces each one having twice as many sides as the order of the
hyperface they represent (2-faces are painted white). O-faces are mutually disjoint,
as are 1-faces, and they intersect each other only in their vertices, which represent
the bits, each bit shared by precisely one hypervertex and one hyperedge. As the
hypermap is embedded in an orientable surface R, we can define an anticlockwise
permutation of the bits around each 0-face and each 1-face consistent with the ori-
entation of R, these permutations corresponds to rg and r; respectively. If we call
V the set of all O-faces, and E the set of all 1-faces, then V U E is a closed set in
R, and the components of R — (V U E) are the 2-faces, which are open polygons
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that induce the permutation 73 = (7] '). As 2-faces have an even number of bits,

ro permute the bits acting as the square of the clockwise permutation around each
hyperface.

The Cori representation is very easy to draw and shows some symmetries of
the hypermap in a clear way, but has the drawback of differentiating between hy-
pervertices, hyperedges and hyperfaces in a way that seems unnatural if we regard

the algebraic definition of the hypermap.
The James representation

The James representation (see [Ja]) displays the trinity among hypervertices,
hyperedges and hyperfaces in a more natural way. This time 0-faces, 1-faces and
2-faces will all be polygons with twice as many sides as the orders of the elements
they represent. The intersection of any two i-faces is always empty, and 0-faces
and 1-faces intersect along one side. To place the bits, we need to consider the
three-valent map on R defined by the sides of these polygons, in such a map every
vertex has order three and each edge separates faces of different labels (there are
no two i-faces with a common edge). Going anticlockwise around each vertex, we
get a permutation of the faces that is either (0,1,2) or (0,2, 1), if the permutation
is (0,1, 2), the vertex is called a bit. Once the bits are placed, the permutations

ro, 71 and ro follow in the same way as with the Cori representation.

Cori James

Fig. 1.3. Cori and James representations of the hypermap He.

To go from the Cori representation to the James representation, we push to-
gether the hypervertices and hyperedges with a common bit, thereby changing the
bit in the Cori representation (one point) to an edge in the James representation

one of whose vertices is a bit, and doubling the number of sides of every 0-face and

1-face.
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The Walsh representation

In order to introduce this representation first presented in [Wal], we need to
define a bipartite map, that is, a map in which the vertices have one of two colours,
and such that all edges connect vertices of different colours. Starting now at the
Cori representation, we substitute every 0-face by a 0-vertex (where the number
of the vertex refers to its colour) and every 1-face by a l-vertex, and we join two
vertices together if and only if their respective O-face and 1-face intersect in a bit,
therefore substituting each bit shared by the 0-face and 1-face for an edge joining
the two new vertices. We have now a bipartite map on the surface, with the same
number of edges as the number of bits of the original hypermap, the vertices in the
bipartite map stand for the hypervertices and hyperedges, while the faces of the
bipartite map represents the hyperfaces of the original hypermap. The permutation
ro (resp. r1) corresponds to anticlockwise rotation around each 0-vertex (resp. 1-

vertex) while 7o corresponds to the clockwise permutation of the edges around a

face.

Fig. 1.4. Walsh representation of He.

Example 1.4.3. The hypermap He has QT = {n | n = 1...12} as its set of

bits, and the permutations are:
ro — (1,2)(3,12,10,6)(4,5,7)(8,9,11)

ri — (2,3)(5,6,7)(9,10,12)(1, 4,8, 11)
ry — (1,8,11)(2,10,6)(3,5,9)(4,12,7)
We have already defined the cycles rq, 71 and 7 = r17y ! for the hypermap H

when we explained the Cori model. If we let G+ =< rg,71 >, G4 is a transitive

subgroup of SQ+, and we define the oriented algebraic hypermap of H to be:
Alg +(H) = (G+7 Q+aT07T1)'
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We say that the hypermap has type (I, m,n) if ro, r1 and 7, have orders [, m

and n respectively.
It is clear that if any element of the set {{,m,n} is 2, then the quadruple will

be an algebraic map up to duality. We will use the name algebraic dessin to refer

to either algebraic maps or algebraic hypermaps.

We can embed H into the surface:

12

<=

S

which is a Riemann surface since M is a subgroup of a crystallographic triangle
group.

To define an analytic structure on hypermaps, we follow a similar procedure
to the one explained in the case of maps. We first define the universal hypermap of
type (I, m,n) by using a triangle with angles 7/ (labelled 0), 7 /m (labelled 1) and
m/n (labelled 2). By the action of I'({, m,n) on that triangle, we get a map over
P with three different types of vertices, if we delete the vertices of type 2 and the
edges meeting these vertices, and paint with white the vertices of type 0 and with
black those of type 1, we get a Walsh representation of the universal hypermap of

type (I, m,n) which we shall call ﬁ(l, m,n) or simply 7 when no confusion arises.

If = (S,E,V) is a topological hypermap of type (I, m,n), we can calculate
its algebraic hypermap and its fundamental group H < I'(l, m,n). Letting H act
on H, we get a quotient hypermap H/H embedded into P/H, and we call it the
dianalytic hypermap corresponding to H. If H contains no orientation reversing
elements, by using the Fuchsian triangle group I'[l, m, n] for the orientable universal

hypermap we get an analytic hypermap corresponding to H.

Definition 1.4.4. Two hypermaps H and H’ of type (I,m,n) embedded in
the surfaces S and S’ are analytically equivalent if there is an analytic isomorphism

between the surfaces that sends the set of hypervertices, hyperedges and hyperfaces

of H to their corresponding sets in H’.
1.5. Group of Automorphisms of a dessin

Since we have defined maps and hypermaps as particular cases of dessins, I will
define morphisms in the category of dessins, and the natural restrictions of these

morphisms can be translated in an easy way to either maps or hypermaps. We will
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use the name vertices, edges and faces of a dessin to refer to either vertices, edges
and faces of a map, or hypervertices, hyperedges and hyperfaces of a hypermap.
Whenever no distinction is needed, I will use “bits” to refer to darts and bits.

Results in this section are well known in dessin theory, and most of them have
been reworded from [JS1]. When they are more general than the original result,

the proof still follows along the same lines.

Definition 1.5.1. We will say that ¢ is a topological morphism between the
dessins D and D’ with topological structures given by (S, E,V) and (S/, E', V'),
if ¢ : S — S’ is a topological covering between the underlying surfaces (possibly
ramified, all branch points having finite order), preserving orientation and so that
¢(E) = E and (V) =V'.

We say that D covers D' if there is a morphism from D to D'.

Theorem 1.5.2. Let D and D’ be dessins of type (I, m, n), then D covers D’ if
and only if there are groups M and M’ which are representatives of the conjugacy
classes of fundamental groups of D and D’ respectively, such that M < M'.

Definition 1.5.3. Given two dessins D and D’ embedded respectively in S
and S’, we will say that ¢ : D — D’ is an analytic morphism between the dessins if

¢ is a topological morphism between the dessins and an analytic morphism between

the underlying surfaces.

This definition of morphism between dessins is more restrictive than the one
originally suggested in [JS1], since we impose the condition that the morphism
preserves the analytic structure of the surface. It corresponds to the “Riemann

morphism” between maps described in that paper.

Definition 1.5.4. We will say that the pair of functions ¥ = (f,g) is an
algebraic morphism between the dessins D and D’ with algebraic structures given
by (G, Q,rg,71) and by (G', ¥, ry,r]) respectively, if f: Q@ — Q' is an onto function
and g : G — G’ is a group epimorphism such that g(ro) = r(, g(r1) = 7] and the

following diagram commutes:

OxGq ——F 0

- |

Oxqg —— o
that is, f(ar) = f(a)g(r), for any r € G acting on any a € .
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We will say that ¢ = (f, g) as in Definition 1.5.4. is an algebraic isomorphism
between the dessins D and D’ with algebraic structure as above if f: Q — Q' is a
bijective map and g : G — G’ is a group isomorphism.

Two topological dessins D and D’ are isomorphic if there exists a topological
morphism ¢ between them, such that ¢ is a homeomorphism between the underlying
surfaces, therefore the group of topological automorphisms of a dessin is too ample
for our purposes, on the other hand, the group of analytic automorphisms of a dessin
is finite, and in fact is a subgroup of the group of automorphisms of the underlying
surface. The analytic definition of isomorphism introduces some rigidity in the
structure of topological dessin that is needed if we want to define a one to one
correspondence between algebraic and geometric structures.

Definition 1.5.5. Two dessins D and D’ are analytically equivalent or just
equivalent if there is an analytic isomorphism between them.

Proposition 1.5.6. Any dessin D which is equivalent to an analytic dessin
D’ is an analytic dessin itself.

Corollary 1.5.7. The following results are equivalent for dessins embedded
in Riemann surfaces:

- The analytic dessins D and D’ are isomorphic.

- The algebraic dessins Alg(D) and Alg(D’) are isomorphic.

- The oriented algebraic dessins Alg™ (D) and Alg™(D’) are isomorphic.

We can now define the class D of all the analytic dessins isomorphic to D and
the class A of all the algebraic dessins isomorphic to .A.

Theorem 1.5.8. For any class A there is only one class D such that, given
D e D, Alg(D) € A. And for any class D there is only one class A so that the
analytic dessins associated with the algebraic dessins in A are all contained in D.

Corollary 1.5.9. Analytic dessins with morphisms and algebraic dessins with
morphisms are two equivalent categories.

Therefore, we can define the functors An and Alg™ that induce mutually inverse
bijections between the isomorphism classes of oriented algebraic and analytic dessins
of finite type.

Theorem 1.5.10. Let D; and D, be subgroups of I'[lg, 1, l2] of finite index so

that they are fundamental groups of some dessins, then, they give rise to isomorphic

analytic dessins if and only if they are conjugate in I'[lg, l1,[2].
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Theorem 1.5.11. If D has fundamental group D < I'(lg,l1,12), then the full

group of automorphisms of D is:

~ Mot 1) (D)
Aut(D) = —Qp
where Ny, 1, 1,)(D) is the normalizer of D in T'(lg, l1,12). Now we can assume that

the dessin can be embedded in a Riemann surface, in which case, the group of

orientation preserving automorphisms of D is:

N[lo,lulz](D)
———-——————D .

We will say that a dessin is regular if its group of automorphisms acts transi-
tively on the set of bits. Regular dessins corresponds to dessins with the greatest
degree of symmetry. If we relax the transitivity condition, and request only that
all the vertices have the same valency, all the edges have the same valency, and all

the faces have the same valency, we get uniform dessins. Every regular dessin is

Autt (D) =

uniform, but the converse is false.
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Chapter Two

PSL(2,p) and Hecke groups

This chapter is divided into two main parts. The first one (2.A.) studies the
structure of the family of finite groups PSL(2,p) where p € Z is prime, focusing
in particular in the cases where p € {5,7,11}. These cases are covered in three

separate sections.

In the second part (2.B.) we will introduce H™ (for n > 3), the family of Hecke
groups of the first kind. Two separate sections have been used to describe the main

properties of H3, which is the modular group, and H?.

While the Hecke groups H?3 and H® are important for our work because they
provide us with a tool for the arithmetic characterization of the two main combi-
natorial structures embeddings described in chapter four, (Singerman’s embedding
of the Fano plane, and the 3-biplane embedding into Ry—7¢), we are also interested
in PSL(2,7) and PSL(2,11), because they are isomorphic to the automorphism
groups of the Fano plane and the 3-biplane respectively.
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2.A. The structure of PSL(2,p)

Let us call SL(2,p) := SL3(Z,) where p is a prime and p > 2, i.e. the set of all
2 x 2 matrices with coefficients in the field Z, such that the determinant is equal to

1. PSL(2,p) is SL(2,p) modulo its center, that is, modulo (I, —I) where I is the

identity matrix.

Proposition 2.A.1. PSL(2,p) where p > 3 prime, is a non-commutative

finite group of order
plp—1D+1)

Proof That PSL(2,p) where p > 3 prime is non-commutative is easily seen

by considering for example matrices

1 1 0 1
a_<0 1) andb—<*1 O>

in PSL(2,p) and checking that ab # ba.

To calculate its order we will count all matrices (: Zt/) in SL(2,p).

- zy # 0: There are p — 1 choices for z and p — 1 choices for y, we can then
choose t in p ways and for each choice of z,y, t there is only one possible choice

for z. That yields p(p — 1)? elements of this form.

- xy = 0: If we assume z = 0 then there are p choices for ¢ and p — 1 choices
for y. Once z,y,t are fixed there is only one possible value for z. If y = 0 the

same reasoning applies and so there are 2p(p — 1) matrices of this form.

We have proved that |[SL(2,p)| = p(p — 1)(p + 1) and the order of PSL(2,p)
follows naturally from the fact that |PSL(2,p)| = [SL(2,p) : (£I)]. O

It is well known that every group PSL(2,p) acts transitively on a set of p + 1
elements, and we will prove it geometrically in the following lines. In order to
see this action geometrically, we call P, the projective line defined over the field
Z,. Every element in P, = {0,1,...,p — 1,00} can be represented by a pair of

homogeneous coordinates [r : s](where 7, s € Z,), so that [r : s] stands for:

{

it s=0
(mod p) ifs#0

m]ﬁg

where f =rs L
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As we have already mentioned in chapter 1, we will be using the standard
abuse of notation whereby elements of PSL(2,p) are thought of as matrices, and
we will associate to every element M € PSL(2,p) a bijection of P, defined in the

usual way:

az+b
cz+d

™

d )=

M = (Z b) € PSL(2,p) — Ful
where as usual far(0o) = ac™tifc# 0 (mod p) and fpr(00) = oo ifc=0 (mod p).

It is easy to see that the image of z by fas does not depend on the choice of
homogeneous coordinates for z. As fpr is a bijection in the finite set P,, we can
treat it as a finite permutation and find its representation as a product of disjoint

cycles. That this action is transitive is easy to see since

1 1 0 1
oo (2 1) o= (9 ) epsin

and the action of a on the points of P, is a cyclic permutation of the finite points

(i.e. those which admit coordinates [r : 1], 7 € Z,) while the action of b swaps co

and 0.

Proposition 2.A.2. PSL(2,p) acts doubly transitively on P,.

Proof If we consider the ordered pair (a,b) € P, with a # b (mod p) and

oo ¢ {a,b}, we see that the matrix
b oqa
Moy = (5 1) epsiin)

takes the ordered pair (0,00) to (a,b). If co € {a, b}, we need to consider two cases

separately:
- 1f b = oo we take E‘E'E =1 and 5:1; = 0, and then M, ) sends (0, co) to (a,b).

- If @ = co then we can take
b -1
M(a’:b) = (1 O >

and the action is doubly transitive.

However, the action of PSL(2,p) on P, is not triply transitive in general, as

we can see with {0,1,00} and {0,1,3} for p = 7.
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Proposition 2.A.3. Given p,q € Z prime numbers so that p = 1 (mod q),
there is only one non commutative group G of order |G| = pq that we shall call

Gpq. The structure of G, is given by
CpxCy =< fe] fP=el=cfe lf*=1>

where u € Z;, and ordg(u) = q. Therefore the structure of the semidirect product

is independent of the choice of u.

Proof As p is prime there is a subgroup C, of order p in G, and by Sylow’s

theorem the number N of these subgroups satisfy
N =1 (modp) and N | q.

Therefore N =1 and using Sylow’s theorem again C), <G and the structure of G is

given by:
<felfr=el=efetfr=1>

where u € Zy,.

- Assume that ordz; (u) # ¢, then either u =1 or u? £ 1 (modp). fu=1
it is easy to see that G is commutative and therefore of no interest to us. On the
other hand, if u? # 1 (mod p), using efe"1f~* = 1 we get e*fe™* = f** and by
making s = ¢ we get f = f*". By elementary group theory (u? — 1) = 0 (mod p),
which is a contradiction.

- Once we have proved that ordZ; (u) = g, all that remains is to prove that for
different u, the corresponding groups are isomorphic. To do so we choose a new
generator e; = e® (where s £ 0 (mod ¢)) so that we can rewrite the last identity
in the presentation of G as esfe;'f~* = 1. As q is prime ordZ;(us) = ¢ and u®
runs through all order ¢ elements in Z; therefore making it possible to derive any

other presentation from the one in proposition 2.A.3.

Note If ¢ is not prime, the result is not true, as we can see with the following

non-commutative and non isomorphic groups of order 20:
G=<hf|ht=f=hfh"1f=1>
G'=<h,f|ht=f=hfh71f3=1>
In general, given p = 1 (mod n), the number of non-isomorphic groups of the

form C, x Cy, is d(n), that is, the number of divisors of n.
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Corollary 2.A.4. Let p € Z be a prime p > 3 and ¢ another prime so that
p =1 (mod q). There are only two groups of order pg:

- The cyclic group that we shall call C,,.
- The semidirect product C, x Cy = G4 and is presented as in the previous

proposition. This group has one normal subgroup of order p that we shall call
Cp, =< f >, and p subgroups of order g, that are conjugate by the action of the

elements of C,,.

Proof Let us call H any group so that |H| = pg where p and ¢ are as in
the hypothesis. If H is non commutative, we are in the hypothesis of the previous
proposition and we have finished. That C, < H is unique and normal is true by
Sylow’s theorem. If the order g subgroups were not conjugate by f, then one of
them should be normal in H (since f* for a certain s will belong to its normalizer)
which contradicts Sylow’s theorem.

If H is commutative it must be the direct product of a (), and a Cj, and
therefore, we have H = Cp,.

Proposition 2.A.5. Let p € Z be a prime p > 3 and n = p—gl . If we consider

the action of PSL(2,p) on P,, where z € P,. We get that Stab(z) = C, x C,, with

presentation:
<e, f|fP=e"=efetf v =1>
where u € Zj; and ordzs (u) = n.

Proof Since the action of PSL(2,p) on P, is transitive, we can choose z = 0o

without loss of generality, and we see that

_ |PSL(2,p)| _ plp—1)
|Stab(oo)| = 7, = 5

g) where a,b € Zj,

o R

In fact, Stab(oco) consists of any element of the form (

and a # 0. If we call
1 1 a 1
=(o1) (5 1)
— p=!1

where ordz-(a) = 2n = p — 1, we have that ord(f) = p and ord(e) = n 5
therefore e and f generate Stab(co). We can see that efe™ = £¢° and then the

result is proved.
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Lemma 2.A.6. Let p be a prime p > 3, m € Z a positive integer so that p = 1
(mod m). The following two subgroups of GL(2,p) have order pm:

gpm:{(g b) labeZ,, a™ =1 (modp)}

i
a

"Hpm:{<g i) | a,b€ Zp, a™ =1 (modp)}

Gpm has presentation
<hf|h™=fP=hfh " =1>
while a presentation for H,,, is given by
<h flh=fP=hfh"tf =1>

where s € Z; and ordg: (s) = m and (r,m) = 1.
- If m is odd we have that G, = Hpm.

- If m is even the two groups are non isomorphic.

Proof An easy process of counting elements shows that the order of both
groups is pm, and using Sylow’s theorems we get that the group structure is Cp, xCp,,

furthermore the groups are non commutative.

Once we have identified the structure of both groups, all we need to do is choose

suitable generators f and h of order p and m respectively and study the action of

hon f. A choice for Gpm, is f = (é i), h = (8 g) where ordzs (a) =m. It is
a

immediate to check that Afh~!f~% = 1 and the other possibilities arise when one

substitute h with h®* where (s,m) = 1.

CL2

A choice of generators for Hp,, is f as before and h = ( 0 (1)>, bearing this

in mind, the rest of the proof is as above.

If m is odd we can define the isomorphism ¢ : Gpn — Hpm by

a b a? ba
(5 1)-(5 1)
a
By working with the presentations, it is easy to see that no isomorphism be-

tween the groups can be defined in the case where m is even.
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Proposition 2.A.7. Let p,q € Z be primes, p > 5and ¢ > 2sothat p =1
(mod ¢), and let G, be as in Corollary 2.A.4. There are only two groups H up to
isomorphism so that G, < H and [H : Gp,] = 2. The two possibilities for H are

either :
H=Gopg = GpgxCoy or H=Hyp,.

Proof As [H : G,,] = 2, we have that G,, < H, so in order to describe H we
need to find all possible order two automorphisms o : Gpy — Gpq. Taking Gy,
presented as in Proposition 2.A.3., and using the information from Corollary 2.A.4.

we get that o must satisfy:
o(f)=1r" ole) = felf™°

where a,s € Z, and b € Z,,.
- As 0%(f) = f we have that a = +1 (mod p).

- As o has to preserve the relations of Gy, from
l=oclefe ™ f™%) weget elfted=fua

but in particular we know that e® f% =% = f‘“‘b, and since a # 0 (mod p), we have
ub~! =1 (mod p) and so b =1 (mod q).

-Ifa =1 (mod p), from o?(e) = e we obtain s = 0 since otherwise Gy, should
be commutative.

We have proved that either ¢ is equal to the identity o : Gpg —> Gpq or is a

representative of the following family of order two automorphisms:

a2 (f)=f"" oale) = flef7°

where s € Zy,.

Since there is at least one element of order two in H — G4, we can call it g and
assume that it induces the automorphism of G, i.e. o;(z) = gzg~?! for i € {1,2}

and x € Gpq.

In the case of oy it is easy to see that g commutes with the generators of Gpq

and therefore we obtain H = G4 x C2 and from there
H = Gopg.
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For the action of g5, we need to prove that the same group H is generated

regardless of the choice of s € Z,. We can see that the equations relating the three

generators of H are:

DefeTlf7 =1 2)gfgf=1 3)gegf*e™'f* =1
We can choose to change the generator e for £ = f"ef™", where n € Z,. If we

do so we get the following expressions
1) EfET' f™ =1 2)gfgf=1 3)gEgE 1fEr=2)0"" —1,
As u # 1 and Z, is a field, if we let n = § we can easily show that any choice

of s yields the same group structure as s = 0. U

Given a group G, we will say that the subgroups F, H < GG are complementary
if given any element g € G we can express it in a unique way as a product g = fh
where f € F and h € H. If that is the case, we will write G = F' - H. It should be
noticed that two subgroups F, H < G are complementary if and only if G = FH
and FNH = {1}.

A very interesting point about PSL(2,p) goes back to Galois, who proved the
following result:

Theorem 2.A.8. For p > 11, there is no subgroup of PSL(2,p) which is
complementary to any of its p-subgroups.

That means that for p > 11 we cannot get PSL(2,p) & F - Z,, which im-
plies that there is no transitive action on p points for PSL(2,p) if p > 11. This
can be seen in the following way: as p is a factor of |[PSL(2,p)| and p? is not
(see Proposition 2.A.1.), if there is a transitive action of PSL(2,p) on p points
{z1,...,2,}, no order p element of PSL(2,p) can fix any {xz;} (otherwise p? will
divide |PSL(2,p)|), which means that given g € PSL(2,p) of order p, we have that

PSL(2,p) = Stab(z;) < g > for any i € {1,...,p}.

For the cases where p < 11 and PSL(2,p) simple, that is, for p = 5,7, 11, we
know that the following holds:

PSL(2,5) = Ay - Cs PSL(2,7) =S4 Cy PSL(2,11) = A5 - Cy;
and therefore PSL(2,p) acts transitively on p points. Through this work we will
try to explore this special feature geometrically, especially for the cases where p =7

and p = 11.
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2.1. The structure of PSL(2,5)

We will not go into too much length for the case p = 5, but for the sake
‘of completeness, we will explain two ways of seeing its geometrical action on five
points. PSL(2,5) is isomorphic to As, the alternating group on five elements that

1s 1somorphic to the group of symmetries of an icosahedron.

Lemma 2.1.1. As is a simple group and it contains:
- No proper subgroup of order higher than 12.
- 6 conjugate subgroups of order 5.
- 10 conjugate subgroups of order 3.

- 5 conjugate subgroups of order 12, each one isomorphic to Ay.

This is not a full description of all the subgroups of A5 and it merely describes
those subgroups order that are interesting for our work. For each conjugacy class,
we can find five different embeddings of A, into As, and its algebraic action on
five points is readily seen as its action on these embeddings by conjugation. Our

geometrical examples will mirror this action.

- Given an icosahedron, we can see its face centres as the vertices of five tetra-
hedra inscribed in it. The symmetry group of the icosahedron permutes the
inscribed tetrahedra transitively.

- For another view of the same phenomenon, we can consider the set of edges
of the icosahedron and form pairs of antipodal edges. Thus we obtain fifteen
pairs of edges so that each pair defines a rectangle inscribed in the icosahedron.
The fifteen rectangles form triples of mutually orthogonal elements, and the

action of PSL(2,5) will permute transitively the five triples.

It is easy to see how these two examples relate to the algebraic action explained
above, since the symmetry group of both the tetrahedron and a triple of mutually

orthogonal rectangles is isomorphic to Ay.
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2.2. The structure of PSL(2,7)

We will represent PSL(2,7) as the group generated by the following matrices

0 1 0 -1 1 6
“‘(-1 o)’ b‘<1 1>’ and C’(o 1>

where a® = b® = ¢’ = abc = I. This group has order 168 and appears as the group
of automorphisms of two important classical geometric objects: the Fano plane,
which will be covered together with other examples of finite geometries in the next

chapter, and Klein’s quartic, that will be described in chapter four.

Lemma 2.2.1. [K11] PSL(2,7) is a simple group of order 168 that contains:
- No proper subgroup of order higher than 24.
. (g) = 28 subgroups of order 3 in one conjugacy class.
- 21 subgroups isomorphic to Cy4 in one conjugacy class.
- 8 subgroups of order 7 in one conjugacy class.
- 8 subgroups of order 21 in one conjugacy class.

- 7 x 2 = 14 subgroups with 24 elements in two conjugacy classes. All of them

are isomorphic to Sy.

Lemma 2.2.2. If we consider the action of PSL(2,7) on P; we see that:

1- There is a one-one correspondence between the Cs subgroups of PSL(2,7)
and the two point subsets {a, b} of P; given by the fixed point set of the action of
each C's subgroup on P7.

If a C3 subgroup corresponds to {a, b}, we will refer to it as Cy b

2- There is a one-one correspondence between the C7 subgroups of PS‘L(Q,?)
and the points of P7; given by the fixed point of the action of each C; subgroup on

P;.
If a C7 subgroup corresponds to a € Py, we will refer to it as C%

3- Each subgroup of order 21 is isomorphic to C7 x C3. There is a one-one

correspondence between the subgroups of order 21 and the stabilisers of elements

in P7.
If a group of order 21 is the stabiliser of a € P; we will refer to it as G';.
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Proof

1- We can take any order three element and calculate its cycle structure on Py,
for example: '
0 -1
(1 1 ) € PSL(2,7) produces (06 co) (135) (2) (4)

and we see that it fixes {2} and {4}. Given that all order three elements are
conjugate, they all have the same cycle structure and therefore every Cj fixes two
points in P7. Since PSL(2,7) acts transitively on pairs of points of P7, the proof is
finished.

2- For the case of C7 we can do the same, if we start with z — z + 1, it only

fixes co. Since the group action is transitive on Py, the rest follows.

3- From Proposition 2.A.5. we know that for any a € Py
Stab(a) = C7 x Cs.

Since there are only eight subgroups of order 21, each one is the stabiliser of a

point. [

SUBGROUPS OF PSL(2,7) OF ORDER 24
IN TWO CONJUGACY CLASSES

Class P Class L
{0,1}{2,4}{3,6}{5, 00} {0,1}{2,5}{3,00}{4,6}
{1,2}{3,5}{4,0}{6, 00} {1,2H{3,6}{4,00}{5, 0}
{2,3}{4,6}{5,1}{0, 00} {2,3}{4,0}{5,00}{6,1}
{3,4}{5,0}{6,2}{1, 00} {3,4}{5,1}{6,00}{0,2}
{4,5}{6,1}{0,3}{2, 00} {4,5}{6,2}{0, 00}{1, 3}
{5,6}{0,2}{1,4}{3, o0} {5,6}{0,3}{1, 00}{2,4}
{6,01{1,3}{2,5}{4, 00} {6,0}{1,4}{2,00}{3,5}
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We will consider the geometric actions of PSL(2,7) on seven points in chapter
four. Before we do that, we need to highlight the fact that the symmetric group on
four elements S4 contains four subgroups of order three. We have already seen that
we can characterize all Cs in PSL(2,7) by their pair of fixed points (i.e. refer to
C2Y as {a,b}), and we will label all subgroups of order 24 in PSL(2,7) using this
characterization, that is, we will refer to each of them by the four pairs of points
that characterize its order three subgroups. That information is displayed in the
previous table and will be used in the next two chapters, the 14 embeddings of Sy

have been separated into two conjugacy classes that we shall call class P and class

L. (see Example 2.3.3. in the following section).
2.3. The structure of PSL(2,11)

We can represent the group PSL(2,11) in many different ways that are related
to triangle Fuchsian groups. We can see it as the group generated by the matrices

(or any other conjugation of this triple):

0 -1 0 1 1 8
a—<1 O)’ b—(_l 8)’ and c-.(o 1)

where a® = b° = ¢'! = abc = I. This representation is useful when we study
epimorphisms from Fuchsian groups with three periods of type [2,5,11]. On the

other hand we can see it as the group generated by the matrices:

0 -1 0 -1 1 —1
a—(l 0), b—<1 1), and c—<0 1>
where a? = b2 = ¢!! = abc = I, and we will use these matrices for groups of type

[2,3,11]. There are other ways of presenting this group that we will cover in chapter

four.

PSL(2,11) has order 660 and beside being the biggest group of the family of
PSL(2,p) that acts transitively on p points, it is the automorphism group of the

3-biplane, as we shall prove in chapter three.

Lemma 2.3.1. [Di] PSL(2,11) is a simple group of order 660 and contains:
- No proper subgroup of order higher than 60.
- () = 66 subgroups of order five in one conjugacy class.
- 12 subgroups of order eleven in one conjugacy class.
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- 12 subgroups of order 55 in one conjugacy class.

- 2 x 11 = 22 subgroups of order 60 in two conjugacy classes. All of them are
isomorphic to As.
This list is not complete, there are some other subgroups of PSL(2,11) that

are not mentioned here, however, it is complete for every order that is mentioned

in the lemma.

Lemma 2.3.2. If we consider the action of PSL(2,11) on Py; we see that:

- There is a one-one correspondence between the Cs5 subgroups of PSL(2,11)
and the two point subsets {a,b} of P;; given by the fixed point set of the
action of each Cy subgroup on Py;.

If a Cs subgroup corresponds to {a, b}, we will refer to it as Cg”b

- There is a one-one correspondence between the C1; subgroups of PSL(2,11)
and the points of P;; given by the fixed point of the action of each C}; subgroup
on Pqq.

If a Cy; subgroup corresponds to a € P15, we will refer to it as Cf;

- Each subgroup of order 55 is isomorphic to C1; x Cs. There is a one-one cor-
respondence between the subgroups of order 55 and the stabilisers of elements
in P,

If a group of order 55 is the stabiliser of a € Py we will refer to it as G§gs.

The proof for the above lemma is similar to the proof for the corresponding

one in the case p = 7 (Lemma 2.2.2.) so we will omit it here.

The geometric actions of PSL(2,11) on eleven points will be covered in chapter
4, and as we have done before we need to explain a way of classifying the embeddings .
of As into PSL(2,11). We have seen that there are six possible embeddings of Cs
into As, and that each Cs < PSL(2,11) can be labelled with its pair of fixed
points on Py;. Following the same idea as in PSL(2,7), we will characterize every

As < PSL(2,11) by a sextuple of pairs of points as it is shown in the table below.
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SUBGROUPS OF PSL(2,11) OF ORDER 60
IN TWO CONJUGACY CLASSES

Class P

Class L

—

{{0, 1}{4,6}{7,10}{5,9}{3,8}{2, 00}
{{1, 2}{5,7}{8,0}{6,10}{4,9}{3, 00}
{{2, 3}{6,8}{9, 1}{7,0}{5, 10} {4, 0}

N —

{13,417, 9}{10,2}{8,1}{6,01{5, 00}
{{4,51{8,101{0, 319, 2{7, 11{6, 00}
{5,619,0}{1,4){10,3}{8,2{7, 0}
{16, 7110, 1}{2,5}{0,4}{9,3}{8, o0}
{{7.8}{0,2}{3,6}{1,5}{10, 4}{9, 00}
{48,911, 3H4, 712, 6}{0,5}{10, 00}
{19,102, 4}{5,8}{3, 7}{1,6}{0, 00}
{110,013, 5}{6,9}{4,8}{2,7H1, 0}

{0,1}{6,812,5){3,7}{4,9} {10, 00} }
{1,2H7,9}(3,6}{4,8}{5, 10}{0, 00}
(2,8}{8, 10} {4, 7}{5,9){6, 0} {1, 00}
(3.4}{9,0}(5.8}{6,10) {7, 1} {2, 00}
{4,5}{10,1}{6,9}{7,0}{8, 2} {3, 00}
(5,610, 2}{7. 1018, 11{9, 314,00} }
(6,7H1,3}{8,0}{9, 2}{10, 4}{5, 00}
(7,812, 4}{9,1}{10,3}{0,5}{6. 00}
(8,913,5}{10,2}{0, 4){1, 6}{7, 00}
(9,10}{4,6}{0,3}{1,5}{2, 7} {8, 00}
(10,015,711, 4}{2,6}{3,8}{9, 00}

i e e S S VR

Example 2.3.3. Let us consider the subgroup G of PSL(2,11) generated by

a:(g 0) b:<9 1())'

6 5 0 5

If we consider the action of a on P;; we see that it corresponds to the permutation
(1,00,7,10,9) (2,3,5,6,4) (0) (8)

on the other hand, b corresponds to
(1,6,4,7,8) (2,10,9,5,0) (3) (o).

We can label < ¢ >= Cp® = {0,8} and < b >= O = {3,00} and see that
G = As. Studying the action of G on the set of pairs of points of P11, we see that
the pairs fixed by a and b belong to the same orbit, which is the sextuple of pairs

the matrices:

that characterizes G:
{ 1,2} {5,7) (8,0} {6,10} {4,9} {3,00} }.
And therefore those are the six subgroups isomorphic to Cs contained in G.
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2.B. The Hecke group H"

In general, a Hecke group H), is a discrete subgroup of PSL(2,R) that is

generated by the following two transformations:

1
X:iz——— and Z:z-—=2z+A
Z

In a result due to Hecke [He], any group generated by X and Z as before is
discrete if and only if A > 2 or A = A, = 2cos I, where n € N and n > 3. The
Hecke groups where A > 2, are Fuchsian groups of the second kind, with a limit set
that is nowhere dense in R, and they are of no interest to us. The case A = 2 gives
a Fuchsian group of the first kind but with a non compact quotient, as for the case
A = A, they are Fuchsian groups of the first kind, and we will refer to them as H™.
Every time we mention “Hecke group” in this work, we shall mean Hecke group of

the first kind. In particular, we see that
H" < PSL(2,Z)))

and for n > 4 the inclusion is strict.
In this work we will deal with H?3, which is the modular group I' = PSL(2,Z),

and the group H° where )5 is the golden ratio.

1+V6

As 5

When considered in terms of their presentation, the groups H" are triangle
groups with signature [2,n,co], where X is a representative for the elliptic elements

of order 2, 7 is a parabolic element and

-1
Z— An

Y=XZ"1!:2 —
is a representative for the elliptic elements of order n, thus there is one conjugate
class of subgroups of order n.

We can find a fundamental domain for H™, which will be a hyperbolic triangle
in U with one or two of its vertices in 8 = R = RU {oo}. A standard choice for
a fundamental region of H™ is the hyperbolic triangle with vertices 0, e® and oo;

another choice is the hyperbolic triangle with vertices —e ™, e and oo.
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In general, the description of the elements of H™ cannot be explicitly done,
however it is possible to describe them for the cases n = 3, 4 and 6. We will cover

n = 3 in a later section while the other two cases are very similar to one another:

n=4 wehave ;=12
n=6 wehave A= 13.

We will now prove that a matrix M is an element of H™ where ny = 2(k +1)
and my = (k+ 1), (k=1,2) if M can be written in one of the following ways:

[ ay/my b
MO“( c dﬂ) o

where det(M) =1 and a, b, ¢, d € Z.

ve= (e 07

It is easy to see that any matrix in H™ must have this form. Any matrix in

H™ is represented by a word in X and Z, and any word in X and Z with only one

X would be of the form

- s [ r/my, rsmy —1
Wi =2 X2 —< 1 s/ )

for a certain r,s € Z. We will prove that all words with an odd number of X in
them have the form of the matrix M, while the words with an even number of X
have the form of M,. We will proceed by induction and first assume that the result

is true for any word W; with [ or less X in it.

Take a word Wiy, with [ + 1 appearances of X, we can express it as W11 =
W(lr S)VVI for certain 7,s € Z and for a certain word W, with [ appearances of X.
By hypothesis, if I is odd then '

= (M0 )

where a, b, ¢, d € Z and an easy calculation shows that W(i s)Wl corresponds to a
matrix of the form M,. If [ is even we choose W, from the set of matrices of M,

and proceed in the same way.

As for the set of cusps, it is not known what the cusp set is for a general n,
although we know that the cusp set of PSL(2,Z[A,]) is Q(An) U {co} (which we
represent by @()\n)) and thus that of H™ must be a subset of @(/\n). One of the
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best results for this problem is due to Leutbecher [Leu2] who proved that for the
values n € {3,4,5,6,8,10,12} the cusp set of H™ is:

AnQ(AZ) U {o0}.

Therefore in the case n = 3, the cusp set is @ while for the case n = 5 its
cusp set is @(\/5), and in both cases the cusp set is the whole field completed
with infinity. It turns out that these are the only two cases where the equality
Cusps(H™) = Q()\,) holds, since Wolfart [Wol] proved that it is false for any other
case except perhaps n = 9 and Seybold proved later that n = 9 is not possible either
[Ro].

The field Q(A,,) is a number field, that is, it is a finite extension of Q, and
its degree is g’—%ﬁl where ¢ is the Euler function. In fact it is the maximum real
subfield of the number field Q(ez, ), where €, is the nth root of unity, and we can
easily calculate its degree since [Q(e2,) : Q(An)] = 2. The ring of algebraic integers
of the field Q(\,) is Z[A,] (see [Was]), that means that if z € Q(\,) is a solution
for

2"+ ap1z™ o+ ag =0

where a; € Z, then 2 € Z[),]. And furthermore, given y € Z[\,] and d = ¢(§”),

then y have the form

Y= ba_1 A7 £ by o A2 b

where b; € Z.

If we are to study the structure of the ideals of Z[\,], it suffices to study
its prime ideals, since Z[A,] is the integral ring of a number field, it is a Unique
Factorization Domain (UFD). We can go even further, since for n < 68 every Z[A,]
is a PID (see [Was]) and every ideal in it is principal. Since we will only deal with

n =3 and n = 5 that result covers our two chosen cases.

Given P a prime ideal of Z[\,,] (where n < 68) we will say that Norm(P) =m
if m € Z is the smallest positive rational integer so that P | m. There is a general
definition of the Norm of an ideal where the class number is different from 1, but

we will not need it here.

Our last concern is going to be the group of units of the rings Z[A,], but in this

case we will only cover the cases we are going to use. For n = 3,5 the integers rings
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are Z and Z [li__g/g} respectively, while the group of units in the rings is {1, —1}

for the case n = 3, and is the cyclic group generated by A5 for the case n = 5.

A standard feature of any Hecke group is that its cusp set can be represented

by finite continued fractions.

Notation We will use the notation [£] to indicate a term inside a contin-
ued fractions expansion, and we will display the terms in a continued fractions
expansion ordered, between brackets and separated by commas to make clear the

non-commutative nature of this representation, so that

bo

ag +
0 b

by
b3

a1+
as +
a3+

will be represented by

(] 2] 2] (2] )

Theorem 2.B.1. Given H™ a Hecke group, C is a cusp of H” if and only if it

can be expressed as a finite continued fraction of A, of the form:

(lownd. || [ ]| ])

Proof H™ is generated by X and Z, so any element in H™ is a finite word in
these two letters. As any parabolic element of H™ is conjugate to a power of X ZX
(that fixes 0), any cusp of H™ is the image of 0 by an element of H™. Let us assume

that the cusp C is the image of 0 by the word W defined by

where a; € Z.

W =Z%XZ%X7%...Z%n-nXZom

where a; € Z.

It is easy to see that
-1

~1
2%(2) = 2+ adn, XZ2%(2) = ——— and Z°X7°%(2) = o A
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so that when we consider the representation of W, we get

W(z) = (LaoAnJ ! [ajJ ! L;J l&mT_lIZD

and we see that W (0) is as in the hypothesis. To prove the converse it is enough

to reverse the argument so that the proof is finished. O

Since H™ is a free product of its generators, we can impose conditions on
W € H™ to make its expression in terms of X and Z unique, and therefore we can

as well consider the continued fraction representation for every cusp unique [Ro].

Example 2.B.2. We will show how the previous theorem works. Let

89 + 107v5
38

be a cusp of H°, an easy calculation shows that it can be expressed as
-1 -1
5 — |, | =
(L SJ’L%J [3/\5J>
and it is therefore the image of

VAD. O/ 04 (g) .

Another interesting area for the study of Hecke groups are their subgroups, in
particular the special congruence subgroups. Given the group PSL(2,Z[\,]) and I
an ideal in Z[\,], we can define the special congruence subgroups of PSL(2,Z[A,])

for I as:

PSL(2, Z[\))(T) = {(g g) € PSL(2,Z[\]) |a=d=1, b=c=0 (mod I)}
PSL(2,Z[ )1 () = { (‘; d) € PSL(2,Z[\s]) |a=d =1, ¢ =0 (mod 1)}

PSL(2,Z[A))o(I) = { <‘; Z) € PSL(2,Z[M\,]) | ¢ = 0 (mod 1)}
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We call PSL(2,Z[\,])(I) the principal congruence subgroup of PSL(2,Z[)\,])
for I. We can extend these definitions to H™ and define the special congruence

subgroups of H™ as:
HI(I) = PSL2,Z\). (1) N H”

where the subscript , can be 0, 1 or omitted.

We will proceed to describe some relations satisfied by the special congruence
subgroups of PSL(2,Z[\,]). That the principal congruence subgroup satisfy

PSL(2, Z[An])(I) 9 PSL(2, Z[A])1 ()

is easy to see if we take the group epimorphism

v PSL(2,Z[\, )1 (1) — Z{}\n] defined by <a Z) =[]

C

where [b] denotes the class of b inside Z[’I\"], and calculate Ker(y).

The previous result is actually a particular case of a more general one since
PSL(2,Z[A\,])(I) is actually normal inside the group PSL(2,Z[)y]) for which we

need to consider

U : PSL(2,Z[A,]) — PSL (2, Z{?”U given by ¥ (‘; Z) = <{c] d

where [z] is the class of z in Z[}\”], it is clear that PSL(2,Z[\,])(I) = Ker(¥). We

have as well that
PSL(27Z[)‘TLD1(I) <]})‘S’L(sz[)‘n])o(l)'

This we can see if we consider the epimorphism
x : PSL(2,Z][\.])o(I) — —_Et_l_}* given by (c d) = [d]

where [a] is the class of a in -[-]—@{[:—L\—;%—/I—), and U(Z[\,]/I) is the set of units of

Z[An]/I. We can check that Ker(x) = PSL(2,Z[A,])1(I). It follows in a natural

way that the same happens to the special congruence subgroups of H".

H*(I)<«H}(I)<Hy(I)<H™ and H™(I)<H"
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Example 2.B.3. The above inclusions are not necessarily strict, if we take

H® and the ideal in Z[\5] generated by (2), we can see that
H5(2)<a H?(2) = H5(2) < H?

As for the indices of the special congruence subgroups of H™ for a given n, in
general they are not known. The indices of the subgroups of PSL(2,Z[A,]) (see

[Hur]) provide an upper bound, but there are examples where these bounds are
not attained.

[PSL(2,Z[A)) - PSL(2, Z[An])o(1)] = Norm(I) [ | (1 + jv’m«—:n(?)>
Pl

[PSL(2,Z[An]) : PSL(2, Z[An])(1)] = Norm(1)* [ | (1 - W)
P|I

[PSL(2,Z[A))1(I) : PSL(2,Z[X,))(I)] = Norm(I)
where Norm(I) stands for the norm of the ideal I, and P runs through the distinct
prime divisors of I.

There are many cases where the indices of the special congruence subgroups
of H™, attain the upper bound provided by the indices of the special congruence
subgroups of PSL(2,7Z[A,]), as it is shown in the following theorem by Frye [Fr]

Theorem 2.B.4, Let

k
I=]]ps
=1

be the prime factorization of an ideal I of Z[A,] with (6n,I) = 1. If n = 3 (that is,
for the modular group) let also be (5,1) = 1. Let I* = INQ(A2) and let Norm(I)
be the Norm of I in Q()\2). Then

n ., n = 2Norm *\3 o 1
[H™ : H™(I)] = 2° Norm(I*) PI}<1 ————-NOTm<P)2>

with
0  if there is i # 7 such that BN Q(\,) = P, NQ(Xy)
s=1¢ 0 if there is i such that 725 = PGL(2, %32])

—1  otherwise

and P running through the prime divisors of I*.
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2.4. The modular group H?

For the case where n = 3, A3 = 1 and we get the most studied of all Hecke

groups, namely the modular group I'

['=PSL(2,Z) = {(Z 2) € PSL(2,R) |a,b,c,d€Z}

With presentation I' =< X, Y3 | X? =Y = 1 > and signature [2, 3, c0].

For a picture of a modular region (a fundamental region of the modular group)

see Fig. 2.1. below.

-1 0 L 1

Fig. 2.1. A modular region

Proposition 2.4.1. The orbit of co under the action of I' is @

Proof Let ¢ € Q be an irreducible fraction, as (a,c) =1 we can find d,b € Z
so that ad — bc = 1, and therefore

(Z 2) € PSL(2,7)

a

ifwecal T: z — % it is clear that T'(co) = &
Corollary 2.4.2. The cusp set of I' is @ and its action on its cusp set Is
transitive.
. . . . 1 . .
Proof That oo is a cusp of I is straightforward since (0 1 ) € I', is parabolic

and fixes oo. O
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The indices of the special congruence subgroups of H® can be easily calculated

as a particular case of the formulae provided at the end of section 2.B. (for a direct

proof see [Schoe]):

vy P
Pry ) = %—QW( -2)

[[:T(N)] =N [I': T1(N)]
for any N > 2 and the product running along the positive prime divisors of N.

We will take for granted the first equality, which is widely known, and use it to
prove the other two. In order to do so we will use the functions ¢ and x defined in
section 2.B. in the context of the special congruence subgroups of PSL(2,Z[\,]).
When n =3, I' = PSL(2,Z[A3]) so we can use x to prove that
p(N)

and therefore  [Lo(N):I'1(N)] = =

Lo(N)  U(Zy)
y(N)  {£1}

where ¢ is the Euler function. On the other hand, if we use 1 we can prove that

>~ Zy  and therefore  [['1(N): (N)] = N.

For any integer N of Z we will say that the congruence subgroups of I' for V
are of level N. We know that I'(V) has no elliptic elements if N > 2 so that if
we fill in the cusps of X = F-(L'{NT we get in X the structure of a compact Riemann
surface.

Another interesting result, which follows immediately from the discussion of

special congruence subgroups of PSL(2,Z[\,]) in section 2.B. is:
Theorem 2.4.3. If p € Z is prime, we get that:

r

i = PSL(2,p).
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We can describe the action of the principal congruence group of level N on the

cusp set of I'. In fact for any N [Schoe]:

Theorem 2.4.4. Given two cusps of T, ';3 and g—: if they are expressed as

irreducible fractions in Q, then the equivalence condition under the action of I'(\V)

Is given by:
p {pE:i:p/ (mod N)
-~ = & and
¢ 4 g==+q¢ (mod N)

Corollary 2.4.5. The number of inequivalent cusps under the action of I'(NV)

for NeZis:

if N>3and 3if N =2.

Proof The proof follows from the above formulae as

Stab(co) 2 Zn in TN

2.5. The Hecke group H°

The next interesting Hecke group is n = 5 and that for a number of different
reasons. It is together with n € {3,4,6} the only other case where Q(},) is a
quadratic extension of Q, and together with n = 3 the only case where the cusp set
is the completed field @(/\n). Unfortunately we do not have any explicit description
of the matrices of H®, although we can by;pass this problem by the use of continued

fractions.

Theorem 2.5.1. [Leut] Given a € Q(v/5), it admits a finite continued frac-

tions representation of the form:
-1 -1 —1
- A e
¢ (Lao o [al/\sJ 7 [aﬁsJ ’ [an/\sp

Corollary 2.5.2. The cusp set of H® is Q(As).

where a; € Z.

Proof Immediate from the previous theorem and Theorem 2.B.1. OJ
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Once we have described the cusp set of H® it is natural to try to answer similar
questions to those solved for n = 3, like finding the index of the special congruence
subgroups of H® or the action of the principal congruence subgroup for the ideal
I, H5(I) over the cusp set of H°. The following explicit calculation of the index
[H®: H{(I)] can be found in [CLLT].

Theorem 2.5.3. Given I a non-zero prime ideal of Z[As], then:

5 if I =(2)
6 if I =(2+ As)

p?+1 if I = (p) where p =42 (mod 5), p # 2
p+1 in any other case.

H®: H(D)] =

where p is the positive rational prime contained in /.

We will prove a theorem for the action of H°(I) on the cusp set of H® that
is similar to the one explained for n = 3. Before doing so we need to define the

canonical form of a cusp of H®.

Let £ € Q(As) be a cusp of HS5, we can find a unique expression of ~ as a

continued fraction of A5 of the form:

ot [5x] [) o [a)

where a; € Z. We will define a reduction process in order to construct the canonical

form of % Given a finite continued fraction of the form

(2] - [ l2=] [2])

it is clear that the following expression represents the same number and is one step

smaller:
_bﬂ bn—Z bn—lan
ag T an -2 ’ Qp—10n + bn ’

where for technical reasons we will not allow any form of fraction simplification

within the last term of the expression.

If we apply this process to the continued fractions expansion of - in terms
of X5 as defined in Theorem 2.5.1., what we get is a fraction (that should not be

reduced) whose numerator P and denominator () are an expression in a; and As.
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We say that (g) is the canonical form of the fraction > under As. It is clear

that there is a | € Z such that P = Ajn and @ = Ajm so that § = 2. The main
advantage of using the canonical form of a fraction is that it allows us to find a
matrix M € H° that takes it to either 0 or co. [Ro]

Theorem 2.5.4. Given

(5) o Eecu

a fraction in the canonical form, then there is a matrix M € H° so that
0 P
(1) (o)
1 Q
Proof Taking X and Z in their matrix form,

~(he) )

and
g = (L&o)\sJ ’ [ajsJ 7 Lz;sJ S L;LJ)

it is easy to see that

M =Z%XZ2XZ%...7%-1XZ7m

satisfies all the above.

Example 2.5.5. Using the calculations from the Example 2.B.2., we see that

(38)\5+15> _ (34+19¢5)

X5 + 4 114375

is the canonical form for

20+ 1075 _ CNEAEES)

because there is a matrix M € H® with the form:
x 34 +19V5

11435
2
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Proposition 2.5.6. Given two cusps of H?, g and g:— expressed in the canon-
ical form. They are equivalent under the action of H°(I) for I an ideal of Z[\s] if

the following holds:
p P P =+P" mod(l)
-~ & { and
Q@ « Q=+0Q mod(I)
Proof Let % and g—: be two cusps in the canonical form. Then there are

a,b,c,d € Z[Xs] so that:

0 (2)=(5)

V=L XZ*XL]*

for some k € Z. The condition for V € H®(I), that is:

_ 1 0
LQXZ’“XL115<O 1) mod ()

forces Ly 'Ly = XZ*X mod (I), and that implies:

1) Pd—Qc==£1 mod (I)
2) ad—cb=kAs mod (I)
3) PQ'-PQ=0 mod (I)
4) Qa—Pb=+1 mod (I)
As we know that in particular V' € PSL(2,Z[As]) we can ignore 2). From
3) PQ' = P'Q so if we multiply 1) by Q" and use that dP' — c@Q’ = 1 we get

that Q = 4+Q’ mod (I). Using the same method and multiplying by P’ we get
P = +P" mod (I), since the solutions satisfy 4) as well, the proof is finished.
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Corollary 2.5.7. Given I a non-zero prime ideal of Z[)5], the number of

inequivalent cusps for H5([) is
(p* — 1)
2

where p is the rational prime in /.

The following theorem provides the group structure of the quotient of H® by

a principal congruence subgroup of it [Can].

Theorem 2.5.8. Given I a non-zero prime ideal of Z[A;] and p the integer

prime inside I, we get that:

PSL(2,p) ifp=+1 (mod 10)
H5 ) PSL(2,p?) if p=43 (mod 10)
H5(I) ~ ) Ds if p=2
As if p=3,5.

In Z[As] the ideal (11) is not prime as (11) = (4 + v/5)(4 — v/5), so in order
to study PSL(2,11) we need choose one of the factors as I, and we will take
I = (4—+/5) since 4 — /5 and 4 + /5 are conjugate in Z[Xs]. The quotient groups

that arise for [ are:

HS

= (CyyxC
54— 5) 11 5

~ PSL(2,11) and
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Chapter Three

Finite Geometries

The aim of this chapter is to introduce incidence structures, that will lead
to (finite) geometries and designs. Among them we will pay special regard to
projective planes and biplanes, particularly to the structure of the Fano plane and

that of the first three biplanes, paying special attention to the biplane of order three
or 3-biplane.

Among other connections that will be explored in the next chapter, the Fano
plane and the 3-biplane are the first two examples of Hadamard designs. Most of
the information displayed here can be found in [HP] and [Po], as well as proofs

for most of the results in this chapter, unless otherwise stated.

3.1. Introduction

An incidence structure or simply a structure S is a pair of non-empty sets P
and £, which we shall call points set P and lines set £ with an incidence relation
Is C P x L consisting of a non-empty set of pairs (P,]) where P is a point and [ a.

line. We will assume that the structures have a finite number of points and lines,

that is, that they are finite structures.

If (P,1) € Is, we say that P belongs to [, that P and [ are incident or that
(P,1) is an incidence pair. The usual name for lines in structures is blocks, but we

prefer lines since we will rapidly move into geometries.

We can represent the incidence relation Is of a finite structure S with m points

and n lines by a m X n matrix Mg that we call an incidence matriz of S.
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To construct an incidence matrix of & we need to index the points and lines
sets P = {P}I2,, L = {l;}7-, and define Ms as the matrix with coefficients (M)

wheret=1,...,m,7=1,...,n and:
1 1f<P2’ZJ)EIS
M;; =

0 otherwise.
Mg is not uniquely determined, but it contains all the relevant information
about the structure S. In fact, given Ms and M two incidence matrices for the
same structure S, there are two permutation matrices (i.e. matrices so that in every

row and column all the coefficients are 0 except for one that is 1) R and S so that:

RMsS = ML

We will say that a finite structure S is connected if for any two points P and

() there is a sequence of incidence pairs of the form
[(P, D), (P,1), (P, ly), (Ps,l1), (Pa,l2), ..., (Q,l’)]

that connects P and Q.

With the previous definition of structure there are some pathological cases that

we want to avoid:

- Two lines (resp. points) are repeated if they are incident with the same set of
points (resp. lines), if we remove all repetitions (i.e. we get rid of all repeated
elements of one kind but one), we say that we have reduced the structure. It is
clear that reducing the structure is equivalent to eliminating all repeated rows
and columns in the incidence matrix.

- We say that an element (point or line) is isolated when it is in none or just
one pair of the incidence relation, and we say it is full when it is incident with
all the elements of the other type. We standardize a structure if we remove
all isolated and full elements. On the other hand, we standardize an incidence
matrix when we remove all columns or rows that have either all coefficients

equal to zero, all coefficients but one equal to zero, or no coefficients at all

equal to zero.

A structure is totally reduced if it is reduced and standardized, we will call

geometry a connected totally reduced structure. This definition of geometry is
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more restrictive than the usual one (that allows full and repeated elements) but we
are not interested in the anomalous cases. Although in the process of reducing or
standarizing a given structure & we might convert normal elements into repeated,
isolated or full elements and therefore will have to remove these elements as well,
the process is essentially well defined. Since the structures we are considering are
finite, their total reduction is either the empty set or a geometry that we will call
Gs.

In a reduced structure we can consider any line [ as a subset of P, so that P
is incident with [ if P € [. We will say that a structure is uniform if all the lines
contain the same number of points and regular if all the points are incident with
the same number of lines, we will say that a uniform structure with k£ points in
every line is trivial if every set of k points is incident with at least one line. A finite

geometry is one with a finite number of points.

We define the flags (also called bits because they play a similar role to that of
bits in dessins) of a finite geometry as an incidence pair, so that every pair (P,{) in

the incidence relation corresponds to a flag.

Given two structures S and 7, an isomorphism between them is a bijective map
from the point set of S to the point set of 7 that induces a bijective map between
the line sets so that the incidence relations are preserved. An automorphism is an

isomorphism of a structure into itself. These definitions extend in a straightforward
way to finite geometries.

Since an incidence matrix contains all relevant information about a structure,
we can characterize isomorphic structures in terms of their incidence matrices: two
structures § and 7 are isomorphic if and only if there are incidence matrices Mg

of & and M+ of T, and two permutation matrices R, S such that:
RMgS = M.

From the definition of geometry and the dual nature of repeated, full and
isolated elements, it is clear that points and lines play an interchangeable role, and
if we swap points for lines in a geometry G we get its dual geometry, G¥. The use of
the superscript T describe the fact that the incidence matrix of G is the transpose

matrix of Mg.
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Proposition 3.1.1. Given a geometry G:
- G is uniform if and only if GT is regular.
(@) =g.
We can consider as well the set of complements of the lines of a geometry G

as a new set of lines, if P with this new set of lines is a geometry, we will call the

resulting incidence structure the complement geometry of G.
Example 3.1.2. Let S be the geometry with points P = { Py, P, Ps, P4} lines
L = {ly,l2,13,14}, and incidence relation given by:

lh={P, P, P3} lo={Py,P3,Ps} l3={P1, Po, P} Iy ={P,, Ps5, P4}

We will call & its complement structure, whose incidence relation is trivially
given by:
iy ={P} ly={R} l3={P} ly={P}.
If we totally reduce &', we end up with an empty incidence structure (since
every point belongs to a single line) therefore making it impossible to get the com-

plement geometry of S.

Fig. 3.1. Picture of the geometry of example 3.1.2.

Note We could easily avoid the problem showed in Example 3.1.2. by changing
the definition of “full element” to include any element that is incident with all or all
but one of the elements of the other kind. The complement of a geometry defined
in that way will be already a totally reduced structure, and therefore a geometry.
We have not done so because with that definition we would have excluded some

structures commonly regarded as geometries, as S in the example above.
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Proposition 3.1.3. If G is a geometry and C its complement structure:
- G is uniform if and only if C is uniform.

- G is regular if and only if C is regular.

Proposition 3.1.4. Given G a geometry, consider G7 its dual geometry and

C its complement structure, we have:
Aut(G) = Aut(GT) = Aut(C).
Proof ® € Aut(G) is defined by a pair of bijections (¢, ¢’) where
¢$:P—P and ¢ :L—L
so that (P,1) € Ig <= (¢(P),¢'(1)) € Ig. Tt is now easy to see that
P € Aut(G) <= ' = (¢, ¢) € Aut(GT).

For the proof of the second part, we will consider £ as a subset of Power(P),

the set of subsets of P and define L¢ as the set
Le={l|l=P-U,1¢€L}.

For a given element ® € Aut(G), as the definition of ¢’ : L — L is consistent
with the pointwise extension of ¢ : P — P, we can define ¢ : Lo — L¢ by
(1) =P — ¢(P — 1) and in that way we have proved that

&= (p,¢) € Aut(G) <= U = (¢, %) € Aut(C). O

A uniform geometry is called a design. If there are exactly A lines through
every t points of a design, we say that we have a t — (v, k, A) design, where v is
the number of points of the design, and & the number of points in each line. In
particular any t — (v, k, A) design is regular. We will say that a design is square if
its incidence matrix is a square matrix, that is if there are as many lines as points

in the design, a square 2 — (v, k, A) design is called a symmetric design.
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Theorem 3.1.5. In general, for a ¢t — (v, k, A) design, if we call b the number

of lines in the design and r the number of lines through a point, the two following

equalities hold:

_yv(v=1) - (v—t+1
b= /\k(k-l) (k—t-{-lg
- if ¢ > 0 then bk = vr.

Proof The proof is an easy counting exercise. Since every t-uple of points

defines A lines and from a given line we can get (’;) t-uples of points, the number
Al
k
(+)
The design is regular because by a similar argument the number of lines through
v—1
2 (15)
k—1
(:)

of lines is

any given point is

and the rest follows.

Proposition 3.1.6. In a symmetric design with parameters (v, &, A), we have

k(k—1) + A
D

V=

Proof For the proof we will fix a point P € P and consider all the flags of the
form (@Q,1) where @ # P and P € [ and we will count them in two different ways.

As there are 7 lines through P and each one contains k points, we have 7(k—1)
flags of that sort. On the other hand, there are v — 1 choices for )--and for every
choice there are \ different possibilities for [ yielding a total of A(v —1) flags. Since

the design is symmetric v = b and therefore r = k. O

We could also have proved Proposition 3.1.6. as a Corollary to Theorem 3.1.5.

where b = v and ¢t = 2.

We will only deal with designs such that £ = 2, that is, there is a fixed number
of lines A through every two points of the design. We will define the order n for
such a design as n = 7 — X\ where 7 is the number of lines through a point. There
is a general definition of order for a ¢t — (v, k, A) design (where ¢ > 2), but it is of

no interest for us here.
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As designs are in particular geometries, the relations between a general de-
sign, its dual and its complement structure, follow easily from similar results about
structures and geometries. A more difficult question is that of the relation among
at— (v,k, ) design, its dual and its complement. Here we will only tackle that

question for square ¢t = 2 designs.

Proposition 3.1.7. Given a symmetric design D with parameters (v, k, A),
its dual DT is a symmetric design with the same parameters.

Proof That DT is a design is easy to see since as D is regular (becase it is
symmetric), DT is a uniform geometry.

As D is symmetric, if we call b the number of lines and r the number of lines
through a point as in Theorem 3.1.5. following that theorem we get that 6 = v
and r = k. We still have to prove that every two lines of D intersect in precisely A

points, and we will use the incidence matrix Mp for this part.
If we call I, the identity matrix of order v and J, a v by v matrix with all its

entries 1, we get that
Mp - ML =rI, + \(J, — I,)

where the element r7I, on the right means that there are r lines trough each point

and the element A(J, — I,,) comes from the fact that any two points determine A

lines. It is easy to prove that
|[MpME| = (r— A" (r+ (n—1)A)

and since 7 > A > 0, Mp is an invertible matrix.

From there we get:
MD- (MgMD) = (MDMg) 'M'D :TMD+/\(JU -MD—M'D)

but
Jo - Mp=kJ,=rJ, = Mp - J,

and since Mp is non singular, we get that
ME - Mp =rl, + \J, — 1,)

and therefore any two lines of D have precisely A points in common.

Theorem 3.1.8. Given a non trivial symmetric design D with parameters

(v, k, A), its complement geometry is a symmetric design with the same order as D

and parameters (v,v — k,v — 2k + A).
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Theorem 3.1.9. For a non trivial symmetric design of order n and parameters

(v, k, A), we have that
dn—~1<v<n?+n+l.

Proof By Proposition 3.1.6. we have that:

o k(1) 42
= ST

In this kind of design n = k — A (v = b by symmetry, hence k¥ = r by Theorem
3.1.5.) which yields:
nin—1)

v:—/\——+/\+2n.

If we consider the above expression as a function v(A) where 1 < A < n(n —1) (if
A > n(n — 1) then v(\) would be a rational number, which is impossible), we see

that it has a concave graph with a minimum at
Ao = Vn(n—1)

and two maxima at
A1 =1and Ay =n(n —1).

The two natural numbers closest to Ay are (n — 1) and n, and we have that
v(in)=v(n—1)=4n -1
so v(A) > 4n — 1. On the other hand, for the two maxima values we get that
v(l) =v(n? —n)=n*>+n+1

and therefore v(\) < n?+n+ 1.

The two extreme cases of this theorem actually occur:

- For v = 4n—1 we get that either the design or its complement have parameters
2— (42 + 3,22+ 1,)). Any symmetric design with that set of parameters and
for any A is called a Hadamard 2-design or simply a H-design.

- For v = n? + n + 1 we have that either the design or its complement is a

projective plane, as we shall see in the next section.
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There is a limited amount of information regarding the existence of designs for a
given set of parameters (¢, v, k, A) or about the number of non equivalent desings for

one choice of parameters. The main result about non existence of square 2— (v, k, A)

designs is (for a proof see [HP]):
Theorem 3.1.10. (Bruck-Ryser-Chowla) If v, k, A € Z satisfy

(v —1)A = k(k — 1)

then for the existence of a symmetric (v, k, A) design it is necessary that:

- If v is even then k£ — X is a square.
- If v is odd, then 2z? = (k — \)z? + (-—1)%’1'/\3;2 has a non-trivial solution in
integers z, y and z.

The following corollary is very important when dealing with projective planes,

since it restricts the possible orders for them.
Corollary 3.1.11. If a symmetric design with A = 1 and order n exists, and
n=1 (mod4) or
n=2 (mod 4)
then n can be expressed as a sum a? + b? where a,b € Z.

Proof Since the design is symmetric and A = 1, by Proposition 3.1.6. we have

that
v=klk—-1)+1=mn+1)n+1

Assume now n = 1 (mod 4) or n = 2 (mod 4), we then have v = 3 (mod 4) and

therefore (—1)12:l = —1 so that from the second statement in the previous theorem,
we have 22 = na? — y? and then
2y
TR e

where z,y,z,n € Z. It is well known that an integer is the sum of two square

rationals if and only if it is the sum of two square integers. O

We can obtain similar results about the existence of H-designs of a given order
by using Hadamard matrices. A Hadamard matriz of order n is a square n by
n matrix H whose entries are either +1 or —1 and such that HHT = nI. We
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can define a generalized version of the permutation matrix that we have used when
dealing with incidence matrices, a generalized permutation matriz is a square matrix

whose entries are +1 or 0 and such that in each row and column all entries but one
are zero.

Theorem 3.1.12. If H is a Hadamard matrix of order n and R, S are gener-
alized permutation matrices of order n, then H' = RHS is a Hadamard matrix of

order n. We will say that H and H' are Hadamard equivalent.

It is clear that a class of Hadamard equivalent matrices of order n is stable
under the action of the group of all row and column permutations and sign changes.
In fact, for every class of Hadamard equivalent matrices of order n we can choose
a matrix in the class such that all entries in the first row and column are 1 (which

is obviously not unique for a given class). We will call such a matrix a normalized
Hadamard matriz.

The following result impose a restriction on the order of possible Hadamard
matrices:

Theorem 3.1.13. If H is a Hadamard matrix of order n then n must satisfy

one of the following conditions:

n=1
n =2
n=0 (mod 4).

As one would suspect, there is a strong relation between Hadamard matrices
and H-designs:

Theorem 3.1.14. Let H be a normalized Hadamard matrix of order n > 4. If
we delete the first row and column of H and substitute all —1 entries by 0, we obtain

a matrix Mg, which is an incidence matrix for a square design & with parameters

- —4
o (n—1, n 27 n
2 4
that is, a H-design. Conversely the incidence matrix of any Hadamard 2-design for

a given A becomes a normalized Hadamard matrix of order 4(A + 1) by the reverse

procedure.
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Example 3.1.15. H is a normalized Hadamard matrix of order 8, if we apply
the method described above to it, we get Mgy, which is an incidence matrix for a
square design with parameters 2 — (7,3,1) that is in fact the Fano plane and that

will be described in the next section.

1 111 1 1 1

1
1000101

1 1-1-1-1 1-1 1
11000 1 0

1 1 1-1-1-1 1-1
1-1 1 1-1-1-1 1 0 1 10001
- Mpano=11 0110 0 0

1 1-1 1 1-1-1-1
0101100

1-1 1-1 1 1-1-1
1-1-1 1-1 1 1-1 000 10110
000101 1

1-1-1-1 1-1 1 1

As we will see, the result in this example is in fact true for any normalized
Hadamard matrix of order 8 By Theorem 3.1.14. any such a matrix will yield
an incidence matrix for a symmetric 2 — (7,3,1) design, whose complement is a
symmetric 2 — (7,4,2) (see Theorem 3.1.8.). As there is only one symmetric 2 —
(7,4,2) design (the 2-biplane, see the proof of Proposition 3.3.5.), there is only one
symmetric 2 — (7,3, 1) design, the Fano Plane.

3.2. Projective planes

A projective plane is a geometry that satisfies the following three axioms:

- Two distinct points are contained in a unique line.

- Two distinct lines intersect in a unique point.

- There exist four points of which no three are incident with the same line.

Theorem 3.2.1. A finite projective plane is the same as a symmetric design
(v, k,1) with & > 2.

Proof Given D a symmetric (v, k, 1) design, since A = 1 it is true that any two
distinct points are contained in a unique line, and by Proposition 3.1.7. the second

projective plane axiom is also true. As k > 2, by Proposition 3.1.6. we have that
v=k(k-1)+1>3(k—1)> k.

As v > k we can choose three points P, P, P; not in the same line, and call

l{i ;) the line incident with P; and P;. It is easy to see that
llf1,2y Ulga,sy Ulpr sy = 3(k — 1)
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and so we can choose a fourth point P4 of the design so that the third axiom is also

satisfied.

To prove the reverse, we need to show that a projective plane is uniform and
square. We can take a line [ and a point P ¢ [. By the first and second axiom,
there are as many lines incident with P as there are points in [ and we shall call
this number k. Let us take I’ any line incident with P, by the third axiom we can
choose Q € 1I', P’, Q' so that no three of them are incident with the same line. If
we call {” the line defined by P’ and @', I has k points, and therefore there are k
lines incident with @, which means that there are & points in I’ and the geometry

is uniform. By Theorem 3.1.5. the geometry is also square, and by the first axiom

t=2and A = 1. O

We define the order of a finite projective plane as k — 1, that is the number n,

such that there are n + 1 points in each line, and n + 1 lines through each point.

Corollary 3.2.2. For any symmetric (v, k, A) design with A = 1, we have that
k=n+1and v =n?+n+ 1 where n is the order of the design.

There is an easy way to construct finite projective planes for which we shall

need the following well known result about finite fields:

Theorem 3.2.3. If K is a finite field then |K| = p” where p is prime and
r € Z,r > 1. And for any p” as before there is a unique finite field of order p" that
we shall denote Fi-.

If we take K to be a finite field, and V to be a 3 dimensional vector space
over K, we can define P(K) to be the structure whose points are the 1-dimensional
subspaces of V, and whose lines are the 2-dimensional subspaces of V', while the

incidence structure is given by the subspace inclusion in V.
Proposition 3.2.4. P(K) is a projective plane of type 2— (n?+n+1,n+1,1)
where n = | K|.

Proof To define a 1-dim subspace of V we need to consider any non zero vector

of V, and the fact that any 1-dim subspace contains n — 1 such vectors. Following

that we see that P(K) contains ’Zj__ll =n?+ n+ 1 points.

Given a 2-dim subspace, it contains n? — 1 non zero vectors, and reasoning as

before we get that it contains 77‘12___11 = n + 1 1-dim subspaces, that is, each line in

P(K) contains n + 1 points. Obviously any two different 1-dim subspaces generate
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a 2-dim subspace. The incidence structure for the projective plane follows easily

from the properties of a vector space.

Corollary 3.2.5. There is at least one projective plane of order n for any
n = p” where p is prime and r € Z, r > 1.

The two main results about the existence and non-existence of projective planes
are Corollary 3.1.11. and the corollary above. Little is known in general for any
other values of n and the smallest value for which we do not know whether there
is a projective plane with such order is n = 10. There are many projective planes
that are not constructed in the way mentioned above, for more information on the
topic see [HP].

Another important issue is the calculation of the automorphism group of a
projective plane. Although we do not know a general way of calculating automor-
phism groups for an arbitrary plane, we do know it for P(K) when |K| = p” and
p prime. What follows is the Fundamental Theorem of Projective Geometry, that
can be found in many standard books on projective geometry, we will only use what

applies to finite projective planes.

Theorem 3.2.6. Fundamental Theorem of Projective Geometry
Let K be a finite field of order |K| = p" and p prime, then

Aut (P(K)) = PGL(3, K) x Aut(K)
Corollary 3.2.7. Let K be a finite field of order p where p is a prime, then

Aut (P(K)) = PGL(3,p)

Proof From Theorem 3.2.6. and the fact that if K = Z, as a field, then
Aut(K) = {1}.

The smallest possible non-trivial finite projective plane is the Fano Plane com-
posed by seven points and seven lines, so that there are three points in any line,
and there are three lines going through any given point, that is, it is a 2 — (7,3, 1)
design. It corresponds to P(Zs). The Fano plane is a homogeneous geometry,
which means that any two different points of it are indistinguishable, i.e. there is

an automorphism of the geometry carrying one point to the other.

The Fano plane is the only projective plane of order 2, and it is easy to see that
it has 21 bits. We will see that its full group of automorphisms has order 168 and
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it is isomorphic to PSL(2,7). For the most traditional picture of the Fano plane
with its flags labelled, see Fig. 3.2.

Beside being related to Zo, the Fano plane is closely related to the finite fleld
Zy. In fact, if we consider the set of quadratic residues mod 7, that is, the set
{1,2,4} and let the transformation z — z+1 (mod 7) act on the set of triples
of Zy, the orbit of {1, 2,4} by this action is:

{1,2,4} {2,3,5} {3,4,6} {4,5,0} {5,6,1} {6,0,2} {0,1,3}

and if we call each of these sets a line, and consider every element n € Z» as a point

of a structure, we can see that what we get is the incidence relation of the Fano

plane.

Fig. 3.2. Fano plane

Since the Fano plane represents a highly symmetric hypergraph, it is only
natural to try to find ways of embedding it as a conformal structure in a highly
symmetric way in a surface. The optimum way of doing this will be to find an
embedding that keeps both its symmetries and its combinatorial properties, while

corresponding to a smooth embedding into a surface.

If we try to embed it as a regular hypermap inside a Riemann surface, it
is knows that it can be done in two different ways, as a (3,3,3) dessin in the
triangular torus [Wa)] or as a (3,3,7) dessin inside Klein’s quartic [Si4]. Other
embeddings of finite geometries in Riemann surfaces as dessins are also discussed

in [Si4]. Embeddings of finite geometries as regular dessins into Riemann surfaces
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are closely related to the existence of big subgroups inside the automorphism group

of the geometry.

Corollary 3.2.8. The automorphism group of the Fano plane is isomorphic

to:
PSL(Z, 7)

which is the simple group of order 168.

Proof Immediate from Corollary 3.2.7. and the fact that (for a proof see for

example [Di])
PGL(3,2) = PSL(2,7).

3.3. Biplanes

A generalization of finite projective planes arises naturally when we allow two
lines to intersect in more than a point (respectively when we allow two points to
define more than one line), if A is the number of points that belong to two different
lines, we will call these generalization A-plane (bi- and tri- for the cases A = 2, 3).

So a biplane is a symmetric geometry that satisfies the following two axioms:

- Two distinct points are contained in exactly two distinct lines.

- Two distinct lines intersect in exactly two distinct points.

Finite biplanes have been much less studied than standard projective planes,
and we only know 17 different examples of them [Po]. We will associate with every
biplane its order, which is the number 7 such that every line of it has n+2 points. As
far as we know nobody has tried to find smooth embeddings of biplanes in Riemann
surfaces before. The 17 known biplanes have orders in the set {1,2,3,4,7,9,11}.
By Theorem 3.1.10. there are no biplanes of orders {5, 6,8}. The first example of a
biplane is a 2 — (4, 3, 2) design, which is a biplane of order 1. It is immediate to see
that there is only one possible incidence structure for such a biplane where every
line is determined by the only point not belonging to it. The biplane of order 1 has
vk = 12 flags and can be embedded into the sphere, since we can see it as a regular
map of type (3,2,3) i.e. a tetrahedron. For two different pictures of the biplane of

order 1 see Fig. 3.3. We have already seen that its complement is not a geometry

in Example 3.1.2.
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The second example of a biplane is a 2 — (7,4, 2) design which corresponds to
biplanes of order 2. We will later see that there is only one possible incidence struc-
ture for biplanes of order 2 and 3 (see Theorem 3.3.3. and the proof of Proposition
3.3.5.), although that is not the case for biplanes of higher orders, as there are 3
biplanes of order 4 [Hus], and 4 biplanes of order 7 [MS].

The biplane of order 2 is the complement of the Fano plane, it has 7 points and
7 lines, but there are four points in each line making a total of 28 bits. Its group
of automorphisms is again PSL(2,7) (see Proposition 3.1.4. or Proposition 3.3.5.)
and it is a 2 — (7,4, 2) design. For a picture of this biplane see Fig. 3.4. where the

thick circle is highlighted because it also meets the central vertex.

Fig. 3.3. 1-biplane on the plane and embedded as a dessin in the sphere

Since there is no subgroup of PSL(2,7) of index 6, it is not possible to embed
this structure as a regular hypermap or hypergraph into a Riemann surface with
PSL(2,7) as its automorphisms group. Nevertheless, we will show an alternative

representation of its incidence structure into Klein’s Riemann surface in chapter
four.

The biplane we are most interested in is the biplane of order 3, which has
11 points and 11 lines, and five points in each line making a total of 55 bits. Its
full group of automorphisms has order 660 and is isomorphic to PSL(2,11). Since
it is the only biplane of order three, we will refer to it as the 3-biplane. It is a
2 — (11,5, 2) design.

The 3-biplane is related to the quadratic residue classes of Zi; in precisely

the same way as the Fano plane with Z7. That is, if we take the set of quadratic
residues mod 11, A = {1,3,4,5,9} and construct eleven sets of five elements by
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considering the action of ¢ : z —> z+ 1 (mod 11), we can regard the elements
n € Zy1 as points of the 3-biplane where the lines are represented by ¢"(A) where
T E le.

Fig. 3.4. 2-biplane

To calculate automorphism groups of biplanes we need to introduce Hussain
graphs [Hus]. We will see their importance when dealing with the automorphism
group of the 3-biplane. A Hussain graph is a graph associated to any line [ in a
biplane B and any point @@ ¢ [. The vertices of the graph are those of the line [,
and two vertices P, P’ € | are joined by an edge of the Hussain graph if and only if
there is a line of the biplane through P, P’ and Q.

Fig. 3.5. 2-biplane and the [-Hussain set

We will use the notation [-Hussain set (or simply [-H) to refer to the set of

Hussain graphs associated with the line [ and [Q,{]-Hussain graph (or [@,!]-H) to
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refer to a particular graph in the [-Hussain set. The importance of Hussain graphs
is that a line [ € B and the whole set of [-Hussain graphs completely determine the

biplane B, for a proof see Theorem 3.34 in [HP].

We will say that the Hussain graphs [@,!]-H and [Q’,!']-H are isomorphic, if
they are isomorphic as graphs. Two [-Hussain sets [-H and [’-H are isomorphic if

there is a bijection from the point set of [-H to the point set of I’-H that induces

isomorphisms between their graphs.

Proposition 3.3.1. Given a biplane B and a line [ € B any two [-Hussain
graphs share exactly two edges and these two edges do not share a vertex. Further-

more, every Hussain graph is a divalent graph.

Proof Let us choose two points Q',Q ¢ [, since B is a biplane, there are two
lines through @ and @’ that we will call /3 and l;. Four new points appear when
we consider the intersections i1 N1 = {P1, Po}, o Nl = {Ps, Py}, where P, # P; if

1 # 7, since otherwise /; and /s will have more than two points in common.

It is immediate to see now that P, P, and P3Py are two shared edges by [Q,[]-H
and [Q',{]-H and that they do not share a vertex. If there were a third common
edge, that will mean that there is a third line through @ and @’ different from I;

and ls, in contradiction to the fact that B is a biplane.

Given P any vertex in [@,!]-H, there are only two lines going through P and

(@ and each one defines an edge of P, therefore any vertex has only two edges and

the graph is divalent.

Corollary 3.3.2. A [Q,]-Hussain graph is a disjoint union of polygons whose
vertices are the points of [.

Proof Immediate since the graph is divalent.

Theorem 3.3.3. Two biplanes B and B’ are isomorphic if and only if for any
line [ € B there is a line I’ € B’ such that the [-Hussain set is isomorphic to the
I’-Hussain set.

Proof Take | € B to be a line, and ¢ : P — P’ the bijection between the
point sets induced by the isomorphism.

We will call I’ = ¢(I) and assume () a point of B and @ ¢ [. Let us call

Q' = ¢(Q) and choose Pi, P, € | so that the edge PP, is in [@Q,!]-H. That means
that there is a third line {; in B so that {P;, P>, @} € Iy, which in turns mean
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that {¢(P1), d(P2), #(Q)} are points of the set ¢(l1), that is a line in B’, since ¢ is
an isomorphism. Therefore the edge ¢(Py)¢(P:) is in [Q',1']-H and the graphs are

isomorphic.

Let us assume now that there are two sets [-H and I’-H that are isomorphic
and that ¢ : [-H — [I’-H is the bijection between the point sets of | and !’ that
defines the isomorphism, so we have already defined the images of any point in [.
Take Q € [ a point of B, 1 takes [@,[]-H to a graph in I’-H that we call [Q’,l']-H,
so that we can define ¢¥(Q) = @' and therefore we have extended the definition of 1

to a bijection of the whole point set of B. All we need to prove is that it preserves

the incidence structure.

That v takes lines to lines is clear, since given a line /3 in B different from [,
we know that [y N1 = {P, P} and taking Q € {; and @ € [, as [@,[]-H goes to
[Q',I']-H, there must be a line I} through (P;) and () different from !, and
so we call (l;) = []. We have then a bijection of the point set that preserves the

lines and the incidence relation.

Corollary 3.3.4. Given B and B’ two biplanes, and lines | € B and I’ € B/,
there is a one-to-one correspondence between the set of isomorphisms ¢ : B — B’
such that ¢(I) = I’ and the set of isomorphisms of Hussain sets taking [-H to {-H.

1 1 1
SO ATk
3 4 S 4 3 4
1 1 1
2 2 2
3 4 3 4 3 4
Fig. 3.6. Set of -Hussain graphs for the 3-biplane

Proposition 3.3.5. The automorphism group of the biplanes of order 1, 2
and 3 are isomorphic respectively to Sy, PSL(2,7) and PSL(2,11).

Proof Let us call By, By and Bj the biplanes of order 1, 2 and 3. As B;
has only four points, Aut(B1) < S4. If we consider its model as a tetrahedron,
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we see that the orientation preserving and orientation reversing symmetries of the

tetrahedron are an automorphism of Bi, therefore Aut(B1) = S4.

For B, we use the fact that By is the complement of the Fano plane, and
Proposition 3.1.4. In that way Aut(Bs3) & Aut(Fano) = PSL(2,7). We could as
well have calculated Aut(B5) using its set of [-H graphs, if we had done so we would
have seen that ther is only one way of drawing an [-H set (see Fig. 3.5.) for a 2
biplane, and therefore by Proposition 3.3.3. there is only one biplane of order 2.

Finally for B3 we need to consider its [-Hussain graphs. A divalent graph on
five points must be a pentagon, and there are only five ways of drawing a divalent
graph on five vertices so that it shares exactly two non consecutive edges with the

pentagon. The six elements of any [-Hussain graph of B3 can be seen in Fig. 3.6.

Since there is only one way of representing an [-H set, all the {-Hussain graphs
are isomorphic, (and hence, by Proposition 3.3.3. there is only one possible biplane
of order three) and there are automorphisms of Bs taking any line to any other
line, i.e. the automorphism group is transitive in the line set, and therefore in the
set of [-H sets. Furthermore, we will see that the group of automorphism of an [-H
set is isomorphic to As:

It must be a subgroup of Ss but it does not contain any transpositions or
4-cycles, since the action of both transpositions and 4-cycles always fix two consec-
utive edges of the pentagon, therefore it is a subgroup of As. If we consider the
action of a 3-cycle we see that all of them are automorphisms of the set of I-Hussain
graphs, so the stabiliser of any [-H set is in fact As. As there are 11 lines in B3 and

the action is transitive, |Aut(Bs)| = 660.

We will now show that Awut(Bj3) is simple, and since there is only one simple

group of order 660, that will prove that Aut(Bs) = PSL(2,11).

Take [ a line of Bj, as the automorphism group of the [-H set is isomorphic to
the alternating group As, by Corollary 3.3.4. we get that
Furthermore, since Aut(Bs) is transitive on the set of lines, all the stabilizers are
conjugate and Stab(l) dAut(Bs) for any | € Lp,.

Let us assume that G = Cy; and G < Aut(B3). For this to happen there must

be only one 11-Sylow subgroup in Aut(Bs). Since any two lines [, [’ share two
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points, using Hussain graphs it is easy to see that
Stab(l) N Stab(l') = Ss,

on the other hand, given [ and !’ two lines, there are precisely three other lines /¥,

i € {1,2,3} such that
|Stab(l) N Stab(l') N Stab(l})] = 2.

As any element of Aut(Bsg) of order different from 11 belongs to a line stabilizer,

we can count all elements of order different to 11 by using the previous facts, and

we get
11 11
1 11-59 — 5. 3- = 54
T ( : ) n ( X ) 540
elements of As N e’ N e’
elements of S3 intersections of 3 Stab

so there are 120 elements of order 11, that yields 12 subgroups isomorphic to Cq1
and that shows that G 4 Aut(Bs).

Let us take now 1 # G < Aut(B3) and z € G of order different from 11. There
is a line [ € Lp, such that z € Stab(l), and therefore 1 # G N Stab(l) < Stab(l).
As Stab(l) is simple and it is not normal in Aut(Bs), we have that G = Aut(Bs).

O]

There are a number of reasons that justify the study of the biplane of order
three: the biplane provides a geometrical model for the action of PSL(2,11) in
the same way as the icosahedron and the Fano plane are models for PSL(2,5)
and PSL(2,7) respectively, therefore throwing some light into the structure of the
group. As a result of this similarity it is possible to find embeddings for the trun-
cated icosahedron in a Riemann surface (using the same idea that allows us to
embed a truncated cube in Klein’s Riemann surface). Finally, both the combinato-
rial structure of the 3-biplane and that of the vertices of the truncated icosahedron
correspond to the combinatorial structure of the cusps of certain congruence sub-

groups of the Hecke group H®. Some of the ideas developed in this work were found

in [Ko].
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Chapter Four

Embedding of finite Geometries

In this chapter we will explore several embeddings of the Fano plane and the
3-biplane inside a Riemann surface, together with other geometric structures that
are related to them, such as the truncated cube and the truncated icosahedron.
The Fano plane can be embedded as a regular hypermap in the torus and in Klein’s

quartic. These are the only embeddings of the Fano plane as a regular hypermap

in a Riemann surface.

We will also discuss two different kind of embeddings of the 3-biplane:

- as a regular hypermap inside a Riemann surface, there are two possibilities,
inside a surface of genus g = 12 and a surface of genus g = 15.

- as a bipartite graph, there are three possibilities, inside a surface with genus
g = 70, a surface with genus g = 125 and a surface with genus g = 180 We will
only cover the first two cases in this work.
Each of the two embeddings of the 3-biplane as a graph that we are going to

study here generalizes different aspects of the Fano plane embeddings mentioned

above. Using them we will explore some interesting relationships among the groups

PSL(2,p) where p € {5, 7, 11}.
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4.A. The Fano plane as a dessin

Since we know that the Fano plane has 21 bits, in order to embed it as a regular
hypermap, we need to find an epimorphism from a triangle group A = [I, m, n] into
a group of order 21 such that its kernel is torsion free. The torsion free kernel

condition together with the fact that the Fano plane has no automorphism of order
21 forces {l, m, n} C {3, 7}.
On the other hand, we have already seen in chapter two that there are only

two non-isomorphic groups of order 21, one of them is the cyclic group C5;, and the

other one is the semidirect product C7 x C3 which we call Go; and that is defined

by the presentation:

<e, fled=fT=efe’lf“=1>
where we will assume u = 2 without loss of generality.

It is clear that there is no surface kernel epimorphism from the triangle group
A =[l,m,n] (where {l, m, n} € {3, 7}) into Cy; since there should be an element
in A of order 21, which contradicts the assumptions, so we only need to consider
(391 as the image of the epimorphism. Since C7; < Gg1, there is only one subgroup
of order 7 in (o1, and thus there are only two possible triangle groups for the
epimorphism, either [3,3,3] or [3,3,7]. We will see that both of them produce an

embedding of the Fano plane.
4.1. The Fano plane in the torus

This embedding was found by Walsh in 1975 [Wa] and corresponds to a regular- -
hypermap on a torus. It is related to the toroidal embedding of the complete graph

K. We start by getting a presentation for [3, 3, 3] given by:
<a, b cla®=¥=c"=abc=1>

where we can define the epimorphism ¢ : [3,3,3] — G21 by (Ga; presented as

above):

¢la)=e ¢(b)=fef™" ¢(c)=fef°

and using Riemann-Hurwitz formula it is easy to see that Ker(¢) has signature
(1;—). It is therefore a torsion free group and corresponds to a torus that we
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shall call 7. For a picture of a Walsh representation of the embedding see Fig. 4.1.

where the torus is marked with the thin continuous line.

It is easy to calculate the modulus of this torus, which is 7 = 1+;/§i. The auto-
morphism group Aut(M) of any regular map M on the torus is finite and described
in [CM], while the automorphism group Aut(T") of any torus 7' is continuous and
hence infinite. If we calculate Aut(7") for this torus, it turns out that Aut(T) is
isomorphic to the groups quotient %, where H is the subgroup of Aut(C) generated

by the transformations:

5 37 -1 27
~+—\[Z/\, z— —, zr——z+by, z——(z-0be3 +5b

2 z
whith A\, € R and 0 = %\/@’ and A is the torus lattice generated by the trans-

z— 2z 4+

lations
5+ /30 3 4 5v/31
——— and Z—> 2z 4 .

2 2

Z >z +

Fig. 4.1. Walsh embedding of the Fano plane

4.2. The Fano plane in Klein’s quartic

This embedding was found by D. Singerman [Si4] in 1986. It corresponds
to an embedding of the Fano plane as a regular hypermap of type (3,3,7) into a
Riemann surface with automorphism group isomorphic to the automorphism group
of the Fano Plane. It is therefore an embedding into a highly symmetric surface.

As before we will assume that the presentation of [3,3,7] and that of Ga; are
respectively:

<a, byclad=0=c"=abc=1> <e fled=fT=efetf?=1>

78



Our starting point is an epimorphism ¢ : [3,3,7] — G2 defined by

¢pla)=c ¢0b)=ff dl)=f"

),

and by Riemann-Hurwitz formula we see that the signature of Ker(¢) is (3;

we will call K —3 the Riemann surface uniformized by Ker(¢).

[3,3,7] is not a maximal triangle group, since it can be embedded into [2, 3, 7],
which is maximal [Si2], with index 8. If we consider a presentation for [2,3,7] of
the form

<ABC|A*=B>=C"=ABC=1>
one of the possible set of equations (there are eight ways of doing the embedding)

for the embedding 7 : [3,3,7] — [2,3,7] is :
i(a) = C?AC*  i(b) = C*AC?* i(c) = ACA
where we can check that i(abc) = C?ACAC?ACA = CBCB = 1.

In order to calculate the automorphism group of Ky,—3 we need to find the
normalizer of Ker(¢) inside PSL(2,R). We will show that Ker(¢) < [2,3,7], and
since [2,3,7] is a maximal triangle group (see [Si2]), we will have proved that it is
the normalizer of Ker(¢). That fact will prove that Ky—3 is Klein’s quartic.

2,377 —2— PSL(2,7) ———  Aut(Ky—3)
i78 18 18
3,377 —2% 2 s Aut(Hpan)
13 T3 13
[7,7,77 ——mm C  — S
17 17 17
Ker(¢) —— {1 @ — {1}

We define the group epimorphism @ : [2,3,7] — PSL(2,7) by:

<1><A>=(_°1 é) @<B>=<_11 —01> CI’(C):(—ll (1)>

and we choose a representation of Ga1 as G§5 < PSL(2,7) where

S UD RSO
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with the above presentations we see that ¢(z) = ®(i(z)) for any = € [3,3,7]. As the
index of Ker(¢) inside [2,3,7] is 168 we know that Ker(¢) = Ker(®) and therefore

Ker(¢) < [2,3,7]. We have then proved that
Aut(Kg=3) = PSL(2,7)

and that characterizes Ky-3 as Klein’s quartic, which we can express in complex

projective coordinates as [KI1]:
:I;By + 3z + 23z = 0.

The eight different embeddings of [3, 3, 7] into [2,3,7] correspond to the eight
different embeddings of a Ga; into PSL(2,7), each one corresponding to Stab(x)
for a given & € P7. Since we have already chosen G55, we get the stack of groups
shown in the previous page, where Aut(K,—3) has been explicitly calculated by
Klein in [KI1].

In the diagram from the previous page Aut(H[3 3 7)) refers to the automorphism
group of the dessin, while S refers to the stabilizer of the face centres of the dessin,
the horizontal lines on the left are group epimorphisms, those on the right are group

isomorphisms, and vertical arrows designate group inclusions.

We will only show the embedding that corresponds to G'S in our notation

because as we have said, the others are conjugate to it by automorphisms of the

surface.

In order to display the hypermap on the surface, we need to consider 21 special
points on K,—3, and for simplicity we will refer to ¥(H) < Aut(Ky—3) as H when-
ever there is no confusion possible. The action of each subgroup of order seven of
Aut(K 4—3) fixes three points on the surface ([KI11] or direct calculation), and there
are not two subgroups that fix the same point, so if we consider all the points fixed

by each of these subgroups, we get 24 distinguished points, which are actually the

Weierstrass points of Klein’s quartic.

As every triple of points corresponds to the action of a C7 group, and every C7
in PSL(2,7) can be associated to a point in Pz, we can see that the action of G537
on the Weierstrass points splits them into two stable sets, one of them with three
points in it (those fixed by C'¢°), the other with 21. We can see the first set as the

face centres of our dessin on the surface, while the second set corresponds to the
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set of bits of the dessin. For a Cori representation of the embedding see Fig. 4.2.
where the identification of the edges of the polygon follows the rule

2n+1~2n+6 (mod14) where ne€{0,1,...,6}.

Fig. 4.2. Singerman’s embedding of the Fano plane

The lighter coloured hyperbolic triangles in Fig. 4.2. represent hypervertices
while the darker ones are hyperedges of the dessin, the black points show the bits
and the three face centres of the dessin are highlighted with a light coloured circle.

4.3. On the Fano plane and Klein’s quartic

The embedding of the Fano plane into K43 is also interesting for its relation-
ship with the cusp set of the principal congruence subgroup of the modular group
of level seven, its relationship with the embedding of the truncated cube in Ky—3

and the possibility of providing a geometrical model for the 2-biplane.

We have already mentioned in chapter two that the cusp set of the modular
group [' is @, that T'(/V) is torsion free for every N > 2 and that F_gﬁ =~ PSL(2,p)
where p € Z is prime. We can actually use a stack of groups similar to the one
displayed in previous sections to calculate the cusp set of the action of the principal
congruence group of level seven, I'(7) over U with the structure of the Fano plane.
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It is clear that there is an epimorphism from I into [2, 3, 7], since a presentation
for ' is given by
<XY,Z|X?=Y3=XYZ=1>.

We can easily define it by projecting X onto A, ¥ onto B and Z onto C
(where [2, 3,7] is presented as in section 4.2.), we will call such epimorphism o. If

we consider the special congruence subgroups of level seven, we get the following

stack:

r —T [2,3,7]
18 18
To(7) ———  [3,3,7]
13 I3
ry7,) ———— [7,7,7]
17 17

7 ————  KS,_s

Where T"I(/'{ﬂ is a Riemann surface of genus g = 3 with 24 punctures.

We will follow Klein in [KI11] to obtain a picture of a fundamental region of
['(7) in the upper-half plane with a triangulation by triangles of type [2, 3, 00]. To
do so we use the transformation z — z + 1 to generate six copies of Fig. 4.5. (as

described in [K11]) and paste them together along consecutive vertical sides. That

leaves us with a hyperbolic polygon with vertices:

3+ £1+3n £2+Tn —1+2n
7 3 7 7 7 2

where n € {0, ..., 6}.

As we know, the punctures on the surface of % correspond to points fixed
by parabolic elements, and all parabolic elements in I" project by ¢ onto elements
of order seven in [2, 3, 7], therefore the 24 punctures will project onto the 24 Weier-
strass points of K,—3. Reversing the reasoning, as the projection is one to one,
the cusp set of f‘% inherits the Fano plane structure defined using the Weierstrass
points of K,—3. This embedding, although being very closely related to the one in

K ;-3 is more interesting, since we can use arithmetic to describe the Fano plane

structure in the set of punctures of I'(7).
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We will now obtain the set of cusps of % out of the set of vertices of a

fundamental region of I'(7) described above.

z z+1
e

Fig. 4.8. Pattern of the triangulation of I'(7) by [2,3, c0].

By Theorem 2.4.4. two irreducible fractions ¢ and ‘g—,' represent the same cusp
under the action of I'(7) if and only if a = +a’ (mod 7) and b = £b' (mod 7),
and we therefore see that either a cusp is equal to oo, %, % or it belongs to one of

the following families:

1+3n 1+42n

3 7 2
where n € {0, ..., 6}. Since the first three cusps are fixed by the action of z — z+1
and thus correspond to the face centres of the Fano plane embedding associated to

9, the other 21 cusps constitute the bits of that same embedding.

n,

We will prove that for this embedding two cusps § and %,i in their irreducible

form share an edge if and only if
ab' —a'b=+1 (mod 7).

We assume that the condition holds for a couple of cusps ¢ and ‘;—,l sharing an

edge. If we let the order seven element act on the shared edge, we get new edges
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defined by the couples
a+nb a +nb

b b
where 1 < n < 6 and all of them trivially satisfy the condition.

On the other hand, any order three element

z oo

satisfies tr(A) = £1 (mod 7), and if we assume § and ‘g—,l to be two cusps as before,

it is trivial to see that
za+yb za 4+ yb’

zb zb’

also satisfy the condition.

It suffices to show that there is at least one edge that satisfies the condition:
let us take the bit represented by 0, an edge of the embedding can only join it to

the following points

11
to 4, 41, 42
27 73

The last four points must be discarded since any edge connecting them to 0
will imply that two hypervertices (or hyperedges) share a bit, which is impossible.
On the other hand, there are precisely four edges incident to any one bit, and in
this case the four edges are represented by the first four points. It is now trivial to

check that any of them satisfies the condition above.
4.4. Embeddings related to PSL(2,7)

In this section we want to study other geometric structures that can be de-
scribed in terms of the embedding covered in sections 4.2. and 4.3. As we have
already seen that Klein’s quartic is equivalent to I—%% without considering its punc-

tures, we will only consider the description of the embeddings into Klein’s quartic,

their extension to the cusp set of fz(”’T) should follow easily.

The other “big” subgroup of PSL(2,7) has 24 elements and is isomorphic to
Sy, we will show its relationship to the 24 Weierstrass points of Klein’s quartic. In
the previous section we were forced to split the set of Weierstrass points into two
subsets, mainly because we were considering the action of a group of order 21, in
this section we will study the action of S4 over the set of Weierstrass points and in

order to do that we require the following lemma.
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Lemma 4.4.1. There are fourteen groups of order 24 (isomorphic to S4)
inside PSL(2,7). The action of any of these groups, when considered as subgroups

of Aut(Ky4=3), on the Weierstrass points of Ky—3 is transitive.

Proof The first part follows from [Di], was proved in [KI11] and has been
calculated in section 2.2. For the second part, we only need to consider that each
Wierstrass point in Ky—3 is the fixed point of a unique C7; < PSL(2,7) and that
any proper subgroup of PSL(2,7) whose order is a multiple of 7 is isomorphic to
either C7 or G921 [K11]. Thus the only elements in Sy that could fix a Wierstrass

point are those of order three.

Fuig. 4.4. Embedding of the truncated cube in Kg—3

On the other hand, any element of order three is associated to two C'7 groups
and therefore it fixes their corresponding sets of Wierstrass points (although it does
not fix the actual points). Since any element of order three fixes just two points on
K,4—3, it is immediate that it cannot fix a Wierstrass point, therefore the stabilizer
of any point is trivial (when considering the action of an S4) and the action of Sy

on the set of Weierstrass points is transitive. O

Every embedding of an Sy into PSL(2,7) is related to an embedding of a
truncated cube into Ky—3 in which the Weierstrass points of K ,—3 are the vertices

of the truncated cube. We can choose one of the groups S4 displayed in the table
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in chapter two, each one containing four subgroups isomorphic to C's. The action
of any C3 < Aut(Kg=3) on Ky—3 fixes two points on the surface, therefore to every
embedding of an Sy into PSL(2,7) we can attach four pairs of points on the surface
of Klein’s quartic, each of these pairs will define a diagonal of the (truncated) cube.

Each point fixed by an element of order three is the centre of an equilateral
triangle of area 7 whose vertices are three Weierstrass points (since they are fixed by
elements of order 7). In that way we get a triangle corresponding to the truncation
of one vertex of the cube for every point fixed by an element of order three in the Sy4
we are considering (i.e. two triangles for each C3). Repeating the same operation
with every subgroup C3 in S4 we get the eight triangular faces of the truncated
cube. The remaining edges of the truncated cube are easy to find, since every two
cycle of Sy will fix two other points on the surface, these points correspond to edges

centres of the cube. For a picture of a truncated cube inside Kqy—3 see Fig. 4.4.

Fig. 4.5. Representatives of the two classes with their diagonals marked

There are fourteen such embeddings into two conjugacy classes, but if we allow
orientation reversing automorphism of K,—3 they will form a unique conjugacy
class. To visualize the remaining six embeddings in Fig. 4.4. class it suffices
to rotate the truncated cube around the center point of the hyperbolic polygon
shown in Fig. 4.4. To get a representative of the second class, we have to reflect
the truncated cube along the vertical diagonal of the polygon. To finish with this
section we intend to provide a model for the geometric action of PSL(2,7) on seven

points alongside with a model for the 2-biplane inside Kg—3.

The algebraic action of PSL(2,7) on seven points is easy to describe as the
action of PSL(2,7) on its seven subgroups isomorphic to Sy within one conjugacy
class. Considering that every Sy in Aut(K,—3) is connected to an embedding of the
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truncated cube, we can see the geometric action of PSL(2,7) on seven points as

the permutation of the seven truncated cubes in a conjugacy class.

For a diagram of the 14 truncated cubes inside K,—3 we only need to rotate

the class representatives displayed in Fig. 4.5. around the central vertex of the

hyperbolic polygon.

We can now consider the diagonals of each truncated cube in a conjugacy class
as a bit of a combinatorial structure and thus we get 28 bits in seven sets of four. We
can call each of these sets lines, so that each line is in fact a truncated cube within a
conjugacy class. Furthermore, we can choose seven new sets of four diagonals, that
we shall call points, so that every point shares only a bit with four lines, and every
line shares just one bit with four points. In doing so what we get is a model for
the 2-biplane inside K,—3. We have seen that each diagonal can be associated to a
C3 < PSL(2,7) and that the set of “lines” is identified with the set of subgroups
S, in one conjugacy class. Using a similar reason, the set of “points” is identified
with the set of subgroups Sy in the other conjugacy class, as we can see in the table
in chapter two, where P stands for points and L for lines, and the coordinates of

the C5 label the incidence structure of the bits of the 2-biplane.
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4.B. The 3-biplane as a dessin

The 3-biplane has 55 bits, so to embed it as a regular hypermap our first concern
is the structure of the groups of order 55. We have already seen in chapter two
that there are only two groups of order 55: the cyclic group Css and the semidirect

product C17 x Cs that we call G55 and has a presentation:
<e fled=fl=efetft=1>

where u € {3,4,5,9}. We shall use u = 4 unless otherwise stated.

Using the same ideas explained in the study of the embeddings of the Fano
plane, we can discard Cjs (there is no subgroup of PSL(2,11) isomorphic to Css)
and state that there are only two possible embeddings for the 3-biplane as a regular

hypermap, these embeddings arise when we consider the triangle groups [5, 5, 5] and

[5,5,11].
4.5. Embedding the 3-biplane inside Rj—12

This embedding corresponds to a hypermap of type [5,5, 5] inside a Riemann
surface of genus g = 12. It arises when one consider the group [5, 5, 5] with presen-

tation
<abela®=0"=c"=abc=1>

and the epimorphism ¢ : [5,5, 5] — G55 defined by:
pla)=c @(b)=fe ¢lc)=etfTTe!
that induces the following stack of groups.

[5,5,5] — Gss

E 15

(2; _) —_— Cu

T11 T11

Ker(¢) ———— {1}
[5,5,5] is not a maximal triangle group because it satisfies [Si2]

[5,5,5] < [3,3,5] 4(2,3,10] or [5,5,5] 42,5, 10]
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and there are no other inclusions for [5,5,5]. As it is not maximal, we need to do

some extra calculations to find Aut(Ry=12).
If we take [2,5,10] with presentation
<AB,C|A*=B°=C"Y=ABC=1>
we can define the inclusion ¢ : [5,5,5] — [2, 5, 10] by
i(a) = ABA, i(b)=B i(c)=C>
Let us consider a group isomorphic to H11¢ (defined as in Lemma 2.A.6.) with
presentation:
<efgle®=fr=g"=efe [T =gfgf = gege Tt =1>
and the map @ : [2,5,10] — Hijp given by:
®(A)=fTg ®(B)=fe PC)=ge ' f°
which we can prove to be an epimorphism since ®(AC) = e~!. We can see that
Ker(®) is torsion free in the usual way. If we calculate the restriction of ® to [5, 5, 5],

we see that ®(i(z)) = ¢(z) for any = € [5,5, 5] and using indexes calculations as we
have done before, Ker(¢$) <[2,5,10]. As [2,5,10] is a maximal triangle group, we
have proved that

Aut(Rg=12) = Hho.

Since [2,5,10] is a triangle group, we can consider the dessin induced by the
inclusion Ker(¢) < [2,5,10] which is a dessin with 110 bits that derives from the
3-biplane embedding by a standard procedure that we call Walsh double. We can
obtain a geometric representation of a Walsh double of a hypermap by taking its
Walsh representation and painting all vertices black, the bipartite map we get is a

Walsh double of the original hypermap.
4.6. Embedding the 3-biplane inside Rgj—15

This embedding appears when one consider the triangle group [5,5,11] with

presentation
<a,byela® =0 =ct =abe=1>

and the epimorphism ¢ : [5,5, 11] — G55 given by:

pla)=ec @b)=ec"fT1 )= 1.
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Using Riemann-Hurwitz formula, we see that the underlying Riemann surface

has genus g = 15 and we get the following group diagram:

[5, 5, 11] —?S—*% G55
[E &
(0; 1) — Ciy

T11 T11

Ker(¢p) — {1}

As in the previous case [5,5,11] is not a maximal triangle group [Si2], and is

not contained in any other triangle group except:
[5,5,11] 4 [2,5,22).

We will prove nevertheless that |Aut(Rg=15)| = 55.

Using the same ideas as before, we suppose there is a torsion free kernel epi-
morphism & : [2,5,22] — H, where H is a group such that [H : Gs5] = 2.
Since H must have an element of order 22, H # Hi1g. On the other hand, if
H = G119 = G55 x Cq, P(AB) must have order ten, where A and B are respec-
tively elements of order two and five in [2,5,22], and therefore it is impossible to

define such an epimorphism, so we have proved that

Aut(Rg:15) = G55.
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4.C. The 3-biplane as a conformal graph

The two examples mentioned above are the only possible embeddings of a 3-
biplane as a regular dessin in a Riemann surface, as any other epimorphism from a,
triangle group [{,m,n] to Gss will produce torsion. Unfortunately none of them is

into a Riemann surface with automorphism group isomorphic to PSL(2,11).

Since we are trying to find embeddings of the 3-biplane that mirror as closely
as possible the characteristics of Singerman’s embedding of the Fano plane, there
are two important questions that we need to solve:

- Is there any other way of embedding the 3-biplane in a “rigid way” into a
Riemann surface S such that Aut(S) = PSL(2,11)7 That is, is it possible to embed
the bipartite graph representing the 3-biplane incidence structure conformally into
a Riemann surface S such that Aut(S) = PSL(2,11) and so that the stabilizer of
the embedding is isomorphic to Ggs?

- Among the solutions to the previous question, can any of the surfaces S be
uniformized by a principal congruence group G of a Hecke group HY in such a way
that the bits of the embedding can be thought of as cusps of G7

The answer to both questions is afirmative, there are at least two surfaces S

that solve the first question, and one of them is a positive answer to the second.

We need to relax some of the conditions for the embedding, since we know that
there is no solution for it among dessins. We chose to relax the conditions relating
to the “faces” of the embedding (as seen in a Walsh representation), therefore our
embedding will not be a dessin, but only a bipartite graph, since the connected com-
ponents of the complement of the graph (faces) will no longer be simply connected.
This relaxation implies algebraically that we will consider groups A’ with three pe-
riods and signature (g, [l’,m’,n’]) where g # 0, as candidates for the epimorphism
onto Gs5. Unfortunately these groups are not rigid in the sense of Fuchsian groups,
and so we will place a restriction on them by studying only those that are subgroups
of triangle groups [I,m, n| that projects epimorphically onto PSL(2,11).

Let us start then with a triangle group A = [I,m, n] that projects epimorphi-
cally via @ onto PSL(2,11) so that its kernel has index 660 and is torsion free. The

torsion free kernel condition limits the choice of periods for the triangle group to
the set {2, 3, 4, 5, 6, 11}. We need to impose a further condition: that there is a

subgroup A’ < A with [A: A’] = 12 and signature
A=< g; (1,12, 15] >,
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that is, three finite periods (I; # 0) such that the restriction ®a is an epimorphism

onto G's5. This implies that A’ has one of the following signatures:
A'=(g;[5,5,11]) or  A"=(g;[5,5,5])

which implies that there is at least a period of order multiple of 5 in A, using the
condition that limits the choice of periods in A, we can assume that A =[5, m, n].
Since the index of A’ in A is 12, we have that 12u(A) = p(A’), that is:

2 1 1 110g + 2 1
10g -+ :12<1—5—l——) or —O—g—i—ﬁzlz(p—g—i—}—)

) 95

where m,n € {2, 3, 4, 5, 6, 11} and g € N. Out of the set of hyperbolic triangle
groups that could be candidates for A, we can see that only [2,5,11], [3,5,11] and
[5,6,11] satisfy all the conditions, and therefore are the only ones that might allow
an embedding of the kind described above.

In the first case ([2, 5, 11]), which seems to be the most interesting, the embed-
ding will be into a Riemann surface of genus g = 70. In that case we will be able

to extend the 3-biplane structure to the cusp set of a congruence subgroup of the
Hecke group HS.

In the second case the underlying surface has genus g = 125, while in the last
case A’ has signature (3;[5, 5, 11]) and the underlying surface has genus g = 180. In
all three cases the bipartite graph has type (5,5,11) meaning that it is invariant by
rotations of order eleven around its “face” centres, or rotations of order five around
its vertices. We will only cover the first two cases as the third one does not show

any interesting properties not covered by the other two cases.
4.7. Embedding the 3-biplane inside Rg—70

In this section we will explain the embedding of the 3-biplane that most closely

resembles that of the Fano plane in Klein’s quartic. We start with the triangle group

[2,5,11] with the following presentation:

<A BC|A*=B°=C"'=ABC=1>

and we define a map @ : [2,5,11] — PSL(2,11) by:

ow=(2 )-8 1) oa=(3 3)
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It is clear that Ker(®) is torsion free, since every finite order element in [2, 5, 11]
is projected onto an element of PSL(2,11) of the same order, thus Ker(®) uni-
formizes a Riemann surface of genus ¢ = 70 (Riemann-Hurwitz formula) that we
call Ry—70. By its construction and the fact that [2,5,11] is a maximal triangle

group, we have proved that
Aut(Rgy=70) = PSL(2,11).
We know that F' = (1;[5,5,11]) < [2,5,11] and if we take a presentation for I/
given by:
<abc,x,y|a®=0=ct =zyz gy labc =1 >

we see that 7 : F' —» [2,5,11] can be defined by:

i(a) = C"TAC*AC™TAC" i(b) = C™8AC®
i(c) = ACT'A  i(z) =C tAC® i(y)=C"AC"
If we consider now the restriction ¢ : (1,[5,5,11]) — PSL(2,11) defined as
¢(z) = @(i(z)) for any = € (1,[5,5,11]), we see that Img(¢) = G52 and so we

can construct the following stack of groups where horizontal lines denote group

epimorphisms and vertical arrows symbolize group inclusions.

2,5,11] ——=— PSL(2,11)

712 T12

1;[5,5,11]) —2 G
755 155
Ker(¢) _ {1}

To find the structure of the bipartite graph on the surface we need to consider
one set of 22 points that will correspond to the vertices of the bipartite graph, and

another one of 55 points that correspond to edge centres (bits).

We will call H the image of the embedding of the group Gg§ into the automor-
phism group of Ry~7¢. In chapter two we have seen that there are twelve different
subgroups of order 11 in PSL(2,11). If we consider them as subgroups of the au-

tomorphism group of Ry—7¢, we can see that each subgroup C; fixes five points on
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the surface, and no two subgroups fix the same point, so we have 60 distinguished
points on the surface. If we remove from this set the five points fixed by the action
of H (i.e. the five points fixed by C%7), we obtain a collection of 55 points that are
transitively permuted by the action of H and that corresponds to the bits of the

embedded graph.

The remaining 22 points arise naturally when we consider the action of the
order five subgroups of H. There are 11 such subgroups, each one fixes two points
on the surface, and therefore we have found the 22 points we needed. The choice of
colour is arbitrary, we need to fix one of the Cs, for example Cg° ’0, and paint one
of its fix points white, the other black. If we let C{ acts on this pair of coloured

points, we will get the colouring for the remaining.

Since there are 12 different embeddings of Gss in PSL(2,11), there are 12
ways of embedding the bipartite graph (not considering swapping the colours of the

vertices), but all of them are conjugate by an automorphism of the surface.
4.8. Embedding the 3-biplane inside Rg—125

This embedding arises when one consider the triangle group [3, 5, 11] with pre-

sentation:
<A,B,C|A3:B5:011:ABC;1>

and the group epimorphism ® : [3,5,11] — PSL(2,11) defined by:

@(A):(i g) @(B):(I 100>, @(C):(é‘ é)

It is easy to check that @ is an epimorphism with a torsion free kernel, and that
Ker(®) uniformizes a Riemann surface of genus g = 125 that we call Ryj—195. We -

can prove that F' = (2,5, 5, 11]) with presentation
< x,y,z,t,a,b,c I (1,5 - bs = Cll = xyz_ly‘lztz"lt_labc =1>

is a subgroup of [3,5,11] and using Schreier’s method find the following equations

for the inclusion ¢ : FF — [3, 5,11}
i(z) = C*A2CYAZC*  i(y) = CBAC®  i(2) = CBA%CY  i(t) = C3AC?
i(a) = C3ACTTA2C~2(C1A%)C?AC A% C™3
i(b) = CPACTTA2C™2(A2C 1 C?ACA®C3  i(c) = C*ACAC™
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With all the group maps defined as before, we can restrict ® to F' in which

case we obtain a group epimorphism onto Ggg and the following stack of groups:

3,511] —2  PSL(2,11)

T12 T12

(%[5,511)  ——— 55
T11 T11
Ker(¢) — {1}

So what we get is another conformal embedding of the 3-biplane as a (5, 5,11)

bipartite graph inside Rj—12s.
4.9. Other considerations for the 3-biplane and Rj;—7¢

Among all the possibilities displayed above, the embedding of the 3-biplane
into Ry—70 as a bipartite graph seems the most interesting one because we can find
a fair amount of relations between it and Singerman’s embedding of the Fano plane.
Among them we will give a 3-biplane structure to the cusp set of H%(4 — /5) and

show a geometric action of PSL(2,11) on eleven objects on the surface Rgy—ro.

In chapter two we have introduced the Hecke group H® and we saw that its
signature as a Fuchsian group is [2, 5, co]. Following the ideas explained in Singer-
man’s embedding, we can easily define an epimorphism ¥ : H®> — [2,5,11] given

by (presentations for both groups as used before):
UVX)=A UY)=B ¥Z)=C

that will allow us to extend the 3-biplane structure from Ry—7g to some cusp set of
congruence subgroups of H®. If we pull-back the subgroups of [2,5,11] by means
of U we get the group diagram displayed in next page.

In this case the role of the ideal (7) in the description of Klein’s surface is
played either by (4 ++/5) or (4 —+/5), the reason for this is that (11), which would
be the natural choice, is not longer a prime ideal in Z[As] since it can be factorized
as the product of the previously mentioned ideals. It is trivial to see that ¥ extends

easily to an epimorphism onto PSL(2,11) as the following diagram shows.
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HS — Y & 2,511 —2 % PSL(2,11)

T12 T12 T12
HE(4—V6) ——  (1;5,5,11) — o0

15 75 75
H}(4-5) ——oy (5;11°) — CsY

T11 T11 111
H%(4—-+5) ———— Sy=70 _— {1}

So what we get is a Riemann surface of genus 70 with 60 punctures, defined by
FS(fﬁ%f' Since the parabolic elements of [2, 5, cc] projects onto elements of order
11 in (2,5, 11], the puncture set of this surface projects onto the points of Rg=7¢
that are fixed by elements of order 11, and reversing the projection, the cusp set of

H? (4 — \/5) inherits the structure of the 3-biplane.

2.1} {10,9)

(7.1) (7.9)

Fig. 4.6. Representation of the 3-biplane in the cusps of _}374%\75—)

We have seen in Proposition 2.5.6. that the cusp set of H®(4 — +/5) in the
upper half-plane can be described in terms of fractions of Q(v/5) in their canonical
form. We will now label the cusps so that we can obtain a picture of the 3-biplane

embedding associated to the action of Gg¢ in the cusp set.
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We will represent a fraction in its canonical form g € Q(+/5) by the coordinates
(a,b) where a,b € {0, 1, ..., 10}, if and only if:

and

Q= +b mod(4 — \/5)

Using that notation we get the incidence diagram in Fig. 4.6. where darker

{PE +a mod(4 — V/5)

pawns represent vertices, lighter pawns represent edges and two points with the

same coordinates are identified.
4.10. Embeddings related to PSL(2,11)

In this section we will describe other geometrical structures that can be de-
scribed in terms of embeddings into Rg—7g and we will see a geometrical action
of PSL(2,11) on eleven objects. As we have seen in the previous section, we can
consider the embeddings as lying on Rg—7¢ or as displayed in the cusp set of H°(I)

where

I=(@A+V5) o I=(4-5).

The biggest proper subgroup of PSL(2,11) has order 60 and as we have seen,
it is isomorphic to PSL(2,5). We have already mentioned that there are 22 of
them into two conjugacy classes. They can be seen as the symmetry group of
the icosahedron, in fact, if we take the 60 points fixed by elements of order 11 on

Rg—70, we will see that they correspond to the vertices of a truncated icosahedron

(a football).
Let us consider any of the possible embeddings of As into PSL(2,11), there

are six subgroups of order 5 inside it, and each C5 fixes two points on the surface of
Rg—70 when we see them as subgroups of its automorphism group. Each pair of fixed
points by a Cs can be seen as a diagonal of the (truncated) icosahedron embedded
on the surface. Every point in that pair is the centre of an hyperbolic equilateral
pentagon, whose vertices are points fixed by elements of order 11 and in that manner
we obtain the 12 pentagonal faces of the truncated icosahedron on the surface
R,—70. For the hexagonal faces we can proceed in any of two ways: we can study
the action of the subgroups of order 3 on the set of Cs, or consider the action of the
subgroups of order two on the surface, each subgroup of order two fixes two points
on the surface that correspond to edge centres of hexagonal edges of the truncated

icosahedron. With some work and a fair amount of calculation it is possible to
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obtain a picture for the truncated icosahedron inside Ry—7g, although given the big
genus of the surface and the low order of the highest order automorphism of the

surface, it shows as much as it conceals and so we will not display it here.

There are twenty two embeddings of a truncated icosahedron inside R,—7¢, dis-
tributed into two conjugacy classes, although orientation reversing automorphisms
of the surface will take one class onto the other. We will finish this section by
showing a model for a geometric action of PSL(2,11) on eleven points that is re-
lated to a model for the 3-triplane inside Ry,—7¢ (The definition of a triplane follows

naturally as a generalization of the one for a biplane).

The geometric action of PSL(2,11) on eleven objects is related to the combi-
natorial objects that are stabilized by A5 < PSL(2,11) and that can be embedded
into Rg—7g, so the truncated icosahedron is the obvious choice for it. If we consider
the eleven truncated icosahedra inside a conjugacy class, each one is linked to one
embedding of Ay inside a conjugacy class, and so the algebraic action of PSL(2,11)
on the As of one class is analogous to its geometric action on the embedding of the

truncated icosahedron corresponding to that As.

Following the same ideas displayed in the sections regarding the Fano plane,
we can consider the diagonals of each embedding of a truncated icosahedron as
bits of a combinatorial structure, and we can label them using the labelling for the
subgroup isomorphic to Cs in PSL(2,11) whose pull-back into Aut(Rs=7) fixes
that diagonal. If we do so, we can take the icosahedrons in one conjugacy class
as “lines” of an incidence structure (Class L in the table in chapter 2) and the
icosahedrons in the other conjugacy class as “points” (Class P). If we check the
resulting incidence structure, we see that we obtained a model for the 3-triplane,

that is, the complement geometry of the 3-biplane inside Ry—rq.
4.11. Another example of a graph embedding

In this section we will describe an embedding of the Fano plane into a surface of
genus ¢ = 24 that we will call Rj—p4. We will embed the Fano plane as a conformal
graph in the same way as we have done with the 3-biplane. This is the only possible
rigid embedding of the Fano plane as a bipartite graph with non simply connected

faces into a surface with automorphism group isomorphic to PSL(2,7).
We will consider the triangle group [3, 4, 7] with presentation:

<ABC|A*=B‘=C"=ABC=1>
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and the epimorphism & : [3,4,7] — PSL(2,7) given by:

0 -1 -1 5 6 3
= (] 1) e - (_1 ARECE (O it
It is easy to check that & is an epimorphism and that the group Ker(®) is
torsion free and therefore it uniformizes a Riemann surface that has genus g = 24.

We will see now that the Fuchsian group (1;[3, 3, 7]) with presentation:

<abe,zy|a® = =c" =zyz"ly labe=1>

is an index 8 subgroup of [3,4, 7], with the inclusion given by:
i(z) = CPAC™2  i(y) = C*A%C™?
i(a) = C3APC TACAC™3 =1 i(b) = C*AC™ i(c) = CPA*CAC™S

If we restrict @ to ¢ in the usual way ¢(z) = ®(i(z)) for any z € (1;[3,3,7]) we
get the following stack of groups and an embedding of the Fano plane as a bipartite

graph inside Rg—n4.

3,4,71 —2—» PSL(2,7)
i18 T8
(1;13,3,7) —t— %
E E
3:07,7,7) ——— o
T7 17
Ker(¢) _ {1}
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