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In this thesis we provide examples of a new approach to the field of finite geometries, 

namely by considering the conformal embedding of a hnite geometry into a Riemann 

surface. A hnite geometry is a particular arrangement of a finite number of points 

and lines satisfying some well known axioms. We will cover the hrst two examples 

of the family of Hadamard designs, which are the Fano plane and the 3-biplane. 

Riemann surfaces and dessins are introduced and explained in chapter one. We 

explore their common relationship to cocompact Puchsian groups and display some 

results regarding the calculation of their automorphisms groups. We also describe 

the three most common geometric representations of a dessin: those by Cori, James 

and Walsh. 

Chapter two is divided into two different parts. In the first one we cover the 

family of finite groups PSL{2,p) where p is a prime number, particularly for the 

cases where p e {5, 7,11}. In the second part of the chapter we introduce the family 

of Hecke groups H'^ and their special congruence subgroups, with special regards 

to the cases where g = 3 and g = 5. 

In chapter three we cover finite geometries and their properties. Projective 

planes and biplanes are studied in diSFerent sections paying special attention to the 

Fano plane as our chosen representative for the projective planes and the 3-biplane. 

Finally in chapter four we make extensive use of aU the preliminar material 

by finding and describing several conformal embeddings of the Fano plane and 

the 3-biplane into Riemann surfaces, especially into those Riemann surfaces with 

automorphism group isomorphic to and that can be uniformized by a 

special congruence subgroup of H'^. 



To C o n c h a a n d N a i r a 

"Y miro 

y al mirar, 

miro al Sur siempre. 

Al Sur 

del Sur mismo, 

al Sm; de todas las cosas" 
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Preface 

A map, or more generally a dessin, is a particular arrangement of faces, vertices 

and edges that have a very rich and widely explored relationship with Riemann 

surfaces and Puchsian triangle groups. See for example [JSl], [Sch] and [Wal]. 

The theory that originally covered conformal embeddings of maps into Riemann 

Surfaces, heis been progressively expanded to embrace an ever increasing class of 

subjects, such as anticonformal embeddings of hypermaps into Klein surfaces and 

their relationship with N.E.C. triangle groups (see [BS] or [IS]). In chapter one 

we introduce Riemann surfaces, Fuchsian groups, dessins and some of their prop-

erties and relationships, since they constitute the foundation stone of the examples 

displayed in chapter four. 

It was first observed by Walsh [Wal] in 1975 that it is possible to embed the 

incidence relation of the Fano plane as a map into a torus. In 1986 [Si4] Singerman 

described another embedding of the Fano plane as a regular dessin into a Riemann 

surface. A regular dessin is one possesing the highest possible symmetry in a surface, 

and Singerman's embedding proved particularly interesting, since it linked together 

three well known and widely studied objects: the Fano plane, Klein's quartic and 

their automorphism groups which are isomorphic to PSL{2,7). Furthermore it 

is possible to describe the bits of that embedding by means of the cusp set of 

the action of r (7) on the upper half plane, where r(7) stands for the principal 

congruence subgroup of level seven of the modular group. 

All objects highlighted in Singerman's embedding are exceptional on their own 

rights. Klein's quartic, among other interesting properties, is the Hurwitz surface 

with the smallest genus (a Hurwitz surface is one that attains Hurwitz's upper 
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bound for the number of automorphisms of a surface, which is 84(p — 1) for ^ > 2) 

and therefore it is a highly symmetric surface. The Fano plane is the smallest 

hnite projective plane, and arises as the projective space over the held Z2, while 

f5'Z,(2,7) enjoys a special status within the f5'Z,(2,p) family that is only shared 

by f 5'Z,(2,5) and f 5'i,(2,11) as it was proven in a result due to Evariste Galois. 

What we have done is to fully explore what we considered to be the parallel case 

to the Fano plane embedding described by D. Singerman, Ending some intriguing 

and beautiful relationships on our way. Since Singerman's embedding fully covers 

f6'Z,(2,7), we have been guided by the idea of exploring the remaining case in 

Galois' result, which is f5 ' i , (2 ,11) , Ending objects that relate to each other in a 

similar way to those involved with f6'jL(2,7). As a starting point for our work, 

I have to acknowledge a very inspirational paper by Konstant: T/ie prap/i 0/ (Ae 

truncated /cogo/iedroM amcf (Ae 0/ GaZow' (see [Ko]). 

Starting then with f 5 ' i , ( 2 , l l ) we chose the 3-biplane aa the best candidate 

for a structure to embed for several reasons. The hrst one is because it is a hnite 

geometry with automorphism group isomorphic to PSL{2,11), which is a necessary 

condition and that is fairly similar to the Fano plane. Both of them, the Fano 

plane and the 3-biplane are the smallest examples of Hadamard designs, and the 

symmetric arrangement of the 55 Sags structure of the 3-biplane into 11 blocks of 

5 Sags closely resembles the 21 Sags, 7 blocks of 3 Sags of the Fano plane. On the 

other hand, there is a clear relationship between the flags set of the 3-biplane and 

the vertices of a truncated icosahedron (which is basically the relationship between 

f 5'i^(2,11) and its subgroups isomorphic to /Ig = f ^i,(2, 5)), and that relationship 

mirrors that of the Fano plane and the truncated cube (which is again that between 

f5'i^(2,7) and its '̂4 subgroups). 

In spite of Snding examples of 3-biplane conformal embeddings as a regular 
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dessin, we thought it more appropriate to drop some hypothesis in the embedding in 

order to And examples with the rich structure underlying Singerman's embedding. 

Our main example is therefore no longer a dessin, since the components of the 

complement of the embedded graph in the surface are not simply connected. This 

is highlighted by the fact that we do not use a triangle group, but a Puchsian group 

with three periods and signature (1, + , [5,5,11]). 

When we explore this example we realized that emerges in a natural way 

to play a role similar to that of in the Fano plane case, further enhancing 

the singular nature of these two embeddings, since and stand in a class 

of their own within as the only two Hecke groups with a cusp set equal to 

Q(Ag) U {c)o}. As a last idea, we use the action of ^^^(4 — \/5) to describe the Aags 

of the embedding, and the vertex set of the truncated icosahedron that relates to 

it. 



C h a p t e r One 

Riemann Surfaces and Dessins 

In the first half of this chapter we introduce the concept of Riemann surface 

and provide some preliminary dehnitions and results. For a broader introduction 

to Riemann surfaces see either [Mir] or [JS2]. The notion of compact Riemann 

surface will be explored following two diS'erent but closely related approaches: 

- as 2-manifolds with an analytic structure, 

- as the quotient by the action of a cocompact Fuchsian group. 

Issues related to Fuchsian and NEC groups have also been discussed within 

the first part of the chapter. 

In the second half we have examined the general properties of dessins and their 

conformal embeddings into Riemann surfaces. 

A more general approach to the subject by substituting Riemann surfaces with 

Klein surfaces has been outlined, and references to the topic of dessins embedding 

in Klein surfaces are provided. 

1.1. Riemann surfaces 

Roughly, a is a space which, locally, looks like an open set in 

the complex plane. To make the concept of "looks like" a bit more mathematical, 

we need to define a c/iorf on a topological space %. 

A c/iaff on a two dimensional topological space % is a homeomorphism 

—> v; 

where (7̂  C % is an open set in %, and C C is an open set in the complex plane. 

The open subset ZTi is called the of the chart We say that the chart 



is cenfrecf at p E (Ti if = 0, and it is easy to see that all a chart does is to give 

local complex coordinates in its domain. 

As the charts are local homeomorphisms, they can be inverted, and we will call 

:= o n [/,) ^ H [/,) 

the /wnctzoM between and . Two charts are compa(%6/e if 

the transition function between both of them is analytic or if the intersection of their 

domains is empty. A set of charts : C/i —> %} on A" is called an 

(also called a compZez on % if is an open cover of % and all the charts 

in the set are compatible. We will call the charts in an analytic atlas 

c/iorfs (or compZei 

It is easy to de6ne an equivalence relation within the atlases of X, two atlases 

vl and jB are if every chart of one is compatible with every chart of the 

other, and an equivalence class of analytic atlases is called a comp/ea; a(ruc(wre (or 

on the surface 

Definit ion 1.1.1. A second countable, connected, Hausdorff topological space 

with a complex structure is called a 

Although the previous dehnition allows non-compact surfaces, throughout this 

work we will usually mean a "compact Riemann surface" every time we refer to a 

Riemann surface. 

We can induce local orientations around each point of a Riemann surface by 

"pull-back" of the orientation of the complex plane via a local chart. These local 

orientations are well defined, independent of the choice of chart in the atlas and 

they induce a global orientation on the Riemann surface so that the concept of 

"clockwise" and "anticlockwise" rotation around a point in a Riemann surface is 

well defined. 

Given two Riemann surfaces % and Y with complex atlases $ and we can 

define analytic mappings between % and Y in terms of their charts. 

Def in i t ion 1.1.2, Let X and Y be Riemann surfaces with complex atlases 

$ = ^ and ^ V}} respectively. We say that the map 

/ : % —> y is at p E % if there exist analytic charts % with 

p E and ^ with / (p ) E [/j such that 1/;̂  o / o is an analytic 

function at (p). 



A map will be analytic in X if and only if it is analytic at every point of X. By 

deGnition, if a map is analytic at p, it is analytic in a neighbourhood of p. Using 

similar principles, we can define meromorphic and analytic functions on Riemann 

surfaces. 

It is easy to see that the complex plane C admits a complex structure and so 

is a Riemann surface (although not a compact one). By means of the stereographic 

projection, the one point compactiScation of C, E = CU{oo} also forms a Riemann 

surface which is called the Azemann 5^/iere. Analytic and meromorphic functions 

on a Riemann surface % (in the traditional sense of complex analysis) can be 

thought of as being analytic mappings from % to C and 2 respectively in the sense 

of Riemann surfaces. 

If a Riemann surface locally looks like an open set in the complex plane, there is 

a more general object, that we will cover for the sake of completeness called a jiT/em 

auT/oce, for a thorough introduction to Klein surfaces see [AG]. A Klein surface 

has the property of being locally like an open set in the closed upper half-plane, 

= {a + 6* : a, 6 E R and 6 > 0}. 

with the subspace topology that inherits from the usual topology on C. 

Since there are two different classes of open sets in the upper half plane: those 

that intersect its boundary, and those that are contained in the interior of the upper 

half plane, we need to dehne transition functions that cope with this characteristic. 

We will say that a complex function / is antianalytic (or anticonformat) if 

d j jdz ~ 0, and / will be called dianalytic if it is either analytic or antianalytic in 

each connected component of its domain. It is easy to see that a function that is 

both analytic and antianalytic in the same coimected component of the domain, is 

constant on that component. We can generalize the concept of analytic chart to 

that of on a homeomorphism where Ui is an open 

subset of % and is an open subset of either C or . If is centred at p 6 % and 

Vi is an open set of but not of C, we will say that p is in the of % (we 

use to refer to the boundary of %). Two charts will be compofzbJe 

if their transition functions are dianalytic, and a set of charts : [7̂  —> on X 

is called a on X if is an open cover of % and all the transition 

functions are dianalytic. 



Two dianalytic atlases A and B will be dianalytically equivalent if A U B is 

a dianalytic atlas (that is, if every chart of one is dianalytically compatible with 

every chart of the other), and an equivalence class of dianalytic atlases on vY is a 

on 

Def in i t ion 1.1.3. A 2-manifold X with a dianalytic structure A on X will be 

called a sur/ace. 

According to the previous definition, any Riemann surface is in fact a Klein 

surface, since any analytic atlaa is dianalytic, and any open set of C is homeomorphic 

to an open set in (C+. To avoid confusion, we will reserve the term "Klein surface" 

to its traditional meaning, that is, any surface % with a dianalytic structure that is 

not orientable or has at least one boundary component, and we will use "Riemann 

surface" to refer to Klein surfaces that are orientable and have no boundary. In 

general, Klein surfaces will be assumed to be compact. As we have already stated 

we will mainly study symmetric Riemann surfaces throughout this work. 

Let / : X ^ y be an analytic map defined at p which is not constant, then 

(see [Mir]) there is a unique integer m > 1 such that there are local analytic charts 

and centred at p and / (p) respectively, such that o / o We 

will call m the of / at p. The multiplicity of a map at one point is 

independent of the choice of charts, and by taking an element 1/ G Y we can dehne 

the decree of / at 1/ ag the sum of the multiplicities of / at the points of % mapping 

to ?/: 

4 ( / ) = ^ 

The degree of / at 1/ is constant, independent of 1/, and so we will just call it 

the degree of / . 

Given an analytic function / : % — Y of degree n, there is a hnite set of points 

C ( / ) C y so that |/"^(3/)| = M for any ?/ E y — C ( / ) and 1 < |/^^(i/) | < M for every 

?/ E C ( / ) , / is then an 6rancAe(f if C ( / ) ^ 0 and 

otherwise. The elements of C ( / ) are called the nafttea or of / , 

the elements a; 6 % with multiplicity greater than one are called the 

or of / , and those with multiplicity one are called 

Both, the set of critical values and of critical points are finite. 



Def in i t ion 1.1.4. Two Riemann surfaces X and Y are conformally equivalent 

or if there exist an analytic bijection / : % —> Y. 

P r o p o s i t i o n 1.1.5. An analytic map between compact Riemann surfaces is 

an isomorphism if and only if it has degree one. 

P r o o f See Corollary 4.10 in [Mir]. 

An analytic bijection is called an orientation preserving automor-

phism of and the set of all orientation preserving automorphisms of 

% forms a group under composition. Every Riemann surface is orientable, and we 

will deEne two diSerent classes of automorphisms, those that preserve orientation 

(coTi/ormoZ and those that reverse orientation (or 

The latter being of capital importance when dealing with sym-

metric Riemann surfaces. 

Def in i t ion 1.1.6. A Riemann surface R is called symmetric if we can define 

an anticonformal involution cr : 

For the cases when ^ is symmetric, we call (or the group of 

dianalytic automorphisms of J?, it is clear that 

= 2 

if R is symmetric and it is 1 otherwise. 

1.2. Fuchsian groups and NEC groups 

In this section we will introduce the main features of discrete groups of plane 

isometries, regarding as a plane 7̂  one of the following spaces: 

# The hyperbolic plane ZV with automorphism group 

At(t(ZY) = f G'i:(2, R) Ai/t+(&Y) = f ^i;(2, R) 

# The sphere E, with automorphism group 

f Gi,(2, C) v4iz(+(E) = f Gi:(2, C) 

The Euclidean plane C with automorphism group 

v4%i((C) = A / / ( 1 , C ) A?it+(C) = A / / ( 1 , C ) . 
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Where the bar above the groups means that we extend their natural action 

using complex conjugation. 

In this work we will make the standard abuse of notation and use matrices 

a b\ „ ciz + b 
to reier to maps J I u \_y X V w X ^ I 

c d y cz + d 

and for a 6eld ^ we will call 
= | o , 6 , c , dGAr , a c f - 6 c ^ 0 ( m o d j < : ) j 

f where A G - {0} 
(Av) 

SL{2,K) = ^('^ \a,b,c,d£K. ad-bc=l (mod fC) j 

PSL{2,K) = 

The reason for giving a special consideration to these three Riemann surfaces, 

will become clear after the following well known theorems: 

T h e U n i f o r m i s a t i o n T h e o r e m 1.2.1. Every simply connected Riemann 

surface is conformally equivalent to the hyperbolic plane ZY, the sphere E or the 

Euclidean plane C. 

The above theorem is due to F. Klein, H. Poincare and P. Koebe, for a proof 

using modern notation see [Bea2]. A proof of the theorem below is easily obtained 

from results in [JS2] §4.19 and §5.7. 

T h e o r e m 1.2.2. Let A be a compact Riemann surface, then there is a discrete 

subgroup of (where % is either &/, E or C), acting on % without 

Exed points, such that ^ is isomorphic to the quotient space 

Given a group G of plane isometries, we will say that it is Mon if 

it contains any orientation reversing isometries (if it contains reflections or glide 

rejections), otherwise G is an one»(a6Ze The set of all the orientation 

preserving isometries of a given non orientable group G is itself a subgroup of G of 

index two, and we will usually refer to it as G+. A discrete subgroup of f6'i^(2,R) 

is called a fbc/isma and a discrete subgroup of A2it+('P) with a compact 

quotient space (a cocompact group) is a group. CrystaDographic 

groups may have torsion. 
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We can classi^ the elements of (and therefore the elements of any 

Fuchsian group) by the number of hxed points in ZY, this classihcation can be done 

in terms of the trace of the matrices. 

We will say that an element M = ^ f6'Z,(2,R) is 

- if the action of M Exes two conjugate points in C, one of them is in ZY. 

We have that t r (M) — |a + < 2. 

- if the action of M fixes only one point o n E u { o o } , |a + d| = 2. 

- if M 6xes two points in R U {00}, we get that |a + (f| > 2. 

It is worth thinking of elliptic elements as Enite order rotations about a point 

in the open upper-half plane, while parabolic elements can be seen as inhnite order 

rotations about a point in R U {00} and hyperbolic elements as translations in the 

closed upper-half plane. 

Any hxed point by a parabolic element of a Puchsian group G is called a cusp 

(or pom(), and the set of all cusps by elements of G is called the cusp set 

of G. The number of orbits of the action of G in its cusp set is called the 

c/oss TZMmter of G. 

A point a 6 R U {00} is a of a Fuchsian group F if there is a a; E ZY 

and a sequence ^ = ^1, ^2, - -, - - with 6 F such that the sequence 

^(a;) = ^yi(a;), ^2(2;),. . . , . . . 

converges to a. The set of all hmits points of F is Z'(F), the set of F. Every 

point a fixed by a parabolic or hyperbolic element of F is a limit point of F. If we 

call 0 (F) = R — L(r) the ordinary set of F, we will say that the Fuchsian group F 

is of the Amcf if 0 (F ) is empty, otherwise we will say that F is of the secoMcf 

If F is of the second kind, then I,(F) is nowhere dense in R. We will only deal 

with first kind Fuchsian groups. 

By the uniformisation theorem, we know that for each Riemann surface 

there is a set of torsion free crystallographic groups = {0^} that uniformize 

these groups are called stfyyace of and it can be proved that is a 

class of conjugate groups in At((+(P) so that A is isomorphic to if and only if 



A repmn for a crystallographic group G is a closed, connected 

subset ^ of 7̂  such that: 

- for every point a; E 'P there is a point ^ 6 f such that a; E G?/. 

• No two points in the interior of F are in the same G orbit. 

- F is locally hnite, that is, any compact set C C "P intersects only hnitely 

many images of 

It is easy to see that if JZ is uniformized by G, and F is a fundamental region 

for G, then (see for example [JS2] Th. 5.9.6.): 

% 
G G ' 

A is a special type of fundamental region whose boundary 

is a union of geodesic segments that we call the of the polygon. Given any 

fundamental polygon f and g a side of f then there is precisely one side of f that 

we call g and one element p E G so that ^(g) — s (it is possible that g = g) and 

p ( f ) is adjacent to f along g. We say that g and g are pozred by 

Fundamental polygons are very useful to And presentations for subgroups of 

Puchsian groups by means of a technique known aa Reidemeister-Schreier's method. 

It can be proved [Bea] that given f a fundamental polygon for the Puchsian group 

r , the side pairings elements of f generate F, so we can associate to the fundamental 

polygon f a set of generators for F 

$ = {A, ,̂ 2, . . . ,/3n} 

consisting of side pairings elements of f . 

Suppose that we have a subgroup A < F and we call a whole set of right 

coset representatives for A in F so that 

r = |_J Ac, 
c&CR 

(U denotes disjoint union), we say that G ^ is a 5'cAre%er (ronauergo/ for A 

in F if whenever ciCg . . . is a word in $ with cic2 . . . E G;% then we have that 

C1C2 • • . Cn—\ E Cji' 

Once we have a Schreier transversal for A in F, we can describe a set of 

generators for A. For any element ^ E F there is a unique r E G^ such that 

Ar = Ap and we call g = r. Then the set 

B = {r^(r/3)"^ | r E G $ } 



generates A and is called a set of 5'c/ire%er for A in P. 

With a set of Schreier generators and transversals, we can find a presentation 

for A in P. We assume that F has presentation < % | > and we call 

^ = {crc"^ |c E r G 

If we write the elements of ^ in terms of those in ^ and call this new set a 

presentation for A is given by < B | >. 

Example 1.2.3. We will calculate a set of Schreier generators for the Puchsian 

group A = (1; [3,3,7]) inside F = [3,4,7] where T has presentation 

< A, B, C I = ABC = 1 > . 

We have that $ — {A, C'} is a set of generators for F while 

Cj% = { l , A , C , C \ . . . , C G } 

constitutes a Schreier transversal for A in F, and we get the following diagram (see 

Theorem 1.2.5. and Example 1.2.6.) 

AC^ AA A C AC^ ACG A AC^ 

Avl 
T 
A 

T 
A C AC^ AC^ AC^ AC^ AC^ 

1 
AA 

1 
A C 

1 
AC^ 

1 
AC^ 

1 
AC^ ACG 

i 
A 

for the action of A and C on the right cosets of A. 

We can now easily calculate the set of Schreier generators, if we delete obvious 

repetitions, like elements inverses, we get: 

B 

and we have that A has presentation < B | >, where A are the relations of F. 

In order to get a standard presentation for A we might have to consider changing 

the generators in B by some of its conjugates in A, that has been done in the last 

section of chapter four, where this particular pair of groups have been considered. 



The following result shows how to construct a fundamental polygon for A < F. 

T h e o r e m 1.2.4. Let A < F be a pair of finitely generated Fuchsian groups 

such that r has fundamental polygon f and Cj; is a right Schreier transversal for 

A in r . Then a fundamental polygon for A is 

f ' = I J r f 
rEAc 

and the sides of f are paired by the Schreier generators corresponding to Ac-

Let now ^ — 7^/(7 for some G E then if we call the normaliser of 

G in we have that (see Theorem 5.9.4. in [JS2]): 

Aut+(R) = 

and furthermore, any group of orientation preserving automorphisms of JZ is iso-

morphic to for some group so that 

As we have mentioned before, the group of automorphisms of P contains orien-

tation reversing elements as well, so we may consider what happens when we allow 

orientation reversing elements in the previous theory. Although there is no generic 

name for a discrete subgroup of A'u(('P) with orientation reversing elements, we will 

be mainly concerned with crystallographic groups, and in this case we use 

as an acronym for Non Euclidean Crystallographic, referring to cocompact discrete 

subgroups of 

We will follow with groups terminology the same rules already stated for sur-

faces, and therefore we will call crystaliographic groups those NEC groups that 

contain no orientation reversing element, reserving the name proper JVEC ^roup (or 

just NEC group) for those which do. If G is an NEC group, its coTioMzcaZ 

is G"*". Since the set of Riemann surfaces arising from the action of 

Euclidean and spherical groups is very limited in scope (for instance, no surface of 

genus g > 2 is formed in such a way), we may sometimes use the word "Fuchsian" 

in a general way to refer to a group that contains no orientation reversing elements, 

although it may not be a hyperbohc group. 
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A Riemann surface R admits an antianalytic involution if the normaliser of 

G E ill contains orientation reversing elements. If this is the case, we 

have that: 

G 

It is obvious that 7V+(G) = (where we define Ar+(G) := ]V(G)+), and 

that = ]V(G) if and only if is not symmetric. 

A special class of crystallographic groups are triangle groups. A (proper 

is deSned as the group of isometries generated by the rejections on 

the side of a triangle with angles y, ^ and ^ and is represented by r ( / , m , M), 

which we will usually shorten to ((,m, n) if no confussion arises. We will say that 

a triangle group is gp/ierzca/, Euc/Weon or if y + ^ ^ is greater than, 

equal to or smaller than 7r. 

The canonical Puchsian group of a triangle group, is also called a triangle 

group, and in that case the group is deEned as the group generated by rotations of 

order M, m and Z at the vertices of a triangle of angles y, ^ and In general it 

will be easy to know from the context if we are talking about orientation preserving 

or reversing groups, and we will use r [ / ,m, a] to denote a Fuchsian triangle group 

and a) to denote a proper NEC triangle group. 

It is clear that: 

r + (Z, m, = r[Z, m, n]. 

The importance of triangle groups will become apparent in the next section, due 

to its relationship to the Belyi functions (see [JS3] and [Sch]) and the fundamental 

groups of maps and hypermaps. We can dehne a triangle group using only algebraic 

terms as the group with the following presentation: 

r ( / , m, n) = < 27, ?/, z I — 2/̂  = = (3:3/)' = = (za;)" — 1 > 

r[/ , m, n] = < a, 6, c I = c" — a6c = 1 > 

Macbeath and Wilkie proved that for each crystallographic (or NEC) group 

G with compact quotient space there is a signature and a "marked polygon" from 

which a canonical presentation for G may be derived, a marA;e(f being a 

fundamental polygon for G together with the identifications on the boundary of 
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F produced by the action of G. See [Wil], [Mac]; the explanation here has been 

taken from [Wat]. The presentation for G is given by: 

< Xi, Cjĵ , Cjy (ip,bq I Xj ' = Cjf̂  = {cjk—icjk) •''' = CjoejCjtjBj = AD = 1 > 

Where yl = xi-..XrCi...fig, i = l...r, j = k = 0...tj, p=l...g, q = l...h 

with r > 0, J > 0, > 0, p > 0, E {0,^?}, > 2 , > 2 and: 

- D = ^ if = ^. 

• D = a\...a^g if h ^ g. 

The numbers are called the proper penodg of the group, while the Mjt's 

are the ZmA; penodg, and will correspond to the branch points lying inside the 

quotient space or in its boundary respectively. The quotient space § has genus p 

and is orientable if A = p and non orientable otherwise. The number of boundary 

components of the quotient space is g. If s = 0 and there are no proper periods, G 

is a crystallographic surface group, while if g 0 and there are no proper or link 

periods, then G is an NEC surface group. 

Periods (or can be inhnity, in which case the relations of the form 

= 1 (or = 1) omitted from the presentation. Any hnite order 

element of G is either conjugate to or to (c^k-iCjk)-^ (for a certain A;,/), 

therefore if G is a Fuchsian group, all its hnite order elements are conjugate to its 

elliptic generators. 

To every presentation (and therefore to every group) we can associate a signa-

ture which will be 

i^Q) 4 ;̂ ['^l) • • •) { (^11J •••) (^sl) • • •) '^sts ) }) 

in the orientable case, and 

(̂ 7) ) Ij^l) • • •) '^r]I 'f (^11) • • •) 1 ) ! • • •) (j^s 1: )}) 

in the non-orientable. When r = 3, s = 0 and p = 0 we have the Puchsian triangle 

group r[??zi, 7712, tTis], while if r = 0, ff = 0, s = 1 and ti = 3, we get the NEC 

triangle group that we have called r ( n i i , 7112,^13)-
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Singerman [Si3] determined the hyperbolic area of a fundamental region of a 

NEC group G. In the orientable case it is: 

$=1 j = l A;=l 

while in the non-orientable case is: 

^ i=l ^ ; = 1A:=1 

The particular caae of the hrst formula, that covers the case where G does not 

have any boundary components (s = 0) and therefore no link periods is usually 

known as It foUows from Theorem 1.2.4. that if Gi is 

a subgroup of G of index A;, then 

We will end the present section with a Theorem by David Singerman [Sil] 

concerning subgroups of Fuchsian groups with hnite index. Although the original 

theorem is more general, we wiH only use it for cocompact Fuchsian groups. This 

theorem allows us to work out the signature of the subgroup, given the signature 

of the big group and the actions of its generators on the cosets of the subgroup. A 

generalization of it for NEC groups was done by Hoare [Ho]. 

S i n g e r m a n T h e o r e m 1.2.5. Let G be a Fuchsian group with signature 

. . . ,mr]) 

then G contains a subgroup F of hnite index # and signature 

(/i; [fiXl, 7T,12 ) ••• ••• ) ^r i ; ^r2) ••• I'^rprY) 

if and only if: 

- There is a permutation group jif < 5"^ transitive on # points and an epimor-

phism 8 : G — j ? so that the permutations 8(3:1) has cycles of length and 

precisely pi other cycles whose lengths are mi / a i i , . . . 
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E x a m p l e 1.2.6. Let G be the group [3,4, 7] with presentation as in Example 

1.2.3. and consider the map 8 : G — g i v e n by: 

ylH-4(l ,7 ,2)(4,5,8)(3)(6) 

B ^ ( l , 2 , 5 , 8 ) ( 3 , 7 , 6 , 4 ) 

(1)(2,3,4,5,6,7,8) 

If we call 8(G) = ^ it is immediate that we are mapping G onto a transitive 

subgroup of 6" .̂ 8(^4) has two cycles of length 3 that produce no other periods 

in f and two cycles of length 1 that produce two 3 periods in F . 8 ( B ) produce 

no period of F since all its cycles have length 4, on the other hand 8 (C) induces 

a 7 period in F since it has got one cycle of length 1. We have seen that f has 

signature (p; [3,3,7]) and the condition //(F) = 8//((7) implies that p = 1. 

1.3. Maps 

In this section we want to explore the relationship between maps and hyper-

maps. We will define maps and hypermaps over Riemann surfaces and explain 

the geometric and algebraic approach to these objects. A current term, due to 

Grothendieck, to refer to both maps and hypermaps is "dessin d'enfants" or just 

deagm. For an introduction to maps theory see [JSl], for a discussion of the wide 

scope of dessin theory see [Sch]. 

Intuitively, a map is a decomposition of a surface into polygonal two-cells 

or faces. That leaves a structure on the surface composed by the interior of the 

polygons (faces), edges and vertices that constitute the map, for an easy example 

of these we can think of the platonic solids as maps on the surface of the sphere, 

picture below depicts the map on the sphere induced by a tetrahedron. 

The set of vertices and edges of the map constitute a graph which is embedded 

into the surface. Although we will allow a very general class of graph, we will 

require the graph to be connected and that to every vertex there is only a Enite 

number of incident edges, this number is the of the vertex. Our graph can 

contain edges with one or two vertices, the edges with two vertices correspond to 

our everyday perception of an edge, as for the edges with only one vertex, they can 

either be a Zoop or a /ree ecfpe, the difference being that a loop is homeomorphic 

to a circle, while a free edge is homeomorphic to a segment. Every face would 

be surrounded by a finite number of edges, and this number is the valency of the 
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face, faces should be simply-connected. An oZZoiuecf is a graph satisfying the 

previous conditions. For a picture of a generic map on a sphere see Fip. 6̂  

6 ̂ "4 lb' 

Two o/mapa on (Ae gpAere 

A Aypergrop/i is a generalization of this idea where we allow any Enite number 

of vertices to lie on an edge. We will meet some hypergraphs when we describe 

Enite geometries in chapter three. Our only restriction on the structure of the 

hypergraph is that it is connected, and that to every vertex there is only a Enite 

number of incident edges. We can dehne a Momorp/iigm as a bijection 

/ between the vertex sets of two (hyper) graphs that induces a bijection between 

the edges set so that the incidence structure is preserved, that is, if 

I(P) e f{E) 

where P is any vertex contained in the edge E. 

We will start with the topological approach to a map, then describe the al-

gebraic structure of it, and use algebraic notions to generalize the concept of map 

to that of a hypermap. Nevertheless, after the topological and the algebraic ap-

proaches have been explained, we will need to provide maps with a richer structure, 

namely the analytic structure of their underlying Riemann surface. 

Def in i t ion 1.3.1. A map Ai on a compact surface X is an embedding of an 

allowed graph Q into X such that the components of X — Q are simply-connected. 

We call the components of % — ^ the /acea of Ai. 

Def in i t ion 1.3.2. A topological map Top{M) is a triple {Q,V,S) where G is 

an allowed graph, V its set of vertices and 5" is the underlying surface. 

15 



Def in i t ion 1.3.3. Let e be an edge of a map M. with endpoints ei and eg 

(that are identified in the case of loops), and let m be a point in e which is not ei 

nor 62- We can now divide e into two segments mi and 7712. A of a map Ai 

is a pair consisting of a vertex and an incident segment. If there are no free edges 

then every edge has two darts. 

In we can see the three different kinds of edges on a map with their 

corresponding darts. 

Z/Oop, edpe ond yree e(f^e 

We can associate an algebraic structure to the topological construction de-

scribed above. We will first consider the map M. with its set of darts that we will 

call 0+ , the superscript + means that we are working with maps on orientable 

structures, since we are only interested in Riemann surfaces, we will not cover the 

definition of maps for Klein surfaces, for a survey of that topic see [BS] and [IS]. 

We define two permutations of [2+ as follows: 

- ro consists of cycles formed by going round each vertex in an anticlockwise 

direction. 

• r i is the product of the transpositions that interchange the two darts on an 

edge or loop, and fix the dart on a free edge. 

The product r2 = consist of cycles which define anticlockwise rotations 

of the darts about each face of Ai. If we let G+ = < rg, r i > be the group generated 

by ro and r i , G+ is a subgroup of 5"^^,the group of permutations on the elements 

of Q+, that is transitive because the graph underlying Ai is connected. G_|_ is the 

moMOcfromi/ of Ai, we could have called it the oriented monodromy group, 

but as we have already stated, we will only consider maps on orientable surfaces. 

We define the algebraic map of Ai to be: 

(A/p A<)+ = ( G + , n + , r o , r i ) . 
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E x a m p l e 1.3.4. The tetrahedron in Fig. 1.1.a) has 0 + = {n \ n = 1...12} as 

its set of darts, and the permutations are: 

ro ( 1 , 2 , 3 ) ( 4 , 5 , 6 ) ( 7 , 8 , 9 ) ( 1 0 , 1 1 , 1 2 ) 

n (1 ,9 ) (2 ,11) (3 ,6 ) (4 ,10) (5 ,7 ) (8 ,12) 

7-2 ^ ( 1 , 8 , 1 1 ) ( 2 , 1 0 , 6 ) ( 3 , 5 , 9 ) ( 4 , 1 2 , 7 ) 

E x a m p l e 1.3.5. The map in Fig. 1.1.b) has 0+ = {n \ n = 1...15} as its set 

of darts. The permutations are: 

ro ( 1 , 2 , 3 , 4 , 5 ) ( 6 , 7 , 8 ) ( 9 , 1 0 , 1 1 , 1 2 ) ( 1 3 , 1 4 , 1 5 ) 

n (1 ,11) (2) (3) (4 ,15) (5 ,6) (7 ,14) (8 ,9) (10 ,13) (12) 

rz ^ (1 ,10 ,15 ,3 , 2 ) (4 ,14 ,6 ) (5 ,8 ,12 ,11 ) (7 ,13 ,9 ) 

Def in i t ion 1.3.6. We define an algebraic map as a quadruple: 

:= (G'+,^]+,ro,ri) 

where is a Suite set, (7+ is a transitive subgroup of the group of permutations 

generated by rg and r i , and where r i is a product of disjoint transpositions. 

We call r2 = To any oriented algebraic map there is a topological map 

so that AZ^+(Ai) = 

If ro and r2 have orders m and a respectively, we say that Ai (resp. yl"'") haa 

(m, Ti), that is, the Z.c.m. of the valencies of vertices and faces are m and M 

respectively. 

Given the triangle group T[m, 2,n] with a presentation of the form: 

r[m, 2, n] =< a, b | a™' = b"^ = = 1 > 

and a map Ai of type (m, n) with AZp"^(Ai) = r2+,ro,ri) , we can de6ne an 

epimorphism 6 : T[m, 2, n] — s e n d i n g a to tq and 6 to r i . 

Let G+a — {p G G+lap = a } be the stabiliser of a E then M = 

is called a fundamental group of M in T[m, 2,n]. A different choice of dart a will 

yield a group conjugated to M in r [m, 2, n], hence to every map Af of type (m, n), 

we can associate a conjugacy class of fundamental groups in r [m, 2, n] (see [JSl]) . 

Next, we identify (1+ with the set of right M-cosets in r [m, 2, n] by the bijection 

MA —a!(/i^). Taking M* = jiL'er(^), the core of M (the intersection of all the 

conjugates of M by elements of F), we can identify G+ with the quotient group 
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r [m, 2, M]/M* by M*p ^ so that the action of a (respectively 6) corresponds to 

the permutation ro (respec. r i ) in (7+. In this way we see that any finite index 

subgroup M < [m, 2 , i s a fundamental group of some oriented map. 

It is possible to generalize the concept of dart, so that we can define maps 

on Klein surfaces, this generalization relates in a natural way to the inclusion of 

crystallographic triangle groups into NEC triangle groups, see [BS]. 

Another important property of a fundamental group M of a map Ai is that 

the surface 5" in which the map is embedded is uniformized (not uniquely) by M in 

the sense that: 

^=M-

To every topological map corresponds an algebraic map, and from any algebraic 

map we can recover a topological map. Unfortunately, this relationship does not 

make both categories equivalent, since there are many ways of altering a topological 

map via an homeomorphism of the underlying surface without a counterpart in the 

side of algebraic maps. We want to have a geometrical definition of map that 

allows us to translate results from the algebraic category to the geometrical one, 

and in order to do so, we need to define maps on surfaces in such a way that the 

isomorphisms between them correspond to isomorphisms between their underlying 

surfaces. These maps when considered on Riemann surfaces were originally called 

mopg by [JS], we will call them maps, since their isomorphisms 

correspond to mappings that preserve the analytic structure of their underlying 

surfaces. The first step to define them is to define universal maps and quotients of 

maps. 

The NEC triangle group r(2 , m ,» ) acts naturally on 7̂  and has a triangle T 

of angles a = §, 6 = ^ and c = ^ as its fundamental polygon. If we draw a dart 

on the side (z6, and let F act on ab with that dart, we get a map on 7̂  with all the 

edges of the same length and such that all vertices have order m and aU faces have 

order m, this is the map o/ (ype 

Let Ai = (^,V,5') be a topological map of type (m,n), then there is an 

algebraic map ^ = yl/p(Ai) associated with it, from where we can calculate a 

fundamental group M of M.. We have seen that M < (2,m, n) and therefore M 

acts on the universal map Ai of type (m, n) sending vertices to vertices, edges 

18 



to edges and face centres to face centres. The quotient of this action is a map 

vM of type (m, zi) which is naturally embedded in the surface 5" by the covering 

TT : P and which is topologically equivalent to Ai. Ai is an map of 

VW. 

Any analytic map, is in particular a topological map. We have proved that to 

any algebraic map there is at least one topological map Ai so that .A = 

Def in i t ion 1.3.7. Two maps M and M ' of type (m, n) embedded in the sur-

faces 6" and 5" are called if there is an analytic isomorphism 

between the surfaces that takes the set of vertices, edges and faces of Ai to the set 

of vertices, edges and faces of Ai ' respectively. 

If we consider the dehnition of an algebraic map, there is no reason why we 

should restrict ourselves to quadruples where r i has order two, and not consider 

groups where this condition is dropped. In fact, this property corresponds to the 

fact that the edges have only two vertices, so by allowing a higher order in r i , we will 

study maps whose edges contain more than two vertices, and whose fundamental 

group is a Snite index subgroup of the triangle group Those objects are 

what we call Ayjcermopa. 

1.4. Hypermaps 

Def in i t ion 1.4.1. An oriented algebraic hypermap A consists of a finite set of 

objects 0 + that we will call the bits (or brins) of A, together with two permutations 

ro,ri G and a group G+ = < ro , r i > such that G+ is transitive in 

(As before we will drop the word "orientable" since we will only consider Rie-

mann surfaces). We call G+ the protip of the hypermap Vl. The cycles 

ro and correspond to and in precisely the same way as 

the cycles generating the monodromy group of a map corresponds to vertices and 

edges, while the permutation rg = (rori)"^ corresponds to The hyper-

map is represented by the quadruple ((9_|_,f]+,ro,ri), and if n has order we say 

that ^ has (/o,4,^2)' The of is equal to |r2+|. 

We extend the notion of fundamental group to hypermaps by considering the 

natural epimorphism ^ : r[Zo, Zi, Zg] ^ G+ in the same way as we did with maps. We 

therefore can deEne a of ./I to be M = ^"^(G+a)- We will use 
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the word o/^ebrozc (feagm to refer to either an oriented algebraic map or hypermap 

indistinctly. 

Although from the algebraic point of view there is little difference between a 

map and a hypermap, it is not intuitively immediate how to view a map on a surface 

when we allow each edge to meet as many vertices as necessary, several authors 

have suggested different ways of doing it, we wiU first give an abstract definition of 

topological hypermap on Riemann surfaces and then describe the representations 

by CoTi, James and 

Def in i t ion 1.4.2. A topological hypermap % on n. Riemann surface 5" is a 

triple (5", y ) where ^ and y are closed subsets of 5" such that: 

a j := E ' n y is a non-empty finite set. 0 + is called the set of (or 

^ U y is connected. 

The components of E' and y are homeomorphic to closed discs. The compo-

nents of E' are called while the component of y are the 

The components of 5" — ( E ' u y ) are homeomorphic to open discs and are called 

/ig/peT/aces. 

We will call an object which is either a topological map or 

hypermap on a Riemann or Klein surface. 

For an explanation of dessins on Klein surfaces see [IS]. 

T h e Cor i r e p r e s e n t a t i o n 

In the Cori representation (see [Co]) hyper vertices and hyper edges are rep-

resented by closed polygons called 0-faces and 1-faces respectively (we will colour 

0-faces with a light grey and 1-faces with a dark grey), each polygon having as many 

sides as the length of the cycle it represents, while hyperfaces are represented by 

open polygons called 2-faces each one having twice as many sides as the order of the 

hyperface they represent (2-faces are painted white). 0-faces are mutually disjoint, 

as are 1-faces, and they intersect each other only in their vertices, which represent 

the bits, each bit shared by precisely one hypervertex and one hyperedge. As the 

hypermap is embedded in an orientable surface A, we can de&ne an anticlockwise 

permutation of the bits around each 0-face and each 1-face consistent with the ori-

entation of these permutations corresponds to ro and respectively. If we call 

y the set of aU O-faces, and ^ the set of aU 1-faces, then y U ̂  is a closed set in 

i?, and the components of R — {V U E) are the 2-faces, which are open polygons 
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that induce the permutation rg = (ror^^). As 2-faces have an even number of bits, 

^2 permute the bits acting as the square of the clockwise permutation around each 

hyperface. 

The Cori representation is very easy to draw and shows some symmetries of 

the hypermap in a clear way, but has the drawback of differentiating between hy-

pervertices, hyperedges and hyperfaces in a way that seems unnatural if we regard 

the algebraic definition of the hypermap. 

T h e J a m e s r e p r e s e n t a t i o n 

The James representation (see [Ja]) displays the trinity among hypervertices, 

hyperedges and hyperfaces in a more natural way. This time O-faces, l-faces and 

2-faces will aU be polygons with twice as many sides as the orders of the elements 

they represent. The intersection of any two i-faces is always empty, and O-faces 

and l-faces intersect along one side. To place the bits, we need to consider the 

three-valent map on ^ dehned by the sides of these polygons, in such a map every 

vertex heis order three and each edge separates faces of diSFerent labels (there are 

no two i-faces with a common edge). Going anticlockwise around each vertex, we 

get a permutation of the faces that is either (0,1,2) or (0,2,1), if the permutation 

is (0,1,2), the vertex is called a bit. Once the bits are placed, the permutations 

ro, r i and rg follow in the same way as with the Cori representation. 

Cori James 

Con: Jamea Aypermap %e. 

To go from the Cori representation to the James representation, we push to-

gether the hypervertices and hyperedges with a common bit, thereby changing the 

bit in the Cori representation (one point) to an edge in the James representation 

one of whose vertices is a bit, and doubling the number of sides of every 0-face and 

1-face. 
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T h e Wa l sh r e p r e s e n t a t i o n 

In order to introduce this representation first presented in [Wal], we need to 

define a mop, that is, a map in which the vertices have one of two colours, 

and such that aU edges connect vertices of different colours. Starting now at the 

Cori representation, we substitute every 0-face by a 0-vertex (where the number 

of the vertex refers to its colour) and every 1-face by a 1-vertex, and we join two 

vertices together if and only if their respective 0-face and 1-face intersect in a bit, 

therefore substituting each bit shared by the 0-face and 1-face for an edge joining 

the two new vertices. We have now a bipartite map on the surface, with the same 

number of edges as the number of bits of the original hypermap, the vertices in the 

bipartite map stand for the hypervertices and hyperedges, while the faces of the 

bipartite map represents the hyperfaces of the original hypermap. The permutation 

ro (resp. r i ) corresponds to anticlockwise rotation around each 0-vertex (resp. 1-

vertex) while r2 corresponds to the clockwise permutation of the edges around a 

face. 

Fig. 1.4. Walsh representation of Tie 

1...12} as its set of E x a m p l e 1.4.3. The hypermap 'He has 0 + = {n \ n 

bits, and the permutations are: 

ro (1,2)(3,12,10,6)(4,5,7)(8,9,11) 

r i ^ (2,3)(5,6,7)(9,10,12)(1,4,8,11) 

r2 -4 ( l , 8 , l l ) (2 ,10 ,6 ) (3 ,5 ,9 ) (4 ,12 ,7 ) 

We have already defined the cycles ro, r i and 7-2 = ^ for the hypermap 

when we explained the Cori model. If we let G+ :=< ro , r i >, (?+ is a transitive 

subgroup of 5"^^, and we define the or%en(e(f oZgebrmc of to be: 

XZ^+(?/) = (G+ ,n+ , ro , r i ) . 
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We say that the hypermap has (g/joe (Z,m, n) if ro, r i and r2 have orders Z, m 

and n respectively. 

It is clear that if any element of the set (Z, m, n} is 2, then the quadruple will 

be an algebraic map up to duality. We will use the name cfeaam to refer 

to either algebraic maps or algebraic hypermaps. 

We can embed % into the surface: 

U 

which is a Riemann surface since M is a subgroup of a crystallographic triangle 

group. 

To define an analytic structure on hypermaps, we follow a similar procedure 

to the one explained in the case of maps. We Erst define the wnzweraaJ of 

type (/,m, n) by using a triangle with angles 7r// (labelled 0), yr/m (labelled 1) and 

7r/n (labelled 2). By the action of r(Z,m, n) on that triangle, we get a map over 

7̂  with three diSerent types of vertices, if we delete the vertices of type 2 and the 

edges meeting these vertices, and paint with white the vertices of type 0 and with 

black those of type 1, we get a Walsh representation of the uniferaof Ai/permap of 

type (/, m, yi) which we shall call 'K(/, m, n) or simply % when no confusion arises. 

If = (6", y ) is a topological hypermap of type (Z, /M, 7%), we can calculate 

its algebraic hypermap and its fundamental group H < r ( / , m , n). Letting H act 

on "K, we get a quotient hypermap H/H embedded into V/H^ and we call it the 

dianalytic hypermap corresponding to ?/. If ^ contains no orientation reversing 

elements, by using the Fuchsian triangle group r[l, m, n] for the orientable universal 

we get an analytic hypermap corresponding to 

Def in i t ion 1.4.4. Two hypermaps 1-1 and H' of type embedded in 

the surfaces ^ and 5" are if there is an analytic isomorphism 

between the surfaces that sends the set of hypervertices, hyperedges and hyperfaces 

of "K to their corresponding sets in 

1.5. Group of Automorphisms of a dessin 

Since we have dehned maps and hypermaps as particular cases of dessins, I will 

dehne morphisms in the category of dessins, and the natural restrictions of these 

morphisms can be translated in an easy way to either maps or hypermaps. We will 
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use the name vertices, edges and faces of a dessin to refer to either vertices, edges 

and faces of a map, or hypervertices, hyperedges and hyperfaces of a hypermap. 

Whenever no distinction is needed, I will use "bits" to refer to darts and bits. 

Results in this section are well known in dessin theory, and most of them have 

been reworded from [JSl] . When they are more general than the original result, 

the proof still follows along the same lines. 

Def in i t ion 1.5.1. We will say that 0 is a topological morphism between the 

dessins D and D' with topological structures given by (5", jF, y ) and 

if : 5" —> 5" is a topological covering between the underlying surfaces (possibly 

ramihed, all branch points having hnite order), preserving orientation and so that 

<^(^) = and <^(y) = r . 

We say that D D' if there is a morphism from D to D'. 

T h e o r e m 1.5.2. Let D and D' be dessins of type (Z, n), then %) covers D' if 

and only if there are groups M and M ' which are representatives of the conjugacy 

classes of fundamental groups of D and D' respectively, such that M < M' . 

Def in i t ion 1.5.3. Given two dessins V and V embedded respectively in S 

and we will say that : D —> is an morpAzam between the dessins if 

is a topological morphism between the dessins and an analytic morphism between 

the underlying surfaces. 

This definition of morphism between dessins is more restrictive than the one 

originally suggested in [JSl] , since we impose the condition that the morphism 

preserves the analytic structure of the surface. It corresponds to the "Riemann 

morphism" between maps described in that paper. 

Def in i t ion 1.5.4. We will say that the pair of functions i/j = ( f , g ) is an 

a/pebrozc mofpAwm between the dessins D and D' with algebraic structures given 

by (G, Q, ro, r i ) and by ( C , rg, r^) respectively, if / : > r]' is an onto function 

and p : G ^ is a group epimorphism such that p(ro) = fg, p(ri) = and the 

following diagram commutes: 

X G ^ 0 

/ 9 f 

ri' X G' ^ f]' 

that is, f{ar) = f{a)g{r), for any r G G acting on any a G O. 
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We will say that xp = {f,g) as in Definition 1.5.4. is an algebraic isomorphism 

between the dessina %) and D' with algebraic structure as above if / : fZ —> is a 

bijective map and p : G — C is a group isomorphism. 

Two topological dessins D and are if there exists a topological 

morphism ^ between them, such that is a homeomorphism between the underlying 

surfaces, therefore the group of topological automorphisms of a dessin is too ample 

for our purposes, on the other hand, the group of analytic automorphisms of a dessin 

is hnite, and in fact is a subgroup of the group of automorphisms of the underlying 

surface. The analytic definition of isomorphism introduces some rigidity in the 

structure of topological dessin that is needed if we want to define a one to one 

correspondence between algebraic and geometric structures. 

Definit ion 1.5.5. Two dessins D and %)' are or just 

if there is an analytic isomorphism between them. 

P r o p o s i t i o n 1.5.6. Any dessin V which is equivalent to an analytic dessin 

D' is an analytic dessin itself. 

Coro l l a ry 1.5.7. The following results are equivalent for dessins embedded 

in Riemann surfaces: 

- The analytic dessins %) and D' are isomorphic. 

- The algebraic dessins AZp(D) and are isomorphic. 

- The oriented algebraic dessins and are isomorphic. 

We can now define the class V of all the analytic dessins isomorphic to V and 

the class A of all the algebraic dessins isomorphic to A. 

T h e o r e m 1.5.8. For any class A there is only one class V such that, given 

V e V, Alg{T>) G A. And for any class V there is only one class A so that the 

analytic dessins associated with the algebraic dessins in .A are all contained in D. 

Coro l l a ry 1.5.9. Analytic dessins with morphisms and algebraic dessins with 

morphisms are two equivalent categories. 

Therefore, we can define the functors and that induce mutually inverse 

bijections between the isomorphism classes of oriented algebraic and analytic dessins 

of finite type. 

T h e o r e m 1.5.10. Let Dy and D2 be subgroups of r[/o, /i, h] of finite index so 

that they are fundamental groups of some dessins, then, they give rise to isomorphic 

analytic dessins if and only if they are conjugate in r[/o, h]-
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T h e o r e m 1.5.11. If D has fundamental group D < T(lo,h,l2), then the full 

group of automorphisms of V is: 

where is the normahzer of D in r(foXi,^2)- Now we can assume that 

the dessin can be embedded in a Riemaim surface, in which case, the group of 

orientation preserving automorphisms of D is: 

We will say that a dessin is if its group of automorphisms acts transi-

tively on the set of bits. Regular dessins corresponds to dessins with the greatest 

degree of symmetry. If we relax the transitivity condition, and request only that 

all the vertices have the same valency, all the edges have the same valency, and all 

the faces have the same valency, we get unz/orm dessins. Every regular dessin is 

uniform, but the converse is false. 
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C h a p t e r Two 

PSL(2,p) and Hecke groups 

This chapter is divided into two main parts. The Arst one (2.A.) studies the 

structure of the family of Snite groups jP^Z,(2,p) where p E Z is prime, focusing 

in particular in the cases where p E {5,7,11}. These cases are covered in three 

separate sections. 

In the second part (2.B.) we will introduce jif" (for n > 3), the family of Hecke 

groups of the hrst kind. Two separate sections have been used to describe the main 

properties of which is the modular group, and 

While the Hecke groups and are important for our work because they 

provide us with a tool for the arithmetic characterization of the two main combi-

natorial structures embeddings described in chapter four, (Singerman's embedding 

of the Fano plane, and the 3-biplane embedding into we are also interested 

in PSL{2,7) and PSL{2,11), because they are isomorphic to the automorphism 

groups of the Fano plane and the 3-biplane respectively. 
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2.A. The structure of f 

Let us call 5'2(2,p) := where p is a prime and p > 2, i.e. the set of all 

2 x 2 matrices with coefBcients in the held Zp such that the determinant is equal to 

1. f5' i^(2,p) is SZ,(2,p) modulo its center, that is, modulo (7, - 7 ) where 7 is the 

identity matrix. 

P r o p o s i t i o n 2 .A . I . PSL{2,p) where p > 3 prime, is a non-commutative 

finite group of order 
p ( p - l )(p + 1) 

2 

P r o o f That PSL{2,p) where p > 3 prime is non-commutative is easily seen 

by considering for example matrices 

" = ( o 1 ) J 

in f 5'Z,(2,p) and checking that ^ 6a. 

To calculate its order we will count all matrices 

- a;?/ ^ 0: There are f — 1 choices for a; and p — 1 choices for ?/, we can then 

choose ( in p ways and for each choice of a;, i/, ( there is only one possible choice 

for z. That yields — 1)^ elements of this form. 

- a;?/ — 0: If we aasume a; = 0 then there are p choices for ( and p — 1 choices 

for y. Once x, y, t are fixed there is only one possible value for z. If y = 0 the 

same reasoning applies and so there are 2p{p — 1) matrices of this form. 

We have proved that \SL{2,p)\ = p{p — l ) (p + 1) and the order of PSL{2,p) 

follows naturally from the fact that \PSL(2,p}\ = [SL(2,p) : (±/)]. • 

It is well known that every group PSL{2,p) acts transitively on a set of p + 1 

elements, and we will prove it geometrically in the following lines. In order to 

see this action geometrically, we call Pp the projective line defined over the field 

Zp. Every element in Pp = { 0 , l , . . . , p — l ,oo} can be represented by a pair of 

homogeneous coordinates [r : s] (where r, 5 E Zp), so that [r : g] stands for: 

oo if s = 0 

where ^ = rs 

(mod p) if 5 ^ 0 
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As we have already mentioned in chapter 1, we will be using the standard 

abuse of notation whereby elements of f 5'Z,(2,p) are thought of as matrices, and 

we will associate to every element M G f a bijection of Pp dehned in the 

usual way: 

where as usual /M(oo) = if c ^ 0 (mod p) and /M(oo) = co if c = 0 (mod p). 

It is easy to see that the image of z by /M does not depend on the choice of 

homogeneous coordinates for z. As /M is a bijection in the finite set Pp, we can 

treat it as a hnite permutation and End its representation as a product of disjoint 

cycles. That this action is transitive is easy to see since 

a= Q J ) . i= J ) eP5 'L(2 ,p) 

and the action of o on the points of Pp is a cyclic permutation of the finite points 

(i.e. those which admit coordinates [r : 1], r E Zp) while the action of 6 swaps oo 

and 0. 

P r o p o s i t i o n 2.A.2. PSL(2,p) acts doubly transitively on Pp. 

P r o o f If we consider the ordered pair (a, b) E Pp with a ^ b (mod p) and 

oo 0 {o, 6}, we see that the matrix 

e - P S i ( 2 . p ) 

takes the ordered pair (0, oo) to (a, 6). If oo E {a, 6}, we need to consider two cases 

separately: 

- If 6 = oo we take = 1 and = 0, and then sends (0, oo) to (o, 6). 

If o = oo then we can take 

and the action is doubly transitive. 

However, the action of f 5'Z,(2,p) on Pp is not triply transitive in general, as 

we can see with {0,1, oo} and (0 ,1 ,3} for p — 7. 
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P r o p o s i t i o n 2.A.3. Given p,q e Z prime numbers so that p = I (mod q), 

there is only one non commutative group G of order |G| = pq that we shall call 

Gpg. The structure of Gp, is given by 

Cp X Cg = < / , e I /P = = 1 > 

where w G Z* and — g. Therefore the structure of the semidirect product 

is independent of the choice of it. 

Proof As p is prime there is a subgroup Cp of order p in G, and by Sylow's 

theorem the number TV of these subgroups satisfy 

TV = 1 (mod p) and N | q. 

Therefore TV = 1 and using Sylow's theorem again Cp < G and the structure of G is 

given by: 

< / , 6 I = 1 > 

where it G Zp. 

- Assume that or(Z2.(w) ^ g, then either it = 1 or ^ 1 (mod p). If it = 1 

it is easy to see that G is commutative and therefore of no interest to us. On the 

other hand, if i/^ ^ 1 (modp), using = 1 we get and by 

making s — g we get / = By elementary group theory (u^ — 1) = 0 (mod p), 

which is a contradiction. 

• Once we have proved that ordz* (u) = q, all that remains is to prove that for 

different it, the corresponding groups are isomorphic. To do so we choose a new 

generator (where s ^ 0 (mod g)) so that we can rewrite the last identity 

in the presentation of G as = 1. As g is prime ordz.(it^) = g and it^ 

runs through all order g elements in Z* therefore making it possible to derive any 

other presentation from the one in proposition 2.A.3. 

N o t e If g is not prime, the result is not true, as we can see with the following 

non-commutative and non isomorphic groups of order 20: 

G = < A, / I = / ^ = V = 1 > 

G' = < A, / I = /^ = = 1 > 

In general, given p = 1 (mod , the number of non-isomorphic groups of the 

form Cp X Cn is d{n), that is, the number of divisors of n. 
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Coro l la ry 2.A,4. Let p G Z be a prime p > 3 and q another prime so that 

p = 1 (mod g). There are only two groups of order pg: 

- The cyclic group that we shall call Cpg. 

- The semidirect product Cp x Cg = Gpg and is presented as in the previous 

proposition. This group haa one normal subgroup of order p that we shall call 

= < / >, and p subgroups of order g, that are conjugate by the action of the 

elements of Cp. 

Proof Let us call ^ any group so that |jif| — pg where p and g are as in 

the hypothesis. If ^ is non commutative, we are in the hypothesis of the previous 

proposition and we have finished. That Cp < H is unique and normal is true by 

Sylow's theorem. If the order g subgroups were not conjugate by / , then one of 

them should be normal in Tif (since for a certain s will belong to its normalizer) 

which contradicts Sylow's theorem. 

If ^ is commutative it must be the direct product of a Q, and a Cg, and 

therefore, we have 

P r o p o s i t i o n 2.A.5. Let p G Z be a prime p > 3 and n = 2 ^ . If we consider 

the action of f 5'i^(2,p) on where a; G Pp. We get that = Cp x with 

presentation: 

where G Z* and (w) = M. 

Proof Since the action of f 6'i^(2,p) on Pp is transitive, we can choose a; = oo 

without loss of generality, and we see that 

| ^W(oo) | = 

In fact, 5'(o6(oo) consists of any element of the form ^ ^ % j where a, 6 G Zp 

and o ^ 0. If we call 

1 / o 1 
0 1 / \ 0 ^ 

O 

where ordz.(a) = 2^ — p — 1, we have that ord( / ) = p and or(f(e) = n = 

therefore e and / generate 5'(a6(oo). We can see that and then the 

result is proved. 
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L e m m a 2.A.6. Let p be a prime p > 3, m G Z a positive integer so that p = I 

(mod m). The following two subgroups of GL{2,p) have order pm: 

| o , b e Z p , a"^ = l ( m o d p ) j 

I o, 6 G Zp, (1^ = 1 (mod p)^ - j ( 0 1 

hag presentation 

< /i, / I /i": = /P = = 1 > 

while a presentation for "Mpm is given by 

< /i, / I = yp = = 1 > 

where a G Z* and ordz* (s) = m and (r, m) = 1. 

If m is odd we have that 

If m is even the two groups are non isomorphic. 

Proof An easy process of counting elements shows that the order of both 

groups is pm, and using Sylow's theorems we get that the group structure is Cp xCm, 

furthermore the groups are non commutative. 

Once we have identif ed the structure of both groups, all we need to do is choose 

suitable generators / and of order p and m respectively and study the action of 

h on f . A choice for Qpm is / = j ^ , A = ^ ^ i ^ where ordz* (a) = m. It is 

immediate to check that hfh'~^f~"' = 1 and the other possibilities arise when one 

substitute h with where (s, m) = 1. 

0 \ 

A choice of generators for is / as before and ^ ^ I, bearing this 

in mind, the rest of the proof is as above. 
If m is odd we can dehne the isomorphism ^ by 

a 6 \ 6a 

O 
0 u " I 0 1 

By working with the presentationa, it is easy to see that no isomorphism be-

tween the groups can be defined in the case where m is even. 
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P r o p o s i t i o n 2. A.7 . Let p, g G Z be primes, p > 5 and q > 2 so that p = 1 

(mod g), and let Gpg be as in Corollary 2.A.4. There are only two groups ^ up to 

isomorphism so that < ^7 and [jif : Gpg] = 2. The two possibilities for ^ Eire 

either : 

H = Q2pq — Gpq X C2 or H = ?^2pg-

Proof As [jif : Gpg] = 2, we have that Gpg < so in order to describe ^ we 

need to Snd all possible order two automorphisms (% : Gpg — G p g . Taking Gpg 

presented as in Proposition 2.A.3., and using the information from Corollary 2.A.4. 

we get that o" must satisfy: 

o'(e) = 

where a, s 6 Zp and 6 E Zg. 

- As = / we have that o = ± 1 (mod p). 

- As (7 has to preserve the relations of Gpg, from 

1 = ( 7 ( e / e - Y " " ) we get e V e " ' ' = 

but in particular we know that and since a ^ 0 (mod p), we have 

= 1 (mod p) and so 6 = 1 (mod g). 

If o = 1 (mod p), from cr^(e) = e we obtain a = 0 since otherwise Gpg should 

be commutative. 

We have proved that either cr is equal to the identity c i : Gpg — G p g or is a 

representative of the following family of order two automorphisms: 

c-l 0-2 ( / ) = / 0-2 (e) = / ' ' e / -

where g E Zp. 

Since there is at least one element of order two in — Gpg, we can call it g and 

assume that it induces the automorphism of Gpg, i.e. <7i(a;) — for % E {1,2} 

and z E Gpg. 

In the case of cri it is easy to see that p commutes with the generators of Gpg 

and therefore we obtain jif ^ Gpg x C2 and from there 

H = G2pq-
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For the action of erg, we need to prove that the same group H is generated 

regardless of the choice of a G Zp. We can see that the equations relating the three 

generators of ^ are: 

1) e / e ' V " == 1 2) = 1 3) = 1. 

We can choose to change the generator e for E' — where n E Zp. If we 

do so we get the following expressions 

1) E / E - = 1 2) p / p / = 1 3) = 1. 

As K ^ 1 and Zp is a field, if we let n = ^ we can easily show that any choice 

of g yields the same group structure as s = 0. O 

Given a group G, we will say that the subgroups F, Tif < G are 

if given any element p E (3 we can express it in a unique way as a product p = / / t 

where / E f and A E If that is the case, we will write G = F .ff. It should be 

noticed that two subgroups F, ^ < G are complementary if and only if G = F j f 

and n = {!}. 

A very interesting point about f5'Z,(2,p) goes back to Galois, who proved the 

following result: 

T h e o r e m 2.A.8. For p > 11, there is no subgroup of PSL{2,p) which is 

complementary to any of its p-subgroups. 

That means that for p > 11 we cannot get jP5'Z^(2,p) = Zp, which im-

plies that there is no transitive action on p points for PSL{2,p) if p > 11. This 

can be seen in the following way: as p is a factor of \PSL(2,p)\ and p^ is not 

(see Proposition 2.A.I.), if there is a transitive action of PSL{2,p) on p points 

{a;i , . . . ,a;p}, no order p element of f5' i^(2,p) can fix any {a;̂ } (otherwise p^ will 

divide |f5'i^(2,p)|), which means that given g E f5'Z,(2,p) of order p, we have that 

f ^Z,(2,p) = 5'(a6(a;i) < p > for any z E {1 , . . . ,p}. 

For the cases where p < 11 and f 5'i,(2,p) simple, that is, for p = 5, 7,11, we 

know that the following holds: 

f ;9i : (2,5) = A4-C5 f ^ i , ( 2 , 7 ) = & . C 7 f g I , ( 2 , l l ) = A 5 . C i i 

and therefore PSL{2,p) acts transitively on p points. Through this work we will 

try to explore this special feature geometrically, especially for the cases where p = 7 

and p = 11. 
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2.1. The s t ructure of f 5'j}(2,5) 

We will not go into too much length for the case p = 5, but for the sake 

of completeness, we will explain two ways of seeing its geometrical action on five 

points, f 5'Z,(2,5) is isomorphic to A5, the alternating group on Ave elements that 

is isomorphic to the group of symmetries of an icosahedron. 

L e m m a 2.1.1. Ag is a simple group and it contains: 

- No proper subgroup of order higher than 12. 

- 6 conjugate subgroups of order 5. 

- 10 conjugate subgroups of order 3. 

- 5 conjugate subgroups of order 12, each one isomorphic to A4. 

This is not a full description of ail the subgroups of Ag and it merely describes 

those subgroups order that are interesting for our work. For each conjugacy class, 

we can End Eve diSierent embeddings of A4 into Ag, and its algebraic action on 

Sve points is readily seen as its action on these embeddings by conjugation. Our 

geometrical examples will mirror this action. 

- Given an icosahedron, we can see its face centres as the vertices of hve tetra-

hedra inscribed in it. The symmetry group of the icosahedron permutes the 

inscribed tetrahedra transitively. 

• For another view of the same phenomenon, we can consider the set of edges 

of the icosahedron and form pairs of antipodal edges. Thus we obtain fifteen 

pairs of edges so that each pair defines a rectangle inscribed in the icosahedron. 

The fifteen rectangles form triples of mutually orthogonal elements, and the 

action of PSL(2,5) will permute transitively the five triples. 

It is eaay to see how these two examples relate to the algebraic action explained 

above, since the symmetry group of both the tetrahedron and a triple of mutually 

orthogonal rectangles is isomorphic to A4. 
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2.2. The s t ructure of PSL{2,7) 

We will represent f 7) as the group generated by the following matrices 

" = ( - 1 I)' ' ' = ( ? ? ) • ' = ( 0 1 

where = abc = 7. This group has order 168 and appears as the group 

of automorphisms of two important classical geometric objects: the Fano plane, 

which will be covered together with other examples of finite geometries in the next 

chapter, and Klein's quartic, that will be described in chapter four. 

L e m m a 2.2.1. [Kll] PSL{2,7) is a simple group of order 168 that contains: 

- No proper subgroup of order higher than 24. 

' (2) ^ subgroups of order 3 in one conjugacy class. 

- 21 subgroups isomorphic to C4 in one conjugacy class. 

- 8 subgroups of order 7 in one conjugacy class. 

- 8 subgroups of order 21 in one conjugacy class. 

- 7 X 2 = 14 subgroups with 24 elements in two conjugacy classes. All of them 

are isomorphic to 5'4. 

L e m m a 2.2.2. If we consider the action of PSL{2, 7) on P7 we see that: 

1- There is a one-one correspondence between the C3 subgroups of f5'Z,(2,7) 

and the two point subsets {a, 6} of P? given by the fixed point set of the action of 

each C3 subgroup on IP7. 

If a C3 subgroup corresponds to {a, b}, we will refer to it as 

2- There is a one-one correspondence between the C? subgroups of f5'iL(2,7) 

and the points of Py given by the Sxed point of the action of each Cy subgroup on 

P 7 . 

If a C7 subgroup corresponds to o E P7, we wiU refer to it as C7 

3- Each subgroup of order 21 is isomorphic to C7 x C3. There is a one-one 

correspondence between the subgroups of order 21 and the stabilisers of elements 

in P7. 

If a group of order 21 is the stabiliser of o E P7 we will refer to it as G21. 
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P r o o f 

1- We can take any order three element and calculate its cycle structure on P?, 

for example: 

0 —1 

1 1 
G f 5'iy(2,7) produces (0 6 oo) (1 3 5) (2) (4) 

and we see that it fixes {2} and {4}. Given that all order three elements are 

conjugate, they all have the same cycle structure and therefore every C3 fixes two 

points in Py. Since f 5'Z,(2,7) acts transitively on pairs of points of Fy, the proof is 

finished. 

2- For the case of Cy we can do the same, if we start with z —> z + 1, it only 

fixes 00. Since the group action is transitive on Py, the rest follows. 

3- From Proposition 2.A.5. we know that for any a G P? 

Stabi^a) = Cj X C3. 

Since there are only eight subgroups of order 21, each one is the stabiliser of a 

point. O 

SUBGROUPS OF f ^1,(2,7) OF ORDER 24 

IN TWO CONJUGACY CLASSES 

Class P Class L 

{{0, l}{2,4}{3,6}{5,oo}} {{0,l}{2,5}{3,oo}{4,6}} 

{{l ,2}{3,5}{4,0}{6,oo}j {{l ,2}{3,6}{4,oo}{5,0}} ' 

| {2 ,3}{4,6}{5, l}{0 ,oo}} |{2 ,3}{4,0}{5,oo}{6, l}} 

{{3,4}{5,0}{6,2}{1 , (X)}} {{3,4}{5,l}{6,oo}{0,2}} 

{{4,5}{6, l}{0,3}{2,oo}j {{4,5}{6,2}{0,oo}{l,3}} 

|{5 ,6}{0 ,2}{l ,4}{3 ,oo}} |{5 ,6}{0,3}{l ,oo}{2,4}} 

|{6 ,0}{l ,3}{2 ,5}{4 ,oo}} |{6 ,0}{l ,4}{2,oo}{3,5}} 
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We will consider the geometric actions of PSL{2, 7) on seven points in chapter 

four. Before we do that, we need to highlight the fact that the symmetric group on 

four elements contains four subgroups of order three. We have already seen that 

we can characterize all C3 in f 7) by their pair of Exed points (i.e. refer to 

as (a, 6}), and we will label all subgroups of order 24 in f 5'Z,(2, 7) using this 

characterization, that is, we will refer to each of them by the four pairs of points 

that characterize its order three subgroups. That information is displayed in the 

previous table and will be used in the next two chapters, the 14 embeddings of '̂4 

have been separated into two conjugacy classes that we shall call class f and claas 

i,. (see Example 2.3.3. in the following section). 

2.3. The s t ructure of P5X(2,11) 

We can represent the group jP5'i,(2,11) in many different ways that are related 

to triangle Fuchsian groups. We can see it as the group generated by the matrices 

(or any other conjugation of this triple): 

" = ( ? V ) ' ' ' = ( - 1 s ) ' ' = ( 0 1 

where — abc = I. This representation is useful when we study 

epimorphisms from Fuchsian groups with three periods of type [2,5,11]. On the 

other hand we can see it as the group generated by the matrices: 

" = ( 1 ~o')' ' ' = ( 1 / ) • ° = ( o ? 

where a? = = abc = I, and we will use these matrices for groups of type 

[2,3,11]. There are other ways of presenting this group that we will cover in chapter 

four. 

f 5'i^(2,11) has order 660 and beside being the biggest group of the family of 

f 6'Z^(2,p) that acts transitively on p points, it is the automorphism group of the 

3-biplane, as we shall prove in chapter three. 

L e m m a 2.3.1. [Di] PSL{2,11) is a simple group of order 660 and contains: 

- No proper subgroup of order higher than 60. 

- ( ^ ) = 66 subgroups of order 6ve in one conjugacy class. 

- 12 subgroups of order eleven in one conjugacy class. 
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- 12 subgroups of order 55 in one conjugacy class. 

- 2 X 11 = 22 subgroups of order 60 in two conjugacy classes. All of them are 

isomorphic to Ag. 

This list is not complete, there are some other subgroups of 11) that 

are not mentioned here, however, it is complete for every order that is mentioned 

in the lemma. 

L e m m a 2.3.2. If we consider the action of PSL(2,11) on P n we see that: 

- There is a one-one correspondence between the C5 subgroups of f5 'Z, (2 , l l ) 

and the two point subsets {a, 6} of P n given by the Axed point set of the 

action of each C5 subgroup on P n . 

If a C5 subgroup corresponds to {o, 6}, we will refer to it as 

- There is a one-one correspondence between the C n subgroups of f6'Z,(2,11) 

and the points of P n given by the hxed point of the action of each C n subgroup 

on Pi i . 

If a Cii subgroup corresponds to a E P n , we will refer to it aa 

- Each subgroup of order 55 is isomorphic to C n x C5. There is a one-one cor-

respondence between the subgroups of order 55 and the stabilisers of elements 

in P7. 

If a group of order 55 is the stabiliser of a E P? we will refer to it as Ggg. 

The proof for the above lemma is similar to the proof for the corresponding 

one in the case p — 7 (Lemma 2.2.2.) so we will omit it here. 

The geometric actions of PSL{2,11) on eleven points will be covered in chapter 

4, and as we have done before we need to explain a way of classifying the embeddings . 

of Ag into f 5'iL(2,11). We have seen that there are six possible embeddings of C5 

into v45, and that each C5 < f5 'Z , (2 , l l ) can be labelled with its pair of hxed 

points on Pi i . Following the same idea as in f 6'i^(2,7), we wiU characterize every 

^5 < f 5'i^(2,11) by a sextuple of pairs of points as it is shown in the table below. 
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SUBGROUPS OF f ^1,(2,11) OF ORDER 60 

IN TWO CONJUGACY CLASSES 

Class f Class Z, 

{{0,1}{4,6}{7,10}{5,9}{3,8}{2,00}} {{0,1}{6,8}{2,5}{3,7}{4,9}{10, 0 0 } > 

{{1, 2}{5,7}{8,0}{6,10}{4,9}{3,00}} {{1,2}{7,9}{3,6}{4,8}{5,10}{0, 0 0 } > 

{{2,3}{6,8}{9,1}{7,0}{5,10}{4,00}} {{2,3}{8,10}{4,7}{5,9}{6,0}{1, 0 0 } ^ 

{{3,4}{7,9}{10,2}{8,1}{6,0}{5,00}} {{3,4}{9,0}{5,8}{6,10}{7,1}{2, 0 0 } > 

{{4, 5}{8,10}{0,3}{9, 2}{7,1}{6,00} j {{4,5}{10,1}{6,9}{7,0}{8,2}{3, 0 0 } ^ 

{{5,6}{9,0}{1,4}{10,3}{8,2}{7,00}} {{5,"6}{0,2}{7,10}{8,1}{9,3}{4, 0 0 } > 

| {6 ,7}{10,1}{2,5}{0,4}{9,3}{8,00} j {{6,7}{1,3}{8,0}{9,2}{10,4}{5, 0 0 } > 

{{7,8}{0,2}{3,6}{1,5}{10,4}{9,00}} {{7,8}{2,4}{9,1}{10,3}{0,5}{6, 0 0 } > 

| { 8 , 9}{1,3}{4,7}{2,6}{0,5}{10,00}} {{8,9}{3,5}{10,2}{0,4}{1,6}{7, oo} j 

|{9,10}{2,4}{5,8}{3,7}{1,6}{0,00}} {{9,10}{4,6}{0,3}{1,5}{2,7}{8, oo}j 

{{10,0}{3, 5}{6,9}{4,8}{2,7}{1,00}} |{10,0}{5,7}{1,4}{2,6}{3,8}{9, 3 0 } } 

E x a m p l e 2.3.3. Let us consider the subgroup G of PSL{2,11) generated by 

the matrices: 
9 0 \ , / 9 10 
6 5 ' = 0 a 

If we consider the action of a on P i i we see that it corresponds to the permutation 

(1,00,7,10,9) (2 ,3 ,5 ,6 ,4) (0) (8) 

on the other hand, 6 corresponds to 

(1 ,6 ,4 ,7 ,8) (2,10,9,5,0) (3) (oo). 

We can label < a > = — {0,8} and < 6 > = = {3,cx3} and see that 

G = Ag. Studying the action of on the set of pairs of points of P n , we see that 

the pairs hxed by a and 6 belong to the same orbit, which is the sextuple of pairs 

that characterizes G: 

I {1,2} {5,7} {8,0} {6,10} {4,9} {3,oo} }. 

And therefore those are the six subgroups isomorphic to C5 contained in G. 
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2.B. The Hecke group 

In general, a Hecke group is a discrete subgroup of f5'Z,(2,R) that is 

generated by the following two transformations: 

% : z —> — and Z : z —> z + A 
z 

In a result due to Hecke [He], any group generated by % and Z as before is 

discrete if and only if A > 2 or A = = 2 cos where M E N and M > 3. The 

Hecke groups where A > 2, are Fuchsian groups of the second kind, with a limit set 

that is nowhere dense in R, and they are of no interest to us. The case A = 2 gives 

a Puchsian group of the hrst kind but with a non compact quotient, as for the case 

A = An they are Fuchsian groups of the 6rst kind, and we will refer to them as 

Every time we mention "Hecke group" in this work, we shall mean Hecke group of 

the Erst kind. In particular, we see that 

and for a > 4 the inclusion is strict. 

In this work we will deal with which is the modular group F = f Z), 

and the group where Ag is the golden ratio. 

i + Vs 

When considered in terms of their presentation, the groups iiZ"" are triangle 

groups with signature [2, n, oo], where X is a representative for the elliptic elements 

of order 2, Z is a parabohc element and 

y = : z -
Z — Ar 

is a representative for the elliptic elements of order M, thus there is one conjugate 

class of subgroups of order n. 

We can find a fundamental domain for which will be a hyperbolic triangle 

in ZY with one or two of its vertices in = R = R U {oo}. A standard choice for 

a fundamental region of is the hyperbolic triangle with vertices 0, and oo; 

another choice is the hyperbolic triangle with vertices — a n d oo. 
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In general, the description of the elements of -ff" cannot be explicitly done, 

however it is possible to describe them for the cases M = 3, 4 and 6. We will cover 

M = 3 in a later section while the other two cases are very similar to one another: 

n = 4 we have A4 — \/2 
n = 6 we have Ag = \/3. 

We will now prove that a matrix M is an element of Tif"* where = 2(A; + 1) 

and 77%̂; = (A; + 1), (A; = 1,2) if M can be written in one of the following ways: 

M, O \ c y 

where de((M) = 1 and o, 6, c, cf € Z. 

It is easy to see that any matrix in j f" ' ' must have this form. Any matrix in 

is represented by a word in % and Z, and any word in % and Z with only one 

% would be of the form 

K „ = Z-ATZ' = 1 

for a certain r, g E Z. We will prove that all words with an odd number of X in 

them have the form of the matrix Mo while the words with an even number of % 

have the form of Mg. We will proceed by induction and first assume that the result 

is true for any word W) with Z or less % in it. 

Take a word PK/+1 with Z + 1 appearances of %, we can express it as = 

g-̂ Wi for certain r, s G Z and for a certain word Wi with I appearances of X. 

By hypothesis, if Z is odd then 

where a, 6, c, E Z and an easy calculation shows that corresponds to a 

matrix of the form Mg. If / is even we choose W) from the set of matrices of Mg 

and proceed in the same way. 

As for the set of cusps, it is not known what the cusp set is for a general 

although we know that the cusp set of f 5'_L(2, Z[An]) is Q(An) U {00} (which we 

represent by Q(An)) and thus that of jif" must be a subset of Q(An). One of the 
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best results for this problem is due to Leutbecher [Leu2] who proved that for the 

values M 6 {3,4,5,6,8,10,12} the cusp set of is: 

U {oo}. 

Therefore in the case n = 3, the cusp set is Q while for the case n = 5 its 

cusp set is Q(\/5), and in both ceises the cusp set is the whole held completed 

with infinity. It turns out that these are the only two cases where the equahty 

— Q(An) holds, since Wolfart [Wol] proved that it is false for any other 

case except perhaps M = 9 and Seybold proved later that n = 9 is not possible either 

[Ro]. 

The field Q(An) is a number held, that is, it is a hnite extension of Q, and 

its degree is where is the Euler function. In fact it is the maximum real 

subheld of the number held Q(e2n), where is the nth root of unity, and we can 

easily calculate its degree since : Q(An)] = 2. The ring of algebraic integers 

of the held Q(An) is Z[An] (see [Was]), that means that if a; 6 Q(An) is a solution 

for 

+ dra-l'-jC^ ^ + • • • + do = 0 

where a, E Z, then z 6 Z[An]. And furthermore, given ?/ E Z[An] and d = 

then ^ have the form 

d— 1 I L \ d— 2 
y — bd-l^n + bd-2^n + • • • + b, 

where 6; G Z. 

If we are to study the structure of the ideals of Z[An], it suffices to study 

its prime ideals, since Z[Xn] is the integral ring of a number field, it is a Unique 

Factorization Domain (UFD). We cam go even further, since for < 68 every Z[An] 

is a PID (see [Was]) and every ideal in it is principal. Since we wiH only deal with 

M = 3 and n = 5 that result covers our two chosen cases. 

Given f a prime ideal of Z[An] (where n < 68) we will say that jVorm(f) = m 

if m G Z is the smallest positive rational integer so that P | m. There is a general 

definition of the of an ideal where the class number is diferent from 1, but 

we will not need it here. 

Our last concern is going to be the group of units of the rings Z[An], but in this 

case we will only cover the cases we are going to use. For n = 3,5 the integers rings 
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are Z and Z l-}-\/5 
2 

respectively, while the group of units in the rings is {1, —1} 

for the case n = 3, and is the cyclic group generated by for the case n = 5. 

A standard feature of any Hecke group is that its cusp set can be represented 

by finite continued fractions. 

Notat ion We will use the notation to indicate a term inside a contin-

ued fractions expansion, and we will display the terms in a continued fractions 

expansion ordered, between brackets and separated by commas to make clear the 

non-commutative nature of this representation, so that 

Go 

ai 

02 

03 4-
CJ4 

will be represented by 

|.aoJ , 
60 bi 62 63 

ai 1 ^2 (I3 O4 

T h e o r e m 2 .B . I . Given H'^ a Hecke group, C is a cusp of i?" if and only if it 

can be expressed as a Enite continued fraction of of the form: 

[floAnJ) 
- 1 - 1 - 1 

_ ® 1 An 
; 

a2An_ 
, . . . , 

_^Tn^n _ 

where 0^6%. 

P r o o f i?" is generated by X and Z, so any element in H"- is a finite word in 

these two letters. As any parabolic element of is conjugate to a power of 

(that fixes 0), any cusp of jif" is the image of 0 by an element of Tif". Let us assume 

that the cusp C is the image of 0 by the word defined by 

PF = 

where E Z. 

It is easy to see that 

= z + aA», = 
- 1 

and 
-1 

z -j- oAr 
6A, 
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so that when we consider the representation of we get 

— 1 - 1 - 1 

aiAn_ ' _0'2^n_ ? 1 _ ̂ ni^n 4" _ 

and we see that VF(0) is as in the hypothesis. To prove the converse it is enough 

to reverse the argument so that the proof is Enished. O 

Since Jif" is a free product of its generators, we can impose conditions on 

E to make its expression in terms of % and Z unique, and therefore we can 

as well consider the continued fraction representation for every cusp unique [Ro]. 

E x a m p l e 2.B.2. We will show how the previous theorem works. Let 

89 + 107\/5 

38 

be a cusp of 77^, an easy calculation shows that it can be expressed as 

-1 -1 
' _3Aj 

and it is therefore the image of 

Another interesting area for the study of Hecke groups are their subgroups, in 

particular the special congruence subgroups. Given the group P5L(2,Z[A„]) and I 

an ideal in Z[An], we can define the apeciaf con^n/ence of 

for I as: 

f Z[A»]) (7) = j ^ g ^ ^ ^ f ^i:(2, Z[A»]) | o = ( f = l , 6 = c = 0 (mod 7) 

f^ i : (2 ,Z[A»]) i ( / ) = e f ^ i , ( 2 , Z [ A » ] ) | a = (f = l , c = 0 (mod 7) 

f^7:(2,Z[An])o(7) = j ( c ^ f^7:(2,Z[A»]) | c = 0 (mod 7) 
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We call PS'L(2, Z[A„])(/) the principal congruence subgroup of P5L(2,Z[A„]) 

for / . We can extend these deGnitions to Tif" and deEne the special congruence 

subgroups of 77" as: 

where the subscript * can be 0, 1 or omitted. 

We will proceed to describe some relations satished by the special congruence 

subgroups of f6'i}(2,Z[An]). That the principal congruence subgroup satisfy 

f Z[A»])(7) < f ^i , (2, Z[A^])i(7) 

is easy to see if we take the group epimorphism 

T / , : P 5 ' I , ( 2 , Z [ A ^ ] ) i ( 7 ) — d e h n e d b y 

where [6] denotes the class of 6 inside and calculate 

The previous result is actually a particular caae of a more general one since 

f6'i}(2,Z[An])(Z) is actually normal inside the group f5'i,(2,Z[An]) for which we 

need to consider 

« : P S L (2, given by 4- ( ^ ^ ^ ) 

where [x] is the class of a; in , it is clear that PSL{2,'L[\n]){I) = Ker{^). We 

have as well that 

f Z[A»])i(7) < f Z[A»])o(Z). 

This we can see if we consider the epimorphism 

% : f g ^ ( 2 , Z [ A ^ ] ) o ( 7 ) — ^ 

where [a] is the class of a in and [/(Z[An]//) is the set of units of 

Z[An]/7. We can check that jirer(%) = f5 ' i , (2 ,Z[An])i( / ) . It follows in a natural 

way that the same happens to the special congruence subgroups of 

(7) < (7) 0 (7) < 77" and 7f" (7) < 77" 
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E x a m p l e 2.B.3. The above inclusions are not necessarily strict, if we take 

and the ideal in generated by (2), we can see that 

As for the indices of the special congruence subgroups of for a given n, in 

general they are not known. The indices of the subgroups of f5'Z,(2,Z[An]) (see 

[Hur]) provide an upper bound, but there are examples where these bounds are 

not attained. 

1 

[ f 5'i:(2, Z[A,]) : f gz:(2, Z[A,])om] = j 

[P^Z,(2,Z[A^]) : f^i:(2,Z[A^])(7)] = 1 
^ \ 7Vor77%(f)^ 

[P^i,(2,Z[A^])i(/) : f5'i;(2,Z[A»])(7)] = Norm( / ) 

where stands for the norm of the ideal 7, and f runs through the distinct 

prime divisors of 7. 

There are many cases where the indices of the special congruence subgroups 

of 77", attain the upper bound provided by the indices of the special congruence 

subgroups of f 5'7,(2, Z[An]), as it is shown in the following theorem by Prye [Pr] 

T h e o r e m 2.B.4. Let 

i=l 

be the prime factorization of an ideal 7 of Z[An] with (6n, 7) = 1. If n = 3 (that is, 

for the modular group) let also be (5,7) = 1. Let 7* = 7nQ(A^) and let Arorm(7) 

be the Aonn of 7 in Q(A^). Then 

iH" : = 2-Norm(I'rU 

with 
^ 0 if there is % ^ such that 7^ D Q(An) = 7^ D Q(An) 

0 if there is % such that = f (3i^(2, 

- 1 otherwise 

and P running through the prime divisors of 7*. 
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2.4. The modular group H 

For the case where ri = 3, A3 = 1 and we get the most studied of all Hecke 

groups, namely the modular group F 

F = f ^Z , (2 ,Z ) = a 6 
c (f 

E I a , 6 , c , d G Z 

With presentation F = < %, Ys | = 1 > and signature [2,3, 00]. 

For a picture of a modular region (a fundamental region of the modular group) 

see Fzp. ,9.^. below. 

0 ^ 1 

P r o p o s i t i o n 2.4.1. The orbit of 00 under the action of F is Q. 

Proof Let ^ e Q be an irreducible fraction, as (o, c) = 1 we can 6nd d, 6 E Z 

so that acf — 6c = 1, and therefore 

a 6 
c 

e f ^2:(2, z ) 

if we call T : z — i t is clear that [r(oo) = 

Corollary 2.4.2. The cusp set of F is Q and its action on its cusp set is 

transitive. 

' 1 1 
P r o o f That 00 is a cusp of F is straightforward since ( ^ j ) G F, is parabolic 

and hxes 00. • 
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The indices of the special congruence subgroups of can be easily calculated 

as a particular case of the formulae provided at the end of section 2.B. (for a direct 

proof see [Schoe]); 

/vr2 / 1 

[ r : r i (7V)] = — — 

[ r : r (Ar ) ] = 7V [ r : r i (7V)] 

for any > 2 and the product running along the positive prime divisors of 

We will take for gi anted the first equality, which is widely known, and use it to 

prove the other two. In order to do so we will use the functions ^ and % defined in 

section 2.B. in the context of the special congruence subgroups of f5'i,(2,Z[An]). 

When n, = 3, r = f 5'iL(2, so we can use % to prove that 

and therefore [r„ (N) ; r , (iV)) = ^ 

where y; is the Euler function. On the other hand, if we use we can prove that 

r m 
and therefore : r(jV)] = AT. 

For any integer Â  of Z we will say that the congruence subgroups of F for # 

are of level N. We know that F(A^) has no elliptic elements if AT > 2 so that if 

we fill in the cusps of X = we get in X the structure of a compact Riemann 

surface 

Another interesting result, which follows inomediately from the discussion of 

special congruence subgroups of f5'i^(2,Z[An]) in section 2.B. is: 

T h e o r e m 2.4.3. If p G Z is prime, we get that: 
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We can describe the action of the principal congruence group of level N on the 

cusp set of r . In fact for any W [Schoe]: 

Theorem 2.4.4. Given two cusps of F, ^ and ^ if they are expressed as 

irreducible fractions in Q, then the equivalence condition under the action of r(A^) 

is given by: 
P p/ r P = # ' (mod 
— r-̂  — < and 
- - K q = ±q' (mod N) 

Corollary 2.4.5. The number of inequivalent cusps under the action of r(]V) 

for jV E Z is: 

if > 3 and 3 if # = 2. 

Proof The proof follows from the above formulae as 

r 
6'(o6(oo) = 2 / / in r(iv) 

2.5. 'i'he He eke group it ^ 

The next interesting Hecke group is n = 5 and that for a number of different 

reasons. It is together with M e {3,4,6} the only other cajse where is a 

quadratic extension of Q, and together with M = 3 the only case where the cusp set 

is the completed field Q(An). Unfortunately we do not have any explicit description 

of the matrices of , although we can by-pass this problem by the use of continued 

fractions. 

T h e o r e m 2.5.1. [Leut] Given a G Q(-\/5), it admits a finite continued frac-

tions representation of the form: 

O! = 

where Oi E Z. 

Coro l l a ry 2.5.2. The cusp set of is 

- 1 - 1 - 1 

_ a i A 5 ' _Cl2^5 _ 

. ) • 

P r o o f Immediate from the previous theorem and Theorem 2.B.I. 
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Once we have described the cusp set of it is natural to try to answer similar 

questions to those solved for n = 3, like finding the index of the special congruence 

subgroups of 77^ or the action of the principal congruence subgroup for the ideal 

7, ^ ^ ( 7 ) over the cusp set of The following explicit calculation of the index 

can be found in [CLLT]. 

T h e o r e m 2.5.3. Given I a non-zero prime ideal of ZfAs], then: 

if 7 = (2) 
i f / = ( 2 + A5) 
if 7 — (p) where p = ± 2 (mod 5), p ^ 2 

p + 1 in any other case. 

positive rational prime contained in 7. 

We will prove a theorem for the action of 77^(7) on the cusp set of 77^ that 

is similar to the one explained for n = 3. Before doing so we need to define the 

canonical form of a cusp of 77^. 

Let ^ E 0(^5) be a cusp of 77^, we can find a unique expression of ^ as a 

continued fraction of As of the form: 

[doAsJ , 

[7f^ : 77^(7)] 

where p is the 

n 

77Z 

- 1 - 1 - 1 

oiAs 5 _0,2^5 . ; ' ' ' ) o^As _ 

where 0 ^ 6 % . We will define a reduction process in order to construct the canonical 

form of J . Given a finite continued fraction of the form 

60 6n-2 ^n —1 bn 

_ao_ ' ' On—2 _ 
) 

- _ 

it is clear that the following expression represents the same number and is one step 

smaller: 
bo bn—l^n 

Oo _ Q"n — 2 _ _ — 1 ~l~ 

where for technical reasons we will not allow any form of fraction simplification 

within the last term of the expression. 

If we apply this process to the continued fractions expansion of ^ in terms 

of A5 aa defined in Theorem 2.5.1., what we get is a fraction (that should not be 

reduced) whose numerator f and denominator Q Eire an expression in Oi and A5. 
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We say that J is the canonical form of the fraction ^ under A5. It is clear 

that there is a Z G Z such that f and Q = Agm so that ^ The main 

advantage of using the canonical form of a fraction is that it allows us to find a 

matrix M E that takes it to either 0 or 00. [Ro] 

T h e o r e m 2.5.4. Given 

q) 5" 
a fraction in the canonical form, then there is a matrix M E so that 

0 \ 
M 

Q 

P r o o f Taking X and Z in their matrix form, 

X = 
0 1 
- 1 0 

z = 1 -̂ 5 
0 1 

and 
P 

Q 
— ( [do'^5 J 

- 1 - 1 - 1 

_ O l A 5 ' a 2 A 5 
) . . . , 

A5 _ 

it is easy to see that 

M = 

satisEes all the above. 

E x a m p l e 2,5.5. Using the calculations from the Example 2.B.2., we see that 

38A5 + 15 
3A5 + 4 

34 + 1 9 \ / 5 \ 
11+3^5 J 

is the canonical form for 

89 + 107\/5 

38 
[SAc 

- 1 - 1 
' _3A5_ 

because there is a matrix M E with the form: 

* 34 + 1 9 \ / 5 ' 

ll+3x/5 
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P r o p o s i t i o n 2.5.6. Given two cusps of ^ and ^ expressed in the canon-

ical form. They are equivalent under the action of ^^ (7 ) for 7 an ideal of ^[As] if 

the following holds: 

f p / mod(7) 

^ ^ l Q = ± Q ' mod(7) 

P r o o f Let ^ and ^ be two cusps in the canonical form. Then there are 

a, 6, c, G so that: 

Any transformation V E Tif ̂  such that = ( Q ' ) form 

y = 

for some A; G Z. The condition for V 6 that is: 

rk V T —1 — I 1 0 mod(Z) 

forces 7̂ 2 ̂ 2,1 = mod (7), and that implies: 

1) f d - Qc = ± 1 mod (7) 

2) ad — cb = kX^ mod (J) 

3) f Q' - f ' Q = 0 mod (f) 

4) Q'a — f ' 6 = ± 1 mod (7) 

As we know that in particular y E f5'7^(2,Z[A5]) we can ignore 2). Prom 

3) f Q' = f Q so if we multiply 1) by Q' and use that — cQ' = 1 we get 

that Q = mod (7). Using the same method and multiplying by f we get 

f = mod (7), since the solutiona satisfy 4) as well, the proof is hnished. 
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Coro l la ry 2.5.7. Given I a non-zero prime ideal of the number of 

inequivalent cusps for H^{I) is 
- 1) 

2 

where p is the rational prime in 7. 

The foUowing theorem provides the group structure of the quotient of by 

a principal congruence subgroup of it [Can]. 

T h e o r e m 2.5.8. Given I a non-zero prime ideal of ^[As] and p the integer 

prime inside 7, we get that: 

H-

i f p = ± l (mod 10) 

i f p = ± 3 (mod 10) 

Ds i f p = 2 

v45 if p = 3, 5. 

In ^[As] the ideal (11) is not prime as (11) = (4 -t- \/5)(4 — \/5), so in order 

to study f 5'Z,(2,11) we need choose one of the factors as 7, and we will take 

7 = (4 — \/5) since 4 — \/5 and 4 -t- \ /5 are conjugate in Z[A5]. The quotient groups 

that arise for 7 are: 

^ f ^7:(2,11) and ^ o ( 4 - \ / ^ ) ^ ^ 
7^5(4-^ /5) ' 7 f 5 ( 4 - \ / 5 ) 
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C h a p t e r T h r e e 

Finite Geometries 

The aim of this chapter is to introduce incidence structures, that will lead 

to (hnite) geometries and designs. Among them we will pay special regard to 

projective planes and biplanes, particularly to the structure of the Fano plane and 

that of the first three biplanes, paying special attention to the biplane of order three 

or 3-biplane. 

Among other connections that will be explored in the next chapter, the Fano 

plane and the 3-biplane are the Srst two examples of Hadamard designs. Most of 

the information displayed here can be found in [HP] and [Po], as well as proofs 

for most of the results in this chapter, unless otherwise stated. 

3.1. Introduction 

An or simply a is a pair of non-empty sets 7̂  

and £, which we shall call points set V and lines set C with an incidence relation 

Is c V x jC consisting of a non-empty set of pairs (P, I) where P is a point and I a 

line. We will assume that the structures have a finite number of points and lines, 

that is, that they are structures. 

If (P, Z) E ig, we say that P belongs to Z, that P and / are or that 

(P, I) is an incidence pair. The usual name for lines in structures is blocks, but we 

prefer lines since we will rapidly move into geometries. 

We can represent the incidence relation Is of a finite structure S with m points 

and n lines by a m x n matrix Ms that we call an incidence matrix of <S. 
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To construct an incidence matrix of S we need to index the points and lines 

sets 7̂  = /I = and de6ne Mg eis the matrix with coeScients 

where i = 1,... ,m, j = 1,... ,n and: 

1 

0 otherwise. 

is not uniquely determined, but it contains all the relevant information 

about the structure (S. In fact, given Mg and two incidence matrices for the 

same structure there are two permutation matrices (i.e. matrices so that in every 

row and column all the coefficients are 0 except for one that is 1) A and 5" so that: 

RMsS = Mg. 

We will say that a finite structure is if for any two points f and 

Q there is a sequence of incidence pairs of the form 

[ (p ,o , ( P i . o . {-Pi.(i), ( P 2 . h ) , . . . . w . ; ' ) ] 

that connects f and Q. 

With the previous definition of structure there are some pathological cases that 

we want to avoid: 

- Two lines (resp. points) are if they are incident with the same set of 

points (resp. lines), if we remove all repetitions (i.e. we get rid of aU repeated 

elements of one kind but one), we say that we have recfucecf the structure. It is 

clear that reducing the structure is equivalent to eliminating all repeated rows 

and columns in the incidence matrix. 

- We say that an element (point or line) is when it is in none or just 

one pair of the incidence relation, and we say it is full when it is incident with 

all the elements of the other type. We a structure if we remove 

all isolated and full elements. On the other hand, we standardize an incidence 

matrix when we remove all columns or rows that have either all coeScients 

equal to zero, all coefficients but one equal to zero, or no coefEcients at all 

equal to zero. 

A structure is if it is reduced and standardized, we wiU caU 

a connected totally reduced structure. This dehnition of geometry is 
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more restrictive than the usual one (that allows full and repeated elements) but we 

are not interested in the anomalous cases. Although in the process of reducing or 

standarizing a given structure <$ we might convert normal elements into repeated, 

isolated or full elements and therefore will have to remove these elements as well, 

the process is essentially well defined. Since the structures we Eire considering are 

hnite, their total reduction is either the empty set or a geometry that we will call 

Qs-

In a reduced structure we can consider any line / as a subset of "P, so that f 

is incident with Z if f E Z. We will say that a structure is if all the lines 

contain the same number of points and if all the points are incident with 

the same number of lines, we will say that a uniform structure with A; points in 

every line is (nmaZ if every set of A; points is incident with at least one line. A 

is one with a hnite number of points. 

We dehne the /Zogs (also called 6/(5 because they play a similar role to that of 

bits in dessins) of a hnite geometry as an incidence pair, so that every pair ( f , Z) in 

the incidence relation corresponds to a Aag. 

Given two structures .9 and 7", an between them is a bijective map 

from the point set of (S to the point set of 7" that induces a bijective map between 

the line sets so that the incidence relations are preserved. An is an 

isomorphism of a structure into itself. These dehnitions extend in a straightforward 

way to finite geometries. 

Since an incidence matrix contains all relevant information about a structure, 

we can characterize isomorphic structures in terma of then: incidence matrices: two 

structures S and T are isomorphic if and only if there are incidence matrices Ms 

of and M-r of 7", and two permutation matrices 5" such that: 

= M-y-. 

From the definition of geometry and the dual nature of repeated, full and 

isolated elements, it is clear that points and lines play an interchangeable role, and 

if we swap points for lines in a geometry ^ we get its geometry, The use of 

the superscript ^ describe the fact that the incidence matrix of is the transpose 

matrix of Mg. 
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P r o p o s i t i o n 3.1.1. Given a geometry Q\ 

• Q is uniform if and only if is regular. 

. - G;. 

We can consider as well the set of complements of the lines of a geometry ^ 

as a new set of lines, if V with this new set of lines is a geometry, we will call the 

resulting incidence structure the of 

E x a m p l e 3.1.2. Let S be the geometry with points V = {Pi, P2, Ps, lines 

^ = {^1,^2,^3,^}, and incidence relation given by: 

Z 2 - { f l , f 3 , a } Z3 = {P l ,P2 , f4} Z4 = { f 2 , f 3 , f 4 } 

We will call its complement structure, whose incidence relation is trivially 

given by: 

i'i = { P i ] = {P2} 13 = {P3] 4 = { f i } . 

If we totally reduce we end up with an empty incidence structure (since 

every point belongs to a single line) therefore making it impossible to get the com-

plement geometry of 

o/ezompZe ,9.^.,8. 

N o t e We could easily avoid the problem showed in Example 3.1.2. by changing 

the definition of "full element" to include any element that is incident with all or all 

but one of the elements of the other kind. The complement of a geometry deEned 

in that way will be already a totally reduced structure, and therefore a geometry. 

We have not done so because with that definition we would have excluded some 

structures commonly regarded as geometries, aa <$ in the example above. 
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P r o p o s i t i o n 3.1.3. If ^ is a geometry and C its complement structure; 

• Q is uniform if and only if C is uniform. 

- ^ is regular if and only if C is reguleir. 

P r o p o s i t i o n 3.1.4. Given Q a geometry, consider its dual geometry and 

C its complement structure, we have: 

Aut{Q^ = Aut(^Q'^) = Aut{C). 

P r o o f $ E is defined by a pair of bijections (( ,̂ where 

(j) : V —> V and (f)' : L —^ £ 

so that (f,Z) E e It is now easy to see that 

$ E <;6) E 

For the proof of the second part, we will consider as a subset of f oi(;er(7^), 

the set of subsets of 7̂  and dehne /Zj as the set 

zic = {z I z = P _ r , r E r } . 

For a given element $ E eis the de6nition of is consistent 

with the pointwise extension oi (j) : V —> V, we can define ip : Cq —>- Cq by 

= 'P — (j)(V — I) and in that way we have proved that 

$ = (( ,̂ E ^ = (<̂ , '^) E Aut(C). O 

A uniform geometry is called a If there are exactly A lines through 

every ( points of a design, we say that we have a t — (f,A;,A) design, where is 

the number of points of the design, and A; the number of points in each line. In 

particular any ( — (t;, A;, A) design is regular. We will say that a design is sguore if 

its incidence matrix is a square matrix, that is if there are as many lines as points 

in the design, a square 2 — (i;, A:, A) design is called a design. 
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T h e o r e m 3.1.5. In general, for a t — {v, k, X) design, if we call b the number 

of lines in the design and r the number of lines through a point, the two following 

equalities hold: 

h — \ v{v-l) ••• (w-t+1) 
' ° .. (k-t+1) 

• if t > 0 then bk = vr. 

P r o o f The proof is an easy counting exercise. Since every t-uple of points 

defines A lines and from a given line we can get j ^-uples of points, the number 

of lines is 

k 
t 

The design is regular because by a similar argument the number of lines through 

any given point is 

A(r; 
f k-i 
[t-i 

and the rest follows. 

P r o p o s i t i o n 3.1.6. In a symmetric design with parameters (v, k, A), we have 

— 1) + A 
v = 

A 

P r o o f For the proof we will fix a point P E V and consider all the flags of the 

form (Q, I) where Q ^ P and P E I and we will count them in two different ways. 

As there are r lines through f and each one contains A; points, we have r(A — 1) 

Sags of that sort. On the other hand, there are u - 1 choices for Q and for every 

choice there are A diEerent possibilities for Z yielding a total of A(t; — 1) Sags. Since 

the design is symmetric f = 6 and therefore r = A;. O 

We could also have proved Proposition 3 . 1 . 6 . as a Corollary to Theorem 3 . 1 . 5 . 

where b = v and t = 2. 

We will only deal with designs such that t = 2, that is, there is a fixed number 

of lines A through every two points of the design. We will define the orcfer n, for 

such a design as n = r — A where r is the number of lines through a point. There 

is a general definition of order for a ( — (f, A;, A) design (where t > 2), but it is of 

no interest for us here. 
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As designs are in particular geometries, the relations between a general de-

sign, its dual and its complement structure, follow easily from similar results about 

structures and geometries. A more difficult question is that of the relation among 

a ( — (?;, A;, A) design, its dual and its complement. Here we will only tackle that 

question for square ( = 2 designs. 

P r o p o s i t i o n 3.1.7. Given a symmetric design V with parameters (ii, A, A), 

its dual is a symmetric design with the same parameters. 

P r o o f That is a design is easy to see since as D is regular (becase it is 

symmetric), is a uniform geometry. 

As D is symmetric, if we call 6 the number of lines and r the number of lines 

through a point as in Theorem 3.1.5. following that theorem we get that 6 = 

and r = A;. We still have to prove that every two lines of 7) intersect in precisely A 

points, and we will use the incidence matrix for this part. 

If we call the identity matrix of order f and a t; by matrix with all its 

entries 1, we get that 

Mj) • Afp = riy + X(Jv — ly) 

where the element rfu on the right means that there are r lines trough each point 

and the element A(Ju — A,) comes from the fact that any two points determine A 

lines. It is easy to prove that 

= (r - + (n - 1)A) 

and since r > A > 0, M p is an invertible matrix. 

From there we get: 

Mx> • • -Mp) — (-Md • • Mj) = rMx> + A ( • Mx> — Mx)) 

but 

Ju ' — kjy — Jv — ' Jy 

and since is non singular, we get that 

• Mj) = fly + X{Jv ~ ly) 

and therefore any two lines of D have precisely A points in common. 

T h e o r e m 3.1.8. Given a non trivial symmetric design V with parameters 

(u, A;, A), its complement geometry is a symmetric design with the same order as D 

and parameters (f , f — A:, f — 2A; + A). 
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T h e o r e m 3.1.9. For a non trivial symmetric design of order n and parameters 

, A;, A), we have that 

4?i — 1 < f M + 1. 

P r o o f By Proposition 3.1.6. we have that: 

k{k — 1) + A 
v = 

A 

In this kind of design n = k — X{v = bhy symmetry, hence k = r by Theorem 

3.1.5.) which yields: 

. = " ' " ' ' ' + A + 2n. 

If we consider the above expression as a function ii(A) where 1 < A < n(n — 1) (if 

A > n(n — 1) then f (A) would be a rational number, which is impossible), we see 

that it has a concave graph with a minimum at 

AQ — 1̂ 72(72 1) 

and two maxima at 

Ai = 1 and A2 = — 1). 

The two natural numbers closest to Ao are (n — 1) and n, and we have that 

?;(?%) = — 1) = 4n — 1 

so t;(A) >471 — 1. On the other hand, for the two maxima values we get that 

t;(l) = — n) = + n + 1 

and therefore f (A) < + n + 1. 

The two extreme cases of this theorem actually occur: 

. For u = 4n — 1 we get that either the design or its complement have parameters 

2 — (4A + 3,2A + 1, A). Any symmetric design with that set of parameters and 

for any A is called a or simply a 

. For II = + n + 1 we have that either the design or its complement is a 

projective plane, as we shall see in the next section. 
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There is a limited amount of information regarding the existence of designs for a 

given set of parameters ((, A;, A) or about the number of non equivalent desings for 

one choice of parameters. The main result about non existence of square 2 — (t;, A;, A) 

designs is (for a proof see [HP]): 

T h e o r e m 3.1.10. (B ruck -Ryse r -Chowla ) If v, A:, A € Z satisfy 

— 1)A = A;(A: — 1) 

then for the existence of a symmetric (f , A;, A) design it is necessary that: 

- If f is even then A: — A is a square. 

If f is odd, then = (A; — A)̂ ;̂  + ( — h a s a non-trivial solution in 

integers a;, ^ and z. 

The following corollary is very important when dealing with projective planes, 

since it restricts the possible orders for them. 

Coro l la ry 3.1.11. If a symmetric design with A = 1 and order n exists, and 

M = 1 (mod 4) or 

n = 2 (mod 4) 

then n can be expressed as a sum + 6̂  where o, 6 E Z. 

P r o o f Since the design is symmetric and A = 1, by Proposition 3.1.6. we have 

that 

V = k{k — 1) + 1 = (n + l )n + 1. 

Assume now n = 1 (mod 4) or n = 2 (mod 4), we then have = 3 (mod 4) and 

therefore ( — 1 ) ^ = — 1 so that from the second statement in the previous theorem, 

we have and then 

" = 4 + 4 
a;"' 

where n E Z. It is well known that an integer is the sum of two square 

rationals if and only if it is the sum of two square integers. O 

We can obtain similar results about the existence of %-designs of a given order 

by using Hadamard matrices. A Hadamard matrix of order n is a square n by 

n matrix H whose entries are either +1 or —1 and such that HH^ = nl. We 

63 



can define a generalized version of the permutation matrix that we have used when 

dealing with incidence matrices, a is a square matrix 

whose entries are ±1 or 0 and such that in each row and column all entries but one 

are zero. 

T h e o r e m 3.1.12. If i J is a Hadamard matrix of order n and i?, S are gener-

alized permutation matrices of order n, then H' = RHS is a Hadamard matrix of 

order n. We will say that ^ and jif' are 

It is clear that a class of Hadamard equivalent matrices of order n is stable 

under the action of the group of all row and column permutations and sign changes. 

In fact, for every class of Hadamard equivalent matrices of order M we can choose 

a matrix in the class such that all entries in the first row and column are 1 (which 

is obviously not unique for a given class). We will call such a matrix a 

The following result impose a restriction on the order of possible Hadameird 

matrices: 

T h e o r e m 3.1.13. If is a Hadamard matrix of order n then n must satisfy 

one of the following conditions: 

^ n = 0 (mod 4). 

As one would suspect, there is a strong relation between Hadamard matrices 

and ^/-designs: 

T h e o r e m 3.1.14. Let H he & normalized Hadamard matrix of order n > 4. If 

we delete the first row and column of and substitute all —1 entries by 0, we obtain 

a matrix Mg, which is an incidence matrix for a square design with parameters 

_ n, — 2 n — 4 

that is, a "^-design. Conversely the incidence matrix of any Hadamard 2-design for 

a given A becomes a normalized Hadamard matrix of order 4(A + 1) by the reverse 

procedure. 
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E x a m p l e 3.1.15. H is a, normalized Hadamard matrix of order 8, if we apply 

the method described above to it, we get Mjrano which is an incidence matrix for a 

square design with parameters 2 — (7,3,1) that is in fact the Fano plane and that 

will be described in the next section. 

H 

/ 1 1 1 1 1 1 1 1 \ / 
1 1 - 1 — 1 - 1 1 - 1 1 
1 1 1 — 1 - 1 - 1 1 — 1 
1 - 1 1 1 - 1 — 1 - 1 1 
1 1 — 1 1 1 — 1 - 1 - 1 
1 - 1 1 - 1 1 1 - 1 — X 
1 - 1 - 1 1 - 1 1 1 — 2 

y \ 1 - 1 - 1 - 1 1 - 1 1 1 y 

^Fano 

/ I 0 0 0 1 0 
1 1 0 0 0 1 0 
0 1 1 0 0 0 1 
1 0 1 1 0 0 0 
0 1 0 1 1 0 0 
0 0 1 0 1 1 0 

Ko 0 0 1 0 1 1 / 

As we will see, the result in this example is in fact true for any normalized 

Hadamard matrix of order 8. By Theorem 3.1.14. any such a matrix will yield 

an incidence matrix for a symmetric 2 — (7,3,1) design, whose complement is a 

symmetric 2 — (7,4,2) (see Theorem 3.1.8.). As there is only one symmetric 2 — 

(7,4,2) design (the 2-biplane, see the proof of Proposition 3.3.5.), there is only one 

symmetric 2 — (7,3,1) design, the Fano Plane. 

3.2. Projective planes 

A is a geometry that satishes the following three axioms: 

• Two distinct points are contained in a unique line. 

• Two distinct lines intersect in a unique point. 

• There exist four points of which no three are incident with the same line. 

T h e o r e m 3.2.1. A finite projective plane is the same as a symmetric design 

(t;, A, 1) with A; > 2. 

P r o o f Given V a symmetric [v, k, 1) design, since A = 1 it is true that any two 

distinct points are contained in a unique line, and by Proposition 3.1.7. the second 

projective plane axiom is also true. As A: > 2, by Proposition 3.1.6. we have that 

V = k{k — 1) + 1 > 3{k — 1) > k. 

As > A: we can choose three points f i , fg , ^3 not in the same line, and call 

the line incident with and It is easy to see that 

U ̂ {2,3} U ̂ {i,3}| = 3(A; — 1) 
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and so we can choose a fourth point of the design so that the third axiom is also 

satisfied. 

To prove the reverse, we need to show that a projective plane is uniform and 

square. We can take a line Z and a point f 0 Z. By the first and second axiom, 

there are as many hnes incident with f as there are points in / and we shall call 

this number k. Let us take I' any line incident with P , by the third axiom we can 

choose Q 0 r , f " , Q' so that no three of them are incident with the same line. If 

we call r ' the line defined by f and T' has A; points, and therefore there are A 

lines incident with Q, which means that there are A: points in T and the geometry 

is uniform. By Theorem 3.1.5. the geometry is also squgire, and by the hrst axiom 

^ = 2 and A = 1. O 

We define the orcfer of a hnite projective plane as A; — 1, that is the number a, 

such that there are n, + 1 points in each line, and M + 1 hnes through each point. 

Coro l la ry 3.2.2. For any symmetric {v,k,X) design with A = 1, we have that 

A; = n + 1 and ?; = M + 1 where n is the order of the design. 

There is an easy way to construct hnite projective planes for which we shall 

need the following well known result about hnite helds: 

T h e o r e m 3.2.3. If is a finite field then \K\ = where p is prime and 

r E Z, r > 1. And for any p'" as before there is a unique finite field of order p"" that 

we shall denote 

If we take to be a finite field, and F to be a 3 dimensional vector space 

over K, we can define P{K) to be the structure whose points are the 1-dimensional 

subspaces of V, and whose lines are the 2-dimensional subspaces of V, while the 

incidence structure is given by the subspace inclusion in V. 

P r o p o s i t i o n 3.2.4. P{K) is a projective plane of type 2 — (n^+ n +1, n +1,1) 

where n — 

Proo f To define a 1-dim subspace of V we need to consider any non zero vector 

of y , and the fact that any 1-dim subspace contains — 1 such vectors. Following 

that we see that P{K) contains + n + 1 points. 

Given a 2-dim subspace, it contains — 1 non zero vectors, and reasoning as 

before we get that it contains = n + 1 1-dim subspaces, that is, each line in 

P{K) contains n + 1 points. Obviously any two different 1-dim subspaces generate 
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a 2-dim subspace. The incidence structure for the projective plane follows easily 

from the properties of a vector space. 

Coro l la ry 3.2.5. There is at least one projective plane of order n for any 

n = where p is prime and r £ Z, r > 1. 

The two main results about the existence and non-existence of projective planes 

are Corollary 3.1.11. and the corollary above. Little is known in general for any 

other values of n and the smallest value for which we do not know whether there 

is a projective plane with such order is n = 10. There are many projective planes 

that are not constructed in the way mentioned above, for more information on the 

topic see [HP], 

Another important issue is the calculation of the automorphism group of a 

projective plane. Although we do not know a general way of calculating automor-

phism groups for an arbitrary plane, we do know it for f (TiC) when |j^| = p'' and 

p prime. What follows is the Fundamental Theorem of Projective Geometry, that 

can be found in many standard books on projective geometry, we will only use what 

apphes to hnite projective planes. 

T h e o r e m 3.2.6. F u n d a m e n t a l T h e o r e m of P r o j e c t i v e G e o m e t r y 

Let A" be a finite field of order | and jo prime, then 

( f (;r)) ^ f jT) X 

Corol la ry 3.2.7. Let be a finite field of order p where p is a prime, then 

P r o o f From Theorem 3.2.6. and the fact that if iT = Zp as a field, then 

^ {1}. 

The smallest possible non-trivial finite projective plane is the Fano f ZaMe com-

posed by seven points and seven lines, so that there are three points in any fine, 

and there are three lines going through any given point, that is, it is a 2 — (7,3,1) 

design. It corresponds to f (22)- The Fano plane is a 

which means that any two different points of it are indistinguishable, i.e. there is 

an automorphism of the geometry carrying one point to the other. 

The Fano plane is the only projective plane of order 2, and it is easy to see that 

it has 21 bits. We wiU see that its full group of automorphisms has order 168 and 
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it is isomorphic to PSL{2,7). For the most traditional picture of the Fano plane 

with its Eags labelled, see ^.,8. 

Beside being related to Z2, the Pano plane is closely related to the Snite Eeld 

Z7. In fact, if we consider the set of quadratic residues mod 7, that is, the set 

{1,2,4} and let the transformation z —> z + 1 (mod 7) act on the set of triples 

of Zy, the orbit of {1, 2, 4} by this action is: 

{1,2,4} {2,3,5} {3,4,6} {4,5,0} {5,6,1} {6,0,2} {0,1,3} 

and if we call each of these sets a line, and consider every element M 6 Zy as a point 

of a structure, we can see that what we get is the incidence relation of the Fano 

plane. 

,9.^. Fono p/oMe 

Since the Fano plane represents a highly symmetric hypergraph, it is only 

natural to try to 6nd ways of embedding it as a conformal structure in a highly 

symmetric way in a surface. The optimum way of doing this will be to find an 

embedding that keeps both its symmetries and its combinatorial properties, while 

corresponding to a smooth embedding into a surface. 

If we try to embed it as a regular hyper map inside a Riemann surface, it 

is knows that it can be done in two diSerent ways, as a (3,3,3) dessin in the 

triangular torus [Wa] or as a (3,3,7) dessin inside Klein's quartic [Si4]. Other 

embeddings of Snite geometries in Riemann surfaces as dessing are also discussed 

in [Si4]. Embeddings of finite geometries as regular dessins into Riemann surfaces 
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are closely related to the existence of big subgroups inside the automorphism group 

of the geometry. 

Corollary 3.2.8. The automorphism group of the Fano plane is isomorphic 

to: 

f ^1,(2, 7) 

which is the simple group of order 168. 

Proof Immediate from Corollary 3.2.7. and the fact that (for a proof see for 

example [Di]) 

f G i : ( 3 , 2 ) ^ f ^ i ; ( 2 , 7 ) . 

3.3. Biplanes 

A generalization of finite projective planes arises naturally when we allow two 

lines to intersect in more than a point (respectively when we allow two points to 

dehne more than one line), if A is the number of points that belong to two different 

lines, we will call these generalization (6%- and (n- for the cases A = 2, 3). 

So a is a symmetric geometry that satisfies the following two axioms: 

- Two distinct points are contained in exactly two distinct lines. 

- Two distinct lines intersect in exactly two distinct points. 

Finite biplanes have been much less studied than standard projective planes, 

and we only know 17 different examples of them [Po]. We will associate with every 

biplane its order, which is the number n such that every line of it has n + 2 points. As 

far as we know nobody has tried to End smooth embeddings of biplanes in Riemann 

surfaces before. The 17 known biplanes have orders in the set {1,2,3,4,7,9,11}. 

By Theorem 3.1.10. there are no biplanes of orders {5,6,8}. The Erst example of a 

biplane is a 2 — (4,3,2) design, which is a biplane of order 1. It is immediate to see 

that there is only one possible incidence structure for such a biplane where every 

line is determined by the only point not belonging to it. The biplane of order 1 has 

= 12 Sags and can be embedded into the sphere, since we can see it as a regular 

map of type (3,2,3) i.e. a tetrahedron. For two diSerent pictures of the biplane of 

order 1 see ,9. J. We have already seen that its complement is not a geometry 

in Example 3.1.2. 
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The second example of a biplane is a 2 — (7,4,2) design which corresponds to 

biplanes of order 2. We will later see that there is only one possible incidence struc-

ture for biplanes of order 2 and 3 (see Theorem 3.3.3. and the proof of Proposition 

3.3.5.), although that is not the case for biplanes of higher orders, as there Eire 3 

biplanes of order 4 [Hus], and 4 biplanes of order 7 [MS]. 

The biplane of order 2 is the complement of the Fane plane, it has 7 points and 

7 lines, but there are four points in each line making a total of 28 bits. Its group 

of automorphisms is again f 5'Z,(2, 7) (see Proposition 3.1.4. or Proposition 3.3.5.) 

and it is a 2 — (7,4, 2) design. For a picture of this biplane see .9.^. where the 

thick circle is highlighted because it also meets the central vertex. 

.̂6". on (Ae pZone OMcZ oa o deggm m (/le gp/iere 

Since there is no subgroup of f 5'i,(2,7) of index 6, it is not possible to embed 

this structure as a regular hypermap or hypergraph into a Riemann surface with 

PSL{2, 7) as its automorphisms group. Nevertheless, we will show an alternative 

representation of its incidence structure into Klein's Riemann surface in chapter 

four. 

The biplane we are most interested in is the biplane of order 3, which has 

11 points and 11 lines, and Eve points in each line making a total of 55 bits. Its 

full group of automorphisms has order 660 and is isomorphic to f5'i^(2,11). Since 

it is the only biplane of order three, we will refer to it as the 3-biplane. It is a 

2 - (11,5,2) design. 

The 3-biplane is related to the quadratic residue classes of Z n in precisely 

the same way as the Fano plane with Zy. That is, if we take the set of quadratic 

residues mod 11, A = {1,3,4,5,9} and construct eleven sets of five elements by 
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considering the action oi 4> •. z i—> z + 1 (mod 11), we can regard the elements 

n G Z i i as points of the 3-biplane where the lines are represented by where 

r e Zi i . 

To calculate automorphism groups of biplanes we need to introduce Hussain 

graphs [Hus]. We will see their importance when dealing with the automorphism 

group of the 3-biplane. A is a graph associated to any line Z in a 

biplane B and any point Q 0 Z. The vertices of the graph are those of the line Z, 

and two vertices f , f G Z are joined by an edge of the Hussain graph if and only if 

there is a line of the biplane through P , P' and Q. 

jg jg' jg" 2 1 2 1 2 1 

3 4 3 4 3 4 

J.,9. aet 

We will use the notation Z-Hussain set (or simply Z-H) to refer to the set of 

Hussain graphs associated with the line I and [Q, /]-Hussain graph (or [Q, Z]-H) to 
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refer to a particular graph in the /-Hussain set. The importance of Hussain graphs 

is that a line Z E B and the whole set of Z-Hussain graphs completely determine the 

biplane B, for a proof see Theorem 3.34 in [HP]. 

We will say that the Hnssain graphs [Q,Z]-H and [Q%Z']-H are isomorphic, if 

they are isomorphic as graphs. Two Z-Hussain sets Z-H and Z'-H are isomorphic if 

there is a bijection from the point set of Z-H to the point set of Z'-H that induces 

isomorphisms between their graphs. 

P r o p o s i t i o n 3.3.1. Given a biplane B and a line I G B any two /-Hussain 

graphs share exactly two edges and these two edges do not share a vertex. Further-

more, every Hussain graph is a divalent graph. 

P r o o f Let us choose two points Q', Q ^ L since 5 is a biplane, there are two 

lines through Q and Q' that we will call Zi and Z2. Four new points appear when 

we consider the intersections Zi n Z = {^1,^2}, Z2 H Z = where ^ if 

% ^ J, since otherwise Zi and Z2 will have more than two points in common. 

It is immediate to see now that f i f z and ^3^4 are two shared edges by [Q, Z]-H 

and Z]-H and that they do not share a vertex. If there were a third common 

edge, that will mean that there is a third line through Q and Q' different from Zi 

and Z2, in contradiction to the fact that B is a biplane. 

Given f any vertex in [Q,Z]-H, there are only two hnes going through f and 

Q and each one deSnes an edge of f , therefore any vertex has only two edges and 

the graph is divalent. 

Coro l la ry 3.3.2. A [Q, Z]-Hussain graph is a disjoint union of polygons whose 

vertices are the points of Z. 

P r o o f Immediate since the graph is divalent. 

T h e o r e m 3.3.3. Two biplanes B and B' are isomorphic if and only if for any 

line Z E B there is a line Z' E such that the Z-Hussain set is isomorphic to the 

/'-Hussain set. 

P r o o f Take / G 5 to be a line, and (j) : V —>- V the bijection between the 

point sets induced by the isomorphism. 

We will call Z' = (̂ (Z) and assume Q a point of B and Q 0 Z. Let us call 

Q' = a]:id choose E Z so that the edge ^1^2 is in [Q,Z]-H. That means 

that there is a third line h in B so that {P i ,P2 ,Q) E Zi, which in turns mean 
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that are points of the set that is a hne in B' , since is 

an isomorphism. Therefore the edge is in and the graphs are 

isomorphic. 

Let us assume now that there are two sets Z-H and I'-Yi that are isomorphic 

and that ^ : Z-H —> Z'-H is the bijection between the point sets of Z and Z' that 

defines the isomorphism, so we have aheady dehned the images of any point in Z. 

Take Q 0 Z a point of B, ^ takes [Q, Z]-H to a graph in Z'-H that we call [Q', Z']-H, 

so that we can define ^(Q) = Q' and therefore we have extended the definition of ^ 

to a bijection of the whole point set of B. All we need to prove is that it preserves 

the incidence structure. 

That takes lines to lines is clear, since given a line Zi in B diSerent from Z, 

we know that Zi n Z = {^1,^2} and taking Q E Zi and Q 0 Z, as [Q,Z]-H goes to 

[Q%Z']-H, there must be a line Ẑ  through and diSerent from Z', and 

so we call i/'(Zi) = Ẑ . We have then a bijection of the point set that preserves the 

lines and the incidence relation. 

Coro l la ry 3.3.4. Given B and B' two biplanes, and lines I G B and V G i?', 

there is a one-to-one correspondence between the set of isomorphisms : jB — 

such that (̂ (Z) = Z' and the set of isomorphisms of Hussain sets taking Z-H to Z'-H. 

3 4 3 4 

,9.^. 5'e( o/Z-.H^uaaGm /or ,9-6zpZone 

P r o p o s i t i o n 3.3.5. The automorphism group of the biplanes of order 1, 2 

and 3 are isomorphic respectively to ^'4, f 7) and f 11). 

P r o o f Let us call Bi , B2 and B3 the biplanes of order 1, 2 and 3. As 

has only four points, < 5'4. If we consider its model as a tetrahedron, 
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we see that the orientation preserving and orientation reversing symmetries of the 

tetrahedron are an automorphism of Bi , therefore = ^'4. 

For B2 we use the fact that B2 is the complement of the Fano plane, and 

Proposition 3.1.4. In that way Aut{B2) = Aut{Fano) = PSL{2,7). We could as 

well have calculated ^1/^(^2) using its set of Z-H graphs, if we had done so we would 

have seen that ther is only one way of drawing an Z-H set (see for a 2 

biplane, and therefore by Proposition 3.3.3. there is only one biplane of order 2. 

Finally for ^ 3 we need to consider its /-Hussain graphs. A divalent graph on 

five points must be a pentagon, and there are only Ave ways of drawing a divalent 

graph on five vertices so that it shares exactly two non consecutive edges with the 

pentagon. The six elements of any Z-Hussain graph of B3 can be seen in f g. 

Since there is only one way of representing an Z-H set, all the Z-Hussain graphs 

are isomorphic, (and hence, by Proposition 3.3.3. there is only one possible biplane 

of order three) and there are automorphisms of B3 taking any line to any other 

line, i.e. the automorphism group is transitive in the line set, and therefore in the 

set of Z-H sets. Furthermore, we will see that the group of automorphism of an Z-H 

set is isomorphic to A5: 

It must be a subgroup of '̂5 but it does not contain any transpositions or 

4-cycles, since the action of both transpositions and 4-cycles always Sx two consec-

utive edges of the pentagon, therefore it is a subgroup of A5. If we consider the 

action of a 3-cycle we see that all of them are automorphisms of the set of Z-Hussain 

graphs, so the stabiliser of any Z-H set is in fact ^^5. As there are 11 lines in B3 and 

the action is transitive, \Aut{B3) \ = 660. 

We will now show that Aut{Bz) is simple, and since there is only one simple 

group of order 660, that will prove that Aut{Bs) = PSL{2,11). 

Take Z a line of B3, as the automorphism group of the Z-H set is isomorphic to 

the alternating group A5, by Corollary 3.3.4. we get that 

StabiV) = A^. 

Furthermore, since ^^((Bs) is transitive on the set of lines, aU the stabihzers are 

conjugate and ^fa6(Z) ^^1/^(^3) for any Z E /Zg,. 

Let us assume that G = C n and G o ^ ^ ^ ( 5 3 ) . For this to happen there must 

be only one 11-Sylow subgroup in ^^( (Bs) . Since any two lines Z, Z' share two 
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points, using Hussain graphs it is easy to see that 

// 

t ) on the other hand, given Z and Z' two hnes, there are precisely three other lines Zj 

2 E {1,2,3} such that 

I^W(Z) n n = 2. 

As any element of of order diSFerent from 11 belongs to a line stabilizer, 

we can count all elements of order different to 11 by using the previous facts, and 

we get 

1 + 1 1 ^ - 5 + ^ ' ( 2 ^ ) ^ 

elements of S3 intersections of 3 S t ab 

SO t h e r e a r e 1 2 0 e l e m e n t s o f o r d e r 1 1 , t h a t y i e l d s 1 2 s u b g r o u p s i s o m o r p h i c t o C n 

a n d t h a t s h o w s t h a t G 

Let us take now 1 ^ G<v4.ii((^3) and a; E G of order diSFerent from 11. There 

is a line / E Zlgg such that z E and therefore 1 ^ G D 

As 5'(a6(Z) is simple and it is not normal in we have that G = 

• 

There are a number of reasons that justify the study of the biplane of order 

three: the biplane provides a geometrical model for the action of PSL{2,11) in 

the same way as the icosahedron and the Fano plane are models for PSL{2,5) 

and f 6'Z,(2,7) respectively, therefore throwing some hght into the structure of the 

group. As a result of this similarity it is possible to find embeddings for the trun-

cated icosahedron in a Riemann surface (using the same idea that allows us to 

embed a truncated cube in Klein's Riemann surface). Finally, both the combinato-

rial structure of the 3-biplane and that of the vertices of the truncated icosahedron 

correspond to the combinatorial structure of the cusps of certain congruence sub-

groups of the Hecke group Some of the ideas developed in this work were found 

in [ K G ] , 
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C h a p t e r Four 

Embedding of finite Geometries 

In this chapter we will explore several embeddings of the Fano plane and the 

3-biplane inside a Riemann surface, together with other geometric structures that 

are related to them, such as the truncated cube and the truncated icosahedron. 

The Fano plane can be embedded as a regular hypermap in the torus and in Klein's 

quartic. These are the only embeddings of the Fano plane as a regular hypermap 

in a Riemann surface. 

We will also discuss two diSFerent kind of embeddings of the 3-biplane: 

- as a regular hypermap inside a Riemann surface, there are two possibilities, 

inside a surface of genus ^ = 12 and a surface of genus p = 15. 

- as a bipartite graph, there are three possibilities, inside a surface with genus 

^ = 70, a surface with genus g — 125 and a surface with genus p = 180 We will 

only cover the first two cases in this work. 

Each of the two embeddings of the 3-biplane as a graph that we are going to 

study here generalizes different aspects of the Fano plane embeddings mentioned 

above. Using them we will explore some interesting relationships among the groups 

_P5'-L(2,])) where E {5, 7, 11}. 
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4.A. The Fano plane as a dessin 

Since we know that the Fano plane has 21 bits, in order to embed it as a regular 

hypermap, we need to find an epimorphism from a triangle group A = [Z, m, n] into 

a group of order 21 such that its kernel is torsion free. The torsion free kernel 

condition together with the fact that the Fano plane has no automorphism of order 

21 forces {f, C {3, 7}. 

On the other hand, we have already seen in chapter two that there are only 

two non-isomorphic groups of order 21, one of them is the cyclic group C21, and the 

other one is the semidirect product C? x C3 which we call G21 and that is dehned 

by the presentation: 

< e , / I = e / e - = 1 > 

where we will assume u = 2 without loss of generality. 

It is clear that there is no surface kernel epimorphism from the triangle group 

A = Ti] (where {/, m, G {3, 7}) into C21 since there should be an element 

in A of order 21, which contradicts the assumptions, so we only need to consider 

G21 as the image of the epimorphism. Since C7 < G21, there is only one subgroup 

of order 7 in G21, and thus there are only two possible triangle groups for the 

epimorphism, either [3,3,3] or [3,3, 7]. We will see that both of them produce an 

embedding of the Fano plane. 

4.1. The Fano plane in the torus 

This embedding was found by Walsh in 1975 [Wa] and corresponds to a regular 

hypermap on a torus. It is related to the toroidal embedding of the complete graph 

jiTy. We start by getting a presentation for [3, 3,3] given by: 

< 0 , 6, c I = a6c = 1 > 

where we can dehne the epimorphism (̂  : [3,3,3] — G 2 1 by ((921 presented as 

above): 

<^(a) = e (^(6) = < (̂c) = 

and using Riemann-Hurwitz formula it is easy to see that A!'er((^) has signature 

(1; ). It is therefore a torsion free group and corresponds to a torus that we 
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shall call T. For a picture of a Walsh representation of the embedding see Fig. 4-1-

where the torus is marked with the thin continuous line. 

It is easy to calculate the modulus of this torus, which is r = The auto-

morphism group of any regular map Ai on the torus is hnite and described 

in [CM], while the automorphism group of any torus T is continuous and 

hence inhnite. If we calculate for this torus, it turns out that is 

isomorphic to the groups quotient where ^ is the subgroup of generated 

by the transformations: 

5 + \/3i —1 . / 7 \ ^ T 
z I—)• z -f- A, z I—y —, z I—y z 4" 6/i, z i—)• (z — Ojg ^ -|- 6 

whith A, E R and 6 = is the torus lattice generated by the trans-

lations 
5 -k VS* , 3 + 5/3% 

z :—> z -I and z i — z -I . 

Fig. 4-i- Walsh embedding of the Fano plane 

4.2. The Fano plane in Klein's quartic 

This embedding was fouud by D. Singerman [Si4] in 1986. It corresponds 

to an embedding of the Fano plane as a regular hypermap of type (3,3, 7) into a 

Riemann surface with automorphism group isomorphic to the automorphism group 

of the Fano Plane. It is therefore an embedding into a highly symmetric surface. 

As before we will assume that the presentation of [3,3,7] and that of G21 are 

respectively: 

< a, 6, c I = 06c = 1 > < e, / I = / ^ = = 1 > 
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Our starting point is an epimorphism 4> '• [3, 3, 7] — G 2 1 defined by 

= e (^(6) = (^(c) = 

and by Riemann-Hurwitz formula we see that the signature of jirer(<^) is (3; ), 

we will call ^"^=3 the Riemann surface uniformized by 

[3,3,7] is not a maximal triangle group, since it can be embedded into [2,3,7], 

which is maximal [Si2], with index 8. If we consider a presentation for [2,3,7] of 

the form 

< A, B,C j A'^ = = ABC = 1 > 

one of the possible set of equations (there are eight ways of doing the embedding) 

for the embedding z : [3,3,7] — [ 2 , 3 , 7 ] is : 

z(c) = ^C.4 

where we can check that z(o6c) = = 1. 

In order to calculate the automorphism group of ^"^=3 we need to End the 

normalizer of 7irer(<^) inside f 6'i/(2, R). We will show that < [2,3,7], and 

since [2,3, 7] is a maximal triangle group (see [Si2]), we will have proved that it is 

the normahzer of A^er((^). That fact will prove that ^g=3 is Klein's quartic. 

[2,3,7] ^ — > ;^^i;(2,7) — v 4 2 / ^ ( ; i r g = 3 ) 

2^8 T8 

[3,3,7] ^ 

T3 p T3 
[7,7,7] ^ 

T7 T7 %7 

;rer(</,) ^ {1} {1} 

We deEne the group epimorphism $ : [2,3,7] —> f 5'i^(2,7) by: 

0) V) 1 

and we choose a representation of G21 as < f 5'i^(2,7) where 

' = ( 0 5 ) ^ = ( 0 1 
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with the above presentations we see that = $(z(a;)) for any a; E [3,3,7]. As the 

index of A'er((^) inside [2,3,7] is 168 we know that A'er(i^) — A'er($) and therefore 

^ e r ( ^ ) < [2,3,7]. We have then proved that 

^ f gz;(2,7) 

and that characterizes as Klein's quartic, which we can express in complex 

projective coordinates as [Kll]: 

3:̂ 2/ + 2/̂ ^ + = 0. 

The eight different embeddings of [3,3,7] into [2,3,7] correspond to the eight 

diEerent embeddings of a Ggi into fSZ,(2,7) , each one corresponding to 

for a given a; G Py. Since we have already chosen we get the stack of groups 

shown in the previous page, where (7(7^=3) has been explicitly calculated by 

Klein in [Kll]. 

In the diagram firom the previous page refers to the automorphism 

group of the dessin, while 5" refers to the stabilizer of the face centres of the dessin, 

the horizontal lines on the left are group epimorphisms, those on the right are group 

isomorphisms, and vertical arrows designate group inclusions. 

We will only show the embedding that corresponds to in our notation 

because as we have said, the others are conjugate to it by automorphisms of the 

surface. 

In order to display the hypermap on the surface, we need to consider 21 special 

points on kg=s, and for simplicity we will refer to < Aut{kg=^) as h when-

ever there is no confusion possible. The action of each subgroup of order seven of 

j4u((7irg=3) Axes three points on the surface ([Kll] or direct calculation), and there 

are not two subgroups that fix the same point, so if we consider all the points Exed 

by each of these subgroups, we get 24 distinguished points, which are actually the 

Weierstrass points of Klein's quartic. 

As every triple of points corresponds to the action of a Cy group, and every C? 

in f 5'iy(2,7) can be associated to a point in Py, we can see that the action of 

on the Weierstrass points splits them into two stable sets, one of them with three 

points in it (those Sxed by the other with 21. We can see the 6rst set as the 

face centres of our dessin on the surface, while the second set corresponds to the 
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set of bits of the dessin. For a Cori representation of the embedding see ^.,9. 

where the identiScation of the edges of the polygon follows the rule 

2M + 1 ^ 2 n + 6 (mod 14) where 

o/(Ae fono p/ane 

The lighter coloured hyperbolic triangles in represent hypervertices 

while the darker ones are hyperedges of the dessin, the black points show the bits 

and the three face centres of the dessin are highlighted with a light coloured circle. 

4.3. On the Fano plane and Klein's quartic 

The embedding of the Fano plane into is also interesting for its relation-

ship with the cusp set of the principal congruence subgroup of the modular group 

of level seven, its relationship with the embedding of the truncated cube in ]irg=3 

and the possibility of providing a geometrical model for the 2-biplane. 

We have already mentioned in chapter two that the cusp set of the modular 

group r is Q, that r ( # ) is torsion free for every > 2 and that 

where p E Z is prime. We can actually use a stack of groups similar to the one 

displayed in previous sections to calculate the cusp set of the action of the principal 

congruence group of level seven, r(7) over ZY with the structure of the Fano plane. 
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It is clear that there is an epimorphism from F into [2, 3, 7], since a presentation 

for r is given by 

< X, y, z I = x y z = i > . 

We can easily define it by projecting X onto A, Y onto B and Z onto C 

(where [2,3,7] is presented as in section 4.2.), we will call such epimorphism cr. If 

we consider the special congruence subgroups of level seven, we get the following 

stack: 

r ^ > [2,3,7] 

^8 ^8 

ro(7) > [3,3,7] 
T3 T3 

r i (7 ) > [7,7,7] 

17 T? 

r(7) > ks,,3 

Where is a Riemann surface of genus g = 3 with 24 punctures. 

We will follow Klein in [Kll] to obtain a picture of a fundamental region of 

r ( 7 ) in the upper-half plane with a triangulation by triangles of type [2,3, oo]. To 

do so we use the transformation z i—> z + 1 to generate six copies of J. (as 

described in [Kll]) and paste them together along consecutive vertical sides. That 

leaves us with a hyperbolic polygon with vertices: 

ib3 -|- 7n i l 3ti ih2 -t- In —1 -t- In 

7 ' 3 ' 7 ' 2 ' ^ 

where M 6 {0, ..., 6}. 

As we know, the punctures on the surface of correspond to points fixed 

by parabolic elements, and all parabolic elements in F project by cr onto elements 

of order seven in [2,3, 7], therefore the 24 punctures will project onto the 24 Weier-

strass points of -^^^=3. Reversing the reasoning, as the projection is one to one, 

the cusp set of inherits the Pano plane structure defined using the Weierstrass 

points of A7g=3. This embedding, although being very closely related to the one in 

is more interesting, since we can use arithmetic to describe the Pano plane 

structure in the set of punctures of r (7) . 
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We will now obtain the set of cusps of oiit of the set of vertices of a 

fundamental region of r (7) described above. 

z+l 

Fzp. ^.,9. o/r(7) 6^ [2,3,oo]. 

By Theorem 2.4.4. two irreducible fractions ^ and ^ represent the same cusp 

under the action of r (7) if and only if a = ± a ' (mod 7) and b = ±b' (mod 7), 

and we therefore see that either a cusp is equal to oo, ^ or it belongs to one of 

the following families; 

n, 
1 + 3n 1 + 2n 

3 ' 2 

where ft 6 {0, ..., 6}. Since the hrst three cusps are hxed by the action of z i—^ z + l 

and thus correspond to the face centres of the Fano plane embedding associated to 

the other 21 cusps constitute the bits of that same embedding. 

We will prove that for this embedding two cusps ^ and ^ in their irreducible 

form share an edge if and only if 

ah' — a'b = ±1 (mod 7). 

We assume that the condition holds for a couple of cusps ^ and ^ sharing an 

edge. If we let the order seven element act on the shared edge, we get new edges 

83 



defined by the couples 
o + nb + Mb' 

where 1 < n < 6 and all of them trivially satisfy the condition. 

On the other hand, any order three element 

A = ( : ^ I E Gzi ^ y \ r-
0 z 

satishes = ± 1 (mod 7), and if we assume ^ and ^ to be two cusps as before, 

it is trivial to see that 
za + 2/6 

also satisfy the condition. 

It sufhces to show that there is at least one edge that satisSes the condition: 

let us take the bit represented by 0, an edge of the embedding can only join it to 

the following points 

^ 2 ' ^ 3 ' 

The last four points must be discarded since any edge connecting them to 0 

will imply that two hypervertices (or hyperedges) share a bit, which is impossible. 

On the other hand, there are precisely four edges incident to any one bit, and in 

this case the four edges are represented by the Erst four points. It is now trivial to 

check that any of them satis6es the condition above. 

4.4. Embeddings related to PSL(2,7) 

In this section we want to study other geometric structures that can be de-

scribed in terms of the embedding covered in sections 4.2. and 4.3. As we have 

already seen that Klein's quartic is equivalent to without considering its punc-

tures, we will only consider the description of the embeddings into Klein's quartic, 

their extension to the cusp set of should follow easily. 

The other "big" subgroup of f 5'Z,(2,7) has 24 elements and is isomorphic to 

5'4, we will show its relationship to the 24 Weierstrass points of Klein's quartic. In 

the previous section we were forced to split the set of Weierstrass points into two 

subsets, mainly because we were considering the action of a group of order 21, in 

this section we will study the action of '̂4 over the set of Weierstrass points and in 

order to do that we require the following lemma. 
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L e m m a 4.4.1. There are fourteen groups of order 24 (isomorphic to S4) 

inside PSL{2, 7). The action of any of these groups, when considered as subgroups 

of Aut{Kg=z)i on the Weierstrass points of is transitive. 

P r o o f The first part follows from [Di], was proved in [Kll] and has been 

calculated in section 2.2. For the second part, we only need to consider that each 

Wierstrass point in Kg=z is the fixed point of a unique C7 < PSL{2, 7) and that 

any proper subgroup of PSL{2,7) whose order is a multiple of 7 is isomorphic to 

either C7 or G21 [Kll] . Thus the only elements in S4 that could fix a Wierstrass 

point are those of order three. 

Fig. 4-4• Embedding of the truncated cube in K, g=3 

On the other hand, any element of order three is associated to two C7 groups 

and therefore it fixes their corresponding sets of Wierstrass points (although it does 

not fix the actual points). Since any element of order three fixes just two points on 

Kg=3, it is immediate that it cannot fix a Wierstrass point, therefore the stabilizer 

of any point is trivial (when considering the action of an S4) and the action of S'4 

on the set of Weierstrass points is transitive. • 

Every embedding of an ^4 into PSL{2,7) is related to an embedding of a 

truncated cube into Kg=3 in which the Weierstrass points of Kg=3 are the vertices 

of the truncated cube. We can choose one of the groups S4 displayed in the table 
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in chapter two, each one containing four subgroups isomorphic to C3. The action 

of any C3 < on (̂̂ ^=3 Exes two points on the surface, therefore to every 

embedding of an into f 5'Z,(2, 7) we can attach four pairs of points on the surface 

of Klein's quartic, each of these pairs will define a diagonal of the (truncated) cube. 

Each point hxed by an element of order three is the centre of an equilateral 

triangle of area y whose vertices are three Weierstrass points (since they are fixed by 

elements of order 7). In that way we get a triangle corresponding to the truncation 

of one vertex of the cube for every point hxed by an element of order three in the '̂4 

we are considering (i.e. two triangles for each C3). Repeating the same operation 

with every subgroup C3 in '̂4 we get the eight triangular faces of the truncated 

cube. The remaining edges of the truncated cube are easy to And, since every two 

cycle of 5'4 will hx two other points on the surface, these points correspond to edges 

centres of the cube. For a picture of a truncated cube inside J^g=3 see 

There are fourteen such embeddings into two conjugacy classes, but if we allow 

orientation reversing automorphism of ^7^=3 they will form a unique conjugacy 

class. To visualize the remaining six embeddings in class it suSces 

to rotate the truncated cube around the center point of the hyperbohc polygon 

shown in To get a representative of the second class, we have to reAect 

the truncated cube along the vertical diagonal of the polygon. To hnish with this 

section we intend to provide a model for the geometric action of f5'Z'(2, 7) on seven 

points alongside with a model for the 2-biplane inside Kg=2. 

The algebraic action of f 5'i^(2, 7) on seven points is easy to describe as the 

action of PSL{2, 7) on its seven subgroups isomorphic to S4 within one conjugacy 

class. Considering that every '̂4 in ^t(^(A'g=3) is connected to an embedding of the 
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truncated cube, we can see the geometric action of f6 ' i , (2 ,7) on seven points as 

the permutation of the seven truncated cubes in a conjugacy class. 

For a diagram of the 14 truncated cubes inside we only need to rotate 

the class representatives displayed in ^.,5. around the central vertex of the 

hyperbolic polygon. 

We can now consider the diagonals of each truncated cube in a conjugacy class 

as a bit of a combinatorial structure and thus we get 28 bits in seven sets of four. We 

can call each of these sets /meg, so that each line is in fact a truncated cube within a 

conjugacy class. Furthermore, we can choose seven new sets of four diagonals, that 

we shall call so that every point shares only a bit with four lines, and every 

line shares just one bit with four points. In doing so what we get is a model for 

the 2-biplane inside -^^^=3. We have seen that each diagonal can be associated to a 

C3 < f 5'JL(2,7) and that the set of "lines" is identified with the set of subgroups 

5'4 in one conjugacy class. Using a similar reason, the set of "points" is identified 

with the set of subgroups '̂4 in the other conjugacy class, as we can see in the table 

in chapter two, where f stands for points and 2, for lines, and the coordinates of 

the C3 label the incidence structure of the bits of the 2-biplane. 
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4.B. The 3-biplane as a dessin 

The 3-biplaiie has 55 bits, so to embed it as a regular hypermap our Erst concern 

is the structure of the groups of order 55. We have already seen in chapter two 

that there are only two groups of order 55: the cyclic group C55 and the semidirect 

product Cii x C5 that we call G55 and has a presentation: 

where E {3,4,5,9}. We shall use w = 4 unless otherwise stated. 

Using the same ideas explained in the study of the embeddings of the Fano 

plane, we can discard C55 (there is no subgroup of f 11) isomorphic to C55) 

and state that there are only two possible embeddings for the 3-biplane as a regular 

hypermap, these embeddings arise when we consider the triangle groups [5, 5,5] and 

[5,5,11]. 

4.5. Embedding the 3-biplane inside Rg=i2 

This embedding corresponds to a hypermap of type [5,5,5] inside a Riemann 

surface of genus ^ = 12. It arises when one consider the group [5, 5,5] with presen-

tation 

< G, 6, c I = a6c = 1 > 

and the epimorphism : [5,5,5] — G 5 5 dehned by: 

(^(o) = e (^(6) = / e (^(c) = 

that induces the following stack of groups. 

[5,5,5] ^ > G55 

T5 T5 

(2;_) > Cii 

111 T i l 

> {1} 

[5,5,5] is not a maximal triangle group because it satisfies [Si2] 

[5,5, 5] < [3,3,5] < [2,3,10] or [5, 5,5] < [2,5,10] 



and there are no other inclusions for [5, 5, 5]. As it is not maximal, we need to do 

some extra calculations to find Aut{Rg=i2)-

If we take [2,5,10] with presentation 

< v4, g , C I = 1 > 

we can define the inclusion % : [5,5, 5] — [ 2 , 5 , 1 0 ] by 

%((i) — vlBA, g z(c) = 

Let us consider a group isomorphic to T^no (defined as in Lemma 2.A.6.) with 

presentation: 

< e, / , g I = 1 > 

and the map $ : [2, 5,10] —>- ^ n o given by: 

$(A) = $ (B) = / e $(C) - V " 

which we can prove to be an epimorphism since $(ylC) = We can see that 

A'er($) is torsion free in the usual way. If we calculate the restriction of $ to [5,5,5], 

we see that for any z 6 [5, 5,5] and using indexes calculations as we 

have done before, < [2,5,10]. As [2,5,10] is a maximal triangle group, we 

have proved that 

Aut{Rg=^i2) — Hiio-

Since [2,5,10] is a triangle group, we can consider the dessin induced by the 

inclusion jirer(<^) < [2, 5,10] which is a dessin with 110 bits that derives from the 

3-biplane embedding by a standard procedure that we call We can 

obtain a geometric representation of a Walsh double of a hyper map by taking its 

Walsh representation and painting all vertices black, the bipartite map we get is a 

Walsh double of the original hypermap. 

4.6. Embedding the 3-biplane inside Rg=i5 

This embedding appears when one consider the triangle group [5,5,11] with 

presentation 

< o, 6, c I = a6c = 1 > 

and the epimorphism : [5, 5,11] — G 5 5 given by: 

e <̂ (6) = e / < (̂c) = / . 

89 



Using Riemann-Hurwitz formula, we see that the underlying Riemann surface 

has genus ^ — 15 and we get the following group diagram: 

[5,5,11] G55 

T5 T5 

(0;[ll5]) ^ C n 

^11 %11 

A'er(i;6) > {1} 

As in the previous case [5,5,11] is not a majcimal triangle group [Si2], and is 

not contained in any other triangle group except: 

[5,5,11] < [2,5,22]. 

We will prove nevertheless that = 55. 

Using the same ideas as before, we suppose there is a torsion free kernel epi-

morphism $ : [2,5,22] —> where jif is a group such that [ ^ : Gss] = 2. 

Since ^ must have an element of order 22, ^ 9^no- On the other hand, if 

^ = Giio = G55 X Cg, must have order ten, where and B are respec-

tively elements of order two and five in [2,5,22], and therefore it is impossible to 

dehne such an epimorphism, so we have proved that 

Aut{Rg=l^) = G55. 
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4.C. The 3-biplane as a confbrmal graph 

The two examples mentioned above Eire the only possible embeddings of a 3-

biplane as a regular dessin in a Riemann surface, as any other epimorphism from a 

triangle group n] to G55 will produce torsion. Unfortunately none of them is 

into a Riemann surface with automorphism group isomorphic to f ,9jL(2,11). 

Since we are trying to End embeddings of the 3-biplane that mirror as closely 

as possible the characteristics of Singerman's embedding of the Pano plane, there 

Eire two important questions that we need to solve: 

- Is there any other way of embedding the 3-biplane in a "rigid way" into a 

Riemann surface 5" such that v4M (̂5') = f 5'i,(2,11)? That is, is it possible to embed 

the bipartite graph representing the 3-biplane incidence structure conformally into 

a Riemann surface S such that Ai6((5') = f 5'Z,(2,11) and so that the stabilizer of 

the embedding is isomorphic to G55? 

- Among the solutions to the previous question, can any of the surfaces 5" be 

uniformized by a principal congruence group of a Hecke group in such a way 

that the bits of the embedding can be thought of as cusps of G? 

The answer to both questions is ahrmative, there are at least two surfaces 5̂  

that solve the 6rst question, and one of them is a positive answer to the second. 

We need to relax some of the conditions for the embedding, since we know that 

there is no solution for it among dessins. We chose to relax the conditions relating 

to the "faces" of the embedding (as seen in a Walsh representation), therefore our 

embedding will not be a dessin, but only a bipartite graph, since the connected com-

ponents of the complement of the graph (faces) will no longer be simply connected. 

This relaxation implies algebraically that we will consider groups A' with three pe-

riods and signature where ^ ^ 0, as candidates for the epimorphism 

onto G55. Unfortunately these groups are not rigid in the sense of Fuchsian groups, 

and so we will place a restriction on them by studying only those that are subgroups 

of triangle groups [(,m, that projects epimorphicaily onto f ^ i / ( 2 ,11 ) . 

Let us start then with a triangle group A = [/,m, that projects epimorphi-

cally via $ onto PSL(2,11) so that its kernel has index 660 and is torsion free. The 

torsion free kernel condition limits the choice of periods for the triangle group to 

the set {2, 3, 4, 5, 6, 11}. We need to impose a further condition: that there is a 

subgroup A' < A with [A : A'] = 12 and signature 

A = < g, [li, I21 3̂] 
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that is, three finite periods {U ^ 0) such that the restriction is an epimorphism 

onto G55. This implies that A' has one of the following signatures: 

= or A' = (g;[5,5,5]) 

which implies that there is at least a period of order multiple of 5 in A, using the 

condition that limits the choice of periods in A, we can eissume that A = [5, 

Since the index of A' in A is 12, we have that 12//(A) = //(A'), that is: 

5 55 \ 5 m n 

where m , » E {2, 3, 4, 5, 6, 11} and ^ E N. Out of the set of hyperbolic triangle 

groups that could be candidates for A, we can see that only [2,5,11], [3,5,11] and 

[5,6,11] satisfy all the conditions, and therefore are the only ones that might allow 

an embedding of the kind described above. 

In the first case ([2,5,11]), which seems to be the most interesting, the embed-

ding will be into a Riemann surface of genus p = 70. In that case we will be able 

to extend the 3-biplane structure to the cusp set of a congruence subgroup of the 

Hecke group 

In the second case the underlying surface has genus p = 125, while in the leist 

case A ' has signature (3; [5,5,11]) and the underlying surface has genus p = 180. In 

all three cases the bipartite graph has type (5,5,11) meaning that it is invariant by 

rotations of order eleven around its "face" centres, or rotations of order 6ve around 

its vertices. We will only cover the Erst two cases as the third one does not show 

any interesting properties not covered by the other two cases. 

4.7. Embedding the 3-biplane inside Rg=70 

In this section we will explain the embedding of the 3-biplane that most closely 

resembles that of the Fano plane in Klein's quartic. We start with the triangle group 

[2, 5,11] with the following presentation: 

< A, B, C I = A B C = 1 > 

and we dehne a map $ : [2,5,11] —> f 6'Z,(2,11) by: 
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It is clear that is torsion free, since every Enite order element in [2,5,11] 

is projected onto an element of f5 ' i ^ (2 , l l ) of the same order, thus uni-

formizes a Riemann surface of genus ^ = 70 (Riemann-Hurwitz formula) that we 

call ^g=70' By its construction and the fact that [2,5,11] is a maximal triangle 

group, we have proved that 

Aut(;Zg=7o) = f ^ i : ( 2 , i i ) . 

We know that f = (1; [5, 5,11]) < [2,5,11] and if we take a presentation for f 

given by: 

< G, 6, c, z, 1/ I = 1 > 

we see that % : [2, 5,11] can be defined by: 

%(a) = %(6) -

%(c) = z(a;) = 2(3/) = 

If we consider now the restriction ^ : (1,[5,5,11]) — f 5 ' i } ( 2 , 1 1 ) defined as 

^(a;) = $(%(a;)) for any z G (1,[5,5,11]), we see that = Ggg and so we 

can construct the following stack of groups where horizontal lines denote group 

epimorphisms and vertical arrows symbolize group inclusions. 

[2,5,11] f g i ; ( 2 , l l ) 

^12 %12 

(1;[5,5,11]) ^ > Ggg 

]^55 ]^55 

jiL'er(^) > {1} 

To find the structure of the bipartite graph on the surface we need to consider 

one set of 22 points that will correspond to the vertices of the bipartite graph, and 

another one of 55 points that correspond to edge centres (bits). 

We will call the image of the embedding of the group Ggg into the automor-

phism group of ^g=7o- k chapter two we have seen that there are twelve diSerent 

subgroups of order 11 in f 6'Z,(2,11). If we consider them as subgroups of the au-

tomorphism group of J?g=7o, we can see that each subgroup C n fixes five points on 
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the surface, and no two subgroups Hx the same point, so we have 60 distinguished 

points on the surface. If we remove from this set the five points fixed by the action 

of jif (i.e. the five points hxed by C^i), we obtain a collection of 55 points that are 

transitively permuted by the action of ^ and that corresponds to the bits of the 

embedded graph. 

The remaining 22 points arise naturally when we consider the action of the 

order five subgroups of 77. There are 11 such subgroups, each one Axes two points 

on the surface, and therefore we have found the 22 points we needed. The choice of 

colour is arbitrary, we need to hx one of the C5, for example C ^ ' ° , and paint one 

of its fix points white, the other black. If we let acts on this pair of coloured 

points, we will get the colouring for the remaining. 

Since there are 12 diSerent embeddings of G55 in f 5 ' i , ( 2 , l l ) , there are 12 

ways of embedding the bipartite graph (not considering swapping the colours of the 

vertices), but all of them are conjugate by an automorphism of the surface. 

4.8. Embedding the 3-biplane inside j%g=i25 

This embedding arises when one consider the triangle group [3, 5,11] with pre-

sentation: 

< A, C I = A B C = 1 > 

and the group epimorphism $ : [3, 5,11] —^ f 5'i,(2,11) dehned by: 

I ) . $ ( i j ) = ( [ ; » ) . I ) . 

It is easy to check that $ is an epimorphism with a torsion free kernel, and that 

7irer($) uniformizes a Riemann surface of genus ^ = 125 that we call 7(g-i25- We 

can prove that F = (2, [5, 5,11]) with presentation 

< a;, ?/, z, (, a, 6, c I = 1 > 

is a subgroup of [3, 5,11] and using Schreier's method And the following equations 

for the inclusion % : F — [ 3 , 5,11]: 

%(«) = 

2(6) = 2(c) = 
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With all the group maps defined as before, we can restrict $ to f in which 

case we obtain a group epimorphism onto and the following stack of groups: 

[3,5,11] ^ > f g i : ( 2 , l l ) 

-[12 %12 

(2; [5, 5,11]) > Ggg 

%11 %11 

> {1} 

So what we get is another conformal embedding of the 3-biplane as a (5,5,11) 

bipartite graph inside ^^=125-

4.9. Other considerations for the 3-biplane and Rg-jo 

Among all the possibilities displayed above, the embedding of the 3-biplane 

into ^g=:7o as a bipartite graph seems the most interesting one because we can 6nd 

a fair amount of relations between it and Singerman's embedding of the Fano plane. 

Among them we will give a 3-biplane structure to the cusp set of (4 — \/5) and 

show a geometric action of f 6'i^(2,11) on eleven objects on the surface Ag=7o-

In chapter two we have introduced the Hecke group and we saw that its 

signature as a Puchsian group is [2,5,00]. Following the ideas explained in Singer-

man's embedding, we can easily define an epimorphism ^ ^ [2,5,11] given 

by (presentations for both groups as used before): 

^ (%) = A ^ ( y ) = B ^ ( Z ) = C 

that will allow us to extend the 3-biplane structure from Ag-70 to some cusp set of 

congruence subgroups of If we pull-back the subgroups of [2,5,11] by means 

of $ we get the group diagram displayed in next page. 

In this case the role of the ideal (7) in the description of Klein's surface is 

played either by (4 + \/5) or (4 — \/5), the reason for this is that (11), which would 

be the natural choice, is not longer a prime ideal in Z[A5] since it can be factorized 

as the product of the previously mentioned ideals. It is trivial to see that ^ extends 

easily to an epimorphism onto f 5'i,(2,11) as the following diagram shows. 
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Tl2 

Hl(i - 75) > 

^ 7 5 ( 4 - / 5 ) ^ 

T i l 

j f ^ ( 4 - \ / 5 ) > 

[2,5,11] 

Tl2 

(1;5,5,11) 

T5 

(5;11") 

T i l 

'5'g=70 

<S> f gjL(2,11) 

Tl2 

/̂ OO 

T5 
/̂ OO 
(-̂ 11 

11 

{1} 

So what we get is a Riemann surface of genus 70 with 60 punctures, defined by 

ff5(4^\/5)' parabohc elements of [2,5, oo] projects onto elements of order 

11 in [2,5,11], the puncture set of this surface projects onto the points of J?g=7o 

that are 6xed by elements of order 11, and reversing the projection, the cusp set of 

— \/5) inherits the structure of the 3-biplane. 

(2,1) 10,9 

Vertices 

(3,9) (10,1) 

(7,1) (7,9) 

We have seen in Proposition 2.5.6. that the cusp set of j7"(4 — VS) in the 

upper half-plane can be described in terms of fractions of Q(\/5) in their canonical 

form. We will now label the cusps so that we can obtain a picture of the 3-biplane 

embedding associated to the action of Ggg in the cusp set. 
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We win represent a fraction in its canonical form ^ G Q(\/5) by the coordinates 

(a, 6) where o, 6 G {0, 1, . . . , 10}, if and only if: 

f mod(4 — \/5) 
and 

Q = ±6 mod(4 — \/5) 

Using that notation we get the incidence diagram in where darker 

pawns represent vertices, lighter pawns represent edges and two points with the 

same coordinates are identiGed. 

4.10. Embeddings related to PSL{2,11) 

In this section we will describe other geometrical structures that can be de-

scribed in terms of embeddings into and we will see a geometrical action 

of f 11) on eleven objects. As we have seen in the previous section, we can 

consider the embeddings as lying on or Eis displayed in the cusp set of 

where 

7 — (4 + \/5) or 7 = (4 — \/5). 

The biggest proper subgroup of f 5'Z,(2,11) has order 60 and as we have seen, 

it is isomorphic to f5 ' i , (2 ,5) . We have already mentioned that there are 22 of 

them into two conjugacy classes. They can be seen as the symmetry group of 

the icosahedron, in fact, if we take the 60 points Bxed by elements of order 11 on 

^g=70, we will see that they correspond to the vertices of a truncated icosahedron 

(a football). 

Let us consider any of the possible embeddings of 4̂̂  into f 6'Z}(2,11), there 

are six subgroups of order 5 inside it, and each Cg Exes two points on the surface of 

-Rg=7o when we see them as subgroups of its automorphism group. Each pair of fixed 

points by a Cg can be seen as a diagonal of the (truncated) icosahedron embedded 

on the surface. Every point in that pan- is the centre of an hyperbolic equilateral 

pentagon, whose vertices are points fixed by elements of order 11 and in that manner 

we obtain the 12 pentagonal faces of the truncated icosahedron on the surface 

^g=70- For the hexagonal faces we can proceed in any of two ways: we can study 

the action of the subgroups of order 3 on the set of C5, or consider the action of the 

subgroups of order two on the surface, each subgroup of order two hxes two points 

on the surface that correspond to edge centres of hexagonal edges of the truncated 

icosahedron. With some work and a fair amount of calculation it is possible to 
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obtain a picture for the truncated icosahedron inside Ag-70, although given the big 

genus of the surface and the low order of the highest order automorphism of the 

surface, it shows as much as it conceals and so we will not display it here. 

There are twenty two embeddings of a truncated icosahedron inside Ag=7o, dis-

tributed into two conjugacy classes, although orientation reversing automorphisms 

of the surface will take one class onto the other. We will hnish this section by 

showing a model for a geometric action of f 5'Z(2,11) on eleven points that is re-

lated to a model for the 3-triplane inside _Rg=7o (The definition of a triplane follows 

naturally as a generalization of the one for a biplane). 

The geometric action of f 11) on eleven objects is related to the combi-

natorial objects that are stabilized by A5 < f ^2/(2,11) and that can be embedded 

into Ag=7o, so the truncated icosahedron is the obvious choice for it. If we consider 

the eleven truncated icosahedra inside a conjugacy class, each one is linked to one 

embedding of /Is inside a conjugacy class, and so the algebraic action of f 5'i,(2,11) 

on the A5 of one class is analogous to its geometric action on the embedding of the 

truncated icosahedron corresponding to that A5. 

Following the same ideas displayed in the sections regarding the Fano plane, 

we can consider the diagonals of each embedding of a truncated icosahedron as 

bits of a combinatorial structure, and we can label them using the labelling for the 

subgroup isomorphic to C5 in f5 ' i ^ (2 , l l ) whose pull-back into A'u((Eg=7o) &xes 

that diagonal. If we do so, we can take the icosahedrons in one conjugacy class 

as "lines" of an incidence structure (CZoss iL in the table in chapter 2) and the 

icosahedrons in the other conjugacy class as "points" (CZasg f ) . If we check the 

resulting incidence structure, we see that we obtained a model for the 3-triplane, 

that is, the complement geometry of the 3-biplane inside ^^=70-

4.11. Another example of a graph embedding 

In this section we will describe an embedding of the Fano plane into a surface of 

genus ^ = 24 that we will call Ag=24. We wiU embed the Fano plane as a conformal 

graph in the same way as we have done with the 3-biplane. This is the only possible 

rigid embedding of the Fano plane as a bipartite graph with non simply connected 

faces into a surface with automorphism group isomorphic to _P5'iy(2,7). 

We will consider the triangle group [3, 4, 7] with presentation: 

< A, B, C I = ABC = 1 > 
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and the epimorphism $ : [3, 4, 7] —^ PSL{2, 7) given by: 

= : ! ) «(«) = ( : ; 4) = ( 0 e ) ' 

It is easy to check that $ is an epimorphism and that the group is 

torsion free and therefore it imiformizes a Riemann surface that has genus ^ = 24. 

We will see now that the Fuchsian group (1; [3,3, 7]) with presentation: 

< o, 6, c, a;,!/ I = 1 > 

is an index 8 subgroup of [3,4,7], with the inclusion given by: 

%(a;) = 2(1/) = 

2(0) = = 1 %(6) = 2(c) = 

If we restrict $ to ^ in the usual way ^(z) = $(%(z)) for any z G (1; [3,3,7]) we 

get the following stack of groups and an embedding of the Fano plane as a bipartite 

graph inside ^g=24-

[3,4,7] ^ ^ fgZ,(2,7) 

%T8 Ts 

(1;[3,3,7)) ^ ^ 

T3 T3 

(3; [7,7,7]) > C r 

T7 T7 

A'er(</») {1} 

99 



References 

[AG] Ailing, N. L., Greenleaf, N. o/^Ae TAeon/ o/jiTZem ^'ur/ocea, Lecture 

Notes in Math., (219), (Springer-Verlag, 1971). 

[Bea] Beardon, A. F. T/ie peome^n/ 0/ (figcre^e Graduate Texts in Mathemat-

ics 91 (Springer-Verlag, New York, 1983). 

[Bea2] Beardon, A. F. v4 f nmer OM London Mathematical Society 

Lecture Notes Series 78 (Cambridge University Press, Cambridge, 1984). 

[BS] Bryant, R. P., Singerman D. 'Foundations of the theory of maps on surfaces 

with boundary' Quorf. J. (2), 36 (1985), 17-41. 

[Can] Cangiil I. N. 0/ jifecte Gro?ipa, (Ph.D. Thesis, Univ. of 

Southampton, 1993). 

[CLLT] Chan S., Lang M., Lim C., Tan S. 'The invariants on the congruence subgroups 

Go('B) of the Hecke Group G5' JoumaZ vol. 38, n. 4 (1994), 

636-652. 

[CM] Coxeter, H. S. M., Moser, W. 0 . J. /or Dzacre^e 

Groupa (Springer-Verlag, Berlin, 1965). 

[Co] Cori, R. C/n cocZe jooitr /ea ^ro;)/iea aea Asterisque 27 

(Soc. Math. Prance, 1975). 

[Di] Dickson, L. E. ^rot^pa (Dover Publications, Inc., New York, 1958). 

[Pr] Frye, H. W. Dre%ecA;a-

(Ph.D. Thesis, Johann Wolfang Goethe-Universitat Frankfurt am 

Main, 1985). 

[Gam] Gamboa, J. M. Compact TiT/em a?/?yGcea mewed oa rea/ compoc^ 

amoo^A aJgebrmc cur?;ea Memorias de la R.A.C.E.F.N, de Madrid, Series de 

CC. Exactas, Tomo XXVII, Madrid, 1991. 

[Gro] Gromadzki, G. (7ro%/pa 0/ o!i(omo7yA%ama 0/ co77ipac( TZzemâ M aur/ocea Byd-
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