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In this thesis we consider a canonical analysis of double null General Relativity. We s t a r t 

with an introduction to Lagrangian and Hamiltonian dynamics, which introduces m a n y 

of the techniques that are used throughout this thesis. Then in chapter 2 we introduce 

the canonical quantisation process, and perform the analysis on electromagnetism and 

General Relativity to help clarify the steps involved. 

In chapter 3 we introduce the double null formulation of General Relativity. From th is 

understanding we calculate the canonical analysis of this description. The complexity 

of the resulting constraints provides the motivation to introduce Ashtekar variables, the 

topic of chapter 4. This chapter also introduces 5 '0(3) variables. The new variables are 

then used in the canonical analysis of the double null description of General Relativity. 

Two different methods are considered and while the result ing constraint algebra remains 

the same, the two methods have different advantages. 
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Chap te r 1 

In t roduc t ion 

The concept of gravity was Erst described by Newton through his study of planetary 

motion. Newton understood tha t all objects on earth a re subject to a force that pulls 

them towards the earth 's centre. An opposing force must be applied to lift an object off 

the ear th 's surface, but if this opposing force is removed t h e n the object falls back to the 

ground. To explain this, Newton described a force tha t a t t r a c t e d massive objects towards 

each other. Wi th this new force, called gravity, and the recent ly developed mathematical 

techniques of calculus, Newton was able to unders tand p lane ta ry orbits. 

One main problem with Newton's work was t ha t it failed t o describe how this force arises. 

This was overcome when Einstein first wrote about General Relativity. Before Einstein 

had accomplished this famous work he had already established himself in the scientific 

community with his special theory of Relativity, which explains how light can propagate 

through a vacuum, such as space, while all other waves required a medium in which 

to travel. This theory explained the results of a recent experiment by Michealson and 

Morely. It also resulted in breaking many strongly held beliefs concerning the nature of 

the universe held by scientists at t ha t time. 

Einstein was not content with this work but wanted to incorpora te gravity into his the-

ory of relativity. This work took him many years to complete, but resulted in a new 

understanding of gravity. In his work Einstein proposed t h a t gravity was the result of 

mass curving 'space-time'. This meaJit that the force of gravity was a consequence of the 

geometry of a four dimensional manifold called space-time. 

1 



1.1. Lagrangian and Hamiltonian dynamics in finite dimensions 

This new understanding of a force was unique; no other force had been so beautifully 

described by the curvature of geometry. Even to the present day forces other than gravity 

have been described in terms of an exchange of particles rather than from a geometrical 

basis. This common particle exchange approach enabled theories describing the forces 

to be combined, but gravity stood apart; distinctly unique. Unlike all the other physical 

theories, gravity is described by geometry and it has therefore proved difficult to combine 

it with these other forces. Einstein spent many years t ry ing to bridge this divide, but t o 

no avail. 

To start with the desire for a complete theory that described both General Relativity and 

the theory of particle interaction (called quantum field theory) was one of aesthetics. Now 

science is trying to understand regions of space that require a description of large masses 

on a small scale. To do this a clear understanding of how the two theories of General 

Relativity and quantum field theory interact with each other . One of the first approaches 

was called canonical quantisation. The work in this thesis s t a r t s to apply this technique t o 

a part icular description of gravity: double null. The me thod of canonical quantisation, as 

well as other quantisation methods, is based on the fact that both General Relativity and 

quantum field theory can be described in a Hamiltonian form. Therefore we now spend 

some t ime introducing Lagrangian and Hamiltonian techniques tha t are used throughout 

this thesis. 

1.1 Lagrangian and Hami l ton ian d y n a m i c s in f inite 

d imensions 

An instantaneous phase space of a system is described in terms of a set of TV generalised 

coordinates q'' and their velocities q'' (where k runs from 1, 2, . . , N) . This gives the con-

figuration of the system. The initial state of the system is described by a point in the 

phase space, and over an interval of time the state of the system will evolve, resulting in 

a curve. 

Let T denote the kinetic energy and V the potential energy. Then we can define the 

Lagrangian L = T — V.ln this introduction we will consider only Lagrangians without an 



1.1. Lagrangian and Hamiltonian dynamics in finite dimensions 

y(x) 

X 

Figure 1.1: Varying paths of a one dimensional system. 

explicit t ime dependance. Therefore the Lagrangian is a func t ion of only the generalised 

coordinates and their t ime derivatives 

Now tha t we have introduced the Lagrangian we will consider Hamilton's Principle which 

states t h a t the motion of a system from time ti to t ime t2 is such tha t the line integral 

7 = / W , f ) d t , 
Jti 

is an extremum. I is called the action. This allows us to say t h a t the variation of the line 

integral I is zero; 
(2 

Jti 

We now show tha t a necessary and sufficient condition for t h e above is tha t 

(1 .1) 

dq^ dt \dq''J 

which are jus t the Lagrange equations (sometimes called equat ions of motion). 

(1.2) 

We start by labeling all the possible paths, %(3;), the system could take with a parameter, 

CK, and a variation %((). We take the path a = 0 to be the extremum path (see figure 

1.1). 

Therefore: 

% (̂ , a) = gg (t) + 0!% (̂ ), (1.3) 

where ql{t) is the solution at the extremum. For fixed variat ions of %(f ) we consider the 



1.1. Lagrangian and Hamiltonian dynamics in finite dimensions 

action 7 as a function of a parameter a and let 

/ ( a ) = (1.4) 

First we consider: 

dz , az, 8% 

d a 

d t 

In the last step we used an integration by parts on the second te rm and the fact that t h e 

variation vanishes at t i and 2̂- We now introduce the variat ion in te rms of the parameter 

a. 

(1-5) 
d a «=o Q : = 0 

Then, using the above: 

"'L iwr ft^) 
Since the variation Sq^ is arbitrary, 5 / = 0 if and only if 

Hence, we have shown tha t through a variational approach t h e Lagrange equations follow 

from the Hamil ton 's principle. It is possible to generalise th i s approach to allow for higher 

derivatives, or several parameters x°'. Such generalisations can be found in Goldstein 

(1969). 

1.1.1 Hamiltonian description for finite d imensional systems 

The system of equations given by the Lagrange equations (1.2) are second order. The 

phase space for the Lagrangian description uses and wi th t ime as a parameter . We 

now introduce an alternative form, in which the velocities used above are replaced by 



1.1. Lagrangian and Hamiltonian dynamics in Enite dimensions 

generalised momenta, pt, deEned by: 

(1.8) 

This change of basis is performed through a Legendre transformation which also defines 

the Hamiltonian: 

= (1.9) 

From this definition we get the system of equations 

The equations (1.10a, 1.10b) are known as the canonical equations of Hamilton, and 

they replace the Lagrange equations. We can see from these equations t ha t we have a 

system of first order equations replacing the second order Lagrange equations. In solving 

a dynamical system, the first step is to obtain the Lagrangian, and then to perform 

the Legendre t ransformation to obtain a Hamiltonian. Final ly we obtain and solve the 

canonical equations. The Legendre transformation is possible only if the dynamical system 

is not constrained. We consider constrained systems when we discuss the Dirac-Bergman 

algorithm in the following chapter. 

1.1.2 Poisson brackets 

If pk) and G{q'',Pk) are two arbitrary functions, then t h e i r Poisson bracket is defined 



1.2. Lagrangian and Hamiltonian dynamics for Seld theories 

Prom this deEnition we can easily show the fundamental Poisson brackets satisfy: 

= 0 (1.12a) 

{%,Pz} = 0 (1.12b) 

(1.12c) 

and they are independent of the canonical coordinates chosen. It is possible to give t h e 

canonical equations in terms of the Poisson brackets as: 

= (1.13) 

= (1.14) 

More generally if / = f[q(t),p{t)) then / = { f , H } so t h a t functions whose Poisson 

bracket with the Hamiltonian is zero must be constants of t he motion. 

1.2 Lagrangian and Hamiltonian dynamics for field 

t h e o r i e s 

In the section above we considered a finite dimensional sys tem. Many physical systems 

are described by field theory, in which the Lagrangian depends upon position as well 

as time. Such a system can be thought of as an infinite dimensional system. To obtain 

equations of motion for such systems Hamilton's Principle mus t be generalised to: 

= = (1.15) 

where is called the Lagrangian density a n d = q^{t,x'^) are the fields 

in which the index A labels the different fields in the system. The Lagrangian density is a 

scalar density of weight one. The relationship between the Lagrangian and the Lagrangian 

density is given by: 

Z , = / z : d ^ T . (1.16) 



1.2. Lagrangian and Hami l ton ian dynamics for field theories 

In the Snite dimensional case we were able to show that Hamilton's Principle was satis6ed 

if and only if the Lagrange equations (1.2) were satisSed. In the inSnite dimensional 

case we can also show that Hamilton's principle (1.15) is satisAed when the generalised 

Lagrange equations, 

( w z ) 
d^ 

are satisfied. The proof which shows this is jus t a generalisat ion of the finite dimensional 

case shown earlier (see Goldstein 1 9 6 9 ) . 

The functional derivative of a second order Lagrangian dens i ty is given by, C: 

(n) • 
Then using this notation we may state the Lagrange equations as 

which are similar in appearance to (1.2). 

1.2.1 Hamiltonian description for cont inuous systems 

We now require a Hamiltonian description for a continuous system. We start with the 

definition of the momenta: 
p . = f 

We note t ha t unlike the finite dimensional system, here the m o m e n t a are densities. There-

fore the Hamiltonian we define using these momenta is also a density of weight one. Using 

the definition of a Hamiltonian density, Ti = pxq^ — we obta in : 

(1.21) 

Note that in some cases the canonical variables can themselves be densities and therefore 

the momenta may not simply have a weight of one. We require part icular care when 

calculating Lie derivatives or partial derivatives of densitised variables. 

7 



1.2. Lagrangian and Hamil tonian dynamics for field theories 

The canonicai equations are expressed in the same way as the Enite dimensional caae, 

except we use functional derivatives rather than part ia l derivatives: 

= y:— (1.22a) 

PA = — ( 1 . 2 2 b ) 

1.2.2 Poisson brackets in infinite d imensions 

Now tha t we are working with infinite dimensions we are required to redefine the Poisson 

bracket to be 

/sasi-igg;!)'-- »» 
We can see in the above tha t in moving from a discrete definition to a continuous one 

we have replaced the part ial derivatives with funct ional derivatives. We also changed 

the sum in the discrete Poisson bracket to an integral, b u t a sum on the discrete field 

label arises. The other addition to (1.23) is the condition which states tha t t he 

Poisson bracket is evaluated for 'equal t ime'. In the fu ture we will not s ta te this condition 

explicitly. Using (1.23) the canonical equations are expressed as: 

9* = (1.2<la) 

and the fundamental Poisson brackets are: 

{9^(3;), 9^(2/)} = 0 (1.25a) 

{^A(:c),pK(z/)} = 0 (1.25b) 

{9^(3;),^^(Z/)} = ^). (1.25c) 

This introduces the Dirac delta function (^(a;,^), which is a bidensity (see DeWitt 1 9 6 7 ) . 



1.3. Canonical Quantisation 

1.2.3 Dealing with the delta function 

In all our fu ture work we will be using the infinite dimensional definition of the Poisson 

bracket, and therefore we are often required to integrate t h e Dirac delta function. T h e 

Dirac delta function has the following property: 

z) = / ( z ) , (1.26) 

where / is a density of weight +1 . A densitised delta func t ion arises when we calculate 

a funct ional derivative of a density with a density, for example: 

^ = (1.27) 

With a densitised delta function we get the property: 

z) d^z = (1.28) 

where ^ is a function. 

The bidensity t ha t arose in the fundamental Poisson brackets given above has no weight 

on the the first argument, x, and weight one on its second, y. This results in the properties; 

g(a;)^(r, ^) d̂ a; = p(i/) (1.29a) 

/(2/)(^(a;, ̂ ) d î/ = /(a;). (1.29b) 

1.3 Canonical Quantisation 

In Dirac ( 1 9 6 4 ) , Dirac showed how it is possible to move f rom a constrained classical 

theory described by Hamiltonian dynamics to a corresponding quan tum theory. The basic 

idea involves replacing the Poisson bracket of the canonical variables with the commutator 



1.3. Canonical Quantisation 

of the corresponding quantum operators according to: 

(1.30) 

For many theories this transit ion is too simplistic because in general, classical observables 

do not necessarily have unique quantum observables associated to them, or the theory 

contains constraints. Dirac proposed an 'algorithm' (see Di rac 1964) which can be used 

to carry out this procedure for theories containing constra ints . This algorithm is now 

called the Dirac-Bergman algorithm and the form of quan t i sa t ion is called Canonical 

Quantisat ion; we will outline only the details here as a m o r e in depth discussion is given 

in chapter 2. 

The fundamenta ls of this approach are to express the classical theory in terms of a Hamil-

tonian, before obtaining the first class constraints. First class constraints are constraints 

t ha t generate infinitesimal transformations, ie. they change the canonical variables with-

out changing the physical state. The remaining constraints are called second class. Once 

the first class constraints have all been obtained an a lgebra is generated by calculating 

the Poisson bracket relations between them. We then move to the quantum theory by 

replacing the Poisson brackets with commutator relat ions as given above. The second 

class constraints are eliminated by the definition of new variables. 

Despite issues relating to some finer points of the a lgor i thm, in par t icular the construc-

tion of quan tum observables, canonical analysis has had no tab le success in quantising 

electromagnetism to obtain the theory quantum electro dynamics . Other field theories 

have also been quantised, such as Yang-Mills theory, but Genera l Relativity has proved 

to be too difficult. 

At abou t the same time canonical quantisation was developed, an al ternative method was 

being established. This method involved solving the Hami l ton ian through path-integral 

methods. In a similar manner to the canonical quant isat ion m e t h o d it was successful for 

Electromagnetism, and some other 'simpler' theories, but it has not so far been used to 

quantise General Relativity, although it has had some success wi th str ing theory. 

10 



1.4. General Relativity 

1.4 General Relativity 

In this section we derive the Einstein field equations from a Lagrangian density. Although 

this was not the approach that Einstein originally took when he first derived his field 

equations, it is the most direct approach and the one t h a t will be most useful for th i s 

thesis. 

Any field theory can be described by a Lagrangian density, but before we state t h e 

Lagrangian for General Relativity we first introduce a metr ic Qap. A metric is a symmetric 

covariant tensor of rank 2, which can be used to measure the infinitesimal intervals 

da;̂  on a manifold, M. The covariant metric has an inverse and 

together they can be used to raise and lower tensorial indices. The metric can also be 

used to define a connection on the manifold, called the met r ic connection: 

The connection is used to define a covariant derivative: 

n , x i : := d . x i : + v i x l z - (1.32) 

Note that we have used O to denote the space-time covariant derivative in order to reserve 

the usual notation, V, for later use as the covariant derivative induced on a 3-surface (see 

Isenberg &: Nester 1979). 

As well as the covariant derivative the metric connection is also used to define the cur-

vature or Riemann tensor: 

-R w = (1.33) 

If we use the metric to contract two Riemann indices then we obtain the Ricci tensor: 

, (1-34) 

11 



1.4. General Relativity 

while a further contraction defines the Ricci scaler: 

j? = (1 35) 

We now define the Einstein tensor: 

Ga^ — RaP (1.36) 

which is symmetric, and satisfies the contracted Bianchi identities: 

= (1.37) 

Now tha t we have defined the tensors above we can in t roduce the Einstein-Hilbert La-

grangian, from which we can obtain the Einstein equations. 

7 = / A( -^)^/^dn. (1.38) 
n 

g is the determinant of the metric gap, and R is the Ricci scaler defined above (1.35). 

Before we can apply Hamilton's principle to the action above, we first require some 

identities: 

S g " = -9"g''Sgi)-y, (i-39a) 

(1.39b) 

We now regard the action as a function of g^p and its first two derivatives and vary the 

action (1.38) to obtain: 

SI = / [S{-g)^'^g'"> + {-g)^'Hg'^] R^f, + l~gy"'g-"'SK^ d f t . (1,40) 
Jfl 

The last te rm vanishes because after using the Palatini ident i ty : 

= a,{6T-},) - o , ( a r % ) , (1.41) 

12 



1.4. General Relativity 

the integral can be converted to a surface integral, which vanishes because variations at 

the boundary of are assumed to vanish. Therefore (1.40) reduces to: 

dO. (1.42) 

Now applying Hamilton's principle, we obtain 

(̂ 7 = 0 = > TgT'' - = 0, 

and hence 

= 0. (1.43) 

We have therefore shown tha t the Einstein equations can b e obtained from the variation 

of an action I\cja|3^ 9aj3,^t 9aP,'y^-

There are various other methods for obtaining the Einstein equations from the Einstein-

Hilbert action. One such method introduced by Palatini considers the connection variables 

to be independent of the metric, therefore the action I[gap, Fjg ] becomes first order. This 

method is covered in more detail in chapter 4. An a l ternat ive is to replace the metr ic 

variables with a f rame 6'" and the metric connection with t h e Ricci rotat ion coefficients 

to obtain an action of the form The connection is now the connection 

between frames, , not the metric connection previously introduced. 

1.4.1 3 + 1 decomposit ion 

In order to t ransform the Lagrangian description above into a Hamil tonian one, we require 

an evolution direction. This requires a decomposition of b o t h the manifold and the tensor 

fields into a 3 + 1 form. The details of this calculation can be found in the following chapter 

and so we will not cover them here, but rather give some history and context for the work. 

One of the main benefits of writing General Relativity in a Hamil tonian form is t h a t 

13 



1.4. General Relativity 

it is then suitable for Canonical quantisation. One of the earliest attempts at this was 

undertaken by Arnowitt oZ. ( 1 9 6 0 ) , and is known as the ADM approach. In their work 

they derived a Hamiltonian for General Relativity, and obtained the constraints that 

arise due to General Relativity being a constrained dynamical system. They were also 

able to give a geometrical understanding to the constraints . It was expected that f rom 

this work it would be possible to complete the canonical quant isa t ion process for General 

Relativity. Unfortunately this was not the case. There were a number of reasons for this, 

but one significant problem was the non-polynomial n a t u r e of the constraints. 

1.4.2 Ashtekar variables 

In order to overcome the complexity of the constraints Ashtekar ( 1 9 9 1 ) introduced a 

new set of variables tha t result in polynomial constraints which are of a simular form 

to those in Yang-Mills theory. The ADM approach had used the Einstein-Hilbert action, 

and taken the metric as the canonical variables. Therefore the action contains first and 

second derivatives of the canonical variables. This leads to complicated constraints which 

are second order part ia l derivatives of the metric. The Ashtekar approach uses objects 

constructed from the connection and frame as canonical variables, but also extends them 

by complexifying them (this allows the variables to take complex values). The remarkable 

aspect of this approach is t ha t it is possible to split the act ion into two parts, both of 

which result in the Einstein equations independently. Therefore we need to consider only 

par t of the action; this is described in more detail in chapter 4. The result of Ashtekar's 

work is t h a t it is possible to obtain constraints tha t are polynomial in the canonical 

variables. Another benefit of working with this framework is t ha t it allows for topologies 

in which the metric is degenerate. 

Although Ashtekar 's work was a big step forward in simplifying the constraints, the scalar 

constraint still caused difficulty. In the years t ha t followed m a n y a t t e m p t s were made to 

overcome this obstacle. One such attempt wag introduced by Jacobson & Smolin ( 1 9 8 8 ) 

where they used Wilson loops to obtain a large class of solutions. Despite the effort made, 

this loop representat ion has not succeeded in the full quant isa t ion of General Relativity. 

We will not discuss loop quantisation in any detail because it is beyond the scope of this 

14 



1.4. Genera] Relativity 

Figure 1.2: Double null space-time i l lustrat ing null directions. 

thesis. At the same time that loop quantisation progressed alternative approaches, see 

below, tried to overcome these diSiculties using canonical quantisation. 

1.4.3 Alternative approaches to Canonical quantisation 

Following from the work of Torre ( 1 9 8 6 ) , see chapter 3, i t was realised that by making 

the evolution direction null, the scalar constraint became second class and therefore did 

not require explicit quantisation. With this unders tanding Goldberg et al. ( 1 9 9 2 ) s tar ted 

the canonical quantisation approach with a 3 + 1 null approach (see Appendix B). In 

their work they were able to obtain a Hamiltonian descript ion of General Relativity f rom 

which they started the canonical quantisation process. J u s t as in the ADM approach, 

they obtained a system of constraints, al though not all t h e constraints were first class. 

Unfortunately setting the evolution direction to be null in t roduced an additional problem: 

the evolution direction becomes tangential to the three surface. Therefore evolving the 

three surface required the construction of a normal to the three surface. This results in 

extra freedom that complicates the resulting first class const ra in ts by introducing null 

rotations. 

In a 2 + 2 double null formulation the problem of a tangent ia l evolution direction does not 

arise. Both null directions are normal to the two surface (see figure 1.2). Therefore it was 

expected that this approach would overcome many of the obstacles of earlier attempts, 

and this is the motivation for the work presented in this thesis . 

15 



Chap te r 2 

Canonical Analysis 

2.1 Introduction 

In the 1940's Dirac realised t ha t by performing some analysis on a field theory represented 

by a Hamiltonian he could understand the theory's underlying structure. Wi th this un-

derstanding Dirac also outlined how one might be able t o quantise this field theory. I t 

was thought t ha t if only this could be applied to General Relat ivi ty then we would have a 

description of quan tum gravity. After Dirac introduced th i s method of quantisation there 

was a lot of interest in applying the method to different field theories. Electromagnetism 

was successfully quantised, along with the Yang-Mills theory. Unfortunately, despite the 

progress made with these simpler theories General Relat ivi ty proved to be much more 

complicated. 

Although 60 years on some progress has been made, m a n y serious obstacles remain. 

Despite this, the method is still useful in its own right to aid understanding of classical 

field theories, and there is still hope tha t these obstacles m a y one day be overcome. 

In the following sections we shall outline the steps required to complete the quantisation 

of a field theory. We shall first outline the canonical analysis of an action. We then look 

at some examples to clarify the method, before finally continuing with the remainder of 

the process. 

16 



2.2. Dirac-Bergmann a lgor i thm / Canonical Analysis 

2.2 D i r a c - B e r g m a n n a lgor i thm / Canonica l Analysis 

In this section we outline the steps of the canonical analysis based on the Dirac-Bergmann 

algorithm. 

We will assume tha t the theory we wish to quantise can b e represented by an action in 

the following way: 

f := / = (2.1) 

where £ is a Lagrangian density. We also assume tha t o u r field theory is defined on a 

manifold M which can be wri t ten M = E x R, where E a r e space-like hypersurfaces of 

constant t ime and form a foliation of M. We also assume a metric, g, is given on M 

along with a connection and 4-d covariant derivative, which we will denote by a • to 

distinguish it f rom the 3-d covariant derivative V. 

2.2.1 Step 1 : 3 + 1 decomposit ion 

The first stage of the analysis is the full decomposition of t h e action into a space plus t ime 

description. Both the fields and the derivatives acting on t h e m need to be decomposed. 

We introduce a frame {6^,6^} and its respective dual {cq, e;} which have been adapted 

so tha t 6; forms a tangent basis to E. Using this frame we define projections onto E and 

its normal with: 

JPO :== f/fgo :== (2.2) 

Therefore any tensor can be split into its spatial and normal p a r t . For example, the metric 

is split g = —6*° ® 4- ^^0* ® 6^. 

Next we need to decompose the derivatives. We can define n e w covariant and Lie deriva-

tives of functions on E using the projection operators: 

:= f (OeiZ) (2.3) 
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2.2. Dirac-Bergmann a lgor i thm / Canonical Analysis 

where f (Z) denotes a product of projection operators suSc ient to project all components 

of Z onto the hypersurface. 

These de&ne derivatives which only lie on the hypersurface. To consider derivatives off 

the hypersurface we need to extend the definition of given above. For any spatial tensor 

and space-time vector Seld we deSne: 

r x f Z ) = f (2.4) 

We now have defined space-covariant derivatives on and off the hypersurface. Therefore 

we can decompose the space-time covariant derivative i n t o derivatives defined on t h e 

hypersurface. To do this we shall use the results of I senberg & Nester (1979), and give 

the full decomposition of and as, 

OeoK) = 

0,,% = 

o . v; = 

(2.5) 

Above and subsequently we use bold indices to indicate f r a m e components. The notat ion 

represents the extrinsic curvature and denotes the acceleration in the eo direction. 

Before we proceed to describe the other steps in the analysis, we must first define a deriva-

tive along the foliation. So far all derivatives have been p ro jec t ed onto the hypersurface. 

We shall also require a derivative which will evolve the hypersurface. This is performed 

by CQjdt-, where is a vector field mapped to 1 by the f o r m dt. This derivative allows 

us to evolve a tensor along the foliation. Therefore we shall denote it by 

^ : = (2 .6 ) 

The vector field d/dt can be expressed in terms of the a d a p t e d frame, see figure 2.1. 

Hence, 
d 

— = Neo + N'ci. 
% 
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2.2. Dirac-Bergmann algorithm / Canonical Analysis 

Figure 2.1: Lapse and shift vectors in a 3 + 1 foliation 

The scalars N, TV' are often referred to as the lapse and shift respectively. We can therefore 

write: 

'Cg/at = (2.7) 

Only the Erst term governs the evolution of a tensor 6eld; the second term generates 

translations within the hypersurface. 

2.2.2 Step 2: Define conjugate momenta 

We now use the decomposed action to define the conjugate momenta for each of t h e 

canonical variables, q^. The corresponding momentum is defined by 

Pa (2.8) 

The canonical variables, q^, and their momenta , px, describe the phase space, F, of the 

theory. We de6ne the Poisson bracket for a field theory (see 1.23): 

= (2.9) 

where we define 

( 2 . 1 0 ) 
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2.2. Dirac-Bergmann algorithm / Canonical Analysis 

2.2.3 Step 3: Primary constraints 

Primary constraints are equations that constrain the phase space to generate a reduced 

phage space (F). If the rank of the Hessian, is maximal, ie. has the same 

number of independent momenta as field variables, then we would be able to solve t h e 

system for all momenta and so easily t ransform from the Lagrangian to the Hamiltonian 

description. In many physical systems, however, this is not the case. Constraints often 

arise due to restrictions in the system, or due to the existence of conserved quantities. In 

electromagnetism such constraints arise due to the gauge f reedoms which exist within the 

theory. In many constrained dynamical systems some m o m e n t a vanish, therefore pr imary 

constraints are in the form px = 0. In this case the variables are called cyclic, and we 

shall discuss a ' shortcut ' me thod of dealing with them la te r in the chapter. 

The use of Poison brackets in field theory requires all the phase space variables to be 

independent. Hence all the primary constraints must be arise after the Poisson brackets 

have been calculated. Therefore, they are included into t h e Lagrangian with the use of 

Lagrange multipliers, which we will denote by Um- The pr imary constraints are then 

obtained through variations of the Lagrangian density w i th respect to the multipliers. 

Imposing the constraints before the Poisson bracket is calculated would result in too few 

equations and hence a loss of information. 

2.2.4 Step 4: Deriving the Hamiltonian 

Now tha t we have defined all the momenta and found the constraints we can transform 

the decomposed Lagrangian into a Hamiltonian. This is accomplished using the definition 

(2.11) 

The first stage is to substitute the momenta into the Lagrangian density using their defini-

tions given by (2.8). It might be possible, at this stage to wr i te the Lagrangian density in 

the form C = g^Px — F(q^,px)- In this case one can simply in terpre t the density F{q^,px) 

as the Hamiltonian. Otherwise we would use (2.11) to ob ta in the Hamil tonian density 

replacing the q by p. Following the terminology of Dirac ( 1 9 6 4 ) the Hamil tonian without 
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2.2. Dirac-Bergmann algorithm / Canonical Analysis 

any p r imary constraints is called the 'base Hamil tonian ' a n d is denoted by Hq, whereas 

the Hamiltonian containing primary constraints is called t h e 'primary Hamiltonian' and 

is denoted ^ . 

2.2.5 Step 5: Constraint analysis. 

This is t he main algori thmic part of the analysis. In o r d e r for the field theory to b e 

consistent we must ensure that the p r imary constraints h o l d for every t ime step. This is 

achieved by using the equation 

Z = (2.12) 

where Z is a funct ion of the q 's and p 's and their spat ia l derivatives. We must therefore 

ensure t h a t , when calculated, the Poisson brackets of al l t h e p r imary constraints wi th 

the p r imary Hamil tonian are zero on the reduced phase space . W h e n this occurs we shall 

denote it as being weakly zero, ^ % 0, in order to distinguish it from being zero on the 

full phase space. Thus, for every pr imary constraint , 4>m,, 

(2.13) 

Unless the Poisson brackets vanish identically, addi t iona l cons t ra in ts will arise. These 

constraints , a l though only weak, will reduce the number of independent variables con-

ta ined wi thin the Hamil tonian, ie. the dimension of P. If t h e resul t ing constra ints include 

multiplier t e rms they will be called multiplier equations, wh i l e the remaining constraints 

are called secondary constraints. We also require these secondary constraints, denoted by 

Xk ~ 0, to be conserved. Therefore we calculate 

(2.14) 

If these Poisson brackets continue to present addi t ional cons t r a in t s then we get addit ional 

secondary const ra ints and we repeat as before until all cons t r a in t s are weakly conserved 

or define multipliers. After th is we have 2N — M — K i n d e p e n d e n t variables (where M 

and K are the number of primary and secondary constraints respectively) and we have 

restr icted the multipliers Um with the multiplier equat ions . 
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2.2. Dirac-Bergmann algorithm / Canonical Analysis 

2.2.6 Step 6: Evolution equations 

Next we determine the evolution equations for the canonical variables. These are given 

by 

p = (2.15) 

Once these have been calculated we have a well posed initial value procedure for calcu-

l a t ing the field equat ions of the action. This is outl ined below: 

a) Specify initial d a t a on a chosen hypersurface for t h e canonical variables, which 

satisfies all of the constraints . 

b) Choose initial d a t a for the unknown multipliers. 

c) Evolve the canonical variables using (2.15). If any of the geometric fields are not 

defined by the canonical variables or t he cons t ra in ts , then they mus t be specified 

independent ly on each hypersurface. 

d) Evolve the multipliers by a chosen m e t h o d . 

Once the canonical variables are defined th rough al l t ime, we can reconstruct t h e 

3 + 1 decomposi t ion to reconstruct the ful l space- t ime variables. 

2.2.7 A shortcut 

Let us consider a shor tcu t t h a t can be used in the canonica l analysis we have been 

discussing. This shor tcut makes use of the p r imary cons t ra in t s t h a t arise due to the cyclic 

variables ment ioned previously. Instead of in t roducing t h e cyclic variables as pr imary 

const ra ints and therefore including them in the whole cons t r a in t analysis, we can consider 

t h e m merely as Lagrange multipliers. No in format ion has been lost by using this me thod . 

We must , however ensure t h a t t he constraint arising f r o m dl-L/SZ is preserved by the 

evolution. T h e implies t h a t 

(2.16) 

where Z is our cyclic variable. We must also ensure the r e su l t i ng const ra int is preserved 

for all t ime. If Z remains undefined by the end of the ana lys i s then we may specify it 
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2.3. E x a m p l e s of Canonical Analysis 

in any way we desire. This is illustrated by the treatment of the lapse and shift in the 

example of vacuum General Relativity. 

2.3 Examples of Canonical Analysis 

Although this is not the end of the a lgor i thm we shall b reak f rom the theory at t h i s 

point with some examples i l lustrat ing the steps already out l ined above. We shall f i rs t 

consider the simple case of e lectromagnet ism in a curved background and then move on 

to investigate the more complicated case of General Rela t iv i ty . 

2.3.1 Maxwell 's theory 

In this section we shall apply the canonical analysis to the t h e o r y of electromagnetism on a 

fixed curved space t ime background. We will work in the f r a m e description because f u t u r e 

work is also based on the f r ame approach, a l though using t h e coordina te approach would 

result in the same equations. Note t h a t in this example we a re using the Minkowski f r a m e 

metr ic with respect to an o r thonormal f r ame so t ha t 77"-® = ( — 1 , + 1 , + 1 , + 1 ) . However 

in chapter 5 onwards we will work exclusively in a null bas is . 

S t e p 1: We s ta r t by wri t ing the usual Lagrangian densi ty for e lectromagnet ism; 

(2.17) 

where 

(2.18) 

W h e n expressed in te rms of the f rame, this results in 

C = (2.19) 
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2.3. Examples of Canonical Analysis 

where 

-fa/3 = (2.20) 

Note the use of bold indices to indicate components wi th respect to a frame. 

Alternatively we may write this as: 

r = / (2.21) 

We now choose a 3 + 1 foliation of the space-time and decompose (2.21) into this form. 

Note tha t ?7°° = — 1. 

^ / 7 7 ° V ( a o v 4 ; 9 - [ ] ^ A o ) ( a o A j - O j A o ) 

+ , 7 V ^ ( 0 ; ^ ^ - []^A;)([]kAg - 0 6 ^ k ) \ / = ^ d 3 ; " 

^7/'-'(do A; — • iy lo ) (Oo^ j — Oj^o ) 

- - Oj;4i)([]kAi -

The 4-dimensional covariant derivative acting on a vector can be decomposed into spatial 

derivatives and projected Lie derivatives along the ' t ime' direction. This is achieved using 

the identities (2.5), thereby obtaining a fully decomposed Lagrangian. 

|?7'-'(i2eo^i ^ GiAo + K\A]^ — V i ^ o ^ K\A-^) 

(^eo-^j ^ Gjv4.o + — VjAo — iiT^Ak) 

— + Ki^AQ — V j ^ i — Ki^Ao) 

(Vk^ i + K^\AQ — Vi^k — K\^\AQ)\/—g dx^ 

2^'"'(-^eo^i ^ O^iAo — ViAo)(-^eo^j — Oj^O — ^ j ^ o ) 

- i ? 7 V ( V i A j - VjA:)(Vkyli - V i A k ) v ^ d z 4 . (2.22) 
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2.3. E x a m p l e s of Canonical Analysis 

Step 2: We now define the conjugate momenta: 

:= (2.23) 
CK 

where N is the lapse. 

7r° = 0 (2.24) 

= —rf^lCe^Ai — ttiAo — V i A o ] \ / ^ (2.25) 

Since 7r°̂  is conjugate to yla we have the canonical relations 

{v4o(a;),7i'°(2/)} = (^(a;,^) 

{A!(z) , -^(2/)} = 

S t e p 3: We see f rom (2.24) t h a t the definition of the m o m e n t a has resul ted in a p r imary 

constra int 7r° % 0. This also reveals Aq to be a cyclic var iable , a l though in the interest 

of clarity we will not use the shor tcut me thod for this var iable . 

S t e p 4: We now in t roduce the momen ta into the Lag rang i an (2.22). 

/

i\r2 

- |77:kYi(V:Aj - VjAi)(Vkv4i - V i ^ k ) y = ^ d : c \ 

From this we are able to use H = p'^Qa ~ C to derive t h e Hami l ton ian . 

% = y - V j A i ) ( V k A i - (2.26) 

We now look to replace the t ime derivative of Ai with a n o t h e r expression t h a t uses only 

the variables, their spat ial derivatives and introduces sh i f t variables. We s ta r t with t h e 

definition of A . 
A = + (2.27) 
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where we can re-write (2.25) to obtain 

-^eo^i ~ ~/ + O'iAq + ViAQ. (2.28) 

T h e lapse and shift are required to relate two points on d i f ferent equal t ime surfaces, b u t 

it is impor t an t to note at this point t h a t since we are work ing on a fixed background 

they are not variables of the field theory. This is different to t he ADM form of General 

Relat ivi ty in which the lapse and shift variables are pa r t of the field theory. Despite th i s 

difference, in bo th cases we remain free to choose the l apse and the shift . 

After substituting this expression into (2.26) we find 

/

N • • 

2-yi/2 ^ Nn^(aiAo + VjAo) + 
+ i Y V ( V i A j - Vjv4;)(VkAi - ViAk)]V7^/^ d^a;. (2.29) 

Therefore we obtain the pr imary Hamiltonain 

Hp = d^a;. (2.30) 

S t e p 5: We now use the definition of the Poisson bracket (2.9) to propagate the primary 

constra int , 7r° = 0. 

r̂ po E7 \ (^^(2/) _ (^7r°(a;) ( ^ ^ ( i / ) 3 

^ y <^v4a,(z)(^7r°'(z) 67r°'(z)(^Aa(z) ' 

which leads to: 

(̂ 7r°(3;y -3 
= 6 (a;, z) 

_ / ' jVfr '(i /)0!<^^(?/,z)d"%/-V: / ^ : ( ^ ) m " ( ? / , z ) d " 2 / 
<^Ao(z) 

= W7r^(z)a! — Vi(^'(z)A^) 

= - jVVi[:^ ' (z)] 
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2.3. Examples of Canonical Analysis 

= 7VVi[fr:(3;)]. (2.31) 

We therefore obtain a secondary constraint, % 0. From this constraint we 

obtain one of the Maxwell equations, = 0, where is identiGed as the electric 

Geld E"". 

We now propagate tjj to ensure tha t the constraint holds for all time. We use the following 

formula 

TT' = 7r'(ArjVjA! + AjViATj) 

to express the Lie derivative in terms of the canonical variables. 

= (i^) 
= V p { - 7r:V;(A^) - V j 

+ [ - Vi(FkiW'yV2)(^P + - Vk(fu7Vy/2)(^P 

= Vp { - 7 r : V ; ( # P ) + Vi(7rPAr:) + 

= - V ; ( ^ ) V j ( A r : ) - 7rjV!Vj(A^) + 

+ V!(7V-')Vj(7r') + Ar-iV!Vj(7r') + V;Vj(F^A/'7"/^) (2.32) 
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We now use the formula, (ViVj — VjV;)7r' = i ? \ ; j n and t h e constraint, ^ % 0 to obtain, 

= - ^VjV:(7V:) + 7f'ViVj(N-l) + 

+ A^-:VjV;(7f') + | ( V i V j - V j V ; ) ( F j W y / 2 ) 

= 0. 

In the last step we the fact tha t is anti symmetric while i?ij is symmetric. 

S t e p 6: We next calculate the evolution equations for t h e canonical variables. We shall 

first consider Ap-. 

= 

67rP(z 

' N 
/ y i / 2 N a p A o ( x ) + NVpAo^x) + £.j^Ap(x) z) 

AT 
TTp + NttpAo + A^Vpv4o + /ZffAp. (2.33) ^ /yl/2 P ' I I 

We find tha t this is identical to (2.28) 

We now calculate the evolution equation for the conjugate momenta . Note tha t we use 

the notation, = 7^/^7rP. 

= {^P(x), ?^} = 
(^Ap(a;) 

= -:^'Vi(7VP) - V j [TrPTV-i] 

+ [ - Vi(FkijVy/2),^P + Vj(Fk,7Vy/")^P -

= - 7 r ' V i ( A ^ ) + Vi(^PAr:) + Vi(f ' :P7V\/^) 

= [-7r:Vi(7VP) + TrPViTV' + 7V'Vi(7rP) + NV;(f'P) + V;(]V)] (2.34) 
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In order to relate this to Maxwell's Geld equations we have to re-write the left hand side: 

= /2_8 TT̂  + 
at at 

= + TT̂  

= [vi-P - TrPTVjr + TrPV;//'] . (2.35) 

We now substitute this into (2.34) to obtain, 

+ T r W ^ + ArVj(F-'') + f':PVi(Ar) 

=> 1 { £ , TT' - £^7r'} + V j { f " ) - Tr'̂ f - j^F' 'Vs{N) = 0 

+ V j ( f ' ^ ) + F'^oj = 0 

- AT'jFj" + F"( i j + V j F ^ - = 0 

+ O j F ^ = 0 

Oc.f'''' = 0. (2.36) 

This gives the remaining Maxwell's field equations, = 0. We may also express 

Maxwell's equation in the more familiar way, V x B ~ E = 0. 

Now tha t we have finished the constraint analysis and we have a well posed initial value 

problem. If Ai and tt' are given on an initial surface sat isfying the secondary constraints 

(2,31), then they will be propagated by the evolution equat ions (2.33) and (2.34). The 

lapse and shift may be freely chosen, along with the cyclic var iable Aq. The constraints en-

sure tha t 7r° remains zero for all time. This concludes the canonical analysis for covariant 

electromagnetic theory. 

2.3.2 Vacuum General Relativity 

In this section we shall i l lustrate the canonical t rea tment of t he Einstein-Hilbert action. 

(These calculations are based on the approach in Isenberg &: Nester ( 1 9 7 9 ) ) . From this 

action we will be able to derive the constraints and the Hamil tonian equations of motion. 
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Before we can start in earnest we Grst state various identities which are used in this 

section. The first set of identities arise from the assumpt ion tha t we are working with a 

torsion free theory. From this assumption we obtain the following equations, 

Kab — Kba (2.37a) 

Gb = = ^V6(7V) (2.37b) 

= -^/^eo7a6- (2.37c) 

The decomposition of the space-time curvature is greatly simplified by these 'no torsion' 

conditions. The resulting equations are know as the Gauss-Codazzi equations which are 

given below: 

'^0.0 = V . V''(7V) (2.38a) 4^^^ „,db r ly I T^dh ; 

- V.A-k (2.38b) 

+ K \ K t , ~ K \ K , , . (2.38c) 

Using these equations we are able to decompose the Einstein-Hilbert action, 

J = 

into a 3 + 1 form where = —eoeo 4- y^'eae;,. 

Hence, 

/= f N',''V''R'm + s''Ii°aoi, + 
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We also note that ^ - R = —-R̂ 'ooo- Therefore 

/ = 

^ v ' M - 27''^ d^a;. (2.39) 

In this current form the last te rm contains a second time derivat ive of the metric, because 

jiTot = —l/2ZIeQ^g6. This derivative can be moved using an integration by parts, leaving 

an additional boundary term. We first rewrite (2.39), 

I = d(y 7V'yV2 _ 2Iv'(Ar) 

- 2 / " ^ / ^ / : 8 + 2 / d ^ z , (2.40) 

then focus on the last two terms. We integrate the penu l t ima te term by parts, which 

results in the last two terms becoming, 

-2 y y / ^ K d z ^ di 

d X. 

Collecting the terms and using 27̂ ^^ = we obtain, 

2 / + / d t / 4j ;r ,6jr '^Ary/2 + ^ A r y / Y ' ' ' ' / : ^ 7 a 6 + 2 / : ^ ( A ; y / " ) d & 

ab 

+ 2y/"Ar ' 'V. ; i r + d^a; 
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Substituting this back into (2.40) we obtain, 

I 

2 / f ( 2 . 4 1 ) 

- 2 ^ d ^ y (V''(7V'yi/2) _ 

The last two lines are boundary terms. 

We now express (2.41) in terms of the metric and its derivatives. We will make use of the 

equation 

^ab ~ ~ 2̂ 7 • (2.42) 

When this is substi tuted into (2.41) we obtain 

1 = j it j Sx ( n r + i (7., - (7. , - r ^ 7 . j ( - r y - v - S ' " ) ) 

+ boundary terms. (2.43) 

We now have a Lagrangian which is a function of the metric, its derivatives, the lapse 

and the shift. Note tha t the lapse, and shift variables are cyclic, and therefore using the 

shortcut method we define only the variables conjugate to the metric, 

a r ^1/2 

= 4iV - 7 ° ^ ) [(tc„ - C^ lc i ) K K + m 

^1/2 
= ^ (icd - ( y ' f ' - . 

This can be re-expressed in terms of Kab using (2.42): 

= - AT'̂ ) . (2.44) 

We can rearrange this to provide a definition of as a funct ion of Yat and In the 
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following calculation we use the result arising from the trace of (2.44), ie.7r% = 

= ^7 7 

1 

'27V 
(%6 - " 7 

7a6 = (277-06 " 7o6^%) + ^#7a6- (2.45) 

We now make the transit ion from the Lagrangian to t h e Hamiltonian description. We 

define the base Hamiltonian density hy % = p^qx — /2. W e will also use (2.45) to replace 

the time derivative of the metric. The boundary terms remain the same. 

H 

+ 7^""^ C,j^lab d '̂a; 

-06^^-1 /2 ( 2 - m ) + ^^1 /2 TiTTT'L - + 27^;^) 

d a ; 

(2#„j - + iV7'/^ [- (SIK - K\) (SlK ~ K\) + 2KK] 

d'']; 

-aby^^_l/2 ^2^^ _ _ ^^^1/2^ 

ab d^a; 

AT [7 - 7^^^-R] + / ^ '^/ :#7c6d^2; 

boundary terms (2.46) 

Although we described this as the base Hamiltonian, it is also the pr imary Hamiltonian 

because there are no primary constraints (remember t h a t t h e lapse and shift are cyclic 

and we are using the shortcut method). If we make use of wri t ing the Lie derivative in 
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terms of the covariant derivative and then integrate by parts, as shown: 

d^a; = / - + boundary terms 

-27V''V67r\d^3:, 

we aje able to re-write the expression to show that the Hamiltonian can be 

expressed in the form 

H = j (N [ t " ' " - N' d & . (2.47) 

Hence we can rewrite (2.47) in the form 

^ = y + d^a;, (2.48) 

where 

H ' = 7 " " ' (2.49a) 

K = -2V„if ' "„ . (2.49b) 

Variation with respect to the lapse and shift results in four secondary constraints, which 

are (2.49a) and (2.49b). Further propagation of these does not lead to any additional 

constraints. They are automatically preserved in t ime due to the kinematics of the de-

composition. 

We now look to calculate the evolution of the canonical variables. We s tar t by rewrit-

ing (2.46) in terms of the canonical variables: 

^ = y (jV'yi/z [ _ 1 d^a;, 

(2.50) 

then calculate the evolution equation for the 3-metric, ^ab-

= {7.»(x), H{y)} = j 
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^ y (̂ G6 W - K % ( z ) ' y ^ ) 4- /:^7a6) d^z 

= 27V'y-^/^ 4- /:^7a6. (2.51) 

Before we calculate the other evolution equation we will derive some useful identities. 

p - = t t " ^ ^ 

= i y / 2 y 6 (2.52) 

- 1 / 2 

& ^ ( 2 . 5 3 ) 
07a6 

b) 

7' '7bc = 

('^7''^) 7bc = —7°'' ((^7bc) 

^ ((^7"') 76c7" = ((^76c) 

(2.54) 

c) We wish to End an expression for (̂ 7/(̂ 7ab where 

(̂ 7 = y = y - Vj ( (^r ' ' _ ) ) 

v . ( 7 v y / 2 ^ " ^ ( ^ r ^ ) _ v , ( # y / " 7 " ' ( ^ r % ) 

- v . ( # y / " 7 " ' ) ( ^ r ^ + vXAr7^ /"7" ' ) (^ r%. 

(5r%^ is a tensorial term. It therefore remains the same in all coordinates. If we assume 

geodesic coordinates then, = ^7''''[(^(7c6,d) +(^(7d6,c) — " (̂̂ ci.b)] because %6,c = 0. We 
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separate the integral and consider the penultimate term Erst: 

A / (2.55a) 

— Va(/\̂ 7 '̂̂ ^y )̂<^7cd d̂ :z; + boundary terms 

(2.55b) 

= / [V' 'V' ' (7Vy/^)- |V2(7V7i/^y ' ' ) ] (^ 'y^( ,d^:r . 

We have been able to convert the part ial derivative in (2.55a) to covariant derivatives 

in (2.55b), because the term being diEerentiated, after the integration by parts, is a 

density. The final result is tensorial so t ha t this equation is then t rue for all coordinates. 

The Gnal term becomes, 

Vd(A^T/^ /y) (^ r%d^a ; = / + (^(7a6,c) -

- §7'̂ V(,Vj(7V'y /̂̂ 'y'= )̂̂ ^co + boundary terms 

-̂ Y^V (̂W'y /̂̂ )̂ 'yahd^a; + boundajy terms. 

Put t ing these terms back into the initial expression we find t h a t 

6 1 = J [V"V''(A^7^^^) — 7"^V^(A^7^/^)] 57ab d^x + b o u n d a r y terms. (2.56) 

The final identity we need gives an expression for the Lie derivat ive of a density in terms 

of covariant derivatives. 

= y/"7V''V.(7r':^) - 7r'="V»(Ar'^) - :^"''Vn(7V':) + |7r^7''' '(V^(7V6) - V6(7VJ) 

= 7V''V^(#'^) + 7r'̂ V (̂A '̂') - 7r'̂ Vn(A '̂') - 7r'^V»(A/'"). (2.57) 
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2.3. Examples of Canonical Analysis 

We now start calculating the evolution equations for Using (2.50) and ignoring the 

boundary terms we obtain 

= - / (5^(z,z) d^z (2.58) 

1„-
2 

-

+ y /2Y"V'^(N) - y/^'y"^V^(]V) + V.(A^''7r'^) - 7r""Vr,(7V'') 

- : ^ " ' ' V m ( M , (2.59) 

where we have used (2.52) (2.54) and (2.56). So applying (2.57) we can write 

+ i7-^/^7'^Ar(7r"^7r"^ - 1^"^^%,) + - 'yV2.ycdY2^jY) + (2.60) 

We have now completed the first stage of the Dirac-Bergmann algorithm, using the short 

cut method. This gives us a well-defined initial value sys t em because we choose initial 

d a t a for and n"'^, ensuring it satisfies (2.49a) and (2.49b). The lapse and shift must be 

chosen throughout the space-time. We then use (2.51) a n d (2.60) to evolve the canonical 

variables through the space-time. 

The four equations, (2.49a), (2.49b), (2.51) and (2.60) can be expressed more simply if 

we replace nab with Kab using (2.44). Before we s ta r t we will derive some more identities 

which will be used in the simplification. 

a) Taking the trace of (2.44) we find 

= 2 ^ . 

Note the use of to represent 
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2.3. E x a m p l e s of Canonical Analysis 

b) Also from (2.44), we obtain 

^-1/2-ah ^ 

= Iryab^m _ T^ab 

2 / m 

^ a 6 ^ ^-1/2 

(2.61) 

c) We now use (2.44) to replace Tr̂  with in the following expression: 

= N ' f " ^ {S',K - K\)(2K) - 2{S'„^K - K'^iS^K - K^) 

-27^1^-
-1/2 (2.62) 

We s t a r t with simplifying (2.49a); 

7 
-1/2^/ 

- 2 ; i r j r + ( ^ r ^ r - ^ : ) ( % ; r - 7r%,) -

- 2 ; r j r + 3 ^ 

(2.63) 

Equa t ion (2.49b) becomes 

r ' " ' K = 

= -2Vi(5lK - K\) 

= 2(VtK\ - V.K), (2.64) 

while (2.51) simply becomes 

= 2jV'y - i 7 a 6 ^ % ) + 

= —27VA'o6 + /!;y7ab- (2.65) 
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2.3. E x a m p l e s of Canonical Analysis 

The final equat ion, (2.60), takes a bit more work. To s t a r t wi th we show tha t 

^ ^ 

then 

it 'e = Tfatyak 4- TT^'i'd, => = acĵ T - - jir** -- TrCd-ya, (Z.fX)) 

We now multiply (2.60) by 'yjg. 

(j=' ' )7J. = - ISIR) + 

+ - i f Z , 0 + 7 ' " V = V , ( A r ) -

(2.67) 

Now using the ident i ty derived earlier in (2.66) and (2.62), we show t h a t 

+ 27V'y-i/2 

- ^ ^ % ) + 7i/2V':VXA^) - 7^/^(^:V^(Ar) (2.68) 
2' 

We shall now spend some t ime simplifying the last two t e r m s of the expression above. 

N TT 

; .c 
e = - 2 ( 7 ° ' j r - k ' ' ) k i , N r ' ' ^ + Cj^r 

= 2(k'ik\ - kk%)r'''N + Cg(sik - k \ ) . 

We now subs t i tu t e this back into (2.68), 

Sik - k \ = -N-,^I^R\ - ISIH) - \NT^iH';(k'%k--^ - kk%) 

+ 7*'= V'V,{Ar) - + C / i ( S l k - K ' J . (2.69) 
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2.3. Examples of Canonical Analysis 

We then take the trace of this equation to obtain an expression for 

- 2 ^ = 4- 2 y / " v ^ M -

We can substitute this expression into (2.69) 

- |(^:A) - - ^ ^ % ) - 'yV2v'=Vg(W) 

+ 7'/"(^:V"(]V) - I 

- y / 2 v ' ( 7 v ) + z : ^ ( ^ ) ] 

= - '-y^/^V"Vg(A^) + r ^ ( ^ % ) + - J ^ ^ ) -

= - 'y^/2V'V,(7V) + Z:^(^%). (2.70) 

In the last step we made use of the constraint (2.49a). We now focus on the left hand 

side of (2.70). 

= 

By substi tuting this into (2.70) we finally get the expression 

= N(7Z% + ]rjr%) - v':v,(Ar) + (2.71) 

We have now finished simplifying all the equations. In summary, the simplified constraint 

40 



2.4. Remaiaing steps of constraint analysis 

equations and evolution equations are 

^-1 /2^, _ - Ji! (2.72a) 

= 2(V6;r'', - V.jT) (2.72b) 

7 ^ = -27Vjr^i, + r ^ 7 ^ (2.72c) 

= ^ ( ^ % + - V''V(,(Ar) + (2.72d) 

This is the same as (4.18) in Isenberg &: Nester ( 1 9 7 9 ) . 

2.4 Remaining steps of constraint analysis 

Having shown examples to clarify the method of canonical analysis, we will now proceed 

with the remaining steps of the Dirac-Bergmann a lgor i thm. We first consider grouping 

the constraints into first and second class. We will then give a brief overview of the steps 

which, when possible, lead one to a quantisation of the or iginal field theory. 

2.4.1 First and Second class constraints 

A first class constraint is a linear combination of the primary and secondary constraints 

whose Poisson bracket with every other constraint is at leas t weakly zero. If a Poisson 

bracket is not weakly zero then the constraint is said t o b e second class. Therefore we 

are able to rewrite the primary and secondary constraints as linear independent first and 

second class constraints. There are therefore many different expressions for the first and 

second class constraints depending on which linear combina t ions are taken. We may think 

of these as being different yet equivalent descriptions of t h e same physical system. Al-

though every description is equally valid, we will find t h a t some descriptions will be more 

advantageous in revealing the underlining gauge transformation generated by the first 

class constraints. It is these first class constraints t h a t genera te infinitesimal gauge trans-

formations on the reduced phase space. The algebra generated by the Poisson brackets 

of the first class constraints is closed. 

It is now also possible to ascertain the number of degrees of freedom. Wi thout any 
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2.4. R e m a i n i n g steps of constraint analysis 

constraints the number of degrees of freedom is the same as the number of variables. In a 

theory which has constraints, the number of degrees of freedom will decrease by one for 

every independent constra int and gauge freedom. The n u m b e r of constraints can easily 

be found by totalling the number of constraints obtained through the canonical analysis. 

The presence of gauge freedoms can be found in the inde te rminacy of the evolution 

equations, ie. the evolution equat ion is de termined by an unknown mult ipher , N. T h e r e 

may exist more gauge condit ions t han undefined mult ipl iers , and therefore to obtain t h e 

number of degrees of f reedom we would have to find the n u m b e r of gauge constraints of 

the theory. Fortunately , in all meaningful cases, the n u m b e r of gauge constraints is t h e 

same as t h e number of first class constraints . Therefore t h e number of degrees of f reedom 

can be calculated by, 

(2.73) 

where N is t he number of variables (including the m o m e n t a ) , F is the number of first 

class const ra in ts and S is then number of second class cons t ra in t s . In general this is as 

far as one can go to de te rmine the degrees of freedom. I n m a n y cases the theory is t o o 

complicated to isolate the degrees of f reedom. A common a p p r o a c h would be to in t roduce 

a gauge condition which breaks the gauge freedom of the theory. Therefore the first class 

constraints become second class. Since all constraints are second class you now have one 

system of equations that may be solved explicitly for all variables, except the variables 

t h a t contain the degrees of f reedom. This then, leaves us w i th an unders tanding of t h e 

true degrees of freedom contained in our theory. 

When the first class algebra is calculated it is common to s m e a r the const ra ints with tes t 

functions. Th i s avoids added complicat ion f rom in tegra t ing p roduc t s of del ta funct ions. 

This can be seen in the following example. 

As an example we shall consider the const ra in ts t h a t were obta ined f rom the con-

straint analysis of vacuum General Relativity. There are f o u r const ra in ts given by (2.49a) 

and (2.49b); they are all first class. To show th is we first ca lcu la te the Poisson bracket of 

'Xij and with 9-̂ ^ smeared by with a test function (see below). Then we calculate the 
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2.4. R e m a i n i n g steps of constraint analysis 

Poisson brackets of the const ra ints with each other. Therefore : 

J z Uy 

= 

= (2.74) 

z) 
L-Jy 

d:,*" + Hv, z) d \ 

= CfTr''. (2.75) 

In the first s tage of (2.75) we have expressed the cons t ra in t l-L'̂  in t e rms of par t ia l deriva-

tives instead of the covariant derivative. Using these two equa t ions we are able to deduce 

t h a t the Poisson bracket of 'H'{'yij, Tr'-') wi th %'). is 

= (2.76) 

We can clearly see from (2.74) and (2.75) that the constraint generates diEeomor-

phisms in the hypersurface. This reveals t he invariance of the act ion to infinitesimal 

coordinate transformations a;' — w h i c h are given by a;'' = z ' + where = /'(a;) 

The Poisson bracket {f d^x, f d^y} can also b e calculated using the same 

method as above. Therefore using the identi t ies (2.74) a n d (2.75) we obta in : 

/ ' « : d y j = - y d & . (2.77) 

The final Poisson bracket , ( f fV,' d^x, J gH.' d^y} can also be calculated. We see f rom 

(2.49a) t h a t most of the t e r m s will commute because t hey conta in no derivatives, or free 

indices. T h e only t e rm t h a t will not commute is the t e rm t h a t contains t h e curvature R. 
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2.4. Remaining steps of constraint analysis 

Therefore, before we calculate the Poisson bracket we will Erst vary the curvature: 

= [ST„\^ - J . (2.78) 

We separate this and consider the penult imate term first: 

and then the 6nal term 

- (̂ 7pg,A)] 

So combining these with (2.78) results in: 

( ^ ( 7 ' / ' / ^ ) = (2-79) 

Again we can see from the above tha t it is only the last t e rm which will contribute to 
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2.4. Remain ing steps of constraint analysis 

terms arising from the Poisson bracket. We now calculate this Poisson bracket: 

z) d^i/ 

2 / 7 ^/^(TTp,-§'%,7r)^(2;,z)d^a; 

iJy 
d^z 

+ 2p;tf/7r^' - - 2p;it/7r + SY'^PjZt/W^ 

^ + 2 ^ * ; t b/;Z - /P;(] 

[/P;, - P/;^] 

Combining these results gives us the first class constraint algebra: 

(2.80) 

/ % d \ y p ^ X d ' z / j = y 

pT^'d^a;, / /?/'d^%/ //^3. [ / P j - g / j ] 

(2.81a) 

(2.81b) 

(2.81c) 

We now consider how many degrees of freedom we have in our field theory. We know 

tha t all four constraints are first class, and tha t there are no secondary constraints. 

The tota l number of canonical variables arising from the symmetr ic variables ""ŷ , Tf'-̂  is 

twelve. Therefore applying these numbers to the formula out l ine above (2.73) results in 

the number of degrees of freedom | ( l 2 — (2 x 4)) = 2. As expec ted this is consistent with 

General Relativity. 

We finally consider the geometric content of the gauge t ransformat ions generated by 

the other constraint T-L'. To simplify things we int roduce a gauge condition in which 
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2.4. R e m a i n i n g steps of constraint analysis 

TV — 1, TV' = 0, then the Hamil tonian (2.47) reduces to: 

== _ (2.8:2) 

From this we would expect the constraint H ' to genera te t h e dynamics. If we calculate 

the Poisson bracket below, 

J y J Z "/y 

- -z) 

= (2^i; - 7 i ; ) . (2.83) 

We can see f rom (2.51) t h a t this is jus t jij. Therefore V.' is responsible for the dynamics, 

which leads to it being called the Hamil tonian constraint , whi le the constraint T-L[ is called 

the m o m e n t u m constraint . 

2.4.2 Reduct ion of second class constraints 

In order to p romote the Poisson bracket relat ions to o p e r a t o r relations, the constraints 

mus t be gauge invariant . Therefore, if our sys tem conta ins second class constraints t he 

t ransi t ion is not s t ra ightforward. There are m e t h o d s to dea l w i th such systems. The first 

we shall look at is the me thod of using modified brackets, as in t roduced by Dirac. These 

brackets are Poisson brackets which have been adap ted b y t h e addi t ion of t e rms which 

cancel those given by the secondary constraints . Hence, if we define a ma t r i x of Poisson 

brackets among the second class constraints as 

A^(3; - 2/) = W W , %;(;/)}, 

then we define the Dirac bracket as 

{ ^ ( a ; ) , B ( 2 / ) } D : = { ^ ( a ; ) , B ( ? / ) } - / dw^dz^{A(a ; ) ,%, (w)}(A ^ ) ' : ' ( w - z ) { % j ( z ) , B ( ? / ) } , 

which will be zero with all constraints . Al though this seems very s t ra ight forward, prob-
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2.4. Remaining steps of constraint analysis 

lems arise in practice due to the inversion of the matrix . We are assured of its existence 

by the linear independence of the second class constraints, but actually calculating it can 

be very cumbersome in physical situations. 

An alternative method to constructing the Dirac bracket is the introduction of new vari-

ables, called starred variables. These variables are then invariant under Poisson bracket 

relations with all constraints. They are defined by 

(2.84) 

Therefore, the Poisson bracket of the s tarred variables is t h e same as the Dirac bracket 

with the unstarred variables. At first glance the new variables seem as complicated to 

define as the Dirac bracket. However, in practice this is n o t the case. If we define the new 

variables as a linear integral combination of the second class constraints, 

*A(z) := + y d 2/AXa; - (2.85) 

where A' is an appropriate distribution to be determined, t h e n suitable combinations can 

be determined using the requirement that the new variables have a vanishing Poisson 

bracket with the secondary constraints. This avoids the calculat ion of (A"^)'^. Examples 

using starred variables can be found in Soteriou (1992). 

By using either method, Dirac brackets or starred variables, we are able to efiminate the 

second class constraints, thereby leaving only first class constraints. This then enables 

us to generate an algebra from the gauge invariant variables, which in turn allows us to 

proceed with the canonical quantisation. 

2.4.3 Quantum theory: the final steps 

In this section we shall give a brief outline of the s teps involved in transforming the 

Dirac algebra, <S, into a coherent quan tum theory. This a r e a is beyond the scope of this 

report, but we shall outline it for completeness. For more detailed analysis the author 

recommends reading Ashtekar (iggi). 
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2.4. Remain ing steps of constraint analysis 

Step 1: 

First, each element (^) of (9 must be unambiguously promoted to a quantum operator 

JF. The algebra of must not be so large so that the process is hindered by factor order 

problems, and yet large enough to keep the quantum opera to rs unambiguous. 

Step 2: 

Construct an algebra generated by these operators by imposing commutation relations: 

[JF, We will denote the algebra X. 

Step 3: 

Define a -K relation on the algebra. This requires G = (F)* when two classical variables 

are complex conjugates of each other, and tha t the -k re lat ion satisfies the following 

relationships 

( f + AG)* = ^ + ( A ) ( r 

(FG) ' ' = 

= F . 

We denote the resulting algebra 

Step 4: 

Find a representation of the algebra ^ by using operators on a complex vector space y . 

Step 5: 

Obtain quantum analogs of the classical constraints. Find the linear subspace of y 

which is annihilated by all quantum constraints. This is t h e space of physical quan tum 

states. 
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Step 6: 

Introduce an inner-product on Vphy, such tha t the -k relat ions become the Hermitian 

relations on the Hilbert space. 

Step 7: 

Interpret the adjoint operators and devise a method to compu te their spectra and eigen-

vectors. We then need to discover the transformation generated by the Hamiltonian which 

can be interpreted as the "time evolution". 

If all steps have been completed then we have we a q u a n t u m representation of the original 

action. 

2.5 Summary 

To summarise, we have discussed the Dirac-Bergmann a lgor i thm, which enables us to 

decompose a field theory from the action, and have provided some examples to help 

clarify aspects this process. 

Although some progress has been made in General Relativity, a full decomposition has 

still to be completed. Initial progress slowed considerably due to the complexity of the 

constraints t h a t were obtained. Due to their non polynomial na tu re the Hamiltonian 

constraint does not give a differential operator on quant isa t ion bu t a pseudo-differential 

operator , and therefore we do not know how to use opera to r ordering in the quantum 

space. Therefore fur ther progress along the route of canonical quant isat ion of General 

Relativity stalled. 
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Chapte r 3 

Canonical analysis in a 2 + 2 foliation 

The previous chapter explored the application of the Dirac-Bergmann algorithm to a 

3 + 1 decomposition of the space time. Although this f o r m of decomposition is the mos t 

common, it is by no means the only type. d 'Inverno & Smallwood ( 1 9 8 0 ) introduced an 

alternative approach to space-time decomposition. In the i r work they introduce a 2 + 2 

decomposition, in which the space-time is decomposed in to a timelike 2-surface and a 

spacelike 2-surface. In the analysis of the initial value p rob lem it was found that the t rue 

degrees of freedom reside in the conformal metr ic induced on the spatial two surface; 

therefore the variables tha t generate the degrees of f reedom should be easily isolated. It 

was because of this a t t ract ive property tha t a canonical analysis of the 2 + 2 decomposition 

was thought to be of value. In order to give a Hami l ton ian description the timelike 2-

surface is decomposed into an evolution direction and n o n evolutionary direction. This 

was first a t t empted by Torre ( 1 9 8 6 ) . In this work Torre per formed the canonical analysis 

of a 2 + 2 description of space-time. In his work, however h e did not set two directions to 

be null; he kept the evolution direction time-like instead of null. Therefore his approach 

was not fully 2 + 2 but rather a 2 + 1 + 1 approach, see Egure 3.1. In this chapter we 

will extend the work in Torre's paper so tha t the evolution direction is also null. This is 

a more natural approach to a 2 + 2 foliation (see Hayward 1993) 

We shall s tar t by describing the general 2 + 2 metric decomposit ion, which provides an 

introduction to the 2 + 2 formulation. We will not consider many other details such as 

the Einstein equations, but ra ther restrict ourselves to deta i ls required for this chapter 
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3.1. 2 + 2 metric decomposition 

c 

Figure 3.1: Fzpure g/iotumg wztA a;° oa ei;oWioM 
an(f n?/// (firec^zon. a;' apong (Ae apoczaZ guTyoce 5". 

and those later in this thesis. 

We will then perform the Dirac-Bergmann algorithm on a modified Lagrangian so t h a t 

the evolution direction is null on the reduced phase-space. This results in the derivation 

of a first class algebra, which is given a geometrical in te rpre ta t ion in the 2 + 2 geometry. 

We conclude this chapter with a discussion about the complicated na tu re of the con-

straints and how this might benefit from the introduct ion of the Ashtekar approach. We 

will also compare our first class algebra with the algebra obtained by Torre. This will 

provide us with some understanding of the first class a lgebra to expect when we consider 

a 2 + 2 Ashtekar approach. 

3.1 2 + 2 me t r i c decompos i t ion 

A foliation of co-dimension two can be described by two closed one forms and n^, 

therefore locally rf- = In our work we consider the surfaces (jP = const to be equal 

time surfaces. These two forms generate hypersurfaces de6ned by: 

Ea : = const. 

These two families of three-dimensional hypersurfaces intersect , thereby generating a 

family two-dimensional surface {5'}, (figure 3.2). 

{S} = {So} n { S i } 
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3.1. 2 + 2 metric decomposition 

Figure 3.2: o/ Ayperguf/acea /orm {5"}, wAerg one 
dimeMazon /loa 6een remo%;e(f. 

Let Ma be the dyad for the vector basis which is dual to n ^ . Therefore: 

« = (̂ b 

The one-forms form a basis for a family of spaces o r thogona l to {5'}, which we will 

label {T}. The vector basis t ha t spans {T} is given by ria- These basis vectors do not 

necessarily commute, which by Frobenius' theorem implies the spaces {T} need not be 

surface forming. We define the surfaces {S} to be space-like, while the distributions, {T}, 

will be considered to be time-like. 

We can use to define a 2 x 2 matrix, 

-^ab —9a/5'^a'^h' (3.1) 

which then implies t ha t 

In order to represent information in the 2 + 2 foliation, we pro jec t it onto {5"} and {T} 
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3.1. 2 + 2 metr ic decomposition 

nsing the respective projectors 

Sf = S 1 - (3 2) 

= < n ; (3.3) 

By using these projectors we can decompose any space- t ime tensor into tensors defined 

on S and T. Tensors defined on T can be reduced to scalars by contracting them wi th 

the dyad baais vectors or 1-forms. 

Project ing the metr ic Qap gives metrics induced on {5"} a n d {T}. 

= (3.4) 

= % 

= 7:,^. (3.5) 

It is worth noting at this point tha t 

7ab ^ ^ (^'G) 

/^ab = /^a/gf^a'^b = - ^ b - (3-7) 

Therefore, we can unders tand Â oo and A^n as the lapse of {5"} in {So} and { S i } respec-

tively. 

Let us define two vectors ea which connect the family of two surfaces of {6"}, see figure 3.3. 

These are known as the rigging vectors. We define them by 

Ga = Ra + â (38) 
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3, 

k 

Figure 3.3: t;ec(org m (Ae (wo wAere 
OMe apacmZ (fzmengzon Aag 5een remo%;eo(. 

where 6̂  is considered to be the shift vector, and 

= 0. (3.9) 

Although, as already stated, 71̂  do not necessarily commute, it is always possible to choose 

6a in such a way that the rigging vectors Ca commute. A consequence of this is tha t each 

Ga is tangent to a congruence of curves in {Ea}, which by construction, are parametrised 

by Therefore by choosing coordinates so that = x^,<j?-{x°') = x^, and 

x^,x^ are constant, then 

d 

From (3.8) we can write 

^0 — Co — 6o — (1,0, 6Q) 

n i = Ci — 6i = (0,1, h\). 
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3.1. 2 + 2 metr ic decomposit ion 

This then allows us to calculate the metric components. 

9ab — Oifiai 6b) 

— ^a; ^b) 

= p(Ma,Mb) + ^ ( 6 a 6 b ) 

= ./Vab + 7^616^ 

9ai — ^a, ^i) 

= 

9i3 — lij-

Note at this point t h a t TVab = by the choice of Ma. 

Therefore, we obta in the metr ic 

and with inverse 

y : ' ' 4 - 7 ^ ^ 6 ' ^ 6 

In a similar m a n n e r to the metr ic the vacuum Einste in equa t ions 

= 0, 

also decompose into three groups: 

G ^ = 0 

G'^ = 0. 

(3.10) 

f ' = \ , 1 . (3.11) 

55 



3.2. Double null canonical analysis 

The advantage of this 2 + 2 formulation is that after the analysis of the Aeld equations 

we 6nd that the two gravitational degrees of freedom c a n be chosen to lie within the 

conformal 2-structure 7̂ -̂ where 

Ty ~ l l i 3 (3.12) 

In most calculations we will consider a f rame tha t has been adap ted to the foliation. Th i s 

means t h a t we restrict the f rame Cq. in such a way that e; are tangent to {5}. This will 

greatly simplify the calculations. We can see from (3.11) t h a t to obtain a double null 

foliation, (^°° = — 0), we require both = 0 and = 0. These are the two 

constraints that we impose on the Lagrangian and this is the topic of the next section. 

3.2 Double null canonical analysis 

We star t our work from the 2 + 2 Lagrangian tha t Torre derived in his calculations. As 

we have already mentioned Torre imposed only one null condition and therefore only 

the direction was null. Although this was achieved by t h e introduction of a Lagrange 

multiplier, Torre combined all the terms tha t multiplied t h e variable into the mul-

tiplier. This effectively set and its spatial derivatives t o zero and therefore in order 

to obtain all the Einstein equations he had to make a pa r t i cu la r choice for the multiplier 

t ha t introduces the null condition. After the canonical analysis Torre was able to isolate 

the First class constraints, and calculate the algebra associated with them. 

In this section we are going to extend this work of Torre to ensure t h a t two directions are 

null. This will then give us a t rue double null 2 + 2 first class algebra. As we are s tar t ing 

from Torre's Lagrangian the two null conditions are going t o be t rea ted differently. The 

condition t h a t Torre had set f rom the very s tar t we will keep jus t as he had introduced. 

The second null condition = 0 will also be introduced via a Lagrangian multiplier, 

but it will remain freely specifiable until the constraint is in t roduced after the canonical 

analysis. This is jus t the same as the f ° constraint in e lect romagnet ism, previously con-

sidered. Al though we have said t h a t this work gives us a ' t r u e ' 2 + 2 first class algebra, 
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3.2. Double null canonical analysis 

we still choose to be the 'time' direction. This breaks the symmetry between 3;° and 

This will be discussed in the 6nal chapter. 

We will follow the work of Torre as closely as possible, a l though the index notation follows 

the convention used throughout this thesis. We will wri te Nab as 

TVo := TV := Woi, := Wi i . 

We start our work from the Lagrangian derived by Torre, 

+ jVo) 

+ / i i N i + fj,o{No)^. (3.13) 

In the above % is the curvature in the spacial two surface. Following Torre we have 

already set Ni to be null, al though its t ime derivatives r ema in undefined at this point. 

Following Goldberg et al. ( 1 9 9 2 ) we have introduced the e x t r a null condition, Nq = 0, as 

a squared te rm because we are imposing a condition on a cyclic variable. This simplifies 

the constraint analysis by avoiding the occurrence of a mult ipl ier equation at the next 

stage, which is a trick t ha t we will find useful later in our calculations. 
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3.2. Double null canonical analysis 

We now deEne the conjugate momenta below: 

jpo := == 0 (3.1<la) 

P ; = — - = 0 (3.14b) 

oA^i 

= - |y/2/:^^(7V-2Aro) (3.14c) 

t + 2 - ^ ^ ^ V , l ) + ^ ^o\l)] 

= - v , i ) - (3.14d) 

= 0 (3.14e) 

^ - 7tm7fn)A^;Cni7"'" + 

(3.14f) 

These variables and their respective momen ta sat isfy the equa l - t ime Poisson brackets: 

{No(a; ) , f° (? / )} = 6(a;,^) 

{ ^ W , - P W } = (^(3:,^) 

{7Vi(a;),.P^(^)} = 

{ 6 ^ ( a ; ) , f ^ ( ? / ) } = 

W , HtKz/)} = 0 

Hence, f rom these definitions of t h e m o m e n t a we are a b l e t o show t h a t t he p r imary 

constra ints are: 

# 1 % 0, JVo « 0, « 0, P % 0, - 0- (3 15) 

An addi t ional constraint arises f rom (3.14f). At first g lance i t is clear t ha t this equat ion 

is not a p r imary constraint , due to the t ime derivative in t h e penu l t ima te t e rm. But as 

we shall see, this derivative occurs only in the trace of . Therefore the trace free part 
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3.2. Double null canonical analysis 

of (3.14f) is in fact also a primary constraint. Let H be the trace of A 

n := - 2£„,ao + - itOCnn"' 

= - 2C„,N) + 

Let f l i j denote the trace free par t of defined by 

= ILij — 

= - 7i&7;Z -

= - 7ik7;()/:ni7'=^ 

2 

: = Ilij + §7iA:77z/̂ ni (y/^7^') = 0 (3.16) 

Adding (3.16) to the other primary constraints (3.15) we see that from a total phase 

space of twenty field variables we have eight pr imary constraints . After the Legendre 

t ransformation we derive the Hamiltonian density: 

+ |/:^X^oA^-')] + + Ao(#o)" + Aof° + AP + A'f0^ + (3.17) 

We define 

:= \ + 2 V " n t m 

X := n + 
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3.2. Double null canonical analysis 

We now use the Dirac-Bergmann algorithm to determine the complete set of constraints. 

This is achieved by propagating the variables in the usual way, Z = {Z, ^7} 

TVo = Ao (3.18a) 

TV = A (3.18b) 

TVi = (3.18c) 

= A' (3.18d) 

6 / = 1' + V W + (3.18e) 

We sheill split the equation of motion for the two metric into its trace and trace free 

parts. This is because the conjugate momenta to is I l y , which has already been split 

to obtain an additional constraint . Therefore, the trace of t he propagation of results 

in an equation of motion, whereas the trace-free par t resul ts in a multiplier equation: th is 

is shown below. 

f - 2V;6o ' + A'; - lAM/yp^y; 

= -2V,-6o' + 

= -2V^6o' + 1 + (TV-̂ jVo). (3.19) 
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3.2. Double null canonical analysis 

We deSne the trace free part of by 

7'^ : = 7'^ ,0 -

= A'̂ ' - 2V^6o' - 7'^ v ^ 6 r + 

= + r 6 « f ; + A:; 

= |7Vo7V-'/:nif^ + Ao7 ' ' + (3.20) 

We can now see tha t (3.20) defines the multipliers A'-̂  while (3.19) is an equation of 

motion. 

We now propagate the pr imary constraints. We star t by ensuring the slicing condition 

Â x = 0 is t rue for all t ime. Therefore 7Vi_o — 0, which implies by (3.18) t h a t 

% - 0 (3.21) 

On the other hand the propagat ion of jVo defines simply t h e multiplier Aq (see 3.18), and 

not an additional constraint . 

We now go on to propagate the remaining pr imary constra ints : 

= 7V-:$o + 1% (3.22a) 

% (3.22b) 

f °t,o = (3.22c) 
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3.2. Double null canonical analysis 

f 0 = -7Vo7V-"<^o + 

- 2y/"Ar-2z:^^7V[|AroW-i( 'y-V2/:^^y/2 _ A^) + 1 + | r ; , , (NoAr - i ) ] 

- 2/:^, ( y / " 7 V - : [ | 7Vo#- i ( ' y - i / 2 / : , ^y /2 - Ar-1Z:«,N) + 

- 2 \ 

= -jVoAr-^,^0 + - V ^ f 

: -No7V-^.^o + 

l7Vo#-2 ( 'y -V2r^^(y/2) _ ^ - i / : ^ ^ ( A r ) ) + ^ - i / 2 p i _ % 

- 2#-:/:», (#[#1 + |/:,xy/'Ar-27Vo)]) 

% 

$ - A n A ^ - \ 

% A^oA^-" - Ar- i r»XA^)) + 7 - ' / " ^ ' - I^^XAToA^-^) 

(3.22d) 

(3.22e) 

W h e n we propagate these four constraints we will get e x t r a equat ions arising from only 

the weak form of the constraint. To help clarify this, we will propagate the constraint 

'^ + %-P'(9'^,PA). 

{.^ + = {^, + {%, ^(99" ,PA) + % { F ( g \ p A ) , 

We can see that the last term will be zero because it is weakly zero by the constraint %, 
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3.2. Double null canonical analysis 

while the middle term is zero as we have already ensured % is time independent. Therefore 

when we propagate secondary equations (3.22) we need to propagate only their wegik 

form. These are automatically preserved because they define the Einstein components 

which in turn are preserved by the Bianchi identities. This implies that preserving 

the constraints (3.15) in time results in five secondary constraints. 

(3.23) 

Propagat ing (3.16) leads to a multiplier equation. We have now ensured tha t all t h e 

pr imary constraints are conserved for all time. The aim of this work is to obtain a con-

straint algebra. We therefore move straight on to obtaining the first class constraints. It 

is possible to obtain all the Einstein equations f rom the cons t ra in ts and the equations of 

motion, using Torre's original work. 

3.2.1 First class algebra 

The constraints so far obtained are not necessarily first class. Some will require adapting 

by the addition of linear combinations of the other constra ints . Geometric expectations 

will dictate the constraints tha t need adapting as well as t h e linear combinations required. 

For example, we would expect tha t two of the first class constraints would generate 

diEeomorphisms along the spatial surface. Therefore we adapt the constraint to ensure 

t ransformations of variables generated by the constraint are in line with our geometric 

expectations and then check tha t they are first class. 

Therefore we adapt three secondary constraints in the following way: 

: = 4 + f ' V t J V i + P V t W + f°VtTVo 

= 2 V - A t m - f ^ f f °VtTVo 
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3.2. Double null canonical analysis 

To ensure the constraints are first class we must calculate the Poisson brackets between 

each of the constraints. We will start with but before we calculate its Poisson brackets 

with other constraints we will calculate its Poisson bracket with the canonical variables. 

{ t 
.mn I r) fk 

{61, z)d?/dz 

Jy J Z Jy 

uk 

{TVo, / / (^(z,z) / f rVtA^o.^(2 / ,z )d^) d^z 
Jy J Z Jy 

= /''VfcA^o = ^fNo 

{TV, / 
Jy J Z Jy 

{ATi, / f f ^ V t ( A r ) d ? / } = y ,5(3;,z)y f V t M 6 ( 2 / , z ) d ? / d z 

= jCfNi 

(3.24a) 

(3.24b) 

(3.24c) 

(3.24d) 

(3.24e) 

( n ^ ^ , / 2 f V z ( n p t y ' ) d " z / } = / : / n r (3.24f) 

Jy -Jy 

= + fHb'lPi).! 

f - ( f P ^ A f y } 

•Six.z) [ -{fPi).t]s(y,z)d'ydh 
-'y 

(3.24g) 
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3.2. Double null canonical analysis 

.[fO, / jrAjcOTZkCfVo) df?/} = /Ifjco (3.24b.) 
•'y 

{ f , / f f V t ( # ) d^i/} = r / f (3.24i) 

Jy J z Jy 

== EE /ZfjSi (3.24j) 

Using equations (3.24) we can easily calculate the Poisson brackets of 

+ f°VtAro]d^]; , / pYzd"?/}. 
Jy 

We shall break this down, te rm by term. The first term is given below; 

2 V , ( n p t ) f 5 ( 3 ; , z ) d " a ; / / : , f " ' a (? / , z )d"? /d"z 
y 

+ 2 V ^ ( / ^ f - ) J(a;, z) d^a; z) d"; 

y ' ' v , ( n p t ) 4 / ' + / S " ' ' 4 V , ( % ) - v ^ ( / ' ^ 7 ; - ) / : , ( % , d^'z 

d^'z 

= / 2 V P ( n p k ) / : / / d " z . 

(3.25) 
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3.2. Double null canonical analysis 

T h e second t e r m t h a t arises is: 

{ f f l P K t + (f-tt ' i), ,! d ' z , I s V . d!,} 

4 4 ' + S(x,z)i\[Cny] 

- £ 
^gJ^p 

d^z 

= (3.26) 

T h e th i rd t e r m becomes: 

- V t ( f V " ) ' ^ ( 3 ; , z ) d " a ; / yVz(7Vi)(^(2/,z)d"2/ 

i3_ i3. 

V t ( f + V , ( f Y ) f V t ( # i ) d"z 1 J\ fk\ 

/ '=P 'Vt (^ ' )V , (7Vi ) - P V V , ( f ) V t ( N i ) + f W V [ t V z ] ( A r o ) d ' z )1 1 f t 

(3.27) 

T h e remaining t e rms are the same as the above. Therefore , combining all t he te rms gives 

the final result : 

/ d '̂a;, / p d"?/ d z 
X Jy 

(3.28) 

For the remain ing Poisson brackets the calculations are s imi la r and we shall s ta te the 
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3.2. Double null canonical analysis 

outcome. We now present a summary of the Poisson brackets for 

/JVi d a;, y d 2 / d ^ z % 0 

/ ' P » d = x , [ g%d'y 
Jy 

y P d^a;, d^i/ d^z % 0 

d^a;, ^ d ^ ^ d^z % 0 

d^z, y d"^ ^ = / d^z 0 

y^o d^a:, y d^? / j = y //^gV'o d^z % 0 

/%d^z , / = / / Z l g X d ^ z ^ O 
a; vy y Jz 

/Wod^z , / = ^ / / Z g T V o d ^ z ^ O 

/<;6d^a;, / == / / / I g ^ d ^ z R j O 
X J y J J Z 

We can see clearly from these equations that is & 6rst class constraint. It is straight-

forward to show that is also Erst class. We can see from the Poisson brackets of 

with the other constraints that is first class. 

/ / / i d^a;, / p;/,o d^;/ ^ = 0 yyou^" 
y 

'k f)0 j3„ / „„/, j3„ /pV'od '2 /> = 0 
X Jy J 

/ f d^a;, / ^ ^ o d ^ ! / ) = 0 

/ f k d a;, y ^^0 d 2/ j = 0 

d'a:, / ^^0 d ' ? /1 = / d ' z 0 
' X J y ) J z 
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3.2. Double null canonical analysis 

X j y 

3_ / ^3. /TVo d z, / pV'o d 2/ ^ = 0 
X Jy J 

/(^d^a;, / ^^od^2/ l = / /Zlg^^d^z % 0 
X J y J J z 

y d^a;, y # 0 d^? / j = - ^ d ^ z % 0. 

Therefore, we have five first class constraints, leaving t h e remaining eight constraints to 

be second class. These are 

^ 1% 0, Â o % 0, 7Vi % 0, % 0; f % 0, % 0, P° % 0 (3.30) 

The first class algebra is given by 

(3.31a) 
X J y 

jj''P!A'x, j f = 0 (3.31b) 

f P ^ d ' x , f g i i o d ' ' y } = 0 (3.31c) 
X J y 

^ 0 (3.31d) 
X J y 

/^O d^z, y d 2̂/ j = y /AV'o d^z % 0 (3.31e) 

j y y ^ o d ^ a ; , y # o d ^ 2 / j = y ^ o ( / ' C n i P - ^ Z : n i / ) d ^ z % 0 . (3.31f) 

Now tha t we have obtained the first and second class const ra in ts we may find the dimen-

sion of the reduced phase-space. In this double null descript ion we have a phase space 

of twenty variables. We obtain five first class and eight second class constraints. Pu t t ing 

these results into the standard formula (2.73) we obtain ^(20 — 2(5) —8) = 1. This results 



3.2. Double null canonical analysis 

in one true degree of freedom, which is what we would expect from a null fohation of the 

space-time as Penrose states: 

T/iere /eature 0/ (Aege to 

Ao2;e og per oa m (Ae corresponds^ 

pro6Zem. (Penrose ig8o) 

Geometrically the two constraints ^ represent the gauge freedom of the shift variables 

60- We use (3.24) to provide the inGnitesimal transformations of the constraint 

f k . 

Sb'o = U,Jj''Ad^x]=0 

k* — J k* / ^3^ I _ r A/: 

' X 

f I 
(^7V=<j7V, 

— ) Tmnj / / '4^k d / — -^/Ti 

(̂VVo == ( w o , / f d " z l = - 0 

i A^i, / d'3; ^ f /TVi 0. 

This shows that this constraint generates diffeomorphism's a long the spatial two surfaces. 

We also note from the above that the variables and genera te different t ransforma-

tions. This can be unders tood when we realise that bg lie in t h e E i plane and are therefore 

shifts to the evolution direction, while bf lie in the Eq p l ane and are therefore par t of the 

decomposed three metric. 

The final first class constraint, tpo, generates Lie derivatives along the direction. This 

can be seen when we consider the t ransformations genera ted by tpo on the canonical 
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3.2. Double null canonical analysis 

variables: 

J /"^O d 37^ — f •^ni'Jmn (3.32a) 

= (3.32b) 

SNq = i^No, j fipod^x^ = 0 (3.32c) 

^ y^o d & j = (TV/) (3.32d) 

= j j V i , / d ^ z l 0 (3.32e) 

As we have already explained is analogous to par t of the three metric in the A D M 

description. Therefore we might expect t ha t Sb^ would resu l t in a Lie derivative term in-

stead of the trivial solution tha t is obtained. To under s t and why this occurs we introduce 

an adapted coordinate basis on the So hypersurface, (see fig 3.2), which we will denote: 

{ 4 , 4 , 4 } = { < } (ft I ' = 1 , 2 . 3 ) (3.33) 

We introduce the induced metric on the hypersurface, (A,;;,), which has the following 

components in the above basis: 

/iix = 

hii — hii 

hij = 7ii-

This can be seen from (3.10). 

When we consider the Lie derivative of a vector w" act ing on the induced metr ic 

(3.34) 
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3.3. Discussion 

and apply it to with we get the identity: 

— ̂ fni^li fhijC-nik^i 

;Cni6i = 0. 

Therefore, the Lie derivative term we expected from 5h\ i n (3.32), is actually equal to 

zero. 

3.3 Discussion 

In this chapter we extended the work of Torre so that t h e double null fohation was 

considered. As we have just described, the resulting first c lass constraints are associated 

with the diffeomorphism freedoms in the Eq hypersurface. Th i s result was also found in 

ADM except tha t in this chapter, due to the 2 + 2 foliation, t h e diffeomorphism constraints 

are split into two on the spacial two-surface and one in the nul l rii direction. In the ADM 

analysis one first class constraint, the Hamiltonian const ra int , is dynamical. This is due 

to the presence of the derivative on the right hand side of (2.81c) depending upon the 

form of the momentum constraint. This meant tha t the first class algebra did not form a 

Lie algebra. In the double null analysis all of the first class constraints are kinematic, and 

therefore we might expect t h a t the first class constraint a lgebra did form a Lie algebra; 

unfortunately this is not the case. If we look at (3.31) we see t h a t the last term has a 

term. , and therefore the first class algebra contains the gauge dependent 

variables The first class algebra could be made a Lie algebra if a gauge condition 

was introduced tha t set these variables to zero; Torre ( 1 9 8 6 ) has a discussion on suitable 

gauges. 

In Torre's work three of the first class constraints were ob ta ined due to the gauge freedom 

of the lapse and shift variables. In the double null descript ion only two of these gauge 

freedoms remain. We used the gauge choice of the lapse t o specify that the evolution 
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3.3. Discussion 

direction is null after the Poisson bracket calculations. 

Now that we have the canonical analysis for a double null description of General Rela-

tivity we could continue to see how far along the Dirac-Bergman algorithm we can go. 

Unfortunately due to the complexity of the constraints and the first class algebra no t 

being a Lie algebra we would find further progress towards quantising this 6eld theory 

jus t as difficult as ADM; we therefore do not pursue this analysis any further. Instead we 

will introduce a change of variables tha t will overcome t h e current obstacles by providing 

polynomial first class constraints as well as a Lie algebra for the first class algebra. These 

new variables were introduced by Ashtekar and are the subjec t of the next chapter. 
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Chapte r 4 

Ashtekar variables 

Although the work of Arnowitt et al. ( 1 9 6 0 ) gave a canonical analysis of the 3 + 1 

decomposition and obtained a first class algebra for the constraints , the remaining s teps 

of canonical quantisation proved to be difBcult. 

Some years later Ashtekar ( 1 9 8 7 ) proposed a change of variables which overcame some 

of the problems which had hindered earlier work in canonical quantisat ion and brought 

new life to this area of research. It had been known for some t ime tha t working wi th 

the connection and the curvature simplifies the canonical analysis, but also results in 

additional second class constraints. When these are solved for kinematic variables, and 

then subst i tuted into the first class constraints, we arrive a t t he same system of first class 

equations as ADM. Although the Ashtekar approach uses t h e connection and frame as 

variables they are complexified and all the constraints are f i rs t class. As we shall find out , 

the complexification of the connection also allows us to split the action into anti-self-dual 

and self-dual parts , but only one part is required. 

The constraints that result from the canonical analysis are all Erst class, polynomial 

and have geometrical interpretat ion. This last point is i m p o r t a n t because while other 

variables have resulted in polynomial first class constraints they lacked a geometrical 

understanding which becomes impor tant in the lat ter stages of the quant isat ion process. 

Another benefit of the Ashtekar approach is tha t the resul t ing Hamil tonian has a similar 

s t ructure to Yang-Mills' theory. Unlike General Relat ivi ty this field theory has been 
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4.1. Variation of the connection and frame 

quantised, and it is thought that techniques used in that process can be adapted for use 

with General Relativity. 

In this chapter we shall introduce Ashtekar variables, be fo re introducing the variables 

t ha t we shall use in the la t ter chapters. In this chapter w e shall follow the approach of 

Giulini ( 1 9 9 4 ) . We consider the approach given by Ashtekar ( 1 9 9 1 ) in Appendix A. In t h e 

first section we shall show how the Einstein equations a r e obtained through a variation 

of the Einstein Hilbert action with respect to the connect ion and frame. This was first 

achieved by Palatini and it is his approach which is m o s t common. We choose not to 

use this form, but instead use the that of by Giuhni ( 1 9 9 4 ) . We do this so tha t in t h e 

following section we may simply adapt the approach to s h o w tha t only the self-dual p a r t 

of the complexified action is required. 

The final section introduces the variables tha t we shall b e using for the remainder of 

the thesis. A local isomorphism is exploited to adapt the complex self-dual variables into 

SO(3) variables. We then give the structure equations a n d Bianchi identities in this new 

basis. The Einstein equations are then given using this n o t a t i o n and we close the chapter 

with a self-dual action wri t ten using the 5 0 ( 3 ) basis and curvature. 

4.1 Var ia t ion of t h e connect ion a n d f r a m e 

We will s tar t by introducing some new notat ion and identi t ies . We star t with a S0{1, 3) 

valued connection which is denoted by the 1-form a n d the curvature denoted by a 

2-form Qp. We introduce the space-time exterior covariant derivative D given by 

DA:=dA-t-[A,A], (4.1) 

where A is an 5 0 ( 1 , 3 ) valued 1-form. The following two derivatives 

D'̂ A : = dA + A] 

D^'A : = dA + [A', A] 

are defined using two different connections (A and ^4').These are related in the following 
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way 

D"^'A = D^A + [ A ' - A , A ] . (4.2) 

Applying (4.1) to the te t rad 9°" results in the first Car tan s t ruc ture equation: 

where T denotes the torsion which we will take to be zero. 

We express the curvature 2-form in terms of the connection by: 

n | = + (4.4) 

which results in 

== o. (4.(5) 

The Hodge dual of a n form in 4 dimensions is given by: 

* (g'": A ... A g' '") : = A ... A (4.6) 
(4 — n)! 

where we take 60123 = 1, = —1. We also make use of the inner product of two 

2-forms: 

A = A (7 = A 

given by 

^(A,o-) : = = AQ,^cr°'^. 

We now have the useful result t ha t 

AA*(7 = g(A,(7)e. (4.7) 

Now tha t we have introduced some useful identities and defini t ions we can s tar t calcu-
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4.1. Variation of the connection and frame 

lating the Einstein equations through a variation of the tetrad and connection. We start 

by writing the Einstein-Hilbert action in terms of the curvature two-form: 

= (4.8) 

= ^ ^ 6 (4.9) 

Therefore we are going to use the action Ajg] given by (4.8) to replace the standard 

Einstein-Hilbert action. We now consider the tetrad and the connection v4jg to be 

independent. Due to this we have increased the number of variables, and therefore we 

would expect a greater number of equations resulting f r o m variations of the connection. 

Palat ini discovered tha t these extra equations showed t h e connection is the metric con-

nection. To obtain this we first use (4.4) to calculate t he variation of the curvature with 

respect to the connection: 

SQai3 ~ d((5^Q,^) + [A,5A\ap = D(^5Aap). (4.10) 

Therefore when we calculate the variation of the action with respect to the coimection 

we obtain: 

,^7 = y A D * (^'^ A 

= ^ A 6"%^D(gT' A ^''). (4.11) 

From the requirement that 

0 (4.12) 
Q:/3 
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we obtain the result 

= (4.13) 

We write the connection 4̂ = F + A where F is the Levi-Civita (or metric) connection, 

then show tha t A = 0. In order to do this we first express t he result (4.13) using (4.2) to 

obtain 

A g^) = D^(g°: A g^) + A gT' A A A gT' (4.14) 

= ( A W I ^ F + A A 0'. ( 4 . 1 5 ) 

We have used the vanishing torsion of F to remove the t e r m D^{9°- f\9^). The remaining 

term vanishes if the cyclic sum in 7 — 5 — e of the coefficient does. When the above is 

contracted on ,8 and e we get the expression 

(4-16) 

which when contracted on ot and 6 results in 

Af t< . ]=0 . (4.17) 

This, when substituted into (4.16) gives 

Af^j, = 0. (4.18) 

Thus A is symmetric in its bottom two indices. If we deEne the covariaat tensor Aajg-Y := 

rj^s-^a-y, then we have a covariant tensor t h a t is symmetr ic on its first and thi rd indices, 

while also being anti-symmetric in the second and thi rd indices. A tensor with these 

properties must be zero, as can be seen from interchanging the indices. Therefore we 

have finally shown tha t because A is zero, ^ = F and hence the connection A is the 

Levi-Civita connection. 
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We now consider the variation of the action with respect to the tetrad 

= 2 y - I w ^ ) * A (4 19) 

So finally Hamil tons principle s ta tes that 

RaP 2 ̂ a/S-R — 0 

=> = 0. 

Therefore by considering the connection and the t e t r ad t o be independent variables we 

are able to derive the Einstein equat ions as well as showing the connect ion is the me t r i c 

connection. It was s ta ted at t he beginning of this c h a p t e r t h a t only the self-dual p a r t 

waa necessary to obtain these equations. In the following section we shall prove that th is 

is indeed the case. 

4.2 Complex Genera l Relat ivi ty a n d Self-dual varia-

tion 

If we take a two form, (0" A 9^), then using (4.6) we can ca lcu la te i ts Hodge dual 

A A g"* (4.20) 
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and its double Hodge dual 

* * (g'" A A 

= --0* (/L21) 

Therefore the eigenvalues of * are ±z: 

*A = iX self-dual 

*A = —iX anti self-dual 
(4.22) 

We now extend the framework outlined in the previous sect ion to include complex frames 

and connections. Due to this extension we are no longer calculat ing General Relativity, 

but a generalisation of the Einstein equations because t h e metric can be complex, al-

though this complexification does not change the nature of the manifold which remains 

real. Therefore in order to obtain General Relativity a n d not a complexified General 

Relativity we must add extra conditions, called reality condit ions, to obtain a real met-

ric. It is worth not ing t h a t from this point we will always b e considering a complexified 

General Relativity unless otherwise stated. We leave any f u r t h e r discussion on the reality 

conditions until chapter 7. 

The s t ructure group for the connection and te t rad is now 5*0 (1, 3)c, which has Lie algebra 

so ( l , 3 ) c . If we represent s o ( l , 3 ) c using complex bivectors we may introduce the 

operator which gives the dual in the Lie algebra by 

:= (4 23) 

This also squares to minus the identity so tha t we may define self-dual and anti self-dual 
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4.2. Complex General Re l a t i v i t y and Self-dual variat ion 

elements of the Lie algebra according to: 

Tircr = 2cr self-dual 
(4.24) 

•ka = —ia anti-self-dual 

This allows us to split the Lie algebra, into self-dual and a n t i self-dual parts , 

go(l , 3)c = go( l , 3)1^) @ go(l , 3 ) ^ ) . (4.25) 

We also use th is operator to split forms which take va lues in t h e Lie algebra into the i r 

self-dual and ant i self-dual par t s by in t roducing two p r o j e c t o r s = |(1=F^^)- Therefore 

we decompose the connection and curvature as follows: 

f 4- f -t-

0 = f -k f + ( - b = r)((+)A) + ^^((-)A). 

We now decompose the action by spl i t t ing the curvature i n t o the self-dual and anti self-

dual par ts . 

/ = -t- / ( - ) = y A *(^'' A ^^) -H y A *(^'' A g^), (4.26) 

which using A *(^°: A ^^) = A ( '̂̂  A ^^) and (4.24) can be expressed 

= % / A (g'' A g^) - 2 / A (̂ "̂  A g^). (4.27) 

We will now consider the two pa r t s of t he act ion independent ly . T h e self-dual par t is a 

funct ion of t h e self-dual connection and the f rame, whereas t h e anti-self-dual par t is a 

funct ion of t he anti-self-dual connection and the f rame. In b o t h cases the connection and 

the f r ame are considered to be independent . 

To calculate the variation of the self-dual action, w i t h respect to the the tetrad 

and self-dual curvature, we will use a m e t h o d analogous t o t h e one used in the previous 

section. The anti self-dual case follows in exactly the same way and therefore we do not 
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4.2. Complex General Relativity and Self-dual vacation 

include it here. We start by calculating the variation of the connection: 

= 2 y A A (4.28) 

Thus we get the result that 

(+)D(g''Ag^) = 0. (4.29) 

If we set + ("'') A and follow the argument given above, we show that = 0 

and therefore 

= self-dual part of the Levi-Civita (metric) connection. 

The surprising result is t ha t when we calculate the var ia t ion of the self-dual action wi th 

the tetrad, we obtain the full Einstein equations, as is shown below. 

A g'" (4.30) 

Ag". (4.31) 

Then, using the fact tha t Qap /\9"- = Ra^-ys A 0"̂  A A 0 " = 0 , which is the result of t h e 

Bianchi identities, we get the same expression as we did using the standard variational 

principle, (4.19) 

(4.32) 

Using the same line of argument as before results in the equat ions 

=*" Rap — \Vcci3R = 0. (4.33) 

Although we will call these the Einstein equations it is i m p o r t a n t not to forget that these 

are the complexified generalisation of the Einstein equat ions . 

In this section we have shown that by complexifying the variables we need to consider 

only the self-dual par t of the action to obtain the Eins te in equations. This result is the 
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4.3. 5'0(3)c variables 

basis of the self-dual variables which we will introduce in the following section. 

4.3 6^0(3)c variables 

In the previous section we used a complex connection and curvature, which both have 

the Lie algebra so(l, 3)c- This was split into self-dual and anti self-dual parts, denoted 

go(l,3)^^ @ ao( l ,3 )^ \ We then demonstrated that only the self-dual part is required 

to obtain the full Einstein equations. In the following chapters we will exploit a local 

isomorphism that exists between go(l, 3)^^ and so(3)c. T h i s isomorphism enables us to 

replace the self-dual connection and curvature used above w i t h a connection and curvature 

tha t have a S0{3)c basis of complex self-dual two forms, 5 ^ (bold upper Latin indices 

range from 1, 2,3). The basis of self dual two forms is given below; 

= i a a (4.34a) 

(4.34b) 

go (4.34c) 

When we state that these two forms are self-dual then we require where * is 

the Hodge-dual (4.6). An example ig given below: 

a 9'^) 

1^12 
2^ a/g (g^^ a ^^) 

— 2^03a/3(^'^ A ^^) 

a 

iS' 2 
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4.3. 5'0(3)c variables 

where we have used 

/ 0 1 0 0 

1 0 0 0 

0 0 0 - 1 

0 0 - 1 0 

and €o 123 

\ y 

If we define the metric := g(S-^, 5®), and use the ident i ty g(P, Q) = *{P A Q) t hen 

we can show that 

A 

Ag=) 

Therefore, by calculating all of the components we obtain the 5'0(3)c metric 

, a b 

f i 0 0 \ 

0 0 - 1 

0 - 1 0 

(4.35) 

and the inverse 

^AB = 

2 0 0 

0 0 - 1 

0 - 1 0 

(4.36) 

The metric and its inverse are used to raise and lower the self-dual t r iad indices. 

The connection and curvature used in the earlier section have SO(3) representations: 

p3 = _y(03 

(4.37a) 

(4.37b) 

(4.37c) 
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4.3. 5'0(3)c variables 

and 

A^ = l(7^ol + 7^23) (4.38a) 

7̂ =: = (4.38b) 

^ (4.38c) 

These forms s a t i s ^ the Arst and second Cartan equations 

+ 277^cr^ A - 0 (4.39a) 

and 

+ ' 7 ^ c r ^ A , (4.39b) 

where T̂ ASC = 77[ABC] and 77133 = 1. 

Exter ior differentiat ion of the above equat ions results in t h e first and second Bianchi 

identities 

VabcR^ a = 0 (4.40a) 

+ 2 7 ; ^ c r ^ A = 0. (4.40b) 

T h e relat ionship between the t e t rad components of t h e E ins te in tensor and the 

components of the self-dual curvature 2-forms is given by 

A g ' A = 22(ec,j^^) A (4.41) 

T h e following s teps lead to an equation more useful in d e t e r m i n i n g the Einstein compo-
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4.3. 5'0(3)c variables 

nents in terms of the 2-form curvature. Contracting (4.41) with gives 

A A A A .^A A 

A A A g'" = A A 

A A A A A A^gAB, 

It is now a simple matter to express the Einstein components explicitly in terms of the 

curvature. We will use the first component as an example to illustrate the method. In 

this example we calculate eo-i'S''̂ - Using 

as well as 

A g'' = A 

we can show that 

eoJ^" = e o j | ( ^ ^ Ago + g'* Ag^) 

Using these calculations we obtain 

A g" A A = -2(60^^"^) A A ̂ ^PAB 

= - 2 ( - § g i A A A A 

= - 2 ( ^ g - A A A 
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4.3. S0{3)c variables 

This process results in the relationships 

G»„ = - -R?2) G°I = 2 f l f s 

a°2 = + RI2) G°s = S A ' i 

G\ = 2Rl„ G\ = 2(Rl^ + Rl„) 

G\ = 2Ri^ G\ = 2(% + A,: > 
0 3 V 

1 
1 3 

= 2{Ri, + flii) G\ = 2R 

G\ = -2{Rl^ + Rl^) G\ = -2a 

(4.42) 

2 
1 3 

?o) (3=0 = - 2 ^ 2 - 2 (R ig + A 

G=3 = 2 ^ 2 G=3 = - 2 ( % + A | J . 

This process defines sixteen Einstein components, but we are aware tha t the symmetric 

Einstein tensor should have only ten independent components . In order to reveal which 

of the ten Einstein components given above are independent , we write the first Bianchi 

identities (4.40a) explicitly: 

77ABc;(^A5'G = 0 

A A = 0 

=> ^2^2(^1 A A A g°) + A A A = 0 

=4> i?i2 + -^03 ~ 0 (4.43) 

= :> A A = 0 

=> i?oi + -R23 ~ 27^12 = 0 (4.44) 

A A = 0 

=>- i?oi + -^23 + 2i?Q3 = 0. (4.45) 

We can immediately see from (4.42) tha t G% = —G^i and G% = — ( 9 \ . When the three 

identities above are used in (4.42) we reveal the remaining four identities on the Einstein 

tensor. 

= (3:2== 

= --(3*1 = --(pSg. 
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4.4. Summary 

These identities are not unexpected because they may also be obtained using the property 

that the Einstein tensor is symmetric. 

Therefore from the original twelve Einstein components we have ten independent 

components, as expected. These are given below: 

= -2(^23 - % ) G\ = 2% 

G\ = -2 ( i J | j + fliJ G\ = 2RI, 

G\ = G\ = 2 % (4.46) 

G\ = 2(Ri, + BSs) a% = -2Rl, 

= 2R^2 + R. I i ) 

We now redefine the self-dual par t of the action (4.27) in te rms of the SO(3) basis and 

curvature. This action was introduced by Samuel, Jacobson and Smolin (see Samuel 1987; 

Jacobson & Smolin igSg). 

7 = / (4.47) 

Although in this section we obtained the Einstein components from (4.41), it is also 

possible to obtain them from a variation of the action given above. 

4.4 Summary 

In this chapter we have introduced the Ashtekar approach to canonical analysis. We have 

shown that if the variable space is extended to allow complex variables then only the 

self-dual action is required to obtain all the Einstein equat ions . 

Then in the last section we adapted the connection and t h e curvature so that they are 

defined by a 5 0 ( 3 ) basis, which leads to a new action us ing these variables. We are now 

in the position to apply these new variables to the 2 4 -2 foliation tha t was introduced 

earlier. 
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Chap te r 5 

Canonical Analysis of 2 + 2 

Hamil tonian using SO(3) variables 

5.1 Introduction 

In this chapter we shall use the SO (3) variables outlined in the penul t imate section of 

chapter 3 and apply them to a double null 2 + 2 formulat ion, given in chapter 3. We do 

this to simplify the constraint algebra we found earlier, by using the Ashtekar approach. 

This work extends the Lagrangian description of d ' Inverno & Vickers ( 1 9 9 5 ) by obtaining 

the Hamiltonian description and calculating the constra int algebra. 

In the first section we introduce a general basis of 1-forms t h a t are suitable for working 

in a 2 + 2 formulation. We then calculate the condit ions required to ensure a double 

null foliation; these are called the slicing conditions. In th i s section we also introduce the 

densitised 5 0 ( 3 ) basis. These variables can be expressed in te rms of the basis of 1-forms, 

and therefore we have a choice of variables. We will also decompose the connection into 

a 2 + 2 form and introduce the covariant derivative tha t a c t s on the SO (3) variables. 

After this ground work we will be in a position to calculate t h e Lagrangian f rom the action 

given at the end of the last chapter; this is the topic of sect ion two. In the third section 

we t ransform the Lagrangian description to the Hamil tonian description and perform 

the canonical analysis. From the constraints obtained in th is analysis we are able to 

derive the Einstein equations. This then leads us, in sect ion six, to calculate the first 



5.2. 2 + 2 tetrad; connection and curvature 

class constraints, and from these the first class algebra. A geometrical interpretation of 

the first class constraints is then given before we conclude this section with some closing 

remarks. 

Jus t as in the previous double null analysis we are required to choose which direction we 

shall take aa our evolution direction. In this and later chapters we shall take the evolution 

direction to be the direction. As we have stated earlier t h i s choice breaks the symmetry 

of the double null description. 

5.2 2 + 2 tetrad, connection and curvature 

We s ta r t this work by expressing the general basis of 1 - fo rms tha t was introduced in 

d ' Inverno & Vickers ( 1 9 9 5 ) . 

= + (5.1a) 

+ g-'gCfa;") (5.1b) 

and are the lapse and shift. We can see that the four 2 x 2 matrix variables contain 

16 degrees of freedom. These comprise 10 metric and 6 Lorentz freedoms. The dual basis 

is given by 

" = "''aS + 

where the 2 x 2 matrices and f̂  are deSned to be inverses of and ^ respectively, 

so t h a t 

.V"c = si KiJ.\ = 

=<5*. = 

At this point we shall greatly simplify all fu ture calculat ions by working in a adapted 

frame. This means that we work with a frame where e, are tangent to {5"}. Our basis (5.1) 



5.2. 2 + 2 tetrad, connection and curvature 

requires that the alphas vanish, ie. = 0. This reduction in the degrees of freedom 

decreases the number of Lorentz transformations by four to a two parameter subgroup of 

spin and boost transformations. Unlike the similar calculations in the work by Goldberg 

aZ. ( 1 9 9 2 ) , choosing an adapted frame does not automatically result in becoming 

null, therefore additional constraints are required to ensure and are null; these 

constraints are called the slicing constraints. 

The double null slicing condition requires that : 

= 0 

= 0 . 

The volume form is given by 

y = A A A 

= — A A A 

which implies t ha t //, i> are non-zero. Therefore to sat isfy the null conditions as well as 

the condition tha t jj, = ~ is non zero, we require t ha t either 

,0 _ , , i 
0 = 1 = 0 (5.3) 

or 

A = / / \ = 0 (5.4) 

be satisfied. Although in fu ture we shall require (5.4), there has been no loss of generality 

because a change to the other condition is equivalent to interchanging the coordinates 

and 

In the Ashtekar approach we consider in Appendix A, t h e Lagrangian was a function 

of the hypersurface connection variables (^,j^), the lapse (# ) , the shift (7V )̂ and the 

densitised f rame projected onto the hypersurface {E^). T h e s e f rame variables define the 
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5.2. 2 + 2 t e t r a d , connection and curvature 

metric on the hypersurface. Therefore in our 2 + 2 approach we shall also use connection 

variables, the lapse (//%) and the shift (8%). It is worth pointing out here that only 

are the tradit ional shifts to the evolution direction. The remaining shift terms would 

form part of the three metric. We will see this di&rence expressed through the roles 

the constraint equations play, which we will comment on la te r . At present the induced 2-

metric is defined by the variables , hence the conformal factor of the two metric is given 

by V, the determinant of the variables i/' . In order to follow the Ashtekar approach we 

need to introduce densitised 5 0 ( 3 ) variables to replace the variables This is achieved 

by first expressing the S0{3) basis (4.34) in terms of the 1-form adapted basis variables 

given at the s tar t of this section. 

+ 

= a da;' 

= a a cfa;' + a cfa;-' (5 .5) 

= A (fa;'' — A (fa;'. 

Then we introduce the new variables, which are densitised versions of the basis vari-

ables. 

t f = (5.6) 

where ^ a b is defined by (4.36). We express the Sigma variables in terms of the t e t rad 

variables using (5.5), to obtain the system of equations: 

= {-1^,0,0) (5.7a) 

( E i " \ E:"", S3 ' ' ) = ( - C - S, (5.7b) 

( S , " , E / . £ 3 " ) = - f V j ) . (5.7c) 

We may consider (5.7c) as a system of equations t ha t allow us to determine in terms 

of the twelve This indicates that there are eight const ra in ts in this over determined 
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5.2. 2 + 2 tetrad, connection and curvature 

system of equations. Therefore, in order to use these densitised variables to replace the 

variables we require further constraints to be introduced. We may obtain four of 

these f rom (5.7c). First , 

Eg''' = 

Eg ' ' -

and by multiplying the former by and the latter by ijP^ , we obtain 

=> (7̂  = = 0. (5.8) 

Using this method with Eg"' we obtain two fur ther const ra in ts 

C' = = 0. (5.9) 

The final four constraints are obtained through man ipu la t ing the definitions of 

= 

= = 0 (5.10) 

The expressions for in terms of the Sigmas are given by 

1/% = 

which, when combined, gives us 

fJjU = ^2 Eg ^(-ab^ij • 

In 2 + 2 formalism we wish to include the conformal fac tor of the induced metric, v, as 
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5.2. 2 + 2 tetrad, connection and curvature 

a variable of the Lagrangian. We therefore require an additional constraint, which we 

construct from the equation above. 

C = - / / ! / = 0. (5.11) 

Note tha t in the following calculations we shall use (5.7a) to replace v with the variable 

Before we can derive the 2 + 2 Lagrangian we decompose the 5'0(3) connection and 

curvature into a 2 + 2 form. We have already introduced the 5 0 ( 3 ) connection 1-form 

which decomposes into the 2 + 2 form given below: 

(5.12) 

The curvature 2-forms are defined by 

= d r ^ + A 

= dz'' A da;' + da;'' A da:" + da;'' A da;̂  

=» R \ = - B \ , + B \ , + (5.13a) 

R \ , = - B \ , i + A % + (5.13b) 

B-% ~ (5.13c) 

We will find it useful to introduce two differential operators which are the restrictions of 

the four-dimensional self-dual 80(3 ) covariant derivative t o the spaces S and T. Their 

actions on SO{Z) valued functions and / a are given by 

DJ'^ = + 2,,\aBV A / ^ = + 2 r , \ c A f ° ( 5 1 4 4 

DJa = /a ,a - D,U = fA.i - 2 i ) V ' 4 ® / c - (5.14b) 
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5.3. Derivation of the Lagrangian 

We may use these differential operators to express the curvature 2-forms: 

- D,B\ (5.15a) 

R \ , = A \ a - D , B \ (6.15b) 

= A% - D,A\ (5.15c) 

5.3 Derivation of the Lagrangian 

We are now in a position to calculate the Lagrangian. We s t a r t f rom the action introduced 

in the last chapter (4.47): 

/ == A (5.16) 

From this action we are able to give the Lagrangian in t e r m s of our variables as: 

L= I I d^x. 

The curvature terms and R \ contain time derivatives of the connection. Therefore 

we write these curvature terms explicitly so all time derivatives can easily be seen f rom 

the Lagrangian. We then replace with the frame variables, using (5.7) to obtain: 

^2' = + 4 " ' ^ ! 

^3" = 4 ' ' V i -

=* R\A^' = - s\t^''R%. 

Using these identities we may write the Lagrangian density given below: 

(6.17) 
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5.4. Hamiltonian description 

Then we introduce the primary constraints (5.8, 5.9, 5.10, 5.11) with the use of Lagrangian 

multipliers to obtain the primary Lagrangian 

oi 
L = J + Bo^ASA"' - - 4R%^i 

- g i + AC + A^C^ 

where we have denoted: 

Q = - E.bEi'" (5.19a) 

C = / . E g ' ' ' (5.19b) 

C = (5.19c) 

C = . (5.19d) 

It is worth not ing tha t if one imposes the double null slicing condition the constraints C" 

and C' become 

C ' = Eg"' C = E3^\ (5.20) 

At this point we may stay in the Lagrangian descript ion and calculate the Einstein 

equations and the s tructure equations through variation of the Lagrangian with respect 

to the different variables and multipliers (see d 'Inverno & Vickers 1995). We do not 

pursue this here as our focus is on performing the canonical analysis on the Hamiltonian 

description, and through this we also obtain the Einstein equat ions. 

5.4 Hamiltonian description 

The Lagrangian density is of the form C = p^q\ — H, a n d therefore we can see directly 

that the canonical variables are Af^ and Bf-, and have t h e respective momenta and 

2 ^ ^ . We can simply read off the Hamiltonian to give: 
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5.4. Hamiltonian description 

H = J i^R\, + + 4 + R%ti>) - R\T.l' - + A E / ' ) 

+XiC^ + XiC^ + XC + A"Cq + 

(5.21) 

where the canonical Poisson brackets are: 

{ A f ( x ) , = S id ;S(x , y) (5.22a) 

{ B ^ ( x ) , E B ' " ( y ) } = i i « ( x . S ) . (5.22b) 

In this approach we will use the shortcut method discussed in the second chapter. In t he 

shortcut method we treat cyclic variables as multipliers. Therefore, in the Hamiltonian 

above, we consider the variables to be multipliers. It is worth noting at 

this point tha t some of the constraints that were in t roduced into the Lagrangian are no t 

constraints on the canonical variables, but constraints on the cyclic variables. Therefore 

they reduce to multiplier equations, for example C ' = As a result of the original 

thir teen constraints only four: 

C' = 0, = 0, = 0, (5.23) 

are actually primary constraints. 

We now start the constraint analysis algorithm by varying the Hamiltonian with respect 

to the multipliers to obtain the primary constraints. Variation with respect to the cyclic 
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5.4. Hamiltonian description 

variables leads to the equations: 

- A,Eg')' (5.24a) 
0 

— —/̂ °0-R̂ 23 — ^ (5.24b) 
1 

(5.24c) 
1 

(5.24d) 

^ (5.25a) 

+ (5.25b) (^g\ " u j ' 

— + Ap (5.26a) ip ip ^ p 

ip - - Ay//°i + AEĝ Ĉpj (5.26b) 

ip = " Ap/î i + AEĝ -'epj (5.26c) 

A TT 

^ = D i 2 ^ : + D , E r . (5.27) 

We now propagate the primary constraints (5.23) using Z = {Z, ff}: 
r = (5.28) 
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5.4. Hamiltonian description 

^2°^ = (5.29a) 

^3°' - 1:3'% - (5.29b) 

We must now check which of the above equations are secondary equations and which de-

fine multipliers. We first see tha t (5.25b) defines the multipliers + 

Equation (5.24a) deEnes A, A % If this is substituted 

into (5.24b) then it becomes weakly zero. Also, after substituting A into equation (5.24c), 

the multiplier equation Â Eâ ' % 0 is obtained. We use (5.26a) to deEne the multipliers 

Ap = — a n d (5.26c) to deSne /^\Ap = — + Equations (5.28) 

define the cyclic variables while the final equations (5.29a) and (5.29b) define Bq 

and Bg. This leaves us with eight secondary constraints (5.24d, 5.27, 5.26b, 5.27), which 

can be wri t ten: 

^ « 2 , " + R \ t ° ' + (5.30a) 

(5.30b) 
2 

^ (5.30c) 

+ A S . " . (5.30d) 

' 0 

SB^ 

Therefore at this point we have a phase space of 18 variables, with 4 p r imary constraints 

and 8 secondary constraints. We now propagate the secondary constraints to check for 

any ter t iary constraints. We will show in the next section tha t the first five equations 

given by (5.30) define the Einstein constraint equations a n d are therefore automatical ly 

preserved by the Bianchi identities. When we calculate Bq we find t h a t it is identically 

zero on the reduced phase space, whereas and Bq def ine the multipliers and r®. 

Now tha t we have completed the constraint analysis we shal l give the equat ions of motion: 
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5.5. Einstem equationg 

i j = D , B l + ( s , " ) ' (5.31a) 

K = O p B l + R \ s i + p . \ \ - (5,31b) 

K = + R % 4 - ( e i " ! ) (5.31c) 

B i — D i B q + /iA + (5 .32a ) 

(5.32b) 

(5.32c) 

= 2D, - D i ( S / ' ) + e'^(/, - (5.33a) 

AgO' = 2D, - ^^(f:^:') + e';:4=(// - sEi^^) + 2;;^ (5.33b) 

AgO' = 2D, - ^1(23'') + - sEi"') + 277(^3B^E(^' (5.33c) 

+ 27?^ (5.34) 

5.5 Einstein equations 

We now show tha t the equations which we have obtained so far contain the ten Einstein 

equations (4.46). In order to do this we first represent t h e Einstein equations in terms 

of the variables used in the Hamiltonian description. As a n example of the method an 

explicit calculation is given below: 
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5.5. Einstein equat ions 

G\ = 2(R\^ + ii'oa) 

= 2 

= 2 + K v i R \ i - •"of>3-R' i j ) 

- 2 UviR% - . ' V 

oj (5.35) 

After performing similar calculations we obta in the sys t em of equations given below. F i r s t 

the constraint equations: 

Si°'G">„ K 2uv + R%t« + Sj" 

« -2(u\yv t , " 

E i° iG°2 =3 ~2uv + «\E3°' + 

K -2(u\ f v t ° ' 

Oi \ yi Oj 

(5.36a) 

(5.36b) 

(5.36c) 

(5.36d) 

(5.36e) 

(5.36f) 

and then the evolution equations: 

» ~2(u<'„)% - R \ f i , " ) E « 

i n v Oj E/iG", -2uv (iJ'„,.Ei°i - i?'i,Ei" - R%S 

S " G \ ~ ~2uv (-R\Ei°' - -R%Ei") £2'^ 

E . ^ C j « 2 ™ [ ( f l ' „ .E ,» ' + R \ f i , " + E , " 

^ p2 li p i V li I p i V V 
1:^2 Iz^l + 01^1 ) ^ 1 

(5.36g) 

(5.36h) 

(5.36i) 

(5.36j) 

(5.36k) 

We can now see straight away that the Srst 6ve equations are determined by the secondary 
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5.5. Einstein equations 

constraints in the following manner: 

(5.37a) 

= - 2 ( M \ ) " ? ; ^ (5.37b) 

AW 

(5.37c) 

= 2(%/\)^'u23°'^ (5.37d) 

S l o e ' s = 2 { u \ ) ' v t , ' ' ^ . {5.37e) 

In order to show that the equations of motion (5.31) and (5.32a) express the remaining 

Einstein equations, we rewrite them. (5.31a) gives 

- A l + D , B l + R \ ^ s l - ( S / ' ) " ' = 0. 

Using the definition of i?^oi ^md the constraints Cq we o b t a i n the equation, 

=» - R \ A " + •R'.rSi" - fs 0. (5.38a) 

In a simUar way we rewrite the remaining equations (5.31b, 5.31c and 5.32a) to obtain: 

( - A ' o , + t , ' " « 0 (5.38b) 

- J i ' a A " + « 0 (5.38c) 

- 0. (5.38d) 

The last equation takes a bit more working, and uses the constraint (5.11). Equa-

tions (5.38a) define G \ % 0 and ~ 0. Equation (5.38b) defines % 0, and 

(5.38c) defines « 0. The final constraint component % 0 is defined by (5.38a) 

and (5.38d). We have now shown that the constraint equat ions and equations of evolution 

imply the Einstein equations. 
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5.6. First Class constraints 

5 . 5 . 1 S t r u c t u r e e q u a t i o n s 

In the self-dual approach considered in section 5.2, we obta ined not only the Einstein 

equations, but also some structure equations. These were derived through the variation 

of the connection variables and resulted in the equation A 9^) = 0. When we 

changed the variable basis to the 5'0(3)c basis (4.34) we obtained the structure equations, 

(iS'^ + 277'^Qr® = 0 (4.39a). When this is expressed in terms of the Sigma variables, 

we obtain the equations = 0. Therefore we should expect to derive these equations 

as well as the Einstein equations through variations of t h e Hamiltonian. 

We would normally expect the structure equations to come f rom the equations of motion, 

but this is not completely true in this case. The equations of motion (5.33) and (5.34) 

can be wri t ten in the forms — 2 ) ^ 2 ^ = 0 and — 0 respectively. The remaining 

structure equations are not found in the equations of motion but in the constraint equa-

tions; this is a result of using the shortcut method. The const ra int equations (5.27) can 

be wri t ten as = 0. Combining these constraint equa t ions with the equations of 

motion (5.34), we obtain Hence we have shown t h a t the structure equations are 

also deHned by the equations of motion, along with some constraints obtained from the 

Hamiltonian. 

When expressed in terms of the basis of 1-forms using equations (5.6) and (4.34), these 

structure equations are equivalent to equation (4.29). This shows that the coimec-

tion induced on the basis of 1-forms is jus t the self-dual p a r t of the Levi-Civita connection. 

5.6 Firs t Class constraints 

We calculate the first class constraints in jus t the same way as the double null analysis 

in chapter 3. Guided by a geometric understanding we t a k e linear combinations of the 

four pr imary and eight secondary constraints. We s t a r t by considering the secondary 

constraints t h a t arise from the variation of the multipliers sqj which we adapt with the 

addition of the constraint (5.27), multiplied with the canonica l variables This is 
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5.6. First Class constraints 

expressed below: 

4 + R \ t l ^ + {D, 2 ^ : + A E a ° ' ) = 0 (5.39a) 

= - ( A f t l ' ) , , = 0. (5.39b) 

Another first class constraint can be obtained f rom a d a p t i n g the constraint (5.30a). We 

first rewrite this constraint using (5.30b) then use (5.30c) as show below: 

S s ° ' = 0 

=» S , " f f l ' i j S s " ' + + S i ° ' = 0 

u 

=). = 0. (5.40) 

Then, to obtain the first class constraint we adap t it in a similar manner to the previous 

constraint, tjjp. 

ill : = R \ t ^ ' + B t ( f l i S i " + A E / ) = 0 (5.41a) 

= - ( B f Sa°').i - = 0. ( 5 - « b ) 

Before we continue to calculate the final first class const ra in t , it is worth noting tha t if 

we combine (5.41) with (5.39) we get 

i>B •=R%c^l'' - A^Dctl'' = 0 (5.42a) 

~ ( A ^ t l ^ ) , c = 0, (5.42b) 

where the unbold indices A,B,C are coordinate indices range over 1 ,2 ,3 , and we have 

also introduced ~ ( B ^ , Af-). This shows t h a t we could replace constraints ipi and ipp 

with ijjBi which would act just like the constraint (A.10b) in the Ashtekar case. Instead, 

in line with our foliation of the spacetime, we keep the cons t ra in t s separate . 
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5.6. First Class constraints 

The final first class constraint is the equation obtained from Bg: 

: = D i E + 01 I n V oi _ Q (5.43) 

After this analysis we have four first class constraints, which implies tha t the remaining 

eight constraints are second class. We can now calculate t h e number of degrees of f reedom 

that our theory contains using the standard formula (2.73): 

I (18 - 2(4) - 8) = 1. (5.44) 

This is the number of degrees of freedom tha t we would expect in the null setting (see 

Penrose 1 9 8 0 ) . To see the 2 + 2 geometric structure we choose smearing functions such 

t ha t / , g are on the hypersurface So (see figure 3.2), only varies in the direction 

so t ha t ^ j = 0 and only varies in the direct ion so tha t ^ ~ 9\i ~ 0-

Then we find; 

y ^ i d a;, / p ^ i d 2/ 

•ly 

•^v 
: J y 

/ d a;, / p d ?/ 
•Jy 

-Jy 

0 

d^z. 

(5.45a) 

(5.45b) 

(5.45c) 

(5.45d) 

(5.45e) 

(5.45f) 

These may be combined to obtain the algebra on eq, which has virtually the same form 

as (B.14) of Appendix B (eg. = V'c ^^)-

We now wish to ascertain the geometric interpretation of t he first class constraints. In 

order to do this we calculate the infinitesimal t ransformat ions of the canonical variables 
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5.7. Spin and boost transformations 

generated by the constraints. First we consider 

(5.46a) 

(5.46b) 

Then we consider 

= {A^,'^i(g^)} = (5.47a) 

= {gj",V'i(p')} = (5.47b) 

We can now see from (5.46) tha t the constraint ipi genera tes the diffeomorphisms within 

the spatial two surface, while from (5.47) we see t ha t ipi generates the diffeomorphism 

along the direction. These three constraints were n o t unexpected because they also 

appear in the double null analysis in chapter 3. The remain ing constraints do not have 

an analogous constraint in the work in chapter 3. To unders tand the transformations 

generated by the remaining constraints we first have to under s t and the effect of spin and 

boost transformations, and this is the subject of the following section. 

5.7 Spin and boost transformations 

The Poisson bracket with the remaining first class cons t ra in t (5.43) generates the self-dual 

spin and boost t ransformations. This can be seen when w e look at the infinitesimal trans-

formations that these constraints generate. First we will consider how the spin and boost 

t ransformations effect the different variables. Then we c o m p a r e these to the infinitesimal 

transformations generated by the first class constraint (5.43). 

To unders tand the effect of complex spin and boost t r ans fo rmat ions on te t rad variables 
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5.7. Spin and boost t ransformat ions 

we first consider their effect on the 1-forms: 

(&48) 

Since we are working in a complexified space we do not require r = p, where p is the 

complex conjugate of p. Using 5.48 along with the bas is (5.1) leads to the following 

t r ans fo rmat ions of the t e t rad variables: 

!/». —> —4 

(5.49) 

Using the system of equations (5.7c), along with (5.49), w e can calculate how the Sigma 

variables t ransform: 

E,02 2^02 

f : 03 . y 03 f ' 12 . _ 2 ^ 12 
Z-/̂  ' 2 2 
Y 23 \ y 23 yi 13 > 13 

^ r ^ 2 (5,50) 

- 4 . 

r-^Eg^^ E3°3 

Ei^2 — E i ^ 2 E^:^ - H . r -^Eg^^ 

Ei^3 g^i3 g^i3 r - ^ E g ^ ^ 

Note t h a t r is the self-dual and p the ant i self-dual spin a n d boos t f reedom. This can be 

seen in t he result t ha t the Sigma variables, which are se l f -dual , are t r ans fo rmed by only 

r and never p. 

In order to compare these with the t ransformat ions gene ra t ed by the constra ints , we will 
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5.7. Spin and boost t ransformations 

consider only in6nitesimai traasformations, meaning: 

p (1 + 

r -4^ (1 + & ) , 

- 4 (1 + 

p ^ —>-(1 — (5p) 

> (1 — (5r) 

Therefore infinitesimal t ransformations of the variables result in: 

(1 + 

= / c + 

We summarise the results for all the variables below: 

(5.51a) 

= ((̂ p — (5.51b) 

= -2(^rE3^^ (5.51c) 

= 2(^rE2°^ (5.51d) 

- 2< r̂22^^ = 2(̂ rE2^^ (5.51e) 

= -2(^r23°^ = -2(^rE3°^ (5.51f) 

= -2(^rE3^^ = -2(^rE3^^ (5.51g) 

s\ do not change under infinitesimal spin and boost t ransformat ions . 

We can use (5.48) to show how the 5 0 ( 3 ) t r iad (4.34) t r ans fo rms under spin and boost 

transformations. We represent this in the matr ix form: 

5'-'̂  - 4 (A where (A)"^ 

1 0 0 

0 0 

0 0 
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5.8. Conclusion 

Under a gauge transformation the connection transforms according to: 

d (A)° + (5.52) 

Using this we 6nd the iniiiiitesimal transformations of t h e connection variables, and 

B ^ , are given by: 

(^r -4^ ((^r) a dT° => 

- 2 6 r r ^ => (5.53) 

(^r= -2 (^ r r= => 

^ 2 B f 

Now tha t we have calculated the effect of spin and b o o s t t ransformations on the vari-

ables, we will now calculate the inhnitesimal transformations generated by the Erst class 

constraint which is given by (5.43): 

= {Af", Qi{g)} = —g,iSi — 2gAf5^ + 2gAfS^ (5.54a) 

g i ( g ) } = - 2 ^ g f 6 ^ + (5.54b) 

When these equations are compared with (5.53), we can see t ha t Qi generates the self-dual 

spin and boost transformations. 

5.8 Conclusion 

In this chapter we have applied canonical analysis using an adapted Ashtekar approach, 

to a double null description of General Relativity. We s t a r t e d from a 5 0 ( 3 ) action, and 

from this we obtained a Lagrangian density. From this we calculated the Hamiltonian, on 

which we performed the canonical analysis. This lead us to obtaining four primary con-

straints and eight linearly independent secondary constraints . By taking part icular linear 

combinations of these twelve constraints, we revealed four first class constraints. Two of 

these constraints, tpp, generate the diffeomorphisms wi th in the spatial hypersurface {S); 
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5.8. Conclusion 

while one constraint, generates the diEeomorphism in the direction. The Snai Erst 

class constraint, as shown above, generated the self-dual spin and boost transformations. 

These t ransformations were not present in the original doub le null analysis (see chapter 

3) but arise here due to the extra freedom that is introduced from working with a frame. 

In the formulation of General Relativity used in this chapter some of the variables, 

contain an anti self-dual par t . We would therefore expect t o obtain another first class con-

straint t h a t generates the anti self-dual null rotations. T h i s did not arise in our calculation 

because we used the shortcut method, which meant t ha t t h e variables t ha t contained an t i 

self-dual par ts were multipliers not variables. Hence no addi t ional first class constraint 

was obtained. If we were to perform the canonical analysis without the shortcut method 

we find an additional first class constraint arises which generates the anti self-dual null 

rotations. 

While this work has been successful in obtaining a first c lass algebra, it does not appear 

completely satisfactory to work with a mixture of t e t r ad variables and 2-form variables. 

In the next chapter we consider an alternative approach in which we work entirely with 

the two-form variables, 2 ^ ^ . 
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C h a p t e r 6 

2 + 2 field equations us ing 

Connect ion variables 

6.1 Introduction 

In the last chapter we used both tetrad variables and 5 '0 (3 ) variables. This enabled us to 

retain an analogy with the double null formalism tha t was used in chapter 3 through the 

identiEcation of the lapse and shift variables. In this section we will use only the 5 0 ( 3 ) 

variables. This results in a simpler constraint analysis. 

In the first section we use the action (4.47) to obtain a Lagrang ian description expressed 

in terms of the connection variables and the densitised 5 ' 0 ( 3 ) basis variables, that 

were introduced in the last section. However these variables are not independent and 

some constraints exist in the Sigma variables. These are found and introduced into the 

Lagrangian using Lagrange multipliers. This then leads us , in the following section, to a 

Hamiltonian description. 

In the next section we show tha t all the Einstein equat ions are defined by the constraints 

and equations of motion. After this we continue to ca lcula te the first class constraints 

and obtain the first class algebra. At the end of this sect ion we discuss the geometrical 

interpretat ion of the first class constraints. 
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6.2. 2+2 Connection Variables 

6.2 2 + 2 Connection Variables 

We stajt with the action 

which leads to the Lagrangian density: 

a/3 
I 

= t l ' A f ; , + + R \ t i ' + R \ t l \ (6.1) 

In the previous chapter we worked with the twenty three variables in 

addition to the connection terms (Af and B^). Within t h e s e twenty three variables there 

are thir teen constraints which left ten degrees of f reedom: two spin and boost freedoms 

and eight degrees of freedom for the double null metric ( th i s includes 10 for the s t andard 

metric with the two slicing conditions). In this chapter we will be making use of all 

eighteen Sigma variables which, as shown below, have to satisfy nine constraints. 

This means that we have only nine degrees of freedom; one less than chapter 5. In order 

to unders tand this loss we consider the spin and boost t ransformat ions (see 5.49 and 

5.50). The sigma variables are self-dual, unlike the variables and therefore we do not 

have the anti self-dual spin and boost freedom present in t h e earlier formalism. Therefore 

the work in this chapter will contain one less degree of f r eedom than previous work. 

We now obtain the nine constraints. The first constraints (6.2) are found by expressing 

the results A = 0 and A 5"̂  = 0 in terms of 

= 0 (6.2a) 

= 0. (6.2b) 

UBRARY 
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6.2. 2+2 Connection Variables 

Then, by rearranging the system of equations (5.7) we obtain the four constraints: 

= 0 (6.3a) 

= 0 (6.3b) 

= 0 (6.3c) 

= 0. (6.3d) 

The remaining two constraints are found by manipulating equations (5.7c) to End 

and in terms of the Sigma variables. The slicing condit ions (5.4) then give 

= 0 (6.4a) 

= 0. (6.4b) 

It is worth noting at this point that the constraints (6.2a), (6.3a), (6.3b) and (6.4) can 

be combined with the requirement t h a t the volume form b e non-vanishing 

^ 0, 

where they reduce to the requirement t ha t either 

or 

The two conditions are interchanged on relabelling and there is no loss of generality in 

choosing the former condition, which turns out to agree w i th the choice of slicing condition 

used in the previous chapter. Wi th this choice the following simplified constraint equations 
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6.2. 2+2 Connection Variables 

are obtained. 

Ci = = 0 Q = = 0 

Q = = 0 Q = E3°" = 0 

Q = = 0 Q = E2°3 = 0 

Cy = - 0 Q = = 0. 

(6.6) 

Note t ha t as in chapter 3 we have squared the final two constra ints because the variables 

are cyclic. 

Our final constraint comes from expressing the const ra in t C (see 5.11) in terms of t h e 

Sigmas. This results in the constraint 

Cg = (6.7) 

If we fix the anti-self dual gauge freedom in the choice of the m a p from the (con-

strained) frame and 6'0(3) variables used in chapter 5 t o the space of Sigmas satisfying 

the above nine constraints is invertible at the linearised level. By the inverse funct ion 

theorem we can consider the two descriptions of double null general relativity to be 

equivalent. We therefore consider our Lagrangian to be given by (6.1) and use Lagrange 

multipliers to introduce the primary constraints. 

r = S + A S (6.8) A ^1,0 "^A ^1,0 "T -Oo "T -^i^A ^ -r -n- l i '^A """ 23^A — 

In the equation above a sums from 1,..., 9. The Lagrangian is now in an appropria te form 

to transfer easily to the Hamiltonian description. 

Before moving to the Hamiltonian description we could calculate the Einstein equations 

and structure equations. However, these calculations would be very similar to the Hamil-

tonian equations and therefore, to save repetition, we leave them and move straight onto 

the Hamiltonian description. 
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6.3. Hamil tonian description 

6.3 Hamiltonian description 

In the usual manner we can 'read oS' from (6.8) that the momenta to the canonical 

variables and are 2 ^ ' and 2^^ .̂ We can also see that the Hamiltonian density is 

given by 

H = - B S - { + A S a " ' I - + A°C„ + + Q ' P u + C - P A . 

(6.9) 

A 
0 • 

where we have introduced the momenta P\i, Pa for t h e cyclic variables 2 ^ ^ , ^2^ 

This results in addi t ional pr imary constraints which have b e e n in t roduced into the Hamil-

tonian using the Lagrangian multipliers 

The canonical Poisson brackets are given by: 

{B^{x),PbIV) 

(x),P%(y) 23/ 

{ E a " ( i ) , P ® (y) 

= (^B(^(Z,2/) 

(6.10a) 

(6.10b) 

(6.10c) 

(6.10d) 

(6.10e) 

We have a to ta l of twenty one primary constraints i n t roduced into t h e Hamiltonian. 

Following the Dirac-Bergamnn algorithm we propagate t h e p r imary constraints: 

pA _ D. 
^ 23 — ^ 23 

P i)A 
12 ^ ^ 2 - - Zi°^A^) - 6^(Ei°^A^ - Eg^^A^) 

P bA 
13 

- (^^(2i°"A" - + 2E3 ' "A1 

^"^3 + + Eg^^A^ - Ei°^A^) + (^^(2i°^A^ - Eg^^A^) 

+ (^^(Ei°^A^ - Eg^^A^ + 2E3^^A^) 

(6.11a) 

(6.11b) 

(6.11c) 

(6.11d) 
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6.3. Hamiltonian description 

A = (6.12a) 

Q = (6.12b) 

A,6 = ^2°' - -2 ,7^ ^ 277^2BPi:^' + (6.12c) 

C7,8 = S , : ' = ( / ' (6.12d) 

The equations Ci, (72 and Cg deEne the multipliers 3̂̂ ^ and respectively. C? 

and Cg deHne the multipliers Equation (6.11b) deEne the multiphers = -^^23, 

= i?^23 3,nd A®Ei°^ % — This leaves thi r teen secondary constraints given by: 

f - 0 (6.13a) 

= 0 (6.13b) 

f ^ = 0 (6.13c) 

Av = D i E ^ ' + D , E ^ = 0 (6.13d) 

Q = ( D , E ^ ' + 2 , 7 ( i B g B g ^ g _ Q (g 

Q - (D^E;^' + 277(iBB^Ec^:) = 0 (6.13f) 

Az"" = -277G - ^2'S + 2?7'L2Br2^' + D.Eg'^ = 0. (6.13g) 

The Dirac-Bergmann algorithm then requires us to p r o p a g a t e these secondary constraints 

to ensure tha t no addit ional constraints arise. Before t h i s is done we split the two sec-

ondary constraints (6.13c) in the following way: 

E3°'P».- = E3°'(i?=i.z:," - (6.14a) 

S i " - P u = S i " ( f l = i . S i " - - R ^ E i " ' - (6.14b) 

As we shall show the five equations (6.13a, 6.13b and 6.14a) define the five Einstein 

constraint equations and are therefore conserved by t h e Bianchi identity. Propagation 

of (6.13d) is identically zero for A = 0, and defines t h e multipliers A^ and A^ for the 
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remaining values of A. Equations (6.13e) and (6.13f) deSne the multipliers and when 

propagated. Propagation of (6.13g) define the multiphers 2̂̂ *, finally propagation 

of (6.14b) leads to a multiplier equation containing the multipliers Therefore no 

additional secondary constraints arise. 

We now calculate the equations of motion. 

(6 .15) 

which results in: 

Af = DiBl - {R%A°' + R \ f i s ' + / E i ° ' (6.16a) 

i ? = D , B l - ( B V E i " + (6.16b) 

i f = A B J - ( B \ S i " + B \ , . S 2 ' ' ) / S i " , (6.16C) 

while the remaining equations of motion are: 

^ 7 = 277C (6.16d) 

= 277^ (6.16e) 

+ Zg^^A^ - Ei^^A^) + + A^) 

+ (^^(Ei'^A" + A^). 

(6.16f) 

6.4 Einstein Equations 

Since we have now finished the canonical analysis and have shown t h a t no addit ional con-

straints remain, we derive the Einstein equations. We use five of the secondary equat ions 
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(6.13a, 6.13b and 6.14a), with (5.36) to de6ne the Einstein constraint equations. 

f % 0 % 0 (6.17a) 

f % 0 ^ « 0 (6.17b) 

f + A%23°') % 0 py 0 (6.17c) 

f Eg"" % 0 <=^ « 0 , (6.17d) 

f Eg"̂ ' % 0 4 = ^ « 0. (6.17e) 

The remaining Einstein equations are obtained from the equations of motion. Therefore 

we can show using (6.16) and (5.36) that 

i ? E , " K - + B ' y E j " + t , " K 0 ^ G'o ~ 0 (6.18a) 

i ' E j " % - [ r \ A ° ' + R \ A " + S , " K 0 ^ G ' j « 0 (6.18b) 

A ' S a " % - ( i J ' o j E i " + E s " % 0 <=> G \ K 0 (6.18c) 

i f E / ' ss - ( j f V S i " + A ' j j E ; ' ' + £ 2 " !s 0 ^ G \ » 0 (6.18d) 

i ^ E / ' + B;E i°> Si - + B \ E 2 « ) E « 
(6.18e) 

jl vi 01 o l 23 n2 fi 23 n3 ^ 23 ^ 01 ^ n y & /^3 
- ' - ^ ' 2 3 ^ 1 - ^ 2 3 ^ 2 - ^ 2 3 ^ 3 ' ' ; ^ 0 ^ 0. 

We have shown tha t we can derive all the Einstein equa t ions from the constraint and 

evolution equations. The structure equations are obtained in exactly the same way as in 

the previous chapter. The final stage is to ascertain which constraints are first class and 

calculate their algebra. 

6.5 Firs t class constraints 

We now move to the next stage of the Dirac-Bergmann a lgor i thm and calculate the first 

class equations, followed by the first class constraint algebra. We can see that some of 

the secondary constraints (6.13) are the same as (5.30) and therefore we adapt them 

in the same manor to obtain four first class constraints. Due to not using the shortcut 

method in this chapter an additional two first class constraints are obtained. These are 
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6.5. First class constraints 

the primary constraints P \ ^ = 0 and P i = 0. 

We now derive the remaining four hrst class constraints. We start by adding the Gauss 

constraint (6.13d), as well as the constraints ~ 0 a n d % 0 to (6.13a): 

=> - 0 (6.19a) 

^ « 0. (6.19b) 

Note tha t this is jus t the same as the constraint (5.39). 

Another Erst class constraint can be obtained by combining (6.13b) and (6.14a). 

H - 0 

=* s , " + fl'i.Ej") + t ° ' + i?", ,-!: ,") « 0, 

using (6.13a) results in: 

, 0^1 

(6.20a) 

Then in a similar manner to the previous constraint we a d d the Gauss constraint multi-

plied by — 

- 0 (6.20b) 

=> 0 

=> + A^^E^' - ( B ^ ^ E D . i - ^ 0, (6.20c) 

which is the same as (5.41). 
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6.5. First class constra ints 

Just as in the previous chapter the hnal Srst class constraint arises from the propagation 

of the momenta f i , (6.11a), which results in the Gauss constraint: 

= (6.21) 

We are required to include some additional terms because we are not using the shortcut 

method. These t e rms are required to ensure the cyclic var iables t ransform correctly. 

B ^ 277C ^ 0 22) 

E x t r a t e rms are also required in the three constraints , ipp to ensure the correct t r ans -

formation of the cyclic variables. These are shown in t h e summary of the six Erst class 

constraints given below: 

f ^3 = 0 (6.23a) 

A = 0 (6.23b) 

: = + D . S i " ' + 277C 277C _ 2?;^ ^ g B p ^ _ g (6 23c) 

: = - ( B ^ 2 ^ ' ) , i - ( ^ ^ ^ 2 ^ ) , ^ 

f t s , ! - + (Ev^ ' f t ) , i - 0 

(6.23d) 

V'p : = - ( ^ f 2 ^ ' ) , - ( A f 2 ^ ' ) , i 
(6.23e) 

The remaining twenty eight constraints, shown below, are second class. 

= 0 ^̂ 2̂3 = 0 f ^ 3 = 0 

p2 = 0 P3 = 0 Ca — 0 a ~ 1,..., 9 
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6.5. First class constraints 

D i E = 0 f D i 2 = 0 

li I o„c dB-o Ol\ rA n ( d li , o„c dB-^ Ol\ fA A S a + 2 < ] ° A B B ^ ^ C ) « = 0 ( A E i * + 2 , ' abBO S c " j 1} = 0 

S} = 0 ( - R ^ S i " + R ^ f i i ' ) S t = 0 

D i E ^ " + D , t , ' ' - = 0 i ; i " ( B = u S , ° ' - - R \ j t ° ' ) = 0. 

We can see that many of our first class constraints are the same as those calculated in 

the previous chapter, but in this chapter we obtain an additional two constraints (6.23a) 

and (6.23b). This is due to not using the shortcut method. 

We now check the number of degrees of freedom using t h e s tandard formula (2.73) which 

gives ^(42 — 2(6) — 28) = 1 degree of freedom. This is jus t what is to be expected from 

a null formulation of general relativity, and is the same as calculated in earlier chapters. 

Now that we are conSdent that we have obtained all the Brst class constraints we calculate 

the first class algebra. Below we show only those t e rm t h a t are not strongly zero: 

/ f 23 d'a:, Jg'i,, d ' y j = d=2 

X J y ) J Z 

/ A d^? / j = d^z 

y g i d ^ z , / = A / Z l g ^ i d ^ z 

X J y J J z 

X J y ) J z 

jy /Yi y d̂ i/j = y 

Now that we have calculated the first claas algebra, we will give the geometrical interpre-
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6.5. First class constraints 

tation of the Erst class constraints. We use the same method as before and calculate the 

infinitesimal transformations the constraints generate. We do not consider the constraints 

and f 2̂3 as they just indicate the gauge freedom to choose the variables Bg and 

Therefore we start with the constraint 

(6.24a) 

= (6.24b) 

(6.24c) 

(6.24d) 

= . (6.24e) 

We can see from the above that this constraint generates the diffeomorphism in the 

direction as before. Then we look at the constraint 

{A^,'^((g')} (6.25a) 

(6.25b) 

5B^ = (6.25c) 

= ^ = 4 ^ A ' (6.25d) 

= = 4 ^ A . (6.25e) 

We see, just as before, that generates the diEeomorphisms in the two surface. 

In an analogous manner to before, the constraint generates the self-dual spin and 

boost transformations. This is seen by comparing the infinitesimal t ransformat ions given 
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6.6. Summary 

below with those of (5.51) and (5.53): 

, ^ i ( g ) } — — ( 6 . 2 6 a ) 

^ i (^)} = + 2gBf6^ (6.26b) 

^ i (^)} = (6.26c) 

j _ -2gE223(^^ + (6.26d) 

(^E^' = I ^i(^) I = + 2^E3:'(^^. (6.26e) 

This concludes our analysis of the Erst class constraints. 

6.6 S u m m a r y 

In this chapter we have derived a double null Hami l ton ian using only the connection 

and the adapted SO(3) t r iad. This has resulted in a simplified system of equations. By 

applying the shortcut method, fur ther simplification could have been obtained. A problem 

with the shortcut me thod arises when considering the constraint (6.14b), because we 

would have multiplied a constraint with a multipher, a n d then called it a multiplier 

equation. It was for this reason that the shortcut method was not used. 

The work of this chapter resulted in a first class a lgebra for General Relativity using 

only self-dual variables. All the first class constraints could be given a geometrical in-

terpretat ion. It can be seen from these interpretations h o w they relate to the Ashtekar 

approach, or that of Goldberg oZ. ( 1 9 9 2 ) described in the Appendix. We see in these 

approaches t h a t the constraints (6.23d) and (6.23e) are t h e double null representation 

of the momentum constraints (A.10b) and (B.13a). The constraint (6.23c) is equivalent 

to the constraints (A.10c) and (B.13b). The greater n u m b e r of constraints in (A.10c) 

or (B.13b) relates to the greater freedom these descript ions contain. The Hamiltonian 

constraint (A. 10a) is split within the second class constraints . 
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Chap te r 7 

Discussion 

The area of quan tum gravity is still one of the key areas of research in General Relativity. 

Despite the many eSbrts by eminent scientists, a full satisfactory description haa not been 

obtained. This reveals the complexity of the issues tha t s u r r o u n d quantising gravity. Some 

of these issues were revealed when the canonical method of quantisation was applied to 

the ADM description of General Relativity (see Arnowit t et al 1960). This work showed 

that the Hamiltonian constraint was ill-defined at the q u a n t u m level, which meant the 

remaining steps of the quantisation process could not be completed. 

Although attempts to quantise gravity based on the A D M approach failed, the failure 

was not due to an inherent difficulty with the canonical quan t i sa t ion method but ra ther 

to the par t icular s tructure of the constraints in the A D M formalism. Therefore Torre 

(ig86) adapted the description of General Relativity to a 2 + 2 description, but he set 

only the non evolution direction to be null, and not us ing the full double null approach. 

His work revealed the fact tha t the Hamiltonian cons t ra in t becomes second class in 

null descriptions. Therefore issues that occurred with t h e ADM description could be 

circumvented using alternative methods that remove t h e second class constraints (for 

example replacing the Poisson brackets with Dirac brackets). As we have discussed while 

this approach overcomes the previous difficulties, the complexi ty of the constraints means 

that the canonical quantisation can not be concluded. 

These issues regarding the complexity of the constraints l ed Ashtekar to devise alternative 

variables which simplified the constraints. In his work he u sed variables tha t were complex 
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and self-dual. Using such variables he was able to obtain constraints that were polynomial. 

Unfortunately in the Ashtekar approach the Hamiltonian constraint was 6rst class, and 

as in the ADM case this constraint was not well dehned at the quantum level; hence the 

canonical process was never completed. 

Goldberg et al. ( 1 9 9 2 ) used a version of Ashtekar variables and applied it to a null descrip-

t ion of General Relativity, which built on Torre's work t h a t indicated the Hamiltonian 

constraint would become second class. This managed to overcome some difficulties found 

in previous work, but unfortunately in their work they choose a 3 -I- 1 description and 

set the hypersurface to be null. This resulted in comphcated Erst class constraints which 

preserve the slicing. 

Therefore in this thesis we set out to apply the hrst stage of the canonical quantisation 

process (the canonical analysis) to a double null description of General Relativity using 

self-dual complex variables. The advantage of using a doub le null description of General 

Relativity is t ha t the null directions are both normal t o the two surface, and therefore 

the only gauge freedoms tha t remain are the spin and b o o s t transformations. This should 

overcome the more complicated hrst class constraints that occur in Goldberg oZ. ( 1 9 9 2 ) . 

Another advantage of using the double null method is t h a t the Hamiltonian constraint 

is not a Erst class constraint. The advantage of using the self-dual variables is that they 

result in polynomial constraints. Therefore using the double null method overcomes some 

of the obstacles of earlier approaches. 

In chapter 3 we approached this work Erst by extending the work of Torre to allow for 

two null directions. The motivation for using a double nu l l approach is t h a t a spacelike 

2-surface naturally singles out two null directions so that the situation is geometrically 

simpler than for a null hypersurface where one has the gauge freedom arising form the lack 

of a canonical normal direction. However despite this s implification the non-polynomial 

nature of the constraints makes it very diScult to make progress with the later stages 

of the Dirac-Bergman algorithm. Despite this, the geometr ic analysis of the constraints 

in this si tuation provides us with valuable information when we come to analyse the 

constraints in the self-dual double null formulations used in chapters 5 and 6. 
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In chapter 4 we introduce a description of General Relativity in terms of self-dual 2-

forms that is closely related to the use of Ashtekar variables. The use of these variables 

considerably simpliGes the constraint analysis because it results in polynomial constraints. 

However, as outlined above problems relating to the nature of the Hamiltonian constraint 

and also the fact that the constraint algebra does not form a Lie algebra, remain with 

this approach. 

In chapter 5 we went on to use the self-dual variables in a double null setting. Following 

Goldberg e( oZ. ( 1 9 9 2 ) we used a mixture of tetrad variables and densitised 2-forms. 

This enabled us to compare our work with their analysis and also had the advantage 

of the tetrad variables being similar to those used in chapter 3. This enabled us to 

use the geometric insight gained from chapter 3 to make an intelligent guess at which 

combinations of pr imary and secondary constraints would result in first class constraints 

with a clear geometrical interpretat ion. Although in theory it is possible to apply the 

Dirac-Bergman constraint analysis in a purely algorithmic fashion, in practice it is just 

too complicated to do this without some geometrical insight. The outcome of the work 

in chapter 5 was the construction of a polynomial hrst class constraint algebra that also 

formed a Lie algebra. In theory this should make the next step of the quantisation process 

easier. 

In chapter 5 (see 5.42) we related our hrst class constraints to those obtained using the 

standard 3 4 -1 Ashtekar and also to those obtained by Goldberg oZ using a 3-t-l null 

slicing. In particular, by combining the diEeomorphisms in the 2-surface with those of the 

null generators in the hypersurface one obtains the t h ree hypersurface diffeomorphism 

constraints found by Goldberg 0/. ( 1 9 9 2 ) . In order to continue with the canonical 

quantisation process all constraints must be Srst class. A common method to accomplish 

this would be to use starred variables (an example can be found in Soteriou 1 9 9 2 ) . An 

alternative method would be to replace the Poisson bracket with the Dirac bracket. 

However the mixture of tetrad and self-dual 2-form variables mean that the relationship 

between the variables is rather complicated, and rather than pursue the next step of the 

process we attempt to move onto a description entirely in terms of the self-dual 2-forms. 

In chapter 6 we worked solely with the self-dual densitised 2-form variables. These vari-
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ables are not independent but have to satisfy a number of constraints if they are to 

represent 2-forms which are derived from a null frame. In general, these conditions are 

very complicated, but when combined with the double null condition they s imph^ con-

siderably. This results in the same Grst class algebra that was obtained in chapter 5, yet 

with a simpler constraint structure which is particularly evident with the second class 

constraints. It was only because of the work in chapters 3 and 5 tha t it was possible to 

have the geometric insight required to make the appropriate combination of primary and 

secondary constraints t ha t form the first class constraints . 

The result of the work in chapter 6 was the derivation of a double null first class con-

straint algebra which also formed a Lie algebra. The constraints were polynomial with 

the Hamiltonian constraint becoming second class. Therefore some of the difficulties t h a t 

occur in the earlier formulations of General Relativity do not arise. There were four con-

straints containing geometrical meaning: two of the constraints generated inEnitesimal 

t ransformations in the spatial two surface {S'}; one cons t ra in t gave the infinitesimal t rans-

formations in the direction; and the final constraint genera ted the self-dual spin a n d 

boost gauge freedoms. The ease with which we obtained the geometrical understanding 

of the Hrst class constraints was a result of using a double null approach. 

The work in chapter 6 contains not only the first class const ra ints , but also some second 

class constraints; just as in chapter 5. Therefore in a similar manner we would Erst have to 

consider the second class constraints before pursuing any fur ther a quantum description 

of gravity. This may be achieved by the use of starred variables or Dirac brackets already 

outlined. Once only a first class algebra remains, we m a y progress towards a quan tum 

description using the steps outlined in section 2.4.3. This would involve promoting the 6rst 

class constraints to unambiguous quantum operators, f r o m which an algebra could then 

be constructed by replacing the Dirac or Poisson brackets with commutation relations. 

Once this has been achieved, further steps are required before a complete and coherent 

quantum description caji be obtained. 

The Snal issue that needs discussing are the 'reality constraints'. From chapter 4 onwards 

we worked with a complexified version of General Relativity. However from a physical 
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point of view we wanted to be able to regain the real version of the theory. In terms 

of the of 1-forms this is accomplished by a requirement that they correspond to a 

complex null basis formed &om a real orthogonal basis. This requires that satisSes 

the equations: 

(7.1a) 

(7.1b) 

(7.1c) 

It can easily be shown that this implies that the self-dual 2-forms 5'"'̂  satisfy the six 

complex constraints; 

^ Q 2) 

Conversely if these conditions are satisfied one can find a basis 0 " such t ha t the S-^ are 

given by (4.34) and satisfy (7.1). So in terms of the variables the reality conditions 

are given by: 

= 0. (7-3) 

Although the work in this thesis has used a double null 2 + 2 description of general rela-

tivity to describe the geometry at the Hamiltonian level we have broken the symmetry 

by singling out one of the two nuU directions as an evolution direction. We have al-

ready commented on the result of combining three of t h e first class constraints to give 

constraints that generate the di&omorphism freedom of the hypersurfaces {Eo}. This 

reveals the 3 + 1 nature of the canonical analysis we used. Even though we were using 

a double nuU description of gravity, we were required t o choose an evolution direction, 

2;°. Therefore our description is really propagating the hypersurface Eo, just as earlier 

methods had done. This choice also breaks the symmetry between the two null direction 

and x^. Therefore a natural extension to this work would be to consider a description 

in which both and are considered as evolution directions. This would maintain the 
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symmetry and thus reveal the double null structure more clearly. Some work in this area 

has already been accomplished by Hayward (1993) in which he considered a HamHtonian 

with two evolution directions. Before we build on this work we would have to be able 

to deGne Poisson brackets that are deSned with two evolution directions. Work has been 

done in this area by Matteucci (2003), but it remains incomplete. At present it appears 

that three different Poisson brackets would be required: one for the surfaces {T}; one for 

the surfaces {5"} and the third would be needed to cross the two 2-surface8 (see Figure 

3.2). 

We finally concluded that although a quantum descr ipt ion of gravity remains a dis tant 

goal we have been able to overcome some of the obstacles of earlier methods, and provided 

a good baae for future work in this area. 
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Appendix A 

In t roduc t ion of Ashtekar variables 

In chapter 4 we introduced self-dual variables using the approach of Giuhni ( 1 9 9 4 ) - Then 

we used a local isomorphism to change the complex self-dual variables into the 5 0 ( 3 ) 

variables. This was not the original approach of Ashtekar ( 1 9 9 1 ) . In his work he performed 

a 3 -F 1 decomposition on the complex self-dual connection and curvature. Using a local 

isomorphism he was able to replace the pull back self-dual connection and curvature 

which occur in the Lagrangian, with a self-dual connection and curvature defined on t h e 

three surface. In this chapter we are going to outline this approach and show how these 

variables simplify the constraint equations. 

We will use only the self-dual part of the action (4.27) because this is all tha t is required 

to obtain all the Einstein equations, is the tetrad, and the self-dual curvature de5ned 

on the space-time is given by This curvature is just the same as the self-dual 

curvature (see 4.4), however, we drop the (+) because we will use only self-dual 

curvature. The (+) is replaced with to help distinguish it f rom the self-dual curvature 

defined on the hypersurface, tha t will be introduced la ter in this section. The action 

in this notat ion is given below: 

I = (A.l) 

The self-dual curvature is defined by a self-dual connection, 

We now decompose the frame into the 3-1-1 foliation, in which we consider a vector 

129 



Held whose integral curves intercept the hypersurfaces once and are transverse at its 

interception. This vector held can be decomposed aa in section 2.2 so that 

We de&ne projection operators := and where is the unit normal to the 

hypersurfaces. Using these projections we split the frame into its normal and tangential 

parts, 

4 = (A.2) 

:= (A.3) 

Substituting the above into the action (A.l) we obtain 

I = - iE'^n^nJUj^). (A.4) 

We now introduce the projected frame density .27° := and use the self-dual 

identity of the self-dual curvature, + 2̂ °̂̂  76^^0/9 '̂̂  = 0, to obtain: 

I = f NEiE^^nJ" + (A.5) 

N E i E ' / K j " - iE'f,(f - (A.6) 

where we have used + N'^ given above, and defined By 

expressing in terms of the self-dual connection, we obtain: 

i " *TlJ^ = + [M„, M s l " " ) 

= £ M t - ( t - M f ) , , + %]"" 

By substituting this into (A.6) we obtain: 

1 = 1 + iEy.^s - 'Dfl'Aj't')] . (A.7) 

We can see that in the action above the self-dual curvature is always projected into the 
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hypersurface by the projected frame density. For example We 

can therefore replace the curvature with its pull-back, which remarkably is deBned 

by the pull-back of the connection. To explain this we shall consider the Lie algebra of 

the connection. T h e algebra of a complex self-dual connection, , is sl{2,C), which 

is isomorphic to 5o(3)c. This is the same as the Lie algebra of the connection defined on 

the hypersurface, denoted by This also enables us to replace the space-time exterior 

covariant derivative, with the derivative dehned on the hypersurface, Dg. We can 

now express the Lagrangian using these pull-back variables. We will use a dot to denote 

the Lie derivative with respect to t " and define := The Lagrangian is t h e n 

given by. 

L = I „) + NEfEyn^j> d'x (A.8) 

In the current form, /Z = pg—?/, and so we are able to 'read off' the canonical variables aa 

well as the Hamiltonian. Therefore we find the conf igura t ion variables are the connections, 

whose corresponding canonical momenta are the self-dual pa r t s of — = 

= : Hy. We are using the shortcut m e t h o d and therefore we treat the 

variables N^, N, Aq''' as multipliers and do not introduce add i t iona l momen ta . 

We now express the Hamil tonian using the canonical var iables: 

H= f - (a;')daH) - ( A . 9 ) 

Due to the shor tcu t me thod there are no p r imary cons t ra in t s , bu t var ia t ion of the mul-

tipliers result in the secondary constraints: 

= o (A. ioa) 

- 0 (A. iob) 

D x n ; ; ) = o. (A. ioc) 

We can show that these seven constraints are all first class. The Srst constraint is called 

the Hamiltonian constraint, while the second constraint (A. 10b) is called the momentum 
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constraint. These are similar to the earlier constraints found in chapter 1. The hnal con-

straint (A. 10c) is called the Gauss constraint. In the ADM Hamiltonian the Hamiltoniaji 

and momentum constraints generate diffeomorphisms in the normal and tangential direc-

tions. In Ashtekar's approach the momentum constraints have to be adapted by including 

the Gauss constraint in order to generate the diffeomorphisms. The resulting constraint 

is given below: 

- 4 ^ D / N G ) = 0. (A. I I ) 

Note that this is similar to the adaption made to the Erst class constraints in chapters 5 

and 6. 

The Gauss constraints generate rotations of the frame indices. When we perform the 

standard counting to show the degrees of freedom, we find t h a t there are (18 —2(7))/2 = 2 

degrees of freedom. 

As stated in the beginning of this section the Ashtekar variables that we are using are 

complex. Therefore the current solution is for complexified General Relativity, which 

allows complex metrics. To guarantee a real metric we need to impose some extra con-

straints on the equations. These constraints are not considered to be primary or secondary 

constraints of the theory, rather they 'Slter' the solution space so that we consider only so-

lutions that generate real metrics. In order to obtain a real metric the expression 

must be real. This however, is not enough because we also have to ensure that the metric 

remains real for all time, which implies the time derivative of the metric must be real. This 

is achieved by calculating the Poisson bracket of the metr ic with the Hamiltonian. Using 

the Hamiltonian (A.9) we get the time derivative of the me t r i c to be H'') . 

We must ensure that this is real. We next may check that this condition is preserved for 

all time. If it is then providing these conditions are satisSed initially then they are also 

satisfied for all time, which then implies that using the canonical method above results 

in General Relativity. 
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Appendix B 

Null 3 + 1 canonical analysis 

In this appendix we outl ine the work by Goldberg, Rob inson and Soteriou (see Goldberg 

et al. 1 9 9 2 ; Goldberg & Soteriou 1 9 9 5 ) . In thei r work t hey used a 3 + 1 foliation of 

spacetime and made the hypersurfaces null through the use of a Lagrange multiplier. 

This work uses a similar approach to the one found in c h a p t e r 5. We note t h a t because 

we are working in a 3 + 1 form in this appendix the index A;., and i, j, k sum between 

1 ,2 ,3 . 

We Hrst introduce the null basis of one forms and the corresponding tetrad basis: 

= TVd^ + d( + da:') (B . la ) 

g' = z/!^.(Ar;dt+da;:'). (B . lb ) 

where We see in the above t h a t t he the f r a m e is a d a p t e d when Ofj = 0. T h e 

null condition is given by CKi + a!20!3 = 0. 0:2 and aa c a n be set to zero using a gauge 

freedom, which leaves the null condition as a i = 0. From this point we will not use the 

index on the ajpha variables because there is only one of them. 

133 



We split the connection (4.37) into the 3 + 1 form: 

+ (B.2) 

which substituting into (4.39b) results in: 

(B.3a) 

A 
1,0-- ^4" ,̂. (B.3b) 

Where the derivative 2)̂  is deAned by: 

A / ^ := f% + i r i c A f " - (B.4) 

Then using these de6nitions, the 5'0(3) basis given by (4.34) and the action (4.47) we 

obtain the Lagrangian density: 

£ = A%tj: + + R%N'tJ -

+ + p{a')^. (B.5) 

where: 

:= fi 'g; (B.6) 

2 / := := 2 / : = (B-T) 

Note in the above Lagrangian we have introduced the nul l condition a = 0, though the 

use a the multiplier p. The equations (B.7) are used to replace the variables v\ and t/g 

with 2]^* and in the Lagrangian. The variables Eg' a re zero on the null space, and 

hence they can not replace the variables w'. Therefore b o t h sets of variables (Eg' and {;') 

are used in the Lagrangian which results in an additional three constraints Eg ' + av" .̂ 

This Lagrangian is in the form — 'K(g^PA) we can see straight away that 

the canonical variables are with conjugate momenta Ail the remaining variables 

are cyclic and therefore they will be treated as multipliers via the shortcut method. This 
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results in the Hamiltonian density: 

- / / i C ' - p (a" ) , (B.8) 

where we have defined: 

% = (B.9a) 

% = (B.9b) 

= ^ , ( 2 ^ 3 (B.9c) 

C' = E / + (B.9d) 

The above are constraints that arise from variation w i t h respect to and 

respectively. We get additional constraint equations from varying with respect to p, a 

and 

a = 0, (B.9e) 

= 0, (B.9f) 

+ = (B.9g) 

Note that a^id Therefore (B.9g) contains only one independent 

equat ion; this will be labeled 

We now need to propagate the constraint equations to ensure they remain true for all 

t ime. P ropaga t i on of the constraint C" = 0 gives: 

/ := = 0 (B.IO) 

: = % + % . 

Propaga t ion of t he constraint Qs = 0 results in a mul t ip l i e r equation which constrains 

the mult ipl ier n f 

= ( B J l ) 
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The constraints (B.9e) (B.9f) and (B.IO) are multiplier equations and therefore do not 

require propagation. Propagation of remaining constraints does 

not result in any additional equations. 

The equations of motion are then given by: 

~ Hp} 

= (B. 12a) 

- //i (B.12b) 

(B.12c) 

- 2B''E3' (B.12d) 

S / , 0 = - 2B"E3' + (B.12e) 

After this analysis we have eleven constraints and six mult ipl ier conditions. Five of t he 

constraints, %, and ^2, after being adapted, are hrst claas. The remaining constraints, 

are second class. To calculate the hrst class algebra the constraints are 

smeared with test functions: 

Zf(y') : = y y'a^id^z (B.lSa) 

G ( M \ M^) : = y d^a;. (B.13b) 

The algebra is then given by: 

{ ^ ' ( r ) , a'(Z:')} = (B.14a) 

= G ( Z : y M \ / : y M ^ ) (B.14b) 

= G ( 0 , . (B.14c) 

The constraint H i y ^ ) generates the diffeomorphisms within the three surface, which 
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results in the infinitesimal transformations: 

(B.lSa) 

= ZyAT' (B.lSb) 

(B.15c) 

= vCyi;' (B.lSd) 

= /:yv4^ (B.lSe) 

= r y B = . (B.15f) 

The other Srst class constraints, generate the self-dual null rotations: 

m (B.16a) 

(B.16c) 

= 0 (B.16d) 

(B.16e) 

= 2M^B^ (B.16f) 

This concludes the null 3 + 1 canonical analysis. 
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