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In this thesis we consider a canonical analysis of double null General Relativity. We start
with an introduction to Lagrangian and Hamiltonian dynamics, which introduces many
of the techniques that are used throughout this thesis. Then in chapter 2 we introduce

the canonical quantisation process, and perform the analysis on electromagnetism and

General Relativity to help clarify the steps involved.

In chapter 3 we introduce the double null formulation of General Relativity. From this
understanding we calculate the canonical analysis of this description. The complexity
of the resulting constraints provides the motivation to introduce Ashtekar variables, the
topic of chapter 4. This chapter also introduces SO(3) variables. The new variables are
then used in the canonical analysis of the double null description of General Relativity.
Two different methods are considered and while the resulting constraint algebra remains

the same, the two methods have different advantages.
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Notation

A,B,C,... SO(3) indices(1,2,3)

a, B, ... coordinate indices (0, ..., 3)

a,b,c,... time coordinate indices (0, 1)

1,75, k, ... space coordinate indices (1,..,3 for 3+1 or 2, 3 for 2+2)
a, B, ... frame indices (0, ..., 3)

a,b,c,... time frame indices (0, 1)

i,jk, ... space frame indices (1,..,3 for 3+1 or 2, 3 for 2+2)
0 or, partial derivative

O space-time covariant derivative

V or; covariant derivative on leaves of foliation

D exterior covariant derivative

£ space-time Lie derivative

L space Lie derivative

N density of weight one

N density of weight minus one

Nag trace free part of Nyg

g space-time metric

et induced metric
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Chapter 1

Introduction

The concept of gravity was first described by Newton through his study of planetary
motion. Newton understood that all objects on earth are subject to a force that pulls
them towards the earth’s centre. An opposing force must be applied to lift an object off
the earth’s surface, but if this opposing force is removed then the object falls back to the
ground. To explain this, Newton described a force that attracted massive objects towards
each other. With this new force, called gravity, and the recently developed mathematical

techniques of calculus, Newton was able to understand planetary orbits.

One main problem with Newton’s work was that it failed to describe how this force arises.
This was overcome when FEinstein first wrote about General Relativity. Before Einstein
had accomplished this famous work he had already established himself in the scientific
community with his special theory of Relativity, which explains how light can propagate
through a vacuum, such as space, while all other waves required a medium in which
to travel. This theory explained the results of a recent experiment by Michealson and

Morely. It also resulted in breaking many strongly held beliefs concerning the nature of

the universe held by scientists at that time.

Einstein was not content with this work but wanted to incorporate gravity into his the-
ory of relativity. This work took him many years to complete, but resulted in a new
understanding of gravity. In his work Einstein proposed that gravity was the result of
mass curving ‘space-time’. This meant that the force of gravity was a consequence of the

geometry of a four dimensional manifold called space-time.



1.1. Lagrangian and Hamiltonian dynamics in finite dimensions

This new understanding of a force was unique; no other force had been so beautifully
described by the curvature of geometry. Even to the present day forces other than gravity
have been described in terms of an exchange of particles rather than from a geometrical
basis. This common particle exchange approach enabled theories describing the forces
to be combined, but gravity stood apart; distinctly unique. Unlike all the other physical
theories, gravity is described by geometry and it has therefore proved difficult to combine

it with these other forces. Einstein spent many years trying to bridge this divide, but to

no avail.

To start with the desire for a complete theory that described both General Relativity and
the theory of particle interaction (called quantum field theory) was one of aesthetics. Now
science is trying to understand regions of space that require a description of large masses
on a small scale. To do this a clear understanding of how the two theories of General
Relativity and quantum field theory interact with each other. One of the first approaches
was called canonical quantisation. The work in this thesis starts to apply this technique to
a particular description of gravity: double null. The method of canonical quantisation, as
well as other quantisation methods, is based on the fact that both General Relativity and
quantum field theory can be described in a Hamiltonian form. Therefore we now spend

some time introducing Lagrangian and Hamiltonian techniques that are used throughout

this thesis.

1.1 Lagrangian and Hamiltonian dynamics in finite

dimensions

An instantaneous phase space of a system is described in terms of a set of IV generalised
coordinates ¢* and their velocities ¢* (where k runs from 1,2, .., N). This gives the con-
figuration of the system. The initial state of the system is described by a point in the

phase space, and over an interval of time the state of the system will evolve, resulting in

a curve.

Let T denote the kinetic energy and V' the potential energy. Then we can define the

Lagrangian L =T — V. In this introduction we will consider only Lagrangians without an

2



1.1. Lagrangian and Hamiltonian dynamics in finite dimensions
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Figure 1.1: Varying paths of a one dimensional system.

explicit time dependance. Therefore the Lagrangian is a function of only the generalised

coordinates g* and their time derivatives ¢*.

Now that we have introduced the Lagrangian we will consider Hamilton’s Principle which

states that the motion of a system from time #; to time ¢5 is such that the line integral

to
1.—_/ L(g*, ¢*) dt,

t1

is an extremum. [ is called the action. This allows us to say that the variation of the line

integral I is zero:
23
ol = (5/ L(¢*,¢")dt = 0. (1.1)

t1

We now show that a necessary and sufficient condition for the above is that

oL @ <8L>7 1.2)

ag* ~ ot \ Bk
which are just the Lagrange equations (sometimes called equations of motion).

We start by labeling all the possible paths, g;(x), the system could take with a parameter,

a, and a variation n;(¢). We take the path o = 0 to be the extremum path (see figure

1.1).
Therefore:
gr(t, ) = go(t) + ank(t), (1.3)

where ¢2(¢) is the solution at the extremum. For fixed variations of 7;(¢) we consider the



1.1. Lagrangian and Hamiltonian dynamics in finite dimensions

action I as a function of a parameter o and let
I{a) = I(gi(t) + an(t)). (1.4)

First we consider:

4l _ [ 9Log | OLOG
da 4 Ogx 0o Ogp O
2 0L dgy 0L 02qy,

4 _87;;; Oa 5&: Otda
(22 sy,
N 4 \Ogqx 0tog) O

In the last step we used an integration by parts on the second term and the fact that the

dt

variation vanishes at ¢; and 3. We now introduce the variation in terms of the parameter

Q.
df aq}c (t7 Oé)
0l = — By = = e = X 1.
da| qk o |, Mk () (1.5)
Then, using the above:
2 (9L 0 0L
o1 :/ (—— — ——,—) dqy, dt. 1.6
; Bgr Ot O4r 4k ( )
Since the variation dgy is arbitrary, 61 = 0 if and only if
L L
oL _o0L _, (1.7)

Hence, we have shown that through a variational approach the Lagrange equations follow
from the Hamilton’s principle. It is possible to generalise this approach to allow for higher

derivatives, or several parameters z®. Such generalisations can be found in Goldstein

(1969).

1.1.1 Hamiltonian description for finite dimensional systems

The system of equations given by the Lagrange equations (1.2) are second order. The
phase space for the Lagrangian description uses ¢* and ¢* with time as a parameter. We

now introduce an alternative form, in which the velocities used above are replaced by



1.1. Lagrangian and Hamiltonian dynamics in finite dimensions

generalised momenta, pi, defined by:

_ OL(¢*,d")

This change of basis is performed through a Legendre transformation which also defines

the Hamiltonian:
H(q",pr) = ¢"pr — L(d", &) (1.9)

From this definition we get the system of equations

o0H
L — 1.10
1 Opy ( a)
oH
Y = - ———, 1.1
Pk Bg* (1.10b)

The equations (1.10a, 1.10b) are known as the canonical equations of Hamilton, and
they replace the Lagrange equations. We can see from these equations that we have a
system of first order equations replacing the second order Lagrange equations. In solving
a dynamical system, the first step is to obtain the Lagrangian, and then to perférm
the Legendre transformation to obtain a Hamiltonian. Finally we obtain and solve the
canonical equations. The Legendre transformation is possible only if the dynamical system

is not constrained. We consider constrained systems when we discuss the Dirac-Bergman

algorithm in the following chapter.

1.1.2 Poisson brackets

If F(g*, pr) and G(¢", pr) are two arbitrary functions, then their Poisson bracket is defined

by:

0F 0G  OF 0G (1.11)

Fe)= 8gF Opr  Opg Ogk”



1.2. Lagrangian and Hamiltonian dynamics for field theories

From this definition we can easily show the fundamental Poisson brackets satisfy:

{¢*.d'}=0 (1.12a)
{pr,pi} =0 (1.12b)
{¢*, o} = oF, (1.12¢)

and they are independent of the canonical coordinates chosen. It is possible to give the
canonical equations in terms of the Poisson brackets as:

" ={d" H} (1.13)

p* = {px, H}. (1.14)

More generally if f = f(q(t),p(t)) then f = {f,H} so that functions whose Poisson

bracket with the Hamiltonian is zero must be constants of the motion.

1.2 Lagrangian and Hamiltonian dynamics for field

theories

In the section above we considered a finite dimensional system. Many physical systems
are described by field theory, in which the Lagrangian depends upon position as well
as time. Such a system can be thought of as an infinite dimensional system. To obtain

equations of motion for such systems Hamilton’s Principle must be generalised to:
to
51:5/ /£d3xdt=0, (1.15)
t1

where L(¢*, ¢*, ¢* ;,z") is called the Lagrangian density and ¢* = ¢*(t,%) are the fields
in which the index A labels the different fields in the system. The Lagrangian density is a

scalar density of weight one. The relationship between the Lagrangian and the Lagrangian

density is given by:

L:/£d3x. (1.16)



1.2. Lagrangian and Hamiltonian dynamics for field theories

In the finite dimensional case we were able to show that Hamilton’s Principle was satisfied
if and only if the Lagrange equations (1.2) were satisfied. In the infinite dimensional

case we can also show that Hamilton’s principle (1.15) is satisfied when the generalised

oL oL d (0L
o (““aqm) - (o) =© o

are satisfied. The proof which shows this is just a generalisation of the finite dimensional

Lagrange equations,

case shown earlier (see Goldstein 1969).

The functional derivative of a second order Lagrangian density is given by, L:

L a((%). (1.18)

s ~ o '\ og;

Then using this notation we may state the Lagrange equations as

oL d [OL
—— [ Z= 1 =0 1.19
S¢g* dt <Bg}>‘> ’ (1.19)
which are similar in appearance to (1.2).

1.2.1 Hamiltonian description for continuous systems

We now require a Hamiltonian description for a continuous system. We start with the
definition of the momenta:

_ oL
P = 5o (1.20)

We note that unlike the finite dimensional system, here the momenta are densities. There-
fore the Hamiltonian we define using these momenta is also a density of weight one. Using

the definition of a Hamiltonian density, % = $,¢* — £, we obtain:
H= /’H(q*, ¢ 5P, a1, 7°) . (1.21)

Note that in some cases the canonical variables can themselves be densities and therefore
the momenta may not simply have a weight of one. We require particular care when

calculating Lie derivatives or partial derivatives of densitised variables.

7



1.2. Lagrangian and Hamiltonian dynamics for field theories

The canonical equations are expressed in the same way as the finite dimensional case,

except we use functional derivatives rather than partial derivatives:

0H
;A - = 122a
=5 (1.222)
: 0H
Dy = — —— 1.2
2 7 (1.22b)

1.2.2 Poisson brackets in infinite dimensions

Now that we are working with infinite dimensions we are required to redefine the Poisson

bracket to be

0F (z 0F (z
(F@).60homs = [ (G s - 52 B5n ) 2 (129
We can see in the above that in moving from a discrete definition to a continuous one
we have replaced the partial derivatives with functional derivatives. We also changed
the sum in the discrete Poisson bracket to an integral, but a sum on the discrete field
label arises. The other addition to (1.23) is the condition z° = y° which states that the
Poisson bracket is evaluated for ‘equal time’. In the future we will not state this condition

explicitly. Using (1.23) the canonical equations are expressed as:

¢ ={¢\, H} (1.24a)

pr=1{pr, H}, (1.24b)

and the fundamental Poisson brackets are:

{2),¢* (W)} =0 (1.252)
{Br(z), Bu(y)} = 0 (1.25b)
{2),5s(v)} = 626 (, 7). (1.25¢)

This introduces the Dirac delta function §(z, §), which is a bidensity (see DeWitt 1967).



1.3. Canonical Quantisation

1.2.3 Dealing with the delta function

In all our future work we will be using the infinite dimensional definition of the Poisson

bracket, and therefore we are often required to integrate the Dirac delta function. The

Dirac delta function has the following property:
/ F(2)5(z, 2) &z = F(z), (1.26)

where f is a density of weight +1. A densitised delta function arises when we calculate

a functional derivative of a density with a density, for example:

= 52 (x, y). (1.27)

With a densitised delta function we get the property:
/g(z)g(m,z) d*z = g(x), (1.28)

where ¢ is a function.

The bidensity that arose in the fundamental Poisson brackets given above has no weight

on the the first argument, z, and weight one on its second, y. This results in the properties:

/<>5<x 7) ds = g(y) (1.292)
/ F(v)8(z, §) &y = f(x). (1.29b)

1.3 Canonical Quantisation

In Dirac (1964), Dirac showed how it is possible to move from a constrained classical
theory described by Hamiltonian dynamics to a corresponding quantum theory. The basic

idea involves replacing the Poisson bracket of the canonical variables with the commutator



1.3. Canonical Quantisation

of the corresponding quantum operators according to:
Uz oa
[f,9] = 51F. 9} (1.30)

For many theories this transition is too simplistic because in general, classical observables
do not necessarily have unique quantum observables associated to them, or the theory
contains constraints. Dirac proposed an ‘algorithm’ (see Dirac 1964) which can be used
to carry out this procedure for theories containing constraints. This algorithm is now
called the Dirac-Bergman algorithm and the form of quantisation is called Canonical

Quantisation; we will outline only the details here as a more in depth discussion is given

in chapter 2.

The fundamentals of this approach are to express the classical theory in terms of a Hamil-
tonian, before obtaining the first class constraints. First class constraints are constraints
that generate infinitesimal transformations, ie. they change the canonical variables with-
out changing the physical state. The remaining constraints are called second class. Once
the first class constraints have all been obtained an algebra is generated by calculating
the Poisson bracket relations between them. We then move to the quantum theory by
replacing the Poisson brackets with commutator relations as given above. The second

class constraints are eliminated by the definition of new variables.

Despite issues relating to some finer points of the algorithm, in particular the construc-
tion of quantum observables, canonical analysis has had notable success in quantising
electromagnetism to obtain the theory quantum electrodynamics. Other field theories

have also been quantised, such as Yang-Mills theory, but General Relativity has proved

to be too difficult.

At about the same time canonical quantisation was developed, an alternative method was
being established. This method involved solving the Hamiltonian through path-integral
methods. In a similar manner to the canonical quantisation method it was successful for
Electromagnetism, and some other ‘simpler’ theories, but it has not so far been used to

quantise General Relativity, although it has had some success with string theory.

10



1.4. General Relativity

1.4 General Relativity

In this section we derive the Einstein field equations from a Lagrangian density. Although
this was not the approach that Einstein originally took when he first derived his field

equations, it is the most direct approach and the one that will be most useful for this

thesis.

Any field theory can be described by a Lagrangian density, but before we state the
Lagrangian for General Relativity we first introduce a metric g,s. A metric is a symmetric
covariant tensor of rank 2, which can be used to measure the infinitesimal intervals
ds? = gnp dz® dz? on a manifold, M. The covariant metric g,z has an inverse ¢*, and
together they can be used to raise and lower tensorial indices. The metric can also be

used to define a connection on the manifold, called the metric connection:

ng = %gad (Goy.8 + Gs8,y — gﬂv,é) . (1.31)
The connection is used to define a covariant derivative:
O, X5 = 0, X5 + 0§, Xg7 — T, X7 (1.32)

Note that we have used [J to denote the space-time covariant derivative in order to reserve

the usual notation, V, for later use as the covariant derivative induced on a 3-surface (see

Isenberg & Nester 1979).

As well as the covariant derivative the metric connection is also used to define the cur-

vature or Riemann tensor:
If we use the metric to contract two Riemann indices then we obtain the Ricci tensor:

Rop = gvéRJavﬂa (1.34)

11



1.4. General Relativity

while a further contraction defines the Ricci scaler:

R = g Ry (1.35)

We now define the Einstein tensor:
Gap = Rap — £948R, (1.36)
which is symmetric, and satisfies the contracted Bianchi identities:
0sG.F = 0. (1.37)

Now that we have defined the tensors above we can introduce the Einstein-Hilbert La-

grangian, from which we can obtain the Einstein equations.
I= / R(—g)/?dqQ. (1.38)
9

g is the determinant of the metric gnp, and R is the Ricci scaler defined above (1.35).

Before we can apply Hamilton’s principle to the action above, we first require some

identities:

59"“5 = —gaﬁgwégM, (1.39a)

5(=9)"? = 2(—9)?g* 8 gap. (1.39b)

We now regard the action as a function of gn.s and its first two derivatives and vary the

action (1.38) to obtain:
oI = / [6(—=9)72g%% + (—9)*/?69%] Rap + (—g)?g°P6 Rop dSQ. (1.40)
Q
The last term vanishes because after using the Palatini identity:

(SRaﬂ,y& - D7(61—‘g5) - Dg((ﬂﬂaﬁv), (141)

12



1.4. General Relativity

the integral can be converted to a surface integral, which vanishes because variations at

the boundary of Q are assumed to vanish. Therefore (1.40) reduces to:

61 = / Rop [6(—9) 9% + (—g)'?6g%F] dQ
Q

_ /Q (R — 1y R] 5g,5(—g) d. (1.42)
Now applying Hamilton’s principle, we obtain

61=0 = RY-1ly®R=0o,

and hence

G = 0. (1.43)

We have therefore shown that the Einstein equations can be obtained from the variation

of an action I[gag, Jus s Gos s)-

There are various other methods for obtaining the Einstein equations from the Einstein-
Hilbert action. One such method introduced by Palatini considers the connection variables
to be independent of the metric, therefore the action I[gas, ['g,] becomes first order. This
method is covered in more detail in chapter 4. An alternative is to replace the metric
variables with a frame % and the metric connection with the Ricci rotation coefficients
AZ. to obtain an action of the form I[07, AZ,]. The connection is now the connection

between frames, Ag. , not the metric connection previously introduced.

1.4.1 3+ 1 decomposition

In order to transform the Lagrangian description above into a Hamiltonian one, we require
an evolution direction. This requires a decomposition of both the manifold and the tensor
fields into a 31 form. The details of this calculation can be found in the following chapter

and so we will not cover them here, but rather give some history and context for the work.

One of the main benefits of writing General Relativity in a Hamiltonian form is that

13



1.4. General Relativity

it is then suitable for Canonical quantisation. One of the earliest attempts at this was
undertaken by Arnowitt et al. (1960), and is known as the ADM approach. In their work
they derived a Hamiltonian for General Relativity, and obtained the constraints that
arise due to General Relativity being a constrained dynamical system. They were also
able to give a geometrical understanding to the constraints. It was expected that from
this work it would be possible to complete the canonical quantisation process for General
Relativity. Unfortunately this was not the case. There were a number of reasons for this,

but one significant problem was the non-polynomial nature of the constraints.

1.4.2 Ashtekar variables

In order to overcome the complexity of the constraints Ashtekar (19g1) introduced a
new set of variables that result in polynomial constraints which are of a simular form
to those in Yang-Mills theory. The ADM approach had used the Einstein-Hilbert action,
and taken the metric as the canonical variables. Therefore the action contains first and
second derivatives of the canonical variables. This leads to complicated constraints which
are second order partial derivatives of the metric. The Ashtekar approach uses objects
constructed from the connection and frame as canonical variables, but also extends them
by complexifying them (this allows the variables to take complex va‘lues). The remarkable
aspect of this approach is that it is possible to split the action into two parts, both of
which result in the Einstein equations independently. Therefore we need to consider only
part of the action; this is described in more detail in chapter 4. The result of Ashtekar’s
work is that it is possible to obtain constraints that are polynomial in the canonical

variables. Another benefit of working with this framework is that it allows for topologies

in which the metric is degenerate.

Although Ashtekar’s work was a big step forward in simplifying the constraints, the scalar
constraint still caused difficulty. In the years that followed many attempts were made to
overcome this obstacle. One such attempt was introduced by Jacobson & Smolin (1988)
where they used Wilson loops to obtain a large class of solutions. Despite the effort made,
this loop representation has not succeeded in the full quantisation of General Relativity.

We will not discuss loop quantisation in any detail because it is beyond the scope of this

14



1.4. General Relativity

Figure 1.2: Double null space-time illustrating null directions.

thesis. At the same time that loop quantisation progressed alternative approaches, see

below, tried to overcome these difficulties using canonical quantisation.

1.4.3 Alternative approaches to Canonical quantisation

Following from the work of Torre (1986), see chapter 3, it was realised that by making
the evolution direction null, the scalar constraint became second class and therefore did
not require explicit quantisation. With this understanding Goldberg et al. (1992) started
the canonical quantisation approach with a 3 + 1 null approach (see Appendix B). In
their work they were able to obtain a Hamiltonian description of General Relativity from
which they started the canonical quantisation process. Just as in the ADM approach,
they obtained a system of constraints, although not all the constraints were first class.
Unfortunately setting the evolution direction to be null introduced an additional problem:
the evolution direction becomes tangential to the three surface. Therefore evolving the
three surface required the construction of a normal to the three surface. This results in

extra freedom that complicates the resulting first class constraints by introducing null
rotations.

In a 2+2 double null formulation the problem of a tangential evolution direction does not
arise. Both null directions are normal to the two surface (see figure 1.2). Therefore it was

expected that this approach would overcome many of the obstacles of earlier attempts,

and this is the motivation for the work presented in this thesis.

15



Chapter 2

Canonical Analysis

2.1 Introduction

In the 1940°s Dirac realised that by performing some analysis on a field theory represented
by a Hamiltonian he could understand the theory’s underlying structure. With this un-
derstanding Dirac also outlined how one might be able to quantise this field theory. It
was thought that if only this could be applied to General Relativity then we would have a
description of quantum gravity. After Dirac introduced this method of quantisation there
was a lot of interest in applying the method to different field theories. Electromagnetism
was successfully quantised, along with the Yang-Mills theory. Unfortunately, despite the

progress made with these simpler theories General Relativity proved to be much more
complicated.
Although 60 years on some progress has been made, many serious obstacles remain.

Despite this, the method is still useful in its own right to aid understanding of classical

field theories, and there is still hope that these obstacles may one day be overcome.

In the following sections we shall outline the steps required to complete the quantisation
of a field theory. We shall first outline the canonical analysis of an action. We then look

at some examples to clarify the method, before finally continuing with the remainder of

the process.
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2.2. Dirac-Bergmann algorithm / Canonical Analysis

2.2 Dirac-Bergmann algorithm / Canonical Analysis

In this section we outline the steps of the canonical analysis based on the Dirac-Bergmann

algorithm.

We will assume that the theory we wish to quantise can be represented by an action in

the following way:
I /M'Cd%’ L=L, ¢, 1) (2.1)

where £ is a Lagrangian density. We also assume that our field theory is defined on a
manifold M which can be written M = ¥ x R, where ¥ are space-like hypersurfaces of
constant time and form a foliation of M. We also assume a metric, g, is given on M

along with a connection and 4-d covariant derivative, which we will denote by a [ to

distinguish it from the 3-d covariant derivative V.

2.2.1 Step 1: 3+ 1 decomposition

The first stage of the analysis is the full decomposition of the action into a space plus time

description. Both the fields and the derivatives acting on them need to be decomposed.

We introduce a frame {0°, 0!} and its respective dual {eg, €;} which have been adapted

so that e; forms a tangent basis to X. Using this frame we define projections onto ¥ and

its normal with:

P :=¢f0y P§:= e o). (2.2)

Therefore any tensor can be split into its spatial and normal part. For example, the metric

is split g = —0° ® 6° + 7;;0' ® .

Next we need to decompose the derivatives. We can define new covariant and Lie deriva-

tives of functions on ¥ using the projection operators:

Vo(2) = POuZ) La(Z)=P(£42), (2.9
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2.2. Dirac-Bergmann algorithm / Canonical Analysis

where P(Z) denotes a product of projection operators sufficient to project all components

of Z onto the hypersurface.

These define derivatives which only lie on the hypersurface. To consider derivatives off
the hypersurface we need to extend the definition of £ given above. For any spatial tensor

Z, and space-time vector field X, we define:
Lx(Z)=P(£xZ). (2.4)

We now have defined space-covariant derivatives on and off the hypersurface. Therefore
we can decompose the space-time covariant derivative into derivatives defined on the
hypersurface. To do this we shall use the results of Isenberg & Nester (1979), and give

the full decomposition of J,V? and 0, V} as,

Deo VD = £60V0 + a’JVJ Deo% = ’CEO VO - aJV]

O VO = Vin VO — KoV HewVo = Vi Vo + K9, 15 (2.5)
Deovs = »CeoVS ‘*‘ CLSVO - KSJV‘] L__Ieons - EZQX/S - aS% + KJSVJ |
e Ve = VinV® = K5V Dem Vo = Vi Vs + KsmVo.

Above and subsequently we use bold indices to indicate frame components. The notation

K;; represents the extrinsic curvature and a® denotes the acceleration in the eg direction.

Before we proceed to describe the other steps in the analysis, we must first define a deriva-
tive along the foliation. So far all derivatives have been projected onto the hypersurface.
We shall also require a derivative which will evolve the hypersurface. This is performed
by La/at, where 0/0t is a vector field mapped to 1 by the form d¢. This derivative allows

us to evolve a tensor along the foliation. Therefore we shall denote it by

Z = ﬁa/atZ. (2.6)

The vector field 8/t can be expressed in terms of the adapted frame, see figure 2.1.
Hence,

15} .
a = N@O +N‘ei.
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2.2. Dirac-Bergmann algorithm / Canonical Analysis

Figure 2.1: Lapse and shift vectors in a 3 + 1 foliation
with one spacial dimension removed.

The scalars N, N' are often referred to as the lapse and shift respectively. We can therefore

write:
['8/81& = Nﬁeo -+ ﬁﬁ. (2.7)

Only the first term governs the evolution of a tensor field; the second term generates

translations within the hypersurface.

2.2.2 Step 2: Define conjugate momenta

We now use the decomposed action to define the conjugate momenta for each of the

canonical variables, ¢*. The corresponding momentum is defined by

oL

The canonical variables, ¢*, and their momenta, p,, describe the phase space, I, of the

theory. We define the Poisson bracket for a field theory (see 1.23):

O0F 6G  OF 6G
A A fnand O 3 29
{F(px,q"),G(pr, ")} /Z((SqA o oo 5qA> d®z, (2.9)
where we define
6F  OF OF
— = - 0 . 2.10
S5¢*  O¢g> % 0(0; ¢*) (2.10)
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2.2. Dirac-Bergmann algorithm / Canonical Analysis

2.2.3 Step 3: Primary constraints

Primary constraints are equations that constrain the phase space to generate a reduced
phase space (I'). If the rank of the Hessian, Wy = g—é.’%, is maximal, ie. has the same
number of independent momenta as field variables, then we would be able to solve the
system for all momenta and so easily transform from the Lagrangian to the Hamiltonian
description. In many physical systems, however, this is not the case. Constraints often
arise due to restrictions in the system, or due to the existence of conserved quantities. In
electromagnetism such constraints arise due to the gauge freedoms which exist within the
theory. In many constrained dynamical systems some momenta vanish, therefore primary

constraints are in the form py = 0. In this case the variables are called cyclic, and we

shall discuss a ‘shortcut’ method of dealing with them later in the chapter.

The use of Poison brackets in field theory requires all the phase space variables to be
independent. Hence all the primary constraints must be arise after the Poisson brackets
have been calculated. Therefore, they are included into the Lagrangian with the use of
Lagrange multipliers, which we will denote by u,,. The primary constraints are then
obtained throu’gh variations of the Lagrangian density with respect to the multipliers.

Imposing the constraints before the Poisson bracket is calculated would result in too few

equations and hence a loss of information.

2.2.4 Step 4: Deriving the Hamiltonian

Now that we have defined all the momenta and found the constraints we can transform

the decomposed Lagrangian into a Hamiltonian. This is accomplished using the definition

The first stage is to substitute the momenta into the Lagrangian density using their defini-
tions given by (2.8). It might be possible, at this stage to write the Lagrangian density in
the form £ = ¢*py — F(¢*, p»). In this case one can simply interpret the density F(¢*, p)
as the Hamiltonian. Otherwise we would use (2.11) to obtain the Hamiltonian density

replacing the ¢ by p. Following the terminology of Dirac (1964) the Hamiltonian without
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2.2. Dirac-Bergmann algorithm / Canonical Analysis

any primary constraints is called the ‘base Hamiltonian’ and is denoted by Hy, whereas

the Hamiltonian containing primary constraints is called the ‘primary Hamiltonian’ and

is denoted H, .

2.2.5 Step 5: Constraint analysis.

This is the main algorithmic part of the analysis. In order for the field theory to be

consistent we must ensure that the primary constraints hold for every time step. This is

achieved by using the equation
Z=1{2Z H}, (2.12)

where Z is a function of the g’s and p’s and their spatial derivatives. We must therefore
ensure that, when calculated, the Poisson brackets of all the primary constraints with
the primary Hamiltonian are zero on the reduced phase space. When this occurs we shall

denote it as being weakly zero, ¢ ~ 0, in order to distinguish it from being zero on the

full phase space. Thus, for every primary constraint, ¢,,,
{Dm, ’Hp} ~ 0. (2.13)

Unless the Poisson brackets vanish identically, additional constraints will arise. These
constraints, although only weak, will reduce the number of independent variables con-
tained within the Hamiltonian, ie. the dimension of I'. If the resulting constraints include
multiplier terms they will be called multiplier equations, while the remaining constraints
are called secondary constraints. We also require these secondary constraints, denoted by

Xk =~ 0, to be conserved. Therefore we calculate

{xx, Hp} = 0. (2.14)

If these Poisson brackets continue to present additional constraints then we get additional
secondary constraints and we repeat as before until all constraints are weakly conserved
or define multipliers. After this we have 2N — M — K independent variables (where M
and K are the number of primary and secondary constraints respectively) and we have

restricted the multipliers U, with the multiplier equations.
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2.2. Dirac-Bergmann algorithm / Canonical Analysis

2.2.6 Step 6: Evolution equations

Next we determine the evolution equations for the canonical variables. These are given
by

¢={¢,H} p={pH} (2.15)
Once these have been calculated we have a well posed initial value procedure for calcu-

lating the field equations of the action. This is outlined below:

a) Specify initial data on a chosen hypersurface for the canonical variables, which

satisfies all of the constraints.
b) Choose initial data for the unknown multipliers.

¢) Evolve the canonical variables using (2.15). If any of the geometric fields are not

defined by the canonical variables or the constraints, then they must be specified

independently on each hypersurface.

d) Evolve the multipliers by a chosen method.

Once the canonical variables are defined through all time, we can reconstruct the

3 + 1 decomposition to reconstruct the full space-time variables.

2.2.7 A shortcut

Let us consider a shortcut that can be used in the canonical analysis we have been
discussing. This shortcut makes use of the primary constraints that arise due to the cyclic
variables mentioned previously. Instead of introducing the cyclic variables as primary
constraints and therefore including them in the whole constraint analysis, we can consider
them merely as Lagrange multipliers. No information has beén lost by using this method.

We must, however ensure that the constraint arising from §#/6Z is preserved by the

{%Hp} ~ 0 (2.16)

evolution. The implies that

where Z is our cyclic variable. We must also ensure the resulting constraint is preserved

for all time. If Z remains undefined by the end of the analysis then we may specify it
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2.3. Examples of Canonical Analysis

in any way we desire. This is illustrated by the treatment of the lapse and shift in the

example of vacuum General Relativity.

2.3 Examples of Canonical Analysis

Although this is not the end of the algorithm we shall break from the theory at this
point with some examples illustrating the steps already outlined above. We shall first
consider the simple case of electromagnetism in a curved background and then move on

to investigate the more complicated case of General Relativity.

2.3.1 Maxwell’s theory

In this section we shall apply the canonical analysis to the theory of electromagnetism on a
fixed curved space time background. We will work in the frame description because future
work is also based on the frame approach, although using the coordinate approach would
result in the same equations. Note that in this example we are using the Minkowski frame
metric with respect to an orthonormal frame so that n®? = (—1,+1,+1,+1). However

in chapter 5 onwards we will work exclusively in a null basis.

Step 1: We start by writing the usual Lagrangian density for electromagnetism:

L=—1FgF° /=g (2.17)

where
Fop =UaAp — O Ap. (2.18)

When expressed in terms of the frame, this results in

L=—1FapF*f /=g (2.19)
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2.3. Examples of Canonical Analysis

where
Fop =UaAp — UgA,. (2.20)

Note the use of bold indices to indicate components with respect to a frame.

Alternatively we may write this as:
L= / 1(OaAp - OpAa) 0y As — OsA) 1P /=g dat. (2.21)

We now choose a 3 + 1 foliation of the space-time and decompose (2.21) into this form.

Note that n%0 = —1.

L=—3 [P (0oAs — OpAo)(ToAs — Os Ag)
+ n*nP% (045 — OpAi) (Oxds — OsAx)v/—g dz*
= / %ﬂi‘j(moAi — DiAo)(DoAj - DjAo)
— i, 45 — O34 (CheAr — OhAw) /=g dz?.
The 4-dimensional covariant derivative acting on a vector can be decomposed into spatial

derivatives and projected Lie derivatives along the ‘time’ direction. This is achieved using

the identities (2.5), thereby obtaining a fully decomposed Lagrangian.

= / %Ui‘i(ﬁeoAi — a;Ag + KklAk — V4 — KklAk)
(ﬁmAj - (leo + K%Ak - VJAO - Kl;Ak)
— %’I]ikﬁjl(viAj -+ KijAg - Vin — KijAo)
(VA + KuAo — Vidk — KiaAo)V—9 dz*

= / %ni‘i(ﬁmAi - CLiAO - viA())(EeOAj — CLjAO — VJA())

- %UikT]jl(ViAj - VJAi)(VkAl - V]Ak)\/—g d$4. (222)
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2.3. Examples of Canonical Analysis

Step 2: We now define the conjugate momenta:

oL
ﬁa = — 223
A (2.23)
where N is the lapse.
1 .
7P = an‘[ﬁeoAi — a;do — Vidolv/—g (2.25)
— —FOP’)/l/Q.

Since 7 is conjugate to A, we have the canonical relations

{Ao(2), T (y)} = 6(z,9)
{Ai(2), M (y)} = 6(z,7)-

Step 3: We see from (2.24) that the definition of the momenta has resulted in a primary
constraint 7% =~ 0. This also reveals Ag to be a cyclic variable, although in the interest

of clarity we will not use the shortcut method for this variable.

Step 4: We now introduce the momenta into the Lagrangian (2.22).

N% . o
£= / 2\/?§7~T17~Ti — Inikn (Vi A; — ViA5) (Viedr — Vidy)y/—g dz®.
From this we are able to use H = p®{, — L to derive the Hamiltonian.
~ A N ~i~ 1,ik, il 1/2 43
HO = 7riAi - Wﬂ' i + i 77] (ViAj - Vin)(val — VlAk)N’)’ d°z. (226)

We now look to replace the time derivative of A; with another expression that uses only

the variables, their spatial derivatives and introduces shift variables. We start with the

definition of A;.

Ai =N 'C'eoAi -+ *CNAi (227)
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2.3. Examples of Canonical Analysis

where we can re-write (2.25) to obtain

TN
v—g

(2.28)

EeoAi =

The lapse and shift are required to relate two points on different equal time surfaces, but
it is important to note at this point that since we are working on a fixed background
they are not variables of the field theory. This is different to the ADM form of General
Relativity in which the lapse and shift variables are part of the field theory. Despite this

difference, in both cases we remain free to choose the lapse and the shift.
After substituting this expression into (2.26) we find

N
Hg—/2 1/27r7‘1+N7r(aAo+VAO)+7r Lz A;

+ zi‘ﬁikﬁjl(ViAj - vin)(val — lek)N’)/l/Q dgilt. (229)

Therefore we obtain the primary Hamiltonain
H,= Hy+ / Nub7° d3z. , (2.30)

Step 5: We now use the definition of the Poisson bracket (2.9) to propagate the primary

constraint, 70 = 0.

) y) 67°(z) 6Hp(y) 5
(7% Hy} = /<5A () 57%(s) ~ 57(2) An(z)

which leads to:

570(z) 5*(z,2)
gi]og)) /N7r )ai6*(y,2) &y — Vi /ﬁi(y)N‘S?)(y,z) d*y

= N#i(2)a; — Vi(7(2)N)
= —NV;[#(2)]
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(70, H,) = /Nv 1z, 2) di
— NVi[#(2)] (2.31)

We therefore obtain a secondary constraint, % = V;[7i(z)] ~ 0. From this constraint we

obtain one of the Maxwell equations, Vo E* = 0, where 7 is identified as the electric

field E“.

We now propagate 1 to ensure that the constraint holds for all time. We use the following

formula
7t ,CﬁAi = ’/?i(NjVin -+ AjViNj)

to express the Lie derivative in terms of the canonical variables.

{vpﬁp,ﬂ}:/vp 5(x,z)) 5‘F§)d3z

" (55

= Vp{ = #Vi(IVP) - vy [72 V9]

+ 0 [ = Vi(FBaNyY2)6P + Vi(FaN~'/?)6P Vk<FuN71/2)5
+ Vi(FyNY)5E] }
= Vp {—7'Vi(NP) + Vi(#N') + V;(FPNy'/?)}
= —Vi(F)V;(N) — #V,V;(NY) + Vi(7) V5 (V) + 7V, V5 (V)
+ Vi(N)V;(7Y) + NIV, V(7)) 4 V; V5 (FINAY?) (2.32)
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2.3. Examples of Canonical Analysis

We now use the formula, (V;V; —V;V;)@! = R',;; 7 and the constraint, ¢ ~ 0 to obtain,

= —RUN* — HV;Vi(N) + 7V, Vi (V) + R NI7S
+ NIV; V(7)) + 2(ViV; — V;V3) (FENA/2)

= (R FYNAY? + BRI FRNAY?)

= 3 (RigF S Ny'? + Rig R NY?)

= Rig Ny

=0.

In the last step we the fact that FJ is anti symmetric while Rj; is symmetric.

Step 6: We next calculate the evolution equations for the canonical variables. We shall
first consider Ap:
_ O0H
P 57P(2)
N 73 3
= (z) + NapAo(z) + NV Ao(z) + LgAp(z)| 6°(,2) d°z

172 Tp

A

N

7ip + NapAg + NVpAg + L Ap.

We find that this is identical to (2.28)

We now calculate the evolution equation for the conjugate momenta. Note that we use
the notation, AP = y/2xP,
OH
6Ap(7)
= —7'V;(NP) — V; [#P V]
+ Ikl — Vi (BaNYY2)6P + Vi(FaNyY2)oF — Vi(F;Nv/2)6F + Vi(FyyNy'/?)5E]

7LTp - {ﬁp<$)>,ﬂ} =

= —FVi(NP) + Vi (7P N') + V;(FPNVh)
= [~7'Vi(NP) + 7PViN' + NiV;(7P) + NV;(FP) + FPV(N)] y'/2. (2.34)
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In order to relate this to Maxwell’s field equations we have to re-write the left hand side:

7-:‘_'_p _ L’% (Wp,yl/Q) _ 71/2£%7rp + Wpﬁ(_%,yl/Q
— 71/2’/‘]'1) + 7P [NﬁeO’)/l/? + ENWI/Q]
= y2iP 4 qPINVENAI L, i+ LaP o 2 [ oy
= 2 [P — 7P NK + 7PV;N1] | (2.35)

We now substitute this into (2.34) to obtain,

it = Lgm + T NK + NV;(F¥) + FPY;(N)
= % {Lom = Lgrt}h + Vi(F) - 7K - -]%Fﬁvj(zv) =0
Leom — FOK + V;(F4) + Flig; =0
LegF® — KL FI 4 Flg; + ViFY — FO K, — FOK =0
o F™ + Oy FY =
OaF'* = 0. (2.36)

This gives the remaining Maxwell’s field equations, (o F*® = 0. We may also express

Maxwell’s equation in the more familiar way, V x B — E=0.

Now that we have finished the constraint analysis and we have a well posed initial value
problem. If A; and 7' are given on an initial surface satisfying the secondary constraints
(2.31), then they will be propagated by the evolution equations (2.33) and (2.34). The
lapse and shift may be freely chosen, along with the cyclic variable Ag. The constraints en-

sure that 7° remains zero for all time. This concludes the canonical analysis for covariant

electromagnetic theory.

2.3.2 Vacuum General Relativity

In this section we shall illustrate the canonical treatment of the Einstein-Hilbert action.
(These calculations are based on the approach in Isenberg & Nester (1979)). From this

action we will be able to derive the constraints and the Hamiltonian equations of motion.
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Before we can start in earnest we first state various identities which are used in this
section. The first set of identities arise from the assumption that we are working with a

torsion free theory. From this assumption we obtain the following equations,

Ky = Ko (2.37a)
1

ap = ep(InN) = va(N) (2.37b)

Kab = —%ﬁeo’)’ab. (2370)

The decomposition of the space-time curvature is greatly simplified by these ‘no torsion’

conditions. The resulting equations are know as the Gauss-Codazzi equations which are

given below:

1
R0 = 1" Log Ko + KV Ky + 5 VaV4@) (2.38a)
4Rocab = vaac - v11—[(bc (238b)
4Rdczzb = Rdcab + KdaKbc - deKac- (238(3)

Using these equations we are able to decompose the Einstein-Hilbert action,

I= f‘lR\/—g d*z

= / NyM2goBiR’ oo dts,
into a 3 + 1 form where g% = —egep + 7*eqes.

Hence,

I= /N71/2 [9%°R%050 + 9" R, + 9" R¢ ) d*z.
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We also note that g R° , = —R%,,. Therefore

N
+ ’Yab(Rcacb + K Koy — K$Kea)} d*z

2
= [ Ny'? [ R+ K°K® — 3KSK® — —V?(N) — 24% £, K, | d*z. (2.39)
[+ a N 0

1
I= /nyl/Q{-—Q(”y“b Lo Ko+ KKy + =V, V(N))

In this current form the last term contains a second time derivative of the metric, because
K = —1/2Ly7ap- This derivative can be moved using an integration by parts, leaving

an additional boundary term. We first rewrite (2.39),

I= / dt/NW? (R + KK — 3K K — 27\[‘3v2(N)>

— 2y 2L g Koy + 29y 2L g Ky d*w, (2.40)

then focus on the last two terms. We integrate the penultimate term by parts, which

results in the last two terms becoming,

t
2 / Y Ky dx3f: + / dt / 2KapLg (V9 ) + 2yy P Lg Ky d'e
i
— _2/71/2de3[ ’ +/ dt/ [2Kab’yl/2 (NLepr®™ + Lg7*)
t;

+ 2K v (Nﬁeﬂl/g + L) + 2fyabfyl/2£]\7Kab} dz.
Collecting the £ terms and using 2K* = L, v we obtain,

¢ {
= -2 / YK dx?" ' + [ / AK KON + KNP Ly yap + 2L g (kyM?) d'a

1

t
= -2 / 71/2de3ftf + / de / 4K KNy 2 — 9K Ny 2y K,

+ 2,)/1/2NavaK + k,yl/2,7ab£ﬁ,yab d4IL'

t
= —2 / fyl/?KdzB'tf + / dt / NAY2 (4K3 K — 2K K™)

t)

+ 2912 (NV, K + KV,N*) d*z

4
= -2 / 71/2de3j7: + / dt / NAyM? (4KSK® — 2K™ K™) + 2912V, (K N®) d*z.

2
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Substituting this back into (2.40) we obtain,

I :/ dt/Ny”Z (R + KK% — KT K™) d%z

_2/ 1/2Kd3

—2 / dt / (ve nyl/z) yPK™ N &

(2.41)

The last two lines are boundary terms.

We now express (2.41) in terms of the metric and its derivatives. We will make use of the

equation
Kab = “%'Ceof)'ab = "'ijv" ('CBB.E’Y(LIJ - £1\77ab> . (242>

When this is substituted into (2.41) we obtain

1 . . ac [#7 C
:/dt/ d3z (NR—{—ZN(’Y@ — LiVas) (Yed — Lvea) (79 — vy d))

+ boundary terms. (2.43)

We now have a Lagrangian which is a function of the metric, its derivatives, the lapse
and the shift. Note that the lapse, and shift variables are cyclic, and therefore using the

shortcut method we define only the variables conjugate to the metric,

~pgq oL 71/2 ac, . db ab,.cd P 54 : P Sq
= = o7 (" = 7"7) [Gea = Lig¥ea) 5267 + (av = Lgvan) 0267)
pq

,y1/2

T 2N

(Yea = LigVea) (9™ = 7v*) .
This can be re-expressed in terms of K, using (2.42):

~a — —’)/I/QK ( zzc bd ,Yba,ycd)

=42 (v K — K%). (2.44)

We can rearrange this to provide a definition of 4, as a function of 7, and 7. In the
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following calculation we use the result arising from the trace of (2.44), ie.7™, = 2K~!/2

Kab = ’)’abK - fy_l/zﬁab

= %7_1/2’)'ab7~rnn - W—I/Qﬁa,b
1 . e —1/2~
“oON (Yab — Cﬁ%b) = %’Yabﬁmm’Y 12 — Y 1/27Tab
"Yab - N’Y_l/2 (27?017 - ’Yabﬁmm) + Lﬁ’Yab- (245)

We now make the transition from the Lagrangian to the Hamiltonian description. We
define the base Hamiltonian density by H = p*qy — £. We will also use (2.45) to replace

the time derivative of the metric. The boundary terms remain the same.

H= / [744 — (R+ KSK® — KT K") Ny*?] &z
= / {frabNy—l/z (2% — Yab7) + Ny 2K K™ — NyY2 KK — Ny'/*R
+ AL | 2
= / [ﬁabNy—l/Q (2% 0y — YT ™) + NyY2 (3K K + 268 K K" — K4K° + 2KK)
— N71/2R + ﬁabﬁﬁ’)'ab} d3z
= / [ﬁabNy-l/z (270 — Yao®™,) + NyY2 [— (60K — K9) (60K — K*) + 2K K|
- N71/2R + ﬁabﬁﬁ")'ab} d3z
= / [ﬁ“bN7'1/2 (27ap — Vb7 ™) — Ny V27970, + ENy~Y25e 77 — NyY2R
+ ﬁabﬁﬁ’)/ab} d3z
= / N [y (797", — 7o, 7™ ) — v /*R] &®z + / 7L 5% 4z

+ boundary terms (2.46)

Although we described this as the base Hamiltonian, it is also the primary Hamiltonian
because there are no primary constraints (remember that the lapse and shift are cyclic

and we are using the shortcut method). If we make use of writing the Lie derivative in
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terms of the covariant derivative and then integrate by parts, as shown:

/fr"‘b/iﬁfyab Bz = /— (Navbf”r"’b -+ Nbvaﬁba) d3z + boundary terms

= / —2NV,7b, d’z,

we are able to re-write the expression ﬁ“bﬁﬁ%b to show that the Hamiltonian can be

expressed in the form

a

H = / 2 (7egb, — 170 5m ) + 42R] — N [2V,,7™)) dPs. (2.47)

Hence we can rewrite (2.47) in the form

H= / (NH' + N°H.) &z, (2.48)

where
H =2 (7470, — 175 — PR (2.49a)
H), = —2V 7™ (2.49D)

Variation with respect to the lapse and shift results in four secondary constraints, which
are (2.49a) and (2.49b). Further propagation of these does not lead to any additional

constraints. They are automatically preserved in time due to the kinematics of the de-

composition.

We now look to calculate the evolution of the canonical variables. We start by rewrit-

ing (2.46) in terms of the canonical variables:

H = / (N,),l/.? [___%_ (,ﬁ.mn,ymn)? _{_,ﬁ,ma,ﬁ.nb,)/an,.ybm] = N,Yl/Q,ycdRcd +'frmn£ﬁr)’mn) d3$,
(2.50)

then calculate the evolution equation for the 3-metric, vgp-.

(W)} = /5%1)(3: ) 6H (y) &y

7&17 - {,YGb 5,.)/6(1 ﬂ_cd(z)
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2.3. Examples of Canonical Analysis

0H 15 —mm e -
577’0‘1(2) = / ("—N’Y Y YedT Ymn + 2N7 1/27Tcd + £ﬁ')’cd) 53('1/» Z) de
= ANy (Fap(2) = 377 (2)Yab) + L g7ab
= Yab = /53(«’6, 2) 2Ny (Fan(2) = 57 (2)7w) + Ligva) d'2

= 2Ny (7o(x) — $7™,(2)Vab) + L3 Vab- (2.51)

Before we calculate the other evolution equation we will derive some useful identities.

Oy _ b o'/ _ 1,172

J— :> i ab
0Yab i OYab 27
Lyt/2yat (2.52)
37_1/2 _ .
& —‘%— = 2’)’ 1/2’)’ b (253)
b)
VYo = 82
= (5”>’ab) Yo = —y (076e)
= (5,)/111)) ’ch’)’ce — ___,Yab,yce (5,ch)
= 8% = ="y 6me (2.54)

c¢) We wish to find an expression for 61/67,, where

5T = / NAy1/245 Ry = / N2y (V,(8T%,) — Va(6T%,))
B / Va(NyH2yH6T ) — Va(Ny' 24200,

_ Va(N,),l/Q cd)éra + vd(N,)/l/2 cd)5Fa

6T, is a tensorial term. It therefore remains the same in all coordinates. If we assume

*

geodesic coordinates then, 6I'%, = 27*[6(Yeb,a) + 0 (Vav,e) — O(Veap)] because Yep,e = 0. We
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2.3. Examples of Canonical Analysis

separate the integral and consider the penultimate term first:

/*Va(Nv’l/Q’YCd)(SFacd;/ —V,(Ny 2y cd)é,yab[ (Yev,a) + 6 (Vane) — 6(veap)] (2.55a)
:*:/%’YGdeva(N’)’l/Q’}’Cd)(S’ch+ %'Yabvcva(]\771/2’76d>6’)’db

— %’Yabvbva(Nvl/QV‘:dM%d d®z + boundary terms
(2.55b)

= [ [V ) = 19 )] G
We have been able to convert the partial derivative in (2.55a) to covariant derivatives

n (2.55b), because the term being differentiated, after the integration by parts, is a

density. The final result is tensorial so that this equation is then true for all coordinates.

The final term becomes,

/ Va(Ny?yh)6Te, dPz = / Va(NYY2 ) 199006 (Yo 0) + 6 (Yabe) = 6 (Veup)] d°z
= / — 5 VaVa(Ny Pyt )ryey — 370V V(NP9 ) 8y
+ %W“beVd(N”yl/Q'yCd)d%a d3z + boundary terms

- / — 14V ( Ny /?)§74 4>z + boundary terms.
Putting these terms back into the initial expression we find that
0f = / [Vavb(N’Yl/z) - ”/asz(N’Yl/Q)} 67 4z + boundary terms. (2.56)

The final identity we need gives an expression for the Lie derivative of a density in terms

of covariant derivatives.

ﬁﬁﬁcd — 71/2£N7rcd + chﬁﬁ,yl/z
— 71/2£N7Tcd + %ch,},lﬂ,},ab[:ﬁ,},ab
— ,),1/2Nava<7rcd) _ ,ﬁ_cnvn(Nd) _ ndyy, (N°) + cd (V (N,) — Vb(Na)_)
= NV, (7#) + 7V, (N®) — 7"V, (N%) — ﬁ”dvn(NC). | (2.57)
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2.3. Examples of Canonical Analysis

We now start calculating the evolution equations for #°. Using (2.50) and ignoring the

boundary terms we obtain

Fed — (zed 3y — _ / 5%(z, 2) Mij([z) d* (2.58)
= 372N [ 5 (T )" + T Y Yom] + Ny~ 2 7AET,
Ny VR [qmegdia, |y pdagncy | 4 INA1PaedR  Nyl/2Red
4 A2VETAN) — A2 (N) 4V, (No7) — 77, (N

— 7MY, (N°), (2.59)
where we have used (2.52) (2.54) and (2.56). So applying (2.57) we can write

,/:":cd — —N’)/l/Q(RCd o ‘é"YCdR) € N,y—l/Q(ﬁcd,frmm . 2,ﬁ.cm,ﬁ,dm)
+ 3y VAN (AR, — 1AM AR ) + 4 2VEVE(N) — AY2yAV2(N) + Lgred. (2.60)

m

We have now completed the first stage of the Dirac-Bergmann algorithm, using the short
cut method. This gives us a well-defined initial value system because we choose initial
data for 7,5 and 7%, ensuring it satisfies (2.49a) and (2.49b). The lapse and shift must be

chosen throughout the space-time. We then use (2.51) and (2.60) to evolve the canonical

variables through the space-time.

The four equations, (2.49a), (2.49b), (2.51) and (2.60) can be expressed more simply if

we replace 7o, with Ky using (2.44). Before we start we will derive some more identities

which will be used in the simplification.

a) Taking the trace of (2.44) we find
7 = 2KyY? = 2K,

Note the use of K to represent K~/2.
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2.3. Examples of Canonical Analysis

b) Also from (2.44), #% = 4K — K% we obtain

K = Lyobgm _ jab, (2.61)
c) We now use (2.44) to replace #;; with K% in the following expression:

N’)’l/Q I A ¥ i :Nf)/"l/Q SCK — KV OK) — 2(8C K — K° )(5mK-__K—m)
m e e e e ) (00 8
Ny (205K R — 2R, - 955K K + ARK, 57 - 2R5, K7

= 9Ny [KK - me;} . (2.62)
We start with simplifying (2.49a):

YHH =y [ (77,)? + AT, ] - R
=—2KK + (6K — K7)(6n,K — K7,) — R
= —2KK +3KK — 6TK" K — K™ K + KTK" — R
= K"K" —KK—R. (2.63)

Equation (2.49b) becomes

7V TH, = 297 PV (7
= —2V,(0°K — K®)
= 2(V, K% — V,K), (2.64)

while (2.51) simply becomes

Yab = 2N’7_1/2(f‘—ab - %’Yabﬁmm) + ‘C’]\?’Yab
= —~2NKab + *Cﬁf)/ab- (265)
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2.3. Examples of Canonical Analysis

The final equation, (2.60), takes a bit more work. To start with we show that
7 = 0K — K% = 7% = 60K — K9,

then
¢, = T%ge + T e = 74 = 6K — K9 — 7. (2.66)

We now multiply (2.60) by vge.

(7 vae = —=NY2(RE, = 360R) + Ny~ /2 (76, 77, — 27, 77)

+ 3y PN (AT A", — ST E") + VOV (N) — yM26EVA(N) + qae L gl
(2.67)
Now using the identity derived earlier in (2.66) and (2.62), we show that
0K — K% = —Ny/2(Re, - }6¢R) + 2Ny 2 [Re, K™, — KK,
(2.68)

— Ny (Ke K™, — KK©,) +7Y/2VeV(N) — 425¢V2(N)
+ ’Yde‘cﬁﬁ—(:d + ﬁCdj/de-
We shall now spend some time simplifying the last two terms of the expression above.

’)’deﬁﬁﬁai + ﬁCd;)/de = ﬁCdN‘Ceo Yde + %Cdﬁj\'fﬁ)'de + ’Ydeﬁﬁ'ﬁ-Cd

= 27Ky N + L 37°,
= —2(y K — KRNy~ V2 + Lg7°,
= 2(K,K% — KK°,)y/?N + Lg(5:K — K<)

We now substitute this back into (2.68),

6K — K, = —~NAM*(R°, - 30¢R) — Iy~ 265(Rm K™, — RE<,)
+ 42UV (N) — y256VE(N) + Lz (0¢K — K°,). (2.69)
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2.3. Examples of Canonical Analysis

We then take the trace of this equation to obtain an expression for K.

—9K = —LNyV2R — Ny~1/23 (f(abf(ba - f(f{) + 2912V2(N) — £5(2K).

We can substitute this expression into (2.69)

K¢, = NyY*(R°, — 30¢R) — §Ny M2 (SeK K™, — KK®,) — 4'/?V°V(N)
+ 4269V (N) — Lg(62K — K°,) + 6¢[ — LNyY2R 4 Ny~1/23 (f(abf%ba - f(f()
— VAN + Lg(K)]
= Ny'2R°, — 4 /2VV(N) + Lg(K®,) + ;¢ [N7—1/2 (K%4,K?, — KK) - Nyl/zRJ

— NyY2Re, — y12V°V (N) + L3(K°,). (2.70)

In the last step we made use of the constraint (2.49a). We now focus on the left hand

side of (2.70).

_f(ce — Kce,yl/2 +Kce,-)/1/2
— K6371/2+K66N£e071/2 +Kce£ﬁfyl/2
_ Kce,yl/Q + %KCENVI/zf)’abﬁeo’)’ab + Kce/;]\*ﬂl/z

— Kce,yl/Q _ N’)’l/QKKCe + Kce£ﬁ71/2_
By substituting this into (2.70) we finally get the expression
K¢, = N(R°,+ KK®) — V°V (N) + Lz K°,. (2.71)

We have now finished simplifying all the equations. In summary, the simplified constraint
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2.4. Remaining steps of constraint analysis

equations and evolution equations are

YV = KSK® — KK — R (2.72a)
T2 = (VK — V,K) (2.72b)
Yap = —2N Koy + L 5%ab (2.72¢)
K% = N(R% + KK%) — V*V(N) + LK. (2.72d)

This is the same as (4.18) in Isenberg & Nester (1979).

2.4 Remaining steps of constraint analysis

Having shown examples to clarify the method of canonical analysis, we will now proceed
with the remaining steps of the Dirac-Bergmann algorithm. We first consider grouping
the constraints into first and second class. We will then give a brief overview of the steps

which, when possible, lead one to a quantisation of the original field theory.

2.4.1 First and Second class constraints

A first class constraint is a linear combination of the primary and secondary constraints
whose Poisson bracket with every other constraint is at least weakly zero. If a Poisson
bracket is not weakly zero then the constraint is said to be second class. Therefore we
are able to rewrite the primary and secondary constraints as linear independent first and
second class constraints. There are therefore many different expressions for the first and
second class constraints depending on which linear combinations are taken. We may think
of these as being different yet equivalent descriptions of the same physical system. Al-
though every description is equally valid, we will find that some descriptions will be more
advantageous in revealing the underlining gauge transformation generated by the first
class constraints. It is these first class constraints that generate infinitesimal gauge trans-

formations on the reduced phase space. The algebra generated by the Poisson brackets

of the first class constraints is closed.
It is now also possible to ascertain the number of degrees of freedom. Without any
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2.4. Remaining steps of constraint analysis

constraints the number of degrees of freedom is the same as the number of variables. In g
theory which has constraints, the number of degrees of freedom will decrease by one for
every independent constraint and gauge freedom. The number of constraints can easily
be found by totalling the number of constraints obtained through the canonical analysis.
The presence of gauge freedoms can be found in the indeterminacy of the evolution
equations, ie. the evolution equation is determined by an unknown multiplier, V. There
may exist more gauge conditions than undefined multipliers, and therefore to obtain the
number of degrees of freedom we would have to find the number of gauge constraints of
the theory. Fortunately, in all meaningful cases, the number of gauge constraints is the
same as the number of first class constraints. Therefore the number of degrees of freedom

can be calculated by,
%(N —2F - 9), (2.73)

where N is the number of variables (including the momenta), F is the number of first
class constraints and S is then number of second class constraints. In general this is as
far as one can go to determine the degrees of freedom. In many cases the theory is too
complicated to isolate the degrees of freedom. A common approach would be to introduce
a gauge condition which breaks the gauge freedom of the theory. Therefore the first class
constraints become second class. Since all constraints are second class you now have one
system of equations that may be solved explicitly for all variables, except the variables

that contain the degrees of freedom. This then, leaves us with an understanding of the

true degrees of freedom contained in our theory.

When the first class algebra is calculated it is common to smear the constraints with test

functions. This avoids added complication from integrating products of delta functions.

This can be seen in the following example.

As an example we shall consider the constraints that were obtained from the con-
straint analysis of vacuum General Relativity. There are four constraints given by (2.49a)
and (2.49b); they are all first class. To show this we first calculate the Poisson bracket of

v;; and 7;; with #; smeared by with a test function (see below). Then we calculate the
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2.4. Remaining steps of constraint analysis

Poisson brackets of the constraints with each other. Therefore:

(@), [ P} = (r(a), [ 29,77 do)
Y
= [6@.2) [ [ S+ Fon) 8(0,2) 0] €22
z y

= ik S + Vin S

= Ly (2.74)
(#(z), / FHL Ay = (7 / P (=207  + 7™ )] 4%}

/ —b(z, 2 {/ fZ 794 fifriq - (ﬁijfk),k) §(y, z) d*y
Y
= —fL — fIE (7 1)

= L7, (2.75)

In the first stage of (2.75) we have expressed the constraint 7}, in terms of partial deriva-
tives instead of the covariant derivative. Using these two equations we are able to deduce

that the Poisson bracket of H'(v;j, 79) with H, is

{/g’}{’d?’x,/fk’r’{ﬁcd?’y} = -/H’L’,fgd3x ~ 0. (2.76)

We can clearly see from (2.74) and (2.75) that the constraint #| generates diffeomor-
phisms in the hypersurface. This reveals the invariance of the action to infinitesimal

coordinate transformations z° — z”*, which are given by 2" = z° + §2¢, where dz* = f*(z)

The Poisson bracket {[ f*#;d%z, [ ¢'#}d%y} can also be calculated using the same
method as above. Therefore using the identities (2.74) and (2.75) we obtain:

{/ ], d”,/gj’H,; dy} = -/H,gcgfk d*z. (2.77)

The final Poisson bracket, { [ f#'d%z, [ gH'd%y} can also be calculated. We see from
(2.49a) that most of the terms will commute because they contain no derivatives, or free

indices. The only term that will not commute is the term that contains the curvature R.
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2.4. Remaining steps of constraint analysis

Therefore, before we calculate the Poisson bracket we will first vary the curvature:

(72 fR) = (37297 Rf6ypq + 7> FS(Y79) Rog + 7 /2 1716 R,y
= —71/2f(qu _ %f),qu)(g,ypq _ 71/2]tfyzoq [5qu l;p — 5qul;z} _ (2.78)

We separate this and consider the penultimate term first:

(Y2 ") 56T = (V2 F9P)) i (375 (67ikg + 0Ygks — 0%ig,6)]

= (V2P kg
and then the final term

(’)’l/Qf’qu);l(Squl = (’71/2f’qu);l [%”)’lk((wpk,q + 0Vgkp — 5’)’pq,k)]

= (/"2 %) (o = 5Vpaik] -
So combining these with (2.78) results in:
5(71/2fR) = '7’1/2f<qu - %’Y‘DQR)(S/YPQ - [71/2f(7pk7lq - ’)’pq’)’lk)] 1k 0Vpq (2.79)

Again we can see from the above that it is only the last term which will contribute to
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2.4. Remaining steps of constraint analysis

terms arising from the Poisson bracket. We now calculate this Poisson bracket:

{[[rwas [aveyh= [| [ =m0 - ), o2 #s]

{ /y 297 (Ttpg = 37pa )0 (v, 2) d?’y}
- [/ 2y M2 (Fpg — %'yqur)g(m, z) d?’x}
- U (7'29(1"*9' = ) . 6y, 2) d3y} 43z
)
= / —2F g™ + farg®y* + 2fugT — 37" gy
+ 2 f 7 — g fRY* — 200 f7 + 37 gu fAY* A%z

— [ 2 lof — fad &
N / M [fgi— gfi] &z (2.80)

Combining these results gives us the first class constraint algebra:

{/sz: d’”,/gj?{; dsy} :/H,’gﬁfg’“ A3z (2.81a)
{f FEH, d3x,/gH'd3y} Z/’H'[,fg d3z (2.81b)

{/g’r’i' d3x,/f7-['d3y} = /’Hh’j [f9;—9fil. (2.81¢)

We now consider how many degrees of freedom we have in our field theory. We know
that all four constraints are first class, and that there are no secondary constraints.
The total number of canonical variables arising from the symmetric variables v;;, 7 is
twelve. Therefore applying these numbers to the formula outline above (2.73) results in

the number of degrees of freedom £ (12— (2 x 4)) = 2. As expected this is consistent with

General Relativity.

We finally consider the geometric content of the gauge transformations generated by

the other constraint #'. To simplify things we introduce a gauge condition in which
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2.4. Remaining steps of constraint analysis

N=1,N"=0, then the Hamiltonian (2.47) reduces to:
H:/%’d%. o (2.82)

From this we would expect the constraint 7’ to generate the dynamics. If we calculate

the Poisson bracket below,

{7 (), / JH dy®} = / 53(37,2)[ / Fr (7 g vai + 7% Vic Ve
Yy z Yy
— 178 iiVed — 20 NiiYae) 0% (1, 2) d3y]
= ’)’—1/2f (2’71‘” — T 71]) . (283)

We can see from (2.51) that this is just 4;;. Therefore H' is responsible for the dynamics,

which leads to it being called the Hamiltonian constraint, while the constraint #; is called

the momentum constraint.

2.4.2 Reduction of second class constraints

In order to promote the Poisson bracket relations to operator relations, the constraints
must be gauge invariant. Therefore, if our system contains second class constraints the
transition is not straightforward. There are methods to deal with such systems. The first
we shall look at is the method of using modified brackets, as introduced by Dirac. These
brackets are Poisson brackets which have been adapted by the addition of terms which

cancel those given by the secondary constraints. Hence, if we define a matrix of Poisson

brackets among the second class constraints as
Dij(z —y) = {xa(z), x5 (v) }»
then we define the Dirac bracket as
{(A(0), B)o = {Al2), BO)} - [ duwd*{A(e), xew)} (A7) w = s (2), B},
which will be zero with all constraints. Although this seems very straight forward, prob-
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lems arise in practice due to the inversion of the matrix A;;. We are assured of its existence

by the linear independence of the second class constraints, but actually calculating it can

be very cumbersome in physical situations.

An alternative method to constructing the Dirac bracket is the introduction of new vari-

ables, called starred variables. These variables are then invariant under Poisson bracket

relations with all constraints. They are defined by
Aw) = A) - [ ude AW, x@HAT W - (). (289)
b

Therefore, the Poisson bracket of the starred variables is the same as the Dirac bracket
with the unstarred variables. At first glance the new variables seem as complicated to
define as the Dirac bracket. However, in practice this is not the case. If we define the new

variables as a linear integral combination of the second class constraints,
Alw) = A0) + [ Punle = y)ul) (2.85)
by

where A? is an appropriate distribution to be determined, then suitable combinations can
be determined using the requirement that the new variables have a vanishing Poisson

bracket with the secondary constraints. This avoids the calculation of (A~!)¥. Examples

using starred variables can be found in Soteriou (1992).

By using either method, Dirac brackets or starred variables, we are able to eliminate the
second class constraints, thereby leaving only first class constraints. This then enables

us to generate an algebra from the gauge invariant variables, which in turn allows us to

proceed with the canonical quantisation.

2.4.3 Quantum theory: the final steps

In this section we shall give a brief outline of the steps involved in transforming the
Dirac algebra, &, into a coherent quantum theory. This area is beyond the scope of this

report, but we shall outline it for completeness. For more detailed analysis the author

recommends reading Ashtekar (1991).
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Step 1:

First, each element (F) of S must be unambiguously promoted to a quantum operator
F. The algebra of & must not be so large so that the process is hindered by factor order

problems, and yet large enough to keep the quantum operators unambiguous.

Step 2:
Construct an algebra generated by these operators by imposing commutation relations:

[F,G] = i{F,G}p. We will denote the algebra A.

Step 3:

Define a * relation on the algebra. This requires G' = (F')* when two classical variables

are complex conjugates of each other, and that the % relation satisfies the following

relationships
(F +2Q) = B* + (VG
(FC)y = G P
(F*)*=F.

We denote the resulting algebra .4*

Step 4:

Find a representation of the algebra A by using operators on a complex vector space V.

Step 5:

Obtain quantum analogs of the classical constraints. Find the linear subspace Vppy of V'

which is annihilated by all quantum constraints. This is the space of physical quantum

states.
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Step 6:
Introduce an inner-product on Vpsy, such that the % relations become the Hermitian

relations on the Hilbert space.

Step 7:
Interpret the adjoint operators and devise a method to compute their spectra and eigen-
vectors. We then need to discover the transformation generated by the Hamiltonian which

can be interpreted as the “time evolution”.

If all steps have been completed then we have we a quantum representation of the original

action.

2.5 Summary

To summarise, we have discussed the Dirac-Bergmann algorithm, which enables us to

decompose a field theory from the action, and have provided some examples to help

clarify aspects this process.

Although some progress has been made in General Relativity, a full decomposition has
still to be completed. Initial progress slowed considerably due to the complexity of the
constraints that were obtained. Due to their non polynomial nature the Hamiltonian
constraint does not give a differential operator on quantisation but a pseudo-differential
operator, and therefore we do not know how to use operator ordering in the quantum

space. Therefore further progress along the route of canonical quantisation of General

Relativity stalled.
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‘Chapter 3
Canonical analysis in a 2 + 2 foliation

The previous chapter explored the application of the Dirac-Bergmann algorithm to a
3 + 1 decomposition of the space time. Although this form of decomposition is the most
common, it is by no means the only type. d’Inverno & Smallwood (1980) introduced an
alternative approach to space-time decomposition. In their work they introduce a 2 + 2
decomposition, in which the space-time is decomposed into a timelike 2-surface and a
spacelike 2-surface. In the analysis of the initial value problem it was found that the true
degrees of freedom reside in the conformal metric induced on the spatial two surface;
therefore the variables that generate the degrees of freedom should be easily isolated. It
was because of this attractive property that a canonical analysis of the 2+2 decomposition
was thought to be of value. In order to give a Hamiltonian description the timelike 2-
surface is decomposed into an evolution direction and non evolutionary direction. This
was first attempted by Torre (1986). In this work Torre performed the canonical analysis
of a 24 2 description of space-time. In his work, however he did not set two directions to
be null; he kept the evolution direction time-like instead of null. Therefore his approach
was not fully 2 + 2 but rather a 2 + 1 + 1 approach, see figure 3.1. In this chapter we
will extend the work in Torre’s paper so that the evolution direction is also null. This is

a more natural approach to a 2 4 2 foliation (see Hayward 1993)

We shall start by describing the general 2 + 2 metric decomposition, which provides an
introduction to the 2 + 2 formulation. We will not consider many other details such as

the Einstein equations, but rather restrict ourselves to details required for this chapter
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3.1. 2+ 2 metric decomposition

Figure 3.1: Figure showing Torre’s foliation with z° as the evolution
direction and z' the null direction. z* spans the spacial surface S.

and those later in this thesis.

We will then perform the Dirac-Bergmann algorithm on a modified Lagrangian so that
the evolution direction is null on the reduced phase-space. This results in the derivation

of a first class algebra, which is given a geometrical interpretation in the 2 + 2 geometry.

We conclude this chapter with a discussion about the complicated nature of the con-
straints and how this might benefit from the introduction of the Ashtekar approach. We
will also compare our first class algebra with the algebra obtained by Torre. This will

provide us with some understanding of the first class algebra to expect when we consider

a 2 + 2 Ashtekar approach.

3.1 2+ 2 metric decomposition

A foliation of co-dimension two can be described by two closed one forms n® and n?,
therefore locally n® = d¢®. In our work we consider the surfaces ¢° = const to be equal

time surfaces. These two forms generate hypersurfaces defined by:
Ya: ¢*(z®) = const.

These two families of three-dimensional hypersurfaces intersect, thereby generating a

family two-dimensional surface {S}, (figure 3.2).
{S} = {2} N {%:}
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3.1. 2+ 2 metric decomposition

{Zo}

Figure 3.2: Intersection of two hypersurfaces to form {S}, where one
dimension has been removed.

Let n, be the dyad for the vector basis which is dual to n®. Therefore:

The one-forms n® form a basis for a family of spaces orthogonal to {S}, which we will
label {T'}. The vector basis that spans {T'} is given by m.. These basis vectors do not
necessarily commute, which by Frobenius’ theorem implies the spaces {7’} need not be

surface forming. We define the surfaces {S} to be space-like, while the distributions, {T'},

will be considered to be time-like.

We can use n, to define a 2 x 2 matrix,
Nop = o, B
ab =FJapMa Ty,
which then implies that

7’1,: :gaﬁNabTLB

n2 =gosNPnd.

In order to represent information in the 2 + 2 foliation, we project it onto {S} and {T'}
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3.1. 2+ 2 metric decomposition

using the respective projectors

g =65 — n2n3 (3.2)

Tg =ngnj (3.3)

By using these projectors we can decompose any space-time tensor into tensors defined

on S and 7. Tensors defined on T can be reduced to scalars by contracting them with

the dyad basis vectors or 1-forms.

Projecting the metric g,s gives metrics induced on {S} and {T}.

Yop = 52152975

= 52557
has = TJT3 945
= TgT75
=Tus- (3.5)
It is worth noting at this point that
Yab = W’aﬁngng =0 (3.6)
h'ab = haﬁngnﬁ = Nab- (37)

Therefore, we can understand Npg and Ny; as the lapse of {S} in {£0} and {3} respec-

tively.

Let us define two vectors e, which connect the family of two surfaces of {S}, see figure 3.3.

These are known as the rigging vectors. We define them by

€a = Nga + ba (38)
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3.1. 2+ 2 metric decomposition

Figure 3.3: Lapse and shift vectors in the two null directions where
one spacial dimension has been remouved.

where b, is considered to be the shift vector, and
naby = 0. (3.9)

Although, as already stated, n, do not necessarily commute, it is always possible to choose
ba in such a way that the rigging vectors e, commute. A consequence of this is that each
ea is tangent to a congruence of curves in {¥,}, which by construction, are parametrised
by ¢2(z*). Therefore by choosing coordinates so that ¢°(z®) = 20 ¢*(z®) = z!, and

22,23 are constant, then

From (3.8) we can write

Ng = €g — b(] = (1,0,66)

Ny =€ — bl = (0, 1,b11)
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3.1. 2+ 2 metric decomposition

This then allows us to calculate the metric components.

Gab = g(ea; eb)

= g(na + ba, np + bp)
= g(na, ) + g(babs)
= Nuy + 75048}

9oi = g(Na + ba, &)

= i3,

Gij = Yij-
Note at this point that N, = N, by the choice of n,.

Therefore, we obtain the metric

N + bt B, it
Gog = b7 (3.10)
’Yz‘jb]a Vij
and with inverse
Nab _Nabbi
g°f = b (3.11)

__Nabbib ,yz'j + Nabbiabjb
In a similar manner to the metric the vacuum Einstein equations

G* =0,

also decompose into three groups:

G = n2ngG* =0
G =0
G = 0.
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3.2. Double null canonical analysis

The advantage of this 2 4 2 formulation is that after the analysis of the field equations

we find that the two gravitational degrees of freedom can be chosen to lie within the

conformal 2-structure ¥;; where

Yij =7Yij (3.12)

¥ =|751-

In most calculations we will consider a frame that has been adapted to the foliation. This
means that we restrict the frame e, in such a way that e; are tangent to {S}. This will
greatly simplify the calculations. We can see from (3.11) that to obtain a double null
foliation, (g% = ¢! = 0), we require both N = 0 and N'! = 0. These are the two

constraints that we impose on the Lagrangian and this is the topic of the next section.

3.2 Double null canonical analysis

We start our work from the 2 + 2 Lagrangian that Torre derived in his calculations. As
we have already mentioned Torre imposed only one null condition and therefore only
the z! direction was null. Although this was achieved by the introduction of a Lagrange
multiplier, Torre combined all the terms that multiplied the N'! variable into the mul-
tiplier. This effectively set N'! and its spatial derivatives to zero and therefore in order
to obtain all the Einstein equations he had to make a particular choice for the multiplier
that introduces the null condition. After the canonical analysis Torre was able to isolate

the First class constraints, and calculate the algebra associated with them.

In this section we are going to extend this work of Torre to ensure that two directions are
null. This will then give us a true double null 2 + 2 first class algebra. As we are starting
from Torre’s Lagrangian the two null conditions are going to be treated differently. The
condition that Torre had set from the very start we will keep just as he had introduced.
The second null condition N% = 0 will also be introduced via a Lagrangian multiplier,
but it will remain freely specifiable until the constraint is introduced after the canonical
analysis. This is just the same as the 7#° constraint in electromagnetism, previously con-

sidered. Although we have said that this work gives us a ‘true’ 2 + 2 first class algebra,
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3.2. Double null canonical analysis

0

we still choose 2 to be the ‘time’ direction. This breaks the symmetry between z° and

z'. This will be discussed in the final chapter.

We will follow the work of Torre as closely as possible, although the index notation follows

the convention used throughout this thesis. We will write N, as
No = Noo, N = NOl,Nl = Nll-
We start our work from the Lagrangian derived by Torre, £(Ng,b,%, v¥):

L =LiN3y2Ny o(2Ng Ly, N — NLp, No) + N71 [7}0/ (2L, N — LgNy) — fyl/ZN,kbl’“,o}
+ %71/2N-1 [’Yij ('C'nobli - bOi ,l) + (men’)/kl - ")Imk’Ynl) (Nﬁno ’Ymnﬁm ’ykl - %NO'CM ,ymn/:m 7“):’
+ Ny2(PR+ LN72V NV*N) — N [fyl/?vkbokcmN + Lo 2 (b* Ny, + EmNO)}

-+ /JJINI + /J,o(No)2. (313)

In the above °R is the curvature in the spacial two surface. Following Torre we have
already set N; to be null, although its time derivatives remain undefined at this point.
Following Goldberg et al. (1992) we have introduced the extra null condition, Ny = 0, as
a squared term because we are imposing a condition on a cyclic variable. This simplifies
the constraint analysis by avoiding the occurrence of a multiplier equation at the next

stage, which is a trick that we will find useful later in our calculations.
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3.2. Double null canonical analysis

We now define the conjugate momenta below:

- 6L
PO e — (314&
o Ny )
~ oL
-~ oL -1 1/2 4 1 n7—341/2
1
= —]\'fnlﬁnofyl/2 - %71/2‘6711 (N_ZNO) (3'14C)
~ 0L _ _ ; ; ; ;
Plii= =5 = =Ny PN 43N [ (Laoby? = b7 1) + i (Lnobi” = bo'1)]
1
- N- 1’)’1/2’)%; ('Cnoblj _ boj,l) _ N_l’)/l/2N,k (3.14d)
- 5L
P == =0 (3.14e)
5by*
- 0L
i = S $TANT Yonn Vet — YemVin) N Ly 7™ + 37 29N (L Ny = 2L, N)
(3.14f)

These variables and their respective momenta satisfy the equal-time Poisson brackets:

{No(z), P°(y)} = 8(2,7)
{N(z), P(y)} = 6(z,7)
{Ni(z), P'(y)} = 8(z,7)

(y)
{bi(z), PE(y)} = 65686 (x, §)
{77(2), T()} = 6,66 (z, §)

Hence, from these definitions of the momenta we are able to show that the primary

constraints are:

N; =0, Ny =~ 0, P%~0, P=~0, P% ~0. (3.15)

An additional constraint arises from (3.14f). At first glance it is clear that this equation
is not a primary constraint, due to the time derivative in the penultimate term. But as

we shall see, this derivative occurs only in the trace of ﬁij. Therefore the trace free part
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3.2. Double null canonical analysis

of (3.14f) is in fact also a primary constraint. Let IT be the trace of II;:

IT =77 = N7 2 (Lo Ny = 2L0, N) + 39122900 — i) Ly 7™

= N7 (Log Ny — 2L, N) + 29120, L, 45,
Let ﬁij denote the trace free part of ﬁij defined by

Iij = i — 5311

- %’Yij [N_171/2(£HON1 - 2£ﬂ1N) + '21"71/27kl£n17kl:]
= 292 (v Ve — Yae Vit — 2Yi5k0) Loy ¥
= 272 (370 — Yinvit) Loy 7™

Y20yt Loy ™

= =57k VitV Ly v = 3
= =3 VjtLny (Y27)

= Xij 0 = g + 57 ¥Ln, (V*7*) = 0

L2 (vigvi — Yiwvir) Loy ¥ — Ly 2 s NH (Lo Ny — 2L, N)

(3.16)

Adding (3.16) to the other primary constraints (3.15) we see that from a total phase

space of twenty field variables we have eight primary constraints. After the Legendre

transformation we derive the Hamiltonian density:

H=NoN'®; + N + b, & + X[ENoN(y~ V2L, 42 — N7IL, N) + Ny~12p1
+ 1Ln, (NoNH)] + 1Ny + Jio(No)? + AP + AP + X'PY + A9 X, (3.17)

We define

Q= %ﬁij'cnl’)’ij - ['nl ﬁnlfyl/z

b = %7—1/2P1m}31m = 2N—1£n1 (N[pl + %*Cnl (,Yl/QN—-ZNO)]) - Vmplm . ,.),1/2 3R

By, == —L,, PL + 2V ™I,
x =0+ 29Y2N"1L, N+ L, 72
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3.2. Double null canonical analysis

We now use the Dirac-Bergmann algorithm to determine the complete set of constraints.

This is achieved by propagating the variables in the usual way, Z = {Z, H}

No=Xo (3.18a)
N =X (3.18b)
Ny = N2y (3.18¢)
by = M (3.18d)
bt = Ny Y2PY L V'N + L, b, (3.18e)

We shall split the equation of motion for the two metric into its trace and trace free
parts. This is because the conjugate momenta to v* is II;;, which has already been split
to obtain an additional constraint. Therefore, the trace of the propagation of ¥ results

in an equation of motion, whereas the trace-free part results in a multiplier equation: this

is shown below.

7 0 =3NoNTIL, 7 — 2Vibyt 4+ N — LAPary,
+ 97 [FNoN T (v 2 Ln 92 = N7V, N) o+ Ny H2PY o+ 3 Loy (NoN )]
Y o = =2Viby' + §NoN " yi5 Ly
+ 2 [ANGN=Hy V2 Ly — N71L, N) + Ny7H2PL 4+ L2, (NoN7Y)]
= _QViboi + 2N7'1/2P1 + %NON_1’Yij£n17ij + NON—17—1/2£n171/2
~ NoN72L, N + L, (NoN7Y)
= —2V;b,' + 2Ny 2P + NL, (N72Ny). (3.19)
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3.2. Double null canonical analysis

We define the trace free part of 4% by

¥ =" 5 = 579y
= %NON—lﬁmﬁ’ij _ ijboi 4N — ’Yijvmb”?) _ N,Y—l/Q,),ijP _ %,yijNL‘m (N‘QNO)
+ 97 ANGN =Y (y 2Ly = N7 Lo N) + Ny V2P 4 1L, (NoN7Y)]
=\ _— ijboi _ Vijvmbom 4 %NON—l(Enl,yij + 7ij7_1/2£n1’)’1/2)
= INGN YLy v = Ly Ly Y™ + L7 + N

= INGN7LL, 7Y + Ly, 77 + MY (3.20)

— 2
We can now see that (3.20) defines the multipliers A while (3.19) is an equation of

motion.

We now propagate the primary constraints. We start by ensuring the slicing condition

N; = 0 is true for all time. Therefore N, o = 0, which implies by (3.18) that

x~0 (3.21)
On the other hand the propagation of Ny defines simply the multiplier Ao (see 3.18), and

not an additional constraint.

We now go on to propagate the remaining primary constraints:

Pl = N71®g + Ix [NHy V2LpyM? = NTULyN) — Lo, (N7)] + 200N (3.222)

~ N719, (3.22b)

PY o=y (3.22¢)
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3.2. Double null canonical analysis

Py = ~NoyN~%¢g + 341/2PL Pm — v, Pl — 4125 R

— 29 PN Ly, N [ENGN 7Yy 2Ly 2 = NTILy N) + Ny V2P 4 10, (NoNT1)]
= 2Ly (YN GNGNTH Y 2Ly M2 = N7UL, N) + Ny V2P 4 3L, (NoNTY)])
— X[NoN T2 (y 2L, (YM)] + XNoN 2Ly (N) + 5 L, (xNoN?)
+x7 AP 4+ NN T2 L, (X)

= —NoN "¢y + Iy2P1 pim — 7, Plm — 41/25R
_oN"L,, (71/2 [LNG NIy V2L, 42 — N71L, N) + Ny~1/2Pt + %£n1<NON~1)]>
+y [—%NON-2 (VY2 Ly (YM2) = N71Lp, (N)) + =12 50 — %Em(NDN‘Z)]

= —NoN¢g + £y12PL Pim v P _AM2sR _oN-1L, (NPY)
— 2N L, (3L, (NoN7IyY2) = L, (N)YY2N,N—2)
T [ <AV 2 (2L (41/2) = N7 Loy (N)) 4 2B — 3L, (NN )|
— 2N Lo, (NI + 30, (42N N)])
+ X [*%NON (YL (v?) = N7 L (N)) + y7H2PY = § L0y (NoN “‘2)]

_ “NON'2¢0 + %71/2]51m]51m _ Vmplm . 71/2sR

— (I) - N()N_2¢0
+X [—%NON 2 (7L, () = NTILpy (N)) +y7V2P - 1L, (NON—2)]
(3.22d)
N (3.22¢)

When we propagate these four constraints we will get extra equations arising from only

the weak form of the constraint. To help clarify this, we will propagate the constraint

¢+ xF(*, pr)-

{6 +xF(¢*p),H} ={¢, H} + {x, H} F(a¢*,p») + x {F (", p»), H}
~ {4, H}

We can see that the last term will be zero because it is weakly zero by the constraint x,
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3.2. Double null canonical analysis

while the middle term is zero as we have already ensured x is time independent. Therefore
when we propagate secondary equations (3.22) we need to propagate only their weak
form. These are automatically preserved because they define the Einstein components
G which in turn are preserved by the Bianchi identities. This implies that preserving

the constraints (3.15) in time results in five secondary constraints.

¥~ 0 By ~ 0 d~0 3, ~ 0. (3.23)

Propagating (3.16) leads to a multiplier equation. We have now ensured that all the
primary constraints are conserved for all time. The aim of this work is to obtain a con-
straint algebra. We therefore move straight on to obtaining the first class constraints. It

is possible to obtain all the Einstein equations from the constraints and the equations of

motion, using Torre’s original work.

3.2.1 First class algebra

The constraints so far obtained are not necessarily first class. Some will require adapting
by the addition of linear combinations of the other constraints. Geometric expectations
will dictate the constraints that need adapting as well as the linear combinations required.
For example, we would expect that two of the first class constraints would generate
diffeomorphisms along the spatial surface. Therefore we adapt the constraint ¢ to ensure
transformations of variables generated by the constraint are in line with our geometric

expectations and then check that they are first class.

Therefore we adapt three secondary constraints in the following way:

Y :=¢ + PV Ny + PV N + PV N,

=2V™ I} — L, Pt 4+ P!V Ny + PV N + PV, N,
o =g
=111 L0, (V9) = 2L, Ly (Y11?).

-3
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3.2. Double null canonical analysis

To ensure the constraints are first class we must calculate the Poisson brackets between
each of the constraints. We will start with v, but before we calculate its Poisson brackets

with other constraints we will calculate its Poisson bracket with the canonical variables.

I /2f V(7)) = /5a:z/m’Vl(f”)+7“lVl(fm)d3y

= V") + V"(f") = Liy™ (3.24a)
ok, [ —fmL, Py = | 6z, L, f55(y,2)dyd
{1/yf }/z(“)/y F3(y, 2) dydz
= L (3.24b)
Ny, | fEP°V N, d? :/5, kL Nobly, z)d?) d°
{o/yf xNo &y} jz(fﬁz)/y(f kO(yz)> z
= fkkaO = ,CfNO (324C)
{N, / f¥PPV,N d3y} = / 6(z, 2) / ( f’“vk(N)S(y,z))
K] z Y
= L;N (3.24d)
{Nl,/f"Plvk Ydy} = /5 T,z /fkvk N)b(y, z) dydz
:ﬁle (3246)
{Tm, / 28V (Tpy?) Ay} = L m (3.24f)

Y
(B [ st Bty = {BL [ o0 Bl &)
Yy Yy
fELy, Pl = fiy'2L, Pl + fEPLL, A2
= f*BM , + RO P,
(B, [ fracdi) = (B, [~ EBR - (FPBD) 8 %)
K Yy
= /—S(x,z)/ [—ff;p,j — (fk}a;)k] 6(y,z) &Py d’z
z y

=[P = (f*B) s = Ls Py (3.24g)

64



3.2. Double null canonical analysis

=3 / BV (No) dy) = £ (3.241)
{P, / fEPVL(N)d%) = L;P (3.24i)

{PY, /y FEPYV(Ny) dy} = / —6(z, 2) /y —Vie(f*PYé(y, z) dy dz
= Vi(f*PY) = £;P? (3.24))

Using equations (3.24) we can easily calculate the Poisson brackets of 1;:

{ / Frp AP, / g, d?’y} = { / ARV () yP™ = L, B+ PYV N, + PV N
x Y x
+ POVLNo / gundy}

We shall break this down, term by term. The first term is given below:

//2Vq(ﬁpk)fk5($, z) d%/ﬁﬂpqg(y,z) d*ydz
zJzx Y

+ / / IV (fIP™) (z, 2) Bz / L0y, z) d3y a3z
== [ 2 [P Lol + PO Tl Tl) = Vo L ()]
== [ 2 [PV L + 0L Tl — S99 OnL ()]

:/2vp(ﬁ W) Lrg"d%z.
(3.25)
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3.2. Double null canonical analysis

The second term that arises is:
/f (P16, + (PL6), x,/glz/)l dy

// pl,k]émzd?’{mgp]

/( FIb + F,) 0(z,2) & |~ £,P}] a2
= [ [fsBi+ (B (e - o)) - 710k = 70 [dh B2 + ()] 2
= [ B 7 ~ ok~ 0B (7S £708] 052

= / — L, PLLg" A2 (3.26)

z

The third term becomes:

/Z/m*"Vk(plfk)(s(CL‘, z) dsx/yglvl(]\[l)g(%z) ¥y
_ / VLN, 2) da /y (B )6y, 2) Py
:/Z"Vk(Plfk)gle(Nl)+V1(Plg’)f’ka(N1)d3Z
- / FEPYV(g) Vi) = Pg'Vi(f4)Vi(Nh) + PP fEg ViV (o) d°z

= / PV, (N))Lyg' d3z. | (3.27)

¥4

The remaining terms are the same as the above. Therefore, combining all the terms gives

the final result:

P A2z, [ ¢ d3}: Lrg*dd 3.28
{/zf’ébk I/yQ%Z/ /2¢ka z (3.28)

For the remaining Poisson brackets the calculations are similar and we shall state the
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3.2. Double null canonical analysis

outcome. We now present a summary

(e
([#2e]
([17e-]
e
1y,
]
([
(s
([0
(o

of the Poisson brackets for ;.

9 dgy} = /ﬁgNl A3z~ 0

J% d3 }

J¢3d3 } /fc Pdz~0

ij Sy} :/fﬁ Byd®z~ 0
g*y d3 } f”'/;gXij d®z2~0
[, 3y} f FLyto d% 2 0
[ 3y} [ etz o
J¢Jd3} /fL‘NOdzNO
g dy } /f£ $d®z~0
szj @’ } /whﬁfg &z~ 0

We can see clearly from these equations that 1y is a first class constraint. It is straight-

forward to show that 15,? is also first class. We can see from the Poisson brackets of g

with the other constraints that 1) is first class.

{ / N, &’z / gtho d®
{ [rpews, [[owe
{ / fP &, gw a?
{ / Py dz, gz,b d3

{ / X, d%, / gip d®

} 0
} 0
ij o
1j=o
)=

ll

Xij 9Ly (f7) d°2 = 0



3.2. Double null canonical analysis

{/f%d3(£g%d3}a3/¢oﬂ;g 9L f) A2 0

{A}xf g%dS} /&ﬂ@f&ZNO

{/fNOdS g@bods } 0

{/?¢dz g%d3}
J=-

{/ﬁmd3 g%dy

Therefore, we have five first class constraints, leaving the remaining eight constraints to

be second class. These are

p~0, Nym=0, N ~0, X;=0, Pr0, x=~0, P'~0 (3.30)

{ FERS d%,/gfﬁ;) d3y} —0 (3.31a)

z Y

{ FEBy d3x,/g% d3y} =0 (3.31b)
T Y

{ [ #8200, [ e} =0 (3.31¢)
z y

{ [y Pz / g; d® /wkﬁfg’“ d3z2 =0 (3.31d)
T y 2

)=
{/xfwode’/ygj¢jd3 } /zfﬁg%d%%@ (3.31¢)
'j=

{/f@bo dgfﬂ,/g@/)o d® /%(fﬁmg fgﬁmf) d*z = 0. (3.31f)
T Yy z

Now that we have obtained the first and second class constraints we may find the dimen-
sion of the reduced phase-space. In this double null description we have a phase space
of twenty variables. We obtain five first class and eight second class constraints. Putting

these results into the standard formula (2.73) we obtain £ (20 —2(5) —8) = 1. This results
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3.2. Double null canonical analysis

in one true degree of freedom, which is what we would expect from a null foliation of the

space-time as Penrose states:

There is the curious feature of these null data that apparently it is sufficient to

have one-half as much information per point as in the corresponding Cauchy

problem. (Penrose 1980)

Geometrically the two constraints ]5,3 represent the gauge freedom of the shift variables

bf. We use (3.24) to provide the infinitesimal transformations of the constraint

8 Ymn = {’Ymn:/mfk@bk d3x} = L §Ymn
dbg = {b ,/f’“wkd3 } =0
= {ot, | = £,
{No,/f’“«pk d'a } — LiNo %0
6N = { /f’”z/)kd?’ } =L;N
6Ny = {Nl,/f’“zpk d%} LNy = 0.
This shows that this constraint generates diffeomorphism’s along the spatial two surfaces.
We also note from the above that the variables b5 and b¥ generate different transforma-

tions. This can be understood when we realise that bf lie in the £ plane and are therefore

shifts to the evolution direction, while b¥ lie in the £, plane and are therefore part of the

decomposed three metric.

The final first class constraint, 1), generates Lie derivatives along the n! direction. This

can be seen when we consider the transformations generated by %, on the canonical
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3.2. Double null canonical analysis

variables:
1 ={tom [ 065} = £ (3.322)

6bF = {b’;, / Fibo d%} ~0 (3.32b)

{No,/fzbo d3z }_o (3.32¢)

6N = { /f¢0d3 }:ﬁm(Nf) (3.32d)

{Nl,/f;b0 d3z }No (3.32¢)

As we have already explained b¥ is analogous to part of the three metric in the ADM
description. Therefore we might expect that 6b% would result in a Lie derivative term in-
stead of the trivial solution that is obtained. To understand why this occurs we introduce

an adapted coordinate basis on the ¥y hypersurface, (see fig 3.2), which we will denote:
{ef,ez.e5t ={e} (n,v=1,2,3) (3-33)

We introduce the induced metric on the hypersurface, (h,,), which has the following

components in the above basis:

hi1 = Vijbib{
his = by

hij = 7ij-

This can be seen from (3.10).

When we consider the Lie derivative of a vector v® acting on the induced metric

‘th/u/ = 'Uaaahuu + haua/ﬂ)a + huaauvaa (334)
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3.3. Discussion

and apply it to hy; with v® = fn{ we get the identity:

Ln, b1 = [n$0uhi; + haiOi (fnT) + h1a0:(fn3)
= fbjlﬁ’nlhw
- ‘Cf'n,l b]i - fh”tjﬁnlb{

= L, =0.

Therefore, the Lie derivative term we expected from 60! in (3.32), is actually equal to

ZEero.

3.3 Discussion

In this chapter we extended the work of Torre so that the double null foliation was
considered. As we have just described, the resulting first class constraints are associated
with the diffeomorphism freedoms in the ¥y hypersurface. This result was also found in
ADM except that in this chapter, due to the 2+2 foliation, the diffeomorphism constraints
are split into two on the spacial two-surface and one in the null n; direction. In the ADM
analysis one first class constraint, the Hamiltonian constraint, is dynamical. This is due
to the presence of the derivative on the right hand side of (2.81c) depending upon the
form of the momentum constraint. This meant that the first class algebra did not form a
Lie algebra. In the double null analysis all of the first class constraints are kinematic, and
therefore we might expect that the first class constraint algebra did form a Lie algebra;
unfortunately this is not the case. If we look at (3.31) we see that the last term has a L,
term. L, = L., — Ly,, and therefore the first class algebra contains the gauge dependent
variables b¥. The first class algebra could be made a Lie algebra if a gauge condition

was introduced that set these variables to zero; Torre (1986) has a discussion on suitable

gauges.

In Torre’s work three of the first class constraints were obtained due to the gauge freedom
of the lapse and shift variables. In the double null description only two of these gauge

freedoms remain. We used the gauge choice of the lapse to specify that the evolution
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3.3. Discussion

direction is null after the Poisson bracket calculations.

Now that we have the canonical analysis for a double null description of General Rela-
tivity we could continue to see how far along the Dirac-Bergman algorithm we can go.
Unfortunately due to the complexity of the constraints and the first class algebra not
being a Lie algebra we would find further progress towards quantising this field theory
just as difficult as ADM; we therefore do not pursue this analysis any further. Instead we
will introduce a change of variables that will overcome the current obstacles by providing
polynomial first class constraints as well as a Lie algebra for the first class algebra. These

new variables were introduced by Ashtekar and are the subject of the next chapter.
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Chapter 4

Ashtekar variables

Although the work of Arnowitt et al. (1960) gave a canonical analysis of the 3 + 1

decomposition and obtained a first class algebra for the constraints, the remaining steps

of canonical quantisation proved to be difficult.

Some years later Ashtekar (1987) proposed a change of variables which overcame some
of the problems which had hindered earlier work in canonical quantisation and brought
new life to this area of research. It had been known for some time that working with
the connection and the curvature simplifies the canonical analysis, but also results in
additional second class constraints. When these are solved for kinematic variables, and
then substituted into the first class constraints, we arrive at the same system of first class
equations as ADM. Although the Ashtekar approach uses the connection and frame as
~ variables they are complexified and all the constraints are first class. As we shall find out,

the complexification of the connection also allows us to split the action into anti-self-dual

and self-dual parts, but only one part is required.

The constraints that result from the canonical analysis are all first class, polynomial
and have geometrical interpretation. This last point is important because while other
variables have resulted in polynomial first class constraints they lacked a geometrical

understanding which becomes important in the latter stages of the quantisation process.

Another benefit of the Ashtekar approach is that the resulting Hamiltonian has a similar

structure to Yang-Mills’ theory. Unlike General Relativity this field theory has been
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4.1. Variation of the connection and frame

quantised, and it is thought that techniques used in that process can be adapted for use

with General Relativity.

In this chapter we shall introduce Ashtekar variables, before introducing the variables
that we shall use in the latter chapters. In this chapter we shall follow the approach of
Giulini (1994). We consider the approach given by Ashtekar (1991) in Appendix A. In the -
first section we shall show how the Einstein equations are obtained through a variation
of the Einstein Hilbert action with respect to the connection and frame. This was first
achieved by Palatini and it is his approach which is most common. We choose not to
use this form, but instead use the that of by Giulini (1994). We do this so that in the

following section we may simply adapt the approach to show that only the self-dual part

of the complexified action is required.

The final section introduces the variables that we shall be using for the remainder of
the thesis. A local isomorphism is exploited to adapt the complex self-dual variables into
SO(3) variables. We then give the structure equations and Bianchi identities in this new
basis. The Einstein equations are then given using this notation and we close the chapter

with a self-dual action written using the SO(3) basis and curvature.

4.1 Variation of the connection and frame

We will start by introducing some new notation and identities. We start with a SO(1, 3)
valued connection which is denoted by the 1-form A% and the curvature denoted by a

2-form 2. We introduce the space-time exterior covariant derivative D given by
D)= dX+[A4, )], (4.1)
where A is an SO(1, 3) valued 1-form. The following two derivatives

DAX: = dA+[A, )]
DA):= dr+[4) )]

are defined using two different connections (A and A’).These are related in the following
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4.1. Variation of the connection and frame

way
DAXN =D XN+ [A - 4, (4.2)

Applying (4.1) to the tetrad 8 results in the first Cartan structure equation:

DO = df™ + A5 A 9P =T (4.3)

where 7" denotes the torsion which we will take to be zero.

We express the curvature 2-form in terms of the connection by:
Qf = dAg + 5[4, A3 : (4.4)

which results in
DQg‘ = ng + [A4, Q}g‘ = (. (4.5)

The Hodge dual of a n form in 4 dimensions is given by:

oY n 1 Oty
* (0NN NG = = n)!eal O i g 0TI LA 6%, (4.6)
where we take €3 = 1, €%1?% = —1. We also make use of the inner product of two
2-forms:
_ 1y a8 L pa p g8
given by

9(A,0) 1 = Aapg™ 90,5 = AapoP.
We now have the useful result that
AN *0 = g(A 0)e. (4.7)

Now that we have introduced some useful identities and definitions we can start calcu-
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4.1. Variation of the connection and frame

lating the Einstein equations through a variation of the tetrad and connection. We start

by writing the Einstein-Hilbert action in terms of the curvature two-form:

= /Qaﬁ A (0% A 69) (4.8)

= %/Raﬁ75(97 AB%) A (8% A 6P,

1
=3 /Raﬂ,,,;g(m A%, 0% N 6P)e

1 [24
=3 / Reprys (%707 = n*0nP7)e

- / Re (4.9)

Therefore we are going to use the action I[6%, AZ] given by (4.8) to replace the standard
Einstein-Hilbert action. We now consider the tetrad % and the connection Ag to be
independent. Due to this we have increased the number of variables, and therefore we
would expect a greater number of equations resulting from variations of the connection.
Palatini discovered that these extra equations showed the connection is the metric con-

nection. To obtain this we first use (4.4) to calculate the variation of the curvature with

respect to the connection:
0Qap = d(0Anp) + [A,0A]lap = D(0Aap)- (4.10)

Therefore when we calculate the variation of the action with respect to the connection

we obtain:

6]:/5AQB/\D*((9Q/\96)

1 op s
= 5/5Aaﬁ N e g D(G7 N 0°). (4.11)
From the requirement that
or
=0 4.12
s (4.12)
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4.1. Variation of the connection and frame

we obtain the result
D(6* A 6P) = 0. (4.13)

We write the connection A = I + A where I" is the Levi-Civita (or metric) connection,

then show that A = 0. In order to do this we first express the result (4.13) using (4.2) to

obtain

DA(0% A GP) = DV (0% ANOP) + AZ NG AGP + AE A G* N G (4.14)

= (ARg02 + AL 165007 A6 A 6°. (4.15)

We have used the vanishing torsion of I to remove the term DT (6% A §P). The remaining

term vanishes if the cyclic sum in v — § — € of the coefficient does. When the above is

contracted on B and € we get the expression

B o B _
Ay + A8 0% — AB 6% = 0. (4.16)

which when contracted on o and & results in

This, when substituted into (4.16) gives
Ay =0. (4.18)

Thus A is symmetric in its bottom two indices. If we define the covariant tensor Aggy =
’I’}ﬂgAda,),, then we have a covariant tensor that is symmetric on its first and third indices,
while also being anti-symmetric in the second and third indices. A tensor with these
properties must be zero, as can be seen from interchanging the indices. Therefore we

have finally shown that because A is zero, A = I' and hence the connection A is the

Levi-Civita connection.
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4.2. Complex General Relativity and Self-dual variation

We now consider the variation of the action with respect to the tetrad 6.

I= / 5Qape™ s NOTAG°
=6 = / e §Qap N O A GO°
= / 1(e% sRaguuf” NO* A O7) A 56°
= / L(eP1ORAB, i¥eney % BX) A 660
= — / %(3!5{;55&;1130‘@,“6”‘”5776)‘ * 02) A 66°

=2 / (Rog — InagR) * 0% A 668, (4.19)

So finally Hamiltons principle states that

o _
608

= Raﬁ - %naﬁR =0

0

:>G,15 = 0.

Therefore by considering the connection and the tetrad to be independent variables we
are able to derive the Einstein equations as well as showing the connection is the metric
connection. It was stated at the beginning of this chapter that only the self-dual part

was necessary to obtain these equations. In the following section we shall prove that this

is indeed the case.

4.2 Complex General Relativity and Self-dual varia-
tion

If we take a two form, (6% A 6), then using (4.6) we can calculate its Hodge dual

(0% NOP) = £ ;07 A 69 (4.20)
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4.2. Complex General Relativity and Self-dual variation

and its double Hodge dual

ok (02N 0°) = L% 55 (67 A 0°)

= %eaﬁéewmﬁg N

= %6“575675¢n9c A Gn

— _lsagh

= —5000,,0° N 0"

=—0“ NP, (4.21)

Therefore the eigenvalues of * are =£i:

*A = 2\ self-dual
(4.22)

*A = —iA anti self-dual

We now extend the framework outlined in the previous section to include complex frames
and connections. Due to this extension we are no longer calculating General Relativity,
but a generalisation of the Einstein equations because the metric can be complex, al-
though this complexification does not change the nature of the manifold which remains
real. Therefore in order to obtain General Relativity and not a complexified General
Relativity we must add extra conditions, called reality conditions, to obtain a real met-
ric. It is worth noting that from this point we will always be considering a complexified

General Relativity unless otherwise stated. We leave any further discussion on the reality

conditions until chapter 7.

The structure group for the connection and tetrad is now SO(1, 3)¢, which has Lie algebra
so(1,3)c. If we represent so(1,3)¢ using complex bivectors gog we may introduce the
operator x, which gives the dual in the Lie algebra by

70 (4.23)

1

This also squares to minus the identity so that we may define self-dual and anti self-dual
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4.2. Complex General Relativity and Self-dual variation

elements of the Lie algebra according to:

*0 = {0 self-dual
(4.24)

*x0 = —i0 anti-self-dual

This allows us to split the Lie algebra, into self-dual and anti self-dual parts,
so(1,3)c = so(1,3)5" @ so(1,3)57). (4.25)

We also use this operator to split forms which take values in the Lie algebra into their
self-dual and anti self-dual parts by introducing two projectors P* = %(1 Fix). Therefore

we decompose the connection and curvature as follows:

A=PHA+POIA=Fg 44
Q=PHQ 4+ POQ =0+ Cn=0(P4) + Q(HA4).

We now decompose the action by splitting the curvature into the self-dual and anti self-

dual parts.

I=1% 4710 = /(“Qaﬁ A *(6% NP + / Qs A (0% A 67, (4.26)
which using Qqap A #(0% A 0P) = xQpp A (6% A 6P) and (4.24) can be expressed
:w/mmwaAWyw/meAw%wﬂ (4.27)

We will now consider the two parts of the action independently. The self-dual part is a
function of the self-dual connection and the frame, whereas the anti-self-dual part is a

function of the anti-self-dual connection and the frame. In both cases the connection and

the frame are considered to be independent.

To calculate the variation of the self-dual action, I*), with respect to the the tetrad
and self-dual curvature, we will use a method analogous to the one used in the previous

section. The anti self-dual case follows in exactly the same way and therefore we do not
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4.2. Complex General Relativity and Self-dual variation

include it here. We start by calculating the variation of the connection:

61 =4 / 6 Apg AN IDG= A 6P) (4.28)

Thus we get the result that
D6 A 6°) = 0. (4.29)
If we set (VA = )T+ A and follow the argument given above, we show that VA = 0

and therefore

4 = T = self-dual part of the Levi-Civita (metric) connection.

The surprising result is that when we calculate the variation of the self-dual action with

the tetrad, we obtain the full Einstein equations, as is shown below.

ST

o = 2 Q08 A 6% (4.30)

= i (Qap — i4€75005) A 0% (4.31)

Then, using the fact that Qa5 A 0% = Ragys ANOT A 6% A9 = 0, which is the result of the

Bianchi identities, we get the same expression as we did using the standard variational

principle, (4.19)

SI ) s
568~ 3¢ op

Qs A 0% (4.32)

Using the same line of argument as before results in the equations

= Rop — LnapR = 0. (4.33)

Although we will call these the Einstein equations it is important not to forget that these

are the complexified generalisation of the Einstein equations.

In this section we have shown that by complexifying the variables we need to consider

only the self-dual part of the action to obtain the Einstein equations. This result is the
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4.3. SO(3)c variables

basis of the self-dual variables which we will introduce in the following section.

4.3 SO(3)¢ variables

In the previous section we used a complex connection and curvature, which both have
the Lie algebra so(1,3)c. This was split into self-dual and anti self-dual parts, denoted
s0(1,3)5” @ s0(1,3)5). We then demonstrated that only the self-dual part is required
to obtain the full Einstein equations. In the following chapters we will exploit a local
isomorphism that exists between so(1, 3)<(c+) and so(3)¢. This isomorphism enables us to
replace the self-dual connection and curvature used above with a connection and curvature

that have a SO(3)¢ basis of complex self-dual two forms, S* (bold upper Latin indices

range from 1,2,3). The basis of self dual two forms is given below:

St=1(0"A0°+ 6% A 6?) (4.34a)
S?=0'NG? (4.34b)
SE=0°N06°, (4.34c)

When we state that these two forms are self-dual then we require *S* = iS5 where * is

the Hodge-dual (4.6). An example is given below:

52 = (61 A 62)
= z€'2 5(0% N OP)
= 51" ers0s(0% A OP)
= —Leozap (0% N 0P)
=0 A 67

=452
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where we have used

01 0 O
, 10 0 ,
n = and €gq193 = —i.
00 0 -1
00 -1 0

If we define the metric g4B := g(S4, SB), and use the identity g(P, Q) = *(P A Q) then

we can show that

gt =g(5%,8%) =*(ST A SY)
= *z(0°NOLNO% A GP)

1
5

Therefore, by calculating all of the components we obtain the SO(3)¢ metric

—21- 0 O
#*B=10 0 -1
0 -1 0
and the inverse
2 0 0
gAB = 0 0 -1
0 -1 0

The metric and its inverse are used to raise and lower the self-dual triad indices.

(4.35)

(4.36)

The connection and curvature used in the earlier section have SO(3) representations:

le — %(Am +A23)
Pz — A21
1-\3 — AOB
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4.3. SO(3)c variables

and
R' = (R + R?3) (4.38a)
R? = R* (4.38b)
R® = R, (4.38¢)

These forms satisfy the first and second Cartan equations

dS* + 27" cTB A SC =0 (4.39a)

and

dT' + n"5cTB ATC = RA, (4.39b)

where naBc = 7MaBc) and 7123 = 1.

Exterior differentiation of the above equations results in the first and second Bianchi

identities

naBcR® A S° =0 (4.40a)

dR* + 205 cTB A RC = 0. (4.40b)

The relationship between the tetrad components of the Einstein tensor Ge , and the

components of the self-dual curvature 2-forms Rf’;lﬂ is given by
LG Legrss07 NO° NG = 2i(eqS™) A Ra. (4.41)

The following steps lead to an equation more useful in determining the Einstein compo-
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nents in terms of the 2-form curvature. Contracting (4.41) with 6* gives

1G Legysc07 NGO AGT NG = 2i(equS™) A Ra AO*
= G Pepy500° NOY NG NG = 2i(eq S™) NOM ARy

=GP AONO* NOPNG® = —2(eqiS™) AGP A RBgam,

It is now a simple matter to express the Einstein components explicitly in terms of the

curvature. We will use the first component as an example to illustrate the method. In

this example we calculate eguS4. Using

eq 0P = 6P

as well as

ea 0P NO* = eqi(—0% N OP) = —6P

we can show that

e0S! = egui(0* A 00 + 6% A 6?)

= 1(-0").
Using these calculations we obtain

GOO° AOY NG A O3 = —2(eguS*) AP A RBgan
= —2(—20' A° AR + 6> NO° A R?)

= —2(RL, — R2,)0° A 6 A 0% N 6.
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This process results in the relationships

G% = —2(R3s — Ri,) G° =2Ri,

G% = —2(R3, + Ris) G% =2Ry

GY = 2R3, G'y = 2(R32 + R}o)
G*, = 2R}, G's = 2(R33 + Rgs)
G% =2(Rgs + R};) G* =2Rig

G?, = —2(R}; + R3;) G? = —2R32,

G% = —2Rg, G? = —2(Ri, + Rio)
G3, = 2RE, G3; = —2(R}, + RZ,).

(4.42)

This process defines sixteen Einstein components, but we are aware that the symmetric
Einstein tensor should have only ten independent components. In order to reveal which

of the ten Einstein components given above are independent, we write the first Bianchi

identities (4.40a) explicitly:

nascRP A SC =0
= RZAS —R3AS%Z=0
= R0V AP AP A)+RELOCAC AP AG) =0
= Riy + Ro3 =0 (4.43)
— RPAST—RIAS® =0
= Ry, + R3; —2Ri, =0 (4.44)
— R'AS? —R*AS'=0

= R3, + R3; + 2R3, = 0. (4.45)

We can immediately see from (4.42) that G% = —G?; and G3, = —G",. When the three

identities above are used in (4.42) we reveal the remaining four identities on the Einstein

tensor.

G% =G G?, = G33
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These identities are not unexpected because they may also be obtained using the property

that the Einstein tensor is symmetric.

Therefore from the original twelve Einstein components G%,, we have ten independent

components, as expected. These are given below:

Goo = (Rés - R%z) Gol = 2R§3
Goz = _Z(Rgz + R%z) GOS = 2R§1

GY, = 2R2, G, = 2R}, (4.46)
G13 = 2(R§3 - Rés) st = “2Rfs
G®, = 2R}, G%3 = —2(R§; + R%,).

We now redefine the self-dual part of the action (4.27) in terms of the SO(3) basis and
curvature. This action was introduced by Samuel, Jacobson and Smolin (see Samuel 1987;
Jacobson & Smolin 1989).

I= / RA A SBgasm. (4.47)

Although in this section we obtained the Einstein components from (4.41), it is also

possible to obtain them from a variation of the action given above.

4.4 Summary

In this chapter we have introduced the Ashtekar approach to canonical analysis. We have
shown that if the variable space is extended to allow complex variables then only the

‘self-dual action is required to obtain all the Einstein equations.

Then in the last section we adapted the connection and the curvature so that they are
defined by a SO(3) basis, which leads to a new action using these variables. We are now

in the position to apply these new variables to the 2 + 2 foliation that was introduced

earlier.
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Chapter 5

Canonical Analysis of 2 + 2

Hamiltonian using SO(3) variables

5.1 Introduction

In this chapter we shall use the SO(3) variables outlined in the penultimate section of
chapter 3 and apply them to a double null 2 + 2 formulation, given in chapter 3. We do
this to simplify the constraint algebra we found earlier, by using the Ashtekar approach.
This work extends the Lagrangian description of d’Inverno & Vickers (1995) by obtaining

the Hamiltonian description and calculating the constraint algebra.

In the first section we introduce a general basis of 1-forms that are suitable for working
in a 2 + 2 formulation. We then calculate the conditions required to ensure a double
null foliation; these are called the slicing conditions. In this section we also introduce the
densitised SO(3) basis. These variables can be expressed in terms of the basis of 1-forms,
and therefore we have a choice of variables. We will also decompose thé connection into

a 2+ 2 form and introduce the covariant derivative that acts on the SO(3) variables.

After this ground work we will be in a position to calculate the Lagrangian from the action
given at the end of the last chapter; this is the topic of section two. In the third section
we transform the Lagrangian description to the Hamiltonian description and perform
the canonical analysis. From the constraints obtained in this analysis we are able to

derive the Einstein equations. This then leads us, in section six, to calculate the first
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5.2. 2+ 2 tetrad, connection and curvature

class constraints, and from these the first class algebra. A geometrical interpretation of

the first class constraints is then given before we conclude this section with some closing

remarks.

Just as in the previous double null analysis we are required to choose which direction we
shall take as our evolution direction. In this and later chapters we shall take the evolution

direction to be the z° direction. As we have stated earlier this choice breaks the symmetry

of the double null description.

5.2 2+ 2 tetrad, connection and curvature
We start this work by expressing the general basis of 1-forms that was introduced in
d’Inverno & Vickers (1995).
0 = p?,dz’ + o®(dz* + s*dz®) (5.1a)
o' = Z/ij(dilfj + &7 dz*®) (5.1b)

p?, and s, are the lapse and shift. We can see that the four 2 x 2 matrix variables contain

16 degrees of freedom. These comprise 10 metric and 6 Lorentz freedoms. The dual basis

is given by
0 ;0
— o, b i
€a = U, (—(%b —$ b(?xi) (5.2a)
= J a, J b.J _ b
€ =15 + a®v’y (ua Shg7 " Ua 89:”) (5.2b)

where the 2 x 2 matrices u,° and vij are defined to be inverses of p?, and v ; respectively,
so that

ulpd, =0 wub =08
At this point we shall greatly simplify all future calculations by working in a adapted

frame. This means that we work with a frame where ¢; are tangent to {S}. Our basis (5.1)
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5.2. 2+ 2 tetrad, connection and curvature

requires that the alphas vanish, ie. @® = 0. This reduction in the degrees of freedom

decreases the number of Lorentz transformations by four to a two parameter subgroup of

spin and boost transformations. Unlike the similar calculations in the work by Goldberg
et al. (1992), choosing an adapted frame does not automatically result in z' becoming

null, therefore additional constraints are required to ensure z° and z' are null; these

constraints are called the slicing constraints.

The double null slicing condition requires that:

900 = g"ﬂ@g@}? = 2#00#01 =0

gt = gaﬂeigé = 2utou’; = 0.
The volume form is given by

V= —if° AL AG% A B3

= —ipvdz® A dz' A dz? A dzd,

which implies that u, v are non-zero. Therefore to satisfy the null conditions as well as

the condition that u = put, — uO ul; is non zero, we require that either

pho=pl =0 (5.3)

or

po = ply =0 (5.4)

be satisfied. Although in future we shall require (5.4), there has been no loss of generality

because a change to the other condition is equivalent to interchanging the coordinates z°

and 2.

In the Ashtekar approach we consider in Appendix A, the Lagrangian was a function
of the hypersurface connection variables (AJ), the lapse (V), the shift (N*) and the

densitised frame projected onto the hypersurface (£!). These frame variables define the
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5.2. 2+ 2 tetrad, connection and curvature

metric on the hypersurface. Therefore in our 2 + 2 approach we shall also use connection
variables, the lapse (1%) and the shift (s*,). It is worth pointing out here that only s
are the traditional shifts to the evolution direction. The remaining shift terms s*; would
form part of the three metric. We will see this difference expressed through the roles
the constraint equations play, which we will comment on later. At present the induced 2-
metric is defined by the variables v/* ;> hence the conformal factor of the two metric is given
by v, the determinant of the variables v/} ;- In order to follow the Ashtekar approach we
need to introduce densitised SO(3) variables to replace the variables v/* ;- This is achieved

by first expressing the SO(3) basis (4.34) in terms of the 1-form adapted basis variables

given at the start of this section.

St =2(0"NO°+6* A 6?)

= L[(pt 10 + V35 v, )dat A dad — (VEsT 1% — vt v ) dat A dat
52 =01 NB?

= (pt sty )da® Ada® + (pv%)da® A dat + (V30%)dat A da? (5.5)
S8 =63N0°

= 13, (dz? + 57 ,dz®) A (u0ydz®)

= (V3" ,1%)dz® A dz® — (V3u°,))dz® A da.

Then we introduce the new variables, which are densitised versions of the S basis vari-
ables.

Sx0 = 1P 8B g, (5.6)

where gap is defined by (4.36). We express the Sigma variables in terms of the tetrad

variables using (5.5), to obtain the system of equations:

(21017 S201’ S301) = (_l/a 07 O) (57&)
(21237 22237 S323) = (—u -85 M003k17/3k; - Molyskskm /'l'llyzksko - MlonkSkl) (5.7b)
(Z\lai, izai, 23(12') — _Eabei]’ (Vskskbyzj . Vzkska3j7 /'Loby3j, ___‘ulleZj)' (57C)

We may consider (5.7c) as a system of equations that allow us to determine v/* ; in terms

of the twelve & . This indicates that there are eight constraints in this over determined
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5.2. 2+ 2 tetrad, connection and curvature

system of equations. Therefore, in order to use these densitised variables to replace the

variables I/ij, we require further constraints to be introduced. We may obtain four of

these from (5.7c). First,

s ai . __ebij, 0 3

Yo" = —eTe un v

S0 i 0 8 S 16 _ ij, 0 3
= Xy = —elun v, Yot = € v

and by multiplying the former by u%, and the latter by u%, we obtain

'uooizoz + Nolizu -0
= Ct=pl 5% = 0. (5.8)

Using this method with ¥,% we obtain two further constraints

Ct =t 5% = 0. (5.9)

S ab ijr k .3 2 3
" = —ePe (S5t — s rSuT)
—_ eabszby
;;> Cza = 5202101 _ Eabzlbz — O (510)

The expressions for vt ; in terms of the Sigmas are given by

which, when combined, gives us
_ 3 aign by
MY = 22 23 €ab€ij-

In 2 + 2 formalism we wish to include the conformal factor of the induced metric, v, as

92



5.2. 2+ 2 tetrad, connection and curvature

a variable of the Lagrangian. We therefore require an additional constraint, which we

construct from the equation above.
C= izaii'?)bjfabfi]’ — uv = 0. (5.11)

Note that in the following calculations we shall use (5.7a) to replace v with the variable
501

Before we can derive the 2 + 2 Lagrangian we decompose the SO(3) connection and
curvature into a 2 + 2 form. We have already introduced the SO(3) connection 1-form

I'A, which decomposes into the 2 + 2 form given below:
I =T4de* = A%da’ + B dz”. (5.12)
The curvature 2-forms R* are defined by

R = dT* + TR ATC

= A% dz® A da* + B, dz® A d2® + g TE, 1S dz® A da”

= R%, = _Bﬁ,b + sz’a + 203 B%BS, (5.13a)
RA, = ‘BAa,i + A‘A;,a + 275 BLAS (5.13b)
Ry = =A%, + A%, + 25 AR AS, (5.13c)

We will find it useful to introduce two differential operators which are the restrictions of
the four-dimensional self-dual SO(3) covariant derivative to the spaces S and 7. Their

actions on SO(3) valued functions f# and fa are given by

Daf* = fa + 215 BY f€ Dif* = f4i + 21’5 AR S (5.142)

Dofa = fa,a— 20%aB% fc Difa = fa,i — 205 A% fo (5.14b)
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5.3. Derivation of the Lagrangian

We may use these differential operators to express the curvature 2-forms:

R%, = B%,— D,B% (5.15a)
R%, = A% — D;B% (5.15b)
R% = A% — D;A% (5.15¢)

5.3 Derivation of the Lagrangian

We are now in a position to calculate the Lagrangian. We start from the action introduced

in the last chapter (4.47):
I:/RA/\SBgAB. (5.16)

From this action we are able to give the Lagrangian in terms of our variables as:
L= / (RAMSA‘“ + R4, 5,7 + Rﬁii;i> d*z.

The curvature terms R4, and R%, contain time derivatives of the connection. Therefore
we write these curvature terms explicitly so all time derivatives can easily be seen from

the Lagrangian. We then replace 2% with the frame variables, using (5.7) to obtain:

1,32 1,23
2y —“#“50(3 VAV — S$1V Vg

= R'%5,% = —Rlyu— si5,% Ry,
82 = —sir ) + s

= R2232223 = —502 0]R2 siizlijij
2323 = sgriuty — skt

= R323i323 — _SBESOJR?,” - Sii3ljR3ij.
Using these identities we may write the Lagrangian density given below:

L=S0AN +S 0B + BEDE M + BEDE Y — pRYy — siR%, 5
—st (Rzijizlj + Rsijz;]) + R4S

(5.17)
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5.4. Hamiltonian description

Then we introduce the primary constraints (5.8, 5.9, 5.10, 5.11) with the use of Lagrangian

multipliers to obtain the primary Lagrangian

L= / (2 LAY+ SOBE + BEDIS S + BEDS Y — uRYy — shRAE,

—s} (Rzijizlj + Rsiji?;lj) + RAS+ X0+ MO+ AC + XC (5.18)
+P(ﬂ01)2 4 ,5(#10)2 T ,/,22201 +732301) d'z,
where we have denoted:
CF=si5 0 — ¢, 2,0 (5.19a)
Ct = 0 5,0 (5.19b)
C'=pt, B (5.19¢)
é - izaii;jéabq]' + Milol. (519d)

It is worth noting that if one imposes the double null slicing condition the constraints C*
and C* become

i = 5, i = 5,0 (5.20)
At this point we may stay in the Lagrangian description and calculate the Einstein
equations and the structure equations through variation of the Lagrangian with respect
to the different variables and multipliers (see d’Inverno & Vickers 1995). We do not
pursue this here as our focus is on performing the canonical analysis on the Hamiltonian

description, and through this we also obtain the Einstein equations.

5.4 Hamiltonian description

The Lagrangian density is of the form £ = p*gy, — H, and therefore we can see directly

that the canonical variables are A% and B2, and have the respective momenta £, and

)y D1 We can simply read off the Hamiltonian to give:
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5.4. Hamiltonian description

H = /NRlzs + SéRAijiAOj + Szi (Rzijizlj + Rsz’ji;j) - RAliiAli - B(‘)A(DleOl + DiEAOi)

FNC A+ NC +AC + MO+ p(p®)? + putg)? + 7250 + 725,

(5.21)

where the canonical Poisson brackets are:
{482), 247 () } = o8405(z, ) (5.22a)
{BA@). 52 (W) } = 686(z, 9). (5.22b)

In this approach we will use the shortcut method discussed in the second chapter. In the
shortcut method we treat cyclic variables as multipliers. Therefore, in the Hamiltonian
above, we consider the variables 13, s', £ %, B& to be multipliers. It is worth noting at
this point that some of the constraints that were introduced into the Lagrangian are not
constraints on the canonical variables, but constraints on the cyclic variables. Therefore
they reduce to multiplier equations, for example C? = ,ulai‘?,“i. As a result of the original

thirteen constraints only four:

Ci — O, 2201 — O, 5301 — O, (523)

are actually primary constraints.

We now start the constraint analysis algorithm by varying the Hamiltonian with respect

to the multipliers to obtain the primary constraints. Variation with respect to the cyclic
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5.4. Hamiltonian description

variables leads to the equations:

§H e .
m = —p' Ry — 'y 5" — A8, (5.24a)
6H C e e
s = =% R — p% 2" A — A 85" (5.24b)
6H . o
50 = proRYs + pte A — A 5,1 (5.24c)
—é—]f—:ﬂo Rl + p0 5.0 = ), 2,0 (5.24d)
5/1'10 1 23 11 13 '
oH oy -
e R4S+ 208, (5.25a)
6H : y -
35, = Rzijzzlj + Rsz'jzsl] + A% (5.25b)
§H L 0
—52111) - R 1p + )\p (5263')
6H . o
= = By = Rps = dal®y + 3856, (5.26b)
2
6H < S 0
R R%, — R, s — Mouly + AZ,Yey (5.26¢)
3
6H nd hvd 'L
558 = D=+ Dy Y (5.27)

We now propagate the primary constraints (5.23) using Z = {Z,H}:

Ot = 05,0 (5.28)
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5.4. Hamiltonian description

£, = 5,1, + APE) 4 2418,4 + BSS,O 4 BIE, (5.29a)

S0 = S, — A28, 2418 — B2S 01 _ IS0 (5.29D)
We must now check which of the above equations are secondary equations and which de-
fine multipliers. We first see that (5.25b) defines the multipliers A, = ——(Rzm-izlj +
R 535) /5, Equation (5.24a) defines A, A~ —RY,,/5.% If this is substituted
into (5.24b) then it becomes weakly zero. Also, after substituting ) into equation (5.24c),
the multiplier equation \;5," ~ 0 is obtained. We use (5.26a) to define the multipliers
A0 = —R*,, and (5.26c) to define u*; ), = R® — R% st + R 5,0/5,%. Equations (5.28)
define the cyclic variables £,%, while the final equations (5.29a) and (5.29b) define B2
and B$. This leaves us with eight secondary constraints (5.24d, 5.27, 5.26b, 5.27), which

can be written:

%g o 5,0 (Rslpilol +R3ipil()i n Rlipiz()i) (5.30a)
_5_%52[5 ~ R% 5,0 4 B2 S0 4 RS0 (5.30D)
%{ ~—RA S 1 RA 5 0 (5.300)
5%1;5 ~ DS+ DY (5.30d)

Therefore at this point we have a phase space of 18 variables, with 4 primary constraints
and 8 secondary constraints. We now propagate the secondary constraints to check for
any tertiary constraints. We will show in the next section that the first five equations
given by (5.30) define the Einstein constraint equations and are therefore automatically
preserved by the Bianchi identities. When we calculate Bg we find that it is identically

zero on the reduced phase space, whereas B2 and B? define the multipliers 72 and 7°.

Now that we have completed the constraint analysis we shall give the equations of motion:
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5.5. Einstein equations

. . ~ ./~ —1

Al = D,B} + R, s — B2, 5,7 (z;’l) (5.31a)
. R - /. —1

A% = D,BZ + R?, s} + 1%\, — RY,;S5Y (2101) (5.31b)

. . - a [~ -1
A% = DB} + B, 55 — R, 5,7 (5,) (5.31c)
Bl = DB + ph + Mést (5.32a)
B? = D, B2 + 72 (5.32b)
B = D;BS + 18 (5.32¢)
5,0 = 2D, ($,0s7]) = Dy(841%) + €9 = 55,%) 5 + 25 BEES (5.33a)
£,% = 2D, (i:;[isg}) = Dy(55Y) + €943 (i — s5,°1) + 2%, BEED (5.33b)
§L33Oi =2D; (i;[isz]) — D (251 + €TA (1 — s3,00) + 210G, BB (5.33¢)
S =D 4 oG BESA (5.34)

5.5 Einstein equations

We now show that the equations which we have obtained so far contain the ten Einstein
equations (4.46). In order to do this we first represent the Einstein equations in terms

of the variables used in the Hamiltonian description. As an example of the method an

explicit calculation is given below:
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5.5. Einstein equations

G5 = 2(R%; + R'gs)
=2 (egengaﬁ + 6063R )
=2 (ViviR%; + uviR',; — ugsiviRY))
~ 2 (VU RS — (RY, 5" — RY, 555 )un)

£,0G1, ~ 2 (Rzijzzh — RY,S, + Rlijilh') £y, (5.35)

After performing similar calculations we obtain the system of equations given below. First

the constraint equations:

£,21G% ~ 2uv (Rzljilm + R2,S% + Rlijisoi) 5, (5.362)
£.206°, ~ —2(ul;)? (R31j21°1 + Ri.jil‘“) 5,0 (5.36b)
5,060, & —2uw (Rlljilol + R3S+ Rlijilm‘) 5,4 (5.36¢)
£.0160, ~ —2(ul,) v (Rlljilm n Rlijiloi) 5,0 (5.36d)
$.00G2, ~ —2(uly) % (Rzljilm +R%S 0%) 5,0 (5.36¢)

| (5.36f)

and then the evolution equations:

2,016, ~ —2(u’)%v (Rzojilol - Rzijfllli) S, (5.36g)
5,06, ~ —2(u’) (Rlojilm - Rlijilli) 5,4 (5.36h)
$0GY, & —2un (R1,5" - RY, S, - B2, 5,1) 5,7 (5.361)
$.968%, ~ —2uw (R?’Ojilm - Ri.jil”) $,5 (5.36)

50G & 2un| (BT S" + B8, + R2,5,7) £

4 (th_izu _ Rlliilli i Rlolil(n) 2101}_ (5.36K)

We can now see straight away that the first five equations are determined by the secondary
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5.5. Einstein equations

constraints in the following manner:

0H

5,96, = 2uvs," 5.0 (5.37a)
2,160, = —2(&9%% (5.37b)
>,mG0, = —2uvf§2“—§—§§ (5.37c)
55,0060 = 2(ut)) 2w gfg (5.37d)
$.0062, = o(ul,)E0 S (5.37¢)

52212 :

In order to show that the equations of motion (5.31) and (5.32a) express the remaining

Einstein equations, we rewrite them. (5.31a) gives
— A+ D, B} + RYysh - B2,5,Y (5,) )
Using the definition of R, and the constraints Cjj we obtain the equation,
= —Rlopfllm + Rlip)jlli - Rzpjflzlj ~ 0. (5.38a)

In a similar way we rewrite the remaining equations (5.31b, 5.31c and 5.32a) to obtain:

(—R%p + Rzip}il“) S, (5.38b)
—R%, 5+ R3S - RS A (5.38¢)
R, 2,0 — RN S Y4 RZ S~ 0. (5.38d)

The last equation takes a bit more working, and uses the constraint (5.11). Equa-
tions (5.38a) define G, ~ 0 and G'; ~ 0. Equation (5.38b) defines G'; =~ 0, and
(5.38c) defines G3, =~ 0. The final constraint component G3; ~ 0 is defined by (5.38a)

and (5.38d). We have now shown that the constraint equations and equations of evolution

imply the Einstein equations.
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5.6. First Class constraints

5.5.1 Structure equations

In the self-dual approach considered in section 5.2, we obtained not only the Einstein
equations, but also some structure equations. These were derived through the variation
of the connection variables and resulted in the equation (PJ(#> A 67) = 0. When we
changed the variable basis to the SO(3)¢ basis (4.34) we obtained the structure equations,
dSA+2n%5cTBASC =0 (4.39a). When this is expressed in terms of the Sigma variables,
we obtain the equations D, J* = 0. Therefore we should expect to derive these equations

as well as the Einstein equations through variations of the Hamiltonian.

We would normally expect the structure equations to come from the equations of motion,
but this is not completely true in this case. The equations of motion (5.33) and (5.34)
can be written in the forms —Do3, = 0 and D,%* = 0 respectively. The remaining
structure equations are not found in the equations of motion but in the constraint equa-
tions; this is a result of using the shortcut method. The constraint equations (5.27) can
be written as D3 Qe = 0. Combining these constraint equations with the equations of
motion (5.34), we obtain D, J“. Hence we have shown that the structure equations are

also defined by the equations of motion, along with some constraints obtained from the

Hamiltonian.

When expressed in terms of the basis of 1-forms using equations (5.6) and (4.34), these
structure equations D, ¥ /' are equivalent to equation (4.29). This shows that the connec-

tion induced on the basis of 1-forms is just the self-dual part of the Levi-Civita connection.

5.6 First Class constraints

We calculate the first class constraints in just the same way as the double null analysis
in chapter 3. Guided by a geometric understanding we take linear combinations of the
four primary and eight secondary constraints. We start by considering the secondary
constraints that arise from the variation of the multipliers sf), which we adapt with the

addition of the constraint (5.27), multiplied with the canonical variables A%. This is
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5.6. First Class constraints

expressed below:

Uy i = RASY + RASM + AR (DS + DEL) =0 (5.39a)

=BES M+ AR — (ARS N — (ARE ), =0. (5.39b)

Another first class constraint can be obtained from adapting the constraint (5.30a). We

first rewrite this constraint using (5.30b) then use (5.30¢) as show below:

£ 0 (Rslpilol 4 Rsipilm 4 Rlz’pizoi) —0
= 2101 (R3lp§‘30p + R21pi\20p) + f310i (R:‘ipi-‘?)op + Rzipi20p> =0
= 5" RAS Y — R S5,Y =0

= RA.S 0 =0. (5.40)

Then, to obtain the first class constraint we adapt it in a similar manner to the previous

constraint, 1.

dr:= RASS+ BY (DIES + DI =0 (5.41a)

=BAS M + AR - (BREM), — (BREL); =0. (5.41b)

Before we continue to calculate the final first class constraint, it is worth noting that if

we combine (5.41) with (5.39) we get

d)B ::RABci)AAOC -— AgDCi‘QOC p— O (5428,)
=48 p5° - (4829 0 =0, (5.42)

where the unbold indices A, B, C' are coordinate indices range over 1,2, 3, and we have
also introduced A% := (B#, A*). This shows that we could replace constraints 11 and ¥,
with ¥p, which would act just like the constraint (A.10b) in the Ashtekar case. Instead,

in line with our foliation of the spacetime, we keep the constraints separate.
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5.6. First Class constraints

The final first class constraint is the equation obtained from B{:
Gi:= D2, + D5% =0, (5.43)

After this analysis we have four first class constraints, which implies that the remaining
eight constraints are second class. We can now calculate the number of degrees of freedom

that our theory contains using the standard formula (2.73):
5(18—-2(4) —-8) =1. (5.44)

This is the number of degrees of freedom that we would expect in the null setting (see
Penrose 1980). To see the 2 4+ 2 geometric structure we choose smearing functions such

that f, g are on the hypersurface ¥y (see figure 3.2), f1, g* only varies in the z' direction
so that f!; = g ; = 0 and f?, ¢* only varies in the z* direction so that f*, = ¢* ; = 0.

Then we find:

{/fgld z /g% 3y} = (5.45a)
{ / fGd%z / gty d3 } / fL,G1d% (5.45b)
{ /m fG, d%x / g, d3 } / fL,G1d% | (5.45¢)
{/f1¢1 d3:c,/g1 Y1 d3y} ZZ@blﬁfgl 4’z (5.45d)
{[rwode [} = [oera: (5.45¢)
{ /z fP, d’a, /y 9%, d3y} = / e Lysg? d%z. (5.45¢f)

These may be combined to obtain the algebra on Xy, which has virtually the same form

as (B.14) of Appendix B (eg. ¥1g9' + 4 ¢* = ¥¢ ¢%).

We now wish to ascertain the geometric interpretation of the first class constraints. In

order to do this we calculate the infinitesimal transformations of the canonical variables
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5.7. Spin and boost transformations

generated by the constraints. First we consider 1;:

6BA = {Bf vi(g")} = L,BA. (5.46b)
Then we consider ;:

SA% = {AP, i)} = L,4% (5.47)

§BA = {B¢ (g")} = L, BA. (5.47b)

We can now see from (5.46) that the constraint v; generates the diffeomorphisms within
the spatial two surface, while from (5.47) we see that 1/, generates the diffeomorphism
along the z! direction. These three constraints were not unexpected because they also
appear in the double null analysis in chapter 3. The remaining constraints do not have
an analogous constraint in the work in chapter 3. To understand the transformations
generated by the remaining constraints we first have to understand the effect of spin and

boost transformations, and this is the subject of the following section.

5.7 Spin and boost transformations

The Poisson bracket with the remaining first class constraint (5.43) generates the self-dual
spin and boost transformations. This can be seen when we look at the infinitesimal trans-
formations that these constraints generate. First we will consider how the spin and boost

transformations effect the different variables. Then we compare these to the infinitesimal

transformations generated by the first class constraint (5.43).

To understand the effect of complex spin and boost transformations on tetrad variables
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5.7. Spin and boost transformations

we first consider their effect on the 1-forms:

69 —s prg®
91 N p‘lr_lél - 4
6% — pr—162 (5.48)

63 — plrf?

Since we are working in a complexified space we do not require r = p, where p is the
complex conjugate of p. Using 5.48 along with the basis (5.1) leads to the following

transformations of the tetrad variables:

nl, — prul,
ul s prlrlgt (5.49)
U2y or12 2 2 ’

, prtv3, s, — s%,

3 -~1,,,3 3 3
VZ——_)p 7‘1/,“ Sa—%Sa.

Using the system of equations (5.7¢), along with (5.49), we can calculate how the Sigma

variables transform:

53101 s 2101 2202 — 7,253202
2102 N 2102 53203 _— 7"22203
2103 — 2103 2212 — 7"22212
2123 — 2123 2213 _ 7,22213

R ~ - (5.50)
2223 — 7«22223 2302 . r—223°2

52— r 25,8 $08 y pm25.08
2112 N 2112 2312 N 7‘"22312
£, — 5,18 S8 — r25,18,
Note that r is the self-dual and p the anti self-dual spin and boost freedom. This can be

seen in the result that the Sigma variables, which are self-dual, are transformed by only

r and never p.

In order to compare these with the transformations generated by the constraints, we will
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5.7. Spin and boost transformations

consider only infinitesimal transformations, meaning:

p— (14 6p), p~t = (1-16p)
r— (14 67), r~t — (1 - 6r)
r? — (1 + 267), r=% — (1 - 267).

Therefore infinitesimal transformations of the variables result in:

1+ 0u% — (1+8p) (1 +67) s,
=pu’, + (Bp+6r)u°,

= 01, = (6p+ 6r)u’,.

We summarise the results for all the variables below:

Su°, = (6p + 0r)u’, Suty = —(dp + or)u', (5.51a)

§v% = (6p — 6r)v% §v3, = —(dp — 611 (5.51Db)
65,2 = 26rL, % 65528 = —20ry,% (5.51c)
62,02 = 267 5,%2 65,0 = 26r3,% (5.51d)
63,12 = 2675, 55,18 = 2075, (5.51e)
65,72 = —26r5,%2 65,0 = —26r3,% (5.51f)
63,12 = —26r%,12 65418 = 2613, (5.51g)

s¢ do not change under infinitesimal spin and boost transformations.

We can use (5.48) to show how the SO(3) triad (4.34) transforms under spin and boost

transformations. We represent this in the matrix form:

1 0 0
SA 5 (AT)A,SB where (A% =10 72 0
0 0 r2
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5.8. Conclusion

Under a gauge transformation the connection transforms according to:
I — gt C(A)B, d(A) % + 75" O (A1) B (4) %I ™. (5.52)

Using this we find the infinitesimal transformations of the connection variables, A;.A and

B2 are given by:

6Tt — (07) o dz® = ’
6By — Or,
5A2  —2425
T2 o —285rT2 = (5.53)

5B2 - —2B2r

5AP 5 2A36r
or3 — =263 =

5B3 - 2B36r.

Now that we have calculated the effect of spin and boost transformations on the vari-

ables, we will now calculate the infinitesimal transformations generated by the first class

constraint Gy, Which is given by (5.43):

§A% = {AP,Gi(9)} = —g.01 — 29A205 + 29A7 65 (5.54a)
§BA = {B2,G1(g)} = —g,6™ — 2gB265 + 29 B35 (5.54b)

When these equations are compared with (5.53), we can see that G; generates the self-dual

spin and boost transformations.

5.8 Conclusion

In this chapter we have applied canonical analysis using an adapted Ashtekar approach,
to a double null description of General Relativity. We started from a SO(3) action, and
from this we obtained a Lagrangian density. From this we calculated the Hamiltonian, on
which we performed the canonical analysis. This lead us to obtaining four primary con-
straints and eight linearly independent secondary constraints. By taking particular linear
combinations of these twelve constraints, we revealed four first class constraints. Two of

these constraints, v, generate the diffeomorphisms within the spatial hypersurface (S);
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5.8. Conclusion

while one constraint, 1/, generates the diffeomorphism in the z! direction. The final first
class constraint, as shown above, generated the self-dual spin and boost transformations.
These transformations were not present in the original double null analysis (see chapter

3) but arise here due to the extra freedom that is introduced from working with a frame.

In the formulation of General Relativity used in this chapter some of the variables, 2,
contain an anti self-dual part. We would therefore expect to obtain another first class con-
straint that generates the anti self-dual null rotations. This did not arise in our calculation
because we used the shortcut method, which meant that the variables that contained anti
self-dual parts were multipliers not variables. Hence no additional first class constraint
was obtained. If we were to perform the canonical analysis without the shortcut method

we find an additional first class constraint arises which generates the anti self-dual null

rotations.

While this work has been successful in obtaining a first class algebra, it does not appear
completely satisfactory to work with a mixture of tetrad variables and 2-form variables.

In the next chapter we consider an alternative approach in which we work entirely with

the two-form variables, ¥ ,*° .
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Chapter 6

2 + 2 field equations using

Connection variables

6.1 Introduction

In the last chapter we used both tetrad variables and SO(3) variables. This enabled us to
retain an analogy with the double null formalism that was used in chapter 3 through the

identification of the lapse and shift variables. In this section we will use only the SO(3)

variables. This results in a simpler constraint analysis.

In the first section we use the action (4.47) to obtain a Lagrangian description expressed
in terms of the connection variables and the densitised SO(3) basis variables, £, that
were introduced in the last section. However these variables are not independent and
some constraints exist in the Sigma variables. These are found and introduced into the

Lagrangian using Lagrange multipliers. This then leads us, in the following section, to a

Hamiltonian description.

In the next section we show that all the Einstein equations are defined by the constraints
and equations of motion. After this we continue to calculate the first class constraints

and obtain the first class algebra. At the end of this section we discuss the geometrical

interpretation of the first class constraints.
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6.2. 2+2 Connection Variables

6.2 2-+2 Connection Variables

We start with the action
I= /RA A SPgas,
which leads to the Lagrangian density:

=SV AN + S B + BEDS M+ B DR + RAE S+ RAS 2. (6.1)

In the previous chapter we worked with the twenty three variables £ 01, £ ,%, 13, s, in
addition to the connection terms (4 and B#). Within these twenty three variables there
are thirteen constraints which left ten degrees of freedom: two spin and boost freedoms
and eight degrees of freedom for the double null metric (this includes 10 for the standard
metric with the two slicing conditions). In this chapter we will be making use of all
eighteen Sigma variables M Aaﬂ which, as shown below, have to satisfy nine constraints.
This means that we have only nine degrees of freedom; one less than chapter 5. In order
to understand this loss we consider the spin and boost transformations (see 5.49 and
5.50). The sigma variables are self-dual, unlike the variables p?, and therefore we do not
have the anti self-dual spin and boost freedom present in the earlier formalism. Therefore

the work in this chapter will contain one less degree of freedom than previous work.

We now obtain the nine constraints. The first constraints (6.2) are found by expressing

the results ST A S? =0 and ST A S® =0 in terms of iAaﬁ.

6aﬂ76§31aﬁ22’75 =0 (62&)
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Then, by rearranging the system of equations (5.7) we obtain the four constraints:

€550 0,7 =0 (6.3a)
€755 857 = 0 (6.3b)
2,1 =0 (6.3c)
30 = 0. (6.3d)

The remaining two constraints are found by manipulating equations (5.7¢) to find ptpud

and p9ui in terms of the Sigma variables. The slicing conditions (5.4) then give

€55 0, = (6.4a)

éijizmi:aoj = 0. (64b)

It is worth noting at this point that the constraints (6.2a), (6.3a), (6.3b) and (6.4) can

be combined with the requirement that the volume form be non-vanishing
izaii;jéabqj :,£ O,

where they reduce to the requirement that either

£, =508 =512=31=0, (6.52)
or
0% = 5,08 = 3,18 =312 = 0. (6.5b)

The two conditions are interchanged on relabelling and there is no loss of generality in
choosing the former condition, which turns out to agree with the choice of slicing condition

used in the previous chapter. With this choice the following simplified constraint equations
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6.2. 242 Connection Variables

are obtained.

Note that as in chapter 3 we have squared the final two constraints because the variables

are cyclic.

Our final constraint comes from expressing the constraint (see 5.11) in terms of the

Sigmas. This results in the constraint

If we fix the anti-self dual gauge freedom in the choice of p?, the map from the (con-
strained) frame and SO(3) variables used in chapter 5 to the space of Sigmas satisfying
the above nine constraints is invertible at the linearised level. By the inverse function
theorem we can consider the two descriptions of double null general relativity to be
equivalent. We therefore consider our Lagrangian to be given by (6.1) and use Lagrange

multipliers to introduce the primary constraints.
£=S0 Ak + 0Bl + B (DiE + DiiAOi) L RAS N L RA S \eC, (6.8)
In the equation above « sums from 1, ...,9. The Lagrangian is now in an appropriate form

to transfer easily to the Hamiltonian description.

Before moving to the Hamiltonian description we could calculate the Einstein equations
and structure equations. However, these calculations would be very similar to the Hamil-

tonian equations and therefore, to save repetition, we leave them and move straight onto

the Hamiltonian description.
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6.3. Hamiltonian description

6.3 Hamiltonian description

In the usual manner we can ‘read off’ from (6.8) that the momenta to the canonical

variables A® and B are £,% and ¥ ,%*. We can also see that the Hamiltonian density is

given by

H=-By (Dli‘el + DiiAOi) — R4 58 — RA S+ A Co+ 47 Pl + €4 PR + €2 Pa,
(6.9)

where we have introduced the momenta P4,, P4;, P for the cyclic variables ©,2%, & 0%, B&.

This results in additional primary constraints which have been introduced into the Hamil-

tonian using the Lagrangian multipliers £,2%, £,1%, €a.

The canonical Poisson brackets are given by:

{ z), S (y } = 5867 §(x, §) (6.10)
{ z), S (y) } = §46(z, ) (6.10b)

{B& (@), Poly) } = 686(2,9) (6.10¢)
{£2(), Phly) } = 543(5,v) (6.10d)
{S2(), PRy(n) } = 086 8(2, ). (6.10¢)

We have a total of twenty one primary constraints introduced into the Hamiltonian.

Following the Dirac-Bergamnn algorithm we propagate the primary constraints:

Py = DS+ DY (6.11a)
PA, = RA, — GA(S,201 + 5,002 - £,01)8) = AT 0171 — GAS 01)2 (6.11b)
PA = RA _ §AE,03)1 £ 5,08\2 _ 5,03)9) _ 6A(5,03)1 — $£,0819)

_SA(D,0502 — £,08)0 4 25,12)\T) (6.11c)
p% _ RA13 T 5A(§3202)\1 I 53302)\2 _ 2102/\9) 4 59(2102)\1 _ igo:zAg)
+ 025,202 — 2,020 4 23,1808 (6.11d)
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6.3. Hamiltonian description

Cs = (DS + 2175 p BESS) 68

Cy= (DiiAli + QWCABB(]JBSCOI) 03"

C.'5,6 = 2201' = ‘ZU%AB(I)BSCM - fj212;1 + QWABzBFEAu + Djizij

: — 5 1 _ 1z
C77,8:23 _63

(6.12a)
(6.12b)

(6.12¢)
(6.12d)

The equations C;, Cy and Cy define the multipliers £,23, £,%% and &2 respectively. C;

and Cj define the multipliers £,%. Equation (6.11b) define the multipliers \';%! = R2,,,

25,0 = B3, and A%, &~ —R%,,. This leaves thirteen secondary constraints given by:

Plli ~ Rlliilol - Rlz‘jiloj — R, 'izoj — R5, -Ssoj ~0

PAy m R%5" - Rzz‘jiloj - R,
P3lz_ ~ R31ijlol _ Rsijiloj B R1~Z~320j _ 0
Py = D+ Dy =0

Cy = <DZ.EA12' + anABBéaién) 55 =0

B9 = ~mGuBEES — 5% + o P + DS =0,

The Dirac-Bergmann algorithm then requires us to propagate these secondary constraints

to ensure that no additional constraints arise. Before this is done we split the two sec-

ondary constraints (6.13c) in the following way:

isoip31i = isoi (Rsuilm - Rsijiloj - Rlijzz()j)
Y

N
Z\lf)l'i“

(6.14a)
(6.14b)

As we shall show the five equations (6.13a, 6.13b and 6.14a) define the five Einstein

constraint equations and are therefore conserved by the Bianchi identity. Propagation

of (6.13d) is identically zero for A = 0, and defines the multipliers A* and A?* for the
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6.4. Einstein Equations

remaining values of A. Equations (6.13¢) and (6.13f) define the multipliers &2 and £ when

propagated. Propagation of (6.13g) define the multipliers &, and finally propagation

of (6.14b) leads to a multiplier equation containing the multipliers & ™. Therefore no

additional secondary constraints arise.
We now calculate the equations of motion.
AR = DB — 626, (S0 + 50902 — 5.908) — 8y (5,90 - £5909)
0 e (5,707 — 5,909
which results in:
Azz = DZ-B(? - (R2ijillj + Rlijislj)/ilm
Azs = DiBg - (Rsijillj + Rlijizlj)/ilﬂlv
while the remaining equations of motion are:

iAO1 =21%aBr 5¢" + DiLy"
50 = G BPES - DiS - DS
B = DiB + 58 (5,50 + S58%0% — £.20%) 4 65 (2,90 + XF)
+ R (SN2 £ 0.

6.4 Einstein Equations

(6.15)

(6.162)

(6.16b)
(6.16¢)

(6.16d)
(6.16¢e)

(6.16f)

Since we have now finished the canonical analysis and have shown that no additional con-

straints remain, we derive the Einstein equations. We use five of the secondary equations
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6.5. First class constraints

(6.13a, 6.13b and 6.14a), with (5.36) to define the Einstein constraint equations.

P35, = (Rzmi +R%.5,% 4+ RS ) 5,9~ 0 = G% ~ (6.17)
P55 = <R3 5%+ RS 5.% + RLS ) 5,9 a0 0= G° ~ 0 (6.17D)
PYSY = (RY,S0 + RES 4+ B, S0) £, ~ 0 e 6% 2 0 (6.17¢)
P8 m (RY 50 + RS + RS ) S 2 0= Gl 0 L (6174)
P35 & (R3S + B350 + RS0 59 m 0= G w0, (617¢)

The remaining Einstein equations are obtained from the equations of motion. Therefore

we can show using (6.16) and (5.36) that

AP, m = (B2 4 RY, S0 + B35, ) S5 m 0= Gl = 0 (6.18a)
AL, = (RN S0 + RS, + R3,5,7) S0~ 0 4= Gy ~ 0 (6.18D)
AlS 0 (R L4 RL SV 4 RS, j) S0 0= G~ 0 (6.18¢)
A5~ = (RS + RS, + B8, ) £ m 0 6= G ~ 0 (6180)

ANy BIS 0 <R1012101+R1 211]+R2 5, ) 50
(6.18¢)
b

— (RS = RIS — BB, 5.7 — R 500) $,7 w0 = Gy ~

We have shown that we can derive all the Einstein equations from the constraint and
evolution equations. The structure equations are obtained in exactly the same way as in

the previous chapter. The final stage is to ascertain which constraints are first class and

calculate their algebra.

6.5 First class constraints

We now move to the next stage of the Dirac-Bergmann algorithm and calculate the first
class equations, followed by the first class constraint algebra. We can see that some of
the secondary constraints (6.13) are the same as (5.30) and therefore we adapt them
in the same manor to obtain four first class constraints. Due to not using the shortcut

method in this chapter an additional two first class constraints are obtained. These are
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6.5. First class constraints

the primary constraints PL, =0 and P; = 0.

We now derive the remaining four first class constraints. We start by adding the Gauss

constraint (6.13d), as well as the constraints £,°" =~ 0 and £, ~ 0 to (6.13a):

_Rlljilol . R2iji20i . RSijisOi o RlijilOi . R21j2~3201 - R31ji301
—AR (DS + DS) ~ 0
= R4 500+ RS0 - AR (D153£1 + Diiﬁ) ~0 (6.19a)
= SN (=AM + D;BY) — B0 (DAY — AR) — ASDS Y — APDiS ) &

= BEEM + AT - (4250) = (A;'-‘SAM) ~0. (6.19b)

1
Note that this is just the same as the constraint (5.39).

Another first class constraint can be obtained by combining (6.13b) and (6.14a).

S0P + S0P~ 0

= 2101 (Rzui;i + R3ui30i) + 5,7 (Rzﬁizm + stz‘isoi) ~ 0,
using (6.13a) results in:

= 5,0 (RAMS Am‘) ~ 0

S Gar NET! (6.20a)

Then in a similar manner to the previous constraint we add the Gauss constraint multi-

plied by —B#A

= (RAIZ‘EAOZ) - B (DIEA‘” + Diig”) ~0 (6.20b)
= ANS Y - S 2DB — BADS ! - BADS ) ~
= BASM + AR — (BESM) 1 — (BPEL) = 0, (6.20c)

which is the same as (5.41).
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6.5. First class constraints

Just as in the previous chapter the final first class constraint arises from the propagation

of the momenta P;, (6.11a), which results in the Gauss constraint:
D2, + D% = 0. (6.21)

We are required to include some additional terms because we are not using the shortcut

method. These terms are required to ensure the cyclic variables transform correctly.

Extra terms are also required in the three constraints 11, 9, to ensure the correct trans-

formation of the cyclic variables. These are shown in the summary of the six first class

constraints given below:
PL,.=0 (6.23a)
P, =0 (6.23b)

'l,b i BAE Ol—f’A;&i 0i _ BAS 01 41— BAS 0i p
1 1,1~A ) 1A (~1 A)l (1 A) (6.23d)
+B(§5‘1PA“E P231 DYy P111+( P)a=0
Py : BAE P ARS Y (ARE0N) - (APSY),
A (~ A ( Do (6.250)
+BA Py — S BPY,  — SPA L+ (BAPY) = 0.

The remaining twenty eight constraints, shown below, are second class.

PA =0 P%,=0 P% =0
Po=0 P=0 Co=0 a=1,..9
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6.5. First class constraints

(DIEAO DleOZ) 5A—o (Dligl + Diifi) A =0

(DS + 27°an BESS ) 68 = 0 (DS + 27°ap BESS) 08 = 0
(R4S + RAS,) 6 =0 (RA,E + RAS,Y) of =

DS, + DS — G, BEES =0 DM(R%,E, - B35, - RY5Y) =0

We can see that many of our first class constraints are the same as those calculated in
the previous chapter, but in this chapter we obtain an additional two constraints (6.23a)

and (6.23b). This is due to not using the shortcut method.

We now check the number of degrees of freedom using the standard formula (2.73) which
gives 2(42 — 2(6) — 28) = 1 degree of freedom. This is just what is to be expected from

a null formulation of general relativity, and is the same as calculated in earlier chapters.

Now that we are confident that we have obtained all the first class constraints we calculate

the first class algebra. Below we show only those term that are not strongly zero:

{ / FPY, &, / e d%;} _ / FL,PL &
{/fP1d3 ngd?’ } /f/: P d%
{/fP1d3 gzpld?’} /fLPldz
{/fgldB gun 3y}
{/fglcﬁ [ 3y} /fﬁgldz
{/fwldf‘ [awa) = [rop e
{/fwld?’ ngdB} [ 1tz
{/x fibi d3x,/ygf¢j d3y} :lfi£g¢i &3z

Now that we have calculated the first class algebra, we will give the geometrical interpre-

fﬁgg1 3z

1
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6.5. First class constraints

tation of the first class constraints. We use the same method as before and calculate the
infinitesimal transformations the constraints generate. We do not consider the constraints
P, and P, as they just indicate the gauge freedom to choose the variables B and ¥,23.

Therefore we start with the constraint ¢;:

AN = AP 41 (g")} = L,AA (6.24a)
6B = {Bg i (9")} = L,BY (6.24b)
6By = {B ¢ (g")} = L,B% (6.24c)
555 = {2,33,w1( )} = L£,5% (6.24d)
55 = {igi,wl(gl)} = £, (6.24¢)

We can see from the above that this constraint generates the diffeomorphism in the z!

direction as before. Then we look at the constraint ;:

SA% = {A} i)} = L, A% (6.25a)
§Bf = {Bg vi(g")} = £,B4 (6.25b)
6Bst = { B, vi(g")} = L,B% (6.25¢)
652 = {52, i(gi)} = L,52 (6.25d)
550 = {S5,nile) | = £, 54 (6.25¢)

We see, just as before, that 1; generates the diffeomorphisms in the two surface.

In an analogous manner to before, the constraint G; generates the self-dual spin and

boost transformations. This is seen by comparing the infinitesimal transformations given
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6.6. Summary

below with those of (5.51) and (5.53):

SAN = (AP, Gi(9)} = —g.01 — 204765 + 29436 (6.262)
0B = {B},Gi(9)} = —9.07 — 29B765" + 29 B3 (6.26b)
0By = {B3*,G1(9)} = ~29B63 + 29 B3y (6.26¢)
65,8 = {£2,01(9) } = ~205,208 + 295768 (6.26d)
S = {EA“, Ql(g)} = —293,"05 + 2954163 (6.26¢)

This concludes our analysis of the first class constraints.

6.6 Summary

In this chapter we have derived a double null Hamiltonian using only the connection
and the adapted SO(3) triad. This has resulted in a simplified system of equations. By
applying the shortcut method, further simplification could have been obtained. A problem
with the shortcut method arises when considering the constraint (6.14b), because we
would have multiplied a constraint with a multiplier, and then called it a multiplier

equation. It was for this reason that the shortcut method was not used.

The work of this chapter resulted in a first class algebra for General Relativity using
only self-dual variables. All the first class constraints could be given a geometrical in-
terpretation. It can be seen from these interpretations how they relate to the Ashtekar
approach, or that of Goldberg et al. (1992) described in the Appendix. We see in these
approaches that the constraints (6.23d) and (6.23¢) are the double null representation
of the momentum constraints (A.10b) and (B.13a). The constraint (6.23c) is equivalent
to the constraints (A.10c) and (B.13b). The greater number of constraints in (A.10c)
or (B.13b) relates to the greater freedom these descriptions contain. The Hamiltonian

constraint (A.10a) is split within the second class constraints.
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Chapter 7

Discussion

The area of quantum gravity is still one of the key areas of research in General Relativity.
Despite the many efforts by eminent scientists, a full satisfactory description has not been
obtained. This reveals the complexity of the issues that surround quantising gravity. Some
of these issues were revealed when the canonical method of quantisation was applied to
the ADM description of General Relativity (see Arnowitt et al. 1960). This work showed
that the Hamiltonian constraint was ill-defined at the quantum level, which meant the

remaining steps of the quantisation process could not be completed.

Although attempts to quantise gravity based on the ADM approach failed, the failure
was not due to an inherent difficulty with the canonical quantisation method but rather
to the particular structure of the constraints in the ADM formalism. Therefore Torre
(1986) adapted the description of General Relativity to a 2 + 2 description, but he set
only the non evolution direction to be null, and not using the full double null approach.
His work revealed the fact that the Hamiltonian constraint becomes second class in
null descriptions. Therefore issues that occurred with the ADM description could be
circumvented using alternative methods that remove the second class constraints (for
example replacing the Poisson brackets with Dirac brackets). As we have discussed while
this approach overcomes the previous difficulties, the complexity of the constraints means

that the canonical quantisation can not be concluded.

These issues regarding the complexity of the constraints led Ashtekar to devise alternative

variables which simplified the constraints. In his work he used variables that were complex
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and self-dual. Using such variables he was able to obtain constraints that were polynomial.
Unfortunately in the Ashtekar approach the Hamiltonian constraint was first class, and

as in the ADM case this constraint was not well defined at the quantum level; hence the

canonical process was never completed.

Goldberg et al. (1992) used a version of Ashtekar variables and applied it to a null descrip-
tion of General Relativity, which built on Torre’s work that indicated the Hamiltonian
constraint would become second class. This managed to overcome some difficulties found
in previous work, but unfortunately in their work they choose a 3 + 1 description and

set the hypersurface to be null. This resulted in complicated first class constraints which

preserve the slicing.

Therefore in this thesis we set out to apply the first stage of the canonical quantisation
process (the canonical analysis) to a double null description of General Relativity using
self-dual complex variables. The advantage of using a double null description of General
Relativity is that the null directions are both normal to the two surface, and therefore
the only gauge freedoms that remain are the spin and boost transformations. This should
overcome the more complicated first class constraints that occur in Goldberg et al. (1992).
Another advantage of using the double null method is that the Hamiltonian constraint
is not a first class constraint. The advantage of using the self-dual variables is that they

result in polynomial constraints. Therefore using the double null method overcomes some

of the obstacles of earlier approaches.

In chapter 3 we approached this work first by extending the work of Torre to allow for
two null directions. The motivation for using a double null approach is that a spacelike
2-surface naturally singles out two null directions so that the situation is geometrically
simpler than for a null hypersurface where one has the gauge freedom arising form the lack
of a canonical normal direction. However despite this simplification the non-polynomial
nature of the constraints makes it very difficult to make progress with the later stages
of the Dirac-Bergman algorithm. Despite this, the geometric analysis of the constraints
in this situation provides us with valuable information when we come to analyse the

constraints in the self-dual double null formulations used in chapters 5 and 6.
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In chapter 4 we introduce a description of General Relativity in terms of self-dual 2-
forms that is closely related to the use of Ashtekar variables. The use of these variables
considerably simplifies the constraint analysis because it results in polynomial constraints.
However, as outlined above problems relating to the nature of the Hamiltonian constraint

and also the fact that the constraint algebra does not form a Lie algebra, remain with

this approach.

In chapter 5 we went on to use the self-dual variables in a double null setting. Following
Goldberg et al. (1992) we used a mixture of tetrad variables and densitised 2-forms.
This enabled us to compare our work with their analysis and also had the advantage
of the tetrad variables being similar to those used in chapter 3. This enabled us to
use the geometric insight gained from chapter 3 to make an intelligent guess at which
combinations of primary and secondary constraints would result in first class constraints
with a clear geometrical interpretation. Although in theory it is possible to apply the
Dirac-Bergman constraint analysis in a purely algorithmic fashion, in practice it is just
too complicated to do this without some geometrical insight. The outcome of the work
in chapter 5 was the construction of a polynomial first class constraint algebra that also

formed a Lie algebra. In theory this should make the next step of the quantisation process

easier.

In chapter 5 (see 5.42) we related our first class constraints to those obtained using the
standard 3 + 1 Ashtekar and also to those obtained by Goldberg et al using a 3-+1 null
slicing. In particular, by combining the diffeomorphisms in the 2-surface with those of the
null generators in the hypersurface one obtains the three hypersurface diffeomorphism
constraints found by Goldberg et al. (1992). In order to continue with the canonical
quantisation process all constraints must be first class. A common method to accomplish
this would be to use starred variables (an example can be found in Soteriou 1992). An
alternative method would be to replace the Poisson bracket with the Dirac bracket.
However the mixture of tetrad and self-dual 2-form variables mean that the relationship
between the variables is rather complicated, and rather than pursue the next step of the

process we attempt to move onto a description entirely in terms of the self-dual 2-forms.
In chapter 6 we worked solely with the self-dual densitised 2-form variables. These vari-
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ables are not independent but have to satisfy a number of constraints if they are to
represent 2-forms which are derived from a null frame. In general, these conditions are
very complicated, but when combined with the double null condition they simplify con-
siderably. This results in the same first class algebra that was obtained in chapter 5, yet
with a simpler constraint structure which is particularly evident with the second class
constraints. It was only because of the work in chapters 3 and 5 that it was possible to
have the geometric insight required to make the appropriate combination of primary and

secondary constraints that form the first class constraints.

The result of the work in chapter 6 was the derivation of a double null first class con-
straint algebra which also formed a Lie algebra. The constraints were polynomial with
the Hamiltonian constraint becoming second class. Therefore some of the difficulties that
occur in the earlier formulations of General Relativity do not arise. There were four con-
straints containing geometrical meaning: two of the constraints generated infinitesimal
transformations in the spatial two surface {S}; one constraint gave the infinitesimal trans-
formations in the z! direction; and the final constraint generated the self-dual spin and
boost gauge freedoms. The ease with which we obtained the geometrical understanding

of the first class constraints was a result of using a double null approach.

The work in chapter 6 contains not only the first class constraints, but also some second
class constraints; just as in chapter 5. Therefore in a similar manner we would first have to
consider the second class constraints before pursuing any further a quantum description
of gravity. This may be achieved by the use of starred variables or Dirac brackets already
outlined. Once only a first class algebra remains, we may progress towards a quantum
description using the steps outlined in section 2.4.3. This would involve promoting the first
class constraints to unambiguous quantum operators, from which an algebra could then
be constructed by replacing the Dirac or Poisson brackets with commutation relations.

Once this has been achieved, further steps are required before a complete and coherent

quantum description can be obtained.

The final issue that needs discussing are the ‘reality constraints’. From chapter 4 onwards

we worked with a complexified version of General Relativity. However from a physical
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point of view we wanted to be able to regain the real version of the theory. In terms
of the of 1-forms % this is accomplished by a requirement that they correspond to a

complex null basis formed from a real orthogonal basis. This requires that 0% satisfies

the equations:

0° = 6° (7.1a)
6t = 4° (7.1Db)
0? = 0° (7.1c)

It can easily be shown that this implies that the self-dual 2-forms S# satisfy the six

complex constraints:
SAASB =0. (7.2)

Conversely if these conditions are satisfied one can find a basis 8¢ such that the S are
given by (4.34) and satisfy (7.1). So in terms of the & *° variables the reality conditions

are given by:
€a,375iAa'82375 = 0. (73)

Although the work in this thesis has used a double null 242 description of general rela-
tivity to describe the geometry at the Hamiltonian level we have broken the symmetry
by singling out one of the two null directions as an evolution direction. We have al-
ready commented én the result of combining three of the first class constraints to give
constraints that generate the diffeomorphism freedom of the hypersurfaces {¥¢}. This
reveals the 3 4+ 1 nature of the canonical analysis we used. Even though we were using
a double null description of gravity, we were required to choose an evolution direction,
z°. Therefore our description is really propagating the hypersurface ¥, just as earlier
methods had done. This choice also breaks the symmetry between the two null direction
2% and z'. Therefore a natural extension to this work would be to consider a description

in which both z° and z! are considered as evolution directions. This would maintain the



symmetry and thus reveal the double null structure more clearly. Some work in this area
has already been accomplished by Hayward (1993) in which he considered a Hamiltonian
with two evolution directions. Before we build on this work we would have to be able
to define Poisson brackets that are defined with two evolution directions. Work has been
done in this area by Matteucci (2003), but it remains incomplete. At present it appears
that three different Poisson brackets would be required: one for the surfaces {T'}; one for

the surfaces {S} and the third would be needed to cross the two 2-surfaces (see Figure

3.2).

We finally concluded that although a quantum description of gravity remains a distant

goal we have been able to overcome some of the obstacles of earlier methods, and provided

a good base for future work in this area.
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Appendix A

Introduction of Ashtekar variables

In chapter 4 we introduced self-dual variables using the approach of Giulini (1994). Then
we used a local isomorphism to change the complex self-dual variables into the SO(3)
variables. This was not the original approach of Ashtekar (19g1). In his work he performed
a 3 + 1 decomposition on the complex self-dual connection and curvature. Using a local
isomorphism he was able to replace the pull back self-dual connection and curvature
which occur in the Lagrangian, with a self-dual connection and curvature defined on the

three surface. In this chapter we are going to outline this approach and show how these

variables simplify the constraint equations.

We will use only the self-dual part of the action (4.27) because this is all that is required
to obtain all the Einstein equations. e is the tetrad, and the self-dual curvature defined
on the space-time is given by 4Raﬂaﬁ. This curvature is just the same as the self-dual
curvature (JQ,5 (see 4.4), however, we drop the (V) because we will use only self-dual
curvature. The (V) is replaced with ¢ to help distinguish it from the self-dual curvature

defined on the hypersurface, Raﬁij, that will be introduced later in this section. The action

in this notation is given below:
1= /(—g)l/zegeg 472&;6. (A.1)

The self-dual curvature is defined by a self-dual connection, 4Aaa'6.
We now decompose the frame into the 3 + 1 foliation, in which we consider a vector
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field t®, whose integral curves intercept the hypersurfaces once and are transverse at its
interception. This vector field can be decomposed as in section 2.2 so that t* = Nn®*+ N«
We define projection operators g := 6§ +nsn® and ne, where n® is the unit normal to the

hypersurfaces. Using these projections we split the frame into its normal and tangential

parts,

Substituting the above into the action (A.1) we obtain

I= / (N2 (E§E§4Raﬁ“" — 2B ny Roy"). (A.4)

We now introduce the projected frame density £2 := Y/2E2, and use the self-dual

identity of the self-dual curvature, ‘R + 1i¢®? 4R_7° =0, to obtain:
af 2 vé of
- / NEgE“Ra;‘ﬁ + NP Enae™® 4R, (A.5)
28 s
/ NESES'R 5 — iBS (1 — N®)eP 4R, (A.6)

where we have used t® = Nn® + N© given above, and defined 6'675 = ¢*#7n,. By

expressing t“ 4Raﬁaﬁ in terms of the self-dual connection, %Zﬁ, we obtain:

4Ry = 1% (A5 = U5 + Mo, YAs1)
= £,45° — (1°U7) 5 + 19U, Up] ™
= £,457 — D,y (141427,

By substituting this into (A.6) we obtain:
/NEaEﬁ4R afB ’LEﬂ]\ra B 472,&/3 + ZEﬁE [ogt%’é{ﬂvé _ 4Dﬂ (%4&’)’52504):! i (A7)

We can see that in the action above the self-dual curvature is always projected into the
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hypersurface by the projected frame density. For example E‘MR > E-‘”Ra ® We
can therefore replace the curvature with its pull-back, RW , which remarkably is defined
by the pull-back of the connection. To explain this we shall consider the Lie algebra of
the connection. The algebra of a complex self-dual connection, ?Aaﬁ, is sl(2,C), which
is isomorphic to so(3)c. This is the same as the Lie algebra of the connection defined on
the hypersurface, denoted by 4,5, This also enables us to replace the space-time exterior
covariant derivative, ‘D, with the derivative defined on the hypersurface, D,. We can
now express the Lagrangian using these pull-back variables. We will use a dot to denote

the Lie derivative with respect to t* and define Aoij = t*A . The Lagrangian is then

given by.
L= /—z’E{‘eiﬁAMji + z’E’i”eijkN“Rij — (AN D, (Bles i) + QJ/’E‘{‘E}”Rwﬁ d*z (A.8)

In the current form, £ = pg—H, and so we are able to ‘read off” the canonical variables as

well as the Hamiltonian. Therefore we find the configuration variables are the connections,

A

oo
E’f‘ nj — %E’l‘:eki- =: ﬂﬁ We are using the shortcut method and therefore we treat the

whose corresponding canonical momenta are the self-dual parts of —iE{'e';,

variables N#, N, AOij as multipliers and do not introduce additional momenta.

We now express the Hamiltonian using the canonical variables:
H= / NETTGR,,5 — (A D, (ITE) — NI FR .0 P (A.9)

Due to the shortcut method there are no primary constraints, but variation of the mul-

tipliers result in the secondary constraints:

"I 5 R, = 0 (A.10a)
IR,5 = (A.10D)
D,(ITf) = 0. (A.10c)

We can show that these seven constraints are all first class. The first constraint is called

the Hamiltonian constraint, while the second constraint (A.10b) is called the momentum
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constraint. These are similar to the earlier constraints found in chapter 1. The final con-
straint (A.10c) is called the Gauss constraint. In the ADM Hamiltonian the Hamiltonian
and momentum constraints generate diffeomorphisms in the normal and tangential direc-
tions. In Ashtekar’s approach the momentum constraints have to be adapted by including
the Gauss constraint in order to generate the diffeomorphisms. The resulting constraint

is given below:
4R,,"% — AJD,(II) = 0. (A.11)

Note that this is similar to the adaption made to the first class constraints in chapters 5

and 6.

The Gauss constraints generate rotations of the frame indices. When we perform the

standard counting to show the degrees of freedom, we find that there are (18—2(7))/2 = 2

degrees of freedom.

As stated in the beginning of this section the Ashtekar variables that we are using are
complex. Therefore the current solution is for complexified General Relativity, which
allows complex metrics. To guarantee a real metric we need to impose some extra con-
straints on the equations. These constraints are not considered to be primary or secondary
constraints of the theory, rather they ‘filter’ the solution space so that we consider only so-
lutions that generate real metrics. In order to obtain a real metric the expression I:I“ijﬁ” i
must be real. This however, is not enough because we also have to ensure that the metric
remains real for all time, which implies the time derivative of the metric must be real. This
is achieved by calculating the Poisson bracket of the metric with the Hamiltonian. Using
the Hamiltonian (A.9) we get the time derivative of the metric to be ﬁ(‘;jD7 [ﬁ”', ﬁ”)} °,
We must ensure that this is real. We next may check that this condition is preserved for

all time. If it is then providing these conditions are satisfied initially then they are also

satisfied for all time, which then implies that using the canonical method above results

in General Relativity.
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Appendix B

Null 3 + 1 canonical analysis

In this appendix we outline the work by Goldberg, Robinson and Soteriou (see Goldberg
et al. 1992; Goldberg & Soteriou 1995). In their work they used a 3 + 1 foliation of
spacetime and made the hypersurfaces null through the use of a Lagrange multiplier.
This work uses a similar approach to the one found in chapter 5. We note that because

we are working in a 3+ 1 form in this appendix the index i, j, k.. and i, j, k sum between

1,2, 3.

We first introduce the null basis of one forms and the corresponding tetrad basis:

0° = Ndt + oy(N*dt + dz?) (B.1a)
0" = ' (NV dt + da?). (B.1b)
eo = % (% - Nic?i) , (B.1c)
ei:vifg%+9‘]\-; <Nﬂ'£7-%>, (B.1d)

where v, = §°,. We see in the above that the the frame is adapted when o; = 0. The
null condition is given by a; + asasz = 0. as and «agz can be set to zero using a gauge
freedom, which leaves the null condition as a; = 0. From this point we will not use the

index on the alpha variables because there is only one of them.
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We split the connection T4 (4.37) into the 3 + 1 form:
' = A% ds" + B4 dt, (B.2)
which substituting into (4.39b) results in:

RA, = 2A%, — an'pABAS, (B.3a)

R%, = D;B* — A% . (B.3b)
Where the derivative D; is defined by:
Dif* = A + 2nhc A% SC. (B.4)

Then using these definitions, the SO(3) basis given by (4.34) and the action (4.47) we

obtain the Lagrangian density:

L=A%5,+B*D;S, + R NS, — Ni#'(RY, 55" + R%;5,")

+ (8, + ) + p(a)®. (B.5)

where:

7t = vl (B.6)

¥ 0= ol Byt i= —awvl 5,0 = —wok. (B.7)
Note in the above Lagrangian we have introduced the null condition & = 0, though the
use a the multiplier p. The equations (B.7) are used to replace the variables v} and v
with 3,% and £, in the Lagrangian. The variables 5., are zero on the null space, and
hence they can not replace the variables . Therefore both sets of variables (£,% and 7°)
are used in the Lagrangian which results in an additional three constraints 5yt + adl.

This Lagrangian is in the form £ = ¢*py — H(¢*p,) and we can see straight away that
the canonical variables are A4 with conjugate momenta 5 A% All the remaining variables

are cyclic and therefore they will be treated as multipliers via the shortcut method. This
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results in the Hamiltonian density:
H = NHy+ N'H; ~ BAGa — C* — p(a?), (B.8)

where we have defined:

My = v'(RY; S, + R%;5,7) (B.9a)
H; = —R4,5, (B.9b)
Oa = Di(iAi) (B.9¢)
C' =5, + ar'. (B.9d)

The above are constraints that arise from variation with respect to N, N, BA and p;

respectively. We get additional constraint equations from varying with respect to p, «

and 7%

a =0, (B.9e)
o'y = 0, (B.9f)

Note that #'¢; = Hg and 3;°¢; = L3*H,;. Therefore (B.9g) contains only one independent

equation; this will be labeled ¢;%,".

We now need to propagate the constraint equations to ensure they remain true for all

time. Propagation of the constraint C* = 0 gives:
X' = 265D, (NolEFIQB, ) — 243 NUS, I - B3, 7 = 0 (B.10)
QB = 6D0% + 5865

Propagation of the constraint Gs = 0 results in a multiplier equation which constrains

the multiplier p;:
1St = Ry Sg' — RS, INT. (B.11)
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The constraints (B.9e¢) (B.9f) and (B.10) are multiplier equations and therefore do not
require propagation. Propagation of remaining constraints (%O,Hi,gl,gz,@i;) does

not result in any additional equations.

The equations of motion are then given by:

Ali,O = {A1i7 Hp}

= §', D;B* + N'RY; — Nv/R?; (B.12a)
A%y =0°D;B* + N'R®, — 1; (B.12b)
A3 = 6% D;B* + NYR%; — NwiRY,, (B.12¢)
S0 = 264 D;(NVES QB ) — 204 D;(nfS ) — 2B3%, (B.12d)
S5t 0 = 204D, (NS F1QB, ) — 264,D,(nl'S 7)) — 2B'S, + B2%, (B.12e)

After this analysis we have eleven constraints and six multiplier conditions. Five of the
constraints, H;, Gi and G, after being adapted, are first class. The remaining constraints,

Gs, Ho and ¢;54% are second class. To calculate the first class algebra the constraints are

smeared with test functions:

HY"Y: = /YiHi d’z (B.13a)

G(M', M?) : = /(Mlg1 + M?*G,) d*z. (B.13b)

The algebra is then given by:

- {HY"),H(Z")} = H(LyZ’) (B.14a)
{H(YY),G(M*', M*)} = G(LyM*, Ly M?) (B.14b)
{G(M*, M?),G(KY, K%} = G (0,2(M*K' — M'K?)). (B.14c)

The constraint H (V") generates the diffeomorphisms within the three surface, which
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results in the infinitesimal transformations:

SN = LyN (B.15a)
§N* = Ly N* (B.15b)
68, = Ly, (B.15c¢)
50" = Lyv’ (B.15d)
§A% = Ly A® (B.15¢)
§B® = Ly B> (B.15f)

The other first class constraints, G(M?*, M?), generate the self-dual null rotations:

0N =2M*N (B.16a)
§N* = M*No* (B.16b)
6 = —03 (2M1E," + M2, (B.16¢)
v' =0 (B.16d)
AN = 6B(— M, + M?A%) — 26BD,M? + 268 M* A%, (B.16e)
§B* = 2M'B>. (B.16f)

This concludes the null 3 + 1 canonical analysis.
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