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The work in this thesis focuses on product improvement experiments in which the 
response or product performance can depend on the levels of a number of diEerent 
factors. Factorial experiments are used which aUow the joint e%cts of the diEerent 
factors to be investigated and thus provide valuable information on possible inter-
actions between the factors. As the number of factors to be investigated increases, 
the number of observations needed for such an experiment can rapidly become eco-
nomically infeasible. One approach which aims to achieve a practical number of 
runs is to group factors together. New grouped factors are de6ned to represent 
each group and these grouped factors are investigated in a 6rst stage experiment. 
The individual factors within those groups found to be important in the first stage 
experiment are then investigated in a second stage experiment. 

This thesis presents new theory for this group screening approach in which the 
group sizes are unequal and individual control main effects, noise main effects, 
control Xnoise interactions and control x control interactions are assumed to be ac-
tive with possibly dilferent probabilities. Examples are presented which demon-
strate the investigation of different grouping strategies and group sizes through an 
examination of their impact on the distribution of the predicted number of eEects 
that require estimation in the two-stage experiment. 

This theory has been used in the planning of a two-stage group screening ex-
periment at Jaguar Cars whose aim is to identify the key or active factors that 
influence engine cold start performance. The experiment is described and the re-
sults are presented. 

An analysis based on the Bayesian method of Stochastic Search Variable Se-
lection (SSVS) is used to investigate an alternative screening strategy of using su-
persaturated designs. SSVS is 6rst investigated in a small simulation study which 
compares results from a fuU factorial experiment, analysed using SSVS, with those 
from a half-replicate. The results show that if an active effect is totally aliased with 
a non-active eEect, then the prior information determines which eEect is identified 
as active. SSVS is compared with all-subsets regression through an investigation of 
the performance of a particular supersaturated design using simulation. This study 
indicates that the performance of SSVS is similar to t ha t of all-subsets regression in 
the number of active efiFects that are missed. Finally, a two-stage group screening 
strategy and the use of a supersaturated design are also compared through sim-
ulated experiments. In this study, two-stage group screening was more successful 
in identifying the active effects than the supersaturated design, but at the cost of 
more observations. 
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Chap te r 1 

Background 

This thesis is concerned with experiments for product improvement in which a 

large number of factors require investigation. Factorial designs are used for these 

experiments as they are able to aasess, simultaneously, the joint inSuence of the 

different factors on the response and to provide valuable information on interactions. 

As the number of factors to be investigated increases, the number of runs needed 

in an experiment can rapidly become economically infeasible. The work in this 

thesis investigates two-stage group screening as a way of carrying out experiments 

to identi:^ the most important factors in a practical number of runs. As in most 

screening experiments, all factors are assumed to have two levels. 

In Section 1.1 an introduction to factorial experiments is given. Section 1.2 

gives an introduction to screening in industrial experiments and selected literature 

on screening experiments is brieSy reviewed in Section 1.3. Group screening is 

described in Section 1.4 and an overview of the work in this thesis is given in 

Section 1.5. 

1.1 Factor ia l exper imen t s 

A continuous response Y in a factorial experiment depends on the levels of a num-

ber of different factors. In this thesis a linear model is assumed to describe the 

relationship between these factors and the response, namely 

Y = r + e, (1.1) 



(a) No two-factor interaction (b) A posiW two-factor interaction 

Figure 1.1: Illustration of the situation where two factors A and B do not interact 

together in (a) and where they do interact in (b). 

where T is a vector whose hxed entries are the effects of the combinations of the 

levels of the factors and e is a vector of independent, normally distributed error 

variables, each with mean zero and variance cr̂ . 

In a factorial experiment, two types of contrasts amongst the eSects are of 

interest: main eEects and interactions. The main eEect of a factor is the di&rence 

between the average of the treatment eEects when the factor is set at its high level, 

and at its low level (where average is over the other factor levels). Factors may 

also interact with each other to inEuence the response. When factors A and B 

interact together, the change in the average treatment eSect produced by moving 

from the low to the high level of factor A is different for the two levels of factor B, as 

illustrated in Figure 1.1(b). The case of no interaction is illustrated in Figure 1.1(a). 

In a factorial experiment involving m, > 1 two-level factors Ai,..., Am, the low 

and high levels of factor A* are often denoted respectively by 0 and 1, or by —1 and 

+1. In a full factorial experiment, the treatments are formed as all 2"̂  combinations 

oi, <22,..., Om of the levels of each of the factors, where a, denotes the level of factor 

Ai, for i = Let denote the eSect of the treatment combination 

G1O2 Then r , in equation (1.1), contains all t he 2"̂  treatment eSects listed, 

by convention, in lexicographical order, so that 

T ' — (7b . . . 00 , 7b . . .01 , To. . .10, " , T l . . . l l ) -



The main eEects and interactions, known collectively aa the factorial e&cts, can 

each be formulated as C^T, where the contrast matrix is deGned as follows for 

the main effect of factor A,, 

2?7l Z Z Z 
1 

' t i C2' (1-2) - gm "^^=1 

where a; = - 3;^ is an m-digit binary number, with = 1 and — 0 for A; t 

(1 < /c < m), with 

c « = / 

I 3 if — 0 

and where 0 denotes the Kronecker product. For factors A* and Aj, the contrast 

matrix for testing the two-factor interaction can be expressed as 

c ' = ̂ ®r=ic?, (1.3) 

where = 1, — 1 and = 0 for A (1 < A; < m). Interactions between 

three or more factors are dehned similarly; see, for example, John and Williams 

(1995), page 162. 

The size of a full factorial experiment can become too large for use in practice 

when the number of factors is large. This is because a small increase in the number 

of factors results in a rapid increase in the number of combinations of factor levels. 

For example, for hve factors, each having two levels, there are 2̂  = 32 possible 

combinations, but for seven such factors there are 128 combinations. It can then 

be necessary to sacrihce some of the information on interactions in order to keep 

the size of the experiment feasible, by using a subset or fraction of the possible 

treatment combinations, i.e. a fractional factorial experiment. In choosing a design 

for such an experiment, interactions believed to be negligible are often deliberately 

made indistinguishable from main eSFects and two-factor interactions, as illustrated 

by the following small example of a regular fractional factorial design. 

Example 1.1.1 Consider three factors Ai, A2 and A3, each taking two levels. A 

full factorial experiment for these factors requires 2^ = 8 runs: 



Ai ^2 -^3 
0 0 0 
0 0 1 
0 1 0 
1 0 0 
0 1 1 
1 0 1 
1 1 0 
1 1 1 

runs , a ^ -repli 

Ai ^2 
0 0 0 
1 1 0 
1 0 1 
0 1 1 

If it was infeasible to use all eight runs, a ^-replicate could be used, for example 

The main eSect of vli is given by the contrast 

1 / + T i o o + T i i o + T l O l ) — ( T o i l + T o o o + ^ 0 1 0 + ^ O O l ) ] 

where is the effect of factor Ai at its ith level, factor v42 at its j t h level and 

factor A3 at its A;th level (from (1.2)). The main eEect of cannot be estimated 

from the four runs used as observations are not available on four of the treatments; 

for example, there is no observation on 010. The interaction between factors Ag 

and vis is, from (1.3), the contrast 

= l/4[('riii + Toil + Tioo + Tooo) " (Tbio + ^boi + ^loi 4- Tuo)]. 

This interaction also cannot be estimated from the four runs used. However, the 

treatment contrast v4i — ^2^3 is 

1/4[ t"i io + Tioi — T o i l — Tqoo — T o i l ~ TOOO + T ' lO l + T l i o ] — l / ^ ^ T l l O + ^ 1 0 1 ~ ^000 ^ ^ O l l ] ; 

which can be estimated from the four runs in the fraction. The same is true for the 

contrasts A3 — A1A2 and A2 — ^1^3. The main effect v4̂ i is said to be aliased with 

vl2v43. This relationship is denoted Ai = vlgAg. Similarly, A3 is aliased with A1A2 

and ^̂ 2 is aliased with /liAs. The main eSects Ai, yl2 and ^3 can be estimated 

from the experiment provided that the two-factor interactions can be assumed to 

be negligible. 

4 



There is no way of estimating the three-factor interaction 

AiAgAg = 1/4[(T'ioo + Tbio 4- Tool + Tm) — (Tboo + ^iio + Tioi + Ton)], 

because the eSects of the four treatments in the fraction all have the same sign 

in the contraat AiAgAg. Thus A1A2A3 evaluated for the runs in the fraction is 

indistinguishable from the mean. is called the dehning contrast for the 

fraction and the fraction is identiGed by, and can be constructed from, its denning 

relation 7 = 

If two factorial eSects are aliased, then the correlation between their least 

squares estimators is 1 or —1 and these estimators are identical, as in the above 

example. In some (non-regular) fractions, estimators of two factorial effects may be 

non-zero and have value strictly between 1 and -1. Such factorial effects are said to 

be partially aliased. If two factorial effects are not aliased, either partially or fully, 

then their estimators are uncorrelated. 

The number of runs needed for a fractional factorial experiment to estimate all 

main effects and interactions of interest can still be too large when the number 

of factors is large. In this situation, pilot studies or engineering knowledge in the 

problem area can sometimes be used to reduce the number of factors in the experi-

ment to a manageable size. In the absence of such information, an initial screening 

experiment can be used to identify the important or ac t i ve factors. The next step 

in an investigation is to approximate the relationship (response surface) between 

the response and the levels of the factors using one or more further experiments. 

The Rtted response surface can then be used to End, for example, combinations of 

the levels of the factors that give an optimum response. 

1.2 Screening in indus t r ia l e x p e r i m e n t s 

When the aim of an experiment is to improve the quality of a product, particu-

larly in an industrial setting, the factors involved may be of two types: control 

or noise. A control fac tor is assigned particular values in the specification of 

the product or manufacturing process and can be well controlled. Noise fac tors 

typically arise in the manufacturing process or the environment where the product 



is used, where they cannot be controlled. They can, however, be well controlled 

or simulated in an experiment in order to investigate the variation they cause in 

product performance. Experiments investigating both control and noise factors are 

used to identi^ the levels of the control factors which improve the quality of a 

product through attaining both the required mean performance and insensitivity, 

or robustness, in the performance when the noise factors vary (see, for example, 

Deming (1986), Taguchi (1986) and Wu and Hamada (2000)). 

A common approach to investigating a large number of factors is that of clas-

sical screening. This strategy typically involves two phases of experimentation. 

First, only main eSects are investigated. Then, in a second experiment, interac-

tions between those factors whose main effects are identihed aa substantial at the 

Srst stage are investigated. This method is useful when interactions exist only 

between factors with large main effects. In practice, however, interactions may in-

volve one or more factors that have negligible main effects. A control factor having 

a small main eEect but involved in an important interaction could fail to be iden-

tified during the first experiment. The interaction would then not be investigated 

in the second experiment. Hence, information on important interactions may be 

unavailable from classical screening methods. This loss can be a serious problem 

for industrial experimentation where identihcation of interactions between control 

and noise factors plays a fundamental role in product improvement by allowing a 

reduction in variation in the response (product performance) due to the changing 

values of the noise factors (see, for example, Shoemaker et al. (1991) and Wu and 

Hamada (2000)). 

1.3 L i t e r a t u r e 

Although an experimenter might identify a long list of factors for experimentation, 

it is not unusual to find that the number of important factorial effects is small. This 

was called the eSbct sparsity principle by Box and Meyer (1986) and is based 

on the idea that a large proportion of variation in a response can be explained by 

a small proportion of the factors. This principle has had an important infuence 

6 



in the literature and in the development of screening experiments whose aim is to 

identi:^ these few crucial factors. In this section, various approaches to screening 

are discussed, and the relevant literature is brieSy reviewed. 

1.3.1 Supersa tu ra ted designs 

A supersaturated design is a fractional factorial design with m factors and 

runs, where no < m + 1 so that there are not enough runs to estimate all main 

egects contrasts as well as the mean. Such designs have been proposed to identify 

- large main effects using a small number of runs, when a model with main effects 

only is assumed and the eSFect sparsity principle is also assumed to hold. There haa 

been a great deal of work on these designs in the literature in recent years, which 

is now reviewed. A major diSculty has been the analysis of data from such designs 

and this issue is also considered. 

Cons t ruc t ion of designs 

Satterthwaite (1959) suggested constructing supersaturated designs by random con-

struction of the design matrix, that is the matrix whose (A, /)th entry is the level 

of the /th factor in the Mh run, l < / c < n o , l < / < m . That is, the combinations 

of factor levels to include in the design are selected at random. In these designs, 

and many of the later designs, only designs where each factor had an equal number 

of '+1' and '-1' values were considered. These designs were called random balance 

designs. 

The hrst systematic construction of supersaturated designs was given by Booth 

and Cox (1962) who used the criterion of the minimisation of 

where Q 'c j is the inner product of two columns and Cj of the design matrix, 

and the maximum is evaluated over 1 < % < j Note that when = 0, 

columns c* and cj are said to be orthogonal. Seven supersaturated designs were 

found ranging from 16 factors in 12 runs to 36 factors in 18 runs using a computer 



search. Booth and Cox (1962) also proposed the criterion of the minimisation of 

= (1.4) 

where 5,̂  = c^c^. This criterion gives an intuitive measure of non-orthogonality of 

a design and has been used in many papers on the construction of supersaturated 

designs. 

Interest in the design construction problem was renewed by Lin (1993) and 

Wu (1993). Lin proposed a class of supersaturated designs constructed using half 

fractions of Hadamard matrices. A Hadamard matrix is a square matrix of 

order whose hrst column consists of Is and whose remaining TV — 1 columns 

are orthogonal to the hrst column. Each of these latter columns have half of their 

entries '+1 ' and the remaining entries '-1'. These matrices have the property that 

= TVZ/f (where is the identity matrix of order jV). Lin (1993) 

used a 12-run Plackett and Burman design for 11 factors, which is a particular 

type of Hadamard matrix, to illustrate the construction method for supersaturated 

designs. In this method a 'branching column' is selected to provide the basis for 

splitting the Plackett and Burman design into two parts. The rows of the design 

matrix can then be split into two groups: the first group contains rows with a 

'+1' in the branching column and the second contains rows with a '—1' in the 

branching column. Removal of the branching column results in the two groups 

both being supersaturated designs which can examine up to TV—2 factors using jV/2 

runs. Lin constructed supersaturated designs for experiments where TV < 60 and 

investigated all possible choices of branching columns. Comparisons with designs 

given by Satterthwaite (1959) and Booth and Cox (1962) were made, and Lin's 

designs were found to be more e&cient when judged by the criterion of minimising 

^7(s^), as given in (1.4). 

Wu (1993) also considered the use of TV x TV Hadamard matrices in the con-

struction of supersaturated designs. His method removed the hrst column from 

the TV X # Hadamard matrix to construct a design capable of estimating TV — 1 

factors in TV runs (a saturated design). Then he added interaction columns, formed 

as the products of two of the columns of the saturated design. These additional 

columns can then be used for studying extra factors. This allowed the construction 



of supersaturated designs in which there are many more factors than runs. 

A more Sexible, algorithmic approach to design construction was developed 

by Lin (1995). This involved an algorithm which searches through possible, or 

candidate, columns of a design and identihes the maximum number of factors that 

can be accommodated in a particular number of runs, Mo, specihed by the user. 

The degree of orthogonality between two columns c , and Cj of the design matrix 

was measured by rij = gij/n. A design can be assessed, or two designs compared, 

by considering the largest absolute value of denoted by r, among all pairs of 

columns for a given design. In Lin's algorithm, through specihcation of a maximum 

value for r, the user is able to specif an upper bound on the degree of non-

orthogonality in the columns retained for a design. If Mo is even, the algorithm 

generates all possible columns which contain (n,o/2) occurrences of the factor at level 

'+1' and (Mo/2) occurrences of '-1'; for example, if Mo = 10, then 10!/(5! x 5!) — 252 

columns are generated. If Mo is odd, then the algorithm generates all possible 

columns with (Mo + l ) / 2 occurrences of a factor at its high level and (Mo — l ) /2 at 

its low level; for example. Mo = 15 gives 15!/(7! x 8!) = 6435 possible columns. The 

algorithm then selects a subset of these columns to include in a design by considering 

each of the columns, in turn, as follows. A candidate column is entered into the 

design and its inner product is calculated with each of the other columns currently 

in the design. If the maximum of these values is greater than the specified 

r-value, then the column is not added to the design and the search continues. 

Once the design has been constructed, the algorithm reorders the columns so that 

the columns 'nearest to orthogonahty' are presented Erst. This is achieved by 

minimising the average of the called the mean squared correlation, 

i<; ^ 

This criterion is equivalent to the ^(s^) criterion given by Booth and Cox (1962), 

since = jB(5^)/MQ. 

Lin (1995) showed that designs could be obtained for 3 < Mo < 25 and 0 < r < 

1/3 which allowed up to 276 factors to be included in the design. He also showed 

that designs found by his algorithm were better than those given by Booth and Cox 

(1962) and by Satterthwaite (1959), under the criterion of minimising .6(5^). 



Nguyen (1996) described a method of constructing supersaturated designs from 

balanced incomplete block designs and gave a lower bound for -5(5^) which can 

be used when m is divisible by Mg. He also gave a general algorithm for Ending 

supersaturated designs. This algorithm constructs a starting design by assigning 

at random a value of '+1' to half of the entries of each column and '-1' to the 

remaining entries. The value of is then calculated. The impact on the value of 

of exchanging the signs of pairs of entries (having opposite signs) within each 

column is considered. The signs of those pairs whose exchanges result in the largest 

reduction in the value of -E'(s^) are exchanged. This step is repeated until -E'(s^) = 0 

or .27(3 )̂ reaches Nguyen's lower bound or E'(s^) cannot be reduced by further sign 

exchanges. The designs obtained were found to have similar performance to those 

of Booth and Cox (1962), Lin (1993, 1995) and Wu (1993), under the criterion of 

minimising E{s'^). 

A further method of constructing designs that uses a search algorithm was 

described by Allen and Bernshteyn (2003). The algorithm used was a genetic, rather 

than an exchange algorithm. A different criterion for constructing supersaturated 

designs was proposed. The authors assigned probabilities of factors being active and 

non-active and chose designs to maximise the probability of correctly identi:^ng 

the active factors. Use of this criterion allowed them to identify some ^(g^)-optimal 

designs. 

Butler, Mead, Eskridge and Gihnour (2001) observed that methods of construct-

ing designs that minimise ^(s^) (called E'(a^)-optinial designs) had only been de-

termined for n,o-ruii experiments when the number of factors m is a multiple of 

Mo — 1, and when m = g(Mo — 1) + ( (|(| < 2 and g is an integer). In order to ex-

tend the range of E(g^)-optimal designs, they derived a lower bound for J5(g^) for 

m = g(n,o — 1) factors and gave a method of constructing supersaturated designs 

that attain this lower bound. Their approach was to use ^(s^)-optimal designs for 

small numbers of runs as 'building blocks' to construct designs for larger numbers 

of runs and factors. 

A class of supersaturated designs called 'A:-circulant' supersaturated designs 

were defined by Liu and Dean (2004). These designs are constructed from a set 

of one or more cyclic generators (which are rows of the design) by a cyclic shift 
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of A; elements within each row. They gave generators which allow the construction 

of designs that either achieve the minimum value of and are close to the 

minimum value of rmaz (where is the maximum value of over all pairs of 

columns), or achieved the minimum value of and are close to the minimum 

value of They also gave conditions on the columns of such a design that 

allow additional columns to be added which can accommodate a specihc set of in-

teractions. A consequence of the conditions is that the run size of the resulting 

supersaturated design must be a multiple of 4. This paper, and that of Wu (1993), 

appear to be the only published work that give instances of the construction of 

supersaturated designs for examining interactions. 

Analysis of s u p e r s a t u r a t e d designs 

The complicated partial aliasing amongst the factorial eEects in supersaturated 

designs and the insuScient degrees of freedom do not allow the traditional regression 

or analysis of variance techniques to be used. Several methods of analysis, that is, 

of identi:^uig the important or active factors, have been proposed. The hterature 

on frequentist methods is reviewed below. An alternative Bayesian approach is 

reviewed in Chapter 5. 

Wu (1993) suggested using forward selection or all-subsets regression. Forward 

stepwise regression was proposed by Lin (1993) who argued that this method would 

identify the active factors by detecting large main ejects , provided that any inter-

action effects are comparatively small. In this method, after each variable is entered 

into the model through an F-test, all variables already in the model aje checked 

to see whether they should be removed. Lin used this procedure to identi^ the 

important factors in a data set for one of his designs, obtained by selecting the 

observations for the appropriate runs from the 28-run design of Williams (1968) 

for 24 factors, and their conclusions were very similar. For screening experiments, 

Lin (1995) recommended the use of conservative signiAcance levels on the grounds 

that failing to detect an active factor can have more serious consequences than 

incorrectly identifying a non-active factor as active. 

Lin also investigated the use of ridge regression in which the problem of the 

information matrix being singular is overcome by the addition of a multiple of the 
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identity matrix before matrix inversion (Draper and Smith (1998), Chapter 17). 

However, a simulation study by Lin showed that ridge regression did not perform 

well for supersaturated designs. 

Some risks in the use, and particularly in the analysis of supersaturated designs 

were highlighted by Abraham, Chipman and Vijayan (1999). In particular, they 

focussed on forward selection and all-subsets regression procedures. They extended 

the study of Lin (1993) by considering 8 different supersaturated designs for a 

design of 23 factors in 14 runs, all of which were constructed by Lin's branching 

column method. Again the data were obtained as the relevant subset of the data 

from Williams' experiment. Forward regression was performed on the data for all 

eight designs and the results compared with Lin's conclusions. The main Ending 

was that different designs can lead to identihcation. of diSerent factors as being 

active. The authors also described two simulation studies which are relevant to the 

work in Chapter 5. The Hrst study was of a 14-run design for 23 factors given by 

Lin (1993). Data from experiments using this design were simulated by generating 

values for 14 random variables 6i(2 = 1,..., 14) from a 7V(0,1) distribution, and then 

using the linear model 

23 

Hi — Po ^ ^ Pj^ij Qi ^ — 1) 2, 14, 
i=i 

to generate responses for speciSc chosen values of t he vector of model parameters 

= (/)i, ^2, - /)i4)'- These data were then analysed using forward selection (halted 

after 5ve steps) and the factors selected for the model were recorded. This process 

was repeated 200 times. The results showed that, even when the active eEects were 

very large, the forward selection procedure could mislead by identifying the wrong 

factors as active (that is, as being included in the 6nal Btted model). The simulation 

was also performed using all-subsets regression for model selection, where the search 

was restricted to models with 3, 4, and 5 factors. Unlike stepwise regression, all-

subsets regression is able to give a choice of models of a given size that htted 

the simulated data well. This allowed an assessment of this method of analysis 

to be made by calculating the proportion of times tha t the highest ranked model 

contained the correct model, and the proportion of t imes that the correct model waa 

in the top five best 6tting models in the simulated experiments. The authors found 
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that this method identiEed the correct model more often than forward stepwise 

regression. 

The second study showed that the results of the analysis depend on which 

columns of the design matrix correspond to the active factors. This study used 

the 12-run design for 60 factors of Lin (1995). Five active factors were assigned to 

a diEerent set of columns in the design matrix from those used in the simulation 

study given by Lin (1995). Lin's study had indicated that the hve active factors were 

always selected in the hrst five steps of a forward selection procedure. Abraham 

et al. (1999) simulated experiments on this design, as in the hrst study above. Data 

were generated for each of the twelve runs and a forward selection procedure waa 

used. In 200 simulated experiments, only one of the active factors was detected in 

the 6rst 6ve steps of the selection procedure. 

In order to overcome the shortcomings in the above methods of analysing data 

from supersaturated experiments, a Bayesian approach was developed by Chipmaa, 

Hamada and Wu (1997), which is based on the Stochastic Search Variable Selection 

(SSVS) of George and McCulloch (1993) and incorporates the hierarchical priors 

of Chipman (1996). Discussion of these papers is postponed until Chapter 5 where 

work is described that uses the SSVS technique. 

1.3.2 Othe r screening techniques 

In this subsection, some screening techniques other than group screening and su-

persaturated designs, are brieSy described. 

Cheng and Wu (2001) argued that factor screening could be performed in con-

junction with response surface exploration in a single experiment. This would save 

time and resources, compared with carrying out two separate experiments sequen-

tially. This strategy involves performing two separate analyses of the data from 

the single experiment. The experiment has factors a t three levels and, in the first 

analysis, is used to investigate a moderately large number of factors (up to 13) as-

suming a main effects only model. Those factors found to be active in this analysis 

then become the focus of a second analysis of the data set, in which the experiment 

is viewed as one in which the main e&cts of these active factors and the two-factor 
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interactions between them are studied. Hence a key aspect in their method is the 

projection of a larger factor space onto a smaller factor space. An example is given 

where the effects of nine factors are studied in a 3^"^ design. After the ajialysis 

at the hrst stage, consisting of an examination of main eSects only, hve factors 

were identified as being important. The projected design onto three of these fac-

tors was used to fit a second-order model, and a two-factor interaction was found 

to be signihcant. It was further concluded that two other factors, out of the hve, 

were also likely to have been found to be important on the grounds of their partial 

aliasing with the signihcant two-factor interaction. Further analysis showed these 

two factors were not important once the interaction was included in the model. It 

was suggested that the original Endings gave faulty conclusions due to the omission 

of interactions in the model building at the hrst stage. 

Trocine and Malone (2001) described the Trocine Screening Procedure (TSP) 

which is a screening technique for a large number of factors (typically more than 20). 

This approach used a genetic algorithm to generate runs for the experiment and 

to build experiments sequentially, using the results from analysing observations on 

the earlier runs to choose the next set of four runs in the experiment. Those factors 

which are not found to be active are discarded and the next iteration is made. 

The approach could require many iterations and appears to be used primarily for 

simulation experiments, which are not considered here. 

1.4 G r o u p screening 

1.4.1 Background 

The idea of grouping in the context of screening began with Dorfman (1943) who 

considered the biological problem of the detection of a rare defect among the mem-

bers of a large population by testing blood samples. He suggested that pooled 

blood samples should be tested and that the individual samples that formed a 

pool (or group) should only be tested when the pool gave a positive result. He 

showed that a substantial saving in the total number of tests could be made by 

choice of the number of samples to pool together. After this early work, the pool-
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ing technique was developed for a variety of applications, for example, genetic and 

medical screening. Watson (1961) was the hrst to apply this approach to factorial 

experiments, where only the main effects were considered and all interactions were 

ELSSumed to be negligible. For a review of group screening see Kleijnen (1987) and 

Ankenman and Dean (2001). The idea of grouping has also been incorporated into 

techniques for simulation experiments, see, for example, Cheng (1997), but these 

are not considered in this thesis. 

In group screening for factorial experiments, individual factors are placed into 

groups and a new grouped factor is dehned to represent each group (see Section 

2.2). An experiment using these grouped factors forms the first stage of the full 

group screening experiment and its aim is to hnd the important grouped factors. 

The individual factors within these important groups are then investigated in a 

second stage experiment. 

Two diEerent two-stage group screening strategies were investigated by Lewis 

and Dean (2001) and Dean and Lewis (2002) under the assumption that all groups 

of factors have the same size and that individual factorial effects of the same type 

are assumed to be active with the same probability, these types being control main 

effects, noise main eEects, controlxnoise interactions and controlxcontrol interac-

tions. The motivation for their work was industrial experimentation in which both 

control and noise factors were involved. The hrst strategy investigated was clas-

sical g r o u p screening (CGS) in which only main effects of the grouped factors 

are estimated at the hrst stage of the experiment. The second strategy wa8 in-

t e rac t ion g roup screening (IGS), where both the main effects of the grouped 

factors and the interactions between pairs of grouped factors are estimated at the 

hrst stage of the experiment. For both strategies, the second stage experiment is 

used to investigate main eSects and interactions of interest among the individual 

factors within those grouped factors found to be active at the hrst stage. 

Lewis and Dean (2001) defined an active factorial effect in terms of a quantity 

A that is regarded as a substantive difference in the responses between two combi-

nations of levels of the grouped factors. A particular grouped factorial effect r 

was defined as act ive if > A and inactive if < A, where is a row 

of the matrix (7^, and where the contracts are scaled to have the same variance as 
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the estimator of a treatment diEerence. The data from the hrst stage experiment 

is used to decide whether or not a factorial eSect is active, for example, using 

or F-tests. This deSnition of active includes the deEnitions of other authors when 

A = 0, but can also be used with A 0, when only larger improvements are of 

interest. 

In classical group screening, a grouped factor is considered active at the hrst 

stage if it has an active main effect. At the second stage, the grouping of factors 

found to be active at the hrst stage is dismantled. All individual control x control 

and control X noise interactions amongst these factors are then examined. 

In interaction group screening, a grouped control factor is active if it is in at 

least one active grouped control xnoise or control x control interaction, or if it has 

an active main effect. A grouped noise factor is only active if it is involved in at 

least one active interaction with a grouped control factor. Noise main effects and 

noise X noise interactions are not of interest for the purpose of further screening. At 

the second stage of experimentation, the individual factors in the grouped factors 

declared active at the hrst stage, are examined. Within each grouped control fac-

tor, the main effects of the individual factors and the individual control x control 

interactions are examined. Individual controlxnoise and controlx control interac-

tions are only examined if their corresponding grouped interactions were declared 

active in the analysis of the data from the first stage experiment. 

The simulation software described in Lewis and Dean (2001) and Dean and 

Lewis (2002) assessed the risk of failing to detect active e&cts by simulating a 

two-stage group screening experiment for COS and IGS. The assumption is again 

made of equal group sizes and equal probabihties of individual factorial eEects 

of the same type being active, as in Lewis and Dean (2001). The user speciSes 

the numbers of grouped control and noise factors and the fixed group sizes. The 

user also specifies the proportions of individual control main effects, noise main 

effects, control X control, control x noise and noise x noise interactions that are to 

be made active in the simulated experiment. The user can also input their own 

design for the hrst stage experiment, or choose to let the algorithm select one 

appropriate to the number of grouped factors from the table of Russell, Lewis and 

Dean (2004). The algorithm selects at random, and as close as possible to the 
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speciSed proportions, the individual main eEects and two-factor interactions to 

be made active. The sizes of the non-active eEects are determined by a random 

sample from a A^(0; (A/3)^) distribution with probability g (user-speci6ed) and 

from a 7V(0,1) distribution with probability (1 — g). The values of the eSects that 

are to be made active are determined by sampling from either a or a 

7V(—//, distribution with equal probability, where and ^ are specihed by the 

user. Proportions of ejects correctly identiGed by, hypothesis testing, as active are 

calculated for the simulated data sets using both the CGS and IGS strategies, so 

that the risk of failing to detect active effects can be assessed against the average 

total number of observations needed for the entire two-stage experiment. The 

user can then compare CGS and IGS under different choices of groupings, first 

stage designs, proportions of effects that are to be made active in the simulated 

experiment, A and active e&ct distributions. In all of the examples in Dean and 

Lewis (2002), classical group screening required fewer observations but performed 

less well than interaction group screening in terms of missing active effects. This 

type of simulation is used in Chapter 4. 

The theory of Lewis and Dean (2001) applied to equally sized groups of factors 

and equal probabihties of individual factorial eSects of the same type being active. 

However, these assumptions are too restrictive for many practical applications. 

In many industrial settings, it is not always possible to partition the individual 

factors involved into groups of equal sizes. Further, the number of individual factors 

may not factorise conveniently. Also, the requirement of equal probabilities does 

not allow detailed prior information from subject specialists on the relative likely 

importance of factors to be used. An overall aim of this thesis is to develop an 

approach which does not have these restrictions. 

1.5 Out l ine of this thesis 

In this thesis the theoretical results of Lewis and Dean (2001) for the situation 

where the group sizes are unequal and individual control main eEects, noise main 

eSects, control X noise interactions and control x control interactions are assumed 

to be active with possibly diSerent probabilities. This increased Sexibility makes 
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two-stage group screening a more versatile screening strategy. The generalised 

theory is presented in Chapter 2. This theory has been implemented in software, 

which is described in Chapter 3, together with a number of studies illustrating 

its capabilities. These studies show how strategies for group screening and group 

sizes can be assessed. The theory and software described in Chapters 2 and 3 have 

been used in the planning of a two-stage group screening experiment at Jaguar 

Cars. The planning of this experiment and results from the analysis are presented 

in Chapter 4. Chapter 5 considers the alternative screening strategy of using a 

supersaturated design. An investigation of these designs under a Bayesian analysis 

is presented using simulation. A critical comparison of a group screening design 

and a supersaturated design is also made, again using a Bayesian variable selection 

technique. Finally, in Chapter 6, conclusions are presented and some possible future 

work arising from this thesis is briefly described. 
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Chapte r 2 

Group screening wi th flexible 

group sizes and probabil i t ies 

2.1 Overview 

In this chapter, theoretical results are obtained for the predicted distribution of 

the number of effects requiring estimation in a two-stage group screening experi-

ment where there may be unequal group sizes and individual control main effects, 

noise main eEects, control x noise interactions and control x control interactions are 

assumed to be active with possibly different probabilities. These results are math-

ematically more complex than those for two-stage group screening experiments 

where the group sizes are equal and individual factorial eSects of the same type 

are assumed to be active with the same probability, these types being control main 

eEects, noise main e&cts, controlxnoise interactions and control xcontrol interac-

tions (Lewis and Dean (2001)). This is due to the loss of exchangeability in the 

factors. When counting the number of effects that need to be estimated in the 

second stage experiment, it is now necessary to knovy exactly which grouped fac-

tors were declared active at the hrst stage and, in the case of interaction group 

screening, the reason why they were declared active. 

In Section 2.2, the necessary notation is set up for the investigation of unequal 

group sizes and unequal probabihties of effects being active. Formulae for the 

probabilities of grouped e%cts being active and being declared active are developed 

in terms of the probabilities of individual eEects being active. Criteria are given for 
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consideration when choosing group sizes and screening strategies. In Section 2.3, an 

explicit formula is obtained for the expected nnmber of effects requiring estimation 

in a two-stage experiment under classical group screening (COS), and an example 

is given to illustrate the use of the formula. The form of the distribution and 

the variance of the number of effects requiring estimation is also obtained. In 

Section 2.4, the corresponding results for interaction group screening (IGS) are 

derived. All of the theory presented in this chapter apply also to the special case 

where there are no noise factors under consideration. In Section 2.5, alternative 

methods for assigning interaction probabilities are given. Conclusions are presented 

in Section 2.6. The work in this chapter is presented in Vine, Lewis and Dean (2004) 

together with some of the work in Chapter 3 . 

2.2 Group ing of fac tors and probabi l i t i es for 

g rouped factorial effects 

The labelling of individual factors is now changed, compared with Chapter 1, in 

order to make explicit the grouping of the factors. The factors are labelled 

and each takes two levels. The individual factors are divided into 6 groups in 

such a way that the %th group, represented by the grouped factor (t = 1, 

contains individual factors ..., When all factors in the zth group are 

set to their high (low) level then grouped factor B, is at its high (low) level. Only 

grouped factors formed only from individual control (noise) factors are considered 

so that grouped controlx noise interactions can be investigated. 

Let denote the probability that the main effect of individual factor Ait is 

active, and let jz denote the probability that the two-factor interaction between 

individual factors and is active (as dehned in Section 1.4.1). Suppose that 

f grouped factors labelled are each formed from individual control 

factors and the remaining TV grouped factors labelled ..., are formed from 

individual noise factors. The sizes of the corresponding groups are denoted by 

\ respectively. The total number of individual control factors 

20 



and individual noise factors are, respectively, 

^ a n d 

i=l i=l 

2.2.1 Probabi l i t ies of grouped main effects and interactions 

being active 

We make the following simplifying assumptions: 

(a) the main effects and interactions of individual factors are independently active 

or non-active 

(b) any non-active e%ct is zero 

(c) the level of each individual factor that is labelled 'high' produces the higher 

response. 

G r o u p e d main effect probabi l i t ies : 

We denote the probabilities of the grouped main eEects being active by 

(c) (n) (n) 
rl •) ••n PF ) Ml ^ Pj\[ •> 

where the hrst F probabilities correspond to main effects for grouped control fac-

tors and the remaining TV probabihties correspond to main eEects for grouped noise 

factors. Using assumption (a), we End these probabilities by subtracting the prod-

uct of the probabilities that the main e&ct of each individual factor within the 

group is not active from 1, giving 

a ̂  ^ (1 — %&); k — 1 , g \ ^ < i < F (2.1) 

and 

— 1 — (1 — a: — 1,..., ; 1 < j < (2-2) 

Following Lewis and Dean (2001), let (pj"^) be the probability that the analy-

sis of the data from the Srst stage experiment leads to the main e&ct of the tth 

grouped control ( j th grouped noise) factor being declared active. If it were possible 

to always detect active main effects, and non-active main effects were always close 
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to zero, so that correct conclusions were always made, then would be 

equal to ki: 1 < ^ (1 < J < Otherwise, the value of is 

likely to be in the region of 

Grouped interact ion probabili t ies: 

Under interaction group screening we need to calculate the probabilities of grouped 

interactions being active because, in the hrst stage experiment, each of the f AT 

grouped controlxnoise interactions is investigated. Using assumption (a), the prob-

ability of the grouped control x noise interaction being active is found by 

subtracting the probabilities that all of the interactions between the individual 

factors from each group are inactive from 1, giving 

P\,j ^ = 1 — jQ %% (1 — Qik,jl) (2-3) 

where A: — 1,...,^^'^^; Z = 1 < % < F and 1 < j < /V. 

In the hrst stage experiment the grouped control x control interactions are 

also investigated. Hence calculation is also needed of the probability of the grouped 

control X control interaction being active. By a similar argument to that 

used for 

n n (1 QiLkmJ 

where Z = 1, m = 1, and 1 < 2 < ^ < 

We can also calculate the probability of the grouped noisexnoise interac-

tion being active as 

n n 

where A: = 1,..., m — 1,..., and 1 < j < Z < ]V. 

Let be the probability that the analysis from the 6rst stage experiment 

leads to the interaction between the zth grouped control factor and j t h grouped 

noise factor being declared active (where 1 < % < ^ and 1 < j < A )̂, with similar 

dehnitions for and (where 1 < % < A: < 1 < '̂ < Z < TV). As for 

the grouped main eEect probabilities, if it were possible to always draw the correct 
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conclusions in the hrst stage analysis, then would be equal to Similarly, 

and would equal and , respectively. For the work in this thesis 

we use the pi and j values to approximate the p, and Ptj- values. 

2.2.2 Cri ter ia and the i r implementa t ion 

The total number of eEects requiring estimation in a two-stage group screening 

experiment depends on the designs used at each stage and the choice of probabihties 

and grouping at stage 1. The number of effects to be estimated in the hrst stage 

experiment is determined by the number of grouped faxztors of each type. However, 

the number of eSects to be estimated at the second stage depends on the conclusions 

of the analysis of the hrst stage experiment. This leads to the total number of eSects 

that require estimation over the two-stage experiment being regarded as a random 

variable whose probability distribution depends on t he groupings used, the choice 

of screening strategy and the choices of probabilities of different factorial ejects 

being active. This random variable is denoted by 5" and, in later sections, we use 

'S'cGs when the strategy is classical group screening and S'/ca when the strategy is 

interaction group screening. 

In order to choose between the strategies and the group sizes for the hrst stage 

experiment a variety of criteria can be considered: 

1. minimise the expected total number of eEects to be estimated in the two-stage 

experiment 

2. minimise the standard deviation of the total number of eEects to be estimated, 

in addition to criterion 1 

3. minimise the probability that the two-stage experiment will require more than 

a target size, r, of observations 

4. majcimise the probabihty of detecting the active control main eSects and 

interactions involving a control factor 

5. minimise the probability of incorrectly identifying individual factorial effects 

as active when they are not (Type I error). 
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Criteria 1 and 3 are concerned with keeping the number of eEects requiring estima-

tion small. Criterion 2 is closely related to criterion 1, and ideally we would hope 

to achieve these two criteria simultaneously. Criteria 4 and 5 are concerned with 

improving the reliabihty with which conclusions are drawn from the experiment 

and can be achieved by increasing the number of observations. Hence, the aims of 

these criteria conSict with requirements 1 to 3 and so a trade oS between them is 

necessary. 

The research I have carried out mainly concerns criteria 1 to 3. However, I have 

been able to examine criterion 4 through using other outputs from this project 

for an example (see Chapter 4). I have not considered the hfth criterion in this 

thesis since it leads to minimising the number of eEects requiring estimation in the 

experiment and therefore, it acts in the same direction as criterion 1. The role of 

the 6rst three criteria in the selection of group sizes and strategy is illustrated in 

Chapter 3. 

In order to implement criteria 1 to 3, ideally we would like to have the probability 

distribution and the expected value of the total number of eEects that have to be 

estimated across stages 1 and 2. Finding a general form for this distribution is not 

possible because it depends on the choice of design for each of the two stages of 

experiment and, in particular, the aliasing structure of the design chosen. Instead, 

we develop theoretical results for a lower bound 5" on the total number of effects to 

be estimated at stage 1 and at stage 2. The lower bound is calculated under the 

assumption that the designs used at both stages allow estimation of all factorial 

effects of interest in the smallest number of runs possible (called minimal plans). It 

is assumed that interactions between three or more factors are negligible and that 

noisexnoise interactions are not of interest and may be aliased together. A total 

aliasing amongst the grouped noisexnoise interactions would be ideal because it 

would allow information from the experiment to be concentrated on the factorial 

ejects of interest. 

Because in general we cannot formulate the exact number of degrees of freedom 

that will correspond to the strings of aliased noisex noise interactions, we use the 

lower bound on the number of degrees of freedom given by Lewis and Dean (2001). 

If there aje TVy noise factors then this bound is jVy — 1 and corresponds to the 
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ideal situation where there is as much aliasing as possible amongst the noise x noise 

interactions. Such an aliasing may not always be achievable in practice but 5" is 

calculated assuming that it is possible. When minimal plans are used (that is, 

designs which allow estimation of all factorial eEects of interest in the smallest 

number of runs possible) the difference between the expected and actual number 

of effects to be estimated will be small. When experiments with larger numbers 

of runs are used, for example, full factorials, there will be a greater discrepancy. 

For example, a minimal plan for a hrst stage experiment under interaction group 

screening with three grouped control factors and two grouped noise factors would 

require 16 runs (see Section 2.4), or as close to 16 as possible. A full factorial design 

would use 2̂  = 32 runs. 

In this thesis the criteria 1 to 3 are implemented for the lower bound 5" which 

will serve as a surrogate for the experiment size and will be used to guide the 

choice of grouping and screening strategy (CGS or IG8). For simplicity, 5" will 

be referred to as the experiment size. In the remainder of this chapter, for each 

strategy, a closed form expression is obtained for ^(5"). In addition, the form of the 

probability distribution for the number of individual factorial eSects that have to 

be estimated at the second stage experiment is given, for speciGed group sizes and 

probabilities of individual effects being active. This expression allows computation 

of the probability distribution and also the variance of 5". 

2.3 Classical g roup screening 

We hrst obtain an expression for ^(5") under classical group screening and give a 

small example of its use. 

2.3.1 N u m b e r of effects for es t imat ion at t h e second stage 

The results of the hrst stage experiment are unknown when the experiment is being 

planned, so it is necessary to consider random variables when counting the number 

of eSects to be estimated at the second stage experiment. 

Note that if no grouped control factors are declared active at the Erst stage, then 

there are no groups of control factors to be investigated at the second stage. There-

25 



fore, the experiment does not proceed to the second stage, because the purpose of 

the experiment is to Snd important individual control main eSFects, controlx control 

interactions and in particular, important control xnoise interactions. 

We first count the number of main effects of individual control factors that have 

to be investigated in the second stage experiment. To do this we use various random 

indicator functions. De6ne a random indicator vector 

with kth. entry equal to 1 when the corresponding grouped control factor is 

declared active after the 6rst stage experiment, and equal to 0 otherwise. Similarly, 

let 

with A:th entry equal to 1 when the corresponding grouped noise factor is 

declared active after the first stage experiment, and equal to 0 otherwise. 

We use these indicator functions to form an expression for the number, 5"^^ 

of individual control main eEects that have to be investigated at the second stage, 

under classical group screening. This is a random variable given by 

= (2.4) 
i=l 

because the 2th group of control factors contains individual factors (1 < t < F) . 

Here the subscript C means that the strategy used is classical group screening and 

the superscript c indicates that we are counting main eSects of control factors. 

In the same way, the number of individual control x control interactions to be 

investigated at the second stage is a random variable which can be written as 

'c 
2 

using the notation for a binomial coefEcient. The number of individual noise main 

effects to be investigated at the second stage, denoted by 5"^^ depends on whether 

5"̂ ^ is zero or not. In particular, if = 0 then the experiment stops after the 

first stage. If we define a indicator random variable by 

) , ( 2 . 5 ) 

= 1 when 5"̂ ^ > 1, and 0 otherwise, 
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then 
N 

s p p-6) 
3=1 

The number of sets of aliased individual noise x noise interactions that have to be 

included in the model for the second stage observations, given that at least one 

grouped control main e&ct is declared active after the 6rst stage, depends on the 

number of individual noise main eSects 6"^^ to be examined. We use the lower 

bound 5"^^ — 1 of Lewis and Dean (2001) for this number of interactions. To 

formulate the number 5'^"^ of individual noisexnoise interactions included at the 

second stage we again have to take account of whether or not the experiment stops 

at the hrst stage because no control factors are taken forward. This leads to 

(2.7) 

where is another indicator random variable deSned by 

= 1 when 5"^^ > 1 and 0 otherwise. 

The number of individual control x noise interactions that need to be studied at the 

second stage is formulated easily because this is simply given by the product of 

the numbers of individual control and noise factors brought forward to the second 

stage. This number is 

(2.8) 

We sum (2.4) to (2.8) and 7;̂ ^ to 6nd a lower bound, on the number of 

eSects which must be estimated at the second stage experiment under classical 

group screening, i.e. 

= + 77̂ ^ 

= ( sm + l ) ( i 5 m + 4 " ' ) + 5 g " - ' 7 ? + ' ) ! ? ' - (2-9) 

Inclusion of is necessary to add an elfect for the mean at the second stage, 

if the number of individual control factors brought forward to the second stage is 

non-zero. 
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2.3.2 N u m b e r of effects for e s t imat ion over bo th stages 

At the 6rst stage experiment only grouped main effects are estimated together with 

the mean under classical group screening. Hence the number of effects examined 

at stage 1 is 

= l + f + (2.10) 

Notice that this is a 6xed quantity, i.e. not a random variable. We now use (2.9) 

and (2.10) to hnd an expression for the expected total number of eSects to be 

examined in terms of the sizes of the grouped factors and the probabilities that the 

grouped main effects will be declared active, assuming maximum aliasing of the 

individual noise x noise interactions at the second stage: 

E{Sca.s) = Ugls + EiUjil,) 

= 1 + i ? + A ' + ^ £ ( 4 ° ' ) + 2 B ( 4 " ' ) + i f i d S j ; ' ) ' ) + 

+ e(i,g') - EW^') 

= 2 + F + N + p f ][1 - n.'Li(l - pf ' )] 

+ p f ' ( i - PP) + 

+ [E£is<='pS°'][Ejli9i"Vfl - n £ , ( i - p<'') 

- [ 1 - n f , , ( i - p f )1[1 - -p<°')]. (2J1) 

We now illustrate this result with a small example. 

Example 2.3.1 Consider an experiment with 7 individual control factors and 2 

individual noise factors. Two groupings of these factors are considered. 

(i) f = 2 and TV = 1 with = 4, = 3 and — 2. Suppose that the 

probabihties of the individual control factors' main effects being active are 

= 0 2, 9(2 = 0.3, = 0 4, {̂4̂  = 0.5, 

92^ = 0.6, = 0.7, 923̂  = 0.8, 

and the probabilities of the individual noise factors' main eEects being active are 

= 0 . 3 , gW = 0.3. 
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Then the probabilities of the grouped main eEects being declared active are calcu-

lated from Section 2.2.1 with p for p as 

pW _ 1 - ( 1 - 0 . 2 ) ( 1 - 0.3)(1 - 0.4)(1 - 0.5) = 0.832, 

pW = 1 - ( 1 - 0.6)(1 - 0.7)(1 - 0.8) = 0.976, 

pW = 1 - ( 1 - 0 . 3 ) ( 1 - 0 . 3 ) =0.51. 

Then (2.11) gives ^ ( ^ c g ) = 36.82. 

(ii) f = 3 and 7/ = 1 with = 3, = 2, = 2 and = 2. Suppose 

that the probabilities of the individual control factors' main eEects being active are 

as in the Brst grouping but with different labelling due to the change of grouping: 

= 0.2, 9̂ 2̂  = 0.3, 9̂ 3̂  = 0.4, 

92^ = 0.5, = 0.6, 

= 0.7, g g = 0.8, 

= 0.3, = 0.3. 

The probabilities of the grouped main eEects being declared active are calculated 

as before: 

pW = 1 - ( 1 - 0.2)(1 - 0.3)(1 - 0.4) = 0.664, 

= l - ( l - 0 . 5 ) ( l - 0 . 6 ) = 0.8, 

pW = 1 - ( 1 - 0 . 7 ) ( 1 - 0 . 8 ) = 0.94, 

= 1 - ( 1 - 0 . 3 ) ^ = 0.51. 

Then (2.11) gives ^ ( ^ c g ) = 32.25, a smaller value than for the previous grouping. 

The issues of optimal choice of group sizes and sensitivity of jB'(6'cGg) to the 

choice of values for the probabilities of factorial eSects being active under classical 

group screening, will be discussed in Chapter 3. 
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2.3.3 Probabi l i ty dis t r ibut ion of SCGS under classical group 

screening 

The explicit formula (2.11) for the value of -5'(5'cGg) is useful to implement crite-

rion 1, but this is not an adequate summary of the distribution of SCGS as it does 

not give information on the spread of the distribution of Sccg and the probability 

of exceeding a target size. However, it has not been possible to And an explicit 

closed form for the distribution of This is due to the complexity of formu-

lating the very large numbers of possible scenarios which would cause S'ccs to take 

each particular value s. However, we can obtain an expression for the probability 

distribution via the random index vectors. 

For any given experiment under classical group screening, the total number of 

ejects to be estimated at the second stage is determined by which grouped 

control and noise factors are declared active at the Grst stage, and hence is deter-

mined by the realisations of the random index vectors and The probabihty, 

under claasical group screening, that the total number of eEects to be estimated 

'S'ceg is equal to a, again assuming maximum aliasing, can be expressed ag 

P{SCGS = S) = ^ i t ) 

where, using equation (2.10), 

-rccg = = g - (1 + f + / / ) } (2.12) 

and where 

l + F + J V < s < l + F + 7V+2"^+"^. (2.13) 

Under the simplifying assumptions (a) - (c) of Section 2.2.1 the joint probabihty 

function of f and f is 

f ( f w = = f w ) = n ( p i ' y % ( l n ( p ^ V ^ ^ k l 
i=l j'=l 

(2.14) 

where 1 < < 2^, 1 < 2̂ ^ 2^ and and are realisations of the random 

variables and respectively. 
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2.3.4 T h e variance of SCGS 

From Section 2.3.3, the variance of can be expressed as 

Var{ScGs) = e 4 " ' ) - k -p (4° \ 4" ' ) l ' l (2-16) 
S: RCGS 

where RCGS and the range of s are defined in (2.12) and (2.13), respectively. 

The corresponding results for interaction group screening are derived in Sec-

tion 2.4. 

2.4 In t e rac t ion g roup sc reen ing 

In this section an expression is obtained for E{S) under interaction group screening, 

and the form of the probability distribution and variance of S is given. The use of 

these expressions is then illustrated by a small example. 

2.4.1 N u m b e r of effects for e s t ima t ion at t he second stage 

The same notation is used for random indicator vectors and random variables as 

in Section 2.3. Two new random indicator vectors are needed because grouped 

interactions are also examined at the first stage. DeHne 

= (2.16) 

of length cp — F{F — l) /2, where is equal to 1 if the interaction between 

grouped control factors and is declared active at stage 1 and 0 otherwise. 

Also define 

j ( - ) = (,^;;r\...,6%;)), (2.17) 

of length FN, where (̂ j-̂ "̂ ) is equal to 1 if the interaction between grouped con-

trol factor B̂ '̂ ^ and grouped noise factor is declared active at stage 1 and 0 

otherwise. 

We also need an expression for the number of individual control x noise interac-

tions to be examined at the second stage under interaction group screening. This 

is a random variable, given by 

F N 

1=1 j=i 
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where the subscript 7 means that the strategy is interaction group screening. 

To count the number of individual noise main effects to be examined at the 

second stage, we recall that, under interaction group screening, a grouped noise 

factor is only brought forward to the second stage if it is involved in at least one 

grouped control x noise interaction that is declared active at the hrst stage. The 

number of individual noise factors brought forward is therefore a random variable 

and is denoted by 5"}"̂  and can be written 

(2^19) 

j = 1 

where = 1 when at least one grouped control x noise interaction is declared 

active, i.e. when > 1, and zero otherwise. 

In considering the individual control x control interactions that are examined at 

the second stage, we must count two types: 

1. those involving individual factors within a grouped control factor 

2. those involving individual factors that are in diEerent grouped control factors, 

i.e. between grouped control factors. 

Case 1 

Dehne a new indicator random variable which equals 1 if the tth grouped control 

factor is taken forward to the second stage; that is, 

and zero otherwise. If random variable is the number of individual controlxcontrol 

interactions within the same grouped control factor, then 

^(cc). _ ^ ( 2 . 2 0 ) 

i=l 

Case 2 

The number of interactions between individual control factors from different groups 

involved in an active grouped control x control interaction is a random variable 

which can be expressed as 

= e e (2.21) 
1=1 t=i+l 
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The indicator function can also be used to obtain a simple expression for 

the number of individual control main effects to be examined at the second stage: 

= e s i s f . (2.22) 
i = l 

The number of contrasts allowed for the individual aliased noisexnoise interac-

tions at the second stage corresponds to maximum aliasing, as in Section 2.3, and 

is given by where = 1 when 5"}"̂  > 1 and 0 otherwise (as 

in equation (2.7)). 

We sum (2.18) to (2.22) to give the total number of effects to be estimated at 

the second stage under interaction group screening: 

= + 2^1") + (2.23) 

Inclusion of is necessary because the mean effect has to be estimated at the 

second stage, when the number of individual control factors brought forward to the 

second stage is non-zero. 

2.4.2 N u m b e r of effects for e s t imat ion over b o t h stages 

At the Arst stage of the experiment, the number of effects examined (together with 

the mean) is 

= i + j ? + # + cf- + f a ^ - { - ( a r - ( ) 

= 2Ar + Cf+i-k F A T + ( ! - ( ) , (2.24) 

where ( = 0 if TV = 0 and 1 otherwise. This inclusion of ( is necessary for the 

situation where there may be no noise factors in the experiment, in which case it 

would be unnecessary to include W — 1 eEects for the lower bound on the number 

of effects corresponding to aliased grouped noisexnoise interactions. 

The expected total number of e&cts to be examined under interaction group 

screening can be calculated in terms of the probabilities that the grouped con-

trol main eSects, grouped control x control and control x noise interactions will be 
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declared active, using (2.23) as follows. 

EiS,as) = U',% + E(U%) 

= iN + Cf^i + FN + Eisf"'') + 2B(s'S"') + E(Sf°'') 

+ [ ^ ( S f " ) + E { s f ) \ + E ( n f ) - E(r,f ) 

= 27V + Cf+i + FN + pS? 

+ e £ i [ s f ' ( # + l)/2] 

^ 1 - n j l , ( i - pSj') - p M ) ( i -pS ' ' ) 

- [(i - p S " ' ) ( I - ? • ? ) ( ! - # ( 

+ nLnjl,{i-p.'^'), (2.25) 

Example 2.4.1 Under interaction group screening, consider the two different group-

ings of Example 2.3.1 with the same probabihties of the individual control factors' 

main eEects being active. Suppose also that the probabilities of every individual 

controlX control and control xnoise interaction being active have the same value of 

0.2. 

(i) Grouping with F = 2, AT = 1, = 4, = 3 and = 2. The 

probabilities of the grouped control main eEects being declared active remain as in 

Example 2.3.1 as 

= 0.832, = 0.976. 

We do not need to consider the probability of the grouped noise main effect being 

declared active as, under interaction group screening, groups of noise factors are 

only taken forward to the second stage when they are in grouped controlx noise 

interactions that are declared active. 

The probabilities of the grouped control x noise interactions being declared active 

are, from Section 2.2.1, 

= 1 - (1 - 0.2)^ = 0.83, 

p w _ 1 _ (1 _ 0.2)g = 0.74. 
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The probability of the grouped control x control interaction between group 

and being declared active is 

p M ^ 1 _ (1 _ 0.2)^^ = 0.93. 

Then (2.25) gives = 49.11. 

(ii) For the grouping with f = 3, N = 1, = 3, = 2, = 2 and = 2. 

The probabilities of the grouped main effects being declared active remain as in 

Example 2.3.1: 

p P = 0.664, = 0.8, = 0.94, = 0.51. 

The probabilities of the grouped controlx control interactions being declared active 

are 

P i f = = (1 -0 .2 )^ = 0.74, 

p W = 1 - ( 1 - 0 . 2 ) ^ ^ = 0.59, 

and the probabilities of the grouped control x noise interactions being declared active 

are 

1 - (1 - 0.2)G = 0.74, 

j pw = 1 _ q 2)4 = o_5g_ 

Then (2.25) gives .E'(5'jGg) = 47.16 which is a smaller value than for the previous 

grouping. For both groupings, the value of -E'(5') is larger under interaction group 

screening than under classical group screening. 

2.4.3 Probabi l i ty dis t r ibut ion of SJGS u n d e r in teract ion group 

screening 

As for classical group screening it has not been possible to 5nd a closed form for 

the distribution of but a formulation for computation can be obtained. 

For any given experiment under interaction group screening, the total number 

of effects S'jgg to be estimated at the second stage is determined by which grouped 

control and noise factors are declared active at the Erst stage and why they were 
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declared active, and hence is determined by the realisations of the random index 

vectors and The maximum value for s, the number of eEects 

examined across the two stages, corresponds to the situation where every grouped 

factor is declared active at the hrst stage and brought forward to the second stage. 

Hence 

g < + 2ar + cf+1 + f a t + (1 - 0 

where = 0 if = 0 and 1 otherwise, for the same reason as in (2.24). The 

minimum value for 5 corresponds to the situation where no grouped factors are 

declared active after the hrst stage experiment. Hence 

5 > 27V + Cf+i + f AT + (1 - (). 

Hence, the probability under interaction group screening that the total size S'/cs of 

the experiment is equal to 8, again assuming maximum aliasing, can be expressed 

as 

P{S,GS = ^) = Y 1 f , 4 " ' ) (2-26) 

where, using (2.24), 

RIGS = {(4", I F , 4°"'): U^AS = S ^ (2N + C^+I + F N ) + ( 1 ^ 0 } , (2.27) 

and where 

2ar + + f n + (1 - 0 < 3 < 2"^+"^ + 2ar + c^+i + + (1 - (). (2.28) 

Under the simplifying assumptions that the grouped effects are independently 

active or non-active, that any non-active grouped effect is zero, and that the des-

ignated high level of each grouped factor produces the higher response, the joint 

probability function of and is 

f ( f w = f m = fjj")) 

1=1 i=l k=i+l 

where 

(2.29) 
1=1j=i 
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1 < < 2^, 1 < (2 < 2 :̂̂ , 1 < :̂ 3 < 2^^ 

and and are realisations of the random variables and 

respectively. 

2.4.4 The variance of SJGS 

The formulation of (2.29) enables the variance of 5'jGg to be calculated as 

•5: RJGS 

- [ s f (f w = f (2.30) 

where TZ/cg and the limits on g are as given in (2.27) and (2.28), respectively. 

2.5 F u r t h e r m e t h o d s of ass igning in te rac t ion prob-

abilit ies 

So far the theory of Section 2.4 requires specihcation of probabilities of individ-

ual interactions being active which have to be elicited from subject specialists, 

typically engineers. When eliciting information about the importance of factorial 

eSects, subject specialists are usually more able to give opinions in the case of main 

eEects than for interactions. An approach for tackling this uncertainty is to make 

the eSect heredity assumption of Hamada and Wu (1992). This aasumes that when 

a two-factor interaction is signihcant, at least one of the main effects of the factors 

involved is also signihcant. Chipman (1996) also used this assumption when as-

signing probabilities to given interactions, and called it the lueoA 

Chipman also allowed for the possibihty of an active interaction occurring between 

two factors with non-active main e%cts. He assigned a very small probability to 

such interactions and called this the weaA Aere(f% pnMcip/e. He also de6ned 

the Tiered*̂ ?/ jpn/iczpZe to correspond to the prior belief that for an interaction 

to be active, both of the main effects of the factors involved must also be active. We 

have focussed on the reZaa;eo( weoA Aere(f% as the risk of missing important 

interactions is reduced with this type of heredity. 
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This section incorporates the relaxed weak heredity principle into the general 

formulation of Section 2.4. Following Chipman (1996), we assume that 

(i) the probabilities of active main eSects of the factors in the experiment are 

mutually independent 

(ii) that conditional on the status of the main effects of the factors, the probabil-

ities of active interactions are mutually independent 

(iii) the probability of an interaction being active depends only on the status of 

the main effects of the factors involved in that interaction. 

These assumptions lead to the following assignment of the conditional probabihty 

that the interaction between individual control factors .Ait is active. 

- ^ ( 9 5 = = 's, g, ̂  = 0 ,1 , 

where the superscript (cc) indicates that the interaction is between two control 

factors, and the superscript (c) indicates that the individual main eEect probabihties 

are for control factors. The unconditional probability is, therefore, 

s = 0 t=0 

+ - Qjf ) + • (2-31) 

The conditional probabihties the conditional probabilities 

iiGed to be specihed and Chipman (1996) used the values 

0.01, 0.25, 0.25. 0.5 respectively in his example using relaxed weak heredity. 

A similar formulation for = 1), the unconditional probabihty for an 

individual controlxnoise interaction being active can be obtained. We have found 

that, for the factor screening situation, the conditional probabilities = 

0.25 can be too large, as is illustrated in the following example. 

Example 2.5.1 Suppose that there are 26 individual control factors in five groups 

of sizes 4, 5, 5, 6 and 6 and with probabilities of main eEects being active in each 

group of (0.4, 0.4, 0.4, 0.4), (0.15, 0.15, 0.15, 0.15, 0.15), (0.1, 0.1, 0.125, 0.15, 0.15), 
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(0.05, 0.05, 0.05, 0.05, 0.05, 0.05), and (0.1, 0.1, 0.1, 0.1, 0.1, 0.1). Suppose there 

are also 11 individual noise factors in two groups of sizes 6 and 5 with corresponding 

main eSects probabilities of (0.1, 0.1, 0.125, 0.15, 0.15, 0.15) and (0.45, 0.4, 0.35, 

0.35, 0.25). 

Then, using Chipman's values for (and similarly 

for we can calculate from equation (2.31) the probabilities for individual 

control X noise interactions being active between the factors in the most likely con-

trol group and the least likely noise group. These probabilities are 0.1304, 0.1304, 

0.1365, 0.1426, 0.1426, 0.1426, each occurring 4 times. The probabilities for indi-

vidual control X noise interactions being active between the factors in the least likely 

control group and the most likely noise group are found similarly and have values 

0.1302, 0.1182, 0.1062, 0.1062, 0.0821, each occurring 6 times. 

The probabilities for individual controlxcontrol interactions being active be-

tween the factors in the most likely control group and the least likely control group 

consist of 0.1182 occurring 24 times. The probabilities for individual controlxcontrol 

interactions being active between the factors in the most likely control group and 

the next most likely control group consist of 0.1426 occurring 24 times. 

The probabilities for the individual control x noise interactions being active be-

tween factors in the least likely control group and the least likely noise group consist 

of 0.0461, 0.0461, 0.0521, 0.0581, 0.0581, 0.0581, each occurring 36 times. The prob-

abihties for the individual control x noise interactions being active between factors 

in the most likely control group and the most likely noise group consist of 0.2157, 

0.2036, 0.1914, 0.1914, 0.167, each occurring 4 times. The probabilities for the indi-

vidual controlxcontrol interactions being active between factors in the least likely 

control group and the next least likely control group consist of 0.0461 occurring 36 

times. 

Some of the interaction probabilities given above seem to be quite high; in 

particular, the hrst three sets of probabilities have values mainly around 10-14%, 

even though the main effect of one of the factors involved in each interaction is 

unlikely to be active. 

Using Chipman's full values 0.01, 0.25, 0.25 and 0.5 leads to an expectation of 

29 or 30 individual control x noise interactions out of 285 being active and 26 or 
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27 individual controlx control interactions out of 325 being active. This choice of 

probabilities for individual effects, when there are large numbers of factors, leads 

to a large number of interactions being considered as active. 

In the foUowing we investigate the effect of the choices for probabilities of active 

eEects. 

E x a m p l e 2.5.2 Based on the main effects probabilities and groupings of Exam-

ple 2.5.1, we have carried out a systematic study of the eSect of the tUij on the 

expected total number and standard deviation of e&cts to be estimated and, 

for illustration, the probabilities of exceeding 200 and 350 runs. Starting from 

= 0.01, = 0.25 and = 0.5 

we divided the conditional probabihties by integer b, for 6 = 1 , . . . , 100. A selection 

of the results is shown in Table 2.1. We see that a reduction in the Wi/s by a factor 

of 5 has the effect of more than halving and reducing f > 350) from 

1.0 to 0.483. The expected numbers of active individual interactions are reduced by 

a factor of 5, giving much more reasonable numbers of expected active individual 

interactions. A further halving of the w.̂  's again has a large eSect but, thereafter, 

the reduction is much smaller. The values for the expected numbers of active eSects 

decrease from about 29 and 28 out of 286 controlx noise and 325 control x control 

interactions respectively, to around 0.3 in both cases. 

Bingham and Chipman (2002) gave another method of choosing the prior prob-

abilities of interactions being active by assuming that they are proportional to the 

probability of a main eSect being active, with the proportionality constant depend-

ing on which 'parent' main effects are active. 

We have found that care needs to be taken in assigning the values of the condi-

tional probabihties so that the expected number of active interactions is consistent 

with the principle of eSect sparsity. 

2.6 Conclusions 

The results of this chapter can be used to explore the eEect on the total number of 

effects that needs to be estimated in two-stage group screening of different choices 
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Table 2.1: Expected numbers of active individual controlxnoise (cxn) and 

controlX control (cxc) interactions out of 286 and 325 possible interactions respec-

tively, and > 350) for the experiment of Example 2.5.1 

and selected values of 6. 

h ^ ( c X n,) E ( c X c) g.d.(5 ') > 200) f > 350) 

1 29.26 27.64 637.2 36.67 1.0 1.0 

5 5.85 5.23 346.7 64.89 0.99 0.483 

10 2.93 2.76 240.0 63.29 0.73 0.040 

20 1.46 1.38 166.8 56.50 0.28 0.001 

30 0.98 0.92 137.7 50.94 0.12 0.000 

40 0.73 0.69 122.0 46.78 0.06 0.000 

50 0.59 0.55 112.2 43.60 0.03 0.000 

75 0.39 0.37 98.7 38.18 0.01 0.000 

100 0.30 0.28 91.7 34.75 0.01 0.000 

of strategy and group sizes. Two screening strategies have been investigated: clas-

sical group screening and interaction group screening for unequal group sizes and 

unequal probabihties of individual main eSects and interactions being active. Ex-

plicit formulae for a:id kave been obtained and the forms of the 

distributions and variance of S'ccs' ^iid have been presented. Small examples 

have been used to illustrate the results. 

The following chapter describes software which incorporates the theory pre-

sented in this chapter and enables investigations of experiments with large numbers 

of factors. The issues of how to choose group sizes and the sensitivity of to 

the choice of values for the probabilities of factorial effects being active under both 

classical and interaction group screening will also be discussed in Chapter 3. 
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Chap te r 3 

Compara t ive Studies 

3.1 Introduction 

In this chapter a variety of grouping and screening strategies is investigated, where 

screening strategy refers to a choice between classical group screening (CGS) and 

interaction group screening (IGS). SpeciScally, the following questions are consid-

ered: 

# how does the grouping of factors affect the distribution, expectation and stan-

dard deviation of the total number of effects S requiring estimation in a two-

stage experiment? 

# how do changes to the probabilities of individual factorial effects being active 

change the probability distribution, expectation and standard deviation of S? 

These questions are investigated using grouping software that I have written in 

C to implement the ideas of Chapter 2 through the calculation of the probabihty 

distribution, expected value and standard deviation of 5" and the total number 

of effects requiring estimation in a two-stage experiment, under classical group 

screening and interaction group screening. This software allows unequal group 

sizes and unequal probabihties of individual factorial effects being active and gives 

a range of assessments of the grouping strategies under CGS and IGS. In these 

two ways it is an advance on the software described by Lewis and Dean (2001). 

This software also applies to the special case where there are no noise factors under 

consideration. The software also calculates -P(^CG6' > 
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8.c(.(5';G5') and f (S'/gg > -u) where % is a target experiment size. Details 

of the input required by the software are given in Appendix A. 

In Section 3.2 the software is used to investigate screening strategies for a large 

example with a specihed grouping. In Section 3.3 an investigation is presented 

which examines how changing the numbers of groups and group sizes aSects the 

distribution of 5". In Section 3.4, it is shown how the sensitivity of the expected 

size to changes in the probabilities of the individual factorial eEects being active 

can be investigated under CGS and IGS using the software and fractional factorial 

designs. Conclusions are presented in Section 3.5. 

The following notation will be used to specify a grouping of factors, that is, the 

sizes of each group and the particular factors held in each group. Suppose that an 

ordering of the individual control and noise factor labels is specified as 

^(4 y d W . xw x w 
; 71(7: 1 niv' 

where the total number of individual control (noise) factors. The ex-

pression 

(^1) - " ? ^ ^1; - ^iv) 

denotes the grouping of adjacent control factors into f (A )̂ consecutive groups of 

control (noise) factors with sizes for % = 1, (6^ for j = 1, ...,^2), where the 

grouping is made starting from the leftmost control (noise) factor. This notation 

will be used for the studies of di%rent groupings in Section 3.3. 

Example 3.1.1 For the ordering of 7 individual control factors and 4 individual 

noise factors given by 

ytW y,(c) ^(c) ,(c) .(c) ,(c) ,(c). y.W . w 

the expression (2, 2,3; 2, 2) denotes the grouping 

{ 4 \ 4 '}. {4"', 

My software has been incorporated into a system called GISEL (grouping in 

screening with elicitation) developed on the larger EPSRC project (GR/R72693/01) 

(see Dupplaw et al. (2004)). This web-based system has a more user friendly 
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interface than my software and elicits information about the individual effects from 

users (also see Section 4.1). Users are able to create a list of individual control and 

noise factors and to submit their opinion on how important each factor is likely 

to be for a specihed response and also the anticipated direction of inSuence of the 

factor on the response. The user is also able to enter probabilities of the various 

individual factorial effects being active, and can specify a particular grouping. The 

software described above is then implemented and the output is displayed in both 

a numerical and graphical form. The graphical output allows comparison of the 

probability distribution of the size of the two-stage experiment, and the probability 

that the number of effects requiring estimation exceeds a certain target size, under 

different groupings and choices of interaction or claasical group screening. 

GISEL also incorporates simulation software to assess the risk of failing to de-

tect important interactions. This software, which I did not write, is based on Dean 

and Lewis (2002), extended to accommodate the situation where some of the con-

trol and/or noise main effects are believed very likely to be active. These are then 

grouped together in groups of size specihed by the user and the remaining factors, 

whose main effects are believed less likely to be active, are partitioned into groups 

of size speciSed by the user. The factors whose main effects are believed very likely 

to be active are assumed to have main effects whose directions are known. The user 

can also speci:^ how many directions of the main eSFects are known. As described 

in Section 1.4.1 the software is able to investigate hovy the choice of grouping and 

screening strategy afFects the proportions of active individual main eEects and ac-

tive two-factor interactions involving a control factor that are undetected in the 

simulated screening experiment. There are far too many possible combinations of 

groupings, strategy and choices of probabilities to make the simulation of an ex-

periment for all possible groupings computationally feasible. Hence my software is 

Erst used to identify a small number of promising options. The simulation software 

is then run to identify the risk of missing important effects before the 6nal choice 

is made. 
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3.2 A large example 

The following large example illustrates how the software and ideas of Chapter 2 

can be used to investigate screening strategies with unequal group sizes for large 

numbers of factors with unequal probabilities of di%rent individual main ejects 

and two-factor interactions being active. 

E x a m p l e 3.2.1 Consider an experiment with 26 individual control factors in five 

groups of sizes 4, 5, 5, 6 and 6. Suppose that the probabilities of main ejects being 

active in each group are (0.4, 0.4, 0.4, 0.4), (0.15, 0.15, 0.15, 0.15, 0.15), (0.1, 0.1, 

0.125, 0.15, 0.15), (0.05, 0.05, 0.05, 0.05, 0.05, 0.05), and (0.1, 0.1, 0.1, 0.1, 0.1, 0.1) 

respectively. Suppose that there are also 11 individual noise factors in two groups 

of sizes 5 and 6 with corresponding main effects probabilities of (0.45, 0.4, 0.35, 

0.35, 0.25) and (0.1, 0.1, 0.125, 0.15, 0.15, 0.15). Suppose that the probabihties of 

individual control xnoise interactions being active between the factors in the Erst 

(most likely) group of control factors and the most likely group of noise factors 

are all 0.2 and all other controlxnoise interaction probabilities are 0.005. The 

probabilities of control x control interactions being active between individual factors 

in the first control group and the others are all 0.1. The probabilities of all other 

individual controlxcontrol interactions being active are assumed to be 0.005. 

The expectation and standard deviation of 5" for the two-stage experiment and 

the probabihty of the number of eEects requiring estimation exceeding targets of 

200, 250, 300, 350, 400 and 450 runs, under classical and interax:tion group screen-

ing, are shown in the Arst two rows of Table 3.1. Classical group screening (CGS) 

has a smaller expected value of 5" than interaction group screening (IGS). However, 

the probabilities that 5" exceeds the targets of 350, 400 and 450 runs are larger 

for CGS than for IGS. This is explained by the increased standard deviation for 

CGS which can be seen from the probability distributions for the size of the two-

stage experiment under CGS and IGS, shown in Figure 3.1. The explanation of 

thig result is that investigation of grouped interactions at the hrst stage under IGS 

may lead to several groups of factors being dropped a t this stage. Fewer individual 

interactions would need to be examined at the second stage. For example, if a 

grouped noise factor is judged to have an active main eEect but is not involved in a 
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control Xnoise interaction, found to be active, then all the individual noise factors 

in the group will not be investigated further. For this example, this property of 

IGS shows strongly because of the low probabihties of individual interactions being 

active. By contrast, under CG8, all the interactions involving the individual noise 

factors in a noise group declared active would be examined at the second stage. 

Figure 3.2 shows the probabihty of the number of effects requiring estimation 

in a two-stage experiment exceeding a target size it under CGS and IGS. For this 

example, CGS gives a lower probability of exceeding a target tt when it < 342. 

Beyond this target value, CGS gives a higher probability of exceeding the target. 

This is because there are values of s greater than 342 with much higher probabilities 

of occurring under CGS than under IGS. In particular, under CGS, the probabihty 

of every grouped factor being declared active at the Erst stage (the maximum value 

5" can take), is higher than for IGS as can be seen f rom Figure 3.1. 

Table 3.1: The expectation and standard deviation of 5" for the experiment of 

Example 3.2.1, and the probabilities of 5" exceeding 200, 250, 300, 350, 400 and 

450. 

f 
g.d.(5') 

u 200 250 300 350 400 450 
g.d.(5') 

CGS 0.52 0.38 0.33 0.15 0.12 0.12 234.16 132.55 

IGS 0.97 0.80 0.40 0.10 0.01 0.00 287.61 48.03 

IGS(i) 0.99 0.93 0.57 0.20 0.03 0.00 310.11 46.93 

IGS(ii) 0.98 0.82 0.42 0.11 0.01 0.00 289.89 47.11 

IGS(iii) 1.00 0.95 0.59 0.22 0.03 0.00 312.39 45.99 

The effect of changing the probabihties of individual interactions being active 

can be investigated and is now illustrated in this example. 

Control X noise: The eSect of increasing the probabihty of individual control x noise 

interactions being active between the individual factors in the second grouped con-

trol factor and the most likely grouped noise factor from 0.005 to 0.25 is shown 

in Table 3.1, as IGS(i). The expected size increases by 22.5, but the standard 

deviation decreases bv 1.1. 
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Figure 3.1: The probabihty distributions for the number of eSects requiring esti-

mation in the two-stage experiment under (a) CGS and (b) IGS. 
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Figure 3.2: The probability of exceeding a target size under CGS 
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Cont ro l X control: The effect of increasing the probability of individual 

controlX control interactions being active between t h e factors in the most likely 

grouped control factor and the fourth grouped control factor from 0.1 to 0.25 is 

shown in Table 3.1, as IG8(ii). The expected size increases by 2.28 and the standard 

deviation by 0.92. 

ControlX noise and cont ro lx control: The effect of making both the above 

changes to the probabilities for interactions is shown in Table 3.1, as IGS(iii). The 

expected size increases by 24.78 (an increase of ^ 9%) and the standard deviation 

decreases by 2.04 (a reduction of ^ 0.24%). 

This example has illustrated how the distribution of 5" can be investigated for 

a problem with a large number of factors, unequal group sizes and unequal prob-

abihties. In the following section, investigations are presented of how the choice 

of the number of groups and the number of factors within each group a&ct the 

distribution of S. 
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3.3 Investigations of groupings 

3.3.1 S tudy 1 

In this study, a total of 12 individual factors (6 control and 6 noise) and a variety 

of different values for the probabilities of main effects being active are considered. 

The main effects probabihties for the control factors, and 

are 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 respectively. The main eSects probabilities for 

the noise factors, and are 0, 0.2, 0.4, 0.6, 0.8 and 

1.0 respectively. For interaction group screening, the weaJk heredity principle (see 

Section 2.5) is used to calculate the individual interaction probabilities. This takes 

into account the probabilities of the corresponding main effects probabilities of the 

factors involved. The values of the conditional probabilities 

and conditional probabilities are 0.005, 0.125, 0.125, and 

0.25 respectively, which are half the values used by Chipman (1996) (see Table 

2 .1 ) . 

In the study a range of diSerent groupings of the factors was considered for up 

to hve groups of control factors and three groups of noise factors. A consequence 

of using different choices of factors within each group is that different probabilities 

of individual main effects being active are combined, through equation (2.1) and 

equation (2.2) of Section 2.2.1, to produce the probability of each grouped main 

effect being active. In order to gain some understanding of how this might affect 

the distribution of S, groupings were imposed on the individual factors in two ways. 

I - Group ing toge ther factors wi th similar m a i n effect probabi l i t ies : 

The individual control factors are ordered in increasing size of main effect proba-

bilities and the individual noise factors are ordered in the same way to give 

x(c) xw x(c) xw x(c) xw. xw x w xw xw xw 

When groupings are imposed on the individual factors in this order (see Section 

3.1) then factors within a group have similar main effects probabilities. 

I I - Group ing toge the r factors wi th dissimilar m a i n effect probabi l i t ies : 

The grouping is imposed on the individual factors when held in the order 

xw xw xw xm x(c) x(c). xw x w 
-^1 , ^6 ) ^2 : ^5 i ^3 ) ^4 ) , ^6 ' ^ 2 ' ^5 i ^3 ' ^4 
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so that the factors within a group have more dissimilar main eEects probabilities, 

than in I. 

The distinct groupings for the control factors under I are listed in the Appendix 

in Table B.l. Table B.2 lists the 16 distinct noise groupings that are possible for 

= 1 up to = 3 under I. Similarly, the groupings for the control and noise 

factors under II are listed in B.3 and B.4 respectively. In the study every choice of 

control factor grouping was used with every choice of noise factor grouping. 

In t e rac t ion G r o u p Screening 

Table 3.2 gives the maximum and minimum values of s.d.(5'fGa) and 

> 65) found in Study 1, together with the groupings which produced those 

values. 

Table 3.2: Maximum and minimum values for g.d.(5'fGs) Eind 

f ('S'iGg > 65) for Study 1 and interaction group screening according to similar 

probabilities (I) and dissimilar probabihties (II), together with the corresponding 

grouping. 

I II 

max E(5'fGa) 72.98 72.73 

(6; 5,1) (6; 6) 

min E(5'fGg) 60.02 60.90 

(2,2,2; 2,2,2) (2,2,2; 2,2,2) 

max 5.(f.(5'fG.9) 10.93 10.60 

(6; 3,2,1) (6; 2,2,2) 

min 5.d.(5';Gg) 3.55 3.55 

(6; 6) (6; 6) 

max f (S'fGg > 65) 0.99 0.99 

(6; 6) (6; 6) 

min f (6'jGg > 65) 0.3 0.35 

(2,2,2; 2,4) (2,2,2; 2,4) 

(2,2,2;4,2) 
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From Table 3.2, it can be seen that, for groupings based on similar probabilities 

in this study, the formation of groups that are as equally sized and as small as 

possible (excluding groups of size one), that is (2,2,2; 2,2,2), gives the best results 

under criterion 1 (see Section 2.2.2) of minimising the expected number of effects to 

be estimated { E { S I G S ) = 60.02). This is also one of the best groupings in terms of 

minimising the probability of exceeding a target of 65 runs ( f (S'/cs > 65) = 0.34). 

However, under the criterion of minimising the standard deviation of SIGS, this is 

not the best strategy giving the value of g.(f.(5'/Ga) = 8.79. As shown in the table, 

the best overall strategy for minimising the standard deviation is to group all the 

control factors together in a single group of size six and all the noise factors in a 

single group. There are then only two groups to consider at the first stage of the 

experiment and much less scope for variation in the number of grouped factors to 

be brought forward to the second stage. 

For groupings based on similar probabilities, putt ing all the control factors in 

one group is nearly always the worst strategy, across all the diSerent groupings of 

the noise factors, in terms of minimising the expected size. This is because the one 

grouped control factor is very likely to be brought forward to the second stage and, 

when this occurs, no control factors will have been ruled out. More observations at 

the second stage will then be needed. 

The results from the study allow a more detailed examination of how the group-

ing of factors affects the distribution of Sias- Tables C.l to C.2 in Appendix C 

show how the different noise factor groupings affect the maximum and minimum 

values of ^ ( ^ c g ) , g.(f.(5'fGa), and f (S'/gg > 65) under orderings I and 11 for IGS. 

An interesting comparison involves the grouping (1,1,2,2; 2,2,2), under Method I 

(similar probabilities). A comparison of the results of this grouping (which are not 

shown) with those of grouping (2,2,2; 2,2,2) shows tha t the only benefit of splitting 

one grouped control factor of size 2 into two groups of size 1 is that the standard 

deviation of S is decreased from 8.79 to 7.94. However, the expected size is in-

creased from 60.02 to 62.55 and the probability of exceeding 65 runs is increased 

from 0.34 to 0.38. Figure 3.3 shows the distributions for (2,2,2; 2,2,2) and (1,1,2,2; 

2,2,2). It is clear from the distributions that there are fewer possible experiment 

sizes for grouping (2,2,2; 2,2,2) than for (1,1,2,2; 2,2,2), but there is a wider range 
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of sizes. Hence a larger value for the standard deviation is obtained. 

Grouping together factors with higher main effects probabilities generally seems 

to be a good approach for control and noise factors in the example. For example, 

using the control grouping (1,1,4) as opposed to (4,1,1) reduces the expected size by 

approximately one run and consistently reduces the standard deviation of 5', and 

hence the probabihty of exceeding a target size, across all of the noise groupings. 

For groupings based on dissimilar probabilities, the results are very similar to 

those for groupings with similar probabilities, with mainly slightly increased values 

for ^(S'/Gg) and f (5'fGg > 65) and sometimes decreased values of the standard de-

viation. However, the overall minimal values arise from grouping together factors 

with similar main effect probabihties of being active, tha t is, ordering I. An increase 

in values for expected size waa anticipated under ordering H, as the more likely fac-

tors will bring with them the less likely factors with which they are grouped to the 

second stage. The increase is only slight here and a possible explanation is that the 

probabilities for the factors within each group are not greatly dissimilar. 

Classical G r o u p Screening 

The above study was repeated for classicai group screening and a summary of 

the results are given in Table 3.3. and f ( ^ c a > 65) for 12 factors (6 control, 6 

noise) with F < 5, and < 3 for groupings based on simitar probabilities and 

dissimUcLT probabilities as was done for interaction group screening. Tables C.3 

to C.4 in Appendix C show how the diEerent noise factor groupings a&ct the 

maximum and minimum values of ^(5'cGs), a.d.(5'cGg), and f ( ^ c a > 65) under 

orderings I and H for CGS. 

The control factor grouping (1,1,1,1,2) based on ordering I, similar probabili-

ties, consistently gave the smallest ^ ( ^ g g ) value but a reasonably large value for 

5.d.(5'cG5') across all the noise groupings. Grouping the control factors together 

in one group of size six consistently gave the largest j5'(5'cGg) value and, in most 

cases, the minimum value for the steindard deviation. Hence this is also the worst 

strategy in terms of reducing the probability of exceeding 65 runs. This is because 

the group of six control factors is extremely likely to be brought forward to the 

second stage and, when this occurs, all individual control x control interactions ^dll 
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Figure 3.3: The probability distributions for the size of the two-stage experiment 

under grouping (2,2,2; 2,2,2) and (1,1,2,2; 2,2,2) based on similar probabihties, for 

interaction group screening. 
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Table 3.3: Maximum and minimum values for E'(5'cG5'), 5.d.(5'cGg) 

-P('S'cGg > 65) for Study 1 and classical group screening according to similar proba-

bilities (I) and dissimilar probabilities (11), together with the corresponding group-

ing. 

I II 

max E(5'cG5) 71.65 

(6; 6) 

71.65 

(6; 6) 

min E(5'cGg) 39.74 44.97 

(1,1,1,1,2; 2,1,3) (1,1,1,2,1; 1,3,2) 

max 5.cg.(5'cGg) 4.27 3.94 

(3,2,1; 4,2) (2,2,2; 2,2,2) 

min g.d.(6'cGa) 4.32 4.32 

(6; 1,5) (6; 1,5) 

max f (5'cGa > 65) 0.99 0.99 

(6; 6) (6; 6) 

min f (5'cGa > 65) 0.00 0.00 

(6; 1,5) (6; 1,5) 
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need to be examined. In the case where all the noise factors are also in one group 

(i.e. grouping (6; 6)), aZZ individual interactions are extremely likely to be examined 

at the second stage. In the study, this grouping gave the overall maximum value 

for jB(5'cG6') and f > 65). 

Under ordering I, grouping the more likely control factors together rather than 

separating them into groups of size one is nearly always better under all three 

criteria of minimising jB(5'cGg), s.d.(5'cGs) and f (5'cGg > 65). For example, the 

grouping (1,1,1,3; 2,2,2) gave the values E(5'cG5') = 43.02, g.d.(5'cG5') = 10.88 

and f ( ^ G g > 65) = 0.01, whereas the grouping (3,1,1,1; 2,2,2) gave the values 

-B(5'cGg) = 46.60, g.d.(5'cGg) = 14.36 and f (5'cGa > 65) = 0.04. This is also true 

for the noise groupings. 

For groupings based on dissimilar probabilities, the results are very similar to 

those for groupings with similar probabilities, with mainly shghtly increased values 

for ^(S'cGg) and f (5'cGg > 65) of about 1 and 0.02 respectively, and sometimes 

decreased values of standard deviation. However, the overall minimal values arise 

from groupings of factors having similar probabilities that their main effects are 

active. 

Compar i son of classical group screening and i n t e r a c t i o n g roup screening 

In this study, the minimum value of the expected size occurs under CGS. However, 

the maximum standard deviation is also produced by CGS and the minimum stan-

dard deviation by IGS. This is because, under CGS, the number of observations 

needed at the second stage is much more variable than under IGS due to the fact 

that no interactions are ruled out at the hrst stage. 

Under CGS the expected size is always less than the corresponding expected 

size under IGS as is the probability of exceeding 65 runs. This apparent advantage 

of CGS fails to reSect the risk of failing to miss important effects or the risk of 

declaring unimportant factors to be important. This drawback to CGS can be 

shown by a simulation study. 

Under interaction group screening, the best grouping in terms of minimising 

^(5") was (2,2,2;2,2,2) for orderings I and II, indicating that a good strategy is to 

keep group sizes as equal and as small as possible (without groups of size 1). Under 
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classical group screening, the same grouping gave values for of 46.99 and 58.78 

for orderings I and II respectively. These values were not near the corresponding 

minimal values indicating that this is not a good grouping strategy for classical 

group screening. The results from this study indicate using as many groups as 

possible (including groups of size 1) is a good strategy for minimising E{SCGS)-

The following example provides a counterexample to the hypothesis that using 

group sizes as small as possible minimises the expected value of S for interaction 

group screening. 

E x a m p l e 3.3.1 Consider an experiment with 6 individual control factors and 6 in-

dividual noise factors. Let the main effects of the individual factors have probability 

0.2 of being declared active, and the individual control x noise and control x control 

interactions have corresponding probabilities of 0.05 of being active. Table 3.4 

shows, for this example, what happens when the group sizes and numbers of groups 

are varied under interaction group screening. The last two rows show that equal 

sized groups (all of size 2) is slightly less efficient, in terms of minimising expected 

size, than having the control factors in groups of size 2 and the noise factors in 

groups of size 3. It also gives a slightly larger probability of exceeding a target of 

40 but smaller probabilities of exceeding targets of 50 and 60. 

For this example group sizes need to be as equal as possible but not necessarily 

as small as possible in order to minimise the expected size of the experiment. Also, 

keeping group sizes as small as possible gives minimal values for standard deviation 

in this example. However, the diEerences in values of and for 

these two groupings are small. 

From the studies in this section, it is clear that general statements about the 

eSFect of groupings for factors and strategy cannot be made. It is necessary to 

investigate the impact on the distribution of S of various choices using software to 

perform the necessary calculations before reaching a decision. 
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Table 3.4: The expected size, standard deviation and probabilities of exceeding 40, 

50 and 60 eSects requiring estimation for different groupings of control and noise 

factors for IG8. 

6 control 6 noise 
g.(Z.(6'/G!g) 

groups sizes groups sizes 
g.(Z.(6'/G!g) 

40 50 60 

4 2,2,1,1 4 2,2,1,1 50.91 7.79 0.92 0.53 0.11 

3 2,2,2 1 6 46.97 15.12 0.75 0.48 0.13 

3 3,2,1 3 3,2,1 45.99 11.17 0.69 0.38 0.10 

3 2,2,2 4 2,2,1,1 45.68 8.78 0.67 0.34 0.04 

2 3,3 2 3,3 45.49 14.70 0.61 0.37 0.23 

3 3,2,1 3 2,2,2 44.55 10.37 0.63 0.29 0.06 

2 3,3 3 2,2,2 44.00 12.23 0.63 0.31 0.10 

3 2,2,2 3 2,2,2 42.51 9.61 0.58 0.18 0.03 

3 2,2,2 2 3,3 1 42.09 11.75 0.56 0.26 0.06 

3.3.2 S tudy 2 - Prac t ica l special case 

This concerns the practical case, discussed in Chapter 4, of unequal probabilities 

arising when the main eSects of one group of control factors are thought very likely 

to be active and the main effects of the other control factors are believed to be less 

likely to be important, or there is little prior knowledge about their importance. 

Example 3.3.2 The strategy used in this example is interaction group screening. 

Consider an experiment with 15 individual control factors and 4 individual noise 

factors. Suppose that the main effects of 7 of the individual control factors are 

thought very hkely to be active and are assigned probability 1.0. The main ef-

fects of the remaining 8 individual control factors are assigned probability 0.2 of 

being active. Suppose also that there is little information about the 4 individual 

noise factors, and so their main effects are assigned probabihty 0.3 of being active. 

Individual controlxnoise and controlxcontrol interactions have probabilities 0.07 

and 0.05 respectively. These values are chosen to be slightly smaller than those 

that would be obtained using effect heredity with conditional probabilities as in 
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Example 2.5.1. 

The impact of changing groupings for these individual factors within the three 

sets of 7, 8 and 4 factors under interaction group screening, can be seen from Table 

3.5 for and three targets 120, 150 and 180. The hrst column 

shows all the possible groupings (excluding groups of size one) of the 7 very-likely-

to-be-active control factors; that is, one group of 7, tv/o groups of sizes 2 and 5, two 

groups of sizes 3 and 4, or three groups of sizes 2, 2 and 3. Column 2 shows possible 

groupings of the 8 remaining control factors in one, two, three or four groups, as 

listed. The four noise factors are grouped into one group of 4 or two groups of 2, 

shown in column 3. 

Table 3.5: Investigation of different groupings for Example 3.3.2 under interEiction 
group screening. 

7 v likely 8 indiv 4 indiv f CS'rr:.? > 
indiv con con noise 

gps sizes gps sizes gps sizes 120 150 180 

1 7 1 8 1 4 184.90 19.08 0.99 0.93 0.74 
1 7 1 8 2 2,2 174.75 20.31 0.98 0.89 0.55 
1 7 2 2,6 1 4 168.03 21.95 0.96 0.80 0.29 
1 7 2 2,6 2 2,2 158.41 21.97 0.94 0.70 0.16 
1 7 2 3,5 1 4 165.33 23.52 0.95 0.75 0.29 
1 7 2 3,5 2 2,2 155.32 23.13 0.92 0.61 0.13 
1 7 2 4,4 1 4 164.59 24.10 0.96 0.78 0.36 
1 7 2 4,4 2 2,2 154.43 23.56 0.91 0.60 0.12 
1 7 3 2,2,4 1 4 151.39 22.01 0.90 0.56 0.07 
1 7 3 2,2,4 2 2,2 143.16 21.46 0.85 0.38 0.03 
1 7 3 2,3,3 1 4 149.40 22.26 0.90 0.51 0.07 
1 7 3 2,3,3 2 2,2 141.14 21.61 0.83 0.35 0.02 
1 7 4 2,2,2,2 1 4 140.34 20.08 0.84 0.31 0.01 
1 7 4 2,2,2,2 2 2,2 134.04 19.51 0.76 0.20 0.01 
2 2,5 1 8 1 4 168.40 21.44 0.97 0.81 0.38 
2 2,5 1 8 2 2,2 159.22 21.71 0.94 0.68 0.13 
2 2,5 2 2,6 1 4 151.08 22.02 0.90 0.53 0.07 
2 2,5 2 2,6 2 2,2 142.42 21.19 0.84 0.37 0.02 
2 2,5 2 3,5 1 4 147.53 22.70 0.88 0.48 0.05 
2 2,5 2 3,5 2 2,2 138.49 21.45 0.79 0.29 0.01 
2 2,5 2 4,4 1 4 146.48 22.96 0.87 0.44 0.05 
2 2,5 2 4,4 2 2,2 137.28 21.57 0.78 0.27 0.01 
2 2,5 3 2,2,4 1 4 135.26 20.51 0.77 0.23 0.01 
2 2,5 3 2,2,4 2 2,2 127.99 18.97 0.67 0.12 0.00 
2 2,5 3 2,3,3 1 4 133.09 20.42 0.74 0.20 0.01 

continues overleaf 

58 



Table 3.5: contiimed 

7 V likely 
indiv con 

8 indiv 
con 

4 indiv 
noise -5(5^765) S.c(.(5'fGg) 

f ('S'/GS > u) 

g p s sizes g p s sizes g p s sizes 120 150 180 

2 2,5 3 2,3,3 2 2,2 125.79 18.76 0.62 0.09 0.00 

2 2,5 4 2,2,2,2 1 4 126.19 18.13 0.64 0.09 0.00 

2 2,5 4 2,2,2,2 2 2,2 120.85 16.42 0.52 0.04 0.00 

2 3,4 1 8 1 4 166.01 22.60 0.96 0.79 0.32 

2 3,4 1 8 2 2,2 156.64 22.60 0.93 0.63 0.15 

2 3,4 2 2,6 1 4 148.01 22.42 0.88 0.47 0.06 

2 3,4 2 2,6 2 2,2 139.17 21.34 0.80 0.30 0.02 

2 3,4 2 3,5 1 4 144.17 22.79 0.85 0.41 0.04 

2 3,4 2 3,5 2 2,2 134.94 21.28 0.75 0.24 0.01 

2 3,4 2 4,4 1 4 143.01 22.93 0.80 0.37 0.03 

2 3,4 2 4,4 2 2,2 133.63 21.27 0.73 0.21 0.01 

2 3,4 3 2,2,4 1 4 131.89 20.40 0.72 0.18 0.00 

2 3,4 3 2,2,4 2 2,2 124.45 18.56 0.60 0.08 0.00 

2 3,4 3 2,3,3 1 4 129.66 20.22 0.68 0.15 0.00 

2 3,4 3 2,3,3 2 2,2 122.18 18.23 0.54 0.06 0.00 

2 3,4 4 2,2,2,2 1 4 122.93 17.92 0.57 0.06 0.00 

2 3,4 4 2,2,2,2 2 2,2 117.41 15.84 0.43 0.02 0.00 

3 2,2,3 1 8 1 4 153.59 20.80 0.93 0.59 0.07 

3 2,2,3 1 8 2 2,2 146.15 20.86 0.88 0.43 0.04 

3 2,2,3 2 2,6 1 4 137.30 20.02 0.80 0.26 0.01 

3 2,2,3 2 2,6 2 2,2 130.39 18.86 0.71 0.15 0.00 

3 2,2,3 2 3,5 1 4 133.49 20.20 0.75 0.20 0.01 

3 2,2,3 2 3,5 2 2,2 126.19 18.55 0.63 0.09 0.01 

3 2,2,3 2 4,4 1 4 132.33 20.28 0.73 0.18 0.00 

3 2,2,3 2 4,4 2 2,2 124.89 18.44 0.61 0.08 0.00 

3 2,2,3 3 2,2,4 1 4 123.37 17.80 0.58 0.06 0.00 

3 2,2,3 3 2,2,4 2 2,2 117.85 15.72 0.44 0.02 0.00 

3 2,2,3 3 2,3,3 1 4 121.24 17.59 0.52 0.04 0.00 

3 2,2,3 3 2,3,3 2 2,2 115.69 15.34 0.38 0.01 0.00 

3 2,2,3 4 2,2,2,2 1 4 116.56 15.40 0.41 0.01 0.00 

3 2,2,3 4 2,2,2,2 2 2,2 112.97 13.00 0.27 0.00 0.00 

Table 3.5 shows that, for this example, equal sized groups tend to give rise 

to smaller values of and smaller corresponding standard deviations. The 

same pattern has occurred in other examples including those in Section 3.3.1. In 

this particular study, the smallest group sizes are the best under criteria 1 to 3, but 

this is not necessarily true for other examples, as was demonstrated in Example 

3.3.1. 
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One way of reducing the expected number of effects to be estimated is to keep 

fixed, during the experiment, the levels of the factors that are very likely to be 

active since their effects are assumed to be already known. When this is done for the 

grouping in the last line of Table 3.5, E{SIGS) drops to 49 under interaction group 

screening. This would require fewer resources but there would be no information 

about the interactions between the likely active factors and the other factors from 

the experiment. 

Suppose in interaction group screening that several individual control factors 

are believed to have main effects that are very likely to be active, and the same is 

not true for the other factors. This raises the question of whether it is better to 

put the very-likely-to-be-active factors in a single group or to spread them across 

several groups. The latter strategy could involve forming a group of control factors 

that contain both very likely and very unlikely-to-be-active factors. 

Prom equation (2.1) of Section 2.2.1, the approximation of the probability of 

the main effect of a grouped control factor being declared active is 

~ %% (1 " lik) 

where is the probability that the main effect of individual factor Aik is active, 

with a similar definition for grouped noise factors. If < 1, V/c, then < 1. 

However, if = 1 for any A;, then = 1. Hence, any group containing an 

individual control factor whose main effect has probability 1 of being active will be 

brought forward to the second stage with probability 1, and all the individual main 

effects, and interactions involving factors within tha t group, will then have to be 

estimated in the second stage experiment. This may result in an increase in the 

experiment size, even when only one highly active factor is put in a group with less 

likely-to-be-active factors. This suggests that grouping together the very-likely-to-

be-active factors is to be preferred. 
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3.3.3 Different numbers of groups a n d group sizes for 

classical g roup screening 

E x a m p l e 3.3.3 Table 3.6 gives the results for the experiment in Example 3.3.2 

when a CGS strategy is adopted, for a variety of group sizes and numbers of groups. 

It is clear, by comparison with the corresponding IGS results in Table 3.5 that the 

CGS strategy produces smaller values of expected size. However, the disadvantage 

of this apparent gain is that a greater number of substantial factorial effects are 

missed, as can be investigated via simulation. 

Notice that the most economical experiment (starred) in terms of minimising 

the value of is that for which all the control factors believed very likely 

to be active are put in a single group. This is because the very-likely-to-be-active 

grouped control factors will be brought forward to the second stage with probability 

1. Thus increasing the number of very-likely-to-be-active grouped control factors 

only increases the number of effects requiring estimation at the first stage. This 

is unlike Example 3.3.2 (IGS strategy) where increasing the number of very likely 

grouped control factors decreased the value of E(5'/Gg). This is because grouped 

interactions could be eliminated at the 6rst stage, reducing the number of individual 

interactions requiring estimation at the second stage. Having more grouped factors 

at the hrst stage increases the number of grouped interactions that can be examined 

at the hrst stage. 

Table 3.6: Investigation of di&rent groupings for Example 3.3.3 under classical 
group screening. 

7 v likely 
indiv con 

8 indiv 
con 

4 indiv 
noise -B(5'cGa) s.d.(5'cGg) 

gps sizes gps sizes gps sizes 
-B(5'cGa) s.d.(5'cGg) 

120 150 180 

1 7 1 8 1 4 156.40 51.07 0.83 0.63 0.63 
1 7 1 8 2 2,2 141.75 46.16 0.83 0.63 0.22 
1 7 2 2,6 1 4 132.03 47.37 0.62 0.56 0.20 
1 7 2 2,6 2 2,2 118.89 42.89 0.62 0.32 0.07 
1 7 2 3,5 1 4 126.98 47.59 0.59 0.25 0.25 
1 7 2 3,5 2 2,2 114.16 43.21 0.42 0.25 0.09 
1 7 2 4,4 1 4 125.40 47.81 0.72 0.26 0.26 
1 7 2 4,4 2 2,2 112.68 43.46 0.47 0.26 0.09 
1 7 3 2,2,4 1 4 111.75 40.43 0.51 0.26 0.06 

continues overleaf 
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Table 3.6: continued 

7 V likely 
indiv con 

Bindhr 
con 

4indry 
noise S.G(.(6'cG5') 

f ('S'cGS' > 

gps sizes gps sizes gps sizes 120 150 180 

1 7 3 2,2,4 2 2,2 99.95 36.45 0.36 &13 &02 

1 7 3 2,3,3 1 4 109.41 39.71 0.34 &18 0.07 

1 7 3 2,3,3 2 2,2 97^7 35.80 0.25 0.10 0.02 

1 7 4 2,2,2,2 1 4 98.94 33.20 0.35 OJ^ 0.01 

* 1 7 4 2,2,2,2 2 2,2 88.07 29.63 0.19 0.04 0.00 

2 2,5 1 8 1 4 157.40 5L07 0.83 0.63 0.63 

2 2,5 1 8 2 2,2 142.75 4&16 0.83 0.63 0.22 

2 2,5 2 2,6 1 4 133.03 47^7 0.62 0.56 0.20 

2 2,5 2 2,6 2 2,2 119.89 42.89 0.62 0.32 0.07 

2 2,5 2 3,5 1 4 127.98 47^9 0.59 0.25 0.25 

2 2,5 2 3,5 2 2,2 115.16 43.21 0.42 0.25 0.09 

2 2,5 2 4,4 1 4 126.40 47.81 0.72 0.26 0.26 

2 2,5 2 4,4 2 2,2 113.68 43.46 0.47 0.26 0.09 

2 2,5 3 2,2,4 1 4 112.75 40.43 0.51 0.26 0.06 

2 2,5 3 2,2,4 2 2,2 100.95 36.45 0.36 &13 0.02 

2 2,5 3 2,3,3 1 4 110.41 39.71 0.34 OJ^ 0.07 

2 2,5 3 2,3,3 2 2,2 9&77 35.80 0.25 OJ^ 0.02 

2 2,5 4 2,2,2,2 1 4 99.94 33.20 0.35 0.10 0.01 

2 2,5 4 2,2,2,2 2 2,2 89.07 29.63 0.19 &04 0.00 

2 3,4 1 8 1 4 157^0 5L07 0.83 0.63 0.63 

2 3,4 1 8 2 2,2 142J5 46.16 0.83 0.63 0.22 

2 3,4 2 2,6 1 4 133^3 47.37 0.62 0.56 0.20 

2 3,4 2 2,6 2 2,2 11&89 42.89 0.62 0.32 0.07 

2 3,4 2 3,5 1 4 127^8 47.59 0.59 0.25 0.25 

2 3,4 2 3,5 2 2,2 115^6 43.21 0.42 0.25 0.09 

2 3,4 2 4,4 1 4 12&40 47.81 0.72 0.26 0.26 

2 3,4 2 4,4 2 2,2 113^8 43^6 0.47 0.26 &09 

2 3,4 3 2,2,4 1 4 112J5 40.43 0.51 0.26 0.06 

2 3,4 3 2,2,4 2 2,2 10&95 36.45 0.36 &13 0.02 

2 3,4 3 2,3,3 1 4 11&41 39.71 0.34 &18 0.07 

2 3,4 3 2,3,3 2 2,2 9&77 35.80 0.25 &10 0.02 

2 3,4 4 2,2,2,2 1 4 99.94 33.20 0.35 &10 0.01 

2 3,4 4 2,2,2,2 2 2,2 89.07 2&63 &19 0.04 0.00 

3 2,2,3 1 8 1 4 15&40 5L07 0.83 0.63 0.63 

3 2,2,3 1 8 2 2,2 14&75 4&16 0.83 0.63 0.22 

3 2,2,3 2 2,6 1 4 134^3 47^7 0.62 0.56 0.20 

3 2,2,3 2 2,6 2 2,2 12&89 42^9 0.62 0.32 0.07 

3 2,2,3 2 3,5 1 4 12&98 47.59 0.59 0.25 0.25 

3 2,2,3 2 3,5 2 2,2 11&16 43.21 0.42 0.25 0.09 

3 2,2,3 2 4,4 1 4 127.40 47^1 0.72 0.26 0.26 

3 2,2,3 2 4,4 2 2,2 114^8 43^6 0.47 0.26 0.09 

continues overleaf 
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Table 3.6: continued 

7 V likely 
indiv con 

8 indiv 
con 

4 indiv 
noise 

gps sizes gps sizes gps sizes 120 150 180 

3 2,2,3 3 2,2,4 1 4 113.75 40.43 0.51 0.26 0.06 
3 2,2,3 3 2,2,4 2 2,2 101.95 36.45 0.36 0.13 0.02 
3 2,2,3 3 2,3,3 1 4 111.41 39.71 0.34 0.18 0.07 
3 2,2,3 3 2,3,3 2 2,2 99.77 35.80 0.25 0.10 0.02 
3 2,2,3 4 2,2,2,2 1 4 100.94 33.20 0.35 0.10 0.01 
3 2,2,3 4 2,2,2,2 2 2,2 90.07 29.63 0.19 0.04 0.00 

3.4 Sensitivity of ^(,9) to specified probabilities 

In practice the probabilities of main effects being active are assigned following input 

from engineers with knowledge or experience of the product. This input is obtained 

from a web-based questionnaire and meetings. There is therefore uncertainty in 

the values that should be assigned to the probabilities. The study described in 

this section aims to investigate, for a 16 factor example, the sensitivity of the 

expected number of effects requiring estimation (^(6")) to the specified probabihties 

of individual effects being active. Both classical group screening and interaction 

group screening are considered. 

For both strategies, an experiment with 8 individual control factors and 8 in-

dividual noise factors is considered in which the main effects of 4 of the individual 

control factors and 4 of the individual noise factors are believed very likely to be 

active. The main effects of the remaining 4 individual control and 4 individual 

noise factors are though less likely to be active. 

3.4.1 Classical group screening 

The eSects on of the following four factors were investigated in a factorial 

experiment: 

A: probability of an individual very likely control main effect being active 
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Table 3.7: The levels of factors A, B, C and D used in the sensitivity study under 

CGS. 

Factor 
Level 

Factor 
0 1 2 

A 0.8 0.9 1.0 

B 0.2 0.3 0.4 

C 0.8 0.9 1.0 

D 0.2 0.3 0.4 

jB: probability of an individual less likely control main eEect being active 

C: probability of an individual very likely noise main effect being active 

D\ probability of an individual less likely noise main effect being active. 

A three-level full factorial design was used in order to gain a more thorough under-

standing of the behaviour of these factors than would be obtained from a two-level 

factorial experiment. The levels of the factors, are shown in Table 3.7. The software 

described in Section 3.1 was used to calculate the values of for 3'̂  = 81 

combinations of the factor levels. 

Figure 3.4 shows the main eSFect plots for each of the four factors. The value of 

for each level of A, averaged over all the levels of the other factors, ranges 

from about 77 at the low value of the probability of a very likely main eEect being 

active, to 79 at the high value. This range of 2 is small relative to the calculated 

values of This indicates that, for this example, the impact of increasing a 

very likely main effect probability from 0.8 to 1 is small. The corresponding range 

for factor C is slightly smaller than that of vl. This difference arises because of the 

number of individual interactions (speciScaUy control x control interactions) that 

require estimation at the second stage when a grouped control factor is declared 

active at the hrst stage. This number is generally greater than the number of 

individual interactions requiring estimation as a result of a grouped noise factor 

being declared active. 
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Factor B, the probability of the main effect of a less hkely control factor being 

active, has the largest impact. The value of for each level of B, averaged 

over all the levels of the other factors, ranges from about 71 at the low level to 85 

at the high level. This range of 14 indicates that is more sensitive to the 

probabihty of a less likely main effect being active being changed from 0.2 to 0.4. 

In other words, the impact on of increasing a main effect probabihty for 

an individual control factor from 0.2 to 0.4 is far greater than that of increasing the 

probabihty from 0.8 to 1.0. This increase in probability assigned to a main effect 

being active can be interpreted as a change from practically inactive (probability 

0.2) to quite likely to be active (probabihty 0.4). I t can be viewed as a greater 

change in prior belief than the increase in probabihty from 0.8 (very likely) to 1.0. 

Similar results are found for the impact of factor D compared with that of C. 

However, the impact of D is less than that of 5 , again due to the lack of symme-

try at the second stage experiment in terms of the greater number of individual 

effects requiring estimation due to a grouped control factor being declared active, 

as opposed to a grouped noise factor being declared active. 

Figure 3.5 shows the two-factor interactions among the four factors vl, B, C and 

D, and indicates that the impact of changing the probability of an individual main 

eEect being active (for any factor) changes very little as the probabihties assigned 

to other factors are changed. 

3.4.2 In terac t ion group screening 

A similar study was carried out on the same experiment using interaction group 

screening and varying the following hve factors: 

A: probability of an individual very likely control main effect being active 

B: probability of an individual less likely control main effect being active 

C: probability of an individual very likely noise main e&ct being active 

D: probability of an individual less likely noise main eEect being active 

values of the conditional probabihties used in assigning interaction prob-

abilities. 
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Figure 3.4: Main eSects plot of factors A, B, C and D for the CGS sensitivity 

study. 
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Figure 3.5: Two-factor interactions plot for A, B, C and Z) for the CGS sensitivity 

study. 
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Table 3.8: The levels of factors A, B, C, D and used in the sensitivity study 

under IGS. 

Factor 
Level 

Factor 
0 1 2 

A 0.8 0.9 1.0 

B 0.2 0.3 0.4 

C 0.8 0.9 1.0 

D 0.2 0.3 0.4 

E 0.005, 0.125, 0.25 0.0125, 0.1875, 0.375 0.01, 0.25, 0.5 

Factors yl, B, C and D are the same as those in the CGS study and were given 

the same levels in this experiment. The high level (2) of factor ^ was deEned as 

setting the conditional probabilities luoo, = tuio for both controlxnoise 

and control X control interactions to the values 0.01, 0.25 and 0.5 respectively, as 

used by Chipman (1996). The low level (0) of E' was half these values. The middle 

level (1) of was defined aa setting the conditional probabihties to the midpoints 

between the values at the high and low levels. The levels of the five factors are 

shown in Table 3.8. 

A ^ replicate of a full factorial 3^ design (with 3^"^ = 81 runs) was used for 

this investigation with dehning contrast 7 = The aliasing scheme then 

allowed clear estimation of ah 6ve main effects and all (g) — 10 two-factor interac-

tions. 

Figure 3.6 shows that there is a slightly larger difference in E[STGS) when A is 

increased (from 0.8 to 1.0) than when C is increased (from 0.8 to 1.0) than occurred 

for CGS. An explanation of this difference is that, in the hrst stage experiment, 

under CGS, there is no diEerence between the number of effects requiring estimation 

due to a grouped control factor and due to a grouped noise factor. This is not the 

case for IGS due to the need to investigate grouped interactions at the Erst stage. 

As wa5 found for CGS, the impact of increaaing a very likely main eEect probability 

from 0.8 to 1 is small. 
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Figure 3.6: Main eEects plot of factors A, B, C, D and E for the IGS sensitivity 

study. 
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A comparison of Figures 3.4 and 3.6 shows that the value of is much 

less sensitive than under CGS to the specified probabilities of individual less likely 

main effects being active. An explanation of this Ending is that, under IGS, there 

are more routes for a grouped factor to be carried forward to the second stage of 

experimentation than by having its main effect declared active at the hrst stage. 

Figure 3.6 shows that the value of E{SIGS) is sensitive to the specification of 

conditional probabilities used in assigning interaction probabilities. Halving the 

conditional probabilities has reduced from around 127 to 102, that is a 

reduction of 25. This sensitivity should be borne in mind when using the software 

to choose between possible groupings. In particular, when comparing two groupings 

under IGS, it is important to keep the same value for the conditional probabilities. 

Figure 3.7 indicates that, as for CGS, all the two-factor interactions are negli-

gibly small. 



Figure 3.7: Two-factor interaction plot for A, B, C, D and E for the IGS sensitivity 

study. 
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3.4.3 Invest igat ion of a wider range of probabil i t ies 

In order to End out if the above findings were also t rue for a wider range of values 

for factors A, B, C and D, the study was repeated for both CGS and IGS, for the 

example. The factor levels are shown in Table 3.9. 

Figure 3.8 shows the main effects plot of factors A, C and D for CGS for the 

increased range of probabilities. The Endings are very similar to those of Sections 

3.4.1. As expected, for each factor, the value of for each factor level, 

averaged over the levels of the other factors, has a much wider range. 

Figure 3.9 shows the main effects plot of factors A, 5 , C, D and E for IGS for 

the increased ranges of probabilities. There is an increased difference between the 

ranges of values of for A and B (C and D). This indicates that 

is more sensitive to changes in the main eSect probability of a factor believed less 

likely to be active. Again, the diEerence in ranges of values of ^ B 

(C aad D) is not as large as for CGS. The value of is still most sensitive 

to the settings of factor jB, the values of the conditional probabilities used when 



Table 3.9: The levels of factors A, B, C and D for a wider range of probabilities. 

Factor 
Level 

Factor 
0 1 2 

A 0.55 0.775 1.0 

B 0.01 0.28 0.55 

C 0.55 0.775 1.0 

D 0.01 0.28 0.55 

assigning the interaction probabilities. Two-factor interactions plots for both CGS 

and IGS indicated that again, all the two-feictor interactions are negligibly small. 

S u m m a r y of findings for sensi t ivi ty s t udy 

In this study, ^7(5") waa very sensitive to the speciSed probabilities of main ef-

fects believed less likely to be active under classical group screening. This sensitiv-

ity was less under interaction group screening for the larger range of factor levels. 

For a smaller range of factor levels the sensitivity of to probabilities of 

very likely and less likely main eSects was very similar. Under interaction group 

screening waa most sensitive to the specihed conditional probabihties used in 

assigning interaction probabihties. All two-factor interactions were negligibly small 

under both screening strategies. 

3.5 Conclusions 

This chapter haa shown how the ideas of Chapter 2 and the software written to 

implement them facilitates investigation of diSerent groupings of factors and differ-

ent assignments of probabilities for individual factorial effects being active, through 

their impact on the distribution of 5', under both classical and interaction group 

screening. The software and methods also allow the experimenter to try diSerent 

values for the assigned probabilities of eEects being active to study the sensitivity of 

the results to changes in these probabilities. Such an investigation is an important 

step in making a decision between diSFerent groupings and strategies. 
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Figure 3.8: Main effects plot of factors A, B, C and D for the wider ranges of 

probabihties used in the CGS sensitivity study. 
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Figure 3.9: Main eEects plot of factors A, B, C, D and ^ for the wider ranges of 

probabilities used in the IGS sensitivity study. 
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Example 3.2 demonstrated this software and showed the sensitivity of the results 

to changes in probabihties for certain individual interactions. It was found that, for 

this example, increasing the probabilities of individual interactions being active had 

the e&ct of increasing the expected experiment size and decreasing the standard 

deviation of the size of the two-stage experiment. 

Examples, such as 3.3.2 and 3.3.3, and Study 1 suggest that grouping together 

individual factors whose main eEects are more likely to be active is a good approach 

for minimising the expectation and standard deviation of the size of a two-stage 

experiment aad hence minimising the probabihty of exceeding a target size. Group-

ing together factors whose main effects have widely differing probabilities of being 

active has the e%ct of increasing the expected size of the two-stage experiment. 

These examples indicate that a good strategy for CGS is to keep all very likely 

factors together in one group and put all of the remaining factors into as many 

groups as possible. These examples also indicate that for IGS a good strategy is to 

use group sizes which are as equal as possible, although empirical evidence, such 

as Example 3.3.1, suggests that groups sizes need not necessarily be as small as 

possible in order to minimise the expected size of the two-stage experiment. 

The sensitivity study of Section 3.4 indicated that, under classical group screen-

ing, the expected number of effects requiring estimation was most sensitive to the 

probabilities assigned to individual less-likely main effects. Under interaction group 

screening, there was much less sensitivity to these probabilities. However, the spec-

ified values of the conditional probabilities used when assigning interaction proba-

bihties had a large impact on the expected number of eSects requiring estimation. 

These conclusions give guidance to experimenters in deciding which groupings 

to consider thus reducing the number of groupings tha t need to be investigated in 

practice. 

The work in this chapter, and other examples, has found that classical group 

screening often gives a smaller expectation but a more variable distribution of the 

size of the two-stage experiment than interaction group screening, and hence not 

necessarily a smaller probability of exceeding a target size. This apparent advantage 

of classical group screening does not address the risk of missing important effects or 

declaring unimportant factors to be important. When a small number of candidate 
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groupings has been identi6ed, a simulation of a group screening experiment for 

each candidate grouping can be performed, using an extension of the software of 

Dean and Lewis (2002) to assess such risks. In examples, it is usually found that 

classical group screening misses a much larger proportion of important eSects than 

interaction group screening. 
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Chap te r 4 

Prac t ica l application 

4.1 I n t r o d u c t i o n 

The generalised group screening theory described in Chapter 2 has been used in 

the planning of a screening experiment at Jaguar Cars in a programme whose aim 

was to investigate, and ultimately to improve, engine cold start optimisation in 

the company's new generation engine. This new engine has a more sophisticated 

electronic majiagement system than earlier engines which enables many different 

factors to be investigated. Also, the development of a new test cell for the engine 

allowed noise factors to be investigated, such as the temperature surrounding the 

engine. The aim of the programme is to produce an engine that starts as reliably 

as possible regardless of, for example, ambient temperature or age of the engine. In 

order to measure this aspect of engine performance, Jaguar engineers had recently 

developed a measure of resistance across the spark plugs as the engine is taken 

through a number of test cycles. Small resistance indicates good starting perfor-

mance of the engine. Hence the high (low) level of a factor is the level corresponding 

to a small (large) resistance. 

The early stages of planning the experiment concentrated on collecting infor-

mation from engineers involved in the relevant areas of design and manufacturing 

to ascertain views, and gather new suggestions, on factors that are likely to affect 

the engine cold start optimisation process, the likely importance of each factor, and 

the anticipated direction of inSuence of each factor on the response. The settings 

of each factor which would be used as the 'high' and 'low' levels in the experiment 
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also needed to be defined and agreed. This elicitation is an essential part of the 

planning process as it allows the number of factors in the experiment to be kept at 

a manageable level and can help to avoid overlooking important factors. Conven-

tionally, this information is gathered through a local meeting with the engineers, 

called a 'brainstorming session'. This approach has the disadvantage that experts 

who are located at other company sites (Ford, Jaguar, Land Rover in the UK and 

US) are excluded. Also, accurate opinions may sometimes not be obtained from a 

brainstorming meeting because of the infiuence of certain members of the group. 

As part of the EPSRC project, a dynamic web-based questionnaire waa developed 

to overcome these difficulties (see Dupplaw et al. (2004)) and used to allow a wider 

group of engineers, in the UK and overseaa, to contribute their opinions and com-

ments. As described in Section 3.1, this questionnaire forms part of a software 

system called GISEL (grouping in screening with elicitation) which also incorpo-

rates the software described in Chapter 3. The results from the questionnaire were 

then used in subsequent local discussion meetings before compiling the final list of 

factors and their settings for experimentation. 

The factors chosen for the experiment, together with the results of the grouping 

investigations under interaction group screening, are given in Section 4.2. This 

section also describes an initial 'try out' experiment on grouped factors at Jaguar 

and the lessons learned from this experiment. Results of investigations of different 

groupings are described in Section 4.3 and the plan is given for the first stage of 

the full two-stage experiment. In Section 4.4, the analysis of the data from the 

first stage experiment is described and, in Section 4.5, the plan for the second stage 

experiment is given. The data from the second stage experiment are presented in 

Section 4.6, together with the details of their analysis. A discussion of the results 

is given in Section 4.7. 

4.2 Initial investigations 

The initial investigations described in this section consist of, first, identifying the 

factors for inclusion in an experiment and, secondly, a trial grouped experiment 

which was performed on the currently used Jaguar engine. From the web-based 

75 



Table 4.1: Initial list of factors for inclusion in the engine cold start optimisation 

experiment where * indicates factors whose levels are hard to change. 

Con t ro l factors 
Noise factors 

Very likely Less likely 
Noise factors 

Air to fuel ratio (AFR) 

/d/e yZore 

injector apro?/ 

questionnaire, a list of 40 possible factors for investigation was obtained, together 

with opinions from 15 experts. From this list, 10 control and 4 noise factors were 

identified for investigation, based on the engineers' views on their likely importance 

and how feasible it was to vary them in a controlled way. These fa<;tor8 are listed 

in Table 4.1 which indicates the four control factors that were believed very likely 

to have active main effects. For four of the factors, changing from one level to 

another was quite a slow process; for example, for one factor it involved changing 

the spark plugs. These hard-to-change factors are identiSed in the table. In the 

initial planning discussions, the engineers thought tha t it would take so long to 

change these factors that only four runs could be made in a session (morning or 

afternoon). 

The strategy of classical group screening waa not considered a sound choice for 

the experiment at Jaguar. Although the expected number of observations needed 

in a two-stage experiment is usually smaller under classical group screening, the 

number of observations tends to be more variable, as was discussed in Chapter 3. 

Also, importantly, investigations using the simulation software of Dean and Lewis 

(2002), extended to allow unequal group sizes and probabilities of active eEects, 

indicated that the proportion of missed active control x noise interactions is larger 

under classical group screening. The engineers were particularly interested in the 
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investigation of two-factor interactions, as previous experiments in which only main 

eEects had been considered, had often produced smaller improvements in engine 

performance than had been anticipated. 

Probabilities for the main eSects and interactions being active were assigned as 

follows. The main effects for each of the control factors believed very likely to be 

active were assigned probability 1. The main effects of the control factors believed 

less likely to be active were each assigned probability 0.167, as this corresponded 

to an expectation of 1 out of 6 being active. The noise main effects were each 

assigned a probability 0.5 of being active, which corresponded to 2 out of 4 being 

active. The individual control x noise and control x control interaction probabihties 

were calculated using the conditional probabilities woo = 0.005, woi = = 0.125 

and Wii = 0.25 in formula (2.31) of Section 2.5. 

An investigation of different groupings with interaction group screening was car-

ried out using these probabilities and selected results are shown in Table 4.2. In this 

investigation, the very likely and less likely control factors were kept in separate 

groups, because any factor that is grouped with a very likely control factor is auto-

matically brought forward to the second stage of experimentation with probability 

1. (This is because the probabihty of a main eEect being active is 1, see Section 

3.3.2.) An exception to this approach was made in order to investigate groupings 

that included all the three hard-to-change control factors in a single group. These 

groupings are the Enal four listed in Table 4.2, where the group of hard-to-change 

factors is denoted by 3*. 

Although the final four groupings in Table 4.2 did not give the smallest values 

for .B(5'fGg) and g.d.(5'/Ga), it was decided to use one of these groupings so that 

all the factors whose levels were hard to change would be changed together in the 

experiment. This allowed the experiment to be carried out in a reasonable amount 

of time. The last grouping listed in Table 4.2 gave the smallest value for ^(5'fGg) 

out of the Snal four and one of the smallest values for a.d.(5'fGa). Hence it waa 

chosen for the 6rst stage experiment. The details of this grouping are given in Table 

4.3. 

The experiment plan chosen was a ^ replicate regular fractional factorial for Gve 

grouped control factors (labelled 1-5) and two grouped noise factors (labelled 6 and 

77 



Table 4.2: Results of an investigation of diS'erent groupings for the initial list of 

factors in Table 4.1 and interaction group screening, for the engine cold start op-

timisation experiment, where * indicates groups of factors whose levels are hard to 

change. 

Very likely 

control 

Less likely 

control 
Noise 

Grouping 80 90 100 

2*,1,1 5,1* 2,1,1* 96.43 9.88 0.94 0.76 0.36 

2*,1,1 5,r 3,1* 96.14 10.58 0.91 0.72 0.38 

2,2* 5,1* 3,1* 95.40 11.05 0.90 0.69 0.35 

2,2* 5,1* 2,1,1* 94.40 10.40 0.90 0.66 0.30 

2*,1,1 3,2,1* 2,1,1* 92.11 7.11 0.91 0.58 0.15 

2,2* 2,1,2,1* 2,1,1* 90.75 7.22 0.91 0.57 0.13 

2*,1,1 3,2,1* 3,1* 89.96 9.51 0.85 0.49 0.13 

2,2* 3,2,1* 2,1,1* 88.57 9.34 0.81 0.43 0.09 

2,2* 2,1,2,1* 3,1* 88.44 9.00 0.82 0.42 0.08 

2,2* 3,2,1* 3,1* 87.94 10.19 0.78 0.42 0.10 

2 3* 2,1,1,1 2,1,1* 93.66 7.77 0.93 0.65 0.21 

2 3* 2,1,1,1 3,1* 91.40 9.08 0.88 0.56 0.16 

2 3* 3,2 3,1* 89.39 11.17 0.79 0.48 0.16 

2 3* 2,2,1 2,1,1* 89.11 9.33 0.82 0.46 0.11 

2 3* 3,2 2,1,1* 88.63 10.45 0.79 0.45 0.12 

2 3* 2,2,1 3,1* 88.35 9.97 0.79 0.43 0.11 
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Table 4.3: Details of the chosen grouping of the factors in Table 4.1. 

G r o u p e d control f a c to r s 

Group 1 

Group 2 

Group 3 

Group 4 

Group 5 

type * & ti/pe * &: f p a p * 

(o /we/ 

durmg cronA; & ^ime di/nMp run-up 

(zmer & .5 îgAer idZe apeetf 

Idle flare 

G r o u p e d noise f ac to r s 

Group 6 

Group 7 

7m;ector tip ZeoA;ô e* 

VarioWe 'uaf'ue timmp & Znjector spra?/ an^fe direchon 

&: ^um%(f%(y/temperoture 

7) with dehning contrast 

7 = 1234 = 12567 = 34567. 

A regular fraction was preferred to a smaller fraction as the estimated factorial 

e&cts are independent and hence the hypothesis tests of the sizes of the eEects are 

also independently made. In this particular fraction, in order to keep the fraction 

small, three pairs of grouped control x control interactions, namely, Group I x Group 

2 and Group 3 x Group 4, Group I x Group 3 and Group 2 x Group 4, and Group 

I x Group 4 and Group 2 x Group 3, are aliased together. All the main eSects and 

the remaining two-factor interactions can be estimated. 

In order to accommodate the groups of hard-to-change factors (labelled 1 and 6), 

the 32 runs were arranged so that one grouped control factor and one grouped noise 

factor were changed every four runs. Each set of four runs thus deSnes a session or 

wholeplot. The design is shown in Table 4.4, where the levels of the factors in each 

treatment combination are written in the factor order 1, 6, 2, 3, 4, 5, 7, that is, so 

that the groups of factors whose levels are hard to change (the whole-plot factors) 

are listed hrst. This ordering shows clearly how the levels of factors 1 and 6 are 

held fixed throughout each session. All the controlx noise interactions except two 

(16, 47) are estimable within sessions and every controlxnoise interaction can be 
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Table 4.4: A plan for the 'try out' grouped experiment. The grouped control factors 

are labelled 1-6 and the grouped noise factors are labelled 6 and 7. The groups of 

factors whose levels are hard to change are 1 and 6. The low and high levels of a 

grouped factor are indicated by 0 and 1 respectively, and the grouped factors are 

ordered so that the two wholeplot factors are listed 6rst. 

Groups 16 23457 16 23457 16 23457 16 23457 

Session 1 00 00000 00 10101 00 11010 00 01111 

Session 2 01 00001 01 10100 01 11011 01 OHIO 

Session 3 11 10001 11 00100 11 01011 11 11110 

Session 4 10 10000 10 00101 10 01010 10 11111 

Session 5 01 00010 01 10111 01 11000 01 01101 

Session 6 00 00011 00 10110 00 11001 00 01100 

Session 7 10 10011 10 00110 10 01001 10 11100 

Session 8 11 10010 11 00111 11 01000 11 11101 

estimated independently of all main effects and two-factor interactions. Also, the 

grouped control x control interaction Group 3 x Group 5 Ccinnot be estimated within 

sessions. Two degrees of freedom for error are available for estimating session-to-

session error, and four for the within sessions (subplot) error. 

This experiment was started at Jaguar Cars b u t was halted after only four 

sessions due to commercial pressure on the engine testing facility. However, a 

number of valuable lessons were learned that informed the planning of the full 

two-stage group screening experiment (Section 4.3). These were 

1. Fanob/e woZiie injector gpro?/ ongZe ancf direction and 

could not be adequately controlled for inclusion in an experiment, 

2. the control factor fbeZ t^pe was too diScult to change and so should no longer 

be kept as a factor in the experiment, and 

3. each run took less time than previously anticipated. 

Further, for future experiments, the engineers decided to vary a factor called 
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Table 4.5: The final list of 10 individual factors for the full two-stage group screening 

experiment on cold start combustion. * indicates a factor whose levels are hard to 

change. 

Control factors 
Noise factors 

Very likely Less likely 
Noise factors 

Plug gap* speed 

/ueZ instead of the factor /(f/e /Zore because it was easier to vary and 

could be set to achieve the same condition as Idle flare. The runs achieved in this 

experiment were very useful as a pilot experiment and guided the planning of the 

full two-stage experiment. 

Several months elapsed before a new generation engine became available and 

time in the testing cells could be scheduled for the experiment. It waa decided in 

discussions during this period that the control factor Plug gap should be promoted 

from being a factor whose main effect is less likely to be active, to one whose main 

effect is very likely to be active. It was also decided that the levels of the factor 

(zp could be altered indirectly by changing fuel pressure in the 

engine, with the result that this factor was not regarded as hard-to-chaage in the 

full experiment. 

4.3 First stage experiment 

The knowledge gained from the pilot experiment vyas used in the planning and 

running of a full two-stage group screening experiment. The reduced list of 8 

control and 2 noise factors identihed for investigation are listed in Table 4.5. It was 

decided that any non-zero factorieil eEects were of interest, that is, A = 0 was used. 

The main eEects for the control factors believed very likely to be active were 

again assigned probabihty 1 of being active and the remaining main effects of control 
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factors, believed less likely to be active, were assigned probability 0.25. The noise 

main effects were assigned probability 0.5 of being active, which corresponds to 

the view that one of them is active. The approach of Chipman (1996) (Section 

2.5) was again used in allocating the interaction probabihties using values 0.005, 

0.125, 0.125 a n d 0.25 f o r t h e c o n d i t i o n a l p r o b a b i l i t i e s f o r b o t h c o n t r o l x n o i s e a n d 

c o n t r o l X c o n t r o l i n t e r a c t i o n s . 

Table 4.6 shows the results of an investigation of different groupings under 

interaction group screening using these probabilities. Factors whose levels are hard 

to change were grouped separately from the other factors. This avoided e&cts of 

factors that were not hard to change being estimated at the wholeplot (session) 

level. Very likely and less likely control factors were also kept in separate groups, 

as in the pilot study, as any factors grouped with the very likely control factors 

would be brought forward to the second stage of experimentation with probability 

1. In choosing these groupings, account was taken of the engineers' preferences 

based on their experience at the 6rst stage. 

Groupings 1 to 5, listed in Table 4.6, all have similar values for E{SJ:GS) and 

5.d.(%Ga). The simulation software (described in Section 3.1 of Chapter 3) waa 

used to assess the impact of putting the two noise factors in separate groups by 

comparing grouping 1 and grouping 5. These results are shown in Table 4.7. The 

proportions of active control and noise main effects and controlx control interactions 

which were not detected in the simulations, were consistently greater for grouping 

5 for all the active effect distributions with mean 10. However, for the active effect 

distributions with means 30 and 50, the proportions missed under groupings 1 and 5 

were very similar. Most importantly, the proportions of controlxnoise interactions 

missed under grouping 5 were substantially smaller than the proportions missed 

under grouping 1. Hence, it was decided to keep the noise factors in separate 

groups and grouping 5 was chosen for the Erst stage experiment. The details of 

this grouping are given in Table 4.8. 

The chosen grouping has four grouped control factors and two grouped noise 

factors. A regular 2^"^ fraction was chosen as the plan for the 6rst stage experiment, 

with deSning contrast 

7 = 123456 
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Table 4.6: Results of an investigation of different groupings under interaction group 

screening, for the cold start optimisation experiment where * indicates groups of 

factors whose levels are hard to change. 

Very likely 

control 

Less likely 

control 
Noise f > u) 

Grouping 40 50 60 

1 2,2' 2,2 2 50.79 6.82 0.93 0.56 0.04 

2 2,2* 2,1,1 2 52.63 6.01 0.97 0.65 0.10 

3 1,1 2* 2,2 2 52.66 6.07 0.97 0.68 0.1 

4 2,2* 1,3 2 52.87 6.94 0.95 0.66 0.13 

5 2, 2* 2,2 1,1 52.94 6.20 0.97 0.63 0.09 

6 2,2* 4 2 54.15 7.59 0.94 0.75 0.19 

7 2,2* 4 2 54.73 6.80 0.98 0.73 0.18 

8 2,2* 1,3 1,1 54.89 6.27 0.98 0.77 0.19 

9 1,1,2* 2,2 2 52.66 6.07 0.97 0.68 0.10 

10 1,1,2* 2,2 1,1 55.79 5.495 0.996 0.83 0.2 

11 2,2* 2,1,1 1,1 56.04 5.44 1.0 0.84 0.21 

12 1 1,1,2* 2,1,1 1,1 60.49 4.708 1.0 0.98 0.50 
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Table 4.7: Simulation results for the proportions of active individual control 

main eEects (cme), noise main effects (nme), control x control interactions and 

control X noise interactions (cxn) that fail to be detected under groupings 1 and 

5 of Table 4.6, for interaction group screening. 

Grouping 1 Grouping 5 
Active e@ect Proportion missed Proportion missed 
distribution cme nme cxc cxn cme nme cxc cxn 

N(10, 4) 0.05 0.13 0.40 0.74 0.08 0.35 0.53 0.58 
N(10, 9) 0.05 0.11 0.42 0.74 0.08 0.30 0.52 0.58 

N(10, 16) 0.06 0.12 0.42 0.75 0.09 0.26 0.51 0.55 
N(10, 25) 0.07 0.10 0.42 0.74 0.10 0.23 0.49 0.53 

N(30, 4) 0.00 0.00 0.06 0.56 0.00 0.00 0.05 0.09 
N(30, 9) 0.00 0.00 0.06 0.58 0.00 0.00 0.06 0.10 

N(30, 16) 0.00 0.00 0.07 0.56 0.00 0.00 0.06 0.07 
N(30, 25) 0.00 0.00 0.05 0.56 0.00 0.00 0.04 0.08 

N(50, 4) 0.00 0.00 0.05 0.58 0.00 0.00 0.04 0.11 
N(50, 9) 0.00 0.00 0.05 0.57 0.00 0.00 0.05 0.09 

N(50, 16) 0.00 0.00 0.05 0.56 0.00 0.00 0.05 0.10 
N(50, 25) 0.00 0.00 0.05 0.56 0.00 0.00 0.05 0.08 

Table 4.8: Details of the chosen grouping for the Erst stage experiment to investigate 

engine cold start optimisation. 

Grouped control f a c t o r s 

Group 1 

Group 2 

Group 3 

Group 4 

f p o p * 

.Air to ratio 

time croM/: &: 5'parA; time run-up 

^igAer idZe gpeecf &: CramA;i?ip /ueZ 

Grouped noise f ac to r s 

Group 5 

Group 6 

injector tip ZeoA:ope 

[TempemtKre 
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where 1, 2, 3, 4, 5 and 6 are the labels for the grouped factors formed from Groups 

1 to 6 respectively. This fraction has 32 runs and, with no blocking, can estimate 

all main eEects and two-factor interactions, when it is assumed that all four-factor 

interactions are negligible. For the factors whose levels are hard to change, a 

change every session of eight runs was considered feasible, in light of the pilot 

study. Thus the fraction had to be arranged in four sessions or wholeplots in 

such a way that confounding ejects of interest was avoided where possible. The 

experiment plan is shown in Table 4.9, together with the observations. The effects 

of Group 1 (hard to change), the interaction (56) between the grouped noise factors 

5 and 6 and the aliased three-factor interactions 156 = 234, are confounded with 

sessions or wholeplots. The remaining five main effects, 14 two-factor interactions 

and ^ (®) — 1 = 9 pairs of aliased three-factor interactions are all estimable within 

wholeplots. A breakdown of the degrees of freedom is summarised in Table 4.10. 

4.4 Analysis of first stage experiment 

The results from the Erst stage experiment are now considered. For clarity, several 

of the tables of results (Tables 4.11 to 4.15) are located at the end of this chapter. 

Table 4.11 gives the analysis of variance for the usual split-plot linear model for 

the resistance measure, where all three-factor interactions and higher are assumed 

negligible and the estimated factorial effects are given in Table 4.12. It is interesting 

to note that a very large proportion of the total variation within sessions in the 

experiment is explained by the main e&cts and two-factor interactions estimated 

within the sessions (97.5%). In the wholeplot analysis, there are insuSicient degrees 

of freedom to carry out a formal test, or graphical assessment, of the main eSect of 

factor 1. However, in view of the similar size of the estimated main e&ct compared 

with the three-factor interaction, it was decided not to take this factor (Group 1) 

forward to the second stage. The residual plots resulting from the analysis (not 

shown) showed no abnormal patterns. 

In order to draw conclusions about the 19 main eEects and interactions esti-

mated within the sessions, we use a two-sided ^-test of the hypothesis that the 

factorial effect is zero and the Bonferroni method for multiple testing. The critical 
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Table 4.9: The plan and observations for the Stage I experiment. The grouped 

control factors are labelled 1, 2, 3, 4 and the grouped noise factors are labelled 

5 and 6. The low and high levels of a grouped factor are indicated by 0 and 1 

respectively. 

Session Test Gpd factor Response Session Test Gpd factor Response 

no. no. 1 2 3 4 5 6 (scaled) no. no. 1 2 3 4 5 6 (scaled) 

1 1 0 1 0 0 0 6.57 17 0 0 1 1 1 1 28.09 

2 1 0 1 0 1 1 2.74 18 0 1 0 1 0 0 -3.86 

3 1 0 0 1 0 0 5.15 19 0 0 0 0 1 1 -5.12 

1 4 1 0 0 1 1 1 10.19 3 20 0 0 0 0 0 0 -12.36 

5 1 1 1 1 0 0 8.17 21 0 0 1 1 0 0 -11.36 

6 1 1 0 0 0 0 41.98 22 0 1 0 1 1 1 -2.61 

7 1 1 0 0 1 1 10.27 23 0 1 1 0 0 0 -6.52 

8 1 1 1 1 1 1 9.50 24 0 1 1 0 1 1 -5.69 

9 1 0 0 0 1 0 -11.59 25 0 1 0 0 0 1 -7.43 

10 1 0 0 0 0 1 -6.04 26 0 0 1 0 1 0 -11.23 

11 1 1 1 0 0 1 -5.57 27 0 1 1 1 0 1 -7.25 

2 12 1 0 1 1 1 0 -1.75 4 28 0 1 1 1 1 0 -2.73 

13 1 0 1 1 0 1 -3.67 29 0 1 0 0 1 0 -0.82 

14 1 1 0 1 0 1 -2.48 30 0 0 1 0 0 1 -6.16 

15 1 1 0 1 1 0 3.63 31 0 0 0 1 1 0 -1.50 

16 1 1 1 0 10 -7.71 32 0 0 0 1 0 1 -2.82 



Table 4.10: The breakdown of the degrees of freedom for the experiment plan shown 

in Table 4.9. 

Between sessions - 3 d.f Within sessions - 28 d.f. 

1 main effect (1) 

1 noiseXnoise (56) 

1 3-factor interaction (156=234) 

5 main eS'ects (2 - 6) 

6 control X control (all) 

8 c o n t r o l X n o i s e (a l l ) 

9 aliased 3-factor interactions 

value of an overall signilicance level of 5% (1%) is then 0.00263 (0.000526). Prom 

Table 4.12, there are five grouped factorial eEects t h a t are signiScant at the 1% 

level. In order of decreasing ^-test statistic value (on 9 degrees of freedom) these 

are: 26, 45, 15, 23 and 24. Figure 4.1 shows the interaction plots for each of the 

two most signihcant grouped control x noise interactions, 26 and 45. Figure 4.1 

(a) indicates that setting both and to their high levels may 

reduce the variation in resistance as temperature varies. Similarly, Figure 4.1 (b) 

indicates that setting both idZe and /we/ to their low levels 

may reduce the variation in resistance as the injector tip leakage varies. Plots for 

the remaining three interactions that are signlBcant a t an overall 1% significance 

level are given in Figures D.l - D.3 in Appendix D. 

In order to keep the second stage experiment to a manageable size, only the two 

largest signihcant eEects, that is, the above two grouped controlxnoiae interactions, 

were followed up. Hence the individual factors within Groups 2 and 4 of control 

factors and Groups 5 and 6 of noise factors were brought forward to the second 

stage experiment. 

4.5 Second stage experiment 

A second stage experiment was needed to investigate all main eSects of the indi-

vidual factors within Groups 2, 4, 5 and 6. It was also required to investigate the 

individual control x control interactions within each of Groups 2 and 4 (which could 

not be examined at the hrst stage) and the individual control x noise interactions 
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Figure 4.1: Interaction plots for the grouped controlxnoise interactions: (a) Group 

2 X Group 6 and (b) Group 4 x Group 5. 
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between the factors in Groups 2 and 6, and between the factors in Groups 4 and 5. 

That is, the followiag individual factorial effects needed to be estimated: 

# the main eEects of the control factors (A), (B), 

zdZe 5peed (C) and Crontmg /ueZ (D) 

# the main eSects of the noise factors ZeoAoge (jB) and 

# W/e gpeefix Cron/zmp /ueZ (CD) 

# v4.fj%x tempero^we ( a f ) 

# temperot^/re ( ^ f ) 

# ^%p/ier w/e apewx/m^'ec^or zea&ope (c'jb') 

# cmmhnp/uezx injector zeoa;ape (d-b'). 

The experiment plan chosen to investigate the six factors was again the half 

replicate (with 2^"^ = 32 runs) with deSning contrast 

This design waa used (rather than a smaller fraction) because all main eEects and 

two-factor interactions could be independently estimated. Further, as no hard-to-

change factor was included in this study, the experiment could be carried out rea-

sonably swiftly (approximately three days). The plan and observations are shown 

in Table 4.13. 

4.6 Analysis of second stage experiment 

A linear model was assumed for the scaled average resistance which included terms 

for the main eSects of factors A — F and for all two-factor interactions. Three-

factor interactions and higher order eEects were assumed negligible. The random 



errors were assumed to be independently and normally distributed with constant 

variance. 

Table 4.14 gives the analysis of variance for this model and shows that the 

main effects and two-factor interactions account for 85% of the variation. The 

residual plots (not shown) gave no evidence that the model assumptions were vi-

olated. Table 4.15 shows the estimated eEects with associated p-values for a t-

test of a single hypothesis that the corresponding factorial effect is zero, against 

the alternative that it is non-zero. The table indicates the six factorial effects 

which have p-value < 0.15 with their rank ordering. The two noise factors /M-

ZeoAope (.B) and (F) have highly signiEcant main effects 

(p-value < 0.01). The controlxcontrol interaction apeetf (/^C) 

is the next strongest effect (p-value—0.07), followed by the controlxcontrol inter-

actions /z/eZ (CD) and AfTZxfnj'ec^mn (vlB), 

and the control x noise interaction ZeoAage (DE) (all 

with p < 0.15). A p-value between 0.10 and 0.15 is usually regarded as weak ev-

idence that a factorial eEect is non-zero in an experiment aimed at modelling a 

response in terms of a small number of factors. In a screening study, however, it 

is often regarded as suScient for the effects to be considered for inclusion in the 

next experiment. From the group screening experiment we conclude that the four 

control factors, WZe speed, /ue/ should be 

investigated further, together with the noise factor hp ZeoAope. Further 

information about the interactions is given below. 

Figure 4.2 shows the main effect of the noise factor Tempemtt/re and indicates 

that average resistance is lower when Tempero^ure is a t its higher level (15°C) than 

at its lower level (-5°C). Note that Temperature did not feature in any of the more 

important interactions at the second stage. 

Figure 4.3 shows the controlxcontrol interaction ^FTZxE^i^/ier speed and 

indicates that both factors should be set to their high level in order to achieve low 

average resistance, and that the high level of together with the low level of 

speed gives a similarly low resistance. 

The controlxcontrol interaction .B̂ zgiAer %dZe speedxCronAmg /^eZ is plotted in 

Figure 4.4 and this plot indicates that WZe speed should be set to its low 
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Figure 4.2: The main effect plot for Temperature. 
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Figure 4.3: The controlxcontrol interaction AFRx Higher idle speed. 
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level and Cranking fuel to its high level in order to reduce the average resistance. 

The controlX control interaction AFRx Injection timing is shown in Figure 4.5. 

The plot indicates that, in order to reduce resistance, the two factors should both 

91 



Figure 4.4: The controlx control interaction Higher idle speedx Cranking fuel. 
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be set to their high levels. This finding is consistent with results from the stage 1 

experiment shown in Figure 4.1. 

The control X noise interaction Cranking fuelx Injector tip leakage is illustrated 

in Figure 4.6. The plot indicates that to reduce variation in the response as injector 

tip leakage varies (that is, allowing the age or condition of the engine to vary), the 

control factor Cranking fuel should be set to its higher level. We conclude that the 

screening experiment indicates that Cranking fuel may be a useful control factor 

for achieving low resistance that is insensitive to the age or condition of the engine. 

4.7 Discussion 

Our experience of designing and analysing this two-stage group screening experi-

ment indicated that it was a practical method of screening. An important aspect 

of understanding the technique from this experiment is to consider evidence of 

consistency between the two stages of experiment. 

The most significant individual interaction at t h e second stage, AC, is part of 

the two-factor interaction between Groups 2 and 4 in the sense that 24 = AC + 
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Figure 4.5: The controlxcontrol interaction AFRx Injection timing. 
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Figure 4.6: The control x noise interaction Cranking fuelx Injector tip leakage. 
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AD + BC + BD (see Lewis and Dean (2001), Theorem 1), i.e., the single contrast 

24 in the grouped factors represents four aliased individual factorial effects. The 

grouped interaction 24 was the third most important effect at stage 1. The next 
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most signi6cant individual interaction from the stage 2 experiment, CD, was only 

considered at this second stage as it is an interaction between the two factors within 

Group 4. Similarly, the individual interaction, AB, is an interaction between the 

two factors within Group 2. The last of the signihcant individual interactions, 

is part of the interaction between grouped factors 4 and 5 (45 = CE + DE) which 

was the second most significant grouped effect. For the grouped factorial e&cts 

26 (= A f + BF) and 46 (= C F + DF) , none of the individual interactions were 

important at the second stage. Thus there is some consistency of Endings between 

the hrst and second stages of the experiment. 

It should be recognised that, in assessing the diSerent groupings and in the 

simulation of Section 4.3, no account was taken of the blocking required in the first 

stage experiment. A study of the role of blocking in group screening would be an 

interesting topic for future research. 
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Table 4.11: Analysis of variance for the hrst stage experiment for the grouped 

factors 1 to 6 listed in Table 4.8. Each factorial eSect has 1 degree of freedom; the 

residual is on 9 degrees of freedom. 

Stratum Source of variation Sum of squares Mean Square 

Between sessions 1 440.68 440.68 

56 705.38 705.38 

156 372.84 372.84 

Within sessions 2 54.48 54.48 

3 26.59 26.59 

4 76.16 76.16 

5 23.33 23.33 

6 4.42 4.42 

12 155.83 155.83 

13 99.78 99.78 

14 88.46 88.46 

15 225.58 225.58 

16 157.11 157.11 

23 219.38 219.38 

24 208.38 208.38 

25 90.18 90.18 

26 304.42 304.42 

34 97.16 97.16 

35 68.12 68.12 

36 132.94 132.94 

45 279.26 279.26 

46 92.77 92.77 

Residual 62.88 6.99 

Total 3986.13 
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Table 4.12: Estimated main eSects and two-factor interactions and p-values for the 

response in the hrst stage experiment run at Jaguar Cars. The p-value shown is 

for a t-test of the ginpZe hypothesis that the corresponding factorial eSect is zero, 

against the alternative that it is non-zero. 

Stratum Factorial effect Estimated effect p-value 

1 7.42 -

Whole-plot 56 9.39 -

(Session) 156 (Error) 6.83 -

2 2.61 0.02116 

3 -1.82 0.0832 

4 3.09 0.0092 

5 1.71 0.10072 

6 0.74 0.4469 

12 4.41 0.00116 

13 -3.53 0.00436 

14 -3.33 0.0062 

15 -5.31 0.00030 

Sub-plot 16 -4.43 0.0012 

23 -5.24 0.00033 

24 -5.10 0.00040 

25 -3.36 0.0059 

26 -6.17 0.00010 

34 3.48 0.00476 

35 2.92 0.0124 

36 4.08 0.00188 

45 5.91 0.00014 

46 3.41 0.00548 
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Table 4.13: The plan and scaled response for the second stage experiment. 

Run Temp Response 

gpeed 
(scaled) 

1 0 0 0 1 0 1 -6.72 

2 1 0 0 1 0 0 3.22 

3 1 1 0 1 0 1 -1.10 

4 1 1 1 1 0 0 2.52 

5 0 1 0 1 0 0 4.70 

6 0 1 1 1 0 1 -3.81 

7 0 0 0 0 0 0 0.99 

8 1 0 0 0 0 1 11.76 

9 1 1 0 0 0 0 7.03 

10 1 1 1 0 0 1 -8.04 

11 0 1 0 0 0 1 2.40 

12 0 0 1 0 0 1 1.08 

13 1 0 1 0 0 0 5.68 

14 1 0 1 1 0 1 -1.43 

15 0 1 1 0 0 0 5.35 

16 0 0 1 1 0 0 3.61 

17 0 0 0 1 1 0 -0.73 

18 1 0 0 1 1 1 -5.87 

19 1 1 0 1 1 0 0.19 

20 1 1 1 1 1 1 -5.51 

21 0 1 0 1 1 1 -3.80 

22 0 1 1 1 1 0 2.20 

23 0 0 0 0 1 1 -3.70 

24 1 0 0 0 1 0 1.01 

25 1 1 0 0 1 1 -3.81 

26 1 1 1 0 1 0 0.25 

27 0 1 0 0 1 0 0.04 

28 0 0 1 0 1 0 1.86 

29 1 0 1 0 1 1 -6.19 

30 1 0 1 1 1 0 4.03 

31 0 1 1 0 1 1 -3.87 

32 0 0 1 1 1 1 -1.71 
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Table 4.14: Analysis of variance for the second stage experiment. Labels A to 

F represent WZe apeed, /ueZ, Injector 

/eajkô e and Temperot'ure respectively. Each factorial efFect has 1 degree of freedom 

and the residual has 10 degrees of freedom. 

Source of variation Sum of Squares Mean Square 

A 0.64 0.64 

B 3.64 3.64 

C 3.96 3.96 

D 17.18 17.18 

E 92.99 92.99 

F 204.63 204.63 

AB 23.70 23.70 

AC 36.13 36.13 

AD 0.26 0.26 

AE 11.96 11.96 

AF 0.58 0.58 

BC 15.37 15.37 

BD 7.80 7.80 

BE 1.74 1.74 

BF 11.29 11.29 

CD 24.99 24.99 

CE 17.07 17.07 

CF 21.68 21.68 

DE 23.01 23.01 

DF 7.45 7.45 

EF 0.28 0.28 

Residual 91.10 9.11 

Total 617.45 



Table 4.15: Estimated factorial eSects and p-values for the response in the second 

stage experiment, where A to F are labels for zdZe 

speed, /ue/, ifgector ZeoA;ope and Temĵ emttAre respectively. The p-

value shown is for a two-sided ^-test of the single hypothesis that the corresponding 

factorial eEect is zero. (l)-(6) indicates the six most significant e&cts (p < 0.15). 

Factorial E%ct Estimated EEect p-value 

A 0.28 0.7971 

B -0.67 0.5417 

C -0.70 0.5244 

D -1.47 0.1996 

E -3.41 0.0096 (2) 

F -5.06 0.0008 (1) 

AB -1.72 0.1379 (5) 

AC -2.13 0.0744 (3) 

AD -0.18 0.8682 

AE -1.22 0.2786 

AF -0.27 0.8055 

BC -1.39 0.2231 

BD 0.99 0.3764 

BE 0.47 0.6715 

BF -1.19 0.2916 

CD 1.77 0.1287 (4) 

CE 1.46 0.2010 

CF -1.65 0.1539 

DE 1.70 0.1431 (6) 

DP -0.97 0.3870 

EF -0.19 0.8642 
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Chapte r 5 

Supersa tu ra ted exper iments and a 

comparison with two-stage group 

screening 

In this chapter supersaturated designs are considered as an alternative to two-

stage group screening when interactions as well aa main eEects are of interest. In 

the two-stage group screening experiments considered here, a regular fractional 

factorial design is used at each stage. In order to make a meaningful comparison of 

these two approaches, the same method of analysis must be applied to each type 

of experiment. For supersaturated designs, complex aliasing amongst the factorial 

ejects may result in diSculties when a frequentist analysis, for example, a stepwise 

regression procedure, is applied, as discussed in Section 1.3.1. Chipman, Hamada 

and Wu (1997) gave a Bayesian approach for the selection of a subset of factors to 

include in a model and applied it to analysing supersaturated designs. Their method 

is based on the Stochastic Search Variable Selection (SSVS) procedure of George 

and McCulloch (1993) and incorporates the hierarchical priors for related predictors 

of Chipman (1996), see Section 2.5. This chapter applies this method of detecting 

active effects to group screening, as well as to supersaturated experiments, where 

'active' means non-zero in agreement with, for example, Chipman et al. (1997). 

Section 5.1 gives a brief introduction to Bayesian model selection and an out-

line of the SSVS method is given in Section 5.2. In Section 5.3, the results of 

a small simulation study are presented which compares results from a full facto-
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rial experiment analysed using SSVS with those from a regular fractional factorial 

experiment. The purpose of this study is to investigate the conclusions from an 

SSVS analysis when the design has total aliasing between pairs of factorial effects. 

Section 5.4 uses simulated experiments to compare the performance of SSVS with 

that of all-subsets regression (Section 1.3.1) as a method of analysing data from 

a supersaturated design. Conclusions on SSVS, based on the hndings of Sections 

5.3 and 5.4, are given in Section 5.5. In Section 5.6, results are presented from a 

simulation that compares the two-stage group screening approach with the use of 

a supersaturated design for a particular experiment. In Section 5.7, a comparison 

is made of the results from Section 5.6 and some discussion is presented in Section 

5.8. 

5.1 Bayesian model selection 

In a Bayesiaji approach to model selection, prior uncertainty about which factorial 

terms should be included in a model is formally incorporated by placing prior 

on the corresponding model parameters. The approach assumes a set 

of models of interest, M, and uses a parameter -y to represent a model, (i' is 

fully defined in the next section.) From Bayes theorem, the density function of a 

particular -y given the observed data in vector that is, the pogknor 

of 7, is 

where /(j/|7) is the likelihood function and / ( t ) is the prior distribution of 7. 

In order to choose a model that best describes the data, ideally we would cal-

culate the posterior probabilities of all possible models, that is, explore the whole 

model space, and choose the model or models with the largest posterior probabihty. 

However, when a large number, p, of factorial eEects is of interest, the model space 

of size 2̂  can be very large. This means that an exhaustive exploration is infeasible. 

In order to overcome this problem, a sample from the posterior distribution /(7|%/) 

is generated by using /(2/I7) and (5.1). This sample is then used to approximate 

the posterior distribution. A general class of methods for generating a sequence of 

samples is Markov Chain Monte Carlo (MCMC) methods and Gibbs sampling is 
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a particular type of MCMC algorithm which is used in this chapter. The sample 

of values obtained is called a 'Gibbs sample'. Further details are given in Section 

5.2.2. 

5.2 Stochastic search variable selection 

This section outlines the algorithm of George and McCulloch (1993), which is based 

on Gibbs sampling, for selecting explanatory variables or predictors to include in 

a model. The work in this chapter assumes that only main effects and two-factor 

interactions may be non-negligible and these form the set of all possible predictors. 

The algorithm identihes models, that is, subsets of predictors which have higher 

posterior probabihties than other subsets. These are the subsets of predictors that 

appear most frequently in the Gibbs sample. 

The usual linear model assumptions are made in which a set of predictors 

labelled Zi,..., is related to the response Y as: 

y = -k € (5.2) 

where Y is an n x 1 vector (where M is the number of observations), % is the 

n X p model matrix, /3 is a vector of length p containing the p unknown model 

coefBcients, and e ^ MjV(0,<7^7nxn)- Note that in equation (5.2) the parameters 

have been shifted so that the model does not include an intercept term. Also, cr* 

will be used to denote the error variance to avoid confusion in later notation. 

A vector 'y = ('yi,..., 'yp) of length p is used to indicate the importance of each of 

the p predictors: 'Yi = 0 means that is close to zero and hence the %-th predictor 

is not active; '/i = 1 indicates that is non-zero and the corresponding predictor is 

active. Prior distributions are assigned to /3, and "y, as described in the following 

subsection, and then the posterior probabihties (given the data) of the most likely 

values for 'y â e approximated. These represent the most likely models to describe 

the data. 
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5.2.1 Choice of priors 

The joint prior distribution of the parameters /3, given a particular value of -y, is 

assumed to be 

A^(0, (5.3) 

where is a diagonal matrix consisting of elements o i T i , w h e r e 

1 if 'Yi = 0 

q if''yi = l. 

Here and q are called tuning constants which are chosen by the user; appropriate 

choices for these tuning constants are discussed below. The p x p matrix A in 

equation (5.3) is specihed by the user and determines the prior variance-covariance 

structure of the ,9̂ . An important special case which has been used successfully in 

many applications was identi6ed by George and McCulloch (1993) and will be used 

in this chapter, namely taking A = f . Then the prior distribution of /),, for given 

%, is a mixture of two normal distributions, one for inactive predictors ('ŷ  = 0) 

and one for active predictors ("y, — 1). This distribution can be written 

- (1 - 7i)a/'(0, vf) + 7ia^(0, c?t^), (5.4) 

for i = 1, 

In choosing c, and 7̂ , for simphcity, it is usually assumed that Q = c and 7̂  = 7-

for all %. The value of c, is chosen to reflect the prior belief about the relative 

size of the parameters of an unimportant and an important predictor, as it is the 

relative size of the prior standard deviation in each case. Similarly, the value of 

7̂  represents the size of the parameter of an inactive eSect as the larger the value 

of 7̂ , the wider is the spread of = 0) and so larger values of are more 

likely. Box and Meyer (1986) and Chipman et al. (1997) used c = 10, so that the 

prior standard deviation of an important eEect is ten times larger than that of an 

unimportant one. For the value of 7̂ , Chipman (2003) recommended 

3 a w ' 

where A(3;i), for / = 1, ...,p, is the difference between the value of the highest and 

lowest values of predictor 2:̂ . For all the examples in this chapter, A(%i) has the 

same value for all values of and hence the assumption 7̂  = 7- is appropriate. 
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The prior for the variance of e in model (5.2) is assumed to be the inverse 

gamma distribution 

(7̂  rs, 7g(z//2, z/a/2) 

where and A are again appropriately chosen tuning constants. This is equivalent 

to ^ a chi-squared distribution with degrees of freedom. As yor(o-^) 

is not dehned for z/ < 4, Chipman (2003) recommended a value of;/ = 5. Chipman 

et al. (1997) recommended that A be tuned so that a selected model does not have 

too many or too few terms and proposed, ag a sensible choice, the use of 

A = ( 5 . 5 ) 

where i'or(i/) is the sample variance of the data. 

Under the model assumptions described above, the Bayesian analysis now aims 

to obtain the marginal posterior distribution /(-yl;/). From equation (5.1) this 

distribution is proportional to /(i/ |'7)/(7). Use of the data i/ updates the prior 

probabilities to give posterior probabihties for each of the 2̂  possible values of 

that is, the 2̂  possible models. The posterior probabilities are then used to provide 

a ranking of promising models ("ys) for further investigation. 

The choice of prior distribution, /('y), for "y should incorporate any available 

prior information about which subsets of predictors are likely to be active. George 

and McCulloch (1993) used an mdepemcfeace prior for 'y, that is, 

7^(7) = 

1=1 

where Pi is the probability that ji = 1. However, the use of this prior assumes that 

the probability of a variable being active does not depend on whether ajiy of the 

other variables are active. 

For the situation where two-factor interactions are considered, there is a more 

appropriate choice of prior. Chipman (1996) introduced priors for -y that incor-

porate relations between predictors and, in particular, between a two-factor inter-

action and the main effects of each factor involved in the interaction. This idea 

was described in Section 2.5 where it was used to calculate individual interaction 

probabilities in group screening. 
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5.2.2 Gibbs sampling 

The Gibbs sampler is a Markov Chain Monte Carlo technique for generating random 

samples from a posterior distribution indirectly by using conditional distributions. 

This approach avoids having to calculate the posterior density. Repeated draws Eire 

made from the conditional distribution of a parameter, conditional on the data and 

the most recently sampled values of the other parameters. 

For model (5.2), the Gibbs sampler generates a 'Gibbs sequence' 

(7°, y , ( t " " , 7 " , (5.7) 

where m is the number of iterations used in the Gibbs sample, cr°,cr^,...,i7'^ are 

a sample from the successive conditional distributions of and, similarly, ,8°, 

are a sample from the successive conditional distributions of /3. Further 

details are given below. In many cases, the sequence of models 

converges rapidly to give, approximately, a sample from the posterior distribution 

/('yji/). As previously discussed, for large numbers of predictors, the number of all 

possible "ys (the model space) is very large and then computing the above sequence 

is much faster than calculating / ( 7 | y ) for all 2̂  possible 7s. 

For models which are not singular (that is, for which (X'X)~^ exists), the 

starting values and <7° for and cr* respectively are chosen to be the estimates 

obtained from model (5.2) for 7°, using the method of least squares. Usually, 7° is 

set to have all the terms active in the full model, i.e. 7° = (1,1,..., 1). Subsequent 

values of (j = 1,2,...) are obtained by sampling from the multivariate Normal 

distribution 

A^,_i), (5.8) 

where 

as given by George and McCulloch (1993). The distribution (5.8) is the conditional 

distribution of given and The variance is obtained by sampling 

from the updated inverse gamma distribution 

+ ( 5 . 9 ) 
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Each element in the vector -y-) is obtained by sampling consecutively from the 

conditional distribution 

(5.10) 

where = ( ' y i , E a c h distribution (5.10) can then be shown 

to be Bernoulli with probability 

p ( 7 / = l | / 3 ' , a ^ 7 f i , ) = ^ (5^11) 
^ ^ a + 0 

where 

6 ^ /(/3^l7(i),li = 0 ) ( l - p i ) 

and Pi = f ('Yi = 1). Successive sampling from (5.8), (5.9) and (5.11) gives the 

Gibbs sequence (5.7). Enough draws must be made so that the Gibbs sequence 

converges. It is also common practice to discard the Erst few observations in a 

Gibbs sequence because the starting point may not be a representative point from 

the posterior distribution. 

If a value of 7 appears frequently in the Gibbs sample obtained, then this 

indicates that the corresponding model provides a good description of the data. 

5.2.3 Use of SSVS wi th s u p e r s a t u r a t e d exper iments 

The SSVS approach can be used with supersaturated designs. However, minor 

modiGcations are needed for the starting values and cr°. This is because it is 

not possible to End the least squares estimates of (5.2) aa the information matrix 

X'X is singular. 

In the literature, SSVS is used to select models in several examples including 

data from supersaturated designs. However, there appear to be no studies available 

on how reliably the method detects active effects. For this reason, in the next two 

sections, simulation studies are used to assess SSVS. 

For these studies, I have used code written by Professor Hugh Ghipman to 

perform SSVS. (This code is available at 

www.stats.uwaterloo.ca/^hachipma/code/index.html and is written in C++.) I 

have incorporated this code into simulation programs which are written in C4-+. 

106 

http://www.stats.uwaterloo.ca/%5ehachipma/code/index.html


5.3 Small study to investigate the performance 

of SSVS 

In this study, two small experiments were run, each for three two-level factors A, 

B, C. The hrst experiment was a full 2̂  factorial; the second was an experiment 

using the 2̂ "̂  fraction with dehning contrast vlBC. 

The foDowing 'true' model was deAned for an observation Y in which a term for 

the mean is omitted, as recommended by George and McCulloch (1993): 

y = loa;,^ 4- 4- ozg 4- 10a;ŷ a;_b + ^ 

where e ^"(0,0.00025), the random errors for the observations are assumed in-

dependent and (j = A, C) denotes the value of factor j. In this model there 

are 6 predictors and their order in 'y is the same as that in the above model. A 

small value for the variance of the error distribution waa chosen in order to gain a 

cleEirer understanding of how the aliaaing structure in the design aEected the ability 

of SSVS to detect the two active eEects. (The investigation was also repeated with 

6 7V(0,4) and these findings are discussed in Section 5.3.3.) 

The design and data for the full factorial experiment are shown in Table 5.1. 

The SSVS algorithm was run 50,000 times with a bum-in of 100 runs, that is, the 

Grst 100 runs were discarded (see Section 5.2.2). The tuning constants z/ = 5, A = 

9.14, c = 10 and r = 0.1667 were used, in accordance with the recommendations 

described in Section 5.2.1. 

Three sets of probabilities (pi, z = 1,..., 6) were considered for the prior proba-

bility that the z-th predictor is active (see equation (5.6)), namely, 

(1) Pi — 0.5, 2 = 1,..., 6 

(2) Pi = 0.99, i = 1 , 6 

(3) Pi = P2 = P3 = 0.5; with p4, ps, pe the respective probabilities of predictors 

and being active, calculated using woo = 0.01, woi = tuio = 

0.1 and wii = 0.25 from formula (2.31) of Section 2.5. 
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Table 5.1: The design and data for the fnll factorial experiment, where the responses 

are given to 4 decimal places. 

A Response 

-1 -1 -1 1 1 1 -0.0078 

- 1 - 1 1 1 - 1 - 1 -0.0088 

- 1 1 -1 -1 1 - 1 -19.9932 

- 1 1 1 - 1 - 1 1 -19.9900 

1 - 1 - 1 - 1 - 1 1 -0.0031 

1 - 1 1 - 1 1 - 1 -0.0054 

1 1 - 1 1 - 1 - 1 19.9925 

1 1 1 1 1 1 20.0083 

5.3.1 Resul ts for t h e full factorial 

Table 5.2 shows the fonr models that appear most frequently in the Gibbs sample, 

ranked by posterior probability. The model with the highest posterior probability 

waa found to be the true model "x = 100100 for sets (1) and (3) of prior probabihties. 

The term and the interaction XAXB occurred in every model visited by the 

Gibbs sampler, that is, their marginal probabilities were both 1. Here the marginal 

probability is dehned as the number of models visited that included this predictor, 

divided by the total number of models visited. 

When all the main effect and interaction probabilities (pi) are set to 0.99 (set 

(2) above), the top model identihed is the model with a very high posterior 

probability of 0.84. This case waa included in the study to gauge the inSuence 

of the design and the data on the results and shows that the use of high prior 

probabihties can mask the true situation. Even with very large parameter values 

and small random error, use of large prior probabilities swamps the information 

from the experiment. However, the main effect of and the interaction AB are 

again included in each of the top four models. 
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Table 5.2: The four models (-y) with highest posterior probabihties identihed by 

SSVS under three sets of prior probabilities for main eSects (m.e.) and interactions 

(int) being active, and for a full 2̂  experiment. The entries in each are ordered 

according to the terms corresponding to v4, B, C, AC, BC. 

All m.e. and All m.e. and All m.e probs 0.5; tuoo = 0.01 

int. probabilities 0.5 int. probabilities 0.99 Woi = u/io = 0.1, WII = 0.25 

Model Probability Model Probability Model Probability 

100100 0.44 111111 0.84 100100 0.53 

100110 0.10 111101 0.04 110100 0.28 

100101 0.10 110111 0.04 101100 0.09 

110100 0.10 101111 0.04 111100 0.05 

Marginal Probabilities 

A 1.00 A 1.00 A 1.00 

B 0.19 B 0.96 B 0.35 

C 0.19 C 0.96 C 0.15 

1.00 AB 1.00 A B 1.00 

AC 0.19 AC 0.96 A C 0.03 

BC 0.19 BC 0.96 B C 0.02 

109 



5.3.2 Resul ts for the half replicate 

The defining relation for the half replicate was 7 = ABC. Hence, the mala eEect 

of A was totally aliased with the interaction BC, the main eEect of B waa totally 

aliased with the interaction AC and the main eSect of C was totally aliased with 

the interaction AB. 

Table 5.3 shows the top ranked models appearing in the Gibbs sample for the sets 

of prior probabilities (1) - (3), given at the start of Section 5.3, for data generated 

from the fractional factorial. 

For set (1), the top ranked model includes the truly active eEects for A and AB, 

but also for their aliases BC and C respectively. Only these four eEects appear in 

the top four models and their marginal probabihties are approximately equal. This 

indicates that SSVS has not been able to distinguish between their aliased effects. 

Note also that the posterior probabihty for the top model is only 0.09 which is too 

low for a model to be chosen. The results for the case when all the main effects 

and interaction probabihties are 0.99 (set (2)), are very similar to those for the full 

factorial experiment. 

For set (3), the marginal probability of is 0.88 but the marginal probabihty of 

is only 0.25. Variable appears in the hrst four models but appears 

only in the fourth model. In the design, main effect C is totally aliased with 

the interaction AB which explains the high marginal probability of C. Here the 

probabilities of main effects being active are higher than those for interactions; 

SSVS is usiug the prior probabihties to augment the information from the design 

to produce the top ranked model. 

5.3.3 Resul ts of the investigation w i t h larger error variance 

used in t he d a t a generat ion 

The previous investigation was repeated with e ^ A/^(0,4) used in the data genera-

tion. The results are given in Appendix E. The data are shown in Table E.l and 

the results for the full 2̂  experiment are summarised in Table E.2. 

For prior probability set (1), the ranking of the top four models was exactly 

the same as in Section 5.3.1 but with a slight decrease in the proportion of times 

110 



Table 5.3: The four models ("x) with highest posterior probabilities identi6ed by 

SSVS under three sets of prior probabilities for main eEects and interactions being 

active, and for a 2̂ "̂  experiment. The entries in each model are ordered according 

to the terms corresponding to yl, C, AC, BC. 

AU m.e. and All m.e. and All m.e. probs 0.5; poo = 0 01 

int. probabilities 0.5 int. probabilities 0.99 Poi = = 0.1, pii = 0.25 

Model Probability Model Probability Model Probability 

101101 0.09 111111 0.95 101000 0.37 

101001 0.07 101111 0.01 111000 0.08 

100101 0.07 111101 0.01 101001 0.06 

101100 0.06 111011 0.01 100100 0.06 

Marginal Probabilities 

A 0.71 A 0.99 A 0.88 

B 0.30 B 0.99 B 0.33 

C 0.70 C 0.99 C 0.88 

via 0.70 0.99 0.25 

AC 0.29 AC 0.99 A C 0.11 

BC 0.71 BC 0.99 B C 0.27 

t k ubra ubrahy ! lui 
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that the top model occurred in the sample, a slight increase in the proportions of 

times the next model occurred and a very slight reduction in the proportions of 

times that the third and fourth models occurred. There was also an increase in the 

marginal probabihties for and These results indicate a reduction in the, 

already poor, clarity of Endings from SSVS for this investigation. 

For prior probability set (2), the top ranked model was again the /uH model 

which occurred a larger proportion of times than any other model. The fourth 

ranked model included every term except whereas the fourth ranked model 

in Section 5.3.1 included every term except a;g. However, the proportions of times 

the second, third and fourth ranked models occurred in the Gibbs sample were very 

similar for both investigations. 

For prior probability set (3), the ranking of the top four models was exactly the 

same as in Section 5.3.1 but with a slight decrease in the proportions of times that 

the top two models occurred and a slight increase in the proportions of times the 

third and fourth models occurred. 

The results for the 2^"^ experiment are shown in Table E.3 from which it can 

be seen that the Endings are almost identical to those in Section 5.3.2. 

5.4 Comparison of SSVS wi th all-subsets regres-

sion for analysing a supe r sa tu r a t ed design 

Abraham, Chipman and Vijayan (1999) drew attention to some of the risks in 

the construction and frequentist analysis of supersaturated designs. They gave the 

results of a simulation that compared forward stepwise regression with all-subsets 

regression (described in Chapter 1) using the 14-run supersaturated design of Lin 

(1993). They concluded that all-subsets regression was a better choice of analysis 

method than forward stepwise regression, but that this method can be problematic 

and that caution should be used when using supersaturated designs. 

In order to carry out a similar assessment of the SSVS method of analysis, a 

similar simulation investigation was carried out for the same design of Lin (1993). 

Only models containing main eSects were considered and hence a factor is called 
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active if its main effect is active. Following Abraham et al. (1999), six true models 

that involve only subsets of three parameters from /)i, ^2, Z??, were consid-

ered. The errors for the observations were generated by independent draws from 

a A^(0,1) distribution. The data were analysed using SSVS and the whole process 

was repeated 200 times (as was done by Abraham et al. (1999)) and also 1000 times 

to check the simulation accuracy. The results for 1000 and 200 simulations were 

almost identical. The probability of a main eSect being active was set to 0.5 for all 

factors. For SSVS, the value of c was set to three different values: 10, 50 and 100. 

The values of T, A and were set to 0.167, and 5 respectively (see Section 

5.2.1). 

Table 5.4 shows results from the SSVS analyses, together with the correspond-

ing results for all-subsets regression from Abraham et al. (1999). SSVS performs 

markedly better when c — 10 and the coeScients of the three active factors are 

/?! = 1, /)2 = 1 and = 1, as compared with all-subsets regression. However, there 

is not so marked an improvement in any of the other results and, in fact, all-subsets 

regression performs better for some choices of 

However, an advantage of SSVS is that different probabilities of being active 

can be assigned to the various factorial terms. A simulation study has also been 

run with the probabilities of main effects of factors known to be active set to 0.5 

and those known to be inactive set to 0.1. The results, shown in Table 5.5, indicate 

that altering the prior probabilities for SSVS to reSect knowledge of active factors 

increases (a) the percentage of times that the top model contains all the active 

factors, and (b) the percentage of times that one of the top hve models contains all 

the active factors. 

When c = 10, SSVS performs notably better than all-subsets regression in this 

study but when c = 50, SSVS performs only slightly better. This demonstrates 

the increased flexibility of SSVS, but also highlights the sensitivity of SSVS to the 

choice of values for the tuning constants. 
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Table 5.4: Simulation results for all-subsets regression (Abraham et al. (1999)) and SSVS. The model coefhcients are labelled according 

to the corresponding variable. For SSVS, the results are shown for three values of the tuning constant c. The numbers in parentheses 

are the percentages of times one of the top five models contained all the active factors. 

4̂  

AU-subsets regression SSVS 

Actual coe&cients Percentage of times correct factors Percentage of times top ranked model 

selected in subsets of size A; contains all active factors 

A A A As k — 3 k = 4. k — 5 c=10 c=50 c=100 

1 1 1 0 0 52 (77) 50 (77) 51 (70) 79.2 (95.4) 79.9 (95.8) 38.9 (66.4) 

0 0.5 0 0.5 0.5 1(8) 4(9) 5(15) 3.8 (13.9) 6.2 (14.2) 3.9 (10.5) 

0 1 0 1 1 33 (57) 44 (65) 43 (67) 25 (54.2) 27 (45.6) 22.9 (41.2) 

0 5 0 10 20 100 (100) 100 (100) 100 (100) 87.9 (100) 100 (100) 100 (100) 

0 14 0 20 20 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 

0 20 0 20 20 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 



Table 5.5: Results of the simulation using prior probability 0.5 for active e&cts and 

0.1 for inactive eEects, for three settings of 10, 50 and 100 of the tuning constant c. 

The numbers in parentheses are the percentages of times one of the top 5 models 

contained all the active factors. 

Percentages of times the top model 

Actual coefBcients contains all active factors 

A A A ,̂ 7 As c = 10 c = 50 c — 100 

1 1 1 0 0 86.7 (99.6) 57.2 (94.3) 42.9 (89.8) 

0 0.5 0 0.5 0.5 35.4 (70.2) 18.5 (44.5) 10.9 (32.8) 

0 1 0 1 1 78.1 (92.1) 57.1 (82.2) 44.3 (73.1) 

0 5 0 10 20 100 (100) 100 (100) 100 (100) 

0 14 0 20 20 100 (100) 100 (100) 100 (100) 

0 20 0 20 20 100 (100) 100 (100) 100 (100) 

5.5 Overall conclusions on Stochastic Search Vari-

able Selection 

From the examples studied in this chapter, the overall conclusions on stochastic 

search variable selection are aa follows: 

• When there is no aliasing of factorial effects, and the probabilities of effects 

being active are no larger than 0.5, SSVS selects the correct model about 50% 

of the time and the second, third and fourth ranked models each contained 

the true model. The marginal probability of each of the truly active ejects 

is 1. When the probabilities of eSects being active are set very high, SSVS 

hnds everything to be important. This shows that for a design with no aliased 

eEects, and a sensible choice of prior probabilities, the conclusions from SSVS 

are reasonable. 

# When there is total aliasing of two factorial effects and the probabihties of 

effects being active are equal and no larger than 0.5, SSVS will return marginal 

probabilities for each effect which are roughly equal. This finding indicates 
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that care should be taken to consider the aliasing structure in a design when 

interpreting the results from SSVS. 

# For experiments where the model space is not large and when there is no 

prior knowledge available on the importance of factorial effects, all-subsets 

regression performs no worse than SSVS. 

These conclusions are, of course, baaed only on a small number of examples and 

further studies would be useful. 

5.6 A comparison of a two-stage group screening 

experiment and a s upe r sa tu ra t ed experiment 

This section describes a further simulation study to compare the ability of a partic-

ular two-stage group screening experiment and a particular supersaturated design 

to detect active factors. The experiment setting used for this study had 8 control 

factors, labelled 

a , g , c , d , e , f , g , ^ , 

and 6 noise factors, labelled 

/ , J, Z;, M, 7\A. 

The active factorial eEects were chosen to be the main effect of control factor B, 

the main e&ct of noise factor 7 and their interaction . All other factorial eSects 

were aasumed to be zero. The true model from vyhich the observations for the 

experiment were generated was 

Y = 3XQ + S x j + S x q X X c ( 5 . 1 2 ) 

where e ^ 1), and the errors for different observations were obtained indepen-

dently by random draws. The details of the designs used are given in the following 

sections. Each simulated experiment was then repeated twice, with the values of 

the coefhcients of a;/ and increased, hrstly to 10 and secondly to 30. 

Each of the resulting six data sets were analysed using SSVS. All probabihties 

of main eSects being active were 0.14 and the values of the conditional proba-

bilities used to calculate the individual interaction probabilities (as described in 
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Section 2.5) were 0.005, 0.125, 0.125 and 0.25 for both the controlxnoise and 

controlXcontrol individual interactions. The tuning constants in the SSVS algo-

rithms were: c — 10, i/ = 5, r = 0.16667 and A = f. The value of A was calculated 

for each simulation according to the generated value of the data using equation 

(5.5). 

5.6.1 Simulation of a super sa tu ra ted exper iment 

For the study, a supersaturated design was required for 14 factors that allowed 

interactions as well as main eEects to be considered. As described in Section 1.3.1, 

Liu and Dean (2004) gave a method for adding interaction columns to A-circulant 

main eEect supersaturated designs. They also gave a supersaturated design capable 

of estimating 14 main eSFects in 8 runs, and also gave a set of 7, 14 or 21 

interaction columns that could be appended to the design matrix which could be 

used to estimate interactions or further main eEects. Here the columns are used 

to estimate the particular interactions. Each of the three supersaturated designs 

constructed in this way was used in the study. 

A single simulation in the study comprised data generation using model (5.12) 

and analysis using SSVS with a burn-in of 100 runs and 10,000 iterations. The 

simulation was performed 10,000 times and the eS'ects appearing in the top two 

models from the analysis were recorded. These results are shown in the upper 

part of Table 5.6. The average number of inactive effects which occurred in the 

top model, averaged over the 10,000 simulated experiments, is in the lower part of 

Table 5.6. 

From the table, it can be seen that the percentage of times that the top model is 

the true model (indicated by (i) in Table 5.6) becomes smaller aa more interaction 

columna are appended to the design matrix. This is also true for the percentage of 

times that the top model contains the true model (indicated by (ii)). The percent-

ages of times that one of the top two models contains the true model (indicated 

by (iii)) are very similar for the designs with 7 and 14 interaction columns, but are 

smaller for the design with 21 interaction columns. The general trend is that the 

percentages of correct identiScation are reduced when more interaction columns are 
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Table 5.6: The upper part shows the percentage of times that (i) the top model 

identihed was the true model, (ii) the top model contained the active effects and 

(iii) one of the top two models contained the active eEects. Results are shown for 

simulations with values for active eEects of 3, 10 and 30, for three supersaturated 

designs, each capable of estimating 14 main effects and 7, 14 and 21 interactions 

respectively. The lower part of this table gives the average number of inactive 

eSects which were included in the top model, averaged over the 10,000 simulations 

of the experiment. 

Coeff. of Identification percentages (i), (ii) and (iii) for supersaturated 

active design with 7, 14 and 21 interaction columns 

e&cts in 7 14 21 

simulation (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) 

3 66.15 94.89 99.52 26.08 49.55 97.60 20.66 33.26 66.04 

10 71.09 100 100 23.63 47.83 100 20.78 34.00 66.23 

30 1 71.14 100 100 23.41 48.55 100 20.92 34.22 67.12 

Average no. of inactive effects in top model 

3 0.3768 1.5128 1.9884 

10 0.2891 1.5635 2.1778 

30 0.2886 1.5252 2.1145 
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appended to the supersaturated design. 

The table also shows that increasing the values of the active eEect coe&cients 

from 3 to 10 nearly always improved the detection of the active effects. However, 

increasing these coeScients from 10 to 30 made very little further improvement. 

The average number of spurious, or non-active, effects in the top models in-

creaaed with the number of interaction columns in the design. For the design with 

7 interaction columns, increasing the values of the active eSects from 3 to 10 de-

creased slightly the average number of effects wrongly declared active. For the 

designs with 14 and 21 interaction columns, this increase in the active eEects co-

efficients resulted in a slight increase in the average numbers of effects wrongly 

declared active. A further increase in the coeScient values from 10 to 30 gave very 

similar results. 

These results indicate that, for this particular example, as the number of inter-

action columns in the design is increased, that is, the aliasing amongst the eEects 

becomes more complicated, the chance of identifying the true model is reduced, 

even when the values of active effects are large. 

The above finding is supported by another investigation in which all 8 x 6 — 48 

control X noise interaction columns and all (g) = 28 control x control interaction 

columns were appended to the design matrix. For active effect coefBcients of size 

3, the percentage of times that the top model was the true model was 0. The same 

was true for the percentage of times that the top model contained the true model. 

The percentage of times that orie of the top two models contained the true model 

was 8.83% and the average number of inactive eSects which were declared active 

was 0.0345. This number is low because the model with no active effects was found 

to be the highest ranked model in 66.57% of the simulations. 

5.6.2 Simulation for t he group screening exper iment 

The simulation of a two-stage group screening experiment is more complicated 

than simulating a supersaturated experiment. For this reason, an outline of the 

simulation procedure is given below. The grouping chosen for the investigations is 

described and the approach used in assigning grouped conditional probabilities is 
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explained, before the results are presented from applying the simulation method to 

data generated from model (5.12). 

Outline of the simulation 

As mentioned in Section 5.2.3, the SSVS code of Professor H. Chipman has been 

incorporated into both stages of the two-stage group screening simulation. 

The user specides the numbers of individual control and noise factors, the prob-

abilities of their main effects being active and the conditional probabilities to be 

used in calculating the individual interaction probabilities and the standard devi-

ation, cr*, to be used for the distribution jV(0,cr*) for the error terms used in the 

data generation at both stages. A choice of active e&cts must also be made, to-

gether with their coeGicient values. It is assumed that the individual conditional 

probabilities are the same for both control xnoise and control xcontrol interactions. 

The user can also choose how many of the top ranked models are to be retained at 

each stage and, in this example, this value was chosen to be two. 

The user must also specify the grouping to be used in the Srst stage experiment, 

and the model matrix for this grouping in terms of the individual effects. This ma-

trix must have individual effects that are in the same group totally aliased with each 

other. (The matrix is used in the data generation for the Srst stage experiment.) 

The grouped model matrix must also be speciSed in terms of the grouped factors. 

The grouped main effects probabilities are calculated using equations (2.1) and 

(2.2). The heredity principle is used to assign interaction probabilities at the first 

stage. Hence appropriate choices for conditional probabilities must be supplied 

by the user. The approach used in choosing the conditional probabilities for this 

example is detailed below. 

A design that can be used to estimate aU grouped main eEects and two-factor 

interactions is used at the Erst stage. Details of the design and the factor grouping 

are given in the following subsection. The model for the grouped factors is htted 

at the hrst stage using SSVS. Grouped effects appearing in the top two models 

are considered for the second stage. More precisely, if a grouped control main 

eEect is declared active, all individual control factors within that group are brought 

forward to the second stage. If a grouped interaction term is declared active, all the 
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individual factors involved are brought forward to the second stage. If a grouped 

noise factor is in the top two models, it will only be declared active if it is involved 

in an active grouped controlxnoise interaction. 

A regular fraction factorial design, capable of estimating all main eSects and 

two-factor interactions, is selected automatically for the second stage from the table 

of Russell et ai. (2004) according to how many individual control factors and individ-

ual noise factors have been brought forward to the second stage. All controlxnoise 

and control X control interaction columns are generated by the program from the 

basic design. This gives a design which is not necessarily a minimal plan. Hence 

we would expect a higher number of runs for the two-stage experiment using this 

approach than equation (2.25) would give. Data are generated for the second stage 

experiment and SSV8 used to select a second stage model for individual eSects. The 

models selected by S8VS at the second stage are ranked and the top two are kept. 

The number of observations required for the second stage experiment is recorded 

and added to the number of observations used in the first stage experiment. 

A single simulation comprises one generation of data for the first stage experi-

ment and their analysis using SSVS (10,000 iterations), together with one second 

stage data generation and analysis using SSVS (10,000 iterations). The simula-

tion is repeated 10,000 times and the average number of observations taken in the 

simulated two-stage experiment is calculated. 

Choice of grouping and first stage plan 

In order to be able to compare the results from the two-stage group screening ex-

periment with those for the supersaturated experiment, it was necessary to consider 

the same model space, as far as possible. In order to investigate only 7, 14 or 21 

specified individual interactions, it was decided to examine only those grouped in-

teractions which contain these particular individual intera<:tions. This meant that a 

reduced grouped model space was being explored at the first stage. The experiment 

in which all 76 interactions were investigated waa also considered. 

In order to find good groupings to use for the simulations, a grouping investiga-

tion was performed where the probabihties for individual interactions which were 

not being investigated were set to zero. Hence three grouping investigations were 
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Table 5.7: Grouping of control factors v4. to and noise factors 7 to for the 

group screening simulation. 

Group Individual factors 

1 A & B 

2 C & D 

3 E & f 

4 G & n 

5 AT 

6 Z, & M & AT 

performed in the same manner as those described in Chapters 3 and 4. A fourth 

grouping investigation was also performed for the situation where all interactions 

were to be investigated. Grouping the control factors in four groups of size two 

and the noise factors in two groups of size three consistently gave minimal or near 

minimal values of and Hence this grouping was chosen for the 

simulated experiments. This chosen grouping is shown in Table 5.7. 

A regular fractional factorial 2®"̂  design for 4 control factors and 2 noise factors 

(aa given in Russell et al. (2004)) with dedning contrast 123456 was used at the 

6rst stage. This design wag capable of estimating all grouped main eSFects and two-

factor interactions. However, only the interaction columns of interest were used in 

the grouped design matrix. 

Calculation of grouped conditional probabilities 

In order to use the heredity principle (as described in Section 2.5) for the grouped 

interactions in the first stage experiment, it is necessary to find appropriate choices 

for the values of the conditional probabilities and where z = 0,1, 

j = 0,1 and the superscript G indicates that these are for grouped interactions. 

If it is assumed that the relationship between these probabihties is the same as 

that used for the individual conditional probabilities, then 

= 2 X = 2 X wg"") = 50 X (5.13) 
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and 

= 2 X = 2 X = 50 X (5 14) 

Using the formulae of Chapter 2, we And the probabilities of grouped interactions 

being active and the probabilities of grouped main eSects being active. From the 

assumed relationships in (5.13) and (5.14), values for and can then be 

found, aa follows. 

For this example, all the individual main effects probabilities were set to 0.14. 

Using the conditional probabilities Wqq"'^ = 0.005, = 0.125 and 

= 0.25; and equation (2.31), the probability that aji individual controlxnoise 

interaction is active is 

(0.005 X (1 - 0.14)(1 - 0.14)) + (0.125 x (1 - 0.14) x 0.14) 

+(0.125 X 0.14 X (1 - 0.14)) + (0.25 x 0.14 x 0.14) 

= 0.038698. 

Similarly, the probability that an individual control x control interaction is active is 

also 0.038698. Using equation (2.3), we can then calculate the probability that a 

grouped controlxnoise interaction is active to be 

1 - (1 - 0.038698)^ = 0.21085, 

and the probabihty that a grouped control x control interaction is active to be 

1 - (1 - 0.038698)"^ = 0.146036. 

Using equation (2.1), we calculate the probability that a grouped control main eSect 

is active to be 

1 - (1 - 0.14)^ = 0.2604. 

Similarly, using equation (2.2) to calculate the probabihty that a grouped noise 

main eEect is active, gives 

1 - (1 - 0.14)^ = 0.363944. 
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For control X noise interactions we then solve 

0.21085 = - 0.2604)(1 - 0.363944) + - 0.2604)0.363944 

+w{^(^)0.2604(l - 0.363944) + W ;̂̂ "^)0.2604 x 0.363944 

(1 - 0.2604)(1 - 0.363944) + (1 - 0.2604)0.363944 
50 
G(cn) 

-0.2604(1 - 0.363944) + w{ (̂'=")o.2604 x 0.363944 
2 

to give = 0.6557, = 0.32785 and = 0.013114. 

Similarly, for controlxcontrol interactions it can be shown that = 0.01076, 

_̂ G(cc) _ = 0.2269 and wn = 0.5381. 

Results for the simulations of two-stage group screening experiments 

The upper part of Table 5.8 shows the percentages of times that (i) the top model 

identified was the true model, (ii) the top model contained the active effects and 

(iii) one of the top two models contained the active eEects, for two-stage group 

screening experiments for estimating 14 main eEects with 7, 14, 21 or 76 particular 

individual interactions to be investigated. The average number of inactive eEects 

which were in the top model selected are shown in the lower part of Table 5.8, 

where the average is over the 10,000 simulated two-stage experiments. Also given 

is the average number of observations used in the two-stage experiment, again over 

all simulations. 

The percentages of correct identification of the true model were improved as the 

values of the active effect coeScients were increased from 3 to 10. Increasing these 

values to 30 had little further e%ct. The results are very similar across the four 

different sets of interactions. 

5.7 Findings from the simulation study 

The simulation study is limited in its scope but some trends caji be observed from 

the examples. The percentages of correct identiScation of the true model for the 

two-stage group screening experiment were consistently higher (or equal to) those 

for the supersaturated design. 
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k) cn 

Table 5.8: The upper part of this table shows the percentage of times that (i) the top model identified was the true model, (ii) the top 

model contained the active eEects and (iii) one of the top two models contained the active eSects. Results are shown for 12 simulations 

for two-stage group screening experiments with four diSerent hrst stage designs, each capable of estimating 14 factor m.e.s and 7, 14, 

21 and 76 particular interactions respectively and, for each design, active eSects with coefhcients 3, 10 and 30. The lower part of the 

table shows the average number of inactive eSects included in the top model selected over 10,000 simulations, and the average number 

of runs required for the two stages of experimentation. 

CoeGicient of 1 Identification percentages (i), (ii) and (iii ) for four group screening 

active designs capable of estimating 7, 14, 21 and 76 particular interactions 

eSects in 7 14 21 76 

simulation (i) (ii) (iii) (i) (ii) (iii) (i) (li) (iii) (i) (ii) (iii) 

3 94.18 98.14 98.14 88.82 93.42 93.42 80.15 84.12 84.12 79.11 83.23 83.23 

10 95.78 99.03 99.03 96.22 100 100 95.67 100 100 95.83 100 100 

30 1 96.77 100 100 96.29 100 100 96.46 100 100 96.27 100 100 

Average no. of inactive eSects in the top model (&: average number of runs) 

3 0.0403 (48) 0.0378 (47.63) 0.041 (47.45) 0.0417 (47.65) 

10 0.033 (48.12) 0.0378 (48) 0.0433 (48) 0.0417 (48) 

30 0.0323 (48) 0.0371 (48) 0.0354 (48) 0.0373 (48) 



The average numbers of observations required using two-stage group screening, 

for this example, were consistently larger than the eight required by the supersat-

urated design. For active eSects coefhcients of 10 and 30 when all the 14 grouped 

interactions are considered at the 6rst stage of group screening (the most demand-

ing caae), the percentage of times that the top model identihed was the true model 

is approximately 96%. In contrast, when the supersaturated design is used with 

only 7 interactions (the least demanding case), this percentage drops to 71%. This 

indicates that group screening performs better on the most demanding case than 

the supersaturated design on the least demanding case. 

The beneAts of two-stage group screening, at the cost of using more observa-

tions (approximately 40 more), are clear. The average numbers of ejects wrongly 

identihed as active were consistently below 0.05 for the group screening simulations, 

but were as high as 2 for the supersaturated design with 21 interaction columns. 

5.8 Discussion 

The studies in this chapter have identiBed that SSVS has the same drawback as 

the frequentist stepwise regression analysis, namely a failure to detect active ef-

fects when the values of active effects are fairly small and complex aliasing exists 

amongst the predictors. In the example, when two factorial effects were totally 

aliased together and non-informative priors are used, SSVS was unable to distin-

guish between the ahaaed eSects. In these circumstances, further knowledge about 

the factorial eSects is required to decide which of an aliased pair of factorial eSects 

should be included. 

From a comparison of a particular supersaturated design and a two-stage group 

screening experiment using simulations, it was found that the correct model was 

identihed more frequently and that fewer effects were wrongly declared active using 

the group screening approach. However, the two-stage group screening experiments 

required an average of approximately 48 runs, whereas the supersaturated exper-

iments only required 8 runs. A trade-off must be made between the number of 

runs an experimenter is able to use, and the level of inaccuracy that can be toler-

ated in the conclusions from the experiment, when deciding which screening tool 
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should be used. This trade-off depends on the costs of missing important factors 

and of including unimportant factors in follow-up experiments. An interesting area 

for future research would be to perform a similar comparison, but with a smaller 

imbalance in the number of runs used by each experiment. 

An extension to the use of the SSVS method has been proposed by Beattie, Fong 

and Lin (2002) who presented a two-stage approach for analysing supersaturated 

designs where SSVS is used at the 6rst stage. The variables in the model that has 

the highest posterior probability are identiSed as active, together with any other 

variables that were not included in the top model but featured, for example, in 

the second and third models. All the variables identified as important are brought 

together into a single model. A further analysis is then performed based on the 

Intrinsic Bayes Factor procedure of Berger and Pericchi (1996a). Suh, Ye and 

Mendel] (2003) used this method in a small simulation study on a problem in 

genetic linkage analysis. The authors found that the use of Intrinsic Bayes Factor 

did not completely identi:^ the correct model in their examples. This approach was 

not considered here, but is a possible area for future work. 
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Chap te r 6 

Conclusions and f u t u r e work 

6.1 Conclusions 

The work in this thesis has generalised the work of Lewis and Dean (2001) to enable 

two-stage group screening to be used for experiments where it may be required to 

have unequal group sizes and unequal probabilities of factorieil eSects being active. 

This advance in the theory makes two-stage group screening a much more Eexible 

screening tool for practical use. Software has also been written which implements 

the generalised theory, thus allowing the investigation of different groupings of fac-

tors for an experiment, through their impact on the distribution of the predicted 

total number of eSects requiring estimation in a two-stage group screening exper-

iment. Two group screening strategies, classical and interaction group screening, 

have been considered in the development of both the theory and software. 

The examples presented in Chapter 3 indicated that no 'best way' to group 

factors can be stated in general, but they do oEer some guidance for experimenters. 

When the strategy used is interaction group screening, it is often better to group 

together factors with higher main eEects probabilities to minimise the expected 

total number of eSects that require estimation in the two-stage experiment. This 

approach avoids bringing forward factors unnecessarily to the second stage. The 

examples in Chapter 3 indicated that groupings which give minimal, or near mini-

mal, values of are those for which group sizes are as small and as equal as 

possible. When the strategy used is classical group screening, it is usually better to 

keep factors whose main eSects are believed very likely to be active together in a 
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single group, and to spread the remaining factors across as many groups as possible 

(including groups of size one). 

Examples, including those presented in Chapter 3, have indicated that classical 

group screening generally can require considerably fewer observations than interac-

tion group screening for a two-stage group screening experiment. However, the risk 

of failing to detect active control x noise interactions is usually, substantially higher 

for classical group screening. If interactions are not believed to be active in an 

experiment, classical group screening is the better choice of screening experiment. 

However, if interactions are believed to be active, or if there is no prior knowledge 

regarding interactions, interaction group screening is preferable. The increase in 

the expected number of eSFects that require estimation under this strategy must be 

weighted against the increased risk of failing to identify active interactions under 

classical group screening. 

The experiment on cold start optimisation allowed the application of two-stage 

group screening methods, including the use of the software to explore groupings. It 

also demonstrated the importance of elicitation of factors. 

In Chapter 5, a two-stage group screening strategy and the use of a particular 

supersaturated design were compared using simulation and a Bayesian variable se-

lection technique, stochastic search variable selection (SSVS). The two-stage group 

screening experiment was found to correctly identify the correct model more often 

than the supersaturated experiment. The number of inactive effects declared active 

was less under two-stage group screening but at the cost of more observations. 

In advising an experimenter wishing to investigate a large number of factors 

in a small number of runs I would, at present, recommend group screening with 

orthogonal factorial plans at both stages rather than a supersaturated design, pro-

vided a sufBcient number of runs was available. This is because reliable conclusions 

may not be available from supersaturated experiments due to the partial aliasing of 

eEects, as shown by the simulations in Chapter 5. For a two-stage group screening 

design, with regular fractional factorials, the aliaaing scheme is known at each stage. 

Lack of reliability of conclusions from this method may arise from amalgamation 

and cancellation of eEects but simulation evidence (Dean and Lewis (2002)) is that 

this risk is not very large. 
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6.2 Future work 

The incorporation of information from the &r8t stage experiment into the probabil-

ities used at the second stage is one area in which I would like to direct my future 

research. Although no information on individual factorial eSects would become 

available as a result of the hrst stage experiment, the probabilities of factors within 

a particular group or grouped interaction could aU be updated in a uniform way, 

according to the findings from the first stage. 

Another area for future research would be an investigation into the impact 

of tuning constants and prior information on factorial effects on the results of a 

Bayesian analysis of data from supersaturated designs and from group screening 

designs. For example, diEerent choices for R in Chapter 5 (equation (5.2)) could 

be considered in order to recognise the relationships between the predictors. Also, 

the appropriateness of the assumption that the tuning constants z/. A, c and T are 

the same for all predictors could be investigated. Other techniques for exploring 

the model space within a Bayesian framework present further opportunities for 

research. 

An area not addressed in this thesis is the choice of design to be used at the Brst 

and second stages of a group screening experiment. In particular, an investigation 

of choices for hrst stage designs could be carried out, with a view to choosing 

those with good projective properties. This would allow data from the 6rst stage 

experiment to be used as part of the second stage experiment, thus reducing the 

overall number of observations required. 

The idea of using more than two stages in group screening to detect interactions 

has not been addressed in this thesis and is an interesting area for future research. 

For example, if three stages of experiment were used, the hrst experiment would 

be carried out on grouped factors. Individual factors within those grouped eSects 

declared active from the hrst stage experiment would be re-grouped for a second 

stage experiment. At the third stage, the individual factors within the grouped 

eSects declared active at the second stage would be investigated. 
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Appendix A 

Details of t he input required for 

t h e software described in 

Chap te r 3 

A . l Classical g roup screening 

The software requires the following input from the user. 

1. the number of individual control factors 

2. the number of individual noise factors 

3. the probabilities of each individual control main eSect being active (entered 

in the order they are to be considered for grouping) 

4. the probabihties of each individual noise main effect being active (entered in 

the order they are to be considered for grouping) 

5. the number of grouped control factors and the number of grouped noise factors 

6. the group sizes for the control factors 

7. the group sizes for the noise factors 

8. three targets for the number of factorial e&cts requiring estimation in the 

two-stage experiment 
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9. the number of degrees of freedom required for measuring error. 

A.2 Interaction group screening 

For interaction group screening, the user must speci:^ 1-9, as above. For entering 

information on interaction probabihties, the user must use one of the following 

methods: 

# enter one probability for all individual control x control interactions being ac-

tive 

# enter the probability of each individual intereiction being active 

# only enter the main eSects probabilities and use the heredity approach of 

Section 2.5 to calculate the individual interaction probabilities. 
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Appendix B 

Groupings for Section 3.3.1 

Table B.l: Groupings for individual control factors, according to their main effects 
probabilities, for groupings of similar probabilities. 

F Design Grouping 
1 (0.3, 0.4, 0.5, 0.6, 0.7, 0.8) 
2 
2 

(0.3) (0.4, 0.5, 0.6, 0.7, 0.8) 
(0.3, 0.4, 0.5, 0.6, 0.7) (0.8) 

2 
2 

(0.3, 0.4) (0.5, 0.6, 0.7, 0.8) 
(0.3, 0.4, 0.5, 0.6) (0.7, 0.8) 

2 (0.3, 0.4, 0.5) (0.6, 0.7, 0.8) 
3 
3 
3 

(0.3) (0.4) (0.5, 0.6, 0.7, 0.8) 
(0.3) (0.4, 0.5, 0.6, 0.7) (0.8) 
(0.3, 0.4, 0.5, 0.6) (0.7) (0.8) 

3 
3 
3 
3 
3 
3 

(0.3) (0.4, 0.5) (0.6, 0.7, 0.8) 
(0.3) (0.4, 0.5, 0.6) (0.7, 0.8) 
(0.3, 0.4) (0.5) (0.6, 0.7, 0.8) 
(0.3, 0.4) (0.5, 0.6, 0.7) (0.8) 
(0.3, 0.4, 0.5) (0.6) (0.7, 0.8) 
(0.3, 0.4, 0.5) (0.6, 0.7) (0.8) 

3 (0.3, 0.4) (0.5, 0.6) (0.7, 0.8) 
4 
4 
4 
4 

(0.3) (0.4) (0.5) (0.6, 0.7, 0.8) 
(0.3) (0.4) (0.5, 0.6, 0.7) (0.8) 
(0.3) (0.4, 0.5, 0.6) (0.7) (0.8) 
(0.3, 0.4, 0.5) (0.6) (0.7) (0.8) 

4 
4 
4 
4 
4 
4 

(0.3) (0.4) (0.5, 0.6) (0.7, 0.8) 
(0.3) (0.4, 0.5) (0.6) (0.7, 0.8) 
(0.3) (0.4, 0.5) (0.6, 0.7) (0.8) 
(0.3, 0.4) (0.5) (0.6) (0.7, 0.8) 
(0.3, 0.4) (0.5) (0.6, 0.7) (0.8) 
(0.3, 0.4) (0.5, 0.6) (0.7) (0.8) 

5 
5 

(0.3) (0.4) (0.5) (0.6) (0.7, 0.8) 
(0.3) (0.4) (0.5) (0.6, 0.7) (0.8) 

c o n d c u e s overleaf 
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Table B.l: continued 

F Design Grouping 
(0.3) (0.4) (0.5, 0.6) (0.7) (0.8) 
(0.3) (0.4, 0.5) (0.6) (0.7) (0.8) 
(0.3, 0.4) (0.5) (0.6) (0.7) (0.8) 

Table B.2: Groupings for individual noise factors, according to their main e&cts 
probabilities for groupings of similar probabilities. 

N Noise Grouping 
1 (0.0, 0.2, 0.4, 0.6, 0.8, 1.0) 
2 
2 

(0.0) (0.2, 0.4, 0.6, 0.8, 1.0) 
(0.0, 0.2, 0.4, 0.6, 0.8) (1.0) 

2 
2 

(0.0, 0.2) (0.4, 0.6, 0.8, 1.0) 
(0.0, 0.2, 0.4, 0.6) (0.8, 1.0) 

2 (0.0, 0.2, 0.4) (0.6, 0.8, 1.0) 
3 
3 
3 

(0.0) (0.2) (0.4, 0.6, 0.8, 1.0) 
(0.0) (0.2, 0.4, 0.6, 0.8) (1.0) 
(0.0, 0.2, 0.4, 0.6) (0.8) (1.0) 

3 
3 
3 
3 
3 
3 

(0.0) (0.2, 0.4) (0.6, 0.8, 1.0) 
(0.0) (0.2, 0.4, 0.6) (0.8, 1.0) 
(0.0, 0.2) (0.4) (0.6, 0.8, 1.0) 
(0.0, 0.2) (0.4, 0.6, 0.8) (1.0) 
(0.0, 0.2, 0.4) (0.6) (0.8, 1.0) 
(0.0, 0.2, 0.4) (0.6, 0.8) (1.0) 

3 (0.0, 0.2) (0.4, 0.6) (0.8, 1.0) 
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Table B.3: Groupings for individual control factors, according to their main eSects 
probabilities, for groupings of dissimilar probabilities. 

F Design Grouping 
1 (0.3, 0.8, 0.4, 0.7, 0.5, 0.6) 
2 
2 

(0.3) (0.8, 0.4, 0.7, 0.5, 0.6) 
(0.3, 0.8, 0.4, 0.7, 0.5) (0.6) 

2 
2 

(0.3, 0.8) (0.4, 0.7, 0.5, 0.6) 
(0.3, 0.8, 0.4, 0.7) (0.5, 0.6) 

2 (0.3, 0.8, 0.4) (0.7, 0.5, 0.6) 
3 
3 
3 

(0.3) (0.8) (0.4, 0.7, 0.5, 0.6) 
(0.3) (0.8, 0.4, 0.7, 0.5) (0.6) 
(0.3, 0.8, 0.4, 0.7) (0.5) (0.6) 

3 
3 
3 
3 
3 
3 

(0.3) (0.8, 0.4) (0.7, 0.5, 0.6) 
(0.3) (0.8, 0.4, 0.7) (0.5, 0.6) 
(0.3, 0.8) (0.4) (0.7, 0.5, 0.6) 
(0.3, 0.8) (0.4, 0.7, 0.5) (0.6) 
(0.3, 0.8, 0.4) (0.7) (0.5, 0.6) 
(0.3, 0.8, 0.4) (0.7, 0.5) (0.6) 

3 (0.3, 0.8) (0.4, 0.7) (0.5, 0.6) 
4 
4 
4 
4 

(0.3) (0.8) (0.4) (0.7, 0.5, 0.6) 
(0.3) (0.8) (0.4, 0.7, 0.5) (0.6) 
(0.3) (0.8, 0.4, 0.7) (0.5) (0.6) 
(0.3, 0.8, 0.4) (0.7) (0.5) (0.6) 

4 
4 
4 
4 
4 
4 

(0.3) (0.8) (0.4, 0.7) (0.5, 0.6) 
(0.3) (0.8, 0.4) (0.7) (0.5, 0.6) 
(0.3) (0.8, 0.4) (0.7, 0.5) (0.6) 
(0.3, 0.8) (0.4) (0.7) (0.5, 0.6) 
(0.3, 0.8) (0.4) (0.7, 0.5) (0.6) 
(0.3, 0.8) (0.4, 0.7) (0.5) (0.6) 

5 
5 
5 
5 
5 

(0.3) (0.8) (0.4) (0.7) (0.5, 0.6) 
(0.3) (0.8) (0.4) (0.7, 0.5) (0.6) 
(0.3) (0.8) (0.4, 0.7) (0.5) (0.6) 
(0.3) (0.8, 0.4) (0.7) (0.5) (0.6) 
(0.3, 0.8) (0.4) (0.7) (0.5) (0.6) 
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Table B.4: Groupings for individual noise factors, according to their main eSects 
probabilities for groupings of dissimilar probabilities. 

N Noise Grouping 
1 (0.0, 1.0, 0.2, 0.8, 0.4, 0.6 
2 
2 

(0.0) (1.0, 0.2, 0.8, 0.4, 0.6) 
(0.0, 1.0, 0.2, 0.8, 0.4) (0.6) 

2 
2 

(0.0, 1.0) (0.2, 0.8, 0.4, 0.6) 
(0.0, 1.0, 0.2, 0.8) (0.4, 0.6) 

2 (0.0, 1.0, 0.2) (0.8, 0.4, 0.6) 
3 
3 
3 

(0.0) (1.0) (0.2, 0.8, 0.4, 0.6) 
(0.0) (1.0, 0.2, 0.8, 0.4) (0.6) 
(0.0, 1.0, 0.2, 0.8) (0.4) (0.6) 

3 
3 
3 
3 
3 
3 

(0.0) (1.0, 0.2) (0.8, 0.4, 0.6) 
(0.0) (1.0, 0.2, 0.8) (0.4, 0.6) 
(0.0, 1.0) (0.2) (0.8, 0.4, 0.6) 
(0.0, 1.0) (0.2, 0.8, 0.4) (0.6) 
(0.0, 1.0, 0.2) (0.8) (0.4, 0.6) 
(0.0, 1.0, 0.2) (0.8, 0.4) (0.6) 

3 (0.0, 1.0) (0.2, 0.8) (0.4, 0.6) 
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Appendix C 

More detailed results for Study 1 
of Section(3.3.1) 

Table C.l: A comparison of ^(5'), and f (5" > 65) for 6 individual control 
factors and 6 individual noise factors with F < 5, and TV < 3 for groupings based 
on similar probabilities for interaction group screening. 

Noise max min max min max min 
grouping E(^) a.d.(5') 5.^.(5") f (^ > 65) f (^ > 65) 

(6) 72.73 65.88 9.19 3.55 0.99 0.57 
(6) (1,1,2,2) (2,2,2) (6) (6) (2,2,2) 

(1,1,2,2) 
(1.5) 70.51 65.28 8.61 5.33 0.99 0.52 

(6) (2,2,2) (2,2,2) (6) (6) (2,2,2) 
(5,1) 72.98 65.10 9.75 6.71 0.98 0.5 

(6) (2,2,2) (3,3) (6) (6) (2,2,2) 
(2,4) 69.87 62.00 9.51 7.40 0.64 0.3 

(6) (2,2,2) (3,3) (1,1,1,1,2) (6) (2,2,2) 
(4,2) 72.53 62.23 10.75 7.89 0.85 0.33 

(6) (2,2,2) (3,3) (1,1,1,1,2) (6) (2,2,2) 
(3,3) 71.26 61.17 11.31 6.02 0.81 0.31 

(6) (2,2,2) (3,3) (1,1,1,1,2) (6) (2,2,2) 
(1,1,4) 70.09 64.43 8.41 6.72 0.64 0.54 

(1,1,1,1,2) 
(1,1,1,2,1) 
(1,1,2,1,1) 

(2,2,2) (3,3) (1,1,1,1,2) (6) (2,2,2) 

(1,4,1) 70.64 64.26 9.34 7.10 0.80 0.52 
(6) (2,2,2) (3,3) (1,1,1,1,2) (6) (2,2,2) 

(4,1,1) 72.15 63.74 10.49 7.62 0.85 0.49 
(6) (2,2,2) (3,3) (1,1,1,1,2) (6) (2,2,2) 

(1,2,3) 68.97 61.96 9.41 6.87 0.72 0.37 
(6) (2,2,2) (3,3) (1,1,1,1,2) (6) (2,2,2) 

(1,3,2) 70.06 62.00 9.93 7.08 0.82 0.38 

1 (6) 1 (2,2,2) (3,3) (1,1,1,1,2) (6) (2,2,2) 
continues overleaf 
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Table C.l: continued 

DJoise max min max min max min 
grouping E(3) E(^) a.d(2) s.d(3) f (^ > 65) P (g > 65) 

(2,1,3) 1 6&84 61.58 9.66 &96 &63 &36 
(6) (2,2,2) (6) (1,1,1,2,1) (6) (2,2,2) 

(2,3,1) 6&77 61.43 10J4 7^8 0.61 &36 

(6) (2,2,2) (6) (1,1,1,2,1) 
(6) 

(5,1) (2,2,2) 
(3,1,2) 7&54 61.41 10.69 7^2 &76 0.37 

(6) (2,2,2) (6) (1,2,1,1,1) (6) (2,2,2) 
(3,2,1) 7&86 61.30 10.93 7.50 0.73 &37 

(6) (2,2,2) (6) (1,2,1,1,1) 
(2,1,1,1,1) 

(6) (2,2,2) 

(2,:2,2) 6&05 60.02 1&81 7^2 &48 &34 
(6) (2,2,2) (6) (2,1,1,1,1) (6) (2,2,2) 
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Table C.2: A comparison of ^(5'), s.d.(5'), and f (5" > 65) for 6 individual control 
factors and 6 individual noise factors with F < 5, and # < 3 for groupings based 
on dissimilcir probabilities for interaction group screening. 

Noise max min maj[ min max min 
grouping E(^) E(^) 5.d(^) g.d(;9) f (^ > 65) f (;9 > 65) 

(6) 72.73 66.13 9.07 3.55 0.99 0.58 (6) 
(6) (1,2,2,1) (2,2,2) (6) (6) (1,2,2,1) 

(1,5) 70.51 65.56 8.53 5.33 0.99 0.53 (1,5) 
(6) (2,2,2) (2,2,2) (6) (6) (2,2,2) 

(5,1) 72.29 65.68 9.12 6.15 0.99 0.53 (5,1) 
(6) (2,2,2) (2,2,2) (6) (6) (2,2,2) 

(2,4) 72.15 62.98 10.02 7.69 0.80 0.35 (2,4) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(4,2) 72.10 62.98 10.00 7.68 0.79 0.35 (4,2) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(3,3) 72.27 62.12 10.47 7.72 0.85 0.41 (3,3) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (1,1,2,2) 

(1,2,1,2) 
(1,2,2,1) 
(2,1,1,2) 
(2,1,2,1) 
(2,2,1,1) 

(1,1,4) 70.64 64.50 9.28 7.17 0.80 0.53 (1,1,4) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(1,4,1) 70.13 64.71 8.80 6.97 0.73 0.55 (1,4,1) 
(2,1,1,1,1) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(4,1,1) 71.16 64.75 9.34 7.21 0.79 0.54 (4,1,1) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(1,2,3) 70.05 62.51 9.61 6.97 0.80 0.4 (1,2,3) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(1,3,2) 69.79 62.46 9.52 6.93 0.78 0.4 (1,3,2) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(2,1,3) 70.39 62.52 9.75 7.04 0.78 0.4 (2,1,3) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(2,3,1) 71.07 62.38 10.15 7.23 0.76 0.4 (2,3,1) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(3,1,2) 71.17 62.20 10.33 7.31 0.74 0.4 (3,1,2) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(3,2,1) 71.14 62.32 10.24 7.27 0.77 0.4 (3,2,1) 
(6) (2,2,2) (3,3) (1,2,1,1,1) (6) (2,2,2) 

(2,2,2) 70.42 60.90 10.60 7.11 0.59 0.39 (2,2,2) 
(6) (2,2,2) (6) (2,1,1,1,1) (5,1) (2,2,2) 

139 



Table C.3: A comparison of g.d.(5'), and f (5" > 
factors and 6 individual noise factors with F < 5, and 
on similar probabihties for classical group screening. 

65) for 6 individual control 
N < 3 for groupings baaed 

Noise max min max min max mill 
grouping E(^) E(^) s.d.(5') a.d.(5') f (;9 > 65) f (g > 65) 

(6) 71.65 50.21 15.54 4.89 0.99 0.03 (6) 
(6) (1,1,1,1,2) (3,2,1) (6) (6) (1,1,1,1,2) 

(1,5) 64.69 45.54 14.07 4.32 0.86 0.00 (1,5) 
(6) (1,1,1,1,2) (3,2,1) (6) (4,2) (6) 

(5,1) 71.12 50.12 16.70 9.03 0.96 0.03 (5,1) 
(6) (1,1,1,1,2) (3,2,1) (6) (6) (1,1,1,1,2) 

(2,4) 59.92 42.14 14.35 7.52 0.20 0.01 (2,4) 
(6) (1,1,1,1,2) (3,2,1) (6) (6) (1,1,1,3) 

(4,2) 66.54 46.86 18.22 13.28 0.80 0.03 (4,2) 
(6) (1,1,1,1,2) (3,2,1) (1,5) (6) (1,1,1,1,2) 

(1,1,1,2,1) 

(3,3) 61.19 43.05 17.10 12.56 0.52 0.02 (3,3) 
(6) (1,1,1,1,2) (3,2,1) (1,5) (6) (1,1,1,1,2) 

(1,1,1,2,1) 

(1,1,4) 59.32 42.01 13.20 5.01 0.20 0.01 (1,1,4) 
(6) (1,1,1,1,2) (3,2,1) (6) (6) (1,1,1,3) 

(1,1,1,1,2) 
(1,1,1,2,1) 
(1,1,2,1,1) 
(1,2,1,1,1) 

(1,4,1) 64.47 45.67 14.87 7.45 0.96 0.03 (1,4,1) 
(6) (1,1,1,1,2) (3,2,1) (6) (6) (1,1,1,1,2) 

(4,1,1) 65.95 46.73 18.21 13.53 0.80 0.05 (4,1,1) 
(6) (1,1,1,1,2) (3,2,1) (1,5) (6) (1,1,1,3) 

(1,2,3) 58.05 41.10 14.49 8.82 0.52 0.02 (1,2,3) 
(6) (1,1,1,1,2) (3,2,1) (6) (6) (1,1,1,1,2) 

(1,1,1,2,1) 

(1,3,2) 61.11 43.28 15.64 10.24 0.80 0.03 (1,3,2) 
(6) (1,1,1,1,2) (3,2,1) (6) (6) (1,1,1,1,2) 

(1,1,1,2,1) 

(2,1,3) 56.14 39.74 13.98 8.32 0.20 0.01 (2,1,3) 
(6) (1,1,1,1,2) (3,2,1) (6) (6) (1,1,1,3) 

(2,3,1) 59.77 42.33 14.86 9.06 0.19 0.01 (2,3,1) 
(6) (1,1,1,1,2) (3,2,1) (6) (6) (1,1,1,3) 

(3,1,2) 59.01 41.78 17.00 12.83 0.52 0.03 (3,1,2) 
(6) (1,1,1,1,2) (3,2,1) (1,1,1,1,2) (6) (1,1,1,3) 

(3,2,1) 60.92 43.14 17.35 13.07 0.48 0.03 (3,2,1) 
(6) (1,1,1,1,2) (3,2,1) (1,1,4) (6) (1,1,1,3) 

(2,2,2) 57.10 40.42 14.97 10.05 0.15 0.01 (2,2,2) 
(6) (1,1,1,1,2) (3,2,1) (6) (6) (1,1,1,3) 

continues overleaf 
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Table C.3: continued 

Noise 
grouping 

max 
E{S) 

min 
2 (2 ) 

max 
g.d.(5') 

min 
g.(f.(5') 

max 
f (2 > 65) 

min 
f (2 > 65) 

(1.1.3.1) 
(1.1.2.2) 
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Table C.4: A comparison of E'(6'), and f (5" > 65) for 6 individual control 
factors and 6 individual noise factors with F < 5, and N < 3 for groupings based 
on dissimilar probabilities for classical group screening. 

Noise 
grouping 

max 

^(^) 

min 
E(g) 

max 
s.d.(5') 

min 
g.d.(5') 

max 
f (5" > 65) 

min 
f (g > 65) 

(6) 71.65 
(6) 

51.54 
(1,1,1,2,1) 

14.40 
(2,2,2) 

4.89 
(6) 

0.99 
(6) 

0.05 
(1,1,1,1,2) 
(1,1,1,2,1) 

(1,5) 64.69 
(6) 

46.75 
(1,1,1,2,1) 

12.29 
(3,1,2) 

4.32 
(6) 

0.83 
(2,4) 

0.00 
(6) 

(5,1) 69.47 
(6) 

50.22 
(1,1,1,2,1) 

14.29 
(2,2,2) 

6.08 
(6) 

0.86 
(3,3) 

0.05 
(1,1,1,1,2) 
(1,1,1,2,1) 

(2,4) 71.43 
(6) 

51.65 
(1,1,1,2,1) 

15.20 
(2,2,2) 

7.79 
(6) 

0.96 
(6) 

0.05 
(1,1,1,1,2) 
(1,1,1,2,1) 

(4,2) 68.83 
(6) 

49.76 
(1,1,1,2,1) 

15.02 
(2,2,2) 

8.23 
(6) 

0.76 
(6) 

0.04 
(1,1,1,1,2) 
(1,1,1,2,1) 
(1,1,2,1,1) 
(1,2,1,1,1) 

(3,3) 71.51 
(6) 

51.71 
(1,1,1,2,1) 

14.91 
(2,2,2) 

7.02 
(6) 

0.95 
(6) 

0.05 
(1,1,1,1,2) 
(1,1,1,2,1) 
(1,2,1,1,1) 

(1,1,4) 64.47 
(6) 

46.86 
(1,1,1,2,1) 

13.95 
(2,2,2) 

7.45 
(6) 

0.96 
(6) 

0.05 
(1,1,1,1,2) 
(1,1,1,2,1) 
(1,2,1,1,1) 

(1,4,1) 62.51 
(6) 

45.43 
(1,1,1,2,1) 

12.99 
(2,2,2) 

5.66 
(6) 

0.60 
(6) 

0.03 
(1,1,1,1,2) 
(1,1,1,2,1) 
(1,2,1,1,1) 

(4,1,1) 65.69 
(6) 

47.75 
(1,1,1,2,1) 

13.94 
(2,2,2) 

7.02 
(6) 

0.76 
(6) 

0.07 
(1,1,1,3) 
(1,3,1,1) 

(1,2,3) 64.55 
(6) 

46.92 
(1,1,1,2,1) 

13.64 
(2,2,2) 

6.64 
(6) 

0.95 
(6) 

0.05 
(1,1,1,1,2) 
(1,1,1,2,1) 
(1,2,1,1,1) 

(1,3,2) 61.87 
(6) 

44.97 
(1,1,1,2,1) 

13.80 
(2,2,2) 

7.93 
(6) 

0.76 
(6) 

0.04 
(1,1,1,2,1) 
(1,1,2,1,1) 
(1,2,1,1,1) 

(2,1,3) 66.14 48.07 14.18 7.44 0.95 0.08 
continues overleaf 
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Table C.4: contmued 

Noise majc min max min max min 
grouping E(^) 2(3) s.d.(5') 5.d.(5') f (g > 65) f (^ > 65) 

(6) (1,1,1,2,1) (2,2,2) (6) (6) (1,3,1,1) 
(2,3,1) 68.18 49.56 15.25 9.23 0.90 &08 

(6) (1,1,1,2,1) (2,2,2) (6) (6) (1,1,1,3) 
(1,3,1,1) 

(3,1,2) 68.24 49.60 151^ &77 &76 0.07 (3,1,2) 
(6) (1,1,1,2,1) (2,2,2) (6) (6) (1,1,1,3) 

(1,3,1,1) 
(3,2,1) 68.56 49.83 14.71 7.89 0.88 &08 

(6) (1,1,1,2,1) (2,2,2) (6) (6) (1,1,1,3) 
(1,3,1,1) 

(2,2,2) 67.28 48.91 15.52 10.02 0.64 0.06 
(6) (1,1,1,2,1) (2,2,2) (6) (6) (1,1,1,3) 

(1,3,1,1) 
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Append ix D 

Fur the r in teract ion p lo ts for t h e 
first s tage exper iment 
(Chap te r 4) 

Figure D.l: Interaction plot for the grouped controlxnoise interaction between 

Group 1 and Group 5. 
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Figure D.2: Interaction plot for the grouped controlxcontrol interaction between 
Group 2 and Group 3. 
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Figure D.3: Interaction plot for the grouped controlxcontrol interaction between 
Group 2 and Group 4. 
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Appendix E 

Resul ts for Section 5.3 

Table E.l: The design and data (to 4 decimal places) for the full factorial exper-
iment where the error terms in the data generation were drawn from a N(0,4) 
distribution. 

A B C AC Response 
-1 -1 -1 1 1 1 -2.4475 
-1 -1 1 1 -1 -1 2.6033 
-1 1 -1 -1 1 -1 -21.5117 
-1 1 1 -1 -1 1 -18.4743 
1 -1 -1 -1 -1 1 -2.5308 
1 -1 1 -1 1 -1 3.2757 
1 1 -1 1 -1 -1 20.3820 
1 1 1 1 1 1 21.5441 
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Table E.2: The four models ("/) with highest posterior probabilities identiSed by 
SSVS for the design and data given in Table E.l under three sets of prior proba^ 
bihties for main eS'ects and interactions being active, and for a full 2̂  experiment. 
The entries in each model are ordered according to the terms corresponding to A, 

c , a c , b c . 

All m.e. and All m.e. and All m.e. probs 0.5; Woo = 0.01 
int. probabilities 0.5 int. probabilities 0.99 Woi = wio = 0.1, Wii = 0.25 

Model Probability Model Probabihty Model Probability 
100100 0.31 mill 0.87 100100 0.42 
100110 0.20 101111 0.04 110100 0.22 
100101 0.09 111101 0.04 101100 0.20 
100110 0.07 111110 0.03 111100 0.10 

Marginal Probabilities 
A 1.00 A 1.00 A 1.00 
B 0.19 B 0.96 B 0.35 
C 0.39 C 0.99 C 0.34 

AB 1.00 AB 1.00 AB 1.00 
AC 0.19 AC 0.96 AC 0.04 
BC 0.22 BC 0.97 B C 0.03 

Table E.3: The four models ("x) with highest posterior probabilities identihed by 
SSVS under three sets of prior probabilities for main effects and interactions being 
active, and for the 2^"^ experiment where the error terms in the data generation 
were drawn from a A^(0,4) distribution. The entries in each model are ordered 
according to the terms corresponding to A, B, C, AC, BC. 

All m.e. and All m.e. and All m.e. probs 0.5; lUoo = 0.01 
int. probabilities 0.5 int. probabilities 0.99 woi = wiQ = 0.1, WII = 0.25 

Model Probability Model Probability Model Probability 
101101 0.09 011111 0.95 101000 0.37 
100101 0.08 101111 0.01 111000 0.08 
101001 0.07 111101 0.01 101001 0.06 
101100 0.05 100111 0.01 100100 0.05 

Marginal Probabilities 
A 0.72 A 0.99 A 0.89 
B 0.29 B 0.99 B 0.32 
C 0.67 C 0.99 C 0.87 

AB 0.68 AB 0.99 AB 0.24 
AC 0.29 AC 0.99 AC 0.11 
BC 0.73 BC 0.99 B C 0.27 
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