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An extension of the NeIder-Mead simplex algorithm is presented in this dissertation. The 

algorithm was developed for minimizing a non-linear objective function subject to linear 

inequality constraints. The algorithm assumes that the objective function is analytically 

unavailable or its evaluation at each experimental design point is very expensive. The 

algorithm generates a feasible trial point at each iteration and compares it with the 

current pattern of points (simplex). The algorithm, called the Linear Constraint 

NeIder-Mead (LCNM), takes advantage of when the current simplex is eventually 

flattened by a constrained reflection or expansion operation, as a result of meeting the 

boundary of the feasible region. vVhen this occurs, the algorithm reduces the number of 

vertices of the current simplex thereby avoiding the degeneration of the simplex. A 

limited study of its performance is developed by case studies. Although the LCNM 

algorithm was designed for minimizing linearly constrained non-linear objective 

functions, a particular case of linear programming is theoretically studied, showing that 

a very slow convergence rate is possible. A modification to the LCNM algorithm was 

included for improving the convergence rate of the algorithm. Two variations of the 

algorithm were also investigated. The LCNM algorithm has displayed a good enough 

performance when the objective function is corrupted by noise. This fact allows us to 

appreciate the LCNM algorithm as an optimization method for problems of optimization 

by simulation, where the evaluation of the design points can require a huge 

computational effort. 
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Chapter 1 

Introduction 

The identification of the optimum operation of a complex system often requires the 

application of algorithms able to search for the best amongst a very extensive set of 

feasible options. This process of identifying the best setting of a system is commonly 

named optimization. 

Herein, the development of an optimization method will be considered for a non-linear 

function subject to linear inequality constraints. It is assumed that the analytical 

expression of the objective function is unavailable or that its evaluation at each 

experimental design point is very expensive, such as occurs in some simulation models of 

complex stochastic systems. 

Moreover, such simulation models produce an objective function corrupted by noise, 

where the accuracy of the estimation of the objective function depends on the number of 

replications at each design point. 

Methods of searching for the optimal performance in complex systems must consider two 

important aspects: its accuracy and cost. This latter is measured most easily by the 

number of performance measure (objective function) evaluations we have to make in the 

search for the optimum. A single evaluation can already be expensive if it requires a 

simulation run of a complex model. 

Hence, the aims of our research are: 

• To investigate optimization algorithms appropriate for our requirements . 

• To develop an algorithm that needs relatively few function evaluations and which 

can handle linearly constrained non-linear problems. 

1 



CHAPTER 1. INTRODUCTION 

• To study the behaviour of the algorithm. 

• To develop if necessary modifications of the algorithm. 

• To establish the performance of the algorithm when the objective function is 

affected by noise. 

2 

These aims induce us to first examine a set of heuristic methods of optimization with the 

aim of identifying their properties, and so to guide our research. 

As a result of this study, we consider appropriate for our purpose, the development of a 

constrained optimization algorithm based on the widely known NeIder-Mead (NM) 

simplex method (NeIder and Mead 1965), because of its economy in function evaluations 

per iteration and its good performance when the objective function is in the presence of 

noise (Humphrey and Wilson 2000). 

The main contribution of this research is the development of an optimization algorithm 

called Linear Constrained NeIder-Mead (LCNM) algorithm, which was designed for 

identifying the optimum solution to non-linear objective function subject to linear 

inequality constraints. The LCNM algorithm has also shown a good performance in the 

identification of the optimum when the objective function is affected by noise. 

The LCNM algorithm takes advantage of the eventual collapse of the simplex onto the 

boundary of the feasible region as a consequence of having reached the boundary. It does 

so by reducing the number of vertices of the simplex when a collapse occurs. It identifies 

the linear constraints that have been reached by the vertices of the simplex and then 

explores the sub-space defined by these reached (activated) linear constraints. This 

action minimizes the possibility of degenerating the simplex, because its number of 

vertices are adapted to the dimension of sub-space defined by the activated constraints. 

To design the LCNM algorithm, a theoretical framework was developed for defining the 

new algorithm and comparing it with other optimization algorithms. 

Furthermore, variations of the algorithm were explored. 

The NeIder-Mead method can of course be applied to non-smooth objective function, but 

this has not been the form of the present thesis. Instead the LCNM algorithm was tested 

by a large number of numerical experiments using smooth monomodal and smooth 

multimodal objective functions. This class of situations can emerge from real and 

practical problems, such as complex and stochastic systems represented by simulation 

models, where the response surface of the performance of the models is often smooth but 

is affected by noise. 
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The remaining chapters are as follows. Chapter 2 gives a review of some of the 

advantages and disadvantages of the so-called free-derivatives methods and line search 

methods. The reasons that induced us to consider the NM simplex method are given in 

this chapter. A statement of the problem, a description of the LCNM algorithm and 

some preliminary numerical examples are presented in Chapter 3. Some general 

properties of the algorithm and a study of its behaviour through case studies are 

developed in Chapter 4. In particular, a theoretical study when the LCNM algorithm is 

applied to a linear constrained linear minimization problem has demonstrated an 

unexpectedly slow convergence to its minimum. Chapter 5 deals with a modified version 

of the LCNM algorithm, which is founded on the induction of the collapse of the simplex 

prematurely for improving the convergence rate of the algorithm. In addition, a number 

of test problems were carried out for comparing the LCNM algorithm and its premature 

collapse version. Chapter 6 concerns two further variations of the LCNM algorithm, 

whose underlying principles are shown, and results of numerical test problems are 

reported comparing them with the LCNM algorithm. The performance of our algorithm 

when the objective function is affected by noise is described in Chapter 7, through 

comparing the LCNM algorithm and its premature collapse version. Finally, conclusions 

and future research are given in Chapter 8. 



Chapter 2 

A review of some approaches 

2.1 Introduction 

The development of new methods for finding answer to optimization problems could 

begin with a taxonomic study and analysis of the different approaches for identifying 

their own essence. We shall throughout the dissertation consider function minimization. 

Lewis et al. (2000) classify the methods of optimization according to the Taylor 

expansion of the objective function employed by the method. From this perspective, the 

method of Newton can be classified as a second-order method, because it employs the 

second-order Taylor series for identifying the descent direction of the objective function 

(Nocedal and Wright 1999). The method of Davidon-Fletcher-Power, the conjugate 

gradient method, the method of Zoutendijk, among others (Bazaraa and Shetty 1979), 

are clear examples of first-order methods. The so-called random search methods 

(Boender and Romeijn 1995), the Nested Partitions (NP) method (Shi and Olafsson 

2000a), the pattern search methods (Audet and Dennis Jr 2003), the NeIder-Mead (NM) 

simplex method (NeIder and Mead 1965), the response surface methodology (RSM) 

(Myers and Montgomery 2002) and the objective-derivative-free method of Lucidi et al. 

(2002) constitute some examples of methods of zero-order, because they do not use the 

expansion of series of Taylor of the objective function for identifying the descent 

direction of the objective function. However, the sequential procedure RSM of Box and 

Wilson (1951) could be in the group of first-order methods, because it employs 

first-order Taylor series of the objective function for moving to a near stationary region. 

This taxonomic framework would allow us to recognize the essence of an optimization 

method for knowing their requirements regarding of the number of function evaluations 

4 
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per iteration. This constitutes an important factor for choosing an optimization 

approach, especially when the objective function is analytically unavailable or it is 

expensive to obtain the value of the function at any point. 

5 

In this dissertation we shall study only the called methods of zero-order. These provide a 

way for obtaining the optimum without using the objective function gradient. These 

methods can be classified into two large group of methods: "direct search methods" and 

"derivative-free methods". This latter group can be distinguished from the direct search 

methods, due to fact that the direct search methods optimize the objective function by 

evaluation of trial points, whilst the called derivative-free methods find it by "line 

search", which can be defined as the procedure for minimizing a function along a 

direction (Bazaraa and Shetty 1979). 

The layout of this chapter is as follows. In Section 2.2 some zero-order methods, such as, 

the NP method, the pattern search methods, the NM simplex method and the 

L ucidi-Sciandrone-Tseng (LST) method are briefly introduced. However, the NP method 

is presented in more detail due to the fact that we were initially interested in it as a 

feasible method for solving constrained optimization problems. A short explanation of 

the RSM is presented in Section 2.3. Finally, the reason for why we decided to 

concentrate on the NM method for constrained optimization are considered in Section 

2.4. 

2.2 The methods of zero-order 

The methods of zero-order have had an important role in the optimization of systems, 

especially when evaluation of the objective function is computational expensive or the 

analytical expression of the objective function is unavailable. 

They are occasionally called derivative-free methods or direct search methods. This 

latter term, introduced by Hooke and Jeeves (1961), can be defined as those methods 

based on the evaluation of trial points for comparing them with the current value. These 

trial values are used to establish the direction of search of the next step. 

Hooke and Jeeves (1961) pointed out five reasons why they studied the methods of direct 

search, and these are summarized herein: 

• Direct search methods are most useful for the case when calculation of derivatives 

is costly or impossible, or simply there is not an explicit expression of the objective 

function. 
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• They can be easily employed in computers . 

• They can supply an approximate solution, which can be improved at each stage of 

the method. 

In addition, Hooke and Jeeves (1961) have included a formal definition of direct search, 

whose reading we consider important, due to its validity to date. 

Trosset (1997) proposes a short definition of direct search, which can be summarized as 

the methods of optimization that are mainly determined by ranking of the objective 

function. Furthermore, he points out some ambiguities on the definitions of direct search 

that are usually presented in the literature. However, the author remarks on a definition 

of M. H. "Wright, who defines the direct search methods as the set of methods that do 

not calculate any approximation of the gradient. 

This standpoint excludes those quasi-Newton methods based on finite-difference, which 

are occasionally considered direct search methods. However, in this work, the so-called 

finite-difference quasi-Newton methods will be considered non-direct search methods. 

In (Lewis et al. 2000), the authors indicate three reasons why the methods of direct 

search are still popularly employed by practitioners, namely: 

• Direct search methods work well in practical problems and many of them are 

demonstrated to have global convergence. 

• Methods based on a quasi-Newton approach can be applied to some varieties of 

non-linear optimization problems. 

• Direct search methods are moderately easy to implement. They do not need very 

complex algorithms for calculating derivatives, as in quasi-Newton methods. 

A novel perspective on the study of the methods of direct search is introduced by Kolda 

et al. (2003), who present the named generating set search for developing a general and 

flexible theory of direct search methods, and which allows us to analyse some pattern 

search methods, such as, generalized pattern search methods (Torczon 1997), 

evolutionary operation (Box 1957), the pattern search method of Hooke and Jeeves 

(1961), among others. 

In addition characteristics that can be considered in the comparative study of direct 

search methods are: the implementation of the methods, its development for constrained 

optimization problems, and the number of function evaluations. 
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2.2.1 The Nested Partitions method 

According to Boender and Romeijn (1995), random search methods can be defined as an 

algorithmic method that optimizes a function through points whose generation have 

been previously specified by some probability distribution within a feasible region. 

We can interpret this class of methods as founded on the generation of trial points from 

a probability distribution, with points constituting an independently and identically 

distributed sequence. Examples of this class of methods are: pure random search, 

random search, pure adaptive search, adaptive search and the family of simulated 

annealing methods (Boender and Romeijn 1995). Another family of random search 

algorithms, called Monte Carlo methods, are widely explained in Rubinstein (1992). 

In particular, the Nested Partitions (NP) method (Shi and Olafsson 2000a) is a type of 

random search method. This method has been widely studied by Brea (2002) during the 

course of this investigation. For this reason, we have considered convenient to present it 

in detail. 

The NP method proposed by Shi and Olafsson (2000a) was first developed for solving 

global optimization problems in deterministic models. A modification of the method for 

solving problems concerning the optimal allocation of resources in discrete event 

dynamic system (DEDS) is discussed by Shi and Chen (2000). The method 

systematically partitions the feasible region and concentrates the search for an optimal 

solution in regions that are most promising. Examination of the most promising region is 

done through random sampling in the considered feasible region. Furthermore, the NP 

method offers convergence with probability one in finite time, without verifying all the 

feasible regions (Shi and Olafsson 2000b). 

The NP algorithm has four main steps at each kth iteration. These steps are: 

partitioning, random sampling, ranking and selection of the best design point and, 

further partition, backtracking or stopping. A practical example of the NP method is 

shown in the problem developed by Brea and Cheng (2003b), who apply the NP method 

for identifying the optimal operation of a four-queue network. 

a) Partitioning 

The first step divides the current most promising region O"(k) into Mk subregions O"i(k), 

i = 1, ... , Nh, and aggregates the surrounding region or complement subset of O"(k), 

denoted by 8\dk), into one. Therefore, within each kth iteration, we have Mk + 1 

disjoint subsets that define the feasible region denoted as 8. The method of partitioning 
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employed in this step is very important, because the rate of convergence of the algorithm 

will depend on the manner of how the different design points of the problem are 

grouped. These grouping of feasible solutions, according to the performance of the 

system, can help the algorithm to concentrate the search into the most promising 

subregion more quickly. 

b) Random sampling 

The second step of the algorithm randomly chooses design points from each subregion 

CJi(k), i = 1, ... , l\!lk and from the surrounding region CJjVh+l(k) = 8\CJ(k). In this step 

the NP algorithm is flexible enough, due to the fact that we can employ any scheme of 

sampling, from our knowledge of the system or from any heuristic. A discussion of a 

weighted sampling scheme is presented by Shi and Chen (2000). 

c) Ranking and selection of the best design 

The third step is to choose the most promising region, among the subregions CJi(k), 

i = 1, ... , Nlk and the surrounding region CJlvh+1(k), by comparing the performance 

measure (objective function) at each chosen design point. 

The method estimates an index i = 1, ... ,Nlk + 1 of the most promising either subregion 

or surrounding region. Here the NP algorithm offers flexibility in the method to be 

employed in order to determine such an index. A way for finding this index is through 

statistical comparison of the performance measure for all the sampled design points. 

Therefore, the method estimates whether the best design point comes from a given 

subregion or surrounding region. An improvement of the NP method was proposed by 

Shi and Chen (2000) based on the optimal computing budget allocation (Chen et al. 

2000). 

d) Further partition, backtracking or stopping 

The fourth step of the method is to do further partitions of the subregion CJ B (k), where 

the index B means the index of the most promising subregion, for concentrating the 

search into the selected subregion. If the best design point belongs to the surrounding 

region, the method backtracks to a large region containing CJB(k), which is called the 

superregion of CJ(k). Two backtracking rules are suggested in (Shi and Chen 2000). In 

addition, there exists a stopping rule proposed by Shi and Olafsson (2000b), which is 

based on the Markov Chain Monte Carlo approach. This shows that the NP method 

generates a Markov Chain when there exists an unique optimum to the problem. 
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Implementation of the Nested Partitions algorithm 

A limited study of the performance of the NP algorithm was carried out for optimization 

problems where the decision variables can be discrete or continuous. To do this we 

developed an algorithm using Visual C++ (Sphar 1999). It was convenient to do this 

because the Visual C++ has an environment for programming interfaces with the user. 

The implemented algorithm is a variant of the original NP algorithm, because we 

required a software that allows the optimization to problems of both discrete decision 

variables and continuous decision variables. In the case of continuous decision variables, 

the method alternately divides each variable range into a pre-specific number of 

subregions Nsubrange, making approximately the same number of partitions for each 

variable range. With respect to the sampling of design points, a uniform sampling 

scheme was used. 

Without loss of generality, we shall describe the method through an example of two 

continuous decision variables. Suppose we have two continuous decision variables 81 and 

82 which can take values between Li and Ui for i = 1,2, and we choose Nsubrange = 2. In 

this case, the original feasible region is 

For the considered region, we assume two subregions 0"1 (0) and 0"2(0) expressed by 

0"1(0) = {8 E]R2 ILl :S 81 :S ml, L2::S 82 :S U2} 

0"2(0) = {8 E ]R2 I ml < 8 1 :S Ul, L2 :S 82 :S U2} 

where ml is the mean point between Ll and U1 . 

Suppose that after one iteration, the most promising subregion was 0"1 (0). This is then 

partitioned into two subregions in the next iteration, but in the direction of 82 , that is: 

0"1(1) = {8 E ]R2 I Ll :S 81 :S ml, L2 :S 82 :S m2} 

0"2(1) = {8 E]R2 I Ll :S 81 :S ml, m2 < 82 :S U2} , 

where m2 is the mean point between L2 and U2. The superregion is given by 

This process is repeated alternately for 81 and 82 until the size of the side of the largest 
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promising subregion satisfies a value of tolerance fixed by the user. If the algorithm 

chooses the superregion as the most promising region, it backtracks to the entire feasible 

region. 

In the case that there exist continuous and discrete variables, the method works in the 

same manner according to the NP algorithm. 

Numerical example 

To test the implemented algorithm, we carried out two sets of experiments. The first 

considered the case where the decision variables are discrete whilst the second considered 

continuous decision variables. We studied the following problem 

mine eTQe, 
subject to: e E [-10, 10]n, 

where the matrix Q is a diagonal matrix whose entries qii = i Vi = 1, ... ,n, that is, 

diag(l, ... ,n). 

Note that the global minimum point is at the origin. 

The number of sampling per subregion (Sampling/r) and the number of sampling in the 

superregion (Sampling/R) were fixed for each case study. 

a) Case: Discrete decision variables 

Table 2.1: Summary of experimentation· discrete decision variables 
Dimension n 2 2 3 3 3 3 4 4 4 4 

Sampling/r 5 10 5 5 10 10 5 5 10 10 

Sampling/R 5 5 2 2 2 2 2 2 2 2 

Sampling 126 231 1165 5359 1772 13290 1631 2922 5079 11514 

Backtracking 0 0 4 22 3 29 4 9 7 17 

e1 0 0 -2 1 1 0 -3 -1 1 -1 

e2 0 0 -2 0 0 1 -2 0 -1 0 

e3 0 0 0 0 0 0 0 0 
e4 0 0 0 0 

Table 2.1 gives a summary of the results obtained for this experimentation, including the 

total number of function evaluations (Sampling), and the number of times that the 
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algorithm backtracked (Backtracking). Note that the maximum number of design 

experiment points is equal to 21 n, and its convergence was close to its global minimum in 

most cases. 

b) Case: Continuous decision variables 

In this case, a maximum size of subregion was fixed equal to 0.01 for carrying out the 

experiments. 

Table 2.2: Summary of experimentation: continuous decision variables 
Dimension n 2 2 3 3 4 4 5 5 

Sampling/r 50 50 50 50 50 50 50 50 

Sampling/R 50 50 50 50 50 50 50 50 

Sampling 2800 2800 5409 7212 54723 52518 255499 519809 

Backtracking 0 0 2 4 39 35 147 310 

81 0.09 0.11 0.26 -0.08 0.76 0.06 0.36 -3.13 

82 0.00 0.00 0.06 -0.02 1.73 0.99 0.97 -1.65 

83 0.00 0.00 -0.13 -0.05 -0.59 -0.36 

84 0.00 0.00 -0.01 0.22 

85 0.00 0.00 

Table 2.2 shows a summary of the yielded results by the algorithm for different scenarios 

of dimension n and two replications by scenario. It can be seen that a large number of 

function evaluations was required for each case. 

As a result of numerical examples studied by Brea (2002), we would tend to the view 

that the performance of the NP algorithm is not good enough. The algorithm needs to 

do a significant number of evaluations of the objective function, and is expensive in 

terms of function evaluations. Hence we consider, the NP algorithm is not appropriated 

when it is applied to optimization problems of continuous decision variables. 

Moreover, in the case of continuous decision variables, the NP algorithm evaluates 

S + s . Nsubrange times the objective function at each iteration, where S is the number of 

sampling of the superregion, s is the number of sampling per subregion and Nsubrange is 

the pre-specific number of partitions for each variable range. 

This fact is evidenced by Shi and Olafsson (2000a), where the authors report results of a 

constrained optimization problem of the so-called function of Goldstein-Price, whose 
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analytical expression is given by 

1(81 ,82) = [1 + (81 + 82 + 1)2(19 - 1481 + 38i - 1482 + 68182 + 38§)] . 

[30 + (281 - 382)2(18 - 3281 + 128i + 4882 - 368182 + 278§)] 
ve E ]R2 

The constrained minimizing problem considered by Shi and Olafsson (2000a) is the 

following 
mine 1(81 ,82), 

subject to: -2.5:::; 8i :::; 2.5 Vi = 1,2, 

where 1(81 ,82) is given by Equation (2.1). 

(2.1) 

According to numerical results reported by Shi and Olafsson (2000a), the NP algorithm 

required between 617 and 68900 average function evaluations in 100 replications, for a 

pre-specific number of subregions equal to four, a specified sampling per region of 25, 35 

and 45, and a predetermined tolerance of 0.1, 0.01 and 0.001. 

However, the NP algorithm might be employed as an initial tool for the search of optima, 

in which the objective function has several local optimum points, because the NP 

algorithm is able to identify the promising region that contains the global optimum point. 

2.2.2 Pattern search methods 

Pattern search methods were originally developed for solving unconstrained non-linear 

optimization problems using factorial designs (Box 1957). However, a recent analysis of 

convergence, founded on a generalized pattern search, was presented by Torczon (1997). 

Its application to bound constrained optimization problems was developed by Lewis and 

Torczon (1999) and to linearly constrained optimization problems by Lewis and Torczon 

(2000). Recently, Audet and Dennis Jr (2003) present a new and simple convergence 

analysis for the unconstrained and linearly constrained pattern search algorithms. 

Pattern search methods have iterations made up of two parts: an exploratory moves 

algorithm and an algorithm for updating 01 the pattern. The exploratory moves algorithm 

has the aim of determining the best descent step 8k among a set of steps 81 obtained by 

evaluating the objective function at each trial point x1 = Xk + 81 according to the given 

search method, where Xk is the best trial point obtained at the (k-l)th iteration and i is 

each ith direction defined by the pattern. The updating of the pattern carries out 

contraction or expansion of the set of trial points in accordance with the pattern and the 

values of the objective function at each trial point x1. A generalized pattern search 
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method for unconstrained minimization was introduced by Torczon (1997). 

With respect to the number of function evaluations, the pattern search algorithms at 

least evaluate the objective function 2n times per iteration in the exploratory moves 

algorithm, which could be a disadvantage, specially, when the evaluation of the objective 

function is expensive. However, pattern search methods guarantee global convergence 

under some considerations of differentiability of the objective function (Torczon 1997) 

and (Audet and Dennis Jr 2003). 

Through a simple example, a didactic explanation of pattern search methods is presented 

by Kolda et al. (2003). 

2.2.3 The NeIder-Mead simplex method 

The NM simplex method (NeIder and Mead 1965), which should not be associated with 

the widely known simplex algorithm of Dantzig for solving linear optimization problems, 

emerged from an original idea of Spendley et al. (1962), who proposed the use of a 

sequence of experimental simplex designs for obtaining an improvement of the objective 

function. The method of Spendley et al. (1962) computes the reflection of the worst 

vertex of the current simplex for finding a trial point that is compared with the vertices 

of the current simplex, so the method makes decisions for identifying a trial point better 

than the worst vertex at each iteration. 

New operations, called expansion, contraction and shrinkage, were included by NeIder 

and Mead (1965) to the original optimization method of Spendley, Hext, and Himsworth, 

resulting in what nowadays is widely known as the NM simplex algorithm. We can 

remark that in most cases, the NM method carries out one function evaluation per 

iteration, because the NM method seldom executes shrink operations during the process 

of optimization. In fact, according to Lagarias et al. (1998), V. Torczon reported in her 

PhD thesis uniquely 33 shrinkage operations in 2.9 millions iterations on a set of test 

problems. Moreover, if the objective function is convex non-shrinkage operation takes 

place during the application of the NM method. 

Since the NM method constitutes the essence of this research, we do not present more 

detail about it at this point. However, we should point out that the order of function 

evaluations of the NM method is one per iteration. This constitutes one of the most 

relevant and useful properties when developing our linearly constrained version of the 

algorithm. Another advantage that we find in the NM method is its good performance 

for unconstrained optimization problems when the objective function is altered by noise, 
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for instance, (Barton and Ivey 1996) and (Humphrey and '.Nilson 2000). 

Furthermore, an important number of numerical test problems reported by Rabinowitz 

(1995) for comparing the NM method with his called Torus algorithm, corroborate the 

potentiality of the NM method. According to the numerical results reported by 

Rabinowitz (1995), the NM method is considerably more efficient than the Torus 

algorithm, at least with regard to the number of function evaluations. However, the NM 

method seems to be less robust than the Torus algorithm, because the NM method 

eventually fails in more test problems than the method of Rabinowitz. We should point 

out that Rabinowitz (1995) compares his algorithm with the NM method using 64 of the 

test problems from Hock and Schittkowski (1981), and he also compares his method 

against both the NM method and the Simulated Annealing algorithms, whose numerical 

test problems are reported by Corana et al. (1987). 

Nonetheless, in our opinion, the comparative study of Rabinowitz (1995) and Corana 

et al. (1987) should not be considered as conclusive, because they compare their 

optimization methods using constrained optimization problems versus the NM simplex 

method for finding solutions to unconstrained minimization problems, under the same 

objective function at each test problem. 

On the other hand, Anderson and Ferris (2001) developed a method of direct search 

derived from the simplex and operations of the NM method for minimizing 

unconstrained problems when the objective function is subject to random noise. 

According to the computational results obtained by Anderson and Ferris (2001), their 

method is effective when the objective function contains noise. 

2.2.4 Derivative-free methods 

Historically, derivative-free methods had an important place in the decade of 60's. For 

instance, the method of Hooke and Jeeves (Bazaraa and Shetty 1979), Rosenbrock 

(1960), Powell (1964), among others. These are regarded as derivative-free methods, 

because they employ line search for minimizing an unconstrained non-linear objective 

function. We should remark that the method of Hooke and Jeeves presented in (Bazaraa 

and Shetty 1979) is not the original pattern search method of Hooke and Jeeves (1961). 

The method is so-called by Bazaraa and Shetty (1979), because it is founded on the 

original method of Hooke and Jeeves (1961). 

Recently a derivative-free method was developed by Lucidi et al. (2002) for finding 

solutions to constrained minimization problems. The Lucidi-Sciandrone-Tseng (LST) 
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method will be briefly described herein, due to its efficiency for minimizing linearly 

constrained non-linear objective function, according to the numerical test problems 

reported by Lucidi et al. (2002). 

vVe were not able to consider fully the LST method in our exploration of approaches, 

because of its recent publication. 

The LST method regards a constrained non-linear optimization problem of the form 

minxEIRn f(x) 

subject to: 9i(X) ~ 0 \Ii = 1, ... , m 

where: 

f : lRn 
----+ lR and its first-order derivatives cannot be explicitly calculated. 

15 

9i : lRn ----+ lR are continuously differentiable functions and their mathematical expressions 

are available. 

The LST method defines at each kth iteration a set of feasible descent directions 

Dk = {dl, ... , d~k}, where the set of directions Dk is constituted by all normalized 

directions such that 

The LST method is essentially composed of three main steps at each kth iteration: 

selection of a set of directions D k , minimization of the cone{ Dd and search of the 

improvement of the function using the minimized cone. 

Basically, the LST method identifies at each iteration, k, the best direction d{ E Dk to 

use for a line search subject to the constraints. 

Results of numerical examples reported by Lucidi et al. (2002) depict a good accuracy 

within an acceptable number of function evaluations. 

A study of convergence of the LST method for unconstrained optimization is presented 

by Lucidi and Sciandrone (2002). 
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2.3 Response surface methodology 

The optimization using response surface methodology (RSM) can be classified into two 

groups: metamodel and sequential procedures (Fu 1994). A metamodel procedure 

identifies the optimal solution by estimating the stationary point of the second-order 

response surfaces of the objective function (Myers and Montgomery 2002). These 

procedures employ experimental design for fitting a second-order response surfaces, and 

so to estimate the stationary point. Notice that according to the taxonomic criterion of 

descent direction of the objective function, these procedures would be within the group 

of method of zero order, because it does not employ the expansion of the objective 

function into Taylor series for estimating at least a descent direction. 

The idea of optimizing a function through a sequential procedure for moving to a near 

stationary region could be attributed to Box and Wilson (1951), who proposed the 

response surface methodology (RSM) for fitting a first-order response surface, and so to 

estimate an ascent direct (or descent) for going towards a near stationary region at each 

iteration. 

A sequential procedure is composed of two phases, the first is to estimate the first-order 

response surface of the objective function for finding a descent direction of the objective 

function, so moving towards a region near to the stationary point. The second phase 

computes the stationary point through the second-order response surfaces of the 

objective function. 

These latter procedures are in the group of method of first-order, because they employ 

the first-order expansion Taylor series for identifying a descent direction at each iteration. 

Recently, Fu (1994) proposed the use of a sequential procedure for identifying the 

optimum operation in simulation model, we present herein. 

2.3.1 The sequential procedure method 

Let f(x) : Jl{n ----+ lR be a real function of several variables, the unconstrained optimization 

problem is given by 

min f(x) 
xElRn 
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First phase of the sequential procedure 

During the first phase, first-order experimental designs are applied at each kth iteration 

to obtain a hyperplane that fits to the response surface of the objective function, and 

whose analytical expression is given by 

where Nc(x) = {x I Ilx - xkll < c } is the c-neighbourhood of Xk in a n-dimensional 

Euclidean space lR.n for some c > 0, /3i,k for all i = 0, ... ,n are the estimated coefficients 

via the least squares method at each kth iteration. 

Therefore, a step descent direction can be estimated for approaching to a subregion Rs 

that contains at least a stationary point using 

where Xk is the point of the kth explored subregion, Cl'.k is the step size whose value can 

be calculated by some line search method, and \7 j[l] (x) represents the gradient of the 

estimated hyperplane at kth iteration. This process of search is stopped by some 

criterion, which would allow one to reach a point XK in Rs. 

Second phase of the sequential procedure 

In this phase, a set of second-order designs is carried out for fitting a quadratic response 

surface, and estimating the stationary point by first-order optimality condition. 

~T A 

where {3 = [PI, ... ,Pnl and C is the n x n estimated symmetric matrix 

Cll C12/2 C1n/ 2 

0= 
C22 C2n/2 

sym Cnn 

By differentiating j[2J (x) with respect to x and setting the derivative equal to 0, it is 
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obtained the stationary point of the second-order model 

which could be a minimum, maximum or saddle point (Myers and Montgomery 2002). 

To verify if Xs is a minimum point we must study the matrix C by examining the signs 

of the eigenvalues of the matrix C. 

Let f-Ll' f-L2,··· f-Ln be the eigenvalues of 6, then 

• If f-Ll' f-L2' ... f-Ln are all negative, Xs is considered a maximum point, due to the 

concavity of the function 

• If fLl, f-L2' ... f-Ln are all positive, Xs corresponds to a minimum point, due to the 

convexity of the function 

• If f-Ll' f-L2' ... f-Ln are mixed in sign, Xs is called a saddle point, because, the function 

is neither convex nor concave in the c-neighbourhood of Xs (see definition in 

Appendix A). 

As can be appreciated, the sequential procedure method requires n function evaluations 

at kth each iteration during the first phase, making it an expensive procedure due to its 

number of function evaluations per iteration. Nonetheless, the method could be efficient 

if the starting point is close to the stationary point. 

2.4 The motivation of the NeIder-Mead method 

In summary we seek a method that is economic from the standpoint of the number of 

function evaluations, within adequate accuracy, when the objective function is altered by 

the presence of noise. 

The work presented by Brea (2002) indicates the advantages and disadvantages of the 

NP method, the NM simplex method and the RSM, in the minimization of a non-linear 

function subject to linear constraints, assuming that both the objective function and its 

first-order derivatives cannot be explicitly calculated or that they are computational 

expensive. 

According to a comparative study made by Neddermeijer et al. (1999), the RSM was 

more accurate than the NM simplex method in the cases of optimization by simulation 
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models. However for a set of 18 unconstrained test problems, whose objective functions 

were affected by noise the NM simplex method would be carried out more efficiently 

than the RSM for optimization cases by simulation models. 

These considerations induced us to select an approach based on the NM simplex method, 

due to its acceptable performance, even when the objective function is corrupted by 

noise, for instance, (Humphrey and Wilson 2000). Another advantageous feature of the 

NM simplex method is minimum number of function evaluations per iteration, that in 

most situations is one function evaluation per iteration. Nonetheless, the NM method 

has shown to be a non-robust method, because its eventually could convergence to 

non-stationary point (McKinnon 1998). 

In addition, the NM simplex method is easily adaptable to Euclidean sub-space that can 

be defined by the intersection of two or more linear constraint boundaries, when the 

simplex reaches the boundary of the feasible region. This feature allows us to adjust the 

simplex in the Euclidean sub-space by reducing of its number of vertices. The new 

algorithm therefore avoids the degeneration of the simplex during the identification of 

the optimum. Furthermore, the reduction of number of vertices can improve the 

efficiency of the new algorithm keeping the features of the NM method. 

Another reason is the easy implementation that can have an algorithms of optimization 

based on the NM simplex method, because it is essentially defined by simple operations, 

which were adapted to our optimization problem. Nonetheless, the new algorithm 

logically required of additional procedures that were developed during the investigation. 



Chapter 3 

Linear Constrained NeIder-Mead 

method 

3.1 Introduction 

In the last few years, there has been a special interest in using the NM simplex method 

in searching for the optimal performance in stochastic systems. The idea of searching for 

the optimum operation of a system using the simplex was originally proposed by 

Spendley et al. (1962). They supported their method on the study of the simplex done 

by Box (1952), and Brooks and Mickey (1961), whose works showed that experimental 

designs based on the simplex are optima for estimating the slope of a noisy function. 

This property of the simplex design was taken advantage by Spendley et al. (1962) for 

developing an optimization method of noisy objective function. The method identifies 

the optimum point by estimating the reflection of the worst design point or vertex of 

each simplex, thereby obtaining a better vertex at each iteration. 

An improvement to the method of Spendley et al. (1962) was formulated by NeIder and 

Mead (1965); (1966), including other operations to the simplex, called expansion, 

contraction and shrinkage. Nowadays this method is called the well-known NM simplex 

method, which was initially developed for optimizing unconstrained determinate 

non-linear objective functions. However, an extension of the NM method to constrained 

non-linear optimization problems was developed by Subrahmanyam (1989), who 

employed what he called a delayed reflection for preventing the collapse of the simplex 

onto the boundary of the feasible region. The Subrahmanyam method (SM) also makes 

use of a very simple penalty rule when a vertex becomes infeasible, due to an operation 

20 
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of reflection or expansion. Another modification of the NM method was developed by 

Hedlund and Gustavsson (1998), in which the authors apply the NM method to bounded 

constrained optimization using the method of Routh et al. (1977). This latter fits 

reflection and expansion trial points by correcting their coordinates, when the point is 

infeasible. 

The most recent research published on the NM method for simulation optimization are, 

for instance, (Barton and Ivey 1996) and (Humphrey and Wilson 2000). The authors 

propose some modifications to the NM method for solving problems of optimization in 

simulation models. 

In this chapter we shall describe a variant of the original NM method applied to the 

problems of optimization subject to linear constraints, which will be called the Linear 

Constrained NeIder-Mead (LCNM) method. The LCNM method takes advantage of the 

eventual collapse of the simplex onto the boundary of the feasible region for reducing the 

number of their vertices, so decreasing the number of function evaluations. This latter 

aspect can be important when the evaluation of the objective function is expensive. 

The method builds a simplex in what we have called intersection space or sub-space. 

This allows us to build a simplex with the minimum number of vertices and therefore, 

minimizes the number of evaluations of the objective function. 

This chapter is organized as follows. In Section 3.2 we describe the type of problem that 

will be studied. Definitions and notations are given in Section 3.3 for explaining the 

algorithm. Mathematical principles of the LCNM algorithm are presented in Section 3.4. 

In Section 3.5 are defined the basic operation of the LCNM algorithm. In Section 3.6 we 

describe our algorithm by flow chart and pseudo-codes. A set of experimentations is 

described for testing the LCNM method and comparing its performance with the method 

of Subrahmanyam (1989) in Section 3.7. In Section 3.8 are presented a few test problems 

reported by Lucidi et al. (2002) for comparing the LCNM method against the LST and 

the Solver of Microsoft® Excel spreadsheet. Furthermore, a study of computational 

effort of the algorithm is shown in Section 3.9. Finally, in Section 3.10 we present 

conclusions about our research. 

3.2 Statement of the problem 

Let f(x) : lRd 
--7 lR be a non-linear continuous objective function, where 

x = [Xl, X2, ... ,Xd]T is a column vector of components Xl, ... ,Xd in the d-dimensional 

Euclidean space, and consider the problem of minimizing f(x) subject to x E F, where 
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:F denote a non-empty set of feasible points given by 

F= {x E]Rd I Ax ~ b} 

A mathematical formulation of our problem can be expressed as follows: 

Problem 3.1 (P) 

mm f(x) 
XElRd 

(3.1) 

subject to 

allx1 + a12 x 2+ ... + a1dxd ~ b1 

a21 x 1 + a22 x 2+ ... + a2d X d 2: b2 
(3.2) 

ak1 x 1 + ak2 x 2+ ... + akdxd ~ bk 

This formulation is the deterministic case. We shall also consider its extension to 

problems of optimization for simulation of stochastic systems, where random noise is 

present in the objective function, due to the randomness of the modelled system. 

However we focus in this chapter on the above deterministic case. 

3.3 Preliminaries 

In this section, we present some definitions and notations that will be used in the 

explanation of the LCNM method. 

3.3.1 Definitions 

Definition 3.1 (Simplex) We define a simplex in a d-dimensional Euclidean space as 

a set of different points Xi for all i = 1, ... ,v, where v is the number of points or vertices 

of the simplex and each one is represented by a coz'umn vector of dimension d. A simplex 

can be represented in matrix notation as 

S [q] - [x . x· . x 1 -v- 1·2·····v-
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where the superscript q represents the iteration counter as result of each simplex 

operation. 

Note that in the above definition the number of vertices (v) is equal to d+1, when the 

simplex is in d-dimensional Euclidean space. 
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Definition 3.2 (Edge matrix of a simplex) A pth edge matrix Ebq] of a qth simplex 

sLq] in a d-dimensional Euclidean space is defined as a matrix of dimension d x (v - 1) 

whose j th column represents the edge of sLq] between a referential vertex xp and Xj for all 

j = 1,2, ... ,vq andj oj=p, thus 

Ebq
] [Xl - Xp : X2 - Xp : ... : XHp - Xp : ... : Xv - Xp] Yp = 1, ... , v (3.3) 

Definition 3.3 (Entire simplex) Let Rc(Ebq]) be the column rank of the pth edge 

matrix Eb
q
]. A simplex is said to be entire in a d-dimensional Euclidean space, if 

min[ Rc(Eiq]), Rc(E1q]), . .. Rc(ELq])] is equal to d. That is, there exist at least d = v-I 

linearly independent vectors xp - XHp of the any pth edge matrix. 

Definition 3.4 (Opposite hyperface of a simplex to a vertex) Let sLq] be a qth 

simplex of v vertices in the d-dimensional Euclidean space. The part of the simplex 

defined by all v vertices of the simplex except the vertex Xj is said to be a jth opposite 

hyperface of a simplex or the opposite hyper face of a simplex to a jth vertex. In other 

words, the jth opposite hyper face of the simplex sLq] = [Xl: X2 : ... : xv] is given by 

HJq] = {Xi EsLq] li=l, ... ,v Aioj=j} Vj=l, ... ,v, (3.4) 

hereinafter, the symbol A will represent "and". 

Definition 3.5 (Remaining hyperface) The part of the simplex that has been left 

after removing only one of its vertices is said to be the remaining hyperface. 

Based on the previous definition, if the vertex Xv were removed at a qth iteration, its 

remaining hyperface would be the opposite hyperface of the simplex 

sLq] = [Xl: X2 : ... : Xv] to the vertex Xv, which is given by 
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Definition 3.6 (Collapsed simplex) Consider the case of d-dimensional variables, 

thus, x E ]Rd. A simplex of v vertices is said to be collapsed onto the boundary of an i th 

linear constraint, if the v vertices belong to the ith linear constraint boundary. 

Definition 3.7 (Active constraint) An ith linear constraint is said to be active or 

activated by a simplex, if all its vertices belong to the ith linear constraint boundary. In 

other words, if the following equation is satisfied 

(3.5) 

where Iv and Ov are v-dimensional column vectors whose elements are all one and zero, 

respectively. 

Definition 3.8 (Collapse simplex degree) Consider the case of d-dimensional 

variables. A simplex of v vertices is said to be collapsed in r degrees, if the v vertices 

belong to the boundaries of any r linearly independent linear constraints. Therefore these 

r linear constraints are activated by the collapsed simplex. 

Definition 3.9 (Minor simplex) Consider the case of d-dimensional variables. A 

simplex stq] is said to be a minor simplex or sufficiently defined on any r linearly 

independent linear constraint boundaries, if its number of vertices (v) is equal to d+ 1-r 

and min [ Rc(Ei
q
]), Rc(E~q]), . .. Rc(Et

q
])] is equal to d - r. 

Definition 3.10 (Degenerate simplex) A simplex of v vertices is said to be 

degenerate if all 'its vertices belong to at least one of its hyperfaces but the simplex has 

not activated any linear constraint boundary. 

Definition 3.7 should not be confused with the widely known definition of active 

constraint due to a point Xo or constraint activated by a point Xo, where a constraint 

gi(X) 2:: 0 is said to be activated by Xo, if gi(XO) = 0 (Gill et al. 1991). In this writing, 

when we indicate that a constraint is active, we refer to the constraint that has been 

activated by a simplex, otherwise we point out that the constraint has been activated by 

a point. 

3.3.2 Notation 

q = Iteration counter which is increased after each simplex operation and sorting of 

vertices. 
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s = Stage counter which is increased after each convergence stage. 

d = The dimension of the space of our decision variables. 

v = Number of vertices of the simplex. 

Ce = Tolerance for considering if the simplex has collapsed. 

r = Degree of the collapsed simplex. 

f::.:.r = Variation of collapsed degree. 

k = Number of linear constraints. 

a = Coefficient of reflection. 

f3 = Coefficient of contraction. 

I = Coefficient of expansion. 

r5 = Coefficient of shrinkage. 

f::.:. = Coefficient of improvement. 

p = Coefficient of gap. 

T = Parameter of step size of the simplex for building it. 

nae = Number of active constraint, according to definition 3.7. 

finger(i) = Pointer that indicates the ranking of each vertex according to the value of 

the objective function at each vertex. Xfinger(l) is the x for which the function is 

minimal, Xfinger(2) is the x for which the function is the next to minimum, and so 

on. 

x~ql == [Xl,i, ... ,Xd,i]T = It denotes the ith vertex in the current qth iteration, however, 

the superscript [q] will be suppressed for simplifying the notation, that is, x~ql will 

be denoted as Xi without losing its meaning. 

Ii == f(Xi) = It is the value of the objective function at the design point Xi. 

Xmin = The design point whose value function f(Xmin) = fmin is the lowest in 

comparison to the rest of the value function at each vertex of the simplex. 
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Xmax = The design point whose value function f(xmax) = fmax is the highest in 

comparison to the rest of the value function at each vertex of the simplex. 
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Xntw = The design point whose value function f(xntw) = fntw is the next to worst value 

function f (xmax). 

- = The symbol tilde above a denoted matrix represents a not necessarily sorted matrix 

according to f(Xi). For example, Sv represents a simplex of v vertices, but not 

necessarily in ascending order of f (Xi)' 

3.4 Basic properties of linearly constrained optimization 

Here we shall enunciate a proposition for identifying the intersection space of a set of 

linear inequality constraints, whose choosing is based on the following proposition. 

Proposition 3.1 Let;t' be a non-empty open set in lR,d and let f(x) : lR,d-7Il{ and 

li(x) : lR,d-7 m;, be an ith linear function given by li(x) = aT x - bi for all i E I, where I is 

the set of subscripts of the linear functions. Consider the Problem P of minimizing f(x) 

subject to x E ;t' and li(x) 2: 0 for every i E I. Let Xbest be a feasible point such that 

Xbest lies on all active linear ith constraints that belong to a non-empty set 

Ap(Xbest) = {i E Illi(xbest) O}, and this point was obtained through convergence of 

some method of minimization, but that it is not necessarily an optimum point of Problem 

P . If f(x) is differentiable at Xbest and f(x) has an unknown local minimum X* of 

Problem P, such that Ap(Xbest) = Ap(x*) and y f(xbest)T y f(x*) > 0, then the unknown 

local minimum X* of Problem P is located in the intersection space of the constraints 

activated by Xbest, such that 

L Ui Y f(xbest)T ai > 0, 
iEAp(Xbesd 

where Ui 2: 0 for all i E Ap(x*) = Ap(Xbest) are the Lagrange multipliers. 

(3.6) 

Proof. If x* is a local minimum of Problem P, then by Theorem A.6 (page 209), we 

have that Ui 2: ° for all i E Ap(x*) 

y f(x*) - L Uiai O. 
iEAp(x*) 

(3.7) 
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On the other hand, since f(x) is differentiable at Xbest, from Equation (3.7), we obtain 

I.: Ui Y f(Xbestf ai = Y f(Xbest)T v f(x*), 
iEAp(x*) 

which is greater than zero, because y f(Xbest)T y f(x*) > 0, therefore, 
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I.: Ui Y f(Xbestf ai > o. 
iEAp(x*) 

(3.8) 

Due to Equation (3.8) and Ui 2: 0 for all i E Ap(x*) = Ap(Xbest) , we have 

• 

I.: Ui Y f(Xbestf ai > o. 
iEAp(Xbestl 

Notice that Proposition 3.1 could constitute a criterion for choosing the active linear 

constraints that contain the unknown local optimum X* of Problem P. 

Solution 3.1 Under Proposition 3.1, there exists a non-unique solution 

y f(Xbestf ai > 0 for all i E Ap(Xbest), such that, Equation (3.6) holds. 

Criterion 3.1 (Selection of active constraints) Let Ap(Xbest) be a set of linear 

inequality constraints activated by Xbest. Let Av! be a subset of Ap(Xbest) such that the 

scalar product y f(Xbestf ai > 0 for all i E Ap(X6est). Choose all linear inequality 

constraints of Av! for identifying an intersection space for which Condition 3.1 holds. 

Now we suppose that we have l' active constraints of the k constraints given by Equation 

(3.2) as a result of applying Criterion 3.1 or another criterion for choosing the active 

linear constraints due to X6est. This means within the context of the NM method, that 

all vertices of the current simplex converged to the point Xbest, which could be either a 

minimum point or not. Thus, we define Ac = {0:1' 0:2, ... , aT} as the set of active 

constraint subscripts whose O:i element is a chosen linear inequality constraint from 

Equation (3.2). 

Proposition 3.2 (Intersection space) Let 

(3.9) 
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be the system of equations defined by the linear active constraints Ac = {aI, a2, ... , a r } 

which were chosen by Criterion 3.1 or another criterion, where rank(Arxd) = r. Then 

the intersection space that satisfies Equation (3. 9) is defined by the set of points 

x = [Xl, X2, . .. ,Xd]T such that r components x's of x are dependent on (d - r) 

independent components x's of x. 

Proof. To prove Proposition 3.2, we transform Equation (3.9) by Gauss elimination 

method. We first order the equations according to the number of non-zero entries that 

each equation has. Then for each row, the rule of pivoting is based on the descendent 

order of the absolute values iaai,j i in that row. Using the Gauss elimination method in 

Equation (3.9) and considering the matrix of pivoting, we obtain the equation system 

[ 0 0] [ XD 1 0 
AD AI xI = b, (3.10) 

where the vector XD represents the dependent components x's of x, XI identifies the 

considered independent components x's of x, and AD, AI and b represent in matrix 

notation the transformed coefficients during the process of Gauss elimination. This 

information can be obtained from the matrix of pivoting where the subscript jth of the 

elements aij in AD identifies those variables that are considered dependent. Therefore 

each of them is allocated on the principal diagonal of the matrix AD of dimension r x r. 

Thus, 
o 1 (0 0 ) 

XD = AD b-AIXI , (3.11) 

which allows us to corroborate that XD E ]RT and XI E ~d-r. • 

Note that the matrix AD is non-singular, so using Equation (3.11) it be computed the 

points that belong to the intersection space by fixing the value of XI. 

Furthermore, a particular study of optimality conditions for linearly constrained 

optimization of non-linear function is presented in Appendix A. 

3.5 Simplex operations 

The NM method has four basic operations called reflection, expansion, contraction and 

shrinkage. The sorted qth simplex stq] = [Xl: X2 : ... : Xv] with the vertices: Xmin = Xl, 

Xntw Xv-l and Xmax = Xv is defined by evaluating the objective function at each jth 

vertex of the current qth simplex §tq] and sorting the vertices according to the value of 
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the objective function at each vertex. 

Reflection 

The operation of reflection yields the reflection point Xrefl which is defined as the 

projection of Xmax through the centroid Xcen of the remaining hyperface Hiq] , where Xcen 

obviously is the centroid point of the hyperface Hiq] = {Xi E siq] I i = 1, ... , v-I}. 

This operation is computed by 

Xrefl = (1 + a)xcen - aXmax (3.12) 

where a = 1 is the reflection coefficient of the NM method, and the centroid Xcen of the 

remaining hyperface Hiq] is estimated by 

Expansion 

1 v-I 

Xcen = -- "'" Xi v-1D 
i=1 

(3.13) 

The expansion point x exp is calculated by the projection of Xrefl in the direction from 

Xcen towards Xrefl and its expression is given by 

X exp = (1 - ,)xcen + ,Xrefl (3.14) 

where, = 2 is the expansion coefficient of the NM method. 

Another expression for Equation (3.14) is obtained by plugging Equation (3.12) into 

Equation (3.14), so that 

Xexp = (1 + a,)xcen - a,xmax (3.15) 

Contraction 

The operation of contraction, also called inside contraction, gives as result the denoted 

trial point Xcont, whose coordinates are on the line segment Xmax and Xcen' It can be 

calculated by 

Xcont = (1 - (3)xcen + (3xmax (3.16) 

where (3 = 0.5 is the contraction coefficient of the NM method, that is conventionally 
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used. 

It is worthwhile mentioning that there also exists the so-called outside contraction 

operation. However, the outside contraction will not be employed by the LCNM method. 

Shrinkage 

Shrinkage is the reduction of the current simplex by moving each vertex of the current 

simplex towards the vertex Xmin. This operation is computed by 

Xj = (1- cl)Xmin + clXj, 'Vj = 2, ... ,v (3.17) 

where cl = 0.5 is the shrinkage coefficient of the NM method that normally used. 

3.6 Linear Constrained NeIder-Mead algorithm 

An extension to the NM method was developed for finding the solution to optimization 

problems subject to linear inequality constraints, to ensure that all new simplex 

operations yield feasible trial points. 

3.6.1 Procedures 

To extend the NM method, we have added a set of new procedures to the original 

algorithm, which are presented herein. 

Linear Constraint Procedure 

Since each trial point is generated by two vertices of the simplex, it is possible to 

determine where it comes from and where it goes to. This information allows us to 

determine whether a generated new point Xnew is feasible or not. 
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d 
Xn"us 

Feasible region :F 

Figure 3.1: Linear Constraint Procedure. 

In the case that the Xnew does not satisfy Inequality (3.2), a procedure, called Linear 

Constraint Procedure (LCP), estimates the extreme trial point on the boundary of the 

feasible region as can be seen from Figure 3.1. 

For this, the LCP computes the extreme feasible point X,>- for replacing the new point 

Xnew by X,>-, therefore, the infeasible new trial point Xnew is converted to a new feasible 

trial point. 

On the basis of this principle, we have the following propositions. 
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Proposition 3.3 (Constrained reflection operation) Let slq] = [Xl: X2 : ... : Xv] be 

the qth ranked simplex of v vertices such that all its vertices are in ascending order 

according to the value f (Xj) V j 1, .... v and, all its vertices belong to the feasible region 

F == {x E ]Rd I Ax 2: b}, given by k linear inequality constraints aT X 2: bi Vi = 1, ... , k. If 

a Nelder-Mead reflection operation takes place, which is computed by 

Xrefl = (1 + a)xcen - axv , then 

1) a constrained Nelder-Mead reflection operation of the current qth simplex is defined by 

Xcnst-refl = (1 + min(a, A))Xcen - min(a, A)Xv (3.18) 

where A = min(AI,' .. , Ak) such that Ai 2: 0 Vi = 1, ... , k, and 

A' - bi - aT Xcen 
~ - T( )' a i Xrefl - Xcen 

Vi = 1, ... ,k (3.19) 

2) If 0 :::; Ai < 1, then Xrefl violates the inequality aT X 2: bi . 

Proof. Part 1) 

Let Xrefl be a trial point which is computed by a NeIder-Mead reflection operation using 
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Equation (3.12). For the points Xeen and Xrefl, we consider the straight line Ler that 

connects them using 
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(3.20) 

where X Ai is the intersection point of the straight line Ler and the boundary of the ith 

linear constraint, given by 

aTx=bi Vi=l, ... ,k (3.21) 

By substitution of X Ai given by Equation (3.20) into Equation (3.21), we obtain 

Thus, we have 
b. _ T 

\. _ t ai Xeen 
/It - T ( ) Vi = 1, ... ,k , 

a i Xrefl - Xeen 

Note that the sign of Ai allows us to determine whether the intersection point X Ai is 

located in the direction from Xeen towards xrefl or not. Since, the unique feasible 

intersection point X Ai E {x E Jl{d I aT x = bi Vi = 1, ... ,k} located in the direction from 

Xeen towards Xrefl that simultaneously satisfies all linear inequality constraints aT x ::::: bi 

Vi = 1, ... , k, must be the closest to Xeen and whose Aj ::::: 0, then A = min(Al' ... ,Ak), so 

Xenst-refl = (1 + min(a, A))Xeen - min(a, A)Xv 

Part 2) Because X Ai is a point that is located on the boundary of the ith linear 

constraint, we have 

(3.22) 

Plugging Equation (3.22) into Equation (3.19), we obtain for the ith linear constraint 

Obviously the angle between aT and (XAi - xeen) is the same between aT and 

(Xrefl - Xeen) , because X een ' xrefl and X Ai are collinear points, therefore 

Ai = IlxAi - xeenll 
Ilxrefl - xeenll 

(3.23) 
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Since X cen , Xrefl and X Ai are collinear points, it can be clearly ascertained that if X Ai is 

located between Xcen and Xrefl, then xrefl violates inequality aT x::::: bi and 0 .:; Ai < 1, 

because 

Otherwise, if Xrefl is located between Xcen and X Ai ' then Xrefl satisfies inequality 

aT x ::::: bi and Ai ::::: 1 as a result that 

• 
Proposition 3.4 (Constrained expansion operation) Let s~qJ = [Xl: X2 : ... : xv] 

be the qth ranked simplex of v vertices such that all its vertices are in ascending order 

according to the value f (Xj) V j = 1, .... v and, all its vertices belong to the feasible region 

F = {x E ]Rd I Ax ::::: b}, given by k linear inequality constraints aT x ::::: bi Vi = 1, ... , k. If 

a Nelder-Mead expansion operation takes place, which is computed by 

xexp = (1 crt ) Xcen - a,xv , then 

1) a constrained Nelder-Mead expansion operation of the current qth simplex is defined by 

Xcnst-exp = (1 + min(a" /\))xcen - min(a" A)Xv (3.24) 

where A = min(Al' ... 1 Ak) such that Ai ::::: 0 Vi = 1, ... , k, and 

Vi = 1, ... 1 k 

2) If 0 .:; Ai < 1, then xexp violates the inequality aT x ::::: k 

Proof. Parts 1) and 2) can be proved by the same method employed in the proof of 

Proposition 3.3. • 

Proposition 3.3 and Proposition 3.4 allow us to redefine the operations of reflection and 

expansion when the problem of minimizing a non-linear function is subject to inequality 

constraints. This is done in the next proposition. 

Proposition 3.5 Let Xo be a feasible point in the region F= {x E ]Rd I Ax ::::: b} and let 

Xnew be a new point generated by any simplex operation of the NM method, whose points 
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define the line segment Lo,new. Let B L be the subset of k (0 :S k :S k) boundaries of F 

that are reached by the segment Lo,new, Also, let XAi be the ith intersection point of the 

line segment Lo,new with the ith boundary, expressed by 

(3.25) 

such that there uniquely exists a Ai for each i th intersection point XAi , defined by 

(3.26) 

where Ai is given by 

Vi E I = {N I Ci E Bd (3.27) 

Let 3 denote the set of XAi such that for each XAi of 3 Equation {3. 25} and Equation 

{3.26} hold simultaneously. If the new point Xnew is infeasible, that is Xnew tf. F, then 

there only exists one feasible intersection point XAm E 3, which is the closest to X o · 

Proof. Since Xnew is an infeasible point, by Equation (3.26) and Equation (3.25), we 

obtain all collinear points X Ai , in the non-empty set which can be sorted according to 

its distance to the point X o ) and denoted by Xs for all s E I. Therefore, we obtain a 

ranked sequence of k points X Ai E 3, such that 

It is clear that the unique intersection point in 3, for which all inequality constraints 

hold is the point Xs=lJ which is also denoted by x Am , and is the point nearest to X o ' • 

Through Proposition 3.5 we establish the following general procedure for constraining 

new trial points to lie in the feasible region. 

Algorithm 3.1 (Linear Constraint Procedure) Start procedure 

Given x o , Xnew , and Inequality {3.2} 

Do, for all i = I, ... ,k 

then Compute Ai using Equation {3.21} and find the new coordinate 
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of the constrained Xnew assigning to Xnew f- AiXnew + (1 - Ai)Xo 

End do 

End procedure 

Observe that the reflection operation or expansion operation uniquely produces a new 

trial point outside of the current simplex, because the contraction operation employed by 

this variant of the NM method, also called inside contraction operation, generates a new 

trial point on the line segment defined by Xv and Xcen of the current simplex slq]. 
vVith respect to the operation of shrinkage, it transforms the current simplex 

slq] = [Xl: X2 : ... : Xv] by moving of each jth vertex Xj towards Xl along its current 

edge Xl - Xj for all j = 2, ... ,v , which assures us that the set of new trial points 

belongs to the (q+ 1 )th simplex, and they are on the edges of the previous slq] simplex. 

Feasible Entire Simplex Builder Procedure 

This procedure defines the vertices of the biggest entire simplex inside of the feasible 

region given an initial interior vertex Xl of the feasible set. The following recurrent 

procedure builds an initial simplex So which satisfies the constraints given by Equation 

(3.2). This procedure is founded on the generation of feasible points around the initial 

vertex and the parameter of maximum distance v. 

Algorithm 3.2 (Feasible Entire Simplex Builder Procedure) Start procedure 

Given v, v = d + 1 and Xl = [X 11 , X21, ... , Xdl]T interior point 

Do, for all j = 1, ... , v, assign to Xj +--- Xl 

End do 

Do, for all j = 2, ... , v 

Xj-l,j +--- Xj-l,j - V 

Perform the Linear Constraint Procedure to Xj 

regarding that Xo = Xl and Xnew = Xj 

Dl Xj-l,j - Xj-l,1 I 

Xj-l,j+l +--- Xj-l,j+l + v 

Perform the Linear Constraint Procedure to Xj 
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regarding that Xo = Xl and Xnew = Xj+l 

Dr =1 Xj-l,j+l - Xj-l,l 1 

then Xj-l,j+l ~ Xj-l,l 

else Xj-l,j ~ Xj-l,j+l and Xj-l,j+l ~ Xj-l,l 

End do 

End procedure 

Minor Simplex Builder Procedure 

The procedure builds the biggest possible simplex in an intersection space given: an 

initial point Xl in the intersection space; the step size v and the set of chosen active 

constraints that have been transformed by Proposition 3.2. The procedure computes the 

rest of the vertices required for defining a minor simplex in the intersection space. The 

procedure is a variant of the Feasible Entire Simplex Builder Procedure. A summary of 

the algorithm is as follows. 

\ 
Algorithm 3.3 (Minor Simplex Builder Procedure) Start procedure 

Given v and an initial point Xl = [Xl1' X21, ... ,XdIV in the intersection space. 

Given I = {~l' ~2' ... '~M} the set of index which represents the independent variable 

yielded by Equation (S.10). 

Do, for all j = 1,2, ... ,v, where v = d + 1 - r 

End do 

k~O 

Do, for all j = 1, ... ,v 

Estimate the dependent components ofxj using Equation (S.10). 
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End do 

Perform the Linear Constraint Procedure to Xj 

regarding that Xo = Xl and Xnew = Xj 

Estimate the dependent components of Xj+l using Equation (3.10). 

Perform the Linear Constraint Procedure to Xj+1 

regarding that Xo Xl and Xnew = Xj+l 

then Xj+l ~ Xl 

else Xj ~ Xj+1 

End procedure 
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Because the LCNM algorithm takes advantage of when the simplex collapses onto the 

boundary of the feasible region through removing of vertices, it is necessary to establish 

a strategy for this removal substantiated by some properties of the simplex. 

Definition 3.11 (Edge matrix of a remaining hyperface HA~) A pth edge matrix 

Eb;L of a remaining hyperface HLq] in a d-dimensional Euclidean space, it is defined as a 

matrix of dimension d x (v - 2) whose jth column represents the edge of the remaining 

hyperface HLq] of a sorted simplex sLq] = [Xl: X2 : ... : Xv], which is defined by 

subtraction between each vertex Xj and a referential vertex Xp for all j = 1,2, ... ,Vq 1 

and j i- p, thus 

Eb;L = [Xl - xp : X2 - xp : ... : x#P - xp : ... : Xv-I - xpJ Vp = 1, ... ,V - 1 (3.28) 

Theorem 3.4 Let Rc(Eb;L) be the column ranks of pth edge matrices Eb;L that can be 

defined by the vertices of the remaining hyperface H~ql = [Xl: X2 : ... : Xv-2 : Xv-I] at the 
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qth iteration. Let 

R [q] - . [R (E[q]) R (E[q]) R (E[q] )] 
e - mIn e l,v' e 2,v' ... , C v-l,v 

be the minimum of Re(Eb;L). Let xl~n be the current centroid point of the remaining 

hyperface HLqj of the current simplex sLq], where xl~n is different to any vertex of the 

current simplex sLq]. If the vertex Xv-I of HLq] is replaced by xl~n, then Rl
q
+l] ::::: Rlq] , 

where 
R[q+1] = min [R (E[q+1]) R (E[q+l]) R (E[q+l]) R (E[q+1])] 

c c l,v ' c 2,v , ... , c v-2,v' C cen,v 

of the (q + 1 )th edge matrices that can be defined by the not necessarily sorted hyperface 

H- [q+l] - [ . . . . 1 v - Xl . X2 ..... Xv-2 . Xeen . 

Proof. By definition we have that the remaining hyperplane HLq] is given by 

H [q] - [x . X' . x . x 1 v - I· 2····· v-2· v-I 

Since the vertex Xv-l of HLq] is replaced by xl~n, the not necessarily sorted hyperface 

frLq+l] must have the same number of vertices as the hyperface HLq]. 

Let Eb;;;l] be the edge matrix constituted by the not necessarily sorted hyperface 
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H- [q+l] - [x . X' . x . x[q] 1 v - I· 2····· v-2· cen' (3.29) 

where xl~n ~ {Xj E HLq] I j = 1, ... , v - I} and is computed by 

1 v-I 
x[q] =--~X 

een v-I L-" t . 

i=l 

_ [q] - [q+1] 
Case p - 1, ... , v - 2 for Hv and Hv . 

If we consider the case where p = 1, ... ,v - 2, by hypothesis we obtain 

E- [q+1] - [x - X' . X· - X' . x - x . x[q] - x ] p,v - I P .... , Ji'P P . . . .. v-2 p' cen p' 

Letting Vj Xj - xp for all p = 1, ... ,v - 2, Equation (3.28) can be rewritten as 

Eb;L = [VI: V2 : ... : VJ#P : ... : V v-2 : Vv-l] \/p = 1, ... ,v - 2, 

(3.30) 

(3.31) 

(3.32) 
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and for all p = 1, ... ,v - 2, from Equation (3.31), we obtain 

E- [q+1J - [v . v· . v . . v . v[q] ] p,v - I· 2····· j~p..... v-2· cen . (3.33) 

By Equation (3.30), we obtain 

v-I v-I v-I 
v[q] = _1_ "\"' x __ 1_ "\"' x = _1_ "\"' [x· - x 1 

cen v-1.L...- 2 v-1.L...- p v-1.L...- 2 p 
i=l i=l i=l 

(3.34) 

v-I 

v[qj = _1_ "\"' v where v = Od 
cen v-1.L...- 2 , P 

(3.35) 
i=l 

Because X~~n ~ {Xj E Ht
q

] I j = 1, ... , v-I}, then we can be assured that V~~n =1= v j for 

all p =1= j = I, ... ,v - 1. 

Since v1~t is different to all Vj for j I, ... ,v - 1 and some p =1= j, the column rank of 

E~;:l] must be equal to or more than the column rank of E~;L. 

Case p = v-I for Ht
q
] and p = cen for frt

q
+1]. 

Now we study the particular case EI~I,v and El~~,~, which can be written by 

EI~I,v = [Xl - Xv-I: X2 - Xv-I: ... : Xj - Xv-I: ... : Xv-2 - Xv-I] and (3.36) 

E-[q+1] - [x - x[q] . x - x[q]· . x - x[q]· . x - x[q] ] cen,v - I cen· 2 cen . . . .. j cen . . . .. v-2 cen· (3.37) 

Since Xv-l = x1~n + y, where y =1= Od, Equation (3.37) can be rewritten as 

El~~,~ = [Xl - Xv-I + y : X2 - Xv-l + Y : ... : Xj - Xv-l + y : ... : Xv-2 - Xv-l + Y] . 

The above equation clearly allows us to affirm that the column rank of El~~,~ is equal to 

the column rank of EI~I,v. 
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By definition, we have 

Rc[q+l] - . [R (E[q+l]) R (E[q+l]) R ( [q+l]) R (E[q+l])] - mIn c 1,v , c 2,v , ... , c E v - 2,v, c cen,v 

III 

Theorem 3.5 Let sLO] be an initial feasible entire simplex of v vertices in the 

d-dimensional Euclidean space. Let P be the problem of minimizing an objective function 

f(x) : lRd -+ lR subject to F=. {x E lRd I Ax ~ b}. Suppose that the NM algorithm is 

applied to the problem P with the constrained operations defined by Proposition 3.3 and 

Proposition 3.4. If after q iterations the sorted simplex SLq+l] defined by 

[x~q+l] : x~q+l] : ... : xLq+l]] has at least all its vertices on a linear constraint boundary of 

the feasible region F=. {x E lRd I Ax ~ b} except the vertex xLq+l] , which is an interior 

point of F, and f(x1~~1]) ::; f(xLq+l j
) then the simplex will collapse onto the boundary of 

the feasible region at (q + 1 )th iteration by either a constrained reflection step or a 

constrained expansion step. 

Proof. Since at the beginning of the (q+ 1 )th iteration the NM algorithm attempts a 

constrained reflection step, the worst vertex xLq+l j is projected through x1~~1] by 

Equation (3.18). This clearly yields the constrained reflection trial point x~~~l], because 

x[q+l] = (1 + min(a A))X[q+l] - min(a A)X[q+l] where A = 0 
cnst-refl 'cen 'v . 

[q+l] [q+l] h fl Therefore xcnst-refl = Xcen . Now t e re ection step of the NM algorithm is: 

If fmin ::; frefl ::; fmax 

then Xmax~ Xrefl, f max ~ frefl and go to the test of stopping 

else go to expansion step. 

S· [q+l] [q+l] h f r f f [q+l] [q+l] h Ince xcnst-refl = Xcen t en refl = J cen· I 1::; fcen ::; fv then Xv ~ Xcen so t e 

simplex collapses onto the boundary of the feasible region. 

Otherwise, if fcen < h the NM algorithm attempts an expansion step. 
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In this case, it computes the expansion trial point by Equation (3.24), which yields again 

the centroid x~~~IJ, because 

[q+l] _ (1 + . ( ')) [q+lJ _ . ( ') [q+l] h ' - 0 x enst- exp - mIn Oi" /\ Xeen mIn Oi" /\ Xv were /\ - . 

. f h [q+lJ [q+lJ SInce feen < I, t en Xv +- Xeen . 

Because x~+l] is replaced by x1~~IJ at the end of (q+1)th iteration, due to either 

reflection step or expansion step, the not necessarily sorted simplex 

S-[q+l] - [ . . . . 1 . 11 d' 1 v - Xl . X2 ..... Xv-I' Xeen IS a co apse SImp ex. II 

From Theorem 3.4, Theorem 3.5 and Definition 3.9 (page 24), we have established the 

following criterion for reducing the number of vertices thus producing a collapse of the 

current simplex. 

Criterion 3.2 (Removing vertices) Let stq] be a qth collapsed sorted simplex of v 

vertices in the d-dimensional Euclidean space, whose v vertices have activated r linear 

constraints. Then the minor simplex can be fitted by removing the r worst vertices from 

the stq] collapsed sorted simplex. 

Applying Criterion 3.2, when a collapse of the simplex is produced onto r boundary 

linear constraints, can reduce the number of function evaluations, even when X~~n 
improbably belongs to {Xj E Htq] I j = 1, ... , v-I}. Because of this, the removing of 

vertices often provides a minor simplex, in terms of Definition 3.9, using the best vertices 

according to objective function value. 

3.6.2 Basic idea of the LCNM algorithm 

The algorithm begins with a feasible point, which is used for building a feasible entire 

simplex. Given this initial simplex, the objective function f(Xi) is calculated at each ith 

vertex of the current simplex for sorting the vertices according to f(xi). 

Given S~Ol, a NM simplex operation is carried out, using the Linear Constraint 

Procedure (Algorithm 3.1) for changing any new infeasible trial point into a feasible trial 

point at each qth iteration. 

This feasible trial point is evaluated using the objective function for deciding whether it 

replaces the vertex Xmax or not, using the logic of the NM method. 

Because the simplex is transformed by some attempted LCNM simplex operations, it is 

necessary to check whether the transformed simplex has activated some linear constraint 
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or not, in terms of Definition 3.7. In the case that the transformed current simplex 

activates T linear constraints, the algorithm fits the number of vertices (v) to d + 1 - T, 

by removing the T worst vertices from the collapsed sorted simplex. Thus, the LCNM 

algorithm would reduce the number of objective function evaluations. 

The LCNM algorithm has two modes of operations: The first mode, called saving mode, 

does not evaluate the objective function at any expansion point xexp , when the 

coordinates of xexp is equal to Xrejl, as a result of a constrained operation during a qth 

iteration. So the algorithm saves a function evaluation. The second mode is called 

non-saving mode, here the LCNM algorithm re-evaluates the function at the constrained 

expansion trial point, even when this has the same coordinates as the constrained 

reflection trial point during any qth iteration. Therefore the algorithm spends a function 

evaluation in this case. Though not efficient for the deterministic problem we could make 

good use of this re-evaluation when the objective function is affected by noise. 

If the simplex converges onto the boundaries of T linear constraints at x1~t, the algorithm 

identifies the active linear constraints whose scalar product v f(x1~tf ai are positive (see 

Condition 3.1 on page 26). Given these active constraints of positive scalar products, the 

algorithm builds a collapsed simplex in the intersection space of the identified 

constraints, in accordance with Equation (3.10). Thus when the algorithm is applied in 

the next (s+ 1 )th stage again, it is now restricted to the intersection space. 

When the number of active constraints with positive scalar product is greater or equal to 

the dimension d, the LCNM algorithm builds an entire simplex in the feasible region 

close to the convergent point x~Jt. 

The algorithm makes use of two stopping rules. The first one is based on the maximal 

edge of the simplex, which is defined by 6..ij = maXi#] IIXi - Xj II. If 6..ij is less than some 

tolerance criterion T) > 0, the algorithm considers as an optimum point the vertex Xl of 

the current simplex at the sth stage, which is denoted by x1~t. The second stopping rule 

is based on IIX1~t - x1~~111Iand some 6.. > O. If Ilx~Jt - x1~~1111 < 6.. the algorithm stops. 

Furthermore, the algorithm moves to a next stage if the collapsed degree of the current 

simplex is more than one, otherwise the algorithm stops and assumes as optimum point 

the point x~Jt. Therefore further exploration will not be carried out in this case. 

This latter criterion has the advantage of reducing additional exploration in the feasible 

region, because the algorithm does not restart again for doing more searches. 

Nonetheless, this criterion of stopping could guarantee the convergence to either the 

global minimum or a point that satisfies the sufficient conditions of Kuhn-Tucker (see 
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Appendix A). 

Bu tid a simplex fer 
the sth stage. 
Step: 1.2 rx 3 

Estimate the values of 
f(x) at each new vertex. 

Step 4 

Sort the va-tices acccrding to 
the value of each vertex and 

attempt Neider-Mead Operation. 
Step: 5.6.7.8 & 9 

Test of termination 
of stage: Did itfinish? 

Step: 10 

No 

Test of verification of a 
new active constraint: 

Is there? 
No Step: 11 

Yes 

Update the simplex due to 
increasing of coUapse degree 

Step: 12 

Yes 

Yes 

Test d termination 
of the LCNM <:igof[hm 

Did it finish? 
Step: 13 

No 

Test of verification of a 
new active cmstraint: 

Is there? 
Step: 14 

Figure 3.2: General flow chart of the LCNM algorithm. 
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No 

Figure 3.2 depicts a basic flow chart of the LCNM algorithm, which points out each step 

of the algorithm that are explained by the pseudo-code algorithm of the following 

subsection. It is worthwhile mentioning that the LCNM algorithm employs Equation 

3.38 for estimating the step size of each components, and Equation 3.39 as stopping rule. 

Both equations were taken from the developed NM method of Humphrey and Wilson 

(2000). Various initial simplices could be included in this algorithm, such as the initial 

simplex studied by Walters et al. (1991), who argue the advantages and disadvantages of 

each one. 

Since Figure 3.2 is somewhat similar to Figure 1 from (Brea and Cheng 2003a), we have 

included the copyright holder's permission of Figure 1 in this work (see Appendix E on 



CHAPTER 3. LINEAR CONSTRAINED NELDER-MEAD METHOD 

page 267). 

3.6.3 The LCNM algorithm 

For the purpose of describing the algorithm, we shall use pseudo-code notation, which 

will help in its implementation in any programming language. 

Start 

Initialization 

Given a feasible initial point Xinitial and therefore its dimension d. 

Given the parameters of the NeIder-Mead method 

a = 0.95, f3 = 0.5, 1=2 and 6 = 0.5. 

Given the parameters of stopping rule 'rfl = 'rf2. 

Given the parameter of gap p = 0.99 and the coefficient of improvement .6. = 1O'rf1· 

Initialize 

The number of vertices v = d + 1 and the stage s ~ o. 

Xl ~ Xinitial, f(x1~t) ~ f(xd and 

flagx1 ~ true, which indicates if f(xd is known. 

flagintet ~ false, which indicates whether the current simplex was built from 

the intersection space or not. 

The set of active constraints Sactive ~ 0 

The number of active constraints nac ~ 0 

Estimate 
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v={ m
1

ax{T!Xi,I!:i=I,2, ... d} ifxli=0d, 

otherwise 
(3.38) 

where 0.1 ~ T ~ 6 is the step size parameter. 

Go to step 1. 
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Step 1. Build an initial entire feasible simplex. 

Perform the Feasible Entire Simplex Builder Procedure based on Xl 

for estimating the rest of the v feasible vertices of the simplex. 

Go to step 4. 

Step 2. Build a entire simplex next to X~~t 

Assign to Xl +- px~Jt + (1 - P)Xinitial and to v +- d + 1 

Perform the Feasible Entire Simplex Builder Procedure based on Xl 

for estimating the rest of the v feasible vertices of the simplex. 

Assign to Xl +- x1~t and to flagxl +- true 

Go to step 4. 

Step 3. Build a simplex in the intersection space. 

Given the vertex Xl and the component x's of XI and XD, 

whose relationship is given by Equation (3.11). 

Perform the Minor simplex Builder Procedure. 

Assign to flagintet +- true and to flagx1 +- true 

Go to step 4. 

Step 4. Estimate the values of the vertices. 

Given f lagx1 E { true, false} 

Select the case according to flagx1 

Case true: 

In this case, we know the value of f(XI) 

Estimate fJ f(xj) V j = 2,3, ... ,v 

Case false: 

This case is performed when we know the value of f(Xmin) due to a shrinkage. 

Estimate fJ = f(xj) V j = 1,2, ... , v and j i- min 

End select 

Assign to flagx1 +- false and go to step 5. 
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Step 5. Attempt Constrained Reflection. 

Sort ij V j = 1, ... ,v for determining Xmin, Xntw and Xmax . 

Compute Xcen and Xrefl· 

Perform the Linear Constraint Procedure to Xrejl considering that 

Xo = Xmax and Xnew = Xrejl· 

Estimate irefl = i(xrejd 

if i min ::; irefl ::; i ntw 

then Xmax +- Xrefl, imax +- irefl and go to step 10 to test the stopping rule. 

else go to step 6. 

Step 6. Attempt Constrained Expansion. 

if irejl ::; I min 

then Compute x exp 

Perform the Linear Constraint Procedure to xexp considering that 

Xo = Xrefl and Xnew = xexp· 

if lexp ::; I min 

then Xmax +- x exp , I max +- iexp 

else Xmax +- Xrefl, i max +- irefl 

Go to step 10 

else go to step 7 

Step 7. Attempt Contraction 

if Irefl > Intw 
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then Reduce the size of the current simplex, either by a contraction or by shrinking, 

by verifying the following. 

if Irejl ::; I max 

then Xmax +- Xrefl, I max +- Irefl 

Sort /j V j = 1,2, ... ,v for determining Xmin, Xntw and x max . 

Compute the contraction point Xcont and its value Icont and go to step 8. 
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Step 8. Contract the simplex in one direction. 

if fcont :s; f max 

then Xmax f- Xcont, fmax f- fcont and go to step 10. 

else go to step 9. 

Step 9. Shrink current simplex. 

if fcont > fmax 

then Compute the new vertices through 

Xj = (1 - b')Xmin + b'Xj, Vj = 1,2, ... , v 

Assign to flagx1 f- false and go to step 10. 

else go to step 10. 

Step 10. Test of termination criterion I 

Sort fJ V j = 1,2, ... ,v for determining Xmin. 

Compute the following inequality for the current simplex 

max Ilxj - xminll :s; { 7711lxminll if Ilxminll > c, 
Xj 772 otherwise 

where c is a very small non-negative number. 

if Inequality (3.39) is satisfied 

then go to step 13, for keeping the optimum solution at (s + l)th stage 

and testing stopping rule 

else go to step 11. 
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(3.39) 
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Step 11. Test for estimating a new active constraint. 

Do, for all i = 1,2, ... ,k II i ~ Sactive 

then ,6.r ;- ,6.r + 1 and identify the current linear constraint li(X), 

as active constraint. Thus, Sactive ;- Sactive U {i} 

End do 

if ,6.r > 0 then go to step 12, else go to step 5. 

Step 12. Update the simplex due to increasing of collapsed degree. 

v ;- v - ,6.r 

Apply Criterion 3.2 by choosing the v best vertices from the current simplex. 

Go to step 5. 

Step 13. Test of termination criterion II 

Change the stage s, therefore assign to s ;- S + 1 

X~~t ;- Xmin, !(x1~t) ;- !(Xmin) 

if IIX~~t - x1~~llll < ,6. 

then go to step 16. 

else go to step 14. 

Step 14. Test for estimating a new active constraint. 

Assign to X~~t ;- x~p~lJ and ,6.r ;- 0 

Do, for all i = 1,2, .. . ,k II i ~ Sactive 

then ,6.r ;- ,6.r + 1 and identify the current linear constraint li(X), 

as active constraint. Thus, Sactive ;- Sactive U {i} 

End do 

if ,6.r > 0 then go to step 15, else go to step 16. 
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Step15. Choosing of linear constraint for estimating the intersection space 

Compute v f(x1~t) and assign to Sinter f- 0 and 

the number of active constraints nac f- 0 

Do, for all i = 1,2, ... ,k 

if i E Sactive, in other words, if li(X) is activated by x~Jt 

then Estimate the scalar product of (V f(x~Jt)T, a i ) 

if (Vf(x~Jtf,ai) > 0 (Criterion 3.1) 

then Consider the current constraint for 

estimating the intersection space using Proposition 3.2. 

Thus, Sinter f- Sinter U {i} and nac f- nac + 1 

End do 

if Sinter I- 0 and nac < d 
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then Estimate the intersection space and transform it according to Equation (3.10) 

for identifying XI and XD and go to step 3. 

else go to step 2. 

Step 16. Report optimal solution 

Report x~Jt and f(x~Jt) as a local minimum solution and stop the algorithm. 
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3. 7 Numerical experiments 

In this section, we consider two groups of tests. The first has two experiments for 

showing preliminary computational results of the LCNM method. The second group is 

composed of five experiments for comparing the performance of the LCNM method, its 

variants that will be explain herein, and the method of Subrahmanyam (1989). We must 

indicate that the step size parameter T was fixed to 0.2 for all experiments and the 

LCNM methods operated in saving mode. 

It is worthwhile mentioning that the LCNlVI method displayed a good performance in 

these groups of experiments. However, in Chapter 5 we shall report some numerical test 

problems where the LCNM method fails. 

3.7.1 Preliminary tests of the LCNM method 

Experiment 1 

Quadratic objective function 

subject to: 

d 

min L xT where 2 ::; d::; 8 
xElR

d 
i=l 

3XI + 2X2 > 120 

Xl + 2X2 < 20 

Considering as initial point Xinitial = (400, -400,400, ... ,400)T and the stopping 
'-----.....---' 

(d-2) times 

parameters rJI = rJ2 = 10-6 . Observe that the local optimum solution is given by 

Xmin = (50, -15,0,0, ... , O)T with f(Xmin) = 2725. 
'---v---" 
(d-2) times 

Though the objective function has only one global minimum, this numerical example has 

a special interest in the study of performance of the algorithm when only Xl and X2 are 

restricted. The difficulty of convergence for this class of problem will be presented later 

on, where the Subrahmanyam method (SM) does not work correctly (see Experiment 4a 

on page 55). 
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Table 3.1: Summary of Experiment 1. 
!(Xmin) 2725 2725 2725 2725 2725 2725.0011 2725.0061 

d 2 3 4 5 6 7 8 

NE 22 223 361 890 850 2316 6090 

DTP 7.69E-14 5.93E-6 1.53E-5 1.58E-5 1.97E-5 2.86E-5 8.38E-5 

Xl 50 50 50 50 50 50.000008 50.000042 

X2 -15 -15 -15 -15 -15 -15.000011 -15.000063 

X3 -5.93E-6 1.52E-5 -6.78E-6 -1.59E-5 -2.08E-5 1.53E-5 

X4 -1.67E-6 1.42E-5 -1.04E-6 7.72E-6 1.90E-5 

X5 1. 13E-6 2.60E-6 -6.43E-6 1.04E-5 

X6 -1.14E-5 9.53E-6 2.40E-6 

X7 -9.77E-7 1.49E-5 

Xs 1.81E-5 

Table 3.1 depicts a summary of the designed experimentation for different dimensions. 

From this table, we can see that the LCNM method adequately converged to the 

optimum in all cases. We can also observe that the number of function evaluations (NE) 

and the distance to the true point (DTP) increased with the dimension of the problem. 

Experiment 2 

Extended Rosenbrock objective function 

d/2 

mil~ L [100(x2i - X~i_l)2 + (1 - X2i_l)2] 
xElR i=l 

subject to: 

Xl + X2 > 10 

-2Xl + X2 < 20 

-4Xl + X2 < 0 

X3 + X4 > 12 (for the case d = 4 and 6), 

where d is an even integer number. 

The parameters of stopping rule were fixed at 771 = 772 = 10-6 , and as initial point for 

each d-dimensional test was considered Xinitial = 20· Id, where Id is the d-dimensional 

column vector, whose components are equal to 1. 
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Some features of the Extended Rosenbrock function are presented in Section 5.4.1, where 

we indicate more fully why this function was chosen for our numerical problem. 

Furthermore, the constraints that are only described in terms of Xl and X2 present two 

corners at (2,8)T and (5,20f which are collinear to the true point (4,16)T. This 

situation can cause the method to converge one of the corners. 

Table 3.2' Summary of Experiment 2 
Result LCNM TP LCNNI TP LCNM TP 

!(Xmin) 8.994373 9 12.993557 13 12.993536 13 

d 2 2 4 4 6 6 

a 0.95 0.95 0.90 

NE 165 494 3337 

DTP 0.007734 0.007753 0.0080915 

Xl 3.998124 4 3.998124 4 3.998134 4 

X2 15.992497 16 15.992499 16 15.992543 16 

X3 2.999592 3 2.999597 3 

X4 9.000409 9 9.000403 9 

X5 l.001088 1 

x6 l.002211 1 

Table 3.2 displays the results obtained by our method at two values of a and the 

theoretical optimum solution for d = 2,4 and 6 indicated by the true point (TP). As can 

be seen from the table, the cases where all components Xi were constrained by the 

inequality constraints, the method approached TP with a fairly small number of function 

evaluations (NE). However, in the case d = 6 the components X5 and X6 were not 

constrained by any inequality, so the LCNM method required a large NE. 

3.7.2 Comparative tests among the LCNM methods and 

Subrahmanyam method 

The performance of the LCNM method and some of its variations versus the SM are 

compared herein. The variations of the LCNM method are based on bypassing the 

reduction of vertices when a new linear constraint has been activated by the current 

simplex or the building of a simplex in the intersection space. These variations of the 

LCNM method will be denote as follows, 
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Table 33' Notation of the variant of the LCNM method . . . 
LCNM Original version of the method. 

LCNM-G 
LCNM method without using the building 

of a simplex in the intersection space. 

LCNM-R 
LCNM method without reducing simplex vertices 
when it has activated a new constraint. 

LCNM-RG 
LCNM method without building of simplex in 
the intersection space and reducing of vertices. 

With respect to the LCNM-G and the LCNM-RG, the methods build an entire simplex 

close to the optimum point x1~t. 

We apply the same procedure for creating an entire feasible simplex inside of the feasible 

region for all the methods, including the 8M. Hence, all the methods begin with the 

same initial entire simplex. 

Experiment 3 

Comparison using quadratic objective function subject to a constraint 

Here we shall show a comparison of the LCNM method, its variations and the 8M for a 

convex quadratic objective function problem subject to a linear constraint. This 

experiment aims to illustrate the performance of the LCNM methods and the 8M, when 

the objective function is strictly convex and a symmetric linear constraint. 

d 

min LX;, 
xElR

d 
i=l 

subject to 2:::1=1 Xi 2: l where l = 12. 

The optimum point is Xmin = ~ . 1d. For the case d 7, the TP could not be set exactly 

but was set at 1.71143.17 which includes a rounding error. This affected the reported 

DTP values in this case only. 

The parameters of stopping rule were fixed at 7)1 = 7)2 = 10-6 for the LCNM methods, 

whilst the stopping rule setting of the 8M were 7)1 = 7)2 = 10-4 for 2 and 3 dimensions, 

otherwise 7)1 = 7)2 = 10-3 . On the other hand, the initial point for each d-dimensional 

test was considered Xinitial = 20 . 1d. 



CHAPTER 3. LINEAR CONSTRAINED NELDER-MEAD METHOD 54 

Table 3.4: Summary of Experiment 3. 
I d I LCNM I LCNM-G I LCNM-R I LCNM-RG I 8M 

a 0.95 0.95 0.95 0.95 0.8 

2 NE 97 56 114 73 268 

DTP 2.17E-6 2.58E-6 8.34E-7 8.33E-7 6.96E-4 

a 0.95 0.95 0.95 0.95 0.8 

3 NE 196 115 229 148 442 

DTP 1.72E-6 3.09E-6 2.3E-6 2.3E-6 2.47E-2 

a 0.95 0.95 0.95 0.95 0.8 

4 NE 382 217 561 258 613 

DTP 2.11E-6 2.11E-6 1.33E-6 1.33E-6 2.33E-2 

a 0.95 0.95 0.95 0.95 0.8 

5 NE 571 336 628 383 663 

DTP 2.26E-6 3.51E-6 2.11E-6 2.llE-6 1.47E-2 

a 0.95 0.95 0.95 0.95 0.8 

6 NE 1180 511 1244 571 765 

DTP 1.82E-6 2.02E-6 1.78E-6 1.78E-6 8.94E-1 

a 0.95 0.95 0.95 0.95 0.85 

7 NE 1977 1977 2151 2151 1418 
DTP 1.17E-5 1.17E-5 1.17E-5 1. 17E-5 1.79E-1 

a 0.95 0.95 0.95 0.95 0.85 

8 NE 2104 1144 2282 1316 3043 

DTP 1.89E-6 1.89E-6 1.92E-6 3.26E-6 4.86E-1 

Table 3.4 shows the results using the family of LCNM methods and the SM. From this 

table, we observe that the best performance was given by the LCNM-G method, because 

it satisfactorily found the optimum within a minor number of function evaluations (NE) 

for most cases. 
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Experiment 4 

Comparison using quadratic objective function subject to several constraints 

In this group of experiments, the family of the LCNM methods and the SM are 

compared using the following objective function 

d 

f(x) = L x; where x E]Rd 

i=l 

A set of Ci linear constraints defined herein, was employed in this group of experiments 

Cl : 3Xl + 2X2 > 120 

C2 : Xl + 2X2 < 20 

C3 : Xl + x2 + X3 + X4 > 80 

C4 : Xl + X2 + x3 + x4 + 2X5 + 2X6 > 100 

C5 : 2Xl + 2X2 + X3 + X4 + 2X5 + 2X6 > 135 

The parameter of reflection a was fitted for finding the best performance of each 

method, and the stopping parameters were fixed at 'TIl = 1]2 = 10-6 . 

(3.43) 

We have chosen these linear constraints, because the purpose of this experiment is to 

measure the performance of the methods, when non-redundant constraints are 

incorporated to the minimization of the same objective function. In this way, we shall 

comparatively study the methods when they operate under different circumstances. In 

addition, note that the constraints Cl and C2 form a sharp angle, which can cause a 

large number of evaluations. The set of constraints produces a feasible region with 

several sub-spaces that as be verified by the combination of the constraints. To perform 

satisfactorily the algorithms may therefore have to search some of these sub-spaces 

Experiment 4a 

min f(x) 
xElRd 

subject to Cl and C2 from (3.43). 

The optimum point is X~in = (50, -15, 0, ... ,0 ) and as initial point was considered the 
~ 

(d-2) times 

point Xinitial = (400, -400,400, ... ,400). 
~ 

(d-2) times 
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Table 3.5: Summary of Experiment 4a. 
I d I LCNM I LCNM-G I LCNM-R I LCNM-RG I 3M 

a 0.95 0.95 0.95 0.95 0.95 

2 NE 22 17 24 19 270 

DTP 7.69E-14 7.69E-14 2.05E-13 2.05E-13 3.64E-5 

a 0.95 0.96 0.95 0.95 

3 NE 223 86 218 159 oc 

DTP 5.93E-6 1.39E-5 1. 14E-5 1. 14E-5 

a 0.95 0.95 0.95 0.95 

4 NE 361 227 350 246 oc 
DTP 1.53E-5 1.53E-5 2.12E-5 2.21E-5 

a 0.95 0.95 0.95 0.95 

5 NE 890 709 883 703 00 

DTP 1. 58E-5 3.02E-5 1.64E-5 2.64E-5 

a 0.95 0.95 0.95 0.95 

6 NE 850 650 4214 4214 oc 

DTP 1.97E-5 1.97E-5 2.8E-5 2.79E-5 

a 0.95 0.95 0.95 0.95 

7 NE 2316 2316 5987 5708 00 

DTP 2.86E-5 2.86E-5 2.97E-5 2.59E-5 

a 0.95 0.95 0.95 0.95 

8 NE 6090 6090 7445 7445 CXJ 

DTP 8.38E-5 8.38E-5 7.82E-4 7.82E-4 

Table 3.5 presents the experimental results obtained by the methods. Observe that the 

8M did not converge for d ~ 3, for those number of function evaluations (NE) indicated 

by the symbol 00. According to Table 3.5, the LCNM-G offered the best performance. 

However, the LCNM method tied the LCNM-G method in the cases d = 7 and d = 8. 

Experiment 4b 

min f(x) 
xElRd 

subject to C1 , C2 and C3 from (3.43). 

Here, we used the same initial point and stopping parameters as experiment 4a. 

However, the experimentation was done for the cases of dimension more than or equal to 

four) because there exist four constrained variables. 
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In this case the optimum point is given by x~in = (50, -15, 22.5,22.5, 0, ... , ° ) 
'-v---"' 

(d-4) times 

Table 3.6: Summary of Experiment 4b. 
I d I II LCNM I LCNM-G I LCNM-R I LCNM-RG I 8M 

a 0.95 0.93 0.95 0.95 0.85 

4 NE 424 295 225 217 389 
DTP l.lE-5 1.59E-5 1.87E-5 1.87E-5 2.59E~5 

a 0.95 0.95 0.95 0.95 
5 NE 1019 878 687 572 co 

DTP 2.46E-5 2.46E-5 2.32E-5 2.32E-5 

a 0.95 0.95 0.95 0.95 
6 NE 677 488 2124 1909 co 

DTP 1. 74E-5 2.56E-5 1.8E-5 1.8E-5 

a 0.96 0.96 0.96 0.96 

7 NE 2111 1137 1192 1192 co 
DTP 7.58E-5 4E-1 3.86E-l 3.86E-1 

a 0.94 0.96 

8 NE 16532 co 4419 co co 
DTP 7.14E-5 2.21E-5 
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Table 3.6 shows that the LCNM-G method required less number of evaluations than the 

rest of the methods. However, for the case d = 8, the LCNM-G method did not converge. 

As can be seen from the table, the SM did not work properly, except the case d = 4. 
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Experiment 4c 

min f(x) 
xElR d 

subject to C1 , C2 , C3 , C4 and C5 from (3.43). 

In this case the global optimum point is given by x~in = (50, -15,22.5,22.5, 5, 

5, 0, ... , ° ) and the initial point is given by xTnitial = (100, -100,200, ... ,200). 
'-v--" ~ 

(d-6) times (d-2) times 

Table 3.7: Summary of Experiment 4c. 
I d I II LCNM I LCNM-G I LCNM-R I LCNM-RG I 8M I 

a 0.97 0.97 0.97 0.97 

6 NE 864 692 3979 3967 CX) 

DTP 1.46E-5 16.154 4.76E-1 4.76E-1 

a 0.97 0.97 0.97 0.97 
7 NE 3225 1305 2889 2310 CX) 

DTP 6.42E-5 3.09E-5 1.15E-4 2.33E-5 

a 0.97 0.97 0.97 0.97 

8 NE 3631 3631 4804 4663 CX) 

DTP 7.88E-1 7.88E-1 1.45E-5 2.52E-5 
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According to the results obtained, the best performance was given by the LCNM method 

for all cases, as is shown in Table 3.7. Observe that the LCNM-G method did not 

converge to the global optimum point for the case d = 6. 

Observe that the LCNM method was more robust than its variants and the 8M, because 

the LCNM method satisfactorily identified the TP for all experiments. Nonetheless, the 

LCNM-G method converged with less number of function evaluations (NE) than the 

LCNM method in many experiments. 
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Experiment 5 

Comparison using extended Rosenbrock objective function 

\;Ve also study the performance of the LCNM method and its family versus the 8M 

through a set of experiments, when the objective function to minimize is the so-called 

extended Rosenbrock function, whose analytical expression is given by 

d/2 

f(x) = L [100(x2i - X§i_l)2 + (1 - X2i_d 2] 
i=l 

where d is an even integer number. 

Here we define a set of Ci linear constraints that will be employed in our constrained 

optimization test problems 

Cl: 3Xl + 2X2 > 12 

59 

C2: Xl + 2X2 < 2 

C3: > 8 
(3.44) 

Xl + X2 + x3 + x4 

C4: Xl + x2 + x3 + X4 + 0.5X5 + 0.5X6 > 10 

The initial point was X~in = (50, -50,50, ... ,50) and the parameters of stopping rule 
'----v---' 
(d-2) times 

Tll = Tl2 = 10-6
. 

Note that the constraints Cl and C2 form a sharp angle, which can produce a large 

number of function evaluations (NE) for 4 and 6 dimensional problems. Furthermore, 

the constraints define several sub-spaces. The identification of optimum in this class of 

problem can require the search of optimum in the sub-spaces. 

The optimum point for each case is given by 

{ 

(5, - 1.5) 

X~in = (5, - 1.5, l.67909, 2.82091) 

(5, - l.5, - 2.67751, 7.17751, l.56122, 2.43878) 

Exp. 5a 

Exp. 5b 

Exp. 5c 
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I Exp I d I Subject to 
Table 3.8: Summary of Experiment 5. 

II II LCNM I LCNM-G I LCNM-R I LCNM-RG I 8M 

a 0.95 0.95 0.95 0.95 0.90 
5a 2 G1 , C2 NE 16 12 17 13 286 

from (3.44) DTP 2.8E-14 1.97E-14 4.97E-14 3.81E-14 1. 74E-7 

a 0.95 0.95 0.95 0.95 0.95 
5b 4 G1 , G2 , C3 NE 236 128 230 222 4429 

from (3.44) DTP 3.07E-6 3.07E-6 7.17E-7 7.17E-7 99.776 

a 0.95 0.95 0.9,5 0.95 0.95 
5c 6 G1 , C2 , C3 , G4 NE 11465 292 14569 318 ex) 

from (3.44) DTP 5.47E-6 214.998 97.194 214.525 

According to the results presented in Table 3.8, the best performance was carried out by 

the LCNM method, because it shows the best accurate in comparison to others within a 

minor NE for all experiments. Moreover, the LCNM method was the unique method 

that identified the minimum point for Experiment 5c. 

Experiment 6 

Comparison using extended Rosenbrock objective function 

In this experiment we shall minimize the Rosenbrock function again. However, the 

feasible region is given by another set of Ci linear constraints, namely 

C1: Xl + X2 > 10 

C2 : -2X1 + X2 < 20 

C3 : -4X1 + X2 < 0 

C4 : X3 +X4 > 12 

(3.45) 

The parameters of stopping rule were fitted at 7)1 = 7)2 = 10-6 , and we took as initial 

point for each test Xinitial = 20 . Id. 

In this experiment optimum points are: 

{ 

(4,16) 

X~in = (4,16,2,9) 

(4,16,2,9,1,1) 

Exp. 6a 

Exp. 6b 

Exp. 6c 
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Table 3.9: Summary of Experiment 6. 
I Exp I d I Subject to II II LCNM I LCNM-G I LCNM-R I LCN);I-RG I 8M I 

a 0.95 0.95 0.95 0.95 0.95 
6a 2 C1 , C2, C3 NE 165 40 125 73 176 

from (3.45) DTP 7.73E-3 13.27 7.74E-3 7.74E-3 16.49 

a 0.95 0.95 0.95 0.95 0.8 
6b 4 C1 , G2, G3, G4 NE 494 432 697 635 919 

from (3.45) DTP 9.9E-l 9.9E-l 9.9E-l 9.9E-l 6.38 

a 0.9 0.95 0.94 0.95 
6c 6 G1 , C2, G3, G4 NE 3337 1346 4151 3078 co 

from (3.45) DTP 9.9E-l 41.04 9.9E-l 61.38 

Table 3.9 displays the summary of the experimental results where is shown that the 

LCNM method had the best performance. Observe that the LCNM-G method did not 

identify the optimum point for the experiments 6a and 6c. 

Experiment 7 

Comparison using flat objective function near to the optimum point. 

Coordinate 2 
2 

Figure 3.3: Flat function near to optimum. 

Figure 3.3 depicts a fiat function close to its global optimum point. This kind of 

optimization problem has a particular difficulty of locating the optimum point on the fiat 

zone of the function. A mathematical formulation of our numerical example is as follows, 
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subject to: 

where the parameter c 2 0 takes the value of 0 and 0.5 

The local minimum of the optimization problem is Xmin = (2, 1 + c/lO)T. We took as the 

initial point for all methods the point Xinitial = (200,200)T and the parameters of 

stopping rule were fitted at 711 = 712 = 10-6 . 

Table 3.10: Summary of Experiment 7. 
I c TP II LCNM I LCNM-G I LCNM-R I LCNM-RG I SM 

a 0.95 0.95 0.95 0.95 0.95 
NE 76 71 100 95 361 

0 DTP 4.573E-4 4.573E-4 4.448E-7 4A48E-7 l.415E-6 

!(xmin ) 0.00 7.833E-52 7.833E-52 6.279E-52 6.282E-52 l.415E-46 

Xl 2.00 l.9999996 l.9999996 1.9999996 1.9999996 2.0000013 

X2 1.00 0.9999998 0.9999998 0.9999998 0.9999998 1.0000006 

a 0.95 0.95 0.95 0.95 0.95 

NE 85 81 00 00 643 

0.5 DTP 7.646E-3 7.646E-3 l.59E-2 

!(xmin ) lE-4 0.9999E-4 0.9999E-4 0.9999E-4 

Xl 2.00 l.9931616 1.9931616 1.985"1781 

X2 l.05 l.0465808 l.0465808 l.0428890 

From Table 3.10 we note that all methods approach the optimum point satisfactorily for 

the case c = O. However, the family of the LCNM methods required less NE than the SM 

when c = 0, especially the LCNM-G method that found the optimum point with the 

lowest NE. Nevertheless, the SM identified the TP with the best accuracy. 

On the other hand, the LCNM-R method and the LCNM-RG method were unable to 

converge to the TP in the case when c = 0.5, whilst the rest of the methods reached the 

optimum point with an exactitude of order 10-2 . 
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3.8 Further comparisons 

In this section we shall compare the LCNM method, the L ucidi-Sciandrone-Tseng (LST) 

method and the Solver of Microsoft® Excel spreadsheet for a group of test problems 

reported by Lucidi et al. (2002), which are described in (Hock and Schittkowski 1981) 

and (Schittkowski 1987). 

The setting of the LCNM method were fixed as follows: Q = 0.95, f3 = 0.5, 1 = 2, 

6 = 0.5, T = 1, f-L = 1 and p = 0.99. 'With respect to the tolerance errors r; was fixed for 

obtaining a satisfactory value of 6.f / f*, which is defined by Lucidi et al. (2002) as 

where fm is the experimental value which is obtained by the method, and f* is the 

minimum value reported by Hock and Schittkowski (1981) and Schittkowski (1987) for 

each particular problem. 

Table 3.11: Comparison of the LCNM method, the LST method and the Solver of Excel 
NE (6.f / f*) 

Problem d f* LeNNI LST Excel 

HS(21) 2 -99.96 21(-10-4 ) 18(0) (0) 
HS(24) 2 -1 22(_10-15 ) 14(0) (0) 
HS(232) 2 -1 17 (_10- 15 ) 29 (0) (0) 
HS(331) 2 4.258 61 (10- 7) 104 (10-4 ) (10-4 ) 

HS(36) 3 -3300 36(1016)t 24(0) (0) 
HS(37) 3 -3456 112(_10-13) 113(10-11 ) (0) 
HS(251) 3 -3456 112 (_10-13) 153 (10-11 ) (0) 
HS(340) 3 -0.054 99 (_10-12 ) 108 (10-8 ) (0) 
HS(44) 4 -15 116(1O-14)t 22(0) (0) 
HS(76) 4 -4.681818181 106(10-1°) 103(10-9 ) (10- 10 ) 

HS(354) 4 0.113784 190 (_10-4 ) 236 (10-4 ) (-10-6) 

t: Ct = 1 

We selected the best reported result of both the LCNM method and the 

Lucidi-Sciandrone-Tseng (LST) method, within an adequate exactitude. 

Although, this group of test problems is a non-definitive proof of the potentiality of the 

LCNM method in comparison with the LST method and the Solver of Microsoft ® Excel 
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spreadsheet, it may be appreciated from Table 3.11, the satisfactory accuracy of the 

LCNlVI method within a smaller NE in 7 of the 11 test problems performed herein. 

3.9 Computational effort 

64 

In this section, we shall study again through examples the computational effort required 

by the LCNlVI method for finding the optimum solution. We consider especially the NE. 

This performance measure of the algorithm was taking into account because the NE has 

an important role when this kind of method is applied in the optimization of complex 

system, such as, the identification of optimum operation in simulation models of 

stochastic systems. In these experiments, the step size parameter T of the LCNlVI 

algorithm was fixed to 0.2 and the parameters a = 0.95, f3 = 0.5, I = 2 and r5 = 0.5. 

3.9.1 Experiment 1: Convex quadratic objective function subject to a 

linear constraint 

In this computational effort experiment, we shall study the NE and its DTP for different 

values of 7)1 = 7)2 = 7) and dimension d. 

subject to "Lf=l Xi 2: 10d. 

d 

min LX; 
xElR

d 
i=l 

The local minimum of the optimization problem is Xmin = 10· Id and as initial point 

Xinitial = 100 . Id· 
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Table 3.12: Summary of Computational Effort in Experiment l. 

ii 10-2 16-4 10-6 I 
10 10 10 

1 
1.77E-15 1.77E-15 1.77E-15 

2 
52 78 102 

7.33E-3 8.22E-3 5.84E-6 

3 
91 134 172 

5.08E-2 5.33E-4 5.91E-6 

d 4 
217 365 498 

6.97E-2 6.83E-4 7.80E-6 

5 
288 548 714 

8.55E-2 1.07E-3 7.68E-6 

6 
482 682 1144 

9.95E-2 9.78E-4 9.38E-6 

7 
778 1074 1833 

8.23E-1 7.23E-1 4.63E-2 

8 
659 983 1159 

4.lOE-1 3.27E-3 1.48E-5 

Table 3.12 depicts the NE and the DTP for each dimension from 1 to 8 and three values 

of TJ. Note that for the case of dimension 7 and 8, the NE and the DTP produced a 

response different to the rest of the cases. 

3.9.2 Experiment 2: Quadratic objective function subject to two linear 

constraints 

Here, we shall consider the case of a quadratic objective function subject to two linear 

constraints for estimating the computational effort of the algorithm for three cases of 

stopping rule tolerance TJl = TJ2 = TJ, and dimension cases from 2 to 6. The optimization 

problem studied is 

d 

min LX; 
xElR

d 
i=l 

subject to 3Xl + 2X2 2': 120 and Xl + 2X2 :s; 20. 

For this computational effort test, the local optimum solution is given by 
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Xmin = (50, -15, 0, 0, ... , O)T with !(Xmin) = 2725, and we considered as initial point for 
'---v--' 
(d-2) times 

building the simplex the point XinitiaZ = (400, -400,400, ... ,400). 
'---v-----"' 

(d-2) times 

As a result of the experimentation, we obtained the following table. 

Table 3.13: Summary of Computational Effort in Experiment 2. 

II 10-2 1;4 10-6 I 
22 22 22 

2 
7.69E-14 7.69E-14 7.69E-14 

3 
120 175 223 

4.89E-2 1.38E-3 5.93E-6 

d 
214 286 361 

4 
2.06E-l 1. 11E-4 1.53E-5 

5 
201 773 890 

76.808 1.39E-3 1.58E-5 

6 
572 721 850 

2.19E-1 2.35E-3 1.97E-5 

Table 3.13 displays NE and DTP for each dimension from 2 to 6 and three values of T). 

As is shown in Table 3.13, the NE increased when the dimension of the mathematical 

model was increased for a given tolerance T). Furthermore, according to the figures of the 

table, the NE increased as result of a reduction of the tolerance T), for the cases of 

dimensions from 3 to 6. 

3.10 Conclusions 

The LCNM method has been shown to have a valuable potential for the identification of 

optima of linearly constrained non-linear optimization problems, as a result of reducing 

the number of vertices of the simplex, and thereby reducing the number of evaluations of 

the objective function. Furthermore, the LCNM method has shown its advantage in 

comparison to the method of Subrahmanyam, for the case of non-linear optimization 

problems subject to linear constraints, without detracting from the importance of the 

point of view of the method of Subrahmanyam, which is an approach to non-linear 

optimization problems subject to both linear constraints and non-linear constraints. 
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Moreover, according to the comparative study presented in Section 3.7, the LCNM 

method was more robust than the other variant forms, because the LCNM method 

satisfactorily identified the optimal solution for all experiments, whereas variants failed 

in some cases. According to numerical results reported in Section 3.7, the LCNM-G was 

shown to be slightly more economic than the LCNM method. This fact can be easy 

explained, because the LCNM method computes the gradient of the objective function 

for choosing the active constraints in accordance with Criterion 3.1 (page 27). 

In addition, the LCNM method has also been shown to be a competitive method in 

comparison to the LST method, due to its exactitude within a minor number of function 

evaluations in 7 of 11 test problems carried out in Section 3.8. Nevertheless, this fact, it 

not should be considered as a definite evidence of the superiority of the LCNM method. 



Chapter 4 

Properties of the LCNM method 

4.1 Introduction 

Ideally the study of convergence of any optimization algorithm requires a deep analysis 

of the algorithm under general conditions. In this chapter the LCNM algorithm has been 

studied through case studies and some general features identified when the objective 

function is strictly convex in a polyhedral feasible region. 

This chapter deals with some general conditions under which the LCNM method 

converges. However, recently McKinnon (1998) shows how the NM method can converge 

to a non-stationary point, when it is applied for minimizing a class of 2-dimensional 

strictly convex objective functions, causing repeated focused inside contraction (RFIC) 

operations, so inside contraction steps are repeatedly attempted by the NM method, 

leaving fixed the best vertex of the simplex, when this vertex could be a non-stationary 

point. This fact could weaken our study of convergence presented in this chapter. 

Nonetheless Kelley (1999) proposes a test for sufficient decrease, where the rate of 

decreasing of the average objective function value is measured for detecting the 

convergence to non-stationary points of unconstrained minimization problems. If this 

rate is not held, the modified NM method of Kelley restarts the simplex to a smaller one 

with orthogonal edges. The procedure of Kelley (1999) was not included in the LCNM 

method. This is because though Kelley guarantees convergence of the NM algorithm to a 

stationary point, if the objective function is smooth, the procedure can cause needless 

reinitializations of the simplex, if the objective function is non-smooth or if it is 

corrupted by noise. 

Furthermore, Price et al. (2002) present another perspective for ensuring the 

68 
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convergence of the NM algorithm to a non-stationary point, whereby, if an iteration of 

the NM algorithm does not produce a good enough descent, the method redefines a new 

simplex based on a grid. The proposal of Price and colleagues looks like a very 

interesting method, because numerical tests verify its convergence to a stationary point, 

even in the class of functions studied by McKinnon (1998). However, according to a set 

of 39 numerical test problems carried out by Price et al. (2002), we observe that in 22 of 

their numerical tests, the modified NM algorithm was more expensive, with respect to 

the number of function evaluations, than the original NM simplex algorithm. This fact 

persuaded us not to consider it as a possible approach in our development of the LCNM 

algorithm. 

Nonetheless, numerical examples have illustrated some advantages of the LCNM method, 

even in situations when the objective function contains noise. This last aspect is one of 

the main aims of this research, because our interest is focused on the developing of a 

constrained optimization method for noisy objective functions. 

This chapter is organized as follows: In Section 4.2 we shall study some properties of the 

method when no local minimum exists at any internal point of the feasible region. A 

study of convergence for a particular cases of a triangular simplex is shown in Section 

4.3. In addition, a rigorous study of convergence for the case of linear objective function 

subject to two linear symmetric constraints is presented in Section 4.4. Finally 

conclusions of the considered approach on this chapter are reported in Section 4.5. 

4.2 Search properties of the method 

In this section, we shall show some search properties of the method for the case when 

there exists at least a local minimum on the linear constraint boundary. We begin by 

formulating a basic representation of a typical simplex iteration. This will be used to 

study the performance of the method. We shall in particular use it to show general 

properties of the method for strictly convex objective function subject to k linear 

inequality constraints. 

Here we shall develop a theoretical framework for explaining how an initial simplex is 

moved by the LCNM algorithm, when there exists no local minimum at any interior 

point of the feasible region. The simplex therefore approaches the boundary of the 

feasible region. We shall also study the transformation of the simplex and its movement 

in order to identify a sub-space that contains at least a local minimum. 
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4.2.1 Transformation of the simplex 

To describe the transformation that is carried out after any simplex operation and when 

a new active constraint is obtained, we shall first consider how to represent the (q+ 1 )th 

simplex from a qth iteration. vVe should remark that the LCNM algorithm is made up of 

3 stages, each stage comprising a number of iterations. Each one of the iterations is 

principally defined by the sort of vertices encountered in the current qth simplex, by the 

basic simplex operations and by a step for verifying if a new linear constraint was 

activated by the current qth simplex. vVe hereinafter suppress the stage counter 3th for 

simplifying the notation in the study of search properties of the LCNM algorithm. 

Let SL;l denote a matrix at the qth iteration, whose columns represent the Vq 

d-dimensional xi vertices, where they are arranged in ascending order of the objective 

function value f(xf), and its vertices have activated Tq (0 ::; Tq :S k) linear constraints in 

terms of the Definition 3.7. Thus SL;l represents a d x Vq matrix, where Vq = d + 1 - Tq. 

In consequence, SL;l is represented as follows 

S [q] - [xq . x q . . x q . x q ] 
Vq - l' 2····· vq-l' Vq (4.1 ) 

where the subscript of each column vector means the ranking of the vertices according to 

the value of the objective function at each vertex. In other words, xi is the vertex whose 

function value f(xi) is less than or equal to f(x~), x~ is the vertex whose function value 

f(x~) is less than or equal to f(x~) and so forth. 

Let Ebq
] represent the d x (v - 1) matrix whose jth column means the edge of SLql 

between x~ and xJ for all p :f: j = 1,2, ... ,vq , thus 

E [ql = [xq - x q . x q - x q ..... x q - x q ..... x q - xq] I-Ip 1 v p 1 p' 2 P . . JoFP P . . Vq P v = , ... , (4.2) 

vVe define the diameter of SL;l as the maximal distance between any two vertices of the 

current simplex SL;l, thus 

diam (S[ql) = max jjxq - xqjj 
Vq ioFj 2 J 

A criterion of stopping of the method within any 3th stage is based on this quantity, 

whose value is verified after each qth iteration of the algorithm. 

(4.3) 

Using the same approach of Lagarias et al. (1998), we shall study the transformation of 

SL;l into sL;+1 j due to non-shrink and shrink operations. 
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A non-shrink operations can be generically represented by 

where the parameter () is given by 

Reflection operation 

Expansion operation 

Inside contraction operation 
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( 4.4) 

(4.5) 

Due to Proposition 3.3 and Proposition 3.4, the coordinates of Xhew are modified by the 

Linear Constraint Procedure (LCP) after an operation of reflection or expansion, if Xhew 

does not belong to the feasible region. In this case, () is fitted to /\ by the LCP and so, 

Equation (4.5) can be rewritten as 

{ 

min(a,A) 

() = min(a" A) 

-(3 

Constrained reflection operation 

Constrained expansion operation 

Inside contraction operation 

(4.6) 

where A = min (AI, ... , Ak)' Ai E {lR I Ai 2: 0 vi = 1, ... k} is given by Equation (4.7) for 

each ith linear constraint of the feasible region defined by the k linear constraints. 

b T q 
A' - i - ai Xcen 
~- T[q qJ' ai Xcen - xVq 

vi=l, ... ,k (4.7) 

Note that Ai may be negative, in this case it is not considered for calculating /\, because 

the intersection point on the ith linear constraint boundary is in the direction from Xcen 

towards x max , whose direction is opposite to the descent directional vector d = -vf(x). 

Using Equation (3.13) in Equation (4.4), we have that the trial point Xhew is given by 

Xhew = (1 + ()) [xq
1 + x~ + ... + xv

q -lJ - ()xq 
Vq - 1 q Vq 

(4.8) 

Using matrix notation, Equation (4.8) becomes 

(4.9) 

[
(He) (He) (He) ] T . . . where t((), vq ) = --1' --1 , ... , --1' -() IS a column vector of dImenSIOn Vq x l. 
Vq- V q - V q -
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If one of these operations is attempted during a step of reflection, expansion or 

contraction, the maximum vertex X~q will be substituted by the trial point x~ew and, 

this latter is converted into a vertex of the (q+ 1 )th simplex. Hence a not necessarily 

unorganized simplex sJ;+lJ at the beginning of the (q+1)th iteration will be represented 

by 

(4.10) 

Due to this replacement, the simplex might therefore require an additional adjustment, 

depending on whether it activates a new linear constraint or not. This adjustment 

simply reduces the number of vertices Vq if a constraint were activated. More precisely, 

the algorithm would choose the (vq - 1) best vertices from the current simplex because of 

Criterion 3.2. Observe that this latter transformation is carried out in an operation of 

constrained reflection or constrained expansion only. It cannot occur in contraction 

operations because the LCNM algorithm only uses the so-called inside contraction 

NeIder-Mead operations. 

For a shrink operation, the simplex st;J is transformed into 

s'L~!~J = [(1- O)xf + oXf : (1 - O)xf + ox~ : ... : (1 - o)xf + oX~_l : (1 - O)Xf + OX~q] 
(4.11) 

By rearranging the terms, Equation (4.11) becomes 

(4.12) 

Using Equation (4.10) and Equation (4.12), the transformed (q+1)th simplex is defined 

by 
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[x q . x q . . x q . x q ] 
1· 2····· Vq -1· new 

\. J 

Vq vertices 

S[qH] = 
Vq+l 

[x q . x q . . x q . x q ] 
1· 2····· Vq -1· new 

\. ~ 
v 

Vq -1 best vertices 

Constrained non-shrink simplex operation, 

due to no new active constraint, 

where Vq+1 = vq , 

Constrained non-shrink simplex operation, 

due to a new active constraint, 

where Vq+1 = Vq - 1 

Shrink NeIder-Mead operation 

where V q+1 = v q . 
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(4.13) 

Since a new linear constraint can be only activated by either a constrained reflection 

operation or a constrained expansion operation to a simplex sL~], these operations will be 

generally named constrained simplex operations hereinafter. 

4.2.2 General properties of the Linear Constrained NeIder-Mead 

algorithm 

Here we present some general properties of the LCNM algorithm, considering the basic 

properties of the NM method established by Lagarias et al. (1998), who studied the 

properties of the NM method from the perspective of the d-dimensional volume of the 

simplex, whose value is computed through the determinant of the matrix Ebq
] given by 

Equation (4.2). Some basic properties can be extended to our case, because the LCNM 

method always fits the simplex to the rq active linear constraints by reducing the 

number of vertices. 

Lemma 4.1 (Strictly convexity of a function) Let A = {Xl, X2, ... , x n } cD be a 

subset of points, where D is a non-empty convex set of W&d. If f(x) is a strictly convex 

function on the region D, for any integer n 2': 2, then 

(4.14) 
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Moreover 

(4.15) 

Proof. See Appendix B. • 

We must remark that the subscripts of Xi in the set A of the above lemma does not 

require an ordered sequence of Xi'S. 

Lemma 4.2 (Convexity of a linear subset) Let F denote a non-empty set of 

feasible points in ]Rd. If F is defined by a set of linear inequality constraints 

F=-= {x E ]Rd I Ax 2:: b}, where matrix A and vector b are consistent, then F is a convex 

set of ]Rd. 

Proof. See Appendix B. • 

Lemma 4.3 (Relative value of f(xgen )) Consider the problem P of minimizing an 

objective function f(x) on]Rd using the LCNM method. Let xgen be the centroid of the 

remaining hyperface H£~l of the current simplex sW, which is contained on a non-empty 

convex set D. If the objective function f(x) is strictly convex on the set D, then 

f(xgen ) < f(X~q_l) :S f(x3q). 

Proof. Let S£;l = [xi : x~ : ... : x~_l : x3q ] be the set of sorted vertices that defines our 

current simplex, such that f(xi) :S f(x~) :S, ... , :S f(X~q_l) :S f(x3 q ). Because of the 

LCNM method, from Equation (3.13) and (4.14) we have that if 

vq-l vq-l 
q __ 1_,,", q ·h 0 1 d L 1 w 2 xcen - ~ xi WIt < -- < 1 an -- = 1 vVq 2:: 

v-I v-I v-I' 
q i=l q i=l q 

then by Lemma 4.1, we obtain 

f(xgen ) < L~~~l vq~l f(xi) and hence 

f(xgen ) < max {f(xi), f(x~), . .. ,f(X~q_l) } 

where f(X~q_l) = max {f(xi), f(x~), ... ,f(X~q_l) }, because S£;l is defined by an 

ordered sequence of vertices xI· Therefore f(xgen ) < f(X~q_l) :S f(x3q) .• 

(4.16) 

( 4.17) 

Lemma 4.4 (Improving of x~ew) Let F be a non-empty feasible convex set of]Rd such 

that F =-= {x E ]Rd I Ax 2:: b}, where matrix A and vector b are consistent, and let x~ew 
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represent a feasible trial point in F, which is yielded by either a constrained reflection 

operation with e = min(a,.\) or a constrained expansion operation with e = min(a".\) 

on a current simplex st~J = [xi : X~ : ... : X;_l : X~q J. If f (x) : lRd 
-7 lR is a strictly 

convex and differentiable function on a non-empty convex feasible set F and with 
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V f(x~ewf [xgen - X~qJ < 0 for all 0::::; e ::::; min(a,.\) or 0 ::::; e ::::; min(a".\) according to 

the kind of constrained operation, and v f(xint) =f. Od for all Xint in the interior of F, 

then 

1) For any value of e defined above, f(xhew) < f(x;q_l) ::::; f(x~q). 

2) There exists no local minimum at any Xint in the interior of F. 

Proof. PART 1. 

For any constrained simplex operation, we have from Equation (4.4) 

Xhew = (1 + e)xgen - ex~ q 

where 0 ::::; e ::::; min(a,.\) or 0 ::::; e ::::; min(a".\) depending on the kind of constrained 

simplex operation involved. 

Since x~ew is a trial point yielded by the projection of X~q through xgen , then we can 

define a directional vector d q= xgen - X~q. Thus, x~ew(e) is defined as 

By differentiability of f(x) at x~ew(e), we can assure that if t:::.e -7 0 for t:::.e > 0, 

hereinafter, this latter condition will be denoted by t:::.e 1 0, 

Rearranging the terms and dividing by t:::.e, we obtain 

( 4.18) 

Because Vj[x~ew(e)f d < 0 for 0::::; e::::; min(a,.\) or 0::::; e::::; min(a".\) depending on 

the kind of constrained simplex operation, and 1j;[X~ew(e) : t:::.e dj -7 0 as t:::.e 1 0, we have 
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Therefore 

f [Xhew(e + .6.e)] < f [Xhew(e)] v 0 ~ e ~ min(a, A) or 0 ~ e ~ min(a/, A) (4.19) 

Evaluating Equations (4.18) and (4.19) at e = 0, and applying Lemma 4.3, we have 

( 4.20) 

Since Equation (4.19) is satisfied for all 0 ~ e ~ min(a, /\) or 0 ~ () ~ min(a/, A) because 

of the type of constrained simplex operation, and using Equation (4.20), we obtain 

Therefore f(xhew) < f(x~q_l) :s; f(x~q). 

PART 2. 

Since V f(xint) =1= Od for all Xint in the interior of F, we can say that there exists no local 

minimum in the interior of F, because the first order necessary condition for the 

existence of a local minimum at x* is that V f(x*) = Od (Bazaraa and Shetty 1979) .• 

Theorem 4.1 (Moving into the boundary) Consider the problem P of minimizing a 

strictly convex and differentiable objective function f(x) in lRd subject to x E F, where F 

denotes a non-empty set of feasible points given by a set of linear inequality constraints 

such that F == {x E lRd I Ax 2: b}. If the L CNM algorithm is applied to the problem P 

beginning with an entire initial simplex st~J, which is transformed by q LCNM iterations 

into an entire simplex SL;l, and v f(xint) =1= Od for all Xint in the interior of F, then 

1) Each step is either a constrained reflection step or a constrained expansion step at 

each qth iteration until the collapse of the simplex. 

2) The entire simplex SL;l will move into the boundary of F and one of its vertices 

reaches at least one of the linear inequality constraint boundaries at the (q+h)th iteration. 

Proof. PART 1. Since the objective function f(x) is strictly convex and differentiable in 

F, then by Lemma 4.4, we have that each either constrained reflection operation or 

constrained expansion operation generates a trial point Xhew such that 

(4.21) 
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Because the LCNM algorithm attempts either constrained reflection step or constrained 

expansion step, before seeking its contraction step at qth each iteration, and Equation 

4.21 holds true for all 0 < q < h. The constrained reflection step takes place at the qth 

iteration if f (xi) < f (x~ew) :s: f (x~q -1)' otherwise the constrained expansion step is 

carried out as a result of f(x~ew) < f(xi). 

PART 2. 

To prove this part, we must demonstrate that there exists at least a linear constraint, 

which is approached by x~ew where x~ew is yielded by a kind of constrained simplex 

operation. From (Gill et al. 1991), we define the residual for an ith linear constraint 

aT x 2: bi at the x as the scalar ri(x) = aTx- bi . Note that i\(x) is positive when the 

ith constraint is strictly satisfied at x, zero when the point x lies the ith constraint 

boundary, and negative when the ith constraint is violated by X. Using this definition, 

we say that if the trial point x~ew approaches to a ith linear constraint boundary, then 

ri(X~ew) < ri(xgen ) < fi(X0q). 

From Equation (4.4), we have 

( 4.22) 

Grouping the terms of Equation (4.22) and using the definition of residual, we have 

If there exists at least a linear constraint which satisfies 

( 4.23) 

then 

( 4.24) 

because the parameter () is positive when x~ew and xgen are different. 

From Inequality (4.23) we have 
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(4.25) 

Using Inequalities (4.24) and (4.25), we obtain 

( 4.26) 

In addition, because Part 1 of this theorem is satisfied for all internal points of F, we can 

affirm that it exclusively attempts either a constrained reflection step or a constrained 

extension step at each qth iteration of the LCNM algorithm, when it has not been 

activated any linear constraint. Therefore, we say that every trial point Xhew at least 

approaches to an ith linear constraint boundary for 1 < q < q+h, where h is the 

maximum number of required iterations for reaching at least an ith linear constraint. II 

Theorem 4.1 would explain us the reason why a linear constraint can be become active 

when an initial entire simplex sL~J is transformed by the LCNM method and there exists 

no local minimum inside the feasible region F, whereby the number of vertices of the 

current simplex is reduced by the LCNM method. 

Furthermore, Theorem 3.5 (on page 40) explains us how a simplex, whose vertices are 

on a linear constraint boundary of the feasible region F= {x E lRd I Ax 2: b} except the 

vertex X~q, is flattened by a constrained simplex operation. 

We shall introduce further lemmas and theorems for showing how the LCNM algorithm 

identifies an intersection feasible region, which can contain at least a local minimum. 

Lemma 4.5 (Intersection of two convex sets) Let Dl and D2 be non-empty convex 

sets in lRd. If Dl n D2 is a non-empty subset of both Dl and D2, then Dl n D2 is a 

non-empty convex subset in lRd . 

Proof. See Appendix B. II 

Theorem 4.2 (Convex function on a linear constraint) Let £ be a non-empty 

convex set oflRd defined by a linear equality £ == {x E lRd I aTx = b}, where aTE lRd is a 

vector of constants and b is a real scalar. If f(x) : lRd -+ lR is a convex function on a 

non-empty convex set D of lRd
, and £ n D is a non-empty convex subset of D, then f(x) 

is a convex function on the subset £ n D. 

Proof. See Appendix B. II 
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Note that according to Theorem 4.2, if Xl and X2 belong to .[ n D, then they also belong 

to.[ = {x E ~d I aTx = b}, therefore aTxI = b, aTx2 = band aTxf.!. = b for all 0:::; f-l:::; 1. 

In consequence, we can enunciate the following corollary of convexity of a function, 

within a non-empty and non-singleton set defined by a set of linear equality constraints. 

Corollary 4.1 (Convex function on a set of linear equality constraints) Let [; 

denote a non-empty and non-singleton set of ~d defined by l linear equality constraints 

such that [; = {x E ~d I Ax = b}, where A E ~lxd is a matrix of constants and b E ~d is 

a real vector. If f(x) : ~d --+ ~ is a convex function on a non-empty convex set D of~d, 

and [; n D is a non-empty and non-singleton convex subset of [2, then f(x) ~s a convex 

function on the subset [; n D. 

Proof. See Appendix B. • 

We now add some definitions and lemmas for proving how the LCNM algorithm 

identifies a feasible region, which can contain at least a local minimum. 

Definition 4.1 (Promising active sub-space) Consider the problem P of minimizing 

an objective function f(x) on ~d subject to x E F, where F denotes a non-empty set of 

feasible points given by a set of linear inequality constraints such that 

F= {x E ~d I Ax 2: b}. We call a current promising active sub-space FJ~]o of the 

problem P at qth iteration of the LCNM algorithm, a feasible subset such that 

r[q] = { lTJ)d I A S[q] - b IT /\ A S[q] b IT} 
.IP"TO- x E 1& act v - act v n-act v > n-act v q q q q 

where Aact x 2: bact is the subset of constraints of F that has been activated by the 

current simplex sl~] at the qth iteration of the LCNM algorithm, and An-actx > bn-act 

corresponds to the other subset of constraints that have not been activated by the current 

simplex. 

We stress that such active sub-spaces are sub-spaces identified by the LCNM method 

during its search as being where the minimum might be. Thus the Definition 4.1 does 

not necessarily identify where the minimum really is, but a likely sub-space is one that is 

promising. 

Conforming with the above definition, Fj;,lo can be an empty subset at qth iteration of 

the LCNM algorithm, because it may be that no constraint has been activated by the 

current simplex. FJ~o can also be an empty subset for all qth iterations of the LCNM 

algorithm, because no local minimum exists on the boundary of the feasible subset :F. 
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Definition 4.2 (Optimal active sub-space) Consider the problem P of minimizing 

an objective function f(x) on]Rd subject to x E F, where F denotes a non-empty set of 

feasible points given by a set of linear inequality constraints such that 

F-= {x E ]Rd I Ax 2:: b}, which at least contains a local minimum on the boundary of F. 

We say that FJ~lo is optimal (minimum), which is denoted by Fl~lt, if Fl~lt is a non-empty 

subset of F and 

where Aact Xmin = bact represents the subset of linear constraints activated by the last 

qth simplex at sth stage of the LCNM algorithm, which has satisfied Inequality (3.39), 

and An-actxmin> b n- act corresponds to the other subset of constraints that have not 

been activated by the current simplex. 

It is worthwhile pointing out that if all the linear constraints of F have been activated by 

the current simplex, then there exists no constraint that satisfies An-act Xmin > b;;-act. 

Let Vq = d + 1 - I' q be the number of vertices at the qth iteration regarded as function of 

the collapsed degree rq of the current simplex. Using this notation, we can write any 

current simplex at qth iteration as Sl~l-rq for explicitly indicating the collapsed degree 

I' q of the current simplex. 

The problem of convergence highlighted by McKinnon (1998) are present when the 

minimum is an interior point. However when there is no local interior minimum then 

there should not be a problem. Though we do not give a definitive proof, the following 

argument indicates that the method should behave satisfactorily. 

Theorem 4.3 (Moving into promising active sub-space) Consider the problem P 

of minimizing a strictly convex and differentiable objective function f(x) on]Rd subject to 

x E F, where F denotes a non-empty set of feasible points 9iven by a set of k linear 

inequality constraints such that F-= {x E ]Rd I Ax 2:: b}. If the L CNM algorithm is 

applied to the problem P beginning with a simplex Sl~l-rq of rq collapsed degree, where 

o < rq < k, and if there exists no local minimum at any internal point Xint of the current 

promising active sub-space of rq active constraints, then the current simplex Sl~l-rq 
keeps moving in order to increase its collapsed degree. 

Proof. Due to the assumptions of the theorem, there exists a non-empty subset of active 

constraints at the qth iteration, wherein is the collapsed simplex Sl~l-rq and whose 

vertices belong to the intersection sub-space defined by the set of active constraints. 
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Moreover, due to the conditions of the theorem, no local minimum exists at any internal 

point of the intersection sub-space. Thus, the current simplex S~~l_rq is in what we have 

defined as promising active sub-space FJ~lo. Given these assumptions and using Theorem 

4.1, we can be assured that the simplex keeps moving for increasing its collapsed degree. 

Namely, Tq+h 2: Tq if h LCNM iterations are applied to the simplex S~11-rq under the 

assumptions given by the theorem. II 

Theorem 4.3 allows us to explain the moving into what we have defined as optimal active 

sub-space, when no local minimum exists at any internal point of the feasible region 

F =- {x E lR d I Ax 2: b}. 

In addition, (McKinnon 1998) presents a family of functions of two variables, where 

convergence occurs to a non-stationary point when it is applied the NM method. The 

work developed by McKinnon proves the necessary conditions for what the author calls a 

repeated focused inside contraction (RFIC), where recurrent inside contraction 

operations with the best vertex (focus) remaining fixes. In consequence, the NM method 

converges to a not necessarily stationary point (focus) by repeated inside operations, if 

the conditions for the RFIC remain during the process. 

These conditions are: 

h ::; h ::; 13 ::; frejl ( 4.27a) 

h ::; fcont ::; h ::; 13 (4.27b) 

If Inequalities (4.27a) and (4.27b) are sequentially satisfied at each qth iteration, the NM 

method repeatedly applies inside contraction operations, so the best vertex is kept at 

each iteration. This recurrent process could occur in the LCNM method when it is 

applied to a constrained optimization problem. 

Analysing the LCNM method, a RFIC operations can occur in ad-dimensional 

optimization problem, if Inequalities (4.28a) and (4.28b) are satisfied at each qth 

iteration of the LCNM method. Thus, 

( 4.28a) 

(4.28b) 
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In this case Xl is the focus of the RFIC operations, which could be a non-stationary 

point of the objective function. 
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Furthermore, Inequality (4.28b) does not establish the relative value of fcont with respect 

to 12, 13,· .. fv q -2 for a RFIC to take place. 

Now we shall include an extension for the LCNM method of a lemma established by 

Lagarias et al. (1998), who proposed the following no occurring shrink operation, if the 

objective function is strictly convex. 

Theorem 4.4 (Non-shrink operation) Consider the problem P of minimizing a 

strictly convex objective function f(x) on JR.d subject to X E F, where F denotes a 

non-empty set of feasible points given by a set of k linear inequality constraints such that 

F= {x E JR.d I Ax 2: b}. If the LCNM algorithm is applied to the problem P with a 

simplex S~~l-rq of r q collapsed degree, where 0 ::; r q ::; k, then a non-shrink operation 

will be attempted by the LCNM algorithm. 

Proof. From Corollary 4.1, we can affirm that any S~~l_rq will always be on a convex 

region at any qth iteration. Besides, the LCNM algorithm reaches its shrink step (step 9) 

only, when an inside contraction is not accepted at step 8. Due to Equation 4.4, an 

inside contraction operation is defined when e = - f3, thus an inside contraction is given 

by x~ont = (1 - f3)X~en + f3x~q. Since f(x) is strictly convex on the feasible region F then 

we can be assured that f [x~ontl < (1 - f3)f (X~en) + f3f (X0q) , for 0 < f3 < 1, and because 

Lemma 4.3 establishes that if f(x) is a strictly convex objective function on JR.d, then 

f (x~en) < f (x~q). Thus, 

Hence, if the LCNM algorithm is applied to the problem P with a simplex Snl-rq of T'q 

collapsed degree and the LCNM algorithm reaches the step 8 at qth iteration, then x~ont 

is accepted and in consequence a shrink operation does not occur at any qth iteration. II 

4.2.3 Case of two dimensions strictly convex function and a linear 

constraint 

We herein shall consider the problem P of minimizing a strictly convex objective 

function f(x) on JR.2 subject to F ={ x E JR.2 I aT x 2:b}, where aT = (aI, a2) is a vector of 

coefficients and b is a scalar. Moreover, v f(Xint) ::f- Od for all Xint in the interior of F. 
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Through this case we shall study how an initial simplex is moved by the LCNM 

algorithm and how it is transformed when approaching the boundary of the feasible 

region, when no local minimum exists at any internal point of the feasible region. In this 

case study, we have proved that the vertex xi of a qth simplex reaches the boundary of 

the feasible region within a finite number of iterations, if the conditions of the example 

are obviously satisfied during the optimization. 

Suppose that we apply the LCNM algorithm to our problem with an initial point Xinitial 

for building an ordered initial simplex S~O] = [x~ : xg : xg]. Moreover, assume that a 

constrained expansion operation is attempted at each qth iteration and, as result of 

ordering the vertices by the value of !(Xi) for i = 1,2 and 3, the next (q+1)th iteration 

d h · 1 . b q+l q q+l q d q+l q f 0 pro uces t e SImp ex gIVen y Xl = x new , X 2 = Xl an x3 = x 2 or < q < qrnax, 

where qrnax is the maximum number of required iterations for reaching once any 

constraint boundary by any vertex of the simplex s~qmax]. 

Suppose that for the qth iteration we have the ordered simplex s~q] = [xi : x~ : xj]. 

Using Equation (4.9) we have 

q-i-l _ q _ S[q] [1 + e 1 + e -e] T 
Xl - Xnew - 3 2' 2 ' 

and given that x~+l = xi and xj+l = x~ for 0 < q < qrnax due to Lemma 4.4, we can 

express 

( 4.29) 

Rearranging the terms of Equation (4.29) and using matrix notation, we have 

s1q
+l] = S1q]T(e) ( 4.30) 

where T(e) = r ~~~ ~ ~ J is the called transition matrix. l -e 0 0 

From Equation (4.30), we obtain 

(4.31 ) 
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Equation (4.31) permits us to compute any simplex S~ql for 0 < q < qrnax under the 

conditions given, and we call it, transformation equation. 

Dsing Equation (4.30) for e = 2 and an initial simplex S~ol, we obtain the following 

results for q = 0,1, ... 5, 

[ mrro v 
m m,: v 1 
m 

q=O 

[ m-;v m 

:: 1 m- 2V m-v 
q = 1 

[ m- 3v m- 2v 

mrro v ] m - 15 v m- ~v 
S[ql-

4 

3 -

[ m-'2'v m-3v m-;v 1 
m - 47 v m - 15 v 8 4 m- 2v 

q=2 

q=3 

[m- 47v m - l§.v m -:lv 1 
m - 1~3v 

2 
m- 47 v m - 15 v 16 8 4 

q=4 

[ m - ':' v m- 47 v m - ~5v 1 4 
m - 591 v m - 183 v m- 47 v 32 16 8 

q=5 
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However, another manner for calculating S~ql is based on Equation 4.31 and the 

definition of an eigenvector (Noble and Daniel 1988), so [T(e)F can be computed by the 

following equation. 

( 4.32) 

where the matrix P = [VI: V2 : V3] is the matrix of eigenvectors of T(e), and the qth 

power matrix Dq = diag [,uf , ,u~, ,u~] represents the diagonal matrix defined by the 

eigenvalues ,ui of T(e) for i = 1,2 and 3. 

Without loss of generality, suppose that v = milO and the parameters associated with 

the linear constraint are positive, that is, a1 > 0, a2 > 0 and b > O. Besides, assume that 

m > max [...fL . ...fL]. Because the vertex x q
1 corresponds to the minimum value of the 

al I a2 

objective function, its residual are calculated with respect to the boundary of the linear 

constraint, and its values are given by the following equation 
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f (xi) = 

max[O, -b + mal + 190ma2] = -b + mal + 190ma2 

max[O, -b + ~ma1 + ~6 ma2] = -b + ~ma1 + ~6 ma2 

max[O, -b + 1
7
0 mal + ima2] = -b + 1~ mal + ima2 

max[O, -b + ~ma1 + ~~ma2] = -b + ~ma1 + ~~ma2 
ma..'{[O, -b - do mal - 1~0 ma2] = ° 

q ° 
q = 1 

q=2 

q=3 

q = 4. 
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Because of Theorem 4.1, either constrained reflection step or constrained expansion step 

occurs during the application of the LCNM method, until the simplex collapses onto the 

linear constraint boundary. 

Note that the residual f (xi) would become negative for q = 4 and any value of a1 > 0, 

a2 > 0, b> ° and m > max [~,~], if the LCNM method did not make use of the LCP. 
al a2 

This property of the LCNM method reduces quickly the number of vertices during the 

process of minimizing, when the objective function is strictly convex and there exists no 

minimum inside the feasible region. Therefore, the number of function evaluations could 

be decreased. 

Although, this particular case does not prove the general situation, we observe that the 

LCNM method reduces the number of vertices in a few iterations, when the local 

minimum is on the boundary of the feasible region. 

4.3 Convergence properties of a triangular simplex 

In this section we shall study the properties of convergence through particular cases 

when we apply the LCNM algorithm to a three-vertex simplex. These cases would occur 

when the LCNM algorithm reduces the number of vertices to three, as consequence of 

collapse of a simplex in a constrained optimization problem of three or more dimensions. 

Furthermore, two-dimension constrained or unconstrained optimization problems also 

bring these cases, if no collapse is produced during the application of the LCNM 

algorithm. 

4.3.1 Cyclic contraction operations 

Suppose that we apply the LCNM algorithm to either a constrained problem or 

unconstrained problem such that for the hth iteration we have obtained an ordered three 

vertices simplex (triangle) s1h1 = [x? : xq : x~], where x7 is a d-dimensional column 

vector for i = 1,2,3. Furthermore, suppose that there exists a unique local minimum 
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inside the simplex S~hl at hth iteration, and also assume that there will be no reduction 

of the number of vertices. In this particular case, suppose that there will only be 

sequential and cyclic contraction operations, such that: 

a) f (x?+ l+3n) ::; f (x~:n~n) ::; f (x~+ l+3n) 

b) f(x h+1+3n ) < f(xh+3n ) < f(xh+2+3n ) cont - cont - 1 

) f( xh+2+3n) < f(xh+1+3n ) < f(xh+3n ) 
C cont - cont - cont 

at (h + 1 + 3n)th iteration 

at (h + 2 + 3n )th iteration 

at (h + 3 + 3n )th iteration 

( 4.33) 

where n = 0, 1, ... represents the number of the cycle. Cyclic contraction operations can 

occur because no shrink steps are operated if the objective function f(x) is strictly 

convex (See Theorem 4.4 on page 82) and, each constrained reflection point and 

constrained expansion point are not accepted by the LCNM algorithm. 

If the conditions given by Inequality (4.33) are satisfied for all LCNM iterations, a 

simplex S~h+3nl = [x?+3n : x~+3n : x~+3n] is cyclically transformed as follows 

S
[h+3n] _ 
3 -

S~h+l+3nl [x?+1+3n : x~+l+3n : x~+l+3n] 

S~h+2+3nl = [x?+2+3n: x~+2+3n : x~+2+3n] 

S~h+3+3nl = [x?+3+3n: x~+3+3n : x~+3+3n] 

[X
h+3n . xh+3n . x h+3n] 
1 . cont . 2 

[
Xh+ 1 +3n . Xh+3n . x h+3n] 

cont . cont . 1 

[
Xh+2+3n . Xh+1+3n . x h+3n] 

cont . cont . cont 

( 4.34) 

Using the conditions given by Inequality (4.33) and the so-called transition matrix, we 

can represent simplices at each iteration as follows 

S~h+l+3n] = S~h+3n]Tl (-(3) 

S~h+2+3n] = S~h+l+3nlT2( -(3) 

S~h+3+3nl = S~h+2+3nlT3( -(3) 

On rearranging Equations (4.35) we obtained 

where 

( 4.35) 

( 4.36) 
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1-13 0 J [1-,6 0 1 j [ 1-13 l~i3 1 ,T2 ( -(3) = l~i3 1 0 and T3 ( -(3) = l~i3 
f3 0 f3 0 0 f3 

1 0 J o 1 . 

o 0 

If we define Tc(-f3) = T1(-f3)T2(-f3)T3(-f3) then Equation (4.36) can be represented as 

( 4.37) 

where 

[ 

~f3 + ~f32 -, ~f33 + (-!,f3 + !)2 + i -!f3 + (,-!f3 + !)2 +! 
Tc( -(3) = ~,8 - ~f32 - ~f33 + (-!f3 + !)2 + ~ f3 + (-!f3 + !)2 

if3 - f32 + if33 !f3 - !f32 

-!f3 + ! J 
-!f3 + ! . 

f3 
From Equation (4.37) and using induction, it can be proved 

( 4.38) 

It is worthwhile mentioning that the determinants of Tc( -(3) and r;:+1( -(3) are 

Moreover, since 0 < f3 < 1, then 

Equation (4.39) represents a necessary condition of convergence of the LCNM algorithm 

when a sequential and cyclic contraction operation of three steps occurs on a three 

vertex simplex. 

Note that the cycle of contraction operations is equal to three, that is, each three 

iterations is repeated a sequence of contraction operation that satisfies the conditions 

given by Equation (4.35). 

In order to compute the limn->co S~k+3+3nl, Tc( -(3) will be decomposed into its 

eigensystem P DP-1 , where P = [VI: V2 : V3] is the matrix given by the eigenvectors of 

Tc( -(3) and D = diag [,ul, ,u2, ,u3] is a diagonal matrix formed by the respective 

eigenvalues of Tc( -(3). Therefore, T;:+1( -(3) can be expressed as 
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( 4.40) 

Without losing of generality, we shall compute Equation (4.40) for (3 = 1/2. For this 

particular case, the matrices P, p- 1 and D are given by 

[

2 -~ - iiV23 
P = ~ -i + iiV23 

1 1 

p-1 = [_1 + ~7 i 123 
9 207 v~,) 

-~ - 267 iV23 

-~ + iiV231 
-i - iiV23 , 

1 

and 

Dn+1 = diag [lIn+1 IIn+1 lin + 1] = 0 (~ __ l_i l23)n+1 

[

10 

~1 '~2 '~3 128 128 V~,) 
o 0 

Since 11~58 ± 1~8iV231 = iv'2 < 1, then limn->CXl (1~58 ± 1~8ivl23t+1 = O. 

Thus, limn->CXl D n +1 is given by 

lim D n + 1 = DCXl = and 
n->CXl 

[ ~ 
4 

n "9 
lim P D n+1 p-1 = P DCXl p-1 = 1 

n->CXl 3' 
2 
"9 

Using Equations (4.38) and (4.41), we obtain 

lim S~hJT;'+l (-1/2) = [x? : x~ : x~] 
n->CXl [ _

__ 4~9~ ___ 4~9~ =-94~291 

(4.41 ) 

which proves that when sequential and cyclic contraction operations are repeatedly 

performed under the assumptions and conditions given by Inequality (4.33), the three 

vertices of the simplex S~hl = [x? : x~ : x~] converge to the point 
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According to the conditions given by Inequality (4.33), within each nth cycle: the vertex 

x7+3n remains during three iterations, x~+3n remains at two iterations and x~+3n is at 

one iteration only. This can explain the reason why the minimum point is a weighted 

average of the number of iterations that permanentizes each vertex within each cycle. 

Note that the determinant of limn-tCX) T;:+1 (-1/2) = 0 verifies the necessary condition 

given by Equation (4.39). 

Since each vertex of the simplex S~h+3+3nl approaches the minimum point Xmin as the 

result of successive transformations yielded by Equation (4.37), the behaviour of one of 

these vertices of S~h+3+3nl can be studied through Equation (4.38). 

Using Equation (4.40) we compute T;:+l(-1/2), so 

where 

tl = 

[ 

- f-L~+l ( - 1
5
8 - i ~) - f-L~+ 1 

( - 1
5
8 + i ~l + ! 1 

_"n+l (1 +i5V23) _ /In+l (1_i5V23 + 1 
r2 6 138 r3 6 138 3' 

/In+l (_1 + i7V23) + "n+l (_1 _ i7V23 + ~ 
r2 9 207 r3 9 207 9 

[ 

_"n+l ~~ - i 14V23~ - "n+l ~~ + i 14V23l + :! 1 r2 9 207 r3 9 207 9 

_/In+l _1 + iV23 _ /In+l _1 _ iV23 + 1 
r2 3 69 r3 3 69 3' 

/In+l (_1 illV23) + /In+l (_1 +illV23 + ~ 
r2 9 207 r3 9 207 9 

r2 9 207 r3 9 207 9 

t. - _/In+l 1_i I3V23 _/In+l 1+i I3V23 +1 

[ 

_"n+l [~ + i22V23l- /In+l [~ - i22V23l + :! 

3 - r2 6 138 r3 6 138 3 
/ln+l .l + i5V23 + /In+l .l _ i5V23 + ~ 
r2 18 414 r3 18 414 9 

with f-L2 = 1~58 - 1~8iJ23 and f-L3 = li'8 + 1~8iJ23. 

( 4.42) 

Moreover, we have a triangular simplex in a d-dimensional Euclidean space represented 

by S~hl = [x? : x~ : xgJ . 
From Equation (4.38) we obtain 
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( 4.43) 

To study the rate of convergence, we shall examine the behaviour the vertices of 

S~h+3+3nJ through the vectors tl, t2 and t3. 

0.7 

0.6 

0.5 \ 
Q) 0.4 
~ 

.' 
-;; 0.3 > 

0.2 

0.1 

o 1 2 3 4 5 6 7 8 9 10 

Cyclic ite ration 

t11 _. ____ .t21 ____ .t31 

0.6 .,------_--, 

0.5 t'c---------I 

0.4 '" • 
Q) / ... - - - - - - - - - -- - - -

~ 0.3 +----------1 
> 

0.2 ./ 

0.1 +---------1 
o !-----,-__ ~ __ ~-I 

o 1 2 3 4 5 6 7 8 9 10 

Cyclic iteration 

t12 ______ . t22 _. _ .• t32 

0.6 -,---------, 

0.5 -\---------------1 

0.4 \ /' 

~ 0.3 x----- ---_. --- ----- ----
> 0.2 +---'-' '0.=-:-=-.0::--::":-=---=-=---=--'--'1-

0.1 -!-----------I 

o -l---,-~~~~ __ --j 

o 1 2 3 4 5 6 7 8 9 10 

Cyclic iteration 

t13 ______ . t23 ____ • t33 

Figure 4.1: Graph oftl, t2 and t3 ofT;-+1(-1/2) 

Because 1/-L21 < 1 and 1/-L31 < 1, the simplex evidently converges to 
4 h 3 h 2 h 

Xmin = 9XI + 9X2 + 9X3' 

Figure 4.1 displays the behaviour of the components of the vectors ti(n) for each n cyclic 

iteration, where each component shows a behaviour of order o(~-n) with 0 < ~ < 1. For 

this particular case, we have that tl (n), t2 (n) and t3 (n) simultaneously approach to the 

vector (~,~,~)T ~ (O.44444,O.33333,O.22222f at n = 6 cyclic iterations, that is, after 

six cyclic contraction operations of three iterations each, the LCNM algorithm moves the 
h+3+3n f h . 1 d 4 h 3 h 2 h vertex Xl 0 t e simp ex towar s xmin = 9XI + 9X2 + 9X3' 

This fact assures a convergence of order o(~-(n+1)), if the conditions given by Inequality 

(4.33) have been held for the iterations h < q < qstop, where qstop is the last iteration 

carried out. 

4.3.2 Repeated focused inside contraction operation at a minimum 

The definition of RFIC was introduced by McKinnon (1998) for proving that there exists 

a kind of strictly convex function family defined over JR2 that converges to a 

non-stationary point the NM method is applied. However, this approach can be used for 
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estimating the maximal rate of convergence when we suppose that one of the vertices of 

a triangular simplex is located on the minimum of the objective function. 

In this case, assume that we apply the LCNM algorithm to either a constrained problem 

or an unconstrained optimization problem such that after hth iteration, one of the 

vertices of the simplex S~hl = [x? : x~ : x~J is located at the minimum point of a strictly 

convex objective function f(x), this is, Xmin = x?, where x? is a d-dimensional column 

vector for i = 1,2,3. 

Without further assumptions, we can be assured that it only takes place an inside 

contraction operation at each h < q ::; qstop. Because x? is located at the minimum and 

the objective function is strictly convex, it can also be affirmed that there are inside 

contraction operations. Moreover, the shrink operation does not take place during the 

process of convergence (See Theorem 4.4 on page 82). Thus the transformations that are 

held by each qth simplex s~qJ can be represented by Equation (4.44), 

S3[h+n1 = S3[h1T1n (-(3) \..I ° h v ::; n ::; qstop - , ( 4.44) 

where T1 (-(3) = [ ~1 ~(3=22; 0°1 J and qstop represents the iteration wherein is satisfied the 

stopping rule. 

Without losing of generality, we st u d y the case ;J ~ 1/2, thus 1j( -1 / 2) ~ [~ 1 ~ J . 

Using the eigensystem ofT1(-1/2), we obtain T1(-1/2) = PDn p-1 

PD"p-l ~ U /33-5 _~J[l ° (H~r][ ~ 
1 

vd+33 J 
4 e-r)n 1-/33 1+/33 ° -2\1'33 

-4- 4 -3-3- 66 

1 1 ° ° 
2\1'33 33-/33 
"""33 -6-6-

(4.45 ) 

which will be denoted by 
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Using this notation and Equation (4.45), each (h + n)th simplex can be represented as 

S[h+n] s[h]Tn( (3) [h h h] [ 1 3 = 3 I - = Xl: X2 : X3 tl: t2 : t3 = ( 4.46) 

where 

/33 (56f3) (1-f3) n - /33 (5+6f3) (1+f3) n + 1 

/33 (~-l) (1-f3) n + /33 (1+6f3) (1+f3) n 

323/33 (1+f3) n _ 323/33 (1-f3) n 

( 4-5
) e3~f3) e-f3) n - ( 4+5

) e36f3) (1+f3) n + 1 

t3 = e-F) e3~f3) e-f3) n + (l+F) e36f3) (l+f3f 
e36f3) (1+f3) n + e3~f3) e-f3) n 

and 

Observe that limn->CXl Tr( -1/2) = (1,0, O)T If guarantees the convergence to the point 
h 

xl' 

1.0 ... _ .. _. __ .. _-'" .-..... __ ..... __ . __ .... - 1.0 

0.8 0.8 

0.6 0.6 
" " '" ~ " <; 
> 0.4 > 0.4 

0.2 

0.0 

0 10 15 20 25 

Iteration Iteration 

112 ....... 122 _ . _. 132 113 ....... 123 _ .. _.133 

Figure 4.2: Graph of t2 and t3 of Tr( -1/2). 

Figure 4.2 depicts the behaviour of each component of t2 and t3 during the application 

of the LCNM method. Note that h2 and tl3 converge to one exponentially, whilst the 
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rest of the components of t2 and t3 converge to zero in an exponentially oscillatory way. 

This fact allows one to explain the convergence of the LCNM method in this particular 

situation. 

4.3.3 Alternative operations at a minimum 

In this case, we shall study the performance of the LCNNI method, when sequential and 

cyclic alternative operations of contraction and reflection are carried out over a 

triangular simplex S~h] = [x~ : xq : xg] in a d-dimensional Euclidean space, where x7 is a 

d-dimensional column vector for i = 1,2,3. Suppose that the vertex x~ is only located on 

the minimum point Od after h iterations, and the distances Ilx~ - xqll > 0 and 

Ilx~ - xgll > 0 at the hth iteration. In this particular case, the objective function is the 

quadratic function f (Xd) = Ilxdll· We also assume that there will be no reduction of the 

number of vertices. 

Since the objective function is strictly convex, non-shrink operations will occur during 

the performance of the method (See Theorem 4.4 on page 82). If these sequential and 

cyclic alternative operations are performed during the process, we can affirm that 

S [h+2n] - S[h]Tn (-(3) h 3 - 3 c ,a , were (4.47) 

3a-/3-a/3+3 1-/3 
4 -2-

1-3a-.B-a/3 1-/3 
4 :2 

/3+a/3 (3 -2-

which represents a contraction operation and a reflection operation within each mth 

cyclic of two iterations. 

If (3 = 1/2 and a = 1, we obtain 

Using the eigensystem of Tc( -1/2,1), we obtain T2( -1/2,1) = P D n p-1 expressed by, 

r 
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and 

Observe that limn -+CXJ T:;( -1/2,1) = (1,0, of If assures the convergence to the point x~. 

1.5,------------ 1.5 
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0.5 
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·1.0 L __________ ~ ·0.51--_________ _ 
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Cyclic ite ration Cyclic ite ration 

112 •....•. 122 _ .. _ . 132 113 ••..••. 123 _ •. - • 133 

Figure 4.3: Graph of t2 and t3 of T;:( -1/2,1) 

Figure 4.3 shows the shape how the LCNM algorithm converges when sequential and 

cyclic alternative operations of contraction and reflection occur over a triangular simplex. 
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The figure illustrates the exponential and oscillatory convergence of each component of 

t2, whilst the components of t3 converge exponentially and with small oscillations. 

4.4 Case of constrained linear objective function 

Here we shall study how the LCNM method can be dramatically slow when it is applied 

to a minimization Problem P of a linear objective function subject to two linear 

constraints symmetrically located with respect to the line X2 = Xl. A mathematical 

formulation of this problem is as follows, 

min f (x) = min "fT x = min (C1X1 + C2X2) 
xE~2 XE~2 xE~2 

( 4.48a) 

subject to 

h: bX1 - aX2 > ° 
l2: -ax1 + bX2 > ° (4.48b) 

where C1 > 0, C2 > 0, and b > a > 0. 

X2 40~------________ ~ ______ ~ 

10 15 20 25 30 35 40 

Xl 

Figure 4.4: Case whereby the simplex collapses. 

Figure 4.4 depicts the case when the LCNM method is applied to a linear objective 

function with parameters C1 = 1.1 and C2 = 1, subject to constraints given by Equation 

(4.48b) with parameters b = 1.4 and a = 1. For this numerical example we considered 

the point (20, 28)T as the initial point for building the entire simplex S~. Note that the 
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simplex 5~ collapses onto the boundary of the constraint l2. 

X2 40 

10 15 20 25 30 35 40 

X1 

Figure 4.5: Case whereby the simplex does not collapse. 

By contrast, Figure 4.5 displays 300 iterations of the LCNNI algorithm. As can be seen 

from the graph, no simplex 51 collapses onto any boundary during the first 300 

iterations, when the coefficient C1 was fixed to 1.8507, and the rest of the parameters 

were kept to the same value of the previous case. From the numerical report of this case, 

we obtained at 300th iteration the following simplex 

S300 = [x300 : x300 : x 300J = [1.849588979 1.461849766 1.855732942] 
3 1 2 3 1.321134985 2.046589673 1.32552353 

whose maximum edge length does not satisfy the stopping rule at the first stage of the 

LCNM algorithm and any vertex has not reached the local minimum. 

The example illustrates the possibility of conditions where the triangular simplex does 

not collapse at any iteration. The problem is analysed in detail in the next subsection. 

Thus it is possible in principle for the LCNM algorithm to become expensive (Cheng 

2003b). 

It should be stressed however, that though this is a theoretical possibility, it seems 

unlikely that it would be a serious practical problem as the conditions have to be specific 

for the problem to occur. 
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4.4.1 A canonical form for Problem P 

Here we shall study a canonical form shown by Cheng (2003a) for a two-dimensional 

Linear Programming Problem (LPP). 

Problem 4.1 (Linear Programming Problem) Consider the following two-variable 

LPP 

subject to 

where 

lr: a2 x l - alX2 2: 0, 

l2 : -alXl + a2X2 2: 0, 

a2 > al > ° and c> 0. 

(4.49 ) 

(4.50) 

(4.51) 

The feasible region given by Inequalities (4.50) is a two-dimensional cone in the positive 

orthant if a2 > al > 0. Note that if the coefficient of the objective function is positive, 

the constrained local minimum will occur at the vertex of the cone, which is located at 

the origin. Though we only consider two constraints, the problem is a completely general 

(linear) two-dimensional one, in the sense that the problem reflects the geometry near 

the optimal vertex whatever the nature of the original problem. 

Figure 4.6 illustrates a constrained reflection operation that takes place at an iteration of 

the LCNM method. 

h / X2 = Xl 
/ 

/ 
/ 

/ 
/ 

// 12 
/ 

/ 

Figure 4.6: Constrained reflection operation 
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Figure 4.7 depicts the feasible cone-region for Problem 4.1. For clarity we have assumed 

a canonical form for Problem 4.1 in the sense that the two linear constraints are 

symmetrically located on both side of the line X2 = Xl, with the coefficients of Xl and X2 

in the objective being equal, that is 

f (x) = C(XI + X2) vX E JR.2 and c > O. 

The two linear constraints, If x 2: 0 and I§ x 2: 0, are defined by direction vectors 

IT = (a2, -ar) and I§ = (-aI, a2). 

The problem however is equivalent to a completely general (linear) two-dimensional one 

where just two active constraints will determine the optimal vertex whatever the number 

of constraints in the original problem. 

X2 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 

,X2 = Xl 
/ 

Figure 4.7: Sequence of the simplices sq 

To see that there is no loss of generality, suppose Problem 4.1 with variables 

yT = (YI, Y2), we therefore have the following problem 

Problem 4.2 (Generalized Linear Programming Problem) 

min f(y) 
yEIR2 

subject to 

eT y 2: 0 and e§ y 2: 0, 

( 4.52) 

( 4.53) 
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vVe allow the direction vectors el and e2 to be not necessarily symmetrically placed on 

either side of the line X2 = Xl. However, we shall adopt the convention that the feasible 

region lies in the angle e, with 0 < e < ]f, between them, measured in the rotational 

sense of going from el to e2. This is equivalent to say that the direction vectors el and 

e2 are linearly independent. Thus 

( 4.54) 

Under this condition the boundary of the feasible region comprises all the points 

emanating from the origin in the two directions gl = (-e2l, en)T and g2 = (e22' -e12)T. 

For the minimum to be unique and at y = 0 we must therefore have cT gl > 0 and 

cT g2 > 0, that is 

( 4.55) 

vVe therefore assume Inequality (4.55) is also satisfied. 

We consider the transform y = Ax. (The LCNM method being a pure geometrical 

process with steps depending only on function values, is invariant to a linear transform 

of this sort.). It is readily verified that if 

A ~ [ ~::r ]_' [11 12 ], 

where kl = (a2 - ad (cle22 - C2e12) / [c (ene22 - e2le12)] and k2 = (a2 - ad 

(C2ell - cle2l) / [c(elle22 - e2le12)], then Problem 4.2 becomes 

Problem 4.3 

subject to 

From Inequalities (4.51), (4.54) and (4.55) we have that kl > 0 and k2 > O. The 

constraints kIll[ x 2: 0, and k2"ll§ x 2: 0 are therefore equivalent to 

If x 2: 0, and l§ x 2: O. 

Thus Problem 4.2 is identical to Problem 4.1. 

( 4.56) 
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To obtain the minimum, the LCNNI method will have to form simplices that lie within 

the feasible cone and which progressively move towards the vertex origin. Figure 4.7 

illustrates a possible sequence of such simplices sq = [xi : x~ : x~] where all three vertices 

of every simplex are boundary vertices and the simplices each have two vertices on one 

boundary and one vertex on the other. However they 'flip' back and forth in the sense 

that the boundary with the two vertices alternates from simplex to simplex. vVe shall 

show that for the LCNNI method there is always an initial simplex where this flipping 

continues indefinitely, so that the vertex is never reached in a finite number of steps. 

4.4.2 The LCNM method for the LPP 

Consider Problem 4.1, and suppose that we apply the LCNM method using as initial 

simplex S°: 

so _ [ 0. 0. 0] 
- xl' X2 . X3 , ( 4.57) 

so that, as illustrated in Figure 4.7, x~ and xg lie on the boundary of l2 and xg lies on 

the boundary of h. Then the sequence of simplices will have the alternating form 

illustrated in Figure 4.7 if application of the LCNNI method at each simplex 

sq = [xi : x~ : x~], leads to selection of the constrained reflection point x~ew (as 

illustrated in Figure 4.6), as the next new point. Thus when alternating behaviour 

occurs the simplices satisfy the relation 

S q+l - [ q+l. q+l. q+l] - [q . q. q] - 0 1 2 - Xl . x2 . x3 - xnew . Xl . x2 , q - , , , ... 

This will occur if the following condition holds at each qth iteration. 

Condition 4.1 (Relative values of f(x)) 

f(x~ew) < f(xi) < f(x~) < f(x~) q = 0,1,2 .... 

Clearly, from the symmetry of Problem 4.1 this is equivalent to 

Condition 4.2 (Distance of vertices Xi) 

Ilx~ewll < Ilxill < Ilx~11 < Ilx~11 q = 0,1,2 ... 

( 4.58) 

Thus, geometrically expressed, for Problem 4.1, alternating behaviour occurs if each 

move is a constrained reflection with the new point lying alternately on one constraint 
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boundary and then on the other, and where each new point is nearer the origin than all 

previous simplex points. More explicitly we have the following: 

Property 4.1 Suppose the LCNM method is applied to Problem 4.1 using the initial 

simplex given by Equation (4. 57}. If Condition 4.2 holds, then the LCNM method 

generates the sequence of simplices given by Equation {4.58}, with, at each iteration q, 

the new point lying alternately on h and on l2. 

Theorem 4.5 (on page 102) establishes the general behaviour of a sequence of simplices of 

the form given by Equation (4.58) whilst the Corollary 4.2 (on page 109) gives the 

condition on the initial simplex that ensures that Condition 4.2 is satisfied when 

Property 4.1 is obtained. 

Our approach is to examine the ratio of distances of simplex points from the origin. We 

therefore have the following lemma. 

Lemma 4.6 Let kq+2 be 

Ilxrlll 
IIxh;211 

Vq = 1,2, ... 

the ratio of distances of the vertices of a simplex from the origin. Let x~, x8 and x~ be 

the three vertices of the initial simplex Sa with x~, x~ on one line and x8 on the other. If 

we define the initial ratios of distances as 

Then for all iteration q = 1,2, ... , 

> 1 ( 4.59) 

Proof. Suppose that Ilx~11 < IIx811 < IIx~1I (Condition 4.2). Then we have 

kl > 1 and k2 > 1 
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and so 

The next candidate simplex is [xL x§, x~] = [x~ew' x~, xg]. If the point x~ew is to lie on 

the same line as xg we must have 

and if this candidate simplex is formed from the LCNM algorithm then straightforward 

geometrical consideration (See Appendix C in Section C.1) that we must have 

1 

Moreover if this new point is to be nearer to the origin than all points of the initial 

simplex we must have the next ratio, k3, satisfying 

Ilx§1I _ Ilx~11 
Ilxi II IlxRew II 

Namely, 

vVe see therefore that successive ratios satisfy the recursion 

kq+2 = -k 1 (2 - k: ) > 1 \lq = 1,2, ... 
q+l q q+l 

and the LCNM algorithm will produce the required sequence of simplices provided 

km > 1 \1m = 0,1, .... ( 4.60) 

• 
Theorem 4.5 Consider Problem 4.1. If the LCNNI algorithm is applied to Problem 4·1 

beginning with the simplex given by Equation (4.57), let sq be the alternating sequence as 

defined in Equation (4.58) and let the two initial ratios be 
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Then Jar all n = 1,2, ... , 

Ilx§nll 1, n-l [2iab _ (2i _ 1)] 2 
k2n-rl = Ilx§nll = ab2 (2nab - (2n - 1)) D (2i + l)ab - 2i ' (4.61) 

and 

k = Ilx§nll = (2n - l)ab - 2(n - 1) nrr-l [(2i - l)ab - (2i - 2)] 2 (4.62) 
2n II xin II a i= 1 2iab - (2i - 1) , 

o 
where n [.J = l. 

i=l 

iv!oreover 

1) k2n+1 is a decreasing sequence as n increases with 

k 2(n+1)+1 _ 1 _ w 2 

k2nH - [(2nw + 1) + wJ2 Vw>O/\n=l,2, ... 

2) 

Vw > 0 

3) k2n is a decreasing sequence as n increases with 

k2(n+l) = 1 _ w
2 

k2n (2nw + 1)2 
Vw > O/\n = 1,2, ... 

4) 

where w = ab - 1 

Proof. Suppose the two initial ratios are 

From Lemma 4.6 we evaluate Equation (4.59) for q = 1,2,3, ... we obtain 
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k6 = ~ (2 __ 1_) = (5ab - 4) (3ab - 2)2 (abj2 
k5 k4 k5 a (4ab - 3)2 (2ab _1)2 

k7 = ~ (2 __ 1_) = _1_ (6ab - 5) (4ab - 3)2 (2ab - 1)2 
k6 k5k6 ab2 (5ab - 4)2 (3ab _ 2)2 

ks = ~ (2 __ 1_) = (7ab - 6) (5ab - 4)2 (3ab - 2)2 (ab)2 
k7 k6k7 a (6ab - 5)2 (4ab - 3)2 (2ab - 1)2 

kg = ~ (2 __ 1_) = _1_ (8ab - 7) (6ab - 5)2 (4ab - 3)2 (2ab - 1)2 
ks k7kS ab2 (7ab - 6)2 (5ab - 4)2 (3ab _ 2)2 

By examining of km we therefore obtain that for all odd mth cases 

Ilx§nll 1 n-l [2iab - (2i _ 1)] 2 

k2n+1 = Ilx§nll = ab2 (2nab - (2n - I))}] (2i + l)ab - 2i 

On the other hand, for all even mth cases, we have 

k2n = Ilx§nll = (2n - l)ab - 2(n - 1) nII-l [(2i - l)ab - (2i - 2)] 2 
Ilxrnll a i=l 2iab - (2i - 1) 

Part 1. 

From Equation (4.61), we have 

1 n-l [2iab _ (2i _ 1)] 2 
k2n+l = -b2 (2nab - (2n - 1)) II (.) . 

a 22 + 1 ab - 21, i=l 
\In = 1,2, ... 
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If w = ab - 1, then we obtain 

k 
_ ~ 2nw + 1 nrr-l [ 2iw + 1 ] 2 

2n+l - . 
b w + 1. 2%w + w + 1 

~=l 

\fw > 0 i\ n = 1,2, .... 

If k2n+l is a decreasing sequence as n increases for all w > 0, then 

k2n+l > k2(n+l)+l \fw > 0 i\ n = 1,2, ... 

Using Equation (4.63) for nand n+ 1, we have 

k2(n+l)+l 

k2n+1 

12(n+l)w+l TIn [ 2iw+l ] 2 
b w+l . (2i+l)w+l 

~=l 

n-l [ ] 2 1 2nw+l 2iw+l 
b w+l n (2i+l)w+l 

~=l 

[2(n + l)w + 1] (2nw + 1)2 

[2(n + l)w + 1] [(2~~~)~1+1 r 
2nw+ 1 

2nw + 1 [(2n + l)w + 1]2 

(2nw + 1 + 2w)(2nw + 1) 

(2nw + 1 + w)2 

(2nw + 1)2 + 2w(2nw + 1) w2 
-,---'------:....-:.------"------'~ - 1 - ------.",-
(2nw + 1)2 + 2w(2nw + 1) + w2 - [(2nw + 1) + w]2 

k2(n+l)+l _ 1 _ w
2 

k2n+l - [(2nw + 1) + w]2 
\fw > 0 i\ n = 1,2, ... 

105 

( 4.63) 

( 4.64) 

Since 0 < k2t+1)+l < 1 for all w > 0 and n = 1,2, ... (see Equation (4.64)), then clearly 
2n+l 

k2n+l > k2n+3 for all w > 0 and n = 1,2, .... This is, k2n+l is a decreasing sequence as n 

increases. 

Part 2. 

From Equation (4.63) we define go(n) as 

n-l [ 2iw + 1 ] 2 

go(n) = g 2iw + w + 1 
n-l [ ] 2 E\ 1 + (1+~)/2w 

\fw > 0 i\ n = 1,2, . ... (4.65) 
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Using Equation (C.12) of Appendix C (Section C.2) and Equation (4.63), we have 

k _ (2nw + 1) r;_l (~) 
2n+1 - a (n _ 1) r2 (...L) 

n-1 2w 
'tIw > 0 1\ n = 1,2, .... ( 4.66) 

r2 (l+w) 
K = 2wa 2W 'tIw > 0 . 

o r 2 (2~) 
( 4.67) 

Part 3. 

From Equation (4.62), we obtain 

k 
= (2n - l)ab - 2(n - 1) nrr-1 [(2i - l)ab - (2i - 2)] 2 

2n ) 'tin = 1,2, ... 
a . 2iab - (2i - 1 

2=1 

Using w = ab - 1, we have 

k2n 
= (2n - l)w + 1 nrr-1 [(2i -. l)w + 1] 2 

'Vn=1,2, .... 
a 2'lW + 1 

i=l 

( 4.68) 

k2n is a decreasing sequence as n increases. 

Here we will prove that k2n is a decreasing sequence as n increases for all w > 0, that is, 

k2n > k 2(n+1) 'tIw> 01\ n = 1,2, .... 

Using Equation (4.68) for nand n+ 1, we have 

(2(n+1)-1)w+l ITn [(2i~1)W+l] 2 

k 2(n+1) _ a i=l 22w+1 [ ]
2n-l[. ]2 (2(n+l)-1)w+l (2n-l)w+l IT (22~1)w+1 

a 2nw+l 22w+1 
i=l 

n-l [ ] 2 (2n-l)w+1 IT (2i~1)w+l 
a 22w+1 

i=l 

n-l [ ] 2 (2n-l)w+1 IT (2i~1)w+l 
a 22w+l 

i=l 

(2(n+l)-1)w+l [(2n-1)w+l] 2 
k 2(n+l) _ a 2nw-t-l 

k2n (2n-l)w+l 
a 

k 2(n+l) = [(2(n + 1) - l)w + 1] . [(2n - l)w + 1] 2 

k2n [(2n - l)w + 1] 2nw + 1 
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k2 (n+1) (2n'W + 1 + 'W) (2n'W + 1 'W) 

k2n l' [2n'W + 1]2 

(2n'W + 1)2 - 'W 2 

(2n'W + 1)2 

k2(n+1) = 1 _ 'W
2 

k ( )
2 V'W > Ol\n = 1,2, ... 

2n 2n'W + 1 
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(4.69) 

Since 0 < k2t:1) < 1 (see Equation (4.69)), then clearly k2n > k2n+2 for all 'W > 0 and 

n = 1,2, .... This is, k2n is a decreasing sequence as n increases. 

Part 4. 

For 'W of: 1 and 'W > 0 

From Equation (4.68) let ge(n) be 

_ Tf [1 + (1-W)/2W] 2 
nrrl [2i'W + 1 - 'W] 2 i=l ~ 

ge(n) = = V'Wof: 1 1\ 'W > 0 1\ n = 1,2, .... 
. 2i'W + 1 n-1 [ 1/2] 2 
~=1 rr 1 + T 

i=l 
(4.70) 

Plugging Equation (C.13) of Appendix C (Section C.2) into Equation (4.68), we have 

k _ 2:. (2n - 1)'W + 1 r;_l (~) 
2n - a (n - 1)(1- 'W)2 r;_l (\lwW) V'W of: 1 1\ 'W > 0 1\ n = 1,2, .... (4.71) 

Letting n ----> oc 

. 2'W r2 (~) 
hm k2n = Ke = ( )2 ') (1-) V'W of: 1 1\ 'W > 0 

n-->oo a 1 - 'W r- --1!l. 2w 
(4.72) 

For 'W = 1 

2n n-1 [ 2i ] 2 2n 1 
k2n = -;;: rr 2i + 1 = -;;: n

rr
-1 [ 1/2] 2 V'W = 1 1\ n = 1,2,... . (4.73) 

2=1 1 +-. 
2 

i=l 

n-1 [ 1/2] 2 n - 1 
P4(n) = rr 1 + -~-. = lr2 (l) 

i=l 4 n-1 2 

4(n - 1) 
2 (1 V'W = 1 1\ n = 1,2, .... 

r n - 1 2) 
( 4.74) 
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Using Equation (4.74) in Equation (4.73), we obtain 

n 2 
2a(n_1)rn - 1(1/2) 'v'w=l 1\ n=1,2, .... 

Letting n -* CXJ, we have 

Ke = r2(1/2) = ~ 'v'w = 1 
2a 2a 

Convergence value of Ke 

From Equations (4.72) and (4.75), we rewrite 

{ 

2w r2(~) 
Ke = a(1-w):.l:2(l2WW) 

2a 

if w#ll\w>O 

if w = 1 

From the called fundamental recurrence formula 

r(z + 1) = zr(z) 

108 

(4.75) 

( 4.76) 

( 4.77) 

We shall rewrite Equation (4.76) for w # 1 and w > 0 using the following change of 

variable 
1-w l+w 

z=-- soz+l=--
2w ' 2w 

Substituting Equation (4.78) into Equation (4.77), 

r(~)=~r(~) 2w 2w 2w 

Using Equation (4.79) in Equation (4.76), we obtain for w # 1 and w > 0 

K _ 2w r 2 (~) 
e - a(l - W)2 r 2 e~W) 

2w r 2 (fw-) 
a(l - w)2 r2( ~) 

(12ww / 

1 r 2 (.l) K -_ 2w 
e - 2wa r 2 eiwW) 

(4.78) 

(4.79) 

( 4.80) 
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Therefore, Ke may be rewritten as 

which can be rewritten as 

• 

1 r2( ~) 
2wa r 2 (l;ww) 

7r 

2a 

if wyf1 !\w>O 

if w = 1 

1 r2 (--.L) 
K - -- 2w Vw > O. 

e - 2wa r 2 e:tW) 

From Equations (4.67) and (4.82), we have 

The implication of this is as follows. 

109 

(4.81) 

( 4.82) 

( 4.83) 

Corollary 4.2 For any initial simplex S° for which a, b satisfy Ko = 1, the LCNM 

method will give rise to an unending alternating sequence of simplices. 

Proof. From Equation (4.83) we see that if a and b satisfy Ko = 1 then this 

automatically gives Ke = 1. As the Theorem shows that the k2n+l and k2n are 

decreasing sequences tending to Ko and Ke respectively, this implies that all the km > 1, 

m = 0,1,2 .. so that Inequality (4.60) is satisfied and the corollary follows .• 

Though Ko = 1 gives the relation between a and b implicitly, pairs are easily found 

numerically by setting a, say, and then finding b iteratively to satisfy Ko = 1. In fact an 

elementary analysis of the form of Ko shows that if a = 1 + 6, 6 > 0, then b = 1 + 6-

262+ 0(63
). 

4.4.3 Analysis of the rate of convergence 

In this subsection we shall analyse the rate of convergence of xin through its distance 

from the origin, when any collapsed simplex does not take place during the application of 

the LCNM method. 

vn = 0, 1, ... 
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Since x~n = x~n-2 for all n = 1,2, ... , then 

therefore 
1 

d(2n) = k k d(2n - 2) 'lin = 1,2, ... 
2n+l' 2n 

( 4.84) 

where d(2n) is Ilxinll 
From Equations (4.63) and (4.68), we obtain 

k k _ ~ (2nw + 1)[(2n - l)w + 1] nrr-l [(2i - l)w + 1] 2 (4.85) 
2n+l 2n - ab w + 1 i=l (2i + l)w + 1 

Using w = ab - 1 and developing the product, we have 

k k _ (2nw + 1)[(2n - l)w + 1] . [ w + 1 ] 2 

2n+l 2n - (w + 1)2 (2n - l)w + 1 

which can be rewritten as 

(2nw + 1) 
k 2n+ 1k2n = (2n _ l)w + 1 > 1 Vw > 0 1\ n = 2,3, .... 

Therefore 
1 2nw+ 1- w w 

----=1----
2nw + 1 2nw + 1 

Using Equation (4.86) in Equation (4.84), we obtain the recursion 

d(2n) = [(2n - l)w + 1] d(2n _ 2) 'lin = 1,2, ... 
2nw + 1 

From Equation (4.87), we have 

d(2) = U:: ~] d(O) 

d( 4) = [3W + 1] d(2) = [3W + 1] [w + 1 ] d(O) 
4w + 1 4w + 1 2w + 1 

( 4.86) 

( 4.87) 
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d(6) = [5W + 1] d(4) = [5W + 1] [3W + 1] [W + 1 ] d(O) 
6w + 1 6w + 1 4w + 1 2w + 1 

As a result of this, we write 

d(2n) = d(O) rrn [(2i ~ l)w + 1] vw > 0 1\ n = 1,2, ... , (4.88) 
22W + 1 

i=l 

where d(O) = Ilx~ll. 

Rate of convergence 

From Equation (4.88), we obtain 

Now, if y > x > W > 0, then 

and 

x x+w 
-<--
Y y+w' 

x x-w 
->--. 
Y y-w 

Using Inequality (4.90) in Equation (4.89), we have for all n = 1,2, ... , 

d2(2n) < d2 (0) IT [(2i ~ l)w + 1] [(2i ~ l)w + 1 + w] 
. 22W + 1 2~w + 1 + W 
~=l 

Since, 

rrn [(2i - l)w + 1] W + 1 
i=l (2i+l)w+l - (2n+l)w+l' 

then plugging Equation (4.93) into Inequality (4.92), we obtain 

(4.89) 

(4.90) 

(4.91) 

( 4.92) 

(4.93) 

( 4.94) 
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Using Inequality (4.91) in Equation (4.89), we have for all n = 1,2, ... , 

d2(2n) > d2(O) IT [(2i ~ l)w + 1] [(2i ~ l)w + 1 -w] 
i=l 21,w + 1 21,w + 1 - w 

( 4.95) 

We have 

rrn [(2i-2)W+1] = 1 
. 2iw + 1 2nw + 1 
t=l 

( 4.96) 

From Inequality (4.95) and Equation (4.96), we obtain 

( 4.97) 

In consequence, from Inequalities (4.94) and (4.97) 

[ 
1 ] 1/2 [ W + 1 ] 1/2 

d(O) 2nw + 1 < d(2n) < d(O) (2n + l)w + 1 ( 4.98) 

This result shows that, for large q, d(q) = O(q-1/2). This rate of convergence is slow and 

is comparable only with rates of convergence of stochastic estimators rather than for 

deterministic situations. 

4.5 Conclusions 

A theoretical study of the behaviour of the LCNM algorithm has been carried out to 

understand some of its behaviour. We have examined in detail the convergence rate of 

the LCNM algorithm only for particular situations so it does not correspond to a 

rigorous study of convergence of the LCNM algorithm. However, it allows us to 

appreciate some of the behaviour of the method when the LCNM algorithm. 

The class of convex functions described by McKinnon (1998) is one where problems may 

be encountered. Therefore, we have to say that the LCNM algorithm may not converge 

for all convex function. Nevertheless, the analysis of convergence presented in this 

chapter tries to find some features of the LCNM algorithm, when the algorithm is 

approaching to a local minimum. 
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The symmetrically constrained linear optimization case studied in Section 4.4 permitted 

demonstrating how the LCNM algorithm becomes exceptionally slow, even in the very 

simple situation of two symmetrically constrained linear optimization where the rate of 

convergence is of order O(q-l/2). This fact and the non guarantee of convergence of the 

NM algorithm when the objective function belongs to the class of functions described by 

McKinnon (1998) induce us to see the LCNM algorithm as a non-rigorous method. 

However, the variations of the NM method developed by Barton and Ivey (1996) and 

Humphrey and 'Wilson (2000) indicate a good enough practical performance, when the 

objective function presents noise. We believe therefore that the apparent theoretical 

reservations do not therefore rule out the potential practical usefulness of the LCNM 

method. 



Chapter 5 

A modified LCNM method 

5.1 Introduction 

In this chapter we consider the possibility of eliminating the potential slow convergence 

of the LCNM method by inducing an early collapse of the simplex, once a constraint is 

encountered. 

One danger is that when a collapse of the simplex occurs prematurely, the LCNM 

algorithm orientates the search of the optimum on the boundary of the feasible region. 

Thus if the global minimum of the objective function were an interior point, this new 

procedure of inducing a collapse of the simplex could eventually miss it. 

Because of this we implemented a procedure that prematurely collapses the simplex only 

during the first stage of the LCNM algorithm. This avoids the method repeatedly trying 

to collapse the simplex in other stages and it prevents the search being confined to a 

boundary what the true minimum is an interior point. 

The structure of this chapter is as follows. In Section 5.2 we present the modified LCNM 

algorithm using a new criterion for inducing the collapse of the simplex prematurely. A 

set of preliminary experiments is shown in Section 5.3 for studying the behaviour of the 

modified method in comparison with the original version. Results of a large set of test 

problems are reported in Section 5.4 for comparing the LCNM algorithm, its premature 

collapse mode and the Subrahmanyam method (SM). Finally, conclusions of the modified 

LCNM algorithm and its original version are presented in Section 5.5. 

114 
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5.2 Modification of the LCNM method 

The study of convergence of the LCNM algorithm for the symmetrically linear 

constrained linear optimization problem helped us to detect a potential trouble, when 

the constrained global optimum is located on the boundary and a collapse of the simplex 

does not take place during the application of the algorithm. The algorithm could thereby 

become expensive in terms of the number of function evaluations. In fact, numerical 

examples have evidenced this behaviour when the objective function is approximately 

linear in the feasible region, even in linearly constrained convex quadratic optimization 

problems, where the collapse of the simplex occurs only after a considerable number of 

iterations. 

We have therefore studied a variant of the LCNM algorithm using a criterion that 

induces the collapse of the current non-collapsed simplex in premature manner by a 

procedure, called Premature Collapse Procedure (PCP). 

We call the method Linear Constrained NeIder-Mead method with Premature 

Collapse (LCNM+PC) algorithm. 

The method employs the PCP only during the first stage of the LCNM + PC algorithm. 

The number of vertices of the current simplex that is on each linear constraint boundary 

is monitored. So if the current qth simplex of Vq vertices has Vq - 1 vertices on any linear 

constraint boundary, the PCP identifies the vertex that is not on the boundary, replacing 

it by the centroid of the remaining hyperface H~ql. Thus in the next iteration, a collapse 

of the simplex is initiated. 

The LCNM + PC algorithm therefore applies the procedure of reduction of vertices in the 

same way as is performed by the original version. However this is only applied during 

the first stage of the LCNM + PC algorithm but not in any succeeding stage. 

Once of a point x~ln is found through convergence of the algorithm, then its coordinates 

are employed for starting the following stage, building a new simplex in either the 

sub-space where the previous convergent point x~~~l)thJ lies or in the entire feasible 

region. 

All subsequent stages employ the original LCNM method. 

It is worthwhile mentioning that the modified algorithm employed the same stopping 

rule as the original version for all stages. Nevertheless, the stopping tolerance is relaxed 

during the first stage, because the algorithm does not need a high accuracy for obtaining 

the point x~ln. Thus reduces the number of function evaluations. 
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To include this approach to the LCNM algorithm, modifications at the steps 10 and 11 

of the LCNM algorithm were required, and they are summarized as follows. 

5.2.1 Pseudocode of the modification 

The modification of the LCNM algorithm is here shown by including some changes in 

the steps 10 and 11 of the original algorithm. 

Step 10. Test of termination criterion I 

Sort fj V j = 1, 2, ... ,v for determining Xmin. 

Compute the following inequality for the current simplex according to the stage 

Given flagmodepc E {true, false} 

Select the case according to flagmodepc 

Case true: 

In this case, the LCNM algorithm is in the first stage 

and for a fixed TJ > 0, verify max Ilxj - Xmin II S; TJ 
Xj 

Case false: 

In this case, the LCNM algorithm is in the sth (s > 1) stage, 

verify 

II II { 
TJlllxminll if Ilxminll > c, 

max Xj - Xmin S; . 
Xj TJ2 otherWIse, 

where c is a very small positive number. 

End select 

if one of above inequalities is satisfied 

then go to step 13, for keeping the optimum solution at (s+l)th stage 

and testing the stopping rule 

else go to step 11. 

The above step seeks an initial local optimum to the level of tolerance TJ, where TJ could 

be fixed to a high level, so it is approached a first local optimum. 

Step 11. Test for estimating a new active constraint or increasing of r 
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6.r f- 0 

Do, for all i = 1,2, ... ,k A i ~ Sactive 

then 6.r f- 6.r + 1 and identify the current linear constraint li (x), 

as active constraint. Thus, Sactive f- Sactive U {i} 

End do 

if 6.r > 0 then go to step 12. 

else 

if the LCNM algorithm is in the first stage 

then perform Premature collapse procedure and 

go to step 5 of the LCNM algorithm. 

else go to step 5 of the LCNM algorithm 

Premature Collapse Procedure 
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This procedure verifies whether the current simplex meets the condition for inducing its 

collapse prematurely or not. vVhen the current simplex does satisfy the conditions, the 

procedure induces the collapse of the simplex at step 2. 

Algorithm 5.1 (Premature Collapse Procedure) Start procedure 

Step 1. Test for determining if a premature collapse of the current simplex 

can take place 

6.r f- 0 

Vl i f- 0 Vi = 1, ... k A i ~ Sactive 

Estimate the number of vertices Vii that are on the boundary 

of each li ~ Sactive using the following procedure, 

Do, for all i = 1,2, ... ,k A i ~ Sactive 

Do, for all j = 1,2, ... , V 

if aT Xj - bi = 0 then Vl i f- Vl i + 1 

End do 
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End do 

Estimate the maximum Vii Vi = 1, ... k !\ i tJ. Sactive and denote it as lvIvertices, 

and keep its subscript i as pc 

if Mvertices = v-I 

then go to step 2 for inducing a collapse to the current simplex onto the lpc 

constraint. 

else return. 
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Step 2. Become the current simplex into collapsed one on the lpc constraint 

Because there only exists a jth vertex of the current simplex that produces a positive 

residual r pc (Xj) = a~cxj - bpc to the pcth constraint, it must be identified for replacing it 

by the centroid of the vertices that are on the boundary of the lpc constraint. 

Let Xin denote the vertex that produces a positive residual. 

Do, for all j = 1,2, ... , v 

if a~cxj - bpc = 0 then Xcum f- Xcum + Xj else in f- j 

End do 

Xin f- v~l Xcum for obtaining a collapsed simplex 

Return 

End procedure 

5.3 Experiments 

With the aim of establishing the potentiality of the new algorithm, we compared the 

LCNM+PC algorithm, the LCNM algorithm and the 8M through some preliminary 

numerical examples. 
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5.3.1 Experiment 1 

Quadratic objective function with global optimum point on the boundary. 

subject to: 

h: 3Xl + 2X2 > 120 

l2: Xl + 2X2 < 20 

The parameter d represents the dimension of the Euclidean space and the constrained 

global optimum solution is given by Xmin = (50, -15,0,0, ... , O)T with !(Xmin) = 2725. 
'--..,--' 
(d-2) times 

For each scenario, the initial point of the simplex was Xinitial = (400, 

-400,400, ... ,400)T, and the stopping parameters 7) = 0.1,7)1 = 7)2 = 10-6 and 
~ 

(d-2) times 

.6. = 10-5 . 

Figure 5.1 depicts the trajectory of the minimum vertex xi of each qth simplex for the 

case of two dimensions and both versions of the LCNM algorithm. The dashed lines are 

the boundaries of the linear constraints, whilst the solid line segments represent the path 

of the vertex xi. 

100 200 300 400 Xl 100 200 300 400 Xl 

Xopt 

---
... "' ....................... x? 

-200 -200 

-300 

-400 

(a) The LCNM algorithm (b) The LCNM+PC algorithm 

Figure 5.1: Path of the minimum vertex xi of the simplices for the quadratic objective 
function with global minimum on the boundary of the region. 

From Figure 5.1(a), the minimum vertex xi of each qth simplex searches both 
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boundaries ten times, so the method searches the minimum with more evaluations than 

the case shown in Figure 5.1(b), where the LCNM+PC algorithm was applied. 

Table 5.1: Summary of Experiment 1. 
d 2 13 I 4 I 5 1 6 

LCNNI I NE II 36 I 209 I 334 
DTP 7.8E-13 3.75E-6 1. 0 lE-5 

LCNM I NE II 19 I 157 I 816 
+PC DTP 6.44E-14 1.25E-5 1.09E-5 

8M 330 
5.05E-5 

ex:) ex:) 

509 2554 
1.84E-5 1. 84E-5 

553 632 
1. 76E-5 1.66E-5 

ex:) ex:) 

7 8 

2725* 4518 
1.66E-5 2.39E-5 

1103 3800 
1.97E-5 2.76E-3 

ex:) ex:) 

Table 5.1 shows results for each dimension d when the LCNM algorithm, the LCNM+PC 

algorithm and the SM were applied to the problem. We must point out that for the case 

d = 7 the coefficient a of the LCNM algorithm was fitted to 0.96 to obtain the best 

performance. As can also be seen from the table, the SM only converges for the case 

when the dimension is equal to two. 

5.3.2 Experiment 2 

Quadratic objective function when the global optimum point is an interior 

point. 

subject to: 

ll: 3X1 + 2X2 > -20 

l2: Xl + 2X2 < 20 

The parameter d represents the dimension of the Euclidean space and the local optimum 

solution is at the origin. 

The algorithms were performed with stopping parameters 77 = 0.1, 771 = 772 = 10-6 and 

.6. = 10-5 , an initial point Xinitial = (400, -400,400, ... , 400)T of the simplex and 

reflection coefficient a = 1. 

'-----...--' 
(d-2) times 
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(a) The LCNM algorithm 

-100 

_
200j

l 

~::J 
Xli 
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200 300 400 Xl 

(b) The LCNM+PC algorithm 

Figure 5.2: Path of the minimum vertex xi of the simplices for the quadratic objective 
function \vith global minimum inside of the region. 

Figure 5.2 displays the trajectory of the minimum vertex xi of each qth simplex for the 

case of two dimensions, when the original LCNM algorithm and the LCNM+PC method 

are applied to the problem. Figure 5.2(a) shows that the LCNM algorithm converges to 

the point Xopt = (-4.615, -3.077f on the boundary of the constraint h. However, this 

is not an optimum point of the constrained problem, because the point 

(-4.615, -3.077)T violates the Kuhn-Tucker (KT) necessary conditions. 

Figure 5.2(b) also shows the results for LCNM+PC method showing that it converges to 

the minimum point X~~t on the boundary of the constraint l2, whose coordinates 

correspond to (-1.1,4.25)T during the first stage. In the second stage, the modified 

method converges to the global minimum point Xopt = (O,O)T. 

Table 5.2: Summary of Experiment 2. 
d II 2 131 4 I 5 I 6 7 8 

LCNM NE 142 8537 1848 I 6445 I 630 3651 1585 

DTP 5.5,5 4.5E-162 5.55 2.48E-27 8.94 7.82E-15 8.94 

LCNNI NE 3571 5841 819 I 3406 I 2824 3213 4304 

+PC DTP 1.2E-244 8.5E-163 7.67E-14 6.20E-24 2.29E-24 1.06E-14 7.32E-13 

8M NE 3340 oc 1848 

I 
oc 

I 
oc oc 00 

DTP 1.6E-162 5.547 

According to Table 5.2, the LCNM+PC method had a better performance than the 

LCNM method. From the results we found that the LCNM + PC method identified the 

I 
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global minimum point for each d-dimensional case, whereas the LCNM method 

converged to local minimum on the boundary of the feasible region in only the cases 

when the dimension of the problem is even. It can also be pointed out the SM did not 

converge in most cases. 

5.3.3 Experiment 3 

Powell singular function. 

subject to: 

h: Xl + X2 + X3 > bl 

l2: 2XI + X2 + X3 + X4 > b2 

The Powell singular function has its unconstrained global minimum solution at the origin 

with a value function of !(xopt) = 0 (More et al. 1981). In this experiment, we set the 

initial point at (100, 100, 100, 100)T for building the initial simplex, the stopping 

parameters were fixed as Tf = 0.1, Tfl = Tf2 = 10-6 and ,6. = 10-5 and the coefficient of 

reflection a = 1. 

Two cases were considered: the first, when the constrained global minimum is on the 

boundary of the feasible region, whereby bl = 3 and b2 = 8. The second case is when 

bl = -3 and b2 = -4. In this latter case, the constrained global optimum corresponds to 

an interior point, whose coordinates are (0,0,0, O)T. Observe that the SM satisfactorily 

works for the second case only. 

Table 5 3: Summary of Experiment 3 
b1 b2 NE !(xopt) Xl,opt X2,opt X3,opt X4,opt 

LCNM 3 8 626 17.4084 2.742 -0.194 0.592 2.119 
LCNM+PC 785 17.4084 2.742 -0.194 0.592 2.119 

8M 11899 140.88 3.773 0.112 -0.953 2.296 

LCNM -3 -4 557 2.5996 -l.373 0.110 -0.424 -0.940 
LCNM+PC 2110 7.153E-58 -4.253E-15 4.253E-15 -2.192E-15 -2.192E-15 

8M 3402 3.591E-63 -1.l79E-16 1.793E-17 -4.271E-17 -4.271E-17 
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As can be seen in Table 5.3, both the LCNM method and the LCNM+PC method 

converge to the same local minimum when the global minimum is on the boundary of the 

feasible region. However, the LCNM+PC method requires more NE than the LCNM 

method. 

In the second case, the LCNM+PC method obtained better performance than the 

LCNM method, because the LCNM + PC method converged to the constrained global 

optimum point, whilst the LCNM method converged to a local minimum on the 

boundary of the feasible region. 

5.3.4 Experiment 4 

Wood function. 

min [100(X2 - xi)2 + (1 - xI)2 + 90(X4 - x§)2 + (1 - X3)2 + 10(x2 + X4 - 2)2 + 10(x2 - X4)2] 
xElR4 

subject to: 

ll: Xl + X2 + X3 > bl 

l2: 2X1 + X2 + X3 + X4 > b2 

The unconstrained global minimum of this function is located at (1,1,1, l)T with 

function value zero (More et al. 1981). An initial point at (100,100,100, 100)T was used 

for building the initial feasible simplex for the two first cases, whilst the last case was 

carried out with an initial point at (10,10,10, 10)T. The parameters of stopping rule 

were set as 77 = 0.1,771 = 772 = 10-6 and 6.. = 10-5 . With respect to the parameters b1 

and b2, they were fixed at different values for the two cases. The first case, where b1 = 3 

and b2 = 5, the constrained global minimum point is on both boundaries of the linear 

constraints, whereas for the other cases, the constrained global minima are inside the 

feasible region. 
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Table 5.4: Summary of Experiment 4. 
, , , , I bll b211 a II NE I !(xopt) I Xl opt I X20pt I X30pt I X40pt 

LCNM 3 5 0.99 468 196.037 -1.497 2.578 1.919 3.497 

LCNM+PC 0.99 612 3.618E-11 1.000 1.000 0.999 0.999 
8M 0.99 4652 8.813 0.889 0.806 1.287 1.627 

LCNM -3 -5 1 811 2.502E-11 1.000 1.000 0.999 0.999 
LCNM+PC 1 1022 1.355E-11 1.000 1.000 0.999 0.999 

8M 1 810 3.939 -0.969 0.949 1.000 1.000 

LCNM 2 4 0.99 317 59.624 0.691 1.779E-15 1.309 1.309 
LCNrvI+PC 0.99 747 1.912E-11 0.999 0.999 1.000 0.999 

8M 0.99 CX) 

8M 0.9 548 2.545E-11 1.000 1.000 0.999 1.000 

Table 5.4 gives a summary report of both cases. As is displayed in the table, the 

LCNM+PC had better performance than the other methods for all cases, because it 

reached the constrained global optimum satisfactorily. 
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5.4 Comparison of the methods 

A comparison of the LCNM method, the LCNM + PC method and the 8M is presented in 

this section through a set of test problems. For this study a Performance Measure (PM) 

was used that depends on the NE, the DTP and the feasibility of the obtained solution. 

Let P jV!i be the PM of each ith design point 

(5.3) 

where NE is the number of function evaluations that are carried out in finding the 

optimum, DTP is the distance to the true point, Fi indicates if the found solution is 

feasible (Fi = 1) or infeasible (Fi = 0), and wl=10 and w2=4000 are weighted penalty 

factors. Here our interest is focused on minimizing PM. 

It is worthwhile pointing out that some settings of the methods caused a large number of 

iterations. Hence, the experiments under these situations were artificially stopped when 

a set maximum NE in the experiment was reached and, these abrupt stoppings are 

indicated by the symbol "+" beside the NE. 

These performance measures were studied as a function of the reflection coefficient a, the 

step size parameter T and the different methods. For this particular study, a complete 

factorial experiment was used where each factor was defined at three levels (Myers and 

Montgomery 2002), (Khuri and Cornell 1996). 

The coded factors Xo;, Xr and Xm of our experimental design are given by 

-1 

o 
1 

a = 0.90 

a = 0.95 

a = 1.00 

-1 

o 
1 

T = 0.5 

T = 1.0 

T = 1.5 

-1 

o 
1 

8M 

LCNM 

LCNM+PC 
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Table 5.5 displays the set of design experiment points. The reflection coefficient (x, step 

size parameter T, the algorithm of optimization and the coded factors X a , X T and Xm are 

represented in the table by row. 

Table 5.5: Table of setting for the experimental design. 
I Exp II (X T Method I Xa Xr Xm I 

1 0.90 0.5 8M -1 -1 -1 

2 0.95 0.5 8M 0 -1 -1 

3 l.00 0.5 8M 1 -1 -1 

4 0.90 l.0 8M -1 0 -1 

5 0.95 l.0 8M 0 0 -1 

6 l.00 l.0 8M 1 0 -1 

7 0.90 l.5 8M -1 1 -1 

8 0.95 l.5 8M 0 1 -1 

9 l.00 l.5 8M 1 1 -1 

10 0.90 0.5 LCNM -1 -1 0 

11 0.95 0.5 LCNM 0 -1 0 

12 l.00 0.5 LCNM 1 -1 0 

13 0.90 l.0 LCNM -1 0 0 

14 0.95 l.0 LCNM 0 0 0 

15 l.00 l.0 LCNM 1 0 0 
16 0.90 l.5 LCNyI -1 1 0 

17 0.95 l.5 LCNM 0 1 0 

18 l.00 l.5 LCNM 1 1 0 

19 0.90 0.5 LCNM+PC -1 -1 1 

20 0.95 0.5 LCNM+PC 0 -1 1 

21 l.00 0.5 LCNM+PC 1 -1 1 

22 0.90 l.0 LCNM+PC -1 0 1 

23 0.95 l.0 LCNM+PC 0 0 1 

24 l.00 l.0 LCNl'vI+PC 1 0 1 
25 0.90 l.5 LCNM+PC -1 1 1 

26 0.95 l.5 LCNM+PC 0 1 1 

27 l.00 l.5 LCNl'vI+PC 1 1 1 
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5.4.1 Description of test problems 

The test problems were divided into two main categories conforming with the solid angle 

feasible cone that can be calculated through the scalar product of the normal vector of 

each hyperplane of boundary constraint, these are: obtuse solid angle feasible cone and 

non-obtuse solid angle feasible cone. 

Because there exist several local minima in some of the following test problems, the true 

point (TP) of each test was taken to be the best local minimum or the also called 

constrained global minimum, whose coordinates are indicated in the description of the 

test problems. 

Figure 5.3 illustrates a taxonomical structure of the test problems that were carried out 

for contrasting the 8M, the LCNM method and the LCNM + PC method. These test 

problems were categorized by the feasible region, the location of the best local minimum 

and the type of function. 

Type of feasible cone Location of the best Type of function 
angle minimum 

Best local minimum on 

} the boundary { Q""""'tio fimotion 
Trigonometric function 

Feasible - Wood function 
region 1 Best local minimum Powell function 

inside region Rosenbrock function 

Test Problem 

Best local minimum on 

} the boundary 
{ Q""""'tio fimwoo 

Feasible 
_ Trigonometric function 

Wood function 
region 2 Best local minimum Powell function 

inside region Rosenbrock function 

Figure 5.3: Taxonomic of the test problems when the objective function is deterministic. 

The feasible region of each test problem was selected by locating the constrained global 

minimum of the objective function either on its boundary or inside it. For the objective 

functions, we selected simple functions, such as strictly convex functions and complicated 

functions, such as Rosenbrock, Wood and Powell functions, which may possess several 

local minima on the boundary, depending on the feasible region. 

Figure 5.4 shows both the contour line plot and the three dimensional plot of a type of 
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Rosenbrock function, whose mathematical expression is given by 

](XI' X2) = (X2 - xi)2 + (1 - X2)2 for all Xl, X2. As can be seen from the figure, this 

function possesses a global minimum at the point (l,l)T. However, a constrained 

optimization problem based on this class of function could present several local minima. 

This fact was taken into account in formulating test problems. 

·6 

Figure 5.4: Rosenbrock function. 

Figure 5.5 depicts the contour line plot and three dimensional plot of the employed 

trigonometric function for two independent variables, whose mathematical expression is 

shown in Equation (5.4) 

2 

1.5 

0.5 

o 
.40.

20 o ~ o . 
X1 

Figure 5.5: Trigonometric function. 
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{ 

2 _ I)- [Sill(O.IX;)] 2 
f(XI, X2) = t-l O.lx; 

o 
if (Xl, X2) i= (0,0), 

if (Xl, X2) = (0,0) 
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(5.4) 

This function has multiple local minima as can be identified in the picture. Note that its 

global minimum is at the origin. 

Figure 5.6 illustrates a set of three dimensional plots of the function of Wood where two 

of the four variables were fixed at one. Its global minimum is located at the point 

(l,l,l,l)T. The mathematical expression of the Wood function is given by Equation (5.5). 

f(x) = 100(x2 -xI)2+(1-xr)2+90(x4 _x§)2+ (1-x3)2+ 10(x2+x4 _2)2+ 10(x2 -X4)2 VX 

(5.5) 

800000 

400000 

·10 

-5 
Q 0 

,3 10 ,1 

10 10 (b)x2=X4=1 (t)x2=x3=1 (a)x3=x4=1 

25000 

20000 

15000 

10000 

5000 

-1 

,4 

(d)X1=x4=1 (8) xl =)(3=1 (1))(1=)(2=1 

Figure 5.6: Three dimension plots of the Wood function. 

As can be seen from Figure 5.6, the function is flat close to its minimum, when two 

variables are fixed at one. This fact could cause a slow convergence of the optimization 

algorithm, when the feasible region includes this flat region. 
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1.2e-106 

800000 

400000 

o 
·20 

(a)x3=x4 =1 

Figure 5.7: Wood function for the case a) X3 = X4 = 1 and f) Xl = X2 = 1. 
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The function of 'vVood contains terms similar to the Rosenbrock function. It behaves as 

the function of Rosenbrock, when Xl and X2 (X3 and X4) are allowed vary at fixed values 

of X3 and x4 (Xl and X2). This feature follows easily from Equation (5.5) and it is 

graphically represented in Figure 5.7, in which are displayed the cases when Xl = X2 = 1 

and X3 = X4 = 1. 

(a)x3=)(4=0 

{d)X1=X4=O 

40000 
20000 

o 
·10 ·10 

(e)xl=x3=O 
10 10 

·10 

10 10 
0)x1:::.:2=0 

Figure 5.8: Three dimension plots of the Powell function. 

·10 

·10 

A similar feature to the function of Wood can be appreciated in the function of Powell, 

when it is in the neighbourhood of its global optimum. It is depicted in Figure 5.8. 

Observe that the function of Powell flats near to its global optimum (O,O,O,of and its 

mathematical expression is given by Equation (5.6). Nevertheless, Powell function does 
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not contain Rosenbrock function terms. 

Case study 1: obtuse solid angle feasible cone 

The feasible region :F1 for this case is given by, 

d 

C1 : LXi 2:: b1 
i=l 

d 

C2 : 2Xl + LXi 2:: b2 
i=2 

131 

where b1 and b2 were selected so as to give at least a local minimum on the boundary or 

inside the feasible region. 

For all test problems of this case study, the initial point of the simplex was taken to be 

the point 10· Id, where 1d is the unit vector of dimension d. 

Test Problem 1 

Quadratic objective function with its best optimum point on the boundary. 

subject to {x E IR.d I X E:F1 with bl = 3 1\ b2 = 5} 

The unconstrained global minimum is located at Xopt = (0,0, ... ,O)T and !(xopt) = O. 

Constrained global minimum occur at the following points. These are verified in 

Appendix A on page 211. 

(2,1) 

(1.42857, 0.714286, 0.714286, 0.714286) 

d = 2, 

d= 4, 

(1.11111, 0.55555, 0.55555, 0.55555, 0.55555, 0.55555, 0.55555) d = 6. 
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Test Problem 2 

Quadratic objective function with its best optimum point inside the feasible 

region. 

subject to {x E IRd I x EFI with bl = -3 /\ b2 = -5}. 

The constrained global minimum is located at Xloeal = (0,0, ... ,of. 

Test Problem 3 

Trigonometric objective function with its best optimum point on the 

boundary. 

mi~ [d - t g;] 
xElR i=l 

subject to {x E IRd I x EFI with bl = 3 /\ b2 = 5}, 

where gi is given by 

{ 

sin(O.lxi) 

g . _ O.IXi 
2 -

1 

if Xi # 0 

otherwise 
(5.7) 

The unconstrained global minimum is located at Xopt = (0,0, ... ,O)T and !(xopt) = O. In 

this group of tests, the constrained global minimum points occur at 

{ 

(2,1) 

xTaeal = (1.42857, 0.714286, 0.714286, 0.714286) 

(1.1111, 0.5555, 0.5555, 0.5555, 0.5555, 0.5555, 0.5555) 

Test Problem 4 

d = 2, 

d= 4, 

d = 6. 

Trigonometric objective function with its best optimum point inside the 

feasible region. 

mi~ [d - t g;] 
xElR i=l 
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subject to {x E ]Rd I x EFI with b1 = -3 1\ b2 = -5}, where gi is given by Equation (5.7), 

In this case, the constrained global minimum is located at Xloeal = (0,0, ... ,O)T. 

Test Problem 5 

Extended Rosenbrock objective function with its best optimum point on the 

boundary. 

d/2 

mi~ 2:= [100(x2i - X~i_l)2 + (1 - X2i_d 2] 
xElR i=l 

subject to {x E]Rd I x EFI with b1 = 3 1\ b2 = 5 Vd = 2,4 and b1 = 61\ b2 = 7 Vd = 6}, 

where d is an even integer number. 

The unconstrained global minimum is located at Xopt = (1,1, ... , l)T and !(xopt) = O. 

The constrained global minima for each test are 

T _ { (-3.447634,11.895268) 
xloeal - (1,1,1,1) 

(1,1,1,1,1,1) 

d= 2, 

d = 4, , 

d = 6. 

which is verified for d = 2 in Appendix A on page 212. 

Test Problem 6 

Extended Rosenbrock objective function with its best optimum point inside 

the feasible region. 

d/2 

mi~ 2:= [100(x2i - X~i_l)2 + (1 - X2i_l)2] 
xElR i=l 

subject to {x E ]Rd I x EFI with bl = -3 1\ b2 = -5}, where d is an even integer number. 

The constrained global minimum for this group of tests corresponds to the point 

Xloeal = (1,1, ... ,1)T. 
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Test Problem 7 

Wood objective function with its best optimum point on the boundary. 

min [100(x2 - xi)2 + (1 - Xl)2 + 90(X4 - X§)2 + (1 - X3)2 + 10(x2 + X4 2)2 + 10(x2 - X4)2] 
xElR.4 

subject to {x E JR.4 I X EFI with b1 = 3 1\ b2 = 5}. 

The unconstrained global minimum is located at Xopt = (1,1,1, If and !(xopt) = 0, and 

its constrained global minimum is located at the same coordinates. 

Test Problem 8 

Wood objective function with its best optimum point inside the feasible 

region. 

min [100(x2 - x~)2 + (1 - xd 2 + 90(X4 - x§)2 + (1 - X3)2 + 10(x2 + X4 - 2)2 + 10(x2 - X4)2] 
xElR.4 

subject to {x E JR.4 I X EFI with b1 = -3 1\ b2 -5}. 

In this test problem the constrained global minimum was Xloeal = (1,1,1, I)T. 

Test Problem 9 

Powell singular objective function with its best optimum point on the 

boundary. 

subject to {x E JR.4 I X EFI with bl = 3 1\ b2 = 5}. 

The unconstrained global minimum is located at Xopt = (0,0,0, O)T and !(xopt) = o. 

The constrained global minimum is given by 

Xloeal = (1.715358, -0.132167, 0.476726, 1.224726)T, which is verified in Appendix A on 

page 213. 
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Test Problem 10 

Powell singular objective function with its best optimum point inside the 

feasible region. 

subject to {x E ]R4 I X EFI with bl = -3 1\ b2 = -5}. 

The constrained global minimum is Xloeal = (0,0,0, O)T. 

Case study 2: non-obtuse solid angle feasible cone 

The feasible region F2 for this set of test problems is given by, 

d 

C3 : 2XI - X2 + LXi 2: b3 
i=3 

d 

C4 : -Xl + 2X2 + L Xi 2: b4 
i=3 
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where b3 and b4 were selected to give at least a local minimum on the boundary of the 

feasible region or inside the feasible region. 

As initial point for all test problems the point 20 . Id was used. 

Test Problem 11 

Quadratic objective function with its best optimum point on the boundary. 

subject to {x E ]Rd I x EF2 with b3 = 2 1\ b4 = 2} 

The constrained global minimum occur at the following points 

(2,2) 

(0.4, 0.4, 0.8, 0.8) 

d = 2, 

d=4, 

(0.22222, 0.22222, 0.44444, 0.44444, 0.44444, 0.44444, 0.44444) d = 6. 
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Test Problem 12 

Quadratic objective function with its best optimum point inside the feasible 

region. 

d 

min LX; 
xEJP:

d 
i=l 

subject to {x E ]Rd I x E:F2 with b3 = -2 1\ b4 = -2}. 

The constrained global minimum is located at Xloeal = (0,0, ... ,O)T. 

Test Problem 13 

Trigonometric objective function with its best optimum point on the 

boundary. 

subject to {x E ]Rd I x E:F2 with b3 = 2 1\ b4 = 2}, where gi is given by Equation (5.7). 

The constrained global minimum points are 

{ 

(2,2) d = 2, 

xTaeal = (0.4, 0.4, 0.8, 0.8) d = 4, 

(0.22222, 0.22222, 0.44444, 0.44444, 0.44444, 0.44444, 0.44444) d = 6. 

Test Problem 14 

Trigonometric objective function with its best optimum point inside the 

feasible region. 

subject to {x E ]Rd I x E:F2 with b3 = -21\ b4 = -2}, where gi is given by Equation (5.7). 

In this case, the constrained global minimum is located at Xloeal = (0,0, ... ,O)T. 
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Test Problem 15 

Extended Rosenbrock objective function with its best optimum point on the 

boundary. 

d/2 

mi~ L [100(X2i - X~i_l)2 + (1 - X2i_l)2] 
xEIFt i=l 

subject to {x E ]Rd I x EF2 with b3 = d - 1 i\ b4 = d I}, where d is an even integer 

number. 

The constrained global minimum for each test is 

{

(1,1) 

Xfocal = (I, I, 1, 1) 

(1,1,1,1,1,1) 

Test Problem 16 

d = 2, 

d= 4, 

d= 6. 

Extended Rosenbrock objective function with its best optimum point inside 

the feasible region. 

d/2 

mi~ L [100(X2i - X~i_l)2 + (1 - X2i_l)2] 
xEIFt i=l 

subject to {x E ]Rd I x EF2 with b3 = -2 i\ b4 = -2}, where d is an even integer number. 

The constrained global minimum for this group of tests corresponds to the point 

Xlocal ~ (1,1, ... ,1)T. 

Test Problem 17 

Wood objective function with its best optimum point on the boundary. 

subject to {x E ]R4 I X EF2 with b3 = 3 i\ b4 = 3}. 

The constrained global minimum is located at Xlocal = (1,1,1, l)T. 
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Test Problem 18 

Wood objective function with its best optimum point inside the feasible 

region. 
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min [100(x2 - xi)2 + (1 - xd 2 + 90(X4 - x§)2 + (1 - X3)2 + 10(x2 + X4 - 2)2 + 10(X2 - X4)2] 
xElR4 

subject to {x E ]R4 I X E:F2 with b3 = -2 !\ b4 = -2}. 

The constrained global minimum is Xloeal = (1,1,1, l)T. 

Test Problem 19 

Powell singular objective function with its best optimum point on the 

boundary. 

subject to {x E ]R4 I X E:F2 with b3 = 3 !\ b4 = 3}. 

The constrained global minimum is given by Xloeal = (1,1,1, l)T. 

Test Problem 20 

Powell singular objective function with its best optimum point inside the 

feasible region. 

subject to {x E ]R4 I X E:F2 with b3 = -2 !\ b4 = -2}. 

The constrained global minimum is Xloeal = (0,0, ... ,O)T. 
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5.4.2 Plots of experiments 

We give a set of plots of the performance measure for each test problem defined in the 

previous subsection. The SM converged to infeasible points in 21 of the 44 test problems 

carried out and reported in Appendix D. In contrast, both the LCNM method and the 

LCNM+PC method always converged to a feasible point. This fact was taken into 

account in the function of PM through the factor w2=4000 (see Equation (5.3) ). 

To facilitate the reading of the test problem plots and their summary reports, we use the 

notation TP#(d), where # is the number of the test problem and d indicates its 

dimension. For instance, TPl(4) means the Test Problem 1 with dimension 4, TP2(6) 

represents the Test Problem 2 with dimension 6 and so forth. 

Furthermore, the vertical axis of each plot represents the PM value, whilst the horizontal 

axis corresponds to the 27 design points grouped by method, that is, the first group of 

9-design points corresponds to the set of PM yielded by the 8M, the second group, from 

10 to 18, is the set of PM obtained by the LCNM method, and the last group 

corresponds to the experiments performed on the LCNM+PC method. 

Case study 1: obtuse solid angle feasible cone 

Before describing the graphs, we should briefly comment that the PM of the 8M were 

higher than those obtained by the LCNM and the LCNM+PC method in the majority of 

the test problems. When the objective function is quadratic, the LCNM method gave a 

better performance than the LCNM + PC method. However, for the rest of the test 

problems, we did not observe a significant advantage of the LCNM+PC method in 

comparison with the LCNM method. This may be verified in the set of tables presented 

in Subsection 5.4.5. 
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According to Figure 5.9 and Figure 5.10, the LCNM method and the LCNM+PC 

method had a higher performance when the global minimum is inside the feasible region 

than in the case when the global minimum is on the boundary. In addition, there is no 

significant difference between both methods in the indicated test problems. Results of 

these experiments are shown in Table 5.8 on page 152. 

Furthermore, the LCNM and the LCNM+PC method show a high sensitivity to 

changing of the design point in the TP2( 4) and TP2(6). 
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Figure 5.9: Performance of the methods on the test problem TPl. 
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Figure 5.10: Performance of the methods on the test problem TP2. 
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From Figure 5.11 and Figure 5.12, it may be seen that the LCNM method and the 

LCNM+PC method had approximately the same PM for each test problem. However, 

both methods had a higher PM when the global minimum is inside the feasible region. A 

summary report of these tests is given in Table 5.9 on page 153. 

Another aspect that can be appreciated from the figures, is the fact that the LCNM and 

the LCNM+PC method generally failed in the TP4(2), TP4(4) and TP4(6) cases. 

Nonetheless, for some design points in these test problems the methods adequately 

converged. 
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Figure 5.11: Performance of the methods on the test problem TP3. 
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Figure 5.12: Performance of the methods on the test problem TP4. 
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As are shown in Figure 5.13 and Figure 5.14, in each test problem the PM of the LCNM 

method is as high as that of the LCNM + PC method. In addition, the largest PM of 

both methods occurred in the cases TP5(4) and TP5(6) whose constrained global 

minimum are on the boundary of the feasible region. However, for most of the design 

points, the LCNM and its modified version have the same behaviour. 

We must remark that the 8M evidenced better performance than our methods for some 

design points and this fact can be clearly appreciated in Table 5.10 (on page 154). 
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Figure 5.13: Performance of the methods on the test problem TP5. 
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Figure 5.14: Performance of the methods on the test problem TP6. 
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From Figure 5.15 and Figure 5.16, it may be concluded that the PM of the LCNM 

method and the PM of the LCNM + PC method are approximately equal for each test 

problem. However, both methods had the highest PM when the global minimum is inside 

the feasible region. A summary report of these tests is given in Table 5.11 on page 155. 
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Figure 5.15: Performance of the methods on the test problems TP7(4) and TP8(4). 
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Figure 5.16: Performance of the methods on the test problems TP9(4) and TP10(4). 
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Case study 2: non-obtuse solid angle feasible cone 

As may be seen, in this group of experiments, we can note an advantage of the LCNM 

method and the LCNM + PC method with respect to the SM from the reported PM's. 

Nevertheless, as in the previous case, our methods have the same behaviour, in terms of 

average, even in the cases of dimension two, where their PM are approximately equal 

(see numerical report in Subsection 5.4.5 and for more details in Appendix D). 

According to Figure 5.17 and Figure 5.18, the PM of the LCNM method and the PM of 

the LCNM+PC method are approximately equal for each test problem. However, the 

figures show that both methods had better performance when the global minimum is on 

the boundary of the feasible region than when the global optimum is inside the feasible 

region. Numerical results are reported in Table 5.12 on page 156. 
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Figure 5.17: Performance of the methods on the test problem TP11. 
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Figure 5.18: Performance of the methods on the test problem TP12. 
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As can be seen in Figure 5.19 and Figure 5.20, the LCNM method and the LCNM+PC 

method had approximately the same PM for each test problem. However, both methods 

had higher PM when the global minimum is inside the feasible region than in the cases 

with global optimum on the boundary of the feasible region. A summary report of these 

tests is given in Table 5.13 on page 157. 

TP13(4) 

400 • • 
6000 - ---'-r'----"---

I 
25000 

5000 I ..... ·t I 20000 

---------T ---------1--------
1 

• I' 300 ...... , 

[ 
I 

4000 

3000 
I 15000 

• I I 

..... I I 
I · • •• • I I 

I ... • ·1 ......... , 
18 27 ! 

200 

100 

2000 
10000 

1000 • 
• • • • i 

... .1 . ... .1 .. 
18 27 

Figure 5.19: Performance of the methods on the test problem TPI3. 
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Figure 5.20: Performance of the methods on the test problem TPI4. 
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It may be seen from Figure 5.21 and Figure 5.22 that the PM of the LCNM method is as 

high as the PM of the LCNM+PC method for each test, and they presented better 

performance when the global minimum point is inside the feasible region than when the 

minimum is on the boundary. A report of these tests is displayed in Table 5.14 on page 

158. 
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Figure 5.21: Performance of the methods on the test problem TPI5. 
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Figure 5.22: Performance of the methods on the test problem TPI6. 
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As are shown in Figure 5.23 and Figure 5.24, in each test problem the PM of the LCNM 

method is as high as that of the LCNM+PC method, in terms of average. Nevertheless, 

the PM of both methods was larger in the case when the global minimum is inside the 

feasible region than when the best minimum is on the boundary of the feasible region. 

Table 5.15 (on page 159) shows a summary of the these results. 
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Figure 5.23: Performance of the methods on the test problems TP17( 4) and TP18( 4). 
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5.4.3 Average of performance measure by experimental design point 

Here we display the average PM figures by solid angle, dimension and experimental 

design point. This latter is completely specified in Table 5.5 on page 126. 

Table 5.6: Average of PM for obtuse and non-obtuse solid angle 

, Exp I, d=2 ::4 d=6 I d=2 ~~~ d=6 I 
1 976.5 3288.2 7586.9 853.0 3454.6 757l.5 
2 1006.0 2767.8 7014.2 1488.0 9172.9 14089.3 

3 267.0 3669.0 7111.9 1587.3 6313.9 9370.8 
4 847.8 3582.1 6569.5 2215.8 7834.0 7597.0 

5 911.0 3719.2 7010.8 2235.5 646l.7 9489.0 

6 1818.7 4178.8 6346.9 1627.1 7262.8 9743.4 
7 1464.4 5706.1 943l.4 296l.4 6350.2 9185.5 

8 934.2 4245.2 8150.9 2965.9 8629.5 6653.9 

9 1265.7 3846.7 6376.0 2354.8 8206.7 8333.7 

10 270.9 873.4 2660.6 360.5 153l.1 2455.9 

11 836.4 2023.2 2450.0 484.4 673.8 2802.4 
12 593.6 1792.1 2178.3 ~67.0 1099.9 3200.8 

13 173.0 3353.8 7019.9 107.9 2872.7 8900.9 
14 165.8 924.6 3202.8 95.6 1003.2 2538.0 

15 149.7 139.5.1 3265.1 112.3 1668.2 3423.3 

16 ~120.4 1814.8 2118.4 109.0 3088.9 4346.7 

17 158.5 912.5 4046.9 108.1 3200.9 2806.6 

18 336.0 886.0 2199.3 119.3 797.8 4900.6 

19 255.6 992.0 222l.3 178.7 965.1 6555.6 

20 224.4 77l.9 2477.3 595.5 ~632.8 2989.5 

21 394.4 1895.5 2237.3 167.5 1062.9 ~ 1944.6 

22 312.6 2568.1 6520.2 576.0 1027.7 610l.5 

23 298.4 ~764.6 2750.8 647.8 1006.1 3198.5 

24 353.3 841.3 ~1955.6 72.8 682.4 2469.2 

25 200.7 1009.8 5610.4 93.0 848.2 4129.5 

26 23l.3 1413.6 2414.5 158.6 880.9 316l.2 

27 697.9 793.7 2127.6 86.5 786.2 2429.9 

In Table 5.6 we denote the obtuse solid angle by oL. and the non-obtuse by noL.. 

Additionally, the best average PM values are indicated by the symbol "~" for each 

dimension. As can be clearly seen from above table, the LCNM method and its 

premature version have better performance than the SM. 
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Comparing the LCNM method and the LCNM+PC method, the LCNM method has 

better average performance than its premature mode in two dimensional problems. 

However, the average PM of LCNM+PC method is lower than the average PM of the 

LCNM method. 
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Furthermore, the best average PM were obtained when the reflection coefficient CY was 

fixed to 0.95 and 1.00 in dimension 4 and 6, respectively. 

With respect to the step size 7, from Equation (3.38) on page 44, we have 

v = { max {7 IXi,l1 : i = 1,2, ... d} if Xl I- 0d, . 

1 otherwise 

Because the initial point for the case study 1 was fixed to 10 . Id and for the case study 2 

was fixed to 20· Id, it can be concluded that the best value of v was 10 for the test 

problems of dimension 4 and 6, whose 7 value corresponds to 7=1 when the solid angle is 

obtuse and 7=0.5 for non-obtuse solid angle. Nonetheless, for the test problems of 

dimension 2, the best setting of 7 was 1.5 and 0.5, for the cases obtuse solid angle and 

non-obtuse solid angle, respectively. 

As a result of the average PM reported in Table 5.6, we have that the values of 0.95 or 1 

are adequate for setting the reflection coefficient CY, and 1 for the step size 7. 



CHAPTER 5. A NIODIFIED LCN1VI NIETHOD 150 

5.4.4 Maximum performance measure by experimental design point 

Another way of comparing the PM's is the analysis of the maximum values of the PM's. 

Table 5.7 depicts the maximum of PM's for both cases, obtuse and non-obtuse solid 

angle, by dimension and experimental design point. 

Table 5.7: Maximum PM for obtuse and non-obtuse solid angle 

1 3459.0 12000.0 20006.3 3573.0 8514.0 17255.0 
2 3515.0 12000.0 20006.7 4290.0 23540.0 23295.6 

3 406.0 12000.0 24027.4 4357.0 23081.2 24125.0 

4 3525.0 12000.0 20007.6 4617.8 23013.6 17123.0 

5 3492.0 12000.0 20008.9 4622.8 23137.9 20036.0 

6 5000.0 12000.0 20008.3 4622.8 23466.7 23817.0 

7 4233.1 26000.0 20009.2 4649.8 23360.0 19629.1 
8 3608.0 12000.0 24019.0 4649.8 23398.1 19107.0 

9 4111.8 12000.0 20016.4 4649.8 23038.5 25519.0 

10 566.0 1860.0 5298.2 1479.0 4860.9 ~3800.0 

11 3710.0 12000.0 4799.0 2190.0 ~1098.8 6844.3 
12 1963.0 9093.0 3494.0 ~123.9 6334.0 5728.6 

13 378.0 25742.9 18484.4 185.9 18650.9 19025.4 
14 363.0 1756.0 5547.5 193.9 2802.7 5834.5 
15 338.0 3773.0 9255.0 195.9 9373.0 4892.0 
16 ~ 198.0 7723.5 ~2505.2 186.9 19020.0 6184.0 
17 336.0 2095.0 10971.0 193.9 17989.7 4454.2 

18 1000.0 2413.0 3092.0 193.9 2969.0 9109.4 

19 726.0 2447.0 7777.0 518.0 2535.0 13275.4 
20 47l.0 2050.0 3294.9 3077.0 2158.0 9100.0 
21 1000.0 1103l.0 3736.5 658.0 2800.0 4510.4 
22 905.0 11388.6 20015.7 2887.0 2815.8 18740.2 
23 924.0 ~1316.0 7651.0 3260.0 3632.0 4529.0 
24 1000.0 1667.0 2912.3 145.0 1383.0 3806.7 
25 528.0 2935.0 19878.9 256.0 1924.0 9100.5 
26 548.0 6583.0 6452.0 408.9 1944.0 4756.5 
27 2575.0 1718.0 3532.0 240.0 1798.0 3800.5 

~TP5(2) ~TPlO(4) ~TP6(6) ~TP14(2) ~TP18(4) ~TPI4(6) I 

In Table 5.7, the minimum of the maximum PM values is emphasized by the symbol "~" 

for each dimension, and the corresponding test problem (by dimension) is also shown at 
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the end of each column, details of which were given previously. 

Note that all the minimum of the mau'(imum PM values were yielded by the LCNM 

method, except in the case when the solid angle is obtuse and the dimension of the test 

problem is 4, whose minimum value was obtained by the LCNM + PC method. 

The LCNM method adequately worked with a step size parameter setting of 0.5 for the 

test problems with non-obtuse solid angle, whilst, the LCNM method had its best 

performance when the step size was fixed to 1.5 for the test problems with obtuse solid 

angle. 

5.4.5 Summary of comparison results 

In this subsection we report the numerical results of the PM's for the case studies 

plotted in Subsection 5.4.2. Details of the NE's, the DTP's and the feasibility of the 

obtained solutions for the test problems carried out are shown in Appendix D. 
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Case study 1: obtuse solid angle feasible cone 

From Table 5.8 to Table 5.11 are displayed the PM of the set of test problems carried 

out for the case studies with obtuse solid angle cone of the feasible region. Note that 

some figures in the tables are reported with a symbol "+") which means that the method 

was artificiality stopped at the indicated number of function evaluations. 

Table 5.8: Summary result of the performance of the families of test problems TP1 and 
TP2. 

I Exp II TP1(2) TP1(4) TP1(6) TP2(2) TP2( 4) TP2(6) I 

1 582 5006+ 20006.3+ 3459 12000+ 12000+ 
2 770 1002.2+ 20006.7+ 3515 12000+ 12000+ 
3 406 5017.3+ 24027.4+ 147 12000+ 12062.8 
4 388 5002.8+ 20007.6+ 3525 12000+ 12000+ 
5 399 1000.18+ 20008.9+ 3492 12000+ 12000+ 
6 5000+ 1003.34+ 20008.3+ 3461 12000+ 12000+ 
7 4233.1 1000.66+ 20009.2+ 3518 12000+ 12000+ 
8 477 5009.88+ 24019+ 3608 12000+ 12000+ 
9 644 5026.7+ 20016.4+ 4111.8+ 12000+ 12000+ 

10 24 389 635 566 1860 3129 
11 23 473 1634 3710 12000+ 4799 
12 22 419 1746 1963 9093 3494 
13 60 373 18484.4 126.2 1531 9442 
14 61 364 850 126.2 1364 4034 
15 26 425 1321 136.2 3773 9255 
16 27 388 2433 127.2 3286 2198 
17 66 365 1115 129.2 404 10971 
18 61 444 823 352.2 2413 3092 

19 25 277 644 726 2447 1644 
20 23 325 1315 471 1009 3105 
21 24 330 1199 765 ll031 3332 
22 34 292 20015.7+ 905 8305 9449 
23 38 267 1261 924 1071 7651 
24 27 407 1034 500 750 2180 
25 37 547 576 528 2935 7597 
26 41 293 1327 548 6583 6452 
27 26 324 596 2575 1637 3532 
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Table 5.9: Summary result of the performance of the families of test problems TP3 and 
TP4. 

I Exp I TP3(2) TP3(4) TP3(6) TP4(2) TP4( 4) TP4(6) I 
1 727 1005+ 2000+ 267 536 872 
2 543 1002.2+ 2018.8+ 282 580 1090 
3 327.8 5039.7+ 2010.6+ 147 700 1356 
4 409 5031+ 2010.5+ 285 549 893 
5 348 5013.3+ 2011.1+ 274 556 1230 
6 1080+ 5008.4+ 2018+ 272 723 1081 
7 233 5009.4+ 2010.6+ 287 576 947 
8 464 5019.2+ 2012.3+ 293 635 937 
9 711 1001.2+ 2008+ 1111.8+ 577 1294 

10 25 413 796 426 1000+ 807 
11 22 395 1730 729 1000+ 760 
12 23 376 720 1022.3 1000+ 2000+ 
13 59 417 1206 126.2 1000+ 739 
14 62 357 1238 126.2 839 2000+ 
15 26 269 1192 136.2 1000+ 2000+ 
16 60 417 1069 135.2 780 2000+ 
17 32 381 746 185 1000+ 643 
18 61 420 1806 1000+ 412 2000+ 

19 25 600 568 226 775 772 
20 23 267 1854 234 501 2000+ 
21 23 270 480 1000 1000+ 2000+ 
22 33 486 900 285 1000+ 2000+ 
23 38 316 563 192 1000+ 2000+ 
24 27 312 695 1000+ 1000+ 2000+ 
25 27 351 641 212 1000+ 2000+ 
26 32 283 603 203 1000+ 789 
27 26 386 642 1000+ 318 2000+ 
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Table 5.10: Summary result of the performance of the families of test problems TP5 and 
TP6. 

I Exp I TP5(2) TP5(6) TP6(2) TP6(4) TP6(6) I TP5(4) 

1 426 1086.6 7321.4 398 1086.6 3321.4 

2 537 901.7 5484.8 389 901.7 1484.8 

3 272 1039.1 1607.2 302 1009.1 1607.2 

4 274 3706 2028.7 206 3218 2477.07 

5 549 1664.4 3407.3 404 1664.4 3407.29 

6 690 1656.5 1487.0 409 1656.5 1486.99 

7 311.34 26000.04 19889.5 204 1695 1731.8 

8 483 1779.7 4968.7 280 1779.7 4968.6 

9 552.5 2065 1468.8 463 2065.1 1468.8 

10 234.5 1233 5298.2 350 1218 5298.2 

11 216.5 1682 2888.6 318 1558 2888.6 
12 226.5 1402 2554.8 305 1782 2554.76 
13 288.5 25742.85 6124.0 378 1145 6124.05 

14 256.5 1601 5547.5 363 1567 5547.54 

15 235.5 2129 2911.2 338 2272 2911.2 

16 198 7723.47 2505.2 175 2494 2505.17 

17 202.5 1372 6008.0 336 1851 4798.66 

18 238.5 1535 2737.3 303 1885 2737.28 

19 201.5 1454 1923.0 330 1368 7777 

20 245.5 1298 3294.9 350 1098 3294.9 

21 220.5 1244 3736.5 334 1260 2676.07 

22 267.5 11388.595 3378.3 351 1006 3378.3 

23 246.5 1120 2391.5 352 1172 2638.11 

24 227.5 1396 2912.3 338 1667 2912.27 

25 182 1344 19878.9 218 1288 2969.57 

26 198.5 1329 2657.9 365 1649 2657.93 

27 229.5 1212 3104.0 331 1025 2891.57 
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Table 5.11: Summary result of the performance of the families of test problems TP7(4), 
TP8( 4), TP9( 4) and ,-T_P_10-r(-l.4)_. __________ ----, 

I Exp I TP7(4) TP8(4) TP9(4) TPI0(4) I 
1 6023.6+ 756.69 2000.75+ 3381 

2 6000+ 646.69 2007.11+ 2636 

3 5752.2 736 2001.6+ 3395 

4 650 534 2005+ 3125 

5 6000+ 524 6016.1+ 2754 

6 10018.3+ 580.69 6007.1+ 3134 

7 6023.95+ 571.69 1386.2 2798 

8 6016.3+ 809 6007.2+ 3396 

9 10027.4+ 819.69 2010.7+ 2874 

10 577 389.69 455 1199 

11 637 396 462 1629 

12 527 378 521 2423 

13 687.6 579.69 263 1799 

14 554 394 450 1756 

15 839.6 414.69 655 2174 

16 444 346 529 1741 

17 514.6 496.69 646 2095 

18 514.6 444.69 418 373.38 

19 441 459.69 289 1809 

20 372 422 377 2050 

21 377 460 343 2640 

22 663 475 290 1775 

23 397 438 549 1316 

24 461.6 546.69 313 1560 

25 392 403 568 1270 

26 424.6 580.69 367 1627 

27 498.6 476.69 342 1718 
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Case study 2: non-obtuse solid angle feasible cone 

Summary of the PM for the case study non-obtuse solid angle feasible cone are shown 

from Table 5.12 to Table 5.15. 

Table 5.12: Summary result of the performance of the families of test problems TPll and 
TP12. 

I Exp I TP11(2) TP11(4) TP11(6) TP12(2) TP12(4) TP12(6) I 
1 289 5500.3+ 9505.46+ 3573 8514 17255 
2 4290 5509.1+ 9523.58+ 3483 9670 19539 
3 4357 5536.9+ 9513.91+ 3645 9689 24125 
4 4313 5502.6+ 9506.6+ 3500 9873 17123 
5 4313 5502.6+ 9521.9+ 3567 9207 20036 
6 400+ 5532.1+ 9527.8+ 3600 9897 23817 
7 4313 5501. 71 + 9503.69+ 3564 8629 17107 
8 4313 5520.8+ 9505.88+ 3575 9468 19107 
9 400+ 5511.9 + 9537.16+ 3628.2 9826 25519 

10 22 301 1205 1479 4427 2579 
11 22 483 1556 2190 936 3577 
12 21 254 2068 122.9 6334 2240 
13 81.75 332 1229 124.9 2476 16437 
14 39 281 921 129.9 2722 1394 
15 101.9 359 1138 125.9 9373 3707 
16 81.75 255 3842 127.9 1820 6184 
17 39 255 698 164.9 7577 3097 
18 101.5 344 5443 162.9 847 3713 

19 24 504 4776 518 2535 13248 
20 22 326 1529 3077 634 1722 
21 22 231 707 658 2350 1745 
22 31 1329 1240 2887 1546 4623 
23 32 1500 1878 3260 1021 3729 
24 29 437 1419 107.9 978 3091 
25 31 371 1243 109.9 1012 7169 
26 32 345 2516 345 1843 1850 
27 29 344 1999 96 1798 1739 
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Table 5.13: Summary result of the performance of the families of test problems TP13 and 
TP14. 

I Exp I TPI3(2) TPI3(4) TPI3(6) TPI4(2) TPI4(4) TPI4(6) I 
1 290 4701.87+ 13102.7+ 307 567 1444 

2 290 4702.74+ 13224.4+ 278 625 8189 

3 357 4737.6+ 13588.3+ 445+ 672 1514 

4 314 700+ 13103.78+ 290 667 1099 

5 314 4702.3+ 19820+ 279 669 3706 

6 400+ 4798.6+ 13190.4+ 400 813 7898.5+ 

7 314 700+ 5337.12 310 674 1341.5 

8 314 4767.4+ 5344.12 321 626 1348.5 

9 400+ 4715.4+ 5642.12 428.2+ 627 1646.5 

10 23 263 570.06 400+ 1l00+ 3800+ 

II 22 195 576 428.2+ 1022 1749 

12 20 361 874 123.9 1107.65+ 3800+ 

13 81.7 249 9017.06 124.9 1l07.56 3800+ 

14 39 200 1555 123.9 893 1943 

15 102.4 365 4892 128.9 1107.56+ 3800+ 

16 81.8 327 1926 127.9 1100 3800+ 

17 38 252 1672 164.9 800 3800+ 

18 102.4 307 9109.43+ 135.9 1112.6+ 3800+ 

19 24 304 1036 317 1l00.4 3806.2+ 

20 23 267 9100+ 310 464 1528 

21 23 444 668.42 105.9 1l07.56+ 1514 

22 32 700 5992.43 306 1106.83+ 1099 

23 32 608 2553 363 541 3806.2+ 

24 30 465 1390 105.9 1l07.56+ 3806.7+ 

25 32 401 9100.528+ 108.9 1108.26+ 816 

26 32 400 1710 408.9+ 874 3806.1+ 

27 31 381 1288 103.9 1112.6+ 3800.49+ 
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Table 5.14: Summary result of the performance of the families of test problems TP15 and 
TP16. 

I Exp I TPI5(2) TPI5( 4) TPI5(6) TPI6(2) TPI6( 4) TPI6(6) I 
1 453 1164.3 2061 206 2850 2061 

2 314 7274.1+ 23295.6+ 273 22594.9+ 10764.2+ 

3 503.54+ 790.1+ 3310.5 216 790.1 4172.9 

4 4617.8 7390+ 2428.8 260 22569.9+ 232l.1 

5 4622.8 6805.54+ 2004.3 317 1604 1845.9 

6 4622.8 7333.8+ 1056.8 340 2422 2969.6 

7 4617.8 744l.2+ 19629.1+ 4649.8 4492.7 2194.6 

8 4622.8 7085.8+ 2309 4649.8 22197.79+ 2309 

9 4622.8 7448.9+ 3570.5 4649.8 22616.66+ 4086.7 

10 49 796 3307 189.9 766.6 3274.3 

11 48 668.2 2512 195.9 646 6844.3 

12 50 935 5728.6 64.4 927 4494.1 

13 48 2343 19025.4+ 185.9 2254 3897.1 

14 48 2802.7 3580.2 193.9 1604 5834.5 

15 19 1326.7 4033.2 195.9 2422 2969.6 

16 48 1280.7 6170.3 186.9 4492.7 4157.6 

17 48 1083.2 4454.2 193.9 17989.7 3118.3 

18 19 706 325l.6 193.9 543.7 4086.7 

19 23 1150 13275.4 165.9 861 319l.8 

20 23 770 1774.4 117.9 2158 2283.3 

21 23 115l.2 2522.8 172.9 1297 4510.4 

22 20 2815.8 18740.2 180 898 4914.3 

23 20 779.2 2696 180 746.7 4529 

24 19 644.7 2463.3 145 1383 2645.3 

25 20 1361 4602 256 1163 1846.2 

26 20 839.2 4328.8 113.9 1400 4756.5 

27 19 1303 2919 240 842 2834 
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Table 5.15: Summary result of the performance of the families of test problems TP17( 4), 

TP18( 4), TP19( 4) a,-n_d_T-rP_20---"("--,4)~. __________ _ 
I Exp I TP17(4) TP18(4) TP19(4) TP20(4) I 

1 1252 5576.6+ 4420+ 2748 

2 23540+ 5247.4+ 4401.29+ 8164.4+ 

3 23081.2+ 5158+ 4950.3+ 7733.3+ 

4 23013.6+ 679 4850.36+ 3095 

5 23137.9+ 5456+ 4408.895+ 3124 

6 23466.7+ 5502.1+ 477l.57+ 8091.2+ 

7 23360+ 594.7 4400.652+ 7708.3+ 

8 23398.1+ 679.7 4842.1+ 7709.8+ 

9 23038.5+ 492.7 4821.3+ 2969 

10 4860.9 504.7 279 2013 

11 717 1098.8 621 350.9 

12 280.3 334.6 172 293.4 

13 18650.9 632.7 334 347.9 

14 241 750.7 277 260.46 

15 500 783 166 280 

16 19020+ 397.7 171 2025 

17 377 442 165 3068 

18 259 553.7 336 2969 

19 517 571.7 309 1799 

20 535.9 575.7 289 307.9 

21 537 450.7 261 2800 

22 367 678.7 525 310.9 

23 527 422 284 3632 

24 547 605.7 267 388.9 

25 429.9 411.7 300 1924 

26 418.9 427.7 317 1944 

27 349 995.7 358 378.9 
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5.5 Conclusions 

As can be appreciated from the numerical test problems, both the LCNM method and 

the LCNM + PC method had better performance than the SM. In most test problems, 

our methods converged at least to a feasible local minimum within a good precision, 

regarding the NE. In contrast, the SM converged to points that not necessarily are local 

optima of the test problems, and in some cases it converged to infeasible points. 

Moreover, the accuracy of the SM was deficient in many test problems. 

Hence, the LCNM method and its premature collapse mode present advantages over the 

SM, even though the LCNM method and the LCNM + PC method were relatively 

expensive for some settings of the reflection coefficient a and step size parameter T. 

However, our methods converged to a feasible point with an adequate accuracy within a 

low NE, when the reflection coefficient a takes values of 0.95 or 1, and the step size 

parameter T is equal to 1 for the most of the test problems. 

Analysing the best average PM reported in Section 5.4, we can also observe that the 

LCNM + PC method had better performance than the LCNM method, for the cases of 

dimension 4 and 6. In contrast, for the 2-dimensional test problems, the LCNM method 

evidenced advantages over the LCNM + PC method. 

Furthermore, the LCNM method identified constrained optima with lower NE than its 

premature collapse version, when the solid angle is non-obtuse. Whereas, the 

LCNM + PC method obtained better performance than the LCNM method for the case of 

dimension 4 and obtuse solid angle only, conforming with the analysis of the maximum 

values of the PM's. 

This new procedure improves the performance of the LCNM method when the 

constrained optimization problem has a few number of linear constraints. However, if the 

constrained minimization problem has a large number of linear constraints, the modified 

method is not significantly better. 

In summary, based on the analysis of the maximum value of the PM's we can observe 

that the LCNM method shows advantages over the LCNM+PC method. However, the 

LCNM + PC method offers better accuracy than the LCNM method. 



Chapter 6 

Exploring other variations 

6.1 Introduction 

The study of the LCNM algorithm and its premature collapse version has moved on a 

new explorations for improving the efficiency of the LCNM algorithm. This has 

motivated the assessment of two new variations called dynamic LCNM algorithm and 

directional NM algorithm that were considered to have potential. Both approaches 

compute the reflection trial point by taking into account the best direction of 

optimization. Numerical tests have shown that these variations can be more expensive 

than the original LCNM algorithm. 

Nevertheless, this chapter describes both variations because their study could help us to 

understand the behaviour of the methods based on the simplex. 

The content of this chapter is as follows. Section 6.2 describes the dynamic LCNM 

algorithm whose principle is the estimation of the best value of expansion coefficient 1 

and contraction coefficient {3 for optimizing the objective function in the direction Xmax 

towards X cen . Numerical examples are shown for comparing the dynamic LCNM 

algorithm against our original version. The development of the directional NM algorithm 

is presented in Section 6.3. An initial study of this variation of the NM algorithm is 

made, to evaluate its advantage for being incorporated in the LCNM algorithm. vVe also 

present numerical examples for comparing the NM algorithm versus this directional NM 

version. Finally, in Section 6.4 we give some conclusions about these new variations. 

161 
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6.2 The dynamic LCNM algorithm 

We shall herein propose a variant of the LCNM algorithm based on selecting values of 

expansion coefficient and contraction coefficient, by minimizing an objective function 

that is defined by the points [J(xmax),x~axV, [J(xcen),xrenV and [J(xrefz), X;eflV, 

To study this new approach, we shall consider the following propositions for the NM 

algorithm. 

Proposition 6.1 (Optimum e) Let f(x) : ]Rd -'> ]R be a non-linear continuous 

objective function of an unconstrained minimization problem. Let 

S[q] = [Xl: X2 : ... : Xv] bea qth sorted entire simplex defined in the Euclidean space ]Rd, 

that is, the qth simplex is formed by (d + 1) sorted vertices conforming with fi' where fi 

represents the value of f(xi) for all i = 1, ... , v. Let Xcen be the centroid of the 

remaining hyperface of the current qth simplex given by 

1 v-I 

Xcen = -- '\" Xi 
v-1L...-

i=l 

Let Xrefl be the reflection trial point which is computed by 

Xrefl = (1 + a)xcen - axv Va> 0 

and whose value is computed by the objective function f(x). 

Let 

(6.1) 

be the points located on the straight line lv,cen defined by the points Xv and Xcen for all 

-0<) < e < 0<). Let f (B) : ]R -'> ]R be an unknown parametric function, which represents 

the objective function on the straight line lv,cen, and uniquely depends on e for all 

-0<) < e < 0<). 

If the function f( e) can be approximated to a second degree polynomial g( e) : lR -'> ]R 

given by 

and C2 > 0, then a minimum of f(x) is approximately located either at 

(6.2) 

(6.3) 
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where 
8* = frefl + (02 - l)fcen - 02Iv 

2(0 + l)fcen - 2frefl - 2aIv' 

otherwise, its minimum is obtained as 8 ---7 -()() or 8 ---7 ()(). 

Proof. Let g(8) be the second degree polynomial defined by the points [fv,x~f, 

[Icen,x;;:'n]T and [Irefl, x;:!lf. By Equation (6.1) and Equation (6.2), we obtain 

whose vector c = [co, C1, C2]T is computed by 

163 

(6.4) 

(6.5) 

1 

i (0-1) 
1 
a 

° 1 
00+002 

1 
00+002 
] l fv] l fcen j f, - a-If, a f + 1 f cen - a- cen - 00+1 v 00+002 refl 

frefl a~l Iv - i fcen + 00';00 2 fre!l 
(6.6) 

By differentiating g( 8) with respect to 8 and setting the derivative equal to 0, we obtain 

the stationary point of the second degree polynomial 

8* = _~ C1 = frefl + (0
2 

- l)fcen - 0
2 

fv 
2 C2 2(0 + l)fcen - 2fre!1 - 20fv' 

which corresponds to a minimum if C2 > 0. 

If Cl =I ° and C2 = 0, then the minimum of g(8) = Co + C18 is as 8 ---7 -()() or 8 ---7 ()(), which 

evidently depends on the sign of C1. On the other hand, if C2 < 0, then 8* corresponds to 

a maximum, therefore g( 8) has two minima at both Xe as e ---7 -()() and 8 ---7 ()(). • 

The value of 8* can be employed by the NM algorithm for attempting an expansion step 

or a contraction step, in order to estimate either the best expansion coefficient r or 

contraction coefficient f3 at each iteration of the NM algorithm. The accuracy obviously 

depending on the fitting of g( 8) to the function f (e). Since the function g( 8) can have at 

least a minimum as 8 ---7 -ex:; or 8 ---7 ()(), if C2 :S 0, it is necessary to constrain the value of 

8 to an interval for avoiding a collapse of the current simplex on its own remaining 

hyperface when 8* = 0, or its collapse when 8 ---7 -()() or 8 -'t ex:;. 

Due to this fact, we enunciate the following propositions: 
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Proposition 6.2 (Constrained optimum 8) Let f(x) : IRd ----t lR be a non-linear 

continuous objective function of an unconstrained minimization problem. Let g( 8) be the 

second degree polynomial given by Equation (6.2), which is approximately equal to f(8). 

If the NM algorithm is being applied to the minimization problem and at the qth iteration 

the algorithm is an expansion step or contraction step under the condition that fre!l < !I 
or 12 < fre!l respectively, then the solution 8~ to the problem of minimizing g( 8) subject 

to L :::; 8 :::; U is given by 

max[L, min(8*, U)] 

arg [min [g(L), g(U)]] 
if C2 > 0, 

otherwise 
(6.7) 

where 0 < L < U if the NM algorithm is at an expansion step or -1 < L < U < 0 if the 

NM algorithm is at an inside contraction step. 

Proof. vVe assume f(8) is approximately equal to the continuous function g(8). There 

exists several cases depending on the sign of C2 and the value of the unconstrained 

optimum 8* given by Proposition 6.1. We have 

a) If C2 = 0, then the constrained minimum of g(8) can be located at Lor U. 

b) If C2 < 0 and 8*:::; L, then the constrained minimum of g(8) is at U. 

c) If C2 < 0 and 8* 2: U, then the constrained minimum of g(8) is at L. 

d) If C2 < 0 and L < 8* < U, then the constrained minimum of g(8) can be located at L, 

U or both. 

e) If C2 > 0 and 8*:::; L, then the constrained minimum of g(8) is at L. 

f) If C2 > 0 and 8* 2: U, then the constrained minimum of g(8) is at U. 

g) If C2 > 0 and L < 8* < U, then the constrained minimum of g( 8) is at 8*. • 
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6.2.1 The modified algorithm 

Since the convergence of the vertices of the simplex to a point is often carried out by 

contraction operations and occasionally by shrinkage operations, the approach of 

estimating a constrained minimum parameter e~ was implemented for estimating its 

optimum during the expansion operation, because its cost involves two function 

evaluations per iteration of the modified NM algorithm. Nonetheless, the 

implementation for estimating the constrained optimum contraction value was also done 

for corroborating the cost of employing this approach in contraction operations. 

Based on Proposition 6.1 and Proposition 6.2, two versions of the LCNM algorithm were 

implemented, named the i-LCNM algorithm and the Pi-LCNM algorithm, for 

identifying the LCNM algorithm when a constrained minimum expansion coefficient I is 

optimized and, when a constrained optimization of both parameters j3 and I is carried 

out, respectively. 

As a result of this viewpoint, we propose the following modification to steps 6 and 7 of 

the LCNM algorithm, depending on the mode of operation. 

Step 6. Attempt Constrained Expansion based on optimum expansion 

coefficient 

if frejl :::; f min 

then Given 1 :::; Ly :::; e :::; UY' estimate the optimum value of e~ by Proposition 6.2 

Compute x exp = (1 + e~)xcen - e~xmax 

Perform Linear constraint procedure to x exp considering that 

Xo = Xrejl and Xnew = x exp · 

if fexp :::; f min 

then Xmax f-- x exp , f max f-- fexp 

else Xmax f-- Xrejl, fmax f-- frejl 

Go to step 10 

else go to step 7 
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Step 7. Attempt Contraction based on optimum contraction coefficient 

if ire!l > intw 

then Reduce the size of the current simplex either by a contraction or by shrinking, 

which we shall need to verify the following. 

if ire!l ::::; imax 

then Xmax <-- Xre!l, imax <-- ire!l 

Sort iJ V j = 1,2, ... , v for determining Xmin, Xntw and Xmax · 

Given -1 < L{3 ::::; e ::::; U{3 < 0, estimate the optimum value of e~ by Proposition 6.2 

Compute the contraction point Xcont = (1 + e~)xcen - e~xmax and its value icont and 

go to step 8. 

Observe that the ~i-LCNM algorithm requires the modified step 6 and 7 of the LCNM 

algorithm, whilst the i-LCNM algorithm only needs the modification of the step 6. 

6.2.2 The LCNM algorithm vs the dynamic LCNM algorithms 

vVe shall herein show some preliminary numerical examples for comparing the LCNM 

algorithm and its dynamic version through some test problems of Chapter 5. For this, 

we employ the following settings for carrying out both algorithms in each numerical test 

problem. 

The parameters used by the LCNM method were a = 1, f3 = 0.5, r = 2 and r5 = 0.5. The 

parameters for the dynamic LCNM algorithm were: a = 1, 0.4 ::::; f3 ::::; 0.6, 1 ::::; r ::::; 2 and 

r5 = 0.5. The initial point for all test problems was the point (20,20,20, 2of· 

Furthermore, the parameters of the stopping rule were 'Til = 'Ti2 = 10-6 and the step size 

parameter T was fixed to 1, for all algorithms. 



CHAPTER 6. EXPLORING OTHER VARIATIONS 167 

Table 6.1 displays numerical results reported by the LCNM algorithm, the 1'-LCNM 

algorithm and the ,81'-LCNM algorithm, using the performance measure, denoted by PM 

Note that in 13 of 16 test problems the PM of the 1'-LCNM algorithm is less than the 

PM of the ,81'-LCNM algorithm, which corroborates the fact that the ,81'-LCNM 

algorithm is the more expensive, due to contraction operations that are carried out 

during the convergence of the simplex to a point. 

Table 6.1: Comparison between the LCNM and the dynamic LCNM algorithms 
LCNM i LCNM (3i LCNM 

PM NE DTP PM NE DTP PM NE DTP 

TP1(4) 428 428 1.17E-06 398 398 1.60E-06 611 611 2.00E-06 

TP2(4) 4488 4488 4.84E-73 5643 5643 1.0E-162 7566 7566 1.0E-162 

TP5(4) 67715 935 6.68E+01 1938 1938 2.13E-07 46540 1907 4.46E+0l 

TP6(4) 67715 935 6.68E+0l 2230 2230 8.71E-07 46540 1907 4.46E+01 

TP7(4) 848 848 6.06E-07 538 538 9.64E-07 972 972 4.46E-07 

TP8(4) 603 603 6.78E-07 2397 427 1.97E+00 2517 547 1.97E+00 

TP9(4) 623 623 5.03E-06 483 483 5.12E-06 594 594 5.16E-06 

TP10(4) 1565 1565 3.78E-15 1865 1865 1.20E-17 2174 2174 l.76E-16 

TP11(4) 359 359 4.62E-07 339 339 4.29E-07 362 362 3.18E-07 

TP12(4) 9373 9373 3.70E-85 6177 6177 1.0E-162 7666 7666 l.OE-162 

TP15(4) 6843 1271 5.57E+00 44870 44870 l.llE-07 2545 2545 l.32E-07 

TP16(4) 2422 2422 l.21E-07 25631 18355 7.28E+00 3085 3085 7.76E-07 

TP17(4) 500 500 7.08E-07 379 379 l.09E-05 976 976 4.64E-07 

TP18(4) 783 783 8.82E-07 2451 481 1.97E+00 2670 487 2.18E+00 

TP19(4) 1080 166 9.14E-01 1072 158 9.14E-0l 1333 419 9.14E-01 

TP20(4) 1574 267 1.31E+00 1871 1871 3.20E-16 1422 475 9.47E-01 

I 
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Table 6.2 (on page 168) depicts the percentage change of the i-LCNM algorithm and the 

,Si-LCNM algorithm with respect to the LCNM algorithm, calculated using the 

following equation. 

TP1(4) 
TP2(4) 
TP5(4) 
TP6(4) 
TP7(4) 
TP8(4) 
TP9(4) 

TP10(4) 

r5PlvI
dyn 

= 100. PlvhcNM - PMdyn 

PlvhcNM 

Table 62· Percentage of the dynamic LCNM algorithms .. 

r5PlvLy-LCNM r5P lVIe"r-LCNM r5PlvI1'-LCNM 
7.0 -42.8 TPll(4) 5.6 

-25.7 -68.6 TP12( 4) 34.1 
97.1 31.3 TP15(4) -555.7 
96.7 31.3 TP16(4) -958.3 
36.6 -14.6 TP17(4) 24.2 

-297.5 -317.4 TP18(4) -213.0 
22.5 4.7 TP19(4) 0.7 
-19.2 -38.9 TP20(4) -18.9 

r5P lvIe"Y-LCNM 
-0.8 
18.2 
62.8 
-27.4 
-95.2 

-241.0 
-23.4 
9.7 

As can be seen from Table 6.2, the i-LCNM algorithm has an improvement in 9 of the 

16 test problems (positive value of r5PlvIi -LCNM) with respect to the LCNM algorithm, 

which does not represent a significant advantage of the i-LCNM algorithm over the 

LCNM algorithm. Moreover, in 6 of the 16 test problems the i-LCNM algorithm has a 

percentage of change more than 8%. Despite the limited comparative experiments 

carried out, the i-LCNM algorithm does not seem to be a method more efficient than 

the LCNM algorithm, due to the fact that the i-LCNM algorithm reported percentage 

of changes less than -200% in 4 test problems and its non-significant advantage over the 

LCNM algorithm. 

Note that the i-LCNM algorithm requires two function evaluations per expansion 

operation, whilst the LCNM algorithm evaluates the objective function once per 

expansion operation. That can be a reason for what the dynamic LCNM algorithms are 

not good enough in comparison with the LCNM algorithm. 

In addition, we believe that the i-LCNM algorithm can have advantages over the LCNM 

algorithm when the objective function is convex, because in 3 of the 4 convex test 

problems the i-LCNM algorithm reported better performance than the LCNM 

algorithm. 

Nonetheless, the study of other algorithms based on the dynamic LCNM algorithms 

might be an interesting investigation, where other modifications for the LCNM algorithm 
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can result in an improvement of the LCNM algorithm. 

6.3 A variation of the NM based on descent direction 

In this section, we study other operations of the simplex for obtaining other trial points, 

using approaches principally based on a descent direction that can be estimated by 

either the gradient of the objective function hyperplane (GOFH) or the descent direction 

of the simplex edges (DDSE). 

Suppose the unconstrained minimization problems given by 

min f(x), 
xElRd 

where f(x) : lRd --+ lR is a non-linear function. 

For the class of problems given above, the estimation of a descent direction via GOFH is 

obtained by calculating the gradient of the hyperplane defined by the points on the 

surface of the objective function and whose projections into the domain set are just the 

vertices of the current simplex. That is shown in Figure 6.1, where the points 

[Ii : xTJT E lR3 Vi = 1,2,3 are on the surface of the objective function, which define the 

plane displays in the figure. 

Plane defined by 

the surface of the 
objective function. 

// ',I', 
fr f /// Simplex _~,:-J X2 -"-"'-, 

Xl 1£ ______ - ""-"''-,-

Figure 6.1: Estimation of a descent direction via GOFH 

In the case of the DDSE, the descent direction is defined by the average vector of the 



CHAPTER 6. EXPLORING OTHER VARIATIONS 170 

vectors given by the edges of the current simplex. Figure 6.2 illustrates an example in 

two dimension, where a descent direction is defined by the edge vectors Xl - X2 and 

Xl - X3, so the qth descent direction vector d[q] is computed by a function of those edge 

vectors. 

qth simplex 

Xl 

Figure 6.2: Estimation of a descent direction via DDSE 

Both approaches look like a good ideas, because the identification of a direction of 

descent could improve the efficiency of the NM method. However, theoretical 

explanation and numerical examples show that this variant of the NM method is very 

sensitive to the value of the objective function, so such methods can become vulnerable, 

especially if the objective function is affected by noise. 

6.3.1 The directional NeIder-Mead method 

To study the variant of the NM method named the directional NM method, we shall 

enunciate the following propositions. 

Proposition 6.3 (Descent direction) Let S[q] = [Xl: X2 : ... : Xv] be a qth entire 

simplex defined in the Euclidean space lRd , that is, the qth simplex is formed by (d+l) 

vertices and whose matrix defined by E[q] = [X2 - Xl : X3 - Xl : ... : Xv - Xl] represents 

the edges of the simplex that intersect at the common vertex Xj, and whose column rank 

is equal to d. Let f(x) be the objective function of the minimization problem, and let fi 

denote the value of f(xi) for all i = 1, ... , v. Then 
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a) The normalized direction in the Euclidean space ]Rd given by 

(6.8) 

is a descent direction of the objective function, 

where [,Bbqj : /3~J]T = [,6bq] , ,6~q], ,B~q], ... ,6Lq]]T is the vector of coefficients of the hyperplane 

defined by the points 

b) The normalized direction in the Euclidean space ]Rd given by 

(6.9) 

is a descent direction of the objective function. 

Proof. Part a) 

Let h(x) : ]Rd -+ ]R be a hyperplane in the Euclidean space ]R?d+l that is defined by the 

vertices of the simplex, thus 

h(x) = X/3[q] + E 

Since the current qth simplex is entire in the Euclidean space ]Rd, the number of vertices 

(v) of the current qth simplex S[qJ is d + 1, which satisfies the minimum necessary 

number of points that must define the hyperplane h(x) that contain the points 

[J(Xi) : xTV E ]Rd+l Vi = 1, ... ,v. Hence, all points [J(Xi) : xTJT E ]Rd+l Vi = 1, ... ,v 
perfectly fit to the hyperplane with error zero. Therefore, 

d 

h(x) = X/3[q] =,Bbq] + L ,B~qJXi' 
i=l 

where the vector of coefficients /3[q] = [,Bbq] : /31ql]T = [,BbqJ , ,B~qJ, ,B~qJ, ... ,BLqJv can be 

computed by 

(6.10) 

(6.11) 

Here the matrix X = [ Iv: S[q]T] and the column vector f[qJ = [h, 12, ... , fv]T is 

formed by the values of the objective function at each vertex of the qth current simplex 
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s[q]. Therefore, a normalized descent direction can be defined by 

Part b) 

Since fr:::; 12:::; ... :::; iv, then fr:::; ii for all i = 2, ... ,v, and (Xl-Xi) is a 

non-ascendant direction along the edge defined by the points Xl and Xi vi = 2, ... ,v. In 

the case that fr < ii for some i E {i E N I 2, ... ,v}, the non-zero vector given by 

(Xl - Xi) is a descent direction along the edge from Xi to Xl. Thus, for all i = 2, ... ,v, 

is a non-zero descent vector 

is a zero vector 

Ifh<fi, 

If h = ii 

where 6.i = ii - h > 0 for some i E {i EN 1 2, ... ,v}, because fr < k 

(6.12) 

Note that IlxI - xiii> 0 vi = 2, ... ,v, because we assume that the current simplex S[q] is 

an entire simplex. 

As a result of Equation (6.12) and the fact that each (Xl - Xi) is a non-zero descent 

vector if fr < ii, the vectorial sum L~=2 (Ji - fr) I)~~ =~:il must be composed of the sum 

of descent vectors, so the direction d[q] given by Equation (6.9) is a descent vector of the 

objective function. _ 

A new reflection and expansion operation 

As a consequence of a new reflection and expansion operation at any qth iteration, we 

have that the reflection trial point xref or the expansion trial point xexp can be defined 

by 

(6.13) 

where xfrom can be either Xcen or Xl, d[q] is the qth descent direction given by either 

Equation (6.8) or (6.9), depending on the chosen criterion, Z[q] = IIx1~n - xLq] " > 0 is the 

distance between x1~n and xLq] , and e is given by 

e = {a Reflection operation 
ai Expansion operation 
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Notice that the parameter ex and I are the reflection and expansion parameters of the 

conventional NM algorithm. 

6.3.2 Analysis of the directional NeIder-Mead method 

Without loss of generality, we shall study one iteration of the directional NM algorithm 

for a case of two dimensions in order to explain the behaviour of the method through 

this particular case. Suppose that the directional NM algorithm based on Equation (6.8) 

is applied to the problem of minimizing a non-linear objective function f(x) : JR2 ---> JR, 

and at qth iteration we obtain the following entire simplex S[q] 

For the current simplex, we have 

l[q] = S[q] [~ ~ -1] T 
2' 2' 

For this particular case, l[q] is 

The matrix X[q] and vector f[q] are given by 

Using Equation (6.11), we obtain 

Note that (a2b3 - a3b2) is the (l,l)-cofactor of X[qj, (b1a3 - a1b3) is the (2,l)-cofactor of 

X[q], and (a 1b2 - a2bl) is the (3,l)-cofactor of X[q]. 
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By Equation (6.8), we obtain the normalized vector d[q], whose coordinates are 

[q] _ [ -91 ]_ -1 1 [(b2 - b3 ) II + (b3 - bd 12 + (b 1 - b2) h ] 
d - -92 -1I[/31,/32flldet(X[q]) (a3- a2)1I+(a1- a3)12+(a2- al)h . 

(6.14) 

If an expansion operation defined by Equation (6.13) occurs next, then the next (q+1)th 

simplex is given by 

lr t 0
1 

01 l + ekq [_-99
2

1 00 00] 

~ 0 0 J 

(6.15) 

Furthermore, if the simplex S[q] were transformed by the classical NM method, we would 

obtain 

(6.16) 

Observe that the S[q+1] given by Equation (6.15) depends on, among other parameters, 

II, 12 and h, which could be vulnerable to changing of the objective function, especially 

when the objective function is corrupted by noise. In contrast, the (q+1)th simplex given 

by Equation (6.16) does not depend on the values of the objective function. However, 

the NM method makes decisions of the transformation of the simplex according to the 

value of the trial point that is obtained by the operations of the algorithm. 

In Table 6.3 the directional NM method based on xfrom=xcen is denoted by d-NM(xcen) 

and the directional NM method based on xfrom=X1 is denoted by d-NM(xd, where the 

descent direction is calculated by Equation (6.8). The parameters for all methods were 

fixed as follows: a = 0.95; /3 = 0.5; r = 2; 6 = 0.5 and T = 1. The tolerance error for 

stopping the algorithms were fixed with 7)1 = 7)2 = 10-6 , and the initial point for all 

numerical text was Xini = 20 Id· 
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Table 6.3: Comparison of the NM method vs the directional NM methods 
NM d-NM(xcen ) d-NlVI(xd 

Objective function NE DTP NE DTP NE DTP 

2:t=l x; 2435 1.9E-150 1428 9.7E-90 2398 E-162 

2:;=1 x; 3235 7.7E-63 745 1.5E-21 5582 E-162 

2d-Rosenbrock 396 1.4E-6 1263 39.003 134 47.412 

4d-Rosenbrock 2774 6E-6 747 40.316 5383 35.149 

As can be seen from Table 6.3, the directional NM methods have a suitable behaviour in 

the case of the convex quadratic objective function. However, for the case of the 

Rosenbrock function in 2 and 4 dimensions, the methods do not work appropriately. 

That confirms the fact that the directional NM method is sensitive to changing of the 

objective function, as was previously explained by Equation (6.15). Hence the directional 

NM methods have better performance than the NM method when the objective function 

is convex, whilst for the case of the Rosenbrock function, the directional NM methods do 

not work correctly. However, further study of this approach can help us to explain other 

reasons for why the directional NM methods do not work correctly. 

6.4 Conclusions 

From comparative analysis between the two explored variations, we appreciate that the 

dynamic LCNM version has better performance than the directional NM version. 

However, the dynamic LCNM algorithm has not evidenced significant advantages over 

our original LCNM algorithm. 

Despite the dynamic version of the LCNM algorithm requiring of the order of two 

function evaluations per iteration, the dynamic i-LCNM algorithm appeared to display 

an adequate performance in comparison with the original LCNM algorithm. 

However, a comparative study of the algorithms here developed, in order to find the best 

settings of the algorithms is nowadays an open research problem. 



Chapter 7 

Constrained optimization of noisy 

functions 

7.1 Introduction 

A comparative study of the LCNM method and the LCNM + PC method is presented in 

this chapter, when the objective function is in the presence of error. This kind of 

problem occurs in optimization problems of simulation of stochastic systems, aimed at 

the study of the improvement of real complex system, such as, manufacturing systems, 

traffic light systems and PERT-project networks. 

This chapter is concerned with a comparative analysis between the LCNM method and 

the LCNM+PC method from the standpoint of their performance, when they are 

applied to noisy objective function subject to linear constraints. For this, a brief review 

of non-parametric statistical comparison methods and a modified test developed by 

Brown and Forsythe (1974) for testing the equality of variances are presented in Section 

7.2. VVe describe in Section 7.3 the employed test problems for contrasting the LCNM 

method and the LCNM + PC method, the statistical test for equality of variances and the 

results of the comparisons by differences of percentiles, median and mean. Plots of 

cumulative frequencies of the DTP's and of the PM for both methods are shown in 

section 7.4, enriching the comparative analysis. Finally, Section 7.5 gives a discussion of 

the comparative analysis and conclusions of the study of the developed methods. 

176 
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7.2 Review of statistical comparison methods 

vVe shall herein include a basic review of the methods of comparison from the statistical 

analysis viewpoint, because the LCNM and the LCNM+PC methods will be compared 

using a set of test problems, where each objective function contains a noisy function 

given by a normal distribution with mean zero and variance 0'2. Though only normal 

errors have been used, both versions of the method have been designed for identifying 

the optimum, even if the noisy function is characterized by other distributions. 

Since the methods were applied to linearly constrained noisy optimization problems, it 

was necessary to make a number of independent replications or samples for obtaining a 

statistical analysis of their performance and accuracy. Parametric statistical comparison 

methods of means usually suppose that the error distribution associated with each 

sample must be independent and the response follows a known distribution (Hsu 1996). 

In our case, this latter assumption may not be satisfied. 

Hence, we use a non-parametric statistical method (sometimes called a distribution-free 

method). 

In particular, the distribution-free rank sum (DFRS) test (the two-sample Wilcoxon rank 

sum test) allows one to investigate the presence of treatment effect, as a result of a shift 

of location between two data groups. An important feature of the DFRS test is its 

applicability to unpaired samples (Mann and Whitney 1974), as is the case for data from 

our experiments. However, it must satisfy the following assumptions: 

• The m observations Xl, . .. Xm are an independent and identically distributed 

random sample from population 1, say the control population. The n observations 

YI , ... Yn also are an independent and identically distributed random sample from 

population 2, called the treatment population . 

• Both populations, control and treatment, are continuous. 

The DFRS test establishes as null hypothesis that both distribution functions, control 

distribution F(t) and treatment distribution G(t), have the same probability 

distribution. On the other hand, its alternative hypothesis asserts that the distribution 

function of the treatment population G(t), is shifted with respect to the distribution 

function of the treatment population F(t), by the amount .6.. 

Furthermore, if the DFRS test assumes that F(t) = G(t - .6.) for all t, then the 

independent random sample data from two populations must be of the same shape 
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approximately. Therefore, the variances of both populations must be approximately 

equal. 

Namely, 

Ho: F(t) = G(t) vs HI: F(t) = G(t -,6.) "It (7.1) 

The alternative hypothesis HI written in Equation (7.1) says control and treatment 

populations are the same except by the amount 6, whose value represents the effect due 

to the treatment. This is, if 6 > 0, then the expected value of the treatment population 

is more than the expected value of the control population. Whereas, if 6 < 0, then the 

expected value of the treatment population decrease due to the treatment. In 

mathematical terms, if E(X) and E(Y) are the means of control and treatment 

populations, respectively, then 

6 = E(X) - E(Y) 

Equation (7.2) is a consequence of writing this as Y :1:. X + ,6., where the symbol :1:. 

represents II the same distribution ", and X and Yare the random variables 

corresponding to each population. 

(7.2) 

In the comparison of the performance of the LCNM method whose observations were 

based on the control population versus, the performance of the LCNM+PC methods for 

establishing the treatment effect, we applied the statistical test of an one-sided upper-tail 

for large number of observations, using the vVilcoxon two-sample rank sum statistic VV* 

given by 
W* _ W - Eo[vV] 

- (Varo [W]) 1/2 ' 

where W is the Wilcoxon two-sample rank statistics, and Eo[W] and Varo[W] 

corresponding to the mean and the variance of W respectively, when the null hypothesis 

is true. These are given by 

Eo [W] = n (m + n + 1) 
2 

Varo[W] = mn(m + n + 1) 
12 

The hypotheses of one-sided upper-tail test are defined as: 

where for a level of significance a, Ho is rejected if VV* 2: Za, otherwise Ho cannot be 

rejected Ho. Here Za is the critical value of a normal distribution N(O, 1) (Hollander and 



CHAPTER 7. CONSTRAINED OPTIMIZATION OF NOISY FUNCTIONS 179 

Wolfe 1999). 

If the populations have different standard deviations, a two-sample t-test without 

pooling variances may be more appropriate (Ryan et al. 1985) for comparing the sample 

means Xl and X2 of each population using the statistic t, given by 

t= 
Xl - X2 

2 2 ' 
~+~ 
nl n2 

and its degrees of freedom, d.j., is based on the following approximation, 

where Xi, s; and ni are the sample mean, sample variance and sample size, respectively, 

of the ith population. 

In our case, because the samples yielded from each experiment have the same number of 

observations n, the two-sample t-test approach is acceptably safe, even if the variances 

differ (Law and Kelton 2000). 

Since our interest is centred on the use of the statistical test for comparing the 

populations that emanate from the results of the test problems, we shall not consider 

theoretical aspects of the test in this work. A detailed explanation of the employed test 

procedure is widely presented in (Hollander and Wolfe 1999) and (Arnold 1990). 

To do the statistical tests, we employed the well-known statistical software Minitab ® 

(Minitab 1994), which offers a flexible interface with some spreadsheet software such as 

Microsoft ® Excel. The DFRS test can be performed using Minitab, estimating the 

equality of two population medians, and calculating the corresponding point estimate 

and its confidence interval. 

The hypotheses that can be tested through Minitab are Ho: f-Ll = f-L2 versus HI: f-Ll I- /-l2 

(f-Ll < f-L2 or f-Ll > f-L2) for two-sided test (one-sided lower-tail test or one-sided upper-tail 

test), where f-L is the population median, which is also denoted by md[x]. In the case that 

there exist ties in the data, Minitab adjusts the significance level (Ryan et al. 1985). 

Minitab can also carry out the two-sample t-test under the assumption of equal or 

unequal variances, which may be considered as a way for comparing populations when 

their variances are different (Ryan et al. 1985). This latter comparison approach was 

also performed for obtaining more information, when the variances of the populations to 
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be compared are statistically distinct. 

In addition Minitab allows one to perform the F-test for comparing the variance of two 

normal populations, and the test of Levene for equality of variances of two either normal 

or non-normal populations using the modified procedure of Levene developed by Brown 

and Forsythe (1974). This latter method regards the distances of the observations from 

their sample median rather than their sample mean, making procedure more robustly 

asymptotically distribution-free. 

The hypotheses that can be tested using Minitab for the F-test and the test of Levene 

are Ho: CJI= CJ§ versus HI: CJI I- CJ§, where CJI and CJ§ are the variances of the population 

1 and population 2, respectively. If the reported p-value of Minitab is less than the level 

of significance chosen by the user, then the null hypothesis of equal variance can be 

rejected (Minitab 2000). 

In our case, we shall compare two groups of data Xij = f-Li + Cij (i = 1,2) of the same 

sample size iV, where f-Li is unknown and f-LI and f-L2 are assumed unequal, and Cij are 

independent and the same distribution with means zero and not necessarily equal 

variances. The Levene test statistic is given by 

where k = 2 is the number of groups, Vij is estimated by Minitab using the following 

definition 

Vij = IXij Xi. I where Xi. is the median of each ith group, 

1/;. is the ith mean of the Vij, and 1/;.. is the overall mean of all sample Vij (Brown and 

Forsythe 1974). Moreover, the estimation of Vij using the median provides enough 

robustness when the data are non-normal distribution. 

7.3 Comparison of the LCNM versus the LCNM+PC 

methods 

To compare the effectiveness and accuracy of these algorithms, we created a set of noisy 

objective functions or artificial response functions, whose value depends on: a 

deterministic function say f(x), and a stochastic term denoted as N(CJ). This latter was 

generated through a normal distribution pseudo-random number generator with mean 

zero and variance CJ 2 . Equation (7.3) represents a general response function employed in 
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the computational experiments. 

j(x) = f(x) +N(cr) (7.3) 

Two main computational experiments were performed to determine the properties of the 

LCNM and the LCNM + PC methods, when the cone angle of the feasible region is either 

sharp or obtuse, and when the best local minimum is located inside feasible region or on 

the boundary. The level of noise was controlled by the value of cr. 

7.3.1 Description of the tests of comparison 

To contrast both methods, a set of test problems was carried out, which is grouped by: 

the type of region, location of the best local optimum, deterministic objective function 

and noise level. This taxonomical scheme is depicted in Figure 7.1. 

Type of feasible Location of the Type of function Error function 
cone angle best minimum 

Best local minimum on 
the boundary {~d_~ Feasible region I 

Obtuse angle Wood function Noise level: 
- Powell function ,,=0.1,0.5,1,5,10 

Best local minimum Rosenbrock function 

inside region 

Test Problem 

Best local minimum on 
the boundary Quadratic function 

Feasible region 2 Wood function { No',,'"" Shall' angle Powell function - ,,=0.1,0.5,1,5,10 

Best local minimum Rosenbrock function 

inside region 

Figure 7.1: Taxonomy of test problems for noisy function cases. 

To compare the computational effort of both methods, it we used the performance 

measure given by 

PlvIi = NEi + 100· DTPi Vi = 1,2,3,4,5 

where 1'1 Ei is the number of function evaluations carried out during the search of the 

minimum, DT Pi is the distance to the true point for each test and the subscript ith 
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represents the fixed noise level. Observe that the best algorithm is that whose P NI is the 

smallest. 

The accuracy of both methods was measured through the sampling of the DTP for each 

noise level for comparing both methods. 

Table 7.1 displays the blocks of 100 independent observations by symbol ./ for each test 

problem grouped by obtuse and sharp cone angle of the feasible region, by the noise 

level. This experimental structure was also used for obtaining DTP and NE data. The 

notation of the test problems indicated in the tables is as defined in Subsection 5.4.l. 

Table 7.1: Blocks of experiments for the feasible region 1 and region 2. 
PMl PM2 PM3 PM4 PM5 

Setting Test \ J 0.1 0.5 1 5 10 

R a = 0.95, T = 0.5 TP1(4) ./ ./ ./ ./ ./ 

e a = 0.95, T = 0.5 TP7(4) ./ ./ ./ ./ ./ 

g a = 0.95, T = 1 TP9(4) ./ ./ ./ ./ ./ 

i a = 0.95, T = 1 TP5(2) ./ ./ ./ ./ ./ 

0 a = 0.95, T = 0.5 TP2(4) ./ ./ ./ ./ ./ 

n a = 0.95, T = 0.5 TP8(4) ./ ./ ./ ./ ./ 

a = 0.95, T = 1 TPlO( 4) ./ ./ ./ ./ ./ 

1 a = 0.95, T = 1 TP6(2) ./ ./ ./ ./ ./ 

R a = 0.95, T = 0.5 TPll(4) ./ ./ ./ ./ ./ 

e a = 0.95, T = 0.5 TP17(4) ./ ./ ./ ./ ./ 

g a = 0.95, T = 0.5 TP19(4) ./ ./ ./ ./ ./ 

i a = 0.95, T = 0.5 TP15(2) ./ ./ ./ ./ ./ 
0 a = 0.95, T = 0.5 TP12( 4) ./ ./ ./ ./ ./ 

n a = 0.95, T = 0.5 TP18( 4) ./ ./ ./ ./ ./ 

a = 0.95, T = 0.5 TP20(4) ./ ./ ./ ./ ./ 

2 a = 0.95, T = 0.5 TP16(2) ./ ./ ./ ./ ./ 

The groups of test problems were carried out using the LCNM and the LCNM+PC 

methods under the same algorithm settings with stopping parameters r; = 0.1, 

Til = Tl2 = 10-6 and ,6. = 10-5 . The values of a (reflection coefficient of the LCNM) and 

T (parameter of step size) are also shown in the above tables. As initial point we used 

the point 20 . Id for all tests. 

A scheme of classification of the test problems is given in the following table. Note that 

they are grouped by feasible region class and location of the assumed best local 

minimum. 
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Table 7.2: Taxonomy of the test problems. 
True point on the boundary True point inside the region 

Region 1: TP1(4), TP7(4) TP2(4), TP8(4) 
Obtuse angle TP9( 4), TP5(2) TP10(4), TP6(2) 
Region 2: TP11(4), TP17(4) TP12(4), TP18(4) 
Sharp angle TP19(4), TP15(2) TP20( 4), TP16(2) 

7.3.2 Statistical test for equality of variances 

To verify the assumption of equality of distribution shape that must be satisfied by the 

populations for using the DFRS test, we carried out the comparison variance test of 

Minitab, which allows us to obtain a report of both the F-test under the assumption of a 

normal distribution and the test of Levene for any continuous distribution. This latter is 

a modification developed by Brown and Forsythe (1974). 

Since in most cases the populations are non-normal, it was appropriate to report the test 

of Levene with 95% confidence interval, under the assumption of similarity of the 

distributions. Thus, if the p-value of each test estimated by Minitab is less than 0.05, 

then we rejected the null hypothesis of equality variances. 

Table 7.3: Test of Levene for equal variances of the PM's in the feasible region l. 
I Method I Pivh I PJ1Ih I P}\!h I PJ1Ii4 I PJ1Ih I 

TP1(4) 
L statistic 6.016 2.430 0.414 2.115 4.620 
p-value 0.015 0.121 0.521 0.147 0.033 

TP7(4) 
L statistic 11.908 2.558 2.337 1.744 3.018 
p-value 0.001 0.111 0.128 0.188 0.084 

TP9(4) 
L statistic 30.704 8.938 0.025 0.441 0.056 
p-value 0.000 0.003 0.875 0.507 0.813 

TP5(2) 
L statistic 0.065 0.051 1.440 1.519 2.916 
p-value 0.799 0.821 .0232 0.219 0.089 

TP2(4) 
L statistic 37.680 26.370 25.719 26.074 4.727 
p-value 0.000 0.000 0.000 0.000 0.031 

TP8(4) 
L statistic 72.520 6.577 14.142 18.220 72.522 
p-value 0.000 0.011 0.000 0.000 0.000 

TP10(4) 
L statistic 8.677 17.838 230.427 21.672 4.036 
p-value 0.004 0.000 0.000 0.000 0.046 

TP6(2) 
L statistic 0.682 2.461 1.069 0.838 3.493 
p-value 0.410 0.118 0.302 0.361 0.063 
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Test statistics and p-values of the test of Levene are shown in Table 7.3, when the 

feasible region is the an obtuse angle, for comparing the variance of each P Jv1i 

distribution of the LCNM and the LCNM+PC methods for each test problem. As can be 

seen from the table, most of the p-values are less than 0.05, so in these cases the null 

hypothesis that there is the equality of variances of the populations is rejected. 

Table 7.4: Test of Levene for equal variances of the PM's in the feasible region 2. 
I Method I PJvh I P1Vf 2 I PJvI3 I P1VI4 I PlvIs I 

TP11( 4) 
L statistic 26.034 8.709 1.974 2.907 1.873 
p-value 0.000 0.004 0.162 0.090 0.173 

TP17(4) 
L statistic 20.593 59.183 86.507 28,481 45.564 

p-value 0.000 0.000 0.000 0.000 0.000 

TP19(4) 
L statistic 42.333 1.439 0.979 8.800 45.087 

p-value 0.000 0.232 0.324 0.003 0.000 

TP15(2) 
L statistic 118.612 81.167 165.910 85.010 218.248 
p-value 0.000 0.000 0.000 0.000 0.000 

TP12(4) 
L statistic 5,471 0.231 1.334 6.307 0.690 
p-value 0.020 0.631 0.250 0.013 0.407 

TP18(4) 
L statistic 5.580 79.236 108.859 17.112 14.960 

p-value 0.019 0.000 0.000 0.000 0.000 

TP20(4) 
L statistic 46.157 31.686 1.592 3.262 0.535 

p-value 0.000 0.000 0.208 0.072 0,465 

TP16(2) 
L statistic 6.537 12.016 17.279 21.293 4.340 

p-value 0.011 0.001 0.000 0.000 0.039 

Table 7.4 displays the test statistics and the p-values of the test of Levene for the set of 

test problems when the feasible region has a sharp solid angle. According to this table, 

most of the p-values are less than 0.05. Therefore, in these cases, we reject the null 

hypothesis of equality of variances of the populations. 

Even where the null hypothesis of equality of variances of the populations cannot be 

rejected, it does not mean that the populations are of the same shape approximately. 
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7.3.3 Comparison by 90th percentile 

Since the population of P JIIIi 's are non-normal distributions and in most cases the 

distribution of the PJ\!Ii,LCNM and PJIIIi,LcNM+Pc are of unequal variances for each ith 

noise level, we therefore compared the performance of both algorithms by 90th percentile 

of each P JV!i distribution. Tables 7.5 and 7.6 report the percentage relative changing 

6Pi = 100· (Pi,LCNYI - Pi,LCNlVI+PC)/Pi,LCNM for each level noise i = 1, ... , 5, where 

Pi,LCNM is the 90th percentile of the PJIIIi when we applied the LCNM algorithm to each 

test problem and, Pi,LCNM+PC is the 90th percentile of the P Mi when we applied the 

LCNM + PC algorithm. 

Table 7.5: Percentage relative changing for the 90th percentile of the PM's in region l. 
I 6 PI I 6 P2 I 6 P 3 I 6 P4 I 6 P 5 I 

TP1(4) 5.84 12.02 9.75 3.63 -l.12 
TP7(4) 0.84 7.47 3.86 -10.07 -13.37 
TP9(4) 10.13 10.30 9.05 0.14 l.08 
TP5(2) 7.14 30.63 l.80 -1.70 -4.15 
TP2(4) 22.25 22.47 22.53 15.15 6.70 
TP8(4) -9.15 -5.67 -1l.02 85.52 86.61 
TPlO(4) -22.33 33.80 35.21 14.58 7.97 
TP6(2) 7.90 30.13 11.67 -l.17 -l.85 

Table 7.6: Percentage relative changing for the 90th percentile of the PM's in region 2. 
I 6 PI I 6 P2 I 6 P3 I 6 P4 I 6 P5 I 

TPl1(4) 34.58 31.18 25.03 18.29 5.06 
TP17(4) 29.31 73.04 73.60 69.21 59.27 
TP19(4) 43.58 39.26 38.12 57.78 94.19 
TPI5(2) 60.71 6l.40 6l.40 6l.34 60.71 

TP12(4) -18.57 -12.02 12.89 6.92 1.40 
TP18(4) 46.39 68.63 68.20 40.43 13.02 
TP20(4) -55.98 -5l.72 -45.43 -10.25 -0.84 
TPI6(2) 40.57 27.41 25.28 26.33 26.14 

From Tables 7.5 and 7.6, we observe that in 77% of the cases the values of 6Pi are 

positive. So the performance measure of the LCNM algorithm was greater than the 

performance measure of the LCNM + PC algorithm in most cases. This is evidence that 

the LCNM+PC algorithm has advantages over its original version, when the objective 
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function is altered by noise in 4-dimension cases. Obviously, this comparative study 

cannot be regarded as a definite proof of the superiority of the LCNM+PC algorithm. 

However, it can help us to establish some comparative features. 

7.3.4 Comparison by median and mean 

Despite the fact that the populations of P Mi can have different shapes and variances in 

most of the cases, we supposed true the assumptions of the DFRS test for performing 

the non-parametric statistical test. Table 7.7 and Table 7.8 show the 95% confidence 

intervals for the difference of the median of P filIi of the LCNM and the LCNM + PC 

methods. Thus md[.6.PfilIi ] = md[PfilIi,LCNM - PfilIi,LCNM+PC] for i = 1, ... , 5 are 

reported for the DFRS test, where md[·] represents the median. 

Table 7.7: Confidence intervals for difference of the median of the PM's in the region 1. 
I md[.6.Pfilh] I md[.6.Pfilh] I md[.6.Plvh] I md[.6.PM4 ] I md[.6.Pfilh] 

TP1(4) (9.16,37.23) (10.05, 39.00) (12.35, 44.68) (-22.51,30.84) (-45.17,25.11) 

TP7(4) (-15.66, -9.96) (25.94, 33.97) (21.01, 30.32) (-3.38,24.43) (-36.71, -14.14) 

TP9(4) (16.96, 22.58) (21.66, 26.68) (21.39, 26.85) (4.45, 23.91) (0.47, 24.60) 

TP5(2) (11.11, 19.47) (38.0, 691.3) (-81.3, 508.4) (-145.5,39.6) (-74.0,64.9) 

TP2(4) (-54.12, -26.17) (-66.22, -39.48) (-50.14, -26.45) (-12.74,27.82) (-12.01,33.07) 

TP8(4) (103.15, 139.59) (135.26, 149.01) (-22.61, 98.66) (-45.8, 22.4) (630.1,4135.6) 

TP10(4) (-56.19, -49.26) (-56.67, -44.93) (19.40, 114.30) (-2.10, 49.50) (-3.86,37.44) 

TP6(2) (-9.39, 10.94) (459.1,1042.9) (116.1, 669.0) (-124.3,53.4) (-123.3,32.3) 

Table 7.8: Confidence intervals for difference of the median of the PM's in the region 2. 
I md[.6.Pfilh] I md[.6.Pfilh] I md [.6. Pfilh] I md[.6.PfilI4 ] I md[.6.PfilI5 ] 

TP11(4) (17.05,58.91) (49.48, 87.66) (50.38, 88.77) (47.62, 89.83) (23.64, 76.51) 

TP17(4) (254.06, 291.53) (299.5, 355.5) (363.8, 1913.2) (162.3, 221.8) (75.9, 165.9) 

TP19(4) (180.21, 198.44) (167.59, 178.76) (144.60, 171.98) (212.55, 160.18) (132.7,229.6) 

TP15(2) (31.00, 33.00) (32.00, 33.00) (31.00, 33.00) (32.00, 33.00) (28.00, 32.00) 

TP12(4) (-47.10, -30.07) (-44.14, -19.21) (-22.63, 11.22) (-2.11,40.94) (-5.22,38.24) 

TP18(4) (605.9,639.5) (678.5,855.1) (216.1,519.8) (35.85, 114.43) (21.01, 88.67) 

TP20(4) ( -151.66,-146.24) ( -137.28,-131.38) (-129.00,-122.41) ( -103.55,-81.46) (-38.78, 7.34) 

TP16(2) (116.46, 135.27) (83.71, 100.55) (77.79, 96.30) (93.98, 108.55) (66.44, 84.56) 

From Table 7.7, we observe that the LCNM algorithm has better performance than its 

modified version for obtuse angle cases, because the number of negative confidence 



CHAPTER 7. CONSTRAINED OPTIlvIIZATION OF NOISY FUNCTIONS 187 

intervals is 27 of a total of 40 experiments. However, when the solid angle of the feasible 

region is sharp, the LCNM + PC method displays superiority over its original algorithm, 

due to the fact shown in Table 7.8, that there exist 30 positive confidence intervals of 40 

experiments. This means that the 75% of the cases, the PM of the LCNM+PC method 

was better (smaller) that the PM of the LCNM method. 

In addition we carried out the two-sample t-test without pooling variances and with 95% 

lower bound confidence intervals for the difference of the median, at each noise level. In 

Table 7.9 and Table 7.10, we report 95% lower bound confidence intervals for the 

difference displayed in square brackets, and for the point estimate of the population 

difference mean 6E[Plvli ] = E[PMi,LCNM]- E[PiVli ,LcNM+Pc]. 

Note that in some cases, the populations are non-normal distributions, which do not 

satisfy the assumption of the two-sample t-test. However, the two-sample t-test without 

pooling variances may nevertheless be useful for comparing the performance of both 

methods, even when the population are non-normal distribution. 

In Section 7.4 are depicted a set of cumulative frequencies of both DTP's and the PM's 

by test problem and noise level, when the LCNM and the LCNM + PC methods are 

applied. As may be seen from the cumulative frequencies, some PM's display a clearly 

non-normal distribution, such as the test problems TP8( 4) and TP17( 4) when the 

LCNM method was applied. An examination of the different cumulative frequencies of 

all the carried out test problems clearly verifies that the test problems TP8( 4) and 

TP17( 4) are from a non-normal distribution. The rest of them could be considered 

normally distributed. 

Table 7.9: Summary of two-sample t-tests for 95% lower bound confidence intervals and 
the point estimates of the population difference mean of the PM's for the region l. 

I 6E[PM1] I 6E[PM2] I 6E[PiVh] I 6E[PiV141 I 6E[PiVI5 ] 

TP1(4) [6.33] 19.41 [15.92] 28.43 [15.17] 28.22 [-15.1]13.7 [-40.3] -12.7 

TP7(4) [-12.47] -8.36 [22.00] 26.37 [17.56] 22.40 [-7.83] 0.66 [-34.83] -26.05 

TP9(4) [18.73] 20.81 [22.63] 24.59 [19.78] 23.50 [3.63] 13.17 [1.08] 11.45 

TP5(2) [-22.5] 7.0 [143] 384 [-31] 193 [-133.7] -39.0 [-90.6] -26.3 

TP2(4) [-24.1] -6.8 [-37.81] -22.02 [-30.50] -15.98 [-4.29] 12.10 [-9.1] 9.1 
TP8(4)* [44.4] 63.3 [78.89] 95.11 [4.5] 28.8 [375] 634 [2058] 2404 

TP10(4) [-55.58] -52.85 [-31.36] -15.68 [54.7] 73.0 [6.5] 24.2 [1.7]19.8 

TP6(2) [-2.8] 19.9 [591] 846 [153] 368 [-114.4] -22.7 [-95.7] -20.9 
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From Table 7.9, the LCNM+PC method had better (smaller) performance than the 

LCNM method, in most cases when the best optimum point is on the boundary of the 

feasible region, especially in the cases with noise level of (7 = 0.5, 1 and 5. On the other 

hand, for the cases when the best local optimum is inside the feasible region, there does 

not exist a clear evidence of the advantage of one of the methods. Nonetheless, when the 

noise level is high, the PM of the LCNM+PC method is smaller than the PM of the 

LCNM method. 

Table 7.10: Summary of two-sample t-tests for 95% lower bound confidence intervals and 
the point estimates of the population difference mean of the PM's for the region 2. 

I LlE[PNh] I LlE[PNh] I 6.E[PNh] I LlE[PM4 ] I LlE[P)\!h] 

TPll(4) [33.5] 5l.5 [59.0] 75.7 [54.29] 70.78 [5l.9] 68.6 [27.7] 48.4 

TP17(4)* [213.6] 237.4 [615.7] 746.5 [98.3.0] 1130.6 [274.8] 376.1 [210.8] 299.9 

TP19(4) [180.84]189.78 [157.50] 167.53 [145.11] 155.17 [260] 448 [1163]1524 

TP15(2) [30.618] 31.200 [3l.225] 31.810 [.30.434] 31.080 [30.653] 3l.24 [29.836] 30.44 

TP12(4) [-59.54] -47.47 [-39.78] -27.79 [-16.91] -3.66 [1.3] 18.9 [0.8] 2l.0 

TP18(4) [630.9] 684.0 [707.7] 807.1 [451A] 544.6 [85.3] 135.0 [43.3] 73.3 

TP20(4) [-150.86] -148.52 [-136.15] -133.60 [-126.14]-121.43 [-89.71] -76.22 [-35.8]-15.1 

TP16(2) [122.07] 128.17 [89.02] 96.54 [80.33] 88.54 [96.53] 104.33 [7l.87] 79A8 

As can be seen in Table 7.10, the LCNM+PC method had better performance than the 

LCNM method when the best local optimum is on the boundary of the feasible region, 

for all the noise levels. However, this advantage of the LCNM+PC method over the 

LCNM method cannot be affirmed in the other cases. 
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7.4 Contrasting the methods by cumulative frequency 

curves 

We now compare both methods using by considering the curves of cumulative 

frequencies of the PlVli and the DTPi for all noise levels. In particular, we concentrate 

on the test problem when the objective function is a convex quadratic function and the 

Wood function. 

Table 7.11: Comparison of the test problems by cumulative frequency curvers. 
True point on the boundary True point inside the region 

I Obtuse angle (Region 1) TP1(4), TP7(4) TP2(4), TP8(4) 

I Sharp angle (Region 2) TP 11 ( 4 ), TP 1 7 ( 4 ) TP12(4), TP18(4) 

Table 7.11 displays the set of test problems that were employed for comparing the 

accuracy and efficiency in terms of the PM of the developed methods, when an error 

alters the objective function. 
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7.4.1 Case: Quadratic objective function 

From Figure 7.2 and Figure 7.3, we observe how the LCNM+PC method is more 

accurate than the LCNM method, because the family of cumulative frequencies of the 

DTP when we applied the LCNM+PC method reach their maximum within an interval 

narrower than when we applied the LCNM method. Moreover, the PM of the LCNM is 

slightly smaller than the P M of the LCNM+PC. 
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Figure 7.2: Curves of cumulative frequencies of the DTP and the PM for the TPl(4) with 
noise level (J = 0.1, 0. 5, 1, 5 and 10, using the LCNM. 
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Figure 7.3: Curves of cumulative frequencies of the DTP and the PM for the TPl(4) with 
noise level (J = 0.1, 0. 5, 1, 5 and 10, using the LCNM+PC. 
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As a result of a comparative analysis between Figure 7.4 and Figure 7.5, we note that 

the LCNM+PC method is more effective that its original version, because it converges to 

the true point, which is inside the feasible region, with more accuracy and better PM 

than the LCNM method. Furthermore, if the obtained figures of TP1(4) and TP2(4) are 

compared, we observe that the LCNM method had better performance in the case when 

the true point is on the boundary than when the true point is inside the feasible region. 

Nevertheless, the LCNM+PC method presented better performance when the true point 

is inside the feasible region than when t he true point is on the boundary of the feasible 

region. 
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Figure 7.4: Curves of cumulative frequencies of the DTP and the PM for the TP2(4) with 
noise level (T = 0.1 , 0.5, 1, 5 and 10, using the LCNM. 
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Figure 7.5: Curves of cumulative frequencies of the DTP and the PM for the TP2(4) with 
noise level (T = 0.1, 0.5, 1, 5 and 10, using the LCNM+PC. 
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The following figures correspond to the subgroup of test problems when the feasible 

region contains a sharp angle and the true point is on the boundary of the feasible region 

and inside the feasible region. 

As are shown in Figure 7.6 and Figure 7.7, which correspond to the case when the true 

point is on the boundary, both the PM of the LCNM+PC method and its accuracy are 

better than when we applied the LCNM method. 
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Figure 7.6: Curves of cumulative frequencies of the DTP and the PM for the TPll(4) 
with noise level (J' = 0.1, 0.5, 1, 5 and 10, using the LCNM. 
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It may be seen from Figure 7.8 and Figure 7.9 that the PM of the LCNM method is 

smaller than the PM of the LCNM+PC method. However, the LCNM+PC method is 

more accurate than the LCNM method. Note that the LONM method reported better 

performance when the true point is inside the feasible region than when it is on the 

boundary. However, the PM of the LCNM+PC method is slightly less in the case when 

the true point is located on the boundary than when it is inside the feasible region. 
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Figure 7.8: Curves of cumulative frequencies of the DTP and the PM for the TP12(4) 
with noise level (T = 0.1, 0.5, 1, 5 and 10, using the LCNM. 
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7.4.2 Case: Wood objective function 

As may be seen from Figure 7.10 and Figure 7.11 the LCNM+PC method has better 

performance from the point of view of its accuracy, although its PM is larger than the 

PM of the LCNM. Note that the cumulative frequency of the DTP of Figure 7.10 shows 

that the LCNM method converges in an important number of cases to another local 

minimum when the level of noise are 0.5, 1 and 5. In contrast, the LCNM+PC method 

converges to point close to the true point, even when the levels of noise are 0.5 and 1. 
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Figure 7.10: Curves of cumulative frequencies of the DTP and the PM for the TP7(4) 
with noise level (J = 0.1, 0.5, 1, 5 and 10, using the LCNM. 
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From Figure 7.12 and Figure 7.13, the LCNM+PC method shown better performance 

than its original version from the standpoint of the accuracy and the PM. However, the 

LCNM method has better performance when the best local minimum is on the boundary 

rather than when it is located inside obtuse angle feasible region. 
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Figure 7.12: Curves of cumulative frequencies of the DTP and the PM for the TP8(4) 
with noise level (J' = 0.1, 0.5, 1, 5 and 10, using the LCNM. 
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As are shown in Figure 7.14 and Figure 7.15 the LCNM+PC method always converges 

close to the point (1.3, 1.3, -1.8, 3.5)T with a value of function approximately of 155 

according to the report. In contrast, the LCNM method reaches the best local minimum 

in approximately 20% of the sample. From this viewpoint, one could say that the LCNM 

method is better than its modified version. However, the PM of the LCNM method is 

considerably greater than the PM of the LCNM+PC method. 
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Figure 7.14: Curves of cumulative frequencies of the DTP and the PM for the TP17(4) 
with noise level (J = 0.1, 0.5, I, 5 and 10, using the LCNM. 
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From Figure 7.16 and Figure 7.17, we observe that the LeNM method has better 

performance than its modified version, considering the DTP and the PM. On the other 

hand, when we compare the performance of each method in the test problems TP17(4) 

and TP18(4), we note that both versions of the method converge with more frequency to 

points close to the t rue point, when the best local minimum is inside the feasible region. 
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Figure 7.16: Curves of cumulative frequencies of the DTP and the PM for the TP18(4) 
with noise level ()' = 0.1, 0. 5, I, 5 and 10, using the LCNNI. 
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Figure 7.17: Curves of cumulative frequencies of the DTP and the PM for the TP18( 4) 
with noise level ()' = 0.1 , 0.5 , I, 5 and 10, using the LCNM+PC. 
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7.5 Conclusions 

From the comparative analysis developed in this chapter, we have recognized the 

goodness of both algorithms for estimating the optimum to constrained noisy 

minimization problem. Both algorithms identify a reasonable minimum within an 

adequate number of function evaluations. 

The comparative study between our algorithms by 90th percentile shows that the 

LCNM + PC algorithm has better performance that its original version for both class of 

region and location of the constrained global minimum. Nevertheless, this fact cannot be 

generalized to the comparative analysis by median, where the LCNM algorithm seemed 

to have better performance, for 27 of 40 cases, than its premature collapse version when 

the feasible region has an obtuse solid angle. In contrast, when the feasible region is 

sharp, the LCNM+PC method identified more efficiently the minimum in the 75% of the 

cases than the LCNM method. 

In our opinion, the LCNM + PC algorithm could be an useful approach rather than the 

LCNM algorithm, if it saved the information of the evaluated points for inferring and 

recognizing some features of the objective function during its current stage. We believe 

therefore that the LCNM+PC algorithm can make the decision whether to keep using 

the premature collapse criterion or not in the following stage of the algorithm. Thus the 

use of premature collapse criterion in any stage of the algorithm would depend on, for 

example, the possible number of valleys of the objective function that can be inferred 

and its probable location. Obviously, this recommendation would be an interesting 

research for improving the LCNM + PC algorithm. 



Chapter 8 

Conclusions and future research 

Through this research we have developed an algorithm for optimizing a non-linear 

objective function subject to linear inequality constraints, when the analytical expression 

of the objective function is unavailable or its evaluation at each experimental design 

point is expensive. The LCNM algorithm and its premature collapse version have been 

shown to be able to identify at least a constrained local minimum within a reasonable 

number of function evaluations, even in situations when the initial point for building the 

simplex is far from the optimum. The algorithms have also been shown to have a 

satisfactory behaviour in linearly constrained optimization problems when the objective 

function is corrupted by noise. 

An interesting result of the minimization problem of a two-dimension linear objective 

function subject to two linear constraints demonstrated that the LCNM algorithm can 

be very expensive, due to its exceptionally slow rate of convergence of order O( q-l/2). 

However, the premature collapse of the simplex has been shown to be an useful approach 

for improving the efficiency of the LCNM algorithm in this kind of problems. 

Nonetheless, the induction of collapse of the simplex can intensify the search of optima 

on the boundary of the feasible region rather than inside the region, so missing the 

identification of a possible constrained global optimum located inside the feasible region. 

Hence, the use of the premature collapse in the LCNM algorithm can be somewhat risky. 

The development of the LCNM algorithm and its premature collapse modification allow 

us to understand the behaviour of the methods based on the NM algorithm, which 

induced us to propose future research for improving and extending the use of the LCNM 

algorithm. 

An interesting open problem is the development of an optimization algorithm based on 
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the LCNM algorithm for identifying the optimum to problems where the decision 

variables are discrete. This would result in a powerful optimization tool to find the 

optimum operation of system that can only be evaluated through discrete settings, such 

as the optimization of queue networks, where some decision variables can uniquely be 

fixed by discrete quantities for estimating their performance measure. 

The study of the called dynamic LCNM algorithm allow us to appreciate the potentiality 

of applying the so-called dynamic NM operations, which concerns with the estimation of 

the best value of the parameter of the NM operations using some criteria, so the 

algorithm can obtain an optimum trial point at each iteration. The investigation of some 

criteria for estimating the best value of the NM parameter operations can constitute an 

important contribution. 

Nowadays some modifications of the NM simplex algorithm have been developed for 

avoiding the convergence to a non-stationary point, for instance, Kelley (1999) and Price 

et al. (2002). However, in our opinion, these approaches are still not good enough, 

because they can be expensive. The search of an economic algorithm for minimizing 

non-linear objective function subject to linear constraints that guarantees its convergence 

to local minimum is to date an open problem, as is the theoretical study of convergence. 

An extension of the linearly constrained linear programming problem of Section 4.4 to 

more dimensions can be an interesting research, where the study of conditions for 

avoiding a slow convergence rate of the LCNM algorithm can help to correct this 

potential weakness. 

Obviously, the development of an extension of the LCNM algorithm to non-linear 

constraint minimization problems can also represent an interesting investigation in the 

field of the non-linear programming. 



Appendix A 

Optimality conditions 

This appendix deals with the optimality condition for the linearly constrained 

minimization (LCM) problems. In particular, problems will be considered subject to 

linear inequality constraints for proving necessary conditions, without any convexity 

assumptions of the objective function. Furthermore, if the objective function satisfies 

some convexity assumptions, sufficient conditions of optimality can be established. The 

following definitions and theorems are based on the textbooks written by Bazaraa and 

Shetty (1979), and Nocedal and Wright (1999). However, this concise theory was 

adapted to our particular LCM problems. 

A.1 Preliminary definitions 

Definition A.I (E-neighbourhood around x) A set Nc(x) is said to be the 

E-neighbourhood ofx in a d-dimensional Euclidean space IRd , if all its points y E IRd hold 

the inequality Ily - xii < E for some E > O. This means, Nc(x) = {y Illy - xii < E}. 

Definition A.2 (Point in closure of B) Let B be an arbitrary and non-empty set in 

]Rd and let cl B denote a set of points in the closure of B. A point x is said to be in cl B 

if BnNc(x) =/::. 0 for every E > O. 

Definition A.3 (Interior point of B) Let B be an arbitrary and non-empty set in ]Rd 

and let int B denote a set of points in the interior of B. A point x is said to be in int B 

if Nc(x) c B for some E > O. 

Definition A.4 (Point in the boundary) Let B be an arbitrary and non-empty set 
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in JR.d and let bnd B denote a set of points in the boundary of B. A point x is said to be 

in bnd B if Nc(x)nB i= 0 and Nc(x) ct. B for every c > o. 

Definition A.5 (Redundant constraint) Let F be a feasible region constituted by a 

set of Ci constraints for all i E D. A constraint Ck for a kED is said to be redundant if 

its removal does not modify the feasible region. 

Definition A.6 (Cone of feasible direction) Let B be an arbitrary and non-empty 

set in JR.d and let x* be a point in cl B. A set D(x*) is said to be the cone of feasible 

directions of B at x* if 

Do(x*) = {d I d i= 0/\ x* + p,d EB} VO < p, < t5 for some t5 > 0, 

where each non-zero vector d E Do (x*) is called a feasible direction. 

Definition A.7 (Convex function) Let f(x) : D ---+ JR., where D is a non-empty 

convex set in JR.d. We say that the function f(x) is convex on D if 

f(j.LxI + (1 - p,)X2) ::; j..L f(xd + (1 - p,) f(x2) for each Xl,X2 E D and for each 0 ::; p, ::; 1. 

Definition A.8 (Quasiconvex function) Let f(x) : D ~ JR., where D is a non-empty 

convex set in JR.d. The function f(x) is said to be quasiconvex on D if 

f(j.LxI + (1 - p,)X2) ::; max{J(xI), f(x2)} for each XI,X2 E D and for each 0 < j.L < 1. 

Definition A.9 (Quasiconcave function) Let f(x) : D ~ JR., where D is a non-empty 

convex set in JR.d. The function f(x) is said to be quasiconcave on D if 

f(j.LxI + (1 - j..L)X2) 2: min{J(xI), f(x2)} for each XI,X2 E D and for each 0 < j.L < 1. 

Definition A.IO (Pseudoconvex function) Let D be a non-empty open set in JR.d, 

and let f(x) : D---+ JR. be a differentiable function on D. The function f(x) is said to be 

pseudoconvex if for each Xl E D, X2 E D and the scalar product of V' f(xd T (x2-xd 2: 0, 

then f(x2) 2: f(xI), or if f(x2) < f(xI) then V'f(xdT(x2-xI) < O. 

Definition A.II (Differentiable function) Let B be an arbitrary and non-empty set 

in JR.d. We say that f(x) : B---+ JR. is differentiable at Xo in int B if there exists a gradient 

vector, denoted by V' f(xo), and a function a(xo, x - xo) : ]Rd ---+ JR., such that 

f(x) = f(xo) + V' f(xo)T(x - xo) + Ilx - xoll a(xo, x - xo) VXo E B, 
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where a(xo, x - xo) ~ 0 as x ~ Xo· 

Definition A.12 (Global and local minimum point) Let X be a non-empty open 

set in JRd and let f(x) : JRd~ JR. Consider Problem P of minimizing f(x) subject to 

x E (X nD). If a point x*ED is such that f(x*) :S f(x) for all x ED, then x* is called 

global minimum point to Problem P. If a point x*ED and if there exists an 

c-neighbourhood ofx* such that f(x*) :S f(x) for all x E (DnNc:(x*), then x* is 

considered a local minimum point to Problem P. 

It is worthwhile mentioning that the minimum points can also be called a constrained 

global minimum and a constrained local minimum, when they are the global minimum 

and a local minimum to a constrained minimization problem, respectively. Similarly, if 

Problem P were an unconstrained minimization problem, the minimum could be called 

an unconstrained global minimum and unconstrained local minimum. 

A.2 Preliminary theorems 

Lemma A.I Let li(x) : JRd~ JR be a linear function given by li(x) = aT x - bi, and 

:F = {Ii (x) = aT x - bi 2: 0 liE I} be a non- empty set given by linear inequality 

constraints, where I is the set of the subscripts of the linear inequality constraints. Then 

each linear function li(x) = aT x - bi is a quasiconcave function. 

Proof. Let Xl, x2 E ]Rd and J.L E JR such that 0 < J.L < 1. Thus, for each i E I, 

(A.I) 

After some calculations, Equation (A. 1) is rewritten as 

(A.2) 

Now, suppose that li(Xl) 2: li(x2), this implies, li(xI) = li(x2) + .6., where .6. 2: 0, so 

Equation (A.2) can be written as 
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Therefore, 

Furthermore, suppose that li(x2) 2: li(xI), this implies, li(x2) = li(X1) + 6., where 6. 2: 0, 

then Equation (A.2) is rewritten as 

As a result of the above equation, we obtain 

Both Equations (A.3) and (A.4) satisfy the definition of quasiconcave function. .. 

Theorem A.I (Theorem of Gordan) Let A be an m x n matrix. If System Sl is 

given by Ax < 0 for some x in lRn and System S2 is defined by AT u = 0 and u 2: 0 for 

some non-zero u in lRm
, then there exists one unique solution. 

Proof. See (Mangasarian 1969) ... 

Note that if the feasible region is defined by linear constraints only, the Mangasarian 

Fromowitz constraint qualification is automatically true. 

A.3 The problem 

Consider the following linearly constrained minimization problem P 

Problem A.I (P) Let P be a linearly constrained minimization problem given by 

min f(x) 
xElRd 

subject to 

where li(x) = aT x - bi is a linear function lRd ----7lR for every i E I and I is the set of the 

subscripts of the linear inequality constraints. 
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Let Ap(xo) define the set of subscripts i E I such that li(xo) = 0, that is, the active 

inequality constraints due to Xo and it can be written as Ap(xo) = {i E Illi(xo) = O}. 

A.4 Conditions of optimality 
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In this section, necessary optimality conditions will be given for a generalized constrained 

minimization problem for linearly constrained minimization problems. Finally, sufficient 

conditions of optimality will be developed under some convexity assumptions. 

Theorem A.2 (Descent direction of f(x)) Let f(x) : lRd--l-]R be a differentiable 

function at Xo. If there exists a vector dE ]Rd such that v f(xo)T d < 0, then there exists 

a 6 > 0 such that f(xo + p,d) < f(xo) VO < p, < 6. This means that d is a descent 

direction of f(x) at the point Xo. 

Proof. Since f(x) is differentiable at the point x*, we say 

f ( x) = f (xo) + v f (xo f (x - xo) + II x - Xo II a (xo, x - xo)· 

If x = Xo + /-Ld then x - Xo= p,d, and 

f(xo + p,d) = f(xo) + p,v f(xof d + p, Ildll a(xo, p,d), 

where a(xo, p,d) -> 0 as /-L -> O. 

By rearranging the terms, we obtain 

f(xo + p,d) - f(xo) = v f(xof d + Ildll a(xo, p,d). 
p, 

Due to the fact that v f(xO)T d < 0 and a(xo, p,d) -> 0 as p, --l- 0, there exists a 6 > 0 

such that 

v f(xof d + Ildll a(xo, p,d) < O. 

Therefore, f(xo + p,d) < f(xo) which means that d is a descent direction of f(x) at the 

point Xo .• 

Theorem A.3 (Local minimum of f(x)) Let f(x) : ]Rd--l- lR be a differentiable 

function at a point x* E B. Ifx* locally solves a problem of minimization of f(x) subject 
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to x E B, then Fo(x*) n 'Do(x*) = 0, where Fo(x*) = {d Iv f(x*f d < O} is the cone of 

descent direction of f(x) and'Do(x*) is the cone of feasible directions of B at x*. 

Proof. According to the hypothesis of the theorem, x* is a local minimum, this means 

that there exists a non-descent and non-zero vector direction d such that minimizes x* in 

an E-neighbourhood around x*. 

Thus, if x* is a local minimum, then f(x* + ,ud) > f(x*) for 0 < ,u < 61, where 

d E'Do(x*). 

Furthermore, according to Theorem A.2, Fo(x*) = {d Iv f(x*)T d < O} is the set of 

directions that minimizes f (x). 

On the other hand, the set of minimization directions Fo (x*) uniquely contains non-zero 

descent direction vectors. Therefore, there does not exist a non-zero vector that belongs 

to 'Do(x*) and Fo(x*) simultaneously, which allows one to assure that 

Fo(x*) n 'Do(x*) = O. III 

Theorem A.4 (Local minimum for the LCM problellls) Let;t' be a non-empty 

open set in lRd and let f(x) : lRd
--7 lR and li(x) : lRd

--7 lR be a set of linear functions given 

by li(x) = aT x - bi for all i E I. Consider Problem P of minimizing f(x) subject to 

x E ;t' and li(x) :::: 0 for every i E I. Ifx* locally solve Problem P and there exists a 

non-empty set Ap(x*) = {i E Illi(x*) = A}, then Fo(x*) n Go(x*) = 0, where each 

non-zero vector direction d holds 

Fo(x*) = {d Iv f(x*f d < O} 

Go(x*) = {d I a;d > 0 Vi E Ap(x*)} 

Proof. Suppose that there exists a non-zero vector doEFo(x*), whereby do is a descent 

direction of f(x) at the point x*, because the angle between do and V f(x) is obtuse. 

This condition cannot simultaneously satisfy the fact that a;do > 0 for all i E Ap(x*), 

where ai is the normal vector of the boundary of the constraint li(x*) :::: O. It is evident 

that if vT f(x*)do < 0, then do cannot belong to Go(x*), because there exists at least a 

kth (k E Ap(x*)) active constraint whose aJdo < 0, which is inconsistent with the 

definition of Go (x*). III 

Now we show the necessary conditions of optimality of Fritz John, and the necessary 

conditions of optimality of Kuhn-Tucker (KT). This latter is often known as the 

First-Order necessary condition of Karush-Kuhn-Tucker (KKT) (Nocedal and 'Wright 

1999). 
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Theorem A.5 (The Fritz John conditions for the LCM problems) Let X be a 

non-empty open set in JRd. Let f(x) : JRd-+ JR be a non-linear function and let 

li(x) : JRd-+ JR be a set of linear functions given by li(x) = aT x - bi for all i E I. 

Consider Problem P of minimizing f(x) subject to x E X and li(x) 2: 0 for every i E I. 

Let x* be a feasible point such that x* lies on all active linear ith constraints, this is, i 

belongs to a non-empty set Ap(x*) = {i E I/li(x*) = O}. Furthermore, suppose that f(x) 

is differentiable at x*. If x* is a local minimum, then there exist a set of scalars Uo and 

Ui for all i E Ap (x*), such that 

Uo \} f(x*) - LiEAp(x*) Uiai = 0 

UO, Ui 2: 0 Vi E Ap(x*) 

(uo, UA) =I (0,0) 

(A.5) 

Proof. Due to the fact that x* locally solves Problem P, there does not exist a non-zero 

vector d such that simultaneously hold \}T f(x*)d < 0 and a!d > 0 for all i E Ap(x*). 

This latter inequality is equivalent to -a! d < 0 for all i E Ap(x*). According to 

Theorem A.4 the condition of optimality can be written as 

(A.6) 

where A4 is the matrix whose rows are a! for all i E Ap(x*). 

Since Inequality A.6 is inconsistent due to Theorem A.l, there exists a non-zero vector 

(uo, UA) 2: 0 such that 

Uo \} f(x*) - L Uiai = o. 
iEAp(x*) 

Due to the conditions of Theorem A.l, we can establish that 

(uo, UA) 2: 0 

(uo, UA) =I 0 

(A.7) 

where the scalars Uo and Ui for all i E I are widely known as Lagragian multipliers. -

Note that the original Theorem of Fritz assumes the differentiability of li(x) for all 

i E Ap (x*) and the continuity of li (x) for all i rj:. Ap (x*) (Bazaraa and Shetty 1979), 

which were omitted, because all linear functions are obviously differentiable and 

continuous. 
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The Theorem of Fritz is a necessary but non-sufficient conditions of optimality, this 

means, all local minimum points must satisfy Equation (A.5). However, there could exist 

non-optimum points that satisfy Equation (A.5). Nevertheless, if some Xc point does not 

satisfy Fritz John conditions, we can be assured that Xc is non-local minimum. 

Lemma A.2 (Normal of active linear inequality constraints) Let li(x) : JRd--+ JR 

be linear functions g'iven by li(X) = aT X - bi ! and F = {li(x) = aT x - bi 2: 0 liE I} be a 

non-empty set given by k non-redundant linear inequality constraints. If a point Xo 

actives a subset of linear inequality constraints of F, this is, there exists a non-empty set 

Ap(xo) = {i E Illi(xo) = aT Xo - bi = O}! then every normal aj for i E Ap(xo) are 

linearly independent. 

Proof. Because there exists at least one feasible point x, such that it activates m (:S; k) 

non-redundant linear constraints of F, then the linear system given by the active 

constraints can be written as, 

Ax-b=O, (A.8) 

where A is an (m x d)-dimensional non-zero matrix, x is a d-dimensional vector and, b 

and 0 are m-dimensional vectors. 

Since there exist non-redundant linear constraints, matrix A and vector x can be 

arranged by simple simultaneous permutating columns of matrix A and permutating 

rows of vector x only, to obtain an equivalent linear system given by partitioned 

submatrices: AR of dimension m x m and rank m, and AN of dimension m x (d - m). 

That is, Equation (A.8) can be rewritten as 

(A.9) 

where XR is an m-dimensional vector and XN is a (d - m)-dimensional vector. 

Since the rank of AR is equal to m, then the row rank of [AR AN] is equal to m. Hereby, 

the linear system given by Equation (A.8) is conformed by m linear independent 

equations. Hence all aj normal for i E Ap(xo) are linearly independent. II 

It is worthwhile pointing out that if the feasible region of Problem P is defined by 

non-redundant linear inequality constraints, then the normals aj for i E Ap(x*) are 

linearly independent (Lemma A.2), which satisfies one of the assumptions of KT 

necessary optimality conditions. Furthermore, since all linear functions are continuous 
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and differentiable, Theorem of KT necessary conditions for LCM problems can be 

enunciated as follows. 
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Theorem A.6 (Kuhn-Tucker necessary conditions for the LCM problems) Let 

X be a non-empty open set in JRd and let f(x) : JRd---Jo JR and li(x) : JRd---Jo JR be a set of 

linear functions given by li(x) = aT x - bi for all i E I. Consider Problem P of 

minimizing f(x) subject to x E X and li(x) ~ 0 for every i E I. Let x* be a feasible point 

such that x* lies on all active linear ith constraints, this is, i belongs to a non-empty set 

Ap(x*) = {i E Illi(x*) = OJ. Furthermore, suppose that f(x) is differentiable at x*. If 

x* is a local minimum, then there exist scalars Ui for all i E Ap(x*), such that 

v f(x*) - LiEAp(x*) Uiai = ° 
Ui ~ 0 Vi E Ap(x*) 

(A.I0) 

Proof. Because of Theorem A.5, there exist scalars Uo ~ 0 and Ui ~ 0 for all i E Ap(x*) 

such that 

uovf(x*) - L Uiai = ° 
iEAp(x*) 

(A.l1) 

(A.12) 

Under the condition of linear independence of all normals ai for i E Ap(x*), Uo must be 

positive, because LiEAp(x*) Uiai -I- 0, which evidently satisfies Equation (A.12). 

Therefore, letting Ui = ui/uo Equation A.l1 can be rewritten as 

v f(x*) - L Uiai = 0, 
iEAp(x*) 

where Ui ~ 0 for all i E Ap(x*) . .. 

Now, under some convexity assumptions, the KT conditions become sufficient conditions 

of global optimality for Problem P. However, Nocedal and Wright (1999) present 

sufficient conditions of Karush-Kuhn-Tucker (KKT), which is founded on the existence 

of the second derivatives of f(x), among others conditions, which are stronger than the 

KT conditions 

Theorem A.7 (Kuhn-Tucker sufficient conditions for the LCM problems) Let 

X be a non-empty open set in JRd and let f(x) : JRd---Jo JR and li(x) : JRd-+ JR be a set of 

linear functions given by li(x) = aT x - bi for all i E I. Consider Problem P of 
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minimizing f(x) subject to x E X and:F = {li(X) = a; x - bi 2: 0 j i E I}. Let x* be a 

feasible point such that x* lies on all active linear ith constraints, this is, i belongs to a 

non-empty set Ap(x*) = {i E Ijli(X*) = O}. If f(x) is pseudoconvex and differentiable at 

x* and K uhn- Tucker necessary conditions are satisfied at x*, then x* is a global 

minimum to Problem P. 

Proof. Let x be a feasible point to Problem P such that for i E Ap(x*), li(X) 2: O. Since 

each li (x) for i E I is quasiconcave (Lemma A.l), we have that for all 0 < f.L < 1, 

li[X* + f.L(x - x*)] = ldf.LX + (1 - f.L)x*] 2: min{li(x), li(X*)} = li(X*) = 0 Vi E Ap(x*). 

(A.13) 

Since li(X) is a linear function and clearly differentiable, 

li[X* + f.L(x - x*)] - li(X*) = nTlo(x*)(x _ x*) W· A ( *) 
v , v% E p x . 

f.L 
(A.14) 

Because Vli(X*) = ai for all i E Ap(x*), f.L > 0 and Equation (A.13), Equation (A.14) is 

expressed as, 

a; (x - x*) 2: 0 Vi E Ap(x*) (A.15) 

On the other hand, if f(x) is pseudoconvex and differentiable at x*, then 

v f(x*?(x - x*) 2: 0 and f(x) 2: j(x*) (A.16) 

Since x* satisfies the necessary conditions of KT, Equation (A.I0) can be written by its 

transpose 

v j(x*? - L Uia; = aT 
iEAp(X*) 

By postmultiplying both sides of Equation (A.17), we obtain 

vj(X*?(x - x*) L Uia;(X - x*) = 0, 
iEAp(x*) 

which is satisfied by Equations (A.15) and (A.16). .. 

(A.17) 
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A.5 Examples 

In this section we illustrate the previous theory with some examples that have been 

employed in this work, and verify the optimality of some points that were assumed as 

minima in the reported test problems. 

A.5.l Test Problem 1 

subject to 

i=l 
d 

C2 : 2XI + I:; Xi 2': 5 
i=2 

The points for being verified its optimality conditions are 

[2,1] d = 2, 

T _ { xloeal - [1.42857, 0.714286, 0.714286, 0.714286] d = 4, 

[1.11111, 0.55555, 0.55555, 0.55555, 0.55555, 0.55555, 0.55555] d = 6. 

Case d = 2 

At x* = (2, l)T we have Ap(x*) = {I, 2} 

V f(x*)T = (4,2) ai = (1,1) a§ = (2,1) 

Using Equation (A.I0), we obtain 

[ ~ ] - Ul [ : ] - U2 [ ~ ] ~ 0 

which is satisfied for UI 0 and U2 = 2. Since f(x) is pseudoconvex, (2, If is the 

constrained global minimum. 

Case d = 4 

At x* = (1.42857, 0.714286, 0.714286, 0.714286)T we have Ap(x*) = {2} 
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'If(x*f = (2.8571,1.4286,1.4286,1.4286), a§ = (2,1,1,1) 

Thus, 
2.8571 2 

1.4286 1 
- U2 =0 

1.4286 1 

1.4286 1 

The above equation is clearly satisfied for U2 = 1. 428 6. Since f(x) is pseudoconvex, x* 

is the constrained global minimum. 

Case d = 6 

At x* = (1.1111, 0.5555, 0.5555, 0.5555, 0.5555, 0.5555)T we have Ap(x*) = {2} 

'l f(x*f = (2.2222, 1.1111, 1.1111, 1.1111, 1.1111, 1.1111) a§ = (2,1,1,1,1,1) 

Thus, 
2.2222 2 

1.1111 1 

1.1111 

1.1111 

1 

1 

=0 

when U2 = 1.1111. Since f(x) is pseudoconvex, x* is the constrained global minimum. 

A.5.2 Test Problem 5 

Case d = 2 

subject to 

c1 : Xl + X2 23 
C2 : 2X1 + X2 2 5 

At x* = (-3.447634, 11.895268)T we have Ap(x*) = {2} 
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VJ(X*)T = (3.6373,1.8176) a§ = (2,1) 

Therefore, 

[ 
3.6373]_ U2 [ 2] = 0 
1.8176 1 

The above equation holds for U2 = 1. 8176. This implies that the solution satisfies the 

necessary conditions of KT. Since the objective function clearly is pseudo convex in 

Nc:(x*) , this is, for all x E Nc:(x*) n F, we have that J(x) 2:: j(x*) and V J(x*)T(x - x*) 

2: 0, then we say that x* locally solves the test problem. 

A.5.3 Test Problem 9 

subject to 

Case d = 4 

d 

C1 : LXi 2: 3 
i=l 

d 

C2 : 2X1 + LXi 2: 5 
i=2 

At x* = (1.715358, - 0.132167, 0.476726, 1.224726)T we have .A.p(x*) = {2} 

Thus, 

v J(x*f = (5.5116, 2.7559, 2.7559, 2.7559) a§ = (2,1,1,1) 

5.5116 

2.7559 

2.7558 

2.7558 

2 

1 

1 

1 

= 0, 

for U2 = 2.7558, so x*satisfied the KT necessary conditions. We can say that the 

objective function is pseudo convex for all x E Nc;(x*) n F, so x* is a local minimum of 

the problem. 
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Proofs 

B.1 Proof of Lemma 4.1 

Proof. Let f(x) : D -+ JR., where D is a non-empty convex set in JRd. We say that f(x) 

is strictly convex on D if and only if 

(B.1) 

for each Xl,X2 E D and for each 0 < J-L < 1 (Bazaraa and Shetty 1979). 

To prove the lemma, we apply the induction method. 

Case k = 2. 

By strictly convexity of f(x), we have 

(B.2) 

for {Xl, X2} E D and for each 0 < J-Li < 1, i = 1,2, with J-Ll + J-L2 = 1. 

Case k = n - 1. 

We assume as true that for any (n - 1) > 2 points {Xl, X2, ... , xn-d in D, it is satisfied 

n-l 

f (L~:ll J-LiXi) < L J-Li f(Xi) (B.3) 
i=l 

where 
""n-l 
L.,.,i=l J-Li = 1 and 0 < J-Li < 1 for all i = 1,2, ... , (n - 1). (B.4) 
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Case k = n. 

Now, we prove that for any n points {Xl, X2, ... , Xn-l, xn} E D the lemma is true. 

Using Equations (B.2) and (B.3) to the case k = n, we obtain 

n-l 

(1 - f-Ln) f [L;:ll f-Li f(xi)] + f-Ln f(xn) < (1 - f-Ln) L f-Li f(xi) + f-Ln f(xn) (B.6) 
i=l 

because (1 - f-Ln) L~==-ll f-Li + f-Ln = (1 - f-Ln) + f-Ln = I, as a result of Equation (B.4). 

Thus, from Equations (B.5) and (B.6), we have 

n-l 

f (L;:ll (1 - f-Ln)f-LiXi + f-LnXn) < L(l - f-Ln)f-Li f(xi) + f-Ln f(xn) (B.7) 
i=l 

Denoting to Mi = (1 f-Ln)f-Li for all i = 1,2, ... , (n - I), we obtain 

n-l 
f (L;:ll Mixi + f-LnXn) < LMi f(xi) + f-Ln f(xk), 

i=l 

which can be expressed as 

n 

f (L~=lPiXi) < LPi f(xi), (B.8) 
i=l 

b ,\,n-l (1) ,\,n-l 0 ecause ~i=l - J-ln J-li + f-Ln = ~i=l f-Li + J-ln = 1. 

Note that 
_ _ { (1 - f-Ln) f-Li 1:::; i :::; n - 1, 
f-Li - . 

f-Ln ~ = n 

Since every strictly convex function is strongly quasiconvex (Bazaraa and Shetty 1979), 

hence we can assure that 

(E.9) 

III 
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B.2 Proof of Lemma 4.2 

Proof. Let D be a convex set of the d-dimensional Euclidean space ]Rd. We say that D 

is convex if, given any two points Xl and X2 in D and any scalar f.L such that 0 :s; f.L :s; 1, 

then the point xI" = (1 - f.L)Xl + f.LX2 belongs to D. 

To show that F-= {x E JRd I Ax 2: b} is convex, we consider that both Xl and X2 belong 

to the feasible set F, so we can affirm that AXl2: band AX22: b, and we must verify 

that the inequality AXI"2: b is satisfied, which will be given by 

(RIO) 

because 0 :s; f.L :s; 1, AXl2: band AX22: b ... 

B.3 Proof of Lemma 4.5 

Proof. Let Xl and X2 be two any distinct points belonging to both non-empty convex 

sets Dl and D 2. If Dl is a convex set of ]Rd, then by defining, the point given by 

xI" = (1 - ~L)Xl + f.LX2 belongs to the set Dl for all 0 :s; f.L :s; 1. Thus, we can also affirm 

that xI" belongs to the set D2 for all 0 :s; f.L :s; 1, due to the convexity of the set D2. Since 

Xl, x2 and xI" belong to the subset Dl n D2 for all 0 :s; f.L :s; 1 and for any distinct points 

Xl and X2 in Dl n D2, then we can say that the subset Dl n D2 is a non-empty convex 

subset. .. 
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B.4 Proof of Theorem 4.2 

Proof. Using Lemma 4.2 we can affirm that the non-empty set .c is convex and, 

according to Lemma 4.5 we can also say that the subset defined by .c n D is a non-empty 

convex subset, due to the fact that D is a non-empty convex set of JRd. Let Xl and X2 be 

two distinct points in the subset .c n D == {x E JRd I aT x = b /\ x En}. Since Xl, X2 and 

xJ-l = (1 - p,)X1 + P,X2 belong to the subset .c n D for all 0 :::; J-L ::; 1, and f(x) is a strictly 

convex function on D, then f(x) is a strictly convex function on.c n D. • 

B.5 Proof of Corollary 4.1 

Proof. Let Ei be a non-empty, non-singleton and convex subset of JRd defined by a linear 

equality such that Ei == {x E ]Ftd I aT x = bi }, where the matrix A E JRlxd is a constant 

matrix such that A = [aT: ... : aT] T and, the vector b E ]Ftd is formed by 

b = (b 1 , ... ,bl)T. Thus, we can say that E = n~=l Ei , which is assumed as non-empty 

subset of JRd. 

On the other hand, let E1,k denote a subset defined by El ,k = n7=1 Ei , where k is a 

positive integer number. Assume that f(x) : JRd -----7 JR is a strictly convex function on a 

non-empty convex set D of JRd and, EnD as a non-empty convex subset of D. 

Using Lemma 4.2 we can say that f(x) is a strictly convex function on a non-empty and 

convex subset El ,2 = E1 n E2. Thus, we can affirm that f(x) is a strictly convex function 

on a non-empty and convex subset E1,3 = E1,2 n E3 = E1 n E2 n E3. Using the same 

argument, we say that f(x) is a strictly convex function on a non-empty and convex 

subset El,I-1 = nt:i Ei· If we add the last linear equality to the proof, we have that f(x) 

is a strictly convex function on a non-empty and convex subset E = El,l-l n El = n~=l Ei 

due to Lemma 4.2. Finally, applying Lemma 4.2 to the non-empty convex subset EnD 

of D, we prove that f(x) is a strictly convex function on a non-empty and convex subset 

EnD of D .• 
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Constrained linear objective 

function 

C.l The value of 110 

Since x~ew and xg are collinear, and x~ and x~ are collinear, we have 

On the other hand, 

Using Equations (Col) and (Co2), we obtain 

Therefore 

Equation (C.3) is satisfied if and only if 
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(Col) 

(Co2) 

(Co3) 
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/-Lo - ¥ = 0 

kl k2 + ¥ - v kl k2 = 0 

so 

which is obtained, 

1 

C.2 Computing go(n) and ge(n) 

Since, the terms in Equations (4.65) and (4.70) are the same, we shall compute 

and 

n-l [ 1/2] 2 
Pl(n) = g 1 + T vn = 1,2, ... , 

() nrr-l [ (w + 1)/2W] 2 
P2 n = 1 + . 

i=l ~ 
vn=1,2, ... , 

() nrr-l [ (1 - W)/2W] 2 
P3 n = 1 + . 

Z 
i=l 

vO < W < 1 1\ n = 1,2, .... 
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(C.4) 

(C.5) 

(C.6) 

Using the variant of the gamma function r m(z) (Olver 1974; Markushevich 1965), we 

have 

1 m 

r m (z) = Z exp (ZI m) rr [ ( 1 + f) exp ( - Z / i)] , 
~=l 

m 

where 1m = L t -In m and here m is any positive integer number. 
i=l 

Letting m ~ 00, we obtain the well-known constant of Euler I, that is 

(C.7) 
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lim 1m = lim [f; -In (m)] = ~(. 
m------oo m ............ oo '& 

i=l 

Therefore Equation (C. 7) becomes 

~~CXJ r :(z) = rtz) = z exp (zl) IT [(1 + ~) exp (-z/i)] 
2=1 

Calculating the natural logarithm to Equation (C.7), we obtain 

m 2 

LIn (1 + 7) = 2zlnm -In(z2) -lnr:n(z), 
2=1 

(C.8) 

Equation (C.4) can be transformed by the natural logarithm, thus 

\:In = 1,2, ... , 

which can be rewritten 

Sl(n) = 22~ In(n - 1) -In C2~)2) -lnr;_l (2~) \:In = 1,2,... . (C.g) 

Applying the same method to Equation (C.5), we have 

n-1 [ (W+1)/2W]2 
S2(n) = LIn 1 + i \:In = 1,2, ... , 

2=1 

so, 

(W + 1) ( (w + 1) 2) (w + 1) S2(n) = 2 2w In(n-1)-ln ~ -lnr;_l ~ \:In = 1,2, .... (C.10) 

Using the same procedure to Equation (C.6), we obtain 
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therefore for all 0 < w < 1 and n = 1,2, ... , 

1-w 1-w 1-w () ( ( )2) ) S3(n) = 2 2w In(n - 1) -In ~ -lnr;_l ( ~ (C.ll) 

Using Equations (C.g) and (C.lO), in In [go(n)], we have 

(w + I? f;_l (~ ) 
go(n) = (n _ 1) f2 (..1...) Vn = 1,2, .... 

n-1 2w 

(C.12) 

For calculating ge (n) in terms of f d( z), we have 

so, 

( ) 
1 f;_l (~) 

ge n = (n - 1)(1 - w)2 f;_l (\2:;nW ) 
VO < w < 1 /\ n = 1,2, .... (C.13) 
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D.l Reports of experiments: obtuse solid angle of feasible 

cone 

Table D.l: Summary of test problem TPl(2). 
I Exp I PM I NE DTP F I 

1 582 582 0 1 
2 770 770 0 1 
3 406 406 0 1 
4 388 388 0 1 
5 399 399 0 1 
6 5000 1000 0 0 
7 4233.1 231 0.21 0 
8 477 477 0 1 
9 644 644 0 1 

10 24 24 0 1 
11 23 23 0 1 
12 22 22 0 1 
13 60 60 0 1 
14 61 61 0 1 
15 26 26 0 1 
16 27 27 0 1 
17 66 66 0 1 
18 61 61 0 1 
19 25 25 0 1 
20 23 23 0 1 
21 24 24 0 1 
22 34 34 0 1 
23 38 38 0 1 
24 27 27 0 1 
25 37 37 0 1 
26 41 41 0 1 
27 26 26 0 1 
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Table D.2: Summary of test problem TP1(4). 
I Exp I PM I NE DTP F I 

1 5006 1000+ 0.6 0 
2 1002.2 1000+ 0.22 1 
3 5017.3 1000+ 1.73 0 
4 5002.8 1000+ 0.28 0 
5 1000.18 1000+ 0.018 1 
6 1003.34 1000+ 0.334 1 
7 1000.66 1000+ 0.066 1 
8 5009.88 1000+ 0.988 0 
9 5026.7 1000+ 2.67 0 
10 389 389 0 1 
11 473 473 0 1 
12 419 419 0 1 
13 373 373 0 1 
14 364 364 0 1 
15 425 425 0 1 
16 388 388 0 1 
17 365 365 0 1 
18 444 444 0 1 
19 277 277 0 1 
20 325 325 0 1 
21 330 330 0 1 
22 292 292 0 1 

23 267 267 0 1 
24 407 407 0 1 

25 547 547 0 1 

26 293 293 0 1 
27 324 324 0 1 

°The symbol "+" represents that the method was stopped at the indicated number of evaluation. 
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Table D.3: Summary of test problem TP1(6). 
I Exp I PM I NE DTP F I 

1 20006.3 20000+ 0.63 1 
2 20006.7 20000+ 0.67 1 
3 24027.4 20000+ 2.74 0 
4 20007.6 20000+ 0.76 1 
5 20008.9 20000+ 0.89 1 
6 20008.3 20000+ 0.83 1 
7 20009.2 20000+ 0.92 1 
8 24019 20000+ 1.9 0 
9 20016.4 20000+ 1.64 1 

10 635 635 0 1 
11 1634 1634 0 1 
12 1746 1746 0 1 
13 18484.4 18473 1.14 1 
14 850 850 0 1 
15 1321 1321 0 1 
16 2433 2433 0 1 
17 1115 1115 0 1 
18 823 823 0 1 
19 644 644 0 1 
20 1315 1315 0 1 
21 1199 1199 0 1 
22 20015.7 20000+ 1.57 1 
23 1261 1261 0 1 
24 1034 1034 0 1 
25 576 576 0 1 
26 1327 1327 0 1 
27 596 596 0 1 
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Table D.4: Summary of test problem TP2(2). 
I Exp I PM I NE DTP F I 

1 3459 3459 0 1 
2 3515 3515 0 1 
3 147 147 0 1 
4 3525 3525 0 1 
5 3492 3492 0 1 
6 3461 3461 0 1 
7 3518 3518 0 1 
8 3608 3608 0 1 
9 4111.8 4000+ 11.18 1 

10 566 566 0 1 
11 3710 3710 0 1 
12 1963 1963 0 1 
13 126.2 105 2.12 1 
14 126.2 105 2.12 1 
15 136.2 115 2.12 1 
16 127.2 106 2.12 1 
17 129.2 108 2.12 1 
18 352.2 331 2.12 1 
19 726 726 0 1 
20 471 471 0 1 
21 765 765 0 1 
22 905 905 0 1 
23 924 924 0 1 
24 500 500 0 1 
25 528 528 0 1 
26 548 548 0 1 
27 2575 2575 0 1 
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Table D.5: Summary of test problem TP2(4). 
I Exp I PM I NE DTP F I 

1 12000 12000+ 0 1 
2 12000 12000+ 0 1 
3 12000 12000+ 0 1 
4 12000 12000+ 0 1 
5 12000 12000+ 0 1 
6 12000 12000+ 0 1 
7 12000 12000+ 0 1 
8 12000 12000+ 0 1 
9 12000 12000+ 0 1 

10 1860 1860 0 1 
11 12000 12000 0 1 
12 9093 9093 0 1 
13 1531 1531 0 1 
14 1364 1364 0 1 
15 3773 3773 0 1 
16 3286 3286 0 1 
17 404 389 l.5 1 
18 2413 2413 0 1 
19 2447 2447 0 1 
20 1009 1009 0 1 
21 11031 11031 0 1 
22 8305 8305 0 1 
23 1071 1071 0 1 
24 750 750 0 1 
25 2935 2935 0 1 
26 6583 6583 0 1 
27 1637 1637 0 1 



APPENDIX D. REPORTS OF EXPERIMENTS 228 

Table D.6: Summary of test problem TP2(6). 
I Exp I PM I NE DTP F I 

1 12000 12000+ 0 1 
2 12000 12000+ 0 1 
3 12062.8 12000+ 6.28 1 
4 12000 12000+ 0 1 
5 12000 12000+ 0 1 
6 12000 12000+ 0 1 
7 12000 12000+ 0 1 
8 12000 12000+ 0 1 
9 12000 12000+ 0 1 
10 3129 3129 0 1 
11 4799 4799 0 1 
12 3494 3494 0 1 
13 9442 9442 0 1 
14 4034 4034 0 1 
15 9255 9255 0 1 
16 2198 2198 0 1 
17 10971 10971 0 1 
18 3092 3092 0 1 
19 1644 1644 0 1 
20 3105 3105 0 1 
21 3332 3332 0 1 
22 9449 9449 0 1 
23 7651 7651 0 1 
24 2180 2180 0 1 
25 7597 7597 0 1 
26 6452 6452 0 1 
27 3532· 3532 0 1 
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Table D.7: Summary of test problem TP3(2). 
I Exp I PM I NE DTP F I 

1 727 727 0 1 
2 543 543 0 1 
3 327.8 325 0.28 1 
4 409 409 0 1 
5 348 348 0 1 
6 1080 1000+ 8 1 
7 233 231 0.2 1 
8 464 464 0 1 
9 711 711 0 1 

10 25 25 0 1 
11 22 22 0 1 
12 23 23 0 1 
13 59 59 0 1 
14 62 62 0 1 
15 26 26 0 1 
16 60 60 0 1 
17 32 32 0 1 
18 61 61 0 1 
19 25 25 0 1 
20 23 23 0 1 
21 23 23 0 1 
22 33 33 0 1 
23 38 38 0 1 
24 27 27 0 1 
25 27 27 0 1 
26 32 32 0 1 
27 26 26 0 1 
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Table D.8: Summary of test problem TP3( 4). 
I Exp I PM I NE DTP F I 

1 1005 1000+ 0.5 1 
2 1002.2 1000+ 0.22 1 
3 5039.7 1000+ 3.97 0 
4 5031 1000+ 3.1 0 
5 5013.3 1000+ 1.33 0 
6 5008.4 1000+ 0.84 0 
7 5009.4 1000+ 0.94 0 
8 5019.2 1000+ 1.92 0 
9 1001.2 1000+ 0.12 1 
10 413 413 0 1 
11 395 395 0 1 
12 376 376 0 1 
13 417 417 0 1 
14 357 357 0 1 
15 269 269 0 1 
16 417 417 0 1 
17 381 381 0 1 
18 420 420 0 1 
19 600 600 0 1 
20 267 267 0 1 
21 270 270 0 1 
22 486 486 0 1 
23 316 316 0 1 
24 312 312 0 1 
25 351 351 0 1 
26 283 283 0 1 
27 386 386 0 1 
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Table D.9: Summary of test problem TP3(6). 
I Exp I PM I NE DTP F I 

1 2000 2000+ 0 1 
2 2018.8 2000+ 1.88 1 
3 2010.6 2000+ l.06 1 
4 2010.5 2000+ l.05 1 
5 201l.1 2000+ l.11 1 
6 2018 2000+ l.8 1 
7 2010.6 2000+ l.06 1 
8 2012.3 2000+ l.23 1 
9 2008 2000+ 0.8 1 

10 796 796 0 1 
11 1730 1730 0 1 
12 720 720 0 1 
13 1206 1206 0 1 
14 1238 1238 0 1 
15 1192 1192 0 1 
16 1069 1069 0 1 
17 746 746 0 1 
18 1806 1806 0 1 
19 568 568 0 1 
20 1854 1854 0 1 
21 480 480 0 1 
22 900 900 0 1 
23 563 563 0 1 
24 695 695 0 1 
25 641 641 0 1 
26 603 603 0 1 
27 642 642 0 1 
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Table D.10: Summary of test problem TP4(2). 
I Exp I PM I NE DTP F I 

1 267 267 0 1 
2 282 282 0 1 
3 147 147 0 1 
4 285 285 0 1 
5 274 274 0 1 
6 272 272 0 1 
7 287 287 0 1 
8 293 293 0 1 
9 1111.8 1000+ 11.18 1 
10 426 426 0 1 
11 729 729 0 1 
12 1022.3 1000 2.23 1 
13 126.2 105 2.12 1 
14 126.2 105 2.12 1 
15 136.2 115 2.12 1 
16 135.2 114 2.12 1 
17 185 185 0 1 
18 1000 1000+ 0 1 
19 226 226 0 1 
20 234 234 0 1 
21 1000 1000 0 1 
22 285 285 0 1 
23 192 192 0 1 
24 1000 1000+ 0 1 
25 212 212 0 1 
26 203 203 0 1 
27 1000 1000+ 0 1 
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Table D.ll: Summary of test problem TP4(4). 
I Exp I PM I NE DTP F I 

1 536 536 0 1 
2 580 580 0 1 
3 700 700 0 1 
4 549 549 0 1 
5 556 556 0 1 
6 723 723 0 1 
7 576 576 0 1 
8 635 635 0 1 
9 577 577 0 1 

10 1000 1000+ 0 1 
11 1000 1000+ 0 1 
12 1000 1000+ 0 1 
13 1000 1000+ 0 1 
14 839 839 0 1 
15 1000 1000+ 0 1 
16 780 780 0 1 
17 1000 1000+ 0 1 
18 412 397 l.5 1 
19 775 775 0 1 
20 501 501 0 1 
21 1000 1000+ 0 1 
22 1000 1000+ 0 1 
23 1000 1000+ 0 1 
24 1000 1000+ 0 1 
25 1000 1000+ 0 1 
26 1000 1000+ 0 1 
27 318 303 l.5 1 
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Table D.12: Summary of test problem TP4(6). 
I Exp I PM I NE DTP F I 

1 872 872 0 1 
2 1090 1090 0 1 
3 1356 1356 0 1 
4 893 893 0 1 
5 1230 1230 0 1 
6 1081 1081 0 1 
7 947 947 0 1 
8 937 937 0 1 
9 1294 1294 0 1 
10 807 807 0 1 
11 760 760 0 1 
12 2000 2000 0 1 
13 739 739 0 1 
14 2000 2000+ 0 1 
15 2000 2000+ 0 1 
16 2000 2000+ 0 1 
17 643 643 0 1 
18 2000 2000+ 0 1 
19 772 772 0 1 
20 2000 2000+ 0 1 
21 2000 2000+ 0 1 
22 2000 2000+ 0 1 
23 2000 2000+ 0 1 
24 2000 2000+ 0 1 
25 2000 2000+ 0 1 
26 789 789 0 1 
27 2000 2000+ 0 1 
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Table D.13: Summary of test problem TP5(2). 
I Exp I PM I NE DTP F I 

1 426 426 0 1 
2 537 537 0 1 
3 272 272 0 1 
4 274 274 0 1 
5 549 549 0 1 
6 690 690 0 1 
7 311.34 207 10.434 1 
8 483 483 0 1 
9 552.5 443 10.95 1 

10 234.5 125 10.95 1 
11 216.5 107 10.95 1 
12 226.5 117 10.95 1 
13 288.5 179 10.95 1 
14 256.5 147 10.95 1 
15 235.5 126 10.95 1 
16 198 198 0 1 
17 202.5 93 10.95 1 
18 238.5 129 10.95 1 
19 201.5 92 10.95 1 
20 245.5 136 10.95 1 
21 220.5 III 10.95 1 
22 267.5 158 10.95 1 
23 246.5 137 10.95 1 
24 227.5 118 10.95 1 
25 182 182 0 1 
26 198.5 89 10.95 1 
27 229.5 120 10.95 1 
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Table D.14: Summary of test problem TP5( 4). 
I Exp I PM I NE DTP F I 

1 1086.6 850 23.66 1 
2 901.7 796 10.57 1 
3 1039.1 830 20.91 1 
4 3706 3706 0 1 
5 1664.4 1484 18.04 1 
6 1656.5 1654 0.25 1 
7 26000.04 26000+ 0.004 1 
8 1779.7 1567 21.27 1 
9 2065 1711 35.4 1 

10 1233 1233 0 1 
11 1682 1682 0 1 
12 1402 1402 0 1 
13 25742.85 25733 0.985 1 
14 1601 1601 0 1 
15 2129 2129 0 1 
16 7723.47 7687 3.647 1 
17 1372 1372 0 1 
18 1535 1535 0 1 
19 1454 1454 0 1 
20 1298 1298 0 1 
21 1244 1244 0 1 
22 11388.6 11387 0.1595 1 

23 1120 1120 0 1 

24 1396 1396 0 1 

25 1344 1344 0 1 

26 1329 1329 0 1 

27 1212 1212 0 1 
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Table D.15: Summary of test problem TP5(6). 
I Exp I PM I NE DTP F I 

1 7321.4 3215 10.64 0 
2 5484.8 1241 24.38 0 
3 1607.2 1356 25.12 1 
4 2028.729 2020 0.8729 1 
5 3407.288 3268 13.9288 1 
6 1486.985 1348 13.8985 1 
7 19889.51 19861 2.8514 1 
8 4968.683 4650 31.86827 1 
9 1468.797 1176 29.27969 1 

10 5298.187 5028 27.0187 1 
11 2888.583 2813 7.5583 1 
12 2554.762 2483 7.17616 1 
13 6124.045 6068 5.6045 1 
14 5547.543 5332 21.5543 1 
15 2911.174 2656 25.51743 1 
16 2505.177 2331 17.41772 1 
17 6008.028 6008 0.00275 1 
18 2737.278 2535 20.2278 1 
19 1922.953 1894 2.8953 1 
20 3294.939 3291 0.39388 1 
21 3736.453 3715 2.1453 1 
22 3378.252 3279 9.92518 1 
23 2391.457 2335 5.64568 1 
24 2912.269 2781 13.12693 1 
25 19878.87 19861 1.787067 1 
26 2657.926 2560 9.792611 1 
27 3104 3104 0 1 
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Table D.16: Summary of test problem TP6(2). 
I Exp I PM I NE DTP F I 

1 398 398 0 1 
2 389 389 0 1 
3 302 302 0 1 
4 206 206 0 1 
5 404 404 0 1 
6 409 409 0 1 
7 204 204 0 1 
8 280 280 0 1 
9 463 463 0 1 
10 350 350 0 1 
11 318 318 0 1 
12 305 305 0 1 
13 378 378 0 1 
14 363 363 0 1 
15 338 338 0 1 
16 175 175 0 1 
17 336 336 0 1 
18 303 303 0 1 
19 330 330 0 1 
20 350 350 0 1 
21 334 334 0 1 
22 351 351 0 1 
23 352 352 0 1 
24 338 338 0 1 
25 218 218 0 1 
26 365 365 0 1 
27 331 331 0 1 
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Table D.17: Summary of test problem TP6(4). 
I Exp I PM I NE DTP F I 

1 1086.6 850 23.66 1 
2 901.7 796 10.57 1 
3 1009.1 830 17.91 1 
4 3218 3218 0 1 
5 1664.4 1484 18.04 1 
6 1656.5 1654 0.25 1 
7 1695 1695 0 1 
8 1779.7 1567 21.27 1 
9 2065.1 1711 35.41 1 

10 1218 1218 0 1 
11 1558 1558 0 1 
12 1782 1782 0 1 
13 1145 1145 0 1 
14 1567 1567 0 1 
15 2272 2272 0 1 
16 2494 2494 0 1 
17 1851 1851 0 1 
18 1885 1885 0 1 
19 1368 1368 0 1 
20 1098 1098 0 1 
21 1260 1260 0 1 
22 1006 1006 0 1 
23 1172 1172 0 1 
24 1667 1667 0 1 
25 1288 1288 0 1 
26 1649 1649 0 1 
27 1025 1025 0 1 
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Table D.18: Summary of test problem TP6(6). 
I Exp I PM I NE DTP F I 

1 3321.4 3215 10.64 1 
2 1484.8 1241 24.38 1 
3 1607.2 1356 25.12 1 
4 2477.07 2469 0.807 1 
5 3407.29 3268 13.929 1 
6 1486.99 1348 13.899 1 
7 1731.8 1714 1.78 1 
8 4968.6 4650 31.86 1 
9 1468.8 1176 29.28 1 

10 5298.2 5028 27.02 1 
11 2888.6 2813 7.56 1 
12 2554.76 2483 7.176 1 
13 6124.05 6068 5.605 1 
14 5547.54 5332 21.554 1 
15 2911.2 2656 25.52 1 
16 2505.17 2331 17.417 1 
17 4798.66 4778 2.066 1 
18 2737.28 2535 20.228 1 
19 7777 7777 0 1 
20 3294.9 3291 0.39 1 
21 2676.07 2666 1.007 1 
22 3378.3 3279 9.93 1 
23 2638.11 2584 5.411 1 
24 2912.27 2781 13.127 1 
25 2969.57 2954 1.557 1 
26 2657.93 2560 9.793 1 
27 2891.57 2888 0.357 1 
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Table D.19: Summary of test problem TP7(4). 
I Exp I PM I NE DTP F I 

1 6023.6 6000+ 2.36 1 
2 6000 6000+ 0 1 
3 5752.2 5747 0.52 1 
4 650 650 0 1 
5 6000 6000+ 0 1 
6 10018.3 6000+ 1.83 0 
7 6023.95 6000+ 2.395 1 
8 6016.3 6000+ 1.63 1 
9 10027.4 6000+ 2.74 0 
10 577 577 0 1 
11 637 637 0 1 
12 527 527 0 1 
13 687.6 664 2.36 1 
14 554 554 0 1 
15 839.6 816 2.36 1 
16 444 444 0 1 
17 514.6 491 2.36 1 
18 514.6 491 2.36 1 
19 441 441 0 1 
20 372 372 0 1 
21 377 377 0 1 
22 663 663 0 1 
23 397 397 0 1 
24 461.6 438 2.36 1 
25 392 392 0 1 
26 424.6 401 2.36 1 
27 498.6 475 2.36 1 
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Table D.20: Summary of test problem TP8( 4). 
I Exp I PM I NE DTP F I 

1 756.69 737 1.969 1 
2 646.69 627 1.969 1 
3 736 736 0 1 
4 534 534 0 1 
5 524 524 0 1 
6 580.69 561 1.969 1 
7 571.69 552 1.969 1 
8 809 809 0 1 
9 819.69 800 1.969 1 

10 389.69 370 1.969 1 
11 396 396 0 1 
12 378 378 0 1 
13 579.69 560 1.969 1 
14 394 394 0 1 
15 414.69 395 1.969 1 
16 346 346 0 1 
17 496.69 477 1.969 1 
18 444.69 425 1.969 1 
19 459.69 440 1.969 1 
20 422 422 0 1 
21 460 460 0 1 
22 475 475 0 1 
23 438 438 0 1 
24 546.69 527 1.969 1 
25 403 403 0 1 
26 580.69 561 1.969 1 
27 476.69 457 1.969 1 
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Table D.21: Summary of test problem TP9(4). 
I Exp I PM I NE DTP F I 

1 2000.75 2000+ 0.075 1 
2 2007.11 2000+ 0.711 1 
3 2001.6 2000+ 0.16 1 
4 2005 2000+ 0.5 1 
5 6016.1 2000+ 1.61 0 
6 6007.1 2000+ 0.71 0 
7 1386.2 1386 0.02 1 
8 6007.2 2000+ 0.72 0 
9 2010.7 2000+ 1.07 1 

10 455 455 0 1 
11 462 462 0 1 
12 521 521 0 1 
13 263 263 0 1 
14 450 450 0 1 
15 655 655 0 1 
16 529 529 0 1 
17 646 646 0 1 
18 418 418 0 1 
19 289 289 0 1 
20 377 377 0 1 
21 3L13 343 0 1 
22 290 290 0 1 
23 549 549 0 1 
24 313 313 0 1 
25 568 568 0 1 
26 367 367 0 1 
27 342 342 0 1 
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Table D.22: Summary of test problem TPI0(4). 
I Exp I PM I NE DTP F I 

1 3381 3381 0 1 
2 2636 2636 0 1 
3 3395 3395 0 1 
4 3125 3125 0 1 
5 2754 2754 0 1 
6 3134 3134 0 1 
7 2798 2798 0 1 
8 3396 3396 0 1 
9 2874 2874 0 1 

10 1199 1199 0 1 
11 1629 1629 0 1 
12 2423 2423 0 1 
13 1799 1799 0 1 
14 1756 1756 0 1 
15 2174 2174 0 1 
16 1741 1741 0 1 
17 2095 2095 0 1 
18 373.38 350 2.338 1 
19 1809 1809 0 1 
20 2050 2050 0 1 
21 2640 2640 0 1 
22 1775 1775 0 1 
23 1316 1316 0 1 
24 1560 1560 0 1 
25 1270 1270 0 1 
26 1627 1627 0 1 
27 1718 1718 0 1 
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D.2 Reports of experiments: non-obtuse solid angle of 

feasible cone 

Table D.23: Summary of test problem TP11(2). 
Exp PM NE DTP F 

1 289 289 0 1 
2 4290 290 0 0 
3 4357 357 0 0 
4 4313 313 0 0 
5 4313 313 0 0 
6 400 400+ 0 1 
7 4313 313 0 0 
8 4313 313 0 0 
9 400 400+ 0 1 

10 22 22 0 1 
11 22 22 0 1 
12 21 21 0 1 
13 8l.75 61 2.075 1 
14 39 39 0 1 
15 10l.9 51 5.09 1 
16 8l.75 61 2.075 1 
17 39 39 0 1 
18 10l.5 51 5.05 1 
19 24 24 0 1 
20 22 22 0 1 
21 22 22 0 1 
22 31 31 0 1 
23 32 32 0 1 
24 29 29 0 1 
25 31 31 0 1 
26 32 32 0 1 
27 29 29 0 1 

245 
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Table D.24: Summary of test problem TP11(4). 
Exp PM NE DTP F 

1 5500.3 1500+ 0.03 0 
2 5509.1 1500+ 0.91 0 
3 5536.9 1500+ 3.69 0 
4 5502.6 1500+ 0.26 0 
5 5502.6 1500+ 0.26 0 
6 5532.1 1500+ 3.21 0 
7 5501.71 1500+ 0.171 0 
8 5520.8 1500+ 2.08 0 
9 5511.9 1500+ 1.19 0 

10 301 301 0 1 
11 483 483 0 1 
12 254 254 0 1 
13 332 332 0 1 
14 281 281 0 1 

15 359 359 0 1 
16 255 255 0 1 
17 255 255 0 1 
18 344 344 0 1 
19 504 504 0 1 
20 326 326 0 1 

21 231 231 0 1 
22 1329 1329 0 1 
23 1500 1500+ 0 1 

24 437 437 0 1 
25 371 371 0 1 
26 345 345 0 1 
27 344 344 0 1 
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Table D.25: Summary of test problem TP11(6). 
Exp PM NE DTP F 

1 9505.46 5500+ 0.546 0 
2 9523.58 5500+ 2.358 0 
3 9513.91 5500+ 1.391 0 
4 9506.6 5500+ 0.66 0 
5 9521.9 5500+ 2.19 0 
6 9527.8 5500+ 2.78 0 
7 9503.69 5500+ 0.369 0 
8 9505.88 5500+ 0.588 0 
9 9537.16 5500+ 3.716 0 

10 1205 1205 0 1 
11 1556 1556 0 1 
12 2068 2068 0 1 
13 1229 1229 0 1 
14 921 921 0 1 
15 1138 1138 0 1 
16 3842 3842 0 1 
17 698 698 0 1 
18 5443 5443 0 1 
19 4776 4776 0 1 
20 1529 1529 0 1 
21 707 707 0 1 
22 1240 1240 0 1 
23 1878 1878 0 1 
24 1419 1419 0 1 
25 1243 1243 0 1 
26 2516 2516 0 1 
27 1999 1999 0 1 



APPENDIX D. REPORTS OF EXPERIl'vIENTS 248 

Table D.26: Summary of test problem TPI2(2). 
Exp PM NE DTP F 

1 3573 3573 0 1 
2 3483 3483 0 1 
3 3645 3600 4.5 1 
4 3500 3500 0 1 
5 3567 3567 0 1 
6 3600 3600 0 1 
7 3564 3564 0 1 
8 3575 3575 0 1 
9 3628.2 3600 2.82 1 

10 1479 1479 0 1 
11 2190 2190 0 1 
12 122.9 114 0.89 1 
13 124.9 116 0.89 1 
14 129.9 121 0.89 1 
15 125.9 117 0.89 1 
16 127.9 119 0.89 1 
17 164.9 156 0.89 1 
18 162.9 154 0.89 1 
19 518 518 0 1 
20 3077 3077 0 1 
21 658 658 0 1 
22 2887 2887 0 1 
23 3260 3260 0 1 
24 107.9 99 0.89 1 
25 109.9 101 0.89 1 
26 345 345 0 1 
27 96 96 0 1 
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Table D.27: Summary of test problem TPI2( 4). 
Exp PM NE DTP F 

1 8514 8514 0 1 
2 9670 9670 0 1 
3 9689 9689 0 1 
4 9873 9873 0 1 
5 9207 9207 0 1 
6 9897 9897 0 1 
7 8629 8629 0 1 
8 9468 9468 0 1 
9 9826 9826 0 1 

10 4427 4427 0 1 
11 936 936 0 1 
12 6334 6334 0 1 
13 2476 2476 0 1 
14 2722 2722 0 1 
15 9373 9373 0 1 
16 1820 1820 0 1 
17 7577 7577 0 1 
18 847 847 0 1 
19 2535 2535 0 1 
20 634 634 0 1 
21 2350 2350 0 1 
22 1546 1546 0 1 
23 1021 1021 0 1 
24 978 978 0 1 
25 1012 1012 0 1 
26 1843 1843 0 1 
27 1798 1798 0 1 
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Table D.28: Summary of test problem TPI2(6). 
Exp PM NE DTP F 

1 17255 17255 0 1 
2 19539 19539 0 1 
3 24125 24125 0 1 
4 17123 17123 0 1 
5 20036 20036 0 1 
6 23817 23817 0 1 
7 17107 17107 0 1 
8 19107 19107 0 1 
9 25519 25519 0 1 

10 2579 2579 0 1 
11 3577 3577 0 1 
12 2240 2240 0 1 
13 16437 16437 0 1 
14 1394 1394 0 1 
15 3707 3707 0 1 
16 6184 6184 0 1 
17 3097 3097 0 1 
18 3713 3713 0 1 
19 13248 13248 0 1 
20 1722 1722 0 1 
21 1745 1745 0 1 
22 4623 4623 0 1 
23 3729 3729 0 1 
24 3091 3091 0 1 
25 7169 7169 0 1 
26 1850 1850 0 1 
27 1739 1739 0 1 
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Table D.29: Summary of test problem TPI3(2). 
" 

Exp PM NE DTP F 
1 290 290 0 1 
2 290 290 0 1 
3 357 357 0 1 
4 314 314 0 1 
5 314 314 0 1 
6 400 400+ 0 1 
7 314 314 0 1 
8 314 314 0 1 
9 400 400+ 0 1 

10 23 23 0 1 
11 22 22 0 1 
12 20 20 0 1 
13 81.7 61 2.07 1 
14 39 39 0 1 
15 102.4 52 5.04 1 
16 81.8 61 2.08 1 
17 38 38 0 1 
18 102.4 52 5.04 1 
19 24 24 0 1 
20 23 23 0 1 
21 23 23 0 1 
22 32 32 0 1 
23 32 32 0 1 
24 30 30 0 1 
25 32 32 0 1 
26 32 32 0 1 
27 31 31 0 1 
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Table D.30: Summary of test problem TPI3(4). 
Exp PM NE DTP F 

1 4701.87 700+ 0.187 0 
2 4702.74 700+ 0.274 0 
3 4737.6 700+ 3.76 0 
4 700 700+ 0 1 
5 4702.3 700+ 0.23 0 
6 4798.6 700+ 9.86 0 
7 700 700+ 0 1 
8 4767.4 700+ 6.74 0 
9 4715.4 700+ 1.54 0 

10 263 263 0 1 
11 195 195 0 1 
12 361 361 0 1 
13 249 249 0 1 
14 200 200 0 1 
15 365 365 0 1 
16 327 327 0 1 
17 252 252 0 1 
18 307 307 0 1 
19 304 304 0 1 
20 267 267 0 1 
21 444 444 0 1 
22 700 700 0 1 
23 608 608 0 1 
24 465 465 0 1 
25 401 401 0 1 
26 400 400 0 1 
27 381 381 0 1 
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Table D.31: Summary of test problem TP13(6). 
Exp PM NE DTP F 

1 13102.7 9100+ 0.27 0 
2 13224.4 9100+ 12.44 0 
3 13588.3 9100+ 48.83 0 
4 13103.78 9100+ 0.378 0 
5 19820 9100+ 672 0 
6 13190.4 9100+ 9.04 0 
7 5337.12 569 76.812 0 
8 5344.12 576 76.812 0 
9 5642.12 874 76.812 0 

10 570.06 569 0.106 1 
11 576 576 0 1 
12 874 874 0 1 
13 9017.06 9016 0.106 1 
14 1555 1555 0 1 
15 4892 4892 0 1 
16 1926 1926 0 1 
17 1672 1672 0 1 
18 9109.43 9100+ 0.943 1 
19 1036 1036 0 1 
20 9100 9100+ 0 1 
21 668.42 668 0.042 1 
22 5992.43 5991 0.143 1 
23 2553 2553 0 1 
24 1390 1390 0 1 
25 9100.528 9100+ 0.0528 1 
26 1710 1710 0 1 
27 1288 1288 0 1 
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Table D.32: Summary of test problem TP14(2). 
Exp PM NE DTP F 

1 307 307 0 1 
2 278 278 0 1 
3 445 400+ 4.5 1 
4 290 290 0 1 
5 279 279 0 1 
6 400 400+ 0 1 
7 310 310 0 1 
8 321 321 0 1 

9 428.2 400+ 2.82 1 
10 400 400+ 0 1 
11 428.2 400+ 2.82 1 
12 123.9 115 0.89 1 
13 124.9 116 0.89 1 
14 123.9 115 0.89 1 
15 128.9 120 0.89 1 
16 127.9 119 0.89 1 
17 164.9 156 0.89 1 
18 135.9 127 0.89 1 
19 317 317 0 1 
20 310 310 0 1 
21 105.9 97 0.89 1 
22 306 306 0 1 
23 363 363 0 1 
24 105.9 97 0.89 1 

25 108.9 100 0.89 1 
26 408.9 400+ 0.89 1 
27 103.9 95 0.89 1 
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Table D.33: Summary of test problem TPI4(4). 
Exp PM NE DTP F 

1 567 567 0 1 
2 625 625 0 1 
3 672 672 0 1 
4 667 667 0 1 
5 669 669 0 1 
6 813 813 0 1 
7 674 674 0 1 
8 626 626 0 1 
9 627 627 0 1 

10 1100 1100+ 0 1 
11 1022 1022 0 1 
12 1107.65 1100+ 0.765 1 
13 1107.56 1100 0.756 1 
14 893 893 0 1 
15 1107.56 1100+ 0.756 1 
16 1100 1100 0 1 
17 800 800 0 1 
18 1112.6 1100+ 1.26 1 
19 1100.4 1100 0.04 1 
20 464 464 0 1 
21 1107.56 1100+ 0.756 1 
22 1106.83 1100+ 0.683 1 
23 541 541 0 1 
24 1107.56 1100+ 0.756 1 
25 1108.26 1100+ 0.826 1 
26 874 874 0 1 
27 1112.6 1100+ 1.26 1 
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Table D.34: Summary of test problem TPI4(6). 
Exp PM NE DTP F 

1 1444 1444 0 1 
2 8189 3800+ 38.9 0 
3 1514 1514 0 1 
4 1099 1099 0 1 
5 3706 3706 0 1 
6 7898.5 3800+ 9.85 0 
7 1341.5 569 77.25 1 
8 1348.5 576 77.25 1 
9 1646.5 874 77.25 1 

10 3800 3800+ 0 1 
11 1749 1749 0 1 
12 3800 3800+ 0 1 
13 3800 3800+ 0 1 
14 1943 1943 0 1 
15 3800 3800+ 0 1 
16 3800 3800+ 0 1 
17 3800 3800+ 0 1 
18 3800 3800+ 0 1 
19 3806.2 3800+ 0.62 1 
20 1528 1528 0 1 
21 1514 1514 0 1 
22 1099 1099 0 1 
23 3806.2 3800+ 0.62 1 
24 3806.7 3800+ 0.67 1 
25 816 816 0 1 
26 3806.1 3800+ 0.61 1 
27 3800.49 3800+ 0.049 1 
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Table D.35: Summary of test problem TPI5(2). 
Exp PM NE DTP F 

1 453 453 0 1 
2 314 314 0 1 
3 503.54 500+ 0.354 1 
4 4617.8 193 42.48 0 
5 4622.8 198 42.48 0 
6 4622.8 198 42.48 0 
7 4617.8 193 42.48 0 
8 4622.8 198 42.48 0 
9 4622.8 198 42.48 0 

10 49 49 0 1 
11 48 48 0 1 
12 50 50 0 1 
13 48 48 0 1 
14 48 48 0 1 
15 19 19 0 1 
16 48 48 0 1 
17 48 48 0 1 
18 19 19 0 1 
19 23 23 0 1 
20 23 23 0 1 
21 23 23 0 1 
22 20 20 0 1 
23 20 20 0 1 
24 19 19 0 1 
25 20 20 0 1 
26 20 20 0 1 
27 19 19 0 1 



APPENDIX D. REPORTS OF EXPERIMENTS 258 

Table D.36: Summary of test problem TP15(4). 
Exp PM NE DTP F 

1 1164.3 843 32.13 1 
2 7274.1 2800+ 47.41 0 
3 790.1 260 53.01 1 
4 7390 2800+ 59 0 
5 6805.54 2800+ 0.554 0 
6 7333.8 2800+ 53.38 0 
7 7441.2 2800+ 64.12 0 
8 7085.8 2800+ 28.58 0 
9 7448.9 2800+ 64.89 0 

10 796 796 0 1 
11 668.2 626 4.22 1 
12 935 935 0 1 
13 2343 2343 0 1 
14 2802.7 2747 5.57 1 
15 1326.7 1271 5.57 1 
16 1280.7 1174 10.67 1 
17 1083.2 1041 4.22 1 
18 706 706 0 1 
19 1150 1150 0 1 
20 770 770 0 1 
21 1151.2 1109 4.22 1 
22 2815.8 2800 1.58 1 
23 779.2 737 4.22 1 
24 644.7 589 5.57 1 
25 1361 1361 0 1 
26 839.2 797 4.22 1 
27 1303 1303 0 1 
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Table D.37: Summary of test problem TP15(6). 
Exp PM NE DTP F 

1 2061 1491 57 1 
2 23295.6 19000+ 29.56 0 
3 3310.5 2671 63.95 1 
4 2428.8 1831 59.78 1 
5 2004.3 1253 75.13 1 
6 1056.8 449 60.78 1 
7 19629.1 19000+ 62.91 1 
8 2309 1591 71.8 1 
9 3570.5 2960 61.05 1 
10 3307 2749 55.8 1 
11 2512 1959 55.3 1 
12 5728.6 4939 78.96 1 
13 19025.4 19000+ 2.54 1 
14 3580.2 3116 46.42 1 
15 4033.2 3470 56.32 1 
16 6170.3 5867 30.33 1 
17 4454.2 3708 74.62 1 
18 3251.6 2485 76.66 1 
19 13275.4 12834 44.14 1 
20 1774.4 1436 33.84 1 
21 2522.8 2215 30.78 1 
22 18740.2 18219 52.12 1 
23 2696 2696 0 1 
24 2463.3 1732 73.13 1 
25 4602 4602 0 1 
26 4328.8 4034 29.48 1 
27 2919 2548 37.1 1 
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Table D.38: Summary of test problem TPI6(2). 
Exp PM NE DTP F 

1 206 206 0 1 
2 273 273 0 1 
3 216 216 0 1 
4 260 260 0 1 
5 317 317 0 1 
6 340 340 0 1 
7 4649.8 198 45.18 0 
8 4649.8 198 45.18 0 
9 4649.8 198 45.18 0 
10 189.9 172 1.79 1 
11 195.9 178 1.79 1 
12 64.4 22 4.24 1 
13 185.9 168 1.79 1 
14 193.9 176 1.79 1 
15 195.9 178 1.79 1 
16 186.9 169 1.79 1 
17 193.9 176 1.79 1 
18 193.9 176 1.79 1 
19 165.9 99 6.69 1 
20 117.9 100 1.79 1 
21 172.9 106 6.69 1 
22 180 180 0 1 
23 180 180 0 1 
24 145 145 0 1 
25 256 256 0 1 
26 113.9 96 1.79 1 
27 240 240 0 1 
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Table D.39: Summary of test problem TPI6(4). 
Exp PM NE DTP F 

1 2850 2850 0 1 
2 22594.9 18000+ 59.49 0 
3 790.1 260 53.01 1 
4 22569.9 18000+ 56.99 0 
5 1604 1582 2.2 1 
6 2422 2422 0 1 
7 4492.7 4420 7.27 1 
8 22197.79 18000+ 19.779 0 
9 22616.66 18000+ 61.666 0 

10 766.6 430 33.66 1 
11 646 624 2.2 1 
12 927 905 2.2 1 
13 2254 2254 0 1 
14 1604 1582 2.2 1 
15 2422 2422 0 1 
16 4492.7 4420 7.27 1 
17 17989.7 17917 7.27 1 
18 543.7 471 7.27 1 
19 861 861 0 1 
20 2158 2158 0 1 
21 1297 1275 2.2 1 
22 898 898 0 1 
23 746.7 674 7.27 1 
24 1383 1383 0 1 
25 1163 1163 0 1 
26 1400 1400 0 1 
27 842 842 0 1 
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Table D.40: Summary of test problem TPI6(6). 
Exp PM NE DTP F 

1 2061 1491 57 1 
2 10764.2 6500+ 26.42 0 
3 4172.9 3579 59.39 1 
4 2321.1 1721 60.01 1 
5 1845.9 1362 48.39 1 
6 2969.6 2804 16.56 1 
7 2194.6 1574 62.06 1 
8 2309 1591 71.8 1 
9 4086.7 3381 70.57 1 

10 3274.3 2648 62.63 1 
11 6844.3 6299 54.53 1 
12 4494.1 3767 72.71 1 
13 3897.1 3383 51.41 1 
14 5834.5 5798 3.65 1 
15 2969.6 2804 16.56 1 
16 4157.6 3995 16.26 1 
17 3118.3 2371 74.73 1 
18 4086.7 3381 70.57 1 
19 3191.8 3157 3.48 1 
20 2283.3 2233 5.03 1 
21 4510.4 4393 11.74 1 
22 4914.3 4908 0.63 1 
23 4529 4529 0 1 
24 2645.3 2547 9.83 1 
25 1846.2 1175 67.12 1 
26 4756.5 4746 1.05 1 
27 2834 2541 29.3 1 
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Table D.4l: Summary of test problem TPI7( 4). 
Exp PM NE DTP F 

1 1252 1252 0 1 
2 23540 19000+ 54 0 
3 23081.2 19000+ 8.12 0 
4 23013.6 19000+ 1.36 0 
5 23137.9 19000+ 13.79 0 
6 23466.7 19000+ 46.67 0 
7 23360 19000+ 36 0 
8 23398.1 19000+ 39.81 0 
9 23038.5 19000+ 3.85 0 
10 4860.9 4823 3.79 1 
11 717 717 0 1 
12 280.3 265 1.53 1 
13 18650.9 18095 55.59 1 
14 241 241 0 1 
15 500 500 0 1 
16 19020 19000+ 2 1 
17 377 377 0 1 
18 259 259 0 1 
19 517 517 0 1 
20 535.9 498 3.79 1 
21 537 537 0 1 
22 367 367 0 1 
23 527 527 0 1 
24 547 547 0 1 
25 429.9 392 3.79 1 
26 418.9 381 3.79 1 
27 349 349 0 1 
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Table D.42: Summary of test problem TP18(4). 
Exp PM NE DTP F 

1 5576.6 1100+ 47.66 0 
2 5247.4 1100+ 14.74 0 
3 5158 1100+ 5.8 0 
4 679 679 0 1 
5 5456 1100+ 35.6 0 
6 5502.1 1100+ 40.21 0 
7 594.7 575 1.97 1 
8 679.7 660 1.97 1 
9 492.7 473 1.97 1 

10 504.7 485 1.97 1 
11 1098.8 1077 2.18 1 
12 334.6 292 4.26 1 
13 632.7 613 1.97 1 
14 750.7 731 1.97 1 
15 783 783 0 1 
16 397.7 371 2.67 1 
17 442 442 0 1 
18 553.7 534 1.97 1 
19 571.7 552 1.97 1 
20 575.7 549 2.67 1 
21 450.7 431 1.97 1 
22 678.7 659 1.97 1 
23 422 422 0 1 
24 605.7 586 1.97 1 
25 411.7 385 2.67 1 
26 427.7 408 1.97 1 
27 995.7 969 2.67 1 
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Table D.43: Summary of test problem TPI9(4). 
Exp PM NE DTP F 

1 4420 400+ 2 0 
2 4401.29 400+ 0.129 0 
3 4950.3 400+ 55.03 0 
4 4850.36 400+ 45.036 0 
5 4408.895 400+ 0.8895 0 
6 4771.57 400+ 37.157 0 
7 4400.652 400+ 0.0652 0 
8 4842.1 400+ 44.21 0 
9 4821.3 400+ 42.13 0 

10 279 279 0 1 
11 621 621 0 1 
12 172 172 0 1 
13 334 334 0 1 
14 277 277 0 1 
15 166 166 0 1 
16 171 171 0 1 
17 165 165 0 1 
18 336 336 0 1 
19 309 309 0 1 
20 289 289 0 1 
21 261 261 0 1 
22 525 525 0 1 
23 284 284 0 1 
24 267 267 0 1 
25 300 300 0 1 
26 317 317 0 1 
27 358 358 0 1 
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Table D.44: Summary of test problem TP20(4). 
Exp PM NE DTP F 

1 2748 2748 0 1 
2 8164.4 3700+ 46.44 0 
3 7733.3 3700+ 3.33 0 
4 3095 3095 0 1 
5 3124 3124 0 1 
6 8091.2 3700+ 39.12 0 
7 7708.3 3700+ 0.83 0 
8 7709.8 3700+ 0.98 0 
9 2969 2969 0 1 

10 2013 2013 0 1 
11 350.9 343 0.79 1 
12 293.4 284 0.94 1 
13 347.9 340 0.79 1 
14 260.46 251 0.946 1 
15 280 267 1.3 1 
16 2025 2025 0 1 
17 3068 3068 0 1 
18 2969 2969 0 1 
19 1799 1799 0 1 
20 307.9 300 0.79 1 
21 2800 2800 0 1 
22 310.9 303 0.79 1 
23 3632 3632 0 1 
24 388.9 381 0.79 1 
25 1924 1924 0 1 
26 1944 1944 0 1 
27 378.9 371 0.79 1 



Appendix E 

Copyright permissions 

E.1 Permission to reprint definitions, figure and numerical 

examples from Brea and Cheng (2003a) 

The copyright permission for including the definitions of Section 2, figure entitled 

"Figure 1. Flow chart of the LCNM algorithm II and the numerical examples of Section 6 

from Brea and Cheng (2003a) was obtained by email, which is textually shown as follows: 

Date: Thu, 4 Mar 2004 12:00:52 -0000 

From: "Al-Dabass, David" <david.al-dabass@ntu.ac.uk> 

To: Ebert Brea <E.Brea@maths.soton.ac.uk> 

Subject: Permission for including ... 

Dear Mr Brea, 

In my capacity as Editor of the Proceedings of UKSIM 2003 6th National 

Conference of the United Kingdom Simulation Society, held in Cambridge, 

UK, in April 2003, I here by grant: 

Permission to include in your PhD thesis: the definitions of Section 2, 

figure entitled "Figure 1. Flow chart of the LCNNI algorithm" and the 

numerical examples of Section 6. 

From the paper by Brea, E and R. C. H. Cheng which appeared in the said 
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proceedings as: Brea, E. and R. C. H. Cheng (2003), Constrained simulation 

optimization, Proc. of UKSINI 2003 Sixth National Conference of the United 

Kingdom 

Simulation Society, Cambridge, UK, April 2003, David Al-Dabass, ed., pp 99-105. 

Yours Sincerely, 

Professor David Al-Dabass 

Chairman: UK Simulation Society, 

Professor of Intelligent Systems 

The Nottingham Trent University 

Nottingham 

NG14BU. 
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