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Abstract

UNIVERSITY OF SOUTHAMPTON
INSTITUTE OF SOUND AND VIBRATION RESEARCH
Doctor of Philosophy

WAKE GENERATOR CONTROL OF FLOW DISTORTION INDUCED
TONAL NOISE IN FANS
by Viswanath Kota

The predicted increased demand on the operation of aircraft in existing airports or
creation of new airports increases the scope for noise pollution. Hence the
regulations for new aircraft and engine certification are likely to become more
stringent. This is driving the need to explore new methods to control noise. One of
the means of generation of tonal noise in aircraft engines is the interaction of fan
blades with flow disturbances. This is also the case in non-aviation applications. A
novel way to control this noise is to generate further disturbances which interact
with the fan to produce anti-noise. Flow disturbances can be created using an
array of cylindrical rods protruding into the duct. The variation of the lengths and
orientation of these rods results in the production of wakes of varying extent
which then interact with the fan blades to produce unsteady blade forces and these
radiate noise.

Adaptive control of this form of noise is possible by formulating the
acoustic response of the rod obtained through the theoretical relationship between
the rod length and the magnitudes of the unsteady blade forces and in turn the
magnitudes of the acoustic modes in the duct. Since the control of a single mode
could cause the amplitude of the other modes to increase, optimal control of a set
of modes is possible by formulating the problem of minimisation of the cost
function which is the in-duct sound power level comprising the squares of the
modal amplitudes. Convergence of the optimal rod lengths is obtained through the
use of the steepest descent algorithm.

Experimental investigations confirm that it is possible to implement the
adaptive control of fan tonal noise using wake generators. The concept has been
implemented on a test fan rig and an 8-rod controller array using the pressure

signals acquired from duct microphones. These signals are phase locked with a



trigger signal consisting of one pulse per fan blade-pass and Fast Fourier
Transformed to extract tones which are later decomposed into duct modes and
then into modal coupling coefficients. The controller rod response in the form of
the modal coupling coefficients is determined experimentally and used in the
control algorithm based on steepest gradient descent. Upon running the algorithm
at the fan speed corresponding to a blade passing frequency of 262 Hz with one
rod made to act as a source and another as a controller, the in-duct noise power in
the plane wave mode is reduced from 67 to 42 dB. Far-field sound pressure level
reduced from 91 to 87 dB in the 1* harmonic and from 85 to 79 dB in the 2™
harmonic. Control trajectories superposed on error surfaces show that the
convergence of the rod lengths is sensitive to the choice of the descent step.
Although the controller rod lengths exhibit smooth convergence in the control
cases corresponding to the higher fan blade passage frequency of 441 Hz, control
doesn’t result in significant reduction in the in-duct noise power level at this speed
which was around 2 dB. This is due to the difficulty in controllability of multiple

cut-on duct modes at this frequency.
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Chapter 1 Introduction: Fan Interaction Noise
and its control

1.1. Introduction

Environmental noise is an annoyance to humans. The transportation sector
represents one of the major contributors to environmental noise. Vehicles moving
along airways, roadways and railways generate considerable noise to pollute the
environment. Aircraft noise is particularly bothersome to people living around
airports with the frequent landing and taking off of several aircraft at any
particular airport. Aviation authorities across the world have adopted regulations
for acceptable levels of noise from aircraft and require the airframe and engine
manufacturers to pass certification before the operation of any new aircraft
commences. These regulations are revised from time to time and the existing fleet
of aircraft which do not meet them are phased out. Furthermore. aircraft
manufacturers (Airbus 1999) predict that in the future there will be a rise in air
traffic due to the increased demand for air travel and freight passage and hence are
considering designing newer aircraft with more capacity for freight and
passengers. This translates to increased demand on the operation of aircraft in
existing airports or creating newer airports. All this means that the scope for noise
pollution increases. Consequently the regulations for certification are likely to
become more stringent and airframe and engine manufacturers will have to take
measures to reduce noise in the newer designs. In order to do this an
understanding of the mechanisms of the noise sources is required to either
eliminate these sources at the design stage or to investigate methods to control
them. Noise from an aircraft arises from the airframe as well as the engine. These
days mostly the turbofan variety of engines is used on aircraft for propulsion and
the noise spectrum of an engine consists of tones and broadband noise with the
contribution of the inlet fan to tonal noise being dominant during take-off and
approach.

The need to understand the noise source mechanisms with regard to their
controllability also applies to non-aviation situations as in the cooling of
electronic systems, HVAC equipment, etc. For instance there is a continuing

increase in the heat dissipation from electronic systems due to a rapid rise in



circuit densities. This necessitates an increase in fan speeds and the number of
installed fans leading to increased radiated noise which is driving the need to
understand all the relevant aero-acoustic processes (Quinlan & Bent 1998).
Section 1.2 outlines a review of the current understanding of the
mechanism of interaction tone generation in an engine fan and the methods
adopted to reduce noise are discussed in 1.3. Section 1.4 gives an introduction to
the method chosen for investigation presented in this thesis. Section 1.5 will give

the outline of the thesis.

1.2. Tonal noise sources in an engine fan

A typical turbofan engine consists of a nacelle, surrounding a duct enclosing the
fan, compressor and turbine stages terminated by an exhaust jet. The duct from the
exit of the fan splits into a core comprising the compressor-turbine stages which
then extends into the core jet and the bypass duct extending concentrically along
the core duct ends as the bypass jet. An overview of turbomachinery noise sources
is given by Groeneweg (1991). Figure 1.1 shows the sources of tonal noise
included with the other sources responsible for broadband noise (Greoneweg
1991). Figure 1.2 from the same reference is reproduced here and outlines the
processes involved in production of noise. Internal disturbances in flow arise due
to presence of support struts or pylons which interact with the rotating blades.
Figure 1.3 shows that the contribution of the fan to the total engine noise is
dominant during takeoft and landing. Flow entering into the fan could also draw
in external disturbances which can interact with the blades. The wakes shed from
the rotor can also interact with the stationary stator blades and represent another
way in which interaction tones are produced. The disturbances produce unsteady
forces on the blades and these unsteady forces then generate noise. The acoustic
pressure generated can be expressed as the superposition of spinning modes. The
term mode refers to the eigen function and its corresponding mathematical
expression. These modes either remain cut-off if their axial wave number is
imaginary and decay away exponentially or they remain cut-on and propagate
through the duct if that parameter is real. The cut-on modes which reach the duct

inlet or exhaust then radiate into the far-field.
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Tyler and Sofrin (1961) were the first to explain the mechanism of
interaction tone generation. The steady pressure field locked to the rotor blades
radiates as noise to the observer only when this pattern moves supersonically with
respect to the observer. Consequently in the subsonic case disturbances locked to
the rotor are those of the rotor blade order which cannot radiate noise as they can
spin only as fast as the rotor. Furthermore, modes of the blade order are not cut-on
unless the speed of the rotor is high enough for them to propagate. Hence in the
subsonic case it was predicted by Tyler and Sofrin (1961) that since the acoustic
modes generated from the subsonic rotor-locked blade-order flow patterns are
themselves not cut-on enough to generate tones at blade passing frequency and its
harmonics, these should be produced from flow modes of different orders than
those of the rotor blades and the acoustic modes should be spinning at a higher or
a lower speed than the rotor to generate tones at blade passing frequencies. The
modes are generated by the interaction of the multiple modal patterns present in
the incoming flow disturbance. The incoming flow disturbance may have several
of these modal patterns and these interact with the blades to produce spinning
acoustic modes which. depending on their circumferential mode order, spin at
either faster or lower speed than the rotor to generate a tone at the blade passing
frequency (BPF). The intensities of these modes depend on the magnitudes of the
unsteady blade pressures. The situation is different when the flow relative to the
blades is supersonic wherein a blade order rotor locked shock pattern rotates and
produces multiple pure tones.

Huff (1998) has made a recent review of fan noise prediction. and its status
and needs. He states that there are two alternative goals for fan noise prediction.
One is to model the effects of changes to geometric features and flow conditions
and accurately predict the absolute levels for sound. The other one is to predict the
correct trends of the sound as a function of geometry and flow field changes. He
goes on to state that neither of these have been fully achieved. although there has
been considerable progress. Analytical methods (Sears 1941. Amiet 1974, Graham
1970, Namba 1977, Goldstein and Atassi 1976. Goldstein 1976) were used to
predict the blade response by modelling the problem as that of an isolated airtoil
or a cascade of airfoils interacting with the tlow disturbance represented as 2-D or
3-D gusts and then using radiation/propagation models (Weiner-Hopf and ray

tracing and other methods as mentioned in Hutt (1998)) to predict the intensities



of the propagating modes and also the far-field directivities. Other researchers
(Rangwalla & Rai 1993) have also studied the problem numerically. Another
approach to the problem is to use empirical models for the flow disturbances
(wakes and vortices) obtained from experimental correlations and then feed them
to the analytical or the computational model to predict the noise field (Sutliff
1997). In the CFD-CAA approach RANS or Unsteady Navier-Stokes solvers are
used to solve for the mean and unsteady flows and then CAA (FEM or BEM
formulation) is used to compute the acroacoustic response. Huff (1998) mentions
there is concern that “real blade” effects, like the distortion of gusts by transonic
flows etc., have not been taken into account in the analytical models, and on the
computational side time-marching techniques for interaction tone prediction

require considerable computational resources.

1.3. Noise control — Active and Passive methods

Noise control can be categorized into active and passive techniques. Under
passive control, absorbent acoustic liners are laid along several locations of the
engine and these provide an impedance boundary condition to the waves
reflecting from the walls and attenuate them. The control of noise through
treatment is understood to be effective for high frequency noise as the distance of
propagation over the acoustic lining is several wavelengths. Consequently low
speed machines which generate relatively low frequencies of noise compared to
high-speed machines require longer lengths of ducting. Envia (2002) also
mentions that the newer designs of engines tend to have higher bypass ratios with
the result that they require lesser nacelle lengths and hence less lengths available
for treatment.

Under active control methods a source of noise is identified and is
controlled by including secondary noise sources in the system and these secondary
noise sources are driven either in an open loop or closed loop to produce the
secondary noise field which either cancels or reduces the modes in the primary

noise field. Loudspeakers have been used as secondary noise sources. A review of



the work done in this area is contained in Envia (2002). He states that there have
been significant noise reduction benefits from the use of active noise control, but
the benefits tend to diminish with the increasing number of simultaneously
controlled modes. He suggests that this may be due to the multiple modes having
a unique phase relationship with each other, and that errors in the measurement of
the phase relationship can cause the actuation of the secondary noise sources to
produce a noise field that may not exactly match the target field. Furthermore, the
power requirements for these secondary noise sources is quite high and this has
precluded a cost-effective usage or implementation in real engines so far.

The above means of controlling noise represent techniques to control noise
at the propagation level in that the sound field is controlled during the propagation
process.

Attempts to control noise at the source have also been summarised in the
same reference (Envia 2002). The following is a summary of the methods and the
benefits and limitations.

The first of these attempts involves employing a larger rotor stator spacing
and a cut-off vane count as done on the Advanced Ducted Propulsor built by Pratt
and Whitney (Topol 1993). Acoustic codes were used to optimise the cut-off vane
count to reduce the levels of the second and third harmonics of the blade passing
frequency (Topol 1993). However a concern realised elsewhere about the increase
in rotor stator spacing (Sawyer 2002) is that it increases the size and hence the
weight of the engine. The benefit from the increased spacing is that it reduces the
amplitudes of the wakes and hence the intensities of the modes produced through
interaction. The cut-off vane count causes the modes generated through
interaction to be of a higher order such that they remain cut-on only for the higher
harmonics.

Another attempt discussed in Envia (2002) concerns the provision of a
swept and leant stator. Sweep is the axial distance and lean is the circumferential
displacement of the vane leading edge from its nominal position. By providing
sweep and lean on the stator blades 3 EPNdB noise reduction was shown to be
possible compared to the situation when a radial stator in its nominal position was
used. By providing sweep and lean the contribution to the phase of any mode of

the interacting disturbance varies with the span and hence lower levels of noise
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result from such a design of the stator blading. The limitation of this approach
seems to be that it generated more aerodynamic losses than had been anticipated.

The next in the series of methods summarised in Envia (2002) is the
trailing edge blowing technique. Flow is supplied through the shaft along a
labyrinth of internal passages that start from blade root and terminate at a series of
trailing edge ports. Thus the wakes issuing out from the rotor blades are made
more uniform so as to cause less unsteady forces on the stator. This technique was
originally tried at MIT (Waitz 1996) and was later extended by the researchers at
NASA (Sutliff 2002) to conduct a proof-of-concept test to establish the noise
reduction benefits. The test conducted at the NASA Active Noise Control Fan
facility demonstrated that the far field tone power levels in the first three
harmonics were reduced by 5.4, 10.6 and 12.4 dB PWL. The blowing rate of 1.6 -
1.8% (defined as the ratio of flow supplied to the trailing edge to the total fan
mass flow) was found to be the optimum.

The last of the methods discussed in the above reference is the scarfed
inlet concept which is the provision of a scarfed inlet on the intake to redirect the
noise upward. But the scarfed inlet is also thought to cause the production of flow
distortions which when ingested could produce noise.

The effect of boundary layer suction on fan noise has been experimentally
investigated by Moore (1975). He used a ventilation fan of 1m diameter with
suction applied around the circumference of the duct close to the fan inlet. Upon
removal of 5% of the main flow reduction of 5 dB in the far field sound power
and 15 dB in some of the far field tones was observed. Progressive reduction in
the noise was obtained by proportionately varying the amount of flow bled
through suction. He mentions that care must be taken in the design of the bleed
system so as not to produce any “cut on” residual distortions that could propagate
to increase the far field noise.

Ganz et al. (1998) offered new insights into broadband noise mechanisms.
They focused their study on broadband noise sources by treating them separately
as inflow and self noise mechanisms. They used a model scale fan rig with
provision to bleed the inlet boundary layer and to vary the tip gap and the loading.
Self noise, or the rotor-alone-noise. was parametrically studied by varying the tip
gap and loading to observe the variation in broadband noise generated through the

tip clearance and rotor exit wake flows. The inflow mechanism in this case was



isolated by completely removing the inlet boundary layer. To study the inflow
noise the boundary layer was re-introduced and its effect was studied on the rotor
and stator. Of particular interest is the observation that there was a reduction in the
broadband noise through boundary layer suction. They were able to qualitatively
explain their results by conducting hot-wire measurements of mean flow velocities
and turbulent intensities at the rotor exit.

Sawyer and Fleeter (2002) have reported a 10 dB reduction in the rotor-
stator interaction tones using active airfoil sources mounted on the stator blades.
The active airfoil sources were perforated metal covered cavities in the stators
which formed resonators and these were driven by compression drivers. Kousen
and Verdon (1994) have used an entirely analytical/computational approach for
simulating control of blade-row/wake interaction noise using anti-sound actuators
on blade surfaces.

Using a control grid of wake generators Polacsek (1999) was able to
reduce rotor-stator interaction modes with the grid mounted upstream of the rotor.
An 8 dB reduction in the SPL at the blade passing frequency was achieved by
using such a system on the ONERA CERF-rig. Using CFD-CAA approach to
simulate the control he has been able to assess the experimental results.

Nuehas ef al. (2003) have used flow control techniques to reduce blade
passage frequency tone levels with steady jets injected into the main flow and
cylindrical rods at axial positions downstream of the impeller blades. With
cylindrical rods they have been able to report a reduction of 12.6 dB in the BPF

tone.

1.4. Flow control

A recent review on flow and noise control (Thomas et al. 2002) mentions that
there are two critical issues needed to achieve projected noise reduction targets:
“(1) better understanding and prediction of noise generation and
propagation mechanisms for all significant noise sources. and (2)
noise reduction concepts that are both technically feasible and

economically as well as commercially viable. Apart from the



already existent usage of passive liner treatment for noise reduction

many investigators suggest that a combination of passive and

active methods should be used for control. Consequent to this it is

worthwhile to explore novel means of reducing noise.”

As mentioned already before, methods to alter flow non-unformities seem
to have an effect in reducing the unsteady forces on the blades which
consequently reduces the radiated noise. The trailing edge blowing technique,
boundary layer removal and the introduction of rods to generate disturbances fall
in this category.

Nelson (2000) theoretically predicted that the tones generated through inlet
flow distortions could be used to control a single tone and that optimisation could
be done to minimise the total generated sound at higher harmonics of BPF. His
prediction follows from an analytical model due to Goldstein (1976). which
relates the acoustic response of the fan blades to the intensity of the interacting
distorted flow field. Nelson (2000) suggested that distortions could be either
introduced as positive or negative defects in the velocity profile of a flow field.

Generation of wakes through the presence of solid bodies in the flow field
represents a means of producing defects in the flow field velocity. The concept of
noise reduction from this method is illustrated in Figure 1.4. The flow and the
acoustic situations inside a duct housing a fan are illustrated separately. The fan
encounters a primary disturbance in the flow and generates the primary acoustic
field. The acoustic field introduced through the wake generators can be adjusted
by varying the lengths of the rods and the azimuthal angle of the array of rods to
cancel or reduce the intensity of the total acoustic field in the system. Since a
focus on the reduction or cancellation of a single mode may cause generation of.
or increase in the intensities of the other modes. the noise power contained in
multiple harmonics requires optimisation.

Pitelet (2000) extended the Goldstein (1976) model to a finite-duct case
and derived an expression for the acoustic field. He used a single rod to conduct
experiments to determine the modal response of the rod and used this response to
simulate the minimisation of noise power. His experimental set-up lacked the
means of decoupling the secondary acoustic field from the primary acoustic field

due to the unavailability of a fan blade passing reference signal.



Though the strategy of flow control as discussed here seems to point to the
acoustic benefits involved through its application, there are other applications
entailing aerodynamic benefits from its use. In particular flow control
technologies using smart materials, vortex generators, etc., have demonstrated
benefits like reduction in drag, control of the phenomenon of flow separation etc.
For more information one could refer to the review on flow and noise control and

the associated references therein (Thomas er al. 2002).

1.5. OQOutline of the thesis

The problem of controlling noise using flow distortions generated through
introduction of rods in the flow has been taken up further in the present work. The
acoustic pressure field expressions have been extended to a semi-infinite ducted
case and the derivation of the expression for pressure is given in Chapter 2. The
expression for the overall sound power level to be used as a cost function for the
optimisation problem along with the numerical simulation of control for a simple
case is given in Chapter 3. Simulation of control assuming more general primary
flow disturbances is presented in Chapter 4. The implementation of this system
was carried out on a model fan and this along with the results is described in
Chapter 5. Finally, conclusions and suggestions for further work are made in

Chapter 6.
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Chapter 2 Acoustic pressure field from the fan-
flow disturbance interaction

2.1. Introduction

As the creation of acoustic modes through the introduction of the interacting flow
modes produced by the wake generator is essential for control it is important to
understand analytically the relationship between the flow disturbance and the
resulting acoustic field. As mentioned in the introduction there are several
analytical models available for this purpose. One such model that expresses this
relationship is the Goldstein (1976) model for the infinite ducted case. This was
extended by Pitelet (2000) to take into account the end reflections present in the
finite duct case. An expression for the acoustic pressure field resulting from the
interaction of the fan blades with the flow disturbances was derived by him. This
derivation is reproduced here in its entirety for ease of understanding the
subsequent extensions of this expression to the semi-infinite ducted case carried
out as part of this thesis and also its usage to form a cost function for control.
Section 2.2 concerns an overview of the steps involved in this derivation. Section
2.3 is devoted to the actual derivation with the extension carried out for the semi-
infinite duct case (since the fan being considered here has an anechoic
termination). The expression for the acoustic pressure in the semi-infinite duct
case 1s then used to derive the overall sound power level in Chapter 3. The
expression for the overall sound power level is necessary since it forms the cost

function for the noise minimisation problem covered in the same chapter.
2.2.  Overview of the derivation

The system being considered here is a fan located in a duct with an open inlet and
an open exit. There is flow that is ingested into the duct by the rotating fan. The
fan interacts with any flow disturbances that are present in the flow and the
fluctuating forces on the fan blades cause the acoustic field to radiate and the
propagation of this field in the duct has to satisfy the convected wave equation.

The radiated acoustic pressure field is obtained by using the Green's function



technique which involves integrating the fluctuating force distribution on the fan

blade surface with the Green’s function of the convected wave equation. After

considering the force response of the blades to the disturbances in the flow field

the expression for the acoustic pressure field can finally be related to the

disturbance flow field.

The above steps along with the subsequent sections that deal with them are

summarised below:

1)

2)

3)

4)

5)

6)

2.3.

2.3.

1.

The general form of the propagating acoustic field in the duct that satisfies
the convected wave equation is covered in Section 2.3.1.

The Green’s function solution of the above equation for a point monopole
source is derived, assuming the presence of reflections from both ends of
the duct in which the fan is located. This is covered in Section 2.3.2.

The solution in step 2 is extended to the case of the fan for the fluctuating
force source on the moving blades. This is covered in Section 2.3.3.

The blade force response is expressed in terms of the disturbance flow
field. This is covered in Section 2.3.4.

A final expression relating the acoustic pressure field to the disturbance
flow field is arrived at. This is covered in Section 2.3.5.

The fan used for implementing the experiments is provided with an
anechoic termination at the exit to reduce reflections from the downstream
end. Section 2.3.6 gives the acoustic pressure expression for the fan with
the anechoically terminated exit, i.e., the semi-infinite duct case.

All assumptions involved are stated wherever necessary.

Derivation of the expression for the acoustic pressure field

in a duct with the fan interacting with flow disturbances

Convected wave equation and the general form of its

solution

Duct coordinate system.

14



The duct coordinates are represented by the following vectors, the sense of these
is as shown in the schematic of the fan in Figure 2.1; x denotes the coordinate of

the observer location

(x,,x,,%, (Cartesian)
X =

(r,0,z),z=x,  (Cylindrical),

(2.3.1)
and y is for the source location in the duct.
[ Greyy) (Cartesian)

(r.6.,z,),z, =y, (Cylindrical),

(2.3.2)

The variable ¢ is associated with the arrival of the sound wave at the observation
point, and 7 with the emission of the sound wave. The following sub/superscripts
are used:

Axial: Downstream( z") and Upstream ( z )

Rotational: Clockwise (8 7) and Counter-clockwise (8 °) as seen from the

inlet.

Sp (Duct surface)  Sg(Fan surface) fy"' x;

7 U (Flow velocity)

Figure 2.1 Co-ordinate system in the duct.
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The acoustic pressure field p(x,l’) in a duct of cross sectional area S and radius a

with a mean axial flow of U=U X, has to satisfy the convected wave equation,

where x, is the unit vector along the x,- or y,- direction:

, 1(0 ?
Vi-S| 5 UV p(x,1)=0,
0

2.3.3)

where ¢y is the speed of sound and the differential operators are
2 2 2 2

v25_6_+ a_2+_1__a_+i2 62 Ea—2+Vi and
Oz? or: ror r°o0 0z
\V4 524_[24_12—[-13] Ei-i-vl.

0z \Or ror roo 0z
2.3.9

Upon substitution of p(x,f): Re{p(x)ef“"} which is the acoustic pressure for a

single frequency o, Equation (2.3.3) reduces to the following equation (see
Appendix 2.1).

{vz + {%](1 —é U.V]z}p(x): 0.

(2.3.5)
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", p(x,0)
U, (Flow velocity) (Acoustic
: pressure field)

|
|
|
|
| <
|
|
|

//-B;r;:? A+mn B-mn
———————————— | o——>» < ® >

L
I Dodvnstream Downstream Upstream
| reflected incident incident
| mode mode mode

|

z=0

Figure 2.2 Reflected and Incident modes in a cylindrical duct with flow

(illustrated for the plane wave mode).

The form of the solution of the above equation is

+o0 40

p(n6.2)= 3 3[4 (0) e 1 B () ¥, (r.0),

m=—w n=1

(2.3.6)

where A, and B, are the unknown amplitudes of the forward (z~ direction) and

backward (z” direction) propagating mode systems in the duct (illustrated in Figure

2.2 for the plane wave mode), k> is the axial wave number, @ is the frequency,

Wn(r,6) 1s the duct mode shape, m and n being the circumferential and radial

orders of these modes. Upstream of the fan the incident and reflected mode

amplitudes are B and A4 . On the downstream side they are 4° and B’ . The

:::::

wave number k.. is given by

k:i i_ Vk(;Z _ﬂzKr-;’m _MkO

i 5

b

(2.3.7)

17



; ) W .
where k; is the free-space wave number and is defined as &k, = —, M is the Mach
Co

number, f is 1/il - M? L (the derivation of the above expression for k7, is given

in Appendix 2.2), k., are the roots of the first derivatives of the Bessel shape
function which satisfy the condition that the normal pressure gradient at the duct

surface be zero,

op
or

=0.

r=a

2.3.8)

The expression for the wave number in Equation (2.3.7) also determines whether a

mode is evanescent (cut-off) or propagating (cut-on). If the term +/k; — B’k in
that equation is imaginary then the mode decays and it propagates otherwise. This
is influenced by the Bessel shape function parameter «,,, for any mode. Its value
increases as the radial and azimuthal orders of a mode increase and hence the
greater possibility of these modes being cut-off. The plane wave mode which has
both these orders equal to zero is always cut-on as k,,, = 0 for this case. The mode
shape W,,(r, 0) 1is given by the following expression

Lan (7‘, 9) = M e—_/'me X

2.3.9)

where J, (k. 1) is the Bessel function representing the shape of the duct mode

Jm@

along the radius r, e?™" is the Fourier function used for representing the shape of

the duct mode in @ direction, and N,,, is a normalisation constant defined as

mn

N2 = J‘]li (Kmnr) dS >
S

(2.3.10)

which is obtained from the following orthonormality relationship for W,,,,(r. 6).
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_[ mn(r 9) (]I(r Q)dS

N

{0, (m,n) # (q,1)
1, (mn)=(q.0)

2.3.11)

Since the solution in Equation (2.3.6) is for a single frequency excitation of the
source, the solution of the convected wave equation can be obtained from the
inverse Fourier transform of that equation and the resulting expression is

TR 4w +w(

el PPN

_o m=- p=1

e_’k +Bi( ) "k;;)e’“” m,,(r 9)d

(2.3.12)

2.3.2. Green’s function solution of the convected wave equation.

The unknown modal amplitudes 4,, and B,, can be obtained for the finite

mn

ducted case by deriving the Green’s function, G(x‘y), which has to satisfy the

following equation:

[V2+ko (1—EUVH Glxy)=-5(x—y).

(2.3.13)

where ko (=w /cp) is the free space wave number and G(xiy) is the resulting

acoustic pressure field at the observer location x due to a point monopole source

-0 (x - y) of unit strength located at y as illustrated in Figure 2.3.
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&rS) HS; 0)
Point monopole
source)

A2, %2

U G(xly)

* Acoustic 5
Blow velocity) ¢ 0
4( _OW velocity) pressure field) <

o : VI{I A
*———» < 4
B+ni:n A +mn B_mn
Dodvnstream Downstream Upstream
reflected incident incident

’.H'iode mode mode

ze—0

Figure 2.3 The point monopole source and the Green’s function solution for
the acoustic pressure field in a cylindrical duct with flow (illustrated for the

plane wave mode).

The solution to this equation is also expressed in the same form as Equation

(2.3.6) as a summation of modes:

+0o0 +a0

Gly)= Y. > b,.()¥,.(.0).

m=—o n=}

(2.3.14)

lllll

(2.3.15)

The term b,,(z) is the sum of the forward and backward propagating modal

amplitudes A4,, and B,, To express it wholly in terms of one of these, the

definition of the reflection coefficients R given by Morfey (1971) is useful.



These are defined as the ratios of reflected to the incident modal amplitudes, and +

and - denote the downstream and upstream values of the reflection coefficients:

B+

+ _ Fmn 2/,
R, = o e ,
mn
1 By ot

—_ - —_ - e >
Rmn AIHH

(2.3.16)

where 1+ is the complex phase of the upstream and downstream reflection

coefficients which takes into account the amplitude and phase of the reflection
coefficients due to this term being complex valued.
The reflection coefficient at any axial location is a function of the axial

coordinate z and is expressed as follows (see Appendix 2.3 for a derivation)

k TR
+ 0 mn _ 2 2.2
nmn (Z) - nnm + 'B 2 Z, Where kmn - kO - IB Knm .

(2.3.17)

For the given point monopole source the expression for amplitude term b, (z)

turns out to be
Jzmz, M
¥ (r.6)e 7

Bt (z) _ i COS(nfm (Z ))
"k tan(ny, (2, )~ tanfn;, (z,))| cos(nz, (2, )

(2.3.18)

The derivation of this expression is given in Appendix 2.4. Substituting this in the

expression for the Green’s function (2.3.14) we have

. g v (;~,9)‘~P"'m (rS,QS) -’V(:":X)‘»;_A;O COS(n,i,, (3»
U202 ey e ) R e e

(2.3.19)

After performing some trigonometric simplification we have



m=te 0 \ ,9 * ,9 j(z-2, = N -
o) B S et ol Gl e
m==m n=| mn mn mn

(2.3.20)

2.3.3. Solution of the convected wave equation with the fluctuating

force source on the moving blades

We now move onto predicting the pressure field under the influence of a source
like the one that the fan experiences by considering the Green’s function that has
been derived for the point source. The method adopted is the one that is due to
Goldstein (1976) for the prediction of the noise generated by axial flow fans in

infinite ducts. Here it is extended to the case of a finite duct.

fo (Fluctuating drag
force)

fr (Fluctuating
thrust force)

Figure 2.4 Fluctuating forces on the rotor blade surfaces Sy experienced

through the interaction of incoming non-uniform flow.

In order to find out the radiated field from the fan source in the duct
Goldstein begins his model with Ffowcs Williams and Hawkings (FW-H)

equations and neglects the effects of volume quadrupole sources, fluctuating shear

o
o



stresses on the duct wall surface Sj and also the volume displacement effect due
to the thickness of the blades and considers only the contribution arising from the
fluctuating forces exerted on the flow by the rotor blade surfaces Sy shown in
Figure 2.4 which act like dipole sources. The volume displacement effect due to
thickness of blades causes the production of acoustic modes of fan blade order.
For the 9-bladed fan under consideration in this thesis these orders are high
enough to be cut-off as seen from the expression in Equation (2.3.7) in Chapter 2.
The relative unimportance of volume quadrupole sources is shown by Goldstein in
his comparison between the exact and acoustic analogy approaches. Whilst the
exact approach uses the linearised continuity and momentum equations to predict
the sound pressure field, the Lighthill acoustic analogy approach which forms the
basis for the FW-H equations treats certain terms associated with the propagation
of the sound as source terms.

The expression for the acoustic pressure p(x) in the presence of the
fluctuating forces f on the moving blade surfaces of the fan Sy7) is as follows. The
Green’s function derived above is used here. The time integral is performed along
the time coordinate (7) during which the source is excited and the surface integral

is in the space (y) where the source is located.

pla)= ], 208

f, dS(yMr,

2.3.21)

where [-7,7] is a large but finite time interval, and f, is the drag or thrust

component of the force per unit area produced by blades acting on the fluid. Since

the Green’s function G(x]y) derived above has only spatial dependence the

y,r) is obtained by inverse Fourier

corresponding time dependent version G(x,f

transform of G* (X‘y) with respect to (f—1).

+oo

y.T)= 1 Je"‘”("T)Gi (x\y) do.

G~ (x,f 2 )

(2.3.22)
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The force f (‘L’), exerted by the blades on the flow can be resolved into an

axial thrust component fr and a circumferential drag component fp

0 f,) 0
/i a, 1, 69 v oz,
(2.3.23)

The axial and the circumferential derivatives of the Green’s function G, (x|y)

required in the pressure integral are as follows:

3G W) $ $ 62 (o),

R
|

s
s
~.
>
B
o
N’
3

3
N
<
N—

(2.3.24)

where

}’:m (Zs ) = j % tan(n,in (ZS ))_ A;ZEO :

(2.3.25)

The derivation of this is given in Appendix 2.5. The integrand appearing in
Equation (2.3.21) which includes the time derivative of the time dependent

Green’s function G(x,t|y, 7) is thus

aG(x,tly,z

ayiy’ )]{: %,,,mm; J. ol T{ ]{D +7mn( )fTJ mn(x‘y)da)

Y

(2.3.26)

Substituting this in Equation (2.3.21) the pressure integral becomes



J

M,
i A —jmb  +o /[F Z+m/]
p(x,t):i E E m (Kmnr)e e

2 : +0
2 m=-» n=| N _mk”m Sln(nm" -n

mn

. | Mk,
7 0 —j[ ,Bz) z,+a)r]
Jjmo, +
x .[ '[/ (T)Jm (Knm rs )e Cos(nmn (Z.v ))e

cryeos(nn, ()

mn

X {;nl o+ m (Zs).f'f:| dS(Y)df do.

B

(2.3.27)
2.3.3.1. Transformation of coordinates of the moving surface

Note that the forces are fluctuating over the moving surface S 7) and thus have a
dependence on (y, 7). Since the surface is a moving surface its motion can be
described using the transformation for a reference frame fixed to the rotor and
rotating with it, the coordinates of any point on this surface being described by

y' = (r_\_,G_‘f,z_\_), where 8, =0 + Q. This removes the dependence of the surface

integral on time 7, to give

Mk,
o e J F_+ml
. +®  +® —jm
J Jm (K mn? ) € € ))

plxt)===>"% 3 )COS(nfm (z

- 2 . +0 —
2” m=~o n=1 N —ookmn Sln(nmn _nmn

mn

[Mko ]
_ —J ?:J—mej
I

x .[Jm (Kmn rx )Cos(nnm (Z.V ))e

T ,
y .[e_j(a,_,nn)r |:ﬂf/) +yi (Z.v )fr} dr dS(y') dow.

T
(2.3.28)

2.3.3.2. Projection of source surface (fan blades) onto the fan rotational
plane

The surface integral in Equation (2.3.28) is a sum of the integrals on the front and
back surfaces of the blades. Goldstein (1976. p. 194) describes a transformation of
the surface integral over the front and back surfaces of the blades to an integral
over the projected area 4 of the blades in the rotational plane ot the fan. The

difference in retarded-time, i.e.. the time taken for the sound wave to travel from



the point of emission to the point of observation, between the front and back

surfaces of the blades is ignored which is justifiable if the blades are thin. This

causes the replacement of z; in the above equation with the variable z{ (r\,,Q',),

which is the axial co-ordinate of the blade chord measured in the rotating

reference frame.

] !
P —jm0 +o j[ B? Z+(DJ
J S\ ) e

plur)=50 2y e, sinfnsn =no )Cos(n"_'" €)

nmn

k
M—z{) zf—mB;]

[l eost e Je

A
T

x {i}? »]71) +y:m (Z‘i})fTJe_j(w_mg)T dT rsdrxdexf da)

(2.3.29)

The force terms averaged over the two sides of the blades are denoted as

7, and 7, (with tilde) in Goldstein (1976, p. 195).

2.3.3.3. Periodic blade forces

So far no assumption has been made for the type of fluctuation of the force
exerted by the blades on the flow in the above equation. Steady non-uniform inlet
velocity profiles present in the flow in the intake of the fan interact with the blades
and produce periodic forces which result in the generation of pure tones. These

non-uniformities can be generated by obstructions to inflow or by atmospheric
disturbances ingested into the intake. The periodic forces f, (r) generated due to
these can be represented in the following Fourier series summation of harmonics

a th - o :
F7 at p” multiples of the shaft rotating frequency €2, since each blade

experiences every p" eycle of the distortion during a revolution of the fan.

f()= iF,?e"”QT fora =T,D,
p:—cﬂ

(2.3.30)



where

(t)e ™ dr  fora=T,D.

Ot—.,b‘§
a

(2.3.31)

Making the substitution for ]7& (r) in Equation (2.3.29) we have

Mk,
; o oD o0 —ij + j[p—l()2+ml]
)=t 3 3 SR oy )

: +0
p=—o n=—m n=| mn -ookmn Sln(nnm _nnm

[ Mk, . ,
. . —-J —[33 zi-mB;
x .[Jm (K r )COS(T]””, (Zx ))e

mn's
A

s 14

,
X {?— F,f) +y5 (zc )FTJ .[e'j(“’_("'”’)g)fdr r.dr.d@’ do,

s -T

(2.3.32)

and then substituting for s =m + p, and realising that the integral in 7 can be

expressed in terms of the identity

.
lim e/ dr = 218 (w — 5Q2),
=T

(2.3.33)
we have
/[ﬂ :+(01]
_ c S Jm (Km"’,)e_f’”g T e\ i PR
p(x, t) - J p=z—oc m=z—oo ; Nlin —:[ knm Sm(n;;: - nn_lg )COS( " (; ))

~[Ml"o < ,]
_ —-J ﬁz o —mo;
F o

x IJIYI (Kmn’s )Cos(n mn (‘4’ N ))e

A4

3 [ﬂ FP vy ()R] ]5 (0-50) r.dr.d6 do.
;

5

(2.3.34)
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Evaluating the integral in the frequency domain @, using the sifting property of

the delta function, which causes the replacement of @ by sQ, we have

| MsQ
orgem e
2 & & J Ak, r)e™” e
_ m mn +
Po=i 3 3 Y s e yeos(n, )
p=-o m=-» n=l mn mn,s sin mn,s _nnm,.v

j| M zf—m@,’}

x .[J (.7, )cos( s (zf ))e— [""ﬁ )

A

m + c N ’
X {7 F,f) +yn_m,s (ZA' )Fp] J r\drsdex
2.3.35)

Denoting the coupling coefficients DE andT*  as

mn,p mn,p

—j[ 2y —IN@,J

:t _ c cof Y- - c !

m = _I. m mn ¥y COS nmn v( ))e F }/mn,s (Zs )}" d}" des’
A

3

MsQ
- s

27 -m6,;

c B J D . ’

mnp J. m \K n s COS nmn s( s ))e Fp d,x des’
A

(2.3.360)
we have
[M‘Q he iy Ql]
— S < S Jm (K mn; )e e b + -
p(x’ {) B ] ,;:Z_w ,;1:2—00 ; N/?m Sln (nnm.,\' - 77,?”_;‘ ) kmn s COS( " (; ))
(mDm” » Tmn p)
(2.3.37)

The above equation can be realised as a summation over harmonics of shaft

passing order sC2in the frequency domain and thus expressed as follows

@

p(x.0)=> p.(x)e"™.

§=—x

(2.3.38)
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where the acoustic pressure for a given harmonic order s is

/[M—\? z—mG]

. % <~ Jm mn of + Nt it

P (X) ) Jﬂzz—eo ; N/;2m SEI;(UE';)? - nr())l;\ )kmn,s COS(nm",X (Z)>(mDm",ﬂ ! T”"’vf’ )
(2.3.39)

In the above equation the subscript m, 1.e., the circumferential order of the mode at

each discrete frequency sQ is now evaluated using the relationship m=s—p.

2.3.3.4. Equispaced identical fan blades

The forces Zz (r) in Equation (2.3.30) are the net drag and thrust forces per unit

area on the fan blade surface. Considering that the force experienced by the first
blade (which we shall identify as s = 0) at the reference frame location 6;” and
time ras f.(r,,0.,7) . we see that this is the same force that is experienced by

th

the s blade that is now displaced by 27(s—1)/ B from the first blade at a prior

time 7 — 27 (s —1)/ B . We thus see that the force on this latter blade at time 7 is
Fo(r,,0. —2m(s—1)/B,t +2x(s—1)/BQ) , due to the blades being equally

spaced and identical. Expressing the net force 7{1 (t) in terms of these individual

blade forces we have

— B
fu@) =Y f0r,.0. =2r(s=1)/ Bt +2r(s—1)/BQ)  fora=T,D.

(2.3.40)

Substituting this in Equation (2.3.30) we get the p™ harmonic of the net periodic

force as the following summation

2mp(s-1)
F¢ :Ze*’m AFGO‘F(I;,Q;—Zn(s—l)/B) fora =T,D,

(2.3.41)



where

0
Fa,l’_

?‘ fao(nﬂi,f)e‘f”"’dr fora=T,D.

3
OQ_.D'§

(2.3.42)

Equation (2.3.41) expresses the net force Fon the rotor related to that on the

single (or the first) blade FaO' b

Substituting the expression (2.3.41) for the thrust component in Equation (2.3.36)

we have

28 st

— c Y Tt ¢ 3 '

nmp = J. ALY COS T]nms( s ))e F ynm,x (Z.' )rx d] d@
A

B —j[ 52 —1719;] '
= B J.Jm lnn r.s‘ )COS< I:;n,x (Zf ))e of Fao,p (rs E) 9: ) ’}/;_—m,s (Z_: )r.v drs d9:

nn,p

{BT— for (m + n) = sB

0 for (m+n) # sB,

(2.3.43)

where 7' is the thrust on the single blade. The derivation of the above expression
is given in detail in Appendix 2.6. The above result shows that only the harmonics
of the BPF, i.e., BQ are non-zero. At these harmonics the net thrust or drag forces
are obtained by multiplying the same forces on a single blade with a factor equal

to the number of blades. Therefore Equation (2.3.38) can be written as

0
= Z pA\'B (X) estQI >
sB=-w0

(2.3.44)

where

(99}
<



j[MsBQz ”0]
cf”
_]BZ Z N2 ;nlfl’(nmr)e

p=—n n=| mn (nmn,yli _nnm,sli) mn,sB

COS(nin,m( ))(mDmn p ¥ (ot P

(2.3.45)

Q2S?_B2

—— - B’k}, is evaluated at the discrete
Co

where m=sB—p and kum,sB = \/

frequency o = QsB. D* andT*  are replaced by coupling coefficients for

mn,p mn,p

single blade D: andT:

mn,p mn,po

and the corresponding harmonics for forces

F, and F, are replaced by the forces F,, and F;, acting on one blade

(Goldstein 1976 p. 197)

~ ,[Msxg): _”191}
T;n_np = _[Jm Kom? s COS(TI,,m vb‘( )) e Lo FOp ymn sB( )r dr, d6;

o

- ,[M‘"Kf _-;—me;]
mnp = _[ i I e s COS(Um,, sB( w))e o F. O,Dp dr, d6;.
4
(2.3.46)
2.3.4. Blade force response

Expressions for drag and thrust forces resulting from the non-uniform component

w(/(\_,Q_V) of the inlet flow velocity are derived by Goldstein (1976, p.201). Forces

acting on the single blade £, are given by

Fo?p = 559 )nchU w (')SC<O',,,M,>sinxsiny,
FOI,)I, 559 )nchU w ( )SC(UF,M,>cosxsinu,

(2.3.47)
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where ¢ is the chord length, y is the blade stagger angle, u is the angle of attack

with which the fluid encounters the blade, U, is the relative velocity, pj is the
density of the fluid. The above terms are illustrated in Figure 2.5 which is

reproduced from Goldstein (1976, p.176).

/

/,,— Parallel to
Y, axis

Figure 2.5 Two dimensional model of the fan blade-flow interaction and the

associated terms in Equation (2.3.47).

The function S, is the compressible blade force response function which is also
called the Sears function (Goldstein 1976, p.139). The parameters on which this

function is shown to depend are o ,, which is the reduced frequency of the flow
gust that the blades receive and, M, the flow Mach number relative to the blade.
The expressions for S.. o, and M, arc given in Appendix 2.7. The forces are

assumed to act along the azimuthal centrelines of the blades at 6,". The term

(D]
(S



w, (r,) is the p™ Fourier coefficient of the inlet flow velocity distortion w(r,,0.,)

and is given by

(2.3.48)

Substituting (2.3.47) and (2.3.48) in (2.3.46) we have the expression for D>

mn, p
D’;” p '[Jm (Kmn T )Cos(n;n,s[} (Zsc ))e _j[ b - ’] MTL’ chUr

A, Fs

Xé?e_”'e (r.,0,)d6, S, ( M,)cosxsinu dr, dO!.

(2.3.49)

The variations of chord length c, stagger angle y , angle of attack p and relative
velocity U, along the span are neglected. Taking8 =0 as the location for the
blade identified by s = 0, we have

+

D, ., = D) pOU cos y sinu S '[J Kl Y cos(nnm ‘B( ))

‘{Zjﬂc‘”9]5(' ZT er(r,.0,)d8, dr, d6.
0

xXe

X

(2.3.50)

Since an assumption is made that the forces act along the centrelines of the blades.

we have the axial coordinate of the chord for the first blade (8. =0) as

z{ =70 cot y =0. Hence the expression for D;, simplifies to

nn,p

c .
+ __EpoUr CoS x sin i SC(O'F,M,,)

mn,p —

a 1
X '[J", (K"m ; cos(n”m )1_5[ w d9 dr..

0 N

(2.3.51)
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The integral over the duct cross section is expressed as W, , given by

9= ] e e .0, 00,
(2.3.52)
and hence
D, . = EpOU cosysinu S, (cr M )cos( mn)W,,’,f,p.
(2.3.53)
Similarly TZ, , is given by

c /{ MSL?-:ﬁ —"79;']
Ty =P U, sin y sinp SC(GP,M,)IJm( )00 oz e
%

)tz ) L e w(r,.60,)de, ., dr, 6.

(2.3.549)
k MsBQ
Evaluating 7, sB( ) at 0] =0, whichis y;, = 2= (n:,g) > , we have
B’ ¢oB’
Ty == poU, sing sinu S, (o, M, ) [ e, (. eodn)
00
xy:;n,xB M)(rx’es)dex dr.v’
(2.3.55)

and the surface integral in the thrust expression is given by



/H

S Q

.[ _JPO mn ‘)W( &’0 )d@ dl"
0

um P

(2.3.56)

Hence

Ty, = EPOU sing sinu S, (o, M, Jcodn % Jyt,., W1

(2.3.57)

Goldstein (1976, p. 202) defines the thrust and drag coupling coefficients as

follows:
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(2.3.58)
The coupling coefficients derived here, i.e., T,  and D can be related to the
above using the following expressions.
+ r 0F )+
T;rm,p T;rm,p COS( mn)ymn,.vB
Dmn,p _Dmn.p COS( I?li)
(2.3.59)
2.3.5. Final expression for the acoustic pressure in terms of the

flow disturbance

Finally the expression for the acoustic pressure can be given in terms of

T and D as follows:

mn.p mn.p

(5]
n
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K (xo)_ MsB<Q

where yi = —-tan(n — and m=sB - p. Since finiteness of the duct

Co
was assumed it is possible to revert back to the infinite duct case considered in

Goldstein by setting the reflection coefficients equal to zero, which corresponds to

0+ . 0 .
Ngn = +joo and N —> —J9.

2.3.6. Expression for the acoustic pressure in the semi-infinite duct

case

Since the fan system considered for implementation has an anechoic termination

0+
nm

at the exit, letting n," — +joo to set the downstream reflection to zero yields the

acoustic pressure expression for the semi-infinite duct case. The expression for the
upstream part is important here since the focus of control is on the inlet side. The

expression for the upstream pressure in the finite duct case is

MyBQ
( ) {C 3 :-1119]
= J, Kk, r)e
_ . m mn - -
P (x) - JB Z Z N 2 Cos(nnm.xH ('/' ))
p=—0 n=i mn mn,sB
0+
cos(ns) b, +ye )
- [0+ 0- ’ann,p + ymn,.\*b’]:nn,p
S Mo~ o

(2.3.61)

k MsBQ ) )
where vy~ = j =™ tan(n*® |- and m=sB— p. Letting n°" — + jooin the
y mn ] 2 ] n 2 1 =] ] mn /

Cy

above expression, the following terms in the above expression simplify to
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since tan(n;?,l = —1/j. Substituting the above in Equation (2.3.61) leads us
n

o >
to the following expression for the pressure in the upstream side of the fan duct

assuming no reflections from the anechoically terminated exit,

j_M.rBQw
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2 o J (k Fe BT gmimo o
— ~Mmn -
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mn"" mn,sB

X (’77 Dmn,p + y;m,xB T"'",l’)
(2.3.63)

The above equation can be simplified by rewriting e~ cos(n;m,sB(z)) as

TTn .55 (2) Mo 56 (2) )

+e
2

e~ (e . From the definitions (2.3.7) and (2.3.17) we get

(after some algebra)

A A
®  w B(”I'I DI”",P+’}/,;”,_VB Tmn,p) ']m (K r)e—JmB (e—j]\',:,,, - +e‘]/\’,_,m :e—j-ET]S.; )
p.rB (X) = Z Z
P

=—o n=1 N k N 2

mn" mn,sB nn

nn

(2.3.64)
Comparing this with Equation (2.3.6) which is repeated here
p(r,@, Z) = i +Z.o (Anm (w)e_jk:y: : + an (CO )e e )LPmn ( 2 )
m=-o n=1
(2.3.65)

we get the following interpretation for (2.3.64). that the tonal acoustic pressure is
the sum of modes of order (m,7n). Whereas Equation (2.3.6) was written out as a
solution for any single frequency, (2.3.64) tells us that these modes are determined

for the any frequency representing either the Blade passing frequency or its

LI
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harmonics, sBQ2. Also the circumferential acoustic mode order m is determined

using the relationship m =sB — p, with p being the circumferential order of flow

disturbance interaction with the fan blades. The variation of the acoustic modes in

the cross-sectional plane is determined by the shape function term

J (k rye "’
\{111111(r’9): ’”( ;;; ) 4

nn

the axial direction by the term

o z- B(WZD , + - T ) )
(A"m (a) )e_‘lk'"" T+ an (a) )e = Jkun ): mn.,p ymn,sB mn,p

mn" mn sB
(e—Jk,f.;z 4 g o2 g2 )
X

2

which accounts for the amplitudes due to the force fluctuations on B blades i.e,

B(m Dnm,p + y];n,SB Tmn,p )
N

mn'mn,sB
and the axial propagation along both directions (z* and z*) with reflections, i.e.,
—jkin: —jkiw s =2,
(e Fan? 4 g7 g n)
2

which accounts for the sum effect of the propagating and reflected wave train

systems.

2.4. Summary

Thus an expression given in Equation (2.3.63) was derived in this Chapter for the
acoustic pressure field associated with the interaction of the fan with a flow
disturbance. If the profile of the flow disturbance is known then the acoustic
pressure field can be estimated from this expression. This equation is used in the
control problem formulated in next Chapter which consists of (i) the
determination of the acoustic pressure field resulting from the wake generated by
the presence of a cylindrical rod in the duct upstream of the fan rotor. and (ii) the
problem of optimising the noise power when several such rods are used for

control.
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Chapter 3 Wake Generator Control

3.1. Introduction

Having developed an expression for the pressure field resulting from the
interaction of flow disturbances with the fan blades, we shall now develop the
requisite theory for the minimisation of the noise power. Section 3.2 will examine
in detail the expressions developed in the previous chapter for the relationship
between a flow disturbance and the corresponding acoustic modes that it
generates. Section 3.3 will detail the analytical expressions for the flow
disturbances (wakes) generated by the control rods. Section 3.4 will look at the
problem of cancellation of noise using the expressions developed above by
making one of the rods act as a source and another as a controller. The section will
in particular look at the effects of translating and rotating the control rod. Section
3.5 will examine the problem of noise optimisation since the presence of the
control rod can cause the production of modes other than the mode that is being
considered for control. Section 3.6 attempts to solve the problem of noise
cancellation outlined in Section 3.4 using an algorithm based on the noise
optimisation theory in Section 3.5. The noise cancellation problem thus becomes a
test case for the optimisation algorithm which will be used for subsequent

optimisation cases in the next chapter.

3.2. Relationship between the interacting flow disturbance and

the corresponding acoustic modes

The equations developed in the previous chapter expressing the relationship stated
in the heading above are repeated here. Equation (2.3.63) gives the acoustic
pressure due to the radiation of the fluctuating forces produced through the

interaction of the fan blades with the flow disturbance,
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(3.2.1)

The term in this equation that represents the fluctuating force harmonics is

(M Duwnp+y s ]A" mn,p ). Equations (2.3.53) and (2.3.57) express the relationship

between these forces and the flow disturbance harmonics,

D; pOU cosysinu S, (O'p,Mr>COS( f:;)WD

mn p mn,p

T

%M———%Usmxsmqu'Af%mﬁm%mmth

(3.2.2)

Equations (2.3.52) and (2.3.56) obtain these flow disturbance harmonics through a

Fourier-Bessel decomposition of the flow disturbance w,

alm
1
-/p9 .
’”" P '[ e l" l"" 5 )‘v(’ 9 ) ” dQX drV
o 0 ’.\'
alr
T _ /A ”
I/Vnm,p - '[ e Jm (K mn r\ )M)(’ $° Qs ) de; dr;
o 0

(3.2.3)

[t is essential to understand the kinematics of the production of an acoustic
mode from the interaction of the fan with a flow disturbance. Any velocity
disturbance w in a cylindrical cross-section duct can be resolved into weighted
Fourier-Bessel shape functions ¥ as indicated in Equation (3.2.3) above. Fan
blades are shown on the inner circles in Figure 3.1. A harmonic pattern can be
assumed to be generated by the presence of equispaced wake generating rods and
these are shown on the outer circle. The pattern of the acoustic mode resulting

from the interaction of the fan with the rods is shown on the outside of the outer
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circle as a patch. The fan blades rotate at Q2 rad/s and the first blade on the fan is
marked with a bold dot. The start of the interaction pattern can be thought to be at
the instant shown in the same figure when the marked blade coincides with the
horizontal rod on the right side of the first of these figures. Thereafter it appears
whenever a blade and the rod coincide as the fan rotates past the rods.

In the first example there are 8 blades (sB =8) and 6 rods (p=6) and the
pattern has an order of m=2 (since sB-p=2). This pattern rotates in the same
direction as that of the fan and it goes through one complete revolution upon
completion of a % revolution of the fan which makes the speed of the pattern 4

times that of the fan.

PATTERMN

_ /) ROTATION / %
VSN P = AT
Y &Y Y Y
/ —
#0 ’ # | #9 # 3

Figure 3.1 Illustration of the production of an acoustic mode pattern from the

interaction of fan blades with stationary rods (from Tyler and Sofrin, 1961).

In the second example in Figure 3.2 there are 8 blades (sB =8) and 9 rods
(p=9) and the pattern has an order of m=-1 (since sB-p=-1). This pattern rotates in
the opposite direction to the fan (hence the negative value for m) and it goes
through one complete revolution upon completion of a 1/8th revolution of the fan

which makes the speed of the pattern 8 times that of the fan.
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Figure 3.2 Illustration of the production of an acoustic mode pattern from the

interaction of fan blades with stationary rods (from Tyler and Sofrin, 1961).

The following table summarises the information described above.

No. of fan | Flow

Acoustic

Speed of the

Speed of the spinning

blades B mode mode order m | fan blades Q | acoustic mode BCYVm
order p (m=B-p) (rad/s) (rad/s)

8 6 2 Q 4Q

8 9 -1 Q -8Q

Table 3.1 Interaction between fan blades and stationary rods.

The relationship employed in the above table is a special case of the

general relationship given in the previous chapter which is (m=sB-p) applicable

for tones of any harmonic order s. The acoustic modes produced from the

interaction do not rotate at the same speed as the fan and some of these modes

rotate in the sense opposite to that of the fan.




3.3. Flow disturbance produced by a cylindrical rod and its

acoustic response

The flow disturbance that the cylindrical controller rod generates is in the form of
a velocity wake distributed over the cross section of the duct and an equation
representing the wakes velocity defect distribution is given in terms of the spatial
coordinates. The profile is a Gaussian profile for the wake. The original equation
as used by Polacsek (1999) is a semi-empirical 2-D model of the turbulent wake
behind an infinite cylinder deduced from Abramovich (1963) which is again based
on experiments of Schlichting (1960) and also his turbulent wake theory.
Schlichting shows that the dimensionless velocity profile distribution of wakes
from cylinders obtained from his experiments can be represented by a Gaussian
function. The formulae also assume that the Reynolds number is in the range of
10*-10° as the coefficient of drag turns out to be roughly equal to one in this
range. The flow situations considered here fall within this range. The equation
after the modification for the wake shape at the tip region of the rod given by

Pitelet (2000) is as follows:

7 - n {r(@—%)]: _L[a—l—rj:

f Sdl 08 Sdl 08

wq(r,@) =U —e ' e’ ,
.L(]

(3.3.1)

wherew, (7,0) is the wake velocity defect distribution generated across the duct

cross section at the blades of the fan by a controller rod ¢ of diameter d and length
[ and located in the duct of radius a at the circumferential and axial coordinates 6,
and z, respectively. and U is the velocity of the mean flow in the duct. In addition.
the presence of the Von karman vortex street downstream of the flow past a
cylinder 1s well known. The potential part of the wake velocity defect from a
single rod thus causes each interacting tan blade to experience unsteadiness in the
blade loading for every revolution of the tan and hence blade loading harmonics
are generated. The emission of the Von karman vortices from the rod adds up to
the unsteadiness in the blade loading which will not be periodic with respect to the

{an rotation. Polacsek (2003) has observed through his computations that despite

1
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the presence of this phenomenon the blade loading harmonics were dominant

compared to other components due to non-periodicity. Substituting the wake

profile w, (r\_,Q_v) in the integrals in Equation (3.2.3) and defining the coupling

coefficientas C,, , =(mDmnp+7¥,, » Tmw.p), we see that this term is given by

mn,p

C, :—%poUr sin p SC<O'F,Mr)

mn,p

2

[ 0, (<t Jw, (1.6, ){i MCOS X +7 1y 1y SID x] de, dr,,
0 ¥,

s

dJ
(3.3.2)

where C? is the coupling coefficient of the mode (m,1) induced by the ¢" rod. It

mn,p
can be seen through the Fourier-Bessel integral that the complex amplitudes of
these coefficients depend on the rod lengths / and their orientation 6,.

If the response as mentioned above is obtained for a controller at the zero
reference of the azimuthal position across the duct cross section then the response
of the rod at an angle 8 from the reference is given by

C9) _ cal0) b

mn.n mnop

(3.3.3)

The resolution in Fourier-Bessel space of a flow disturbance generated by
positioning a single rod at a reference is explained below.

The real and the imaginary parts of the Fourier-Bessel term appearing in
Equation (3.3.2) are shown in Figure 3.3 and Figure 3.4. The shape function has
been constructed using (m.n,p) = (0,0,9). The shape function has 2p zero crossings

in the circumferential direction.

14



Figure 3.3 Real part of the Fourier-Bessel shape function in Equation (3.3.2).

-0.3 X

Figure 3.4 Imaginary part of the Fourier-Bessel shape function in Equation

(3.3.2).
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The projected view of the real part of the shape function as seen from the
top is shown in Figure 3.5 which makes the radial nodal lines clearly visible. Each
cycle of the Fourier-Bessel shape function has a positive (appearing in red) and
negative (appearing in blue) turn across each nodal line in the Figure. As the
circumferential order increases the number of these radial nodal lines increases

and the additional nodal circles appear for the cases where the radial order #n>0.

Positive turns

Nodal line

Negative tums

Figure 3.5 Circumferential nodal lines on a Fourier-Bessel shape function.

Using the equations in the previous sections a program was written in
MATLAB to estimate the acoustic modal response for a cylindrical rod of length
300mm and diameter 12mm. The rod was assumed to be oriented at a
circumferential reference of zero (x; axis) and held at an axial distance of 400mm
upstream from the fan origin. This causes the wake velocity defect distribution
shown in Figure 3.6 to lie between the two adjacent nodal lines in the above
Figure 3.5. The defect distribution shown in Figure 3.6 is as seen from the
downstream end of the duct, and this is for the situation when the entire length of
the rod (300mm) protrudes into the duct. The length was increased incrementally

in steps of 10 mm and the coupling coefficient defined as in Equation (3.3.2) was
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estimated with the flow wake distribution obtained for each length of the rod. The
increase in the length of the rod causes the modal amplitude to register an increase
without a change of phase as seen from the integration in Equation (3.3.2) in
conjunction with Figure 3.5 and Figure 3.6. This response was evaluated assuming
that the fan that interacts with the flow has 9 blades and rotates at 3000 rpm.
These parameters correspond to the existing fan on which the control system
implementation is carried out. The response was evaluated for all the cut-on
modes present in the first three harmonics of the blade passing frequency (BPF
=450 Hz). As explained in Chapter 2 the axial wave number £,,, has to be real
valued for each mode to be cut-on. The other essential parameters for the
simulation are as follows: fan blade chord, 130 mm; fan blade stagger angle, 340;

fan duct diameter, 630 mm; sound speed, 342 m/s and mean flow speed, 30 m/s.

047N 03 x, (m)

Figure 3.6 Wake velocity defect distribution for a cylindrical rod (300 mm in

length, 12 mm in diameter and held at 0°).

The possible cut-on modes for the speed of fan rotation chosen above are

listed in the table below for the first three harmonics.

Harmonic Flow mode | Acoustic mode | Acoustic mode

order s azimuthal order p | azimuthal order m (=sB- | radial order »
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p, where B=9)

1 10 -1 0
1 9 0 0
1 8 1 0
2 21 -3 0
2 20 -2 0
2 19 -1 0
2 18 0 0
2 17 1 0
2 16 2 0
2 15 3 0
2 18 0 1
3 33 -6 0
3 32 -5 0
3 31 -4 0
3 30 -3 0
3 29 -2 0
3 28 -1 0
3 27 0 0
3 26 1 0
3 25 2 0
3 24 3 0
3 23 4 0
3 22 5 0
3 21 6 0
3 29 -2 1
3 28 -1 1
3 27 0 1
3 26 1 1
3 25 2 1
3 27 0 2

Table 3.2 Cut-on modes in the first three harmonics (BPF = 450 Hz).
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The modal response, i.e. the coupling coefficient Cyy,, 1s shown plotted
against the rod length for only 5 out of the 30 cut-on modes in the first three
harmonics in Figure 3.7 for the amplitude and Figure 3.8 for the phase. Each cut-
on mode is represented by its circumferential and radial orders (m,#n). The order of

the harmonic is shown by the term s.

25 T : : . 1
s m n p
— 1 1 0 10
2 —1 0 0 9 =
“e 11 0 8
Z 2 0 0 18
3 — 3 2 0 25
2
§ 15~ 4
=
k3
Q
E
g
(&)
g v 1
—d' - o iy
3 5 i
O - =
2 P
0.5~ e a -
0 - : : —
0 005 0.1 0.15 0.2 0.25 0.3

length of the rod (m)

Figure 3.7 Amplitude response of the rod.
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Modal Coupling coefficient Phase (radians)

151 ' ' ~ :
0 0.05 0.1 0.15 02 0.25 03
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Figure 3.8 Phase response of the rod.

The following observations can be made from the above graphs:

1) The amplitude of the coupling coefficient increases initially with the
length because of the integration of the wake profile with the Fourier-
Bessel function and as radial nodal lines of these functions converge
towards the centre the amplitudes tends to flatten out.

11) Phase remains flat because the disturbance that is integrated in the
equations remains stationary in the circumferential sense.

111) Multiple modes of varying intensities are generated through the

presence of a single rod.

3.4. Cancellation of a mode generated by using a rod as a

disturbance source

The rod used to determine the amplitude response is used as a source to generate
noise. Considering a single mode of circumferential order m for cancellation, the

flow mode-acoustic mode relationship tells us that this mode arises out of the flow



disturbance which has a circumferential harmonic of p. The control then requires
generating another flow disturbance pattern to cancel out the mode produced by
the first rod. This disturbance as seen in Equations (3.3.2) and (3.3.1) produces a
corresponding acoustic mode of an intensity adjustable through the variation of its
circumferential and radial extent. The effect of rod translation and rod rotation are

summarised below and the explanation of the control concept follows later.

n
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Source rod at Case a) Control
reference 0% rod at 20°

/
Case b) Control
rod at 80°

Fourier-Besset shape function inscribed
across the cross-section of the duct

Modal amplitude with Modal amplitude :'lth Modal amplitude with
source rod at 0 ° control rod at 20 control rod at 80 °©

Figure 3.9 Explanation of the cancellation concept using the Fourier-Bessel
shape pattern (assuming the various indicated circumferential positions for

the control rod).

Effect of rod translation: As seen in the trends of the amplitude response

the amplitude rises as the rod length increases and the phase remains constant.
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Hence to cancel out the mode produced in the first instance changing the rod
length alone will not produce any cancellation as this method will not alter the
phase of the mode.

Effect of rod rotation: It is already obvious that holding the length of the
rod fixed in a circular duct and rotating it should not cause any alteration of the

radial and circumferential extent of the rod’s disturbance and hence the amplitude

of the mode produced should remain constant. The phase alters by the term e’

as seen in Equations (3.3.3). The phase change produced in the mode through a
rotation of 6 in the rod is po.

Cancellation of the mode: Let us assume that the mode produced by a
source rod mentioned above has an amplitude A and phase of 6,,;. To cancel this a
mode of the same intensity but of opposite phase has to be induced which means
that placement of the control rod should produce a mode that has the phase of
e’™e*’™ . This concept is illustrated in Figure 3.9 where the Fourier-Bessel
pattern for the plane wave mode (m=0 and p=9) is shown inscribed across the duct
cross-section. Considering the plane wave mode for cancellation (1m=0), and with
a fan of B (=9) blades the flow mode that generates this has a circumferential
order of p=9. The Fourier-Bessel pattern for this mode in Figure 3.9 has got 18
radial nodal lines. The source rod is shown placed at the azimuthal reference of 0°
on the first inscription of the Fourier-Bessel pattern. On the second inscription of
this pattern two cases are shown for the control rod. one located at 20° and the
other at 80°. When the control rod is placed at 20°. it can be inferred that the
Fourier-Bessel pattern exhibits a turn (hump) that is opposite in sense to that
where the source rod is. This is shown in the complex modal amplitudes sketched
in bottom half of Figure 3.9 wherein the placement of the control rod at 20° is
causing the production of the mode in anti-phase with respect to that of the source
rod. Hence there are multiple positions where the control rod can be placed to
cancel the mode produced in the first place. The placement of the control rod at

80" causes the mode generated to be in-phase with respect to that of the source

rod. This is also made clear by the term ¢™"°.

Figure 3.10 shows the phase difference induced between the controller and
source generated modes for two modes when the source rod is placed along the

radial lines shown in Figure 3.9. The two modes are the mode considered for

h
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cancellation (m=0, p=9, B=9) and a different mode (m=-1, p=10, B=9). The

orientation of each radial line i1s denoted as &.

900
120° 60°

150°

i)y ¢ vectors
for mode m=0
(p=9),
09 where 6 =
0%, 207, 40° ...360%

180°

210°

240° 300°
270°

900
1200 60°

150°

ii) %% vectors
for mode m=0
(p=10),

¢ where & =

[0°, 20°, 40° ...360%

180° 0

210°

240° 300°
2700

Figure 3.10 Phase difference induced between the controller and source

generated modes for two different modes.
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The following observations can be made from the information presented in

Figure 3.10.

Y

3.5.

For the mode that is cancelled (m=0) the out-of-phase relationship

necessary for cancellation, i.e., ¢’ =—1, holds at exactly half the
number of orientations. At the remaining locations it is in-phase, i.e.,
e =1,

None of the above orientations cause cancellation of the mode (m=-1),

i.e., e #—1. Hence focussing on the cancellation of one mode
causes the intensity of the other modes to either increase or decrease
but does not necessarily cancel them. This leads us to consider the
problem of minimisation of the intensities of multiple modes which is

explained in the next section.

Noise minimisation problem

The problem of the minimisation of the intensities of multiple modes can be

considered by forming a cost function to represent the sum of the squared modal

amplitudes. The Overall Sound Power level is a quantity that readily represents

this summation. An expression has been derived for the transmitted tonal power in

the intake duct produced by the fan interaction with the flow disturbance. This

expression has been arrived at by using the semi-infinite duct pressure expression

developed in Chapter 2 to obtain the sound intensity which when integrated with

the normal propagating area gives the power. This derivation is given in Appendix

3.1. Power in any harmonic is given by

h
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All terms are as defined previously, except that the term ¢, . represents the

imaginary part of the complex valued phase of the upstream modal reflection

coefficient n,. . and &, ;5 =K, 5/ &,

min sB mn,sB

The above expression for power in a single harmonic, P,z can be considered as

\B ngnl(’ann 14 + ymn \B mn, p ‘ Zgnm

mn,p mn.p

b

mn,p

(3.5.2)

where ¢g,,, is a mode-specific constant term accounting for all the factors in

2

Equation (3.5.1), other than (m[)m”_ »t y,;nv‘_BTAm”_ 2|

[t should be noted that the expression for power was based on the
amplitudes of the incident and reflected modes to estimate the net transmitted
tonal power in the duct with a square inlet. If inlet geometry has to be taken into
account as i the case of scarfed inlets, then the expression for power can

alternatively be based on an appropriate radiation model that accounts for it.
3.5.1.1. Optimisation
Assuming that the action of the controllers can be represented by a control vector

w representing the controller rod lengths the formulation of the optimisation

problem can be phrased as follows: minimise the cost function for error power



J = Py(w),

sB
(3.5.3)

subject to the constraint that the control vector w> 0 for all its elements. The
above expression expresses the power in the tone as a sum of the squares of the
modal coupling coefficient amplitudes and can be considered as the cost function
J for the optimisation problem. It should be noted that the expression for the cost
function was based on the simple unweighted summation of the individual
harmonic powers. Weighting can be introduced in a situation when human
response to noise needs to be accounted. The expression for the cost function can
include frequency weighting in such a scenario. The modal coupling coefficient
for the acoustic field generated in the system due to the disturbance inherent to the
system is represented by C,,,,, which is what needs to be controlled. Denoting the
same for the controller generated acoustic field as Cyeeonaan We see that the total
power in the system is obtained from the sum of the squares of the modal coupling
coefficient amplitudes in the error acoustic field which is a vector sum of the
primary and secondary fields. Also if multiple tones are considered for
optimisation the cost function is simply a sum of the tonal powers which in turn is
a sum of squares of modal amplitudes in all the cut-on modes in those tones. Since
the secondary noise generated by the controllers depends on the lengths of the

controller rods we can see that the cost function depends on the rod lengths:

J=3P, =% Ye, Lct c, .
sB

sB mn_p

H
- Z Z gmn,.vB (Cprmz + C.\'ecmular_\') (Cpr/m + C,\'ummiarj')’

sB omn.p
(3.5.4)

where C = ZCW . » Which 1s the sum of the contributions to the coupling

W

secondary

coetticient of a mode made by each controller and H (= *) denotes the complex
conjugate of the modal coupling coefticient which is a scalar quantity.
The optimisation method considered here is based on the gradient based

technique. “The use of the negative of the gradient vector as a direction for

th
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minimisation was first made by Cauchy in 1847.” (Rao 2000). The steepest
descent method will be used for minimisation of the cost function. This technique

involves estimating the gradient of the optimisation cost function J with respect to

the control vector w and descending along the gradient a%?w to arrive at the

optimum. Differentiating the optimisation cost function J with respect to the

control vector of lengths w.

aJ e aC:'L’I‘I'Ul' s Y H acer’,()r
g - %:1%8"”7,~\'/3 ( ow J C’crror + Cu/‘/’()r[ ow ]
aC - H
- ;I%’gmn,xﬁ x2Re [#] Cer'r()r

0C ooty | 0C iy
= Z Z Emsp X 2Re T secondary Cc’rror . . aCer:‘or _ secondary
) ow ow Ow

sB mn.p

(3.5.5)

Hence it turns out that the cost function gradient 0J/0w is dependent on the

/0w . The quantity C,

secondary

modal coupling coefficient gradient &C was

secondan
already obtained numerically and presented in Figure 3.7 and Figure 3.8.

Since the coupling coefficient amplitude in Figure 3.7 is not linear with
respect to the rod length we have to either linearise or take into account its non-

linearity while estimating its gradient. If C is linearised with respect to the

secondary

control vector length, then &C /0w =g . Otherwise, it is the local gradient

secondary
of the non-linear response function.

The cost function is minimised by iterating the control vector in the
direction of the steepest descent and the converged set of control vector lengths w
needs to be obtained,

oJ
k1) =w(k)- Sl
w(+)w()yv,

(3.5.6)
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with the constraint that w>0, where u denotes a convergence coefficient and £ is
the iteration index. The algorithm requires a value for p, which represents the
length of the step along the gradient to be descended. Using this expression for the
update of the control vector in an algorithm coded in MATLAB the noise

cancellation problem in the previous section is explained in the next section.

3.6. Numerical simulation of the noise cancellation problem

using the steepest descent algorithm

A simple case of optimisation is examined here for the cancellation of a single
mode using a single control rod. This is the same mode whose cancellation was
discussed in Section 3.4, the only difference being that the fan is assumed to run at
a speed of 1800 rpm where only this mode is cut-on for the first harmonic as
determined from the axial wave number equation. In order to proceed with the
optimisation using the steepest descent algorithm one needs to know the gradient
of the cost function as expressed in Equation (3.5.5). This in turn requires the

knowledge of C,,, and ¢C /¢w . For the initial iteration of the algorithm

secondary
when the length of the control rod is zero. Ceyor = Cppm This 1s the noise field
generated in the system due to the plane wave mode being considered here.
cC /éw 1s the gradient of the modal response of the single control rod.

secondary
Since the algorithm requires the determination of this gradient for each iteration of
the control rod length. a knowledge of the fit of the response would be helpful.
Initially a linear fit for the modal response is chosen. The modal response obtained
for the plane wave mode (m:=0) for the single rod along with the linearisation is
shown in Figure 3.11. The level of the previously considered plane wave mode for
the cancellation problem is also shown as an intercept on this figure. This is
obtained by assuming that a source rod is extended fully (300 mm) into the duct.

The linearised response. ¢C /¢w =g is utilised in estimating the gradient in

seconduary
Equation (3.5.6). The advantage of linearisation ot the response is in the tact that
it can make the cost function J a quadratic in terms of the controller length and the
optimal control rod length can also be obtained by inversion of a simple linear

equation instead of having to use the steepest descent algorithm to obtain this



quantity iteratively. However, attention in this section will be restricted to using
the steepest descent algorithm to obtain the optimal control rod length since it was
found that the results obtained here are the same as those obtained by using the
inversion of the linear equation. For the sake of completeness the method for the
inversion of the linear equation is given here for the single control rod and single
mode case. The inversion of the linear equations will be attempted for the
situation of multiple modes and multiple rods which forms the subject matter of
the next chapter. Denoting the control rod length as /;, the optimal length /., can

be obtained by setting the gradient of the cost function in Equation (3.5.5) to zero:

OC voomany |
Y ex2Re {—“] C,.. =0.

1 1

(3.6.1)

Substituting aC“"’"""""%al =g, C,.. = (C prim + C:emdmy), we find that the
1

optimal rod length satisfies

2Re(g"(C i + &l )= 0,
2Re(g" g), = -2Relg"C, )
S, = —Re(g'C,mm )/ Re(g’g)

(3.6.2)

Reverting back to the use of the steepest algorithm method, the linearised
response was thus input to a program in which the algorithm utilising the steepest
descent approach was coded. This algorithm uses the Equations (3.5.3) and (3.5.6)
to estimate 6J /0w, the gradient of the cost function and iterate w, the control
vector. The constraint w>0 is ignored initially and is added later to bring out the
effect of its imposition. With each iteration & used to update the control vector the
final values of the control vector are obtained after having the execution
performed for a predetermined number of iterations. This program also needs a
value to be set for the gradient step (or the convergence parameter) . An input for
the circumferential position of the control rod with a zero initial condition length

is also given. The circumterential position that is considered is the third of the
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positions given in the table in Section 3.4, which is 20" (or 27/18). The program
is expected to give the converged rod length for the controller for this case and
also the cost function as the algorithm traces out each iteration. Since the linear

response was used for C in the algorithm, the cost function J is also

seconduary

estimated using this quantity as expressed in Equation (3.5.4). Note that C

secondary
can also be estimated for a given control rod length using the exact Fourier-Bessel
expansion given Equation (3.3.2) which leads to the exact estimate of J. The
difference between the approximated and exact estimates will also be discussed
here. The result of running the steepest descent algorithm is shown in Figure 3.12
for the controller rod length and the cost function with these quantities plotted
against the iterations. A value of £=0.3 was chosen for this case. The same results
are shown in Figure 3.13 for another value, p=30. It is well known that the value
of p chosen can influence the convergence: too low a value can lead to slower
convergence and too high a value can result in the algorithm becoming unstable
and tracing out an oscillatory path (Widrow and Stearns, 1985). Since the cost
function J in the above problem comprises of only one mode, the variation of this
with respect to the length of the single control rod used here for cancellation is a
parabolic characteristic. The convergence is smooth and is either slow or quick as
was shown in the illustrations. The next chapter examines multiple mode control
with multiple rods and the oscillating or unstable behaviour of the cost function
will be illustrated for a few cases there. The value for u has to be chosen on a trial
and error basis. As seen from the illustration in Figure 3.13 the control rod has
achieved a length of 0.229m. The reason that this has not matched the length of
0.3m for the source rod is due to linearisation of the response.

It should be noted that in Figure 3.12 . the optimal rod length is reached
near an iteration index of about 40 but the cost function continues to reduce up to
100 iterations while the rod length changes slowly. This is due to the flattening of
the amplitude response once the rod length starts to exceed 200 mm as seen in
Figure 3.11. In practice this reduction of the cost function to 2.5 dB may be
unattainable due to factors like unsteadiness in the measurement of the modal
coupling coefticient amplitude. and the accuracy of the estimates of the rod length
and the modal coupling coetficient amplitude. The effect of measured and

simulated unsteadiness in modal coupling coetficient on the convergence of the

61



algorithm is examined in Chapter 5 where the implementation of the active control
system is considered.

Since it was illustrated in the previous section that the circumferential
position in which the rod is placed can influence control, the optimisation study
was repeated with every phase increment of the control rod. Since there is only
one control rod it was phase shifted through 360° with an increment of 1° and at
each increment of the phase the convergence of the control rod was determined,
using the linear response as mentioned before. The convergence of the cost
function J for some of the phases (10, 440, 1250, 1930, 2910) of the control rod are
displayed in Figure 3.14. For instance, at the control rod location of 1° the cost
function J is shown to attain a converged minimum of 2.5 dB. The converged
minima attained by J for all the 360 increments of phase of the control rod are
collectively plotted and compared against the primary power (93.9dB) in the top
half of Figure 3.15. This result in Figure 3.15 obtained by using the steepest
descent algorithm was found to be the same as that obtained through the optimal
rod length inversion discussed in the beginning of this section. In the top half of
Figure 3.15 the converged cost function J is estimated using the linear response of
the converged rod length. In the bottom half of Figure 3.15 the primary power is
compared with the estimate of J obtained using the exact response of the
converged rod length evaluated through the Fourier-Bessel expansion. The
converged rod length variation with the phase is shown in Figure 3.16. Again. this
result in Figure 3.16 obtained by using the steepest descent algorithm was found
to be the same as that obtained through the optimal rod length inversion discussed
in the beginning of this section. The rod length alternates between positive and
negative values as the phase ot the control rod is varied. The negative rod lengths
arise due to the reason that the algorithm extrapolates the linear response
characteristic into the negative controller length space thinking that this would
result in the production of the required anti-phase mode. The variations of the
converged J in the top and bottom half of Figure 3.15 show that as the phase of
the control rod is varied the converged cost function does indeed reduce below the
primary power at some phase locations. The reduction in J peaks at certain phase
locations as seen in bottom and top halves of that figure. In the top half the peak
reduction of ./ to 2.3dB is attained at 0" and later at every 20" increment of the

phase. In the bottom half the peak reduction of J to 43.08dB is attained first at 20"
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and later at every 40" increment of the phase. This difference in the two patterns is
explained as follows. Figure 3.14 showed the convergence trajectory for the 1°
setting of the control rod location, wherein J attained 2.5dB and this value is
shown included at a phase of 1° in the sinusoidal variation of J in the top half of
Figure 3.15. The bottom half of Figure 3.15 shows that at the phase of 1°, the
exact estimate of the converged J is not 2.5 dB, but almost close to the primary
power (93.9dB). The reason for this is that the control rod attains a negative value
of the converged rod length at the 19 setting which is shown in Figure 3.16. At this
setting the algorithm sets the rod length to a negative value of -0.229m. The
program evaluates the exact estimate of the cost function by setting the rod
lengths equal to zero whenever such negative values of rod lengths are attained. In
the case of the single control rod problem here this means that when the
converged rod length is negative the cost function will be set to the value of the

primary power . But the algorithm continues to iterate negative values of the rod

length. This behaviour of the algorithm can be explained using the term e *°. In
this term p=9 for the plane wave mode m=0 whose cancellation is being examined
here and 6 is the phase of the control rod. The term e "’ = -1 for all peaks
mentioned in the bottom half of Figure 3.15. and the control rod produces an anti-
phased mode at all these locations. which means there is perfect cancellation here.
At the peak reduction locations in the top half of Figure 3.15. the term e "°
alternates between —1 and 1. Cancellation is physically possible when this term
equals -1. When the term assumes a value of 1 the control rod produces an in-
phase mode with respect to that of the source rod. Cancellation is not physically
possible here, as a rod cannot produce only a deficit in the fluid velocity and not
an excess. But the algorithm makes this possible by extending the linear response
characteristic in Figure 3.11 into the negative length space which reverses the sign
of the magnitude of the modal amplitude. This is the reason the estimate of ./ using
the linear response in the top halt of Figure 3.15 gives a false indication of noise
reduction. In the bottom halt the exact response evaluated through the Fourier-
Bessel expansion avoids estimating the cost function whenever the rod lengths
converge to negative values. The following observations can be made from these

illustrations in Figure 3.14. Figure 3.15 and Figure 3.16:



(1) The converged control rod length and cost function (from the
linearised response estimates as well as the exact ones) vary
sinusoidally illustrating the effect of phase as was explained in Section
3.4.

(ii) Control is not feasible in some sectors where the controller length
attains negative values. The program simply sets the value of the exact
estimate of the cost function equal to the primary power in such cases.
Note that if a controller which exhibits bi-directional action of control,
i.e, the one capable of creating both a deficit and excess of the velocity
in the mean flow then control is possible even in these unfeasible
regions mentioned here since the bi-directional action reverses the sign
of the amplitude in the integration involved in the Fourier-Bessel
expansions with the controller remains stationary in the spatial sense.

(ii1)  The maximum reduction obtainable as seen from the exact response
based estimate of the cost function in Figure 3.15 is limited by the
dotted line. This shows the actual maximum reduction in sound power
obtained for the converged rod length of 0.229m against that predicted
by the linear response based estimate (dashed line).

The next step is to examine the effect of adding a constraint to keep the rod
lengths always positive and also to have the response approximated by a
polynomial fit of the response. This is done as follows in a two-step process.

First a constraint is added programatically which zeros out any lengths in
the iteration which become negative and the same algorithm is used with the

linearised response. The results are shown in Figure 3.17 and Figure 3.18.

Observations:
1) Adding a constraint has eliminated negative lengths.
1) Response linearisation still affects the error in the residual power

(difference between the exact and linearised response based estimates
of sound power)
Consequently the response was approximated using an 8" degree polynomial in
MATLAB. This approximated response is shown against the exact response in
Figure 3.19 and this was fed to the program which was re-run tor the above case
and the results obtained are shown in Figure 3.20 and Figure 3.21.

Observations:
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(1) Better prediction of the reduction in the noise power when compared to
the case where linearised responses were used.

(i1) Approximating the response using the polynomial has only yielded a
converged length of 0.234m because beyond this length the exact

response exhibits a flat amplitude characteristic.

3.7. Summary

Thus the present Chapter has developed the requisite theory for the minimisation
of the noise power. The relationship between the flow disturbance and the
corresponding acoustic modes that it generates was examined. The controller
response was determined using analytical expressions for the flow disturbances
generated by the control rods. A simple case of the problem of cancellation of
noise was studied by making one of the rods act as a source and another as a
controller. It was deduced that cancellation is possible through translations and
rotations of the control rod. It was also shown that the presence of the control rod
can cause the production of modes other than the mode that is being considered
for control and this subsequently led to formulation of the problem of noise
optimisation. The simple case attempted for the problem of noise cancellation was
repeated using an algorithm based on the noise optimisation theory. The noise
cancellation problem thus became a test case for the optimisation algorithm. The
simulation of the optimisation problem presented here revealed the importance of
the approximation of the controller response and also constraining the control. In
particular the polynomial approximation led to less error in the residual power
estimates than the linear response, and constraining the algorithm caused the rod
lengths to be positive. The next chapter examines the simulation study for the
optimisation of noise power with multiple modes with the help of the constrained

algorithm using the polynomially fitted response characteristic.
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Chapter 4 Simulation of Noise power
minimisation

4.1. Introduction

The previous chapter dealt with the theory of noise optimisation and also with the
simulation of a simple case of the cancellation of a single mode. It was pointed out
that focussing on the control of a single mode can lead to the alteration in the
intensities of the other modes and that the possible increase in the overall sound
power evaluated for a set of modes should lead us to consider the optimisation of
this quantity, and the present chapter aims to investigate this problem. A primary
flow disturbance that is capable of generating multiple modes needs to be
considered. Section 4.2 introduces two such disturbances, the first of these being a
velocity defect that is harmonic with respect to the circumferential coordinate of
the cross sectional plane and the other a random distribution of that quantity in the
same plane. The acoustic modal content resulting from the interaction of these
with the fan are also presented there. These disturbances are considered for
control using equispaced rod arrays in Section 4.3 wherein the simulation problem
presented in the previous chapter for the case of a single mode and a single
controller is extended to multiple modes and multiple controllers. Section 4.4
considers the problem of cancellation of 3 modes using unequispaced rod arrays.

Section 4.5 considers the inclusion of the phase of the array in the control vector.

4.2. Primary flow disturbances and the acoustic modal content

from their interaction with the fan

Two flow disturbances were chosen for generating the primary acoustic field.
They are (i) crossbar shaped and (ii) the randomly distributed flow disturbances.
shown in Figure 4.1 and Figure 4.2. These are in the form of a defect in the
velocity superimposed on the mean flow. In Figure 4.1 the crossbar shaped defect
has four lobes of the velocity defect of —2 m/s. The random disturbance in Figure
4.2 is a defect in the velocity that was generated through the MATLAB randn()

function.
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Primary disturbance: Distribution of the cross-bar shaped velocity defect (m/s)

Primary disturbance: Distribution of the random velocity defect {mv/s)
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Figure 4.2 Random velocity defect.
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Harmonic Flow mode | Acoustic mode | Acoustic  mode
order (s) azimuthal  order | azimuthal order (m=sB- | radial order (»)
@) p. B=9)

1 8 1 0

2 20 -2 0

2 16 2 0

3 32 -5 0

3 28 -1 0

3 24 3 0

3 28 -1 1

Table 4.1 Modes in the crossbar disturbance.

The harmonic-wise distribution of the modal content in the acoustic field
generated by these two disturbances is shown in Figure 4.3 and Figure 4.4. This
was found by using the acoustic response obtained from Equations (3.2.2) and

mn.p and Tm_n_p n

(3.2.3) of Chapter 3 wherein the drag and the thrust terms D
Equation (3.2.2) are obtained from a Fourier-Bessel decomposition using
Equation (3.2.3) of the two velocity defect profiles w(r, 8) given in Figure 4.1 and
Figure 4.2. The amplitudes of the crossbar disturbance induced acoustic modes are
shown in Figure 4.3 for the first three harmonics. They have a relationship with
the spatial harmonics of the four-lobed crossbar in Figure 4.1 and only those
acoustic modes are present in the system which are excited by the corresponding
disturbance flow modes whose azimuthal orders are multiples of 4. As listed in
Table 3.2 in Section 3.3 there are a total of 30 cut-on modes at the three harmonics
when the fan rotates at 3000 rpm. With the crossbar defect the azimuthal order p
of the flow modes can only be multiples of 4, so we have only a few cut-on

acoustic modes whose order m bears a relationship with the spatial harmonics of

the four-lobed crossbar defect. These modes are listed in Table 4.1 below and they
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are the ones that are shown in the modal amplitude distribution in Figure 4.3

which can be referenced by their (m,n) indices.
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Figure 4.3 Crossbar defect generated modal amplitude distribution.



The random disturbance that was shown in Figure 4.2 induces flow modes of all

spatial orders and hence is representative of a more general case of the acoustic

modal content which is shown in Figure 4.4.
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The modes generated by the two flow disturbances discussed in this section are
used as the primary noise field inputs in the optimisation simulations presented in
the next section. In particular these inputs for the primary noise field modal
amplitudes shown in Figure 4.3 and Figure 4.4 represent the quantity C,.y, in

Equation (3.5.4).

4.3. Control of the two flow disturbances using equispaced rod

arrays

4.3.1. Cost functions in a multi-dimensional controller space

Since the problem of optimisation of the cases with multiple modes and multiple
controllers is considered in this chapter, this section considers an optimisation
case wherein illustration is provided for the error surface of the cost function J
representing the total power resulting from the sum of the corresponding primary
disturbance and the controller generated noise fields along with the convergence
of the algorithm. The controller vector space w consisting of the rod lengths is
gridded and the cost function is evaluated at each point in the gridded vector
space. The case taken up here is that where the crossbar type of disturbance is
controlled with 4 equispaced rods to optimise the noise power in the first
harmonic.

The modal amplitude distribution in the first harmonic for the crossbar
case was already shown in Figure 4.3. The modal amplitude distribution resulting
from the gridding of the controller vector space of 4 equispaced rods is obtained
by summing the responses of the individual rods in that space. The individual rod
responses are obtained from the controller rod response which was already
illustrated in Figure 3.7 and Figure 3.8 of Chapter 3. The cost function J in the
gridded control vector space w is obtained using Equation (3.5.4). For the sake of
illustration only the 2 rod subspace of the 4 equispaced rod array is gridded here.
This is followed by running the control algorithm twice which uses a different
initial condition of the rod lengths each time it 1s run.

Figure 4.5 shows the cost function error surtace J in decibels of noise

power obtained by gridding the 2 rod subspace of a 4 rod controller length vector
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space. The space with the first two rods was gridded using the interval [0 0.3] m
on each rod’s length. The other two rods were maintained at 0.0427 m of length.
Relative to the subspace there is a global minimum at the point corresponding to
the rod’s length vector of w=[/,, [, 13, 1,]=[0, 0.0427, 0.0427, 0.0427, 0.0427] m
with the cost function at this point being 83.51 dB.

Cost function error surface
Primary disturbance : Crossbar defect
No. of equsipaced controller rods :4

105 -
100 <
95 .

90 -

Noise power (dB)

length of rod 2 (m)

length of rod 1 (m)

Figure 4.5 Cost function error surface.

The optimisation algorithm was run with a convergence coefficient of
4=.03 and an initial condition for the rod lengths was of w=[/,, /5 5, [4]=[0, O,
0.0427, 0.0427] m. The algorithm responded by converging to the minimum
mentioned above and the trace of the algorithm is shown in Figure 4.6 where in
the trace is superposed on the contour plot of the surface shown in Figure 4.5.
This trace is marked as T1 on that figure.

Figure 4.6 shows another trace T2 of the algorithm obtained using a
convergence coefficient of £~=.0005 and an initial condition for the control rod
vector of w=[/,, /5, [;, [,[]=[0.2500, 0, 0.0427, 0.0427] m. Instead of converging to
the global minimum within the subspace the algorithm responded by converging
to the local minimum at the point where the control vector corresponds to w=[/,,

L, I3, 14,]=[0.2500, 0.0416, 0.0427, 0.0427] m and the cost function value of
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100.65 dB. This shows that the initial condition selection can affect the
optimisation by causing the algorithm to converge to local minima. This is
consistent with the behaviour of the gradient-descent class of algorithms in regard
to their application in the optimisation of non-linear functions. The cost function
is non-linear because of the non-linear acoustic response of the controller rod
which was discussed in the previous chapter. The global minimum mentioned
above is only relative to the subspace discussed here.
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Figure 4.6 Effect of Initial Condition on Convergence.

The above cases were repeated for the random disturbance defect with 5
equispaced controller rods. The gridding was done on the subspace of rods 4 and 5

with the rods 1, 2 and 3 set at [0.2178, 0.0131, 0] m. Figure 4.7 shows the case of

the error surface.
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Figure 4.7 Cost function error surface.

Figure 4.8 shows the contours of the above surface with a superposed algorithm
trace which starts with the initial condition of w=[/;, /5, I3, /4, I5]=[0.2178, 0.0131,
0, 0, 0] m and a convergence coefficient ¢ = 0.01. The algorithm traces out its
path T1 to the “global” minimum at [0.2178, 0.0131, 0, 0, 0.2170] m with cost
function being 115.8 dB. By changing the initial condition to [0.2178, 0.0131, 0,
0.3, 0] m and choosing a convergence coefficient gz =.001 the algorithm traces out
the path T2 to the local minimum at [0.2178, 0.0131, 0, 0.3, 0.1418] with cost

function being 117.5 dB and this trace is shown in the same figure.
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Having discussed the nature of the cost function and the convergence of
the algorithm we now proceed to discuss the optimisation of the crossbar and the

random disturbances with equispaced rod arrays in the following two subsections.

4.3.2. Control of the crossbar defect induced acoustic field

In this section the crossbar disturbance is considered for numerically simulating
the control using 1, 2, 4 and 8 equispaced rod arrays. This choice of the
equispaced rod array limiting it to 8 rods was made initially since the controller
array meant for implementing the active control system on the fan rig discussed in
Chapter S had 8 equispaced rods. The optimisation algorithm written in MATLARB
was run for this disturbance by varying the number of harmonics in the cost
function J from 1 to 3. As more harmonics are included in the cost function, more
modes are present in the system to be controlled. For each case of the controller
array, the array i1s phase shifted through (27/4), where g is the number of

controllers since an equispaced rod array exhibits circumferential symmetry. This
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means that to test the effect of the rotation of the rod array it would require 360°
of phase shifting of the array if there is a single rod and 180° when there are two
equispaced rods. The algorithm was run for each orientation of the rod array and
the same quantities that were presented in the last section of Chapter 3 for the
simple simulation case, i.e., the vector of converged controller lengths w, the
minimum of the cost function J are presented for each equispaced rod array case.
The case of optimisation with these rod arrays is discussed below for the 1*
harmonic modes included in the cost function. As in Chapter 3, in each case the
residual power J in the system after convergence is estimated using the
approximate and the exact responses of the rods and they are compared with the
primary power. Unlike in the illustrations of the last section of Chapter 3 where
the exact and linear response estimates were shown separately, these will be
shown here superimposed over each other.

Figure 4.9 shows the residual power or the cost function variation with the
phase of the array for the single rod array case after convergence. It can be seen
that the cost function approaches a minimum at several orientations of the phase
of the array when compared with the primary power (shown as straight line). The
single rod that is used in this case to control the only mode in the 1* harmonic can
be oriented at any of these several locations which is where the controller
generated mode is in anti-phase with respect to the primary noise field. The
number of these locations also corresponds to the number of peaks or valleys
along the circumterential direction on the Fourier-Bessel shape function of the
flow mode (p = 8) that induces the corresponding acoustic mode (m = 1). The
spacing between these feasible locations also corresponds to the spacing between
those peaks or valleys, which is (2x360%/8 = 45%. Any orientation other than these
is not optimal. The approximate estimate of the cost function J also tallies with the
superimposed exact estimates. The controller length variation with the orientation
of the array can also be seen in Figure 4.10. The controller attains positive lengths
at the orientations where the cost tunction is less than the primary power. The last
section of Chapter 3 discussed about constraining the algorithm. Due to this the
algorithm has responded by turning off the controller at orientations where control

1s not possible. If a constraint was not used the algorithm would have responded

[o7]
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by setting negative lengths to the controller. This case is similar to the one

presented in the last section of Chapter 3.
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Figure 4.11 through Figure 4.13 show the cost function variation with the rotation
of the rod array for the 2, 4 and 8-rod array cases. The variation is presented over
180" of rotation of the rod array in the 2 rods case, and over 90" in the 4 rods and
45° in the 8 rods case, due to the effect of circumferential symmetry of the
equispaced rods. As in Figure 4.10 the variation of the converged cost function
has several dips (best optima) with respect to the phase of the rod array. As the
number of controllers increases from 2 through 8 the amount of reduction
increases as seen when the dips in the residual power are compared with the
primary power in each illustration. Controller lengths are not shown as all the
control rods in each case converge to equal lengths and the variation obtained is
similar to what was shown in the single rod case in Figure 4.10. The increased
reduction is obvious in the case of the crossbar shaped primary disturbance used
since it has only one mode (m = 1 and p= 8) in the 1* harmonic and the individual
rod positions on the equispaced 8 rod array case form a superset of those of the
rest of the cases. And once one rod on the 8-rod array is aligned at an orientation
(corresponding to the anti-phase radial line of the Fourier-Bessel shape function
for the flow mode) in a way to produce a mode that is in anti-phase with respect to
the mode in the primary field the rest of the rod positions can also be seen to be
lying on the remaining anti-nodal lines and the effect of increase in the number of
rods on the reduction obtained is cumulative. It is instructive to understand this
result from the perspective of Equation (3.3.3) which expresses the modal
response transposition when a rod is phase shifted. The following should make

this clear: e 7% = ¢ /®271/8) —

forg =0...7, which means that all the rods on
the 8-rod equispaced array generate a contribution to the mode (of order (m.p))
that is in-phase for the mode that is being controlled in the current case. i.e., m= 1

and p= 8.
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Figure 4.11 Control Cost function variation with phase of rod array.
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Figure 4.13 Control Cost function variation with phase of rod array.

The controller cost function and length variations are similar to those described
above when more harmonics are included in the cost function and hence are not
illustrated here.

From the above illustrations it appears that the 8-rod array seemed to have
been effective for controlling the crossbar disturbance since the spacing of the
rods on the array is perfectly suitable for the order of the mode (m = 1) that is

being controlled.

4.3.3. Control of random velocity defect induced acoustic field

Before moving on to discuss the results for the random disturbance case it is
instructive to ask ourselves what will happen when modes of different order to be
controlled are present in the primary field, which is the case as seen in Figure 4.2
for the random disturbance modal amplitude distribution. Let us assume that there
are three modes to be controlled, as in the first harmonic of the random
disturbance modal amplitude distribution whose azimuthal orders are m =[-1, 0,

1]. Let us also assume that all 8 controllers are available to control these. Figure
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4.14 through Figure 4.17 show the individual phase contribution of each controller
on an 8-rod equispaced array for each of the three modes. Figure 4.14 shows the
8-rod array. Figure 4.15 through Figure 4.17 show the contribution to the modal
amplitude vector by each controller for the particular mode on the complex plane.
The modal phase for the reference controller in each case is assumed to be 0° for

the sake of simplicity.

8-rod array

25

Figure 4.14 The 8-rod array
Im
C Re

o PO — pmia2nI®) _q forg =0...7

Figure 4.15 Phase contribution for mode m=1.

From the above expression it is seen that all rods generate an in-phase

contribution for mode m=1 (for which p=8).
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Figure 4.16 Phase contribution for mode m=0.

From the above expression it is seen that half the number of rods generate an out
of phase contribution for mode m=0 (for which p=9). For example if we assume
that the modal amplitude vector for the first rod (g = 0) is along the real axis of the
complex plane then the vector for the fifth rod (¢ = 4) lies opposite in phase to the
that of the first rod. Substituting other values for ¢ we can see that the contribution

of rods g = 0-3 are opposite in phase to that of rods ¢ = 4-7.

Re

e_jpg =e_j(10qu27r/8) forq:O,..7

Figure 4.17 Phase contribution for mode m=-1.

From the above expression it is seen that half the number of rods generate an out

of phase contribution for mode m=-1 (for which p=10). Substituting g = 0-7 we
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can see that the contribution of rods ¢ = 0, 1, 4 and 5 are opposite in phase to that
ofrodsg=2,3,6and 7.

Considering the problem of having to control three modes simultaneously,
we see that the 8 rods produce an in-phase contribution for mode m=1 and if we
assume that the three modes in the primary disturbance had some arbitrary phase
angles and also assume that all rods on the 8-rod array are used to control the three
modes, it would require a simple re-orientation of the controller array to make the
rod generated contribution to mode m=1 in Figure 4.15 be out of phase with
respect to the corresponding primary disturbance mode. We can also assume that
the 8 rods have equal length which means that each rod makes an equal
contribution to the anti-phase mode that is being generated. Having adjusted the
orientation of the array to control the mode m=1 we see that the equal length 8 rod
array will now be unsuitable to control the other two modes m=[0. -1]. This is
because half the number of rods on the array generate an anti-phase contribution
to other half, which means that the array of 8 rods of equal lengths is self-
cancelling as far these two modes are concerned. Let us assume that we set half of
the rods on the array to zero lengths and attempt to control the first mode m=1 by
way of suitably adjusting the lengths which will not result in a self-cancelling
contribution as far as the mode m=0 is concerned since the modal vectors as seen
on Figure 4.16 on any consecutive half of the 8 rod array lie on one half-plane. Let
us assume now that through readjustment ot the lengths of the 4 rods we manage
to control both the modes m=1 and m=0. Having done this we can now proceed to
look at the control of mode m=-1 using one half of the 8-rod array that was used
to control the other two modes. Comparing Figure 4.16 and Figure 4.17 we see
that the half of the 8-rod array that was used to control the other two modes can
now result in a system wherein one halt ot the 4 rods produces an out of phase
contribution with respect to the other half as far the last mode mn=-1 is concerned.
Attempting to explain in the above manner the control in case of a system that has
an arbitrary number of control rods and modes to be controlled can be quite
complex and it should be left to the algorithm to decide the best choice of the rod
system for the noise minimization problem.

From the above discussion it should be clear that as more modes are
introduced into the control system. using more controllers on the array becomes

ineftective. Only a quarter of the controllers on the 8-rod array are effective for
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controlling the three modes mentioned above. This should be expected from the
simulation results for the random disturbance case. Only two cases are discussed
here for the random disturbance, i.e., the single rod and the equispaced 8 rod array
cases. The cost function variation is presented for the single rod case in Figure
4.18. The single rod case is illustrated here only to show that the feasible
orientations where the controller can be placed for the single rod case follow the
same pattern of dips in the variation as was shown in single rod array control of
the cross bar defect. But the reduction obtained at each of these locations is not the
same since there are three modes being controlled in the 1% harmonic of the
random defect unlike, in the crossbar case which had only one mode. Compared to
the primary power the dips in the cost function variation had the same depth in the

crossbar case as was seen in Figure 4.9, Figure 4.11-Figure 4.13.

Residual power variation with phase, Harmonics= 1 ,Controllers= 1
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Figure 4.18 Control Cost function variation with phase of rod array.

The cost function variation 1s presented for the 8 rod case in Figure 4.19.
The discrepancy in the exact and approximate estimates of the cost function is due
to some of the controllers attaining lengths close to the [0, 0.001] metres length

interval range which is where the polynomial fit does not give a good
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approximation with the exact response. The 8-rod case assumes significance for
illustration here since there are three modes being controlled with 8 rods. As was
explained above only quarter the number of controllers, i.e., two controllers,
would turn out to be effective for this purpose. The cost function variation shows
that the minimum appears when the array is oriented at around 25°. The variation
of the converged controller rod lengths in the 8-rod array are shown against the
phase of the rod array in the top half of Figure 4.20 for this case. Around 25" for
the phase of the 8-rod array Figure 4.19 shows a dip in the variation which means
that the power reduction is at its maximum here. Only the variations of four
converged controllers (rods 1,2,7 and 8) out of the 8 rods are marked using the
symbols “*°, ‘0’, *x” and “+°. It can seen from these markings that only three
controller rods marked (using “*’, *x* and ‘+°) on the illustration converge to
positive lengths at 25" and they occur one after the other in succession in terms of
their order in the controller array. This is made clearer in the bottom half of Figure
4.20 which shows the configuration of the converged rods at the phase of 25° of
the rod array. All 3 rods are seen to be in the same quadrant. The reason that only
3 out of the 8 rods converged to positive lengths is the same as was explained

before regarding effectiveness of an equispaced controller rod array to control

multiple modes.
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Residual power variation with phase, Harmonics= 1 ,Controllers= 8
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The number of equispaced rods was stepped from 1 through 20 to control
the random disturbance, and the variation of the minimised cost function with the
phase of the rod array in each case was determined as was done for the cases
described above. The minimum from this phase characteristic was determined and
the variation of this minimum is plotted against the number of controllers that
were stepped through in Figure 4.21. For example, the effect of an equispaced 8-
rod array to control the random disturbance was illustrated in Figure 4.19 for the
converged cost function variation with the phase of the rod array. This variation
also showed that the best minimisation happens at the phase of 25°. The cost
function attains a value of 114.6 dB at this phase in this variation. Values like
these are extracted from each run of the equispaced array with the rods stepped
from 1 — 20 and plotted in Figure 4.21 against the number of rods used in each
run. The curves shown are for the three harmonics of the blade passing frequency.
The primary power without control in each harmonic is also shown in the figure
so that the reduction in the power in each control case can be inferred by
comparing the variation of the minimised cost function with the primary power. It
can be seen that the reduction obtained through control decreases as the number of
harmonics being controlled increases. Though there is increased reduction as the
rods increase to 20, this is not gradual. In Figure 4.22 - Figure 4.24 the variation
given in Figure 4.21 is repeated and also the break-down of the power in the
individual harmonics is given. For example in the top half of Figure 4.22 the
variation in the minimised cost function with the number of rods is plotted for the
control of the first harmonic. In the bottom half the break up of the power in the
three individual harmonics is also given. From these three figures. Figure 4.22 -
Figure 4.24, it appears that most of the control is happening in the first harmonic.
As already mentioned the variation illustrated in Figure 4.21 is that which is
obtained after collation of the best minimisations happening at particular
orientations of the rod array in each rod array case. These orientations are
different for each rod array case. In Chapter 3 while explaining the noise
cancellation concept the simulation of the cancellation of the single mode revealed
that the cancellation happens when the control rod is placed at orientations along
the circumference which have a simple relationship with the nodal line on the
Fourier-Bessel function for the corresponding flow mode that excites the acoustic

mode. In the present case the best orientations for each rod array case were
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examined to see if they have any relationship with the phases of the three modes
in the first harmonic. It was found that no such simple relationship exists as was
seen to exist in the cancellation of the single mode. This should be expected from
the complexity of the problem as was illustrated in the beginning of this section
with the case of control of multiple modes with multiple rods. It suggests that it is
through running the algorithm that one should determine the positioning of the
array in each individual case.

Variation of Minimised cost function with the no. of equispaced rods used for control of
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Figure 4.21 Variation of minimised noise power against the number of

equispaced controllers for the random disturbance.
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Vanation of Minimised cost function with the no. of equispaced rods used for control of
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Figure 4.22 Variation of minimised noise power against the number of

equispaced rods used to control the 1* harmonic in the random disturbance

(with break-down of power in the individual harmonics).
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Figure 4.23 Variation of minimised noise power against the number of
equispaced rods used to control the first two harmonics in the random

disturbance (with break-down of power in the individual harmonics).
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Figure 4.24 Variation of minimised noise power against the number of

equispaced rods used to control the first three harmonics in the random

disturbance (with break-down of power in the individual harmonics).

For the best orientations discussed previously in the individual cases of control

using 1-20 equispaced rod cases, the configuration of the converged rod lengths

are shown in Figure 4.25. Similar such configurations were obtained when the

subsequent harmonics were also included in the control cost function.

The optimal configurations shown in Figure 4.25 for the equispaced rod

cases were analysed to see if they induce similar blade loadings. It was found that

they do not induce similar blade loadings since the break-down of power in the

individual harmonics in Figure 4.22 - Figure 4.24 show that the residual power

resulting from each configuration is different.
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Figure 4.25 Configurations of the Converged rods in the equispaced rod cases

(with 1st harmonic optimised )

The optimisation of the random disturbance was also conducted by
stepping from 1-20 controllers with the cases of controllers being unequispaced.
The variation similar to the one shown in Figure 4.21 was obtained and is plotted
in Figure 4.26. The phase variations for the minimised cost function are presented
for the optimisation of the disturbance’s 1% harmonic with 4 and 10 unequispaced
rods in Figure 4.27 and Figure 4.28. These graphs show that the minimisation has
a very high phase dependence when unequispaced arrays are used. The 4
unequispaced rod case had the following circumferential locations for the 4 rods:
[10° 35° 70° 210°]. The circumferential locations for the 10 rods case were as
follows: [10°, 39°, 66°, 93°,129°, 187°, 210°, 299°, 313°, 340°]. Since the rods are
unequispaced the phase variation was determined with the controller array rotated

through the entire 360°.
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Variation of Minimised cost function with the no. of unequispaced rods used for control of
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Figure 4.26 Variation of minimised noise power against the number of

unequispaced controllers for the random disturbance.
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Figure 4.27 Control cost function variation with phase of rod array with 4

unequispaced controllers to control the random disturbance.
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Residual power variation with phase, Harmonics= 1 ,Controllers= 10
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Figure 4.28 Control cost function variation with phase of rod array with 10

unequispaced controllers to control the random disturbance.

4.4. Mode cancellation problem

Cancellation corresponds to complete elimination of the modes under question. As
was discussed in the beginning of this chapter, running the steepest descent
algorithm would lead the convergence of a non-linear cost function to a local
minimum even if there were a global minimum within the system. In the
following two subsections two approaches are outlined for the mode cancellation
problem. The first one in, Subsection 4.4.1 is based on the method already used
here, i.e., the steepest descent approach. This is accompanied by an attempt to
solve the same problem using inversion of linear equations for cancellation. The
second approach for cancellation is based on a direct method to control flow
modes which is discussed in detail in Subsection 4.4.2. A comparison of these

should lead us to decide which method 1s more suitable for cancellation.
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4.4.1. N modes vs 2N un-equispaced controllers

In a system of three modes whose amplitudes can be considered as three complex
phasors to be cancelled, one would be led to conjecture that the cancellation
would require only 6 control rods. As will be shown later, this idea would hold
true only if the rod response was linear and the three amplitudes of the modes of
the total disturbance (rod generated and the primary disturbance included) were
expressed as a system of linear equations in terms of the 6 rod lengths. Before
attempting to solve the cancellation problem in terms of the inversion of the linear
equations it was decided to try this through the steepest descent approach taking
into account the full non-linearity of the response of the control rods. Since an
equispaced controller was already used in Section 4.3 to control the first harmonic
of the random disturbance (which had only 3 modes in it) and the later use of an
un-equispaced rod array also showed the phase of the array influencing the
control, it was decided to try different spacings of the 6 rods to see if any of these
configurations would result in the noise power reducing below the level that was
already achieved for the 6 rod case in Section 4.3. Therefore the same algorithm
was used to conduct the optimisation with the cost function formed from the
power contained in the three modes of the first harmonic. The phase of the array
was still rotated through 360° to check if the phase dependency still exists. Five
different spacings were tried for a 6-rod array. The various cases with the

circumferential positions of these rods are given in the table below.

Array Angle of | Angle of | Angle of | Angle of | Angle of | Angle of
rod 1 rod 2 rod 3 rod 4 rod 5 rod 6

1 10" 70° 120° 185° 215" 315"

2 0° 11° 20° 45" 66" 80"

3 15" 35° 90° 120° 185° 225"

4 20" 37° 88’ 150° 211° 287"

5 25° 51° 119° 145° 265° 291°

Table 4.2 Rod positions for the five different 6-rod arrays
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The result of the optimisation for the five different cases is shown in
Figure 4.29 with the converged cost function compared with the primary power.

The results shows that there is phase dependency in the control.
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The maximum reduction found through running the algorithm only shows
that the level ranges from 112-113 dB in the above 5 cases which is not much
different from that obtained in the 6 rod equispaced array case as seen in Figure
4.21 which is around 114 dB. Since the cost function formulated is based on the
non-linear response of the control rod and the convergence to the minimum using
steepest descent method is dependent on the initial condition used for arriving at
the global minimum, demonstrating a cancelled system of modes using this
method appears to be unrewarding.

One way of doing away with the steepest descent algorithm is to revert
back to the use of the linearised response of the control rods. This makes the
problem simpler to handle by formulating the total disturbance modal amplitudes
in terms of the rod lengths which results in a system of linear equations, whose
inversion should give the required lengths for the 6 rods to cancel the 3 modes.
The system of equations and the resulting inversion of these to obtain the rod
lengths is discussed here. With a linearised response of the rods one can formulate
the optimisation cost function as a quadratic in terms of the modal amplitudes.
Minimising this function results in the following relationship which is obtained
after setting the cost function gradient in Equation (3.5.5) of Chapter 3 to zero.

That is

5] acsecondm , §
-~ = SIHH sB x e | — = error |
S e v [ )|

sB mn,p

(4.4.1)

In all of the simulations discussed in this chapter so far the cost function J

utilised a polynomial fit of the rods response which is the quantity C The

secondary *
error resulting in the cost function estimate using the linearised response was
already explained in Chapter 3. To formulate the mode cancellation problem the
linear fit of the above quantity with respect to the rod length w is used here.

Assume that C.

secondary

depends linearly on rod lengths, i.e., consider that all the rod

contributions superpose such that
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C =gW &, W, Tt 8 W,

secondary

7
:gw )

(4.4.2)
where the vectors g and w are defined by
g"=[g, g .. . glwi=w w, .. ... w]
(4.4.3)
aCwse(:andary acsecandary . s
Note also that B G,or =g . At the minimum
a—J = Z ngn sB X 2Re(g*cerrar>: 0 >
aw sB mn,p '
(4.4.4)
where C,,, =C,_ .. +Cpiary =Cppim + g"w. Therefore the condition for

the optimum becomes

Z Z E s X 2 Re{g' (Cp,,m + gTwDpt )} =0.

sB mn,p

(4.4.5)
This equation can be written as
Z Z gmn,sB x 2 Re{g.gTwopt }: _Z Z gmn,sB x 2 Re{g.cprim }9
sB mn,p sB mn,p
(4.4.6)
and therefore
[Z ZSI,,MB x 2 Re(g'gT )}wopt = —Z ngn,sB X 2Re(g*Cp,,.m ) )
sB mn.p sB mn,p
(4.4.7)
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This shows that the optimum control vector w,, can be determined
directly from an inversion of the matrix equation.

The cancellation problem was attempted for the 6 unequispaced rod atrays
using the direct inversion approach for determining the controller lengths. Figure
4.30 shows the minimised cost function evaluated after the inversion which is
plotted against the phase of the array. All cases show that cancellation is possible
using this approach. A check made on the controller lengths showed that for none
of the orientations of the array did the control vector have all positive lengths
since the formulation of the problem in terms of the linear equations did not

employ a constraint. Also the matrix on the left hand side of the Equation (4.4.7),

sB mn,p

ie., {z 28,”"’_‘,3 X 2Re(g“gT)J had the following condition numbers obtained

during the inversion of the system of linear equations for the five cases: 19.1,

4814.4,295.4,101.4 and 24.3.
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Figure 4.30 Minimised cost function vs phase for the five different 6-rod un-

equispaced arrays (Note: Minimised power was obtained using linear response

of the rod).

109



4.4.2. Combination of equispaced arrays or the direct control of

flow modes

Considering the uncertainty in the possibility of simultaneous cancellation of
modes using equispaced or unequispaced arrays, it is worthwhile to take a look at
this problem using a different approach. As explained in Chapter 3 we now know
that the flow modes of order p induce acoustic modes of order m. If there are three
modes m;, myand m; we know that they are induced by flow modes of order p; p>
and p; respectively. And a flow disturbance in the duct could have these flow
modes in some arbitrary combinations of intensities and phases in the same way
as they were assumed for random disturbance modal amplitude distribution. It
could be definitively concluded that these three modes could be cancelled using
three arrays of equispaced rods. The explanation for this is given as follows: since
each acoustic mode is said to be originating from a particular flow mode, we
know from Section 3.4 in Chapter 3 that that this mode could be cancelled by
placing rods along one of the feasible orientations of the Fourier-Bessel pattern of
the inducing flow mode. Since each acoustic mode has a different flow mode
inducing it, the only way to prevent the cancellation of one mode affecting the
other is to use a different equispaced array of rods for each of the three modes.
This way the rods used to cancel one mode will not influence the other mode. For
example the cancellation of mode m=1 is possible using the 8 rod equispaced rod
array with equal lengths for all the rods. Each rod in the array has an in-phase
contribution to total modal amplitude as was shown in Figure 4.14 and Figure
4.15. If all the rods were of equal lengths on this array their effect on the other
modes will be self-cancelling, as was made evident in the subsequent Figure 4.16
and Figure 4.17. Hence the system of three modes m;, m> and m; should have
three arrays of p;, prand p;rods to cancel them. These rod arrays should have only
equal length rods to generate the corresponding modes. Furthermore. the angular
disposition of one of these arrays relative to the other should be such that they
produce the same phase difterence that exists between the flow modes that are
originally present in the system. The three array combination as a whole can be
phase shifted to cancel the flow modes originally present in the system. thereby

leading to the cancellation of the corresponding acoustic modes.
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The theoretical justification for the non-influence of cancelled mode on the
other modes is given as follows. Assuming there are p; equispaced rods of equal

lengths [/, the coupling coefficient for mode m; can be estimated as follows.

C =sz‘1 +sz‘2 +sz’3 +...+Cmm +...+C

my my,p

NG S W2,
1+e note A4 ,

. 2r ) 2n
= Jpaxnx(—)0 =Jp2x(p—x(—)0
I P

+e +...+¢

(4.4.8)

where C,_is the coupling coefficient of mode m; resulting from the p; rod array

and C, . is the contribution of rod p, in that array. The sum of the complex

My, Py
exponentials equals zero if p; #p, and hence the p, array cannot contribute to
mode m;

An attempt is made here to demonstrate the cancellation concept using the
3 modes in the 1* harmonic of the random disturbance. This harmonic in the
random disturbance has three modes whose circumferential orders are —1, 0 and 1
respectively and the corresponding flow mode orders inducing them are 10, 9 and
8. The cancellation of these three modes requires three equispaced rod arrays
according to the method discussed here. The arrays should have 10, 9 and 8
equispaced rods of equal lengths. The lengths /;, /> and /; for these three arrays can
be found from the controller response characteristics, which were shown in Figure
3.7. The lengths can be directly read off from the non-linear characteristic of the
acoustic modal response. For example the intensity of mode m = -1 in the first
harmonic of the random disturbance is given in Figure 4.4. Since 10 rods are
required to cancel mode m =-1 without inducing modes m =[0. 1], the length of
each rod required should match only 1/10™ of the intensity of the mode m = -1 in
Figure 4.4. This length needs to be read off from the coupling coefficient
characteristic for m=-1 in Figure 3.7 for a value of 1/10"™ the intensity of mode
=-1. (Note that it is not the exact characteristics shown in Figure 3.7 that are used
in the computations mentioned here, rather it is the polynomially fitted

characteristics of the variations shown in Figure 3.7 which are used here: an
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instance of the polynomial fitting of the response characteristic in Figure 3.7 was
already shown in Figure 3.11). Each of these equispaced arrays needs to be
oriented relative to the reference on the circumference to make the mode produced
by each of the arrays be exactly in anti-phase with respect to the corresponding
mode in the primary disturbance as explained in Section 3.4 using the Fourier-
Bessel illustrations. Following this method the cost function reduced to 95 dB as
opposed to the 6 rod array where the reduction was only to around 112-113 dB.
The lengths of the 3 superposed rod arrays were 0.0072, 0.0744 and 0.0090 m
respectively. Noise power should have approached zero watts if there was
complete cancellation. However a residue still exists in the power after
cancellation which is the reason why the residual power is 95 dB. This is because
of the approximation of the polynomial fit of the response characteristics for
modes in the length range of [0, 1] cm which tends to give large errors. This
estimate of 95 dB was obtained using the exact response of the rods as opposed to
the 60 dB estimate predicted by the polynomial fit. That this error is justifiable
can be seen from Figure 4.31 and Figure 4.32, where the primary disturbance
modal amplitudes before cancellation are compared with the residual amplitudes
after cancellation estimated using the exact Fourier-Bessel decomposition and the
polynomially fitted response. The residual amplitudes estimated using the
polynomially fitted response in Figure 4.31 are very small compared to those
estimated using the exact method in Figure 4.32. In both cases the residual
amplitudes are seen to lie either in phase or out of phase with respect to the
primary amplitudes which happens to be the expected consequence of the method
adopted here to directly cancel the flow modes inducing the corresponding

acoustic modes.
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Figure 4.31 Modal amplitudes in the 1% harmonic of the random disturbance
before (top row) and after (bottom row) cancellation. (Note: Modal amplitudes

were estimated using the polynomially fitted response)
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Figure 4.32 Modal amplitudes in the 1* harmonic of the random disturbance
before (top row) and after (bottom row) cancellation. (Note: Modal amplitudes

were estimated using the exact Fourier-Bessel decomposition)

The 27-rod array was also subjected to the steepest descent algorithm to
see if the algorithm actually leads to convergence at the global minimum

corresponding to the cancelled modes. The converged minimum from the steepest
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descent was only 104.7dB compared to the 95 dB that was obtained from
estimating the lengths directly from the response characteristic. A comparison of
the direct approach with the 6 unequispaced rod array makes it obvious that the
direct approach assures the approach to the global minimum. The approach to the
global minimum is not assured in the steepest descent case even with the 27 rod
array since it involves converging to a local minimum which may not be the

global minimum.

4.5. Inclusion of the rod array phase in the control vector

Since the rotation of the array showed phase dependence in the achievement of the
minimum power it was decided to extend the strategy that was discussed so far of
altering the rod lengths to include simultaneous rotation of the rod array. The
strategy adopted so far does not consider phase of the array as a variable in the
optimisation. Since the controllers in the array have fixed angular positions, the
angle of each rod can be expressed in terms of that of the first rod and phase of the
array can thus be regarded as one of the optimisation variables. This would result
in a cost function consisting of (g+1) variables, the extra variable being the phase

of the array. The matrix 0C /éw originally had the gradients of the

secondary

responses of the individual control rods. Since the coupling coefficient of a rod
disposed off by 6 radians from the reference differs by a factor of e™#° from that

of the rod at the reference, the matrix oC /0w will now have an extra

secondary
column to account for the inclusion of the array phase with each of its elements
being — jpC as can be seen from the derivative of the rod response

secondary ®

C with respect to the phase angle 6. The simple expression for the

cecondary
derivative is also a consequence of the fact that the phase response doesn’t change
with length of a rod that is fixed circumterentially. The optimisation should now
be expected to cause the objective function to directly approach one ot the minima
described in the results that were shown in the form of the converged cost function

with the phase of the array. Two cases of simulation are repeated here from the



previous cases to test the convergence of the algorithm using simultaneous array

rotation and rod translation.

4.5.1. Case 1

The top half of Figure 4.33 shows the variation of the converged cost function
with the phase of the array for the optimisation of the 2" harmonic of the crossbar
disturbance with 4 rods. The figure shows that within the phase variation of the
converged cost function there is a further minimum with respect to the phase and
this is seen to occur at 23°. The steepest descent algorithm was extended to
include the phase in the control vector and the phase was given an initial condition
of zero and the convergence coefficient y was set to .006 for the lengths and
angle. The convergence obtained for the cost function is shown in the bottom half
of the same figure. The algorithm started with an initial condition of 0 for all
lengths and 15° for the phase of the array. In Figure 4.34 the length convergence
of the 4 rods and the phase of the array are shown along with the configuration of

the array of converged rods at the 200" iteration.
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and Noise power convergence with simultaneous phase rotation and length

translation.
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Figure 4.34 Convergence of control variables with simultaneous phase

rotation and length translation

The converged lengths and angle are given in the table below for both
cases of optimisation with and without the phase of the array included in the
control vector. Specifically the case with the phase included in the control vector

1s compared with the configuration without it being included. We know from the
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top half of Figure 4.33 that the best minimisation happens at 23° for the case in
which the phase is manually varied. There is good agreement between the lengths

and the phase from both these methods.

Method Converged lengths Array angle
Rod1 | Rod2 | Rod3 | Rod4

Phase included in the algorithm | 0.0304 | 0.0304 | 0.0304 | 0.0304 21.08"

Manual phase variation 0.0334 | 0.0334 | 0.0334 | 0.0334 | 23°

Table 4.3 Converged lengths with and without the array phase included in

the control vector.

Similar to the error surfaces discussed in the beginning of Section 4.2 an
error surface was estimated by gridding in the 2-dimensional subspace consisting
of the length of rod 1 ([0, .3] m) and the phase angle 6 ([00,600]). The error surface
obtained is shown in Figure 4.35. The algorithm was re-run with an initial
condition of [0 0.0334 0.0334 0.0334] m for the lengths and 0° for the angle, and
also a constraint was imposed on rods 2-4 with the condition that they be equal to
0.0334 m in length. The convergence trace T1 of the cost function is plotted in
Figure 4.36. The convergence trace shows that algorithm starts from the 0° and
reaches the first dip/valley in the error surface graph which occurs at 21° of the
array phase and the length of rod 1 also converges to the value .0291 m which is
close to .0304 m given in the above table with the convergence coefficients
remaining the same. This shows that for this disturbance the algorithm works

when the phase of the array is also included in the control vector.
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4.5.2. Case 2

Figure 4.37 is a repeat of Figure 4.19 which shows the variation of the converged
cost function with the phase of the array for the optimisation of the 1* harmonic of
the random disturbance with 8 rods. The figure shows that within the phase
variation of the converged cost function there is a further minimum with respect to
the phase which is around 114.5 dB and this is seen to occur at around 25°. At this
phase angle the value of the control vector of rod lengths is [0.2034 0 0 0 0 0.0070
0.2115 0.2170]. The steepest descent algorithm was extended to include the phase
in the control vector and the phase was given an initial condition of zero and the
algorithm was run with three different convergence coefficients p, as indicated in
Figure 4.38. We see that the convergence with the first trial is noisy and becomes
smooth only in the third case where it took around 40,000 iterations to get the
pattern of convergence that is shown there. Even with the fine-tuned convergence
coefficient in the third case the algorithm does not converge to the value of 114.5
indicated at 25" in Figure 4.37. This could probably be due to the algorithm
approaching a local minimum. In Figure 4.39 and Figure 4.40 the control variable
convergence pattern is shown for the last two cases in Figure 4.38. The oscillatory
behaviour of the algorithm is clearly seen in the illustration in Figure 4.39. Figure
439 and Figure 4.40 indicate that the algorithm is very sensitive to the

convergence coefficient variation.
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and length translation

Error surface was estimated by gridding in the 2 dimensional subspace
consisting of the length of rod 8 ([0, .3] m) and the phase angle & ([OO, 3600]). The
error surface obtained is shown in Figure 4.41. In Figure 4.42 the same error

surface is shown within the phase range of 300-360°. The algorithm was re-run



with an initial condition of [0.2034 0 0 0 0 0.0070 0.2115 O] m and also a
constraint was imposed on rods 1-7 with the condition that they be [0.2034 000 0
0.0070 0.2115] m in length. This means that only the length of rod 8 and the phase
of the array have been included as variables in the control vector. The
convergence trace T1 of the cost function superposed on the error surface contour
is plotted in Figure 4.43. The error surface on which the trace has been superposed
1s the same as in Figure 4.42. The convergence trace shows that the algorithm
starts from the angle 0 and reaches the dip/valley in the error surface graph in the
range of 340-360°. The length of 0.2170m for rod 8 mentioned while discussing
the minimum at 25” in Figure 4.37 also occurs in this region. Since the algorithm
was given an input of 0" for the array phase the array rotated beyond 360° and
approached the nearest dip in the error surface. Relative to Figure 4.37 the dip in
the variation occurs around 25 -30° which is offset by 15° from the edge of the
graph at 45°. By virtue of the circumferential symmetry of the 8 rod equispaced
array that pattern is expected to repeat 8 times in one revolution. This is why the
dip in the variation in Figure 4.42 or Figure 4.43 is offset by around 15° from the
360 limit.
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4.6. Summary

This Chapter focussed on the optimal control of multiple modes using multiple
control rods as the previous chapter indicated that focussing the control on a
single mode might lead to the increase in the amplitudes of the other modes. Two
disturbances were chosen to test the control of multiple modes. One is a spatially
harmonic flow disturbance and the other is a randomly distributed flow
disturbance. In both situations error surfaces were plotted for selected cases and it
was shown that the choice of initial condition could lead the convergence to a
local minimum which is a feature of the steepest descent algorithm. While with
the spatially harmonic disturbance increasing the number of controllers led to
increased reduction in the noise power, the randomly distributed disturbance
showed that increasing the number of controllers for the control of multiple modes
1s not effective. Although increasing the number of equispaced controllers in the
random disturbance case showed increased reduction, not all of the controllers

used in the array were being utilised by the algorithm. This had later led to the



attempt of controlling this disturbance using un-equispaced rod arrays. Both types
of rod arrays showed that the circumferential orientation of the controller rod
array has a significant influence on the control. Later the same algorithm was used
to test the cancellation problem involving cancelling N modes with 2N controllers.
Testing this hypothesis with different rod spacings did not yield cancellation in
these cases as we know that steepest descent algorithm could lead convergence to
local minimum. An alternative means of cancelling multiple modes with a
combination of multiple equispaced rod arrays was found to be promising. Since
the rod array circumferential orientation was also found to be an important control
variable, the problem of control with its inclusion in the control vector was also
attempted for two cases, one in each of the two flow disturbances chosen in this
chapter. This was performed to check if its inclusion in the control vector would
lead to convergence to that orientation which was found to be the best when it was
manually varied. For a control case in the spatially harmonic flow disturbance, the
inclusion of the rod array circumferential orientation in the control vector led the
convergence of the control algorithm directly to the point which corresponded to
best orientation found through manual variation. When the same problem of
controlling the array orientation was attempted with a case in the randomly
distributed flow disturbance the control showed that it is very sensitive to the
choice of the convergence coefficient. The next chapter examines the problem of
implementing the control algorithm on a test fan rig for a few cases each
representing control of either single or multiple modes with controllers on an 8-

rod equispaced array.
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Chapter 5 Active control experiments

5.1. Introduction

So far the thesis has dealt with the description of the concept of control in Chapter
1, a model to predict the acoustic field resulting from the fan and flow disturbance
interaction in Chapter 2, and the simulation of the controller response and the
formulation and solution of the optimisation cases using a cost function and the
steepest descent algorithm to iteratively obtain the control vector in Chapter 3 and
Chapter 4. This chapter deals with the implementation of the control concept on a
model fan rig. Section 5.2 deals with the description of the test facility, the 8-rod
controller array and the instrumentation. Section 5.3 deals with the experimental
determination of the controller rod response and the implementation of the control

algorithm.

5.2. Test Facility Description

Subsection 5.2.1 deals with the general arrangement of the fan rig. Subsection
5.2.2 gives a description of the fan and the optical triggering device used for
capturing the blade locked reference signal. While Subsection 5.2.3 describes the
controller array, Subsection 5.2.4 deals with the description of the microphone

array and Subsection 5.2.5 on the data acquisition system.

5.2.1. General Arrangement

The fan rig facility is situated in a large anechoic chamber in the Doak Laboratory
of the ISVR. A schematic of the fan rig in the anechoic chamber with the
appropriate dimensions is shown in Figure 5.1. The fan rig consists of a duct
housing the 9 bladed fan preceded by an intake nozzle, microphone array rings. a
controller rod array ring and followed by a silencer duct. Figure 5.2 shows the

photograph of the fan rig in the anechoic chamber.
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Figure 5.1 Schematic of the fan rig.
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Figure 5.2 Photograph of the fan rig in the anechoic chamber.

5.2.2. Fan and the Optical trigger

The fan diameter was 630 mm with a hub of 250 mm diameter. The fan could be
rotated at a maximum speed of 3000rpm. It had 9 blades with variable pitch angle
and each blade’s chord was 130 mm and the blades were set at a pitch angle of
34° The fan motor is driven by an inverter drive whose frequency setting can aid
in the adjustment of the speed of the fan. For the experiments discussed here the
fan was run only at two speed settings, 1767 and 2934 rpm. On the surface of the
duct housing an optical triggering device manufactured by the electronics support
group of the ISVR is flush mounted in order to pick up the reflections from a
reference fan blade which has its tip covered with a reflecting material. This

device issues a single pulse of around 5V for each revolution of the fan. The



reference fan blade will be referred to as the instrumented blade in the rest of the

thesis.

5.2.3. Controller Array

The controller rod array is a device manufactured by Time & Precision Industries
at Basingstoke, United Kingdom. A picture of this device is shown in Figure 5.3.
It consists of radial rods (Electro-thrust cylinders) equally spaced in the
circumferential sense on a cylindrical ring. Figure 5.4 shows the picture of an
Electro-thrust cylinder. The rods can be made to translate radially and the ring as a
whole can be rotated. These motions are possible through stepper motors for the
individual radial motions as well as the rotary motion. The radial motion and the
rotary motion are constrained to 200 mm of length and 30° of rotation
respectively. The diameter of these rods is 12mm. The constrainment is also
mechanically effected through the presence of limit switches. The stepper motors
on the radial rods also have encoders fitted on them to feedback the position
information of each rod. Each of these motors 1s interfaced to the computer
through a drive cabinet shown in Figure 5.5 and they can be commanded from the
computer’s RS232 serial port. The drive cabinet consists of L25i/L501 stepper
drives for each stepper motor on the rod array. The motion commands are in the
ASCII format of the EASITOOLS language. It should be noted that the 8" rod on
this array had a mechanical fault and hence was non-functional throughout the
experiments discussed here. A picture of the fan rotor and the rod array inside the

duct is shown in Figure 5.6.



Figure 5.3 Equi-spaced 8-rod array.

Limit and Home switches

Figure 5.4 Electro-thrust cylinder.

134






Circumferential positions of the rods on the array are given in the table below.

Rod 1

2

3

4

5

6

7

g

0

45"

90°

135°

180°

2259

270°

315°

Table 5.1 Circumferential positions of the rods on the array.

5.2.4. Microphone arrays

Figure 5.7 Electret microphone with the plastic holder.

Microphones were positioned upstream and downstream of the rotor. On
the upstream side the microphone array consisted of 5 cylindrical rings with
circumferentially spaced flush mountable slots for positioning % inch ommi-

directional electret microphones from the exterior. A photograph of the electret
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microphone with the plastic holder is shown in Figure 5.7. A maximum of up to
24 microphones can be fixed on a single ring making a total of 120 microphones
on 5 rings. The five rings are spaced out by 98 c¢cm axially. On the downstream

side 4 such microphones were used.

The following tables lists the axial and circumferential positions of the
upstream and downstream in-duct microphones used for conducting the
experiments. In addition to these a B&K microphone was used in the far-field

which was located at approximately 45° to the intake axis of the fan.

Upstream set Downstream set
Microphone | Circumferential | Axial Microphone | Axial
Position position (m) position (m)
1 2857 -0.657 1 0.59
2 3157 -0.853 2 0.88
3 1957 -0.559 3 1.17
4 90" -0.853 4 1.4600
5 165" -0.559
6 270° -0.461
7 1357 -0.755
8 105" -0.657
9 255" -0.755
10 210° -0.853
11 330° -0.755
12 45" -0.853
13 165° -0.853
14 2707 -0.853
Table 5.2 Microphone positions.
5.2.5. Data Acquisition System

The data acquisition system for acquiring the signals from the microphones and

the pulses from the triggering device is a PXI1000B chassis supplied by National
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Instruments which has two dynamic signal acquisition cards (NI4472). A
photograph of the cards with the chassis is shown in Figure 5.8. Each card has 8
channels which limits the number of microphones to be connected to these to 15
excluding one channel for the trigger signal. This also limits the number of modes
into which a tone can be modally decomposed. The microphone cables connect
with the analog channels on these cards. The triggering pulse cable is also
connected to one of the analog channels on these cards. Data were sampled at
10000Hz. The PXI11000B chassis streams the simultaneously sampled microphone
signals into the computer’s memory buffers. The computer is interfaced with the
PXI1000B chassis through MXI cards and a copper cable. The data can be read
off into files or processed online as the data gets streamed in using LABVIEW

software.

Figure 5.8 PXI1000B chassis with N14472 data acquisition cards.

5.3. Tests

Since the microphones on the duct are used to sense the acoustic field their
calibration is described in Subsection 5.3.1. Subsection 5.3.2 then deals with the

control experiments.
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5.3.1. Microphone calibration

The calibration procedure is illustrated in Figure 5.9. As mentioned already the
microphones were flush mounted into the slots on the rings from the exterior of
the rings and the cavity formed between microphone surfaces and the duct interior
surface was calibrated to determine its transfer function H..(w) using a
calibrating piezoelectric loudspeaker. This procedure is shown in the bottom half
of Figure 5.9. The loudspeaker is excited using 10 kHz bandwidth white noise, w,
measured in Volts whose Fourier transform is W{(w). The pressure at the
microphone surface, p, is transduced as an electrical signal measured again in
Volts with its Fourier transform being P(w). Thus the transfer function of the in-
duct cavity is Hn(w) = P(w)W(w). The loudspeaker, along with a B&K
microphone, were initially used to determine the transfer function H.{w) of a
model cavity surface. This is shown in the top half of Figure 5.9. Again the white
noise excitation, w, provided to the loudspeaker is measured in Volts and the
pressure at the B&K microphone surface of the model cavity, p;, is measured in
Volts and converted into Pascals using the manufacturer supplied calibration
coefficient of the B&K microphone. Thus the transfer function of the model
cavity 18 Hyf @) = Py 0)/ W w).

Thus the pressures P{w) on the model surface obtained from the B&K
microphone while the loudspeaker was subjected to a 10 kHz bandwidth white
noise input were later used to determine the transfer function H,(w) of the in-duct
pin-hole cavities and hence the sensitivities of the in-duct microphones. The
sensitivity of the microphone is defined as the ratio of the Fourier transform of
the microphone surface pressure, p, measured in Volts to the Fourier transform of
the in-duct surface pressure, p,, estimated in Pascals. All transfer functions
mentioned above have been determined by forming the cross spectrum of the
output signal with respect to the input signal and the auto spectrum of the input
signal which were averaged over several blocks of the measured signals. Figure
5.10 and Figure 5.11 illustrate the sensitivity of one of the microphones in the

frequency range of 0 to 5 kHz.
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Figure 5.9 Illustration of the microphone calibration procedure.
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Figure 5.10 Sensitivity of an in-duct microphone (amplitude).
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Figure 5.11 Sensitivity of an in-duct microphone (Phase).
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5.3.2. Control experiments

Chapter 3 and Chapter 4 dealt with the simulation of the controller response
determination and optimisation of control cost function. In Chapter 3 the
controller response was determined by feeding the rod’s wake profile into
expressions which decomposed it into Fourier-Bessel modes and then estimated
the fluctuating forces (coupling coefficient) and the resulting acoustic pressure
radiated into the duct. This response was later used in the simulation of
optimisation presented in Chapter 3 and Chapter 4. In the experimental situation,
the propagating acoustic wave can be sensed as a pressure signal by the
microphones on the duct surface. Upon fast Fourier transforming the microphone
signals one can extract the BPF tone pressures from each microphone and then
decompose the vector of BPF pressures into modes which can then be used in the
controller response determination and the control algorithm. The variables and the
associated processing involved are thoroughly dealt with in Subsection 5.3.2.1.
The unsteadiness in the estimates of the quantities mentioned above and the
number of averages required are dealt with in Subsection 5.3.2.2. The error in the
duct power resulting from the semi-infinite approximation of the analytical model
discussed in Chapter 2 is considered in Subsection 5.3.2.3. The experimentally
determined acoustic response is discussed in Subsection 5.3.2.4. In Subsections
5.3.2.5,5.3.2.6 and 5.3.2.7 the theory and results are presented for a few cases in

which the implementation of the control algorithm was conducted.

5.3.2.1 Processing

The processing in the experiments consisted mainly of (i) the fast Fourier
transformation of the incoming microphone signals, (ii) modal decomposition of
the tones from the Fourier transformed pressure signals which are explained
below. The estimation of modal coupling coefficients, reflection coefficients and

tonal power are also explained.

FFT:
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The voltage signals from the microphones are FFT’ed using vector averaging of
the FFT estimates over blocks of these signals phase locked with the trigger
signal. The trigger signal from the optical trigger registers a peak of around 5 to 6
V for every pass of a blade that has been marked on the fan. Without phase
locking the estimate of the phase of the tones can be erroneous as the start of each
microphone signal block of arbitrary length can correspond to a different start of
the propagating acoustic wave at the source (fan). Each block’s length
corresponds to a single or multiple revolutions of the fan and the averaging was
performed by using a suitable numbers of blocks at the two speeds which were
determined from the unsteadiness analysis described later in this section. Only the
BPF tone 1s taken up for the control study. A column vector of the BPF tone’s
complex amplitude is obtained from the processed signals acquired from the

microphone array. Phase locked averaging is explained in Figure 5.12.
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Figure 5.12 Illustration of phase locked averaging.

Modal decomposition:
Since the cost function for the active control algorithm, i.e. the overall sound

power level J is expressed as the squared sum of the modal amplitudes in the
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tones of the total noise field, these need to be obtained by decomposing the tonal
pressures obtained previously from the FFTs into modes. Referring to Equation
(2.3.6), and considering only the inlet-radiated noise for control and restricting
attention to the M cut-on modes (m,7) in the BPF, the expression for the acoustic
pressure at this harmonic then becomes a finite sum over these modes.

(m,n)y o z-
pu®)= 3 (e + B e o, (0).

mn mn
(mn)=(m,n),

(5.3.1)

The above equation when related to the data obtained from the signals of the
microphone array becomes a system of linear equations where the left side is the
column vector of the tonal pressures obtained as mentioned in the section on
phase locked averaging. The right side involves the unknown cut-on modal
afnplitudes, i.e., Ay, and B, respectively for the reflected and the incident
upstream modes, and terms which have a spatial dependence on the microphone
axial and circumferential locations (z and #). Equations (5.3.2) and (5.3.3) express
the system of equations which need to be inverted to get the unknown modal

amplitudes.
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Denoting the column vector of unknown modal amplitudes on the right
hand side of the above equation as asp, we have
pr = S,\'BasB’

-1
pSH :

aA\‘H = S o

(5.3.3)

The inversion depends on how well conditioned the matrix S is, and its condition
number was estimated for the experiments described in this section. At the low
speed where there is only one cut-on mode, the pseudo-inversion of the above
matrix with measurements from 14 microphones gave a condition number of 1.59.

and at the high speed where there were three cut-on modes this number was 2.87.
Alternatively one can even extract the modal amplitudes in Equation

(5.3.1) by performing a spatial Fourier Transtorm over the circumferential

coordinate if the microphone array had equispaced microphones. Since the array

had non-equispaced microphones and it is also necessary to further decompose
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these modes into incident and reflected modes, it was decided to use the approach

of solving the system of linear equations presented in Equation (5.3.3).

Modal Coupling Coefficient:
Referring to Equation (2.3.63) for the acoustic pressure field in terms of the

coupling coefficient and expressing this in terms of the upstream incident modal
amplitude B,,,, the value of the coupling coefficient C,, ., can be extracted as

follows.

MsBQ
j s

© 2] (K l‘)e C"ﬂlne_]me o-

py(x)=B X Zl il "’]”Vz p e M cos(n,,",,,,A,B(z))
p=-on=

mn""mn,sB

A A
X (n’l Dmn_p + }/r;n,sB Tmn,p)

MsBQ

-5 $a5 U G 0)

p=—on=1

(5.3.4)

Cmn,p = (m D’””J’ + }’,:,,,’XB Tmn,p)
B
= (B;n )/ P
2Nmn kmn,xB

(5.3.5)

The contribution of the rod to the acoustic field, i.e., Csecondary can be estimated
from the relationship which expresses the contribution of the total acoustic field
Cerror as a sum of that of the primary and the secondary fields, Cpri and Ciecondan

respectively:

error prim 7 secondary

(5.3.6)

When using multiple rods or rotating a single rod while implementing the active
control system, the theoretical response of the multiple rods or the rotated rod is

obtained using the expression C, ~ xe "% wherein the response of the reference

wn.p
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rod C,, ,is multiplied by the term e™” % to account for the phase shift involved in

the modal response of a rod rotated by angle 6.

Modal Reflection Coefficient:
The reflection coefficients as described in Equation (2.3.16) are repeated here

+
+ Bnm _ 2o
mn T A+ =e

mn
1_ — Brﬁn — ez./nf,],;‘
R A

nn mn

(5.3.7)
Tonal Power:
Power was estimated using the expression (3.5.1) which is repeated here
o @© [)7 4 0o
PX — Bz (1 / paCa) nm SB - eZ¢mME
’ PZ;’0 "Zl: Nmn mn sB (1 amn ABM~ )2
2¢3,; " e -20 5
(1+anm,xBM)2 _T(l mn YBM)
"1” p
(5.3.8)
5.3.2.2. Unsteadiness in the estimates

It is necessary to know the number of averages of the fast Fourier transform
estimate to be performed during each data acquisition to obtain steady estimates of
the quantities discussed in the previous subsection. A 30 second acquisition on all
the microphones (upstream, downstream and far-field) was made and phase
locked averaging was performed to get the estimate of the tones on all the
microphones. In this time around 1500 blocks of instrumented blade passes exist
in the high speed case and 900 for the low speed case. Two types of averaging
were performed. The averaging is described in Figure 5.13. The first one is the

successive/incremental averaging. Here the number of averages were varied trom
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1 through 800 (26.77s of the signal) for the low speed case and 1 through 1400
(28s of the signal) for the high speed case. This averaging will determine whether
the unsteadiness in the estimates decays and the number of blocks to be used for
averaging during the subsequent experiments. The number of instrumented blade
passes per block were varied from 1 through 3 for the low speed case and 1
through 5 for the high speed case which improves the resolution from 30 to 10Hz
for the low speed and from 50 to 10Hz for the high speed. Figure 5.14 through
Figure 5.15 show the effect of incremental averaging for the blade passing
frequency tonal estimate in the first in-duct microphone for both the speeds, i.e.,
over 1 through 800 blocks (26.77s of the signal) for the low speed case and 1
through 1400 (28s of the signal) for the high speed case. It can be seen that
increasing the resolution from 30 to 10 Hz in the low speed case and from 50 to

10 Hz in the high speed doesn’t have any effect on the estimate.
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Figure 5.13 Averaging methods for unsteadiness analysis and the

determination of number of blocks for phase locked averaging.
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The above effect is shown for the case without a rod inside the duct. The 30s data
acquisition was also performed for the case of the rod fully inserted into the duct
and the above effect of the number of blocks is discussed for the following
quantities for the cases with and without the rod insertion in Appendix 5.1.

1) All three harmonic tones on the upstream, downstream and far field
for the low speed case and only on the upstream and far-field for
the high speed case.

2) In duct upstream incident and reflected modal amplitudes for the
low and high speed cases and also downstream incident and
reflected modal amplitudes for the low speed case.

3) Coupling coefficients for the low and high speed cases.

4) Reflection coefficients and induct sound power and far field sound
pressure levels.

From the above illustrations and the information provided in the Appendix
it was decided that the number of blocks appropriate for averaging was 400 for the
low speed setting and 600 for the high speed setting with each block representing
3 instrumented blade passes for the low speed case and 5 instrumented blade
passes for the high speed case which give a resolution of 10 Hz in both cases.

The second type of averaging shown in Figure 5.13 is the fixed block
averaging. After choosing the fixed (400 or 600) number of blocks from the first
method of averaging described above a fixed block sliding/moving average over
the 30s signal may be performed to describe the residual unsteadiness. 400 fixed
blocks were chosen for the low speed case and 600 for the high speed case. Since
there were only 800 and 1400 blocks in the first averaging method that was
performed betfore the moving average was performed 400 times for the low speed
and 800 times for the high speed case. The moving average variations along with
residual unsteadiness in the quantities mentioned above are all given in Appendix
5.1.

In Section 3.6 of Chapter 3 a simple case of simulation of control was
pertormed by holding the source rod at the zero reference and the controller rod at
20°. Randomness in the primary disturbance coupling coefticient for this case was
introduced programmatically by using the MATLAB randn() tunction. Figure
5.16 1illustrates the convergence behaviour with the varying amount of the

randomness which is given here in terms ot the standard deviation ot the modal
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coupling coefficient in the primary disturbance (C,,i») expressed as a percentage
of the mean of the same quantity. As the unsteadiness increases the reduction

obtained in noise power decreases.
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Figure 5.16 Effect of Randomness in primary disturbance coupling

coefficient on convergence behaviour.

5.3.2.3. Error in the power through the assumption of semi-infiniteness of
the duct

It was assumed in the development of the expression for the acoustic pressure
expression in Chapter 2 that the termination at the fan exit is anechoic. The error
this assumption would cause in the measured sound power ignoring the
downstream reflections forms the subject matter of this subsection. In order to
determine this microphone signals were measured using the upstream and
downstream microphone arrays while the fan was run at the low speed (262 Hz of
BPF) where only the plane wave mode is cut-on. Since both the reflected and
incident modal amplitudes are available at the upstream and downstream sections
of the fan duct, the estimates of the sound power using the expressions with and

without the semi-infiniteness are compared here for the plane wave mode. As



mentioned already the derivation of the expression for the sound power is given in
Appendix 3.1. The upstream intensity given in Equation (A.3.1.16) is repeated
below. It can be seen that the intensity is dependant on the squared modulus of the

pressure for a given mode for which the terms: « =k /k, , the flow

02

nmn,sB mn,sB

parameters 3 and M, the reflection coefficient 1, ,(2) =&, ,(2)+ jo, , are
constant. The intensity is
2Ma, B cosh2¢)
Iy =(/pc) o, ‘B,B (1 +a”m ‘BM )sinh 2¢"m . ‘pww-” 2
(=@, M) (cosh2¢ ; +cos2&,, ,(2)
(5.3.9)

The expression for the pressure (2.3.63) using the semi-infinite duct assumption is

repeated below:

MsBQ
N S r)e Wb gme A A
‘B (x) B Z Z mn : e SN Cos(n;n,sB (Z)kﬂ’l DmnAp‘*‘ 7;771;8 Tmn,p)
p== =l Nmn kmn sB

(5.3.10)

Hence the squared modulus of pressure is as follows:

2 2 S e J (Kmn ) —IU <
‘p‘\ﬁ =B ; ”ZZI 7]\[4 k?- (m Dum pt '}/”m SB Tmn p) ‘COS T[m” vB( )1
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= B2 z z 47”2’” )2¢ .58 (H’l Dnm,p + yn—m,sB Tmn.p)
p=on=l Nnmk 8
% (COSh 2¢mi_1,.v13 +Cos 2&:;)1,53 (Z))

2

(5.3.11)

The expression for the pressure (2.3.61) using the finite duct assumption is
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Hence the squared modulus of pressure is as follows:
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(5.3.13)

For the plane wave mode situation at the low speed, the ratios of the powers
obtained through the two assumptions is a ratio of the intensities which in turn is a

ratio of the respective moduli of the squared pressures. This ratio is

0= =
=S n 24),(,‘,; &

e

Power (semi — infinite duct assumption) ‘e

3 =

Power (finite duct assumption)

0+ 0+
COS( mn) COS( mn)

. 0+ 0-
Sln(nnm - nnm )

(5.3.14)

The error can expressed as the logarithm of the above quantity to specify it in

decibels. Hence

: 0+ 0-
Sln(r’ min - r’ nmn )
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It can be seen that the ratio depends on the upstream and downstream reflection

coefficients R* =e¢™ and /R =B~ /A~ =™ . TFor the low speed case

mn mn mn mh
the reflection coefficients upstream and downstream were found to be 0.367 and
.199 in the presence of a controller rod. The ratio of the powers was determined to

be —1.2886 dB.

5.3.2.4. Acoustic response of a single control rod

A single cylindrical rod was fixed at the azimuthal zero reference and its length
was varied in steps of 10 mm each and the signals from the microphones were
captured and processed as described above to obtain the acoustic response in
terms of the modal coupling coefficient. The fan was run at the said speeds and
the BPF for these speeds corresponds to 262 Hz (low speed setting) and 441 Hz
(high speed setting). At the BPF for the low speed, only the plane wave mode (1
=0) is cut-on. At the BPF for the high speed case 3 modes (m=(-1.0.1)) are cut-on
in the first harmonic. The acoustic response for all the individual rods in terms of
the modal coupling coefficient amplitude and phase is shown in Figure 5.17 and
Figure 5.18 for the low speed (plane wave mode, m=0), and Figure 5.19 - Figure
5.24 for the high speed case (all three cut-on modes m=(-1,0,1)). The phase
response 1s nearly flat but exhibits a drift in the lower length range. This could be
due to the fan itself inducing a radially varying swirl in the wake generated by the
rod which could cause the wake to shift circumferentially as it travels towards the

fan. The amplitudes can be seen to be steadily rising.
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Figure 5.20 Amplitude responses (coupling coefficient) of rods on the
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Figure 5.21 Amplitude responses (coupling coefficient) of rods on the
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Figure 5.23 Phase responses (coupling coefficient) of rods on the controller

array for mode m=0 (high speed case, 1*' rod at reference 0°).
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Figure 5.24 Phase responses (coupling coefficient) of rods on the controller

array for mode m=1 (high speed case, 1* rod at reference 00).

The amplitude responses for the three modes in the high speed case vary
across the rods and exhibit a variation with their circumferential orientation. This
effect is attributed to the mode scattering effect which is explained in detail in
Appendix 5.2. This phenomenon occurs due to the spinning modes’ interaction

with the rods to scatter off into modes of other circumferential orders.

The graphs in Figure 5.25 and Figure 5.26 show the linearised amplitude
and averaged phase responses of the first rod for the plane wave mode at both

speeds.
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rod for the plane wave mode (low speed).
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Figure 5.26 Linearised amplitude and averaged phase responses of the first

rod for the plane wave mode (high speed).

In addition, we know from the theory that the responses of ¢ rods can be

obtained as follows if the response of the first rod is known:

! - jp0 -Jpé,
C/I:r:?p.sB = (Cmn.p.sB ) + (Cmu.p.sB )e o toet (Cnm.p,sB )e 4

(5.3.16)

where C,’,f,f";,.sg is the net coupling coefficient for the mode in question and

C 1s the first rod’s coupling coefficient for the same mode. The term
mn.p.sB p o

e % expresses the phase relationship between the response of rod ¢ and that of

rod 1, where 6, is the angular spacing between the first and the g" rod. To verify if
this relationship is true the phase response obtained individually for all the rods
described in the figures above can be averaged radially and the averaged phase
can be plotted against the rod orientation. This variation of the averaged estimate
of the phase response can be compared against the theoretical variation e #”.

This variation is given for the low and high speed cases in Figure 5.27. For the



low speed case there is only one mode that is cut-on and at the high speed there
are three cut-on modes. It can be seen that there is a fairly good agreement
between the theory and the measurements. This provides also a means to verify
the modal decomposition, since the program performing the decomposition knows
only about the microphone orientations and has no knowledge of the individual

positions of the rods.
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Figure 5.27 Variation of the measured and averaged phase response across

the rods in the array as opposed to the theoretical variation.

5.3.2.5. Control Theory and Algorithm for implementation

Only the lengths of the rods in the array are considered the control variables and
the control equations used in this context for the algorithm are repeated here. The

equation for the cost function, (3.5.4) in terms of the coupling coefficient

amplitudes is repeated.
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where C iy = ZC”W’ .5 - Lhe gradient as in Equation (3.5.5) is
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K

sB mn,p

(5.3.18)

The objective function i1s minimised by iterating the control vector along the
steepest descent and the converged set of lengths w needs to be obtained. The
equation (3.5.6) for iterating the control vector is

oJ

w(k+1)=w(k)—pa

(5.3.19)

with the constraint that w>0.

Using the responses of the rod that were obtained previously, active
control experiments were performed using the steepest descent algorithm coded in
MATLAB and LABVIEW. The LABVIEW code triggers the data acquisition of
the signals from the microphones, and the interfaced MATLAB code performs
phase locked averaged Fast Fourier Transformations and modal decomposition to
finally obtain the estimate of C,,,, and J at each iteration k in the equations above.
The linearised amplitude and averaged phase responses obtained previously are

then used to obtain the quantity 0C /&w . Following the estimation of both

secondary
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the quantities, i.e., Cepor andoC /0w , the gradient of the cost function

secondary
oJ / ow becomes known and the new estimate of the control vector w(k+1)is
iterated from the old estimate of the control vector w(k). The LABVIEW

program then communicates to the controller array through the RS232 port of the
PC to make the required move to set the controller rods to the individual lengths

in the vector w(k+1). This above procedure is repeated until convergence is

obtained. The constraint that the rod lengths be positive is implemented by setting
these to zero whenever they become negative. For all the experiments described

the convergence coefficient g in the initial iteration of the experiment was

estimated by equating it to ‘GJ / 8w“] in terms of its order of magnitude. Later

repetitions of the experiments were performed by fine tuning this estimate. The
following assumptions are made in the control algorithm:

1) Gradient linearisation and phase averaging: oC / Ow is obtained through

secondary
linearisation and averaging described in Figure 5.25 and Figure 5.26.

2) Phase linearity with rotation: Superposition of the individual responses is done
using the relationship obtained and illustrated in Figure 5.27. A diagram
illustrating the control system set-up and the steps in the algorithm is shown in

Figure 5.28.



Rod }Cugﬂm T 2 .
Tiotor Steps, Wik) ] Stepper motor Duct with fan,
and rod optical trigger, rod 4
| array and
$ microphones.
Fan & j
Motor $ Microphones
| N N N
N
Optical [

Limit sjw tcP, motor, Trigger

encoder caH les for °

each rdd px}s on the o PXI1000B

array. : hassis with

} Rod array o NI4472 DAQ
stepper ° cards.
motor drive hd
cabinet. Trigger and microphone
voltage signals, V(1)
Copper cable
PC with LABVIEW interfacing
RS232 serial and MATLAB code for with MXI
COpmanET steepest descent algorithm. zizissizr;nd
computer
[

1. Trigger NIDAQ through LABVIEW and acquire the voltage signals
V() representing the trigger and microphone signals.

2. Use the phase locked averaging method described in Section 5.3.2.1 to
obtain the tonal pressure vector p;p from the voltage signals acquired
in the previous step and perform modal decomposition described in the
same section to obtain the modal amplitudes and coupling coefficients.

3. Use modal coupling coefficients in step 3 to estimate the cost function
J.

4. Estimate the gradient of the cost function &//0w for the chosen
number of controller rods using the linearised amplitude response and
the radially averaged phase response of the rod.

5. Tterate the control vector w using the gradient estimated in step 4.

6. Convert the lengths obtained in step 5 into motor steps and send
EASITOOL commands through serial RS232 port to cause the rod
actuation by the individual stepper motors.

7. Loop through the above steps until convergence of the cost function

and controller lengths is obtained.

Figure 5.28 Block diagram of the control system set-up and the control

algorithm steps.

166



5.3.2.6. Active control experiments at low speed

In order to demonstrate the working of the algorithm to control noise using the rod
array the list of experiments summarised in the Table 5.3 were performed in the
low speed case where there was only one mode cut-on. The first seven
experiments are baseline cases where in each case a single rod is inserted fully
into the duct and the algorithm is run to see how far the rod is retracted. The later
8 cases deal with the control of the plane wave mode. In these experiments a
single rod (rod 1) was used as a source and two other rods (rods 3 and 5) were
used as controllers to demonstrate noise control. Under each experiment the
number of rods used for the source, and those used as the controllers and the
number of iterations (k) taken for convergence, the convergence coefficients (u)

used and the initial conditions used for the controllers are all listed.

Experiment | BPF | Source | Source | Controller | Controller | (k) | (1)
description | of the | rod* rod rods* rod lengths

fan length (Initial

(Hz) (mm) condition)

(mm)

Retraction | 262 I 200 36 | 10
of rod 1
Retraction | 262 2 200 32 1107
of rod 2
Retraction | 262 3 200 31 [ 107
of rod 3
Retraction | 262 4 200 30 | 107
of rod 4
Retraction | 262 5 200 31 | 107
of rod 5
Retraction | 262 6 200 31 1107
of rod 6
Retraction | 262 7 200 32 | 107
of rod 7
Coutrol 262 |1 200 3 5 [00] 33 1 107
(Casel)
(Case2) 262 |1 200 3 5 [0 0] 34 1107
(Case3) 262 |1 200 3 5 [200 0] 31 | 107
(Cased) 262 |1 200 3 5 [200 0] 31 | 5x10°
(Cases) 262 |1 200 3 5 [200 0] 36 | 2.5x10°
(Case6) 262 |1 200 35 [00] 33 [ 2.5x10°

167



(Case7) 262

200

[0 0]

31

2.5%10°

(Cased) 262

200

[0 0]

31

2.5%10°

Table 5.3 List of Control experiments conducted at low speed. (*Refer to

Table 5.1 for the rod identifications.)

The results for the above experiments are discussed for the baseline cases

and then for the control experiments.

5.3.2.6.1.

Results from the Rod retraction experiments

The results are shown in Figure 5.29 and Figure 5.30 for the length and in Figure

5.31 and Figure 5.32 the power convergences for all the seven cases.
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Figure 5.29 Length convergences for the rod retraction cases (1-4) (x =10,

BPF =262 Hz).
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Figure 5.30 Length convergences for the rod retraction cases (5-7) (u =10,

BPF =262 Hz).
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Figure 5.31 Cost function convergences for the rod retraction cases (1-4) (u=

107, BPF =262 Hz).
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Figure 5.32 Cost function convergences for the rod retraction cases (5-7) (u=

10°, BPF =262 Hz).

The lengths of the rods converge starting from 20 cms in each case to about 2-3
cms. This residual length fluctuation is due to the unsteadiness and the low
amplitude of the tone in the low speed case. The residual unsteadiness in the

estimates after averaging is illustrated in Appendix 5.1 for all the variables. This



was shown to be higher for the low speed without the rod compared to the rest of

the cases.

5.3.2.6.2. Results from the Control experiments

All control cases (Cases 1-8) listed in Table 5.3 previously were conducted using
rod 1 as the source and rods 3 and 5 as the controllers. Rod 1 was extended into

the duct fully (20 cms) to excite the primary disturbance mode.

Before proceeding to perform the control experiments the cost function J
was measured at each point in the gridded space of the control vector consisting of
controller rods 3 and 5 with the source rod 1 turned on. The length of each
controller rod was stepped through 5 cms each time and J was measured at 441
points of the control vector space. The trace of the control algorithm can be
superposed on this error surface to visually examine the convergence on this
surface. Before describing this surface alternative means of generating this error
surface were explored through simulations and then the shape of the simulated
surfaces was later compared with the measured surface of J. The simulated error
surface is generated in each of the following steps as the assumptions in
simulations are relaxed gradually in each step. Each step in the simulation
described below involves obtaining J through the coupling coefficient measured

forrods 1, 3, and 5.

5.3.2.6.2.1. Step 1

Assumptions

a) The response of rod 1 alone is available which is one of those described in

Figure 5.17 and Figure 5.18.

b) Amplitude response of rod 1 is linearised with respect to length, and its

and the averaged phase response 6

d‘Cl‘mll .
obtained as

gradient g, = rod1

1

described in Figure 5.25. The phase is assumed to be constant with the



length variation and hence the gradient of the modulus of the amplitude

variation with respect to length is considered here.

¢) Responses of rods 3 and 5 are obtained via the theoretical phase

.. . . —jp6
transposition relationship, e s

The cost function J can be estimated using Equation (5.3.17).

2

J=¢gC,  +C

prim secondary|

(5.3.20)

where the mode constant ¢ determined from measurements is 0.01. This quantity
is evaluated using the expressions given in Equations (3.5.1) and (3.5.2). This

quantity is evaluated once the complex valued upstream modal reflection

coefficient, R’ , and its complex phase, 1’ , are estimated as expressed in

T

Equation (5.3.7). C, ., =C, , ({, =20cms)and since the gradient of the modulus

prin
ot the amplitude response is known the net secondary coupling coefficient due to
the presence of rods 3 and 5 with lengths /53 and /5 is evaluated as follows:

;
iniT /S
,Jpﬂ'/z

x % x| xe + g xe i xl xe T The above

C

secondary = 8 rod1
calculation was performed in the gridded space of [/3 /5] and the surface obtained
is shown in Figure 5.33. The x-y plane represents the grid of the controller vector
space formed by rods 3 and 5 in the presence of the fully inserted rod 1. Hence
point (0,0) on this plane corresponds to the situation when only rod 1 is inserted
into the duct and rods 3 and 5 are set to zero. Hence the point on the surface
corresponding to this (0,0) on the x-y plane represents the duct power when rod 1
is fully inserted into the duct. The rest of the points on this surface show how the
power varies as rods 3 and 5 are set to their respective lengths in the grid. We see
that the power reduces as the length of rod 5 increases and increases as the length

of rod 3 is increased.
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Figure 5.33 Cost function surface plot of J using assumptions in Section

5.3.2.6.2.1.

5.3.2.6.2.2. Step 2

Assumptions

a) The response of rod 1 alone is available which is one of those described in

Figure 5.17 and Figure 5.18.

b) Actual amplitude and phase response of rod 1, i.e., G,y is taken in

the

following calculation as opposed to the linearised amplitude and averaged

phase in the previous step.

c) Responses of rods 3 and 5 are still obtained via the theoretical phase

. . . -Jjpb,
transposition relationship, e ™ .

Expressing J as the sum of the squares of modal amplitudes as was done before

we have
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2

+C

“secondary |

(5.3.21)

where C =C

prim “rod|

(/, = 20cms),

= Cm(/l (ll = 13 ) x e¥jp(%) + Crodl (ll = 15 ) x e_jp(”) and 2 2001 . The above

secondary
calculation was performed in the same gridded space of [/;, /5] and the surface

obtained is shown in the Figure 5.34 below.

Ao Source Rod 1 (length = 20 cms)

’ Control vector space
3.5- _ : - formed by Rods (3,5)" -

25~

Cost function J (Watts}
N

L 15

107 : g
\,\,\\ i {/ 10

length of rod 5 (cms) length of rod 3 (¢cms)

Figure 5.34 Cost function surface plot of J using assumptions in Section

5.3.2.6.2.2.

This surface retains the same shape as in the previous illustration in Figure 5.33
except at the edges because of the phase response not being strictly constant with
length.

5.3.2.6.2.3. Step 3

Assumptions:

176



a) Individual responses of rods 1, 3 and 5 are available.

b) Actual amplitude and phase responses of the individual rods are taken.
Since individual phase responses are taken into consideration the question

of using the phase transposition relationship doesn’t arise here.

Expressing .J as the sum of the squares of modal amplitudes as was done before

we have

2

J=¢gC, . +C

prim secondary

(5.3.22)

whereC ., =C, ., (I, =20cms), C

prim

=C, . +C, . and € =0.01. The above

secondary

calculation was performed in the same gridded space of [/;, /5] and the surface

obtained is shown in the Figure 5.35 below.

x10 o : By
4 Source Rod 1 (length =20 cms) -
3.5 b gl Control vector space’ :
: formed b_y Rods.(3.5)

Cost function J (Watts)
N
/

- \ o s 20
o - 15

length of rod § (¢cms) length of rod 3 (cms)

Figure 5.35 Cost function surface plot of J using assumptions in Section

5.3.2.6.2.3.

This surface has also the same shape as the previous ones in Figure 5.33 and

Figure 5.34.
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5.3.2.6.2.4. Step 4

Direct measurement of J:

The measured cost function surface along the previously mentioned control vector
space grid of 441 points is shown in Figure 5.36. Unlike in the previous steps, J in
this illustration accounts for the other factors along with the square of the modal
coupling coefficient amplitudes. Though the surfaces in Figure 5.33-Figure 5.36
have the same shape as far as the increase of the lengths of rods 3 and 5 are
concerned, the difference in the magnitudes is obvious due to the assumptions
involved in Steps 1-3. The surface in Figure 5.33 which was estimated using all
the stated assumptions has a peak that is approximately 3 times the magnitude of
that in Figure 5.36 which was obtained through measurements. Hence it was
decided to use the linearised amplitude and averaged phase responses of the

individual rods in the control algorithm.

y 10-5 Source Red :1_(I_eng(ﬁ ='2'0"cms): '
4., _
Fifueeo L " Controtviéctor space ..
g - formed by Rods (3,5) :
25

Cost function J (Watts)

5 )\//\
length of rod 5 3 length of rod 3

Figure 5.36 Cost function surface plot of J obtained through measurement.

Finally the results of the control experiments for cases 1-8 are given
below. For the 8 cases the convergence of lengths and in-duct power level

variations are given in Figure 5.37-Figure 5.42. In-duct power is plotted in watts
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in Figure 5.39-Figure 5.40 and in decibels in Figure 5.41-Figure 5.42 with the
points marked appropriately wherever the power is negative. This is because the
in the in-duct measurements the first harmonic amplitude for the low speed case
without the rod inside the duct was found to be very low due to the phase
incoherence of the tone across the individual blade pass segments in the
microphone signal. The low amplitude tone combined with the unsteadiness
caused the estimate of the retlection coefficient to fluctuate widely. This caused
the power to change from positive to negative values due to the reversal of the
sign of the transmitted sound intensity. This explanation for the negative power
was already given in Appendix 5.1. The in-duct power in the control experiments
described in this section reduced from 67 dB to 42 dB. As already mentioned the
upstream in-duct power is estimated using Equation (5.3.8) once the modal

coupling coefficients and the reflection coefficients are known.
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Figure 5.38 Length convergences for control experiments in cases (5-8).
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Figure 5.42 Cost function (dB) convergences for control experiments in cases

(5-8).

The far-field sound pressure level (at the BPF of 262 Hz) measured from
the B&K microphone 1s given only for cases (2-8) in Figure 5.43-Figure 5.44 as
the capturing of the far-field measurements n the algorithm were begun to be

included from case 2 onwards.
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The above far field sound pressure level (SPL) variation is given for the
BPF and its two harmonics in Figure 5.45 only for case 8. The first harmonic
reduces from 91 dB to 85 dB. The second harmonic reduces from 87 dB to 79 dB.
The third harmonic increases from 77 dB to 82 dB.
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Figure 5.43 Far-field sound pressure level (dB) variations for control

experiments in cases (2-5).
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Figure 5.44 Far-field sound pressure level (dB) variations for control

experiments in cases (6-8).
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Far field sound pressure level vanation ( for BPF and its two harmonics)

92 | 88 83
BPF(262 Hz) 2" Harmonic 3™ Harmonic
\ 87t 1 |
~ 91t 1 \
& . . 82+ A
8 | 86+ I', N |‘ |i|1
& \ | | )
& 90+ | - \ ke
(- | e , 81k | |0 O
i | 85t | | . H
o | | i | [
E 1 .'. ' II| |
o 891 Vi 1 ear 1 ik '
© | — 1 |
& a | | \ §, 80} |
2 » st |1\ M 4 ’
2 88 | [ 1 [ V. ol |
73 | \ 1 |
o | ! \
a I!l ‘| | j |
2 , | 82t | A 19F | -
3 87 - | | \ || - I
2 I I ~ I
o AR =il - v 18—
| o
< e | B
o LA 10 { 78+ T
= g6t | \ | . I
i ! 80~ 4 |
)
| i
85 79 77—
0 32 0 32 0 32
iteration index (k) iteration index (k) iteration index (k)

Figure 5.45 Far-field sound pressure level (dB) variation (BPF and its 2

harmonics) for control experiment in case 8.

Finally the convergence superposed on the error surface contour J for
cases 1-8 are given in Figure 5.46-Figure 5.47. As already seen from the table
listing the experiments cases (1-2) have the same initial condition and
convergence coefficient and follow a jittery trace on the error surface. Similar
jittery trace is obtained with the same convergence coefficient and a different
initial condition in case 3. The convergence coefficient in case 3 is fine tuned
gradually for cases 4 and 5. With the fine tuning the trace gets smoother in case 5.
The fine tuned convergence coefficient is then used in case 6 for the previous
initial condition and is repeated through 7 and 8 obtaining a smoother

convergence each time.
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Control Algorithm trace superimposed on the error surface J
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Figure 5.46 Convergence superposed on the error surface contour J for cases

1-4

Control Algorithm trace superimposed on the error surface J
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Figure 5.47 Convergence superposed on the error surface contour J for cases
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The far-field noise spectra for case 7 with and without control are shown in

Figure 5.48.
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Figure 5.48 Far-field noise spectra with and without control.

5.3.2.7.

Active control experiments at high speed

2000

The list of experiments summarised in the following table were performed in the

high speed case where there were three modes cut-on. Under each experiment the

number of rods used for the source, and those used as the controllers and the

number of iterations (k) taken for convergence, the convergence coefficients ()

used and the initial conditions used for the controllers are all listed therein.

Experiment | BPF | Source | Source | Controller | Initial
description | of the | rod rod rods condition: k) | ()
fan length Controller
(Hz) (mm) rod
lengths(mm)
Control 441 | None 123456 | Allsetto0 38 | 10°
(Casel) 7
(Case2) 441 None 123456 | Allsetto0 37 | 107
7
(Case3) 441 1 200 234567 | Allsetto0 27 | 10°
(Cased) 441 1 2 [[200 34567 | Allsetto0 29 | 10°
200]
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(CaseS) 441 |1 2 |[200 [34567 |Allsetto0 |73 10
200]

Table 5.4 List of Control experiments conducted at high speed. (*Refer to
Table 5.1 for the rod identifications.)

The results of the control experiments for Case(1-5) are given below. The
convergence of lengths in these cases is given in Figure 5.49. The convergence of
cost function (in-duct power in dB) in these cases is given in Figure 5.50. The cost
function oscillates in cases 1 and 2 and reduces only in cases 3-5. For Case 3 the
reduction is from 80.5 to 78.4 dB. It is 83.3 to 81.6 for case 4 and 83.6 to 81.5 for
case 5. Thus the reduction of the in-duct noise power at BPF is around 2 dB in the
last three cases. The individual modal coupling coefficient variations for these
cases are given in Figure 5.51 -Figure 5.53. Of the three modes only modes m=(-
1,0) seem to be exhibiting a variation in cases 3-5 that is consistent with the
overall sound power level variation. This should be expected because the rods
themselves are used as sources in these cases and this is also consistent with the
explanation given in Sub-section 4.3.3 which tells us that mode m=1 cannot be
controlled using the rods on the array when some of these rods are used as sources

due to the in-phase contribution of each rod to this mode.
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Figure 5.53 Coupling coefficient variation for mode m =1 in cases (1-5)

The far field sound pressure level variation (in dB) in these cases is given
in Figure 5.54-Figure 5.56 for three harmonics. The first harmonic shows a
consistent variation for cases 4 and 5 exhibiting a reduction from 107.5 to 105.5

dB. While the second one reduces from 91 to 86 dB for case 3, the third harmonic
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reduces for cases 3-5: from 75 to 70 dB for case 3, from 95 to 88 dB for case 4
and 95 to 86 dB for case S.
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Figure 5.54 Far-field sound pressure level (1st harmonic, in dB) variations

for control experiments in cases (1-5)
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for control experiments in cases (1-5)
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Figure 5.56 Far-field sound pressure level (3rd harmonic, in dB) variations

for control experiments in cases (1-5)

The far-field noise spectra for the case 3 and 5 with and without control

are shown in Figure 5.57-Figure 5.58.
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The times (in hours) taken for completion of Case 8 at the low speed and
cases 3-5 at the high speed are given below with the corresponding time for the

algorithm to reach the reduction of the cost functions mentioned previously.

Case Completion time ( hrs) |Time to attain reduction( hrs)
Low speed (Case 8) |0.9865 0.8009
High speed (Case 3) |1.5852 1.3407
High speed (Case 4) |1.5602 1.1335
High speed (Case 5) |3.826 2.8882

Table 5.5 Performance statistics for the control algorithm.

Since the presence of rods in the duct can cause the production of wakes in
the duct, a test was also conducted to assess the loss of pressure rise across the fan
by measuring the fan inlet and exit pressures. The measured pressure rise across
the fan corresponded to 31 mm at the low speed and 88 mm at the high speed. The
tests showed that there is no loss of pressure at the two fan speeds mentioned here

when the rods are introduced into the duct.
5.4. Summary

The noise control concept introduced in Chapter 1 was implemented in this
Chapter on a test fan rig and an 8-rod controller array using the instrumentation
described in the initial sections of the chapter. The controller rod response was
determined at the BPF for the two fan speeds. Using this response the control
algorithm based on steepest gradient descent was tested at the BPF of the two
speeds. At the low fan speed the BPF tone was unsteady and had very low
amplitude. Hence one of the rods on the array was used as the source to generate
the plane wave mode and two others rods on the array were used as controllers.
Upon running the algorithm the in-duct noise power at the BPF in the duct
reduced from 67 to 42 dB. Far-field spectra also showed reduction in the Sound
Pressure Level at the BPF from 91 to 85 dB. The SPL at the 2" harmonic reduced
from 87 to 79 dB and at the 3" harmonic it increased from 77 to 82 dB. The error
surtace was measured in the control rod vector space for this case and the control
trajectory was superimposed on it and it showed that the convergence of the rod

lengths was sensitive to the choice of the descent step. At the high fan speed a
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case that was run with all the rods on the array turned on as controllers did not
show any reduction in the duct noise power or far-field pressure levels. Cases
where one or two of the rods were made to act as sources and the rest as
controllers did show that the controller rod length variations exhibit smooth
convergence. But these did not result in any significant reduction in the duct noise
power which was around 2dB. The individual modal coupling coefficient
variations showed that this is due to the difficulty in controlling multiple cut-on
modes at this speed which was explained theoretically in Chapter 4. Thus the
method of the thesis could be used to achieve useful noise reductions by

controlling a single dominant mode.
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Chapter 6 Concluding Remarks

The purpose of this thesis was to demonstrate the possibility of adaptive control of
flow disturbance induced tonal noise from fans using a cylindrical rod array. The
first task in this study was to look at an analytical model that describes the
relationship between a flow disturbance induced by cylindrical rods and the noise
radiated from their interaction with the fan blades. The second task was to study
numerically the problem of optimising the noise power when multiple acoustic
modes are controlled using multiple control rods. The final task was to implement
this on a model fan rig.

In Chapter 1 the concept of control of noise using flow disturbances was
introduced. Although the study of the problem of control of tonal noise using flow
disturbances has been taken up recently by a few investigators they focussed on
the passive control of a single mode which required the manipulation of the rod
lengths using trial and error. Since it is known that the focussing of control on a
single mode could lead to the increase in the amplitudes of the other modes. the
current study involved focussing on the optimal control of multiple modes.

The present thesis considered the study of wake generator based control
both numerically and experimentally using Goldstein’s analytical model that gives
the relationship between the rod length and the generated acoustic response
through interaction with the fan blades. The presence of rods in the fan duct
results in the generation of wakes and these wakes interact with the fan blades to
produce unsteady blade forces which then radiate the acoustic field in the duct. An
expression was derived in Chapter 2 for the acoustic pressure field associated with
the interaction of the fan with a flow disturbance. This expression was given by
Goldstein for the case of a fan situated in an infinite duct and this was extended to
the finite duct case by Pitelet (2000) and the present thesis considered the
extension of the finite duct expressions to the semi-infinite duct case to take into
account the configuration of the anechoic termination at the exit of the fan during
implementation. The expression for the acoustic pressure also pointed out that a
term 1in it called the modal coupling coefficient directly representing the blade
response in terms of the unsteady forces experienced by it could be extracted for

each acoustic mode generated by the interacting flow disturbance. It is this term



that is useful in terms of formulating the acoustic response of a rod for control
purposes. Thus by knowing the profile of the flow disturbance the resulting
acoustic pressure field in the duct can be estimated from the acoustic pressure
expression developed in that chapter.

The expression derived in Chapter 2 was used in the control problem
formulated in Chapter 3 which consisted of (i) the determination of the acoustic
pressure field resulting from the wake generated by the presence of a cylindrical
rod in the duct upstream of the fan rotor, and (ii) the problem of optimising the
noise power when several such rods are used for control. The controller response
in the form of the modal coupling coefficients was numerically determined using
analytical expressions for the flow disturbances generated by the control rods and
a simple case of the problem of cancellation of noise was numerically simulated
and studied by using a source rod and a controller rod. It was deduced that
cancellation is possible through translations and rotations of the control rod. It was
later shown that the presence of the control rod can cause the production of modes
other than the mode that is being considered for control and this subsequently led
to formulation of the problem of noise optimisation. The optimisation problem
consisted of minimising a cost function representing the noise power in the duct
which is equal to the weighted sum of the squares of the amplitudes of the modes.
The cost function is in turn a function of the rod lengths on the controller and
hence the minimisation of it would lead to finding these lengths. The algorithm
that was proposed for the minimisation is the steepest descent algorithm which
upon running would iteratively determine the controller lengths using the gradient
of the cost function with respect to the controller lengths. The simple case for the
problem of noise cancellation was repeated numerically using an algorithm based
on the noise optimisation theory developed in that chapter. Thus the optimisation
algorithm was tested using the case of the noise cancellation problem. The
simulation of the optimisation problem presented in that chapter revealed the
importance ot the approximation of the controller response and also of
constraining the control vector. In particular the polynomial approximation led to
less error in the residual power estimates than the linear response. and
constraining the algorithm caused the rod lengths to be positive.

Chapter 4 focussed on the numerical simulation of optimal control of

multiple modes using multiple control rods as the previous chapter indicated that
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focussing the control on a single mode might lead to the increase in the amplitudes
of the other modes. The study involved selection of two disturbances to test the
control of multiple modes. The first disturbance was a spatially harmonic flow
disturbance and the second was a randomly distributed flow disturbance. In both
situations error surfaces were plotted for selected cases and it was shown that the
choice of initial condition could lead the convergence to a local minimum which
is a feature of the steepest descent algorithm. While with the spatially harmonic
disturbance increasing the number of controllers led to increased reduction in the
noise power, the randomly distributed disturbance showed that increasing the
number of controllers for the control of multiple modes is not effective. Although
increasing the number of equispaced controllers in the random disturbance case
showed increased reduction, not all of the controllers used in the array were being
utilised by the algorithm. This had later led to the attempt of controlling this
disturbance using non-equispaced rod arrays. Both types of rod arrays showed that
the circumferential orientation of the controller rod array has a significant
influence on the control. Later the same algorithm was used to test the
cancellation problem involving cancelling N modes with 2N controllers. Testing
this hypothesis with different rod spacings did not yield cancellation in these cases
as we know that steepest descent algorithm could lead convergence to local
minimum. An alternative means of cancelling multiple modes with a combination
of multiple equispaced rod arrays was found to be promising. Since the rod array
circumferential orientation was also found to be an important control variable, the
problem of control with its inclusion in the control vector was also attempted for
two cases, one in each of the two flow disturbances chosen in this chapter. This
was performed to check if its inclusion in the control vector would lead to
convergence to that orientation which was found to be the best when it was
manually varied. For a control case in the spatially harmonic flow disturbance, the
inclusion of the rod array circumferential orientation in the control vector led the
convergence of the control algorithm directly to the point which corresponded to
best orientation found through manual variation. When the same problem of
controlling the array orientation was attempted with a case in the randomly
distributed flow disturbance the control showed that it is very sensitive to the

choice of the convergence coetticient.

203



The noise control concept thus introduced in Chapter 1 was finally
implemented in Chapter 5 on a test fan rig and an 8-rod controller array using the
pressure signals acquired from duct microphones. The simulations discussed in
Chapter 3 and Chapter 4 required the rod responses to be determined from the
flow disturbance profile. In the experimental situation the response estimation
involved the measurement of the pressure signals from the microphones. These
were phase locked with a trigger signal consisting of one pulse per fan-pass and
Fast Fourier Transformed to extract tones which were later decomposed into duct
modes and then into modal coupling coefficients. The controller rod response in
the form of the modal coupling coefficients was thus determined experimentally at
the BPF for the two fan speeds. Using this response the control algorithm based
on steepest gradient descent was tested at the BPF of the two speeds. At the low
speed the BPF tone was unsteady and had very low amplitude. Hence one of the
rods on the array was used as the source to generate the plane wave mode and two
other rods on the array were used as controllers. Upon running the algorithm the
in-duct noise power at the BPF in the duct reduced from 67 to 42 dB. Far-field
spectra also showed reduction in the Sound Pressure Level at the BPF from 91 to
85 dB. The SPL at the 2" harmonic reduced from 87 to 79 dB and at the 3"
harmonic it increased from 77 to 82 dB. The error surface was measured in the
control rod vector space for this case and the control trajectory was superimposed
on it and it showed that the convergence of the rod lengths was sensitive to the
choice of the descent step. At the high fan speed a case that was run with all the
rods on the array turned on as controllers did not show any reduction in the duct
noise power or far-field pressure levels. Cases where one or two of the rods were
made to act as sources and the rest as controllers did show that the controller rod
length variations exhibit smooth convergence. But these did not result in any
significant reduction in the in-duct noise power which was around 2dB. The
individual modal coupling coefficient variations showed that this is due to the
difficulty in controlling multiple cut-on modes at this speed which was explained
theoretically in Chapter 4. Thus the method of the thesis could be used to achieve
useful noise reductions by controlling a single dominant mode.

The current thesis has thus achieved the objective of a successful
demonstration of the implementation of the concept of adaptively controlling fan

tonal noise using wake generators by employing the theoretical relationship
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between the flow disturbances and resulting noise through interaction with the
blades. Though the current study of the control system has focussed on its
applicability to aircraft engines, factors like performance and safety have to be
evaluated before considering implementation. Otherwise the system discussed is
readily suited for implementation in a situation where noise studies are conducted
on models objects in wind tunnels where some form of masking the background
noise of the wind tunnel fan is necessary in order that the noise characteristics of
the model are not contaminated (Allen 2002).

Since the optimisation exercise performed here with the steepest descent
algorithm showed that the convergence to local minima is more probable, future
studies should consider attempting the study using global optimisation techniques

like Genetic Algorithms.
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Appendix 2.1 Reduction of the convected wave equation
to the modified Helmholtz equation

The convected wave equation is

o 1(8 2
Vi—-—| —+UV ,1)=0,
{ c(f (8t+ ] }p(x )

(A.2.1.1)
where
2 2 2 2
v? = 8? n 8_24,124,% 82 58—2+Vi and
oz" or ror r° o0 Oz
0 o 10 1 8] 0
=—+| —+——+——|=—+V .
0z \or ror roo oz
(A.2.1.2)

If p(x,r):Re{p(x)ef“”} is substituted in equation (A.2.1.1) then since the

operator V is linear with respect to the operation of taking the real part (Re{}),

the wave equation can be written as

(A.2.1.3)

Carrying out the differentiation with respect to the time variable ¢ we have

Re{[Vz + [z"—o] [1 _Zoj; U.V]z ] p(x)e’ b=0.

(A2.1.9)

Jort

The above must hold for all values of time . Since ¢’ =0, for arbitrary ¢ we

must have
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[W + (%Jz[l —% U.vﬂ p(x)=0,

(A.2.1.5)

as given in Equation (2.3.5).

Denoting the operator on the left hand side of the above equation as L we have

Lp(x)]=0

(A.2.1.6)
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Appendix 2.2 Expression for £,

The modified Helmholtz equation is
2 . 2
{vz +[9j ( L U.Vj }p(x)* 0.
C, )

(A.2.2.1)

The operator V> can be written in terms of its axial component and an operator

V? acting over the duct cross-section. For example in cylindrical co-ordinates

v [az 10 152] i

s =—+V’.
0z? or’ ror r? oo’ oz* +

(A2.22)

Also since the mean flow in the duct is in the axial direction only we have

. 2 . 2 2 2
(1—LU.VJ =(1—LU,EJ BRI VeI L Y
0} o Oz 0.

(A.2.2.3)

where the Mach number M =U_/c, has been used. We can therefore write the

operator L as

2 2 2
=0 ivirf1-C O pfp 9
iz~ w*’ 0z 0] Oz
(A2.2.4)
which reduces to
2
L=v: i +p* L ogml
Oz Oz
(A.2.2.5)

If we now consider eq. A.2.2.1 individually for each mode we have
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2
V2+kl+p’ % —2jk M %}{Am e Hmi Ny (r,e)}z 0.

(A.2.2.6)

Note that the operator V2 only applies to the cross-section component ¥, (r,0),
p 1 y pp p mn

and also that ¥, (r,0) satisfies

mn

(Vi+r<2 ”m(r,G):O.

(A.2.2.7)
Therefore equation (A.2.2.6) reduces to
2 2 2 az . 0 ~ ko 2
kO _Kmn +ﬁ —2_2.]k0M_ Amn e ™ \Pmn(r’e) :0'
' oz oz
(A.2.2.8)
Defining an operator L,,, that is different for each mode:
Lmn = kg _K:m + ﬂz ?—2 _2]kOME7
Oz oz
(A.2.2.9)
and carrying out the differentiation in equation (A.2.2.8) leads to
(ka - Kz;?m - ﬂzszmz - 2k0Mkrfm )Amn e—//\’:..,z \Pmn (r,9)= 0
(A.2.2.10)
or
ﬂzkrfmz + 2kO‘}\J klfl” + Klill - kg = O >
(A.2.2.11)

which is a polynomial of the 2nd order in %,

mn°

The solution of this equation is



— koM KM - B2, - k)

kuzm = ﬂ 2

which can be written in the form of equation (2.3.7)

2 2 .2
v Tk, - Bx,, — Mk,
mn ,82 .

(A2.2.12)

(A2.2.13)

[R9]
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Appendix 2.3 Expression for nim,,(z)

- t . . .
Axial wave number &’ (from the previous section) is

mn

kzi * ng _ﬂanzm _MkO — ikmn _MkO

mn ﬂ 2 ﬂ 2

(A.2.3.1)

Using the definition for the reflection coefficient given by equation (2.3.16), the

expression for this quantity at any axial location z can be given as

k
220z

xe

SOt
mn 2N
—Y . =€

(A.2.3.2)

2. (2)

Expressing the quantity on the right as e we have

mn

+ 0+
nmn (Z) = nmn + ?Z ‘

(A.2.3.3)
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Appendix 2.4 Expression for b,,,(z)

Equation 2.3.14 is repeated here

+00 o0

Gly)= Y >'b,,(2)¥®,,(.0),

m=-w n=|
(A.2.4.1)

where the term b, (z) is given as follows.

_ ~Jkam 2 ~jknn 2
b (z) =A4,,e +B,e .

mn

(A.2.4.2)

Ann and B,, can be obtained by substituting the above general solution in
Equation (2.3.13) and then integrating over the cross section S after multiplying

each side of the equation by the conjugate of the mode shape function ¥, (;‘,9) to

utilize the mode orthogonality/orthonormality relationship.

jL{Z b, (2)F,, (;-,9)} W (r.0)dS = - [6(x—y)W; (r.6)dS .

(A.2.4.3)

Taking the integral inside the summation we have

> [ (r.0) L, (2)¥,, (r.0)]dS = - [6(x~y)¥; (.6) dS

mn g

(A.2.4.4)

The operator L can be written independently for each mode since the solution is a

linear sum of modes

2 2 2 62 . 0
L Zk(;—K~ +ﬂ~¥—2]koM—.

mn mn aZ
(A.2.4.5)

This results in



L. {b (z) [¥; (. 0)w,,(r.0) dS} = [6(x—y)¥; (-,0)ds,

N N

mn

(A.2.4.6)

and

2
et w7 ettt 2o 0= 002 )02,0.0,),

(A.2.4.7)

Integrating the above equation over an axial distance [ZJ -&,z_+ e] containing the

source and taking the limit € - 0

(k(.)z - K:l” )“‘J‘blnn (Z) dZ + [{ﬁ : % - 2]‘k0M}bn1n (Z)i| = _an‘ln (rj ’95 )

(A.2.4.8)
Since b,,(z) is continuous across the interval
jb ()dz=0 and  [5, ()} =0,and
(A.2.4.9)
{6!7,,,,,(2)}“” _ %0,
oz . . B’
(A.2.4.10)

The Equations (2.3.16) for the reflection coefficients are given here again.



+ Bnm 2 fTm
ma =e
A+
mn
1_ — Brjn — 62177,?,;
an Amn

(A.2.4.11)

In Equation (A.2.4.2) B,, is expressed in terms of A,, via the reflection

0+
mn*

coefficient phase 1°*. Each of the regions z,' and z; of the duct have to be

considered separately as the above three quantities will have different values on

each side of the source:

0+

BT = A" g¥mm

mn mn

BI;N = Ar‘nezjng; *
(A.2.4.12)
We can write b,,, in the form
b1, (2)= 43, o+ 2 ez )
(A.2.4.13)
or
(=M, ) NEVAR
bt (Z)=Ai LA e_J[ B ]‘_'_efn.?.f.e J[ p? ] ’
(A.2.4.14)
where k7F == ’"’"B—z Mk, )
It follows that
ox Mky i 01+k_ 0% o
b: (2)= A2 e’[" ’ ] . ’[” [ ]+e’[” [ ]
(A.2.4.15)
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We now use the notation defined in Equation (A.2.3.3) which results in the
following expression for b,

b (0)=245, U5 st ),

mn Il1l1

(A.2.4.16)

Expressing the equation for b,, in terms of the forward propagating amplitude

Amn We get

i| .0 MkO

mn

by, (z): 247 ej[ # Z]cos( x (z))

(A.2.4.17)

Thus

SO e s )

(A.2.4.18)

Substituting z = z; in equation (A.2.4.10) and (A.2.4.18) and letting € > 0 we

have

Mk k Mk, k
b’ (z 0 _ _mn z ) =b (z) j—2L ——mm
mn ( )[] ﬁ 9 ﬁ ( mn ( ))J mn ( s )[] ﬁ 2 ﬁ ( mn ( ))J
‘Pm” (1 .0, )
5 .

(A.2.4.19)

Since b, is continuous at z = z; we can factorise the above equation by bm”( )

and get

b 6
» (Z ) _ mn (rs )

- k.. [tan(nm” (Hs)) tan(n”"m (zs ))J

(A.2.4.20)



The value of b,,, at any axial position z can be expressed in terms of that at z; as

follows:
rin (Z) _ 81(2_21)%1{20 COS( /jr-;n (Z))
blin (ZX) COS n;ﬁn (ZS )
(A.2.4.21)
or
(oo, MI;O
bt (Z — ‘ LIJI:IH (rs’es)ej( )T ) Cos(n:m(z))
" ey ltan(ny, (2,)) - tan(n,,, 2, ))| cosl, (2.)
(A.2.4.22)
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Appendix 2.5 Spatial derivatives of the Green function

The Green’s function is

. m=+o +o ) - jm@ J ( )eijJ j(z-z,)A;—l;"
G_ I” mn mn \
(x‘y) ,"_Zw ; mn knm Sln(nmn - nlﬂﬂ ) e
x COS( mn ( )) COS( ;n (Z: ))
(A.2.5.1)
The differentiation with respect to 8;is straightforward and results in
6G
=3 jmG;,(My).
(A.2.5.2)
The differentiation with respect to z; gives for a single mode
oG Mk,
nmn —_ G..
o = O (xly)
F —jmé Jmo,
ar’mn(zx)sin( ;n( 5))‘] ( mn ) J (Kmnrx)e
— az\' N’HH k"l” Sln( mn nﬂlﬂ)
xe P cos( = (z))
(A.2.5.3)

mn

. : ; k
Since 1. (z,)=n% + 7 z_ and using the identity sinx =tanxcosx we have

aG,,‘,,, = ][] km" ( mn( )) leo ]G’i" (X)’)-

0z, ﬁ 5} ?
(A.2.5.4)
Therefore
oG* Mk, .
= Z Z ][ - tan(nnm (Z ))_ ﬁzo JGl;n (xy)
(A.2.5.5)
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Defining the term

-kmn Mk
yl:ztm(z.\'):.] 'BZ tan(nlin(zs))_ 'BZO 4

(A-2.5.6)

we have

y).

oG* :
=2 7m(2)Go

a m n

(A2.5.7)
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Appendix 2.6 Force fluctuation distribution on a fan rotor
with identical B blades

Starting with the first step in Equation (2.3.43) which is repeated here the
intervening steps that lead to the final expression are detailed below. A change of

variable from (8 — 27w (s —1)/ B)to 6,’is made to arrive at the final result.

| MsQ

-m
c [Cuﬁl ! ] T + ( c ) I;
nm P J.Jm mn s COS( mn, x( ))e Fp ymn,s ZS rs drs de.s

MsQ
iiad zf—m(?}]

e
<3 [l okl e
= Aose Fao,p (r.,0! '“27[(S_1)/B)y:;n,,y (zj)rs dr, dQS'

Ms
| A8 :f—mG,']

-J
2mp(s-1)/  2mm(s-1) c [c B’
e] / ’ / J.Jm mn s COS( mns( s ))e ’
A 0
OXF (I"Y,Q )ymns( S)rS drs dQS’

& —-mo; ]

B 2x(p+m)(s-1) 2mm(s-1) ( ( C)) _j[c[}'
=Zej / ' / J.J mn s COS mn,s € o
=1 0

o EO (10075, (20 )7, dr, 46!

M_QOJ

=B JJ,,, - S)cos( "m( C))e_j[coﬂ'

AOXFO,p(rs’QS)yl;n,S(Zs)rs drs dQSI
{BT* for(m+n) = sB

’Mm

w“
|
—

“

mn,p

0 for (m +n) # sB.

(A2.6.1)
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Appendix 2.7 Expressions for the Sears function

Goldstein (1976) gives the following expressions for the Sears function and its
subsequent generalisations:

The ordinary Sears function S, given by Sears (1941) is given by the
following expression. This is the expression for the fluctuating lift due to a frozen
sinusoidal gust impinging on a fixed airfoil in an incompressible flow.

I
— jxlKy (= jx)+ K (= )]

S(x) =

(A2.7.1)

where K, and K are the modified Bessel functions.
The two-dimensional compressible Sears function S, given by Landahl

(1961) for an oblique gust incident on an airfoil of infinite span is

e_ja” i2 4o M’,
S.(c,,M,)= /2R e,
o,m \M, (l+ Mr)

(A.2.7.2)

X

where F(x)= J‘e“”’ D& gE is the Fresnel integral. The above expression for the
0

Sears function is for the high reduced frequency of the incident flow gust defined

c . . . . :
in which p refers to the circumferential harmonic of the gust, €2 the

r

_Pp
as o, =

rotational frequency, ¢ the chord of the blade, and U, the relative flow velocity of
the fluid. These terms were already illustrated in Figure 2.5.
For low frequency, the reference cited above gives the following

expression which is due to Amiet (1974).

S(o, /ﬁf)[

Sc(0 s M) =———=s (M2o, B2 )+ ju, (M2c, /B2 e o P

(A2.7.3)

R



where S denotes the ordinary Sears function, S, =+ 1-M],
f(M,)=(1-B)InM, + B, In(l+§,)~In2.
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Appendix 3.1 Derivation of an expression for the
transmitted sound power at any harmonic for the semi-

infinite duct case

The expression for the pressure field with the semi-infinite duct approximation

can be obtained by substituting 1o =+ joo in it to set the downstream reflection

coefficient to zero:

B
> 2 J (k, e Wb gmd .
pyp(x)=B 2 X g/ cos(n,,,,,,sB (z))

p=—o0 n=l

mn""mn,sB

Fay Fay
X (m Dmn,p + },l;n,sB Tmn,p )

. MsBQ
© o J (k rle ™ . A . Yept
= B Z Z '71( 2,"" ) e Mo (m D’"”’P+ }’mn sB Tmn,p )e f
p=-won=l Nmn kl"",SB y
X COS(T],;n,:B (Z))
o o J (¢ F e_f"'e —jno- r - 7
= B Z Z 'N( 2»1" ) e S (m Dmn,p+ },mn sB Tnm,p )(1/2)
p=— n=] Nmn kmn,:B ’
'[MJB?HU;H.JE(Z)J j[M:B?Z_,];”B(Z)J
ol o \e Le P R
(A3.1.1)
where
}/_ _ kmn,:B MSBQ
mnsB T 2 h ’
B> B’
(A3.1.2)

The axial component of the acoustic particle velocity can be obtained by

considering the conservation equation for momentum (Goldstein 1976).
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ap.vlj (x)

0
ik +M—\U ,(z)=~
pncr1|:.] o axj| .\B() aZ

(A.3.1.3)
and
. P .
U.vli (Z) = —(l/pocoM)e—J(k,,/M)z J’%(x)ef(kgw)zdz.
Z
(A3.1.4)
The axial derivative of the pressure field is
apsb‘ (x)
Oz
> * J (K r)e—jlrIB e R . R 1 )
=B “mXmn 7 7 M Dmn + Tm", 1
ZE TN, D Y Tens )
,[M.rBQ_ _
’ —n”"]  MsBQ ko
€ J—+—)
) B> P
j[ﬂfg?z‘";"-m(”] . MsBQ K5
+e J . : )
c,B° B
(A.3.1.5)

The axial component of the velocity field can be expressed in terms of the

pressure field as follows:
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U, (2) = —(1/ p,c, Mye /! J-Gpg(x) b g
z

= (1 p,c,M)
< B i ZJ (x

p=—0 n=1

mn r)e _jmo

N%k

mn'mn,sB

o, -l 1
Il (m Dmn,p+ ynm,sB Tnm,p )(5)

| MsBQ _
j[ 2 z+rlmn,:lf(z)]
e P / (MSBQ + knm ,$B )
(MSBQ + kmn sB _) C ﬂ ﬂz
c,p* B’
X
MsBQ
J 5 2N 55 (2)
€ [ o ] MSBQ kmn sB )
(MSBQ Koun s +_0) c,p? B’
c, B’ B> M
S Tn 58 (2) MsBQ knm,sB
¢ ( 2 2 )
¢, B B
k k
(MSB? n nm,sz 4+ "o )
—peMpaw| PPN 1
o ? e_-/rl;m,JB(Z) (MSBQ _ k"”M‘B ) 2cos(n1;n,s3 (Z))
cf B
MsB< kmn s ka
( 2 EB +—)
¢,B B~ M

(A.3.1.6)

Intensity and hence power transmitted through the duct for any cut-on mode are

given by the following expressions which are mentioned in Goldstein (1976),

xB Jmn (1+M )psB Jnn sB SR +(M/paco) sB Jmn + pacoM‘UvB m.n
(A.3.1.7)
and
P\‘B,m,n = 2 _[]sB,m,ndS
N
(A.3.1.8)
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Considering the modal admittance as defined by B, ., = p,¢,P nn/Upm,» the

expression for intensity as given in Morfey (1971) is as follows:

2

2
.s'B,m,n) + M(l + BsB,m,n )} psB,m,n

1.\'/3,/11,n = (l/poco)kl + MZ)RC(B

(A.3.1.9)

Using the expressions for velocity and pressure, the modal admittance can be

written as follows

ejn;m,JB(z)(MSBQ + kﬂm,sB ) e-jn;,,.,;a(Z)(MSBQ _ knm,:B

)

2 2 2 2

Ber n = _(I/M) COﬁ ﬁ Cﬂﬁ ﬁ
S (MSBQ + kmn,xB +£) (MSBQ _ knm,sB + kg )
B B M B BT M

1
" 2c08{713,,5(2))

M(l - afm,xB) + janm,:Bﬁ ? tan(nn_m,sB (Z))
- MZ

>

l1-a?

mn,sB

(A.3.1.10)

=k, s/k

mn,sB o

where a

mn_sB

The modal admittance as expressed above is complex valued and it varies axially

along the duct. The axial dependence is due to the term tan(n,,, ;(z)) which is

also complex valued. Further simplifications in the expression for modal

admittance can be obtained by resolving the complex valued reflection coefticient.



mn,sB mn sB

- 0— 0- . 0- _ . 0-
T’nm,xli (Z) = T’um,sB + ﬁ 2 z= '};mn,xi} + ]¢mn,sl3 + ﬁ 2 z= '};mn,sﬁ (Z) + ]¢mn,5‘l3 s

(A.3.1.11)
M(l - a:m,s[;? )(COSh 2¢I?I;,SB + COs 2'5;",58 (Z))
B + anm sB ﬁ ? (] Sin 2'}7:/;n,x[3 (Z) - Sinh 2¢r(r)1;,s8 )
o (1 amn sBMz )(COSh 2¢r?1;,s[3 + COs 2'5;;_"1,5'8 (Z))
(A.3.1.12)

Having expressed the modal admittance as above, the sound intensity for any

harmonic can be obtained as follows:

M(l amn s8 )(COSh 2¢ +Cos 2517"' sB (Z)) + amn 5B ﬁ Slnh 2¢

Re(B ) _ mn B mn.sB
sB,m.n (1 a M )(COSh 2¢m,,;3 +COos 25 mn,sB (Z))

mn,sB

(A.3.1.13)

(@5 B sinh 205, — M(1-a2, ,)(cosh 205 , +cos 255, ()
2 | o B sin 265, ()]

B — H
s (1 amn rBM 2 )2 (COSh 2¢r?1r_1,_\‘3 +cos 257;11,:3 (Z)) ?
(A.3.1.14)
(1 + Mz)Re(BSB BN n) + M(l + ‘BAB m n| )
2Mamn sB ﬁ COSh 2¢nm sB + anm sB ﬁ (1 + anm VBM )Slnh ¢mn B
(1 amn YBM ) (COSh 2¢nm B +COs 2'}7:1:”1 vB( ))
(A.3.1.15)

228



(1+M*)Re(B,,,,,)+ M(1+|B

sB.m.n )

2Manm \BIB COSh2¢nm sB + amn sBIB (1 +amn sBM )Slnh 2¢
(1-o? ,M?*)? (005h2¢,,m,s3 +co0s2&,, 5(2))

sB,m,n

mn.sB

mn,sB

(A.3.1.16)
2Ma lfm sBlB4 COSh 2¢1?1; sB
nm XBﬂ (1 + amn ?BM )Slnh 2¢mn sB 2
\B m,n (l/poco) sB N
(1 mn sHM ) (COSh 2¢mn B +cos 25111" 5B (Z))
(A.3.1.17)

where the squared amplitude of pressure in any harmonic is the sum of the squares

of the amplitudes of the cut-on modes.

J ( mnr) ’)¢m
-——————6

2
A A - 2
‘p\H = B2 Z Zl N4 k__ (m D”’"sp+ y;n,:B T’""’p) ‘cos(nr;n,:B (Z)]
p==n mn
2 & J (Kmn ) 2
:Bz _Z_‘, _]W 2¢ (n’lenp‘f‘}/mnsB Tmnp)
% (COSh 2¢m;,x}3 +Cos 251;11,58 (Z))

2

(A.3.1.18)

Power in any harmonic is



5 =2 j]w ds

=B*(/p,c,) Z Z k g2

p=—on=1 \J

MR 5B

2 mn xBﬁ COSh 2¢
+amn TBﬁ (1+amn TBM )Sln‘h2¢
(1 mn sBM )

mn sB

mn,sB

Fa) Fa) 2
X (m Dn:n,p'f‘}’"m B Tmn,p)

4

2« o - 1 manﬁ 2¢°'

=B“(1/p,c,) 2 Z g
Cre, )p=—«>n1N ko (-a, M)

mn mn,sB

ez¢,.°,;.,g

(+a, M)

mn . sB

Fay
Tmn,p)

e ~2¢0m .5

—T(l—a M)?

mn,sB

(A.3.1.19)

The sound power thus obtained is independent of the axial location, indicating that
the acoustic energy conservation is satisfied, as any variation in it has to be
accompanied by the presence of acoustic sources or sinks. The expression also
takes into account only the cut-on modes as the resolution of the complex

reflection coefficient into amplitude and phase for cut-off modes would yield a

different dependence on the axial coordinate. Letting q),?,;,sB — —oo (to account for

zero upstream reflection) results in the intensity expression applicable for the

infinite duct case.



1 amn,sb’iB4
NZLE (-al, M)

mn'Y . mn,sB

R\-B = Bz(l/poc())

p

|||M8
Ms

1
[_ _2_ (1 - amn,xl}M)z j

w0 N

A N ?
X (m DmH,IJ + ymn sB Tmn,p)

2

A I8

4
L B .
mn.sB (m DmH,P + ymn,.s‘B Tmn,p)

M)?

=-B*(1/2p,¢,) 3 3
( Po (’)p=—w"=1N2 k:“,, (l+a

mn mn,sB

(A.3.1.20)

This expression agrees with that given in Goldstein (1976) for the infinite-duct

approximation.
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Appendix 5.1 Unsteadiness analysis

A.5.1.1 Introduction

As mentioned in Chapter 5 material is presented here relating to the unsteadiness
analysis for the following quantities in the table below against the speeds
indicated. This table tells us that the unsteadiness in the far-field measurements is
quantified by analysing the tonal amplitudes and pressure levels from the far-field
B&K microphone. Similarly the unsteadiness in the upstream in-duct
measurements is quantified by analysing the tonal amplitudes registered on the
upstream in-duct microphones and the amplitudes of the modes which were
obtained through decomposition of the tones and the sound power resulting from
the summation of the squares of the modal amplitudes. The unsteadiness in the
downstream in-duct measurements is given by analysing the tonal amplitudes
registered on the downstream in-duct microphones. Graphs illustrating the effect
of successive (incremental) and moving averages variations are presented for the
cases of the 30 s data capture on the microphones. Both types of averaging were
explained in Chapter 5. The incremental average variation was already presented
in Figure 5.14 and Figure 5.15 for the tonal amplitude measured from the
upstream in-duct microphone for the two speeds of the fan for the case without the

rod inserted into the duct.

Position along the fan duct Quantity

(with BPF corresponding to the two fan

speeds)

Far field (for BPF=262 and 441 Hz) Tonal amplitude and phase (for the

Data capture made through far-field | first three harmonics)

microphone. Sound pressure level (first three
harmonics)

In-duct Upstream (BPF=262 and 441 hz) | Tone on the first microphone (first

Data capture made through in-duct | three harmonics)

upstream microphone. Incident and  retlected  modal

amplitudes (B, and 4, )
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Modal coupling coefficients (C,,,)

Modal reflection coefficients (R,,,)

In-duct sound power level (P)

In-duct Downstream (Only BPF=262hz) | Tone on the first microphone ( first

Data capture made through in-duct | three harmonics)

downstream microphone. Incident and  reflected modal

amplitudes (an and A, )

Modal reflection coefficients (R,,)

Table A.5.1.1 Quantities presented for the unsteadiness analysis.

As mentioned in Chapter 5 the fan was run at two speeds at which the
experiments described were all conducted. The two speeds as measured from the
counts of the trigger pulses turned out 1767 and 2934 rpm which correspond to
29.4 and 48.9 rev/s. Since each revolution of the fan rotor will have one
instrumented blade pass, a 30 s microphone signal has around 1500 blocks of
instrumented blade passes at the high speed and around 900 blocks at the low
speed. Only 1400 blocks at the high speed and 800 blocks at low speed in the 30 s
data capture were used for the successive averaging which translates to 28 s at
high speed and 26.66 s at the low speed. For moving averaging each average
spanned 800 blocks at high speed and 400 at the low speed. As mentioned in
Chapter 5 successive averaging illustrates how many blocks are to be chosen for
averaging during subsequent experiments. With these many blocks the moving
average should illustrate and quantify any residual unsteadiness in the averaged
estimates. Using the variations obtained from the moving averaging the residual
unsteadiness is given in terms of the mean and standard deviations for the in-duct

sound power and far-field pressure levels at the end of this appendix.

A.5.1.2 Far field quantities:

In this section unsteadiness variations in quantities pertaining to the measurements
of the far field microphone are given for the two fan speeds.

Far field tonal amplitude and phase (262 hz BPF):
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As said previously the 30s signal from the far-field microphone at the low fan
speed had around 800 blocks of instrumented blade passes. Each block
corresponding to a single instrumented blade pass was Fast Fourier Transformed
and the complex tonal amplitudes of the three harmonics were obtained and these
amplitudes were incrementally averaged as the number of blocks was increased
from 1 to 800. The effect of this incremental averaging on the amplitude and the
phase of the three harmonics can be seen in graphs (i-vi) of Figure A.5.1.1. The
variation indicated in blue is for the case when there is no rod inside the duct and
that in red is when a single rod of 200 mm length is inserted into the duct. For
example the first harmonic amplitude is shown for the cases with and without the
tonal amplitude is higher with the rod inside the duct than that without the rod. As
the averaging proceeds from 1 to 800 blocks the initial unsteadiness during the
first few averages should die out. This seems to happen for all the three tonal
amplitudes and phases for the case with the rod inside the duct. It can be seen that
the tonal phase exhibits unsteadiness in the first two harmonics for the case
without the rod inside the duct as seen in graphs (iv-v). Though the unsteadiness
in the amplitudes for the case without the rod in the duct is not obvious in these
graphs, they will be made obvious in the graphs presented later in this section for

the sound pressure level.
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Figure A.5.1.1 Effect of incremental averaging on far-field BPF tone (262 hz)

and its harmonics: (i-iii) tonal amplitudes (iv-vi) tonal phases.

The averaging was also performed using the moving averaging method described
in Chapter 5. The averaging was performed over 400 instrumented blade passes
commencing from the start of the first instrumented blade pass in the 30 s signal
and the averaging was repeated for every set of 400 instrumented blade passes
commencing from each subsequent instrumented blade pass. Since there are
around 800 instrumented blade passes in the 30 s signal the averaging described
can be repeated only 400 times. These 400 averages are represented in the
varlation shown in graphs (i-vi) of Figure A.5.1.2 for the tonal amplitudes and
phases. It can be seen that the estimates of the amplitudes and phases have the

same values as were seen for the incremental averaging in Figure A.5.1.2. It can

235



be seen that the phase unsteadiness in the first two harmonics for the case without
rod in graphs (iv-v) of Figure A.5.1.1 is carried over to the moving averaged
variation also. This unsteadiness in the phase is due to a wide variation of the
phase of the tones across the individual instrumented blade passes. This should
also cause the corresponding averaged tonal amplitudes to show similar
unsteadiness. It is not obvious from the variations shown here. This unsteadiness
as mentioned previously will be obvious in the sound pressure level estimates
shown subsequently. As mentioned in the beginning of this appendix the residual
unsteadiness in these variations is described at the end of this Appendix in terms
of the mean and standard deviation for these tonal amplitudes and the quantities
listed in Table A.5.1.1.

Similar incremental and moving average variations are given for the above
quantity at the higher fan speed and also for the rest of the quantities at the two
fan speeds presented subsequently in this and the later sections of this appendix.

Important consequences of the unsteadiness are described wherever necessary.
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Far field tonal amplitude and phase (441 hz BPF):

The effect of incremental averaging on the amplitude and the phase of the three
far-field harmonics for the high speed case can be seen in graphs (i-vi) of Figure
A.5.1.3. Corresponding moving average variations are given in graphs (i-vi) of
Figure A.5.1.4. At this speed the phase of the third harmonic without the rod

exhibits more unsteadiness.
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FFar field Sound pressure level (262 and 441 hz BPF):

Previously in this section the unsteadiness variations in the tonal pressures were
presented in Figures A.5.1.1 — A.5.1.4 for the two speeds and the sound pressure
level variations estimated from the tonal amplitudes are described here. The
incrementally averaged variations for the far-field sound pressure level at the two
speeds are shown in graphs (i-vi) of Figure A.5.1.5. Graphs (i-iii) correspond to
the low fan speed and (iv-vi) correspond to the high speed. The undulations in the
amplitude of the tones described previously are now very obvious in the sound
pressure level variations for the first and second harmonics at the low speed and
the third harmonic at the high speed for the cases without the rod. The
corresponding moving averaged variations in the sound pressure level for the two

speeds are shown in the graphs (i-vi) of Figure A.5.1.6.
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A.5.1.3 In-duct Upstream quantities:

In the previous section the description of the unsteadiness focussed on the far-field
quantities. In this section unsteadiness variations in quantities pertaining to the
measurements of the first upstream in-duct microphone are given for both the fan
speeds.

Tonal amplitude and phase (262 hz BPF):

Incrementally averaged variations are given for the estimates of the low speed
tonal pressures here in the graphs (i-vi) of Figure A.5.1.7. As seen in graph (iv)
the fluctuation in the phase of the first harmonic without the rod is very high. This
is because the tone at the BPF for the case without the rod doesn't exhibit phase
coherence across the instrumented blade passing segments in the trace of the
acquired signal from in-duct microphone. This was also the case with the far-field
measurements as mentioned previously. The phase fluctuation in the first
harmonic can also be seen from the moving averaged variations which are given
in graphs (i-vi) of Figure A.5.1.8. Hence the amplitude of the tone for this case is

also very low and very small compared to other harmonics and is also unsteady.
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Tonal amplitude and phase (441 hz BPF):

Incrementally average variations are given for the estimates of the high speed

tonal pressures here in the graphs (i-vi) of Figure A.5.1.9. Graphs (i-vi) of Figure

A.5.1.10 give the corresponding moving average variations.
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Figure A.5.1.9 Effect of incremental averaging on the BPF tone (441 hz) and

its harmonics measured on the in-duct upstream microphone: (i-iii) tonal
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Time(s)

0 16
T F ] I
i o % 1 ] 1 —— without rod
s PP B 6 with rod
g” 1 %1‘” 1 g14 ]
§12 212} 212t 1
= e =
Elm = g 10+ §10
51 14 o
Q 8 = 6 8 g 8 1
5 E E
Es 2 st g6 -
r=] o ke
% 4 | & 4¢ . a4l
- (i) | (i) [l
2 1 2t 2
0 J OIL___ __._-_-_*q_ T 0 e e ]
0 800 0 800 0 800
No of moving averages 600 each
3[ 1 3 1 3F ]
2 2 1 ) |
—_ e —=
- IO I ;
T A T E 1 1 @ 1
g 8 &
a Q KS)
g o 1 80 - 80 1
g (iv) = |, el v) B _,! g (vi)
- | = g - - | £
E4p =4 1 et 1
b7 N | 3
-2 T2 ! -2t 1
-3 | sl e ) ]
0 800 0 800 0 800

Figure A.5.1.10 Effect of moving averaging on the BPF tone (441 hz) and its
harmonics measured on the in-duct upstream microphone: (i-iii) tonal

amplitudes, (iv-vi) tonal phases.



Upstream incident and reflected modal amplitudes and phases (262 hz BPF, m=0):
Effect of averaging on tonal unsteadiness from the first upstream in-duct
microphone measurements at the two speeds was described in Figures A.5.1.7 —
A.5.1.10. The incremental average variation of the incident and reflected modes
resulting from the decomposition of the low speed first harmonic duct tones
measured on all the 14 in-duct microphones are given here in graphs (i-iv) of
Figure A.5.1.11. The BPF at the low speed has only the plane wave mode (m=0)
that is cut-on. Since the tone at the BPF for the case without the rod was small and
exhibited significant unsteadiness the resulting incident and reflected modes also
show this variation. Their amplitudes are small compared to the case with the rod
inserted in the duct. Corresponding moving average variations are shown in

graphs (i-1v) of Figure A.5.1.12.
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Upstream incident and reflected modal amplitudes and phases (441 hz BPF,
m=(-1, 0 1)):

The first harmonic at the high speed has three cut-on duct modes (m=(-1,0,1)). As
in the Jow speed case the high speed first harmonic tonal pressures measured on
the in-duct upstream microphone array is decomposed into these three modes. The
effect of incremental and moving averaging on the variation of the incident and
reflected amplitudes of these modes are given in graphs (i-iv) in each of the

Figures A.5.1.13 — A.5.1.18.
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Figure A.5.1.13 Effect of incremental averaging on upstream incident and

reflected mode (m=-1, 441 hz BPF): (i-ii) amplitudes, (iii-iv) phases.



Time(s)

4 —— without rod
— wﬂw rod |

3t 1

® 2 (i)

(B, (M=-1)) amplitude(Pa)

Reflected upstream mode
(A, (M=-1)) amplitude(Pa)
Incident upstream mode

0 800 0
No of moving averages 600 each

800

1t (i)

(A (m=-1)) phase(rad)

(iv)

(an (m=-1)) phase(rad)

Reflected upstream mode
Incident upstream mode

e =y

800

Figure A.5.1.14 Effect of moving averaging on upstream incident and

reflected mode (m=-1, 441 hz BPF): (i-ii) amplitudes, (iii-iv) phases.

S
ro



Time(s)

0 28
. 4 61 J
/E -
o St gg:, 51 ———— T ]
8L D) ez )
EQ = (ii)
E‘g 4 ) =% 4+t 1
ey oE
7 E 3 J 38 31 I
%8 21
SE R
k] 2 B E 2 |
35 el
o= - c | . T— -
&= 1 1 i R i
giEE e e =] 0
0 1400 0 1400
blocks averaged incrementally
3 P ———— 31 :
[ “._~—"" — without rod
with rod
2 1 2t ]
9 o
B85 35
B8 - 1 g2 1 |
ED e Mo gesl e
a & (iii) Eo - = —
L2 | o= (iv)
g2 Of =26 ot J
55 25
o 1 =11
9 = 4l < £ ; = - ST P —
g e 4 S -
tvq!E ) = B = o E
S cm
. 2 £ gl |
-3 3t 1
0 1400 0 1400

Figure A.5.1.15 Effect of incremental averaging on upstream incident and

reflected mode (m=0, 441 hz BPF): (i-ii) amplitudes, (iii-iv) phases.
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Upstream modal coupling coefficient amplitudes and phases (262 hz BPF, m=0):

From the modal amplitudes the coupling coefficients were determined and the
effect of incremental and moving averaging on the low speed plane wave modal
coupling coefficient is given in Figure A.5.1.19. The same variation sensed in the

modal amplitudes of Figures A.5.1.11 —A.5.1.12 is also seen here.
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Upstream modal coupling coefficient amplitudes and phases (441 hz BPF, m=(-

1,0,1)):

The effect of incremental and moving averaging on the high speed modal coupling

coefficients are given for the three modes in Figure A.5.1.20 — A.5.1.21. The same

variation sensed in the modal amplitudes of Figures A.5.1.13 —A.5.1.18 is also

seen here.
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Figure A.5.1.20 Effect of incremental averaging on upstream modal coupling

coefficients (m=-1,0,1; 441 hz BPF): (i-iii) amplitudes (iv-vi) phases.
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Upstream modal reflection coefficient amplitudes (262 hz BPF, m=0):

The reflection coefficient was estimated for the low speed plane wave mode from
the variations given in Figures A.5.1.11 —A.5.1.12. The effect of averaging on the
plane wave mode reflection coefficient is given in Figure A.5.1.22. The low
amplitude and high unsteadiness in the tone at the BPF for the low speed case
without the rod which also caused similar levels of unsteadiness in the incident
and reflected modal amplitudes also causes the reflection coefficients to exhibit
large fluctuations. The reflection coefficient is seen to fluctuate above and below
1 for this case in contrast to the case with the rod. This is because the first
harmonic amplitude for the low speed case without the rod inside the duct was
found to be very low due to the phase incoherence of the tone across the
individual blade pass segments in the microphone signal. The low amplitude tone
combined with the unsteadiness caused the estimate of the upstream duct
reflection coefficient to fluctuate widely above and below 1. For the case where

the rod is inserted into the duct this coefficient is steady.
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Figure A.5.1.22 Effect of averaging on upstream modal reflection coefficient

(m=0, 262 hz BPF): (i) incremental (ii) moving.

Upstream modal reflection coefficient amplitudes (441 hz BPF, m=(-1,0,1)):
The reflection coefficient was estimated for the three high speed cut-on modes
from the variations given in Figures A.5.1.13 —A.5.1.18. The effect of averaging

on the three cut-on modal reflection coefficients is given in Figure A.5.1.23.
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Upstream in-duct sound power level (262 Hz BPF):
The effect of averaging on the low speed in-duct sound power level is given in

Figure A.5.1.24. We know that the estimation of in-duct sound power can be
performed by using the duct modal amplitudes and reflection coefficients. Note
that the power measured in Watts is negative during some of the averages for the
case without the rod. In the illustration below the absolute of the power is plotted
in decibels and wherever the power in watts has gone negative it is indicated
appropriately by a marker which switches between ‘0’ and ‘1’ when the sound
power changes from positive to negative. The negative power situation arises only

at the low speed with no rod projecting inside the duct. This is because the
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estimate of the reflection coefficient at these instances is greater than 1 as
described previously in Figure A.5.1.22 in this Appendix. When the estimate of
the reflection coefficient alternates between values above and below 1, the
transmitted sound intensity vector is undergoing a reversal in the sign. The
transmitted sound power becomes negative when the reflected intensity 1s greater
than the incident intensity in magnitude and hence the absolute value is shown at

these instances.
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Figure A.5.1.24 Effect of averaging on in-duct upstream sound power level
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Upstream in-duct sound power level (441 hz BPF):

The effect of averaging on the high speed in-duct sound power level is given in

Figure A.5.1.25.
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A.5.1.4 Induct Downstream quantities:

In the previous two sections the effect of averaging on the unsteadiness in the far-
field and in-duct upstream quantities were thoroughly dealt with. In this section
unsteadiness variations in quantities pertaining to the measurements of the
downstream in-duct microphone are given. These measurements were made only
at the low speed as there is only an axial microphone array in the downstream
which cannot be used to decompose the radial modes in the high speed harmonics.
Downstream tonal amplitude and phase (262 hz BPF):

The effect of incremental and moving averaging on the three tones measured on
the first downstream microphone at the low speed are given in Figures A.5.1.26 —
A.5.1.27. It can be seen that the unsteadiness is lesser that what was observed on
the upstream measured tonal amplitudes which were given in Figures A.5.1.7 —

A.5.1.8 of Section A.5.3.
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Downstream incident and reflected modal amplitudes and phases (262 hz BPF):

The downstream first harmonics described in Figures A.5.1.26 — A.5.1.27 were
used along with those measured on the rest of the downstream microphones in the
decomposition of downstream incident and reflected plane wave mode. The effect

of averaging on the amplitudes of these are given in Figures A.5.1.28 — A.5.1.29.
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Downstream modal reflection coefficients (262 hz BPF):

Finally the effect of averaging on the downstream plane wave reflection

coefficient 1s given in Figure A.5.130. Though there is fluctuation in this

coefficient in the case without the rod in the duct, this quantity doesn’t exceed 1 as

opposed to the upstream mode mentioned previously.
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A.5.1.5 Summary:

In general it could be seen that the tonal fluctuation was observed in the far-field
quantities only for some harmonics in the cases without the rod inside the duct. In
the in-duct measurements the first harmonic amplitude for the low speed case
without the rod inside the duct was found to be very low due to the phase
incoherence of the tone across the individual blade pass segments in the
microphone signal. The low amplitude tone combined with the unsteadiness
caused the estimate of the upstream duct reflection coefficient to fluctuate widely
above and below 1. This caused the power to change from positive to negative
values due to the reversal of the sign of the transmitted sound intensity. Table
A.5.1.2 lists the mean and standard deviations in the far field sound pressure level
and the in-duct power level from the moving average illustrations shown before.
The estimates are not shown for the in-duct power for the low speed case without
rod as the power fluctuates through negative and positive values. Based on the
effect of averaging on the unsteadiness of the various quantities described in this
appendix. it was decided that microphone signal acquisition during subsequent
experiments should be long enough to perform 400 averages at the high speed and
600 averages at the high speed. This means that in all end-results like the far-field
sound pressure and in-duct sound power levels the error involved is given by the
standard deviation listed in the table below. Whilst selection of the number of
averages for subsequent experiments was the reason to perform incremental
averaging, the reason to perform moving averaging and illustrate its effect on the
various quantities throughout this appendix was to determine the standard
deviations in all those quantities after the choice of the number of averages is

made.
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Low speed High speed Low speed High speed
Quantity Standard| Standard
mean mean| deviation| deviation
Without  With|Without WithWithout| With|Without| With|
rod Rod rod| Rod rod Rod| rod| Rod
Sound
pressure
level (dB)
(lsl
harmonic)|53.3481(91.7103| 91.362/103.8379| 3.452/ 0.115] 0.5013]|0.1236
(2nd
harmonic) 54.7748/87.9751/80.9671| 93.7363| 1.29950.1135| 1.3111/0.3018
(3rd
harmonic)|59.0014/77.0681|57.2851| 74.3186| 0.3942/0.1429| 6.35191.8808
In-ducﬂ
power
(dB) 68.2789(72.9171| 82.0149 0.1247) 0.6450/0.0779

Table A.5.1.2 Unsteadiness estimates from measurements.
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Appendix 5.2 The phenomenon of mode scattering and its
effect on controller acoustic response

In the experiment to determine the controller response, a single rod is placed
upstream of the fan at the azimuthal zero reference and the wake produced from it
is allowed to interact with the fan and this causes the production of the acoustic
modes. These modes propagate in both directions along the duct. The
circumferential order of these modes determine whether they spin or cause a
piston-like reciprocating action as they propagate. Modes with a circumferential
order other than zero spin in the circumferential direction. The spinning rate or the
rotational speed of these modes differs for each mode. Section 3.2 described the
contribution of these spinning modes to the production of harmonics of blade
passing frequency in the case of interacting flow disturbances with the moving fan
blades. Since spinning acoustic modes also represent a form of disturbance in the
flow the interaction of these with the stationary rod is examined in this section.
This phenomenon of interaction acoustic modes with rotating blades is also
responsible for the production of sum and difference tones (Cumpsty 1974,
Groeneweg 1991). In the recent times, Holste and Neise (1997) have reported the
presence of these modes in the results of the experiments conducted on a propfan
consisting of two contra-rotating rotors and a downstream array of seven struts.
Their experimental results have shown the presence of modes whose order cannot
be explained using the strut-rotor or the rotor-rotor interaction. They attributed
these modes to the modes from the above mentioned interaction which propagate
and impinge on the struts and transform from an interaction with it. They have
even shown from their results that these modes can have amplitudes as high or
even higher than the primary modes. Considering the propagating primary modes
akin to rotor wakes, the order of the scattered mode can be explained using the
rotor-stator interaction theory. In the present problem of the controller response
determination the discussion of this phenomenon is made in order to offer an
explanation for the variation in the amplitude response for the plane wave mode
across the controllers spaced out in the azimuthal direction as is the case with the
8 rod equispaced controller array used in the current rig.

In the experiment where the fan was run at a speed that gave a blade

passing frequency of 441 Hz there were three cut-on modes present in the syvstem
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with their circumferential orders being m = -1, 0 ,1. They are generated from the
interaction of the fan blades (B=9) with the flow modes of order p = 10, 9 ,8. The
speeds at which the modes m = -1 ,1 rotate (since the plane wave mode doesn’t
spin) are given in the Table A.5.2.1 below. The order of the modes is determined

using the relationship m=sB-p.

No. of fan|Flow mode | Acoustic Speed of the | Speed of the

blades B order p Mode order m | fan blades (2 | spinning
(m=sB-p, (rad/s) acoustic mode
where s=1) BY/m  (rad/s),

where m= 0

9 10 -1 Q 90 (=BPF)

9 8 1 Q -9Q(=BPF)

Table A.5.2.1 Spinning modes generated at the fan origin.

It can be seen that the modes spin at a speed corresponding to the BPF.
These modes propagate upstream and interact with the rod and produce modes of
a different order. This transformation is termed as the mode scattering
phenomenon. The order of the modes produced from the interaction can be known
by considering the relationship for the rotor-stator interactions. m=sB+kV gives
the order of the modes issuing out of the interaction of the rotor wakes of order
sB of a B bladed rotor with a stator of I/ vanes, where £ is an integer. In the case of
the acoustic mode-rod interaction this relationship can be used with term sB
replaced by the order of the spinning mode 7 and the term A} retained to
represent the rod order. Representing the order of the scattered mode as 7, we
have m,=m+k]" tfor the acoustic mode-rod interaction.

The Table A.5.2.2 below illustrates the determination of the order of the

modes resulting from the acoustic mode-rod interaction case.

No. of rods V' | Interacting Scattering Speed of the | Excitation of
acoustic mode | acoustic mode | interacting the scattered
order n1 order 71 acoustic mode | mode (rad/s)
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(mg=m+kV) (rad/s)

1 1 0 (k=1) 90 90 (=BPF)

1 1 0 (k=1) 902 90 (=BPF)

Table A.5.2.2 Scatter modes produced through interaction of spinning modes

with the controller array rod.

As explained in the above table, the two spinning modes present at the
BPF mentioned before interact with the rod and scatter into the plane wave mode.
The excitation of the scattered plane wave mode is also at the BPF since the
interacting modes spin at this frequency. Other modes can also result from
scattering if one were to substitute different integral values for k. Only the plane
wave mode i1s considered here for explaining the variation of the amplitude
response along the circumferential direction of the 8 rod equispaced controller
array used in the current rig. Thus the effective amplitude of the plane wave mode
1s the resultant of the original plane wave mode from the fan-flow disturbance
case and the case of scattering. The original plane wave mode has its origin at the
fan and the scattered mode has its origin at the rod. Both these combine at the rod
plane and the resultant amplitude can have a variation with the circumferential
orientation of the rod as explained below. This is explained in a two-step process.
The tirst step to account for the above variation is the phase change of the original
modes at the fan origin due to the change in the rod’s angular disposition. This is

7% where 6 is the angle of the rod’s

understood from the relationship e
disposition from the circumference and p is the order of the flow mode that
induces the corresponding acoustic mode of order m. The phase of the plane wave
mode is to be reckoned with respect to the axial coordinate of the fan origin and
the phases of the spinning modes with the circumferential coordinate of the same.
Assuming all modes have zero phase at the fan origin due to the interaction with
the flow disturbance issuing out from a rod placed at the vertical reference, the
phase change suffered by the three modes when the rod’s azimuthal position is
stepped through 43" increments are given below in Table A.3.2.3. The phase
change from each mode is given by (-p8). According to the information in this

table the spinning mode m=1 doesn’t suffer any phase change at the fan origin.

The phase change in mode m=-1 corresponds to an amount which is 2 times the

(§9]
~J
]




rotation of the rod and with the mode m=0 it is equal to one times the same

quantity.

Rod position, Phase change of | Phase change of | Phase change of
mode (m=-1, p=10), | mode (=0, p=9), | mode (m=1, p=8),

0 =nx45 (deg), | -pf = -10nx45=|-pO=-9nx45= -pf = -8nx45 =0

where n=0,7 -nx90 (deg) -nx45 (deg) (deg)

0 0 0 0

45 -90 -45 0

90 -180 -90 0

135 -270 -135 0

180 0 -180 0

225 -90 -225 0

270 -180 -270 0

315 -270 -315 0

Table A.5.2.3 Phase change of the modes at the fan origin due to rod rotation.

The second step examines the phase of the scatter mode m,=0 resulting
from the interaction of the acoustic modes m = -1, 1 which happens only after they
travel towards and reach the rod. The modes travel towards the rod and let’s
assume they arrive at the same phase which they started with from the fan origin.
Then at the rod plane it can be seen from the above table that the rod moves away
relative to the mode m = -1 by (-n7/4- n'2) radians and by -nz'4f radians relative
to mode m = 1. The unsteady forces generated on the rod and hence the radiated
scatter modes due to the impingement of the two modes 7 = -1. 1 on the rod also
undergo the same phase change. For mode m=1 let’s say the scattered n1,=0 has a
phase ¢; when the mode m=1 impinges on the rod at 0", the phases of the
scattered mode for the rest of the rod positions are given by ¢;-n 4, and the same

scattered mode resulting from the impingement of the m=-1 mode on the rod will
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have a phase given by ¢,-nw/4- nw/2, if ¢, is assumed as the phase when the
impingement happens at the rod angle of 0°.

Assuming the amplitude of the original plane wave mode to be a, its

—jnm /4

variation with the rod rotation as given in Table A.5.2.2 is ae . Similarly if

the amplitudes of the scatter modes resulting from the interaction of the modes m

= -1, 1 with the rod at 0° are assumed to be b and ¢, their variation with the rod

—j3nm /4 -mal4

position is given by be and ce . Then the variation of the resultant

amplitude of the plane wave mode with the circumferential orientation of rod is

the sum of the variations of the original plane wave mode and the scatter modes

—mrld - /4

with the rod position, i.e., ae” "™ 4 pe T 4 e . Factoring out e
from this expression we see that the magnitude of the resultant plane wave mode
amplitude varies with the circumferential orientation of the rod array. This is

made evident in the graphical illustrations in Figures A.5.2.1 — A.5.2.5. Assuming

zero phase and unit amplitude for the vector a, the variation of ae """ for the

original plane wave mode m=0 is shown plotted in the polar plot of Figure A.5.2.1

for the various rotated rod positions. Similarly the scatter mode variations ce """

and be """ " are shown in Figures A.5.2.2 and Figure A.5.2.3. Vectors ¢ and b are

assumed to be of unit amplitude and with 0° and 22.5° phase respectively. The

—-maid —mald

sum, ae +ce , representing the sum of the individual plane wave and

the scatter mode resulting from impingement of mode m = 1 is shown in Figure

/4

. —mnl: —anw/4 —jnr . .
A.5.2.4. Finally the sum, ae """ + be """ 4 ce™"'*  representing the variation

in the magnitude of the resultant plane wave mode is shown in Figure A.5.2.5.
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Figure A.5.2.1. Polar plot showing the phase change of the plane wave mode

due to the rod rotation.
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Figure A.5.2.2. Polar plot showing the phase change of the scattered plane

wave mode m; ;=0 with the rod rotation as the mode m=1 impinges on it.
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Figure A.5.2.3. Polar plot showing the phase change of the scattered plane

wave mode m;_;=0 with the rod rotation as the mode m=-1 impinges on it.
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Figure A.5.2.4. Polar plot showing the phase change with rod rotation of the
resultant of plane wave mode m=0 from fan-flow interaction and the

scattered plane wave mode m; ;=0.
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