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Abstract 

UNIVERSITY OF SOUTHAMPTON 
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Doctor of Philosophy 

WAKE GENERATOR CONTROL OF FLOW DISTORTION INDUCED 
TONAL NOISE IN FANS 

by Viswanath Kota 

The predicted increased demand on the operation of aircraft in existing airports or 

creation of new airports increases the scope for noise pollution. Hence the 

regulations for new aircraft and engine certification are likely to become more 

stringent. This is driving the need to explore new methods to control noise. One of 

the means of generation of tonal noise in aircraft engines is the interaction of fan 

blades with flow disturbances. This is also the case in non-aviation applications. A 

novel way to control this noise is to generate further disturbances v,-hich interact 

with the fan to produce anti-noise. Flow disturbances can be created using an 

array of cylindrical rods protruding into the duct. The variation of the lengths and 

orientation of these rods results in the production of wakes of yarying extent 

which then interact with the fan blades to produce unsteady blade forces and these 

radiate noise. 

Adaptive control of this fom1 of noise is possible by fommlating the 

acoustic response of the rod obtained through the theoretical relationship between 

the rod length and the magnitudes of the unsteady blade forces and in tum the 

magnitudes of the acoustic modes in the duct. Since the control of a single mode 

could cause the amplitude of the other modes to increase. optimal control of a set 

of modes is possible by formulating the problem of minimisation of the cost 

function which is the in-duct sound power level comprising the squares of the 

modal amplitudes. Convergence of the optimal rod lengths is obtained through the 

use of the steepest descent algorithm. 

Experimental investigations confirm that it is possible to implement the 

adaptive control of fan tonal noise using wake generators. The concept has been 

implemented on a test fan rig and an 8-rod controller array using the pressure 

signals acquired from duct microphones. These signals are phase locked \vith a 



trigger signal consisting of one pulse per fan blade-pass and Fast Fourier 

Transformed to extract tones which are later decomposed into duct modes and 

then into modal coupling coefficients. The controller rod response in the form of 

the modal coupling coefficients is determined experimentally and used in the 

control algorithm based on steepest gradient descent. Upon running the algorithm 

at the fan speed corresponding to a blade passing frequency of 262 Hz with one 

rod made to act as a source and another as a controller, the in-duct noise power in 

the plane wave mode is reduced from 67 to 42 dB. Far-field sound pressure level 

reduced from 91 to 87 dB in the 1 sl harmonic and from 85 to 79 dB in the 2nd 

harmonic. Control trajectories superposed on error surfaces show that the 

convergence of the rod lengths is sensitive to the choice of the descent step. 

Although the controller rod lengths exhibit smooth convergence in the control 

cases corresponding to the higher fan blade passage frequency of 441 Hz, control 

doesn't result in significant reduction in the in-duct noise power level at this speed 

which was around 2 dB. This is due to the difficulty in controllability of multiple 

cut-on duct modes at this frequency. 

11 



Acknowledgements 

The research work presented in this thesis was supported financially by the UK 

Engineering and Physical Sciences Research Council which is gratefully 

acknowledged. I would also like to thank Rolls Royce pIc for making this work 

possible within the framework of their University Technology Centre established 

at the ISVR for conducting research on Gas Turbine Engine Noise. 

I would like to express my gratitude to Dr. M.C.M. Wright for his support 

and advice, and to Prof. P.A. Nelson and Dr. P.F. Joseph for sharing their views 

and experiences. 

The experimental work presented in this thesis would have been 

impossible without the support of the technical staff of ISVR. 

III 



Table of Contents 

Abstract 

Acknowledgements 

Table of Contents 

Chapter 1 Introduction: Fan Interaction Noise and its control 

1.1. Introduction 

1.2. 

1.3. 

1.4. 

1.5. 

Tonal noise sources in an engine fan 

Noise control - Active and Passive methods 

Flow control 

Outline of the thesis 

Chapter 2 
interaction 

Acoustic pressure field from the fan-flow disturbance 
13 

2.1. 

2.2. 

Introduction 

Overview of the derivation 

2.3. Derivation of the expression for the acoustic pressure field in a duct 

iii 

iv 

1 

1 

2 

4 

7 

9 

13 

13 

with the fan interacting with/low disturbances 14 
2.3.1. Convected wave equation and the general form of its solution 14 
2.3.2. Green's function solution of the convected wave equation. 19 
2.3.3. Solution of the convected wave equation with the fluctuating force 
source on the moving blades 22 

2.3.3.1. TransfoTI11ation of coordinates of the moving surface 25 
2.3.3.2. Projection of source surface (fan blades) onto the fan 
rotational plane 25 
2.3.3.3. Periodic blade forces 26 
2.3.3.4. Equispaced identical fan blades 29 

2.3.4. Blade force response 31 
2.3.5. Final expression for the acoustic pressure in terms of the flow 
disturbance 35 
2.3.6. Expression for the acoustic pressure in the semi-infinite duct case 36 

2.4. Summary 38 

Chapter 3 Wake Generator Control 39 

3.1. Introduction 39 

3.2. Relationship bel1l'een the interactingflow disturbance and the 
corresponding acollstic modes 39 

3.3. Flow disturbance produced by a cylindrical rod and its acoustic 
response 43 

3.4. Cancellation (~la mode generated by using a rod as a disturbance 
source 50 

3.5. Noise minimisation problem 55 

I\" 



3.5.1.1. Optimisation 

3.6. Numerical simulation of the noise cancellation problem using the 
steepest descent algorithm 

3.7. Summary 

Chapter 4 Simulation of Noise power minimisation 

4.1. Introduction 

4.2. Primary flow disturbances and the acoustic modal content from their 
interaction with the fan 

4.3. Control of the t.,voflow disturbances using equispaced rod arrays 
4.3.1. Cost functions in a multi-dimensional controller space 
4.3.2. Control of the crossbar defect induced acoustic field 
4.3.3. Control of random velocity defect induced acoustic field 

4.4. Mode cancellation problem 
4.4.1. N modes vs 2N un-equispaced controllers 
4.4.2. Combination of equispaced arrays or the direct control of flow 
modes 110 

4.5. Inclusion of the rod array phase in the control vector 
4.5.1. Case 1 
4.5.2. Case 2 

4.6. Summary 

Chapter 5 Active control experiments 

5.1. Introduction 

5.2. Test Facility Description 
5.2.1. General Arrangement 
5.2.2. Fan and the Optical trigger 
5.2.3. Controller Array 
5.2.4. Microphone arrays 
5.2.5. Data Acquisition System 

5.3. Tests 
5.3.1. Microphone calibration 
5.3.2. Control experiments 

5.3.2.1. Processing 
5.3.2.2. Unsteadiness in the estimates 
5.3.2.3. Error in the power through the assumption of semi-
infiniteness of the duct 
5.3.2.4. Acoustic response of a single control rod 
5.3.2.5. Control Theory and Algorithm for implementation 
5.3.2.6. Active control experiments at low speed 

5.3.2.6.1. Results from the Rod retraction experiments 
5.3.2.6.2. Results from the Control experiments 

5.3.2.6.2.1. Step 1 
5.3.2.6.2.2. Step 2 
5.3.2.6.2.3. Step 3 
5.3.2.6.2.4. Step 4 

56 

59 

65 

75 

75 

75 

80 
80 
84 
89 

103 
104 

115 
116 
121 

128 

130 

130 

130 
130 
132 
133 
136 
137 

138 
139 
142 
142 
147 

152 
155 
163 
167 
168 
173 
173 
175 
176 
178 



5.3.2.7. Active control experiments at high speed 

5.4. Summary 

Chapter 6 Concluding Remarks 

Appendix 2.1 Reduction of the convected wave equation to the modified 

190 

201 

203 

Helmholtz equation 208 

Appendix 2.2 Expression for kmn 210 

Appendix 2.3 Expression for rtmll(Z) 213 

Appendix 2.4 Expression for bmn(z) 214 

Appendix 2.5 Spatial derivatives of the Green function 219 

Appendix 2.6 Force fluctuation distribution on a fan rotor with identical B 
blades 221 

Appendix 2.7 Expressions for the Sears function 222 

Appendix 3.1 Derivation of an expression for the transmitted sound power at 
any harmonic for the semi-infinite duct case 224 

Appendix 5.1 Unsteadiness analysis 232 

Appendix 5.2 The phenomenon of mode scattering and its effect on controller 
acoustic response 273 

References 281 



Chapter 1 Introduction: Fan Interaction Noise 
and its control 

1.1. Introduction 

Environmental nOIse IS an annoyance to humans. The transportation sector 

represents one of the maj or contributors to environmental noise. Vehicles moving 

along airways, roadways and railways generate considerable noise to pollute the 

environment. Aircraft noise is particularly bothersome to people living around 

airports with the frequent landing and taking off of several aircraft at any 

particular airport. Aviation authorities across the world have adopted regulations 

for acceptable levels of noise from aircraft and require the airframe and engine 

manufacturers to pass certification before the operation of any new aircraft 

commences. These regulations are revised from time to time and the existing fleet 

of aircraft which do not meet them are phased out. Furthermore, aircraft 

manufacturers (Airbus 1999) predict that in the future there will be a rise in air 

traffic due to the increased demand for air travel and freight passage and hence are 

considering designing newer aircraft with more capacity for freight and 

passengers. This translates to increased demand on the operation of aircraft in 

existing airports or creating newer airports. All this means that the scope for noise 

pollution increases. Consequently the regulations for certification are likely to 

become more stringent and airframe and engine manufacturers \\~ill haw to take 

measures to reduce noise in the newer designs. In order to do this an 

understanding of the mechanisms of the noise sources is required to either 

eliminate these sources at the design stage or to investigate methods to control 

them. Noise from an aircraft arises from the airframe as well as the engine. These 

days mostly the turbofan variety of engines is used on aircraft for propulsion and 

the noise spectrum of an engine consists of tones and broadband noise \yith the 

contribution of the inlet fan to tonal noise being dominant during take-off and 

approach. 

The need to understand the noise source mechanisms with regard to their 

controllability also applies to non-aviation situations as in the cooling of 

electronic systems. BV AC equipment, etc. For instance there is a continuing 

increase in the heat dissipation from electronic systems due to a rapid rise in 



circuit densities. This necessitates an increase in fan speeds and the number of 

installed fans leading to increased radiated noise which is driving the need to 

understand all the relevant aero-acoustic processes (Quinlan & Bent 1998). 

Section 1.2 outlines a review of the current understanding of the 

mechanism of interaction tone generation in an engine fan and the methods 

adopted to reduce noise are discussed in 1.3. Section 1.4 gives an introduction to 

the method chosen for investigation presented in this thesis. Section 1.5 will give 

the outline of the thesis. 

1.2. Tonal noise sources in an engine fan 

A typical turbofan engine consists of a nacelle, surrounding a duct enclosing the 

fan, compressor and turbine stages terminated by an exhaust jet. The duct from the 

exit of the fan splits into a core comprising the compressor-turbine stages which 

then extends into the core jet and the bypass duct extending concentrically along 

the core duct ends as the bypass jet. An overview of turbo machinery noise sources 

IS gIVen by Groeneweg (1991). Figure 1.1 shows the sources of tonal noise 

included with the other sources responsible for broadband noise (Greoneweg 

1991). Figure 1.2 from the same reference is reproduced here and outlines the 

processes involved in production of noise. Internal disturbances in flow arise due 

to presence of support struts or pylons which interact with the rotating blades. 

Figure 1.3 shows that the contribution of the fan to the total engine noise is 

dominant during takeoff and landing. Flow entering into the fan could also draw 

in external disturbances which can interact with the blades. The wakes shed from 

the rotor can also interact with the stationary stator blades and represent another 

way in which interaction tones are produced. The disturbances produce unsteady 

forces on the blades and these unsteady forces then generate noise. The acoustic 

pressure generated can be expressed as the superposition of spinning modes. The 

term mode refers to the eigen function and its corresponding mathematical 

expression. These modes either remain cut-off if their a'\.ial waye number is 

imaginary and decay away exponentially or they remain cut-on and propagate 

through the duct if that parameter is real. The cut-on modes which reach the duct 

inlet or exhaust then radiate into the far-field. 



Tyler and Sofrin (1961) were the first to explain the mechanism of 

interaction tone generation. The steady pressure field locked to the rotor blades 

radiates as noise to the observer only when this pattern moves supersonically with 

respect to the observer. Consequently in the subsonic case disturbances locked to 

the rotor are those of the rotor blade order which cannot radiate noise as they can 

spin only as fast as the rotor. Furthermore, modes of the blade order are not cut-on 

unless the speed of the rotor is high enough for them to propagate. Hence in the 

subsonic case it was predicted by Tyler and Sofrin (1961) that since the acoustic 

modes generated from the subsonic rotor-locked blade-order flow patterns are 

themselves not cut-on enough to generate tones at blade passing frequency and its 

harmonics, these should be produced from flow modes of different orders than 

those of the rotor blades and the acoustic modes should be spinning at a higher or 

a lower speed than the rotor to generate tones at blade passing frequencies. The 

modes are generated by the interaction of the multiple modal patterns present in 

the incoming flow disturbance. The incoming flow disturbance may have several 

of these modal patterns and these interact with the blades to produce spinning 

acoustic modes which. depending on their circumferential mode order, spin at 

either faster or lower speed than the rotor to generate a tone at the blade passing 

frequency (BPF). The intensities of these modes depend on the magnitudes of the 

unsteady blade pressures. The situation is different when the flow relative to the 

blades is supersonic wherein a blade order rotor locked shock pattern rotates and 

produces multiple pure tones. 

Huff (1998) has made a recent review of fan noise prediction. and its status 

and needs. He states that there are two alternative goals for fan noise prediction. 

One is to model the effects of changes to geometric features and flow conditions 

and accurately predict the absolute levels for sound. The other one is to predict the 

COlTect trends of the sound as a function of geometry and flO\\' field changes. He 

goes on to state that neither of these have been fully achieved. although there has 

been considerable progress. Analytical methods (Sears 1941. Amiet 1974. Graham 

1970, Namba 1977. Goldstein and Atassi 1976. Goldstein 1976) \wre used to 

predict the blade response by modelling the problem as that of an isolated airfoil 

or a cascade of airfoils interacting with the flow disturbance represented as 2-D or 

3-D gusts and then using radiation/propagation models (Weiner-Hopf and ray 

tracing and other methods as mentioned in HutT (1998)) to predict the intensities 



of the propagating modes and also the far-field directivities. Other researchers 

(Rangwalla & Rai 1993) have also studied the problem numerically. Another 

approach to the problem is to use empirical models for the flow disturbances 

(wakes and vortices) obtained from experimental correlations and then feed them 

to the analytical or the computational model to predict the noise field (Sutliff 

1997). In the CFD-CAA approach RANS or Unsteady Navier-Stokes solvers are 

used to solve for the mean and unsteady flows and then CAA (FEM or BEM 

formulation) is used to compute the aeroacoustic response. Huff (1998) mentions 

there is concern that "real blade" effects, like the distortion of gusts by transonic 

flows etc., have not been taken into account in the analytical models, and on the 

computational side time-marching techniques for interaction tone prediction 

require considerable computational resources. 

1.3. Noise control- Active and Passive methods 

Noise control can be categorized into active and paSSIve techniques. Under 

passive control, absorbent acoustic liners are laid along several locations of the 

engine and these provide an impedance boundary condition to the \vaves 

reflecting from the walls and attenuate them. The control of noise through 

treatment is understood to be effective for high frequency noise as the distance of 

propagation over the acoustic lining is several wavelengths. Consequently low 

speed machines \vhich generate relatively low frequencies of noise compared to 

high-speed machines require longer lengths of ducting. Envia (2002) also 

mentions that the newer designs of engines tend to have higher bypass ratios \yith 

the result that they require lesser nacelle lengths and hence less lengths ayailable 

for treatment. 

Under active control methods a source of nOIse IS identified and is 

controlled by including secondary noise sources in the system and these secondary 

noise sources are driven either in an open loop or closed loop to produce the 

secondary noise field which either cancels or reduces the modes in the primary 

noise field. Loudspeakers have been used as secondary noise sources. A reyiew of 



the work done in this area is contained in Envia (2002). He states that there have 

been significant noise reduction benefits from the use of active noise control, but 

the benefits tend to diminish with the increasing number of simultaneously 

controlled modes. He suggests that this may be due to the multiple modes having 

a unique phase relationship with each other, and that errors in the measurement of 

the phase relationship can cause the actuation of the secondary noise sources to 

produce a noise field that may not exactly match the target field. Furthermore, the 

power requirements for these secondary noise sources is quite high and this has 

precluded a cost-effective usage or implementation in real engines so far. 

The above means of controlling noise represent techniques to control noise 

at the propagation level in that the sound field is controlled during the propagation 

process. 

Attempts to control noise at the source have also been summarised in the 

same reference (Envia 2002). The following is a summary of the methods and the 

benefits and limitations. 

The first of these attempts involves employing a larger rotor stator spacing 

and a cut-off vane count as done on the Advanced Ducted Propulsor built by Pratt 

and Whitney (Topol 1993). Acoustic codes were used to optimise the cut-off vane 

count to reduce the levels of the second and third harmonics of the blade passing 

frequency (Topol 1993). However a concern realised elsewhere about the increase 

in rotor stator spacing (Smvyer 2002) is that it increases the size and hence the 

weight of the engine. The benefit from the increased spacing is that it reduces the 

amplitudes of the wakes and hence the intensities of the modes produced through 

interaction. The cut-off vane count causes the modes generated through 

interaction to be of a higher order such that they remain cut-on only for the higher 

harmonics. 

Another attempt discussed in Envia (2002) concerns the provision of a 

swept and leant stator. Sweep is the CL'Cial distance and lean is the circumferential 

displacement of the vane leading edge from its nominal position. By providing 

sweep and lean on the stator blades 3 EPNdB noise reduction was shown to be 

possible compared to the situation when a radial stator in its nominal position \vas 

used. By providing sweep and lean the contribution to the phase of any mode of 

the interacting disturbance varies with the span and hence lower lewIs of noise 

5 



result from such a design of the stator blading. The limitation of this approach 

seems to be that it generated more aerodynamic losses than had been anticipated. 

The next in the series of methods summarised in Envia (2002) is the 

trailing edge blowing technique. Flow is supplied through the shaft along a 

labyrinth of internal passages that start from blade root and terminate at a series of 

trailing edge ports. Thus the wakes issuing out from the rotor blades are made 

more uniform so as to cause less unsteady forces on the stator. This technique was 

originally tried at MIT (Waitz 1996) and was later extended by the researchers at 

NASA (Sutliff 2002) to conduct a proof-of-concept test to establish the noise 

reduction benefits. The test conducted at the NASA Active Noise Control Fan 

facility demonstrated that the far field tone power levels in the first three 

harmonics were reduced by 5.4, 10.6 and 12.4 dB PWL. The blowing rate of 1.6 -

1.8% (defined as the ratio of flow supplied to the trailing edge to the total fan 

mass flow) was found to be the optimum. 

The last of the methods discussed in the above reference is the scarfed 

inlet concept which is the provision of a scarfed inlet on the intake to redirect the 

noise upward. But the scarfed inlet is also thought to cause the production of flow 

distortions which when ingested could produce noise. 

The effect of boundary layer suction on fan noise has been experimentally 

investigated by Moore (1975). He used a ventilation fan of 1 m diameter with 

suction applied around the circumference of the duct close to the fan inlet. Upon 

removal of 5% of the main flow reduction of 5 dB in the far field sound pmver 

and 15 dB in some of the far field tones was observed. Progressiw reduction in 

the noise was obtained by proportionately varying the amount of flmv bled 

through suction. He mentions that care must be taken in the design of the bleed 

system so as not to produce any "cut on" residual distOliions that could propagate 

to increase the far field noise. 

Ganz et al. (1998) offered new insights into broadband noise mechanisms. 

They focused their study on broadband noise sources by treating them separately 

as inflow and self noise mechanisms. They used a model scale fan rig \"ith 

provision to bleed the inlet boundary layer and to vary the tip gap and the loading. 

Self noise, or the rotor-alone-noise. was parametrically studied by varying the tip 

gap and loading to observe the variation in broadband noise generated through the 

tip clearance and rotor exit wake flows. The inflow mechanism in this case \vas 
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isolated by completely removing the inlet boundary layer. To study the inflow 

noise the boundary layer was re-introduced and its effect was studied on the rotor 

and stator. Of particular interest is the observation that there was a reduction in the 

broadband noise through boundary layer suction. They were able to qualitatively 

explain their results by conducting hot-wire measurements of mean flow velocities 

and turbulent intensities at the rotor exit. 

Sawyer and Fleeter (2002) have reported a 10 dB reduction in the rotor

stator interaction tones using active airfoil sources mounted on the stator blades. 

The active airfoil sources were perforated metal covered cavities in the stators 

which formed resonators and these were driven by compression drivers. Kousen 

and Verdon (1994) have used an entirely analytical/computational approach for 

simulating control of blade-row/wake interaction noise using anti-sound actuators 

on blade surfaces. 

Using a control grid of wake generators Polacsek (1999) was able to 

reduce rotor-stator interaction modes with the grid mounted upstream of the rotor. 

An 8 dB reduction in the SPL at the blade passing frequency was achieved by 

using such a system on the ONERA CERF-rig. Using CFD-CAA approach to 

simulate the control he has been able to assess the experimental results. 

Nuehas et al. (2003) have used flow control techniques to reduce blade 

passage frequency tone levels with steady jets injected into the main flow and 

cylindrical rods at axial positions downstream of the impeller blades. With 

cylindrical rods they have been able to report a reduction of 12.6 dB in the BPF 

tone. 

1.4. Flow control 

A recent review on flow and noise control (Thomas et al. 2002) mentions that 

there are two critical issues needed to achieve projected noise reduction targets: 

"( 1) better understanding and prediction of noise generation and 

propagation mechanisms for all significant noise sources. and (2) 

noise reduction concepts that are both technically feasible and 

economically as well as commercially viable. Apart from the 
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already existent usage of passive liner treatment for noise reduction 

many investigators suggest that a combination of passive and 

active methods should be used for control. Consequent to this it is 

worthwhile to explore novel means of reducing noise." 

As mentioned already before, methods to alter flow non-unformities seem 

to have an effect in reducing the unsteady forces on the blades which 

consequently reduces the radiated noise. The trailing edge blowing technique, 

boundary layer removal and the introduction of rods to generate disturbances fall 

in this category. 

Nelson (2000) theoretically predicted that the tones generated through inlet 

flow distortions could be used to control a single tone and that optimisation could 

be done to minimise the total generated sound at higher harmonics of BPF. His 

prediction follows from an analytical model due to Goldstein (1976), which 

relates the acoustic response of the fan blades to the intensity of the interacting 

distorted flow field. Nelson (2000) suggested that distortions could be either 

introduced as positive or negative defects in the velocity profile of a flow field. 

Generation of w"akes through the presence of solid bodies in the flow field 

represents a means of producing defects in the flow field velocity. The concept of 

noise reduction from this method is illustrated in Figure 1.4. The flo\\' and the 

acoustic situations inside a duct housing a fan are illustrated separately. The fan 

encounters a primary disturbance in the flow and generates the primary acoustic 

field. The acoustic field introduced through the wake generators can be adjusted 

by varying the lengths of the rods and the azimuthal angle of the alTay of rods to 

cancel or reduce the intensity of the total acoustic field in the system. Since a 

focus on the reduction or cancellation of a single mode may cause generation of. 

or increase in the intensities of the other modes, the noise power contained in 

multiple ham10nics requires optimisation. 

Pitelet (2000) extended the Goldstein (1976) model to a finite-duct case 

and derived an expression for the acoustic field. He used a single rod to conduct 

experiments to determine the modal response of the rod and used this response to 

simulate the minimisation of noise power. His experimental set-up lacked the 

means of decoupling the secondary acoustic field from the primary acoustic field 

due to the unavailability of a fan blade passing reference signal. 
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Though the strategy of flow control as discussed here seems to point to the 

acoustic benefits involved through its application, there are other applications 

entailing aerodynamic benefits from its use. In particular flow control 

technologies using smart materials, vortex generators, etc., have demonstrated 

benefits like reduction in drag, control of the phenomenon of flow separation etc. 

For more information one could refer to the review on flow and noise control and 

the associated references therein (Thomas et al. 2002). 

1.5. Outline of the thesis 

The problem of controlling nOIse usmg flow distortions generated through 

introduction of rods in the flow has been taken up further in the present work. The 

acoustic pressure field expressions have been extended to a semi-infinite ducted 

case and the derivation of the expression for pressure is given in Chapter 2. The 

expression for the overall sound power level to be used as a cost function for the 

optimisation problem along with the numerical simulation of control for a simple 

case is given in Chapter 3. Simulation of control assuming more general primary 

flow disturbances is presented in Chapter 4. The implementation of this system 

was carried out on a model fan and this along with the results is described in 

Chapter 5. Finally, conclusions and suggestions for further work are made in 

Chapter 6. 
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Chapter 2 Acoustic pressure field from the fan-
flow disturbance interaction 

2.1. Introduction 

As the creation of acoustic modes through the introduction of the interacting flow 

modes produced by the wake generator is essential for control it is important to 

understand analytically the relationship between the flow disturbance and the 

resulting acoustic field. As mentioned in the introduction there are several 

analytical models available for this purpose. One such model that expresses this 

relationship is the Goldstein (1976) model for the infinite ducted case. This was 

extended by Pitelet (2000) to take into account the end reflections present in the 

finite duct case. An expression for the acoustic pressure field resulting from the 

interaction of the fan blades with the flow disturbances was derived by him. This 

derivation is reproduced here in its entirety for ease of understanding the 

subsequent extensions of this expression to the semi-infinite ducted case carried 

out as part of this thesis and also its usage to form a cost function for control. 

Section 2.2 concerns an overview of the steps involved in this derivation. Section 

2.3 is devoted to the actual derivation with the extension carried out for the semi-

infinite duct case (since the fan being considered here has an anechoic 

termination). The expression for the acoustic pressure in the semi-infinite duct 

case is then used to derive the overall sound power level in Chapter 3. The 

expression for the overall sound power level is necessary since it forms the cost 

function for the noise minimisation problem covered in the same chapter. 

2.2. Overview of the derivation 

The system being considered here is a fan located in a duct with an open inlet and 

an open exit. There is flow that is ingested into the duct by the rotating fan. The 

fan interacts with any flow disturbances that are present in the flow and the 

fluctuating forces on the fan blades cause the acoustic field to radiate and the 

propagation of this field in the duct has to satisfy the convected \yave equation. 

The radiated acoustic pressure field is obtained by using the Green"s function 
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technique which involves integrating the fluctuating force distribution on the fan 

blade surface with the Green's function of the convected wave equation. After 

considering the force response of the blades to the disturbances in the flow field 

the expression for the acoustic pressure field can finally be related to the 

disturbance flow field. 

The above steps along with the subsequent sections that deal with them are 

summarised below: 

1) The general form of the propagating acoustic field in the duct that satisfies 

the convected wave equation is covered in Section 2.3.1. 

2) The Green's function solution of the above equation for a point monopole 

source is derived, assuming the presence of reflections from both ends of 

the duct in which the fan is located. This is covered in Section 2.3.2. 

3) The solution in step 2 is extended to the case of the fan for the fluctuating 

force source on the moving blades. This is covered in Section 2.3.3. 

4) The blade force response is expressed in terms of the disturbance flow 

field. This is covered in Section 2.3 A. 

5) A final expression relating the acoustic pressure field to the disturbance 

flow field is alTived at. This is covered in Section 2.3.5. 

6) The fan used for implementing the experiments is provided with an 

anechoic termination at the exit to reduce reflections from the dO\\'nstream 

end. Section 2.3.6 gives the acoustic pressure expression for the fan with 

the anechoically tenninated exit, i.e., the semi-infinite duct case. 

All assumptions involved are stated wherever necessary. 

2.3. Derivation of the expression for the acoustic pressure field 

in a duct with the fan interacting with flow disturbances 

2.3.1. Convected wave equation and the general form of its 

solution 

Duct coordinate system: 

1.+ 



The duct coordinates are represented by the following vectors, the sense of these 

is as shown in the schematic of the fan in Figure 2.1; x denotes the coordinate of 

the observer location 

x={ (X p X 2 , X 3 ) 

(r,B,z) , z == XI 

(Cartesian) 

(Cylindrical ), 

and y is for the source location in the duct. 

y ={ (YPY2,yJ 

(rs,Bs'zs)'zs == YI 

(Cartesian) 

(Cylindrical ). 

(2.3.1) 

(2.3.2) 

The variable t is associated with the arrival of the sound wave at the observation 

point, and T with the emission of the sound wave. The following sUb/superscripts 

are used: 

inlet. 

Axial: Downstream( z +) and Upstream ( z -) 

Rotational: Clockwise (B +) and Counter-clockwise (B -) as seen from the 

S D (Duct surface) 

I 
I 

Z5=0 

Figure 2.1 Co-ordinate system in the duct. 
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The acoustic pressure field p(x,t) in a duct of cross sectional area S and radius a 

with a mean axial flow of U = U X J has to satisfy the c-onvected wave equation, 

where x J is the unit vector along the x r or Y r direction: 

(2.3.3) 

where Co is the speed of sound and the differential operators are 

\7 2 =~+(~+~~+_l ~)=~+\7~ and 
BZ2 Br2 r Br r2 Be 2 BZ2 

(2.3.4) 

Upon substitution of p(x, t) = Re{p(x) eJrot 
} which is the acoustic pressure for a 

single frequency (0, Equation (2_3.3) reduces to the following equation (see 

Appendix 2.1). 

(2.3.5) 
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.......... 

U..(Flow velocity) .. \ 

p(x,t) 
(Acoustic 
pressure field) 

I : 

....... :~~{.c..:~~~~ ......................................................................... 1..:~~ ................ " ................ !!..~.~.~ ............................... . _---------- I. : ~ ... . ~ ...---=-'W 
- I : i 

I : i 
I D().~nstream Downstream ! 
I • 
I r41ected 
I .t6ode .' .. ' 

incident 
mode 

I 

Upstream 
incident 
mode 

I 
Z5=0 

Figure 2.2 Reflected and Incident modes in a cylindrical duct with flow 

(illustrated for the plane wave mode). 

The fonn of the solution of the above equation is 

11l=-Cf) n=l 

(2.3.6) 

where Amn and Bmn are the unknown amplitudes of the forward (z + direction) and 

backward (z- direction) propagating mode systems in the duct (illustrated in Figure 

2.2 for the plane wave mode), k:'~ is the axial wave number, OJ is the frequency, 

\}' mn(r, B) is the duct mode shape, m and n being the circumferential and radial 

orders of these modes. Upstream of the fan the incident and reflected mode 

amplitudes are B- and A- . On the downstream side they are A+ and B+ . The - - - -
wave number k:'~ is given by 

+ ~k 2 fJ 2 2 L£k z± - 0 - K mn - lVD 0 

k mn = fJ2 ' 

(2.3.7) 
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where ko is the free-space wave number and is defined as ko = ~ , M is the Mach 
Co 

number, f3 is ~(1- M 2 ), (the derivation of the above expression for k;~ is given 

in Appendix 2.2), Kmn are the roots of the first derivatives of the Bessel shape 

function which satisfy the condition that the normal pressure gradient at the duct 

surface be zero, 

op I =0 or r~a • 

(2.3.8) 

The expression for the wave number in Equation (2.3.7) also determines whether a 

mode is evanescent ( cut-off) or propagating (cut-on). If the term ~ kg - f3 2 K ~n in 

that equation is imaginary then the mode decays and it propagates otherwise. This 

is influenced by the Bessel shape function parameter Kmn for any mode. Its value 

increases as the radial and azimuthal orders of a mode increase and hence the 

greater possibility of these modes being cut-off. The plane wave mode which has 

both these orders equal to zero is always cut-on as Kmn = 0 for this case. The mode 

shape \}filII/I', e) is given by the following expression 

HJ (_ e)= Jill (KIIl"r) -pIle 
Till" " e, N mn 

(2.3.9) 

where JII,(Kmn r) is the Bessel function representing the shape of the duct mode 

along the radius r, e-jl11() is the Fourier function used for representing the shape of 

the duct mode in e direction, and Nmn is a normalisation constant defined as 

N,;,,, = fJ;"(KIIl,,r)dS, 
s 

(2.3.10) 

which is obtained from the following Olihonormality relationship for \}f11111(r. e). 
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(m,n) -:f:. (q,l) 

(m,n) = (q,l) 

(2.3.11) 

Since the solution in Equation (2.3.6) is for a single frequency excitation of the 

source, the solution of the convected wave equation can be obtained from the 

inverse Fourier transform of that equation and the resulting expression is 

1+
00 

+00 +0'0 ( ) 
p(x,t) = - f " " A± (eo) e- jk:',: z + B± (eo) e-jk~~ e JOJ/ q; (r,e) deo 

2 ~ ~ 1/1/1 mn nln 
JT: -00 111=-00 n=l 

(2.3.12) 

2.3.2. Green's function solution of the convected wave equation. 

The unknown modal amplitudes Allin and Bllln can be obtained for the finite 

ducted case by deriving the Green's function, G(x[y), which has to satisfy the 

following equation: 

(2.3.13) 

where ko (=eo /co) is the free space wave number and G(x[y) is the resulting 

acoustic pressure field at the observer location x due to a point monopole source 

-8 (x - y) of unit strength located at y as illustrated in Figure 2.3. 
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" " ". U ... 
(H,low velocity) . '~ G(xly) 

(Acoustic 
pressure field) 

~rs, 85,0) 
Point monopole 

I : 

___ ;:of'i::::.:j········i'···················J!J~· ~.1~ .... -: ..... ~ ..... =. =~;:2'e====j; 
I B+ nln 
I 
I Do.Wnstream 
I re/Iected 
I ,g\ode 

" ", 

A+mn 
Downstream 
incident 
mode 

B-mn 
Upstream 
incident 
mode 

Figure 2.3 The point monopole source and the Green's function solution for 

the acoustic pressure field in a cylindrical duct with flow (illustrated for the 

plane wave mode). 

The solution to this equation is also expressed in the same form as Equation 

(2.3.6) as a summation of modes: 

m=-oo n=l 

(2.3.14) 

where 

(2.3.15) 

The term bmn(z) is the sum of the forward and backward propagating modal 

amplitudes Amn and Bmn. To express it wholly in terms of one of these, the 

definition of the reflection coefficients R:'" given by Morfey (1971) is useful. 
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These are defined as the ratios of reflected to the incident modal amplitudes, and + 

and - denote the downstream and upstream values of the reflection coefficients: 

(2.3.16) 

where 17 ~,~ is the complex phase of the upstream and downstream reflection 

coefficients which takes into account the amplitude and phase of the reflection 

coefficients due to this term being complex valued. 

The reflection coefficient at any axial location is a function of the axial 

coordinate z and is expressed as follows (see Appendix 2.3 for a derivation) 

± () o± kllll1 h k I k 7 f3 2 2 17 11111 Z = 17 11111 + f3 2 Z, were mil = -V 0 - K mn • 

(2.3.17) 

For the given point monopole source the expression for amplitude term b
n1l1 

(z) 

turns out to be 

(2.3.18) 

The derivation of this expression is given in Appendix 2.4. Substituting this in the 

expression for the Green's function (2.3.14) we have 

(2.3.19) 

After perfol111ing some trigonometric simplification we have 
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(2.3.20) 

2.3.3. Solution of the convected wave equation with the fluctuating 

force source on the moving blades 

We now move onto predicting the pressure field under the influence of a source 

like the one that the fan experiences by considering the Green's function that has 

been derived for the point source. The method adopted is the one that is due to 

Goldstein (1976) for the prediction of the noise generated by axial flow fans in 

infinite ducts. Here it is extended to the case of a finite duct. 

fT (Fluctuating 
thrust force) 

y .... ..:........;.----

fD (Fluctuating drag 
force) 

Figure 2.4 Fluctuating forces on the rotor blade surfaces Sf experienced 

through the interaction of incoming non-uniform flow. 

In order to find out the radiated field from the fan source in the duct 

Goldstein begins his model with Ffowcs Williams and Hawkings (FW-H) 

equations and neglects the effects of volume quadrupole sources, fluctuating shear 
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stresses on the duct wall surface SD and also the volume displacement effect due 

to the thickness of the blades and considers only the contribution arising from the 

fluctuating forces exerted on the flow by the rotor blade surfaces Sf shown in 

Figure 2.4 which act like dipole sources. The volume displacement effect due to 

thickness of blades causes the production of acoustic modes of fan blade order. 

For the 9-bladed fan under consideration in this thesis these orders are high 

enough to be cut-off as seen from the expression in Equation (2.3.7) in Chapter 2. 

The relative unimportance of volume quadrupole sources is shown by Goldstein in 

his comparison between the exact and acoustic analogy approaches. Whilst the 

exact approach uses the linearised continuity and momentum equations to predict 

the sound pressure field, the Lighthill acoustic analogy approach which forms the 

basis for the FW-H equations treats certain terms associated with the propagation 

of the sound as source terms. 

The expression for the acoustic pressure p(x) in the presence of the 

fluctuating forces Jon the moving blade surfaces ofthe fan Sir) is as follows. The 

Green's function derived above is used here. The time integral is performed along 

the time coordinate (r) during which the source is excited and the surface integral 

is in the space (y) where the source is located. 

( )
_ 7f'i 8G(x,tJy, r) ( \,-l 

p x, t - f, dS Y J-l r , 
'/(r) ;n; , • 

-7' V) I 

(2.3.21) 

where [-T, T] is a large but finite time interval, and 1; is the drag or thrust 

component of the force per unit area produced by blades acting on the fluid. Since 

the Green's function G(xly) derived above has only spatial dependence the 

corresponding time dependent version G(x,tJy, r) is obtained by inverse Fourier 

transform of G± (xJy) with respect to (t - r). 

(2.3.22) 



The force r(r), exerted by the blades on the flow can be resolved into an 

axial thrust componentjrand a circumferential drag componentjD 

f~=jf)~+fr~' 
) oy) r\ 08\ oz\ 

(2.3.23) 

The axial and the circumferential derivatives of the Green's function G± (xIY) mn 

required in the pressure integral are as follows: 

(2.3.24) 

where 

± () • kml1 ('I' ( )) Mko Y mil Z, =} f3 2 tan T/ mil Z, - f3 2 • 

(2.3.25) 

The derivation of this is gIven in Appendix 2.5. The integrand appeanng In 

Equation (2.3.21) which includes the time derivative of the time dependent 

Green's function G(x,t[y, r) is thus 

oG(x,tly, r )1, = ~ ~ ~ +foo j(V(t-r l ( h) ± (7 ) +' JG± ( I ')d 
cy, i 2n II~OO f,;;: _roe In f, +Ymn ~s J T mn x:) OJ • 

(2.3.26) 

Substituting this in Equation (2.3.21) the pressure integral becomes 



(2.3.27) 

2.3.3.1. Transformation of coordinates of the moving sUrface 

Note that the forces are fluctuating over the moving surface SJ r) and thus have a 

dependence on (y, r). Since the surface is a moving surface its motion can be 

described using the transformation for a reference frame fixed to the rotor and 

rotating with it, the coordinates of any point on this surface being described by 

y' = (r, ,e.:, z,), where e, = e.: + Dr. This removes the dependence of the surface 

integral on time r, to give 

2.3.3.2. 

l[MkO "+Wl) 

p{x t) = L ~ ~ Jill (IC lI1n r )e-Jlne 
+Joo __ e---,f3r-"_" __ __ 

, 2 ~ ~ N 1 k· +0 -0 cosh!n{z)) 
7T 111=-00 1l=1 mil -00 mn SIn 1] ml1 -1] mn 

dr dS{y') deo. 

(2.3.28) 

Projection of source sUrface (fan blades) onto the fan rotational 
plane 

The surface integral in Equation (2.3.28) is a sum of the integrals on the front and 

back surfaces of the blades. Goldstein (1976, p. 194) describes a transfoTI11ation of 

the surface integral over the front and back surfaces of the blades to an integral 

over the projected area A of the blades in the rotational plane of the fan. The 

difference in retarded-time, i.e., the time taken for the sound wave to travel from 
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the point of emission to the point of observation, between the front and back 

surfaces of the blades is ignored which is justifiable if the blades are thin. This 

causes the replacement of Zs in the above equation with the variable z~ (r" B;), 

which is the axial co-ordinate of the blade chord measured in the rotating 

reference frame. 

7[ ] m ~ ± c ~ -j{w-mQ)r , 
X --:- If) +Y/Iln (z, )17' e dr r,dr,dB, deo. 

_1' l, 

(2.3.29) 

The force terms averaged over the two sides of the blades are denoted as 

If) and IT (with tilde) in Goldstein (1976, p. 195). 

2.3.3.3. Periodic blade forces 

So far no assumption has been made for the type of fluctuation of the force 

exerted by the blades on the flow in the above equation. Steady non-uniform inlet 

velocity profiles present in the flow in the intake of the fan interact with the blades 

and produce periodic forces which result in the generation of pure tones. These 

non-unifonnities can be generated by obstructions to inflow or by atmospheric 

disturbances ingested into the intake. The periodic forces Ia (r) generated due to 

these can be represented in the following Fourier series summation of harmonics 

F; at pth multiples of the shaft rotating frequency Q, since each blade 

experiences every plh cycle of the distortion during a revolution ofthe fan. 

+'" 

.7~ (r) = :L F/~ e,rQr for a = T,D, 
r=-oo 

(2.3.30) 
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where 

2rr 

for a = T,D. 

(2.3.31) 

Making the substitution for fa (r) in Equation (2.3.29) we have 

x (m FJ) +y ± (zc )F1') 1
f
' e-J(w-(m+p)Q)r dr r dr de' deo 

p mn s p s s s , 

r, -1' 

(2.3.32) 

and then substituting for s = m + p, and realising that the integral in r can be 

expressed in tenns of the identity 

T 

l,im fe-J(cu-SQ)Tdr =2m5(eo-sn), 
1-+00 -1' 

(2.3.33) 

we have 

j -----,9- ::+mt 
(

Mk ) 

00 00 00 J (K r)e -pile +00 e {3-

p(x,t) = j L L L m mil 2 f. +0 -0 COS(17'~II(Z)) 
p=-oo 111=-00 11=1 Nmn -00 kmn SIn 11 11111 -1} ml1 

( 111 FJ) + ( C)FT) 5:( n) x -;: r + Y';II Z,. r U 0) - S r.drde'dO), 
.\ .\ .\ 

(2.3.34) 

jl 
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Evaluating the integral in the frequency domain OJ, using the sifting property of 

the delta function, which causes the replacement of OJ by sO, we have 

(MsO ) 

00 00 00 J (K r)e-ime eilcoJl2Z+S0J ( ) 

p(x,t) = j L L L m ;;2 . ( 0+ _ 0- tOS 11!n,,(Z) 
p=-oo m=-oo n=1 mn kmn,s Sin 11 mn,s 11 mn,s 

(2.3.35) 

Denoting the coupling coefficients i5!II,p and fm~,p as 

-i( MsO :c' -me' J 
± = + C coJl- F T ± C r I ~ f ( (())'" ( ) Tnm,p - J m K mllr, )cos 11 mn,s Z, e p Y mn,s Z, r, d s dB s' 

A 

(2.3.36) 

we have 

J(~J.f.\~'~ :+.<OIJ 
e cow + 

---COS(ryI~IIJZ )) 
kmn .s 

( 
~+ ~+ \ 

X l11DI~II,p + ~I~I,P } 

(2.3.37) 

The above equation can be realised as a summation over harmonics of shaft 

passing order sO in the frequency domain and thus expressed as follows 

00 

p(X,t) = I p)x) ePOI 
, 

s=-oo 

(2.3.38) 
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where the acoustic pressure for a given harmonic order s is 

00 +00 

P.,,(X) = j I I 
p=-oo n=1 

(2.3.39) 

In the above equation the subscript m, i.e., the circumferential order of the mode at 

each discrete frequency sO is now evaluated using the relationship m = s - P . 

2.3.3.4. Equispaced identical/an blades 

The forces fa (r) in Equation (2.3.30) are the net drag and thrust forces per unit 

area on the fan blade surface. Considering that the force experienced by the first 

blade (which we shall identify as s = 0) at the reference frame location es' and 

time r as faa (r,., e;, r) . we see that this is the same force that is experienced by 

the sth blade that is now displaced by 2n(s -1) / B from the first blade at a prior 

time r - 2n (s -1) / BO. We thus see that the force on this latter blade at time r is 

° ' . fa (r"e\. -2n(s-I)/ B,r +2n(s-1)/ BO) , due to the blades bemg equally 

spaced and identical. Expressing the net force fa (r) in terms of these individual 

blade forces we have 

B 
~ ,,0 
fa (r) = L..fa (r, ,e.: - 2n(s -1)/ B, r + 2n(s -1) / BO) for a = T,D. 

s=1 

(2.3.40) 

Substituting this in Equation (2.3.30) we get the pth harmonic of the net periodic 

force as the following summation 

B2rrp(s-IYs 

Fpa = Ie' B FaO.p(r"e.: - 2n(s -1)/ B) for a = T,D, 
s=1 

(2.3.41) 
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where 

21r 

F o n D.f.(o ( B' ) -JpD.'d 
a,p =-2 Ja rv ' s,T e T 

1[ ° 
fora = T,D. 

(2.3.42) 

Equation (2.3.41) expresses the net force F; on the rotor related to that on the 

single (or the first) blade Fao,p. 

Substituting the expression (2.3.41) for the thrust component in Equation (2.3.36) 

we have 

( MSD., 'J -J -, zs-m8s 
f ± = fJ ( r ) (+ (zc)) cof3- FT ± (c) --1.. dB' 

"'n,p - '" K",n ,\' cos 1']",,,,.1' S e p r mn,s Z\, r, Ws s 

A 

:= {BT,I~I'p for(m + n) = sB 

o for(m+n)*sB, 

(2.3.43) 

where T is the thrust on the single blade. The derivation of the above expression 

is given in detail in Appendix 2.6. The above result shows that only the harmonics 

of the BPF, i.e., Bn are non-zero. At these harmonics the net thrust or drag forces 

are obtained by multiplying the same forces on a single blade with a factor equal 

to the number of blades. Therefore Equation (2.3.38) can be written as 

00 

p(x, t) = L PsB (x) eJsBD.I , 

.<B=-oo 

(2.3.44) 

where 
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j -,-, z-mO 
'" +00 

PSB(X)= jB I I 
(

MV13Q ) 
J ( ) CoP 

III KlIlnr e (+ ())( D+ r+) 
2 • 0+ 0- COS T/;'n"I!3 Z m ;'n,p + ;;n,p 

N mn SIn T/mn,s13 -T/lIln,s13 kllln,sB p;-oo n;1 

(2.3.45) 

where m = sB - P and k llln ,13 = IS evaluated at the discrete 
" 

frequency co = nsB. jj'~I1'P and ~~,p are replaced by coupling coefficients for 

single blade D,~n,p and T,'~I,P , and the corresponding hannonics for forces 

T D T D 
Fp and Fp are replaced by the forces Fo,p and Fo,p acting on one blade 

(Goldstein 1976 p. 197) 

[
MSro C 'J -j -, =s-mes 

r± = fJ ( r) J + (zc)\ CoP- FT ± (c) dr de' 
II1I1,p - 111 K lI1n S CO~T/II1I1,sB S J e o,p r mn,sB Z s rs s s 

A" 

[
MSro C "') -j -" =.s-mos 

D± - fJ ( ,) J + (c)) coP- FD dr de' 
I11I1,p = 111 KII,,/s CO~T/ml1,sB Z, e O,p s s· 

An 

(2.3.46) 

2.3.4. Blade force response 

Expressions for drag and thrust forces resulting from the non-unifonn component 

w(r"e,) of the inlet flow velocity are derived by Goldstein (1976, p.201). Forces 

acting on the single blade Fo~p are given by 

FT 8(e;) U () S ( M)' . O,p =---'-Jrcpo r wp r,o c\CY p, r SlllXSlll}l, 
r s 

D 8(e;) U () S ( M) . Fo,p =---'-Jrcpo r wp r, c CY p , r COSXSlll}l, 
r, 

(2.3.47) 
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where c is the chord length, X is the blade stagger angle, J.1 is the angle of attack 

with which the fluid encounters the blade, Ur is the relative velocity, Po is the 

density of the fluid. The above terms are illustrated in Figure 2.5 which is 

reproduced from Goldstein (1976, p.176). 

!. 

J.I 

/ 
/ 
I 

--.1 u 
I 

/ 

/ 
/ ,- Parallel to 
r Y2 axis 

/ Va = QRo 

Figure 2.5 Two dimensional model of the fan blade-flow interaction and the 

associated terms in Equation (2.3.47). 

The function Se is the compressible blade force response flmction which is also 

called the Sears function (Goldstein 1976, p.139). The parameters on which this 

function is shown to depend are (J p' which is the reduced frequency of the flovl 

gust that the blades receive and , M,. the flow Mach number relative to the blade. 

The expressions for Se. (J p and M,. are given in Appendix 2.7. The fo rces are 

assumed to act along the azimuthal centrelines of the blades at Bs' . The term 
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w P k) is the pth Fourier coefficient of the inlet flow velocity distortion w(r, ,e,) 

and is given by 

1 21f ( ) - f -jp(), ( e) de w p r, - -2 e w r,", s S • 

J[ 0 

(2.3.48) 

Substituting (2.3.47) and (2.3.48) in (2.3.46) we have the expression for D/~n,p as 

(
M'BQ c ()' J ( ) -j -2 zs-m s 8 B' 

D± - fJ ( , ) ('I' (c)) cof3 s U mn,p = - III Kmn's cos 17l1ln,sB Z.I" e --J[ cpo r 
~ ~ 

1 27r 

x -2 fe-JP (), w(r, ,e,) des Sc (cr p ,Mr )cos X sin 11 dr, de;. 
J[ 0 

(2.3.49) 

The variations of chord length c, stagger angle X, angle of attack 11 and relative 

velocity Ur along the span are neglected. Taking e; = 0 as the location for the 

blade identified by s = 0, we have 

D,~n,p = -~ POUr cosX sin 11 Sc(cr p,MJ fJJKlIlnr,)cos(17:'n.SB(Z~)) 
Ao 

( 
MsBQ c ()' J ( )? - J - - -/II (5 e I _If 

xe cof3' -, ' __ ",_" fe-JP()'w(r"eJdes dr, de;. 
r, 0 

(2.3.50) 

Since an assumption is made that the forces act along the centre lines of the blades, 

we have the axial coordinate of the chord for the first blade (e.: = 0) as 

z~ = r,e; cot X = O. Hence the expression for D,~n,p simplifies to 

a 1 2rr 

X fJJKlllllr,)cos(171~'~)~ fe -JP(), w(r, ,eJ de,. dr,. 
o s 0 

(2.3.51) 



The integral over the duct cross section is expressed as WII;~,P given by 

(2.3.52) 

and hence 

+ C 'S ( ) (0+) D D;;'n,p =-2: POUr cosx sm,u c (jp,Mr cos 17mn w"m,p' 

(2.3.53) 

Similarly T:n,p is given by 

(2.3.54) 

1 , ± (c) e' 0 h' h' ± . k mn (+0 ) MsBD. h Eva uatlng Ymn,sB z, at s = ,w lC IS Ymn = } f3 2 tan 17mn - c
o

f3 2 ,we ave 

T ± - c U' , S ( M ) af2f7r - jpes J ( ) J 0+) mn,p =-- Po r slnX sln,u c (jp, rem Kmnrs CO~17mn 
200 

x r !n,sB l1{r" es ) des dr" 

(2.3.55) 

and the surface integral in the thrust expression is given by 



a 2rr 

WI:~~,P = f fe-lPe, J m (KmnrJw(r"eJ des dr\ 
() 0 

(2.3.56) 

Hence 

(2.3.57) 

Goldstein (1976, p. 202) defines the thrust and drag coupling coefficients as 

follows: 

(2.3.58) 

The coupling coefficients derived here, l.e., Tn~n,p and D!n,p can be related to the 

above using the following expressions. 

(2.3.59) 

2.3.5. Final expression for the acoustic pressure In terms of the 

flow disturbance 

Finally the expreSSIOn for the acoustic pressure can be glven m tenus of 

T,1I11,P and Dmll.p as follows: 
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(2.3.60) 

± k ( fO) MsBfl. .. where Y mn = j m; tan TJ mn - 2 and m = sB - p. Smce fimteness of the duct 
f3 cof3 

was assumed it is possible to revert back to the infinite duct case considered in 

Goldstein by setting the reflection coefficients equal to zero, which corresponds to 

0+ . d 0- . TJllln ~ + joo an TJIIIII ~ - jOO. 

2.3.6. Expression for the acoustic pressure in the semi-infinite duct 

case 

Since the fan system considered for implementation has an anechoic termination 

at the exit, letting TJ ,~/~ ~ + joo to set the downstream reflection to zero yields the 

acoustic pressure expression for the semi-infinite duct case. The expression for the 

upstream part is important here since the focus of control is on the inlet side. The 

expression for the upstream pressure in the finite duct case is 

.I(MSB? :-111&) 
Of) '" J (K r)e C

of3- ( ) 
P . (x) = jB '"' '"' III 11111 cos TJ - (z) 

.\B ~ ~ N7 k 1II11 • .<B 
p=-oo 11= I mn 11m ,.'IE 

COSh/~,~) (~ - f ) 
X. 0+ 0- nIDIIIII ,r + Y IIl11,sB IIl11,r 

SIn 1]11111 - 1] 11111 

(2.3.61) 

h - . klllll (+0 ) MsBfl. d B L' 0+ .' 1 were YIIII1 = j f3 2 tan 1711111 - • f3 2 an 111 = S - p. ettmg 1711111 ~ +./00 m t 1e 
Co 

above expression, the following terms in the above expression simplify to 
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(2.3.62) 

smce tanh:,~ ~ +0 . = -1/ j. Substituting the above in Equation (2.3.61) leads us AT]",n~Jr.f) 

to the following expression for the pressure in the upstream side of the fan duct 

assuming no reflections from the anechoically terminated exit, 

A A 

X (m Dml1,p+ YI~n ,R Tmn,p) 

(2.3.63) 

The above equation can be simplified by rewriting e - Jr/~;; COS(17 :n,sB (z)) as 

_. 0- (e i 1);;;""n(z) + e -i1);;;""n(Z) ) 

e .11) .. " - -. From the definitions (2.3.7) and (2.3.17) we get 
2 

(after some algebra) 

A A . e ( k ,- k o-? 0- ) 
00 '" B(mDmn,p+Y:Il,R Tmll ,P)J (K r)e-Jnl e-J '''":+e- J 'm":e- J -1),,,, 

P sR (x) = I I " ---"."',---"B",,1I1 ___ -'------------'-

P=-CfJ 11=1 Nmnkmn,sB N mn 2 

(2.3.64) 

Comparing this with Equation (2.3.6) which is repeated here 

p(r,8, z) = I I (Aml1 (co)e -jk,~,;' z + BIJlJ1 (co)e -ik,:,~ }f'mll (1',8), 
111=-00 11=1 

(2.3.65) 

we get the following interpretation for (2.3.64), that the tonal acoustic pressure is 

the sum of modes of order (171.11). Whereas Equation (2.3.6) was wTitten out as a 

solution for any single frequency, (2.3.64) tells us that these modes are detennined 

for the any frequency representing either the Blade passing frequency or its 
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harmonics, sBQ. Also the circumferential acoustic mode order m is determined 

using the relationship m = sB - p, with p being the circumferential order of flow 

disturbance interaction with the fan blades. The variation of the acoustic modes in 

the cross-sectional plane is determined by the shape function term 

J ( ) -)1110 

q; ( e) = III K mn r e 
11111 r, N ' 

mn 

the axial direction by the term 

1\ 1\ 

( () 
_1kHz ( ) -Ik'-) B(mDmn,p+Y:llsB Tmn,p) 

Amll ill e . "'" + Bmll ill e . "'" = ' 
Nmnkmn,sB 

x e -)k,:,~ Z + e -jk:,~ Z e -j2'1~,~ ) 

2 

which accounts for the amplitudes due to the force fluctuations on B blades i.e, 

1\ 1\ 

B(m Dmn,p + Y'~11 ,8 T mll,p) 

Nmnkmn.SB 

and the axial propagation along both directions (z + and z-) with reflections, i.e., 

( k ,- k H J 0- ) e-)'mn z +e-)'",,,Ze-J -'1,,,n 

2 

which accounts for the sum effect of the propagating and reflected wave train 

systems. 

2.4. Summary 

Thus an expression given in Equation (2.3.63) was derived in this Chapter for the 

acoustic pressure field associated with the interaction of the fan with a flow 

disturbance. If the profile of the flow disturbance is knowTI then the acoustic 

pressure field can be estimated from this expression. This equation is used in the 

control problem fOl1nulated in next Chapter which consists of (i) the 

determination of the acoustic pressure field resulting from the wake generated by 

the presence of a cylindrical rod in the duct upstream of the fan rotor. and (ii) the 

problem of optimising the noise power when several such rods are used for 

control. 
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Chapter 3 Wake Generator Control 

3.1. Introduction 

Having developed an expreSSIOn for the pressure field resulting from the 

interaction of flow disturbances with the fan blades, we shall now develop the 

requisite theory for the minimisation of the noise power. Section 3.2 will examine 

in detail the expressions developed in the previous chapter for the relationship 

between a flow disturbance and the corresponding acoustic modes that it 

generates. Section 3.3 will detail the analytical expressions for the flow 

disturbances (wakes) generated by the control rods. Section 3.4 will look at the 

problem of cancellation of noise using the expressions developed above by 

making one of the rods act as a source and another as a controller. The section will 

in particular look at the effects of translating and rotating the control rod. Section 

3.5 will examine the problem of noise optimisation since the presence of the 

control rod can cause the production of modes other than the mode that is being 

considered for control. Section 3.6 attempts to solve the problem of noise 

cancellation outlined in Section 3.4 using an algorithm based on the noise 

optimisation theory in Section 3.5. The noise cancellation problem thus becomes a 

test case for the optimisation algorithm which will be used for subsequent 

optimisation cases in the next chapter. 

3.2. Relationship between the interacting flow disturbance and 

the corresponding acoustic modes 

The equations developed in the previous chapter expressing the relationship stated 

in the heading above are repeated here. Equation (2.3.63) gives the acoustic 

pressure due to the radiation of the fluctuating forces produced through the 

interaction of the fan blades with the flow disturbance, 
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/\ /\ 

X (m Dmn,p + Y;'n,sB T mn,p) 

(3.2.1) 

The term in this equation that represents the fluctuating force harmonics is 

/\ /\ 

(mDmn,p+Y;'n,sB Tmn,p). Equations (2.3.53) and (2.3.57) express the relationship 

between these forces and the flow disturbance harmonics, 

T± cU· . S ( M) J 0+) ± WT 
mn,p == -2" Po r SIn X sln.u c (j p' r cO~7]mn Ymn,sB mn,p 

(3.2.2) 

Equations (2.3.52) and (2.3.56) obtain these flow disturbance harmonics through a 

Fourier-Bessel decomposition of the flow disturbance w, 

a 2;r 

WII~,P = f fe-JPe, JjKlIlnrJw(rs,BJ ,~ dBs drs 
(] 0 51 

a 27r 

WII;",p = f fe-JPe'JIIl (KlIlnr,)w(r"Bs) dBs dr, 
o 0 

(3.2.3) 

It is essential to understand the kinematics of the production of an acoustic 

mode from the interaction of the fan with a flow disturbance. Any velocity 

disturbance w in a cylindrical cross-section duct can be resolved into weighted 

Fourier-Bessel shape functions W as indicated in Equation (3.2.3) above. Fan 

blades are shown on the inner circles in Figure 3.1. A harmonic pattem can be 

assumed to be generated by the presence of equispaced wake generating rods and 

these are shown on the outer circle. The pattem of the acoustic mode resulting 

from the interaction of the fan with the rods is ShOW11 on the outside of the outer 
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circle as a patch. The fan blades rotate at n radls and the first blade on the fan is 

marked with a bold dot. The start of the interaction pattern can be thought to be at 

the instant shown in the same figure when the marked blade coincides with the 

horizontal rod on the right side of the first of these figures. Thereafter it appears 

whenever a blade and the rod coincide as the fan rotates past the rods. 

In the first example there are 8 blades (sB =8) and 6 rods (p=6) and the 

pattern has an order of m=2 (since sB-p=2). This pattern rotates in the same 

direction as that of the fan and it goes through one complete revolution upon 

completion of a ~ revolution of the fan which makes the speed of the pattern 4 

times that of the fan. 

J PATTERN 
ROIATION 

- / 

.~ 
/ 

=IF 0 # 1 

-I 
=If; 

. -
:# 6 

3 

Figure 3.1 Illustration of the production of an acoustic mode pattern from the 

interaction of fan blades with stationary rods (from Tyler and Sofrin, 1961). 

In the second example in Figure 3.2 there are 8 blades (sB =8) and 9 rods 

(p=9) and the pattern has an order of m=-l (since sB-p=-l). This pattern rotates in 

the opposite direction to the fan (hence the negative value for m) and it goes 

through one complete revolution upon completion of a 1/8th revolution of the fan 

which makes the speed of the pattern 8 times that of the fan. 
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Figure 3.2 Illustration of the production of an acoustic mode pattern from the 

interaction of fan blades with stationary rods (from Tyler and Sofrin, 1961). 

The following table summarises the information described above. 

No. of fan Flow Acoustic Speed of the Speed of the spinning 

blades B mode mode order m fan blades 0 acoustic mode BQJm 

order p (m =B-p) (radls) (radls) 

8 6 2 0 40 

8 9 -1 0 -80 

Table 3.1 Interaction between fan blades and stationary rods. 

The relationship employed in the above table is a special case of the 

general relationship given in the previous chapter which is (m=sB-p) applicable 

for tones of any harmonic order s. The acoustic modes produced from the 

interaction do not rotate at the same speed as the fan and some of these modes 

rotate in the sense opposite to that of the fan . 
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3.3. Flow disturbance produced by a cylindrical rod and its 

acoustic response 

The flow disturbance that the cylindrical controller rod generates is in the form of 

a velocity wake distributed over the cross section of the duct and an equation 

representing the wakes velocity defect distribution is given in terms of the spatial 

coordinates. The profile is a Gaussian profile for the wake. The original equation 

as used by Polacsek (1999) is a semi-empirical 2-D model of the turbulent wake 

behind an infinite cylinder deduced from Abramovich (1963) which is again based 

on experiments of Schlichting (1960) and also his turbulent wake theory. 

Schlichting shows that the dimensionless velocity profile distribution of wakes 

from cylinders obtained from his experiments can be represented by a Gaussian 

function. The formulae also assume that the Reynolds number is in the range of 

104_105 as the coefficient of drag turns out to be roughly equal to one in this 

range. The flow situations considered here fall within this range. The equation 

after the modification for the wake shape at the tip region of the rod given by 

Pitelet (2000) is as follows: 

f!: 
IT (r(0-8q )J' IT (a-l-rJ' 

W (r 8) = U ~e -=qd ~- e -=qd ----o.s 
(I .. _ ' 

""q 

(3.3.1) 

where l1"1 (r,8) is the wake velocity defect distribution generated across the duct 

cross section at the blades of the fan by a controller rod q of diameter d and length 

I and located in the duct of radius a at the circumferential and axial coordinates 8q 

and ~q respectively. and U is the velocity of the mean flow in the duct. In addition. 

the presence of the Von karman vortex street downstream of the flow past a 

cylinder is well known. The potential part of the wake velocity defect from a 

single rod thus causes each interacting fan blade to experience unsteadiness in the 

blade loading for every revolution of the fan and hence blade loading harmonics 

are generated. The emission of the Von karman vortices from the rod adds up to 

the unsteadiness in the blade loading which will not be periodic \\lith respect to the 

fan rotation. Polacsek (2003) has observed through his computations that despite 
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the presence of this phenomenon the blade loading harmonics were dominant 

compared to other components due to non-periodicity. Substituting the wake 

profile wqk,eJ in the integrals in Equation (3.2.3) and defining the coupling 

A A 

coefficient as C,%n,p = (m Dmn,p+ Y'~n,sB T nln,p) , we see that this term is given by 

(3.3.2) 

where C;:'II,P is the coupling coefficient of the mode (m,n) induced by the qth rod. It 

can be seen through the Fourier-Bessel integral that the complex amplitudes of 

these coefficients depend on the rod lengths I and their orientation eq. 

If the response as mentioned above is obtained for a controller at the zero 

reference of the azimuthal position across the duct cross section then the response 

of the rod at an angle e from the reference is given by 

(3.3.3) 

The resolution in Fourier-Bessel space of a flow disturbance generated by 

positioning a single rod at a reference is explained below. 

The real and the imaginary pa11s of the Fourier-Bessel term appearing in 

Equation (3.3.2) are shown in Figure 3.3 and Figure 3.4. The shape function has 

been constructed using (m,n,p) = (0,0,9). The shape function has 2p zero crossings 

in the circumferential direction. 

-J.-J. 



o 

-1 

0.3 

0.2 

-0.3 
-0 .3 

....... 
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-0.1 

Figure 3.3 Real part of the Fourier-Bessel shape function in Equation (3.3.2) . 

o 

-1 

0.3 

0.2 

. . . ... 

0.3 

Figure 3.4 Imaginary part of the Fourier-Bessel shape function in Equation 

(3.3.2). 
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The projected view of the real part of the shape function as seen from the 

top is shown in Figure 3.5 which makes the radial nodal lines clearly visible. Each 

cycle of the Fourier-Bessel shape function has a positive (appearing in red) and 

negative (appearing in blue) tum across each nodal line in the Figure. As the 

circumferential order increases the number of these radial nodal lines increases 

and the additional nodal circles appear for the cases where the radial order n>O. 

Figure 3.5 Circumferential nodal lines on a Fourier-Bessel shape function. 

Using the equations III the previous sections a program was written III 

MA TLAB to estimate the acoustic modal response for a cylindrical rod of length 

300mm and diameter 12mm. The rod was assumed to be oriented at a 

circumferential reference of zero (X2 axis) and held at an axial distance of 400mm 

upstreanl from the fan origin. This causes the wake velocity defect distribution 

shown in Figure 3.6 to lie between the two adjacent nodal lines in the above 

Figure 3.5. The defect distribution shown in Figure 3.6 is as seen from the 

downstream end of the duct, and this is for the situation when the entire length of 

the rod (300mm) protrudes into the duct. The length was increased incrementally 

in steps of 10 mm and the coupling coefficient defined as in Equation (3.3.2) was 
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estimated with the flow wake distribution obtained for each length of the rod. The 

increase in the length of the rod causes the modal amplitude to register an increase 

without a change of phase as seen from the integration in Equation (3.3.2) in 

conjunction with Figure 3.5 and Figure 3.6. This response was evaluated assuming 

that the fan that interacts with the flow has 9 blades and rotates at 3000 rpm. 

These parameters correspond to the existing fan on which the control system 

implementation is carried out. The response was evaluated for all the cut-on 

modes present in the first three harmonics of the blade passing frequency (BPF 

=450 Hz). As explained in Chapter 2 the axial wave number kmn has to be real 

valued for each mode to be cut-on. The other essential parameters for the 

simulation are as follows : fan blade chord, 130 mm; fan blade stagger angle, 34°; 

fan duct diameter, 630 mm; sound speed, 342 m/s and mean flow speed, 30 m/s. 

0 

· 1 

-2 

·3 

-4 

-5 
...... " ...... . 

0.4 

0.2 

o 

0.4 
-0.2 

-0.4 -0.4 -0.3 

Figure 3.6 Wake velocity defect distribution for a cylindrical rod (300 mm in 

length, 12 mm in diameter and held at 0°). 

The possible cut-on modes for the speed of fan rotation chosen above are 

listed in the table below for the first three harmonics . 

Harmonic Flow mode Acoustic mode Acoustic mode 

order s azimuthal order p azimuthal order m (=sB- radial order n 

47 



p, where B=9) 

1 10 -1 0 

1 9 0 0 

1 8 1 0 

2 21 -3 0 

2 20 -2 0 

2 19 -1 0 

2 18 0 0 

2 17 1 0 

2 16 2 0 

2 15 " 0 .) 

2 18 0 1 

3 33 -6 0 

3 32 -5 0 

" 31 -4 0 .) 

" 30 " 0 .) -.) 

" 29 -2 0 .) 

" 28 -1 0 .) 

" 27 0 0 .) 

" 26 1 0 .) 

" 25 2 0 .) 

" 24 " 0 .) .) 

" 23 4 0 .) 

" 22 5 0 .) 

" 21 6 0 .) 

" 29 -2 1 .) 

" 28 -1 1 .) 

" 27 0 1 .) 

" 26 1 1 .) 

" 25 2 1 .) 

" 27 0 ') 
.) -

Table 3.2 Cut-on modes in the first three harmonics (BPF = 450 Hz). 
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The modal response, i.e. the coupling coefficient Cmn , is shown plotted 

against the rod length for only 5 out of the 30 cut-on modes in the first three 

harmonics in Figure 3.7 for the amplitude and Figure 3.8 for the phase. Each cut

on mode is represented by its circumferential and radial orders (m,n). The order of 

the harmonic is shown by the term s. 

2.5 ,----,-----,--------,-------,- - -----,-----

2 

/ 
/ 

/ 

/ 
I 

/ 
/ 

,/ 

/ 

- 1 
- 1 
- 1 
- 2 
- 3 

/ 
/ 

/ 

s m n p 

-1 0 10 
0 0 9 
1 0 8 
0 0 18 
2 0 25 

l 

J 

o~====~=====r====~======~=====c====~ o 0.05 0.1 0.15 0.2 0.25 0.3 

length of the rod (m) 

Figure 3.7 Amplitude response of the rod. 
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Figure 3.8 Phase response of the rod. 

The following observations can be made from the above graphs: 

I 
0.3 

i) The amplitude of the coupling coefficient increases initially with the 

length because of the integration of the wake profile with the Fourier

Bessel function and as radial nodal lines of these functions converge 

towards the centre the amplitudes tends to flatten out. 

ii) Phase remains flat because the disturbance that is integrated m the 

equations remains stationary in the circumferential sense. 

iii) Multiple modes of varying intensities are generated through the 

presence of a single rod. 

3.4. Cancellation of a mode generated by using a rod as a 

disturbance source 

The rod used to determine the amplitude response is used as a source to generate 

noise. Considering a single mode of circumferential order m for cancellation, the 

flow mode-acoustic mode relationship tells us that this mode arises out of the flow 
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disturbance which has a circumferential harmonic of p. The control then requires 

generating another flow disturbance pattern to cancel out the mode produced by 

the first rod. This disturbance as seen in Equations (3.3.2) and (3.3.1) produces a 

corresponding acoustic mode of an intensity adjustable through the variation of its 

circumferential and radial extent. The effect of rod translation and rod rotation are 

summarised below and the explanation of the control concept follows later. 
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Source rod at 

reference 0 0 ~ 
Case a) Control 

rod at 20 0 

2d'~d' 3411' 
4d' . . 

ad' . 

1m 

33d' 

Modal amplitude with 

source rod at 0 0 

2ad' 

Case b) Control 

rod at 80 0 

Fourier-Bessel shape function inscribed 
across the cross-section of the duct 

1m 

33d' 

Modal amplitude with 

control rod at 20 0 

30d' 

. ·2ad' 

24d' 

1m 

3d' 33d' 

Modal amplitude with 

control rod at 80 0 

Figure 3.9 Explanation of the cancellation concept using the Fourier-Bessel 

shape pattern (assuming the various indicated circumferential positions for 

the control rod). 

Effect of rod translation: As seen in the trends of the amplitude response 

the amplitude rises as the rod length increases and the phase remains constant. 
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Hence to cancel out the mode produced in the first instance changing the rod 

length alone will not produce any cancellation as this method will not alter the 

phase of the mode. 

Effect of rod rotation: It is already obvious that holding the length of the 

rod fixed in a circular duct and rotating it should not cause any alteration of the 

radial and circumferential extent of the rod's disturbance and hence the amplitude 

of the mode produced should remain constant. The phase alters by the term e -JpO 

as seen in Equations (3.3.3). The phase change produced in the mode through a 

rotation of 8 in the rod is p8. 

Cancellation of the mode: Let us assume that the mode produced by a 

source rod mentioned above has an amplitude A and phase of 8m /. To cancel this a 

mode of the same intensity but of opposite phase has to be induced which means 

that placement of the control rod should produce a mode that has the phase of 

e
JOlllj 

e±JJr. This concept is illustrated in Figure 3.9 where the Fourier-Bessel 

pattem for the plane wave mode (111=0 and p=9) is shown inscribed across the duct 

cross-section. Considering the plane wave mode for cancellation (771=0), and with 

a fan of B (=9) blades the flow mode that generates this has a circumferential 

order of p=9. The Fourier-Bessel pattem for this mode in Figure 3.9 has got 18 

radial nodal lines. The source rod is show11 placed at the azimuthal reference of 0° 

on the first inscription of the Fourier-Bessel pattem. On the second inscription of 

this pattem two cases are shown for the control rod. one located at 20° and the 

other at 80°. When the control rod is placed at 20°. it can be infened that the 

Fourier-Bessel pattem exhibits a tum (hump) that is opposite in sense to that 

\vhere the source rod is. This is shown in the complex modal amplitudes sketched 

in bottom half of Figure 3.9 wherein the placement of the control rod at 20° is 

causing the production of the mode in anti-phase with respect to that of the source 

rod. Hence there are multiple positions where the control rod can be placed to 

cancel the mode produced in the first place. The placement of the control rod at 

80° causes the mode generated to be in-phase with respect to that of the source 

rod. This is also made clear by the term e -JI'O . 

Figure 3.10 sho\\'s the phase ditTerence induced between the controller and 

source generated modes for two modes when the source rod is placed along the 

radial lines shown in Figure 3.9. The two modes are the mode considered for 
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cancellation (m=O, p=9, B=9) and a different mode (m=- l, p=lO, B=9) . The 

orientation of each radial line is denoted as B. 

i) e ·Jp6 vectors 
for mode m =O 
(p=9) , 

00 where 6 = 
[aD, 2aD, 4&, .. 36aD} 

ii) e -JP6 vectors 
for mode m =O 
(p=10), 

00 where 6 = 
[aD, 2aD, 4&, . 36aD I 

Figure 3.10 Phase difference induced between the controller and source 

generated modes for two different modes. 
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The following observations can be made from the information presented in 

Figure 3.10. 

i) For the mode that is cancelled (m=O) the out-of-phase relationship 

necessary for cancellation, i.e., e -Jpe = -1, holds at exactly half the 

number of orientations. At the remaining locations it is in-phase, i.e., 

e- Jpe = 1 . 

ii) None of the above orientations cause cancellation of the mode (117=-1), 

i.e., e -Ipe ;t -1. Hence focussing on the cancellation of one mode 

causes the intensity of the other modes to either increase or decrease 

but does not necessarily cancel them. This leads us to consider the 

problem of minimisation of the intensities of multiple modes which is 

explained in the next section. 

3.5. Noise minimisation problem 

The problem of the minimisation of the intensities of mUltiple modes can be 

considered by f01111ing a cost function to represent the sum of the squared modal 

amplitudes. The Overall Sound Power level is a quantity that readily represents 

this summation. An expression has been derived for the transmitted tonal po\yer in 

the intake duct produced by the fan interaction with the flow disturbance. This 

expression has been alTived at by using the semi-infinite duct pressure expression 

developed in Chapter 2 to obtain the sound intensity which when integrated with 

the normal propagating area gives the power. This derivation is given in Appendix 

3.1. Power in any harmonic is given by 
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(3.5.1) 

All terms are as defined previously, except that the term ¢,~;',SH represents the 

imaginary part of the complex valued phase of the upstream modal reflection 

ffi' 1 0- d - k / k coe lClent 711111,sH an a lilli,S/! - lilli,S/! () • 

The above expression for power in a single harmonic, FsB can be considered as 

F'B = Lc lIIl1 l(mD IIII1 ,p +YI~I1,sHf,I1I1.pf = Lcllll1 lCllln,pl2 , 
I1In,p mn.p 

(3.5.2) 

where Cmll is a mode-specific constant term accounting for all the factors in 

Equation (3.5.1), other than l(mD IIIII .p + Y l~n,sHf,I1I1.P f· 
It should be noted that the expression for power was based on the 

amplitudes of the incident and reflected modes to estimate the net transmitted 

tonal power in the duct with a square inlet. If inlet geometry has to be taken into 

account as in the case of scarfed inlets, then the expression for power can 

alternatively be based on an appropriate radiation model that accounts for it. 

3.5.1.1. Optimisation 

Assuming that the action of the controllers can be represented by a control vector 

w representing the controller rod lengths the fOl111Ulation of the optimisation 

problem can be phrased as follows: minimise the cost function for error po\\"er 
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J = Ip'B(W), 
s13 

(3.5.3) 

subject to the constraint that the control vector W> 0 for all its elements. The 

above expression expresses the power in the tone as a sum of the squares of the 

modal coupling coefficient amplitudes and can be considered as the cost function 

J for the optimisation problem. It should be noted that the expression for the cost 

function was based on the simple unweighted summation of the individual 

harmonic powers. Weighting can be introduced in a situation when human 

response to noise needs to be accounted. The expression for the cost function can 

include frequency weighting in such a scenario. The modal coupling coefficient 

for the acoustic field generated in the system due to the disturbance inherent to the 

system is represented by C~Jr/1I/ which is what needs to be controlled. Denoting the 

same for the controller generated acoustic field as Csecol1dw) we see that the total 

power in the system is obtained from the sum of the squares of the modal coupling 

coet1icient amplitudes in the enor acoustic field which is a vector sum of the 

primary and secondary fields. Also if multiple tones are considered for 

optimisation the cost function is simply a sum of the tonal powers which in turn is 

a sum of squares of modal amplitudes in all the cut -on modes in those tones. Since 

the secondary noise generated by the controllers depends on the lengths of the 

controller rods we can see that the cost function depends on the rod lengths: 

J = Ip'13 = I ICmll,s13(C:'rorCerror) 
sB sB 11111.p 

= I I C mil ,s13 (C pnm + Csecolldarl' )H (C pnm + Csecolldary 1 
sR !1IH.p 

(3.5.4) 

where C,ecolldurl' = I C mll ,p,s13 ' which is the sum of the contributions to the coupling 
\I' 

coefficient of a mode made by each controller and H (= *) denotes the complex 

conjugate of the modal coupling coet1icient which is a scalar quantity. 

The optimisation method considered here is based on the gradient based 

technique. "The use of the negative of the gradient vector as a direction for 
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minimisation was first made by Cauchy in 1847." (Rao 2000). The steepest 

descent method will be used for minimisation of the cost function. This technique 

involves estimating the gradient of the optimisation cost function J with respect to 

the control vector wand descending along the gradient ayaw to arrive at the 

optimum. Differentiating the optimisation cost function J with respect to the 

control vector of lengths w. 

aJ ~ ~ [(aC'error)H C CH (aCerror)J aw = ~ ~ cl1ll1 ,sH aw error + error aw 
s/J 11111,1' 

= I I C I1lI1 ,\!J X 2 Re[( aCerror )H Cerror J 
s/J 11111,1' aw 

[(
aC )H J secondary' 

= I I C I1II1 •S/J X 2 Re Cerror . 
s/J 11111,1' mv 

(3.5.5) 

Hence it turns out that the cost function gradient aJ / aw is dependent on the 

modal coupling coefficient gradient aC,cCol1dw) / mv. The quantity C'CCOl/dOl) was 

already obtained numerically and presented in Figure 3.7 and Figure 3.8. 

Since the coupling coefficient amplitude in Figure 3.7 is not linear with 

respect to the rod length we have to either linearise or take into account its non

linearity \vhile estimating its gradient. If C,"'col/dar) is linearised with respect to the 

control vector length, then aC,ccol/dan / mv = g. Otherwise, it is the local gradient 

of the non-linear response function. 

The cost function is minimised by iterating the control vector in the 

direction of the steepest descent and the converged set of control vector lengths w 

needs to be obtained, 

aJ w(k+ 1)= w(k)- j.1-, mv 

(3.5.6) 
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with the constraint that w>O, where f.1 denotes a convergence coefficient and k is 

the iteration index. The algorithm requires a value for f.1, which represents the 

length of the step along the gradient to be descended. Using this expression for the 

update of the control vector in an algorithm coded in MA TLAB the nOIse 

cancellation problem in the previous section is explained in the next section. 

3.6. Numerical simulation of the nOise cancellation problem 

using the steepest descent algorithm 

A simple case of optimisation is examined here for the cancellation of a single 

mode using a single control rod. This is the same mode whose cancellation was 

discussed in Section 3.4, the only difference being that the fan is assumed to run at 

a speed of 1800 rpm where only this mode is cut-on for the first hannonic as 

determined from the axial wave number equation. In order to proceed \vith the 

optimisation using the steepest descent algorithm one needs to know the gradient 

of the cost function as expressed in Equation (3.5.5). This in tum requires the 

knowledge of error and cC,<"ol/dw\ / CW . For the initial iteration of the algorithm 

\vhen the length of the control rod is zero, error = Cprlm This is the noise field 

generated in the system due to the plane \vave mode being considered here. 

aCluc()}J(lan / GW is the gradient of the modal response of the single control rod. 

Since the algorithm requires the determination of this gradient for each iteration of 

the control rod length. a knO\vledge of the fit of the response would be helpful. 

Initially a linear fit for the modal response is chosen. The modal response obtained 

for the plane wave mode (111=0) for the single rod along with the linearisation is 

shoyvn in Figure 3.11. The level of the previously considered plane \vave mode for 

the cancellation problem is also shown as an intercept on this figure. This is 

obtained by assuming that a source rod is extended fully (300 mm) into the duct. 

The linearised response. cCII'wl/dan / CW = g is utilised in estimating the gradient in 

Equation (3.5.6). The advantage of linearisation of the response is in the fact that 

it can make the cost function J a quadratic in terms of the controller length and the 

optimal control rod length can also be obtained by inversion of a simple linear 

equation instead of having to use the steepest descent algorithm to obtain this 
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quantity iteratively. However, attention in this section will be restricted to using 

the steepest descent algorithm to obtain the optimal control rod length since it was 

found that the results obtained here are the same as those obtained by using the 

inversion of the linear equation. For the sake of completeness the method for the 

inversion of the linear equation is given here for the single control rod and single 

mode case. The inversion of the linear equations will be attempted for the 

situation of multiple modes and multiple rods which forms the subject matter of 

the next chapter. Denoting the control rod length as I" the optimal length Ilopl can 

be obtained by setting the gradient of the cost function in Equation (3.5.5) to zero: 

aJ - x [( aC'sec()lIdGlY J* J -af - & 2 Re af C error - ° . 
I I 

(3.6.1) 

Substituting aCsecolldary lall = g, C (C + C ) we find that the I al error = ~ prim secondary' 

optimal rod length satisfies 

2 Re(g * (C prim + gfIOPI )) = 0, 

2 Re(g' g YIOPI = -2 Re(g' C prim) 

:.II()PI = - Re(g' C prim )/ Re(g * g) 

(3.6.2) 

Reverting back to the use of the steepest algorithm method, the linearised 

response was thus input to a program in \vhich the algorithm utilising the steepest 

descent approach was coded. This algorithm uses the Equations (3.5.5) and (3.5.6) 

to estimate oJ / aw, the gradient of the cost function and iterate w, the control 

vector. The constraint w>O is ignored initially and is added later to bring out the 

effect of its imposition. With each iteration k used to update the control Yectol' the 

final values of the control vector are obtained after having the execution 

performed for a predetermined number of iterations. This program also needs a 

value to be set for the gradient step (or the convergence parameter) p. An input for 

the circumferential position of the control rod \vith a zero initial condition length 

is also given. The circumferential position that is considered is the third of the 
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positions given in the table in Section 3.4, which is 20° (or 2nI18). The program 

is expected to give the converged rod length for the controller for this case and 

also the cost function as the algorithm traces out each iteration. Since the linear 

response was used for C,ec()nJary in the algorithm, the cost function J is also 

estimated using this quantity as expressed in Equation (3.5.4). Note that C,econJary 

can also be estimated for a given control rod length using the exact Fourier-Bessel 

expansion given Equation (3.3.2) which leads to the exact estimate of J. The 

difference between the approximated and exact estimates will also be discussed 

here. The result of running the steepest descent algorithm is shown in Figure 3.12 

for the controller rod length and the cost function with these quantities plotted 

against the iterations. A value of j1=0.3 was chosen for this case. The same results 

are shown in Figure 3.13 for another value, j1=30. It is well kno\vn that the value 

of j1 chosen can int1uence the convergence: too Iowa value can lead to slower 

convergence and too high a value can result in the algorithm becoming unstable 

and tracing out an oscillatory path (Widrow and Steams, 1985). Since the cost 

function J in the above problem comprises of only one mode, the variation of this 

with respect to the length of the single control rod used here for cancellation is a 

parabolic characteristic. The convergence is smooth and is either slow or quick as 

was shown in the illustrations. The next chapter examines multiple mode control 

with multiple rods and the oscillating or unstable behaviour of the cost function 

will be illustrated for a fe\v cases there. The value for j1 has to be chosen on a trial 

and enor basis. As seen from the illustration in Figure 3.13 the control rod has 

achieved a length of 0.229m. The reason that this has not matched the length of 

0.3m for the source rod is due to linearisation of the response. 

It should be noted that in Figure 3.12 . the optimal rod length is reached 

near an iteration index of about 40 but the cost function continues to reduce up to 

100 iterations while the rod length changes slo\vly. This is due to the t1attening of 

the amplitUde response once the rod length starts to exceed 200 mm as seen in 

Figure 3.11. In practice this reduction of the cost function to 2.5 dB may be 

unattainable due to factors like unsteadiness in the measurement of the modal 

coupling coellicient amplitude. and the accuracy of the estimates of the rod length 

and the modal coupling coetlicient amplitude. The dlect of measured and 

simulated unsteadiness in modal coupling coefficient on the convergence of the 
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algorithm is examined in Chapter 5 where the implementation of the active control 

system is considered. 

Since it was illustrated in the prevIOUS section that the circumferential 

position in which the rod is placed can influence control, the optimisation study 

was repeated with every phase increment of the control rod. Since there is only 

one control rod it was phase shifted through 360° with an increment of 1 ° and at 

each increment of the phase the convergence of the control rod was determined, 

using the linear response as mentioned before. The convergence of the cost 

function Jfor some of the phases (10, 44°,125°,193°,291°) of the control rod are 

displayed in Figure 3.14. For instance, at the control rod location of 10 the cost 

function J is shown to attain a converged minimum of 2.5 dB. The converged 

minima attained by J for all the 360 increments of phase of the control rod are 

collectively plotted and compared against the primary power (93.9dB) in the top 

half of Figure 3.15. This result in Figure 3.15 obtained by using the steepest 

descent algoritlm1 was found to be the same as that obtained through the optimal 

rod length inversion discussed in the beginning of this section. In the top half of 

Figure 3.15 the converged cost function J is estimated using the linear response of 

the converged rod length. In the bottom half of Figure 3.15 the primary pov.,-er is 

compared \vith the estimate of J obtained using the exact response of the 

converged rod length evaluated tlu-ough the Fourier-Bessel expansion. The 

converged rod length variation \vith the phase is shown in Figure 3.16. Again. this 

result in Figure 3.16 obtained by using the steepest descent algoritlm1 \\"as found 

to be the same as that obtained through the optimal rod length inwrsion discussed 

in the beginning of this section. The rod length alternates between positiw and 

negative values as the phase of the control rod is varied. The negative rod lengths 

arise due to the reason that the algorithm extrapolates the linear response 

characteristic into the negative controller length space thinking that this \\"ould 

result in the production of the required anti-phase mode. The variations of the 

converged J in the top and bottom half of Figure 3.15 show that as the phase of 

the control rod is varied the converged cost function does indeed reduce belO\\" the 

primary power at some phase locations. The reduction in J peaks at certain phase 

locations as seen in bottom and top halves of that figure. In the top half the peak 

reduction of .I to 2.5dB is attained at 0° and later at every 20° increment of the 

phase. In the bottom half the peak reduction of .It 0 43.08dB is attained first at 20° 
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and later at every 40° increment of the phase. This difference in the two patterns is 

explained as follows. Figure 3.14 showed the convergence trajectory for the 10 

setting of the control rod location, wherein J attained 2.5dB and this value is 

shown included at a phase of 1 ° in the sinusoidal variation of J in the top half of 

Figure 3.15. The bottom half of Figure 3.15 shows that at the phase of 1°, the 

exact estimate of the converged J is not 2.5 dB, but almost close to the primary 

power (93.9dB). The reason for this is that the control rod attains a negative value 

of the converged rod length at the 1 ° setting which is shown in Figure 3.16. At this 

setting the algorithm sets the rod length to a negative value of -0.229m. The 

program evaluates the exact estimate of the cost function by setting the rod 

lengths equal to zero whenever such negative values of rod lengths are attained. In 

the case of the single control rod problem here this means that when the 

converged rod length is negative the cost function will be set to the value of the 

primary power. But the algorithm continues to iterate negative values of the rod 

length. This behaviour of the algorithm can be explained using the term e-/pe
. In 

this term p=9 for the plane wave mode 111=0 whose cancellation is being examined 

here and e is the phase of the control rod. The tenn e -Ire = -1 for all peaks 

mentioned in the bottom half of Figure 3.15, and the control rod produces an anti

phased mode at all these locations. which means there is perfect cancellation here. 

At the peak reduction locations in the top half of Figure 3.15. the term e -Ire 

alternates between -1 and 1. Cancellation is physically possible \yhen this tenn 

equals -1. When the term assumes a yalue of 1 the control rod produces an in

phase mode with respect to that of the source rod. Cancellation is not physically 

possible here. as a rod cannot produce only a deficit in the fluid yelocity and not 

an excess. But the algorithm makes this possible by extending the linear response 

characteristic in Figure 3.11 into the negative length space which rewrses the sign 

of the magnitude of the modal amplitude. This is the reason the estimate of J using 

the linear response in the top half of Figure 3.15 gives a false indication of noise 

reduction. In the bottom half the exact response evaluated through the Fourier

Bessel expansion avoids estimating the cost function \\-heneYer the rod lengths 

converge to negative values. The following observations can be made from these 

illustrations in Figure 3.14. Figure 3.15 and Figure 3.16: 
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(i) The converged control rod length and cost function (from the 

linearised response estimates as well as the exact ones) vary 

sinusoidally illustrating the effect of phase as was explained in Section 

3.4. 

(ii) Control is not feasible in some sectors where the controller length 

attains negative values. The program simply sets the value of the exact 

estimate of the cost function equal to the primary power in such cases. 

Note that if a controller which exhibits bi-directional action of control, 

i.e, the one capable of creating both a deficit and excess of the velocity 

in the mean flow then control is possible even in these unfeasible 

regions mentioned here since the bi-directional action reverses the sign 

of the amplitude in the integration involved in the Fourier-Bessel 

expansions with the controller remains stationary in the spatial sense. 

(iii) The maximum reduction obtainable as seen from the exact response 

based estimate of the cost function in Figure 3.15 is limited by the 

dotted line. This shows the actual maximum reduction in sound pO\ver 

obtained for the converged rod length of 0.229m against that predicted 

by the linear response based estimate (dashed line). 

The next step is to examine the effect of adding a constraint to keep the rod 

lengths always positive and also to have the response approximated by a 

polynomial fit of the response. This is done as follows in a t\vo-step process. 

First a constraint is added programatically which zeros out any lengths in 

the iteration which become negative and the same algoritlun is used \vith the 

linearised response. The results are shown in Figure 3.17 and Figure 3.18. 

Observations: 

i) Adding a constraint has eliminated negative lengths. 

ii) Response linearisation still affects the enol' in the residual power 

(difference between the exact and linearised response based estimates 

of sound power) 

Consequently the response was approximated using an 8th degree polynomial in 

MA TLAB. This approximated response is shown against the exact response in 

Figure 3.19 and this was fed to the program which \vas re-run for the above case 

and the results obtained are shown in Figure 3.20 and Figure 3.21. 

Observations: 



(i) Better prediction of the reduction in the noise power when compared to 

the case where linearised responses were used. 

(ii) Approximating the response using the polynomial has only yielded a 

converged length of 0.234m because beyond this length the exact 

response exhibits a flat amplitude characteristic. 

3.7. Summary 

Thus the present Chapter has developed the requisite theory for the minimisation 

of the noise power. The relationship between the flow disturbance and the 

corresponding acoustic modes that it generates was examined. The controller 

response was determined using analytical expressions for the flow disturbances 

generated by the control rods. A simple case of the problem of cancellation of 

noise was studied by making one of the rods act as a source and another as a 

controller. It was deduced that cancellation is possible through translations and 

rotations of the control rod. It was also shown that the presence of the control rod 

can cause the production of modes other than the mode that is being considered 

for control and this subsequently led to formulation of the problem of noise 

optimisation. The simple case attempted for the problem of noise cancellation was 

repeated using an algorithm based on the noise optimisation theory. The noise 

cancellation problem thus became a test case for the optimisation algorithm. The 

simulation of the optimisation problem presented here revealed the importance of 

the approximation of the controller response and also constraining the control. In 

particular the polynomial approximation led to less error in the residual pO\\"er 

estimates than the linear response, and constraining the algoritlul1 caused the rod 

lengths to be positive. The next chapter examines the simulation study for the 

optimisation of noise power with multiple modes with the help of the constrained 

algorithm using the polynomially fitted response characteristic. 
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Figure 3.20 Converged cost function variation with rod rotation 

(polynomially fitted response and constrained run of the algorithm) 

Harmonics= 1, Controllers= 1. 
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Chapter 4 Simulation of Noise power 
minimisation 

4.1. Introduction 

The previous chapter dealt with the theory of noise optimisation and also with the 

simulation of a simple case of the cancellation of a single mode. It was pointed out 

that focussing on the control of a single mode can lead to the alteration in the 

intensities of the other modes and that the possible increase in the overall sound 

power evaluated for a set of modes should lead us to consider the optimisation of 

this quantity, and the present chapter aims to investigate this problem. A primary 

t10w disturbance that is capable of generating multiple modes needs to be 

considered. Section 4.2 introduces two such disturbances, the first of these being a 

velocity defect that is harmonic with respect to the circumferential coordinate of 

the cross sectional plane and the other a random distribution of that quantity in the 

same plane. The acoustic modal content resulting from the interaction of these 

with the fan are also presented there. These disturbances are considered for 

control using equispaced rod alTays in Section 4.3 \vherein the simulation problem 

presented in the previous chapter for the case of a single mode and a single 

controller is extended to multiple modes and multiple controllers. Section 4.4 

considers the problem of cancellation of 3 modes using unequispaced rod arrays. 

Section 4.5 considers the inclusion of the phase of the alTay in the control vector. 

4.2. Primary flow disturbances and the acoustic modal content 

from their interaction with the fan 

Two How disturbances \vere chosen for generating the primary acoustic field. 

They are (i) crossbar shaped and (ii) the randomly distributed How disturbances, 

shown in Figure 4.1 and Figure 4.2. These are in the f0l111 of a defect in the 

velocity superimposed on the mean How. In Figure 4.1 the crossbar shaped defect 

has four lobes of the velocity defect of -2 m/s. The random disturbance in Figure 

4.2 is a defect in the velocity that \:vas generated through the tvlA TLAB randnO 

function. 
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Primary disturbance: Distribution of the cross-bar shaped velocity defect (m/s) 

-2 -1.8 -1 .6 -1.4 -1 .2 -1 -0 .8 -0 .6 -0.4 -0.2 o 

Figure 4.1 Crossbar velocity defect. 

Primary disturbance: Distribution of the random velocity defect (m/s) 

-4 -3 -2 -1 o 2 3 

Figure 4.2 Random velocity defect. 
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Harmonic Flow mode Acoustic mode Acoustic mode 

order (s) azimuthal order azimuthal order (m=sB- radial order (n) 

(P) p, B=9) 

1 8 1 0 

2 20 -2 0 

2 16 2 0 

3 32 -5 0 

3 28 -1 0 

3 24 3 0 

3 28 -1 1 

Table 4.1 Modes in the crossbar disturbance. 

The harmonic-wise distribution of the modal content in the acoustic field 

generated by these two disturbances is shown in Figure 4.3 and Figure 4.4. This 

was found by using the acoustic response obtained from Equations (3.2.2) and 

(3.2.3) of Chapter 3 \vherein the drag and the thrust terms D'~IlP and T,I~IP in 

Equation (3.2.2) are obtained from a Fourier-Bessel decomposition using 

Equation (3.2.3) of the 1\:vo velocity defect profiles 11'(1'.8) given in Figure 4.1 and 

Figure 4.2. The amplitudes of the crossbar disturbance induced acoustic modes are 

shown in Figure 4.3 for the first tlu"ee harmonics. They have a relationship \vith 

the spatial harmonics of the four-lobed crossbar in Figure 4.1 and only those 

acoustic modes are present in the system which are excited by the cOlTesponding 

disturbance flow modes \vhose azimuthal orders are multiples of 4. As listed in 

Table 3.2 in Section 3.3 there are a total of 30 cut-on modes at the tlU"ee harmonics 

when the fan rotates at 3000 rpm. With the crossbar defect the azimuthal order p 

of the flow modes can only be multiples of 4. so \ve have only a fe\\' cut-on 

acoustic modes whose order m bears a relationship \vith the spatial harmonics of 

the four-lobed crossbar defect. These modes are listed in Table 4.1 below and they 
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are the ones that are shown in the modal amplitude distribution m Figure 4.3 

which can be referenced by their (m,n) indices. 
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Figure 4.3 Crossbar defect generated modal amplitude distribution. 
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The random disturbance that was shown in Figure 4.2 induces flow modes of all 

spatial orders and hence is representative of a more general case of the acoustic 

modal content which is shown in Figure 4.4. 
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Figure 4.4 Random defect generated modal amplitude distribution. 
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The modes generated by the two flow disturbances discussed in this section are 

used as the primary noise field inputs in the optimisation simulations presented in 

the next section. In particular these inputs for the primary noise field modal 

amplitudes shown in Figure 4.3 and Figure 4.4 represent the quantity Cprim in 

Equation (3.5.4). 

4.3. Control of the two flow disturbances using equispaced rod 

arrays 

4.3.1. Cost functions in a multi-dimensional controller space 

Since the problem of optimisation of the cases with multiple modes and multiple 

controllers is considered in this chapter, this section considers an optimisation 

case wherein illustration is provided for the error surface of the cost function J 

representing the total power resulting from the sum of the corresponding primary 

disturbance and the controller generated noise fields along with the convergence 

of the algorithm. The controller vector space w consisting of the rod lengths is 

gridded and the cost function is evaluated at each point in the gridded vector 

space. The case taken up here is that where the crossbar type of disturbance is 

controlled with 4 equispaced rods to optimise the noise power in the first 

harmonic. 

The modal amplitude distribution in the first harmonic for the crossbar 

case was already shown in Figure 4.3. The modal amplitude distribution resulting 

from the gridding of the controller vector space of 4 equispaced rods is obtained 

by summing the responses of the individual rods in that space. The individual rod 

responses are obtained from the controller rod response \\~hich \vas already 

illustrated in Figure 3.7 and Figure 3.8 of Chapter 3. The cost function J in the 

gridded control vector space w is obtained using Equation (3.5.4). For the sake of 

illustration only the 2 rod subspace of the 4 equispaced rod array is gridded here. 

This is followed by running the control algorithm t\\'ice \vhich uses a different 

initial condition of the rod lengths each time it is run. 

Figure 4.5 shows the cost function error surface J in decibels of noise 

power obtained by gridding the 2 rod subspace of a 4 rod controller length vector 
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space. The space with the first two rods was gridded using the interval [0 0.3] m 

on each rod's length. The other two rods were maintained at 0.0427 m of length. 

Relative to the subspace there is a global minimum at the point corresponding to 

the rod's length vector of w=[l" h h 14]=[0,0.0427, 0.0427, 0.0427, 0.0427] m 

with the cost function at this point being 83.51 dB. 

Cost function error surface 
Primary disturbance : Crossbar defect 
No. of equsipaced controller rods :4 

105 

100 

CD 
:s. 95 
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~ 
c. ., 90 
VI 
'1\ 
z 
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80 
0.4 

0.3 

0.1 

length of rod 2 (m) 

0.2 

o 0 
length of rod 1 (m) 

Figure 4.5 Cost function error surface. 

0.4 

The optimisation algorithm was run with a convergence coefficient of 

j.F.03 and an initial condition for the rod lengths was of w=[/" h 13, 14]=[0, 0, 

0.0427, 0.0427] m. The algorithm responded by converging to the minimum 

mentioned above and the trace of the algorithm is shown in Figure 4.6 where in 

the trace is superposed on the contour plot of the surface shown in Figure 4.5. 

This trace is marked as Tl on that figure. 

Figure 4.6 shows another trace T2 of the algorithm obtained usmg a 

convergence coefficient of j.F.0005 and an initial condition for the control rod 

vector of w=[iJ, h 13, 14] =[0.2500, 0, 0.0427, 0.0427] m. Instead of converging to 

the global minimum within the subspace the algorithm responded by converging 

to the local minimum at the point where the control vector corresponds to w=[l" 

h h 14]=[0.2500, 0.0416, 0.0427, 0.0427] m and the cost function value of 
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100.65 dB. This shows that the initial condition selection can affect the 

optimisation by causing the algorithm to converge to local minima. This is 

consistent with the behaviour of the gradient-descent class of algorithms in regard 

to their application in the optimisation of non-linear functions. The cost function 

is non-linear because of the non-linear acoustic response of the controller rod 

which was discussed in the previous chapter. The global minimum mentioned 

above is only relative to the subspace discussed here. 
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.:: 0.15 
o 
.c 
0, 
c 
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0.1 

0.05 0.1 0.15 0.2 0.25 0.3 
length of rod 1 (m) 

Figure 4.6 Effect of Initial Condition on Convergence. 

The above cases were repeated for the random disturbance defect with 5 

equispaced controller rods. The gridding was done on the subspace of rods 4 and 5 

with the rods 1,2 and 3 set at [0.2178, 0.0131, 0] ill. Figure 4.7 shows the case of 

the error surface. 
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Cost function error surface 
Primary disturbance : Random defect 
No. of equsipaced controller rods :5 
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Figure 4.7 Cost function error surface. 

0.4 

0.3 

Figure 4.8 shows the contours of the above surface with a superposed algorithm 

trace which starts with the initial condition OfW=[ll, 12, 13, 14, 15]=[0.2178, 0.0131 , 

0, 0, 0] m and a convergence coefficient JL = 0.01 . The algorithm traces out its 

path T1 to the "global" minimum at [0.2178, 0.0131 , 0, 0, 0.2170] m with cost 

function being 115 .8 dB. By changing the initial condition to [0.21 78, 0.0131 , 0, 

0.3 , 0] m and choosing a convergence coefficient JL = .001 the algorithm traces out 

the path T2 to the local minimum at [0.2178, 0.0131 , 0, 0.3 , 0.1418] with cost 

function being 117.5 dB and this trace is shown in the same figure . 
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Contours of the error surface (dB) 
(Effect of Initial Condition on the trace of the Algorithm) 
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Trace of Algorithm 
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Figure 4.8 Effect of Initial Condition on Convergence (Convergence to local 

minima) 

Having discussed the nature of the cost function and the convergence of 

the algorithm we now proceed to discuss the optimisation of the crossbar and the 

random disturbances with equispaced rod arrays in the following two subsections. 

4.3.2. Control of the crossbar defect induced acoustic field 

In this section the crossbar disturbance is considered for numerically simulating 

the control using 1, 2, 4 and 8 equispaced rod arrays. This choice of the 

equispaced rod array limiting it to 8 rods was made initially since the controller 

array meant for implementing the active control system on the fan rig discussed in 

Chapter 5 had 8 equispaced rods. The optimisation algorithm written in MA TLAB 

was run for this disturbance by varying the number of harmonics in the cost 

function J from 1 to 3. As more harmonics are included in the cost function , more 

modes are present in the system to be controlled. For each case of the controller 

array, the array is phase shifted through (2tr1q), where q is the number of 

controllers since an equispaced rod array exhibits circun1ferential symmetry. This 
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means that to test the effect of the rotation of the rod array it would require 360° 

of phase shifting of the array if there is a single rod and 180° when there are two 

equispaced rods. The algorithm was run for each orientation of the rod array and 

the same quantities that were presented in the last section of Chapter 3 for the 

simple simulation case, i.e., the vector of converged controller lengths w, the 

minimum of the cost function J are presented for each equispaced rod array case. 

The case of optimisation with these rod arrays is discussed below for the 1 st 

harmonic modes included in the cost function. As in Chapter 3, in each case the 

residual power J in the system after convergence is estimated using the 

approximate and the exact responses of the rods and they are compared with the 

primary power. Unlike in the illustrations of the last section of Chapter 3 where 

the exact and linear response estimates were shown separately, these will be 

shown here superimposed over each other. 

Figure 4.9 shows the residual power or the cost function variation with the 

phase of the array for the single rod array case after convergence. It can be seen 

that the cost function approaches a minimum at several orientations of the phase 

of the array when compared \vith the primary power (shown as straight line). The 

single rod that is used in this case to control the only mode in the 1 st harmonic can 

be oriented at any of these several locations which is where the controller 

generated mode is in anti-phase with respect to the primary noise field. The 

number of these locations also corresponds to the number of peaks or valleys 

along the circumferential direction on the Fourier-Bessel shape function of the 

flow mode (p = 8) that induces the corresponding acoustic mode (171 = 1). The 

spacing between these feasible locations also corresponds to the spacing between 

those peaks or valleys, which is (2x3600/8 = 45°). Any orientation other than these 

is not optimal. The approximate estimate of the cost function J also tallies \vith the 

superimposed exact estimates. The controller length variation \vith the orientation 

of the array can also be seen in Figure 4.10. The controller attains positiw lengths 

at the orientations where the cost function is less than the primary po\\"er. The last 

section of Chapter 3 discussed about constraining the algoritlU11. Due to this the 

algorithm has responded by turning off the controller at orientations where control 

is not possible. If a constraint was not used the algorithm would have responded 
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by setting negative lengths to the controller. This case IS similar to the one 

presented in the last section of Chapter 3. 
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Figure 4.9 Control Cost function variation with phase of rod array. 
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Figure 4.10 Controller length variation with phase of rod array. 
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Figure 4.11 through Figure 4.13 show the cost function variation with the rotation 

of the rod array for the 2, 4 and 8-rod array cases. The variation is presented over 

180° of rotation of the rod array in the 2 rods case, and over 90° in the 4 rods and 

45° in the 8 rods case, due to the effect of circumferential symmetry of the 

equispaced rods. As in Figure 4.10 the variation of the converged cost function 

has several dips (best optima) with respect to the phase of the rod array. As the 

number of controllers increases from 2 through 8 the amount of reduction 

increases as seen when the dips in the residual power are compared with the 

primary power in each illustration. Controller lengths are not shown as all the 

control rods in each case converge to equal lengths and the variation obtained is 

similar to what was shown in the single rod case in Figure 4.10. The increased 

reduction is obvious in the case of the crossbar shaped primary disturbance used 

since it has only one mode (m = 1 and p= 8) in the 151 ham10nic and the individual 

rod positions on the equispaced 8 rod array case form a superset of those of the 

rest of the cases. And once one rod on the 8-rod array is aligned at an orientation 

(corresponding to the anti-phase radial line of the Fourier-Bessel shape function 

for the flow mode) in a \vay to produce a mode that is in anti-phase \vith respect to 

the mode in the primary field the rest of the rod positions can also be seen to be 

lying on the remaining anti-nodal lines and the effect of increase in the number of 

rods on the reduction obtained is cumulative. It is instructive to understand this 

result from the perspective of Equation (3.3.3) which expresses the modal 

response transposition when a rod is phase shifted. The following should make 

this clear: e-/
p

() = e-/(8
x
(1'2;r/8) = 1 forq = 0 ... 7, which means that all the rods on 

the 8-rod equispaced array generate a contribution to the mode (of order (m.p)) 

that is in-phase for the mode that is being controlled in the current case, i.e., m= 1 

andp= 8. 

87 



aJ 
'0 

.!: 
Qj 
> 
~ 
:;; 
~ 
0.. 
'0 
C 

is 
(J) 

107 

106.5 
~ 

106 

105.5 

105 

104.5 

104 
o 

11 
20 

Residual power variation with phase , Harmonics= 1 ,Controllers= 2 1- residual power - polyfitted I' 
-+- residual power - exact ... - primary power -

~ ~ _\~l / 

t 

11 V \A-, -\!; 

40 60 80 100 120 140 160 180 

Phase of controller array (deg) 

Figure 4.11 Control Cost function variation with phase of rod array. 

Residual power variation with phase, Harrnonics= 1 ,Controllers= 4 
107 

106 

105 \ + 

104 \ aJ 
'0 

.!: 103 
Qj 
> 
~ 
:;; 102 
~ - residual power - polyfit 
0.. -+- residual power - exact 
'0 
c 101 - primary power 
is 

(J) 

100 

99 

J 98 

97 
0 10 20 30 40 50 60 70 80 90 

Phase of controller array (deg) 
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Residual power variation with phase , Harmonics= 1 ,Controllers= 8 
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Figure 4.13 Control Cost function variation with phase of rod array. 

The controller cost function and length variations are similar to those described 

above when more hannonics are included in the cost function and hence are not 

illustrated here. 

From the above illustrations it appears that the 8-rod array seemed to have 

been effective for controlling the crossbar disturbance since the spacing of the 

rods on the array is perfectly suitable for the order of the mode (m = 1) that is 

being controlled. 

4.3.3. Control of random velocity defect induced acoustic field 

Before movmg on to discuss the results for the random disturbance case it is 

instructive to ask ourselves what will happen when modes of different order to be 

controlled are present in the primary field, which is the case as seen in Figure 4.2 

for the random disturbance modal amplitude distribution. Let us assume that there 

are three modes to be controlled, as in the first harmonic of the random 

disturbance modal amplitude distribution whose azimuthal orders are m =[-1 , 0, 

1]. Let us also asswne that all 8 controllers are available to control these. Figure 
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4.14 through Figure 4.17 show the individual phase contribution of each controller 

on an 8-rod equispaced array for each of the three modes. Figure 4.14 shows the 

8-rod array. Figure 4.15 through Figure 4.17 show the contribution to the modal 

amplitude vector by each controller for the particular mode on the complex plane. 

The modal phase for the reference controller in each case is assumed to be 00 for 

the sake of simplicity. 

8-rod array 

Figure 4.14 The 8-rod array 

1m 

Re 

e- jpO = e- j (8 xqx2;r/8) = 1 forq = 0 ... 7 

Figure 4.15 Phase contribution for mode m=1. 

From the above expression it is seen that all rods generate an in-phase 

contribution for mode m=1 (for which p=8). 
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1m 

e
- jpB =e-j(9xqx2J(/8) ~ 0 7 lorq = ... 

Figure 4.16 Phase contribution for mode m=O. 

From the above expression it is seen that half the number of rods generate an out 

of phase contribution for mode m=O (for which p=9). For example if we assume 

that the modal amplitude vector for the first rod (q = 0) is along the real axis of the 

complex plane then the vector for the fifth rod (q = 4) lies opposite in phase to the 

that of the first rod. Substituting other values for q we can see that the contribution 

of rods q = 0-3 are opposite in phase to that of rods q = 4-7. 

m 

Re 

e
- jpB = e-j (lOxqx2J(/8) ~ 0 7 lorq = ... 

Figure 4.17 Phase contribution for mode m=-l. 

From the above expression it is seen that half the number of rods generate an out 

of phase contribution for mode m=-l (for which p=10). Substituting q = 0-7 we 
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can see that the contribution of rods q = 0, 1, 4 and 5 are opposite in phase to that 

of rods q = 2, 3, 6 and 7. 

Considering the problem of having to control three modes simultaneously, 

we see that the 8 rods produce an in-phase contribution for mode m= 1 and if we 

assume that the three modes in the primary disturbance had some arbitrary phase 

angles and also assume that all rods on the 8-rod array are used to control the three 

modes, it would require a simple re-orientation of the controller array to make the 

rod generated contribution to mode 111 = 1 in Figure 4.15 be out of phase with 

respect to the corresponding primary disturbance mode. We can also assume that 

the 8 rods have equal length which means that each rod makes an equal 

contribution to the anti-phase mode that is being generated. Having adjusted the 

orientation of the array to control the mode 111 = 1 we see that the equal length 8 rod 

array will now be unsuitable to control the other two modes 111=[0, -1]. This is 

because half the number of rods on the array generate an anti-phase contribution 

to other half, which means that the array of 8 rods of equal lengths is self

cancelling as far these two modes are concerned. Let us assume that \\~e set half of 

the rods on the array to zero lengths and attempt to control the first mode 171=1 by 

way of suitably adjusting the lengths yvhich will not result in a self-cancelling 

contribution as far as the mode /J1 =0 is concerned since the modal Yectors as seen 

on Figure 4.16 on any consecutive halfofthe 8 rod array lie on one half-plane. Let 

us assume now that through readjustment of the lengths of the 4 rods \Ye manage 

to control both the modes 111 = 1 and 111 =0. Haying done this we can nO\\" proceed to 

look at the control of mode 171=-1 using one half of the 8-rod array that \\"as used 

to control the other t\\"o modes. Comparing Figure 4.16 and Figure 4.17 \\"e see 

that the half of the 8-rod array that was used to control the other t\\"o modes can 

now result in a system \\"herein one half of the 4 rods produces an out of phase 

contribution \\lith respect to the other half as far the last mode 171=-1 is concerned. 

Attempting to explain in the above manner the control in case of a system that has 

an arbitrary number of control rods and modes to be controlled can be quite 

complex and it should be left to the algorithm to decide the best choice of the rod 

system for the noise minimization problem. 

From the aboye discussion it should be clear that as more modes are 

introduced into the control system. using more controllers on the array becomes 

ineffective. Only a quarter of the controllers on the 8-rod array are effectiYe for 
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controlling the three modes mentioned above. This should be expected from the 

simulation results for the random disturbance case. Only two cases are discussed 

here for the random disturbance, i.e., the single rod and the equispaced 8 rod array 

cases. The cost function variation is presented for the single rod case in Figure 

4.18. The single rod case is illustrated here only to show that the feasible 

orientations where the controller can be placed for the single rod case follow the 

same pattern of dips in the variation as was shown in single rod array control of 

the cross bar defect. But the reduction obtained at each of these locations is not the 

same since there are three modes being controlled in the 1 SI harmonic of the 

random defect unlike, in the crossbar case which had only one mode. Compared to 

the primary power the dips in the cost function variation had the same depth in the 

crossbar case as was seen in Figure 4.9, Figure 4.11-Figure 4.13. 
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Figure 4.18 Control Cost function variation with phase of rod array. 

The cost function variation. is presented for the 8 rod case in Figure 4 .1 9. 

The discrepancy in the exact and approximate estimates of the cost function is due 

to some of the controllers attaining lengths close to the [0, 0.001] metres length 

interval range which is where the polynomial fit does not give a good 

93 



approximation with the exact response. The 8-rod case assumes significance for 

illustration here since there are three modes being controlled with 8 rods. As was 

explained above only qumier the number of controllers, i.e., two controllers, 

would turn out to be effective for this purpose. The cost function variation shows 

that the minimum appears when the array is oriented at around 25°. The variation 

of the converged controller rod lengths in the 8-rod array are shown against the 

phase of the rod array in the top half of Figure 4.20 for this case. Around 25° for 

the phase of the 8-rod array Figure 4.19 shows a dip in the variation which means 

that the power reduction is at its maximum here. Only the variations of four 

converged controllers (rods 1,2,7 and 8) out of the 8 rods are marked using the 

symbols '*', '0', 'x' and '+'. It can seen from these markings that only three 

controller rods marked (using '*', 'x' and '+') on the illustration converge to 

positive lengths at 25° and they occur one after the other in succession in terms of 

their order in the controller array. This is made clearer in the bottom half of Figure 

4.20 which shows the configuration of the converged rods at the phase of 25° of 

the rod array. All 3 rods are seen to be in the same quadrant. The reason that only 

3 out of the 8 rods converged to positive lengths is the same as was explained 

before regarding effectiveness of an equispaced controller rod array to control 

multiple modes. 
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Figure 4.19 Control Cost function variation with phase of rod array. 
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The number of equispaced rods was stepped from 1 through 20 to control 

the random disturbance, and the variation of the minimised cost function with the 

phase of the rod array in each case was determined as was done for the cases 

described above. The minimum from this phase characteristic was determined and 

the variation of this minimum is plotted against the number of controllers that 

were stepped through in Figure 4.21. For example, the effect of an equispaced 8-

rod array to control the random disturbance was illustrated in Figure 4.19 for the 

converged cost function variation with the phase of the rod array. This variation 

also showed that the best minimisation happens at the phase of 25°. The cost 

function attains a value of 114.6 dB at this phase in this variation. Values like 

these are extracted from each run of the equispaced array with the rods stepped 

from 1 - 20 and plotted in Figure 4.21 against the number of rods used in each 

run. The curves shown are for the three harmonics of the blade passing frequency. 

The primary power without control in each han110nic is also shown in the figure 

so that the reduction in the power in each control case can be inferred by 

comparing the variation of the minimised cost function with the primary power. It 

can be seen that the reduction obtained through control decreases as the number of 

harmonics being controlled increases. Though there is increased reduction as the 

rods increase to 20, this is not gradual. In Figure 4.22 - Figure 4.24 the variation 

given in Figure 4.21 is repeated and also the break-down of the pO\ver in the 

individual ham10nics is given. For example in the top half of Figure 4.22 the 

variation in the minimised cost function with the number of rods is plotted for the 

control of the first ham10nic. In the bottom half the break up of the pO\ver in the 

three individual harmonics is also given. From these three figures, Figure 4.22 -

Figure 4.24, it appears that most of the control is happening in the first harmonic. 

As already mentioned the variation illustrated in Figure 4.21 is that which is 

obtained after collation of the best minimisations happening at pal1icular 

orientations of the rod alTay in each rod array case. These orientations al·e 

different for each rod array case. In Chapter 3 \vhile explaining the noise 

cancellation concept the simulation of the cancellation of the single mode re\"ealed 

that the cancellation happens when the control rod is placed at orientations along 

the circumference which have a simple relationship with the nodal line on the 

Fourier-Bessel function for the cOlTesponding How mode that excites the acoustic 

mode. In the present case the best orientations for each rod array case \wre 
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examined to see if they have any relationship with the phases of the three modes 

in the first harmonic. It was found that no such simple relationship exists as was 

seen to exist in the cancellation of the single mode. This should be expected from 

the complexity of the problem as was illustrated in the beginning of this section 

with the case of control of multiple modes with multiple rods. It suggests that it is 

through running the algorithm that one should determine the positioning of the 

array in each individual case. 
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Figure 4.21 Variation of minimised noise power against the number of 

equispaced controllers for the random disturbance. 
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Figure 4.22 Variation of minimised noise power against the number of 

equispaced rods used to control the 15t harmonic in the random disturbance 
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Figure 4.23 Variation of minimised noise power against the number of 

equispaced rods used to control the first two harmonics in the random 

disturbance (with break-down of power in the individual harmonics). 
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Figure 4.24 Variation of minimised noise power against the number of 

equispaced rods used to control the first three harmonics in the random 

disturbance (with break-down of power in the individual harmonics). 

For the best orientations discussed previously in the individual cases of control 

using 1-20 equispaced rod cases, the configuration of the converged rod lengths 

are shown in Figure 4.25. Similar such configurations were obtained when the 

subsequent harmonics were also included in the control cost function. 

The optimal configurations shown in Figure 4.25 for the equispaced rod 

cases were analysed to see if they induce similar blade loadings. It was found that 

they do not induce similar blade loadings since the break-down of power in the 

individual harmonics in Figure 4.22 - Figure 4.24 show that the residual power 

resulting from each configuration is different. 
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Configurations of the Converged rods in the equispaced rod cases 
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Figure 4.25 Configurations of the Converged rods in the equispaced rod cases 

(with 1st harmonic optimised) 

The optimisation of the random disturbance was also conducted by 

stepping from 1-20 controllers with the cases of controllers being unequispaced. 

The variation similar to the one shown in Figure 4.21 was obtained and is plotted 

in Figure 4.26. The phase variations for the minimised cost function are presented 

for the optimisation of the disturbance's 151 harmonic with 4 and 10 unequispaced 

rods in Figure 4.27 and Figure 4.28. These graphs show that the minimisation has 

a very high phase dependence when unequispaced arrays are used. The 4 

unequispaced rod case had the following circumferential locations for the 4 rods: 

[10° 35° 70° 210°]. The circumferential locations for the 10 rods case were as 

follows: [10°,39°,66°,93°, 129°, 187°,210°,299°,3 13°, 340°]. Since the rods are 

unequispaced the phase variation was determined with the controller array rotated 

through the entire 360°. 
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Figure 4.26 Variation of minimised noise power against the number of 

unequispaced controllers for the random disturbance. 
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Figure 4.27 Control cost function variation with phase of rod array with 4 

unequispaced controllers to control the random disturbance. 
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Residual power variation with phase , Harrnonics= 1 ,Controllers= 10 
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Figure 4.28 Control cost function variation with phase of rod array with 10 

unequispaced controllers to control the random disturbance. 

4.4. Mode cancellation problem 

Cancellation corresponds to complete elimination of the modes under question. As 

was discussed in the beginning of this chapter, running the steepest descent 

algorithm would lead the convergence of a non-linear cost function to a local 

minimum even if there were a global minimum within the system. In the 

following two subsections two approaches are outlined for the mode cancellation 

problem. The first one in, Subsection 4.4.1 is based on the method already used 

here, i.e. , the steepest descent approach. This is accompanied by an attempt to 

solve the same problem using inversion of linear equations for cancellation. The 

second approach for cancellation is based on a direct method to control flow 

modes which is discussed in detail in Subsection 4.4.2. A comparison of these 

should lead us to decide which method is more suitable for cancellation. 
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4.4.1. N modes vs 2N un-equispaced controllers 

In a system of three modes whose amplitudes can be considered as three complex 

phasors to be cancelled, one would be led to conjecture that the cancellation 

would require only 6 control rods. As will be shown later, this idea would hold 

true only if the rod response was linear and the three amplitudes of the modes of 

the total disturbance (rod generated and the primary disturbance included) were 

expressed as a system of linear equations in terms of the 6 rod lengths. Before 

attempting to solve the cancellation problem in terms of the inversion of the linear 

equations it was decided to try this through the steepest descent approach taking 

into account the full non-linearity of the response of the control rods. Since an 

equispaced controller was already used in Section 4.3 to control the first harmonic 

of the random disturbance (which had only 3 modes in it) and the later use of an 

un-equispaced rod array also showed the phase of the array influencing the 

control, it was decided to try different spacings of the 6 rods to see if any of these 

configurations would result in the noise power reducing below the level that \vas 

already achieved for the 6 rod case in Section 4.3. Therefore the same algorithm 

was used to conduct the optimisation with the cost function formed from the 

power contained in the three modes of the first harmonic. The phase of the array 

was still rotated through 3600 to check if the phase dependency still exists. Five 

different spacings were tried for a 6-rod alTay. The various cases with the 

circumferential positions of these rods are given in the table below. 

Array Angle of Angle of Angle of Angle of Angle of A.ngle of 

rod 1 rod 2 rod 3 rod 4 rodS rod 6 

1 IOU 70u 120u 18Su 21Su 31Su 

2 OU 11 U 20° 4Su 66° 80° 

3 lSu 3Su 90u 120u 18Su 22Su 

4 20u 37u 88u lS0u 211° 287° 

S 2Su Sl° 1190 14So 26S1T 291u 

Table 4.2 Rod positions for the five different 6-rod arrays 
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The result of the optimisation for the five different cases is shown in 

Figure 4.29 with the converged cost function compared with the primary power. 

The results shows that there is phase dependency in the control. 
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Figure 4.29 Converged cost function vs phase for the five different 6-rod un

equispaced arrays. 
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The maximum reduction found through running the algorithm only shows 

that the level ranges from 112-113 dB in the above 5 cases which is not much 

different from that obtained in the 6 rod equispaced array case as seen in Figure 

4.21 which is around 114 dB. Since the cost function formulated is based on the 

non-linear response of the control rod and the convergence to the minimum using 

steepest descent method is dependent on the initial condition used for arriving at 

the global minimum, demonstrating a cancelled system of modes using this 

method appears to be unrewarding. 

One way of doing away with the steepest descent algorithm is to revert 

back to the use of the linearised response of the control rods. This makes the 

problem simpler to handle by formulating the total disturbance modal amplitudes 

in terms of the rod lengths which results in a system of linear equations, whose 

inversion should give the required lengths for the 6 rods to cancel the 3 modes. 

The system of equations and the resulting inversion of these to obtain the rod 

lengths is discussed here. With a linearised response of the rods one can formulate 

the optimisation cost function as a quadratic in terms of the modal amplitudes. 

Minimising this function results in the following relationship which is obtained 

after setting the cost function gradient in Equation (3.5.5) of Chapter 3 to zero. 

That is 

aJ = "" "" £ x 2 Re[( aCsecolldary J H C J = 0 Ow" ~ ~ mn.sB Ow" error 
sB III11,p 

(4.4.1) 

In all of the simulations discussed in this chapter so far the cost function J 

utilised a polynomial fit of the rods response which is the quantity CsecolldQ/)' The 

error resulting in the cost function estimate using the linearised response \vas 

already explained in Chapter 3. To formulate the mode cancellation problem the 

linear fit of the above quantity with respect to the rod length w is used here. 

Assume that C,ccoodull depends linearly on rod lengths, i.e., consider that all the rod 

contributions superpose such that 
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C -gw+gw+"'+gw secondalY - 1 1 2 2 I I 

T =g W 

(4.4.2) 

where the vectors g and w are defined by 

gT =[gl g2 ...... g/]' w T = [WI W 2 ...... WI] 

(4.4.3) 

Note also that aC;:"ndary = Gior aCsecondary = g. At the minimum 
I aw 

aJ = L LCmn,sB x 2 Re(g*Cerror )= 0, 
aw sB mn,p 

(4.4.4) 

where Cerror = C prim + Csecondary = C prim + g T w. Therefore the condition for 

the optimum becomes 

L LCmn,sB x2Re{g*(Cprim +gTwopt)}=O. 
sB mn,p 

(4.4.5) 

This equation can be written as 

L LCmn,sB x 2Re{g* g TW oPt}= - L LCmn,sB x 2Re{g*C prim}, 
.'IE 1lJll,p sB mn,p 

(4.4.6) 

and therefore 

(.tA.7) 
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This shows that the optimum control vector Wopt can be determined 

directly from an inversion of the matrix equation. 

The cancellation problem was attempted for the 6 unequispaced rod arrays 

using the direct inversion approach for determining the controller lengths. Figure 

4.30 shows the minimised cost function evaluated after the inversion which is 

plotted against the phase of the array. All cases show that cancellation is possible 

using this approach. A check made on the controller lengths showed that for none 

of the orientations of the array did the control vector have all positive lengths 

since the formulation of the problem in terms of the linear equations did not 

employ a constraint. Also the matrix on the left hand side of the Equation (4.4.7), 

i.e., (:s;: 1;, Em, ",H X 2 Re(g • g T ) J had the following condition numbers obtained 

during the inversion of the system of linear equations for the five cases: 19.1, 

4814.4,295.4,101.4 and 24.3. 
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Figure 4.30 Minimised cost function vs phase for the five different 6-rod un

equispaced arrays (Note: Minimised power was obtained using linear response 
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4.4.2. Combination of equispaced arrays or the direct control of 

flow modes 

Considering the uncertainty in the possibility of simultaneous cancellation of 

modes using equispaced or unequispaced arrays, it is worthwhile to take a look at 

this problem using a different approach. As explained in Chapter 3 we now know 

that the flow modes of order p induce acoustic modes of order 111. If there are three 

modes 1111, 1112 and 1113, we know that they are induced by flow modes of order PI, P2 

and P3 respectively. And a flow disturbance in the duct could have these flow 

modes in some arbitrary combinations of intensities and phases in the same way 

as they were assumed for random disturbance modal amplitude distribution. It 

could be definitively concluded that these three modes could be cancelled using 

three arrays of equispaced rods. The explanation for this is given as follows: since 

each acoustic mode is said to be originating from a particular flow mode, we 

know from Section 3.4 in Chapter 3 that that this mode could be cancelled by 

placing rods along one of the feasible orientations of the Fourier-Bessel pattern of 

the inducing flow mode. Since each acoustic mode has a different flow mode 

inducing it, the only way to prevent the cancellation of one mode affecting the 

other is to use a different equispaced array of rods for each of the three modes. 

This way the rods used to cancel one mode \vill not influence the other mode. For 

example the cancellation of mode 171 = 1 is possible using the 8 rod equispaced rod 

array with equal lengths for all the rods. Each rod in the array has an in-phase 

contribution to total modal amplitude as was shown in Figure 4.14 and Figure 

4.15. If all the rods were of equal lengths on this an'ay their effect on the other 

modes will be self-cancelling, as was made evident in the subsequent Figure 4.16 

and Figure 4.17. Hence the system of three modes 1111, 111:: and 1113 should have 

three arrays of PI, P2 and P3 rods to cancel them. These rod arrays should have only 

equal length rods to generate the corresponding modes. FUl1hennore. the angular 

disposition of one of these arrays relative to the other should be such that they 

produce the same phase difference that exists between the flow modes that are 

originally present in the system. The three array combination as a \vhole can be 

phase shifted to cancel the flow modes originally present in the system. thereby 

leading to the cancellation of the corresponding acoustic modes. 
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The theoretical justification for the non-influence of cancelled mode on the 

other modes is given as follows. Assuming there are PI equispaced rods of equal 

lengths [I, the coupling coefficient for mode m2 can be estimated as follows. 

(4.4.8) 

where Cm is the coupling coefficient of mode m2 resulting from the PI rod array 
2 

and Cm2 ,Pn is the contribution of rod pn in that array. The sum of the complex 

exponentials equals zero if PI *P2 and hence the PI array cannot contribute to 

mode 7n2. 

An attempt is made here to demonstrate the cancellation concept using the 

3 modes in the 151 harmonic of the random disturbance. This harmonic in the 

random disturbance has three modes whose circumferential orders are -1, 0 and 1 

respectively and the corresponding flow mode orders inducing them are 10, 9 and 

8. The cancellation of these three modes requires three equispaced rod arrays 

according to the method discussed here. The arrays should have 10, 9 and 8 

equispaced rods of equal lengths. The lengths 1/, I] and 13 for these three arrays can 

be found from the controller response characteristics, \vhich were ShO\\l1 in Figure 

3.7. The lengths can be directly read off from the non-linear characteristic of the 

acoustic modal response. For example the intensity of mode 111 = -1 in the first 

ham10nic of the random disturbance is given in Figure 4.4. Since 10 rods are 

required to cancel mode 111 =-1 w'ithout inducing modes 111 =[0. 1], the length of 

each rod required should match only 111 Olh of the intensity of the mode 111 = -1 in 

Figure 4.4. This length needs to be read otT from the coupling coefticient 

characteristic for 171=-1 in Figure 3.7 for a value of III Olh the intensity of mode 171 

=-1. (Note that it is not the exact characteristics shO\:\,n in Figure 3.7 that are used 

in the computations mentioned here, rather it is the polynomially fitted 

characteristics of the variations shown in Figure 3.7 \vhich are used here: an 
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instance of the polynomial fitting of the response characteristic in Figure 3.7 was 

already shown in Figure 3.11). Each of these equispaced arrays needs to be 

oriented relative to the reference on the circumference to make the mode produced 

by each of the arrays be exactly in anti-phase with respect to the corresponding 

mode in the primary disturbance as explained in Section 3.4 using the Fourier

Bessel illustrations. Following this method the cost function reduced to 95 dB as 

opposed to the 6 rod array where the reduction was only to around 112-113 dB. 

The lengths of the 3 superposed rod arrays were 0.0072, 0.0744 and 0.0090 m 

respectively. Noise power should have approached zero watts if there was 

complete cancellation. However a residue still exists in the power after 

cancellation which is the reason why the residual power is 95 dB. This is because 

of the approximation of the polynomial fit of the response characteristics for 

modes in the length range of [0, 1] cm which tends to give large errors. This 

estimate of 95 dB was obtained using the exact response of the rods as opposed to 

the 60 dB estimate predicted by the polynomial fit. That this error is justifiable 

can be seen from Figure 4.31 and Figure 4.32, where the primary disturbance 

modal amplitudes before cancellation are compared with the residual amplitudes 

after cancellation estimated using the exact Fourier-Bessel decomposition and the 

polynomially fitted response. The residual amplitudes estimated using the 

polynomially fitted response in Figure 4.31 are very small compared to those 

estimated using the exact method in Figure 4.32. In both cases the residual 

amplitudes are seen to lie either in phase or out of phase with respect to the 

primary amplitudes which happens to be the expected consequence of the method 

adopted here to directly cancel the flow modes inducing the corresponding 

acoustic modes. 
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The 27-rod array was also subjected to the steepest descent algorithm to 

see if the algorithm actually leads to convergence at the global minimum 

corresponding to the cancelled modes. The converged minimum from the steepest 
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descent was only l04.7dB compared to the 95 dB that was obtained from 

estimating the lengths directly from the response characteristic. A comparison of 

the direct approach with the 6 unequispaced rod array makes it obvious that the 

direct approach assures the approach to the global minimum. The approach to the 

global minimum is not assured in the steepest descent case even with the 27 rod 

array since it involves converging to a local minimum which may not be the 

global minimum. 

4.5. Inclusion of the rod array phase in the control vector 

Since the rotation of the array showed phase dependence in the achievement of the 

minimum power it was decided to extend the strategy that was discussed so far of 

altering the rod lengths to include simultaneous rotation of the rod array. The 

strategy adopted so far does not consider phase of the array as a variable in the 

optimisation. Since the controllers in the array have fixed angular positions, the 

angle of each rod can be expressed in temlS of that of the first rod and phase of the 

array can thus be regarded as one of the optimisation variables. This \vould result 

in a cost function consisting of (q+ 1) variables, the extra variable being the phase 

of the array. The matrix aC,ecol1dGlY / GW originally had the gradients of the 

responses of the individual control rods. Since the coupling coefficient of a rod 

disposed off by e radians from the reference differs by a factor of e -IP8 from that 

of the rod at the reference, the matrix aClecol1dmy / ow will no\v haye an extra 

column to account for the inclusion of the array phase with each of its elements 

being - jpCleCOl1d'UT' as can be seen from the derivative of the rod response 

Clccol1dan' with respect to the phase angle e. The simple expression for the 

derivative is also a consequence of the fact that the phase response doesn't change 

with length of a rod that is fixed circumferentially. The optimisation should now 

be expected to cause the objective function to directly approach one of the minima 

described in the results that were shown in the form of the converged cost function 

with the phase of the array. Two cases of simulation are repeated here from the 
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previous cases to test the convergence of the algorithm using simultaneous array 

rotation and rod translation. 

4.5.1. Case 1 

The top half of Figure 4.33 shows the variation of the converged cost function 

with the phase of the array for the optimisation of the 2nd harmonic of the crossbar 

disturbance with 4 rods. The figure shows that within the phase variation of the 

converged cost function there is a further minimum with respect to the phase and 

this is seen to occur at 23 0. The steepest descent algorithm was extended to 

include the phase in the control vector and the phase was given an initial condition 

of zero and the convergence coefficient J1 was set to .006 for the lengths and 

angle. The convergence obtained for the cost function is shown in the bottom half 

of the same figure. The algorithm started with an initial condition of 0 for all 

lengths and 15° for the phase of the array. In Figure 4.34 the length convergence 

of the 4 rods and the phase of the array are shown along with the configuration of 

the array of converged rods at the 200th iteration. 

116 



108 

107 

106 

CD 105 
"0 

.!: 

" 
104 

> 
.£ 
Q; 103 
~ a. 102 "0 
C a 

(fJ 101 

100 

99 

98 
0 

106 

105 

104 i 
Cil 

103 

I :!3. 
~ 

'" 
\ ~ 102 

c. 

'" en 
' i:j 

\ z 101 

100 

99 
0 

Residual power variation with phase, Harmonics= 2 ,Controliers= 4 

10 20 30 40 50 60 70 80 

Phase of controlier array (deg) 

Noise power convergence with simu~aneous phase rotat ion and length translation 

20 40 60 80 100 
iteration (k) 

120 140 160 180 

90 

l 

200 

Figure 4.33 Converged cost function variation with the phase of the array 

and Noise power convergence with simultaneous phase rotation and length 

translation. 

11 7 



Convergence of the control variables 
(with the phase of the array included in the optimisation) 

0.035 0.035 0.035 
1- rod 1 1 1- rod 2 1 

0.03 0.03 0.03 

0.025 0.025 0.025 

I E 
I 0.02 :5 0.02 ;; 0.02 

'" C, 
C 

.t:: ~ 
C 

C, ~ 

.§ 0.015 0.015 0 .015 

0.01 0.01 0.01 

0.005 0.005 0.005 

0 0 0 
0 100 200 0 100 200 

iteration (k) iteration (k) 

0.035 ..---~----, 22 ..---~---, 

1- rod4 1 

0.03 

0.025 ( 
I 

I 0.02 

.t:: 
C, 

.§ 0.015 

0.01 

0.005 

21 l.----------:l 

20 

~ 19 
~ I 
>-

~ 18 [' 
'0 
'" OJ> 

~ 17 1 I 

o L-__ ~ __ --' 

::LJ 
14 

o 100 
iteration (k) 

200 o 100 200 
iteration (k) 

a 

1- rod 3 I 

100 
iteration (k) 

Converged control rods 

(at 200 Ih iteration) 

200 

Figure 4.34 Convergence of control variables with simultaneous phase 

rotation and length translation 

The converged lengths and angle are gIVen In the table below for both 

cases of optimisation with and without the phase of the array included in the 

control vector. Specifically the case with the phase included in the control vector 

is compared with the configmation without it being included. We know from the 
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top half of Figure 4.33 that the best minimisation happens at 23° for the case in 

which the phase is manually varied. There is good agreement between the lengths 

and the phase from both these methods. 

Method Converged lengths Array angle 

Rod 1 Rod 2 Rod 3 Rod 4 

Phase included in the algorithm 0.0304 0.0304 0.0304 0.0304 21.0gU 

Manual phase variation 0.0334 0.0334 0.0334 0.0334 23° 

Table 4.3 Converged lengths with and without the array phase included in 

the control vector. 

Similar to the error surfaces discussed in the beginning of Section 4.2 an 

error surface was estimated by gridding in the 2-dimensional subspace consisting 

of the length ofrod 1 ([0, .3] m) and the phase angle () ([0°,60°]). The error surface 

obtained is shown in Figure 4.35. The algorithm was re-run with an initial 

condition of [0 0.0334 0.0334 0.0334] m for the lengths and 0° for the angle, and 

also a constraint was imposed on rods 2-4 with the condition that they be equal to 

0.0334 m in length. The convergence trace T1 of the cost function is plotted in 

Figure 4.36. The convergence trace shows that algorithm starts from the 0° and 

reaches the first dip/valley in the error surface graph which occurs at 21 ° of the 

array phase and the length of rod 1 also converges to the value .0291 m which is 

close to .0304 m given in the above table with the convergence coefficients 

remaining the same. This shows that for this disturbance the algorithm works 

when the phase of the array is also included in the control vector. 
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4.5.2. Case 2 

Figure 4.37 is a repeat of Figure 4.19 which shows the variation of the converged 

cost function with the phase of the array for the optimisation of the 15t harmonic of 

the random disturbance with 8 rods. The figure shows that within the phase 

variation of the converged cost function there is a further minimum with respect to 

the phase which is around 114.5 dB and this is seen to occur at around 25°. At this 

phase angle the value of the control vector ofrod lengths is [0.203400000.0070 

0.2115 0.2170]. The steepest descent algorithm was extended to include the phase 

in the control vector and the phase was given an initial condition of zero and the 

algorithm was run with three different convergence coefficients p, as indicated in 

Figure 4.38. We see that the convergence with the first trial is noisy and becomes 

smo-oth only in the third case where it took around 40,000 iterations to get the 

pattern of convergence that is shown there. Even with the fine-tuned convergence 

coefficient in the third case the algorithm does not converge to the value of 114.5 

indicated at 25° in Figure 4.37. This could probably be due to the algorithm 

approaching a local minimum. In Figure 4.39 and Figure 4.40 the control variable 

convergence pattern is shown for the last two cases in Figure 4.38. The oscillatory 

behaviour of the algorithm is clearly seen in the illustration in Figure 4.39. Figure 

4.39 and Figure 4.40 indicate that the algorithm is very sensitive to the 

convergence coefficient variation. 
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Figure 4.40 Control variable convergence with simultaneous phase rotation 

and length translation 

Error surface was estimated by gridding in the 2 dimensional subspace 

consisting of the length of rod 8 ([0, .3] m) and the phase angle () ([0°, 360°]). The 

error surface obtained is shown in Figure 4.41. In Figure 4.42 the san1e error 

surface is shown within the phase range of 300-360°. The algorithm was re-run 
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with an initial condition of [0.2034 0 0 0 0 0.0070 0.2115 0] m and also a 

constraint was imposed on rods 1-7 with the condition that they be [0.2034 0 0 0 0 

0.0070 0.2115] m in length. This means that only the length of rod 8 and the phase 

of the array have been included as variables in the control vector. The 

convergence trace Tl of the cost function superposed on the error surface contour 

is plotted in Figure 4.43. The error surface on which the trace has been superposed 

is the same as in Figure 4.42. The convergence trace shows that the algorithm 

starts from the angle 0 and reaches the dip/valley in the error surface graph in the 

range of 340-360°. The length of 0.2170m for rod 8 mentioned while discussing 

the minimum at 25° in Figure 4.37 also occurs in this region. Since the algorithm 

was given an input of 0° for the array phase the array rotated beyond 360° and 

approached the nearest dip in the error surface. Relative to Figure 4.37 the dip in 

the variation occurs around 25 -30° which is offset by 15° from the edge of the 

graph at 45°. By virtue of the circumferential symmetry of the 8 rod equispaced 

array that pattern is expected to repeat 8 times in one revolution. This is why the 

dip in the variation in Figure 4.42 or Figure 4.43 is offset by around 15° from the 

360° limit. 
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4.6. Summary 

This Chapter focussed on the optimal control of multiple modes using mUltiple 

control rods as the previous chapter indicated that focussing the control on a 

single mode might lead to the increase in the amplitudes of the other modes. Two 

disturbances were chosen to test the control of mUltiple modes. One is a spatially 

harmonic flow disturbance and the other is a randomly distributed flow 

disturbance. In both situations error surfaces were plotted for selected cases and it 

was shown that the choice of initial condition could lead the convergence to a 

local minimum which is a feature of the steepest descent algorithm. While with 

the spatially harmonic disturbance increasing the number of controllers led to 

increased reduction in the noise power, the randomly distributed disturbance 

showed that increasing the number of controllers for the control of multiple modes 

is not effective. Although increasing the number of equispaced controllers in the 

random disturbance case showed increased reduction, not all of the controllers 

used in the array were being utilised by the algorithm. This had later led to the 
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attempt of controlling this disturbance using un-equispaced rod arrays. Both types 

of rod arrays showed that the circumferential orientation of the controller rod 

array has a significant influence on the control. Later the same algorithm was used 

to test the cancellation problem involving cancelling N modes with 2N controllers. 

Testing this hypothesis with different rod spacings did not yield cancellation in 

these cases as we know that steepest descent algorithm could lead convergence to 

local minimum. An alternative means of cancelling multiple modes with a 

combination of multiple equispaced rod arrays was found to be promising. Since 

the rod array circumferential orientation was also found to be an important control 

variable, the problem of control with its inclusion in the control vector was also 

attempted for two cases, one in each of the two flow disturbances chosen in this 

chapter. This was performed to check if its inclusion in the control vector would 

lead to convergence to that orientation which was found to be the best when it was 

manually varied. For a control case in the spatially harmonic flow disturbance, the 

inclusion of the rod array circumferential orientation in the control vector led the 

convergence of the control algorithm directly to the point which corresponded to 

best orientation found through manual variation. When the same problem of 

controlling the array orientation was attempted with a case in the randomly 

distributed flow disturbance the control showed that it is very sensitive to the 

choice of the convergence coefficient. The next chapter examines the problem of 

implementing the control algorithm on a test fan rig for a few cases each 

representing control of either single or multiple modes with controllers on an 8-

rod equispaced array. 
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Chapter 5 Active control experiments 

5.1. Introduction 

So far the thesis has dealt with the description of the concept of control in Chapter 

1, a model to predict the acoustic field resulting from the fan and flow disturbance 

interaction in Chapter 2, and the simulation of the controller response and the 

formulation and solution of the optimisation cases using a cost function and the 

steepest descent algorithm to iteratively obtain the control vector in Chapter 3 and 

Chapter 4. This chapter deals with the implementation of the control concept on a 

model fan rig. Section 5.2 deals with the description of the test facility, the 8-rod 

controller array and the instrumentation. Section 5.3 deals with the experimental 

determination of the controller rod response and the implementation of the control 

algorithm. 

5.2. Test Facility Description 

Subsection 5.2.1 deals with the general arrangement of the fan rig. Subsection 

5.2.2 gives a description of the fan and the optical triggering device used for 

capturing the blade locked reference signal. While Subsection 5.2.3 describes the 

controller array, Subsection 5.2.4 deals with the description of the microphone 

array and Subsection 5.2.5 on the data acquisition system. 

5.2.1. General Arrangement 

The fan rig facility is situated in a large anechoic chamber in the Doak Laboratory 

of the ISVR. A schematic of the fan rig in the anechoic chamber with the 

appropriate dimensions is shown in Figure 5.1. The fan rig consists of a duct 

housing the 9 bladed fan preceded by an intake nozzle, microphone array rings. a 

controller rod array ring and followed by a silencer duct. Figure 5.2 shows the 

photograph of the fan rig in the anechoic chamber. 
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Figure 5.2 Photograph of the fan rig in the anechoic chamber. 

5.2.2. Fan and the Optical trigger 

The fan diameter was 630 nun with a hub of 250 nun diameter. The fan could be 

rotated at a maximum speed of 3000rpm. It had 9 blades with variable pitch angle 

and each blade's chord was 130 nun and the blades were set at a pitch angle of 

34°. The fan motor is driven by an inverter drive whose frequency setting can aid 

in the adjustment of the speed of the fan. For the experiments discussed here the 

fan was run only at two speed settings, 1767 and 2934 rpm. On the surface of the 

duct housing an optical triggering device manufactured by the electronics support 

group of the ISVR is flush mounted in order to pick up the reflections from a 

reference fan blade which has its tip covered with a reflecting material. This 

device issues a single pulse of around 5V for each revolution of the fan. The 
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reference fan blade will be referred to as the instrumented blade in the rest of the 

thesis. 

5.2.3. Controller Array 

The controller rod array is a device manufactured by Time & Precision Industries 

at Basingstoke, United Kingdom. A picture of this device is shown in Figure 5.3. 

It consists of radial rods (Electro-thrust cylinders) equally spaced in the 

circumferential sense on a cylindrical ring. Figure 5.4 shows the picture of an 

Electro-thrust cylinder. The rods can be made to translate radially and the ring as a 

whole can be rotated. These motions are possible through stepper motors for the 

individual radial motions as well as the rotary motion. The radial motion and the 

rotary motion are constrained to 200 mm of length and 30° of rotation 

respectively. The diameter of these rods is 12mm. The constrainment is also 

mechanically effected through the presence of limit switches. The stepper motors 

on the radial rods also have encoders fitted on them to feedback the position 

infom1ation of each rod. Each of these motors is interfaced to the computer 

through a drive cabinet shown in Figure 5.5 and they can be commanded from the 

computer's RS232 serial port. The drive cabinet consists of L25i1L50i stepper 

drives for each stepper motor on the rod array. The motion commands are in the 

ASCII format of the EASITOOLS language. It should be noted that the 8th rod on 

this array had a mechanical fault and hence was non-functional throughout the 

experiments discussed here. A picture of the fan rotor and the rod array inside the 

duct is shown in Figure 5.6. 

1 " " .J.J 



Figure 5.3 Equi-spaced 8-rod array. 

Figure 5.4 Electro-thrust cylinder. 

l34 



Figure 5.5 Rod-array drive cabinet. 

Figure 5.6 Fan rotor and rod array inside the duct. 
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Circumferential positions of the rods on the array are given in the table below. 

Rod 1 2 3 4 5 6 7 8 

0 45u 90u 135u 180u 225u 270u 315u 

Table 5.1 Circumferential positions of the rods on the array. 

5.2.4. Microphone arrays 

Figure 5.7 Electret microphone with the plastic holder. 

Microphones were positioned upstream and downstream of the rotor. On 

the upstream side the microphone array consisted of 5 cylindrical rings with 

circumferentially spaced flush mow1table slots for positioning 1'4 inch omni

directional electret microphones from the exterior. A photograph of the electret 
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microphone with the plastic holder is shown in Figure 5.7. A maximum of up to 

24 microphones can be fixed on a single ring making a total of 120 microphones 

on 5 rings. The five rings are spaced out by 98 em axially. On the downstream 

side 4 such microphones were used. 

The following tables lists the axial and circumferential positions of the 

upstream and downstream in-duct microphones used for conducting the 

experiments. In addition to these a B&K microphone was used in the far-field 

which was located at approximately 45° to the intake axis of the fan. 

Upstream set Downstream set 

Microphone Circumferential Axial Microphone Axial 

Position position (m) position (m) 

1 285u -0.657 1 0.59 

2 315 u -0.853 2 0.88 

3 195u -0.559 3 1.17 

4 90u -0.853 4 1.4600 

5 165u -0.559 

6 270u -0.461 

7 135u -0.755 

8 105u -0.657 

9 255u -0.755 

10 210u -0.853 

11 330u -0.755 

12 45u -0.853 

13 165u -0.853 

14 270u -0.853 

Table 5.2 Microphone positions. 

5.2.5. Data Acquisition System 

The data acquisition system for acquiring the signals from the microphones and 

the pulses from the triggering device is a PXIl OOOB chassis supplied by National 
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Instruments which has two dynamic signal acquisition cards (NI4472). A 

photograph of the cards with the chassis is shown in Figure 5.8 . Each card has 8 

channels which limits the number of microphones to be connected to these to 15 

excluding one channel for the trigger signal. This also limits the number of modes 

into which a tone can be modally decomposed. The microphone cables connect 

with the analog channels on these cards. The triggering pulse cable is also 

connected to one of the analog channels on these cards. Data were sampled at 

10000Hz. The PXIl OOOB chassis streams the simultaneously sampled microphone 

signals into the computer' s memory buffers. The computer is interfaced with the 

PXIl OOOB chassis through MXI cards and a copper cable. The data can be read 

off into files or processed online as the data gets streamed in using LABVIEW 

software. 

Figure 5.8 PXlIOOOB chassis with NI4472 data acquisition cards. 

5.3. Tests 

Since the microphones on the duct are used to sense the acoustic field their 

calibration is described in Subsection 5.3.1. Subsection 5.3.2 then deals with the 

control experiments. 
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5.3.1. Microphone calibration 

The calibration procedure is illustrated in Figure 5.9. As mentioned already the 

microphones were flush mounted into the slots on the rings from the exterior of 

the rings and the cavity formed between microphone surfaces and the duct interior 

surface was calibrated to determine its transfer function Heav( 0)) using a 

calibrating piezoelectric loudspeaker. This procedure is shown in the bottom half 

of Figure 5.9. The loudspeaker is excited using 10 kHz bandwidth white noise, w, 

measured in Volts whose Fourier transform is W( 0)). The pressure at the 

microphone surface, p, is transduced as an electrical signal measured again in 

Volts with its Fourier transform being P( 0)). Thus the transfer function of the in

duct cavity is HealO)) = P( O))/W( 0)). The loudspeaker, along with a B&K 

microphone, were initially used to determine the transfer function Hre.AO)) of a 

model cavity surface. This is shown in the top half of Figure 5.9. Again the white 

noise excitation, w, provided to the loudspeaker is measured in Volts and the 

pressure at the B&K microphone surface of the model cavity, ps, is measured in 

Volts and converted into Pascals using the manufacturer supplied calibration 

coefficient of the B&K microphone. Thus the transfer function of the model 

cavity is Hre.iO)) = ps(O))/rV(O)). 

Thus the pressures P s( 0)) on the model surface obtained from the B&K 

microphone while the loudspeaker was subjected to a 10kHz band\vidth \vhite 

noise input were later used to detennine the transfer function Hp( 0)) of the in-duct 

pin-hole cavities and hence the sensitivities of the in-duct microphones. The 

sensitivity of the microphone is defined as the ratio of the Fourier transfom1 of 

the microphone surface pressure, p, measured in Volts to the Fourier transform of 

the in-duct surface pressure, ps, estimated in Pascals. All transfer functions 

mentioned above have been detel111ined by forming the cross spectrum of the 

output signal with respect to the input signal and the auto spectrum of the input 

signal which were averaged over several blocks of the measured signals. Figure 

5.10 and Figure 5.11 illustrate the sensitivity of one of the microphones in the 

frequency range of 0 to 5 kHz. 
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Calibrating 
loudspeak 

Plate surface with a 
baffle 

B&K microphone 

White noise 

In-duct surface 

Electret microphone 
embedded in a plastic holder 

Transfer function of the model cavity: H ref (OJ) = P, (OJ) / W (OJ) 

Transfer function of the in-duct cavity: H cal' (OJ) = P( OJ) / W (OJ) 

Transfer function of the pin hole: H p (OJ) = H cal' (OJ) / H ref (OJ) 

Figure 5.9 Illustration of the microphone calibration procedure. 
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Figure 5.10 Sensitivity of an in-duct microphone (amplitude). 

3 ,----.----,-----,----.----,-----,----,----.-----,----. 

2 

-5 

-60L---~5~00~--1~00~0---1~5LOO~--20~0-0---2~50-0---3-0LOO----35~0-0---4~00-0---4-5LOO--~5000 

Frequency(Hz) 

Figure 5.11 Sensitivity of an in-duct microphone (Phase). 
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5.3.2. Control experiments 

Chapter 3 and Chapter 4 dealt with the simulation of the controller response 

determination and optimisation of control cost function. In Chapter 3 the 

controller response was determined by feeding the rod's wake profile into 

expressions which decomposed it into Fourier-Bessel modes and then estimated 

the fluctuating forces (coupling coefficient) and the resulting acoustic pressure 

radiated into the duct. This response was later used in the simulation of 

optimisation presented in Chapter 3 and Chapter 4. In the experimental situation, 

the propagating acoustic wave can be sensed as a pressure signal by the 

microphones on the duct surface. Upon fast Fourier transforming the microphone 

signals one can extract the BPF tone pressures from each microphone and then 

decompose the vector of BPF pressures into modes which can then be used in the 

controller response determination and the control algorithm. The variables and the 

associated processing involved are thoroughly dealt with in Subsection 5.3.2.1. 

The unsteadiness in the estimates of the quantities mentioned above and the 

number of averages required are dealt \vith in Subsection 5.3.2.2. The error in the 

duct power resulting from the semi-infinite approximation of the analY1ical model 

discussed in Chapter 2 is considered in Subsection 5.3.2.3. The experimentally 

determined acoustic response is discussed in Subsection 5.3.2.4. In Subsections 

5.3.2.5,5.3.2.6 and 5.3.2.7 the theory and results are presented for a few cases in 

which the implementation of the control algorithm was conducted. 

5.3.2.1. Processing 

The processmg m the experiments consisted mainly of (i) the fast Fourier 

transformation of the incoming microphone signals, (ii) modal decomposition of 

the tones from the Fourier transformed pressure signals which are explained 

below. The estimation of modal coupling coefficients, reflection coefficients and 

tonal power are also explained. 

FFT: 
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The voltage signals from the microphones are FFT'ed using vector averaging of 

the FFT estimates over blocks of these signals phase locked with the trigger 

signal. The trigger signal from the optical trigger registers a peak of around 5 to 6 

V for every pass of a blade that has been marked on the fan. Without phase 

locking the estimate of the phase of the tones can be erroneous as the start of each 

microphone signal block of arbitrary length can correspond to a different start of 

the propagating acoustic wave at the source (fan). Each block ' s length 

corresponds to a single or multiple revolutions of the fan and the averaging was 

performed by using a suitable numbers of blocks at the two speeds which were 

determined from the unsteadiness analysis described later in this section. Only the 

BPF tone is taken up for the control study. A column vector of the BPF tone's 

complex amplitude is obtained from the processed signals acquired from the 

microphone array. Phase locked averaging is explained in Figure 5.12. 
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Figure 5.12 Illustration of phase locked averaging. 

Modal decomposition: 
Since the cost function for the active control algorithm, i.e. the overall sound 

power level J is expressed as the squared Sunl of the modal amplitudes in the 
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tones of the total noise field, these need to be obtained by decomposing the tonal 

pressures obtained previously from the FFTs into modes. Referring to Equation 

(2.3.6), and considering only the inlet-radiated noise for control and restricting 

attention to the M cut-on modes (m,n) in the BPF, the expression for the acoustic 

pressure at this harmonic then becomes a finite sum over these modes. 

PI/3(X)= (11£" (A';;lIe-jk;',~Z +B';lIe-jk,~,~Z )'f'III1,(r,e). 
(111,11)=(111,11)] 

(5.3.1) 

The above equation when related to the data obtained from the signals of the 

microphone array becomes a system of linear equations where the left side is the 

column vector of the tonal pressures obtained as mentioned in the section on 

phase locked averaging. The right side involves the unknown cut-on modal 

amplitudes, i.e., Allin and BIIII1 respectively for the reflected and the incident 

upstream modes, and terms which have a spatial dependence on the microphone 

axial and circumferential locations (z and e). Equations (5.3.2) and (5.3.3) express 

the system of equations which need to be inverted to get the unknown modal 

amplitudes. 

1..J...J. 



x'P (re) 
m,\!nJi I' I 

x'P (r e) 
m.\/n.H l' I 

B-
mini 

x 

A-
m.\!I1M 

(5.3.2) 

Denoting the column vector of unknown modal amplitudes on the right 

hand side of the above equation as asB, we have 

P sB = S sB a sB ' 

S-1 
asB =,/J PsB' 

(5.3.3) 

The inversion depends on how well conditioned the matrix S is, and its condition 

number was estimated for the experiments described in this section. At the low 

speed where there is only one cut-on mode, the pseudo-inversion of the above 

matrix with measurements from 14 microphones gave a condition number of 1.59. 

and at the high speed where there were three cut-on modes this number was 2.87. 

Alternatively one can even extract the modal amplitudes in Equation 

(5.3.1) by performing a spatial Fourier Transform over the circumferential 

coordinate if the microphone array had equispaced microphones. Since the arrav 

had non-equispaced microphones and it is also necessary to further decompose 
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these modes into incident and reflected modes, it was decided to use the approach 

of solving the system oflinear equations presented in Equation (5.3.3). 

Modal Coupling Coefficient: 
Referring to Equation (2.3.63) for the acoustic pressure field in terms of the 

coupling coefficient and expressing this in terms of the upstream incident modal 

amplitude Bmn, the value of the coupling coefficient Cm,pn can be extracted as 

follows. 

MsB0. 
j--, = 

00 00 J (I\: r)e co (3- e-;mtJ ( ) 
() B "" m m/1 e-;'7':~~ cosT]- (z) 

PsB x = L... L... 2 mn,sB 
p=-oo,,=1 Nmnkmn,sB 

/\ /\ 

X (m Dmn,p+ r:" ,B Tmn,p) 

/\ /\ 

Cmll,p = (m Dmn,p + r :n,sB T /lIn,p) 

(5.3.4) 

(5.3.5) 

The contribution of the rod to the acoustic field, i.e., Csecondary can be estimated 

from the relationship which expresses the contribution of the total acoustic field 

CerroI' as a sum of that of the primary and the secondary fields, C pri17l and Cseconda/)' 

respectively: 

C error - C prim = Csccondmy· 

(5.3.6) 

When using multiple rods or rotating a single rod while implementing the active 

control system, the theoretical response of the multiple rods or the rotated rod is 

obtained using the expression CI/IIl,P x e -!I,e , wherein the response of the reference 
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rod CIIIII,P is multiplied by the term e- JPG to account for the phase shift involved in 

the modal response of a rod rotated by angle e. 

Modal Reflection Coefficient: 
The reflection coefficients as described in Equation (2.3.16) are repeated here 

B+ ? 0+ 

R+ == ~ = e- J7J1I1II 
11111 + 

AI11J1 

(5.3.7) 

Tonal Power: 
Power was estimated using the expression (3.5.1) which is repeated here 

OCJ OCJ 1 f3 4 

P B ? (1 / ) '""' '""' a mn sB e 2¢~~,'B 
sB = - Poco ~ ~ 2 2 2' 2 2 

P=-OCJ n=1 Nmnkmn,sB (l-amn,sB M ) 

[ 

2",0- - ?",o- J e 'f'mn,sB ? e -'fmn.sB ? 

X (l+a mnsB M)- - (l-a Ill1l5B M)-
2 ' 2 r 

(5.3.8) 

5.3.2.2. Unsteadiness in the estimates 

It is necessary to know the number of averages of the fast Fourier transfonn 

estimate to be performed during each data acquisition to obtain steady estimates of 

the quantities discussed in the previous subsection. A 30 second acquisition on all 

the microphones (upstream, downstream and far-field) was made and phase 

locked averaging was performed to get the estimate of the tones on all the 

microphones. In this time around 1500 blocks of instrumented blade passes exist 

in the high speed case and 900 for the low speed case. Two types of awraging 

were performed. The averaging is described in Figure 5.13. The first one is the 

successive/incremental averaging. Here the number of averages \\'ere \'aried from 

1.+7 



1 through 800 (26.77s of the signal) for the low speed case and 1 through 1400 

(28s of the signal) for the high speed case. This averaging will determine whether 

the unsteadiness in the estimates decays and the number of blocks to be used for 

averaging during the subsequent experiments. The number of instrumented blade 

passes per block were varied from 1 through 3 for the low speed case and 1 

through 5 for the high speed case which improves the resolution from 30 to 10Hz 

for the low speed and from 50 to 10Hz for the high speed. Figure 5.14 through 

Figure 5.15 show the effect of incremental averaging for the blade passing 

frequency tonal estimate in the first in-duct microphone for both the speeds, i.e., 

over 1 through 800 blocks (26.77s of the signal) for the low speed case and 1 

through 1400 (28s of the signal) for the high speed case. It can be seen that 

increasing the resolution from 30 to 10Hz in the low speed case and from 50 to 

10Hz in the high speed doesn't have any effect on the estimate. 
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Figure 5.13 Averaging methods for unsteadiness analysis and the 

determination of number of blocks for phase locked averaging. 

148 



Time(s) 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 

- Resolution: 30 hz 
0.6 - 15hz 

- 10hz 

0.5 

N I_ 0.4 
N '" (Do.. 
N~ 

~'" ","0 

15~ 0.3 f-a. 
L.L. E 
0.. '" 
CIl 

0.2 

0.1 

0 
0 100 200 300 400 500 600 700 800 

Blocks averaged incrementally 

Time(s) 

'0 g 
'" VI 
en 
.c 
a. 

'" 15 
0 

f-
L.L. 
0.. 
CIl -1 

-2 

-3 

0 100 200 300 400 500 600 700 800 

Blocks averaged incrementally 

Figure 5.14 Effect of number of blocks of vector averaging on the BPF tone 

(262 Hz). 
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The above effect is shown for the case without a rod inside the duct. The 30s data 

acquisition was also performed for the case of the rod fully inserted into the duct 

and the above effect of the number of blocks is discussed for the following 

quantities for the cases with and without the rod insertion in Appendix 5.1. 

I) All three harmonic tones on the upstream, downstream and far field 

for the low speed case and only on the upstream and far-field for 

the high speed case. 

2) In duct upstream incident and reflected modal amplitudes for the 

low and high speed cases and also downstream incident and 

reflected modal amplitudes for the low speed case. 

3) Coupling coefficients for the low and high speed cases. 

4) Reflection coefficients and induct sound power and far field sound 

pressure levels. 

From the above illustrations and the information provided in the Appendix 

it was decided that the number of blocks appropriate for averaging was 400 for the 

low speed setting and 600 for the high speed setting with each block representing 

3 instrumented blade passes for the low speed case and 5 instrumented blade 

passes for the high speed case which give a resolution of 10Hz in both cases. 

The second type of averaging shown in Figure 5.13 is the fixed block 

averaging. After choosing the fixed (400 or 600) number of blocks from the first 

method of averaging described above a fixed block sliding/moving average oYer 

the 30s signal may be perfonl1ed to describe the residual unsteadiness. 400 fixed 

blocks were chosen for the low speed case and 600 for the high speed case. Since 

there were only 800 and 1400 blocks in the first averaging method that was 

performed before the moving average was performed 400 times for the low speed 

and 800 times for the high speed case. The moving average variations along with 

residual unsteadiness in the quantities mentioned above are all given in Appendix 

5.1. 

In Section 3.6 of Chapter 3 a simple case of simulation of control was 

performed by holding the source rod at the zero reference and the controller rod at 

20°. Randomness in the primary disturbance coupling coeHicient for this case \yas 

introduced programmatically by using the MATLAB randnO function. Figure 

5.16 illustrates the convergence behaviour \vith the varying amount of the 

randomness which is given here in terms of the standard deviation of the modal 
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coupling coefficient in the primary disturbance (Cprim ) expressed as a percentage 

of the mean of the same quantity. As the unsteadiness increases the reduction 

obtained in noise power decreases. 
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Figure 5.16 Effect of Randomness in primary disturbance coupling 

coefficient on convergence behaviour. 

5.3.2.3. Error in the power through the assumption of semi-infiniteness of 
the duct 

It was assumed in the development of the expression for the acoustic pressure 

expression in Chapter 2 that the tennination at the fan exit is anechoic. The error 

this assumption would cause in the measured sound power ignoring the 

downstream reflections fonns the subject matter of this subsection. In order to 

detennine this microphone signals were measured using the upstream and 

downstream microphone arrays while the fan was run at the low speed (262 Hz of 

BPF) where only the plane wave mode is cut-on. Since both the reflected and 

incident modal amplitudes are available at the upstream and downstream sections 

of the fan duct, the estimates of the sound power using the expressions with and 

without the semi-infiniteness are compared here for the plane wave mode. As 
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mentioned already the derivation of the expression for the sound power is given in 

Appendix 3.1. The upstream intensity given in Equation (A.3.1.16) is repeated 

below. It can be seen that the intensity is dependant on the squared modulus of the 

pressure for a given mode for which the terms: a/llll ,13 = k/lln ,13 / ko' the flow 
" " 

parameters f3 and M, the reflection coefficient rl,~n,sB (z) = ~'~I1,SB (z) + j¢,~~,SB are 

constant. The intensity is 

2Ma ';II1,SB f3 4 cosh 2¢,~~,SB 

+ a /II11,sB f3 4 (1 + a ';II1,SB M 2) sinh 2¢,~~,SB I I? 
1,13//1/, = (1/p oco) ? 27 0 p,\/3,/II,/J-' 

(1- a '~n,sBM t (cosh 2¢/II~,sB + cos 2~':n,sB (z)) 

(5.3.9) 

The expression for the pressure (2.3.63) using the semi-infinite duct assumption is 

repeated below: 

. MsBn 
J~Z 

YO '" J ( ) cof)2 - jml} A A 

( 
"'" "'" m K mn r e e _ jry 0- (- ()\r _ 

PsB X) = B L., L., 2 e "''' cos 1] mn,sB Z JJl1 D mn.p + Y mll.sB T mn,p) 
p=-x 11=1 Nmnkml1.sB 

(5.3.10) 

Hence the squared modulus of pressure is as follows: 

1 1

2 2 OJ OJ J 2 (K //III r) [ _. 0-[21 A _ A 121 (_ ~ 2 
P.,/3 =B L L "4 2 e j17",,, (mD/III1.p+Y/llI1,sBT/IIII.P) COSTJ/II/J.SB(Z)~ 

p~-OJII~1 N k 
11111 ",n,sB 

_ 2 OJ OJ J~ (K/IInr) ?2¢'~~'B I A _ A 12 
- B L L 4 ? e (n1 D /II/J.p + Y /II/J,sE T /1111.p ) 

p~-OJ /J~1 N k-
mil II1I1.S13 

(5.3.11) 

The expression for the pressure (2.3.61) using the finite duct assumption is 
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(MSBD. oJ 
Cf) if) J (K r)e J C0 f32 Z-1I1 ( ) 

. m mn -p,Ax) = JB L L 2 COS 11mn,SB(Z) 
P=-Cf) n=1 N mn k/ll/1,SB 

COS(11I~:) (b - f ) 
X. 0+ 0- m /II/1,p + r /II/1,sB m/1,p 

SIn 11m/1 -11m/1 

(5.3.12) 

Hence the squared modulus of pressure is as follows: 

Cf) 01) J2 (K r) ( 0+) 

1 1

2 = B2 ~ ~ m /11/1 cos 11/1111 
P,!3 L...,; L...,; N 4 e . 0+ 0-

p=-oo /1=1 m/1 mn."! SIn 11 m/1 -11 m/1 

2 

I( ~ + ~ r(cosh2¢1~~,sB+cos2~'~Il,sB(Z» 
X mD/IIll.p + r'~Il.sBT,/1Il,P ~ 2 . 

(5.3.13) 

For the plane wave mode situation at the low speed, the ratios of the powers 

obtained through the two assumptions is a ratio of the intensities which in tum is a 

ratio of the respective moduli of the squared pressures. This ratio is 

Power (semi _ infinite duct assumption) Ie -jlJ,;;,~ 12 
= -----'-------'--- = ------2 . 

Power (finite duct assumption) ( 0+) ( 0+) cos 11 11111 cos TlII1/1 
. 0+ 0- sin 17 0+ _ 17 0-SIn 1711111 -17 11111 mil 111J1 

(5.3.14) 

The error can expressed as the logarithm of the above quantity to specify it in 

decibels. Hence 
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le-jry,::~ 12 

-----'--------'---2 = 10 log 10 

COS(17I~': ) 
• 0+ 0-

SIn 17 mn -17 mn 

2",0-e 'Ymn,sB 

2 

(5.3.15) 

It can be seen that the ratio depends on the upstream and downstream reflection 

2 . (J+ 2 . 0-

coefficients R+ = e )17"," and 11 R- = B- / A- = e J1J",n For the low speed case 
11/11 11111 111n 111n • 

the reflection coefficients upstream and downstream were found to be 0.367 and 

.199 in the presence of a controller rod. The ratio of the powers was determined to 

be -1.2886 dB. 

5.3.2.4. Acoustic response of a single control rod 

A single cylindrical rod was fixed at the azimuthal zero reference and its length 

was varied in steps of 10 mm each and the signals from the microphones were 

captured and processed as described above to obtain the acoustic response in 

terms of the modal coupling coefficient. The fan was run at the said speeds and 

the BPF for these speeds cOlTesponds to 262 Hz (low speed setting) and 441 Hz 

(high speed setting). At the BPF for the low speed, only the plane wave mode (171 

= 0) is cut-on. At the BPF for the high speed case 3 modes (/71=(-1,0,1)) are cut-on 

in the tirst harmonic. The acoustic response for all the individual rods in te1111S of 

the modal coupling coet1icient amplitude and phase is shO\\7n in Figure 5.17 and 

Figure 5.18 for the low speed (plane wave mode, /71=0). and Figure 5.19 - Figure 

5.24 for the high speed case (all three cut-on modes /71=(-1,0,1)). The phase 

response is nearly flat but exhibits a drift in the lower length range. This could be 

due to the fan itself inducing a radially varying swirl in the wake generated by the 

rod which could cause the wake to shift circumferentially as it travels towards the 

fan. The amplitudes can be seen to be steadily rising. 
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Figure 5.17 Amplitude response (coupling coefficient) of rods on the 

controller array for the plane wave mode (low speed case, 1 st rod at reference 

0°). 
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Figure 5.18 Phase response (coupling coefficient) of rods on the controller 

array for the plane wave mode (low speed case, 1 st rod at reference 0°). 
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Figure 5.19 Amplitude responses (coupling coefficient) of rods on the 

controller array for mode m=-l (high speed case, 1 st rod at reference 0°). 
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Figure 5.20 Amplitude responses (coupling coefficient) of rods on the 

controller array for mode m= O (high speed case, 1 st rod at reference 0°). 
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Figure 5.21 Amplitude responses (coupling coefficient) of rods on the 

controller array for mode m=1 (high speed case, 1 st rod at reference 0°). 
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Figure 5.22 Phase responses (coupling coefficient) of rods on the controller 

array for mode m=-l (high speed case, 1 st rod at reference 0°). 
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Figure 5.23 Phase responses (coupling coefficient) of rods on the controller 

array for mode m=O (high speed case, 1 st rod at reference 0°). 
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Figure 5.24 Phase responses (coupling coefficient) of rods on the controller 

array for mode m=l (high speed case, 1 st rod at reference 0°). 

The amplitude responses for the three modes in the high speed case vary 

across the rods and exhibit a variation with their circumferential orientation. This 

effect is attributed to the mode scattering effect which is explained in detail in 

Appendix 5.2. This phenomenon occurs due to the spinning modes ' interaction 

with the rods to scatter off into modes of other circumferential orders. 

The graphs in Figure 5.25 and Figure 5.26 show the linearised amplitude 

and averaged phase responses of the first rod for the plane wave mode at both 

speeds. 
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Figure 5.25 Linearised amplitude and averaged phase responses of the first 

rod for the plane wave mode (low speed). 
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Figure 5.26 Linearised amplitude and averaged phase responses of the first 

rod for the plane wave mode (high speed). 

In addition, we know from the theory that the responses of q rods can be 

obtained as follows if the response of the first rod is known: 

c roral - (C ) + (C ) -jp8, ... (C ) - jp8q 

IIlIl,p .sB - IIlIl.p.sB IIl Il .p.sB e + + 1I111 .P,sB e , 

(5.3.16) 

where C:'~:~~.SB is the net coupling coefficient for the mode in question and 

(CIIl Il ' P ,SB ) is the first rod's coupling coefficient for the same mode. The term 

e - jp8
q expresses the phase relationship between the response of rod q and that of 

rod 1, where ()q is the angular spacing between the first and the l ' rod. To verify if 

this relationship is true the phase response obtained individually for all the rods 

described in the figures above can be averaged radially and the averaged phase 

can be plotted against the rod orientation. This variation of the averaged estimate 

of the phase response can be compared against the theoretical variation e - jp 8 . 

This variation is given for the low and high speed cases in Figure 5.27. For the 
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low speed case there is only one mode that is cut-on and at the high speed there 

are three cut-on modes. It can be seen that there is a fairly good agreement 

between the theory and the measurements. This provides also a means to verify 

the modal decomposition, since the program performing the decomposition knows 

only about the microphone orientations and has no knowledge of the individual 

positions of the rods. 
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Figure 5.27 Variation ofthe measured and averaged phase response across 

the rods in the array as opposed to the theoretical variation. 

5.3.2.5. Control Theory and Algorithm for implementation 

Only the lengths of the rods in the array are considered the control variables and 

the control equations used in this context for the algorithm are repeated here. The 

equation for the cost function, (3 .5.4) in terms of the coupling coefficient 

amplitudes is repeated. 
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J = L P'/3 = L LCIl1I7,,/3(C:'rorCerror) 
.1'/3 .1'/3 II1I7,p 

= L L C II117 ,s/3 (C prim + CseCal7dary)H (C prim + CseCal7dary) 
.1'/3 II1I7,p 

(5.3.17) 

where C,eCOl1d{//y = L C
IIII1

,p,.I'/3 . The gradient as in Equation (3.5.5) is 
w 

[( ) H ()J aJ ac error H ac error 
- = L LC IIlIl ,.I'/3 Cerror + Cerror 
Ow ,,/3 II1n,p Ow Ow 

= L LC
IIlIl

,s/3 X 2 Re[(aCerror )H Cerror ] 
.1'/3 mn,p Ow 

[(
aC JH J secondGlY 

= L LCml1 ,.I'B X 2Re Cerrar . 
sB l11n,p Ow { 

ac. aCsecal1dary } .._ eJror = ___ '-

Ow Ow 

(5.3.18) 

The objective function is minimised by iterating the control vector along the 

steepest descent and the converged set of lengths w needs to be obtained. The 

equation (3.5.6) for iterating the control vector is 

(5.3.19) 

with the constraint that w>O. 

Using the responses of the rod that were obtained previously, active 

control experiments were performed using the steepest descent algorithm coded in 

MA TLAB and LABVIEW. The LAB VIEW code triggers the data acquisition of 

the signals from the microphones, and the interfaced MA TLAB code performs 

phase locked averaged Fast Fourier Transformations and modal decomposition to 

finally obtain the estimate of CerroI' and J at each iteration k in the equations abow. 

The linearised amplitude and averaged phase responses obtained previously are 

then used to obtain the quantityaC,ecolI""n / ow . Follow'ing the estimation of both 
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the quantities, 1.e., Cerror and oC,ecol7lJary / Ow, the gradient of the cost function 

oJ / Ow becomes known and the new estimate of the control vector w(k + 1) is 

iterated from the old estimate of the control vector w(k). The LABVIEW 

program then communicates to the controller array through the RS232 port of the 

PC to make the required move to set the controller rods to the individual lengths 

in the vector w(k + 1). This above procedure is repeated until convergence is 

obtained. The constraint that the rod lengths be positive is implemented by setting 

these to zero whenever they become negative. For all the experiments described 

the convergence coefficient J1 in the initial iteration of the experiment was 

estimated by equating it to [oJ / Ow[-l in terms of its order of magnitude. Later 

repetitions of the experiments were perfonned by fine tuning this estimate. The 

following assumptions are made in the control algorithm: 

1) Gradient linearisation and phase averaging: oC,econdOJ)' / Ow is obtained through 

linearisation and averaging described in Figure 5.25 and Figure 5.26. 

2) Phase linearity with rotation: Superposition of the individual responses is done 

using the relationship obtained and illustrated in Figure 5.27. A diagram 

illustrating the control system set-up and the steps in the algorithm is shown in 

Figure 5.28. 
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same section to obtain the modal amplitudes and coupling coefficients. 
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J. 

4. Estimate the gradient of the cost function 8J / aw for the chosen 
number of controller rods using the linearised amplitude response and 
the radially averaged phase response of the rod. 

5. Iterate the control vector w using the gradient estimated in step 4. 
6. Convert the lengths obtained in step 5 into motor steps and send 

EASITOOL commands through serial RS232 port to cause the rod 
actuation by the individual stepper motors. 

7. Loop through the above steps until convergence of the cost function 
and controller lengths is obtained. 

Figure 5.28 Block diagram of the control system set-up and the control 

algorithm steps. 
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5.3.2.6. Active control experiments at low speed 

In order to demonstrate the working of the algorithm to control noise using the rod 

array the list of experiments summarised in the Table 5.3 were performed in the 

low speed case where there was only one mode cut-on. The first seven 

experiments are baseline cases where in each case a single rod is inserted fully 

into the duct and the algorithm is run to see how far the rod is retracted. The later 

8 cases deal with the control of the plane wave mode. In these experiments a 

single rod (rod I) was used as a source and two other rods (rods 3 and 5) were 

used as controllers to demonstrate noise control. Under each experiment the 

number of rods used for the source, and those used as the controllers and the 

number of iterations (k) taken for convergence, the convergence coefficients (j.1) 

used and the initial conditions used for the controllers are all listed. 

Experiment BPF Source Source Controller Controller (k) (j.1) 
description of the rod* rod rods* rod lengths 

fan length (Initial 
(Hz) (mm) condition) 

(mm) 
Retraction 262 1 200 36 107 

of rod I 
Retraction 262 2 200 32 107 

of rod 2 
Retraction 262 3 200 31 107 

of rod 3 
Retraction 262 4 200 30 107 

of rod 4 
Retraction 262 5 200 31 107 

of rod 5 
Retraction 262 6 200 31 107 

of rod 6 
Retraction 262 7 200 32 107 

of rod 7 
Control 262 I 200 3 5 [0 0] 33 107 

(Case I) 
(Case2) 262 I 200 3 5 [0 0] 34 107 

(Case3) 262 I 200 3 5 [2000] 31 10 1 

(Case4) 262 I 200 3 5 [2000] 31 5xl06 

I 

(CaseS) 262 I 200 3 5 [2000] 36 I - 106 I _.jX I 

(Case6) 262 1 200 3 5 [0 0] 33 2. 5x106 
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(Case7) 262 1 200 3 5 [0 0] 3] 2.5xl06 

(Case8) 262 1 200 3 5 [0 0] 31 2.5x106 

Table 5.3 List of Control experiments conducted at low speed. (*Refer to 

Table 5.1 for the rod identifications.) 

The results for the above experiments are discussed for the baseline cases 

and then for the control experiments. 

5.3.2.6.1. Results from the Rod retraction experiments 

The results are shown in Figure 5.29 and Figure 5.30 for the length and in Figure 

5.31 and Figure 5.32 the power convergences for all the seven cases. 
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Figure 5.29 Length convergences for the rod retraction cases (1-4) (p. = 107
, 

BPF =262 Hz). 
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Figure 5.32 Cost function convergences for the rod retraction cases (5-7) (p = 

107
, BPF =262 Hz). 

The lengths of the rods converge starting from 20 ems in each case to about 2-3 

ems. This residual length fluctuation is due to the unsteadiness and the low 

amplitude of the tone in the low speed case. The residual unsteadiness in the 

estimates after averaging is illustrated in Appendix 5.1 for all the variables. This 
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was shown to be higher for the low speed without the rod compared to the rest of 

the cases. 

5.3.2.6.2. Results/rom the Control experiments 

All control cases (Cases 1-8) listed in Table 5.3 previously were conducted using 

rod 1 as the source and rods 3 and 5 as the controllers. Rod 1 was extended into 

the duct fully (20 cms) to excite the primary disturbance mode. 

Before proceeding to perform the control experiments the cost function J 

was measured at each point in the gridded space of the control vector consisting of 

controller rods 3 and 5 with the source rod 1 turned on. The length of each 

controller rod was stepped through 5 ems each time and J was measured at 441 

points of the control vector space. The trace of the control algorithm can be 

superposed on this error surface to visually examine the convergence on this 

surface. Before describing this surface alternative means of generating this elTor 

surface were explored through simulations and then the shape of the simulated 

surfaces was later compared with the measured surface of J. The simulated elTor 

surface is generated in each of the following steps as the assumptions in 

simulations are relaxed gradually in each step. Each step in the simulation 

described below involves obtaining J through the coupling coefficient measured 

for rods 1,3, and 5. 

5.3.2.6.2.1. Step 1 

Assumptions 

a) The response of rod 1 alone is available which is one of those described in 

Figure 5.17 and Figure 5.18. 

b) Amplitude response of rod 1 is linearised with respect to length, and its 

die I -
gradient gruel, = d;":"/1 and the averaged phase response 8,."", obtained as 

described in Figure 5.25. The phase is assumed to be constant \yith the 
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length variation and hence the gradient of the modulus of the amplitude 

variation with respect to length is considered here. 

c) Responses of rods 3 and 5 are obtained via the theoretical phase 

transposition relationship, e -Jpeq 
• 

The cost function J can be estimated using Equation (5.3.17). 

J = clC prim + CsecondGl}' 12 , 

(5.3.20) 

where the mode constant c determined from measurements is 0.01. This quantity 

is evaluated using the expressions given in Equations (3.5.1) and (3.5.2). This 

quantity is evaluated once the complex valued upstream modal reflection 

coefficient, R'~I1' and its complex phase, TJ ,~,~' are estimated as expressed in 

Equation (5.3.7). C pnm = Cmd ) (/) = 20cms) and since the gradient of the modulus 

of the amplitude response is known the net secondary coupling coefficient due to 

the presence of rods 3 and 5 with lengths 13 and 15 is evaluated as follows: 

e- - Jp7f/ e-
C = a X e l 

",<II X /, X e 12 + g X e l 
",d[ X 1- X e-1P7f • 

.\ccoJ1dary b rodl j rodl ) The above 

calculation was performed in the gridded space of [h 15] and the surface obtained 

is shown in Figure 5.33. The x-y plane represents the grid of the controller vector 

space formed by rods 3 and 5 in the presence of the fully inserted rod 1. Hence 

point (0,0) on this plane cOlTesponds to the situation when only rod 1 is inserted 

into the duct and rods 3 and 5 are set to zero. Hence the point on the surface 

cOlTesponding to this (0,0) on the x-y plane represents the duct power when rod 1 

is fully inserted into the duct. The rest of the points on this surface show how the 

power varies as rods 3 and 5 are set to their respective lengths in the grid. We see 

that the power reduces as the length of rod 5 increases and increases as the length 

of rod 3 is increased. 
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Figure 5.33 Cost function surface plot of J using assumptions in Section 

5.3.2.6.2.1. 

5.3.2.6.2.2. Step 2 

Assumptions 

a) The response of rod 1 alone is available which is one of those described in 

Figure 5.17 and Figure 5.18. 

b) Actual amplitude and phase response of rod 1, i.e., Crod1 , is taken in the 

following calculation as opposed to the linearised amplitude and averaged 

phase in the previous step. 

c) Responses of rods 3 and 5 are still obtained VIa the theoretical phase 

transposition relationship, e - jpBq 
• 

Expressing J as the sum of the squares of modal amplitudes as was done before 

we have 
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J = &1 C prim + C secondary 12 , 

(5.3.21) 

whereCprim = Crodl(ll = 20cms), 

_ jp(ff;) . ( ) 
C C (I I ) x e /2 +C (I =ls) x e-JP ff and & =0.0l. The above secondary = rod I I = 3 rod I I 

calculation was performed in the same gridded space of [h 15] and the surface 

obtained is shown in the Figure 5.34 below . 
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Figure 5.34 Cost function surface plot of J using assumptions in Section 

5.3.2 .6.2.2. 

This surface retains the same shape as in the previous illustration in Figure 5.33 

except at the edges because of the phase response not being strictly constant with 

length. 

5.3.2.6.2.3. Step 3 

Assumptions: 
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a) Individual responses of rods 1,3 and 5 are available. 

b) Actual amplitude and phase responses of the individual rods are taken. 

Since individual phase responses are taken into consideration the question 

of using the phase transposition relationship doesn't arise here. 

Expressing J as the sum of the squares of modal amplitudes as was done before 

we have 

(5.3.22) 

where C prim = C rod l (II = 20cms) , C secondary = C rod3 + C rod 5 and Ii =0.01. The above 

calculation was perfonned in the same gridded space of [h 15] and the surface 

obtained is shown in the Figure 5.35 below. 
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Figure 5.35 Cost function surface plot of J using assumptions in Section 

5.3.2.6.2.3. 

This surface has also the same shape as the previous ones in Figure 5.33 and 

Figure 5.34. 
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5.3.2.6.2.4. Step 4 

Direct measurement of J: 

The measured cost function surface along the previously mentioned control vector 

space grid of 441 points is shown in Figure 5.36. Unlike in the previous steps, J in 

this illustration accounts for the other factors along with the square of the modal 

coupling coefficient amplitudes. Though the surfaces in Figure 5.33-Figure 5.36 

have the same shape as far as the increase of the lengths of rods 3 and 5 are 

concerned, the difference in the magnitudes is obvious due to the assumptions 

involved in Steps 1-3 . The surface in Figure 5.33 which was estimated using all 

the stated assumptions has a peak that is approximately 3 times the magnitude of 

that in Figure 5.36 which was obtained through measurements. Hence it was 

decided to use the linearised amplitude and averaged phase responses of the 

individual rods in the control algorithm . 
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Figure 5.36 Cost function surface plot of J obtained through measurement. 

Finally the results of the control experiments for cases 1-8 are given 

below. For the 8 cases the convergence of lengths and in-duct power level 

variations are given in Figure 5.37-Figure 5.42. In-duct power is plotted in watts 
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in Figure 5.39-Figure 5.40 and in decibels in Figure 5.4l-Figure 5.42 with the 

points marked appropriately wherever the power is negative. This is because the 

in the in-duct measurements the first harmonic amplitude for the low speed case 

without the rod inside the duct was found to be very low due to the phase 

incoherence of the tone across the individual blade pass segments in the 

microphone signal. The low amplitude tone combined with the unsteadiness 

caused the estimate of the ret1ection coefficient to t1uctuate widely. This caused 

the power to change from positive to negative values due to the reversal of the 

sign of the transmitted sound intensity. This explanation for the negative power 

was already given in Appendix 5.1. The in-duct power in the control experiments 

described in this section reduced from 67 dB to 42 dB. As already mentioned the 

upstream in-duct power is estimated using Equation (5.3.8) once the modal 

coupling coefficients and the ret1ection coefficients are known. 

179 



14 12 
Case :1 

1- ROd3 1 
)1= 107 - Rod6 

12 
10 

vJ'vJ\~ 
10 

v;- 8 
E 
~ "" - 8 
.t:: 
C, 
c:: 
~ 

"8 6 
(:t: 

4 
4 

Case :2 

2 
2 

)1= 107 

0 0 
0 34 0 35 

iteration index (k) (k) 

~I 
.I '-'J 20 

18 . ..J 
/' 
( 16 

14 

12 
I 
I 

I 

- 10 - 10 
I 
I 
I 

8 8 I 
I 

Case :3 I Case :4 6 
)1= 107 

6 

I )1= 5x106 

4 4 

2 2 
I 

0 0 
0 32 0 32 

(k) (k) 

Figure 5.37 Length convergences for control experiments in cases (1-4). 
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Figure 5.42 Cost function (dB) convergences for control experiments in cases 

(5-8). 

The far-field sound pressure level (at the BPF of 262 Hz) measured from 

the B&K microphone is given only for cases (2-8) in Figure 5.43-Figure 5.44 as 

the capturing of the far-field measurements in the algorithm were begun to be 

included from case 2 onwards. 
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The above far field sound pressure level (SPL) variation is given for the 

BPF and its two harmonics in Figure 5.45 only for case 8. The first harmonic 

reduces from 91 dB to 85 dB. The second harmonic reduces from 87 dB to 79 dB. 

The third harmonic increases from 77 dB to 82 dB. 
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Figure 5.43 Far-field sound pressure level (dB) variations for control 

experiments in cases (2-5). 
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Figure 5.45 Far-field sound pressure level (dB) variation (BPF and its 2 

harmonics) for control experiment in case 8. 

Finally the convergence superposed on the error surface contour J for 

cases 1-8 are given in Figure 5.46-Figure 5.47. As already seen from the table 

listing the experiments cases (1-2) have the same initial condition and 

convergence coefficient and follow a jittery trace on the error surface. Similar 

jittery trace is obtained with the same convergence coefficient and a different 

initial condition in case 3. The convergence coefficient in case 3 is fine tuned 

gradually for cases 4 and 5. With the fine tuning the trace gets smoother in case 5. 

The fine tuned convergence coefficient is then used m case 6 for the previous 

initial condition and is repeated through 7 and 8 obtaining a smoother 

convergence each time. 
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The far-field noise spectra for case 7 with and without control are shown in 
Figure 5.48. 
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Figure 5.48 Far-field noise spectra with and without control. 

Active control experiments at high speed 

The list of experiments summarised in the following table were performed in the 

high speed case where there were three modes cut-on. Under each experiment the 

number of rods used for the source, and those used as the controllers and the 

number of iterations (k) taken for convergence, the convergence coefficients (jJ.) 

used and the initial conditions used for the controllers are all listed therein. 

Experiment BPF Source Source Controller Initial 
description of the rod rod rods condition: (k) (Ji) 

fan length Controller 
(Hz) (mm) rod 

lengths(mm) 
Control 441 None 123456 All set to 0 38 10) 

(Case1) 7 
(Case2) 441 None 123456 All set to 0 37 104 

7 
(Case3) 441 1 200 234567 All set to 0 27 10) 

(Case4) 441 1 2 [200 34567 All set to 0 29 10) 

200] 
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(Case5) 34567 All set to 0 

Table 5.4 List of Control experiments conducted at high speed. (*Refer to 

Table 5.1 for the rod identifications.) 

The results of the control experiments for Case(1-5) are given below. The 

convergence of lengths in these cases is given in Figure 5.49. The convergence of 

cost function (in-duct power in dB) in these cases is given in Figure 5.50. The cost 

function oscillates in cases 1 and 2 and reduces only in cases 3-5. For Case 3 the 

reduction is from 80.5 to 78.4 dB. It is 83.3 to 81.6 for case 4 and 83.6 to 81.5 for 

case 5. Thus the reduction of the in-duct noise power at BPF is around 2 dB in the 

last three cases. The individual modal coupling coefficient variations for these 

cases are given in Figure 5.51 -Figure 5.53. Of the three modes only modes 111=(-

1,0) seem to be exhibiting a variation in cases 3-5 that is consistent with the 

overall sound power level variation. This should be expected because the rods 

themselves are used as sources in these cases and this is also consistent with the 

explanation given in Sub-section 4.3.3 which tells us that mode 711=1 cannot be 

controlled using the rods on the array when some of these rods are used as sources 

due to the in-phase contribution of each rod to this mode. 
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Figure 5.53 Coupling coefficient variation for mode m =1 in cases (1-5) 

The far field sound pressure level variation (in dB) in these cases is given 

ill Figure 5.54-Figure 5.56 for three harmonics. The first harmonic shows a 

consistent variation for cases 4 and 5 exhibiting a reduction from 107.5 to 105.5 

dB. While the second one reduces from 91 to 86 dB for case 3, the third harmonic 
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reduces for cases 3-5: from 75 to 70 dB for case 3, from 95 to 88 dB for case 4 

and 95 to 86 dB for case 5. 

95 
Case :1 

95 102.6 ., 
Case :2 Cl. ~= 105 

to 94 102.4 0 94 Q, ~= 104 
0 
N M 

IVv 
~ 93 102.2 

\ II 

co 

A V ~ 93 
~ 

\ 
~ 92 ~102 

Qj I V i? 92 \ 
i\ Cl. 

> 
(\ 

~ 
~ ~ ~ ~ 91 101 .8 
:::> 

\ 
If> 
If> 

\~ ~ 91 
c. 

90 " 101 .6 LJ \1 c: 
i': 

CI) 
Case :3 I 

89 
90 

101.4 
~= 105 

88 89 101 .2 
0 38 0 37 0 27 

iteration index (k) (k) (k) 

108 108 

107.5 \ 
107.5 

Case :4 
Case :5 

\ "10' 
107 ~= 105 

1 
107 

1.065 
~ 

...J 

] Cl. Cl.106.5 

viI ~ 

~~ 
~ 

106 

106 

~ 105.5 

~t\ 105.5 
105 

105 104.5 
0 29 0 73 

(k) (k) 

Figure 5.54 Far-field sound pressure level (1st harmonic, in dB) variations 

for control experiments in cases (1-5) 
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Figure 5.55 Far-field sound pressure level (2nd harmonic, in dB) variations 

for control experiments in cases (1 -5) 
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Figure 5.56 Far-field sound pressure level (3rd harmonic, in dB) variations 

for control experiments in cases (1-5) 

The far-field noise spectra for the case 3 and 5 with and without control 

are shown in Figure 5.57-Figure 5.58. 
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Figure 5.57 Far-field noise spectra with and without control (Case 3). 
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The times (in hours) taken for completion of Case 8 at the low speed and 

cases 3-5 at the high speed are given below with the corresponding time for the 

algorithm to reach the reduction of the cost functions mentioned previously. 

Case Completion time ( hrs) Time to attain reduction( hrs) 
Low speed (Case 8) 0.9865 0.8009 
High speed (Case 3) 1.5852 1.3407 
High speed (Case 4) 1.5602 1.1335 
High speed (Case 5) 3.826 2.8882 

Table 5.5 Performance statistics for the control algorithm. 

Since the presence of rods in the duct can cause the production of wakes in 

the duct, a test was also conducted to assess the loss of pressure rise across the fan 

by measuring the fan inlet and exit pressures. The measured pressure rise across 

the fan corresponded to 31 mm at the low speed and 88 mm at the high speed. The 

tests showed that there is no loss of pressure at the two fan speeds mentioned here 

when the rods are introduced into the duct. 

5.4. Summary 

The nOIse control concept introduced in Chapter 1 was implemented in this 

Chapter on a test fan rig and an 8-rod controller array using the instrumentation 

described in the initial sections of the chapter. The controller rod response was 

determined at the BPF for the two fan speeds. Using this response the control 

algoritlun based on steepest gradient descent was tested at the BPF of the two 

speeds. At the low fan speed the BPF tone was unsteady and had yery low 

amplitude. Hence one of the rods on the array was used as the source to generate 

the plane \vave mode and two others rods on the array \vere used as controllers. 

Upon running the algorithm the in-duct noise power at the BPF in the duct 

reduced from 67 to 42 dB. Far-tleld spectra also showed reduction in the Sound 

Pressure Leyel at the BPF from 91 to 85 dB. The SPL at the 2nd harmonic reduced 

from 87 to 79 dB and at the 3rd harmonic it increased from 77 to 82 dB. The error 

surface \vas measured in the control rod vector space for this case and the control 

trajectory was superimposed on it and it showed that the convergence of the rod 

lengths was sensitive to the choice of the descent step. At the high fan speed a 
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case that was run with all the rods on the array turned on as controllers did not 

show any reduction in the duct noise power or far-field pressure levels. Cases 

where one or two of the rods were made to act as sources and the rest as 

controllers did show that the controller rod length variations exhibit smooth 

convergence. But these did not result in any significant reduction in the duct noise 

power which was around 2dB. The individual modal coupling coefficient 

variations showed that this is due to the difficulty in controlling multiple cut-on 

modes at this speed which was explained theoretically in Chapter 4. Thus the 

method of the thesis could be used to achieve useful noise reductions by 

controlling a single dominant mode. 
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Chapter 6 Concluding Remarks 

The purpose of this thesis was to demonstrate the possibility of adaptive control of 

flow disturbance induced tonal noise from fans using a cylindrical rod array. The 

first task in this study was to look at an analytical model that describes the 

relationship between a flow disturbance induced by cylindrical rods and the noise 

radiated from their interaction with the fan blades. The second task was to study 

numerically the problem of optimising the noise power when multiple acoustic 

modes are controlled using multiple control rods. The final task was to implement 

this on a model fan rig. 

In Chapter 1 the concept of control of noise using flow disturbances was 

introduced. Although the study of the problem of control of tonal noise using flow 

disturbances has been taken up recently by a few investigators they focussed on 

the passive control of a single mode which required the manipulation of the rod 

lengths using trial and error. Since it is known that the focussing of control on a 

single mode could lead to the increase in the amplitudes of the other modes, the 

current study involved focussing on the optimal control of multiple modes. 

The present thesis considered the study of wake generator based control 

both numerically and experimentally using Goldstein's analytical model that gives 

the relationship between the rod length and the generated acoustic response 

through interaction \vith the fan blades. The presence of rods in the fan duct 

results in the generation of wakes and these wakes interact with the fan blades to 

produce unsteady blade forces which then radiate the acoustic field in the duct. An 

expression was derived in Chapter 2 for the acoustic pressure field associated with 

the interaction of the fan with a flow disturbance. This expression \yas given by 

Goldstein for the case of a fan situated in an infInite duct and this \yas extended to 

the finite duct case by Pitelet (2000) and the present thesis considered the 

extension of the fInite duct expressions to the semi-infinite duct case to take into 

account the configuration of the anechoic termination at the exit of the fan during 

implementation. The expression for the acoustic pressure also pointed out that a 

term in it called the modal coupling coet1Icient directly representing the blade 

response in terms of the unsteady forces experienced by it could be extracted for 

each acoustic mode generated by the interacting flow disturbance. It is this te1111 
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that is useful in terms of formulating the acoustic response of a rod for control 

purposes. Thus by knowing the profile of the flow disturbance the resulting 

acoustic pressure field in the duct can be estimated from the acoustic pressure 

expression developed in that chapter. 

The expression derived in Chapter 2 was used in the control problem 

formulated in Chapter 3 which consisted of (i) the determination of the acoustic 

pressure field resulting from the wake generated by the presence of a cylindrical 

rod in the duct upstream of the fan rotor, and (ii) the problem of optimising the 

noise power when several such rods are used for control. The controller response 

in the form of the modal coupling coefficients was numerically determined using 

analytical expressions for the flow disturbances generated by the control rods and 

a simple case of the problem of cancellation of noise was numerically simulated 

and studied by using a source rod and a controller rod. It was deduced that 

cancellation is possible through translations and rotations of the control rod. It was 

later shown that the presence of the control rod can cause the production of modes 

other than the mode that is being considered for control and this subsequently led 

to formulation of the problem of noise optimisation. The optimisation problem 

consisted of minimising a cost function representing the noise power in the duct 

which is equal to the weighted sum of the squares of the amplitudes of the modes. 

The cost function is in tum a function of the rod lengths on the controller and 

hence the minimisation of it would lead to finding these lengths. The algorithm 

that was proposed for the minimisation is the steepest descent algorithm which 

upon running \vould iteratively determine the controller lengths using the gradient 

of the cost function with respect to the controller lengths. The simple case for the 

problem of noise cancellation was repeated numerically using an algorithm based 

on the noise optimisation theory developed in that chapter. Thus the optimisation 

algorithm was tested using the case of the noise cancellation problem. The 

simulation of the optimisation problem presented in that chapter revealed the 

importance of the approximation of the controller response and also of 

constraining the control vector. In particular the polynomial approximation led to 

less error in the residual power estimates than the linear response. and 

constraining the algorithm caused the rod lengths to be positive. 

Chapter 4 focussed on the numerical simulation of optimal control of 

multiple modes using multiple control rods as the previous chapter indicated that 
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focussing the control on a single mode might lead to the increase in the amplitudes 

of the other modes. The study involved selection of two disturbances to test the 

control of multiple modes. The first disturbance was a spatially harmonic flow 

disturbance and the second was a randomly distributed flow disturbance. In both 

situations error surfaces were plotted for selected cases and it was shown that the 

choice of initial condition could lead the convergence to a local minimum which 

is a feature of the steepest descent algorithm. While with the spatially harmonic 

disturbance increasing the number of controllers led to increased reduction in the 

noise power, the randomly distributed disturbance showed that increasing the 

number of controllers for the control of multiple modes is not effective. Although 

increasing the number of equispaced controllers in the random disturbance case 

showed increased reduction, not all of the controllers used in the array were being 

utilised by the algorithm. This had later led to the attempt of controlling this 

disturbance using non-equispaced rod arrays. Both types of rod arrays showed that 

the circumferential orientation of the controller rod array has a significant 

influence on the control. Later the same algorithm was used to test the 

cancellation problem involving cancelling N modes with 2N controllers. Testing 

this hypothesis \V-ith different rod spacings did not yield cancellation in these cases 

as we know that steepest descent algorithm could lead convergence to local 

minimum. An alternative means of cancelling multiple modes v,,-ith a combination 

of multiple equispaced rod arrays was found to be promising. Since the rod array 

circumferential orientation was also found to be an important control variable, the 

problem of control with its inclusion in the control vector \vas also attempted for 

two cases, one in each of the two flow disturbances chosen in this chapter. This 

was performed to check if its inclusion in the control vector would lead to 

convergence to that orientation which was found to be the best when it was 

manually varied. For a control case in the spatially harmonic flow disturbance, the 

inclusion of the rod array circumferential orientation in the control vector led the 

convergence of the control algorithm directly to the point which corresponded to 

best orientation found through manual variation. When the same problem of 

controlling the array orientation was attempted with a case in the randomly 

distributed How disturbance the control showed that it is very sensitive to the 

choice of the convergence coefficient. 
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The nOlse control concept thus introduced in Chapter 1 was finally 

implemented in Chapter 5 on a test fan rig and an 8-rod controller array using the 

pressure signals acquired from duct microphones. The simulations discussed in 

Chapter 3 and Chapter 4 required the rod responses to be determined from the 

flow disturbance profile. In the experimental situation the response estimation 

involved the measurement of the pressure signals from the microphones. These 

were phase locked with a trigger signal consisting of one pulse per fan-pass and 

Fast Fourier Transformed to extract tones which were later decomposed into duct 

modes and then into modal coupling coefficients. The controller rod response in 

the form of the modal coupling coefficients was thus determined experimentally at 

the BPF for the two fan speeds. Using this response the control algorithm based 

on steepest gradient descent was tested at the BPF of the two speeds. At the low 

speed the BPF tone was unsteady and had very low amplitude. Hence one of the 

rods on the array was used as the source to generate the plane wave mode and two 

other rods on the array were used as controllers. Upon running the algorithm the 

in-duct noise power at the BPF in the duct reduced from 67 to 42 dB. Far-field 

spectra also showed reduction in the Sound Pressure Level at the BPF from 91 to 

85 dB. The SPL at the 2nd harmonic reduced from 87 to 79 dB and at the 3rd 

ham10nic it increased from 77 to 82 dB. The error surface was measured in the 

control rod vector space for this case and the control trajectory was superimposed 

on it and it shO\ved that the convergence of the rod lengths \vas sensitive to the 

choice of the descent step. At the high fan speed a case that was run \vith all the 

rods on the array tumed on as controllers did not show any reduction in the duct 

noise power or far-field pressure levels. Cases where one or tv,"O of the rods v,"ere 

made to act as sources and the rest as controllers did show that the controller rod 

length variations exhibit smooth convergence. But these did not result in any 

significant reduction in the in-duct noise po\\:er which was around 2dB. The 

individual modal coupling coefficient variations showed that this is due to the 

difficulty in controlling multiple cut-on modes at this speed which was explained 

theoretically in Chapter 4. Thus the method of the thesis could be used to achieve 

useful noise reductions by controlling a single dominant mode. 

The current thesis has thus achieved the objective of a successful 

demonstration of the implementation of the concept of adaptively controlling fan 

tonal noise using wake generators by employing the theoretical relationship 
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between the How disturbances and resulting noise through interaction with the 

blades. Though the current study of the control system has focussed on its 

applicability to aircraft engines, factors like performance and safety have to be 

evaluated before considering implementation. Otherwise the system discussed is 

readily suited for implementation in a situation where noise studies are conducted 

on models objects in wind tunnels where some form of masking the background 

noise of the wind tunnel fan is necessary in order that the noise characteristics of 

the model are not contaminated (Allen 2002). 

Since the optimisation exercise performed here with the steepest descent 

algorithm showed that the convergence to local minima is more probable, future 

studies should consider attempting the study using global optimisation techniques 

like Genetic Algorithms. 
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Appendix 2.1 Reduction of the convected wave equation 
to the modified Helmholtz equation 

The convected wave equation is 

(A.2.1.l) 

where 

(A.2.1.2) 

If p(x,t) = Re{p(x)e JaJ1
} is substituted in equation (A.2.I.!) then since the 

operator V is linear with respect to the operation of taking the real part (Re{}), 

the wave equation can be written as 

(A.2.1.3) 

Carrying out the differentiation with respect to the time variable t we have 

(A.2.lA) 

The above must hold for all values of time t. Since e jW1 
7:- 0, for arbitrary t \ye 

must have 
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(A.2.1.5) 

as given in Equation (2.3.5). 

Denoting the operator on the left hand side of the above equation as L we have 

L[p(x)] = 0 

(A.2.1.6) 
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Appendix 2.2 Expression for kmn 

The modified Helmholtz equation is 

(A.2.2.1) 

The operator \7 2 can be written in terms of its axial component and an operator 

\7~ acting over the duct cross-section. For example in cylindrical co-ordinates 

(A.2.2.2) 

Also since the mean flow in the duct is in the axial direction only we have 

( 
j )2 ( j 8 )2 C~ 2 8

2 
. Co 8 1-- u.\7 = l--U z - =1--) M -) -2J-M-, 

0) 0) 8z 0)- 8z- 0) 8z 

(A.2.2.3) 

where the Mach number M = U::!co has been used. We can therefore write the 

operator L as 

8
2 

2 2 [ c~ 2 8
2 

. Co 8 1 L=.-+\7 +k I--M --2J-M-
8 2 1- 0 2 a 2 a' Z 0) Z 0) 'Z 

(A.2.2.4) 

which reduces to 

(A.2.2.5) 

Ifwe now consider eq. A.2.2.1 individually for each mode we have 
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[

'\7 2 + k 2 + [32 8
2 

2'k M 8 ]{A -jk,;"..z tTl ( e)}- 0 
y -L 0 -2 - ; 0 - IIln e . T mn r, -. 

8z 8z 

(A.2.2.6) 

Note that the operator vi only applies to the cross-section component \fmJr, e) , 

and also that \fllln (r, e) satisfies 

(vi +K~II1}PlIln(r,e)= O. 

(A.2.2.7) 

Therefore equation (A.2.2.6) reduces to 

[k
2 2 [32 8

2 
2'k M 8 ]{A -;k:",z tTl ( e)}- 0 o - K 11111 + -2 - ; 0 - mn e T mn r, -. 

8z 8z 

(A.2.2.8) 

Defining an operator Lmn that is different for each mode: 

) ) ) 8 2 
• 8 

LIIlIl == ko -K;1Il + [3- -) -2;koM-, 
8z- 8z 

(A.2.2.9) 

and carrying out the differentiation in equation (A.2.2.8) leads to 

{k J J [32 k' 2 k Mk' \, - je Z tTl ( e) 0 ~ 0 - 1( 1;111 - ';111 - 2 0 ;111 JAmn e mn T mn r, = 

(A.2.2.I0) 

or 

J 

[3 2 k,~,"- + 2koM k'~11 + K';111 - k~ = 0, 

(A.2.2.ll) 

which is a polynomial of the 2nd order in k'~Il' 

The solution of this equation is 
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(A.2.2.12) 

which can be written in the form of equation (2.3.7) 

z ± J kg - f3 21(;n - Mko 
kmn = f3 2 • 

(A.2.2.13) 
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Appendix 2.3 Expression for r;± mn(Z) 

± 

Axial wave number k'~11 (from the previous section) is 

± +~e _f32K2 -Mk +k -Mk k Z = - 0 11111 0 = - II1n 0 

IIIn f3 2 f3 2 

(A.2.3.1) 

U sing the definition for the reflection coefficient given by equation (2.3.16), the 

expression for this quantity at any axial location z can be given as 

(A.2.3.2) 

Expressing the quantity on the right as e 2i
'1!n(z) we have 

± () o± kmn 
1711111 Z = 17mn +-2 z. 

f3 

(A.2.3.3) 
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Appendix 2.4 Expression for bmn(z) 

Equation 2.3.14 is repeated here 

+00 +00 

G{xIY)= L Lbmn(z)\}lmn(r,e), 
111=-'" n=1 

(A.2.4.1) 

where the term b
llm 

(z) is given as follows. 

b (z)=A e-Jk:.~z+B e-Jk:.~z. 
11111 mn mn 

(A.2.4.2) 

A/1/11 and B/111l can be obtained by substituting the above general solution in 

Equation (2.3.13) and then integrating over the cross section S after multiplying 

each side of the equation by the conjugate of the mode shape function \}lq,(r,e) to 

utilize the mode orthogonality/orthonormality relationship. 

(A.2.4.3) 

Taking the integral inside the summation we have 

L f \}l;, (r,e )L[bmn (z )\}lmJr,e)] dS = - f8(x - Y )\}l;, (r,e) dS . 
~ s s 

(A.2.4.4) 

The operator L can be written independently for each mode since the solution is a 

linear sum of modes 

(A.2.4.S) 

This results in 
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(A.2.4.6) 

and 

(A.2.4.7) 

Integrating the above equation over an axial distance [zs - £, Zs + £] containing the 

source and taking the limit £ ~ 0 

Zs+£ 

x J8(z-zJdz. 

(A.2.4.8) 

Since bl/l11 (z) is continuous across the interval 

and 

(A.2.4.9) 

(A.2.4.10) 

The Equations (2.3.16) for the reflection coefficients are given here again. 
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B+ 2· 0+ 

R+ = ----.!!!..!2.. = e J11m" 
mn + 

Amn 

(A.2.4.11) 

In Equation (A.2.4.2) Bmn is expressed in tenns of Amn Via the reflection 

coefficient phase 1J~,~. Each of the regions z/ and zs- of the duct have to be 

considered separately as the above three quantities will have different values on 

each side of the source: 

B + - A+ 2jT]~,~ 
mn - mile 

B - - A- 2jl)~,~ 
mn - mn e . 

(A.2.4.12) 

We can write bmn in the fonn 

(A.2.4.13) 

or 

(A.2.4.14) 

where k =± = ± klllil - Mko 
lllil f32 

It follows that 

± 7 _ ± J 11mll+7 z 
-j 71mn+--;i2z J T]nm+--;i2z 

blllli (_ ) - Alllll e e + e . 
.( o± Mko ) ( .( o± kmn) .( o± kmn )) 

(A.2.4.1S) 
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We now use the notation defined in Equation (A.2.3.3) which results in the 

following expression for bmn 

.( o± Mko ) 
) '1",n+7

z 
( ) 

b/~II (z) = 2A/~n e cos 17!n (z) . 

(A.2.4.16) 

Expressing the equation for bmn in terms of the forward propagating amplitude 

Amn we get 

( 
o± Mko ) 

) '1mn+-, Z ( ) 

b/~II (z) = 2A/~n e f3 cos 17!n (z) . 

(A.2.4.17) 

Thus 

o b/~II (z) = b± (Z)(J' Mko _ kmn tan(n± (z))). oz mn f3 2 f3 2 • I ml1 

(A.2.4.18) 

Substituting Z = Zs in equation (A.2.4.10) and (A.2.4.18) and letting c: ~ 0 we 

have 

b + ( )(. Mko kml1 (+ ( ))11 b - ( )(. Mko kml1 (- ( ))1 
//Ill z, J f3 2 - f3 2 tan 17//111 Z, ) - //Ill Zs J f3 2 - f3 2 tan 17////l Zs ) 

\f'/~I/l (r" Bs) = 

(A.2.4.19) 

Since bll111 is continuous at Z = Zs we can factorise the above equation by b//l
ll 
(z,) 

and get 

(A.2.4.20) 
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The value of bl1ll1 at any axial position z can be expressed in tenns of that at Zs as 

follows: 

( ) Mk (( )) ± j(z-z R ± bll1/1 Z _ ' f32 cos 17111/1 Z 

b'~/1 (z,) - e cos(ry:'/1 (z, )) 

(A.2.4.21) 

or 

(A.2.4.22) 
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Appendix 2.5 Spatial derivatives of the Green function 

The Green's function is 

( ) 
111=+00 +00 J (K r)e-JllIe J (K r )e jme, ;(z-z,~ 

G ± xl = '"' '"' m mn m mn s e f3 
y ~ ~ N 2 k . ( 0+ 0- ) 

m=-oo n=l mn ml1 SIn 11 mn -11 11111 

X cosh,~n (z)) cosh ,:n (Z s)) 

(A.2.5.I) 

The differentiation with respect to Bs is straightforward and results in 

(A.2.5.2) 

The differentiation with respect to Zs gives for a single mode 

3 + ( ) J ( ) - jme J ( ) jme, TJ mn Z s . ( + ( )) m K mn rem K mn rs e 
37 SIn TJ IIIn Z s 2 . ( 0+ _ 0-) 

_ ~s NII/I1 k llln SIn TJmn TJmn 

;(o<,~ ( ) 
x e W COS TJ '~n (Z) 

(A.2.5.3) 

S· + () 0+ kmn d' h'd . . h mce TJII/I1 Z,. = 17mn + 13 2 Zs an usmg tel entIty smx = tanxcosx we ave 

3G'~1I .( . kllln (+ ( )) Mko )G± ( I ) &, = J J 13 2 tan 11 mil Z s - 13 2 mil X Y . 

(A.2.5.4) 

Therefore 

3G ± '"' '"' .( . klllll (+ ( )) MkO )G ± (-I ) 3z
s 

= L:~J J 132 tan 17mll Z, - 13 2 11111 xY . 

(A.2.5.5) 
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Defining the term 

± ( ) . kmn ('I' ( )) Mko 
YII1I1 Z,. = J 13 2 tan 7711111 Zs -7' 

(A.2.5.6) 

we have 

(A.2.5.7) 
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Appendix 2.6 Force fluctuation distribution on a fan rotor 
with identical B blades 

Starting with the first step in Equation (2.3.43) which is repeated here the 

intervening steps that lead to the final expression are detailed below. A change of 

variable from (e.: - 2n(s -1) I B )to es' is made to arrive at the final result. 

(
M\.n, e') -j -, zl-m j 

i± - fJ ( ) (f (zc)) CoP- FT ± (c) d de' I1II1,p - 111 Kl1Il1 r, cos 1711111,.1' .I' e p r 11111,.1' z\. rs r, .I' 

A 

_(usn, e') 
_ B /1f(p+m)(s-ll;; /mfl(s-ll;; fJ ( ) (f (c)) -j coP' =, -m , - Ie e m Kl1Il1 rS cos 17ml1,s Zs e 

s=1 40 FO ( 8') ± (c) dr de' . x a,p rs' s r I1In,s Z s rs s s 

[usn, ') -} - 7 -me 
= B fJ ", (K mnrJcosh,~n,s (z~ ))e cop,·, , 

J4,x Fao,p (rs' e;) r I~n)z~ ) rs drs de; 

= {BT,I~n,p for(m + n) = sB 

o for(m + n) 7= sB. 

(A2.6.1) 
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Appendix 2.7 Expressions for the Sears function 

Goldstein (1976) gives the following expressions for the Sears function and its 

subsequent generalisations: 

The ordinary Sears function S, given by Sears (1941) is given by the 

following expression. This is the expression for the fluctuating lift due to a frozen 

sinusoidal gust impinging on a fixed airfoil in an incompressible flow. 

1 
Sex) = , 

- jx[Ko (- jx)+ KJ- jx)] 

(A2.7.1) 

where Ko and KJ are the modified Bessel functions. 

The two-dimensional compressible Sears function Sc, given by Landahl 

(1961) for an oblique gust incident on an airfoil of infinite span is 

S 0" M __ e ___ l_F p r -ju
p [lt2 [ 40" M J 

c( p' J- O"pTC Mr TC(1+Mr)' 

(A.2.7.2) 

x 

where F(x) = feJ(nl2)( d~ is the Fresnel integral. The above expression for the 
o 

Sears function is for the high reduced frequency of the incident flow gust defined 

as 0" p = pD-c in which p refers to the circumferential harmonic of the gust, Q the 
2U r 

rotational frequency, c the chord of the blade, and Ur the relative flow velocity of 

the fluid. These terms were already illustrated in Figure 2.5. 

For low frequency, the reference cited above gIves the follo\\l-ing 

expression which is due to Amiet (1974). 

S(O" /f32)[ ( ) ( )] 2 S ( M) - p 'J M 2 / f3 2 .J M 2 / f3 2 -jU p/('\/' ), {3, 
c 0"", r - 0 rO"" r + 1 I rO"" r e , 

f31" 

(A.2.7.3) 
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where S denotes the ordinary Sears function, f3, = ~1-M; , 
f (M,) = (1- f3,) In M, + f3, In(1 + f3,) -In 2 . 



Appendix 3.1 Derivation of an expression for the 
transmitted sound power at any harmonic for the semi
infinite duct case 

The expression for the pressure field with the semi-infinite duct approximation 

can be obtained by substituting 171~'~ = + jel) in it to set the downstream reflection 

coefficient to zero: 

/\ /\ 

X (m Dmn,p + r,~n,sB T mn,p) 

MsBQ 
OCJ OCJ J (lC r)e-Jm8 

0- /\ /\ )--, z 

= B '\' '\' m mn ).1] ( C {3-
L. L. --"'------:~--'------ e - mn m D mn,p + r :n,sB T mn,p )e 0 

P=-OCJ n=] N;'nkmn,sB 

(A.3.1.1) 

where 

_ kmn,sB MsB0.. 
Ymll,sB =-7- c

o
f32 

(A.3.1.2) 

The axial component of the acoustic particle velocity can be obtained by 

considering the conservation equation for momentum (Goldstein 1976). 



and 

The axial derivative ofthe pressure field is 

apsB (x) 

az 
'l: 'l; J (K r)e - jmB . 0- /\ /\ 1. 

=B I I m 2
mn e-J17mn(mDmn,p+r:nsBTmn,p)(-) 

P=-'l: 11=1 N k B '2 
mn mn,s 

(
MSBQ - J k 

j -p2 Z+'1mn"n(Z) MsBD. B 
Co '( mn,s ) e J +--

co f32 13 2 
x 

(
MSBQ - J 

j -, Z-'1mn,>iJ(z) MsBQ k B 

+e cofJ j( c
o

f32 - ;; ) 

(A.3.1.3) 

(A.3.1.4) 

(A.3.1.5) 

The axial component of the velocity field can be expressed in terms of the 

pressure field as follows: 



(
MSBQ ) 

j ~2 Z+17;;'n"B(Z) e cof] 

x 

,(MsBQ kmn,SB) 
+ -M----k---k- J 2 - -13-2-

'( sBQ _ mn,sB + _0) Co 13 
J c

o
f32 13 2 M 

1 

2cosh,~n,SB(Z))' 

(A.3.1.6) 

Intensity and hence power transmitted through the duct for any cut-on mode are 

given by the following expressions which are mentioned in Goldstein (1976), 

and 

? ' 

IIB,m,n = (l + M 2
)PSB,m,nU;B,IlI,n + (M I POCO )IPSB,IlI,nl- + poCoMIUSB,m,I1I~, 

PIB ,llI,n = 2 f IsB,m,n dS , 
S 

(A.3.1.7) 

(A.3.1.8) 
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Considering the modal admittance as defined by B,B,m,n = PoCoP.,B,m,n / U,B,m,II' the 

expression for intensity as given in Morfey (1971) is as follows: 

1,/3,m,n = (1/ Poco )~1 + M2) Re(B s8 ,m,n) + M(1 + IB 5B,m,n 12) }IPsB,m,n 12. 

(A.3.1.9) 

Using the expressions for velocity and pressure, the modal admittance can be 

written as follows 

B ,/3 m 11 = -(1/ M) 

1 

X 2cosh/~n,SB(Z)) 
= _( M (1 - a I~n ,.IE) + j a mil ,5E f3 2 tan( 17 ;'11 ,5B ( Z ) ) J 

1 2M2 ' -amn ,5B 

(A.3.1.10) 

where al/lll ,8 = klllli ,/3 / ko ' .. ,. 

The modal admittance as expressed above is complex valued and it varies axially 

along the duct. The axial dependence is due to the term tan(17/~11 'B(':)) w-hich is 

also complex valued. Further simplifications in the expression for modal 

admittance can be obtained by resolving the complex valued reflection coefficient. 



- () 0- kllln,sB ;::0- .).0- kllln ,S!3 ;::- () .).0-
17l11n,.I/3 Z = 17l1ln,sB + ---;32 Z = ':illln,sB + J'I'lIIn,sB + ---;32 Z = ':imn,sB Z + J'I'mn,sB' 

M (1- a ;m,sB)( cosh 2¢>,~~,SB + cos 2~~n,sB (z)) 

+ amn,sB f3 2 (j sin 2~'~n,sB (z) - sinh 2¢>~~,SB) 
B =----'----:---------'----::----------'---

sB,III,n (1- a;'n,sB M 2)( cosh 2¢>~~,SB + cos 2~~n,sB (z)) 

(A.3.1.11) 

(A.3.1.12) 

Having expressed the modal admittance as above, the sound intensity for any 

harmonic can be obtained as follows: 

_ (- M (1- a ~n,sB )( cosh 2cp ~~,SB + cos 2~ ~n,sB (z)) + a mn,sB f3 2 sinh 2cp ~~,sB 1 ' 
Re(B sB,m,n ) - 2 2 0- _ 

(1- a mn,sB M )( cosh 2cp mn,sS + cos 2~ mn,sB (z)) 

IB sB,m,n 12 = 

(A.3.1.13) 

(a mn,sB f3 2 sinh 2cp ~~,SB - M (1-a '~m,sB )( cosh 2cp ~,SB + cos 2~ ~,sB (z)) Y 
+ (a nm,sBf3

2 sin2~~",sB(z)Y 

(A.3.1.14) 

(1 + M2) Re(B sB ,m,lI) + M(1 + IB sB ,III,1I1
2

) 

= (2Ma'~II'SB f3 4 cosh 2¢>,~~,SB + a IIII1,sB f3 4 (1 + a;1Il,sB M2 ) sinh 2¢>,~~,ss J' 
(1- a';111 <13 M2 )2 (cosh 2¢>,~~ 1/3 + cos 2~'~1I IS (z)) .' " .-

(A.3.1.1S) 
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(1 + M2) Re(B s/3,IIl,Il) + M(l + IB s/3,IIl,1l1
2

) 

[

2M 2 [34 h2"'O- [34(1 2 M2) 'nh2"'O- ) = a IIlIl,S/3 COS 'f'lIln,s/3 + a mn,s/3 + a /IIn,s/3 Sl 'f'/IIn,s/3 

(1- a,;'n,S/3 M2 )2 (cosh2¢,~~,s/3 + cos 2C;~n,s/3 (z)) , 

(A.3.1.16) 

(A.3.1.17) 

where the squared amplitude of pressure in any harmonic is the sum of the squares 

of the amplitudes of the cut-on modes. 

? 00 00 J2 (KIIl"r) 2",0- 1 A _ A 12 
= B- L: L: "'4 ? e ",n"B (m D/IIn,p + r /lin 58 T mn,p) 

P=-OOIl=! N k- , 
mn mn.sB 

(A.3.1.18) 

Power in any harmonic is 
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P,B = 2 fI,sdS 
s 

x 

2Mcx;m,sBf3
4 cosh2¢~~,sB 

+ CX mn,sBf3 4 (l + CX;n,sBM2 )sinh2¢~~,sB 

(l-cx;n,.,s M2 )2 

2 <YJ <YJ 1 
= B (1/ poe J L L 2 2 

p=-<YJn=! N k 
mn mn,sB 

x 
I(m Dmn,p + r :n,sB T mn,p )1

2 

e -2¢~~.'B 
---(1-cxmn,sBM )2 

2 

(A.3.1.19) 

The sound power thus obtained is independent of the axial location, indicating that 

the acoustic energy conservation is satisfied, as any variation in it has to be 

accompanied by the presence of acoustic sources or sinks. The expression also 

takes into account only the cut-on modes as the resolution of the complex 

reflection coefficient into amplitude and phase for cut-off modes would yield a 

different dependence on the axial coordinate. Letting CPI~~,SB ~ -00 (to account for 

zero upstream reflection) results in the intensity expression applicable for the 

infinite duct case. 
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P B2(l/ ) ~ ~ 1 a mn ,sB[34 (-~(l-a M)2) 
sB = Poco L. L. 2 2 (1- 2 M2)2 2 Il/n,s13 

p=-oo n=l N k a"ln,"'B 
11111 mn,slJ 

X lem Dm", + r ~'.'B T m"p )1' 

= _B2(l/2poco ) I I 212 a mn ,,13[34 21(mDmn,p+Y~n"B Tll/n,p)1
2 

p=-wn=l Nil/ilk (1 +amn 113 M ) 
IIIII,sB ' 

(A.3.1.20) 

This expression agrees with that given in Goldstein (1976) for the infinite-duct 

approximation. 
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Appendix 5.1 Unsteadiness analysis 

A.S.l.l Introduction 

As mentioned in Chapter 5 material is presented here relating to the unsteadiness 

analysis for the following quantities in the table below against the speeds 

indicated. This table tells us that the unsteadiness in the far-field measurements is 

quantified by analysing the tonal amplitudes and pressure levels from the far-field 

B&K microphone. Similarly the unsteadiness in the upstream in-duct 

measurements is quantified by analysing the tonal amplitudes registered on the 

upstream in-duct microphones and the amplitudes of the modes which were 

obtained through decomposition of the tones and the sound power resulting from 

the summation of the squares of the modal amplitudes. The unsteadiness in the 

downstream in-duct measurements is given by analysing the tonal amplitudes 

registered on the downstream in-duct microphones. Graphs illustrating the effect 

of successive (incremental) and moving averages variations are presented for the 

cases of the 30 s data capture on the microphones. Both types of averaging were 

explained in Chapter 5. The incremental average variation was already presented 

in Figure 5.14 and Figure 5.15 for the tonal amplitude measured from the 

upstream in-duct microphone for the two speeds of the fan for the case without the 

rod inserted into the duct. 

Position along the fan duct Quantity 

(with BPF corresponding to the two fan 

speeds) 

Far field (for BPF=262 and 441 Hz) Tonal amplitude and phase (for the 

Data capture made through far-field first three harmonics) 

microphone. Sound pressure level (first three 

hamlOnics) 

In-duct Upstream (BPF=262 and 441 hz) Tone on the first microphone (first 

Data capture made through in-duct three harmonics) 

upstream microphone. Incident and reilected modal 

amplitudes (BIIlII and AI1I1l ) 



Modal coupling coefficients (Cmn) 

Modal reflection coefficients (Rmn) 

In-duct sound power level (P) 

In-duct Downstream (Only BPF=262hz) Tone on the first microphone ( first 

Data capture made through in-duct three harmonics) 

downstream microphone. Incident and reflected modal 

amplitudes (Bmn and Amn ) 

Modal reflection coefficients (Rmn) 

Table A.S.1.1 Quantities presented for the unsteadiness analysis. 

As mentioned in Chapter 5 the fan was run at two speeds at which the 

experiments described were all conducted. The two speeds as measured from the 

counts of the trigger pulses turned out 1767 and 2934 rpm which correspond to 

29.4 and 48.9 rev/s. Since each revolution of the fan rotor will have one 

instrumented blade pass, a 30 s microphone signal has around 1500 blocks of 

instrumented blade passes at the high speed and around 900 blocks at the low 

speed. Only 1400 blocks at the high speed and 800 blocks at low speed in the 30 s 

data capture were used for the successive averaging which translates to 28 s at 

high speed and 26.66 s at the low speed. For moving averaging each average 

spanned 800 blocks at high speed and 400 at the low speed. As mentioned in 

Chapter 5 successive averaging illustrates how many blocks are to be chosen for 

averaging during subsequent experiments. With these many blocks the moving 

average should illustrate and quantify any residual unsteadiness in the averaged 

estimates. Using the variations obtained from the moving averaging the residual 

unsteadiness is given in ten11S of the mean and standard deviations for the in-duct 

sound power and far-field pressure levels at the end of this appendix. 

A.S.l.2 Far field quantities: 

In this section unsteadiness variations in quantities pertaining to the measurements 

of the far field microphone are given for the two fan speeds. 

Far field tonal amplitude and phase (262 hz BPF): 



As said previously the 30s signal from the far-field microphone at the low fan 

speed had around 800 blocks of instrumented blade passes. Each block 

corresponding to a single instrumented blade pass was Fast Fourier Transformed 

and the complex tonal amplitudes of the three harmonics were obtained and these 

amplitudes were incrementally averaged as the number of blocks was increased 

from I to 800. The effect of this incremental averaging on the amplitude and the 

phase of the three harmonics can be seen in graphs (i-vi) of Figure A.S.I.I. The 

variation indicated in blue is for the case when there is no rod inside the duct and 

that in red is when a single rod of 200 mm length is inserted into the duct. For 

example the first harmonic amplitude is shown for the cases with and without the 

rod in the graph (i) in Figure A.S.1.1. As in the rest of the rest graphs (ii-iii) the 

tonal amplitude is higher with the rod inside the duct than that without the rod. As 

the averaging proceeds from I to 800 blocks the initial unsteadiness during the 

first few averages should die out. This seems to happen for all the three tonal 

amplitudes and phases for the case with the rod inside the duct. It can be seen that 

the tonal phase exhibits unsteadiness in the first two harmonics for the case 

without the rod inside the duct as seen in graphs (iv-v). Though the unsteadiness 

in the amplitudes for the case without the rod in the duct is not obvious in these 

graphs, they will be made obvious in the graphs presented later in this section for 

the sound pressure level. 
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Figure A.S.1.I Effect of incremental averaging on far-field BPF tone (262 hz) 

and its harmonics: (i-iii) tonal amplitudes (iv-vi) tonal phases. 

The averaging was also performed using the moving averaging method described 

in Chapter 5. The averaging was performed over 400 instrumented blade passes 

commencing from the start of the first instrumented blade pass in the 30 s signal 

and the averaging was repeated for every set of 400 instrumented blade passes 

commencing from each subsequent instrumented blade pass. Since there are 

around 800 instrumented blade passes in the 30 s signal the averaging described 

can be repeated only 400 times. These 400 averages are represented in the 

variation shown in graphs (i-vi) of Figure A.5 .1.2 for the tonal amplitudes and 

phases. It can be seen that the estimates of the amplitudes and phases have the 

same values as were seen for the incremental averaging in Figure A.5.1.2. It can 
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be seen that the phase unsteadiness in the first two harmonics for the case without 

rod in graphs (iv-v) of Figure A.S.I.I is carried over to the moving averaged 

variation also. This unsteadiness in the phase is due to a wide variation of the 

phase of the tones across the individual instrumented blade passes. This should 

also cause the corresponding averaged tonal amplitudes to show similar 

unsteadiness. It is not obvious from the variations shown here. This unsteadiness 

as mentioned previously will be obvious in the sound pressure level estimates 

shown subsequently. As mentioned in the beginning of this appendix the residual 

unsteadiness in these variations is described at the end of this Appendix in terms 

of the mean and standard deviation for these tonal amplitudes and the quantities 

listed in Table A.S. I. I. 

Similar incremental and moving average variations are given for the above 

quantity at the higher fan speed and also for the rest of the quantities at the two 

fan speeds presented subsequently in this and the later sections of this appendix. 

Important consequences ofthe unsteadiness are described wherever necessary. 
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Figure A.S.1.2 Effect of moving averaging on far-field BPF tone (262 hz) and 

its harmonics: (i-iii) tonal amplitudes (iv-vi) tonal phases. 
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Far field tonal amplitude and phase (441 hz BPF): 

The effect of incremental averaging on the amplitude and the phase of the three 

far-field harmonics for the high speed case can be seen in graphs (i-vi) of Figure 

A.S.I.3. Corresponding moving average variations are given in graphs (i-vi) of 

Figure A.S.lA. At this speed the phase of the third harmonic without the rod 

exhibits more unsteadiness . 
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Figure A.S.l.3 Effect of incremental averaging on far-field BPF tone (441 hz) 

and its harmonics: (i-iii) tonal amplitudes (iv-vi) tonal phases. 
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Figure A.5.1.4 Effect of moving averaging on far-field BPF tone (441 hz) and 

its harmonics: (i-iii) tonal amplitudes (iv-vi) tonal phases. 
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Far field Sound pressure level (262 and 441 hz BPF): 

Previously in this section the unsteadiness variations in the tonal pressures were 

presented in Figures A.5.I.l - A.5.1A for the two speeds and the sound pressure 

level variations estimated from the tonal amplitudes are described here. The 

incrementally averaged variations for the far-field sound pressure level at the two 

speeds are shown in graphs (i-vi) of Figure A.5.1.5. Graphs (i-iii) correspond to 

the low fan speed and (iv-vi) correspond to the high speed. The undulations in the 

amplitude of the tones described previously are now very obvious in the sound 

pressure level variations for the first and second harmonics at the low speed and 

the third harmonic at the high speed for the cases without the rod. The 

corresponding moving averaged variations in the sound pressure level for the two 

speeds are shown in the graphs (i-vi) of Figure A.5.1.6. 
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A.S.l.3 In-duct Upstream quantities: 

In the previous section the description of the unsteadiness focussed on the far-field 

quantities. In this section unsteadiness variations in quantities pertaining to the 

measurements of the first upstream in-duct microphone are given for both the fan 

speeds. 

Tonal amplitude and phase (262 hz BPF): 

Incrementally averaged variations are given for the estimates of the low speed 

tonal pressures here in the graphs (i-vi) of Figure A.S.I.7. As seen in graph (iv) 

the fluctuation in the phase of the first harmonic without the rod is very high. This 

is because the tone at the BPF for the case without the rod doesn't exhibit phase 

coherence across the instrumented blade passing segments in the trace of the 

acquired signal from in-duct microphone. This was also the case with the far-field 

measurements as mentioned previously. The phase fluctuation in the first 

harmonic can also be seen from the moving averaged variations which are given 

in graphs (i-vi) of Figure A.S.l.8. Hence the amplitude of the tone for this case is 

also very low and very small compared to other harmonics and is also unsteady. 
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Figure A.S.l. 7 Effect of incremental averaging on the BPF tone (262 hz) and 

its harmonics measured on the in-duct upstream microphone: (i-iii) tonal 

amplitudes, (iv-vi) tonal phases. 
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Figure A.S.1.S Effect of moving averaging on the BPF tone (262 hz) and its 
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amplitudes, (iv-vi) tonal phases. 

245 



Tonal amplitude and phase (441 hz BPF): 

Incrementally average variations are given for the estimates of the high speed 

tonal pressures here in the graphs (i-vi) of Figure A.S.1.9. Graphs (i-vi) of Figure 

A.S.1.10 give the corresponding moving average variations. 
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Figure A.S.1.9 Effect of incremental averaging on the BPF tone (441 hz) and 

its harmonics measured on the in-duct upstream microphone: (i-iii) tonal 

amplitudes, (iv-vi) tonal phases. 
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Figure A.S.1.10 Effect of moving averaging on the BPF tone (441 hz) and its 

harmonics measured on the in-duct upstream microphone: (i-iii) tonal 

amplitudes, (iv-vi) tonal phases. 
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Upstream incident and ref1ected modal amplitudes and phases (262 hz BPF, m=O): 

Effect of averaging on tonal unsteadiness from the first upstream in-duct 

microphone measurements at the two speeds was described in Figures AS.1. 7 -

AS.I.IO. The incremental average variation of the incident and ref1ected modes 

resulting from the decomposition of the low speed first harmonic duct tones 

measured on all the 14 in-duct microphones are given here in graphs (i-iv) of 

Figure AS.I.II. The BPF at the low speed has only the plane wave mode (111=0) 

that is cut-on. Since the tone at the BPF for the case without the rod was small and 

exhibited significant unsteadiness the resulting incident and reflected modes also 

show this variation. Their amplitudes are small compared to the case with the rod 

inserted in the duct. Corresponding moving average variations are shown in 

graphs (i-iv) of Figure AS.1.12. 
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Upstream incident and reflected modal amplitudes and phases (441 hz BPF, 

m=(-I, ° 1)): 

The first harmonic at the high speed has three cut-on duct modes (m=(-I ,O,I)). As 

in the low speed case the high speed first harmonic tonal pressures measured on 

the in-duct upstream microphone array is decomposed into these three modes. The 

effect of incremental and moving averaging on the variation of the incident and 

reflected amplitudes of these modes are given in graphs (i-iv) in each of the 

Figures A.S.1.13 - A.S.1.18. 
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Upstream modal coupling coefficient amplitudes and phases (262 hz BPF, m=O) : 

From the modal amplitudes the coupling coefficients were determined and the 

effect of incremental and moving averaging on the low speed plane wave modal 

coupling coefficient is given in Figure A.S.I.19. The same variation sensed in the 

modal amplitudes of Figures A.S.I.ll - A.S .I.12 is also seen here. 
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Figure A.5.1.19 Effect of incremental averaging on upstream modal coupling 

coefficient (m=O, 262 hz BPF): (i-ii) amplitude and phase; Effect of moving 
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Upstream modal coupling coefficient amplitudes and phases (441 hz BPF, m=(-

1,0,1)): 

The effect of incremental and moving averaging on the high speed modal coupling 

coefficients are given for the three modes in Figure A.5.1.20 - A.5.1.21. The same 

variation sensed in the modal amplitudes of Figures A.5.1.13 - A.5.1.18 is also 

seen here. 

Time(s) 

0 28 

0.1 0.1 0.1 

m=-1 ~- m=O 
0.08 0.08 0.08 m=1 

E 
-"03 
cn. 
v~ ·u Q) 

0.06 0.06 0.06 Il=-g ,"'-~ 
8= ua. ~ ~I'~v /"""---
OlE 
cal 0.04 0.04 0.04 
~-

~/ B ~ 
u~ 

0.02 0.02 0.02 

L 
(i) (iii) 

0 0 0 
0 1400 0 1400 0 1400 

blocks averaged incrementally 

3 3 3 1- without rod 1 
- with rod 

2 2 2 
-~ 

c-V"O 

1 ~ ·u E 
Il=~ 

8:'h m=-1 
u~ 0 0 m=O 0 m= 1 01 a. 
c _ (iv) :.=: .:: (v) (vi) a. E 
6U -1 -1 -1 
U~ 

-2 -2 -2 ~ 

-3 V~ -3 -3 
0 1400 0 1400 0 1400 

Figure A.S.1.20 Effect of incremental averaging on upstream modal coupling 

coefficients (m=-1,O,1; 441 hz BPF): (i-iii) amplitudes (iv-vi) phases. 
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Upstream modal reflection coefficient amplitudes (262 hz BPF, m=O): 

The reflection coefficient was estimated for the low speed plane wave mode from 

the variations given in Figures A.S.I.11 -A.S.I.12. The effect of averaging on the 

plane wave mode reflection coefficient is given in Figure A.S.1.22. The low 

amplitude and high unsteadiness in the tone at the BPF for the low speed case 

without the rod which also caused similar levels of unsteadiness in the incident 

and reflected modal amplitudes also causes the reflection coefficients to exhibit 

large fluctuations. The reflection coefficient is seen to fluctuate above and below 

1 for this case in contrast to the case with the rod. This is because the first 

harmonic amplitude for the low speed case without the rod inside the duct was 

found to be very low due to the phase incoherence of the tone across the 

individual blade pass segments in the microphone signal. The low amplitude tone 

combined with the unsteadiness caused the estimate of the upstream duct 

reflection coefficient to fluctuate widely above and below 1. For the case where 

the rod is inserted into the duct this coefficient is steady. 
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Figure A.5.1.22 Effect of averaging on upstream modal reflection coefficient 

(m=O, 262 hz BPF): (i) incremental (ii) moving. 

Upstream modal reflection coefficient amplitudes (441 hz BPF, m=(- I,O,I)): 

The reflection coefficient was estimated for the three high speed cut-on modes 

from the variations given in Figures A.S.I.I3 - A.S.I.I8. The effect of averaging 

on the three cut-on modal reflection coefficients is given in Figure A.S .I.23. 
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Figure A.S.1.23 Effect of averaging on upstream modal reflection coefficients 

(m=-I,O,I; 441 hz BPF): (i-iii) incremental (iv-vi) moving. 

Upstream in-duct sound power level (262 Hz BPF): 
The effect of averaging on the low speed in-duct sound power level is given in 

Figure A.S.1.24. We know that the estimation of in-duct sound power can be 

performed by using the duct modal amplitudes and reflection coefficients. Note 

that the power measured in Watts is negative during some of the averages for the 

case without the rod. In the illustration below the absolute of the power is plotted 

in decibels and wherever the power in watts has gone negative it is indicated 

appropriately by a marker which switches between '0' and '1' when the sound 

power changes from positive to negative. The negative power situation arises only 

at the low speed with no rod projecting inside the duct. This is because the 
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estimate of the reflection coefficient at these instances IS greater than 1 as 

described previously in Figure A.S .1.22 in this Appendix. When the estimate of 

the reflection coefficient alternates between values above and below 1, the 

transmitted sound intensity vector is undergoing a reversal in the sign. The 

transmitted sound power becomes negative when the reflected intensity is greater 

than the incident intensity in magnitude and hence the absolute value is shown at 

these instances. 
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Figure A.S.1.24 Effect of averaging on in-duct upstream sound power level 

(262 hz BPF): (i) incremental (ii) moving. 
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Upstream in-duct sound power level (441 hz BPF): 

The effect of averaging on the high speed in-duct sound power level is given in 

Figure A.5 .1.25. 
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Figure A.S.1.2S Effect of averaging on in-duct upstream sound power level 

(441 hz BPF): (i) incremental (ii) moving. 
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A.S.IA Induct Downstream quantities: 

In the previous two sections the effect of averaging on the unsteadiness in the far

field and in-duct upstream quantities were thoroughly dealt with. In this section 

unsteadiness variations in quantities pertaining to the measurements of the 

downstream in-duct microphone are given. These measurements were made only 

at the low speed as there is only an axial microphone array in the downstream 

which cannot be used to decompose the radial modes in the high speed harmonics. 

Downstream tonal amplitude and phase (262 hz BPF): 

The effect of incremental and moving averaging on the three tones measured on 

the first downstream microphone at the low speed are given in Figures A5.1.26 -

A5.1.27. It can be seen that the unsteadiness is lesser that what was observed on 

the upstream measured tonal amplitudes which were given in Figures A.5.1.7 -

A5.l.8 of Section A5.3. 
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Figure A.S.1.26 Effect of incremental averaging on the BPF tone (262 hz) and 

its harmonics measured on the in-duct downstream microphone: (i-iii) tonal 
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Figure A.S.1.27 Effect of moving averaging on the BPF tone (262 hz) and its 
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Downstream incident and reflected modal amplitudes and phases (262 hz BPF): 

The downstream first harmonics described in Figures A.5 .1.26 - A.5 .1.27 were 

used along with those measured on the rest of the downstream microphones in the 

decomposition of downstream incident and reflected plane wave mode. The effect 

of averaging on the amplitudes of these are given in Figures A.5.1.28 - A.5 .1.29. 
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Figure A.S.1.28 Effect of incremental averaging on downstream incident and 

reflected mode (m=O, 262 hz BPF): (i-ii) amplitudes, (iii-iv) phases. 
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Figure A.S.1.29 Effect of moving averaging on downstream incident and 

reflected mode (m=O, 262 hz BPF): (i-ii) amplitudes, (iii-iv) phases. 
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Downstream modal reflection coefficients (262 hz BPF): 

Finally the effect of averaging on the downstream plane wave reflection 

coefficient is given in Figure A.S.l30. Though there is fluctuation in this 

coefficient in the case without the rod in the duct, this quantity doesn't exceed 1 as 

opposed to the upstream mode mentioned previously. 
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0 Time(s 
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0 Time(s) 

0.3 

0. 1 
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Effect of no of blocks of vector averaging on 
Reflection coefficient 262 hz (BPF) 

13.3333 

- INithout rod 
- INith rod 

O L-------------------------------------------------------~ 
o No of moving averages 400 each 400 

Moving averaged Reflection coeffi cient 262 hz (BPF) 

Figure A.S.1.30 Effect of averaging on downstream modal reflection 

coefficient (m=O, 262 hz BPF): (i) incremental (ii) moving. 
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A.S.l.S Summary: 

In general it could be seen that the tonal fluctuation was observed in the far-field 

quantities only for some harmonics in the cases without the rod inside the duct. In 

the in-duct measurements the first harmonic amplitude for the low speed case 

without the rod inside the duct was found to be very low due to the phase 

incoherence of the tone across the individual blade pass segments in the 

microphone signal. The low amplitude tone combined with the unsteadiness 

caused the estimate of the upstream duct reflection coefficient to fluctuate widely 

above and below 1. This caused the power to change from positive to negative 

values due to the reversal of the sign of the transmitted sound intensity. Table 

A.S.1.2 lists the mean and standard deviations in the far field sound pressure level 

and the in-duct power level from the moving average illustrations shovm before. 

The estimates are not shown for the in-duct power for the low speed case without 

rod as the pow'er fluctuates through negative and positive values. Based on the 

effect of averaging on the unsteadiness of the various quantities described in this 

appendix, it \vas decided that microphone signal acquisition during subsequent 

experiments should be long enough to perf 01111 400 averages at the high speed and 

600 averages at the high speed. This means that in all end-results like the far-field 

sound pressure and in-duct sound power levels the enor involved is given by the 

standard deviation listed in the table below. Whilst selection of the number of 

averages for subsequent experiments \vas the reason to perf 01111 incremental 

averaging, the reason to perf 01111 moving averaging and illustrate its effect on the 

various quantities throughout this appendix was to detel111ine the standard 

deviations in all those quantities after the choice of the number of averages is 

made. 
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Low speed High speed Low speed High speed 
Quantity Standard Standard 

mean mean deviation deviation 
Without With Without With Withou With Without With 

rod Rod rod Rod rod Rod rod Rod 

Sound 
pressure 

level (dB) 
(l st 

harmonic) 53.3481 91.7103 91.362 103.8379 3.452 0.115 0.5013 0.1236 
(2nd 

harmonic) 54.7748 87.9751 80.9671 93.7363 1.2995 0.1135 1.3111 0.3018 
(3 rd 

harmonic) 59.0014 77.0681 57.2851 74.3186 0.3942 0.1429 6.3519 1.8808 
In-duct 
powel 

(dB) 68.2789 72.9171 82.0149 0.1247 0.6450 0.0779 

Table A.S.1.2 Unsteadiness estimates from measurements. 
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Appendix 5.2 The phenomenon of mode scattering and its 
effect on controller acoustic response 

In the experiment to determine the controller response, a single rod is placed 

upstream of the fan at the azimuthal zero reference and the wake produced from it 

is allowed to interact with the fan and this causes the production of the acoustic 

modes. These modes propagate in both directions along the duct. The 

circumferential order of these modes determine whether they spm or cause a 

piston-like reciprocating action as they propagate. Modes with a circumferential 

order other than zero spin in the circumferential direction. The spinning rate or the 

rotational speed of these modes dit1ers for each mode. Section 3.2 described the 

contribution of these spinning modes to the production of harmonics of blade 

passing frequency in the case of interacting flow disturbances with the moving fan 

blades. Since spinning acoustic modes also represent a form of disturbance in the 

flow the interaction of these with the stationary rod is examined in this section. 

This phenomenon of interaction acoustic modes with rotating blades is also 

responsible for the production of sum and difference tones (Cumpsty 1974, 

Groene\',;eg 1991). In the recent times, Holste and N eise (1997) have reported the 

presence of these modes in the results of the experiments conducted on a propfan 

consisting of t\VO contra-rotating rotors and a downstream anay of seven struts. 

Their experimental results have shovd1 the presence of modes whose order cannot 

be explained using the strut-rotor or the rotor-rotor interaction. They attributed 

these modes to the modes from the above mentioned interaction \vhich propagate 

and impinge on the struts and transf0l111 from an interaction with it. They have 

even shO\vn from their results that these modes can have amplitudes as high or 

even higher than the primary modes. Considering the propagating primary modes 

akin to rotor \vakes, the order of the scattered mode can be explained using the 

rotor-stator interaction theory. In the present problem of the controller response 

determination the discussion of this phenomenon is made in order to ot1er an 

explanation for the variation in the amplitude response for the plane \yave mode 

across the controllers spaced out in the azimuthal direction as is the case \vith the 

8 rod equispaced controller array used in the current rig. 

In the experiment \vhere the fan was run at a speed that gaw a blade 

passing frequency of 441 Hz there were three cut-on modes present in the system 
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with their circumferential orders being m = -1, 0 ,1. They are generated from the 

interaction of the fan blades (B=9) with the flow modes of order p = 10, 9 ,8. The 

speeds at which the modes Tn = -1 ,1 rotate (since the plane wave mode doesn't 

spin) are given in the Table A.S.2.1 below. The order of the modes is determined 

using the relationship m=sB-p. 

No. of fan Flow mode Acoustic Speed of the Speed of the 

blades B order p Mode order m fan blades Q spmnmg 

(m=sB-p, (rad/s) acoustic mode 

where s=1) BD/m (rad/s), 

where 1117: 0 

9 10 -1 Q 9Q (=BPF) 

9 8 1 Q -9Q(=BPF) 

Table A.S.2.1 Spinning modes generated at the fan origin. 

It can be seen that the modes spin at a speed corresponding to the BPF. 

These modes propagate upstream and interact with the rod and produce modes of 

a different order. This transformation is ternled as the mode scattering 

phenomenon. The order of the modes produced from the interaction can be known 

by considering the relationship for the rotor-stator interactions. l71=sB+kV giws 

the order of the modes issuing out of the interaction of the rotor wakes of order 

sB of a B bladed rotor with a stator of V vanes. where k is an integer. In the case of 

the acoustic mode-rod interaction this relationship can be used \yith ternl sB 

replaced by the order of the spinning mode 171 and the tenn k V retained to 

represent the rod order. Representing the order of the scattered mode as 7715 we 

have 1715=111 + k V for the acoustic mode-rod interaction. 

The Table A.S.2.2 below illustrates the determination of the order of the 

modes resulting from the acoustic mode-rod interaction case. 

No. of rods V Interacting Scattering Speed of the Excitation of 

acoustic mode acoustic mode interacting the scattered 

order 171 order I7Is acoustic mode mode (rad/s) 



(m,\,=m+kV) (rad/s) 

1 -1 o (k=l) 9Q 9Q (=BPF) 

1 1 o (k=-l) 9Q 9Q(=BPF) 

Table A.S.2.2 Scatter modes produced through interaction of spinning modes 

with the controller array rod. 

As explained in the above table, the two spinning modes present at the 

BPF mentioned before interact with the rod and scatter into the plane wave mode. 

The excitation of the scattered plane wave mode is also at the BPF since the 

interacting modes spin at this frequency. Other modes can also result from 

scattering if one were to substitute different integral values for k. Only the plane 

wave mode is considered here for explaining the variation of the amplitude 

response along the circumferential direction of the 8 rod equispaced controller 

array used in the current rig. Thus the effective amplitude of the plane \vave mode 

is the resultant of the original plane \vave mode from the fan-flow disturbance 

case and the case of scattering. The original plane wave mode has its origin at the 

fan and the scattered mode has its origin at the rod. Both these combine at the rod 

plane and the resultant amplitude can have a variation with the circumferential 

orientation of the rod as explained below. This is explained in a t\\·o-step process. 

The first step to account for the above variation is the phase change of the original 

modes at the fan origin due to the change in the rod's angular disposition. This is 

understood from the relationship e -IPo, where 8 is the angle of the rod's 

disposition from the circumference and p is the order of the flO\v mode that 

induces the corresponding acoustic mode of order 171. The phase of the plane \vaw 

mode is to be reckoned with respect to the axial coordinate of the fan origin and 

the phases of the spinning modes with the circumferential coordinate of the same. 

Assuming all modes have zero phase at the fan origin due to the interaction \vith 

the flow disturbance issuing out from a rod placed at the vertical reference, the 

phase change suffered by the three modes when the rod's azimuthal position is 

stepped through 45° increments are given below in Table A.5.2.3. The phase 

change from each mode is given by (-p8). According to the information in this 

table the spinning mode 171= 1 doesn't suffer any phase change at the fan origin. 

The phase change in mode 171 =-1 corresponds to an amount \vhich is 2 times the 
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rotation of the rod and with the mode m=O it is equal to one times the same 

quantity. 

Rod position, Phase change of Phase change of Phase change of 

mode (m=-I, p=10), mode (m=O, p=9), mode (m= 1, p=8), 

8 =nx45 (deg), -p8 = -10nx45= -p8=-9nx45= -p8 = -8nx45 =0 

where n=0,7 -nx90 (deg) -nx45 (deg) (deg) 

0 0 0 0 

45 -90 -45 0 

90 -180 -90 0 

135 -270 -135 0 

180 0 -180 0 

225 -90 -225 0 

270 -180 -270 0 

315 -270 -315 0 

Table A.S.2.3 Phase change of the modes at the fan origin due to rod rotation. 

The second step examines the phase of the scatter mode lJls=O resulting 

from the interaction of the acoustic modes 111 = -1, 1 vvhich happens only after they 

travel towards and reach the rod. The modes travel towards the rod and let's 

assume they arrive at the same phase \vhich they started yvith from the fan origin. 

Then at the rod plane it can be seen from the above table that the rod moves a\vay 

relative to the mode lJl = -1 by (-l1lrl-l- 17m2) radians and by -mr/-I radians relative 

to mode 171 = 1. The unsteady forces generated on the rod and hence the radiated 

scatter modes due to the impingement of the t\VO modes 171 = -1. 1 on the rod also 

undergo the same phase change. For mode 171= 1 let's say the scattered 17Is =0 has a 

phase ¢I when the mode 171 = 1 impinges on the rod at 0°. the phases of the 

scattered mode for the rest of the rod positions are given by ¢/-17 iT...J., and the same 

scattered mode resulting from the impingement of the 171 =-1 mode on the rod \vill 
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have a phase given by (/J2-nnl4- nnl2, if ¢2 is assumed as the phase when the 

impingement happens at the rod angle of 0°. 

Assuming the amplitude of the original plane wave mode to be a, its 

variation with the rod rotation as given in Table A.5.2.2 is ae-jl1rr/4. Similarly if 

the amplitudes of the scatter modes resulting from the interaction of the modes 111 

= -1, 1 with the rod at 0° are assumed to be band c, their variation with the rod 

position is given by be-/3mr/4 and ce-
Jl17r/4

. Then the variation of the resultant 

amplitude of the plane wave mode with the circumferential orientation of rod is 

the sum of the variations of the original plane wave mode and the scatter modes 

with the rod position, i.e., ae-
Jllrrl

:' + be-
j3nrr

!4 + ce-
Jmr/

:'. Factoring out e-
jl1

;r/4 

from this expression we see that the magnitude of the resultant plane wave mode 

amplitude varies with the circumferential orientation of the rod array. This is 

made evident in the graphical illustrations in Figures A.5.2.1 - A.5.2.S. Assuming 

zero phase and unit amplitude for the vector a, the variation of ae-llI;r :, for the 

original plane wave mode m=O is shown plotted in the polar plot of Figure A.S.2.1 

for the various rotated rod positions. Similarly the scatter mode variations ce -1"'-;:' 

and be-I'}'" :, are shown in Figures A.5.2.2 and Figure A.S.2.3. Vectors c and bare 

assumed to be of unit amplitude and with 0° and 22.5° phase respectively. The 

sum, ae -jll7[ i:' + ce -1"7[ /:', representing the sum of the individual plane wave and 

the scatter mode resulting from impingement of mode 171 = 1 is sho\\11 in Figure 

A.5.2.4. Finally the sum, ae- III 7[/4 + be-
/3mr

!4 + ce-
p

}J[14, representing the variation 

in the magnitude of the resultant plane wave mode is shown in Figure A.S.2.S. 
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.. \ .. 

-+- rod at 00 
-e- rod at 45' 
-+- rod at 90° 
~ rod at 1350 

--i3- rod at 180' 
-+- rod at 225' 
-v-- rod at 2700 

--b- rod at 315' 

Figure A.S.2.1. Polar plot showing the phase change of the plane wave mode 

due to the rod rotation. 

1 Pa 
~---

----l- rod at 00 

-e- rod at 45' 
--;.- rod at 90° 
---- rod at 135' 
-e- rod al 1800 

+ rod at 225' 
--v- rod at 270' 
~ rod 81315° 

Figure A.S.2.2. Polar plot showing the phase change of the scattered plane 

wave mode ms,l=O with the rod rotation as the mode m=l impinges on it. 
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1 Pa 
---'~~ 

-+- rod at 00 

~ rod at 45' 
-+- rod at 90° 
---r- rod at 1350 

-a- rod at 180' 
-4- rod at 225' 
-V- rod at 2700 

-b-- rod at 3150 

Figure A.S.2.3. Polar plot showing the phase change of the scattered plane 

wave mode ms,-I= O with the rod rotation as the mode m=- l impinges on it. 

2 Pa ----

- rod at 00 

-a-- rod at 45° 
- rod at 90° 
- rod at 135' 
-a- rod at 180' 
-+ rod at 225' 
---v- rod at 2700 

-dr- rod at 315' 

Figure A.S.2.4. Polar plot showing the phase change with rod rotation of the 

resultant of plane wave mode m=O from fan-flow interaction and the 

scattered plane wave mode ms,I=O. 
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3 Pa 
~---

................ ...... 

--+--- rod at 00 

--Er- rod a145° 
----.,.;.- rod al 90° 
- rodal13So 

-e- rod at 160' 
-4- rod al 225' 
-V- rod at 270' 
-b- rod at 3150 

Figure A.S.2.S. Polar plot showing the phase change with rod rotation of the 

resultant of plane wave mode m=O from fan-flow interaction and the 

scattered plane wave modes m s, ]=O and ms,_]=O. 
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