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ABSTRACT 

Doctor of Philosophy 

CALCULATION OF SOME 
PHENOMENOLOGICALLY RELEVANT 

QUANTITIES IN LATTICE QCD 

Abdullah Shams Bin Tariq 

Somewhat mutually independent studies in lattice phenomenology, one on dou-

blecharm baryon spectroscopy and one on an unquenched calculation of are 

reported alongwith a study of possible solutions to the problem of extracting a sig-

nal for static quarks with reference to the lifetime problem. All simulations are 

performed with non-perturbatively 0(o)-improved Wilson fermions. Double- and 

single-charm baryon masses and splittings are found in agreement with experiment 

where data is available and further predictions are provided. Sea quark effects are 

found to be significant in Bk, and seem to lower the value. For, the A^-lifetime, a cal-

culation using maximal variance reduced all-to-all propagators with novel fat static 

quarks is judged to be quite promising, while the extended propagator approach is 

found to be inefficient. 
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Chapter 1 

Introduction 

Amongst the couplings in the standard model the strong coupling has the odd char-

acteristic of asymptotic freedom. Quarks are loosely bound at short distances but 

the force grows sharply as they are pulled apart, so much so, that an isolated quark 

has never been observed. Whereas for the other interactions in the standard model, 

one uses perturbation theory and neglects higher order processes; QCD at long dis-

tances or low energies becomes non-perturbative and a first principles calculation of 

the path integrals is required. This leads us to a discrete formulation of QCD on a 

4-dimen8ionai space time lattice, hence the name, lattice QCD. 

There is a great deal of interesting phenomenology requiring lattice techniques. 

This thesis is formed of three such, somewhat mutually independent, projects in 

different areas of flavour physics phenomenology. The first one is a spectroscopy 

calculation on double charmed baryons. The first observation of these baryons at the 

SELEX experiment in Fermilab a couple of years back prompted this study. Results 

for double- and single-charmed baryon masses and spin splittings are reported some 

of which may be tested in future experiments. 

The second project is on an unquenched calculation of Bk- The theoretical input 

of Bk with its large uncertainty remains one of the biggest obstacles in constraining 

the CKM unitarity triangle. The next major step required in reducing the errors 

is the incorporation of dynamical sea quarks. Exploratory results from an JVy = 2 

calculation with clover fermions are presented providing some insight into what 
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effects to expect from the incorporation of sea quarks. 

The third and unEnished project is on the unsolved problem of the A(,-lifetime. 

In terms of the heavy quark expansion, corrections from spectator effects at 

are required to be large to explain why A(, particles, on average, live about 20% 

shorter than 5-mesons. On the lattice calculation side, there are difficult technical 

problems in extracting a signal from correlators with static 6-quarks. Prospects 

of different approaches are studied and this has led to some useful understanding 

on what is required to extract a signal in such a case. Chapter 5 describes the 

understanding achieved so far and outlines future directions for the calculation. 

In this manner the three problems in this thesis being related to charm, strange 

and beauty (heavy) quarks touch diEerent areas of flavour physics. There is however 

very little focus on any of the issues concerning light quarks. 

There are in a sense two aims in typical lattice phenomenology simulations: i) 

to test our understanding of QCD and ability to calculate quantities relevant to it, 

and ii) to perform calculations within QCD in order to check the consistency of the 

standard model or some other theoretical framework. The doublecharm spectroscopy 

calculation belongs to the hrst category, whereas the and A;, belong to the second 

category exploring the limits of the standard model and the heavy quark expansion 

techniques respectively. 

Again, in another way, lattice phenomenology calculations are either calculations 

in spectroscopy or of matrix elements. The projects in this thesis include both of 

these types, with the 6rst one being an example of spectroscopy while the other two 

belong to the category of evaluation of matrix elements. 

It should be emphasised that precision lattice QCD requires much greater com-

putational and human resources as well as time than what was available for the 

work presented in this thesis. Hence, most of the results are somewhat exploratory, 

with certain recognised limitations. These studies also form the first bunch of simu-

lations done locally on the University of Southampton cluster Iridis using the code 

FermiQCD. Nevertheless, attempts are made to extract some non-trivial information 



that is of interest for phenomenology. 

There is a brief, and by no means comprehensive, introduction to some basic ideas 

relevant to lattice phenomenology simulations in the next chapter. This is followed 

by the three chapters mentioned above on doublecharm baryons, Bk and A^-lifetime. 

These chapters are reasonably self-contained and may be read independent of each 

other. The conclusions are summarised together in a final chapter at the end of the 

thesis. 



Chapter 2 

Basics of Lattice QCD Simulations 

In this chapter, a basic overview of the background and practical issues involved in 

lattice simulations are described. Rather than taking the textbook approach, where 

everything is derived from continuum QCD, in this basic introduction an attempt 

will be made to provide a bottom-up view from the perspective of a lattice phe-

nomenology practitioner. For a more conventional approach one may consult the 

available textbooks, e.g. [1-5] and/or the good number of review/overview articles 

available. Therefore in some cages the discretised elements are introduced directly as 

they occur in lattice simulations without a comprehensive discussion of the contin-

uum formulation. Similarly, I always work in Euclidean space-time without showing 

the Minkowski counterparts of the expressions as they are never required in simula-

tions. 

2.1 QCD calculations on a lattice 

Let us first introduce a hypercubic space-time lattice of x T points where L and 

T are the spatial and temporal dimensions respectively. The fermion-fields, tp live 

on the discrete lattice sites and are Mc x complex matrices, whereas the gauge 

fields, U G SU{nc) living on the links are ric x Uc complex colour matrices. 

We are interested in calculating Green's functions by evaluating path integrals 



fermion fields live on the sites 

% % 
-gauge Eelds live on the links 

Figure 2.1: A schematic representation of the lattice in two dimensions with 
the fermion fields living on the sites and and the gauge fields on the links. 

of the form: 

(2.1) 

Here U is the gauge field, ^ ' s are the fermion fields and Sg and Sf are the gauge and 

fermionic parts of the action. O is a collection of operators describing the process 

we intend to investigate. The basic idea is to evaluate this integral using Monte 

Carlo methods, i e . by averaging over a suitably weighted sample. Since we want 

the exponential in the integral to have a probabilistic interpretation, it has to be 

positive definite. Therefore we always work in Euclidian space-time. The action is 

discretised and put on the lattice and the following sections will introduce how this 

is implemented in practice. 

2.2 Gauge configurations 

Now, let us consider the fermionic integral . For 

y =detQ[[/]. (2 .2) 



This is factorised into the weight, detQ[[/] being the fermion determinant, and a 

set of gauge conGgurations is generated with the an effective action 

- log det - 1Y log (2.3) 

Now we have only the gluonic degrees of freedom left in the integral. The Erst step 

is to generate, in Monte Carlo, a set of gauge conSgurations with suitable weights. 

In quenched QCD, detQ is constant (usually set to 1), leading to 

(O) = ^ y^2)[//(propagators[[/]) (2.4) 

where the operator O after integrating over fermionic degrees of freedom, has become 

some function of fermionic propagators. 

On a lattice the gauge fields reside on the links between the lattice points. In 

our notation U^{x) is the link ending at x and originating from the lattice site one 

step away in the /I direction. It may be noted that many authors use the opposite 

direction as their convention. This variable U corresponds to the Schwinger line or 

the phase picked up by a matter field while traversing this path 

V„(x) = ~ 1 + agA'T^ + ••• (2.6) 

Ul(x) 

^ 2; + 0/1 ^ a; + o/l 

From now on, for simplicity, x + ap, will be written just as x + ft with the a implied. 

Each of these links is a complex Uc x Hc colour matrix of SU(ric) and a set of these 

links spanning the volume of the lattice makes a gauge configuration, ric = 3 for 

QCD simulations but the formulation does not change if one wants to use a different 

)ic, say, for large-^c studies. 

The construction of a discretised version of the continuum QCD gauge action is 

not unique. The simplest of these, the Wilson plaquette action is the one used in 

our simulation and is introduced below. 
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2.2.1 Wilson p laque t te (gauge) act ion 

The continuum gauge action expressed in terms of the bare coupling Qq and the field 

strength tensor is given by 

= - A / (2.6) 
^^0 J 

Recalling the analogy with electromagnetism, where the curl of the vector potential 

gives the electromagnetic Hux, one can deGne in terms of path-ordered prod-

ucts of the gauge links around elementary plaquettes, which are the simplest gauge 

invariant quantity that can be constructed from these links. 

Pp.W = U^{x)U,{x + ail)Ul{x + ai>)Ul{x) (2.7) 

UUx + P) 

a; 4-

Uu{x + /}) 

In Wilson's implementation of the gauge action [6], this is used to write the action 

in the form 
1 

1 - —ReTrf%;/(a;) (2.8) 

X,IJ.<V 

where ^ = 2N/gQ is the lattice coupling and directly relates to the lattice spacing. 

It may be noted here that the Wilson gauge action has no discretisation errors of 

(9(o), i e . 
cont + O(G^). (2.9) 

2.2.2 Quenching 

As mentioned earlier, the conRgurations, in general, are generated with the weight 

exp(-5'g[[/] 4- TrlogQ[[/]) = detQ[(7]exp(-^g[[/]). The quark determinant is ex-

pensive to calculate and make the simulations a few orders more costly. Quenching 

7 



refers to setting this to a constant, typically unity. This has the effect of removing 

internal quark loops [7-9]. Rigorous derivations of this can be found in textbooks 

such as [3]. The propagating quarks are called valence quarks, while the virtual ones 

that occur only in the loops are called sea quarks. Removing the loops is equivalent 

to saying that the sea quarks are inSnitely massive. Therefore, a simula-

tion refers to one with sea quarks of hnite-mass, that propagate within closed quark 

loops. 

In a truly unquenched simulation one would have the sea and valence quarks 

at the same mass as one has in the real world. However, since it is expensive to 

generate data sets for many sets of sea quarks, there is another class of simulations 

where there are several values of valence quark maas on for a given sea quark. Such 

simulations are termed porfzo/Z?/ because these are like quenched, but with 

a non-infinite maas for the sea quark. 

Though physically quenching has more to do with quarks, in practice it is the 

gauge configurations that are generated with a difference, the difference being in the 

weight with which they are generated. The remaining simulation remains exactly 

the same but just uses the quenched or unquenched configurations as input. 

2.2.3 Mon te Carlo generat ion of t he gauge configurat ions 

Our aim is to evaluate correlation functions of the form eq. (2.4) which is of the 

form 

(2 .10) 

with V[Ui] being 1/Z times the Boltzmann weight with our action in the exponen-

tial. The UiS are already distributed with the appropriate weights and the / ' s on 

the rhs can be simply averaged for our answer. Since the number of degrees of free-

dom in the integration is very large, one haa to use a Monte Carlo method for the 

integration. For this we need to generate conGgurations, (7, with the distribution 

V[Ui] through a Markov process, which is one where Ui is generated stochastically 



from its predecesssor [/i_i in a manner that satisBes 

(2.11) 

where T is the relevant transition probability to reach one configuration from the 

other. However, using all these is not efBcient, since successive configurations will 

be correlated, with the Markov chain being characterised by a 

Moreover, the configurations need to be allowed to equilibrate before they can be 

used. Sketched below are the typical steps in the full process, as observed in practice: 

• Choosing the volume: The first step is to decide on the volume. Practical 

considerations such as limitations on computing power are more important 

than anything else here. One would like to the choose the volume large enough 

that finite volume efi"ects (changes in the result when you change the volume) 

are small. This should be the case as long as the Compton wavelengths of the 

simulated quarks are reasonably small compared to the spatial dimensions of 

the lattice. It should be noted that the lattice spacing in physical units(fm) is 

not known beforehand and one usually relies on previous simulations in similar 

regions of parameter space. 

» Choice of /3 and k: For j3 one ideally tries to go as high as possible as that 

refers to a finer lattice. For the Kgea again one would like to simulate lighter 

(more realistic) quarks and therefore choose one or more values of Kgea as large 

as possible without slowing down the process too much. Another input that 

goes in for improved Wilson fermions is the values of Cgw which is simply 

determined for the ,9 as given in sec. 2.3.2. 

* Hot or cold start: The first configuration to start off the subsequent update 

steps can be chosen to be made up of either unit or random <9(7(3) matrices 

along the links. If unit matrices are used, it is termed a cold start, whereas a 

hot start implies random SU{3) links. However, the final configurations should 

be independent of this choice. A cold start option is useful for simple tests on 
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code components on a unit gauge conBguration, which is exactly what a cold 

start sets up. For completeness, it should also be mentioned that one may use 

a previously generated conSguration as the starting point. 

e Algorithms to generate the Markov chain: There is more than one 

method of generating the Markov chain of configurations. A popular choice 

for general Monte Carlo calculations is the Metropolis algorithm [10]. For 

quenched configurations, a more efficient algorithm is the Cabibbo-Marinari 

heatbath method [11]. This is the one we use to generate the configurations for 

our doublecharm study. It is usually efficient to supplement the heatbath steps 

with some overrelaxation ones. There are other methods such as hybrid Monte 

Carlo or multiboson algorithms that are used for dynamical configurations. 

» Thermalisation or equilibration: The plaquette variable has been intro-

duced in eq. (2.7). The average value of the possible plaquettes is a simple and 

widely used measurable quantity of a configuration. In fig. 2.2, these values 

are plotted for the first 1000 update steps. When the values reach a stage that 

they are fiuctuating around some stable value, we say that the configurations 

are equilibrated or thermalised. It is important not to start using configura-

tions before equilibration is achieved. It should be noted that equilibration 

also has some observable dependence and in an ideal world, one should check 

with the observable being calculated, however, in practice we get our real ob-

servable (the correlators) much later in the simulation and a decision on the 

configurations have to be made without that knowledge. 

# Decorrelation: Even after equilibration, the configurations have some short-

range autocorrelation (correlation with the past or future values). Therefore it 

is important that one measures this correlation length and uses configurations 

spaced by a separation that decorrelates them sufficiently. For this, one can use 

any standard statistical measures of autocorrelation. Just to give an example, 
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Number of update steps 

Figure 2.2: Average plaquette values for configurations from the first 1000 
heatbath steps for a test case. 

for the study on doublecharm baryons, where the configurations were generated 

here, we used 1000 heatbath steps to equilibrate and then 200 steps between 

each saved configuration to ensure decorrelation. It may be mentioned here 

that in principle, one could get correct results even using a correlated set 

of configurations if one could calculate enough of them. However, since the 

subsequent calculation of observables is much more expensive, particularly for 

quenched configurations, it is sensible to decorrelate the configurations first. 

» Technicalities for unquenched configurations: Since the effective action 

= det Q[[/] exp(-5'g[[/]) (2.12) 

is to be associated with a probabilistic interpretation, it has to be positive 

definite. But, detQ is not so. Therefore typically one uses 

= det(Qt[[/]Q[(y]) exp(-^g[[/]) (2.13) 

corresponding to two degenerate quarks {Nf = 2). Fortunately, in nature the 

two lightest quarks are indeed nearly degenerate and significantly lighter than 
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the other flavours, hence it is physically justifiable to have two light quarks in 

the loops. It remains difficult to add an odd number of light quarks for Wilson 

fermions, but a third heavy quarks can be added without much trouble. This 

problem does not arise for overlap fermions. 

Once we have our ensemble of decorrelated gauge conGgurations we may turn our 

attention to the fermionic part of our calculation. 

2.3 Fermion propagators 

Let us take the very simple example of the propagation of a pion. Then our op-

erator of eq. (2.1) would consist of a pion creation operator at some point and an 

annihilation at some other point. 

O = J.(3/)J.(3;) (2.14) 

= (M(2/)75%)) («(:r)75c((a;)) 

Inside a correlation function, the quark fields can then be contracted to write the 

expression in terms of quark propagators of the form 2/)a%, where o, 6 and CK, 9̂ 

are colour and Dirac indices respectively. Generation of these propagators forms an 

important intermediate step in the simulation. 

Looking at the QCD Lagrangian, the propagator is obtained by inverting the 

Dirac operator, Q 

s . f e , xrJ = {u'Mui(x)) = (2.15) 

Computationally, this is usually the most expensive part of the simulation. The two 

most common algorithms for this inversion are the Minimum Residue (MR) method 

[12] and the Stabilised Biconjugate Gradient (BiCGStab) method [13,14]. For our 

simulations we use the latter which, though slightly more expensive, is numerically 

more stable particularly for lighter masses. 

Moreover, whereas the discretisation of the gauge action is conceptually straight-

forward, the discretisation of the fermion action leads to complications that are 
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amongst the major issues still being addressed. 

A naively discretised lattice Dirac operator 

Qnaive = + TTio, (2.16) 

V being the discretised derivative operator deBned in sec. 2.3.1, gives a propagator 

of the form 

5'(p) = r— . (2.17) 
sm(ap^) + mo 

Apart from the pole at op = 0 this has additional zeros at ap = tt, i.e. there is a 

doubling in each dimension. This is known as the doubling problem and for four 

dimensions we have 16 copies of our fermion Eeld. 

This has led to different formulations (essentially discretisations) of the fermionic 

action. In this work we use Wilson fermions, which is introduced below. Details of 

the others are available in standard texts and are not repeated here. 

2.3.1 Wilson fermions 

One way out of the doubling problem is to add the Wilson term leading to the 

Wilson-Dirac operator [15] 

Qvr = Qnaive (2.18) 

This explicitly breaks chiral symmetry but it is recovered in the continuum. Mean-

while the doublers acquire mass of the order of the cutoff, a~^, thus removing the 

degeneracy, r can be an arbitrary non-zero number and is usually set to unity. The 

factor of 1/2 is conventional. 

Now for the discretised fermion action in terms of our fermion (i/;) and gauge-link 

([/) Eelds, one can deEne the covariant derivatives 

V '̂̂ (a;) = ^([/,;(a;)^(a; + //)-'^(a;)) (2.19) 

V*^(a;) = ^ (^(:r) - [/^(z - - //)) . 
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This leads to 

r 1 3 _ 

M=o 
+ - /!)] 

+ i^(z)(mo + 4)i/'(a;) j . 

It is further a matter of convention to rescale and by 

!^(z) -4̂  (2 21) 

and fix K by requiring 2«(mo + 4) = 1. Thus « determines the quark masses. 

2.3.2 Clover improvement 

While the gauge part of the Wilson action is free from 0{a) errors, the fermionic 

part indeed suffers from discretisation errors of this order. Attempts to remove 

these errors are termed and have received considerable attention. The 

Wilson fermion action is improved by adding a compensating 0(a) term of the form 

[16] 

ocsw ^ (2.22) 
2 

x,ij,<iy 

where G,̂ (̂a;) is given by 

G^ (̂a;) = ^[L^(a;)[/^(a; + (z//)[;^(a; + Qp)(7j(:r) (2.23) 

+[/:/(a;)&^(a; — a/i + oz/)U^(2; — a//)[/}i(2; — a/1) 

+[/^(z — o//)[/^(z — 0)U — az))[/^(a; — a/l — oP)[/[,(a; — aP) 

+L^(a; — aP)L/̂ (a; — aP)[/;,(a;)C^(z + a/i " 

and resembles a clover in shape [fig. 2.3], hence the name c/ot;er. 

Like the Wilson r-term, this term, being of 0(a), vanishes in the continuum limit 

and thus leaves the continuum action unchanged. Csw is known as the Sheikholeslami-

Wohlert coefficient and its value is determined perturbatively [17] or non-perturbatively 

[18] to achieve a cancellation of the 0{a) discretisation artefacts. 
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Gij,v{x) = 

Figure 2.3: in the clover term for O(a)-improvement. The extra term 
is called a clover term due to the resemblance of this G^i, with a clover. 

For the quenched case, the non-perturbative value of cgw is determined from the 

empirical formula [18] obtained after studying a series of couplings 

1 - 0.656gg - 0.152p4 _ 0.054pg 
Csw 0 < Po < 1. 

1 - 0.922^g 

For two flavours of dynamical fermions, this gets modified to [19] 

1 - 0.4549g - 0.175g^ - 0.012gg - 0.045gg 

(2.24) 

Csw 0 < 0̂ < 1. (2.25) 
1 - 0.720pg 

A similar expression for TVy = 3 is now available in [20]. 

Coming back to the point-of-view of the lattice simulation practitioner, when 

one refers to O(o)-%mpro!;e(f IVzkoM /eT-mzoMa, it simply means, 

the value of cgw used is from eq. (2.24) or eq. (2.25) as applicable. 
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2.4 The complete Wilson lattice action 

We now have Wilson's lattice action for QCD 

= ^ ^ ( 1 - ^ R e T r f ) (2.26) 

r ^ 

X ^ / j = 0 

+ ^W(l+7^)L/%(3:-A)V'(3; - A)] 

V'MV'( X] 

P = -g, K = — — — . (2.27) 

We have traded parameters: (po, )T̂ o) —̂  (/̂ , /(), with: 

^ ^ 
2mo + 8 

In practice, and K are the parameters quoted and a higher value of ^ points to a 

finer lattice spacing while a larger k points to a lighter quark in the simulation. 

2.5 Correlation functions 

So, for a given (and Kgea for a dynamical case) we will have one set of conGgurations 

and on each conEguration we can generate several quark propagators at varying 

K (quark mass). The typical propagator would have one end in the origin with 

the other one running over all points of the lattice. Next they need to be tied 

up according to the intended calculation. EEectively all the steps before this are 

generic and it is sometimes possible to End gauge conSgurations and occasionally 

propagators archived from previous work that can be reused. Configurations or 

propagators that are expensive to generate are usually archived anyway and intended 

to be used in multiple studies. But, the correlation function(s) or correlator(s) are 

specific to the study. 

Essentially, all phenomenology calculations are either one of spectroscopy or of 

some matrix element. Basic elements of the correlation functions for such calcula-

tions are described below. 
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Figure 2.4: Meson and baryon 2-pt functions. The black boxes are me-
son/baryon creation/annihilation operators, while the arrows correspond to 
quarks propagators. 

2.5.1 For a spectroscopy calculation 

For spectroscopy, ie . a calculation of mass, one looks at the propagation of the 

intended state. Therefore a creation operator with the right quantum numbers for 

the state is used to create the state at the origin and then it is annihilated after 

propagating for a while. This is typically called a two-point correlation function. 

CzM = ]^(0|0(:g,^)0t(0)|0> (2.28) 
X 

where the subscript 2 denotes that it is a two-pt function. The sum over spatial 

sites projects on to zero momentum and then we can relate the correlators to the 

mass. Inserting a complete set of energy eigenstates and using 

OM = (2.29) 

we get, 

= (2.30) 

Here the normalisation is conventional. At large times only the lowest energy state 

survives giving 

C2(t) (2.31) 

For visualisation, one often uses an effective mass plot [fig. (2.5)]. In this plot 

In + 1)] asymptotically approaches the mass. The flat region is called the 
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Figure 2.5: Example of an effective mass plot showing hi (heavy-light) and 
hll (heavy-light-light) hadron 2-pt functions on the first half of the lattice 
[heavy quarks are relativistic]. The plateaux are the regions where the plots 
are to be fitted. 

plateau and this is where the correlator is supposed to contain purely the ground 

state. A fit-window is chosen as large as possible in this range and the correlator 

is then fitted by a suitable function to obtain the mass. It is also possible to start 

earlier and use a double exponential fit to obtain the first excited state as well, but 

identifying that state may not always be straightforward. 

2.5.2 For a calculation of ma t r i x e lements 

Determination of QCD matrix elements is one area where lattice methods are the 

only ways of obtaining rigorous quantitative estimates. Examples of and the A;, 

lifetime calculations will be discussed in more detail in chapters 4 and 5 respectively. 

Typically, one has to evaluate 3-pt correlation functions with the physical states 
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Figure 2.6: Example 3-pt functions. Here the circled crosses are four-quark 
operators. The above two diagrams, sometimes referred to as the figure of 
eight and crab diagrams respectively will occur in our Bk and Ag, problems. 

involved being created or annihilated at two of the three points, the operator sits at 

the third point and effects the required transition. 

The sources for the physical states lead to extra factors of normalisation con-

stants and exponentials that are removed by taking ratios with suitable two-point 

functions. After necessarily manipulation, the matrix element extracted from the 

simulation are for the lattice regularisation scheme and at the scale For purpose 

of phenomenology, one uses renormalisation group running to convert this number, 

usually to some continuum scheme like MS and a convenient scale, (for example, 

/i will taken to be 2 GeV for Bk and for the Ab-lifetime), 

Op'/" = . (2.32) 

The matching can be done in two steps: 

latt, MS, MS, /.(. (2.33) 

This process is explained in further detail in the relevant chapters. 

2.6 Analysis of the simulated data 

By analysis, here we refer to the manipulation of data after generating the correlation 

functions. It may be mentioned here that this stage of a lattice calculation, can be 

and usually is done on PCs with the components prior to this usually done on larger 

computers. 
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2.6.1 Statist ical error: clustering + j a c k k n i f e / b o o t s t r a p 

When a correlator is calculated on a single gauge Held configuration, it does not have 

the continuum properties, like the exponential long-time behaviour, required for the 

extraction of physically relevant information. These properties only re-emerge when 

one averages over a suitable number of gauge configurations, the statistical error 

being proportional to 1/ •\/-^conf • There is more than one way to do to estimate the 

statistical error. In our case, we usually bunch one-tenth of our configurations into 

a cluster and average over them individually. Then the statistical error is obtained 

by a jackknife procedure [21,22] over the ten clusters. Ideally, though, one should 

try different cluster or bin sizes and make sure the statistical error is stable. For a 

cluster size that is too small, the error is underestimated. Some prefer to use the 

bootstrap method [23]. Though there are di&rent ways of estimating the error, for 

a simulation practitioner, for most practical purposes it is usually alright to use any 

of the alternatives. 

2.6.2 F i t t ing t he d a t a 

Once the averages and statistical errors for the data points are determined, the data 

has to be fitted to a suitable function. In case of 2-pt functions for spectroscopy it 

is usually an exponential function or some modification of it, whereas for ratios of 

3-pt to 2-pt functions for matrix elements it may be fitting to a constant. There 

are other occasions as well in the analysis when one needs to fit some data. This is 

done in the typical %^-minimisation procedure, with 

parameters) = V ^ A . f i t parameters)]^ ̂  

For non-linear fits, probably the most widely used method is the Levenberg-Marquardt 

[24, 25]. In cases where there is correlation within the data , one may need to use a 

correlated Ht. 
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2.6.3 Lat t ice to cont inuum matching 

As mentioned in the previous section, the next step that comes up, only for matrix 

elements, is the matching from lattice regularisation to some continuum scheme as 

well as shifting the scale from the inverse lattice spacing to some more conveniently 

understood scale. The renormalisation coefficients required for this matching are 

usually calculated in a separate programme and end up as numbers that can be 

plugged into the analysis. There is also the choice between a perturbative and 

non-perturbative determination of the matching coefficients. 

2.6.4 De te rmina t ion of t he lat t ice spac ing 

In the simulations masses come out as dimensionless quantities of the form o x mass. 

To remove the spacing, one ha5 to choose a known physical quantity and set the 

scale using the experimental value. We usually use a ratio of the values of and 

It should be noted there is always a systematic error associated to the choice of 

the quantity used to set the scale. It may be noted that for dynamical simulations 

in the continuum limit there should be no ambiguity. But, in the quenched case, 

even if one goes to the continuum limit quenching artefacts lead to a variation of 

the spacing. 

2.6.5 Ext ra ( in te r )po la t ion to the in t ended masses 

In the simulation, it is not possible to use realistically light quarks as the cost of 

propagator inversion blows up as we go lighter, simulated quarks are around the 

strange-charm region. Even for strange or charm masses which can be simulated, 

we actually don't know where it exactly will be and therefore one needs to simulate 

at a range of quark masses (/( values) and then in the analysis stage one has to 

extrapolate or interpolate to realistic masses. Since the pseudoscalar mass squared 

is proportional to the quark mass, one can take a quantity and plot it against (omf )̂ . 

For the light (w, (f) quarks, one often simply goes to = 0, or can try to be 
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precise by going to ( o m p S i m i l a r l y , the strange and charm scales can 

be set by using kaon and D mesons, or any other strange/charm quantity. 

A probably less agreed upon issue is the form of fit-function for the extrapolation 

or interpolation. It is usual to look for any curvature in the data, however, unless 

there is convincing evidence of non-linearity, particularly unless one is convinced 

that one is seeing true chiral logs, it is probably sensible to simply use linear fits. In 

our simulations, we are not really interested in light quantities i.e. those involving 

only up and/or down quarks. Our simulation also does not go to very light masses. 

Therefore we use linear fits for our results. However, sometimes we do use quadratic 

and/or chiral log Ets to comment on the systematic uncertainty connected to the 

choice of extra/interpolation function 

2.6.6 Con t inuum ext rapola t ion 

It is also important to work with more than one lattice spacing and then do a 

continuum extrapolation to a —)• 0. However, it may be noted that often there are 

not enough computational resources to do this, as was the caae with us. In such 

cages, the results reported are for some given lattice spacing. 

2.6.7 Analysis of errors 

One of the most important claims of lattice QCD is that , though there are errors, 

aa in any other method, here the errors can be well-estimated and systematically 

reduced, apart from quenching and some symmetry breaking effects. Therefore in 

any calculation, a significant proportion of time and effort is spent on an analysis of 

the errors. This is discussed in a little bit more detail in the next section. 

2.7 Errors in a simulation 

Errors in a lattice calculation are of two main types: statistical and systematic. 

When two errors are reported after a result, conventionally, the first and second 
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ones are the statistical and systematic errors respectively. Sometimes, asymmetric 

errors are quoted for the systematic error. In some cases, results may be reported 

with only the statistical error. 

2.7.1 Stat ist ical er ror 

This is the error arising from the limited statistics available. As already mentioned, 

this goes like the 1/a/TVconf and is estimated using a jackknife or bootstrap method. 

2.7.2 Systemat ic error 

For the systematic error one attempts to quantify the possible variation due to 

choices made for the simulation/analysis. In some cases these choices are forced by 

practical constraints, whereas in other cases a degree of arbitrariness simply exists 

in the choices. Some of these are described below to illustrate the point. 

Finite volume errors 

This is an example of an error that is usually forced by computational constraints. 

As the cost of simulation grows with the number of points on the lattice, we always 

have a limited volume for our simulation, usually of something in the range of 2 

fm in spatial dimension. Squeezing our physical system into such a finite box can 

affect the quantities we are trying to measure. Therefore, ideally one should work 

at more than one volume and look at the volume dependence of the results. Then 

one should work at a volume where there is no further variation and/or quote the 

variation in that region as a measure of the systematic error due to finite volume. 

In our case, unfortunately, we are restricted to using jus t one volume, but where 

possible we refer to other studies on finite volume effects in the relevant region. 

Errors in the extrapolation or interpolation 

As mentioned in sec. 2.6.5, in the simulations we cannot a priori sit on top of the 

realistic quark masses and have to extrapolate or interpolate to the physical masses. 
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The form of this extra(inter)polating function is not beyond question. This can 

become more of an issue at light masses, where one starts to expect to see 

logarithms. Therefore, it often is an open question as to whether one should use a 

linear fit, some higher polynomial or some function suggested by chiral perturbation 

theory. In our case, since our focus is not on light quantities and since our simulations 

do not go to extremely light masses, we simply use linear fits for our main results. 

In the doublecharm baryon study we include variations from quadratic fits in the 

systematic error, whereas for the study we do not quote a systematic error, but 

include quadratic and chiral log fits to illustrate the possible variation. 

Continuum extrapolation 

The true physical world is recovered only when we go to the continuum, otherwise 

there remain several artefacts of finite lattice spacing. Ideally, one should work 

with different lattice spacings values) and extrapolate to the continuum. In the 

absence of this continuum extrapolation, the result quoted is essentially the result 

for that finite value of the spacing and suffers from C(a^) discretisation errors {0{a) 

for unimproved simulations). Here again, we are restricted to working with only one 

spacing and hence are unable to extrapolate to the continuum limit. 

Choice of fit-window 

As already mentioned, typically one looks at the correlation functions, sometimes in 

the form of effective mass plots or ratios of different correlators, and chooses a fit-

window, where it is expected that contamination from higher states are negligible. 

This choice may be rather subjective and there are ideas of sliding window analysis 

etc. where the fit window is varied and the best window found in some iterative 

process. For the doublecharm study, we report results for one fit-window and then 

repeat the analysis for adjecent alternative windows and include the variation in the 

quoted systematic error. 
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Setting the spacing and scales with known quantities 

In the analysis stage, one of our observables have to be sacrificed for the spacing and 

each scale (e.^. or mc) that we need to set. Again there is a choice of quantities 

that can be used and this leads to a variation. This can also be incorporated in the 

systematic error, by looking at the variation arising when alternative observables 

are used. This is indeed done in our doublecharm study. 

Quenching 

The error due to quenching is difficult to quantify. The only way to judge it is 

by looking a at the discrepancy between quenched estimates and exper-

imental values and by ascribing it to quenching and any unaddressed systematic 

effects. A third error providing such an estimate is provided for our results in the 

doublecharm study. 

2.8 Steps in a simulation 

To summarise, below is the skeleton structure of the steps in a typical lattice simu-

lation. 

# Choice of action, appropriate volume and other parameters 

# Generate gauge configurations using Monte Carlo algorithms 

- Metropolis 

- Heatbath - o^e za usee! /or (Ae dot/Wec/iarm 

- Hybrid Monte Carlo 

- Multiboson 

# Propagator inversion 

- Minimum Residue method 

25 



— Stabilized Biconjugate Gradient method - oMe za /or azm-

Wahong 

* Correlator contraction 

e Averaging and determination of statistical error by jackknife or bootstrap 

* Chiral extrapolation 

* InEnite volume extrapolation 

@ Continuum extrapolation 

* Setting of the scales with known quantities 

* Analysis of systematic errors 
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Chapter 3 

Spectroscopy of double-charm 
baryons 

TAzg zg puAZwAed poper; 

J.M. Flynn, F. Mescia and A.S.B. Tariq [UKQCD Collaboration], "Spectroscopy 

of doubly-charmed baryons in lattice QCD", JHEP 0307 (2003) 066 [arXiv:hep-

lat/0307025]. 

3.1 Motivation and background 

The baryon multiplets of flavour 5"(7(4) are plotted in fig. (3.1). For unbroken SU{4), 

the masses of all the states in the multiplet would be degenerate. Since the mass of 

the charm quark is much greater than the other three, this breaks the degeneracy and 

splits it into sub-multiplets with different numbers of charm quarks. It is intriguing 

to note that, though the existence of all these states has been expected within QCD 

for decades, the first observation of a state with two charm quarks, was reported 

only in 2002 at the SELEX experiment in Fermilab [26] and still lacks sufficient 

experimental verification to 6nd a place in the summary tables of the Particle Data 

Book 2004 [27]. 

Double charmed baryons combine the opposites of the slow relative motion of 

two heavy quarks with the fast motion of a light quark. They provide scope for 

testing ideas developed for single charm physics, such as the predicted hierarchies 
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Figure 3.1: 20-plets of SU(4) [badly broken by mchar'm\- Figure from [27] 
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in lifetimes and semi-leptonic branching ratios and give us more room to explore 

predictions of exotic tetra- and penta-quark states (see [28] for a review of the 

relevance of double-charm baryons). 

3.1.1 Exper imenta l s t a tus 

As mentioned above, the first observation of double-charmed states was made in 2002 

by the SELEX experiment in Fermilab. Initially there were three states observed at 

3520, 3460 and 3780 MeV [29-31], with two more reported later at 3443 and 3541 

MeV [32,33], All these were observed in decays to A+TiT" and one or two t t + ' s . 

But of these, only one: the H+(3520) has been published [26] with a very recent 

confirmation of the observation of this state from the same experiment, but from a 

different channel [34], 

Unresolved issues regarding the confirmed SELEX observation itself include the 

fact that the observed lifetime of less than 30 fs is much less than the 400 fs 

predicted by quark models [35]. This has led [36] to cast some doubt over the ob-

servation. This state has also not been observed in any other experiment, particular 

candidates being FOCUS and E791, but SELEX claims tha t this does not contradict 

their result. According to their understanding, experimental detail, such as the fact 

that they themselves see the signal only in the case of baryonic beams (aa opposed 

to pionic ones) and that only SELEX covers the forward hemisphere with baryon 

beams when these events are observed, might explain the non-observation of these 

states in other experiments. 

The other states that have been reported by SELEX in more informal ways, 

but have not yet been published are summarised in fig. 3.2. SELEX proposes an 

understanding of these states in terms of two isodoublets, separated by the energy 

of a diquark orbital excitation with the higher maas states decaying weakly to the 

lower ones [32,33]. It is to be noted that, in this picture, the ground state will 

be the 3443 MeV one. Moreover, the 3780 MeV state is interpreted as a light quark 

p-wave excitation. If this picture is correct, the isospin splitting is ~ 20 MeV which 
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Figure 3.2: States observed by SELEX, including the non-published ones. 
[Figures from SELEX] 

is about 15 times that for the nucleons and is also inverted, i.e. m{ccu) > m{ccd). 

They suggest that this may be due to the fact that the core diquark charge here is 

4 /3 instead of 1/3. Also the isospin splitting for the single-charmed Ec is itself more 

than four times that for the nucleons. Nevertheless, these issues require further 

understanding and this is perhaps the reason behind the delay in publication of the 

other states. 

For the purpose of this study, we take only the published state of 5^(3520) aa 

observed and ignore the other states. 

3.1.2 Prev ious theoret ical s tudies 

The first prediction for the masses of these double-charmed baryons comes from the 

early work of [37] around the days when charm was being discovered. This was 

followed by a more than a decade of relative inactivity. The subject seems to have 

livened up a bit over the last 15 years with a good number of further calculations 

from quark models and QCD sum rules [38-47]. Most of these calculations, in 
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general, predict a ground state around 3.6 GeV and a hyperEne splitting of 50-150 

MeV. A good deal of work haa been done as well on the lifetimes of these states, 

from the works of [48,49] in the mid-80's to the more recent studies using quark 

models and sum rules [35,50]. 

There have been only two lattice studies from one group before the one reported 

in this chapter. They use the D234 action [51] and NRQCD [52] and find numbers 

consistent with each other and also with the quark model predictions. There was 

another lattice NRQCD study that included double-heavy baryons, but was focused 

on hadrons with a 6-quark 

3.1.3 Mot ivat ion for a lat t ice calculat ion 

Almost all previous calculations are in the framework of various quark models, which 

can be quite subjective to tuning of parameters and over-simplifying assumptions. 

On the other hand, lattice QCD provides a method of calculating the masses of these 

baryons from first principles in a model-independent and non-perturbative manner. 

It is also interesting to compare the results from different lattice calculational 

techniques. Previous lattice calculations have used the D234 action [51] and NRQCD [52]. 

NRQCD is less suitable for charm quarks th&n for beauty quarks, and furthermore 

charm quark masses are very accessible to lattice simulation without using an effec-

tive theory. In this calculation we use a non-perturbatively O(o)-improved clover 

action [18]. 

These calculations performed on the Southampton PC cluster Iridis with the 

code FermiQCD [54, 55] were the first full-fledged ones using both of these (the 

cluster and the code). 

3.1.4 A n addi t ional aspect : s t udy of sp in spl i t t ings 

We also study spin-splittings for charmed baryons and mesons, where the lead-

ing charm quark mass dependence cancels. Historically, there has been a prob-

lem of a suppression of hyper fine splittings in lattice simulations. However, recent 
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calculations using the 0{a) non-perturbatively improved clover action find vector-

pseudoscalar meson splittings in better agreement [56, 57] with experiment than 

earlier calculations using less-improved clover actions [58]. 

For the single-charmed baryons, calculations with a tree-level clover action had 

difBculty reproducing the experimental splittings [59], while simulations using the 

D234 [51] or NRQCD [52] actions were compatible with experiment. For the single-

charmed baryons we can compare with experiment, whereas, for the doubly-charmed 

baryons, experimental data are not yet available. However, we may compare our re-

sults with those from the other simulations for the doublecharm. Since the hyperfine 

splitting is sensitive to the chromomagnetic moment term in the improved clover 

fermion action, this could show the importance of using the non-perturbative value 

for its coeSScient (cgw)- A similar observation was made concerning the coupling 

with the chromomagnetic Seld in the NRQCD action [52] (04 in eq. (A5) in [52]). 

Some interesting features are observed and predicted in heavy hadronic hyperEne 

splittings, e.p. the constancy of My — Mp for mesons [60-63], constancy of the ratio 

of mesonic and baryonic spin splittings [64,65] etc. A good discussion from a lattice 

perspective is available in [51]. 

3.1.5 The charmed baryon states: some nomenc la tu re 

The double and single charmed baryons expected in QCD are summarised in tab. 3.1. 

Since on the lattice it is not possible to distinguish between u and d quarks, we have 

states in the isospin limit and, e.^. Ecc refers to both the and cW states, which 

would otherwise be distinguished by their charges as H++ and Furthermore, 

we have spin-1/2 and 3/2 states. The spin-3/2 states are denoted by an asterisk. 

Operators creating spin-3/2 states [e.^. in eq. (3.3)] also couple to spin-1/2, but 

for two identical quarks the diquark can only couple to spin 1 and there is only 

one 8pin-l/2 state. Therefore, the spin-1/2 state projected from a 8pin-3/2 operator 

is degenerate with the state produced by a spin-1/2 operator [e.ĝ . J/y in eq. (3.2)]. 

For three distinct quarks the diquark can be in spin 0 or 1, leading to two different 
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Bar yon Quark content Mass [MeV] 

Sec = 1, = 1/2^ 

'CC ccu, ccd 3519(5) 
^cc CCS 

Sec = 1, = 3/2^ 

"cc ccu,ccd 
ccg 

S;; = 0, = 1/2'"' 

Ac 2285(1) 
•^C 2469(1) 

Sii = 1, = 1/2^ 

2 c cut/, cud, cdd 2452(1) 

" c cuS; cds 2575(3) 
fie CSS 2698(3) 

3% = !, J^ = 3/2^ 
CUM, c%d, cdd 2518(2) 

'c C2/8, cdg 2646(2) 
CSS 

Table 3.1: Summary of charmed baryons. Valence quark content and spin-
parity are shown. The quantities Scc and su are the total spin of the charm 
and light quark pair respectively. The experimental values are from ref. [66], 
averaged over isospin multiplets. The Ecc mass is from the recent observation 
of the (ccd) [26]. 
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spin-1/2 states. Sometimes called the A- and E-like states [67], these states are 

distinguished either by A and E symbols or by a prime for the 2-like states. 

3.2 Calculation of the relevant baryon 2-pt func-
tions on the lattice 

On the lattice, the masses of these hadrons can be calculated in the usual way from 

the large time behaviour of two point correlation functions 

C(() = ^(0 |J(x , t )J(0) |0> (3.1) 
X 

where the J's are interpolating operators with quantum numbers to create or anni-

hilate the state of interest. The choice of operators is not unique. 

For the spin-1/2 double-heavy baryon states, a simple operator is 

J-y = Wc = 1 (3.2) 

where o, 6, c are colour indices, C is the charge conjugation matrix and the and Z 

helds stand for generic heavy and light quarks. 

In 5-wave baryons with two identical quarks (heavy quarks in our case), the 

two quarks cannot couple to spin zero and the only possibility is Shh = 1 (sym-

metric in both spin and flavour). The component Shh = 0 as well as the operator 

—Cabc Z" (A^^ Â ) vanish. The coupling of the light-quark spin to = 1, however, 

can also generate the spin 3/2 states, 2̂ ,̂  and in tab. 3.1. 

An interpolating operator for the spin-3/2 states can be obtained by replacing 

'Ys with in eq. (3.2). 

= Wc = 1. (3.3) 

This operator also couples to spin-1/2 and projections are needed to obtain the 

desired state. The spin-1/2 masses from and Jy are equal since there is only one 

spin 1/2 baryon in the situation where two quarks are identical. We have directly 

verified this property in our simulation. 
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Another operator, used for spin-3/2 double heavy baryons [52,53] is 

^ = (3.4) 

We have also tried this operator and we see no reason to prefer one over the other. 

Indeed, both give a good overlap for the ground state and the masses extracted turn 

out to be equal as expected. 

For the operators and (or the 2-point functions in eq. (3.1) have the 

following large-time behaviour 

CW77 - ^(o|j^(x,f);;y(o)|o> (3.5) 
X 

^ ^1/2 (-P+),, e - " - " ' + z f / , 

= ^(0 | j ; (x . t )Ji ! (0) |0) (3.6) 
X 

^ Z3/2 (f+ fgz) 6—=/^' + Zi/2 

where the projection operators are defined by 

P _ l ± 2 b p _ 1 - 7 0 
2 ; , , i 2 , ' 

^3/2 = - g f 7̂  , ^1/2 = g f 7^ 
(3.7) 

Details of the spin algebra involved in obtaining the intended states are given in 

appendix A. Contributions of negative parity states are removed by projection with 

The negative parity states can, in principle, be detected by using the projector 

P_, but in our simulation they are much noisier. We show an example of the signals 

from the operators and in fig. 3.3. As stressed above, 8pin-l/2 masses 

extracted using the three operators are equal, while the choice between JUj and 

makes no difference for the spin-3/2 mass. 
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Figure 3.3: Comparison of the effective mass plots for the double heavy-
operators Jy, J-y and Jy, with = 0.1222 and ki = 0.1351. In each plot the 
upper points are for spin-3/2 and the lower points for spin-1/2. The spin-1/2 
plateaus are the the same for J-y and Jif (left) while both plateaus coincide 
for the Jy and Jy operators (right). 
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For a baryon containing a single heavy quark, a common choice of operators is 

(̂( = 0, (3.8) 

g;; = l, (3.9) 

for the states — 0 and = 1 in tab. 3.1, respectively. In our simulation, the 

light quarks /i, I2 carry different flavours but the same masses. 

It should be noted that for baryons with three di%rent quarks, z.e., Mi/g (or 

//11/12), these two operators correspond to different physical spin-1/2 states with 

sii = 0 and 1 respectively, the latter one often being denoted by a prime. This is 

evident from the experimental masses of Sc and 2^ in tab. 3.1. 

3.3 Numerical simulation and analysis 

Our simulation was made using the code FermiQCD [54] on a PC cluster. In this 

study 100 quenched gauge configurations were generated at /3 = 6.2 on a volume of 

24^ X 64 with 1000 heatbath steps for the thermalisation followed by 200 heatbath 

steps to separate each gauge conGguration. These numbers were decided upon after 

an autocorrelation study on the average plaquette values. 

Four light quark propagators around the strange quark mass and three heavy 

quark propagators around the charm were calculated using the following values of 

the hopping parameters: 

# = 0.1344, 0.1346 , 0.1351, 0.1353; 

#/{,, = 0.1240, 0.1233, 0.1222. 

The propagators were generated by the Stabilised Biconjugate Gradient method [14] 

for the non-perturbatively improved clover action [18]. 

Since the signal is satisfactory with local interpolating operators, no smearing waa 

required. The statistical errors were estimated by a jackknife procedure, removing 

10 configurations at a time from the ensemble. 
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1^1 amp amy 
0.1344 0.300(2) 0.397(4) 
0.1346 0.276(2) 0.383(5) 
0.1351 0.210(3) 0.352(11) 
0.1353 0.177(2) 0.340(15) 

Table 3.2: Light pseudoscalar and vector meson masses. The fit interval is 
[12 — 28]. Our time counting starts from 0. 

0.45 
Linear Fit 
Quadratic Fit 

0.25 
0.00 0.02 0.04 , 0 . 0 6 

(am.) 
0.08 0.10 

Figure 3.4: Light vector masses as a function of squared light pseudoscalar 
masses. The interpolated kaon and extrapolated pion masses are also shown. 

3.3.1 Lat t ice spacing and quark masses 

To Ex the lattice spacing, we used the o/ [68]. In other words, 

we perform the following fit to the light vector and pseudoscalar masses in table 3.2, 

omy = C + (amp )̂ . (3.10) 

This is shown in Rg. 3.4. From the physical values of 771̂ -* and 771̂ :, the inverse 

lattice spacing is found to be 

= 2.6(1) GeV. (3.11) 

38 



Terms of 0((am,p)'^) in eq. (3.10) turn out to be irrelevant and do not affect the 

above estimate (compare the linear and quadratic hts in Rg. 3.4). For illustration, 

the values of the pseudoscalar masses in tab. 3.2 converted to physical units are 

mp = {779, 716, 546, 459} MeV. (3.12) 

These span the kaon mass while the pion is instead quite far away. For this reeison, 

we interpolate for the strange quark and extrapolate for the up/down masses. This 

is also the reason for using AT* to Ex the lattice spacing. 

For the heavy sector, the D^-meson mass is within our range of simulation. This 

is evident once the heavy-light pseudoscalar masses in tab. 3.3 are interpolated to 

the strange mass (through the lattice plane method) and expressed in physical units 

nip,/,. = {1.83, 1.89, 1.98} GeV. (3.13) 

3.3.2 Analysis of t he baryon masses 

Since Kcharm is rather close to our third = 0.1222^, as the Erst step in our analysis, 

we interpolate the quantities of interest, viz. the single and double heavy baryon 

masses, to the charm mass. In practice, this procedure is implemented by doing for 

each Ki the following fits: 

= Q 4- Z,, = C; + (3.14) 

Quantities at the charm mass, Tried and mcz; are obtained by putting 

This interpolation is shown for the double heavy case in fig. 3.5. With the charm 

mass fixed, the light quark mass dependence is studied using 

omdz = A + B(omf,(()^, = (3.15) 

This fit is shown for the spin-1/2 double charm case in fig. 3.6. The masses of 

charmed baryons containing strange and/or up/down quarks are obtained by the 

following substitutions for mp in the above equations: 

naive linear fit in 1/k/i to the masses in eq. (3.13) gives Kcharm = 0.1224(9). 
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l̂ h — 
jp — 1 + 

— 2 
t f _ 3 + 

2 
r = r 

t p _ 3 + 
^ 2 

5%, = 0 Sw = 1 5 h ' = = 1 ĥh — 1 ĥh — 1 

0.1240-0.1344 0.718(2) 0.954(5) 0.988(6) 1.008(6) 1.326(3) 1.354(3) 

0.1233-0.1344 0.740(2) 0.975(5) 1.010(6) 1.029(6) 1.368(3) 1.395(3) 

0.1222-0.1344 0.775(2) 1.008(6) 1.044(6) 1.062(6) 1.433(3) 1.459(3) 

^charm"0.1344 1.003(28) 1.039(33) L057(32) 1.055(31) 1.442(57) 

0.1240-0.1346 0.710(2) 0.934(6) 0.972(7) 0.992(7) 1.318(4) 1.347(4) 

0.1233-0.1346 0.733(2) 0.956(6) 0.994(7) 1.013(7) 1.360(4) 1.388(3) 

0.1222-0.1346 0.767(2) 0.989(6) 1.028(7) 1.046(7) 1.425(3) 1.452(3) 

ĉharm'O-1346 0.984(28) 1.023(34) 1.041(33) 1.416(57) 1.442(57) 

0.1240-0.1351 0.691(3) 0.878(10) 0.929(13) 0.945(10) 1.297(4) 1.329(5) 

0.1233-0.1351 0.714(3) 0.900(10) 0.951(13) (1966(10) 1.339(5) 1.3710(5) 

0.1222-0.1351 0.748(3) 0.934(10) 0.984(14) 0.998(10) 1.404(5) 1.4341(5) 

ĉharm'O' 1351 0.928(27) 0.979(39) 0.993(34) 1395(58) 1.425(58) 

0.1240-0.1353 0.683(3) 0.854(13) 0.903(17) 0.915(12) 1.287(5) 1.322(6) 

0.1233-0.1353 0.706(3) 0.876(13) 0.923(17) (1935(12) 1.330(5) 1.363(6) 

0.1222-0.1353 0.740(3) 0.910(13) 0.956(18) 0.967(12) 1.395(6) 1.427(6) 

'̂ charm'0.1353 0.904(28) 0.951(43) 0.962(34) 1.385(58) 1.418(58) 

Table 3.3: Double and single-heavy baryon masses in lattice units, together 
with pseudoscalar masses. The fit intervals are [16—28] for double and [15—25] 
for single-heavy baryons. 
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K,=0.1346 

° K,=0.1351 
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Figure 3.5: Spin-1/2 double-heavy baryon masses for all n combinations. 
For each k; we fit the heavy quark mass dependence using the heavy-strange 
pseudoscalar meson mass. The fit function is given in equation (3.14). The 
vertical dashed line indicates the Dg meson mass (in lattice units) used to fix 
the masses of the ccl spin-1/2 baryons. 
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Figure 3.6: Spin-1/2 double charm state masses as a function of the square 
of the light pseudoscalar masses. The values at strange and up/down masses 
are shown. 

# mp = for 

# TTif — for TTlcau; 

# mp == 771̂ ,, for 

where = 2m^ — I n the second case, we suppose that 5'[/(3) breaking terms 

are neghgible and obtain onr estimate from states containing two mass-degenerate 

light quarks [53,68]. 

3.4 Results and discussion 

Here we collect our final values for the double-charm baryon masses. 

Sec = 3549(13)(19)(92) MeV = 3663(11)(17)(95) MeV 
= 3641 (18) (8) (95) MeV % = 3734(14) (8) (97) MeV 

(3.16) 

The first error is statistical. The second error is systematic, estimated by combining 

in quadrature the effects of the following variations in our analysis: 
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e changing the time 6t-ranges — this contributes up to 35% of the quoted error; 

* using single or double exponential 6ts — we saw no change in our lowest state 

masses; 

e linear versus quadratic chiral extrapolations — in the worst case this gives 

three-quarters of the quoted error; 

® interchanging the order of light quark extrapolations and charm quark inter-

polation — this produces no change in our results. 

Only one volume and lattice spacing was studied; investigation of discretization 

errors, the continuum limit and finite volume effects are not addressed. One can 

then consider the remaining discrepancy between any experimental value and its 

simulated counterpart due to these as well aa quenching effects. One idea is to try 

to estimate this systematic error by setting one of these simulated masses to the 

experimental mass and rescale the others by the same amount. The third quoted 

error is obtained in this manner using the experimental Ac mass. 

The See mass is in good agreement with the experimental value [26] 

(Sec)expt = 3519 ± 1 ± 5 MeV (3.17) 

Other masses are consistent with the lattice estimates using NRQCD [52] or D234 [51] 

actions [tab. 3.4]. For recent estimates in quark models or QCD Sum Rules we refer 

the reader to [47] and [45] respectively. For completeness, our estimates for the sin-

gle charm baryon masses are given in tab. 3.5 along with the experimental results. 

Values turn out to be compatible with previous lattice calculations [52,53,59]. It 

may be noted that in ref. [59], a perturbative value for the coefficient Csw was used 

in the clover action. 

We now turn to the baryon and meson spin-splittings. Our results for these are 

given in tab. 3.6. The values are obtained either from the difference in individually 

fitted masses (labelled "Diff" in the table), or by directly fitting a ratio of correlators 
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This work [MeV] D234 [51] [MeV] NRQCD [52] [MeV] 

3549(13) (19) (92) 3595(12)^%) 3588(66)Q2) 

3663(11)(17)(95) 3727(9) (16) 3698(60)^*) 

87(13)(13)(2) 83(8) (fo) 70(11)(;) 

% - n c c 67(9) (13) (2) 72(5)(3) 63(7)(|) 

Table 3.4: Our estimates for the double charm baryon masses and splittings 
compared to previous calculations for the available cases. The splittings in 
this table from our work are from the ratio method described in this section. 
The numbers from the other two works are taken from their simulations at 
/3 = 2.3 (for a different gauge action). 

This work [MeV] Expt [MeV] 

Ac 2227(50) (57) (58) 2285(1) 

'c 2374(34) (23) (61) 2469(1) 

2377(38) (84) (62) 2452(1) 

"c 2502(26)(40) (65) 2575(3) 

2627(16) (48) (68) 2698(3) 

2396(42)(122)(62) 2518(2) 
c * 2532(31)(62)(66) 2646(2) 

2669(21)(26)(70) 

Table 3.5: Our estimates for the single charm baryon masses compared to 
experimental values. 
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Dig [MeV] Ratio [MeV] Expt [MeV] 

"cc ^cc 89(15) 87(13)(13)(2) 

— ^cc 69(10) 67(9)(13)(2) 

— Sc 18(51) 49(39)(12)(1) 66(2) 

"c 30(33) 47(27)(4)(1) 71(3) 

— Qc 43(17) 44(16)(15)(1) 

D* - D 127(14)(1)(3) 142(2) 

D; - A 123(11)(1)(3) 138(2) 

Table 3.6: Our results for the single- and double-charm mass splittings. 

(labelled "Ratio" in the table). When using the ratio the noise starts to dominate 

earlier so we restrict our fit to a shorter time-slice window. For the baryons we find a 

better signal using the ratio method and the difference between the two approaches 

becomes more apparent as we move away from our region of simulation to lighter 

quarks. We use the numbers from the ratio as our best estimates. 

For the double-charm baryons we observe a good signal for non-zero splittings. 

For the single-charm baryons, where experimental data is available, our results are 

compatible. This distinguishes our results from earlier ones using a less-improved 

clover action [59]. Our values are also compatible with those found using the 

D234 [51] or NRQCD [52] actions. For the mesons too our results are compati-

ble with experiment: this improved agreement is also found in other recent non-

perturbatively improved clover simulations [56,57]. This may suggest that the sup-

pression of the spin-splittings observed in earliers works is more of a lattice discreti-

sation artefact than anything else. 

The predictions are more precise for (Q*,Qc) and the double charm spin dou-

blets ( % , Occ) and where less extrapolation is needed, but experimental 

numbers are still awaited. 
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3.5 Conclusion 

Exploratory quenched lattice results are reported for double charm baryon masses. 

The calculation is done with non-perturbatively 0(o)-improved Wilson fermions at 

= 6.2 and on a large lattice. Good signals for the positive parity ground states are 

observed without any smearing. In addition, we have reported the masses of single 

charm baryons. We also see a deEnite signal for non-zero baryon and meson spin 

splittings and do not observe any suppression of the splittings and taking other works 

together, we conclude that the previously observed suppression was a discretisation 

artefact. The calculated masses and splittings look quite reasonable and, where 

available, agree with experiment and other simulations. 

Finer lattice spacing, examination of chiral logarithms in the light extrapolations 

and simulations with chiral fermions and dynamical quarks are required for a more 

reliable simulation. 

Meanwhile, experimental observations of the remaining double charmed baryon 

states and, in particular their spin-splittings, would allow the lattice predictions to 

be checked. 
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Chapter 4 

Sea quark effects in 

r/izg za Aoged on (/ig poper; 

J.M. Flynn, F. Mescia and A.S.B. Tariq [UKQCD Collaboration], "Sea quark effects 

in Bk from Nf = 2 clover-improved Wilson fermions", [arXiv:hep-lat/0406013], 

submitted to JHEP, also presented at Lattice 2004 [arXiv:hep-lat/0409075]. 

4.1 Motivation and background 

The Cabibbo-Kobayaahi-Maskawa (CKM) matrix [69,70] gives the rotation between 

the weak and the mass eigenstates. 

— I - (4-1) 
d' ^ \ 1 
s' = K* 
b' J 1 1 14. Vtb 

Though the weak neutral current interactions turn out to be Savour diagonal, the 

weak charged current (with a MK-exchange) comes with factors of these matrix ele-

ments. 

The standard parametrisation of this matrix is given by: 

/ C12C13 512̂ 13 5136 \ 
fcKM = I —512C23 — Ci2523gi3e"̂  C12C23 — 5125235136*"̂  523Ci3 j , (4.2) 

\ 512 523 — Ci2C235i3e"̂  —523̂ 12 — 5126238136"̂  C23C13 / 

where Qj = cosO.j and = sin% (z, j = 1,2,3). Since 813 and 523 are 0(10"^) and 

0(10'^), respectively it is convenient to choose 512 = 513 = jVubj, 523 = |%*| 

and as the four independent parameters. 
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The CKM matrix elements have a hierarchy in the values with 1%,̂ ! and |V^| 

being of order 0.2, the elements, and \Vts\ of order 4-10"^ whereas \Vub\ and \Vtd\ 

are of order 5 • 10"^. This is used in the Wolfenstein parametrisation [71] to expand 

the elements in terms of a power series in the small parameter A = 0 22, 

y = - A 1 - f , (4.3) 
\ AX^ {1 ~ p — iri) —AX'^ 1 / 

The free parameters now are (A, .4, /), ?;). It may be noted that this is an approximate 

parametrisation, and the C(A'̂ ) terms may differ, according to the definitions of the 

parameters. But this has been put into an exact form by defining them through 

[72,73] 

•Si2 = A, S23 = AX'^, Si^e = AX^(p — it]) (4.4) 

through all orders in A. These leaves us with a simple recipe to expand any CKM 

matrix element in a consistent manner up to any power of A. Including O(A^) and 

O(A^) terms we find 

1 — — Â̂  A + C(A^) AX^i^p — if]) 
y = ( —A + ^A^A [̂l — 2(p + 27))] 1 — Â̂  — §A^(1 4- 4A^) AA^ + O(A^) 

/1A^(1 —p —%̂ ) —AÂ  + &AA'̂ [1 —2(p + 2?7)] 1 —W^A^ 

where, 

- A - A 
P = 77 = 7 7 1 2 y ' ' ' \ 2 

The unitarity of the matrix leads to six relations of the type 

Vu^Kt + + VuVtl = 0. (4.7) 

These can be expressed in the form of triangle in the complex (p, ^) plane [fig. 4.1] 

with a normalisation by 1/%%!%̂  to make the base of unit length. The vectors should 

meet up in a triangle for unitarity to be fulfilled. To look for physics beyond the 

standard model, one approach has been to over-constrain these triangles in search 

for any sign of non-unitarity. 
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A=(p,il) 

p-tiil 

C=(0,0) B=(1,0) 

Figure 4.1: Unitarity triangle. 

One of these constraints [fig. 4.2] comes from the indirect CP-violation parameter 

Ek occuring in the mixing of neutral kaons. Bk parametrises the non-perturbative 

matrix element in Ek- Experimentally, Ek is very accurately determined, with 

6^^ = 2.280(13) X (PDG). (4.8) 

Ek is related to the unitarity triangle parameters f] and p [71] through the relation 

[75] as quoted in [76] 

6K = [1.11(5). A " ( l - ^ ) +0.31(5)] (4.9) 

giving a hyperbola in the (p, fj) plane. Here Bk is the renormalisation group in-

variant (RGI) definition of Bk which will be related to other scheme- and scale-

dependent definitions later in this chapter. 

Pinning down the value of Bk has not been an easy process. In fact, if we look 

at the evolution of the constraints over the last years in fig. 4.3 it is noticeable that 

there has been almost no progress in the Ek direction in the last few years partly 

due to lack of progress in determining a better value of In fact, this is one of 

the areas of major uncertainty in CKM inputs. 

The value of Bk used in present CKM fits is usually 0.86 ± 0.06 ± 0.14 and 

since the accuracy here is not even 20%, despite the 0.5% experimental precision, 
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Figure 4.2: Different constraints on the unitarity triangle. [Figure from [74] 
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Figure 4.3: Evolution of the unitarity triangle constraints. Noticeably in 
the last interval there has been no progress in the ek direction, partly owing 
to the lack of a better determination of Bk- [Figure from [74]] 
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Table 4.1: Some previous lattice calculations of NP refers to non-
perturbative renormalisation. Only the last number is unquenched. 

Bk Fermion Ren 
MS, 2 GeV Action (GeV) 

Kilcup oL(1997) [77] 0.62(2)(2) Staggered Pert oo 

JLQCD (1997) [78] 0.63(4) Staggered Pert oo 

SPQcdR (2002) [79] 0.66(7) Clover NP oo 

JLQCD (1999) [80] 0.69(7) Wilson NP oo 

CP-PACS (2001) [81] 0.57(1) DW Pert 1.8,2.8 

RBC (2002) [82] 0.53(1) DW NP 1.9 

MILC (2003) [83] 0.55(7) Overlap Pert oo 

Garron aZ.(2003) [84] 0.63(6)(1) Overlap NP 2.1 
ALPHA (2003) [85̂  0.66(6)(2) Tw Mass NP 2.1 

RBC (2003) [86] 0.50(2) Dyn D W NP 1.8 

the constraints from Ck on the unitarity triangle are not very stringent. This has 

resulted in a great deal of activity in the lattice community to re6ne the calculation. 

There is a relatively long history of Bk calculations in different frameworks. A 

more comprehensive summary can be found in [87,88]. It is noticeable that numbers 

from other methods e.p. l a r g e - s u m rules and quark models are dispersed over a 

relatively wide range. Here it should be stressed, however, that the only rigorous way 

to reach a numerical estimate from first principles is through lattice calculations. 

Some of the recent lattice calculations are listed in table 4.1. Over the years the 

quenched lattice value of Bk has more or less settled down. The 1997 quenched 

value of BAr(MS,2GeV) = 0.63(4), corresponding to = 0.86(6), using stag-

gered fermions [78] remains the benchmark and is the value usually quoted for 

phenomenology. Other quenched numbers are more or less consistent with this. 

The additional systematic error has been estimated by taking into account possible 

eEects of unquenching (15%) and SU(3)/ breaking (5%), and for phenomenology the 

general practice is to take a conservative viewpoint and add these two in quadrature 
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making the value % = 0.86(6)(14) [87,89]. A more aggressive estimate makes it 

= 0.86(6)(6), but as already mentioned, the Hrst one is the one used for most of 

phenomenology. Unquenching, therefore remains the primary systematic effect to 

be addressed. 

Now let us come to what we know about unquenching eHects. There have been 

a few quenched studies that have additionally performed Nf = 2 calculations for 

somewhat heavy sea quark masses. These works, e.p. [76,90-95] using Wilson or 

staggered fermions, in general 6nd the unquenched numbers to be consistent with 

the quenched ones. Intriguingly it was noted in the LAT95 review that, though the 

unquenched numbers are always within the errors of the quenched ones, they are 

systematically lower [96]. This statement is valid for works subsequent to [96] aa 

well. 

There has been one preliminary report of an unquenched calculation using Do-

main Wall (DW) fermions from the RBC collaboration [86] where they have a few 

sea quark masses allowing an extrapolation to lighter sea quarks. Though the central 

values for from DW fermions have often been on the lower side, the unquenched 

DW preliminary number is really at the lower end of the spectrum [table 4.1]. 

However, one of the above works [91] also includes a simulation with TV/ = 4 and 

6nds the values there to be higher. Their TVy = 2 value, as stated before, is lower 

but consistent within errors with Nf = 0, but then they interpolate to iVj = 3 and 

suggest that the unquenched number should be greater by 5%. In most present day 

reviews, the accepted statement one Ends about unquenching effects originates from 

[89] adding on the estimated 15% unquenching and 5% SU(3) breaking uncertainty 

onto this 5% increase, giving a factor of 1.05(15)(5). Despite the large errors, this 

has led to the lore that the unquenched number should be higher. 

In this situation, it is difficult to reach an unambiguous conclusion on the true 

effect of dynamical fermions on this quantity and even questions such as whether 

unquenching will change the value, and if so, in which direction, are still to be 

answered. 
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It is well-understood that doing a dynamical simulation on a large set of param-

eters with increasingly light quarks and a well-controlled chiral extrapolation is not 

easy and will require a much greater eflbrt to make a robust quantitative estimate. 

But, given the level of our present understanding of the situation (or rather, the 

lack of it), there is room for a study aiming to make even some qualitative remark 

on what to expect from dynamical quarks. 

In this spirit, the calculation reported in this chapter is undertaken as an inter-

mediate step towards a complete unquenched evaluation of In the near future 

one might hope to perform detailed studies over lighter and larger samples of sea 

quark masses at different lattice spacings in order to make the continuum extrapo-

lation. In the meantime, exploratory studies may help as a guide to those regions 

of parameter space accessible today. 

Keeping this in mind we may now proceed to set up our calculation, starting 

again from the indirect CP violation problem in mixing. 

4.2 Theoretical setup 

Within the standard model, the box diagrams in fig. 4.4 provide leading order contri-

butions to CP-violation from flavour mixing in the neutral kaon sector. Integrating 

out the degrees of freedom above the charm mass in the part of the electroweak 

Hamiltonian responsible for these diagrams, we get the AS" = 2 effective weak 

Hamiltonian. 

- t / a 5 = 2 (4.10) 

X [Ac7yi6'o(a;c) + /\(7?2'5'o(a;t) + 2 A c A t % 5 ' o ( : r c , a ; t ) ] 

x a, W) (/̂ ) 
-70/2 A 

1 + 

= C"(a!a(/̂ )) ai"'' (^) 

47r 
Q^^=^(//)-|-h.c. 

2̂ 0 1 + 
a. W) (At) 

47r 
J(My) 
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Figure 4.4: Box diagrams contributing to mixing in the Standard 
Model. 

Here "yo = 4 and ;8o = (11 — 2M/)/3 are the scheme-independent leading order 

anomalous dimension and beta function respectively, is the strong coupling 

while J(n/) is a scheme-dependent NLO renormalisation coefhcient, being the 

number of active flavours. In this expression, A, = V*gVid comes from the CKM 

matrix elements, while the S"s are the perturbatively calculated Inami-Lim coeffi-

cients [97] for contributions from the cases with charm, top and charm-top in the 

loop with Xi = ml/rn^. The ?y terms are short-distance QCD corrections. C(a!g(//)) 

embodies the constants and all that can be calculated perturbatively, leaving the 

operator as the focus of our attention. Notice that now we have a local 

four quark operator [fig. 5.2]. In the last line the renormalisation group running 

has been factored out. This is useful for the renormalisation group invariant (RGI) 

definition of Bk and will be explained in somewhat greater detail later. 

For the expectation value of oscillations between the neutral kaon states for this 

Hamiltonian, we have 

(jiro I 9^^=^ I 
_JID_ 2̂ 0 

x ( : ^ I I 

1 + 
47r 

(4.11) 
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W W \ . 

V W V v 

Figure 4.5: An operator product expansion reduces the box diagram to one 
with an effective four-quark interaction. 

with our operator of interest 

75)c(] - 75)(̂ ] (4.12) 

So, it all boils down to calculating 

(7^0 I - 3̂ 5)0;] - 1̂ 5)0;] I (4.13) 

The soft gluon exchanges shown in fig. 4.6 make the calculation of this matrix 

element non-perturbative and naturally leads one to a lattice calculation of 

Now, we may proceed to define Bk- In the Vacuum Saturation Approximation 

(VSA), ie . when instead of inserting a complete set of states, one considers inserting 

the vacuum alone to be sufBcient, one gets 

= ( :^ |87 / l -75 )c ( | 0><0 |g7Xl -75 )c ( | ;< : ° ) (4 .14 ) 

8 .g 2 

where is the kaon decay constant deGned by (0|g''y,^'y5(f|K°(p)) = i/xP/f is 

the correction factor for this value and is then defined as 

(/f» I I K") = I j W k B k M . (4.15) 
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OOOOf 

Figure 4.6: In QCD the leading order diagram is not the simple box diagram 
(top), rather there are soft gluon interactions all over the place (bottom) to 
make the process non-perturbative. 

Therefore, we end up with 

x ( : ^ I I 

__2£L 2̂ 0 

2̂ 0 

1 + 
47r 

(4.16) 

Bji is the renormalisation group invariant quantity, whereas Bk has a scheme de-

pendence and 

Bk = 

_J1L 2̂ 0 
1 + 

An 
(4.17) 

where n/ is the number of active Savours at the relevant scale, and % ,00 have 

the scheme independent values of 4 and 11 — 2n//3. The first factor is related to 
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the scale-dependence while the second one has both scale- and scheme-dependence, 

with J being the explicitly scheme-dependent factor. We use the MS scheme for 

which J is calculated to NLO in [98] and can be written in a concise form as 

To go from MS at 2 GeV to the RGI value we note that there are four active 

flavours and = 1.792. The remaining choice to be made is for the strong 

coupling. In our case we take the PDG expression for running of the strong coupling 

to two loops and starting from the PDG value of = 216 MeV^ [66], we match 

the value of the strong coupling at the charm threshold and then run it down to 2 

GeV. Thus, we obtain = 1.404^^^(MS, 2 GeV). In this running, one may ask 

what value of n/ should be used for A q c d - In our case, though we have my = 2 in 

the simulations, once we have our estimate of ^^'(MS, 2 GeV) we consider this to 

be a measure of the true 2 GeV) for the physical number of flavours and 

proceed with the remaining matching likewise. Here, it is relevant to note that the 

flnal matching factor is rather insensitive to the value of n / [99] and therefore the 

effect of any ambiguity in the value of n/ should not a be a cause for concern. 

With all the peripheral machinery set up, we can now concentrate on how to 

calculate our matrix element of interest 

I - 75)c(] - 75)4 I 

on the lattice. 

4.3 Calculation of the 3-pt function for 7̂ ^ — 
oscillations on the lattice 

The standard procedure for calculating our matrix element is spelt out in [100]. We 

study 

(O|J^(i/)04,(z)Jj<:o(z)|O) (4.19) 

^This is the PDG(2002) value. The recently appeared PDG(2004) [27] quote Aq^d to be 217 
MeV. 
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Figure 4.7: 3-pt function evaluated in a calculation of Bk- Typically the 
4-quark operator is at the origin and one of the kaon sources is fixed. 

with the kaon source, the four-quark operator and the the anti-kaon source (essen-

tially a kaon annihilation operator - hermitian conjugate of the kaon source) at 

three diEerent points, hence a 3-pt function. Since, our quark propagators have 

one end fixed at the origin, it is convenient to put the four-quark operator at the 

origin. For the kaon sources, we take one of them at negative time and the other 

at positive time and therefore we actually have a system where a kaon is created at 

a point, then it propagates to the origin, it is converted to an anti-kaon and then 

that propagates for a while and is eventually annihilated. This gives us the 

of eight diagram of fig. 4.7. 

The kaon interpolating operators can be of the pseudoscalar or axial vector 

type; we use pseudoscalars and denote the sources as J5 and use P for a generic 

pseudoscalar meson (vr, A' etc.). They can also be local or smeared. It is also 

possible to inject some discrete momenta in the kaon sources, something that we 

will find useful. 

In practice, ty is kept fixed at a particular value, while is varied over the full 

temporal range of the lattice. For the momentum configurations, we have chosen 

= {(0,0,0) , (0 ,0 ,0)} ,{(0,0 ,0) , (1 ,0 ,0)} and { (1 ,0 ,0) , (0 ,0 ,0)} where the 

average over equivalent configurations is understood. It may be noted this momen-

tum is added by weighting the sum over spatial sites 2c with factors of exp(ip -1) 

whereas an unweighted sum isolates the zero-momentum ground state. With all 
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Figure 4.8: Ratio of lattice correlation functions used to calculate Bk-

these ingredients the 3-pt function is given by 

To cancel the exponentials and the normalisation factor at the ends, this is 

divided by two 2-pt functions [fig. 4.8] of the form 

CS, ( i ;pJ = 5 3 { / . ( f , t ) J j ( 0 , 0 ) > e » - ' (4.21) 
a; 

The labels for the interpolating operators in the 2-pt function are kept generic to 

cater for the possibility of pseudoscalar-axial current operators. 

4.3.1 T h e opera to r 

In the continuum, the operator of interest in eq. (4.15) is 

Q^^=^(//) = (//) = (4-22) 

which is the parity conserving part of Q(/i) in eq. (4.12). For Wilson fermions, the 

Wilson term in the fermion action explicitly breaks chiral symmetry leading to an 

extra mixing with other dimension-6 operators. Therefore one has to work with a 

complete basis of operators and subtract contributions from the extra ones. One 
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such set is 

02 W = g7,iC(g'y (̂f-g'Y '̂y5(is'y '̂-X5(f 

03 (^) = gcfsii + a'yscfg'ysd (4.23) 

Q4(,u) = gcfsff-s'YsC^g'Yscf 

05 (/̂ ) — SGy^i/d S<7ni/d, 

For simulation, we use the simpler basis of 

Qy(//) = 

Q^(/^) = s?,;75c(a7,;75c( 

Qs(/^) = sdsd (4.24) 

Qf(//) = s'ysds'yscf 

0T(/^) — sc^i/dj 

which is related to our renormalisation basis introduced in the previous section 

through a simple rotation. 

Qi = Qv + 

02 = Qy — 

03 = Qa — (4.25) 

04 = Qg + Qf 

05 = 0T. 

Once the simulations are complete we can rotate back to our renormalisation basis 

where we now have contributions from Qi {i = 2, 3, 4, 5) mixing with contributions 

from Qi. Together with the overall multiplicative renormalisation, the subtraction 

of the unwanted operators may be expressed in a compact form aa 

(q ' '" + ^ A,(sg)Ql"'j . (4.26) 
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The renormalisation coefficients Z and A, have been determined perturbatively 

for MS-NDR in [101,102] and the expressions relevant to our calculation are given 

in appendix B . Once the renormalisation and subtraction of eq. (4.26) is carried 

through, we have the matrix element for our desired operator in eq. (4.12). 

4.3.2 Cont rac t ions 

Let us start now by writing out our 3-pt function in its full glory. We will be using 

pseudoscalar kaon sources J5 = at a; and ?/ and for the operator dri5(fr2g at 

the origin, where the suffixes on the F are just to identify separate contractions and 

do not imply that the 'y-matrices are different. In fact, for our simulations they refer 

to the operators in eq. (4.24). This leads to 

= ^(42/)75a(^)40)rig(0)c((0)r2g(0)J(a;)'-y5g(a;)). (4.27) 

The correlators in eq. (4.20) have two independent Wick contractions, 

= 2^[lY[%(0,a;)755'X2;,0)ri]'Dr[&(0,?/)75^X3/,0)r2] 

- Ih- [Sd(0, :c) 75 0)ri ?/) 75 0) Tg] ] (4.28) 

the capitalised Tr indicates that it is over both the colour and Dirac indices. Since, 

the propagators in the simulation are of the form 5'(z, 0), i e . outgoing from origin, 

one may use the 75-conjugation 5'(0, z) = 755'^(z, 0)75 along with 7575 = 1 to obtain 

C,(")((„(,;//) = 2^[TY[gt(3; ,0)^X:r ,0)r i75lTr[^j(2 / ,0)^X!/ ,0)r275 

- lY 0) o)ri 75.91(2/, 0) ^,(2/, 0) r2 75]] . (4.29) 

We notice objects of the form 5'^(z, 0)5(2,0) occurring repeatedly. For conciseness 

of notation and convenience in coding, let us introduce the following matrices, 

K > . ) = E 0 ) ^ ( ^ , 0 ) ) J . (4.30) 
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This reduces the 3-pt function to 

(4.31) 

With this, we are now ready for the simulation, with eqs. (4.30) and (4.31) 

spelling out the basic building blocks for the code. But before we proceed let us 

look at the energy (four-momentum) dependence of the matrix elements and set out 

the methods of analysis. 

4.4 Mass /momentum dependence of the matrix 
elements and methods of analysis 

For fermion implementations which (nearly) respect chiral symmetry, e.g. in [77, 

82,84], the chiral behaviour is not modihed by lattice artefacts and B;^(//) can be 

obtained from matrix elements of kaons at rest. But for Wilson fermions as, for ex-

ample, in [76, 90], lattice artefacts introduce chiral symmetry breaking contributions 

to Bk in the chiral limit. In our case, even though we use a clover-improved ac-

tion, four-fermion operators are unimproved and 0(o) artefacts may be present. To 

partially remove them at Enite lattice spacing another degree of freedom is required 

and this requires the introduction of non-zero momentum kaons. 

Keeping this in mind, let us now consider matrix elements with non-vanishing 

external momenta, generic pseudoscalar mesons and in the presence of extra lattice 

artefacts that arise for non-chiral fermions. On the lattice, the chiral behaviour of 

the matrix element in such cases can be parametrised aa [89] 

(-P°,p|Q(/^)|f°,9) = + (4.32) 

+(p - g) (? + Y + (c + €')m^ + (( 4- (')(P ' ?)) 4 

where all the quantities are expressed in lattice units and the ellipsis stands for 

higher-order terms in p g and rrzp. All the primed coefficients are lattice artefacts. 
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However, while Y and e' are corrections of 0((z) to the corresponding physical con-

tributions, the parameters a', and 6' are absent in the continuum limit and have 

to be subtracted from the estimate of in eq. (4.15). In particular the a' term 

makes Bk divergent in the chiral limit. The 7 term is the one of interest and Bk is 

determined by 7 to leading order in momentum and mass. 

For our calculation with Wilson fermions, we neglect higher order terms and use 

the following expression for the matrix elements; 

( f ,p |Q(//)|f , g ) = + + (7 + Y)(p' g) (4.33) 

Now, there is more than one way to extract the value of from this. The one 

adopted in most of the early works is to use 2-pt correlators with the axial current 

at the origin in the denominator of the ratio [fig. 4.8]. This leads to a cancellation 

of the factors of and gives directly. However, as we too have ourselves 

noticed, 2-pt correlation functions with an axial current can be noisier than those 

with pseudoscalar currents. 

An alternative procedure, followed by [79,100,103] is where first the following 

ratios are formed. 

% 
(̂ 3/ i P )̂ 

1 (P°,%|Q(/ ,) | f° ,%), (4.34) 

%(0) = (̂2) 

% ( ^ = % ( 0 ) 
' % ) 

^2^2 3 

1 8 r2 
ml Z^Z^3 

-Py), 

(4.35) 

(4.36) 

where is the axial current renormalisation. This, effectively is a change of vari-

ables 

I f ) => % 

mp => % 

P 9 => y. 
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At this stage, instead of eq. (4.33), one may fit the equation 

^3 = 5' + ^'X(O) + (7 + (4.38) 

to obtain estimates for from ^ [79,100,103], by neglecting In fact, the way 

it has been set up here, one may identify Bk with 7 directly. We refer to this as 

Method I. 

One, point of caution identified in this type of fit is that, the parameters with 

tildes are fitted by taking them to be constant. However if we look carefully at the 

transformation between eqs. (4.33) and (4.38) 

we notice the dependence on and /p, both of which may vary signiEcantly over 

the fit-range. Hence the estimates are for effective values of Z-p and f p in our range 

of simulation. In this manner, for a set of different valence quarks on a given sea 

quark mass, this approach gives an estimate of the leading term in an expansion of 

Bk for that set with the kaons not necessarily being at the physical kaon mass but 

at a mass around the simulated region. 

However, ideally we would like to have estimates for Bk not for pseudoscalar 

masses in our simulated region, but for physical kaon masses. Therefore, it is useful 

to have estimates of for each (/(aea, ̂ vai) combination, which will then allow us 

to extrapolate in the quark masses. For this, we follow the approach of [90,101]. 

Let us call the non-zero- and zero-momentum Eg's .R3(^ and %(0) respectively, 

corresponding to X{p) and X(0) defined in eq. 4.34. The two non-zero momenta 

{%,%} = {(0,0,0), (1,0,0)} and {(1,0,0), (0,0,0)}, have been averaged, since they 

are estimates of the same matrix elements in the continuum and indeed numerically 

are found to be very similar. Then we have 

^ 3 ( ^ - ^ 3 ( 0 ) 
— -Bif(/i, /(sea; (4.40) 

(/tgeai/Cyal) X ( ^ - X(0) 

These can then be used in our chiral extrapolations in the sea and valence quarks. 

We refer to this method of analysis as Method II. 
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Table 4.2: The configurations used. Values for lattice spacings are as cal-
culated from the value of the scale, tq, in lattice units from the UKQCD set 
[104,105]. 

Set /5 Csw l^ses, a(fm)[GeV ]̂ No. of configs 
I 5.20 2.0171 0.1350 0.103(2) [1.91(2)] 0.70(1) 100 
II 5.26 1.9497 0.1345 0.104(1) [1.90(2)] 0.78(1) 100 
III 5.29 1.9192 0.1340 0.102(2) [1.94(2)] 0.83(1) 80 

Here, it may be noted that, fitting these values to a constant for a given sea 

quark is similar to estimating 7 from a fit of eq. (4.38). Also to be noted is the 

fact that for higher orders of momentum, this expression differs from the correct 

dependence of by a term like [101] [see eq. (4.32)]. We have found the 

coefficient ^ of this term difficult to determine, particularly for our limited set of 

momenta. However, if we were able to make this correction, it would simply change 

our values of Bk within our systematics, leaving our conclusions unchanged. 

4.5 Lattice simulation 

In this work, Bk is calculated using Clover-improved Wilson fermions [18] with 

two degenerate Savours of dynamical quarks on the UKQCD set of unquenched 

configurations listed in table 4.2 The simulations are in the region mp/my > 0.7 

on a volume of 16^ x 32 (mpZ, > 7 ) . In order to look for sea-quark dependence in 

Bk we use three different sea quark masses but a nearly constant lattice spacing. 

Details of the generation of the gauge configurations can be found in [104,105]. To 

have a decorrelated sample, configurations separated by 40/50 trajectory steps are 

used. 

The lattice spacings determined from the Sommer scale, ro, are very similar for 

these sets. It may be noted that, for these configurations, a sea quark dependence of 

the lattice spacing has been noticed. Ideally, perhaps, one would expect the spacing 
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to depend only on the coupling, and it remains an open question as to what is the 

origin of this dependence. There are concerns that the Kgea-dependence of the lattice 

spacing observed in these configurations is due to the proximity to a phase transition 

around a 0.1 fm where there may be large cutoff effects in the dynamical case 

[106-108] and therefore needs to be considered with caution. However, to keep the 

lattice spacing, defined using the scale rg [109], as fixed as possible, a set of values 

of the bare coupling and bare dynamical quark mass have been chosen in [104,105]. 

We take the view that, nevertheless, these sets of configurations do have some 

degree of matching according to a valence-quark-independent definition of an effec-

tive lattice spacing, and thus, unless our physics is completely overwhelmed by any 

nearby phase transition, a combined analysis of the data as a function of Kgea is 

worthwhile. It may be noted that since Bk is dimensionless, the lattice spacing en-

ters through discretisation errors but not via an overall power of a. Moreover, when 

analysing the sea quark maas dependence, we use the variable (amf)^(/(aea,/(8ea) 

which in our case is equivalent to using since our lattice spacing is defined 

through ro and romp = (ro/o) x amf with (ro/o) fixed to a constant for these 

lattices [104,105]. 

Propagators and correlators were calculated using the FermiQCD [54, 55] code. 

Five valence quark propagators at K = 0.1356, 0.1350, 0.1345, 0.1340 and 0.1335 

were generated for each sea quark using the Stabilised Biconjugate Gradient method 

[14]. Smearing was tried, but since it did not give any significant improvement in 

the signal, the results presented here are for the local case (see comments in the 

next section). 

In the 3-pt functions, the operator is fixed at the origin and ty is kept fixed at a 

particular value, while is varied over the full temporal range of the lattice. The 

main reported results are for = 10. We have checked with other neighbouring 

values of but observe no dependence, implying that the ground state is reason-

ably well isolated by this time. For the momentum configurations, we have chosen 

{%,%} = {(0,0,0), (0,0,0)}, {(0,0,0), (1,0,0)} and {(1,0,0) , (0,0,0)} where the 
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average over equivalent conHgurations is understood. 

Fitted ratios for this basis that give us the matrix elements in lattice units, 

Qiatt^ = V, A, S, P,T) are plotted in fig. 4.9. We now need to perform the 

renormalisation and subtraction of eq. (4.26). To go directly to MS at // = 2 GeV, 

we note that in our case (o/i) % 1 and we can naively use standard perturbation 

theory at one-loop. For the coupling there is a range of choices that may lead to 

different numerical values. We use the boosted bare lattice coupling, = 6/P{P), 

where ( f ) is value of the relevant average plaquette and our values are {0.5336, 

0.5399, 0.5424}. For csw we used the tree-level value of 1.0 in eqs. (B.l) and (B.2) in 

appendix B. The perturbative matching coefficients thus obtained are listed in table 

4.3. However, looking at fig. 4.9 one can notice that all the contributions, including 

those from the extra operators, are of comparable order. Hence the subtraction is 

very important and is likely to be sensitive to the subtraction coefficients. A,, (i = 

1, 2, 3,4). Therefore, a non-perturbative determination of the matching coefficients 

would probably have been better. 

Once we have our renormalised (and subtracted) matrix element, we are ready 

to obtain the values of from eqs. (4.38) and (4.40) for our analysis. 

4.6 Analysis and discussion 

The values obtained for BA'(MS,2 GeV) for our sets of masses are tabulated in 

table 4.4. As mentioned before, we refer to the ones quoted from eq. (4.38) follow-

Table 4.3: Perturbative matching coefficients to go from = 1/a) to 
= 2 GeV). 

Set Po Z(2 GeV, ^g) ZA2(pg) ^A3(^g) ZA4(^^) ZA5(^g) 
I 2.162 0.4959 -0.0385 -0.0070 0.0140 0.0140 0.7482 
II 2.113 0.5072 -0.0376 -0.0068 0.0137 0.0137 0.7540 
III 2.091 0.5133 -0.0372 -0.0068 0.0135 0.0135 0.7565 
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Figure 4.9: Fits for lattice matrix elements for the complete set of bare 
operators for a sample of our data (set I, Kvai = 0.1350). Ratios of the 3-pt 
correlators to two 2-pt (PP) correlators are fitted in the interval tx — 22 — 27 
for ty = 10 (see eq. 4.34). Correlators are shown for zero momentum. The 
fitted ones are those of interest (P°|(5j|P°) while the other plateau in the first 
half of the lattice corresponds to the off-shell (P°P°|Qj|0) matrix elements. 
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ing [79,100,103] and from eq. (4.40) following [90,101] as method I and II respec-

tively. 

We have degenerate valence quarks. So, SU(3) breaking eEects due to ^ 

are not accounted for. Rather, our kaon is made up of two quarks around mgjl . 

Moreover, the results in table 4.4 are obtained for local sources. Indeed, we have 

not seen any significant improvement of the signal from smearing. This is not 

unexpected since we have a local operator at the origin and can smear only at the 

the sink, which is usually less effective than source smearing. It may also be due 

to a lack of optimisation of the smearing parameters. However, results were fully 

compatible with those using local operators and we have restricted the presentation 

to the simpler case. 

In fig. 4.10, we plot % ( M S , 2 GeV) from eq. (4.40) as a function of the cor-

responding squared pseudoscalar masses over the complete set of our valence and 

sea quark masses. We observe the points for the lightest valence quarks diverging 

for the different sea quarks. It is known that finite volume effects can obscure the 

chiral behaviour in [110]. The JLQCD collaboration [111] observes finite vol-

ume effects for lighter sea quarks for the same action, but for our parameters they 

have excluded finite volume effects for pseudoscalar meson correlators down to just 

beyond our lightest point in set I. Indeed we find the finite volume correction from 

[110] to be —0.1% for this point. 

Nonetheless, we note that, contrary to the other sets, for set I, the 0{(x) dis-

cretisation error parameters 5 and turn out to have Gnite values of —0.06(2) and 

0.23(8). The effects of these terms are greater at lighter quark masses and we cannot 

be sure that the curvature observed here is due to a t rue chiral behaviour. As can 

be seen from our values of mp/mv, the lightest point of Set I is at a considerably 

lighter mass than all the other points. Therefore, we choose to be cautious and 

exclude it from our analysis. It would be interesting to know if non-perturbative 

renormalisation [112,113], and/or the improvement programme of [114,115] could 

lead to better chiral behaviour. 
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Table 4.4: Simulated values of i?i^(MS,2 GeV). method I refers to a direct 
fit of eq. (4.38); while in method II, eq. (4.40) is used to obtain values for each 

sea,Kval) Combination. {K. 

Method I Method II 
(/3, Kgea) v̂al TMf/my(Kaea, ^val) ^p(^sea) /̂ val) Bx^l^sea) Bxi^sea.^ Kval) 

(5.20, 0.1350) 0.1356 0.62(3) 0.106(5) 0.64(7) 0.41(12) 
0.1350 0.72(2) 0.166(4) 0.57(9) 
0.1345 0.77(1) 0.218(4) 0.63(7) 
0.1340 0.80(1) 0.270(4) 0.66(6) 
0.1335 0.83(1) 0.324(4) 0.69(5) 

(5.26, 0.1345) 0.1356 0.67(2) 0.151(3) 0.69(8) 0.70(16) 
0.1350 0.74(1) 0.206(3) 0.71(10) 
0.1345 0.77(1) 0.255(3) 0.71(8) 
0.1340 0.81(1) 0.306(4) 0.72(7) 
0.1335 0.83(1) 0.359(4) 0.72(6) 

(5.29, 0.1340) 0.1356 0.72(2) 0.170(5) 0.79(4) 0.81(6) 
0.1350 0.77(1) 0.229(5) 0.79(4) 
0.1345 0.80(1) 0.280(5) 0.78(4) 
0.1340 0.83(1) 0.332(6) 0.77(4) 
0.1335 0.85(1) 0.386(6) 0.77(4) 

To look at the divergence of the three sets of data points at light quark masses, 

the data for the full matrix element (jiT" | | (/̂ ) and that of 

/pBf (/i) are plotted against in Ag. (4.11). It is noticeable that the full matrix 

element seems to show a more consistent valence quark dependence for the different 

Rxed sea masses. Looking at /pBf (//), it can be noted that the divergence here is 

no worse than (//) itself. This suggests that, probably is not the source of the 

divergence. However, one notices that the /pBp(/i) curves are going to lower values 

at higher quark mass, implying that, in this data f p decreases with mass, which is 

not the expected behaviour. This may suggest that the truncation of eq. (4.32) to 

eq. (4.33) is leading to non-negligible errors. 

Let us proceed to consider the values from method 1. It is notable that for these 

rather heavy sea quarks these numbers are compatible with quenched estimates. 
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Figure 4.10: Values of S;^(MS,2 GeV) for each (Ksea,«vai) combination 
plotted as a function of the corresponding squared pseudoscalar masses. The 
dashed hnes joining the points are just for a visual guide separating the sets 
with different sea quarks. The filled points joined by a solid line are the 
unitary ones for which Kgea = ^val- The lightest point for Set I (marked by a 
large cross) is excluded from the analysis. 
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Figure 4.11: Plots of (K^ | Q(/i) | K^) = ^fpmpBp{iJ.) and JpBp{ii) 
against arrip. The full matrix element seems to show a more consistent valence 
quark dependence for the different fixed sea masses. 
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Method I 

Linear fit 
Quadratic fit 
Chiral log fit 

0.4 
{airip) 

Figure 4.12: Fit to the data from method 1. The values quoted is from the 
linear extrapolation in sea quark mass, whereas the quadratic and chiral log-
type fits are added for illustration. The extrapolated points at mp = 
(the result from this method) and are also shown. 

This is the reason that previous attempts to unquench for a fixed heavy sea quark 

mass have found it difficult to disentangle the unquenching effects. Since we have 

more than one sea quark mass in our simulation, we can attempt to extrapolate 

these numbers to realistically light sea quarks. We use a linear fit versus the unitary 

pseudoscalar masses (omf)^(/(sea = ^vai) and go to the up/down limit. This gives 

us 

BK(MS, 2 GeV) = 0.49(13), (4.41) 

which corresponds to = 0.69(18). 

In this method we estimate ^ in eq. 4.38. Here, we know the masses of the sea 
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quarks for each set. But, it is reaaonable to aak, what valence quark masses do these 

values of (for the individual sets) correspond to. As mentioned in the previous 

section, the valence quarks are not necessarily such that mp = In fact one 

can note by comparing with the last column of table 4.4 that the values from method 

I are comparable to those obtained in method II for valence quarks in the simulated 

region. Therefore one may think of the extrapolated estimate in method I as one 

of Bk where the sea quarks are realistically light but the valence quarks are in our 

simulated region of masses, z. e. heavier than the physical strange quark. 

A somewhat complementary approach, would be to follow the route of [86] and 

take the unitary points, z.e. the points with /tgea = from method II, for extrap-

olation to the physical kaon mass [Eg. 4.13]. This leads to 

2 GeV) = 0.48(13), (4.42) 

Corresponding to — 0.67(18). Here we have a more reasonable valence mp = 

771^ ,̂ but on the other hand the sea and valence quarks are degenerate and hence 

the sea content is not as light as the up/down quarks. To understand how much 

this may affect us we note that if we take all the quark masses (both valence and 

sea) to light quarks our value of goes down to 0.40(17) and = 0.56(24). 

A combined analysis of valence and sea quarks has been tried for the spectroscopy 

studies in [105,111]. With a larger sample of sea and valence quark masses, this 

would be a possible route to an estimate of Bk at the physical valence and sea 

masses. But, for our data such a fit produces unstable parameters and hence these 

are not reported. 

Owing to the exploratory nature of our analysis and the already large statistical 

errors, a study of systematic errors such as those connected to choices of fit window, 

chiral extrapolation, renormalisation method, the fixed time at one end, the strong 

coupling, Agc^), etc. has not been addressed. 

Even though we recognise that the presence of several artefacts does not allow 

a quantitative estimate of the sea quark dependence, it does seem that dynamical 
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Figure 4.13: Unitary fit of the data. The value quoted is from the linear 
extrapolation in both sea and valence quark masses, whereas the quadratic 
and chiral log-type fits are added to illustrate that, from the available data it 
is not possible to infer any non-linearity. The vertical lines show the position 
where rriK = (the result in this method) and 

74 



Table 4.5: Table reproduced from [96] showing that Nj = 2 numbers are 
systematically lower than the quenched ones. 

Ref. Action BK{Nf=Q) 

[93] Staggered - 1.09(7) 
[92] Staggered - 1.03(5) 
[94] Staggered - 1.06(10) 
[95] Wilson r- 1.08(15) 

quark eSects can be quite gignihcant. There also seem to be indications that, in-

corporating dynamical quarks lowers the value of It is also intriguing to note 

that in recent studies where Bk is taken as a free parameter and fitted using the 

other unitarity triangle constraints, the values obtained are Bk = 0.69(11) [116] and 

Bk = 0.65(10) [117], again lower than the usual quenched lattice value and more in 

line with our numbers. 

Now, we come to the question of how to understand this suggested lowering of 

the value of Bk in the backdrop of the lore since the works of [89,91] that the 

unquenched Bk will probably be higher. First of all, it needs to be kept in mind, 

that this is based only on [91] where they found Bk to get slightly lower for Nf = 2 

and higher for Nf = 4. Then they interpolated to Nf = 3, which is something that 

is probably not beyond question. 

For us, it is not possible to comment on Nf = 3. For Nf = 2 a table is reproduced 

from [96] with the observation that the TVy = 2 numbers are always lower than those 

for Nf = 0. This statement also valid for subsequent works [79,91]. So, now we 

can see that when one has two finite-mass but still heavy sea quarks, Bk starts to 

decrease but is still consistent with the quenched value within errors. This is why 

previous works have failed to see unquenching effects. Even within our simulated 

range, we see the same. But, when the sea quarks can be taken to the maasless 

limit, the value of becomes distinctly lower than the quenched result. 

Putting all the pieces together, including the RBC dynamical DW results [86] 
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and the UT fits with Bk as a free parameter [116,117], there seems to be emerging 

evidence in favour of a lower value value of Bk as indicated in our analysis. 

4.7 Conclusion 

We have presented results for an unquenched calculation of Bk with non-perturbatively 

C(a)-improved Wilson fermions for three sets of sea quarks on relatively small vol-

ume lattices of matched spacing. This allows us to look at the variation of Bk with 

sea quark mass. There is some concern about the robustness of the estimates due to 

various lattice uncertainties. Hence we do not emphasise our final number. Never-

theless, there are indications that dynamical quark eEects are important and lead to 

a lower value of Connections are also made to previous unquenching attempts 

and in new light those works are also understood to be giving similar indications. 
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Chapter 5 

Extracting signals from static 
quarks for the lifetime problem 

In this chapter we report progress in an ongoing calculation of spectator effects in 

A(, lifetime. Correlators with static quarks are known for their noise. Findings are 

presented on possible approaches to extract a signal along with an outlook for the 

future directions of this calculation. 

5.1 Motivation 

The Aft-lifetime problem is usually discussed in terms of the ratio of the lifetimes of 

A;, and Bj. In the Heavy Quark Expansion, making use of the fact that AqcD, 

this ratio can be expressed as [118,119]: 

7'(Ab) ^ 1 , 

A3 
0.98 4 

47r / 
(5.1) 

Here in the last step the leading order QCD value of the 0 ( l / m ^ ) term has been 

used [120]. 

The experimental value [121] [aa cited in [87]] 

T(A6 
'r(Bj) 

= 0.786(34). (5.2) 
expt 
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Figure 5.1: Non-spectator contributions (left) correspond to 1 —>• 3 particle 
processes, whereas spectator effects come in as 2 —)• 2 body, giving the latter a 
phase space advantage. Non-spectator processes are also two-loop compared 
to the one-loop spectator contributions. 

is significantly lower, pointing to large higher order corrections. This has received 

significant attention as it has so far not been possible to find a theoretical value to 

satisfactorily match the experimental one. 

However, the 0{l/ml) corrections contain spectator contributions {i.e. ones 

where a light spectator quark gets involved) that correspond to 2 —> 2 particle 

processes compared with 1—^3 particle processes for the non-spectator terms, with 

a corresponding enhancement in the phase space. This means that the 0( l /m^) cor-

rections could be larger than simple power counting would suggest. An exploratory 

study [122] for two different pion masses and without chiral extrapolation indi-

cates that the 0{l/ml) spectator contribution is significant, but probably not large 

enough to account for the difference. This expectation is also supported by sum rule 

results [123]. 

An updated theoretical value taking into account calculations 0{ml) contribu-

tions [122,124,125] and a partial estimate of [126] in [127] gives 

T(A62 

theory 
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Figure 5.2: Spectator contributions to the decay width. In the OPE these 
can be written as matrix elements of four-fermion operators with Fj denoting 
some combination of Dirac and colour matrices. 

However, some of the inputs here, particularly the exploratory values of the 0{ml) 

baryonic matrix elements and the 0{ml) contribution, are rather preliminary. 

Keeping the above issues in mind, the aim of this project was to calculate the 

lifetime ratio to order on a large number of configurations and including 

a chiral extrapolation to verify the conclusions of the exploratory study [122]. 

5.2 Theoretical setup 

The formalism for this calculation is spelt out in [120]. Using the optical theorem, 

the inclusive decay width of the Ab can be written as 

1 
r(A6 X) -Im (Ab|T|Ab), (5.4) 

with the transition operator 

(5.5) 

where T denotes time ordering and Zlefr denotes the effective weak Lagrangian, 

renormalised at fj, = rrih. In the Operator Product Expansion this non-local operator 

is expanded in terms of local four-quark operators. 
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Table 5.1: Mesonic S-parameters in previous calculations. 

Ref. B^(m6) gg(m6) 6^(m6) Eg(m(,) 
[124] 
[128] 

1.06(8) 
1.2(2) 

1.01(6) 
0.7(1) 

-0.01(3) 
0.03(2) 

-0.03(2) 
0.04(1) 

For details of (!?(l/mf) terms we refer the reader to [120,125] and proceed straight 

to the terms. 

5.2.1 M a t r i x elements cont r ibu t ing at 0 { l / m l ) 

At next-to-leading order, spectator contributions (oc can be written as [125] 

= 0 . 9 8 - A , p e c 

Agpgc = —0.08(2)1/1 + 0.33(8)1/2 

+0.008(2)B^ - 0.008(2)g^ -h 0.16(4)6^ - 0.16(4)6^. (5.6) 

The mesonic B-parameters are deEned as follows: 

B^(m(,) = 
2 (Bd|67''(l - 75)(f (f7^(l - 75)6|gd) 

B^(m(,) = 
2mg^ 

B^(m6) = 
2 (Bj|6(l - 75)c(cg(l + 75)6|Bd) 

B^(m6) = 
2mgj 

61 (mb) = 
2 - 75) ("(f (̂ 7'"(1 - 75)̂ ^6 

61 (mb) = 
2mBj 

^2(^6) ~ 
2 (gj|6(l - 75) (''o((i(l-k75)t''6|Bj) 

^2(^6) ~ (5.7) 

with the argument referring to the fact that they are renormalised (in the MS 

scheme) at the scale — m;,. Here the Cs are generators of 5'[/(3)c. The values of 

these matrix elements calculated in [122,124,128] are given in table 5.1 

For the baryon, due to heavy quark symmetry relations [120] 

(A(,|6y (1 - 'y5)G((^''(l - 75)6!Ab) = - 2 (A6|5(l — 75)0(41 + 75)6!Ab), 

— 7 5 ) t ° c ? — ^5)t"'b\Ai,) = —2 (A(,|6(l — d{l + 75)^"6|A5) 
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there are only two, rather than four, independent matrix elements. These can be 

taken as 

, \ _ 2 (A6|(xy/"(1 - %) - 'ys) mjAb) 
^2{Tnb) — 72 ;; • 

277lAt 

However, for Wilson fermions, in the absence of explicit chiral symmetry, similar to 

the study, the operators mix with other ones of the same dimension. Therefore, 

again it will be necessary to work with a complete basis of operators and then 

subtract the contributions from the extra ones during tbe renormalisation process. 

The values of the matrix elements of eq. (5.9) from the exploratory study [122] 

at % l.lGeV are 

, , . r -0.31(3) for = 0.52(3) 
i i K ) = I _O.22(4) for am, = 0.74(4), f®'®' 

y , \ r 0.23(2) for = 0.52(3) / c i m 
= I 0.17(2) for am. = 0.74(4). 

The recalculation of these matrix elements in a more rigorous way is the ultimate 

goal of this study. In the process, the mesonic 5-parameters are also to be calculated. 

But the main focus remains these two baryonic matrix elements. This corresponds 

to calculating the so-called crab diagram of fig. 5.3. 

It is a well-recognised fact that using some kind of smearing, or an insertion of 

a wave-function in the operator, can improve the signal by improving the overlap 

with the desired state, while reducing the overlap with the unwanted ones [see, for 

example [129]]. 

Working with ordinary lattice propagators that originate from the origin, for this 

type of 3-pt function calculation, one practically has to put the four-quark operator 

at the origin. Since this operator is local we cannot smear there. Moreover, since 

our heavy quarks are static, they are fixed at the other ends as well. Therefore the 

only smearing that is possible is for the light quarks at points away from the origin. 

These are represented by the wiggly lines in fig. 5.4. 
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Figure 5.3: The baryon 3-pt function that is to be calculated. The double 
lines represent the b quarks and it is drawn straight to indicate that it is static, 
i. e. it propagates only in time. 

0(0,0) 

Figure 5.4: The 3-pt function with smearing. The wiggly lines represent the 
smearing functions and are drawn vertical to emphasise that the smearing is 
only along spatial directions, as opposed to the static quark that propagates 
only in the time direction, hence drawn horizontal. 

82 



Now, we may focus on the heavy quark. It should be noted here that the 6-

quark is too heavy (> l /a ) to simulate on a typical lattice, and therefore is dehned 

in leading order in the Heavy Quark Effective Theory as a static quark with the 

Eichten-Hill action [130]. This is denoted by the horizontal double lines in fig. 5.4. 

On the lattice, the discrete version can be expressed as 

Stl,(^,y,\U]) = ( ^ ' ^ ) [ u l { x - a S ) . . . U l ( y ) \ e { t , - t , ) S ^ , , (5.11) 

\jjQ{x)...U(i{y — aO)] 6{ty — ia;)5x,y 

Here we have both forward propagating quark and backward propagating anti-quark. 

The Dirac structure is such that, in practice it is efficient to initially use just the 

colour matrix formed by the product of links and then pick out by hand the only 

Dirac components that survive. Correlators with static quarks are on the one hand 

computationally much less expensive to compute, but notorious for their noise. The 

following sections describe how different approaches have fared in our attempts of 

calculating our required baryonic correlation functions with a static quark. 

5.3 Approach I: Using an extended propagator 

As opposed to stochastic all-to-all propagators, one of the main restrictions with 

ordinary propagators generated by a inversion is that these have one end 6xed at 

the origin. This does not allow us to use the light propagator from y to y in a simple 

way. One approach is to build an extended or generalised propagator as shown in 

fig. (5.5) which then has one end at the origin. 

Now, for our correlation function let us first introduce the following interpolation 

operators 

= -^a6c(75C')^a^6^(x,^)p(x,z)w(f^(z,^)A(x,y)ao,?/a(y,^) (5-12) 
y,z 

= Ca5a(75C)a^^AXx,y)aa,M^'(y,^)gXx,z)w(^^'^^ 
y,z 
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0(0,0) 

Figure 5.5: The extended propagator is the separated object on the right. 

which can destroy or create the A;, baryon. Here, ^ and A are smearing functions 

and a sum over colour indices is understood. Moreover, the four-fermion operators 

we are interested in are of the form 

o(x) = (6(rgd;) [dlTij-bi) (5.13) 

Substituting these into our correlator 

C3(0,(,^^;^ = ^(0|J^(x,^)0(0)J;y(x,^|0) w i t h t > 0 > ^ (514) 

we get 

x,y,z 
^ p(x, z)w/i(x, y)oa,/i*(x, y)aa'^*(x, z)w 
x,y,z 

(O|6^(z)d^(z)M \̂?/)5^(O)c(^(O)(Z^(O)6^(O)t2 '̂(0(%'(^)^^(^)|O)' 

And after the contractions, this can be expressed in terms of propagators aa 

0^(0,trt)-,-, = E.ices5c(75C')^„(75C)jjrJ|f^J (5.15) 
x,y,z 

^ ^̂ (x, z)66,/i(x, y)aa,/i*(x, y)aa'^'(x, z)5y 
x,y,z 

St{x, 0);^Si(0, x)%S^(y, g);'?'%(0. 0)%. (5.16) 
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x,y 

This may be written in a more compact form by deGning the smeared propagators 

S f ( 0 , x ) J EE 5]S,(0,J)j '9'(5E,z)j 
z 

leading to 

: 6:o6c6a6c(75G)^a('y5C)agr^% Y l A(x, y)aa'/i*(x, y)aa' 
x,y 

0)g^b(0, (0, . 

We may now identify the extended propagator 

E^(y, (; t f l l l = ^ S„(y, S)S'A'(x. w) , , , e , iMO, x ) g S f ( 0 , x ) $ ( 7 , C y 
x,y 

which solves 

y X,y 

So, finally we have 

c , ( 0 , (, i ) „ = y)„„.rgrjf Sj(x, 0)fjS»(x. 0)%g,(y, i; i ) ^ 
x,y 

= g / i ( x , y ) a a , 0)r)^^ 6a6c(75C')^a^;y(y,t; 

Now with the extended propagator E';y(y, the baryon 3-pt correlation func-

tion is written just in terms of propagators coming out from the origin. Once the 

static quark is used the calculation of E^{y, t; t) requires the equivalent of three 

extra inversions and takes three times the memory to store compared to an ordinary 

propagator. 

5.3.1 Smear ing s tudy 

As just stated, the first approach was to calculate the extended propagator. In 

this approach, to extract a signal, the idea was to use smearing as extensively as 

85 



possible. Since we have a local four-quark operator Bxed at the origin, the best that 

is possible, is to smear the light propagators at the baryon sources. 

Initially a smearing study was undertaken mainly on hi meson and hll baryon 

2-pt functions. Though for the actual calculation the static could not be smeared, 

but for the smearing study we did explore that option aa well. Boyle smearing [131] 

was used and typically we had 30 quenched configurations at volume 48 x 24^ and 

P = 6.2 and the light propagator at k = 0.1346. First we tried the combinations: 

e source smeared, sink local 

# sink smeared, source local 

# source and sink both smeared 

It may be mentioned here that when a propagator is inverted, for the local case, 

one uses a delta function source. For source smearing, instead of the delta function, 

one has the smearing function. Whereas, for sink smearing, a local inversion is 

performed and then the smearing function is appended by hand to the sink. 

One subsidiary, but sometimes practically important, consequence of this is that, 

if only sink smeared propagators are needed, one needs to generate and save only 

one set of (local) propagators and the sink smearing can be added while building 

the correlation functions. On the other hand if one needs source smeared and local 

propagators, two sets of inversions are required and this has ramifications on the 

computation time and storage requirements. 

It was observed that source smearing, is more effective than sink smearing, how-

ever, the signal is most improved when both ends are smeared. Though, it was 

known that we can only smear at one end, for the smearing study, to enhance the 

visibility of the effect, we used smearing at both ends. Next, we tried to optimise 

the smearing radius, r. We looked at the cases: 

# r = 1.0 
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Figure 5.6: 30 configurations with (a) both static and hght smeared at both 
ends [figure on left] and (b) a local static and light smeared at both ends 
[figure on right]. The correlators are for (from the top) a hll baryon and a 
hi meson, with a II meson included in one case for reference. The signal is 
evidently much better when the static quark is smeared as well. 

# 

* r = 3.0 

r = 1.0 was worst, with r = 2.0 looking marginally bet ter than r = 3.0. However, 

while there was a definite difference between smearing and not smearing, there did 

not seem to be too much sensitivity to the smearing radius. So, there did not seem 

to be much point in tuning it further and r = 2.0 was chosen for the remaining 

work. Next we tried 

# light smeared, static local 

* static smeared, light local 

# light and static both smeared 

When everything is smeared we can just about see a signal for a few timeslices. 

But, when we remove the smearing on the static the signal gets significantly weaker 
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[Fig. 5.6]. As mentioned before, this was in a sense of academic interest only, as we 

cannot smear the static while the other end is pinned down to the origin. 

In summary, though we were able to see A^-baryon signal, the case in which 

the signal was more or less satisfactory was when both the static and the light 

quarks were smeared at both ends. This could have been alright if we were calcu-

lating baryon masses, but for the additional constraints in a matrix element 3-pt 

calculation, there seemed to be little hope to see a signal. 

5.3.2 Conclusion for this approach 

It was eventually concluded that to complete this calculation in this method requires 

a few thousand gauge conSgurations if not more. Since there are four propagator 

inversions to be performed for each configuration, this makes it a mammoth calcu-

lation, beyond our scope. Therefore, this approach does not seem to be feasible. 

However, if one intends to undertake such a calculation in the future with greater 

computational power at hand, the information extracted above, may be helpful. 

5.4 Approach II: Using static with alternative dis-
cretisation 

The second approach concerns with a recent development reported by the ALPHA 

collaboration [132,133]. They have observed that the signal can be significantly 

enhanced if the usual Eichten-Hill discretisation of the static action 

(5.17) 

-DoV'A(3;) = ^ [V'/,W - - o 6 , - aO)], (5.18) 

is replaced, preserving some of the desired symmetries, by discretisations of the form 

-DoV'/i(3;) = ^ [̂ A(:r) - - oO, 0) i/'/i(a; - aO)], (5.19) 
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Figure 5.7: Improvment in the signal-to-noise ratio using alternative dis-
cretisations of the static action [Figure from [132]]. The filled circles are the 
usual EH [eq. 5.18], open squares are for APE type [eq. 5.21], while the open 
triangles are for HYP type statics [eq. 5.22] 

where 0) is a generalised gauge parallel transporter with the gauge transfor-

mation properties of [/(%, 0). W(x, 0) is a function of the link variables in the neigh-

borhood of X invariant under spatial cubic rotations and with the correct classical 

continuum limit. W can then be taken of the forms: 

g 
5 

M^s(:r,0) - y(3;,0) 

WAPE(a:,0) = y(a;,0), 

0) = l^Yp(3;, 0), 

try^(];, 0 )y (z , 0)^ 
1/2' 

- 1 

(5.20) 

(5.21) 

(5.22) 

where 

y(:r,0) = 
- Z 
6 ^ 

[/(a;,;)[/(a;-Kz_;',0)[/^(a; + aO,;) 

-1- [/^(a; - oj, j)[/(:r - oj, 0)[/(a; + aO - o; , ; ) 

(5.23) 

(5.24) 

Here the so-called HYP-link, Vby-p{x, 0), described further in appendix C is a func-

tion of the gauge links located within a hypercube [134,135]. In the latter case they 

recommend the parameter values ai = 0.75, 0:2 = 0.6, 0:3 = 0.3 [134] [See appendix 

C]. It may be noted that, albeit in a dlEerent context, a covariant derivative of the 

general type used above waa first introduced in [136]. These effectively fatten the 

link and is similar to the fuzzing done on the gauge links in Boyle smearing. Fig. 5.7 
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Figure 5.8: 100 configurations with APE-type fat static (light smeared at 
one end) shows a much better signal for hl-meson (lower set) and /iW-baryon 
(upper set) correlators in comparison with those in fig. (5.6). 

from the ALPHA studies shows how the noise to signal ratio stays low for longer in 

this improved discretisation. 

We have tried the APE and HYP [eqs. (5.21, 5.22)] type fattening and indeed 

do observe a significant improvement of signal. It may be noted here, that this waa 

also the first time that this procedure is used for baryonic correlators. However, for 

our purpose the APE and HYP types give simileir signals. Perhaps, this is due to 

the fact that the difference between the two surfaces only at large times. 

In fig. 5.8, we have the APE-type fat static and the light quark smeared at the 

sink, which is the maximum we can do for the A;, lifetime calculation. Here, though 

there is some fluctuation around the plateau, it seems there really is a signal. 

We did explore a calculation of the matrix element in this approach. Though 

the situation is much better, the signal still gets drowned in noise for up to 100 con-

figurations. Here, the feeling is that maybe with several hundreds of configurations, 

rather than thousands, it will be possible to see something. 
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Figure 5.9: Static baryon 2-pt function signal f rom only one gauge con-
figuration using maximal variance reduced all-to-all propagators [Courtesy: 
C. Michael] 

5.5 Approach III: Using all-to-all propagators 

This brings us to our final approach of using stochastically generated all-to-all prop-

agators. Due to the stochaatic nature, these have more intrinsic noise, but since it 

is now possible to average over all spatial sites, that is a huge gain in statistics that 

more than compensates for the stochastic nature. Furthermore, by using maximal 

variance reduced all-to-all propagators [137] there is a further significant gain in 

signal. So much so, that it is possible to extract a baryon 2-pt signal from only one 

configuration [fig. (5.9)]. 

In this formalism, rather than generating the full propagator matrices it is far 

more efficient to generate the pseudo-fermion fields that can be tied up directly in the 

correlator code. Moreover, initially due to the requirement of a significant number 

of gauge configurations the calculation was intended to be done in the quenched 

approximation. This is due to the fact that, at least when this calculation was 

planned, it waa difficult/expensive to obtain/generate dynamical configuration in 
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sufficient number at suitable volumes. However, when using all-to-all propagators 

one gains a huge amount of statistics by allowing the operator to move over the 

spatial sites and averaging. Not only that, one may even rotate the gauge Belds by 

a few time slices and gain further statistics. This makes it possible to extract an 

otherwise impossible amount of information from even a single gauge conAguration. 

It may even be possible to do the calculation well with less than 100 configuration. 

This makes the prospect of using dynamical configurations much more feasible. 

Again, for the generation of dynamical configurations itself, there is a practical 

new idea that can speed up the equilibration a great deal. That is to equilibrate on 

a smaller volume and then replicate it to get a bigger volume and then proceed some 

more steps [108]. This should make dynamical configurations more easily available 

at a suitable volume. 

5.6 Outlook 

The extended propagator approach to calculating the lifetime appears to be ine&-

cient and not feasible. However, it appears that there seems to be reasonably good 

promise in going through this calculation using these maximal variance reduced all-

to-all propagators. An addition of the new fat static propagators should improve 

the signal further. And to try both of these together is the plan for the future of 

this project. With a few other practical new ideas it may even be possible to do this 

calculation on dynamical configurations. 
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Chapter 6 

Conclusions 

Conclusions for the three studies have been given at the end of the relevant chapters. 

But, to summarise our results: 

In the doublecharm baryon study the expected states, both double- and single-

charm were identiEed with masses consistent with the experimental values where 

available. Spin-splittings were also observed without any noticeable suppression, 

leading to a confirmation of the idea that the suppression observed in some early 

works were due to discretisation errors. Further predictions are provided and hope-

fully now that the first states are experimentally identified there will be further 

experimental verification of the lattice predictions. Overall there seems to be some 

interesting phenomelogy ahead of us in double charm physics. 

In the Bk study, looking at the sea quark mass dependence, it appears that there 

is growing evidence of a significant effect of sea quarks on the value of Bk- Moreover 

the unquenched value seems to be lower than the quenched one. There are concerns 

about lattice artefacts, but taken together with an aggregate account of previous 

works, it seems all the more plausible that unquenching, at least for Nf = 2, will 

lower the value of Bk-

In the last project related to the A^-lifetime, it seems quite evident that the 

extended propagator approach is not eScient. However, there seems to be consider-

able promise in completing the calculation with maximal variance reduced all-to-all 

propagators. The novel techniques of using static propagators by APE or 
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HYP type smearing should also augment the improvement in the signal. With a 

few other developments, it may also be possible to do this calculation on dynamical, 

rather than quenched, configurations. Overall there seem to be exciting days ahead 

for more involved calculations like this one using static quarks. 

It is probably also worth mentioning that the code FermiQCD was found to 

be extremely useful and user-friendly, allowing us to concentrate on the physics 

and write our codes almost directly off our notebooks in a very transparent way. 

The University of Southampton cluster Iridis also seemed reasonably adequate for 

lattice calculations of this level. Though, there is no doubt that gigantic purpose-

built machines are still needed for precision lattice QCD, the wider availability of 

these general-purpose clusters are indeed making lattice calculations much more 

accessible. 

To conclude, some useful results have been obtained in these studies in lattice 

phenomenology and hopefully more rigorous calculations and experimental evidence 

will take these further in our understanding of non-perturbative QCD. 
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Appendix A 

Spin algebra for the baryon states 

For the spin ^ state we have 

= ^(0|4(x,t)J;y(0) |0> (A.1) 

C is the charge conjugation operator 'yo'y2 

C2(̂ )'ŷ  = — ô6cĜ a5g(75C')/3a (75(^)6^ '5'g(a;, 0 ) ^ (A.3) 
X 

x (Sg( l . 0)% Sq(x, 0)« - Sq(x, 0)'fi Sq(x, 0)%' 

For the spin | states 

C2(()% = ^ 0)^^ (A.5) 
X 

x ( S g ( i , 0 ) % S g ( . t , 0 ) ; ; - S e ( x , 0)J» S e ( x , o ) § 
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A . l Symmetry for spin 1/2 baryons 

Let us define the projectors 

P+ = {A.6) 

% = 

= p'Y 

At large time 

= ^ (0 |J^(x ,^ )J ;y (0 ) | 0 )^ (A.7) 
X 

we can exploit the following relation 

C2W00 = (̂ 2(̂ )11 , (̂ 2(̂ )22 = 7̂2(̂ )33 = 0 (A.8) 

for positive-parity states and 

(̂ 2(̂ )00 = (̂ 2(̂ )11 = 0 , (̂ 2(̂ )22 = (̂ 2(̂ )33 (^-9) 

for negative-parity states. 

A.2 Symmetries for spin 3 / 2 baryons 

In the region 0 ^ <#C T the correlation C2(^)]^ 

%(«)% = ^ ( 0 | j ; ( x , « ) J | ( 0 ) | 0 > ^ n (A.10) 
X 

^3/2 ^ ^1/2 
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For spin 1/2 and 3/2+ contributions we have the following relations 

/ol3 ^ //^13 /-il3 /̂ 31 I 

^01 — ^ I(-"01 ^10 ^01 + ^ i o j 

/̂ 12 2 / ^12 I ^12 I ^21 ^21 /-i23 ^23 i ^32 , ^32 \ /A i -i \ 

^11 — g I ^00+^11+^00 ^11 ^01 ^10 + ^ 0 1 + ^10j (A.iiJ 

Coo = g (Coo + Cii + Coo + Cfi + Cgo + C i i ) 
For spin 1/2+ and 3/2" contributions we have the following relations 

/̂ 13 2 /̂ 13 _ ^31 I ^31\ 
^23 — ^1^23 (-'32 (-̂ 23+(-̂ 32;/ 

/̂ 12 ^ / ^12 I ^12 I ^21 /̂ 21 /̂ 23 ^23 , ^32 , ^32\ / A i n\ 
(-̂ 33 — g l"(^22 + ^33 + ^22 " ^33 " ^23 ^ (̂ 32 + ^23 + ^32^ 

r*!! — ^ /'r'li _L _L r'̂ z , r'zz i 
^22 — g 1^22 +^33 +^22 +(^33 +^22 + ^ 3 3 J 

Moreover 

= 1 e-'"!/' * - e-'^s/z 

^23 = g 

(A.14) 

^22 = - ^ ^ + 2 z y ^ 6"""=/̂  

Finally spin 1/2 and spin 3/2 contributions can be isolated through the following 

combinations. 

Co"+>C;j - C = -e-'""='Z'/=' 

C S - l ( i C S - C S ) = - e - " " " ' Z ' ' ^ (A.15) 

c^A + ^cli-cll = 

Cii - \ ( i CM + CM) = -e-™"/.' ZV2 
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Appendix B 

Perturbative renormalisation 
coefficients for 4-quark operators 
relevant to 

We use the perturbative expressions of ref. [101], and combine them with the results 

of [102]. In the MS scheme they read: 

= 1 - ^(41og(o//) + 50.839 - 9.33cgM: - 4.88c^;y) , 
47r 

Z(//,gg). = Q^(0 .767 - 0.795caM^ + 0.272c^^) , (B.l) 

where C2 = -11/12, C3 = - 1 / 6 , C4 = C5 = 1/3. Here the indices refer to operators in 

the basis of eq. (4.23). In the numerical computations, we use the boosted coupling, 

0̂ Po = 6 / ( ^ ( f ) ) 

We can follow the standard pertubation theory, since in our case log(a/i) is small. 

In this case, using /i = 2 GeV, we can directly obtain the renormalisation constants 

for MS at /.t — 2 GeV. Using the one-loop perturbative value of = 1 and the 

average plaquette values of {0.533644, 0.539863, 0.542384} in the boosted coupling 

we get the values in Table 4.3. 

Moreover, is evaluated perturbatively from 

fj2 

= 1 + (15.7963 - 0.2478cg;y - 2.25140^^^). (B.2) 
47r 
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Appendix C 

Hypercubic blocking 

b) 

,4>--

; ;A' 
-6"'' 

Figure C . l : Schematic representation of the hypercubic blocking in three 
dimensions, a) The fat hnk is built from the four double-lined staples, b) 
Each of the double-lined links is built from two staples which extend only in 
the hypercubes attached to the original link. An important point is that the 
links entering the staples are projected onto SU(3). 

[Note: This appendix is taken from [134]] 

The fat links of the hypercubic blocking (HYP) are constructed in three steps. 

At the final level the blocked link is constructed via projected APE blocking 

[138] from a set of decorated links as 

= frOJ,s'[/(3)[(l - -t- ^ 

where is the original thin link and the index %/ in indicates that the fat link 

at location i and direction jj, is not decorated with staples extending in direction u. 
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The decorated links are constructed with a modified projected APE blocking 

from an other set of decorated links, as 

+ — y ] Vi,p;iyiiVi+p,fi;pi^yi+p,^p-ui2 ^ (^-2) 
±p^v,p. 

where the indices pp indicate that the fat Unk Vî n-pi, in direction [i is not decorated 

with staples extending in the p ox u directions. The decorated links Vi^^-py are 

constructed from the original thin links with a modified projected APE blocking 

step 

±ri^p,iy,fi 

Here only the two staples orthogonal to //, z/ and /o are used. With the construction 

eqs. (C.1)-(C.3) the fat link mixes thin links only from hypercubes attached to 

the original link. The hypercubic blocking is schematically represented in figure C.l. 

The parameters ai, 0:2 and CKg can be optimized to achieve the smoothest blocked 

link configuration. The construction eqs. (C.1)-(C.3) can be iterated. 
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^et;. 51 (1983) 1945. 

[72] M. Schmidtler and K. R. Schubert, Experimental constraints on the phase in 
the Cabibbo- Kobayashi-Maskawa matrix, Z. Phys. C53 (1992) 347-354. 

[73] A. J. Buras, M. E. Lautenbacher, and G. Ostermaier, Waiting for the top 
guorA maag, —> Tr"""!/;/; CP m 5 (fecoi/a, 

Aei;. D50 (1994) 3433-3446, [hep-ph/9403384]. 

[74] A. Stocchi, Current o/ (Ae Ĉ iTM mo^na; ond (/le Cf 
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