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by Alexander Sven Schwanecke 

The concept of geometrical chirality has been improved introducing a unit of 
planar chirality and dedicated normalisation factors which facilitate the anal-
ysis of various complex chiral objects. On the basis of these improvements a 
highly efficient Monte Carlo computer algorithm for calculation of the planar 
chirality measure has been developed. 

I have investigated the planar chirality of characteristic planar chiral objects 
such as triangles, gammadions and round gammadions and established the con-
figurations for various parameter fields for which their chirality is maximised. 

For the first time I have explored the aggregated chirality of ensembles of 2, 
3 and more planar chiral structures including their regular grids. The chirality 
of ensembles is found to be a strong function of the mutual positions of the 
individual elements to an extent that the ensemble chirality can change its sign. 
It has furthermore been established that the chirality of regular square grids 
may be nonzero when constituting of achiral objects. 

For the first time I have investigated the chirality and rotational and mirror 
symmetries of difi'raction field patterns and microscopic images created by dif-
ferent enantiomeric forms of various planar chiral structures. I have established 
that the chirality of the diffraction patterns is inherited from the chiral object 
itself while the rotational symmetries are lower than in the underlying design. 

For the first time a geometrical chirality measure has been applied to quan-
tify the geometry of star distributions in 113 nearby galaxies. A quantitative 
parameter has been suggested for classification of galaxies which is based on 
the chirality measure. 
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Definitions and Abbreviations 

Abbreviations 

DP diffraction pattern 
PCS planar chiral structure 

Definitions 

N = {0,1,2,3, . . .} set of natural numbers (including zero); 
Z = , —2, —1,0,1,2,...} set of integer numbers. 

Other 

The bibliography contains the document object identifier (DOI) for many ar-
ticles. In order to retrieve these articles online append the code to the URL 
h t t p : / / d x . d o i . o r g / . 

X 

http://dx.doi.org/


1 Introduction 

The advances in micro- and nano-fabrication of the last decade open a com-

pletely new chapter of photonics. A whole new approach in regard to light 

matter interactions has been made available. The, nowadays also commer-

cial, availability of production facilities for near arbitrarily structured devices 

of dimensions much smaller than the wavelengths of the visible spectrum of 

light allows to design specific material properties. Amongst the possibilities 

are meta-materials with e.g. negative refractivity, a property which has not 

before been found in nature. 

The last years have brought numerous articles on topics like photonic crystals 

and quantum dots and wires focussing on three-dimensional structures or fields 

where the interaction processes are dominated by quantum effects. In between 

lies an area which promises to create miniaturized optical devices with broadly 

tunable features, like nano-mirrors or polarisation converters [Hooper and Sam-

bles, 2002]. The concept of 3D optical activity has long been known in nature 

and found many applications in the various natural sciences. Fabrication tech-

niques, similar to those used for the creation of chips, allow planar structures 

with characteristics resembling the 3D optical activity and its rotation of the 

polarisation azimuth of light. These planar structures have a special symmetry 

property called chirality which is responsible for their behaviour [Papakostas 

et al., 2003]. 

The work by Potts et al. [2004] has resulted into the development of a novel 

measure of this planar chirality which enables to distinguish to which level an 

object exhibits chirality. Its simplicity and scalability equip it with strengths 

that have not been seen in that combination for earlier suggestions of pos-

sible chirality measures. First results allowing to suspect a relation between 

this geometrical property and the polarisation azimuth rotation for light mat-
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Figure 1.1: Several examples of planar chiral structures. 

ter interactions with planar chiral nanostructures have encouraged a thorough 

examination of planar chirality and its prospects for photonics. 

This thesis reviews the idea of the planar chirality measure and discusses 

properties and refinements which have not previously been noted. Most notably 

is the development and discovery of a possible unit for this planar chirality 

which follows directly from the concept of the measure. 

In practical situations the complexity of problems might make the direct 

calculation of the measure impossible within sensible time scales. An approach 

to by-pass this limitation using the Monte Carlo technique is developed and 

discussed in detail. This work has resulted in a programme suite able to provide 

chirality measures for a variety of problems and applications. 

Its capabilities are tested for increasing complexity of various planar chiral 
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designs. These results are particularly intended to complement experimental 

and numerical results gained by other members of the author's group and its 

collaborators. Among the main conclusions is the applicability of nearest-

neighbour considerations for large grids of a single chiral object type. 

Experiments performed on planar chiral nanostructures (PCS) round up the 

picture. It has been found that specific structures display time non-reversal in-

teractions which appear to stem from the particular chiral design. This obser-

vation would constitute the first observation of a time non-reversal interaction 

in nonmagnetic media. Furthermore various peculiarities of the symmetries of 

diffraction patterns of PCS are discussed and linked with the term chirality. 

Finally the planar chirality measure will be applied to the discipline of galaxy 

morphology. Here the Monte Carlo technique proves its strengths and a general 

suggestion to astronomers to consider the measure to judge the spirality of 

galaxies is made. The successful feasibility study results into the availability of 

an analysed catalogue of 113 galaxies ready for inspection by astronomers. 

1.1 Chirality 

The word chiral stems from the Greek word for hand which is the simplest 

example of a chiral object as there exist left and right version (or enantiomers) 

of it. The definition used nowadays goes back to Lord Kelvin and the beginning 

of the last century [Kelvin, 1904]: 

I call any geometrical figure ( . . . ) chiral, and say it has chirality, 

if its image in a plane mirror ( . . . ) cannot be brought to coincide 

with itself.^ 

An intuitive way to communicate what this means can be followed on every 

table: Put your hands on the table next to one another with your palms laying 

on the table top. You will see that your hands (at least in a rough estimation) 

are mirror images of another existing as planar objects on the table top. If 

you try to translate and rotate your hands in this plane, you will see that their 

shapes can never fully coincide. Only lifting one of your hands out of this 

^Citation taken from Le Guennec [2000]. 
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plane and letting the back of this hand face the table allows their complete 

coincidence: Your hands are chiral in the truest sense of the word and you may 

disentangle them now. 

Two objects which are mirror images of one another are called enantiomers. 

The terminology around chirality has largely been coined by the chemistry com-

munity, where various applications of this concept exist on a mostly molecular 

level. It stems from the discovery that objects consisting of the same elements 

in a mirror image configuration can have significantly different chemical proper-

ties. An introduction into the relations of chemistry and chirality has e.g. been 

given by the Nobel laureate Prelog [1976]. Recent publications report of the 

various molecular processes which rely on chirality, including areas like enzyme 

catalysis which opens the connection to biochemistry [de Jong et al., 2004]. 

In biology the concept of chirality allows e.g. to distinguish bacteria which 

share a mirror-symmetric buildup, but differ considerably property-wise. These 

terms have recently even reached public television as advertisement campaigns 

refer to them. Lactic acid e.g. exists in two enantiomeric forms denoted D(—) 

and L(-l-) where latter can much better be broken down by the body and its 

favoured consumption is suggested by health professionals. 

However all these terms have their roots in the concept of optical activity. 

In 1846 Faraday discovered the rotation of the polarisation plane of linear po-

larised light when applying a magnetic field. Two years later Pasteur noted 

the opposite but equal amount of polarisation azimuth rotation by different 

crystals of sodium ammonium tartrate. Finally it took until Lord Kelvin to 

understand the difference between magnetic rotation and natural optical activ-

ity and to introduce the term chirality to describe latter phenomenon [Barron, 

2000^ 

Its mathematically developed concept has stimulated research in various ar-

eas. It is frequently cited in work on bi-anisotropic media where 3D chiral 

objects like e.g. spirals are investigated [Semchenko et al., 1998]. Also vari-

ous configurations of the in recent years much favoured carbon nanotubes are 

chiral. 

The theory of classical electromagnetism still develops to integrate and dis-

cuss interactions with chiral structures, so e.g. the development of the chiral 
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Maxwell-Garnett mixing formula [Shivola and Lindell, 1990]. Other approaches 

particularly by the microwave community use pseudo-chiral materials, e.g. the 

so called f2-materials, to artificially create the coupling of electric and magnetic 

fields known for chiral materials [Saadoun and Engheta, 1992]. 

The development of meta-materials has reached a recent climax with the 

discovery of artificial materials with negative refractive index [Pendry, 2000, 

2003; Pendry and Ramakrishna, 2003]. 

Following several theoretical considerations like those by Hecht and Bar-

ron [1994], Viitanen and Puska [1997] and Zouhdi et al. [1999] last year two 

publications reported of experimental results on planar chiral nanostructures: 

Papakostas et al. [2003] and later Vallius et al. [2003] have demonstrated the 

importance of the concept of planar chirality for nanostructured optical de-

vices and triggered a number of further publications [Potts et al., 2004, 2003; 

Prosvirnin and Zheludev, 2003; Schwanecke et al., 2003; Wright and Zheludev, 

2003]. 

1.2 Planar chirality measure 

The development of chirality measures has occupied various research groups 

[Harris et al., 1999; Le Guennec, 2000; Petitjean, 2003; Zabrodsky and Avnir, 

1995] and often resulted into the need for optimisation techniques to actually 

calculate chirality [Buda et al., 1992; Buda and Mislow, 1992; Petitjean, 1999, 

2002]. Many of these measures use quite complicated approaches and calculate 

minimum distances or overlap areas of single objects with their enantiomers. 

The obvious disadvantage are difficulties for large or infinite structures and 

early limitations for complex structures. An intriguingly different approach 

has been started by Osipov et al. [1998]. The physically motivated construc-

tion brought the concept of describing an object as a superposition of 3-point 

triangles with it. The geometrically simplest chiral configuration is a set of 

three points and the simplicity of this approach results into its potency. 

Latter approach was in the end formulated using physical considerations 

instead of purely mathematical or geometrical ones. Potts et al. [2004] took on 

this next step and while using the underlying concept of Osipov et al. [1998] 
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a) 

Figure 1.2: Potts at al. [2004] describe the chirality of a set of three points (a) 
using the triangle area they define (b). Seen from vertex V the area 
is divided by angular bisection (c). The relative difference of the 
resulting areas in relation to the overall area of the triangle is the 
chiral contribution of vertex V (d). 

redefined the measure to be purely geometrical. This measure finds numerous 

applications and is the main focus of this thesis. Its idea again is to consider a 

single three-point triangle and to associate a certain chirality with it summing 

up the results for all vertices to represent the complete triangle. 

The chirality seen by a single vertex uses angular bisection to divide the 

overall triangle area into two parts. The relative difference between the areas 

to the left and right of the bisection is associated with the chirality, see Fig. 1.2. 

An alternative, simpler definition will be introduced in chapter 2. In further 

steps and using a set of postulates a multiplication with the overall area of the 

triangle and masses in the vertices concludes the calculation: 

The measure of planar chirality is defined by summing over all possible tri-

angle combinations of a discretised object with their vertices being at r^, Vj, rk 

within the a;,y-plane and corresponding masses of mi,mj,mk as [Potts et al., 

2004, Eq. (17)]: 

1 
N N N 

Ul 

i=l j=l k=l 

where Vij = Vj - n , Vik = - n . 

\rik\ 
( n ; X f i t ) (1.1) 

The continuous equivalent of an object described by its density function p{r) 
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is [Potts et al., 2004, Eq. (18)]: 

f / {rij X Tik) d V j d V j dVfc (1.2) 
^ J n Jvj Jvk r u I T" r ifel 

The following chapter will discuss these equations in detail. 



2 Investigation of Planar Chirality 

The concept of a novel measure of planar chirality developed by Potts et al. 

[2004] demands a thorough investigation under the light of its numerous pos-

sible applications. The first part of this chapter is dedicated to point out its 

various properties, redefine parts of it to aid consistency and introduce novel 

additional concepts like a unit of chirality. 

The measure introduces some difficulty for the calculation of large and com-

plex objects as its amount of necessary calculations scales cubically with the 

number of involved masses or objects. It will be shown that the Monte Carlo 

technique allows to consider a considerably increased amount of structures. A 

programme suite using the developed algorithm has been established to tackle 

the various numerical calculational needs that arise for the running projects on 

planar chirality. 

At the example of structures, which are not only abstract but also exist as 

nanostructured samples, the trail of chirality for developing complexity will 

be followed. Apart from data to be used to compare with past and future 

experimental results, techniques to describe the chirality of large arrays will be 

described. 

2.1 General considerations 

The chirality measure proposed by Potts et al. [2004], see Eq. (1.1) and (1.2), 

has been compared in great detail to other measures and successfully applied to 

create a link to polarisation azimuth rotation of light by planar chiral nanostruc-

tures [Papakostas et al., 2003]. Yet there are still various matters concerning 

the significance of the involved parameters and their way of implementation to 

be considered—particularly in relation to application and the measuring pro-
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cess itself. The following sections will be dedicated to this discussion and offer 

new suggestions as well as an improved understanding. 

2.1.1 Definition 

The planar chirality index or measure^ has originally been motivated by a 

relative comparison of the areas when dividing a triangle by angular bisection. 

This introduction of the measure is consistent with the discussion of the other 

examples of possible triangle divisions and the comparison of the involved areas 

within the article by Potts et al. [2004]. However it can be introduced even more 

straightforward; Instead of suggesting the complex derivation of the sectioned 

areas, it might be motivated as the differences of the triangle sides attached to 

each vertex divided by their individual sum. This allows considerably quicker 

perception and understanding of the concept both graphically and algebraically 

while ensuring equivalence to the original concept. 

In anticipation of the upcoming considerations it will be helpful to introduce 

a revised definition of the chirality measure already incorporating all of the 

to be suggested changes at this stage. While the general idea is not changed, 

the refinements provide some significant advantages. For a discrete planar 

distribution (e.g. within the x, y-plane) each of the triangle combinations with 

the vertices ri,rj,rk (in N different coordinates) and their masses mi,mj,mk 

will be considered as part of 

X iXij X Tjfc) • Gobs I (2-1) 

where Tap = rp — Va with a, /? G {i, j, k} are side lengths of the triangles and 

fiobs is a normal vector directed at the observer. Latter for the common case 

of the object in the x, y-plane will equal e^, the normal vector in +2:-direction. 

A continuous mass distribution on the other hand, given by its density func-

^It will be referred to solely as chirality where the context is unambiguous. 
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tion p(r), can be evaluated using the expression: 

X (fij X f i t ) ' Gobs d^rt (2.2) 

using the same shorthands as before. As this section aims to provide for the 

introduction of the Monte Carlo approximation of the chirality measure, only 

the discrete version will be discussed. Still most considerations have their 

continuous analogon. 

The introduced visit of every vertex every single time a triangle combination 

is considered, is particularly time-saving for approximation methods like the 

Monte Carlo method, as less random numbers have to be generated. Because 

every triangle will be evaluated 6 = 1! -2! -3! times and the cross-product results 

in twice the triangle area, the overall equation has been scaled by a factor of 

12. 

For direct, non-approximative calculations of the chirality measure these 

repeated visits can of course be omitted. The discrete version, Eq. (2.1), can 

equivalently be rewritten employing the constraint i < j < k as: 

• ' i 5 m * S i w 

X {fij ^ "̂ ik) ' Gobs • (2.3) 

2.1.2 Interpretation of the area normal 

The original article [Potts et al., 2004] demands a single valued chirality mea-

sure. Yet their definition results into a vector which of course can be well 

motivated in relation to the term twist and its description by polar vectors. 

However chirality normally is referred to as a pseudoscalar. If the planar ob-

ject is not located within one of the planes defined by the axes of the coordinate 

system, it will become more difficult to discuss, matters like sign changes and 

other properties. Introducing the scalar product with a normal vector Cobs 

creates a scalar chirality measure and generalises the validity for variations of 

10 
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Figure 2.1: If a planar chiral structure (a) is observed at an angle (b), its virtual 
planar image (c) will be deformed and its therefore virtual chirality 
will be different to the one measured within the plane of the orig-
inal object. Using the refined definition of the chirality index the 
influence of the observation direction can be approximated. 

coordinate systems. For the cases discussed within this chapter the objects are 

always considered to exist within the a;,y-plane defining Cobs = ^z-

Furthermore will the influence of a planar chiral object be changed if observed 

at an angle. Depending on the case it might be advisable to project the object 

on a plane perpendicular to the observation direct and create a new set of 

coordinates r and masses m. For small tilts or where internal processes within 

the PCS dominate, instead Cobs might just be seen as opposing the observation 

direction. It there describes the influence of the relative area proportionality 

of the chirality measure. 

For an example situation, where these re-normalisations of the measure are 

applicable, see Sec. 3.3. Using this understanding of the area normal it might 

also be possible to measure 3D chirality defined by a set of 4 points forming 

pyramid like structures. The triangular faces of these tetrahedrons are asso-

ciated with their chirality vectors and can be summed up. This could be an 

extension of the planar theory to 3D space, but has to part of another investi-

gation. 

2.1.3 Area-dependence 

The cross-product embedded in n results into a direct proportionality to the 

area of an object. However in a truely mathematical sense, an object with the 

11 
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same symmetry exhibits the same level of chirality regardless of its scale. It is 

therefore appropriate to define a separate area-normalised chirality measure 

Ka — , (2.4) 

where A is exactly or representative for the area occupied by the mass distri-

bution. 

If accepting the area influence, this division also allows another interpretation 

in relation to k: It represents the chirality in relation to how close a chiral mass 

distribution can be arranged with other objects. This is particularly interesting 

with regard to the arrangement of e.g. gammadion structures in arrays, see 

Sec. 2.3.3. 

2.1.4 Mass-dependence 

The measure k is also proportional to the cube of the involved masses. Potts 

et al. [2004] give an explanation with regard to the possibility of splitting a 

mass in two or more, which e.g. would be the case for an increased resolution 

of a discretisation. Yet it creates an artificial and pronounced sensitivity to 

small changes within the overall mass of an object that can easily dominate 

structural hence symmetry affecting property changes. This particularly is the 

case for the discretisations of objects which will be discussed in Sec. 2.3 and 

stimulates the definition of a mass-normalised chirality measure 

(2.5) 

and, together with the considerations of the previous section, a fully or area-

and mass-normalised chirality measure 

^ ^ ^ (2.6) 

The independence of the involved masses is also legitimate, because the chi-

12 
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rality measure is purely geometrical: It cannot detect chirality which stems 

from an unequal distribution of mass between the vertices. An equilateral tri-

angle e.g. with different masses in all vertices is chiral per definition, because 

its enantiomer cannot be superimposed with it without lifting it out of the 

plane. 

The same consideration is true for isosceles triangles. Various attempts to 

unify geometrical and mass chirality have shown that a chirality respecting both 

influences cannot be single valued: All single valued approaches produce con-

ditions under which any scalene triangle can have zero chirality if the relative, 

but nonzero masses of the vertices are chosen accordingly. 

2.1.5 A unit of chirality 

One of the most exciting prospects of this measure of chirality is the possibility 

to introduce a unit. The underlying theory is based on the concept of triangle 

superposition, hence a master object for its unit should be a triangle or set of 3 

points respectively. Investigation reveals that a maximum chiral triangle shape 

exists. It can easily be determined setting just a few constraints to fix its scale: 

A set of 3 points with equal masses of 1 defines a triangle with the side 

lengths a,b,c (named counterclockwise), where initially c> a > b and c — 1 

are chosen to force a unique solution. The area of the triangle A is given by 

[Bronstein et al., 2000] 

^ . . a b c \ / ( 2 - | - 6 - | - C ^ a b c \ f a b c 

(2/n 
and its chirality can be evaluated with reference to Eq. (2.1) as 

Necessary conditions for an extremum applying above constraints and state-

ments are 

(2.9) 
da 

n J 
= 0 and C=1 Gb 

13 
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2.1 General considerations 

The joint solution of these partial differential equations is not trivial, but can 

easily be approximated using e.g. Matlab^: The results are shown in Tab. 2.1. 

However most of the obtained solutions are complex or contain negative values 

and therefore have to be excluded. The solution a — b — c — 1 naturally has 

zero chirality and is saddle point alike. The remaining two solutions are sorted 

out farther by considering the constraint c > a > b, so that only the solution 

= 0.789914351519603... 

= 0.322757101679095... 

= 1 (2.10) 

remains where 

d'^KA d'^KA 
da? db"^ \dadb) 

< 0 (2.11) 

flmax )Cmax 

confirms the detection of a maximum. 

The area of this triangle is Amax = 0.1078. Combined with the initial as-

sumption that all three points have masses of 1, the flexibility of this solution 

is challenged in view of area- and mass-normalisation. When employing the 

additional constraints A = 1 and = 1 while abandoning c — 1 one is 

left with a scaled and less weighty version of the upper triangle solution: 

amax,n - 2.40535733702210... 

bmax,n = 0.982823215081864... 

Cmax,n = 3.04508625826937... (2.12) 

which for a fixed length of c still represents a maximum chiral triangle. This 

one however is outstanding, because it is fully standardized with a chirality of 

A % 9.34460344766886 -10"^. (2.13) 

^For details see: http: //www. mathworks. com/ 
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2.1 General considerations 

Side a Side b 
1 1 

1.7502+0.79880*1 -1.4100-0.22398*1 
1.7502-0.79880*1 -1.4100+0.22398*1 

-1.2288+0.64005*1 -1.2288-0.64005*1 
-1.2288-0.64005*i -1.2288+0.64005*1 

0.27267+0.88192e-l*i -1.1963-0.47577*1 
0.27267-0.88192e-l*i -1.1963+0.47577*1 

0.14241 -0.63213 
-0.63212 0.14241 

-1.1963+0.47577*1 0.27267-0.88192e-l*i 
-1.1963-0.47577*1 0.27267+0.88192e-l*i 

0.78991 0.32276 
1.3738 0.50271 

0.32276 0.78991 
0.50271 1.3738 

-1.4100+0.22398*1 1.7502-0.79880*1 
-1.4100-0.22398*1 1.7502+0.79880*1 

Table 2.1: Extrema of the chirality measure k for a specific triangle approxi-
mated with Matlab. The solutions for a and b correspond to one 
another consecutively. For further details see text. 
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200 

Chirality.K^ [Q 

150-

-4.4 

-5,6 

150 200 

Coordinate x 
Figure 2.2: The mass-normalised chirality of a triangle with masses 1 in the 

vertices (0, 0), (200, 0) and (x, y) shows a maximum for the sketched 
configuration (o). Zero chirality is indicated by a thick black line. 
(Of course these isolines should meet in the top part of the graph 
which has been crippled by the visualisation software.) 

which can be used as a unit of planar chirality for the measure defined by 

Eq. 2.1. Irrespective of a consideration of k, Ka, Km. or Kam the same funda-

mental (irrational) number k which is dictated by the actual construction of 

the measure can be used. It will be employed throughout this chapter; addi-

tionally, for these abstract considerations, the units of mass and length will be 

chosen as 1. 
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2.1 General considerations 

In order to communicate the shape of this maximum chiral triangle Fig. 2.2 

has been included, where already the Monte Carlo technique to be introduced in 

the following sections has been used. Of course an equivalent graph could also 

have been created in a non-iterative process, but it was needed at a different 

stage for comparison to calculations of more complex structures. 

2.1.6 Prospects 

The area term of the chirality measure has been introduced because of its cru-

cial influence on the convergence of k to zero for the limit of a transformation 

of a scalene triangle into a single point [Potts et al., 2004, lemma 2.4 and 

postulate 2.5]. This test however would fail if accepting that chirality is inde-

pendent of the scale of an object. Then convergence of the three points while 

maintaining their relative positions would simply provide a constant chirality. 

Latter anyhow is only dehned for sets of three points and hence its behaviour 

for a zero-dimensional object meaningless. Therefore another measure could 

be created by omitting the area term in Eq. 2.1. 

Simulations using the Monte Carlo technique (Sec. 2.2) have shown that this 

measure shows a very similar behaviour for the examples of Sec. 2.3. It however 

converges magnitudes faster than the measure discussed here, because it only 

considers the types of appearing triangles combinations and not their scale. On 

the other hand it returns non-zero chirality for points on a line. The possible 

computational gain might outweigh this limitation, particularly for combined 

physically motivated modifications to the measure. A thorough investigation 

is pending. 

From photonics point of view introduction of an angle dependence to sim-

ulate the coupling possibilities for linear or non-circularly polarised light in 

general and a substitution of the area dependence by a value comparing with 

the applied wavelength will open new doors. This however would leave the 

grounds of a purely geometrically motivated and generic chirality measure. 
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2.2 Monte Carlo measurements 

2.2 Measuring chirality using Monte Carlo integration 

Research in photonics and particularly the idea of using a measure of planar 

chirality to categorize surface structures and the related hope to be able to 

predict their behaviour for light interactions to a certain level stimulated the 

need for an algorithm and programme being able to calculate the desired values. 

Not only artificially created templates but also arbitrary images should be 

valid input to ensure maximum flexibility. When however implementing a 

direct calculation method for the measure discussed in the previous section 

along e.g. the lines of Eq. (2.3) its limitations will soon make more dedicated 

problems unsolvable: 

For the case of a 32 x 32 matrix forming a mesh and containing a mass 

distribution one would need to consider (32 • 32)^ % 10® triangle combinations 

to calculate the chirality measure when applying the original definition, Eq. 2.1. 

Using modern computers this is a matter of minutes. Yet the requirement for 

considerably finer meshes for complex objects imposes a limit soon reached, 

because the number of necessary triangle combinations scales with for N 

discrete masses. There are several methods to improve this situation slightly, 

but only an iterative process can eventually be magnitudes faster in computing 

a reliable approximation of the overall chirality of a mass distribution. 

2.2.1 Monte Carlo method 

Many areas of physics use approximation techniques to numerically evaluate 

integrals which might otherwise not be solvable at all or only after an unaccept-

able length of time. One of the successful and modern examples is the Monte 

Carlo method [Bartlett, 1964; Jain, 1992; Madras, 2002]. Its main idea in re-

lation to our case is the use of randomly chosen triangle combinations and the 

probability for a convergence of the calculation far before their number actually 

reaches the level of all possible triangle combinations within the investigated 

mass distribution. 
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2.2 Monte Carlo measurements 

2.2.2 implementation 

The construction of a programme complying with the various demands it might 

face was in itself a task of large scale. It has been realised using an object ori-

ented programming technique for C-t-+ and subdividing the range of problems 

into classes. A main programme invokes instances of these objects and en-

hances their communication. This approach allowed a simplified integration of 

the other ideas like additional parameters and analysis techniques within the 

now more than a year lasting continuous development process. 

It is mainly divided into the areas: 

• main programme, 

• matrix administration and statistics, 

• matrix construction, import and export from and to graphics and ASCII 

formats, 

• generation of random numbers, 

• main analytical algorithms, 

• generation of standardized templates, 

• general I/O (input/output) controls, logging facilities, file access and 

• general mathematical operations and constants. 

Necessary of course is a thorough optimisation of all involved variables and 

algorithms to use the least resources possible. Apart from the various small 

decisions, there have been some major deliberations concerning the random-

ization process which should be noted in the interest of reproducibility: 

The generation of high quality random numbers is crucial for a process de-

pending that much on equidistribution and a long period. The C-H—internal 

clib algorithm is slow in comparison to other modern random number gen-

erators. A significant increase in speed has been gained by employing the 

Mersenne Twister developed by Matsumoto and Nishimura [1998]. 
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2.2 Monte Carlo measurements 

Furthermore the number of random number generations can be reduced to 

half than when not choosing each of the six planar coordinates of the three 

points per combination separately: Instead a list of all nonzero-mass points 

containing coordinates and masses can be generated so that only one random 

number is needed to choose the index number of a coordinate. Additionally 

the chance of involving one or more points with zero mass in a combination is 

avoided. Latter would automatically lead to zero chirality and is unnecessary 

surplus. 

The programme has two main operational modes which refer to graphics 

input or artificial matrix creation respectively; Either an image or one of the 

more than 150 predefined template sets can be chosen. Images are imported 

using the graphics library ImageMagick^ enabling the use of all major formats. 

The matrix is saved using 256 levels which is thereafter exported to a proof file 

in PNG format. This enables an easily accessible verification of the calculated 

matrix. Following this step are various statistical measures starting with di-

mension, area, mass and involving more complex issues like centre of mass and 

linear regression and correlation. 

Afterwards starts the actual approximation process which assumes all values 

to be unit-less defining the length one by the mesh of the matrix and allowing 

the mass to vary between 0 and 255. It can be described by^; 

hvri 
1 7\r3 

= — ^ A;(A) and (2-14) 
^ A 

X (^fij X fik) ' Gobs; (2.15) 

where A — {i, j, k) is chosen from the subset of n triangle combinations A„ of all 

possible triangle combinations A possible for the TV* involved nonzero masses 

within the mass distribution; A G A„ C A and |A| = N^. 

The actual number of triangle combinations n for a real implementation has 

^For details see: http://www. imagemagick.org/ 
^In general of course accidental multiple considerations of a single triangle combination can 

occur which is not reflected directly by this description. 
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2.2 Monte Carlo measurements 

to be limited by a certain number of maximum calculations nmax- Generally it 

will be unknown how many iterations are necessary to reach a certain accuracy. 

By not only summing k{X), but also storing the sum of (A:(A))̂  one can easily 

use these two values to determine the standard deviation cr of the average k 

reached after n steps; 

- 12 71 \ 
^ ( E ( * ( A ) ) ' - i ( E M A ) ) ) . (2.16) 

yAEAn yAsAn j j 

Together with an imposed number of maximally to be calculated triangle 

combinations nmax a set target for the relative standard deviation 

Or(K;) == (2.17) 

can form a viable constraint for the duration of the approximation process. 

Normalisation techniques 

As described in Sec. 2.1.3 and 2.1.4 it is appropriate to additionally deliver 

normalised values. While mass-normalisation has been implemented as 

suggested beforehand, representative areas A are to be determined to allow for 

ACfj and f̂ am • 

For most cases the area of the smallest rectangle (with horizontal and ver-

tical sides) surrounding all nonzero masses can be considered as a sufEciently 

accurate approximation, see Fig. 2.3 a. This approach has been used through-

out this chapter and is denoted with the earlier introduced index a: Ka and 

l^am-

There are however cases where e.g. background noise within a picture in-

troduces a much larger than necessary area. The investigation of galaxies in 

Sec. 3.3 particularly suffered from this approach. As galaxies mostly have el-

liptical shape or at least an elliptical area defining the space it occupies, an 

according algorithm has been developed, see Fig. 2.3 b: 

In order to determine the elliptic area as the product of tt and the two 
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2.2 Monte Carlo measurements 

a) 

Figure 2.3: (a) Area normalisation uses the the area of the smallest rectangle 
fitting around a PCS. (b) Elliptical objects like e.g. many galaxies 
can be normalised using an elliptic area; First the (mass-) centre 
is calculated. In a second step linear regression delivers the axes 
of the ellipse. Finally the standard deviations relative to these 
axes provide the lengths of the elliptic half axes and define the last 
missing parameters of the ellipse. 

half-axes of the ellipse several steps have to performed. Initially the centre of 

mass is determined to find a rough approximation of the centre of the galaxy. 

Afterwards linear regression with the origin of its coordinate system within the 

centre of the galaxy and assuming the fitted straight to pass through the same 

is performed to determine the direction of the larger axis. Integration over 

all masses to determine the standard deviation of the weighted distance of the 

masses in respect to both axes follows. These standard deviations proved to be 

a suitable representation of the areas occupied by the galaxies in comparison 

to what an intuitively chosen ellipses would cover. This allows a differently 

area-normalised chirality denoted with an index e: Kg and Kem-

2.2.3 Discussion 

Two main issues govern the precision of measurements obtained with this 

method: Convergence and discretisation. Latter imposes limits of feasibility, 

because a finer mesh automatically results into a considerable increase of the 

maximum number of triangle combinations: The more complex objects are, 

the greater the subset will have to be to sufficiently approximate the overall 

chirality measure. 

The convergence criterion arin) appears to suggest an accuracy which is 

about 4 magnitudes higher than actually reproducible when comparing inde-
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2.3 Forms of chirality 

pendent approximations. Experience has shown that to reach an accuracy of 

about a percent the target for the relative standard deviation has to be set in 

the region of 10"® to 10"^. Another notable general observation is the fact that 

objects of less chirality than others in most cases converge slower in terms of 

ar{K). Hence a large ar{K) when reaching the maximum amount of iterations 

can implicate a near zero chirality. 

2.2.4 Summary 

An optimised algorithm using the Monte Carlo technique to calculate the chi-

rality measure has been developed. It enables the accurate planning of future 

productions of planar chiral nanostructures within the author's group. More-

over a general tool being able to process many kinds of input is available for 

other and general investigations of planar chirality. It has been created in a 

modular way to allow future extensions which could target the area of physically 

motivated values, introducing e.g. wavelength dependence to weigh chirality. 

2.3 Forms of chirality 

The application of the algorithm and computer programme developed in the 

previous section allows to consider various complex planar chiral structures in 

discretisations levels far exceeding those possible with direct calculation meth-

ods. There are several interesting observations to be made; 

• When choosing a certain way of describing an object (vertices, lines or 

solid body) the chirality measure results into considerably different mag-

nitudes and shows largely differing convergence behaviour. 

• It is possible to distinguish two kinds of chirality and furthermore possible 

to describe the chirality displayed by regular grids in terms of nearest-

neighbour relations, a concept which is applied in many areas of physics. 

This section is dedicated to explore these issues and to follow the development of 

chirality for increasing complexity of the structures. The example structures are 

motivated by the nanostructured samples that have been created for photonics 
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a) 

\ 
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Figure 2.4: The main structures referred to are defined by various parameters: 

All have the thickness d of the lines defining the structure in com-
mon. (a) A bar-gammadion or short gammadion is defined by its 
eight equal arm lengths / and four bending angles (. (b) A round 
gammadion is defined by the radius r of the involved circles and 
the angle (p to which they are drawn, (c) Tilted crosses are defined 
by the lengths of the four involved sides I and their tilt angle ip. 
All structures arranged in a regular square grid have a well defined 
pitch p. (d) Perpendicular triangles will be described by a variation 
of one of their angles a. 

research within the author's group. The structural definitions are depicted in 

Fig. 2.4. For all shown calculations the mass of a matrix entry / intensity of a 

pixel is either one or zero: The possibility of further levels will not be used in 

this section. 

2.3.1 Structure representations 

The choice of representing an object either by points in its corners, lines defining 

its borders or a solid body has various implications on the chirality measure and 
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Figure 2.5: The different geometrical representations of a perpendicular trian-
gle display differing chiralities Km and convergence behaviour for a 
variation of one of its angles a while keeping its area constant at 
A = 50000 units (pixels / mesh points). 

its approximation. The basic concept can easily be understood at the example 

of a perpendicular triangle in which one angle is changed while the overall area 

is kept constant, see Fig. 2.4 d. 

The results according to the three approaches are depicted in Fig. 2.5: While 

the triangles made of three points naturally converge within a minimum amount 

of calculations (until convergence is tested for the first time), a representation 

by lines has the poorest convergence behaviour. Yet it has to noted that the 

relative maximum and development of chirality is equal in all cases. Most no-

tably is the nearly equivalent amplitude for the 'lines' and 'solid' cases after 

mass-normalisation. Another result of more general importance is the deriva-

tion of the maximum chiral perpendicular triangle being found for a triangle 
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Figure 2.6: Mass and area normalised chirality Kam in units of k of an arbitrary 

shaped triangle defined by points in its corners (o): Coordinates 
(0, 0) and (200, 0) are fixed while the position of the third one {x, y) 
is changed. The shape of a triangle displaying maximal chirality 
is shown. Zero chirality is indicated by a thick black fine. (The 
visulisation software introduced an error on top: The zero isolines 
should meet and not avoid one another.) See also Fig. 2.2. 

with an angle a of around 22.5°. 

For arbitrarily shaped triangles one needs to approximate the chirality of a 

huge number of triangles to resolve the general behaviour, see Fig. 2.2. A com-

parison with the area- and mass-normalised chirality Kam shows a much smaller 

and differently shaped triangle for the maximum and minimum configurations, 

see Fig. 2.6. Solid triangles have been investigated along exactly the same lines 
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and intriguingly an equivalent behaviour with extremal values for equal shapes 

has been found. 

2.3.2 Primary (molecular) chirality 

Chirality is often sub-categorised into a part which stems directly from an in-

dividual object and another one resulting from the structural arrangement of 

objects in relation to one another. Latter is introduced as structural chiral-

ity and could also be called secondary. This distinguishes from the molecular 

chirality of a single object which must be the starting point of any investiga-

tion, hence denoted here as primary. This section develops the main concepts 

necessary to correctly interpret chirality approximations and discusses various 

objects of interest when considered alone. 

Triangles 

. . . have already been introduced and discussed in the previous section and their 

main properties can be found in Fig. 2.2 and 2.6. 

F-type and (bar-) gammadion structures 

The (bar-) gammadions which have been the driving force of the recent ad-

vances on light matter interactions of planar chiral nanostructures [Papakostas 

et al., 2003; Schwanecke et al., 2003] can be broken down into four equal struc-

tures formed by two lines of (generally) unequal length which are connected in 

one of their ends. 

These V-type structures display three configurations with maximum or min-

imum chirality for line lengths which are roughly of the same magnitude, see 

Fig. 2.7. Intriguingly the arrangement in a fourfold rotational structure to form 

a bar-gammadion or gammadion^ results into a different dependency on the 

relative variation of length and mutual orientation of the composing lines, see 

Fig. 2.8. The sign change of chirality for large (x, y) in comparison to Fig. 2.7 

The lone word gammadion will in due course only be used to refer to bar-gammadions. 
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Figure 2.7: The chirahty Km of a F-type structures consisting of two hnes con-
necting each of the coordinates (0, 0) and {x, y) with (0, 50) shows 
considerable substructure: Three extrema can be found apart from 
the general decrease (but absolute increase) in chirality for large x 
and y. Zero chirality is indicated by a thick black line. 

should also be noted. This serves as a general example of how distinct the be-

haviour of the chirality measure alters as soon as new objects are introduced, 

even when they equal one another and are arranged symmetrically. 

For the mentioned research of greater importance is the analysis of bar-

gammadions where all branches are of equal length and a variation solely of 

the bending angle is considered. This is the way most of the available samples 

have been constructed. Figure 2.9 displays the results of approximations which 

used a design roughly resembling the samples described in Papakostas et al. 

[2003]; Schwanecke et al. [2003] with a ratio of Z : d = 5 : 1, for the definition 

see Fig. 2.4. 
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Figure 2.8: The chirality Km of an unequal sided 4-fold gammadion, extending 
the form of the structures measured for Fig. 2.7 contains consider-
ably less structure: Only two areas with chirality of different sign 
can be seen. Zero chirality is indicated by a thick black line. This 
plot also contains a good example of possible discretisation arti-
facts: The wave-like disturbances between the coordinates (0,50) 
and (100,150) stem from fewer points and lower mass respectively 
that lines occupy when discretised at an angle of 45°. 

Using this graph a basic concept for the interpretation of the measurements 

can be derived: The unnormalised chirality k does not show show a completely 

smooth behaviour. This stems from the varying masses m involved in the 

discretisation of the various configurations. The mass-normalised chirality Km 

can eradicate this cubic effect to a large extent and should be considered the 

main result of any approximation. The area-normalised chirality Ka requires 

the same treatment resulting into the fully normalised chirality Kam which 

29 



2.3 Forms of chirality 
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Figure 2.9: A sensible discussion of the chirality k of a gammadion and a vari-
ation of its bending angle ( requires the consideration of various 
parameters: i) the influences of applied normahsations Km, î a and 
Kam', ii) the acquired level of accuracy represented by in) 
and the discretisation process which is represented by the sum of 
the masses (or pixels) describing a certain design. The design pa-
rameters are I = 50 and d — 10, see Fig. 2.4. The main features to 
note are the defined maximum of around C = 0.3 tt = 54° and 
the inversion of the sign for large bending angles. 
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furthermore can be used to discuss the matter of close packing while Ka can be 

ignored. Additionally the reached accuracy has to be checked: Here a target 

of Ur{K) < 10~® was set which has been reached for all approximations within 

the set amount of maximum triangle combinations nmax-

The characteristic features are the near quadratic evolution for small and 

medium sized bending angles with a well defined maximum for Km around 

C = O . S t t = 54° and its sign change around Q — 0.68 t t % 1 2 2 ° with a relatively 

small minimum around C = O.O t t — 162°. This intuitively unexpected inversion 

of the sign of chirality can actually be perceived subjectively for drawings of 

gammadions with different bending angles: The twist one would associate with 

these structures changes direction. An illustration of this situation can be found 

in Fig. 5b/c of the article by Potts et al. [2004]. Similar results have previously 

been gained by Papakostas et al. [2003]; Potts et al. [2004] employing direct 

calculation of the chirality measure. 

Round gammadions 

Stimulated by calculations made by Professor Prosvirnin describing light mat-

ter interactions of small metallic wires of circular shape to represent the gam-

madions and the work on non-reciprocity [Prosvirnin and Zheludev, 2003] a 

round gammadion type has been investigated, see Fig. 2.10. The comparison 

of its properties with the bar-gammadions will show similarities as well as dis-

tinct differences: 

Here the object increases its mass m roughly linearly with increasing defining 

angle 0. This affects the chirality strongly which can be seen by a comparison of 

K and Km' The furthermore increasing occupied rectangular area for 0 < 0 < tt 

gains significant influence on the behaviour of Kam- These distinct differences 

make a physical similarity to bar-gammadions unlikely or are at least not easily 

motivated. 

However the characteristics of a bell shape and an inversion for high angles 

resemble a bar gammadion vaguely. Please also note that 0 < C < 7r for 

a gammadion while 0 < cj) < 2 tt iov &, round gammadion which results in 

differently scaled x-axes for the figures. 
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Figure 2.10: The chirality of a round gammadion in relation to its defining angle 
(j) is alongside the involved masses m and plotted for the design 
parameters r = 15 and ti = 1, see Fig. 2.4. 

2.3.3 Secondary (structural) chirality 

The second kind of chirality stemming from the relative arrangement of indi-

vidual objects has important implications for light matter interactions where 

the distance of the individual objects is considerably smaller than the wave-

length of the light. On the other side diffraction experiments on planar chiral 

structures have first been predicted and finally been shown to result into much 
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larger optical activity than for sub-wavelength structures [Papakostas et al., 

2003; Vallius et al., 2003] and their interpretation might also benefit from these 

results. 

Naturally a desire for measurements of the chirality of arrays arises which can 

finally be satisfied by use of the Monte Carlo method allowing appropriately 

dense discretisation meshes. Once again the main structures of interest, namely 

gammadions and round gammadions, will be discussed. 

Countless areas of physics use the approach of discussing nearest-neighbour 

configurations which will in due course be found as essential for the description 

of the chirality of complex arrangements. It will be of particular interest for the 

estimation of the relative behaviour of arrays containing infinite or large num-

bers of equal objects. Latter of course is the case for the structures investigated 

in Sec. 3.1 and 3.2 where Imm^ is covered with tiny gammadion structures of 

few micrometers size. 

Yet beforehand, in order to consistently follow the trail of complexity for 

chirality, it will be shown how an achiral object can exhibit chirality when 

arranged in a grid. 

Crosses 

While an individual cross does not exhibit any chirality as it is its own mirror 

image, its arrangement in a regular square grid creates not only a subjective 

perception of twist, but also a chiral structure for most configurations, see 

Fig. 2.11a. Naturally tilt angles ip with ipn = n • 7r/4, n E Z result into 

self-enantiomeric structures with zero chirality. So a disussion of the range 

0 < •0 < 7r/4 will already be comprehensive. 

Irrespective of the size of the array (having considered arrays of up to 5 x 5 

crosses; not shown) the shape and sign of the dependence stay the same as 

in Fig. 2.11 a. Please note the fact that less complex structures display higher 

chirality Km (Fig. 2.11 b) which has been found for all arrangements of objects 

that have been investigated. 

For the first time the discussion of nearest neighbours will be applied: It 

suggests that the lone arrangement of two next neighbours results into a higher 
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Figure 2.11: The chirality for arrays of tilted crosses and the first two nearest 
neighbour configurations with tilt angles tp is plotted for the design 
paramaters / = 80, ci = 1 and p = 165, see Fig. 2.4. 

absolute chirality (Fig. 2.11b, bottom graph) than the consecutive diagonal 

placement involving a larger distance (top graph). However the relative shape 

of the graphs in both plots stays the same and it appears that the mutual 

influence of crosses positioned along the axes of the grid is higher than of those 

positioned diagonally. Particular indication is the equal sign of the graph in 

plot (a) and bottom graph of plot (b). Of course this discussion is far from 

general, but the consideration of further structures will back up this approach. 

Bar gammadions 

Figure 2.12 depicts the chirality variation for the first three nearest-neighbour 

configurations of gammadions in a regular square grid. Once again it can be ob-

served how more complex structures arrive at lower mass-normalised chiralities 

Krni see particularly Fig. 2.12 a. 

Experiments have shown that the rotation of the polarisation azimuth of 

light for large bending angles does not change sign while the chirality of a 

single gammadion does [Papakostas et al., 2003, Fig. 2d]. The configuration 
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Figure 2.12: The chirality of gammadions and its relation to the bending angle 
C are plotted in various nearest neighbour configurations (b-d) for 
the design parameters Z = 20, p = 45 and d — 1, see Fig. 2.4. Plot 
(a) serves the comparison of these graphs to the single gammadion 
chirality (solid line). 

in Fig. 2.12 b however might be a description of the main influence leading to 

these results for the first order diffraction experiments and might stimulate 

further experimental investigation. 

The nearest-neighbour combinations are finally put into the context of large 

arrays by Fig. 2.13. When comparing Fig. 2.12 b with Fig. 2.13 d and Fig. 2.12 c 

with Fig. 2.13 f one is instantly forced to note their intriguing similarities. 

Apart from tiny discrepancies (which can approximatively be described by in-

fluences of the further neighbours shown e.g. in Fig. 2.12 d) they are just scaled 

versions of one another. Plots (d) and (f) have been artiflcially created to each 

emphasize one of the first nearest-neighbour 'interactions'®. 

^While this physical term might be out of place, it is helpful to communicates the idea of 
the concept. 
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Figure 2.13: A number of further gammadion configurations add to the chirality 
approximations of Fig. 2.12. 

To summarise, despite larger and more complex configuration one can find 

the influence of the dominant nearest-neighbour configurations. In a next step 

complete arrays, like 2 x 2 and 3 x 3 arrangements have to be put into the 

picture. In order to simplify the terminology the configurations depicted in 

Fig. 2.12 will be named straight for part (b), diagonal for part (c) and far for 

part (d). The 2 x 2 array of Fig. 2.13 c contains 4 straight, 2 diagonal and 

no far combinations while the 3 x 3 array of Fig. 2.13e features 12 straight. 
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2.3 Forms of chirality 

8 diagonal and 6 far combinations^ of the individual gammadions. The same 

dominance of the straight combination of course continues for larger arrays. 

This allows to discuss several bending angle regions of Fig. 2.13 c (and e). 

While initially the straight combination dominates, its relatively quick decline 

to zero in comparison to the diagonal and far combinations allow the sign 

change around C = 0.35 vr — 63° and the maximum shortly afterwards. All 

combinations decline to zero for large bending angles which resembles the be-

haviour of both arrays. 

The noise appearing for the 3 x 3 array serves as a good example of how 

the limitation to a maximum number of random triangles nmax can limit the 

acquired accuracy, here reaching ar(K) % 10~® for nmax = 3 • 10^. This limit is 

not far away from the presently justifiable limit to be drawn somewhere between 

10^° and 10̂ ^ random triangles per approximated example considering actual 

execution times. 

Additionally the sensitivity of the combined chirality of two gammadions to 

their distance should be noted: It even leads to a chirality sign change for 

their doubled distance depicted in Fig. 2.12 b and d. The possibility of specific 

distances which lead to near zero chirality over large ranges of the bending 

angle variations which is suggested by the continuity of the chirality measure 

will have to be investigated. 

Round gammadions 

The chirality approximations of arrays of round gammadions were stimulated 

by a search for near zero chirality and a possible sign swap around ^ — tv/2 as 

for the nonreciprocal difference [Prosvirnin and Zheludev, 2003, Fig. 3, bottom 

part, inset]. While Fig. 2.14c and d suggest a developing minimum in that 

region allowing zero chirality, an overall sign swap of the chirality appears to 

be unlikely for large or infinite arrays. 

Here again nearest-neighbour considerations can be applied using Fig. 2.14 a 

and b as a basis for the straight and the diagonal combination. However their 

actual combination, shown in Fig. 2.14d, appears to be more significant in this 

' 'The two 'far diagonal' combinations will be ignored at this point. 
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Figure 2.14; Complementing the two previous graphs, here the chirality of var-
ious configurations of round gammadions with the design param-
eters r = 15, d = 1 and p = 65. Additionally compare to Fig. 2.10 
containing results on a single round gammadion. 

case, see parts (c) and (e). A large maximum around 0 = tt manifests itself 

while the growing influence of the straight combination enlarges the first local 

maximum around (j) — 0.4 tt = 72°. At the same time a local minimum between 

these maxima becomes more distinct. In any case the sign reversal for large (f) 

already seen for the lone round gammadion remains, compare Fig. 2.10. 
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2.3 Forms of chirality 

Here as well another example for the convergence of the approximations in 

relation to the array size and number of maximum allowed random triangles 

Mmax can be seen: For a 3 x 3 array and nmax = 10^ the accuracy is quite high, 

while the approximations of 4 x 4 arrays with rimax — 3• 10® contain considerable 

noise, see Fig. 2.14 e and f. For latter particularly the low chirality of large 

defining angles (j) is resolved badly, which again reminds of the coincidence of 

low chirality and high relative standard deviation after the same number of 

calculations. 

2.3.4 Conclusions 

For various examples, which have been particularly motivated by current re-

search, the trail of chirality and its development for increasing complexity has 

been followed. A significant amount of data which can be compared to exper-

imental and numerical data of existing and future material configurations has 

been provided, where the results shown here only provide a snapshot summaris-

ing the evolved ideas and most important results. At the same time concepts 

have been introduced which allow to understand the chirality of composite 

PCS: The initial approach dividing into primary and secondary chirality is fol-

lowed by the discovery of the applicability of nearest-neighbour consideration 

for chiral arrays. 
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3 Application of the Chirality Measure 

to Photonics and Image Analysis 

The past chapter was dedicated to a general and theoretical discussion of planar 

chirality and set its measure apart from its actual appearance and implications 

in non-abstract contexts. The main driving spirit for this investigation in the 

first place was to establish a measure which thereafter could be used to help 

predict the level to which nanostructured surfaces could interact with light, 

particularly in the visible and near infrared region of the spectrum. On the 

other hand the general influence chirality might have on the symmetries gov-

erning light-matter interactions are largely unexplored. This chapter tackles 

these issues and reports initial but striking findings. Matters like the inheri-

tance of substrate chirality to its diffraction pattern and time non-reversal will 

be discussed. 

Furthermore the viability of the planar chirality measure, as well as its com-

bination with the Monte Carlo method, as an image analysis method will be 

tested. The example of spirality exhibited by galaxies will be used as a test-

ing ground. In combination with dedicated normalisation techniques it will be 

shown that it constitutes an applicable tool with a straightforward algorithmic 

definition and might improve parts of the morphological classification schemes 

used by astronomers. 

3.1 Diffraction pattern 

Last year two independent publications showed how planar chiral structures 

can affect the polarisation state of light. Both used arrays of the four-fold 

gammadion type structures which have been introduced in Fig. 2.4 (p. 24): 
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3.1 Diffraction pattern 

Figure 3.1: Observed diffraction patterns, display rotational symmetries (a) 
and exhibit a sense of twist or chirality for certain experimental 
configurations (b). (The diffraction pattern may not be seen well 
for some printers, refer to Fig. 3.8 instead. 

Using sub-wavelength sized elements Vallius et al. [2003] were able to detect 

azimuthal polarisation rotation of linear polarised light of up to 2.2° for zero-

order transmission. Theoretical considerations allowed them to predict up to 

4° of rotation near resonances within the visible spectrum. The seen effect 

is even more pronounced for preceding diffraction experiments on structures 

larger than the probing wavelength [Papakostas et al., 2003]. They found the 

absolute rotation exceeding 30° for certain experimental configurations. Latter 

experiment was able to establish a first link to the proposed chirality measure 

which was later published in a more comprehensive discussion by Potts et al. 

[2004], focus also of the previous chapter. It has to be noted that not only the 

polarisation azimuth was rotated, but ellipticity was created as well. 

As Papakostas et al. [2003] only considered first order diffracted beams the 

natural next step was to include further ones. This opened up several new 

possibilities. Diffraction patterns of PCS show a complex structure which in 

itself leads an observer to perceive a sense of twist, see Fig. 3.1. In other words 

it exhibits inherent chirality. Relating the chirality of a diffraction pattern to 

that of the underlying structure will be one of the central topics of the upcoming 

analysis. However, the DPs display rotational symmetries as well. Therefore 

a more general availability of quantitative symmetry parameters, alongside 

with possibilities to compare them to one another, is desirable. Particularly a 
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Figure 3.2: (a) Investigated samples consist of metallic layers deposited on Si 
wafers where grooves in the metal form the structures, (b-d) Three 
main types of gammadion arrays (and their enantiomers) have been 
investigated: The sketches depict a variation of the bending angle 
maintaining constant pitch and arm length. 

discussion of the plane-enantiomeric symmetry is imperative for PCSs. 

In order to achieve these goals, several analytical techniques had to be devel-

oped and combined. After an introductory description of the used experimental 

setup, their construction will be discussed in detail followed by an analysis of 

the results. 

3.1.1 Experimental setup 

The investigated planar chiral structures are arrays of gammadion type struc-

tures with bending angles of ( = ±45°, ±90° and ±135°, see Fig. 3.2 b-d. They 

have been manufactured using a combination of direct-write electron beam 

lithography and ion beam milling. The actual gammadion structure is formed 

by grooves in a metallic layer which is situated on a crystalline double-polished 

sihcon wafer. The metallic layer consists of 100 nm of gold surrounded by 20 nm 
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Figure 3.3: Light of a 633 nm He-Ne laser passes a variable linear polariser 
and is reflected on a sample containing planar chiral structures. 
Diffracted light is analysed by a second linear polariser before hit-
ting a 10 X 10 cm^ ground glass. Image capturing is performed by 
a CMOS camera. 

of titanium on each side, see Fig. 3.2 a. This type of so called 'negative' de-

sign is repeated in a regular square array of pitch p — A fim. Using the terms 

introduced for gammadions in the previous chapter, they have an arm length 

I of 1.4/im and a thickness d of about 700 nm, analogous to those used by 

Papakostas et al. [2003]. 

Visible light at wavelength A = 633 nm emitted by a He-Ne laser is selectively 

transmitted by an initial linear polariser and directed at normal incidence upon 

the planar chiral surface, see Fig. 3.3. The diffracted beams are analysed using 

a second rotating polarisation filter situated in front of a 10 x 10 cm^ ground 

glass. A Canon EOS D60 low-noise CMOS camera captures the formed image 

within controlled exposure times. In substitution of the camera and ground 

glass either an intensity detector or a polarisation state sensitive detector have 

been deployed for comparison. It has to be noted that the zero-order beam 
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Figure 3.4: The data processing involves several steps and analytical methods: 
After the initial conversion individual symmetry parameters and 
comparisons to corresponding configurations are obtained. 

is blocked by the central mirror. Therefore its intensity cannot be detected 

and is arbitrarily assumed to be zero within all upcoming considerations and 

calculations. 

3.1.2 Analytical methods 

Using intensity or polarisation state detectors to measure individual diffraction 

orders requires a considerable amount of time and elaboration of the employed 

positioning system. Several parameters, non the least precise angular align-

ment are crucial to ensure reliable measurements. In order to measure chirality 

within the diffraction pattern one has to include a sufficient amount of diffrac-

tion orders. This is not only necessary in order to get a representative set of 

data, but also to enable point combinations forming scalene triangles, hence 

allowing nonzero chirality, which only few combinations of first order beams 

comply with, cp. Sec. 2.1.4. 

These considerations stimulate the desire for a method which can easily be 
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3.1 Diffraction pattern 

applied to a large number of configurations. Furthermore, the perspective of 

future intensified production of chiral arrays with shorter production cycles 

urges for dedicated assessment and classification methods. 

Using a photographic method followed by standardised computational al-

gorithms is the way chosen to tackle this problem. The dimensions of the 

investigated samples allow to detect diffraction beams up to the second order 

which can be presented in a 5 x 5 matrix. An algorithm has to be able to con-

vert digital images to equivalent intensity matrices and thereupon analyse their 

symmetry properties. On one hand, using chiral samples, obviously planar chi-

rality should be measured, on the other hand rotational and mirror symmetries 

should be detected. 

In order to tackle these different issues a package of computer programmes 

has been developed. The implemented process structure is sketched in Fig. 3.4 

and detailed within the following sections. 

integration and preparation 

An algorithm based on the programming language Perl^ and the graphics li-

brary ImageMagick^ has been developed to convert supplied Jpeg pictures of 

diffraction patterns into 5 x 5 intensity matrices. Diffraction patterns of regu-

lar square or rectangular arrays produce distinct and localised maxima. Given 

rough constraints—the number of diffraction orders and a rough estimate of 

the area they span over—the programme localises and logs their positions. Lat-

ter are estimated quite accurately using a method analogous to calculating a 

centre of mass. 

The Jpeg image format created by the described setup encodes colors in 24 bit 

using the RGB scheme. This abbreviation relates to the three used base colours: 

red, green and blue. The He-Ne laser being a red light source, only information 

of the red channel with a remaining resolution of 8 bit equivalent to 256 levels 

can be processed. This reduced resolution excludes the possibility of direct 

use of intensity information like a maximum intensity because of unsatisfying 

^For details see: h t t p : //www. cpaa. org/ 
^For details see: http;//www.imagemagick.org/ 
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Figure 3.5: (a,b) Originally taken color images (a,b) first undergo (RGB) color 
separation: The inverted red channel is shown in grey-scale (c). 
Afterwards an integration process for each detected maximum ini-
tiates (d). 

accuracy and comprehensiveness: The large anticipated intensity differences 

between the orders would lead to a considerable reduction of the amount of 

orders which can be observed and resolved simultaneously. 

This problem can be solved by allowing the camera to saturate for intense 

diffraction orders and introducing integration methods; An intensity cross-

section of a diffraction order is sketched in Fig. 3.6 a. Saturation and noise 

will distort the measurement and deform the obtained intensity distribution, 

compare part b. Two different methods have proven to be successful: Both 

integrate over a fixed area around the previously determined centre of the 

diffraction order and ignore all values below the noise level. Analysis of initial 

observations showed that the the noise was considerably smaller than 2% of 

the saturation level. The fixed noise threshold has consequently been set to 
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Figure 3.6: (a) A schematic cross-section through the intensity profile of a 
diffraction order is (b) deformed by the noise level and satura-
tion of the detector. The picture to 5 x 5 matrix conversion al-
gorithms use two different approaches both neglecting values below 
the noise level: (c) The obtained values are merely integrated by 
method A. (d) The noise level is used as a threshold to convert mea-
surements into a (0,1) step-function which is thereupon integrated 
for method B. 

an intensity of 6 compared to the maximum level of 255. Method A sums 

the intensity values within the depicted area, compare Fig. 3.6 c. Method B 

instead converts the intensity distribution to a (0,1) step-function assuming 

the value 'zero' below the noise level and 'one' elsewhere. A discussion of the 

applicability of these methods follows at a later stage alongside experimental 

results. 

Correlation and symmetry analysis 

Once an intensity matrix corresponding to a diffraction pattern has been cre-

ated, an analysis of its symmetry can easily be performed using a well estab-
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Figure 3.7: For a symmetry analysis using linear correlation the 5 x 5 inten-
sity matrix of a diffraction pattern (A) has to be considered as a 
vector with 25 entries. In order to detect inherent symmetries it is 
compared to vectors of reordered matrices: The examples show the 
mirror image (B) along a hne m, a rotation by 90° (C) and both 
operations performed after one another (D). A possible center of 
symmetry can be found even more easily by comparing the iirst half 
of matrix (A) shown as (E) with the last half in reverse order (F). 
For the case of comparing two matrices one has to identify the cases 
(B) to (D) with the ones corresponding to the second matrix. Of 
course a direct comparison with the unaltered second matrix can 
be performed additionally. 

lished mathematical tool: 

The linear correlation R of two sets of data X = {xj}, Y — {t/i}, i = 1.. .n 

is defined as 

= (3.1) 

where E{-) denotes expectancy and x, y the arithmetic averages of the sets X, Y 
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(and vectors x,y respectively) [Bronstein et al., 2000]. The correlation varies 

from —1 to 1, the latter indicating perfect correlation, zero no correlation. 

In order to determine the symmetry of an intensity matrix its entries have 

to be reordered as a vector (xj). The vector resulting of the transformed, 

e.g. rotated matrix (%) thereupon can be correlated to it®. The derived value 

measures the level of similarity of the matrices and vectors respectively, hence— 

in this case—the level with which a matrix displays the certain symmetry. 

But moreover it is possible to compare observations, e.g. of two enantiomeric 

structures; By successively applying all conceivable symmetry operations to one 

of them followed by correlation to the unaltered other one, a transformation 

that might be linking the two cases can be found. 

Inspired by microscopic observations of the structures, detailed in Sec. 3.2, 

the particular interests are whether the fourfold symmetry of the surface struc-

ture is inherited to the diffraction pattern and whether equal observations of 

enantiomers are mirror images of one another or more extraordianarily linked 

e.g. by an anti-symmetry [Shubnikov and Belov, 1964]. 

Programmes, again using the programming language Perl, have been writ-

ten to perform the tasks of first of all comparing a matrix with itself after the 

application of various transformations. Secondly they are able to compare and 

judge the links between two arbitrarily different matrices. The used symmetry 

transformations are a 90°-rotation, reflection and the combination of the two. 

Additionally the quality of the centre of symmetry is established and the in-

tegration methods A and B described in the previous section are correlated. 

Figure 3.7 illustrates application and resulting reordering for all of these cases. 

From statistics point of view correlation values have to be verified by de-

termining their significance. While it has been excluded from the following 

discussion for lucidity, a t-test has been performed for all correlations and, 

where conclusions have been made, a sufficient significance has been reached— 

in many cases allowing a probability of non-validity of the zero hypothesis of 

lower than 0.001. 

Subsequent references to matrices shall likewise be seen as references to their vectors. 
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3.1 Diffraction pattern 

Chirality 

Following correlation analysis the chirality displayed by the observations is 

evaluated. The discrete chirality measure k which has been discussed earlier is 

used for this purpose. Instead of using the proposed chirality unit, within this 

section a near original definition of the measure will be employed [Potts et al., 

2004, Eq. (17)]. It is defined by summing over all possible triangle combinations 

of a discretised object with their vertices being at Tj, within the x, j/-plane 

and corresponding masses of mi ,mj ,mk as: 

^ N N N I l - l r I 
^ 7 E Z ] ^ X n t ) - Gz (3.2) 

^z=i j=ifc=i \nj\ + \'rik\ 

where Vij — r j — ri, Vik — Vk — ri and is a normal vector in +z-direction. 

Differences in absolute intensity for the investigated DPs resulted in the use 

of various exposure times with according relative intensities. This additional 

parameter is compensated for by normalisation: The intensity sum for each 

single matrix is integrated. As it corresponds to the mass term in Eq. (3.2) it 

can be used to normalise the chirality arriving at the following expression'^: 

N I _ I . I 
E Z E A r — T ^ ( r u x n t ) - (3.3) 

In;l + |r^k| 

A Perl routine invokes a C + + programme for all acquired 5 x 5 matrices which 

successively applies this formula. 

3.1.3 Results 

Before a detailed consideration can be begun, several issues have to be resolved: 

Using the photographic method described above its equivalence to direct de-

tector measurements has to be questioned. On one hand the saturation which 

is used deliberately might well change the relative intensity levels of the vari-

ous diffracted orders, on the other the changes can be expected to be strictly 

A further discussion of mass-normalisation can be found in Sec. 2.1.4. 
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3.1 Diffraction pattern 

monotonous. Latter means that the symmetry and structure of the diffrac-

tion pattern ought to be retained which is found experimentally. Concerning 

the first question, correlation of detector to photographic data lead to values 

of about 0.75 indicating an agreement better than might be expected. More 

importantly however the symmetries found in the patterns exhibit themselves 

equally regardless of the adopted method. 

Calculations made by Prof. S. Prosvirnin analogous to those used in Prosvirnin 

and Zheludev [2003] confirm the expectance of the centre of symmetry as the 

main symmetry ruling each DP. Since this constraint must be obeyed by any 

DP regardless of e.g. the polarisation configuration, it is also a measure of the 

quality for derived matrices. According to deliberations employed in Fig. 3.7 

(case E-s-^F) linear correlation delivers values of more than 0.95 for all matrices 

that have been taken into consideration. 

At the beginning two different integration methods have been suggested. In 

addition to all other calculations the matrices derived by those two methods 

have been correlated for each single diffraction pattern. Their near one corre-

lation for the majority of all taken pictures (and particularly for all included in 

the following discussions) lets both methods appear equivalent and a further 

distinction between their results will not be made. 

Stability measurements recording the DPs resulting from realignment of the 

'crossed' analyser verified a stability of the pattern within at least ±5°. This is 

in agreement with expected conversion ratios resulting from azimuth rotation 

and ellipticity [Papakostas et al., 2003]. Furthermore, the fourfold rotational 

symmetry of the underlying 442 wallpaper group® gammadion pattern has been 

tested by rotating both polarisers in 90°-steps resulting into equivalent obser-

vations. 

Fourfold symmetry 

This fourfold rotational symmetry (C4) should also establish itself within the 

diffraction pattern. For parallel polarisers this seems to be the case, see 

®A very graphic introduction into wallpaper symmetries can be found in Ostromoukhov 
[1998] or at h t t p : / /xah lee . org/Wallpaper_d.ir/c5_17WallpaperGroups.html. 
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a) b) 

Figure 3.8; Symmetries of diffraction patterns of an open gammadion can be 
described by simple geometric structures (blue): (a) For paral-
lel aligned polariser and analyser (green) the expected fourfold 
rotational symmetry (C4) appears to be retained, (b) The con-
trast gained by crossing the polarisers reveals the actual twofold 
symmtetry (Cg). 

Fig. 3.8 a. When however the analyser is oriented perpendicularly in respect to 

the initial polariser the gain in contrast reveals that the DP mereley retains a 

twofold symmetric structure, see Fig. 3.8 b. 

This lower symmetry is imposed by the linear polarisation of the probing 

light and exposed in particular by the azimuth rotation capabilites of the PCS. 

Despite conventional wisdom that a grating symmetry directly determines the 

symmetry of its DP, it is shown that optically active planar materials can alter 

the symmetry. In this case not the chirality of the grid, but the chirality of 

the individual element is responsible for that change which is explained by 

Papakostas et al. [2003] and in addition motivated by the following. 

Inherent chirality 

It is possible to measure the chirality of a diffraction pattern. Yet their chi-

ralities have to be normalised by intensity (and mass respectively) in order to 

diminish the influence of, on one hand, different exposure times used within 

the experiments and, on the other, discretisation effects for the calculated data. 
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Figure 3.9: The chirahty of diffraction patterns is quahtatively related to the 
chirality of the illuminated structure; Values for several gamma-
dions (A - C) and their enantiomers (A* - C*) are shown. Their 
bending angles are Ca = 45°, Cb = 90° and Cc = 135°, see Fig. 2.4 
(p. 24). For both cases the chirality has been scaled arriving at a 
value of 1 for type A. 

Furthermore, a value of 1 is assumed for the chirality displayed by an open 

gammadion ((" = 45°) to standardise the comparison. 

The iS-shaped structure of the cross-polarised DP in Fig. 3.8 b motivates a 

(clockwise) sense of twist. This term is closely related to chirality and how it 

is understood. All cross-polarised diffraction observations on PCS have shown 

to display chirality—yet to a very different extent depending on the type of 

gammadion. 

The major expectation, enantiomeric sign reversal of the associated chirality 

is met and has been tested for various gammadion array types (bending angle, 

size, pitch) and experimental configurations (incident polarisation angle). This 

shows that the observed chiralities actually stem from the underlying PCS and 

not from any other influence. 

The actual link between grid design and diffraction pattern however can 
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be created in a much more direct fashion: Figure 3.9 plots the chirality dis-

played by several diffraction patterns and compares them to the structural 

chirality that comes along with a single gammadion of the corresponding DP, 

cp. Fig. 2.9. 

As only quadrants I and III of the coordinate system are populated, these 

chiralities strictly agree sign-wise. Yet they are clearly not on a line suggesting 

a qualitative, non-quantitative link. Interestingly the sign change for gamma-

dions with large bending angles (( = 135°) that the single gammadion chirality 

suggests is found in the DP. This is in contrast to the relation of gammadion chi-

rality to azimuthal rotation of linearly polarised light described by Papakostas 

et al. [2003, Fig. 2d] where this sign change had not been found. 

The distinct differences between the chirality of a gammadion array to that 

of a single one, cp. Fig. 2.9 & 2.13, suggests that the observed interaction is 

dominated by the chirality and polarisation conversion capabilites of a single 

gammadion. This can be understood comparing the probing wavelength of 

633 nm with the involved sizes within the array: It approximately equals the 

groove width and in contrast cannot span the distance between the grooves of 

two separate gammadions. This might of course be different for the case of 

sub-wavelength structures as used by Vallius et al. [2003]. 

The quantitative inconsistencies apparent in Fig. 3.9 can stem from various 

issues: 

• Only up to second order beams have been taken into account using the 

5 x 5 matrices. Bare eye observations of higher orders show that a consid-

erable amount of the exhibited chirality of the overall pattern is observed 

for higher orders. 

• The zero order beam has been blocked. Hence, the definition of the 

chirality measure employed implies all of the summed triangles involving 

this beam to be of zero value. 

• This geometric chirality measure does not recognise chirality stemming 

from an unequal mass / intensity distribution within the vertices of a 

triangle in general. For the many isoscele or even equilateral triangles 
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3.1 Diffraction pattern 

linking these 25 orders it merely assumes a zero value while masses in 

two or more vertices differ, cp. Sec. 2.1.4. 

• The chiralities had to be mass- / intensity-normalised in order to allow 

comparison. How sensitive this normalisation actually is, can be seen 

from examples discussed within the previous chapter. The conversion 

ratios of the different types of gammadions and hence the intensity de-

tectable in cross-polarised configuration differ considerably, forcing to use 

significantly different exposure times. 

• Finally, the manufacturing process involves a discretisation of the gam-

madion array, as well as the calculation of the single gammadion chirality 

does. Resulting relative changes stemming from differing thicknesses or 

slight disorientations might as well be responsible. 

Nevertheless, opening a qualitative link between the chiralities of grid design 

and diffraction pattern has been successful. 

Enantiomeric symmetry and time reversal 

Comparison of cross-polarised DPs made of two enantiomers under equal con-

ditions show that, despite the underlying arrays being mirror images of one 

another, their DPs are not (see Fig. 3.10a/b). This condition is referred to 

as broken enantiomeric symmetry. Barron [1994] argues that enantiomeric 

time reversal—following the substitution by an enantiomer with time reversal— 

ought to be obeyed for chiral structures which in essence he relates to an overall 

ruling CVT symmetry. Yet if the enantiomeric symmetry TZ is violated, one 

can deduct that a time reversed T scenario must be broken as well to restore 

the overall postulated enantiomeric time reversal symmetry TZT [Schwanecke 

et al., 2003]. 

In order to allow a number-wise verification of this visual analysis and further 

systematic investigation of various samples, the symmetries linking equal ob-

servations on enantiomeric gammadions have been compared, see Fig. 3.7. The 

symmetries equality, mirror image and 90°-rotation merely lead to correlations 

of less than 0.5. On the other hand, the comparison of a DP matrix with the 
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Enantiomer 

I ^ 

90° rot. 

Figure 3.10: The cross-polarised diffraction pattern of an open gammadion (a) 
and its enantiomer (b) display similar intensity distributions. The 
mirror image (c) of the enantiomeric DP yet does not equal the 
original DP (a) resulting in broken enantiomeric symmetry. Sub-
sequent 90°-rotation however yields equality (d). 

mirror-imaged and 90°-rotated version of its enantiomer correlate with values 

greater than 0.94 for the open type of gammadion and holds nearly as well for 

other investigated PCSs. This symmetry has been applied to the visual exam-

ple in Fig. 3.10, underpinning the numerical findings by receiving near-equality 

between parts a and d. 

Overall, these considerations allow two striking conclusions: Despite the use 

of a mirror symmetric structure, the resulting field structure is not mirror 
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symmetric. This cannot be explained by an ordinary simplifying description 

like the interaction of a chiral structure with just the linear polarised electric 

field of the incident light wave. In contrast it has to be described by a more 

complex model referring to the complete triad S — E x H of the wave. The 

involvement of the magnetic field and the possibility to obtain a DP equaling 

the initial case by following the mirror imaging of the enantiomeric DP with 

a 90°-rotation suggest to describe these findings in terms of black-and-white 

symmetry or Shubnikov anti-symmetry [Landau and Lifshitz, 1964; Shubnikov 

and Belov, 1964]. 

3.1.4 Conclusions 

A semi-automated process structure involving several tools and allowing var-

ious kinds of symmetry analysis has been developed. It particularly enables 

and enhances future systematic investigations of arrays of PCS. Nevertheless, 

already several results have been gained by its application; Diffraction of linear 

polarised light on fourfold-rotational gammadion arrays displays only twofold-

rotational patterns, which results from optical activity triggered by the chirality 

of the structure. These diffraction patterns themselves exhibit chirality which 

appears to be closely linked to the chirality of the base elements (gammadions) 

of the illuminated array. Observations of enantiomeric arrays show that they 

are actually not connected by the same enantiomeric transformation applied 

to the structure. They in contrast are equal only when applying a further 

90°-rotation implying not only a violation of enantiomeric symmetry but also 

broken time reversal. 

3.2 Polarisation sensitive microscopy 

Some of the questions discussed in the previous section were motivated by an 

extensive preceding set of microscopic observations on various kinds of PCSs 

with a special focus on gammadion arrays. The main results that stimulated 

further investigations will be summarised in this section. Parts have been 

published in Schwanecke et al. [2003]. 
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Figure 3.11: Experimental setup for the experiments involving the polarising 
microscope, further details can be found within the accompanying 
text. 

3.2.1 Experimental setup 

All data was gained using the polarising microscope Meiji ML 9400 and re-

flection mode illumination with a white light halogen source (Meiji MA 326 

bulbs). The observations have as well been captured using a 6.3 megapixel 

low noise CMOS CCD camera (Canon EOS D60), mounted on the trinocular 

tube of the microscope, see Fig. 3.11. Apart from topographically motivated 

images the light incident was linear polarised and its electric field oriented 

horizontally in relation to the pictures displayed in this section (Fig. 3.12 b-d 

and 3.13a/b). The reflected light was thereafter analysed using another lin-

ear polariser oriented perpendicularly in 'crossed' position. This particularly 

results in metallic regions appearing dark. Additionally, the involvement of 
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a) |E=^==«=^==ps=^== | 

Figure 3.12: (a) The topography of an array of open gammadions (observed 
unpolarised) helps orientate within (b-d) cross-polarised observa-
tions. (b) External branches attached to the vertical or horizontal 
centre part appear coloured. The different types of response lo-
calising either near the walls (orange) or in the centre (blue) of 
the external gammadion branches are emphasized (c) in contrast-
enhanced quasi-monochromatic observations at a wavelength of 
530 nm, yielding multiple-bar structures, (d) These features are 
also seen for different gammadion sizes and pitches. Single gam-
madions are highlighted by a yellow box. 

narrow-bandwidth spectral filters allowed quasi-monochromatic illumination 

which enhanced resolution and contrast considerably. A rotating table allowed 

to precisely control and alter the incident polarisation angle in respect to the 

structure. All photographs shown here have been taken using a 40x objective. 

The gammadion arrays resemble those introduced in the previous chapter, 

but with slightly changed dimensions: The arm length I measures 4 ^m (1.4 /xm 

for Fig. 3.12 d) and the pitch 10/im. 
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Enantiomer 

90° rot. 

Figure 3.13: Contrast enhanced cross-polarised and quasi-monochromatic (A = 
600 nm) observations of a gammadion array (a) and its enantiomer 
(b) are not mirror images of one another (c). However introducing 
an additionally applied 90°-rotation (d) reveals the link between 
the enantiomeric observations. 

3.2.2 Results 

The observations most noticeably show a colouring of branches oriented at 

45° in respect to the electric field of the incident linear polarised light, see 

Fig. 3.12 b, d. This holds for several types of gammadions including those with 

bending angles C of ±45°, ±90° and ±135° and various sizes. The colour-

ings destroy the fourfold symmetry that the original topography had shown 
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(Fig. 3.12 a). Further distinction is defined by differing localisation of the 

regions that appear to effectively reflect or re-emit the polarisation rotated 

light: Some branches appear bright in their centre while others have two bar-

like bright zones next to the structure walls. Latter is emphasized for quasi-

monochromatic illumination as seen in Fig. 3.12 c and 3.13. 

Intriguingly the colouring differs between enantiomeric versions of gamma-

dion arrays. The external branches connected to the vertical or horizontal 

centre part of the gammadion swap their appearance. This results in observa-

tions of two enantiomeric arrays not being mirror images of one another. Just 

as has been discussed in the section about diffraction patterns, this broken 

enantiomeric symmetry implicates a time non-reversal interaction. It appears 

to be the first report of this kind for non-magnetic materials which so far were 

believed to obey time-reversality. The introduction and imposition of the 2D 

chiral twist on the field structures might be understood as the anologon to the 

otherwise involved magnetic fields of the interacting substrate. 

The observations are reproducible regardless of microscope magnification 

(40x, lOx, 4x), illumination area or observed part of the sample arrays. It 

is easily observable with a bare eye looking into the microscope and robust 

in respect to artificially introduced misalignments of the crossed polarisers for 

several degrees. Furthermore, rotation of the sample results in continuous 

fading of the previously coloured branches and expectedly restores every 90°. 

3.2.3 Conclusions 

Complementing the results of the diffraction experiments, microscopic imaging 

has been able to verify their results using a completely independent technique: 

The interconnected parts of the gammadion structure lead to different responses 

for branches connected to the central gammadion parts oriented parallel or 

perpendicularly in respect to the incident linear polarisation. The response 

is spectral dependent and shows two different localisation types. The broken 

fourfold symmetry furthermore violates the expected enantiomeric symmetry 

and resulted in the discovery of a time-nonreversal interaction. 

61 



3.3 Classification of galaxies 

3.3 Classification of galaxies 

So far planar chirality has only been discussed in a context of optical inter-

actions. On the other hand the introductory chapter already mentioned the 

plentiful appearance of the term chirality within many natural sciences. Here, 

an approach to apply the measure to galaxy classification will be presented. 

Galaxies are mostly categorised either by their spectrum or by their morphol-

ogy. Latter involves various parameters—chirality often being explained along-

side the terms of twist or spirality might become one of them. 

3.3.1 Existing standards 

The roots of nearly all major classification schemes go back to Hubble [1926, 

1936] and try to relate to an underlying sequence of physical processes. Many 

major catalogues were classified by sighting. However even relying on expe-

rienced astronomers Nairn et al. [1995] state that their classification of 831 

galaxies using 6 independent researchers already introduces an uncertainty of 

1.8 in units of the Revised Hubble numerical index T which users integers be-

tween —6 and 11 [de Vaucouleurs, 1959, 1963; de Vaucouleurs et al., 1991]. So 

there still is room for refinements or improvements applying rigorously defined 

rules and employing computational rather than human ressources. 

The parameters that can be taken into consideration are numerous. Sandage 

[1975] provides a comprehensive overview of the main approaches. Examples of 

particular variables are ellipticity, the concentration of mass in the centre, the 

level to which spiral arms are developed {luminosity classification), etc. Naim 

et al. [1995] found that latter definition appears not to be well cut. As it refers 

to the spirality of a galaxy, it quite probably has a strong link to chirality. 

Frequently cited catalogues like the Third Reference Catalogue of Bright 

Galaxies [de Vaucouleurs et al., 1991] and its predecessors or the ESO catalogue 

[Lauberts and Valentijn, 1989] contain several tens of thousands of classified 

galaxies. For more modern surveys spanning several tens of millions of galaxies 

the use of manpower in order to classify galaxies has reached its limit of feasi-

bility. Many parameters are already mathematically well defined and modern 

image analysis methods will be able to distinguish between many of them. Yet 
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NGC 3379 NGC3184 NGC 4731 

Figure 3.14; Several galaxies differing in spirality and chirality with their NGC 
numbers, taken from the catalogue by Naim et al. [1995], 

the availability of a chirality measure which is integrable and fully scalable is 

only recent. 

3.3.2 Implementation 

This motivated the application of the programme suite introduced within the 

previous chapter. A catalogue of 113 nearby galaxies has been made freely avail-

able on the internet: h t t p : / / a s t r o . p r i n c e t o n . e d u / ~ f r e i / g a l a x y _ c a t a l o g . 

html by Frei et al. [1996]. It includes additional parameters like the revised 

Hubble numerical index and has been chosen as a starting point for a feasibility 

study. Before professional astronomers seriously can consider the use of this 

measure, it will have to be shown that the measurements 

• are reproducable, 

• converge within sensible time scales, 

• agree sign-wise with the different senses of twist exhibited by spiral galax-

ies, 

• are able to distinguish various levels of spirality significantly and 

• can be normalised to allow different resolutions / obervation angles etc. 

A method tackling part of latter issue has already been described in Sec. 2.2.2. 

As not only the size and resolution of CCD arrays used by astronomers but also 
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Figure 3.15: The relative standard deviation of the chirality approximations 
vary from galaxy to galaxy. The logarithmic plot against a list of 
the investigated galaxies, ordered by their NGC code, puts across 
the achieved level of accuracy. 

observation angles and not least the distance, size and brightness of galaxies 

vary widely, their chirality must be free of these various influences. On one 

side is the area influence which for galaxies might best be described by an ap-

proximation of an elliptic area they occupy. An idea using a combination of 

linear fitting and assuming standard deviations relative to both axes has been 

chosen as reference for this section, see Fig. 2.3 and Sec. 2.2.2. This elliptic 

area normalised chirality will be noted Kg in comparison to the conventional 

rectangular method noted 

The magnitude or brightness of a galaxy is another parameter to be separated 

from chirality. In an image further influences are exposure time and discretisa-

tion level. Hence, an approach similar to mass normalisation simply assuming 

an overall integrated intensity of mi — 1 for every galaxy as described in 

Sec. 2.1.4 can be employed. Together with the elliptitic area normalisation the 

fully normalised chirality measure will be denoted Kem-
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3.3.3 Results 

In order to provide values that astronomers can use as a starting point for 

further investigation the complete catalogue by Prei et al. [1996] has been anal-

ysed. The chirality of many spiral galaxies can already be well established 

within 10^ to 10® calculations which is a matter of minutes. Yet objects with 

small chirality like elliptical galaxies with marginal internal structure display 

a considerable reduced convergence speed. Three approximation sets with an 

overall total of 50 billion triangle calculations per galaxy are presented. 

The obtained relative standard deviations ar{K,) are depicted in Fig. 3.15. 

Nearly all galaxies reach levels where the obtained chirality can be considered 

reproducible. However, the question whether this value actually represents the 

accuracy of the measurements might arise. An answer is provided by Fig. 3.16. 

It provides a comparison between two scenarios each using a different selection 

of 2 • 10^° randomised triangle calculations. While the standard deviation for 

scenario 2, suggests accuracies between 10"^ and 10~^, comparison of 

the independent scenarios supplies relative deviations, (k2 — ki)/k2, about 4 

magnitudes higher. This effect has already been found for the calculations on 

artificial templates shown in the past chapter. There convergence was assumed 

for ar{K) ^ 10~®. Here again this seems to correspond to an effective accuracy 

of about 10"^. 

This linear dependence between ar{K,) and an effective accuracy can fur-

thermore be affirmed by again employing linear correlation, see Sec. 3.1.2. The 

values for ar{K2) and {k2 — i^i)/k2 correlate with R — 0.88 which can be consid-

ered quite significant—non the least because the comparison is made in relation 

to the relative deviation (k2 — /(i)/K2 where single values cannot necessarily be 

expected to be representative for the overall accuracy. 

Accepting the accuracy of the calculations as sufficient, it is worthwhile to 

consider a couple of specific examples. For this purpose the intentionally very 

different galaxies of Fig. 3.14 will exemplify the application of the chirality 

measure. Figure 3.17 shows them in their grey-scaled version and ordered ac-

cording to subjective perception of their twist: While NGC 3379 (T = —5) 

is very elliptical with next no substructure, NGC 3184 (T = 6) already con-
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Figure 3.16: The relative standard deviation of one approximation correlates 
well with the relative deviation to another approximation (R = 
0.88, see Eq. (3.1)). It however predicts an accuracy about 4 
orders of magnitude too high. 

tains developed spiral elements. Those are however embedded in a 'milky' disk 

structure and much clearer defined for NGC 4731 {T — Q). 

One naturally would expect an increase of absolute chirality along these lines 

and is not let down by the calculation. Both and Kem present sufficient 

resolution of about a magnitude. Furthermore, the obvious change of twist 

between NGC 3184 and NGC 4731 is reflected by the obtained chirality index. 

Typical for these Monte Carlo approximations again is that high chirality is 

accompanied by low relative standard deviation and vice versa. This constitutes 
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Chirality 

NGC 3379 NGC 3184 

NGC K [ k ] [A] l^am [A] l^em [̂ ] ar{K) [1] 

3379 
3184 
4731 

5,41-10^ 
-2,74. IQi? 
3,45 IQi? 

7,44-10-4 
-1,83 10-2 
1,86 10-1 

8,19 10-w 
-1,87-10-7 
2,23 10-6 

3.66 10-7 
-2,92 10-6 
4.67 10-5 

5^02.10-G 
3^82-10-f 
(^39 10-8 

Figure 3.17; The automatically converted grey-scale counterparts of Fig. 3.14 
diplay the expected chirality characteristics—namely an increase 
of chirality according to the ordering and opposite sign for the two 
spiral galaxies. 

another indication why a limit for the maximum number of calculations should 

be included in any chirality approximation algorithm. 

An attempt to plot chirality against the revised Hubble numerical index 

shows some structure, see Fig. 3.18. Yet the small amount of galaxies and the 

involvement of so many other paramaters into the determination of the T value 

do not allow to conclude direct interconnections. Ignoring exotic galaxies at 

the end of the scale, the falling average for elliptic galaxies (—3 < T < 0) 

and the threefold increase for spiral galaxies (1 < T < 9) attract attention. A 

detailed interpretation however has to be left to a professional astronomer. The 

corresponding numerical values can be found in Tab. 3.2. It should be noted 

that the standard deviation assumed as the error might not be appropriate for 

the probably not normal but ^^-distributed values of |Kem| > 0. Still the most 
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Figure 3.18: Absolute chiralities with their standards deviations are compared 
to the revised Hubble numerical index, see also Tab. 3.2. Where 
only one galaxy is available, the index has been circled red. 

important follow-up measure will have to be to tackle even larger catalogues 

involving more galaxies per category and respecting the other categorisation 

parameters. 

Another interesting option for the renormalisation of the chirality index, 

which might improve the explanatory power of galaxy chirality, might be gained 

when bearing in mind their relative tilt in respect to our direction of obser-

vation. The newly introduced concept of an area-normal and its projection 

against the observation direction (Sec. 2.1.2) allows to recalculate the chirality 

which in first instance always is a virtual one. Respecting the influence of the 

observation angle the theory hence allows directly and without any application 

of further concepts to calculate a general measure of the chirality and spirality 

respectively of a galaxy. According data for the investigated galaxies however 
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T n [&] (7r(K|) I'̂ m [k] Cr (1 l^m 1) 1 l^era 1 [A] (1 l^em |) 

- 5 13 1,49 10^ 1,33 1,51 10- 1,81 6,22- 10-G 2,17 
- 4 1 5,41 10^ — 3 ^ 3 10--4 

— 7,19- 10-8 — 

- 3 2 5,56 10^ 0,98 9,41 10--2 ^ 9 8 2,32- 10-5 0,97 
- 2 2 9,59 10^ 0,65 7,00 10--2 0,48 2,09- 10-5 0,50 
- 1 4 ^ 0 8 10^ 1,03 &,49 10--2 0,82 1,85- 10-5 ^ 8 8 

0 2 4,37 10^ 0,14 4,00 10--2 0,71 1^9- 10-5 ^76 
1 3 2,01 10^ 1,12 2,28 10--3 0 ^ 4 4/W:- 10-7 ^ 5 0 
2 9 2,11 2Q20 %73 7^9 10--2 ^ 2 4 5 ^ 5 - 10-6 %98 
3 14 3,33 10^ 1,99 1,47 10--1 1,94 2^3- 10-5 ^96 
4 17 2,41 lOfo 3,57 1,04 10--1 2,04 6,63- 10-6 0,91 
5 22 1,13 10^ 2,03 9,93 10--2 %65 1,73- 10-5 2,17 
6 15 ^ 9 6 10^ 1,99 1,31 10--1 1,04 2,31- 10-5 1,15 
7 3 3,89 10^ 1,14 6 J 9 10--3 ^72 1,13- 10-6 ^ 7 9 
8 2 4,33 10^' 0,84 4 7 8 10--2 0,30 7,89- 10-6 0,43 
9 2 2,24 10^' 0,28 2,54 10--1 0,34 5,63 • 10-5 ^ 2 8 

10 1 ^ 7 4 10^ — 4,30 10--2 
— 9,96- 10-6 — 

12 1 3,96 10^' - 1,70 10--2 
— 3,33- 10-6 -

Table 3.2: Absolute chiralities are compared to the revised Hubble numerical 
index, see also Fig. 3.18. Additionally the number of available galax-
ies per category n is noted. The normalised Kg and Kem display sig-
nificantly lower standard deviation for most categories than k itself. 

has not been available. 

3.3.4 Conclusions 

It has generally been shown that the chirality measure in combination with 

the Monte Carlo method is a viable image analysis method. Furthermore it is 

capable of distinguishing the spirality of galaxies. The combination with nor-

malisation (area, intensity) and re-normalisation (observation angle) techniques 

enhances its applicability for images of arbitrary format. All major initially set 

up demands have been met (p. 63). While templates in the previous chapter 

have not always used the full capabilities of the Monte Carlo method, the num-

ber of triangle calculations employed here stays up to eight magnitudes lower 

than what direct calculation would require. 
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While some structure has been seen for comparison with the revised Hubble 

numerical index a dedicated analysis including the other parameters defining 

the index has to be conducted on preferably larger catalogues. However already 

values for 113 different galaxies have been made available for further studies 

by astronomers. 

3.3.5 List of investigated galaxies 

Table 3.3: Comprehensive summary of chiralities for all investigated galaxies. 

NGC K [«] ^am [k] ^em [k] ar{K) [1] 

2403 - 2 68 10^ -3,91- 10--2 -7,53 10--8 -1,70 10--6 1,21 10--6 

2541 1 89 10"' 4,10- 10--2 2,55 10--7 3,01 10--6 ^ 6 8 10--7 

2683 -1 92 10" -1,76- 10--2 -1,81 10--7 -^25 10--6 ^ 9 6 10--7 

2715 4 61 10^ 4,23- 10--4 4,83 10--9 ^46 10--7 7,28 10--4 

2768 6 11 10^ 1,51 • 10--2 1,55 10--7 4^40 10--6 4 9 6 10--7 

2775 3 21 10^ ^98- 10--4 ^ 2 0 10--9 %09 10--7 8,69 10--6 

2903 6 14 10^ ^87- 10--2 1,51 10--7 ^ 0 7 10--6 9,90 10- 7 

2976 4 74 10^ 9,92. 10--4 ^60 10--8 ^ 3 1 10--7 ^70 10- 6 

2985 -3 16 10^ -3,46- 10--3 -^74 10--8 -9,06 10--7 2,11 10- 6 

3031 -1 84 1021 -1,05 • 10--1 -2,01 10--7 -^81 10--6 4,24 10- 7 

3077 3 98 1 0 " 1,70- 10--2 1,74 10--7 ^ 3 3 10--6 3,37 10- 7 

3079 6 73 10^ ^28 • 10° ^30 10--5 1,76 10--4 1,27 10- 8 

3147 1 01 10^ 1,33- 10--4 1,51 10--9 3,13 10--8 3,65 10- 5 

3166 -3 74 10^ -6,81- 10--2 -7,00 10--7 -1,92 10--5 1,35 10- 7 

3184 -2 74 1 0 " -^83- 10--2 -^87 10--7 -2,92 10--6 3,82 10- 7 

3198 -6 13 10" -2,38- 10--2 -1^8 10--7 -2,00 10--6 1,01 10- 6 

3319 -1 35 10^ - 7 ^ # . 10--2 - 4 9 0 10--7 -^45 10--6 3,14 10- 7 

3344 -1 96 1 0 " -1,34- 10--2 -1,87 10--7 -3,08 10--6 3,79 10- 7 

3351 -5 91 10^ -2,47- 10--3 -2,60 10--8 -4,99 10--7 2 J ^ 10- 6 

3368 -1 55 1 0 " -1,30- 10--2 - i ^ a 10--7 -2,76 10--6 6,11 10- 7 
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Table 3.3: Comprehensive summary of chiralities . . . (continued) 

NGC K 1 k] l̂ m [A] ^am [K] '^em [K] ar{K.) [1] 

3377 9 34 10^ 4 54 10--3 4 79 10--8 2 13 10--6 9 27 10-7 

3379 5 41 10^ 7 44 10--4 8 19 10--9 3 66 10--7 5 02 10-6 

3486 -1 79 10^ -7 11 10--3 -7 30 10--8 -2 04 10--6 8 08 10-7 

3556 5 26 10" 7 59 10- -2 2 10 10--6 3 44 10--5 6 24 10-8 

3596 1 08 10^ 1 22 10--2 1 26 10--7 4 40 10--6 5 14 10-7 

3623 7 83 10^ 6 91 10--4 7 08 10--9 1 34 10--7 1 20 10-5 

3631 -7 53 10^ -2 14 10--3 -2 73 10--8 -7 84 10--7 1 60 10-6 

3672 -7 93 10^ -5 54 10--2 -5 70 10--7 -1 56 10--5 1 90 10-f 

3675 2 64 10" 8 51 10--2 8 69 10--7 1 98 10--5 9 40 10-8 

3726 -9 63 10^ -2 52 10--2 -2 64 10--7 -6 74 10--6 2 45 10-7 

3810 2 34 10" 6 32 10--2 6 49 10--7 1 90 10--5 1 30 10-? 

3877 -3 87 10" -2 53 10--1 -2 60 10--6 -6 96 10--5 6 50 10-8 

3893 -5 21 10^ -2 96 10--2 -3 06 10--7 -1 29 10--5 1 49 10-7 

3938 9 02 10^ 5 14 10--3 5 31 10--8 1 23 10--6 1 14 10-6 

3953 2 41 10^ 3 89 10--3 3 99 10--8 1 06 10--6 1 07 10-6 

4013 5 75 10^ 5 50 10--2 5 61 10--7 9 63 10--6 3 79 10-7 

4030 6 66 10^ 1 70 10--2 1 74 10--7 5 32 10--6 4 19 10-7 

4088 2 30 10" 4 93 10--2 5 07 10--7 1 67 10--5 2 36 10-7 

4123 -2 01 10^ -4 44 10--2 -4 56 10--7 -2 48 10--5 7 07 10-8 

4125 - 8 19 10^ -2 48 10--2 -2 61 10--7 -9 34 10--6 2 20 10-7 

4136 -1 48 10^ -9 21 10--3 -9 46 10--8 -2 97 10--6 6 84 10-7 

4144 -2 88 10^ -2 15 10--2 -2 20 10--7 -6 19 10--6 6 13 10-7 

4157 2 96 10^ 1 28 10--1 1 31 10--6 2 42 10--5 1 80 10-7 

4178 -7 97 10" -6 22 10--2 -3 87 10--7 -4 52 10--6 5 21 10-7 

4189 3 49 10^ 1 76 10--2 1 71 10--7 2 01 10--6 1 06 10-6 

4192 3 02 10^ 2 91 10--1 9 26 10--7 1 20 10--5 2 15 10-7 

4216 -2 45 10^ -3 45 10--1 -1 10- 10--6 -1 44 • 10--5 2 12 10-7 

4242 6 73 10^ 3,32 10--2 3 74- 10--7 1 12- 10--5 1 83 10-7 
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3.3 Classification of galaxies 

Table 3.3: Comprehensive summary of chiralities . . . (continued) 

NGC K k] [«] ^am [K] ^em [A] O-r(K) [1] 

4254 -1 48 1018 -1 93 10--2 -1 21 10--7 -2 13 10--6 9 10 10-7 

4258 3 68 1021 9 12 10--1 1 75 10--6 2 21 10--5 7 68 10-8 

4303 1 02 10^ 6 71 10--3 2 13 10--8 3 43 10--7 6 73 1 0 - 6 

4321 -3 56 1019 -4 96 10--2 -9 53 10--8 -1 32 10--6 1 46 10-6 

4340 1 13 lOi® 8 43 10--2 8 80 10--7 4 52 10--5 4 42 10-8 

4365 5 67 10^ 1 10 10--2 1 13 10--7 2 33 10--6 7 42 10-7 

4374 5 63 10^ 3 09 10--4 3 21 10--9 1 09 10--7 1 96 10-5 

4394 -1 15 IQi? -1 64 10--2 -1 59 10--7 -2 36 10--6 7 54 10-7 

4406 -1 63 10̂ 1 -4 00 10--3 -4 08 10--8 -1 03 10--6 1 75 10-6 

4414 1 39 1018 5 62 10--2 3 50 10--7 5 28 10--6 3 92 10-7 

4429 8 30 10^ 1 95 10--2 2 01 10--7 5 14 10--6 4 71 10-7 

4442 3 36 IQi® 1 04 10--1 1 07 10--6 3 13 10--5 1 04 10-7 

4449 -6 75 10" -4 29 10--2 -4 41 10--7 -9 96 10--6 1 98 10-7 

4450 2 63 10"' 6 12 10--2 6 26 10--7 1 56 10--5 1 18 10-7 

4472 1 08 lOi® 8 96 10--4 1 07 10--8 2 25 10--7 5 38 10-6 

4477 8 94 10^ 1 44 10--3 1 47 10--8 8 10 10--7 1 74 10-6 

4486 -5 39 1015 -3 13 10--4 -3 31 10--9 -7 18 10--8 5 37 10-5 

4487 1 99 10" 1 92 10--1 1 96 10--6 3 96 10--5 6 03 10-8 

4498 -7 71 10^ -3 42 10--3 -3 32 10--8 -3 57 10--7 8 62 10-6 

4501 3 02 10^ 1 78 10--2 5 64 10--8 9 32 10--7 2 70 10-6 

4526 -1 58 10" -3 64 10--2 -3 74 10--7 -1 04 10--5 3 34 10-7 

4527 1 06 1019 2 36 10--1 7 49 10--7 9 36 10--6 2 80 10-7 

4535 7 91 10^ 4 92 10--2 1 56 10--7 2 17 10--6 8 07 10-7 

4548 -1 70 10^ -1 91 10--2 -6 07 10--8 -8 15 10--7 2 46 10-6 

4559 2 03 1019 1 85 10--1 5 87 10--7 7 69 10--6 2 71 10-7 

4564 2 35 10^ 1 06 10--1 1 09 10--6 5 22 10--5 5 42 10-8 

4569 -2 55 1019 -1 35 10--1 -4 28 10--7 -6 00 10--6 3 41 10-7 

4571 7 16 10^ 2 70 10--3 2 64 10--8 6 50 10--7 3 45 10-6 
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3.3 Classification of galaxies 

Table 3.3: Comprehensive summary of chiralities . . . (continued) 

NGC K k] [k] l^am [K] [k] C7r(K,) [1] 

4579 -1 17 -1019 -9 66 10--2 -3 07 10--7 -4 83 10--6 4 12 10-7 

4593 - 8 11 10^ -5 74 10--2 -5 89 10--7 -1 81 10--5 1 05 10-7 

4594 5 17 10^ 3 69 10--3 3 77 10--8 5 76 10--7 3 41 10-6 

4621 -3 88 10^ -1 38 10--3 -1 67 10--8 -7 72 10--7 2 41 10-6 

4636 -1 77 10^ -2 87 10--3 -3 02 10--8 -7 52 10--7 1 58 10-6 

4651 9 70 10^ 1 99 10--2 1 93 10--7 2 84 10--6 7 17 10-7 

4654 -2 28 10^ -1 40 10--1 - 8 73 10--7 -1 16 10--5 1 71 10-7 

4689 -2 61 10^ -1 74 10--2 -1 08 10--7 -1 39 10--6 1 26 10-6 

4710 2 82 10^ 1 62 10--2 1 66 10--7 5 13 10--6 7 58 10-7 

4725 4 07 10̂ 1 1 48 10--2 4 71 10--8 7 65 10--7 2 40 10-6 

4731 3 45 10^' 1 86 10--1 2 23 10--6 4 67 10--5 6 39 10-8 

4754 1 11 10"' 1 87 10--1 1 92 10--6 4 56 10--5 4 88 10-8 

4826 -3 49 10^ -2 35 10--2 -2 41 10--7 -5 30 10--6 2 86 10-7 

4861 1 61 10"' 1 68 10--1 1 90 10--6 4 07 10--5 8 06 10-G 

4866 7 54 10^ 1 94 10--2 2 00 10--7 1 85 10--5 1 53 10-7 

5005 1 09 10^ 8 84 10--3 9 23 10--8 5 00 10--6 3 83 10-7 

5033 5 68 10:8 8 24 10--2 2 62 10--7 2 90 10--6 6 40 10-7 

5055 -3 14 lO^o -1 84 10--1 -3 53 10--7 -5 64 10--6 3 26 10-7 

5204 2 88 10" 3 39 10--1 3 46 10--6 7 19 10--5 3 56 10-G 

5248 -2 71 10" -4 94 10--2 -5 08 10--7 -1 17 10--5 1 81 10-7 

5322 -1 10 10^ -3 96 10--3 -4 67 10--8 -1 92 10--6 1 12 10-6 

5334 -2 53 10^ -2 23 10--2 -2 27 10--7 -3 63 10--6 7 26 10-7 

5364 -3 00 10" -2 88 10--2 -4 13 10--7 -5 88 10--6 2 11 10-7 

5371 2 27 10" 4 78 10--2 4 92 10--7 1 10 10--5 1 54 10-7 

5377 -9 05 10^ -2 47 10--3 -2 52 10--8 -6 22 10--7 5 23 10-6 

5585 1 02 10" 1 25 10--2 1 28 10--7 2 38 10--6 6 76 10-7 

5669 6 48 10^ 6 05 10--2 6 19 10--7 1 06 10--5 2 42 10-7 

5701 5 00 10̂ ® 1 16 10--2 1 19 10--7 2 63 10--6 6 02 10-7 
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3.3 Classification of galaxies 

Table 3.3: Comprehensive summary of chiralities . . . (continued) 

NGC A] M ^am [k] l̂ em [k] ar{K) [1] 

5746 -4,57 .1018 -1,13 • 10° -1,16 10" -5 -^69 10--4 1,96-10-8 

5792 7,00 . lO^G 6,27- 10-2 6,44 10--7 ^48 10--5 2,17-10-? 

5813 ^72 • 1016 2,07- 10-2 2,11 10--7 ^46 10" -6 <^63-10-7 

5850 -9^4 • 10*6 -7,32- 10-2 -7,47 10--7 -^35 10--5 1,56-10-7 

5985 %55 • 10" 7,58- 10-2 1,51 10--6 ^43 10--5 6,26-10-8 

6015 2,11 .1018 ^32- 10-1 ^43 10--6 ^52 10--5 2,70 10-8 

6118 ^36 • lOiG 5,00- 10-2 5,15 10--7 1,69 10--5 1,97 10-7 

6384 8,12 • lOi? 6,07- 10-2 6,24 10--7 1,06 10--5 1,25 10-7 

6503 -4,73 •1018 -3,33- 10-1 -%40 10--6 -^26 10--5 4,03 • 10-8 
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