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by Alexander Sven Schwanecke

The concept of geometrical chirality has been improved introducing a unit of
planar chirality and dedicated normalisation factors which facilitate the anal-
ysis of various complex chiral objects. On the basis of these improvements a
highly efficient Monte Carlo computer algorithm for calculation of the planar
chirality measure has been developed.

I have investigated the planar chirality of characteristic planar chiral objects
such as triangles, gammadions and round gammadions and established the con-
figurations for various parameter fields for which their chirality is maximised.

For the first time I have explored the aggregated chirality of ensembles of 2,
3 and more planar chiral structures including their regular grids. The chirality
of ensembles is found to be a strong function of the mutual positions of the
individual elements to an extent that the ensemble chirality can change its sign.
It has furthermore been established that the chirality of regular square grids
may be nonzero when constituting of achiral objects.

For the first time [ have investigated the chirality and rotational and mirror
symmetries of diffraction field patterns and microscopic images created by dif-
ferent enantiomeric forms of various planar chiral structures. I have established
that the chirality of the diffraction patterns is inherited from the chiral object
itself while the rotational symmetries are lower than in the underlying design.

For the first time a geometrical chirality measure has been applied to quan-
tify the geometry of star distributions in 113 nearby galaxies. A quantitative
parameter has been suggested for classification of galaxies which is based on
the chirality measure.
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Definitions and Abbreviations

Abbreviations

DP  diffraction pattern
PCS planar chiral structure

Definitions
N={0,1,2,3,...} set of natural numbers (including zero);
Z=4{...,—-2,-1,0,1,2,...} set of integer numbers.

Other

The bibliography contains the document object identifier (DOI) for many ar-
ticles. In order to retrieve these articles online append the code to the URL

http://dx.doi.org/.


http://dx.doi.org/

1 Introduction

The advances in micro- and nano-fabrication of the last decade open a com-
pletely new chapter of photonics. A whole new approach in regard to light
matter interactions has been made available. The, nowadays also commer-
cial, availability of production facilities for near arbitrarily structured devices
of dimensions much smaller than the wavelengths of the visible spectrum of
light allows to design specific material properties. Amongst the possibilities
are meta-materials with e.g. negative refractivity, a property which has not
before been found in nature.

The last years have brought numerous articles on topics like photonic crystals
and quantum dots and wires focussing on three-dimensional structures or fields
where the interaction processes are dominated by quantum effects. In between
lies an area which promises to create miniaturized optical devices with broadly
tunable features, like nano-mirrors or polarisation converters [Hooper and Sam-
bles, 2002]. The concept of 3D optical activity has long been known in nature
and found many applications in the various natural sciences. Fabrication tech-
niques, similar to those used for the creation of chips, allow planar structures
with characteristics resembling the 3D optical activity and its rotation of the
polarisation azimuth of light. These planar structures have a special symmetry
property called chirality which is responsible for their behaviour [Papakostas
et al., 2003].

The work by Potts et al. [2004] has resulted into the development of a novel
measure of this planar chirality which enables to distinguish to which level an
object exhibits chirality. Its simplicity and scalability equip it with strengths
that have not been seen in that combination for earlier suggestions of pos-
sible chirality measures. First results allowing to suspect a relation between
this geometrical property and the polarisation azimuth rotation for light mat-
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Figure 1.1: Several examples of planar chiral structures.

ter interactions with planar chiral nanostructures have encouraged a thorough
examination of planar chirality and its prospects for photonics.

This thesis reviews the idea of the planar chirality measure and discusses
properties and refinements which have not previously been noted. Most notably
is the development and discovery of a possible unit for this planar chirality
which follows directly from the concept of the measure.

In practical situations the complexity of problems might make the direct
calculation of the measure impossible within sensible time scales. An approach
to by-pass this limitation using the Monte Carlo technique is developed and
discussed in detail. This work has resulted in a programme suite able to provide
chirality measures for a variety of problems and applications.

Its capabilities are tested for increasing complexity of various planar chiral
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designs. These results are particularly intended to complement experimental
and numerical results gained by other members of the author’s group and its
collaborators. Among the main conclusions is the applicability of nearest-
neighbour considerations for large grids of a single chiral object type.
Experiments performed on planar chiral nanostructures (PCS) round up the
picture. It has been found that specific structures display time non-reversal in-
teractions which appear to stem from the particular chiral design. This obser-
vation would constitute the first observation of a time non-reversal interaction
in nonmagnetic media. Furthermore various peculiarities of the symmetries of
diffraction patterns of PCS are discussed and linked with the term chirality.
Finally the planar chirality measure will be applied to the discipline of galaxy
morphology. Here the Monte Carlo technique proves its strengths and a general
suggestion to astronomers to consider the measure to judge the spirality of
galaxies is made. The successful feasibility study results into the availability of

an analysed catalogue of 113 galaxies ready for inspection by astronomers.

1.1 Chirality

The word chiral stems from the Greek word for hand which is the simplest
example of a chiral object as there exist left and right version (or enantiomers)
of it. The definition used nowadays goes back to Lord Kelvin and the beginning
of the last century [Kelvin, 1904]:

I call any geometrical figure (...) chiral, and say it has chirality,
if its image in a plane mirror (...) cannot be brought to coincide
with itself.!

An intuitive way to communicate what this means can be followed on every
table: Put your hands on the table next to one another with your palms laying
on the table top. You will see that your hands (at least in a rough estimation)
are mirror images of another existing as planar objects on the table top. If
you try to translate and rotate your hands in this plane, you will see that their
shapes can never fully coincide. Only lifting one of your hands out of this

!Citation taken from Le Guennec (2000].
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plane and letting the back of this hand face the table allows their complete
coincidence: Your hands are chiral in the truest sense of the word and you may
disentangle them now.

Two objects which are mirror images of one another are called enantiomers.
The terminology around chirality has largely been coined by the chemistry com-
munity, where various applications of this concept exist on a mostly molecular
level. It stems from the discovery that objects consisting of the same elements
in a mirror image configuration can have significantly different chemical proper-
ties. An introduction into the relations of chemistry and chirality has e.g. been
given by the Nobel laureate Prelog [1976]. Recent publications report of the
various molecular processes which rely on chirality, including areas like enzyme
catalysis which opens the connection to biochemistry [de Jong et al., 2004].

In biology the concept of chirality allows e.g. to distinguish bacteria which
share a mirror-symmetric buildup, but differ considerably property-wise. These
terms have recently even reached public television as advertisement campaigns
refer to them. Lactic acid e.g. exists in two enantiomeric forms denoted D(—)
and L(+) where latter can much better be broken down by the body and its
favoured consumption is suggested by health professionals.

However all these terms have their roots in the concept of optical activity.
In 1846 Faraday discovered the rotation of the polarisation plane of linear po-
larised light when applying a magnetic field. Two years later Pasteur noted
the opposite but equal amount of polarisation azimuth rotation by different
crystals of sodium ammonium tartrate. Finally it took until Lord Kelvin to
understand the difference between magnetic rotation and natural optical activ-
ity and to introduce the term chirality to describe latter phenomenon [Barron,
2000].

Its mathematically developed concept has stimulated research in various ar-
eas. It is frequently cited in work on bi-anisotropic media where 3D chiral
objects like e.g. spirals are investigated [Semchenko et al., 1998]. Also vari-
ous configurations of the in recent years much favoured carbon nanotubes are
chiral.

The theory of classical electromagnetism still develops to integrate and dis-
cuss interactions with chiral structures, so e.g. the development of the chiral
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Maxwell-Garnett mixing formula [Shivola and Lindell, 1990]. Other approaches
particularly by the microwave community use pseudo-chiral materials, e.g. the
so called Q2-materials, to artificially create the coupling of electric and magnetic
fields known for chiral materials [Saadoun and Engheta, 1992].

The development of meta-materials has reached a recent climax with the
discovery of artificial materials with negative refractive index [Pendry, 2000,
2003; Pendry and Ramakrishna, 2003].

Following several theoretical considerations like those by Hecht and Bar-
ron [1994], Viitanen and Puska [1997] and Zouhdi et al. [1999] last year two
publications reported of experimental results on planar chiral nanostructures:
Papakostas et al. [2003] and later Vallius et al. [2003] have demonstrated the
importance of the concept of planar chirality for nanostructured optical de-
vices and triggered a number of further publications [Potts et al., 2004, 2003;
Prosvirnin and Zheludev, 2003; Schwanecke et al., 2003; Wright and Zheludev,
2003].

1.2 Planar chirality measure

The development of chirality measures has occupied various research groups
[Harris et al., 1999; Le Guennec, 2000; Petitjean, 2003; Zabrodsky and Awvnir,
1995] and often resulted into the need for optimisation techniques to actually
calculate chirality [Buda et al., 1992; Buda and Mislow, 1992; Petitjean, 1999,
2002]. Many of these measures use quite complicated approaches and calculate
minimum distances or overlap areas of single objects with their enantiomers.
The obvious disadvantage are difficulties for large or infinite structures and
early limitations for complex structures. An intriguingly different approach
has been started by Osipov et al. [1998]. The physically motivated construc-
tion brought the concept of describing an object as a superposition of 3-point
triangles with it. The geometrically simplest chiral configuration is a set of
three points and the simplicity of this approach results into its potency.
Latter approach was in the end formulated using physical considerations
instead of purely mathematical or geometrical ones. Potts et al. [2004] took on
this next step and while using the underlying concept of Osipov et al. [1998]
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A

Figure 1.2: Potts et al. [2004] describe the chirality of a set of three points (a)
using the tuangle area they define (b). Seen from vertex V the area
is divided by angular bisection (c). The relative difference of the
resulting areas in relation to the overall area of the triangle is the
chiral contribution of vertex V' (d).

redefined the measure to be purely geometrical. This measure finds numerous
applications and is the main focus of this thesis. Its idea again is to consider a
single three-point triangle and to associate a certain chirality with it summing

up the results for all vertices to represent the complete triangle.

The chirality seen by a single vertex uses angular bisection to divide the
overall triangle area into two parts. The relative difference between the areas
to the left and right of the bisection is associated with the chirality, see Fig. 1.2.
An alternative, simpler definition will be introduced in chapter 2. In further
steps and using a set of postulates a multiplication with the overall area of the
triangle and masses in the vertices concludes the calculation:

The measure of planar chirality is defined by summing over all possible tri-
angle combinations of a discretised object with their vertices being at r;, 7;, 7y
within the z,y-plane and corresponding masses of m;, m;,my as [Potts et al.,
2004, Eq. (17)]:

INEEANE

izzzmzmﬂnk ’T”{ — |T1kl —(Tij X Tik) (1.1)

i=1=1k=1

where 7i; = r; — T3, Tik = T — T

The continuous equivalent of an object described by its density function p(r)
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is [Potts et al., 2004, Eq. (18)]:

/// (ri)p rj)p('r')| rij = I’ki(rijxrik) d?r; d%r; d%rp  (1.2)
riJry Jog

35| + | rik

The following chapter will discuss these equations in detail.




2 Investigation of Planar Chirality

The concept of a novel measure of planar chirality developed by Potts et al.
[2004] demands a thorough investigation under the light of its numerous pos-
sible applications. The first part of this chapter is dedicated to point out its
various properties, redefine parts of it to aid consistency and introduce novel
additional concepts like a unit of chirality.

The measure introduces some difficulty for the calculation of large and com-
plex objects as its amount of necessary calculations scales cubically with the
number of involved masses or objects. It will be shown that the Monte Carlo
technique allows to consider a considerably increased amount of structures. A
programme suite using the developed algorithm has been established to tackle
the various numerical calculational needs that arise for the running projects on
planar chirality.

At the example of structures, which are not only abstract but also exist as
nanostructured samples, the trail of chirality for developing complexity will
be followed. Apart from data to be used to compare with past and future
experimental results, techniques to describe the chirality of large arrays will be
described.

2.1 General considerations

The chirality measure proposed by Potts et al. [2004], see Eq. (1.1) and (1.2),
has been compared in great detail to other measures and successfully applied to
create a link to polarisation azimuth rotation of light by planar chiral nanostruc-
tures [Papakostas et al., 2003]. Yet there are still various matters concerning
the significance of the involved parameters and their way of implementation to
be considered—particularly in relation to application and the measuring pro-
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cess itself. The following sections will be dedicated to this discussion and offer

new suggestions as well as an improved understanding.

2.1.1 Definition

The planar chirality index or measure! has originally been motivated by a
relative comparison of the areas when dividing a triangle by angular bisection.
This introduction of the measure is consistent with the discussion of the other
examples of possible triangle divisions and the comparison of the involved areas
within the article by Potts et al. [2004]. However it can be introduced even more
straightforward: Instead of suggesting the complex derivation of the sectioned
areas, it might be motivated as the differences of the triangle sides attached to
each vertex divided by their individual sum. This allows considerably quicker
perception and understanding of the concept both graphically and algebraically

while ensuring equivalence to the original concept.

In anticipation of the upcoming considerations it will be helpful to introduce
a revised definition of the chirality measure already incorporating all of the
to be suggested changes at this stage. While the general idea is not changed,
the refinements provide some significant advantages. For a discrete planar
distribution (e.g. within the z,y-plane) each of the triangle combinations with
the vertices 7;,7;, 7, (in N different coordinates) and their masses m;, m;, my,
will be considered as part of
« = L S g, (fr Il o = ] I~
12 P e v v [Pzl + vl rgel Hlrsl ekl + ragl
X (Tij X Tig) - €obs (2.1)

where ro8 = T3 — 1o With o, 8 € {4, j, k} are side lengths of the triangles and
€obs 1S a normal vector directed at the observer. Latter for the common case

of the object in the z, y-plane will equal €,, the normal vector in +z-direction.

A continuous mass distribution on the other hand, given by its density func-

11t will be referred to solely as chirality where the context is unambiguous.
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tion p(r), can be evaluated using the expression:

1/// il = |rael | Irgel =173l | I7wal = |ragl

n = plro)otrs)otrs) ( + +

12 Jry Joy S T il + [rael — riel + vl |7kl + 7]
X

(’I’ij X Tik‘) - €obs d2’T‘i dZT'j d2'r'k (2.2)

using the same shorthands as before. As this section aims to provide for the
introduction of the Monte Carlo approximation of the chirality measure, only
the discrete version will be discussed. Still most considerations have their
continuous analogon.

The introduced visit of every vertex every single time a triangle combination
is considered, is particularly time-saving for approximation methods like the
Monte Carlo method, as less random numbers have to be generated. Because
every triangle will be evaluated 6 = 1!-2!-3! times and the cross-product results
in twice the triangle area, the overall equation has been scaled by a factor of
12.

For direct, non-approximative calculations of the chirality measure these
repeated visits can of course be omitted. The discrete version, Eq.(2.1), can

equivalently be rewritten employing the constraint 1 < j < k as:

A EZN ZN ZN S (Im’jl —Iriel el = Irgel el = l"'kjl)
- (2
247 A ral vl sl +Irgsl el + I
X (75 X Ti) * €obs - (2.3)

2.1.2 Interpretation of the area normal

The original article [Potts et al., 2004] demands a single valued chirality mea-
sure. Yet their definition results into a vector which of course can be well
motivated in relation to the term twist and its description by polar vectors.
However chirality normally is referred to as a pseudoscalar. If the planar ob-
ject is not located within one of the planes defined by the axes of the coordinate
system, it will become more difficult to discuss, matters like sign changes and
other properties. Introducing the scalar product with a normal vector €ps

creates a scalar chirality measure and generalises the validity for variations of

10
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Figure 2.1: If a planar chiral structure (a) is observed at an angle (b), its virtual
planar image (c) will be deformed and its therefore virtual chirality
will be different to the one measured within the plane of the orig-
inal object. Using the refined definition of the chirality index the
influence of the observation direction can be approximated.

coordinate systems. For the cases discussed within this chapter the objects are
always considered to exist within the z,y-plane defining e.ps = €,.

Furthermore will the influence of a planar chiral object be changed if observed
at an angle. Depending on the case it might be advisable to project the object
on a plane perpendicular to the observation direct and create a new set of
coordinates r and masses m. For small tilts or where internal processes within
the PCS dominate, instead €,ps might just be seen as opposing the observation
direction. It there describes the influence of the relative area proportionality
of the chirality measure.

For an example situation, where these re-normalisations of the measure are
applicable, see Sec. 3.3. Using this understanding of the area normal it might
also be possible to measure 3D chirality defined by a set of 4 points forming
pyramid like structures. The triangular faces of these tetrahedrons are asso-
ciated with their chirality vectors and can be summed up. This could be an
extension of the planar theory to 3D space, but has to part of another investi-

gation.

2.1.3 Area—dependence

The cross-product embedded in x results into a direct proportionality to the

area of an object. However in a truely mathematical sense, an object with the

11
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same symmetry exhibits the same level of chirality regardless of its scale. It is

therefore appropriate to define a separate area-normalised chirality measure

1

Ko = K, (2.4)

where A is exactly or representative for the area occupied by the mass distri-
bution.

If accepting the area influence, this division also allows another interpretation
in relation to k: It represents the chirality in relation to how close a chiral mass
distribution can be arranged with other objects. This is particularly interesting
with regard to the arrangement of e.g. gammadion structures in arrays, see
Sec. 2.3.3.

2.1.4 Mass—dependence

The measure « is also proportional to the cube of the involved masses. Potts
et al. [2004] give an explanation with regard to the possibility of splitting a
mass in two or more, which e.g. would be the case for an increased resolution
of a discretisation. Yet it creates an artificial and pronounced sensitivity to
small changes within the overall mass of an object that can easily dominate
structural hence symmetry affecting property changes. This particularly is the
case for the discretisations of objects which will be discussed in Sec. 2.3 and

stimulates the definition of a mass-normalised chirality measure

N -3
Ko = (Z m> K (2.5)
=1

and, together with the considerations of the previous section, a fully or area-

and mass-normalised chirality measure

1 (& -
Kam = — <Z; mz> K (2.6)

The independence of the involved masses is also legitimate, because the chi-

12
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rality measure is purely geometrical: It cannot detect chirality which stems
from an unequal distribution of mass between the vertices. An equilateral tri-
angle e.g. with different masses in all vertices is chiral per definition, because
its enantiomer cannot be superimposed with it without lifting it out of the
plane.

The same consideration is true for isosceles triangles. Various attempts to
unify geometrical and mass chirality have shown that a chirality respecting both
influences cannot be single valued: All single valued approaches produce con-
ditions under which any scalene triangle can have zero chirality if the relative,

but nonzero masses of the vertices are chosen accordingly.

2.1.5 A unit of chirality

One of the most exciting prospects of this measure of chirality is the possibility
to introduce a unit. The underlying theory is based on the concept of triangle
superposition, hence a master object for its unit should be a triangle or set of 3
points respectively. Investigation reveals that a maximum chiral triangle shape
exists. It can easily be determined setting just a few constraints to fix its scale:

A set of 3 points with equal masses of 1 defines a triangle with the side
lengths a, b, ¢ (named counterclockwise), where initially ¢ > a > band c =1
are chosen to force a unique solution. The area of the triangle A is given by
[Bronstein et al., 2000]

An = a+b+c_ a+b+c_b a+b+c_ a+b+e
AT 2 ¢ 2 2 © 2

2.7)

and its chirality can be evaluated with reference to Eq. (2.1) as

c—a a—b b-c
= - AA . 2.8
A <c+a+a+b+b+c> A (28)

Necessary conditions for an extremum applying above constraints and state-

ments are 5
KA
=0 d —
an 5%

Oka

= =0. (2.9)

c=1

c=1
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2.1 General considerations

The joint solution of these partial differential equations is not trivial, but can
easily be approximated using e.g. Matlab?: The results are shown in Tab. 2.1.
However most of the obtained solutions are complex or contain negative values
and therefore have to be excluded. The solution ¢ = b = ¢ = 1 naturally has
zero chirality and is saddle point alike. The remaining two solutions are sorted

out farther by considering the constraint ¢ > a > b, so that only the solution

Gmax = 0.789914351519603...
bmax = 0.322757101679095. ..
Cmax = 1 (2.10)

remains where

2 2 2 2
NN (8 nA) <0 (2.11)

da2  Ob? 0a Ob

amax,bmax,cmax
confirms the detection of a maximum.

The area of this triangle is Amax = 0.1078. Combined with the initial as-
sumption that all three points have masses of 1, the flexibility of this solution
is challenged in view of area- and mass-normalisation. When employing the
additional constraints A =1 and Zf’zl m; = 1 while abandoning ¢ = 1 one is

left with a scaled and less weighty version of the upper triangle solution:

Omaxn = 2.40535733702210...
bmax,n = 0.982823215081864 ...
Cmax,n = 3.04508625826937 ... (2.12)

which for a fixed length of c¢ still represents a maximum chiral triangle. This

one however is outstanding, because it is fully standardized with a chirality of

R 9.34460344766886 - 107 (2.13)

Q

2For details see: http://wuw.mathworks . com/
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2.1 General considerations

Side a

Side b

1
1.75024-0.79880*1
1.7502-0.79880%*1
-1.2288+-0.64005*1
-1.2288-0.64005*1
0.27267+0.88192e-1%*i
0.27267-0.88192e-1*i
0.14241
-0.63212
-1.1963+0.47577*
-1.1963-0.47577*i
0.78991
1.3738
0.32276
0.50271
-1.4100+0.22398*i
-1.4100-0.22398*i

1
-1.4100-0.22398*1
-1.4100+0.22398*i
-1.2288-0.64005*1
-1.2288+-0.64005*1
-1.1963-0.47577*1
-1.1963+0.47577*i
-0.63213
0.14241
0.27267-0.88192e-1*i
0.27267+0.88192e-1*i
0.32276
0.50271
0.78991
1.3738
1.7502-0.79880*1
1.7502+0.79880*1

Table 2.1: Extrema of the chirality measure x for a specific triangle approxi-
mated with Matlab. The solutions for a and b correspond to one
another consecutively. For further details see text.
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Chirality, _ [K]
200

150

100

Coordinate y

50

——
150

—
100
Coordinate x

Figure 2.2: The mass-normalised chirality of a triangle with masses 1 in the
vertices (0,0), (200,0) and (z,y) shows a maximum for the sketched
configuration (o). Zero chirality is indicated by a thick black line.
(Of course these isolines should meet in the top part of the graph
which has been crippled by the visualisation software.)

which can be used as a unit of planar chirality for the measure defined by
Eq. 2.1. Irrespective of a consideration of K, Kg, Km OT Kem the same funda-
mental (irrational) number 4 which is dictated by the actual construction of
the measure can be used. It will be employed throughout this chapter; addi-
tionally, for these abstract considerations, the units of mass and length will be

chosen as 1.
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2.1 General considerations

In order to communicate the shape of this maximum chiral triangle Fig. 2.2
has been included, where already the Monte Carlo technique to be introduced in
the following sections has been used. Of course an equivalent graph could also
have been created in a non-iterative process, but it was needed at a different

stage for comparison to calculations of more complex structures.

2.1.6 Prospects

The area term of the chirality measure has been introduced because of its cru-
cial influence on the convergence of « to zero for the limit of a transformation
of a scalene triangle into a single point [Potts et al., 2004, lemma 2.4 and
postulate 2.5]. This test however would fail if accepting that chirality is inde-
pendent of the scale of an object. Then convergence of the three points while
maintaining their relative positions would simply provide a constant chirality.
Latter anyhow is only defined for sets of three points and hence its behaviour
for a zero-dimensional object meaningless. Therefore another measure could

be created by omitting the area term in Eq. 2.1.

Simulations using the Monte Carlo technique (Sec. 2.2) have shown that this
measure shows a very similar behaviour for the examples of Sec. 2.3. It however
converges magnitudes faster than the measure discussed here, because it only
considers the types of appearing triangles combinations and not their scale. On
the other hand it returns non-zero chirality for points on a line. The possible
computational gain might outweigh this limitation, particularly for combined
physically motivated modifications to the measure. A thorough investigation

is pending.

From photonics point of view introduction of an angle dependence to sim-
ulate the coupling possibilities for linear or non-circularly polarised light in
general and a substitution of the area dependence by a value comparing with
the applied wavelength will open new doors. This however would leave the

grounds of a purely geometrically motivated and generic chirality measure.
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2.2 Monte Carlo measurements

2.2 Measuring chirality using Monte Carlo integration

Research in photonics and particularly the idea of using a measure of planar
chirality to categorize surface structures and the related hope to be able to
predict their behaviour for light interactions to a certain level stimulated the
need for an algorithm and programme being able to calculate the desired values.
Not only artificially created templates but also arbitrary images should be
valid input to ensure maximum flexibility. When however implementing a
direct calculation method for the measure discussed in the previous section
along e.g. the lines of Eq. (2.3) its limitations will soon make more dedicated

problems unsolvable:

For the case of a 32 x 32 matrix forming a mesh and containing a mass
distribution one would need to consider (32 -32)3 ~ 10° triangle combinations
to calculate the chirality measure when applying the original definition, Eq. 2.1.
Using modern computers this is a matter of minutes. Yet the requirement for
considerably finer meshes for complex objects imposes a limit soon reached,
because the number of necessary triangle combinations scales with N3 for N
discrete masses. There are several methods to improve this situation slightly,
but only an iterative process can eventually be magnitudes faster in computing

a reliable approximation of the overall chirality of a mass distribution.

2.2.1 Monte Carlo method

Many areas of physics use approximation techniques to numerically evaluate
integrals which might otherwise not be solvable at all or only after an unaccept-
able length of time. One of the successful and modern examples is the Monte
Carlo method [Bartlett, 1964; Jain, 1992; Madras, 2002]. Its main idea in re-
lation to our case is the use of randomly chosen triangle combinations and the
probability for a convergence of the calculation far before their number actually
reaches the level of all possible triangle combinations within the investigated

mass distribution.
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2.2 Monte Carlo measurements

2.2.2 Implementation

The construction of a programme complying with the various demands it might
face was in itself a task of large scale. It has been realised using an object ori-
ented programming technique for C++ and subdividing the range of problems
into classes. A main programme invokes instances of these objects and en-
hances their communication. This approach allowed a simplified integration of
the other ideas like additional parameters and analysis techniques within the
now more than a year lasting continuous development process.

It is mainly divided into the areas:
e main programme,
e matrix administration and statistics,

e matrix construction, import and export from and to graphics and ASCII

formats,
e generation of random numbers,
e main analytical algorithms,
e generation of standardized templates,
e general I/O (input/output) controls, logging facilities, file access and
e general mathematical operations and constants.

Necessary of course is a thorough optimisation of all involved variables and
algorithms to use the least resources possible. Apart from the various small
decisions, there have been some major deliberations concerning the random-
ization process which should be noted in the interest of reproducibility:

The generation of high quality random numbers is crucial for a process de-
pending that much on equidistribution and a long period. The C++-internal
clib algorithm is slow in comparison to other modern random number gen-
erators. A significant increase in speed has been gained by employing the
Mersenne Twister developed by Matsumoto and Nishimura [1998].
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2.2 Monte Carlo measurements

Furthermore the number of random number generations can be reduced to
half than when not choosing each of the six planar coordinates of the three
points per combination separately: Instead a list of all nonzero-mass points
containing coordinates and masses can be generated so that only one random
number is needed to choose the index number of a coordinate. Additionally
the chance of involving one or more points with zero mass in a combination is
avoided. Latter would automatically lead to zero chirality and is unnecessary
surplus.

The programme has two main operational modes which refer to graphics
input or artificial matrix creation respectively: Either an image or one of the
more than 150 predefined template sets can be chosen. Images are imported
using the graphics library ImageMagick® enabling the use of all major formats.
The matrix is saved using 256 levels which is thereafter exported to a proof file
in PNG format. This enables an easily accessible verification of the calculated
matrix. Following this step are various statistical measures starting with di-
mension, area, mass and involving more complex issues like centre of mass and
linear regression and correlation.

Afterwards starts the actual approximation process which assumes all values
to be unit-less defining the length one by the mesh of the matrix and allowing
the mass to vary between 0 and 255. It can be described by*:

fn = 5 > k(A) and (2.14)
AEAR
B = mgmm (}Tzﬂ - IT'z:k| N [r]jk| - IT'J:z:| + Irkz:| - trk]i|>
Iri| + |rael  rjel + |7l Pwil + (7]
X (Tij X i) * €obs, (2.15)

where A = (4, j, k) is chosen from the subset of n triangle combinations A, of all
possible triangle combinations A possible for the N, involved nonzero masses
within the mass distribution: A € A,, C A and |A| = N3.

The actual number of triangle combinations n for a real implementation has

SFor details see: http://www.imagemagick.org/
“In general of course accidental multiple considerations of a single triangle combination can
occur which is not reflected directly by this description.
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2.2 Monte Carlo measurements

to be limited by a certain number of maximum calculations nmax. Generally it
will be unknown how many iterations are necessary to reach a certain accuracy.
By not only summing k()), but also storing the sum of (k()))? one can easily
use these two values to determine the standard deviation o of the average

reached after n steps:

2

3
o(kn) = 1157 — | (k(A))2 ol D) I AT

AEA, AEA,

=

Together with an imposed number of maximally to be calculated triangle

combinations nmax & set target for the relative standard deviation
or(k) = —= (2.17)

can form a viable constraint for the duration of the approximation process.

Normalisation techniques

As described in Sec. 2.1.3 and 2.1.4 it is appropriate to additionally deliver
normalised values. While mass-normalisation x,, has been implemented as
suggested beforehand, representative areas A are to be determined to allow for
Kq and Kgm-

For most cases the area of the smallest rectangle (with horizontal and ver-
tical sides) surrounding all nonzero masses can be considered as a sufficiently
accurate approximation, see Fig. 2.3a. This approach has been used through-
out this chapter and is denoted with the earlier introduced index a: &, and
Kam-

There are however cases where e.g. background noise within a picture in-
troduces a much larger than necessary area. The investigation of galaxies in
Sec. 3.3 particularly suffered from this approach. As galaxies mostly have el-
liptical shape or at least an elliptical area defining the space it occupies, an
according algorithm has been developed, see Fig. 2.3 b:

In order to determine the elliptic area as the product of m and the two
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2.2 Monte Carlo measurements

- AT LY 4

Figure 2.3: (a) Area normalisation uses the the area of the smallest rectangle
fitting around a PCS. (b) Elliptical objects like e.g. many galaxies
can be normalised using an elliptic area: First the (mass-) centre
is calculated. In a second step linear regression delivers the axes
of the ellipse. Finally the standard deviations relative to these
axes provide the lengths of the elliptic half axes and define the last
missing parameters of the ellipse.

half-axes of the ellipse several steps have to performed. Initially the centre of
mass is determined to find a rough approximation of the centre of the galaxy.
Afterwards linear regression with the origin of its coordinate system within the
centre of the galaxy and assuming the fitted straight to pass through the same
is performed to determine the direction of the larger axis. Integration over
all masses to determine the standard deviation of the weighted distance of the
masses in respect to both axes follows. These standard deviations proved to be
a suitable representation of the areas occupied by the galaxies in comparison
to what an intuitively chosen ellipses would cover. This allows a differently

area-normalised chirality denoted with an index e: ke and Kep.

2.2.3 Discussion

Two main issues govern the precision of measurements obtained with this
method: Convergence and discretisation. Latter imposes limits of feasibility,
because a finer mesh automatically results into a considerable increase of the
maximum number of triangle combinations: The more complex objects are,
the greater the subset will have to be to sufficiently approximate the overall
chirality measure.

The convergence criterion o,(k) appears to suggest an accuracy which is

about 4 magnitudes higher than actually reproducible when comparing inde-




2.3 Forms of chirality

pendent approximations. Experience has shown that to reach an accuracy of
about a percent the target for the relative standard deviation has to be set in
the region of 1078 to 10~7. Another notable general observation is the fact that
objects of less chirality than others in most cases converge slower in terms of
or(k). Hence a large o,(k) when reaching the maximum amount of iterations

can implicate a near zero chirality.

2.2.4 Summary

An optimised algorithm using the Monte Carlo technique to calculate the chi-
rality measure has been developed. It enables the accurate planning of future
productions of planar chiral nanostructures within the author’s group. More-
over a general tool being able to process many kinds of input is available for
other and general investigations of planar chirality. It has been created in a
modular way to allow future extensions which could target the area of physically

motivated values, introducing e.g. wavelength dependence to weigh chirality.

2.3 Forms of chirality

The application of the algorithm and computer programme developed in the
previous section allows to consider various complex planar chiral structures in
discretisations levels far exceeding those possible with direct calculation meth-

ods. There are several interesting observations to be made:

e When choosing a certain way of describing an object (vertices, lines or
solid body) the chirality measure results into considerably different mag-

nitudes and shows largely differing convergence behaviour.

e It is possible to distinguish two kinds of chirality and furthermore possible
to describe the chirality displayed by regular grids in terms of nearest-

neighbour relations, a concept which is applied in many areas of physics.

This section is dedicated to explore these issues and to follow the development of
chirality for increasing complexity of the structures. The example structures are
motivated by the nanostructured samples that have been created for photonics
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2.3 Forms of chirality

Figure 2.4: The main structures referred to are defined by various parameters:
All have the thickness d of the lines defining the structure in com-
mon. (a) A bar-gammadion or short gammadion is defined by its
eight equal arm lengths { and four bending angles ¢. (b) A round
gammadion is defined by the radius r of the involved circles and
the angle ¢ to which they are drawn. (c) Tilted crosses are defined
by the lengths of the four involved sides [ and their tilt angle .
All structures arranged in a regular square grid have a well defined
pitch p. (d) Perpendicular triangles will be described by a variation
of one of their angles «.

research within the author’s group. The structural definitions are depicted in
Fig. 2.4. For all shown calculations the mass of a matrix entry / intensity of a
pixel is either one or zero: The possibility of further levels will not be used in

this section.

2.3.1 Structure representations

The choice of representing an object either by points in its corners, lines defining
its borders or a solid body has various implications on the chirality measure and
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Figure 2.5: The different geometrical representations of a perpendicular trian-
gle display differing chiralities «,, and convergence behaviour for a
variation of one of its angles o while keeping its area constant at
A = 50000 units (pixels / mesh points).

its approximation. The basic concept can easily be understood at the example
of a perpendicular triangle in which one angle is changed while the overall area
is kept constant, see Fig. 2.4d.

The results according to the three approaches are depicted in Fig. 2.5: While
the triangles made of three points naturally converge within a minimum amount
of calculations (until convergence is tested for the first time), a representation
by lines has the poorest convergence behaviour. Yet it has to noted that the
relative maximum and development of chirality is equal in all cases. Most no-
tably is the nearly equivalent amplitude for the ‘lines’ and ‘solid’ cases after
mass-normalisation. Another result of more general importance is the deriva~
tion of the maximum chiral perpendicular triangle being found for a triangle
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Figure 2.6: Mass and area normalised chirality kg, in units of & of an arbitrary
shaped triangle defined by points in its corners (o): Coordinates
(0,0) and (200, 0) are fixed while the position of the third one (z,y)
is changed. The shape of a triangle displaying maximal chirality
is shown. Zero chirality is indicated by a thick black line. (The
visulisation software introduced an error on top: The zero isolines
should meet and not avoid one another.) See also Fig. 2.2.

with an angle a of around 22.5°.

For arbitrarily shaped triangles one needs to approximate the chirality of a
huge number of triangles to resolve the general behaviour, see Fig. 2.2. A com-
parison with the area- and mass-normalised chirality k4., shows a much smaller
and differently shaped triangle for the maximum and minimum configurations,

see Fig. 2.6. Solid triangles have been investigated along exactly the same lines
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and intriguingly an equivalent behaviour with extremal values for equal shapes
has been found.

2.3.2 Primary (molecular) chirality

Chirality is often sub-categorised into a part which stems directly from an in-
dividual object and another one resulting from the structural arrangement of
objects in relation to one another. Latter is introduced as structural chiral-
ity and could also be called secondary. This distinguishes from the molecular
chirality of a single object which must be the starting point of any investiga-
tion, hence denoted here as primary. This section develops the main concepts
necessary to correctly interpret chirality approximations and discusses various
objects of interest when considered alone.

Triangles

... have already been introduced and discussed in the previous section and their

main properties can be found in Fig. 2.2 and 2.6.

I'-type and (bar-) gammadion structures

The (bar-) gammadions which have been the driving force of the recent ad-
vances on light matter interactions of planar chiral nanostructures [Papakostas
et al., 2003; Schwanecke et al., 2003] can be broken down into four equal struc-
tures formed by two lines of (generally) unequal length which are connected in
one of their ends.

These I'-type structures display three configurations with maximum or min-
imum chirality for line lengths which are roughly of the same magnitude, see
Fig. 2.7. Intriguingly the arrangement in a fourfold rotational structure to form
a bar-gammadion or gammadion® results into a different dependency on the
relative variation of length and mutual orientation of the composing lines, see

Fig. 2.8. The sign change of chirality for large (z,y) in comparison to Fig. 2.7

5The lone word gammadion will in due course only be used to refer to bar-gammadions.
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Chirality, k_ [K]

150 0.15
125 0,02
100 -0,15

>

[0} d

E‘ 75_- -0,31

S 1

§ 50 ] -0,48
25 0,65
0 0,81

0 25 50 75 100 125
Coordinate x

Figure 2.7: The chirality s, of a I'—type structures consisting of two lines con-
necting each of the coordinates (0,0) and (z,y) with (0,50) shows
considerable substructure: Three extrema can be found apart from
the general decrease (but absolute increase) in chirality for large x
and y. Zero chirality is indicated by a thick black line.

should also be noted. This serves as a general example of how distinct the be-
haviour of the chirality measure alters as soon as new objects are introduced,
even when they equal one another and are arranged symmetrically.

For the mentioned research of greater importance is the analysis of bar-
gammadions where all branches are of equal length and a variation solely of
the bending angle is considered. This is the way most of the available samples
have been constructed. Figure 2.9 displays the results of approximations which
used a design roughly resembling the samples described in Papakostas et al.
[2003]; Schwanecke et al. [2003] with a ratio of [ : d = 5 : 1, for the definition

see Fig. 2.4.
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Figure 2.8: The chirality x,, of an unequal sided 4-fold gammadion, extending
the form of the structures measured for Fig. 2.7 contains consider-
ably less structure: Only two areas with chirality of different sign
can be seen. Zero chirality is indicated by a thick black line. This
plot also contains a good example of possible discretisation arti-
facts: The wave-like disturbances between the coordinates (0, 50)
and (100, 150) stem from fewer points and lower mass respectively
that lines occupy when discretised at an angle of 45°.

Using this graph a basic concept for the interpretation of the measurements
can be derived: The unnormalised chirality x does not show show a completely
smooth behaviour. This stems from the varying masses m involved in the
discretisation of the various configurations. The mass-normalised chirality &,
can eradicate this cubic effect to a large extent and should be considered the
main result of any approximation. The area-normalised chirality s, requires
the same treatment resulting into the fully normalised chirality kg, which
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Figure 2.9: A sensible discussion of the chirality x of a gammadion and a vari-
ation of its bending angle ¢ requires the consideration of various
parameters: ¢) the influences of applied normalisations &, £k, and
Kam; 1) the acquired level of accuracy represented by o,(k); ¥ii)
and the discretisation process which is represented by the sum of
the masses (or pixels) describing a certain design. The design pa-
rameters are [ = 50 and d = 10, see Fig. 2.4. The main features to
note are the defined maximum of k,, around ¢ = 0.3 7™ = 54° and
the inversion of the sign for large bending angles.
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furthermore can be used to discuss the matter of close packing while x, can be
ignored. Additionally the reached accuracy has to be checked: Here a target
of o,(k) < 107 was set which has been reached for all approximations within
the set amount of maximum triangle combinations nyax.

The characteristic features are the near quadratic evolution for small and
medium sized bending angles with a well defined maximum for x,, around
¢ = 0.3 7 = 54° and its sign change around ¢ = 0.68 7w == 122° with a relatively
small minimum around ¢ = 0.9 7 = 162°. This intuitively unexpected inversion
of the sign of chirality can actually be perceived subjectively for drawings of
gammadions with different bending angles: The twist one would associate with
these structures changes direction. An illustration of this situation can be found
in Fig. 5b/c of the article by Potts et al. [2004]. Similar results have previously
been gained by Papakostas et al. [2003]; Potts et al. [2004] employing direct

calculation of the chirality measure.

Round gammadions

Stimulated by calculations made by Professor Prosvirnin describing light mat-
ter interactions of small metallic wires of circular shape to represent the gam-
madions and the work on non-reciprocity [Prosvirnin and Zheludev, 2003] a
round gammadion type has been investigated, see Fig. 2.10. The comparison
of its properties with the bar-gammadions will show similarities as well as dis-
tinct differences:

Here the object increases its mass m roughly linearly with increasing defining
angle ¢. This affects the chirality strongly which can be seen by a comparison of
% and Ky,. The furthermore increasing occupied rectangular areafor0 < ¢ <m
gains significant influence on the behaviour of k4y,. These distinct differences
make a physical similarity to bar-gammadions unlikely or are at least not easily
motivated.

However the characteristics of a bell shape and an inversion for high angles
resemble a bar gammadion vaguely. Please also note that 0 < ( < 7 for
a gammadion while 0 < ¢ < 27 for a round gammadion which results in
differently scaled x-axes for the figures.
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Figure 2.10: The chirality of a round gammadion in relation to its defining angle
¢ is alongside the involved masses m and plotted for the design
parameters 7 = 15 and d = 1, see Fig. 2.4.

2.3.3 Secondary (structural) chirality

The second kind of chirality stemming from the relative arrangement of indi-
vidual objects has important implications for light matter interactions where
the distance of the individual objects is considerably smaller than the wave-
length of the light. On the other side diffraction experiments on planar chiral

structures have first been predicted and finally been shown to result into much
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2.3 Forms of chirality

larger optical activity than for sub-wavelength structures [Papakostas et al.,
2003; Vallius et al., 2003] and their interpretation might also benefit from these
results.

Naturally a desire for measurements of the chirality of arrays arises which can
finally be satisfied by use of the Monte Carlo method allowing appropriately
dense discretisation meshes. Once again the main structures of interest, namely
gammadions and round gammadions, will be discussed.

Countless areas of physics use the approach of discussing nearest-neighbour
configurations which will in due course be found as essential for the description
of the chirality of complex arrangements. It will be of particular interest for the
estimation of the relative behaviour of arrays containing infinite or large num-
bers of equal objects. Latter of course is the case for the structures investigated
in Sec. 3.1 and 3.2 where 1mm? is covered with tiny gammadion structures of
few micrometers size.

Yet beforehand, in order to consistently follow the trail of complexity for
chirality, it will be shown how an achiral object can exhibit chirality when

arranged in a grid.

Crosses

While an individual cross does not exhibit any chirality as it is its own mirror
image, its arrangement in a regular square grid creates not only a subjective
perception of twist, but also a chiral structure for most configurations, see
Fig. 2.11a. Naturally tilt angles ¢ with ¥, = n-n/4, n € Z result into
self-enantiomeric structures with zero chirality. So a disussion of the range
0 <9 < 7w/4 will already be comprehensive.

Irrespective of the size of the array (having considered arrays of up to 5 x 5
crosses; not shown) the shape and sign of the dependence stay the same as
in Fig. 2.11 a. Please note the fact that less complex structures display higher
chirality &, (Fig. 2.11b) which has been found for all arrangements of objects
that have been investigated.

For the first time the discussion of nearest neighbours will be applied: It

suggests that the lone arrangement of two next neighbours results into a higher

33



2.3 Forms of chirality

0,00 - 02
0,01 - 0.1
0,02 — 0.0

& 003 — 01 &
o v
0,04} ] -0,2
0,05 . : -0,3

i ! ", -
- +
L a R
0,06 (@) ] [ (0) oot
et ——— Pt ——f—————= 04
000 005 0,10 015 020 0,25 000 005 010 015 020 025

¥ [ ¥ [

Figure 2.11: The chirality for arrays of tilted crosses and the first two nearest
neighbour configurations with tilt angles 1 is plotted for the design
paramaters [ = 80, d = 1 and p = 165, see Fig. 2.4.

absolute chirality (Fig.2.11b, bottom graph) than the consecutive diagonal
placement involving a larger distance (top graph). However the relative shape
of the graphs in both plots stays the same and it appears that the mutual
influence of crosses positioned along the axes of the grid is higher than of those
positioned diagonally. Particular indication is the equal sign of the graph in
plot (a) and bottom graph of plot (b). Of course this discussion is far from

general, but the consideration of further structures will back up this approach.

Bar gammadions

Figure 2.12 depicts the chirality variation for the first three nearest-neighbour
configurations of gammadions in a regular square grid. Once again it can be ob-
served how more complex structures arrive at lower mass-normalised chiralities
Km, see particularly Fig. 2.12 a.

Experiments have shown that the rotation of the polarisation azimuth of
light for large bending angles does not change sign while the chirality of a
single gammadion does [Papakostas et al., 2003, Fig. 2d]. The configuration
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Figure 2.12: The chirality of gammadions and its relation to the bending angle
¢ are plotted in various nearest neighbour configurations (b-d) for
the design parameters [ = 20, p = 45 and d = 1, see Fig. 2.4. Plot
(a) serves the comparison of these graphs to the single gammadion
chirality (solid line).

in Fig. 2.12b however might be a description of the main influence leading to
these results for the first order diffraction experiments and might stimulate
further experimental investigation.

The nearest-neighbour combinations are finally put into the context of large
arrays by Fig. 2.13. When comparing Fig. 2.12b with Fig. 2.13d and Fig. 2.12¢
with Fig. 2.13f one is instantly forced to note their intriguing similarities.
Apart from tiny discrepancies (which can approximatively be described by in-
fluences of the further neighbours shown e.g. in Fig. 2.12d) they are just scaled
versions of one another. Plots (d) and (f) have been artificially created to each

emphasize one of the first nearest-neighbour ‘interactions’.

SWhile this physical term might be out of place, it is helpful to communicates the idea of
the concept.
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Figure 2.13: A number of further gammadion configurations add to the chirality
approximations of Fig. 2.12.

To summarise, despite larger and more complex configuration one can find
the influence of the dominant nearest-neighbour configurations. In a next step
complete arrays, like 2 X 2 and 3 x 3 arrangements have to be put into the
picture. In order to simplify the terminology the configurations depicted in
Fig. 2.12 will be named straight for part (b), diagonal for part (c¢) and far for
part (d). The 2 x 2 array of Fig. 2.13 ¢ contains 4 straight, 2 diagonal and
no far combinations while the 3 x 3 array of Fig. 2.13 e features 12 straight,
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2.3 Forms of chirality

8 diagonal and 6 far combinations’ of the individual gammadions. The same
dominance of the straight combination of course continues for larger arrays.

This allows to discuss several bending angle regions of Fig. 2.13¢ (and e).
While initially the straight combination dominates, its relatively quick decline
to zero in comparison to the diagonal and far combinations allow the sign
change around ¢ = 0.357 = 63° and the maximum shortly afterwards. All
combinations decline to zero for large bending angles which resembles the be-
haviour of both arrays.

The noise appearing for the 3 x 3 array serves as a good example of how
the limitation to a maximum number of random triangles nmax can limit the
acquired accuracy, here reaching o, (k) = 107° for ., = 3 - 10°. This limit is
not far away from the presently justifiable limit to be drawn somewhere between
10'° and 10! random triangles per approximated example considering actual
execution times.

Additionally the sensitivity of the combined chirality of two gammadions to
their distance should be noted: It even leads to a chirality sign change for
their doubled distance depicted in Fig. 2.12b and d. The possibility of specific
distances which lead to near zero chirality over large ranges of the bending
angle variations which is suggested by the continuity of the chirality measure

will have to be investigated.

Round gammadions

The chirality approximations of arrays of round gammadions were stimulated
by a search for near zero chirality and a possible sign swap around ¢ = 7/2 as
for the nonreciprocal difference [Prosvirnin and Zheludev, 2003, Fig. 3, bottom
part, inset]. While Fig. 2.14c and d suggest a developing minimum in that
region allowing zero chirality, an overall sign swap of the chirality appears to
be unlikely for large or infinite arrays.

Here again nearest-neighbour considerations can be applied using Fig. 2.14a
and b as a basis for the straight and the diagonal combination. However their

actual combination, shown in Fig. 2.14d, appears to be more significant in this

"The two ‘far diagonal’ combinations will be ignored at this point.
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Figure 2.14: Complementing the two previous graphs, here the chirality of var-
ious configurations of round gammadions with the design param-
eters r = 15, d = 1 and p = 65. Additionally compare to Fig. 2.10
containing results on a single round gammadion.

case, see parts (c) and (e).

A large maximum around ¢ = 7 manifests itself

while the growing influence of the straight combination enlarges the first local

maximum around ¢ = 0.47 = 72°. At the same time a local minimum between

these maxima becomes more distinct. In any case the sign reversal for large ¢

already seen for the lone round gammadion remains, compare Fig.

2.10.
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Here as well another example for the convergence of the approximations in
relation to the array size and number of maximum allowed random triangles
Nmax can be seen: For a 3 x 3 array and nmax = 10° the accuracy is quite high,
while the approximations of 4 x 4 arrays with nya = 3-10° contain considerable
noise, see Fig. 2.14 e and f. For latter particularly the low chirality of large
defining angles ¢ is resolved badly, which again reminds of the coincidence of
low chirality and high relative standard deviation after the same number of

calculations.

2.3.4 Conclusions

For various examples, which have been particularly motivated by current re-
search, the trail of chirality and its development for increasing complexity has
been followed. A significant amount of data which can be compared to exper-
imental and numerical data of existing and future material configurations has
been provided, where the results shown here only provide a snapshot summaris-
ing the evolved ideas and most important results. At the same time concepts
have been introduced which allow to understand the chirality of composite
PCS: The initial approach dividing into primary and secondary chirality is fol-
lowed by the discovery of the applicability of nearest-neighbour consideration

for chiral arrays.
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3 Application of the Chirality Measure
to Photonics and Image Analysis

The past chapter was dedicated to a general and theoretical discussion of planar
chirality and set its measure apart from its actual appearance and implications
in non-abstract contexts. The main driving spirit for this investigation in the
first place was to establish a measure which thereafter could be used to help
predict the level to which nanostructured surfaces could interact with light,
particularly in the visible and near infrared region of the spectrum. On the
other hand the general influence chirality might have on the symmetries gov-
erning light-matter interactions are largely unexplored. This chapter tackles
these issues and reports initial but striking findings. Matters like the inheri-
tance of substrate chirality to its diffraction pattern and time non-reversal will
be discussed.

Furthermore the viability of the planar chirality measure, as well as its com-
bination with the Monte Carlo method, as an image analysis method will be
tested. The example of spirality exhibited by galaxies will be used as a test-
ing ground. In combination with dedicated normalisation techniques it will be
shown that it constitutes an applicable tool with a straightforward algorithmic
definition and might improve parts of the morphological classification schemes

used by astronomers.

3.1 Diffraction pattern

Last year two independent publications showed how planar chiral structures
can affect the polarisation state of light. Both used arrays of the four-fold
gammadion type structures which have been introduced in Fig. 2.4 (p. 24):
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3.1 Diffraction pattern

Figure 3.1: Observed diffraction patterns. display rotational symmetries (a)
and exhibit a sense of twist or chirality for certain experimental
configurations (b). (The diffraction pattern may not be seen well
for some printers, refer to Fig. 3.8 instead.

Using sub-wavelength sized elements Vallius et al. [2003] were able to detect
azimuthal polarisation rotation of linear polarised light of up to 2.2° for zero-
order transmission. Theoretical considerations allowed them to predict up to
4° of rotation near resonances within the visible spectrum. The seen effect
is even more pronounced for preceding diffraction experiments on structures
larger than the probing wavelength [Papakostas et al., 2003]. They found the
absolute rotation exceeding 30° for certain experimental configurations. Latter
experiment was able to establish a first link to the proposed chirality measure
which was later published in a more comprehensive discussion by Potts et al.
[2004], focus also of the previous chapter. It has to be noted that not only the

polarisation azimuth was rotated, but ellipticity was created as well.

As Papakostas et al. [2003] only considered first order diffracted beams the
natural next step was to include further ones. This opened up several new
possibilities. Diffraction patterns of PCS show a complex structure which in
itself leads an observer to perceive a sense of twist, see Fig. 3.1. In other words
it exhibits inherent chirality. Relating the chirality of a diffraction pattern to
that of the underlying structure will be one of the central topics of the upcoming
analysis. However, the DPs display rotational symmetries as well. Therefore
a more general availability of quantitative symmetry parameters, alongside

with possibilities to compare them to one another, is desirable. Particularly a
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Figure 3.2: (a) Investigated samples consist of metallic layers deposited on Si
wafers where grooves in the metal form the structures. (b-d) Three
main types of gammadion arrays (and their enantiomers) have been
investigated: The sketches depict a variation of the bending angle
maintaining constant pitch and arm length.

discussion of the plane-enantiomeric symmetry is imperative for PCSs.

In order to achieve these goals, several analytical techniques had to be devel-
oped and combined. After an introductory description of the used experimental
setup, their construction will be discussed in detail followed by an analysis of

the results.

3.1.1 Experimental setup

The investigated planar chiral structures are arrays of gammadion type struc-
tures with bending angles of ( = +45°, +90° and £135°, see Fig. 3.2b-d. They
have been manufactured using a combination of direct-write electron beam
lithography and ion beam milling. The actual gammadion structure is formed
by grooves in a metallic layer which is situated on a crystalline double-polished
silicon wafer. The metallic layer consists of 100 nm of gold surrounded by 20 nm
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Figure 3.3: Light of a 633nm He-Ne laser passes a variable linear polariser
and is reflected on a sample containing planar chiral structures.
Diffracted light is analysed by a second linear polariser before hit-
ting a 10 x 10 cm? ground glass. Image capturing is performed by
a CMOS camera.

of titanium on each side, see Fig. 3.2a. This type of so called ‘negative’ de-
sign is repeated in a regular square array of pitch p = 4 um. Using the terms
introduced for gammadions in the previous chapter, they have an arm length
[ of 1.4 ym and a thickness d of about 700nm, analogous to those used by
Papakostas et al. [2003].

Visible light at wavelength A = 633 nm emitted by a He-Ne laser is selectively
transmitted by an initial linear polariser and directed at normal incidence upon
the planar chiral surface, see Fig. 3.3. The diffracted beams are analysed using
a second rotating polarisation filter situated in front of a 10 x 10 cm? ground
glass. A Canon EOS D60 low-noise CMOS camera captures the formed image
within controlled exposure times. In substitution of the camera and ground
glass either an intensity detector or a polarisation state sensitive detector have
been deployed for comparison. It has to be noted that the zero-order beam
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Figure 3.4: The data processing involves several steps and analytical methods:
After the initial conversion individual symmetry parameters and
comparisons to corresponding configurations are obtained.

is blocked by the central mirror. Therefore its intensity cannot be detected
and is arbitrarily assumed to be zero within all upcoming considerations and

calculations.

3.1.2 Analytical methods

Using intensity or polarisation state detectors to measure individual diffraction
orders requires a considerable amount of time and elaboration of the employed
positioning system. Several parameters, non the least precise angular align-
ment are crucial to ensure reliable measurements. In order to measure chirality
within the diffraction pattern one has to include a sufficient amount of diffrac-
tion orders. This is not only necessary in order to get a representative set of
data, but also to enable point combinations forming scalene triangles, hence
allowing nonzero chirality, which only few combinations of first order beams
comply with, cp. Sec. 2.1.4.

These considerations stimulate the desire for a method which can easily be
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3.1 Diffraction pattern

applied to a large number of configurations. Furthermore, the perspective of
future intensified production of chiral arrays with shorter production cycles
urges for dedicated assessment and classification methods.

Using a photographic method followed by standardised computational al-
gorithms is the way chosen to tackle this problem. The dimensions of the
investigated samples allow to detect diffraction beams up to the second order
which can be presented in a 5 X 5 matrix. An algorithm has to be able to con-
vert digital images to equivalent intensity matrices and thereupon analyse their
symmetry properties. On one hand, using chiral samples, obviously planar chi-
rality should be measured, on the other hand rotational and mirror symmetries
should be detected.

In order to tackle these different issues a package of computer programmes
has been developed. The implemented process structure is sketched in Fig. 3.4

and detailed within the following sections.

Integration and preparation

An algorithm based on the programming language Perl' and the graphics li-
brary ImageMagick? has been developed to convert supplied Jpeg pictures of
diffraction patterns into 5 X 5 intensity matrices. Diffraction patterns of regu-
lar square or rectangular arrays produce distinct and localised maxima. Given
rough constraints—the number of diffraction orders and a rough estimate of
the area they span over—the programme localises and logs their positions. Lat-
ter are estimated quite accurately using a method analogous to calculating a
centre of mass.

The Jpeg image format created by the described setup encodes colors in 24 bit
using the RGB scheme. This abbreviation relates to the three used base colours:
red, green and blue. The He-Ne laser being a red light source, only information
of the red channel with a remaining resolution of 8 bit equivalent to 256 levels
can be processed. This reduced resolution excludes the possibility of direct

use of intensity information like a maximum intensity because of unsatisfying

'For details see: http://www.cpan.org/
2For details see: http://www.imagemagick.org/
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Figure 3.5: (a,b) Originally taken color images (a,b) first undergo (RGB) color
separation: The inverted red channel is shown in grey-scale (c).
Afterwards an integration process for each detected maximum ini-
tiates (d).

accuracy and comprehensiveness: The large anticipated intensity differences
between the orders would lead to a considerable reduction of the amount of

orders which can be observed and resolved simultaneously.

This problem can be solved by allowing the camera to saturate for intense
diffraction orders and introducing integration methods: An intensity cross-
section of a diffraction order is sketched in Fig. 3.6 a. Saturation and noise
will distort the measurement and deform the obtained intensity distribution,
compare part b. Two different methods have proven to be successful: Both
integrate over a fixed area around the previously determined centre of the
diffraction order and ignore all values below the noise level. Analysis of initial
observations showed that the the noise was considerably smaller than 2% of

the saturation level. The fixed noise threshold has consequently been set to
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Figure 3.6: (a) A schematic cross-section through the intensity profile of a
diffraction order is (b) deformed by the noise level and satura-
tion of the detector. The picture to 5 X 5 matrix conversion al-
gorithms use two different approaches both neglecting values below
the noise level: (c) The obtained values are merely integrated by
method A. (d) The noise level is used as a threshold to convert mea-
surements into a (0, 1) step-function which is thereupon integrated
for method B.

an intensity of 6 compared to the maximum level of 255. Method A sums
the intensity values within the depicted area, compare Fig. 3.6c. Method B
instead converts the intensity distribution to a (0,1) step-function assuming
the value ‘zero’ below the noise level and ‘one’ elsewhere. A discussion of the

applicability of these methods follows at a later stage alongside experimental

results.

Correlation and symmetry analysis

Once an intensity matrix corresponding to a diffraction pattern has been cre-

ated, an analysis of its symmetry can easily be performed using a well estab-

47



3.1 Diffraction pattern

Al v Bl [E]

122 a5 | BlAEH 1]2]3]4]s
Sle|7]8]o]10] | [10]a]8]|7]6 6/7]8]9]10
2 111 12f8]14/15] | |15/ 14 &Y 12| 11 11/12
& |16]17/18/19]20| i [20/19/18]17|16
21/22[23]24]25] | [25]24]23]22]21 & 1

@ : o 25|24|23|22| 21

C] m D) 20/19|18|17|16
21[16[11[6][1] | [1]6]11]16]21 1514
R 2| | el
23/1cfR 83| | [3]8[E1823
24/19|14/9 4| 1 |4]|9|14/1924
25/20/15/10/ 5| i |5 10/15/20]25

Figure 3.7: For a symmetry analysis using linear correlation the 5 x 5 inten-
sity matrix of a diffraction pattern (A) has to be considered as a
vector with 25 entries. In order to detect inherent symmetries it is
compared to vectors of reordered matrices: The examples show the
mirror image (B) along a line m, a rotation by 90° (C) and both
operations performed after one another (D). A possible center of
symmetry can be found even more easily by comparing the first half
of matrix (A) shown as (E) with the last half in reverse order (F).
For the case of comparing two matrices one has to identify the cases
(B) to (D) with the ones corresponding to the second matrix. Of
course a direct comparison with the unaltered second matrix can
be performed additionally.

lished mathematical tool:

The linear correlation R of two sets of data X = {z;}, Y ={y;},i=1...n

is defined as
B =2)Y=7)

BXY = PX —292) E(¥ -0

(3.1)

where E(-) denotes expectancy and Z, 7 the arithmetic averages of the sets X, Y
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3.1 Diffraction pattern

(and vectors @,y respectively) [Bronstein et al., 2000]. The correlation varies

from —1 to 1, the latter indicating perfect correlation, zero no correlation.

In order to determine the symmetry of an intensity matrix its entries have
to be reordered as a vector (z;). The vector resulting of the transformed,
e.g. rotated matrix (y;) thereupon can be correlated to it®. The derived value
measures the level of similarity of the matrices and vectors respectively, hence—

in this case—the level with which a matrix displays the certain symmetry.

But moreover it is possible to compare observations, e.g. of two enantiomeric
structures: By successively applying all conceivable symmetry operations to one
of them followed by correlation to the unaltered other one, a transformation

that might be linking the two cases can be found.

Inspired by microscopic observations of the structures, detailed in Sec. 3.2,
the particular interests are whether the fourfold symmetry of the surface struc-
ture is inherited to the diffraction pattern and whether equal observations of
enantiomers are mirror images of one another or more extraordianarily linked

e.g. by an anti-symmetry [Shubnikov and Belov, 1964].

Programmes, again using the programming language Perl, have been writ-
ten to perform the tasks of first of all comparing a matrix with itself after the
application of various transformations. Secondly they are able to compare and
judge the links between two arbitrarily different matrices. The used symmetry
transformations are a 90°-rotation, reflection and the combination of the two.
Additionally the quality of the centre of symmetry is established and the in-
tegration methods A and B described in the previous section are correlated.

Figure 3.7 illustrates application and resulting reordering for all of these cases.

From statistics point of view correlation values have to be verified by de-
termining their significance. While it has been excluded from the following
discussion for lucidity, a t-test has been performed for all correlations and,
where conclusions have been made, a sufficient significance has been reached—
in many cases allowing a probability of non-validity of the zero hypothesis of
lower than 0.001.

3Subsequent references to matrices shall likewise be seen as references to their vectors.
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3.1 Diffraction pattern

Chirality

Following correlation analysis the chirality displayed by the observations is
evaluated. The discrete chirality measure « which has been discussed earlier is
used for this purpose. Instead of using the proposed chirality unit, within this
section a near original definition of the measure will be employed [Potts et al.,
2004, Eq. (17)]. It is defined by summing over all possible triangle combinations
of a discretised object with their vertices being at r;, 7;, 7, within the z, y-plane

and corresponding masses of m;, mj, my, as:

1% = i ITZ]| |7’zk|( X Tiz) - & (3.2)
”l MMM rii X T) - € '
4 i=1 j=1 k=1 7 |r2]| + |"°zk| “ ¢ z

where 7; = 1r; — 71, Ti, = T — 7; and €, is a normal vector in +z2-direction.
Differences in absolute intensity for the investigated DPs resulted in the use
of various exposure times with according relative intensities. This additional
parameter is compensated for by normalisation: The intensity sum for each
single matrix is integrated. As it corresponds to the mass term in Eq. (3.2) it

can be used to normalise the chirality arriving at the following expression®:

_! im _3i§:immm lT”‘_mk‘(r'»wm)-é (3.3)
4 i=1 l i=1 j=1 k=1 o 17‘]\+17”kl R .

A Perl routine invokes a C++ programme for all acquired 5 x 5 matrices which

successively applies this formula.

3.1.3 Results

Before a detailed consideration can be begun, several issues have to be resolved:
Using the photographic method described above its equivalence to direct de-
tector measurements has to be questioned. On one hand the saturation which
is used deliberately might well change the relative intensity levels of the vari-

ous diffracted orders, on the other the changes can be expected to be strictly

4A further discussion of mass-normalisation can be found in Sec. 2.1.4.
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3.1 Diffraction pattern

monotonous. Latter means that the symmetry and structure of the diffrac-
tion pattern ought to be retained which is found experimentally. Concerning
the first question, correlation of detector to photographic data lead to values
of about 0.75 indicating an agreement better than might be expected. More
importantly however the symmetries found in the patterns exhibit themselves
equally regardless of the adopted method.

Calculations made by Prof. S. Prosvirnin analogous to those used in Prosvirnin
and Zheludev [2003] confirm the expectance of the centre of symmetry as the
main symmetry ruling each DP. Since this constraint must be obeyed by any
DP regardless of e.g. the polarisation configuration, it is also a measure of the
quality for derived matrices. According to deliberations employed in Fig. 3.7
(case E—F) linear correlation delivers values of more than 0.95 for all matrices
that have been taken into consideration.

At the beginning two different integration methods have been suggested. In
addition to all other calculations the matrices derived by those two methods
have been correlated for each single diffraction pattern. Their near one corre-
lation for the majority of all taken pictures (and particularly for all included in
the following discussions) lets both methods appear equivalent and a further
distinction between their results will not be made.

Stability measurements recording the DPs resulting from realignment of the
‘crossed’ analyser verified a stability of the pattern within at least £5°. This is
in agreement with expected conversion ratios resulting from azimuth rotation
and ellipticity [Papakostas et al., 2003]. Furthermore, the fourfold rotational
symmetry of the underlying 442 wallpaper group® gammadion pattern has been
tested by rotating both polarisers in 90°-steps resulting into equivalent obser-

vations.

Fourfold symmetry

This fourfold rotational symmetry (C4) should also establish itself within the

diffraction pattern. For parallel polarisers this seems to be the case, see

5A very graphic introduction into wallpaper symmetries can be found in Ostromoukhov
[1998] or at http://xahlee.org/Wallpaper_dir/c5_17WallpaperGroups.html.
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Figure 3.8: Symmetries of diffraction patterns of an open gammadion can be
described by simple geometric structures (blue): (a) For paral-
lel aligned polariser and analyser (green) the expected fourfold
rotational symmetry (Cy) appears to be retained. (b) The con-
trast gained by crossing the polarisers reveals the actual twofold
symmtetry (Cs).

Fig. 3.8a. When however the analyser is oriented perpendicularly in respect to
the initial polariser the gain in contrast reveals that the DP mereley retains a
twofold symmetric structure, see Fig. 3.8 b.

This lower symmetry is imposed by the linear polarisation of the probing
light and exposed in particular by the azimuth rotation capabilites of the PCS.
Despite conventional wisdom that a grating symmetry directly determines the
symmetry of its DP, it is shown that optically active planar materials can alter
the symmetry. In this case not the chirality of the grid, but the chirality of
the individual element is responsible for that change which is explained by
Papakostas et al. [2003] and in addition motivated by the following.

Inherent chirality

It is possible to measure the chirality of a diffraction pattern. Yet their chi-
ralities have to be normalised by intensity (and mass respectively) in order to
diminish the influence of, on one hand, different exposure times used within

the experiments and, on the other, discretisation effects for the calculated data.

52



3.1 Diffraction pattern

A
3 1,0 - . X
2 c
= X
£
o 0,5
[
=
© B
= 0,0 h. 4
[&3 B*
c
8 X
©
o -0,5
S c
*g A
e %*
£ 14 A
& 1,0 x
T ¥ T T T T T T
-1,0 05 0,0 0.5 1,0

Single gammadion chirality, normalised

Figure 3.9: The chirality of diffraction patterns is qualitatively related to the
chirality of the illuminated structure: Values for several gamma-
dions (A — C) and their enantiomers (A* — C*) are shown. Their
bending angles are {a = 45°, (g = 90° and (o = 135°, see Fig. 2.4
(p.24). For both cases the chirality has been scaled arriving at a
value of 1 for type A.

Furthermore, a value of 1 is assumed for the chirality displayed by an open

gammadion (¢ = 45°) to standardise the comparison.

The S-shaped structure of the cross-polarised DP in Fig. 3.8 b motivates a
(clockwise) sense of twist. This term is closely related to chirality and how it
is understood. All cross-polarised diffraction observations on PCS have shown
to display chirality—yet to a very different extent depending on the type of
gammadion.

The major expectation, enantiomeric sign reversal of the associated chirality
is met and has been tested for various gammadion array types (bending angle,
size, pitch) and experimental configurations (incident polarisation angle). This
shows that the observed chiralities actually stem from the underlying PCS and

not from any other influence.

The actual link between grid design and diffraction pattern however can
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3.1 Diffraction pattern

be created in a much more direct fashion: Figure 3.9 plots the chirality dis-
played by several diffraction patterns and compares them to the structural
chirality that comes along with a single gammadion of the corresponding DP,
cp. Fig. 2.9.

As only quadrants I and III of the coordinate system are populated, these
chiralities strictly agree sign-wise. Yet they are clearly not on a line suggesting
a qualitative, non-quantitative link. Interestingly the sign change for gamma-
dions with large bending angles (¢ = 135°) that the single gammadion chirality
suggests is found in the DP. This is in contrast to the relation of gammadion chi-
rality to azimuthal rotation of linearly polarised light described by Papakostas
et al. [2003, Fig. 2d] where this sign change had not been found.

The distinct differences between the chirality of a gammadion array to that
of a single one, cp. Fig. 2.9 & 2.13, suggests that the observed interaction is
dominated by the chirality and polarisation conversion capabilites of a single
gammadion. This can be understood comparing the probing wavelength of
633 nm with the involved sizes within the array: It approximately equals the
groove width and in contrast cannot span the distance between the grooves of
two separate gammadions. This might of course be different for the case of
sub-wavelength structures as used by Vallius et al. [2003].

The quantitative inconsistencies apparent in Fig. 3.9 can stem from various

issues:

e Only up to second order beams have been taken into account using the
5 x 5 matrices. Bare eye observations of higher orders show that a consid-
erable amount of the exhibited chirality of the overall pattern is observed

for higher orders.

e The zero order beam has been blocked. Hence, the definition of the
chirality measure employed implies all of the summed triangles involving

this beam to be of zero value.

e This geometric chirality measure does not recognise chirality stemming
from an unequal mass / intensity distribution within the vertices of a
triangle in general. For the many isoscele or even equilateral triangles
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3.1 Diffraction pattern

linking these 25 orders it merely assumes a zero value while masses in

two or more vertices differ, cp. Sec. 2.1.4.

e The chiralities had to be mass- / intensity-normalised in order to allow
comparison. How sensitive this normalisation actually is, can be seen
from examples discussed within the previous chapter. The conversion
ratios of the different types of gammadions and hence the intensity de-
tectable in cross-polarised configuration differ considerably, forcing to use

significantly different exposure times.

e Finally, the manufacturing process involves a discretisation of the gam-
madion array, as well as the calculation of the single gammadion chirality
does. Resulting relative changes stemming from differing thicknesses or

slight disorientations might as well be responsible.

Nevertheless, opening a qualitative link between the chiralities of grid design

and diffraction pattern has been successful.

Enantiomeric symmetry and time reversal

Comparison of cross-polarised DPs made of two enantiomers under equal con-
ditions show that, despite the underlying arrays being mirror images of one
another, their DPs are not (see Fig. 3.10a/b). This condition is referred to
as broken enantiomeric symmetry. Barron [1994] argues that enantiomeric
time reversal—following the substitution by an enantiomer with time reversal—
ought to be obeyed for chiral structures which in essence he relates to an overall
ruling CPT symmetry. Yet if the enantiomeric symmetry R is violated, one
can deduct that a time reversed 7 scenario must be broken as well to restore
the overall postulated enantiomeric time reversal symmetry R7 [Schwanecke
et al., 2003].

In order to allow a number-wise verification of this visual analysis and further
systematic investigation of various samples, the symmetries linking equal ob-
servations on enantiomeric gammadions have been compared, see Fig. 3.7. The
symmetries equality, mirror image and 90°-rotation merely lead to correlations
of less than 0.5. On the other hand, the comparison of a DP matrix with the
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Figure 3.10: The cross-polarised diffraction pattern of an open gammadion (a)
and its enantiomer (b) display similar intensity distributions. The
mirror image (c) of the enantiomeric DP yet does not equal the
original DP (a) resulting in broken enantiomeric symmetry. Sub-
sequent 90°-rotation however yields equality (d).

mirror-imaged and 90°-rotated version of its enantiomer correlate with values
greater than 0.94 for the open type of gammadion and holds nearly as well for
other investigated PCSs. This symmetry has been applied to the visual exam-
ple in Fig. 3.10, underpinning the numerical findings by receiving near-equality
between parts a and d.

Overall, these considerations allow two striking conclusions: Despite the use

of a mirror symmetric structure, the resulting field structure is not mirror
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3.2 Polarisation sensitive microscopy

symmetric. This cannot be explained by an ordinary simplifying description
like the interaction of a chiral structure with just the linear polarised electric
field of the incident light wave. In contrast it has to be described by a more
complex model referring to the complete triad S = E x H of the wave. The
involvement of the magnetic field and the possibility to obtain a DP equaling
the initial case by following the mirror imaging of the enantiomeric DP with
a 90°-rotation suggest to describe these findings in terms of black-and-white
symmetry or Shubnikov anti-symmetry [Landau and Lifshitz, 1964; Shubnikov
and Belov, 1964].

3.1.4 Conclusions

A semi-automated process structure involving several tools and allowing var-
ious kinds of symmetry analysis has been developed. It particularly enables
and enhances future systematic investigations of arrays of PCS. Nevertheless,
already several results have been gained by its application: Diffraction of linear
polarised light on fourfold-rotational gammadion arrays displays only twofold-
rotational patterns, which results from optical activity triggered by the chirality
of the structure. These diffraction patterns themselves exhibit chirality which
appears to be closely linked to the chirality of the base elements (gammadions)
of the illuminated array. Observations of enantiomeric arrays show that they
are actually not connected by the same enantiomeric transformation applied
to the structure. They in contrast are equal only when applying a further
90°-rotation implying not only a violation of enantiomeric symmetry but also

broken time reversal.

3.2 Polarisation sensitive microscopy

Some of the questions discussed in the previous section were motivated by an
extensive preceding set of microscopic observations on various kinds of PCSs
with a special focus on gammadion arrays. The main results that stimulated
further investigations will be summarised in this section. Parts have been
published in Schwanecke et al. [2003].
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Figure 3.11: Experimental setup for the experiments involving the polarising
microscope, further details can be found within the accompanying
text.

3.2.1 Experimental setup

All data was gained using the polarising microscope Meiji ML 9400 and re-
flection mode illumination with a white light halogen source (Meiji MA 326
bulbs). The observations have as well been captured using a 6.3 megapixel
low noise CMOS CCD camera (Canon EOS D60), mounted on the trinocular
tube of the microscope, see Fig. 3.11. Apart from topographically motivated
images the light incident was linear polarised and its electric field oriented
horizontally in relation to the pictures displayed in this section (Fig. 3.12b-d
and 3.13a/b). The reflected light was thereafter analysed using another lin-
ear polariser oriented perpendicularly in ‘crossed’ position. This particularly
results in metallic regions appearing dark. Additionally, the involvement of
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3.2 Polarisation sensitive microscopy

Figure 3.12: (a) The topography of an array of open gammadions (observed
unpolarised) helps orientate within (b-d) cross-polarised observa-
tions. (b) External branches attached to the vertical or horizontal
centre part appear coloured. The different types of response lo-
calising either near the walls (orange) or in the centre (blue) of
the external gammadion branches are emphasized (c) in contrast-
enhanced quasi-monochromatic observations at a wavelength of
530 nm, yielding multiple-bar structures. (d) These features are
also seen for different gammadion sizes and pitches. Single gam-
madions are highlighted by a yellow box.

narrow-bandwidth spectral filters allowed quasi-monochromatic illumination
which enhanced resolution and contrast considerably. A rotating table allowed
to precisely control and alter the incident polarisation angle in respect to the

structure. All photographs shown here have been taken using a 40x objective.

The gammadion arrays resemble those introduced in the previous chapter,
but with slightly changed dimensions: The arm length [ measures 4 um (1.4 ym
for Fig. 3.12d) and the pitch 10 pym.
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3.2 Polarisation sensitive microscopy

Enantiomer

90° rot.

JOMIA

Figure 3.13: Contrast enhanced cross-polarised and quasi-monochromatic (A =
600 nm) observations of a gammadion array (a) and its enantiomer
(b) are not mirror images of one another (c¢). However introducing
an additionally applied 90°-rotation (d) reveals the link between
the enantiomeric observations.

3.2.2 Results

The observations most noticeably show a colouring of branches oriented at
45° in respect to the electric field of the incident linear polarised light, see
Fig. 3.12b, d. This holds for several types of gammadions including those with
bending angles ¢ of £45°, £90° and £135° and various sizes. The colour-

ings destroy the fourfold symmetry that the original topography had shown
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3.2 Polarisation sensitive microscopy

(Fig. 3.12a). Further distinction is defined by differing localisation of the
regions that appear to effectively reflect or re-emit the polarisation rotated
light: Some branches appear bright in their centre while others have two bar-
like bright zones next to the structure walls. Latter is emphasized for quasi-

monochromatic illumination as seen in Fig. 3.12¢ and 3.13.

Intriguingly the colouring differs between enantiomeric versions of gamma-
dion arrays. The external branches connected to the vertical or horizontal
centre part of the gammadion swap their appearance. This results in observa-
tions of two enantiomeric arrays not being mirror images of one another. Just
as has been discussed in the section about diffraction patterns, this broken
enantiomeric symmetry implicates a time non-reversal interaction. It appears
to be the first report of this kind for non-magnetic materials which so far were
believed to obey time-reversality. The introduction and imposition of the 2D
chiral twist on the field structures might be understood as the anologon to the

otherwise involved magnetic fields of the interacting substrate.

The observations are reproducible regardless of microscope magnification
(40x, 10x, 4x), illumination area or observed part of the sample arrays. It
is easily observable with a bare eye looking into the microscope and robust
in respect to artificially introduced misalignments of the crossed polarisers for
several degrees. Furthermore, rotation of the sample results in continuous

fading of the previously coloured branches and expectedly restores every 90°.

3.2.3 Conclusions

Complementing the results of the diffraction experiments, microscopic imaging
has been able to verify their results using a completely independent technique:
The interconnected parts of the gammadion structure lead to different responses
for branches connected to the central gammadion parts oriented parallel or
perpendicularly in respect to the incident linear polarisation. The response
is spectral dependent and shows two different localisation types. The broken
fourfold symmetry furthermore violates the expected enantiomeric symmetry

and resulted in the discovery of a time-nonreversal interaction.




3.3 Classification of galaxies

3.3 Classification of galaxies

So far planar chirality has only been discussed in a context of optical inter-
actions. On the other hand the introductory chapter already mentioned the
plentiful appearance of the term chirality within many natural sciences. Here,
an approach to apply the measure to galaxy classification will be presented.
Galaxies are mostly categorised either by their spectrum or by their morphol-
ogy. Latter involves various parameters—chirality often being explained along-

side the terms of twist or spirality might become one of them.

3.3.1 Existing standards

The roots of nearly all major classification schemes go back to Hubble [1926,
1936] and try to relate to an underlying sequence of physical processes. Many
major catalogues were classified by sighting. However even relying on expe-
rienced astronomers Naim et al. [1995] state that their classification of 831
galaxies using 6 independent researchers already introduces an uncertainty of
1.8 in units of the Revised Hubble numerical inder T which users integers be-
tween —6 and 11 [de Vaucouleurs, 1959, 1963; de Vaucouleurs et al., 1991]. So
there still is room for refinements or improvements applying rigorously defined
rules and employing computational rather than human ressources.

The parameters that can be taken into consideration are numerous. Sandage
[1975] provides a comprehensive overview of the main approaches. Examples of
particular variables are ellipticity, the concentration of mass in the centre, the
level to which spiral arms are developed (luminosity classification), etc. Naim
et al. [1995] found that latter definition appears not to be well cut. As it refers
to the spirality of a galaxy, it quite probably has a strong link to chirality.

Frequently cited catalogues like the Third Reference Catalogue of Bright
Galazies [de Vaucouleurs et al., 1991} and its predecessors or the ESO catalogue
[Lauberts and Valentijn, 1989] contain several tens of thousands of classified
galaxies. For more modern surveys spanning several tens of millions of galaxies
the use of manpower in order to classify galaxies has reached its limit of feasi-
bility. Many parameters are already mathematically well defined and modern
image analysis methods will be able to distinguish between many of them. Yet
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3.3 Classification of galaxies

NGC 3379 NGC 3184 NGC 4731
Figure 3.14: Several galaxies differing in spirality and chirality with their NGC

numbers, taken from the catalogue by Naim et al. [1995].

the availability of a chirality measure which is integrable and fully scalable is

only recent.

3.3.2 Implementation

This motivated the application of the programme suite introduced within the
previous chapter. A catalogue of 113 nearby galaxies has been made freely avail-
able on the internet: http://astro.princeton.edu/ frei/galaxy_catalog.
html by Frei et al. [1996]. It includes additional parameters like the revised
Hubble numerical index and has been chosen as a starting point for a feasibility
study. Before professional astronomers seriously can consider the use of this

measure, it will have to be shown that the measurements
e are reproducable,
e converge within sensible time scales,

e agree sign-wise with the different senses of twist exhibited by spiral galax-

ies,
e are able to distinguish various levels of spirality significantly and
e can be normalised to allow different resolutions / obervation angles etc.

A method tackling part of latter issue has already been described in Sec. 2.2.2.

As not only the size and resolution of CCD arrays used by astronomers but also
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Figure 3.15: The relative standard deviation of the chirality approximations
vary from galaxy to galaxy. The logarithmic plot against a list of
the investigated galaxies, ordered by their NGC code, puts across
the achieved level of accuracy.

observation angles and not least the distance, size and brightness of galaxies
vary widely, their chirality must be free of these various influences. On one
side is the area influence which for galaxies might best be described by an ap-
proximation of an elliptic area they occupy. An idea using a combination of
linear fitting and assuming standard deviations relative to both axes has been
chosen as reference for this section, see Fig. 2.3 and Sec. 2.2.2. This elliptic
area normalised chirality will be noted x. in comparison to the conventional

rectangular method noted k.

The magnitude or brightness of a galaxy is another parameter to be separated
from chirality. In an image further influences are exposure time and discretisa-
tion level. Hence, an approach similar to mass normalisation simply assuming
an overall integrated intensity of >, m; = 1 for every galaxy as described in
Sec. 2.1.4 can be employed. Together with the elliptitic area normalisation the

fully normalised chirality measure will be denoted Kep,-
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3.3.3 Results

In order to provide values that astronomers can use as a starting point for
further investigation the complete catalogue by Frei et al. [1996] has been anal-
ysed. The chirality of many spiral galaxies can already be well established
within 108 to 10° calculations which is a matter of minutes. Yet objects with
small chirality like elliptical galaxies with marginal internal structure display
a considerable reduced convergence speed. Three approximation sets with an

overall total of 50 billion triangle calculations per galaxy are presented.

The obtained relative standard deviations o(k) are depicted in Fig. 3.15.
Nearly all galaxies reach levels where the obtained chirality can be considered
reproducible. However, the question whether this value actually represents the
accuracy of the measurements might arise. An answer is provided by Fig. 3.16.
It provides a comparison between two scenarios each using a different selection
of 2100 randomised triangle calculations. While the standard deviation for
scenario 2, o, (k2), suggests accuracies between 10~* and 1078, comparison of
the independent scenarios supplies relative deviations, (kg — k1)/k2, about 4
magnitudes higher. This effect has already been found for the calculations on
artificial templates shown in the past chapter. There convergence was assumed
for o,(k) S 1075, Here again this seems to correspond to an effective accuracy
of about 1072

This linear dependence between o,.(x) and an effective accuracy can fur-
thermore be affirmed by again employing linear correlation, see Sec. 3.1.2. The
values for o,(k2) and (kg —k1) /K2 correlate with R = 0.88 which can be consid-
ered quite significant—non the least because the comparison is made in relation
to the relative deviation (kg — #1)/Kk2 where single values cannot necessarily be
expected to be representative for the overall accuracy.

Accepting the accuracy of the calculations as sufficient, it is worthwhile to
consider a couple of specific examples. For this purpose the intentionally very
different galaxies of Fig. 3.14 will exemplify the application of the chirality
measure. Figure 3.17 shows them in their grey-scaled version and ordered ac-
cording to subjective perception of their twist: While NGC 3379 (T" = —5)
is very elliptical with next no substructure, NGC 3184 (T' = 6) already con-
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Figure 3.16: The relative standard deviation of one approximation correlates
well with the relative deviation to another approximation (R =
0.88, see Eq. (3.1)). It however predicts an accuracy about 4
orders of magnitude too high.

tains developed spiral elements. Those are however embedded in a ‘milky’ disk
structure and much clearer defined for NGC 4731 (T = 6).

One naturally would expect an increase of absolute chirality along these lines
and is not let down by the calculation. Both ., and kg, present sufficient
resolution of about a magnitude. Furthermore, the obvious change of twist
between NGC 3184 and NGC 4731 is reflected by the obtained chirality index.
Typical for these Monte Carlo approximations again is that high chirality is
accompanied by low relative standard deviation and vice versa. This constitutes
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Figure 3.17: The automatically converted grey-scale counterparts of Fig. 3.14
diplay the expected chirality characteristics—mnamely an increase
of chirality according to the ordering and opposite sign for the two
spiral galaxies.

another indication why a limit for the maximum number of calculations should
be included in any chirality approximation algorithm.

An attempt to plot chirality against the revised Hubble numerical index
shows some structure, see Fig. 3.18. Yet the small amount of galaxies and the
involvement of so many other paramaters into the determination of the 7" value
do not allow to conclude direct interconnections. Ignoring exotic galaxies at
the end of the scale, the falling average for elliptic galaxies (—3 < T < 0)
and the threefold increase for spiral galaxies (1 < 7' < 9) attract attention. A
detailed interpretation however has to be left to a professional astronomer. The
corresponding numerical values can be found in Tab. 3.2. It should be noted
that the standard deviation assumed as the error might not be appropriate for
the probably not normal but x2-distributed values of |kem,| > 0. Still the most
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Figure 3.18: Absolute chiralities with their standards deviations are compared
to the revised Hubble numerical index, see also Tab. 3.2. Where
only one galaxy is available, the index has been circled red.

important follow-up measure will have to be to tackle even larger catalogues
involving more galaxies per category and respecting the other categorisation

parameters.

Another interesting option for the renormalisation of the chirality index,
which might improve the explanatory power of galaxy chirality, might be gained
when bearing in mind their relative tilt in respect to our direction of obser-
vation. The newly introduced concept of an area-normal and its projection
against the observation direction (Sec. 2.1.2) allows to recalculate the chirality
which in first instance always is a virtual one. Respecting the influence of the
observation angle the theory hence allows directly and without any application
of further concepts to calculate a general measure of the chirality and spirality
respectively of a galaxy. According data for the investigated galaxies however
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LT o] [sl[&] [olsh) | lsml Rl | orlltml) | [seml [R] | or(lKem]) |
—5 | 13| 1,49-10° 1,33 ] 1,51-102 1,81 | 6,22.107° 2,17
-4 1]5,41-10% —13,13-10* -] 7,19-1078 -
-3 215,56-10'6 0,98 | 9,41-1072 0,98 | 2,32-1075 0,97
21 219591016 0,65 | 7,00-1072 0,48 | 2,09-107° 0,50
—11 43,0810 1,03 | 3,49-1072 0,82 | 1,85-1075 0,88
0| 214,37-10' 0,14 | 4,00-1072 0,71 | 1,09-107° 0,76
1 32,0110 1,12 | 2,28 -1078 0,54 | 4,44 -1077 0,50
21 9]211.10% 2,73 17,19 - 1072 1,24 | 5,15-1078 0,98
31141 3,33.10'8 1,99 | 1,47-1071 1,94 | 2,13-107° 1,96
41§ 17 | 2,41-10%° 3,57 | 1,04-1071 2,04 | 6,63-1076 0,91
51 22}1,13-108 2,03 | 9,93-1072 2,65 | 1,73-107° 2,17
6| 15| 3,96-10'8 1,99 | 1,31-1071 1,04 | 2,31-1075 1,15
71 313,810 1,14 | 6,19-1073 0,72 | 1,13-1078 0,79
8| 214,33-1017 0,84 | 4,78 -1072 0,30 | 7,89-1078 0,43
91 21224107 0,28 | 2,54-1071 0,34 | 5,63-107° 0,28
10| 1|6,74-107 —14,30-1072 —19,96-1076 -
12 113,96-10'7 — 11,70 - 1072 —13,33-1076 -

Table 3.2: Absolute chiralities are compared to the revised Hubble numerical
index, see also Fig. 3.18. Additionally the number of available galax-
ies per category n is noted. The normalised ke and ke, display sig-
nificantly lower standard deviation for most categories than & itself.

has not been available.

3.3.4 Conclusions

It has generally been shown that the chirality measure in combination with
the Monte Carlo method is a viable image analysis method. Furthermore it is
capable of distinguishing the spirality of galaxies. The combination with nor-
malisation (area, intensity) and re-normalisation (observation angle) techniques
enhances its applicability for images of arbitrary format. All major initially set
up demands have been met (p.63). While templates in the previous chapter
have not always used the full capabilities of the Monte Carlo method, the num-
ber of triangle calculations employed here stays up to eight magnitudes lower
than what direct calculation would require.
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3.3 Classification of galaxies

While some structure has been seen for comparison with the revised Hubble
numerical index a dedicated analysis including the other parameters defining
the index has to be conducted on preferably larger catalogues. However already
values for 113 different galaxies have been made available for further studies

by astronomers.

3.3.5 List of investigated galaxies

Table 3.3: Comprehensive summary of chiralities for all investigated galaxies.

(NaC] wAl [ mmlf) | Kam B | kem A | or(®) 1 ]
2403 | -2,68-10'° | -3,91-1072 | -7,53-1078 | -1,70-107% | 1,21 .10
2541 | 1,89-10'7 | 4,10-1072 | 2,55-10"7 | 3,01-1076 | 9,68 107"
2683 | -1,92-10'7 | -1,76-1072 | -1,81-1077 | -5,25-1076 | 4,96 - 10"
2715 | 4,61-10™ | 4,23-107%| 4,83-107°| 1,46-1077 | 7,28-107*
2768 | 6,11-106 | 1,51-1072 | 1,55-1077 | 4,40-107% | 4,96-107
2775 | 3,21-10'° | 7,98-107* | 820-107° | 2,09-10"7 | 8,69-10
2903 | 6,14-10°% | 7,87-1072 | 1,51-1077 | 2,07-107% | 9,90-1077
2976 | 4,74-10% | 9,92.107% | 1,60-1078 | 3,31-1077 | 5,70-107°
2985 | -3,16-10'5 | -3,46-1073 | -3,74-1078 | -9,06-1077 | 2,11 -1078
3031 | -1,84-10%! | -1,05-10"% | -2,01-1077 | -2,81-107% | 4,24.1077
3077 | 3,98-10'7 | 1,70-1072 | 1,74-1077 | 3,33-107% | 3,37-1077
3079 | 6,73-10'8 1,28 .10° | 1,30-107° | 1,76-10"*| 1,27-1078
3147 | 1,01-10"% ] 1,33-107* | 1,51-107° | 3,13-1078 | 3,65-1075
3166 | -3,74-10® | -6,81-107% | -7,00-10~7 | -1,92-107% | 1,35-1077
3184 | -2,74-10'7 | -1,83-1072 | -1,87-1077 | -2,92-1076 | 3,82-1077
3198 | -6,13-10'7 | -2,38 1072 | -1,48-10"7 | -2,00-107% | 1,01-1078
3319 | -1,35-10%8 | -7,88-1072 | -4,90-10~7 | -5,45-10% | 3,14 - 107
3344 | -1,96-10'7 | -1,34-10"2 | -1,87-10~7 | -3,08-107% | 3,79- 1077
3351 | -5,91-10%6 | -2,47.1073 | -2,60-1078 | -4,99-1077 | 2,16 - 1076
3368 | -1,55-10'7 | -1,30-10"2 | -1,33-10~7 | -2,76-107% | 6,11- 1077
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Table 3.3: Comprehensive summary of chiralities . .. (continued)

INGC] s8] | #mlA | famldl | kem 8] | orlw) [1] |
3377 | 9,34-10™ | 4,54-1073 | 4,79-107% | 2,13-1076 | 9,27-107"
3379 | 5,41-10" | 7,44-107*| 8,19-107% | 3,66-10"7 | 5,02-1076
3486 | -1,79-10%6 | -7,11-1073 | -7,30-107% | -2,04-107% | 8,08 - 107
3556 | 5,26-10'7 | 7,59-1072 | 2,10-107% | 3,44-107° | 6,24-1078
3596 | 1,08-10% | 1,22-1072 | 1,26-107 | 4,40-107% | 5,14-1077
3623 | 7,83-10% | 6,91-107*| 7,08-107° | 1,34-10"7 | 1,20-107°
3631 | -7,53-10% | -2,14-107% | -2,73-107% | -7,84-10"7 | 1,60 -107©
3672 | -7,93-10%6 | -5,54-10"2 | -5,70-10"" | -1,56-107% | 1,90- 1077
3675 | 2,64-10'7 | 8,51-1072| 8,69-10"" | 1,98-107% | 9,40-1078
3726 | -9,63-10'6 | -2,52.1072 | -2,64-10"7 | -6,74-1076 | 2,45.107
3810 | 2,34-10'7 | 6,32-1072 | 6,49-10"7 | 1,90-107% | 1,30-107
3877 | -3,87-10'7 | -2,53-1071 | -2,60-107° | -6,96-10"% | 6,50 - 108
3893 | -5,21-10'6 | -2,96-1072 | -3,06-10"7 | -1,29-107% | 1,49-107"
3938 | 9,02-106 | 5,14-1073 | 5,31-107% | 1,23-107% | 1,14-1078
3953 | 2,41-10% | 3,89-1073 | 3,99-107% | 1,06.107% | 1,07-1076
4013 | 5,75-10%% | 5,50-1072| 5,61-10"7 | 9,63-107% | 3,79-10""
4030 | 6,66-10% | 1,70-1072 | 1,74-1077 | 5,32-107% | 4,19-1077
4088 | 2,30-10'7 | 4,93-1072 | 5,07-1077 | 1,67-107° | 2,36-10""
4123 | -2,01-10%6 | -4,44.1072 | -4,56-10"7 | -2,48-107% | 7,07-1078
4125 | -8,19-10% | -2,48 1072 | -2,61-10"" | -9,34-107% | 2,20- 1077
4136 | -1,48-10' | -9,21-1073 | -9,46-1078 | -2,97-107% | 6,84 -107
4144 | -2,88-10'6 | -2,15-1072 | -2,20-1077 | -6,19-1076 | 6,13-10"7
4157 | 2,96-10% | 1,28-1071| 1,31-107% | 2,42.-1075 | 1,80 107"
4178 | -7,97-10'7 | -6,22-1072 | -3,87-1077 | -4,52-107% | 5,21-1077
4189 | 3,49-10% | 1,76-1072| 1,71-1077 | 2,01-107% | 1,06-1078
4192 | 3,02-109 | 2,91-1071 | 9,26-1077 | 1,20-107% | 2,15-1077
4216 | -2,45-10% | -3,45-10"1 | -1,10-107% | -1,44-107° | 2,12- 1077
4242 | 6,73-10% | 3,32-10"2 | 3,74-1077 | 1,12-107% | 1,83.1077
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INGC] wAl | #mldl | kam (Al | kem[8] | ov(w) 1] |
4254 | -1,48-10%® | -1,93-1072 | -1,21-1077 | -2,13-1076 | 9,10- 1077
4258 | 3,68-10%' | 9,12-107 | 1,75-107% | 2,21-107% | 7,68 - 108
4303 | 1,02-10'8 | 6,71-1073 | 2,13-1078 | 3,43-1077 | 6,73-10°6
4321 | -3,56-10%° | -4,96-102 | -9,53-107% | -1,32-107% | 1,46 - 1076
4340 | 1,13-10% | 8,43-1072 | 8,80-10"7 | 4,52-1075 | 4,42-.10"8
4365 | 5,67-10% | 1,10-1072| 1,13-10"7 | 2,33-107% | 7,42.1077
4374 | 5,63-10™ | 3,09-107*| 3,21-107%| 1,09-1077 | 1,96-1075
4394 | -1,15-10' | -1,64-10"2 | -1,59-10"7 | -2,36-1076 | 7,54 .10"
4406 | -1,63-10'6 | -4,00-1073 | -4,08-10"8 | -1,03-107% | 1,75-107©
4414 | 1,39-10%® | 5,62-1072 | 3,50-10"7 | 5,28-1076 | 3,92.10"
4429 | 8,30-10% | 1,95.1072 | 2,01-10"7 | 5,14-1076 | 4,71-107"
4442 | 3,36-10% | 1,04.-1071 | 1,07-107%| 3,13-1075 | 1,04-1077
4449 | -6,75-10%7 | -4,29 1072 | -4,41-1077 | -9,96-107% | 1,98 .10~ "
4450 | 2,63-10' | 6,12-1072 | 6,26-10"7 | 1,56-107° | 1,18-107"
4472 | 1,08-10% | 8,96-107* | 1,07-1078 | 2,25-10"7 | 5,38 - 10~
4477 | 8,94-10™ | 1,44-107% | 1,47-107% | 8,10-1077 | 1,74-1076
4486 | -5,39-10'% | -3,13-107% | -3,31-107° | -7,18-1078 | 5,37.107°
4487 | 1,99-10Y | 1,92-107' | 1,96-107% | 3,96-107° | 6,03 -1078
4498 | -7,71-10% | -3,42-107% | -3,32-10"8 | -3,57-10"7 | 8,62 - 1076
4501 | 3,02-10% | 1,78-1072| 5,64-10"% | 9,32-1077 | 2,70-1076
4526 | -1,58 -10'7 | -3,64-1072 | -3,74-10"7 | -1,04-1075 | 3,34-10""
4527 | 1,06-10 | 2,36-10"1 | 7,49-10"7 | 9,36-107% | 2,80-107"
4535 | 7,91-10% | 4,92-107%2 | 1,56-10"7 | 2,17-107% | 8,07 -1077
4548 | -1,70-10%® | -1,91-1072 | -6,07-107® | -8,15-1077 | 2,46 - 10~°
4559 | 2,03-10" | 1,85-10"* | 5,87-10"7 | 7,69-1075 | 2,71-10"7
4564 | 2,35-10% | 1,06-10"Y | 1,09-107% | 5,22-1075 | 5,42-1078
4569 | -2,55-10'° | -1,35-107! | -4,28 107 | -6,00-107% | 3,41-10"
4571 | 7,16-10%% | 2,70-1073 | 2,64-108 | 6,50-10"7 | 3,45- 1076
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INGC| k& | smldl | kam[8l | mem 8] | or(s) [1] |
4579 | -1,17-10%° | -9,66- 1072 | -3,07-1077 | -4,83-107% | 4,12-1077
4593 | -8,11-10'6 | -5,74-.1072 | -5,89-10~7 | -1,81-107% | 1,05- 107"
4594 | 5,17-10% | 3,69-1073 | 3,77-107% | 5,76-1077 | 3,41-107©
4621 | -3,88-10%% | -1,38-1073 | -1,67-1078 | -7,72-1077 | 2,41 -10°6
4636 | -1,77-10%6 | -2,87-1073 | -3,02-1078 | -7,52-1077 | 1,58 - 1076
4651 | 9,70-10%6 | 1,99-1072| 1,93-10"7 | 2,84-107% | 7,17-1077
4654 | -2,28-10'8 | -1,40.10"! | -8,73-10"7 | -1,16-107° | 1,71-1077
4689 | -2,61-10'7 | -1,74-1072 | -1,08-10"7 | -1,39-107% | 1,26 - 106
4710 | 2,82-106 | 1,62-1072| 1,66-10"7 | 5,13-107% | 7,58.1077
4725 | 4,07-10® | 1,48-1072| 4,71-1078 | 7,65-1077 | 2,40-10°6
4731 | 3,45-10'7 | 1,86-107' | 2,23-107% | 4,67-107° | 6,39-10°8
4754 | 1,11-10Y7 | 1,87-10"% | 1,92-107% | 4,56-107° | 4,88 1078
4826 | -3,49-10'7 | -2,35-1072 | -2,41-1077 | -5,30-107% | 2,86 - 107
4861 | 1,61-10'7 | 1,68-10"% | 1,90-107% | 4,07-107° | 8,06-1078
4866 | 7,54-10% | 1,94-1072 | 2,00-10"7 | 1,85-107° | 1,53 1077
5005 | 1,09-10%6 | 8,84.1073 | 9,23-1078 | 5,00-107% | 3,83 -10"
5033 | 5,68-10'8 | 8,24-1072 | 2,62-1077 | 2,90-107% | 6,40- 107
5055 | -3,14-10%° | -1,84 1071 | -3,53-1077 | -5,64-107% | 3,26 - 10"
5204 | 2,88-10'7 | 3,39-10"% | 3,46-107% | 7,19-107° | 3,56 - 1078
5248 | -2,71-10'7 | -4,94-10"2 | -5,08-10"7 | -1,17-107° | 1,81 -1077
5322 | -1,10-10%° | -3,96-10"3 | -4,67-107% | -1,92-1076 | 1,12-1076
5334 | -2,53-10%6 | -2,23.1072 | -2,27-1077 | -3,63-1076 | 7,26-10""
5364 | -3,00- 1017 | -2,88-1072 | -4,13-1077 | -5,88-107% | 2,11-10~"
5371 | 2,27-1017 | 4,78-1072 | 4,92-1077 | 1,10-1075 | 1,54 107
5377 | -9,05- 104 | -2,47-1073 | -2,52-1078 | -6,22-10"7 | 5,23 .10
5585 | 1,02-10%7 | 1,25-1072| 1,28-10"7 | 2,38-107% | 6,76-10"
5669 | 6,48 -10%% | 6,05-10"2 | 6,19-1077 | 1,06-107% | 2,42-10"7
5701 | 5,00-10% | 1,16-1072 | 1,19-1077 | 2,63-107% | 6,02-1077
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Table 3.3: Comprehensive summary of chiralities . .. (continued)

INGC| w[&] | wmldl | Kam (Al | mem[8] | or(w) [1] |
5746 | -4,57-10% | -1,13.10° | -1,16-107° | -1,69-10"* | 1,96 - 108
5792 | 7,00-10%6 | 6,27-1072 | 6,44-10"7 | 1,48-1075 | 2,17-1077
5813 | 1,72-106 | 2,07-1072 | 2,11-1077 | 5,46-107% | 4,63-1077
5850 | -9,44-10%6 | -7,82-1072 | -7,47-10"7 | -1,35-1075 | 1,56- 107
5985 | 2,55.10Y7 | 7,58-10"2 | 1,51-1076 | 2,43.1075 | 6,26- 108
6015 | 2,11-10% | 5,32.10"' | 5,43-107% | 9,52-107° | 2,70 108
6118 | 6,36-10¢ | 5,00-10~2 | 5,15-10"7 | 1,69-107° | 1,97-1077
6384 | 8,12-10'7 | 6,07-1072 | 6,24-10~7 | 1,06-107% | 1,25.10"7
6503 | -4,73-10'8 | -3,33-1071 | -3,40-107% | -6,26- 1075 | 4,03 . 108
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