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VIOLENT DISTURBANCE AND FRAGMENTATION OF FREE SURFACES
by Giuseppina Colicchio

A multi-phase fluid method has been adopted to model the behaviour of
fragmenting interfaces. The flow field is described through the solution of the
Navier-Stokes equations with an approximate projection method. The interface
separating the two phases is captured by a level-set function. The interface
dynamics and its modelling are the main topics addressed in the present numerical
study.

High gradients of density, viscosity, pressure and velocity are localized at the
interface. Therefore attention has to be paid to the discretization of the equations
in that area. Here, an original variable coeflicients ENO scheme and a redefined
reinitalizaiton procedure for the Level set function led to higher accuracy. An
exponential smoothing of the density and the split of the Poisson equations for the
pressure terms improved the stability properties of the solver.

The resulting scheme has been extensively verified and validated through
canonical problems, where the method showed good capability of handling: a) high
deformation of the interface with breaking and air entrainment; b) generation and
evolution of vorticity and c) its interaction with the interface.

Dedicated experiments have been performed for the case of a surface piercing
plate in forward motion. Flow visualizations and velocity field measurements were
carried out and compared with the numerical results. The globally satisfactory
agreements allowed for a synergistic use of the numerical and experimental tools
within a parametric analysis. The influence of the Froude number and of the plate
inclination have been investigated. The former highlighted the role of the
post-breaking phenomena in the definition of the different regimes of interaction
between vorticity and free surface. The latter highlighted the influence of the
inclination on the occurrence of breaking and on the dynamics of the vorticty
released. In particular, very large positive and negative inclinations of the plate

prevent energetic breaking.
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Table of notations

General Rules

e Only the most used symbols are listed in the following table

e The meaning of symbols is always given when first introduced in the thesis

Symbols

u Velocity vector

D Pressure

0 Colour function (for LS distance function)

c(9) cut-off function

o cut-off function

0pp.pa  Displacement of the smoothing function

C Correction of the distance function in the reintialization
cm Modified correction of the distance function in the reintialization
Grs, G, weight function for C and C™

K Curvature

H Smoothed Heaviside function

wra water and air property

€ smoothing parameter

T pseudo-time

h Initial submergence of the plate

d Still water depth

L Length of the dam

L. Length of the tank

H Height of the dam

Umax Maximum velocity of the surface piercing plate
1) Density

o Surface tension

7 Viscosity

D Strain of tensor
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Glossary

BEM Boundary Element Method

BIE Boundary Integral Equations
CIP Constrained Interpolation Profile
ENO Essentially Non Oscillatory
HLSP Hybrid Level Set and Particles
LS Level Set

LSc Classical Level Set

MAC Marker and Cell

NS Navier-Stokes

PIV Particle Image velocimetry

SPH  Smoothed Particles Hydrodynamics
VOF  Volume Of Fluid

Commonly used Synonymous
The terms air-water interface and interface refer to multi-phase problems, while

the term free surface refers to single phase problems. Even though different in

their meanings, here these terms are used as synonymous.

18



I cannot rest from travel;
I will drink life to the less
Ulysses, Alfred Tennyson

Chapter 1

Introduction

The processes of free surface violent deformation and merging are very common
in our daily life. While pouring milk into a glass (left image of figure 1.1), it is
possible to notice the formation of small drops (fragmentation) that can fall in the
milk again (merging). These phenomena happen either when the milk impacts
against the glass or against the liquid that is already inside. Fluid fragmentation
and merging can develop for all fluids and at very different scales: for example a
cloud of bubbles forms at the bottom of waterfalls (see right image of figure 1.1)
but also a single drop falling on a solid surface splits into many other smaller
drops.

Even though the free surface breaking is such a common phenomenon, the
study of its features and the phenomena that accompany it or that are excited by
it is still far from complete. The liquid-liquid interactions at the impact and the
interaction between the entrapped air and the liquid are difficult to model
numerically and to analyze experimentally.

Because of its diverse applications, in recent decades this problem has
represented the target of much research. Surface piercing bodies, e.g. ships,
moving in water can create large deformations and breaking of the sea surface.
The same is true for submerged bodies, submarines, close enough to the free
surface. The flow around these vessels determines the drag that acts on the hull,
the wave pattern and the formation of bubbly regions. Moreover their far wake can
make military vessels detectable from satellite (Fingas & Brown, 2001). So good
predictions of the detailed flow conditions established in these cases and the
physical mechanisms associated with free surface body interactions are acquiring a

more and more important role even at the design stage.
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Figure 1.1: Two examples of water fragmentation from our daily life. Left: milk poured

into a glass. Right: the Niagara falls.

Apart from naval engineering applications, the study of the violent impact of
water waves against solid obstacles is a practical issue for other fields as for
environmental science and geology. Periodical storms cause the erosion of
shorelines and damage breakwaters. Even though less common than storms,
tsunami waves can change the shoreline very quickly and with a result that differs
substantially from that of storm waves. The study of the different erosion
signatures can help to date back catastrophic tsunami from several geological eras,
as those caused by large submarine slides on the continental slope or by the impact
of meteorites with the ocean (Bryant & Nott, 2001).

Until a few decades ago (due to its complexity), the phenomena of surface
fragmentation was studied only by means of quite simplified analysis. The key
factor in the advancing of such study, both from numerical and experimental
points of view, has been the understanding that a crucial role during a
fragmentation phenomenon is given by the interaction between air and water.

The motion of a mixture of fluids of different natures or in different states, such
as gases and liquids as in our case, is referred to as multiphase flow. As multiphase

flows are very common in nature and in industrial processes their study is spread
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over a large number of disciplines.

In a general form, multiphase fluid flow dynamics encompasses the exchange of
heat and possibly chemical reactions between the different phases. So it can be
analytically described by a system composed of the mass conservation, the
momentum conservation and the energy conservation equations, written over the
entire domain, together with some closure of the problem if turbulent flows,
chemical reactions or soluble phases are being considered.

The recent availability of large computational power has allowed the
development of numerical methods to solve these systems of equations.

Multiphase flow models have been applied in meteorology to study the
movement of polluted clouds (Leriche et al., 2001), in metallurgy for the processes
of casting and injection of metals (Bai & Thomas, 2001; Im et al., 2001 ) and
mechanical engineering for the interface propagation between the mixture
comburent-combustible and exhaust gases (Nguyen et al., 2001).

From an experimental point of view, the types of measurements performed can
vary according to the application, the nature of the fluid and the quantity of
entrapped gas. Different measuring techniques are available in various
applications, from the simple conductivity probes (Hibiki et al., 1998) to X-ray
tomography (Seeger et al., 2002). In chemical and nuclear engineering applications
bubbly flows are mostly limited to a column of bubbles, so they are spatially
limited. For inherently three-dimensional phenomena the measurement of a local
void fraction is much more difficult, and optical measurements are affected by the
light scattering from the bubbles (Dong et al., 1997). Only recently a 3D version of
Particle Image Velocimetry (PIV), the so called defocusing digital particle image
velocimetry (DDPIV), has been introduced to detect more accurately the presence
of bubbles and their velocity (Pereira & Gharib, 2002). Acoustic measurements of
the void fraction have been performed on the ocean surface (Phelps & Leighton,
1998). This is a large scale technique and has not yet been specialized to local

measurements.

1.1 Objectives and findings

The aim of this work has been the study of violent (fast, large and non-linear)

deformations of an air-water interface with strong interactions with vorticity and

entrapped air.
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A Navier-Stokes solver with an approximate projection method for the
evaluation of the pressure field and a level set function for the tracking of the

air-water interface has been used. Novel features include:

e The splitting of the pressure terms into two contributions, one
independent of the surface tension, and one directly linked to it but

independent of the density.

e The exponential smoothing of the density across the interface to

ensure higher stability of the method.

e The use of variable coefficients advective Essentially Non

Oscillatory (ENO) scheme to avoid problems of vorticity diffusion across

the interface.

e Improvement of the reinitialization procedure for the level set

function to achieve a higher accuracy of the solver.

The solver has been applied to 2D cases, in order to better control physical and
numerical problems. In particular the case of a surface piercing plate has been
used to analyze the problems of strong interaction between the deformation of the
free surface and the vorticity generated by the body motion. The problems has
been analyzed both from a numerical and experimental point of view. The latter
has an intrinsic value in the validation of numerical codes. The combined
numerical and experimental study made it possible to analyze the effects of the

Froude number and the inclination of the plate on the development of the flow.

1.2 Structure of the thesis

The thesis is formally divided into two parts. The first deals with the development
and verification of the numerical solver, and the second with its application to
practical problems such as that of the surface piercing plate.

In the first part, an introduction to multiphase solvers is presented in chapter
2, through a review of the state of the art. From this study the essential elements
for the development of the numerical codes have been derived and later improved
and specialized as described in chapter 3. Chapter 4 shows many verifications and
validation studies by comparisons with published results, thus showing the

capability of the method.

22



In the second part, the developed numerical method is compared to new
measurements of surface piercing plates that were performed in this project. The
experimental set-up is described in chapter 5. The numerical and experimental
comparison for the vertical plate is shown in chapter 6 and for the inclined plate in

chapter 7, confirming the code’s capability.
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Part 1

Development of a numerical

method for two-phase flows
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Much have I seen and known, —cities of men
and manners, climates, councils, governments,
myself not least, but honour’d of them all.

Ulysses, Alfred Tennyson

Chapter 2

Multiphase flows: the state of the

art

In recent decades, Boundary Integral Equations (BIE) methods have been used
more frequently than any others to predict the deformation of free surfaces, within
the limitations of potential flow theory.

A complete description of such a solver is presented in Longuet-Higgins &
Cokelet, 1976. The mathematical use of a velocity potential and a Green function
permits the volume integral of the incompressible condition [V - udV = 0 to be
transformed into a surface integral along the boundaries of the fluid domain. The
transformation of an nD problem into (n-1)D problem (2D — 1D, 3D — 2D)
allows a much higher accuracy once the number of discrete unknowns has been
fixed. The kinematic and dynamic (Bernoulli equation) conditions on the interface
complete the system (Brebbia & Power, 1999).

Its computational efficiency and its accuracy have made this technique
widespread, and after several decades it has achieved a high reliability, through the
detection and correction of shortcomings. Even though this method is very
accurate it cannot handle problems with topological changes of the interface and
its fragmentation.

The fragmentation of the interface is a limit also when BIEs solvers for
multiphase flows with surface tension (Hou et al., 2001) are used.

However, because of the high accuracy in the case of smooth free surfaces, the

classic BIE solver have been used, when possible, as a reference for the verification

of multiphase codes.
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2.1 Numerical modelling

The points where the solution
is calculated do not change
their properties in time.
SPH: the particles of fluids
(small masses of fluids) are
moved with their own velocity,
no mesh links them together
but their mutual

interaction (Colagrossi & Lan-
drini, 2003).

Lagrangian mesh: A mesh
is generated on the whole do-
main and its nodes move with
the velocity obtained integrat-
ing the Navier-Stokes equa-
tions (Shopov et al., 1990).

Eulerian meshes are used to
discretize each single phase,
but their boundaries change
in time. Jump conditions
are used to link the different
phases (Caiden et al., 2001).

Lagrangian Solvers Boundary fitted | Eulerian Solvers
Solvers
R \~/—\

A single fluid with variable
properties is considered. The
Navier-Stokes equations are
discretized on an Eulerian
mesh and the position of the
interface is obtained with dif-
ferent methods.

Interface tracking: points
are spread on the interface,
they are advected in a La-

grangian way (Tryggvason
et al., 2001).
Interface capturing: A

colour function is linked to
the density so the continuity
equation becomes an advec-
tion equation for this function
(VOF, LS) (Hirt & Nichols,
1981; Sussman et al., 1994).
Hybrid methods: both a
colour function and a set of
points are used to trace the
interface (HLSP, CIP, MAC)
(Yabe et al, 2001). .

Table 2.1: Schematic description of the multiphase solvers,

figures represent different phases.

the different colours in the

The first attempt at using a multiphase solver can be traced back to 1965
(Harlow & Welch, 1965). The revolutionary idea introduced was to follow the

evolution of both air and water with the same equations but different fluid
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properties, overcoming the problems of topological changes of the fluid boundary.

Since 1965 different models have been introduced both for the discretization of
the equations and for the tracking of the interface.

In table 2.1 there is a brief classification of multiphase flows solvers with some
key references. The first distinction is between Lagrangian and Eulerian solvers,
between cases where the solution is calculated on moving fluid particles or at fixed
points.

There is a third class that can be considered intermediate between these two;
the methods falling in this class are referred to as Boundary Fitted Methods
(BFM). For them the domain of analysis is divided into deformable sub-domains;
the boundaries of each domain adapt themselves to the interface between the
fluids. An Eulerian discretization for Navier-Stokes equation is usually adopted
inside each domain.

There are two groups of methods that can be classified as properly Lagrangian;
one is referred to as a meshless solver and the other uses Lagrangian meshes.

The former method is known as Smoothed Particles Hydrodynamics (SPH) and
has been inherited from astrophysics (Monaghan, 1994). At the initial time, the
fluid domain is divided in a finite number of particles, each one representing a
volume of the fluid mass. This property allows the method to preserve mass
intrinsically. The SPH method has been applied mainly to single phase fluids with
no surface tension and no viscosity. The multi-phase version has been implemented
only recently (Colagrossi & Landrini, 2003). As compressible Euler equations are
written for each particle, the real behaviour of the air can be modelled easily, even
though some problems of pseudo-compressibility can extend to the water phase.
Attempts to model the motion of viscous fluids with surface tension in this way
have so far not achieved good results.

The other Lagrangian method (Shopov et al., 1990) uses a mesh whose nodes
move with the velocity obtained by solving the Navier-Stokes equations. The
motion of nodes can lead to an extreme deformation of the grid and, consequently
a regridding technique is necessary; this procedure is time consuming and
represents a source of numerical errors since fluid variables have to be projected
from the old grid to the new one.

However, if the frequency of regridding is limited, the deformation of the
interface can be followed through the grid deformation with very good accuracy.

Moreover no smoothing of fluid variables is necessary at the interface.
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A drawback of this method is the difficulty of extending it to three dimensional
cases.

An intermediate solution between the Lagrangian and the Eulerian solvers is
offered by the Boundary Fitted Methods (BFM). For these methods (Caiden et al.,
2001) each phase is solved separately and the boundary conditions at the air-water
interface are enforced as jump conditions. This allows for different methods to be
used in the solution of each phase. Eulerian meshes can still be used, and in this
case the cells can be switched off if the fluid they describe is not present. The
main advantage that this offers is the possibility of following the deformation of
the interface (traced by one of the methods described later for the Eulerian solver)
without any smoothing of fluid properties. The main disadvantage is the difficult
reconstruction of the jump conditions. In fact applications are limited to 2D cases
(Caiden et al., 2001; Li & Yan, 2002).

Most of the methods currently used to model multiphase flows are based on an
Eulerian discretization of the Navier-Stokes equations. The grid can be either
structured or unstructured, possibly with an adaptive refinement of the
discretization where particular conditions occur. For example in Sussman et al.
(1999) the mesh size is halved where the ratio between the curvature and the mesh
size exceeds an a priori stated limit. This procedure can be repeated in the smaller
cells until this condition is no longer satisfied.

The choice of an Eulerian grid introduces the problem of tracking the interface.
Different methods can be used for this purpose; predominantly surface capturing
and surface tracking algorithms. The former defines a function explicitly linked to
the interface that is advected in an Eulerian way. The latter uses particles spread
on the interface or in its neighbourhood to follow the Lagrangian displacement of
the interface.

All these methods are direct descendants of the Marker and Cell (MAC)
method first introduced in the Los Alamos laboratory. This was based on the idea
that a set of particles spread around the interface and advected in a Lagrangian
way can locate the material in the cell and define the position of the interface itself
(Harlow & Welch, 1965).

The interface tracking methods are the closest to this formulation. For them a
set of points is positioned on the interface at the initial time and then convected
with the velocity obtained by the Eulerian grid. These points represent a

secondary grid of lower order with respect to the one adopted for the solution of
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the Navier-Stokes equations and they can either modify the grid to follow the
interface, or they can simply be used to recover the physical properties of the fluid
(Tryggvason et al., 2001).

The main problem with this kind of tracers is the exact calculation of the
velocity at the point on the interface. Usually an interpolation method is adopted,
but for high Reynolds numbers it is very likely that the interpolation of quantities
characterized by a very steep gradient can cause an increasing error. Moreover
interpolation techniques do not generally preserve the mass properly as no physical
meaning is associated to them.

The Volume of Fluid (VOF) and the Level Set (LS) are the most popular
Eulerian methods. In both cases the position of the interface is derived from the
values of a so called colour function ¢. For the former the colour function ¢ is the
void fraction in the cell, while for the latter it is the distance from the interface.
As it is possible to write an explicit link between these functions ¢ and the density
p, an equation of convection can be easily derived for the colour function from
mass conservation equation

9p(9) dp 00

The VOF method, introduced by Hirt & Nichols (1981), represents the mass in
the cell explicitly, so that a good numerical scheme to evaluate the evolution of the
function should lead to a very good conservation of the mass throughout the
computation. Its limitation is the fact that an approximation has to be made of
the position of the interface and of its curvature when describing problems
characterized by surface tension. A description of the methods currently used to
define the normal and the curvature on the interface is in Scardovelli & Zaleski
(1999). Various examples of VOF applications can be found for example in
Lafaurie et al. (1994), Lawson et al. (1999) and Zhao et al. (2002).

The LS method was first applied to incompressible multiphase flows a decade
ago. It was introduced in Sussman et al. (1994). In the LS method, ¢ is a function
indicating the signed distance from the interface, so that the function is positive if
the point is in one of the fluids and negative if it is in the other. Because of the
analytical nature of the distance, it provides much more accurate information on
the position and curvature of the interface than the corresponding function in the

VOF.
The disadvantage of the LS method is the difficulty in preserving the
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conservation of mass. The ¢ function solution of equation 2.1 cannot preserve the
meaning of a distance function for more than a few time-steps so that a
reinitialization is necessary to restore the analytical properties of ¢. This
procedure results in the smoothing of the interface in some cases. Corrections for
the procedure of reinitialization can be found in Sussman & Fatemi (1999), Russo
& Smereka (2000).

Another choice has been presented in Sussman & Puckett (2000), where LS and
VOF methods are combined to preserve the advantages of each of the two schemes.

Then there are some hybrid methods: the hybrid LS-particles method (HLSP)
(Enright et al., 2002) and the Constrained Interpolation Profile method (CIP)
(Yabe et al., 2001; Yabe et al., 2002). The idea behind the former is the use of
Lagrangian markers in a narrow band around the interface. A circle of radius r(k)
equal to their distance from the interface itself is associated to each point
k =1,2,.., so that the zero level becomes the envelope of all those circles (see

figure 2.1). Moreover, a sign s(k) characterizes the markers, to indicate the phase
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Figure 2.1: Example of the hybrid method HLSP: the k-th particle is characterized by a
radius r(k) and a sign; the circle of radius r(k) is tangent to the interface. The envelope

of the different circles defines the position of the zero level.

The markers are moved in a Lagrangian fashion and the Level Set function is
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updated using equation 2.1. In the process of the Level Set reinitialization the
signs s(k) of the markers are used as a check for the sign of the distance at the cell
centre. If they differ, the distance associated with the markers in the cell is
donated to the cell centre. This procedure is particularly accurate when the
velocity field has no steep gradient and when the characteristics are not
convergent. Its application becomes more difficult when the velocity is not so
smooth, as processes of interpolation have to accommodate the sudden change of
the tangential components.

The CIP method introduces a colour function F(z) and its gradient G(z).
After a time At the particle that was in the position  has moved to a new
position & + uAt + O(At?), consequently the colour function, that moves with it,
is represented by F(z+uAt + O(At?)), similarly its gradient is
G(z + uAt + O(At?)). The projections of the new F and G functions on the
Eulerian mesh give the position of the interface at the new time step, preserving
the slope of the colour function. Figure 2.2 (from (Yabe et al., 2001)) gives a
practical idea of how this method works. In plot a) there is the initial profile of the
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Figure 2.2: Example advection with the CIP method (Yabe et al., 2001).

color function and in dashed line the exact solution after the advection; plot b)
shows the discrete solution after the advection. If a linear interpolation is used, the

numerical solution produces diffusion (see plot ¢), that is recovered in d) by the
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advection of the spatial derivatives as well.

This method avoids errors in the velocity interpolation, because, the points
that transport ' and G have coordinates equal to those of the node of the grid (if
a non-staggered grid is used). It requires only the projection of an almost smooth
function on the mesh. The main difficulties are the choice of a steep transition
function F, able to limit the dissipation linked to the problem of advection and
reinitialization of the function if it is highly deformed in the advection procedure.

Once the kind of mesh has been selected another choice has to be made about
the kind of solver to use. There are essentially three main methods to solve the
Navier-Stokes equations with primitive variables': the pseudo-compressibility
method, the pseudo-velocity method and the approximate projection method.

The pseudo-compressibility method was first introduced in Chorin (1967) for
stationary flows and later extended to non-stationary flows (see Kelecy & Pletcher
(1997)). It consists of replacing the continuity equation with one dependent on a

pseudo-time 7:

where 3 is a constant arbitrarily chosen, that has the dimension of a velocity and
represents a pseudo-speed of sound. Pressure and velocity are updated iteratively
until equation 2.2 has reached stationary conditions. An implicit scheme can be
used for the solution of this system that does not require any matrix manipulation
(see Zhao et al. (2002) and Helenbrook et al. (1999)).

The projection method makes a first approximation of the velocity at the new
time step by solving approximated Navier-Stokes equations. The velocity field that
is obtained does not satisfy the mass conservation conditions and a velocity
correction is needed. This is obtained projecting the momentum conservation
equations on a divergence-free space. This procedure leads to a Poisson equation
for the pressure correction (Harlow & Welch, 1965; Hirt & Nichols, 1981; Kim &
Moin, 1985).

Something similar is done in the pseudo-velocity method. An implicit solution
is obtained by the introduction of the guessed velocity (the pseudo-velocity) into a
system of equation where the guessed velocity is used as a pseudo-variable
alongside the pressure and the actual velocity, in a system of equations upgraded
by the splitting of the Navier-Stokes equations. This leads to an implicit solution

for the velocity. The only shortcoming is that viscosity and density cannot be

!The streamfunction-vorticity formulation is limited to two dimensional or axi-symmetric flows
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implicitly introduced into the system but they have to be provided from previous
time steps (Rhie & Chow, 1983).

As can be seen from this brief review, there is a large variety of numerical
methods, but their properties of numerical stability and accuracy are not well
known (Fraigneau et al., 2001; Lemos, 1996; Morinishi et al., 1998). It is possible
to show that interface problems for high Reynolds numbers are not well posed, and
this means that small variation in the discretization can cause profound changes in

the solution (Birkhoff, 1962).

2.2 Experiments

Several detailed experiments have been performed with free surface flows, but only
for a limited number of them have measurements been made with breaking
interfaces. This is mainly due to practical difficulties in the bubbly regions formed
after the impact between portions of the interface.

The experiments performed with breaking interfaces and bubbly flows are
mainly of three kinds: a) those where there are measurements available all over the
studied fluid domain apart from the bubbly region, b) those that study exclusively
the bubbly regions with measurements of bubbles velocity and of void fraction, c)
those where large cavities are involved and very few bubbles are generated, so that
some measurements of the trapped air are possible.

In the first category of experiments we find for example those performed by
Chang & Liu (1998) and Dong et al. (1997). Chang & Liu (1998) measured
velocities in the tip of a 2D overturning jet and in the flow caused by breaking,
with a PIV (Particle imagine velocimetry) method. Unfortunately, owing to the
scattering of light in the very thin region of the jet before impact, there was very
little data in the interesting region where vertical voriticy is generated.

Dong et al. (1997) measured the velocity fleld around surface piercing bodies,
but their measurements did not include the bubbly patch. For instance, during
their tests for a surface piercing strut, the free surface and the bow regions are not
analysed, even though it is there that vorticity is generated and develops its
distinctive features.

Bubbly flows are of interest in many fields and a large variety of experiments
falls in the second category. Current measurement techniques are able to measure

the void fraction and the velocity of the single bubbles, assuming that all the
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bubbles have almost the same spherical shape and dimension. These assumptions
are necessary for the use of optical devices, for which the reflection and the
refraction of the light are predictable only for spherical bubbles with given
diameter (Bonetto & Lahey, 1993; Oakley et al., 1997).

In Gopalan & Katz (2000) the study of the velocity of the bubbles is performed
with a PIV technique using a seeding that reflects the light on a different
wavelength with respect to the bubble. This is one of the first attempts to measure
bubble velocity without any assumption on the shape and size.

In the third category there are experiments that take into account large
amounts of air entrapped into water; in this case the likelihood of small bubbles
being formed is reduced, and the bubbly region is less important. The experiments
by Lawson et al. (1999) with a large bursting bubble belong to the same category.
In this case the velocity field in the water domain can be calculated quite well and
the problems are mainly connected with the definition of the interface. The
spherical geometrical nature of this experiment does not permit an easy
visualization of the interface. Good visualizations of it are instead available in the
experiments by Walters & Davidson (1962), where a two-dimensional bubble of air
is created in water.

Another experiment with large amount of air in the water domain is that
performed by Zhou et al. (1999). A dam-break problem is studied allowing the
water to impact against a vertical wall placed downstream the initial dam.

In Zhou et al. (1999) measurements of pressure and water height are available,
even though they are affected by uncertainties as pointed out by the authors.
They are as yet one of the few measurements available for a problem that is easy
reproducible numerically, and are therefore useful for the validation of multiphase

numerical models.

2.3 Inheritance from the past, and future
developments

From a numerical point of view, the introduction of multiphase solvers has

revolutionized the way that flow fields which are characterized by air entrainment

are modelled.
Several multi-phase solvers have been described here, differing in their ability

to model different phenomena that are involved in the fluid motion. For given
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conditions, the choice among them should be based mostly on the kind of flow to
modelled.

The Eulerian surface capturing solvers are the most versatile, because they can
easily model merging and fragmentation, large density and viscosity gradients
across the interface as well as surface tension. Nonetheless the implications of the
numerical smoothing of physical properties across the interface is still to be
understood. Moreover the gaseous phase is commonly described as incompressible
and this is still a limitation when thinking of the effects of compressibility on small
pockets of air entrapped below violent jets.

The aim of the present work is to formulate and use a model which is as
versatile as possible and therefore an Eulerian solver has been chosen. The idea of
keeping the computational complexity as small as possible has made the interface
capturing solver the most suitable, while the analytical properties of the Level-Set

has made this technique more interesting for future development.
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Yet all experience is an arch wherethro’
gleams that untravell’d world whose margin fades
for ever and for ever when I move.

Ulysses, Alfred Tennyson

Chapter 3

Numerical modelling

In this chapter the numerical model developed for the two-phase flow problem
is described (see for example Sussman et al., 1994). Its features, advantages and

challenges are outlined.

3.1 General features

In the present work interfacial flows are dealt with by considering the two phases
as a continuous field where any generic fluid property, say f, is defined by patching

the corresponding fields in the two phases, that is
f = Xfa,ir + (1 - X)fwa,ter - (31)

A rapid but smooth transition from one phase to another is guaranteed by the so
called bridge function x € [0, 1]. The evolution of the resulting compound flow
field is described by the Navier-Stokes equations for a continuum fluid with
non-uniform properties and, in principle, there is no need to distinguish explicitly
between the two phases. Continuity conditions of velocity and tangential stresses
at the interface are automatically fulfilled, though in a smoothed sense, while
surface-tension effects have to be modelled explicitly. Clearly, most of the
numerical difficulties are shifted to the treatment of the bridge function.

In this framework an incompressible fluid in laminar and isothermal conditions
is described by the mass and momentum conservation equations:

V-u=0
(3.2)

Du

pﬁ = —Vp—{»QV-uD-FUI‘&(Sgn-F rgq .
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where u is the velocity, p the pressure, p the density, u the viscosity, g the field
force and in particular the gravity, o the surface tension, n the normal to the
interface, k the curvature of the interface and §s the Dirac delta function equal to

unity on the interface and zero elsewhere. The term D has components

1 (0u; Ou;
D)., =D, = - I 4 2
( )U " 2 (6372 63’)_7'
and represents the rate of strain tensor.
Within the one-fluid formulation, the conditions at the interface between two

viscous fluids are automatically captured, see e.g. Wehausen & Laitone (1960).

3.2 Discretization of the Navier-Stokes equations

An Eulerian discretization scheme has been used to solve the set of equations (3.2)

rewritten as:
V-u=0

oV . uD 2
O | (u-Vyu= Y 2V pD | 20m0sm

ot p p p
A finite difference solver coupled with a projection scheme is used to solve

numerically the system (3.3) on a fixed grid. A second order approximation is

(3.3)

adopted both in spatial and time discretizations.

3.2.1 Time discretization

The second order approximation in time is written as

u™tl — Vpn+1/2 .
g = e L V)t
At P (3.4)
{QV . ,U,D}n_H/Q [O’Kl5sﬂ]n+1/2
pn+1/2 pn+1/2 +g

and it is solved through a predictor-corrector scheme. The iterative step is
repeated until convergence in pressure and velocity fields is reached, improving the
stability of the solution (Fraigneau et al., 2001). For brevity the following term is
introduced

Flu,g,p) = —(u-V)u+ g—v—pﬂ—lz +g
It contains all the terms that are approximated with Taylor expansions in the

predictor and corrector steps. The iterative procedure is described below.

37



Predictor step. The density and the surface tension at the time step n + 1/2 are
approximated by using those at the time step n — 1/2. In the following way,
[F(u)]"*1/? is obtained through a Taylor expansion from the previous time steps.

The predicted pressure gradient Vpy is written as

Vpg+l/2 B Vng/Q vprtli2 ypn-l/2

12 T pne1/2 - pn—1/2 + pn=1/2

1

and the two-step procedure to obtain the velocity uj*' reads

n—1/2
U = u" + At {[F(u)]g“ﬂ - V;Z:—UQ }
: 3.5)
) Vpn-1/2 vpn+1/2 (,{5Sn)n~1/2 (
n+l __ 0
Ug =a+ At { pr=1/2 - =172 +20 o172

For an incompressible fluid, applying the divergence operator, the second equation

in (3.5) becomes

\vay n—1/2 _ , nt1/2 n—1/2
@_ o (wp i), (ko) |

At pn—1/2 pn—1/2

As in Brackbill et al. (1992), the delta function is discretized as a smooth function
depending on the distance from the interface. However, here, the pressure p is
separated into two contributions: one p(s;) depending on the surface tension and

one P independent from it. This makes it possible to write two Poisson

equations. The first contribution
Vi = V- (200m) ) (3.6

results in a pressure jump at the interface due to the surface-tension, and it is

completely independent of the density distribution. The second contribution is

\V4 pn—1/2 _ nt1/2 >
v. ( ( p(nst),O) _ V-u ' (3.7)

pn—1/2 At

/ n+1

The solution of the Poisson equations (3.6) and (3.7) gives py ' /°, and ul*! follows

from the second equation in (3.5). The viscosity and density fields are defined once

the interface has been captured by the Level-set technique discussed later. These

data are used to start the iterative corrector step.

Corrector step. At the k-th step of the corrector, the term [F(u)]zﬂ/ % is

obtained by a centered Taylor expansion, and the pressure gradient is written as
VPZ:;;,/kQ _ vP?ri;,/kQ—l Vp.

n+1/2 n+1/2 n+1/2 7
Pr-1 Pk—1 Pr-1
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where p. is a pressure-correction term. The pressure terms are connected to the

velocity field through the projection on a divergence free space:

vpn+1/2

~ 2 —

m =u" + At {[F(U)]Zﬁ/ - nﬁ—l}?
Pr_1

n+1/2
n+l o~ (“5n)k~1 Vp.
uy =u+ At {20 n+1/2 nilj2
Pr-1 Pr_1

and by solving the Poisson equations

VP =V (20(’{5”)231/2)
Vp, ) V-
Vilomiz] = A
(pii/ ? At

As before, once the above Poisson equations have been solved, velocity, density and
viscosity fields can be updated according to the position of the new interface. The
iterative procedure is repeated until convergence of p = p(y) + P(nst) is satisfied.

A non-iterative scheme, based on the algorithms described in Sussman et al.
(1994), has been also implemented, but it has been found that the use of even only
one corrector step can lead to improvements in accuracy and in stability of the
method. For the present calculation a CFL-like (Courant-Friedrichs-Lewy) limit
has been used as a stability constraint. In more detail three sources of constraint
are involved: one from the level-set advection, one from the Navier-Stokes

equations, and one from the surface tension. The three together lead to

. Az Re \/A~773(pw +pa)
At < 5 .25 Sy —
= fmin (OoiummJ’O Ol/A:c2+1/Ay2’Oo dro

These conditions are very conservative, and the use of an iterative solution makes
the stability limits more relaxed; the splitting of the pressure in the terms p(s; and

D(nst) 18 less constraining.

3.2.2 Spatial discretization

For the spatial discretization a staggered grid has been chosen as shown in figure
3.1. The horizontal velocity u; ; is defined at the centre of the vertical side and the
vertical velocity v; ; at the centre of the horizontal side of each cell. Pressure and
other fluids properties are defined at the centre of the cell. The use of a staggered
grid provides better coupling between different variables, and the achievement of a

physically correct pressure field.
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Figure 3.1: Definition of the fluid variables on the staggered grid.

Advection operator

The advective terms in the Navier-Stokes equations

ou; ou;
: : 3.8

are discretized using a non-conservative scheme. For example for the u component

U

of the velocity the advective term becomes

Ui j qu/?’jA”xm—l/z’j + V17244172 ui’jH/QA_yui’j“l/Q : (3.9)
The choice of a non-conservative scheme makes it impossible to ensure formally the
convergence of the scheme to the physical solution according to the Lax-Wendroff
theorem (Lax & Wendroff, 1960)!, but, as it will be shown in the next section, the
applications of the scheme to various test cases furnished heuristic proofs of its
convergence. Further, it is possible to demonstrate that, assuming a divergence
free velocity condition, the advective form udu/0z + vOu/dy of the convective
term is equivalent to the divergence du?/0z + duv/dy and to the skew symmetric
1/20u?/0x + 1/20uv/Oy+1/2udu/O0x + 1/2v0u/dy representations (Morinishi

et al., 1998). In fact, the conservative discrete form for u is
u?—i—l/?j - u22+1/2j Ui j+1/2Vi—1/2,54+1 — Ui j—1/2Vi-1/2,j
5 3 _|__ s, P 5 s (3'10)
Az Ay

1The validity of the theorem is generally extended to the interfacial flows, since they can be

thought similar to shock waves, but this extension has never been demonstrated formally.
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which can be written
Uir1/2,5 — Uit1/2,5

(Uit1/25 + Uir1/2,5) +

Us j Ax—u- 1 U i+1 T U
+ Z,_’]+1/2 Za]_l/‘? Z—l/?,]—f—l 1_1/2).7
Ay 5 (3.11)
+Ui—1/2,j+1 = Vi—1/2,5 Yij+1/2 + Uij—1/2
Ay 2

Assuming that the discrete velocity is divergence free all over the domain, then the
following statement holds

Uitr1,j — Ui i Yij+1 — Vij _ 0= Ui+1/2,j — Ui—1/2,5 4 Vit1/2,j+1 — Vi-1/2,5 0
Az Ay Az Ay

(3.12)

Similarly, in the framework of a second order approximation, u; ; can be
approximated by (Uz'+1/2,j + Uz‘—l/Q,j)/27 u;; by (Uz',j+1/2 + ui,j—l/Q)/2 and v;_1/2,j4+1/2
by (vi—1/25 + vi-1/2,j+1)/2, substituting these expressions in 3.11, together with
equation 3.12, this gives the non-conservative form of equation 3.8. This
demonstrates that the conservative and non-conservative forms are equivalent in
the second order approximation for a regular mesh.

Discretizing the generic advection equation u; + au, = 0, it can be shown that
central differences are unstable (Hirsh, 1988), so upwind derivatives are
substituted for them. Upwind derivatives of order higher than one develop
oscillations (Engqyust & Osher, 1981). In attempting to avoid these oscillations,
second order ENO (Essentially Non Oscillatory) schemes are used (Shu & Osher,
1991). Practically, these are a high order upwind schemes with a damping term.
The artificial damping term is introduced in the form of a limiter to the flux across
the cell sides (Harten, 1983) by the Total Variation Diminishing (TVD) schemes or
as a limiter on the slope of the flux by the ENO schemes (Harten & Osher, 1987).

Even though it is computationally more complex, the latter definition of
damping preserves the order of accuracy of the scheme even in the extreme points
of the advected function, so it is the one most commonly used in numerical codes.
Detailed descriptions of the ENO schemes can be found in Harten & Osher (1987),
Shu & Osher (1991) and Barth & Deconinck (1999).

qg ., 4, .49 q
k-1 ko k172 k+l k+2
& & ——C—@ @

Figure 3.2: Definition of auxiliary variables for advection problems.

To simplify the description, the ENO procedure is outlined here for a 1D case.

Extending it to multidimensional problems is straightforward. Assume that the
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variable g is known at the grid locations k£ — 1, k and k£ + 1. To calculate the
quantity gx+1/2 at the intermediate position (see figure 3.2) the following

approximations are defined

1. .
qr = gx + §hmlter(qk+1 — Qks Gk — Qk—1)

1. .
gr = Qr+1 — 511m1ter(qk+2 — Qr+1, Gk+1 — Gk)

1
qm = ’2‘(QL +qr) -

and gx41/2 is chosen according to the advection velocity w as

( )
gv i [wpga o] < Azt

Gk+1/2 = { dr if wk+1/2 < —A.’L’4 (313)

L dL if w172 > Az*

When the variable ¢ coincides with the advection velocity as in the first term of

equation 3.8, then its value in an intermediate value of the cell side is given by

( )
uy Hup <0and up >0

Uit1/2; = § ugp ifupy <0and ug <0

| UL ifuy >0and ur >0

Different functions can be used as limiter function lémiter(a, b). Here two kinds

of limiter functions have been tested: minmod and superbee. The former is defined

as )
a ifja| < |b| and ab >0

limiter(a,b) = ¢ b if |b| < |a| and ab > 0

\ 0 otherwise .

The minmod is one of the most commonly used limiters and it is known to be
dissipative. This feature is usually accepted because it smooths high normal

gradients of the tangential velocity, and further stabilizes the interface with a
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numerical viscosity. The superbee limiter is defined as

max(min(|al, 2|b]), min(2|al, |b]))sign(a) if ab > 0
limiter(a, b) =
0 otherwise .

The superbee is the most suitable limiter to capture the advection of a steep

function.
1 Y
0.8F exact solution
’ e sUpETbE
——— MO
0.6

04} ,

J

0 | ' ‘ ' 1 l ‘ > X - Ut

0.2}

o

Figure 3.3: Example of advection of a sinusoidal wave followed by a step. The re-
sults obtained using the superbee and the minmod schemes are compared with analytical

solution.

Figure 3.3 shows the effects of the two different limiters in the advection of a

function composed of a single sinusoidal wave and a step:

0 ifz <0

1/2(sin(27z) +1) if0<z <1
P(z,0) = ,

0 ifl<z<?2

1 ifz>2

The advection velocity is constant so that this composite wave is simply translated
(the exact solution is indicated with a solid line). The minmod limiter (dashed
line) keeps the topology of the sinusoidal wave but smooths the step. The superbee
limiter (dotted line) sharpens the sinusoidal wave, but correctly advects the steps.
In the case of interfacial flows, the tangential velocity at the interface is
characterized by large gradients and therefore behaves similarly to the steps. On
the other hand deep inside each fluid the velocity is more likely to assume smooth

gradients more closely resembling the sinusoidal wave. This means that the
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minmod is more suitable far from the interface, while the superbee is very effective

near the interface.
The minmod and the superbee limiters have been preferred to other limiters

because of their individual features and because of the possibility of combining
them in a smooth transition from one to another. This can be done by introducing
a limiter function m(a, b) with variable coefficients.

Assuming that ¢(z,y,t) is the distance of point P(z,y) from the interface at

the time ¢, the limiter is defined as:

0 if ab< 0
limiter(a,b) =

max(min(f|al, |b]), min(f|b|, |a|))sign(a) if ab >0

where the coefficient f is used to model the smooth transition from one limiter

function to the other. It depends on the distance ¢ from the interface in the form

oS (fﬁ:) +1 if |¢] < Siim
if f(bl > 5li'm

—n
i
LB T

within the interval [~} , 0im |- The practical choice of &, will be discussed later.
When |@| > 0j;m, the new limiter represents the minmod limiter and when
¢ = 0 it corresponds to the superbee.
This formulation is valid for sufficiently high Reynolds numbers. In fact, in the
case of sufficiently large fluid viscosity, the true tangential velocity at the interface

is quite smooth and the use of a superbee scheme would steepen it unphysically.

Projection operator

The Poisson equations (3.6) and (3.7) can be discretized with a second order

scheme with a 5-point stencil or with a 9-point stencil method if the grid has

square cells.
In the former case the discretized form is
Giv1j — iy Pig— Pic1y g1 — Gy Pig — Pl
Pivr1/2,5 Pi—1/2,5 Pij+1/2 Pii—1/2

1
o = T

2,7
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in the latter

1
v (—V(IS) =
P irj
Giv1j — Pij  Pig— Pi-1y  Pigy1 — Dij  Pig — Pij
_ 2 Pit1/2, Pi1f2g o _ Pt/ Pij-1/2
3 Az? Ay?

Git1,jt1 — Pij  Pig — Pim1-1 Pi-i+1 — Piy iy — Pir1i-1

L L Py Picif25=1/2 | Pinl/24+1/2 Pit1/2,j-1/2
6 Ax? Ay?

fu—y

The second term in the right hand side of the 9-point stencil method is obtained
by applying the differential operators along the cell diagonals. Where it is possible,
the latter discretization is preferred since it leads to a Laplacian operator that is
less dependent on the directions chosen for the spatial discretization.

To solve the linear systems of equations 3.6 and 3.7, different methods can be
used. Here a Generalized Minimum RESidual (GMRES) method has been adopted

(Otto, 1996).

3.2.3 Smoothing across the interface

The coefficients of the limiter function do not represent the only quantities
smoothed across the interface. In fact, not only the advective operator but also the
density p, the viscosity u, the delta function § need to be smoothed. In particular,
the solution of the Poisson equation for p(,s) requires the density to be smoothed
across the interface to avoid (possibly divergent) numerical oscillations.

The use of a level-set function requires the introduction of an analytical link
between the distance function and the properties of density and viscosity. No rule
exits for the choice of such a function, but the requirements are mass conservation
and convergence of the numerical representation to the physical solution as
Ax — 0.

Usually e.g. (Sussman et al., 1994), the density is defined by a trigonometric
bridge function, but this representation presents a poor stability. The compound
1/p function, as it appears in the equations, is steeper on the air side, shifting in

that direction most of the transition from the water to the air fields (see figure 3.4).
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A possible solution to this problem could be achieved by a trigonometric
smoothing of the inverse of the density, appearing as coefficients of the Poisson
equation. However, the pressure p, the solution of this equation, is related to the
density as well. Therefore, if p is not adequately smoothed, its derivative, which
appears in the calculation of the pressure derivatives near the interface, would
probably introduce oscillations and eventually instabilities.

To reduce the risk of oscillations both in the discretization of the Poisson
equation and in the calculation of the pressure derivatives, a similar smoothing of
the density and of its inverse is necessary. For this pourpose, in the present

implementation, an exponential bridge function has been introduced in the form

P if (¢ — d,¢) < =6,
p(6) = § VBubae® T if g — 5,e <o, (3.14)
Pa if (¢ — 6,¢) > 6,

where p,, and p, are respectively water and air density and the constant coefficient

c is chosen to conserve the total mass according to

p(1+c)
/ pdd = pyd,(1 —¢) + pd,(1 +¢) . (3.15)
5(~1+c)
In practice, ¢ ~ 0.5521 for pyaer/pair = 1000/1.23. The use of the equation (3.14)
results in the smoothing of the density and of its inverse shown in with a dashed
line in figure 3.4. The difference between using the bridge function (3.14) and the
trigonometric bridge function as usually adopted becomes important in the
resolution of local flow details, where the mesh can be relatively coarse and the

solution is more sensitive to the extension of the smoothing region.

smoothing

classical
trigonometric
present
exponential

inverse
trigonometric

1 /pﬂlf B

P watel

interface k interface

i

Par [ l\'-‘ ~ha ) 1/pwater
-3 water air 8 -

Figure 3.4: Smoothing of the density and of its inverse.

) water ‘ air 3

As in the case of the density term, it can be shown that, for a proper solution

of the conservation equations, the inverse of the viscosity has to be smoothed
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across the interface, rather than the viscosity itself. Smoothing 1/4 rather than p
has been found crucial when an accurate resolution of the air-flow dynamics is

needed (Tryggvason et al., 2001). Here,

T if ¢ <-4,
1 -1 -1 sin{ 2% 1, -1
;(g/)) = P ;ua ( (Wéu) _ %) 4 M ‘;‘Ua if Wi < 5#
prt if >4,

has been used.
Finally, the Dirac function in the surface-tension term is smoothed as

. 0 if [¢] < &4
@)=9 5 (COS (?‘2) _ 1) if ¢ < 84 .

2854

similarly to what has been done in Brackbill et al. (1992).
In the present implementation, the amplitudes of the four smoothing intervals

Otim» 05, 0, and J,; are fixed throughout the computations and satisfy the conditions
Otim = 0, = 0y > Ogt .

The amplitude d;;,, of the variable-coefficient limiter function should be larger than
d, to maintain accuracy in the solution of the advection term in the transition
region. Usually, é,; > 0.7Az is sufficient to prevent oscillations in the solution of
the corresponding Poisson equations. Such oscillations would induce unphysical
parasitic currents in both air and water phases, though larger ones in air because
of the density ratio. If 6, > 0,; the gradients of p(,; decrease more rapidly,

reducing the presence of unphysical currents on the air side.

3.3 Interface capturing

The interface between the fluids is traced using the level set function ¢, introduced
for the first time for incompressible fluids in Sussman et al. (1994). The level set
function is a Lipschitz continuous function that represents the distance from the
interface. A complete description of the level set function can be found in Sethian
(1999).

At any point P of the domain, the function ¢ (see sketch in figure 3.5) is
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defined as
( ¢(P) <0 if P is in water

{ #(P)>0 ifP isin air

| #(P) =0 if P is on the interface .

Since a bridge function links the density to the distance from the interface,

Phase 1
distance function
in the narrow band,

level zero P

Phase 2

Figure 3.5: Definition of a distance function ¢ in a narrow band around the interface

represented by the zero level.

p = p(®), and the continuity equation can be written as

Op (0¢
R N— . - 3-16
a¢(at+“ ng) 0, (3.16)
which provides the transport equation for the level-set function as far as

Op/0¢ # 0%
The distance function defines not only the position of the interface but it offers

also the possibility of an easy calculation of the normal
n= —-————V¢
7]
and of the curvature as
Vo
Vol

2 As explained later, knowledge of the position of the zero level is a necessary and sufficient

requirement for defining the level set function all over the domain. At the interface (¢ = 0)
Op/0¢ # 0.

k=V
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along the interface

The Lagrangian evolution of ¢ through equation 3.16 does not preserve the
meaning of distance from the interface. Therefore a reinitialization procedure of ¢
is necessary to restore its geometrical properties. In the reinitialization, as

introduced in Sethian (1999), ¢ is advanced in a pseudo-time 7 until the solution

¢ Vo Vo .
3 + <___|V¢[ — 1) sign(¢) =0 (3.17)

has reached stationary convergence, thus the geometric property of a distance
function |V¢| =1 is intrinsically enforced. In equation (3.17) sign(¢) represents a
smooth approximation of the sign of ¢ and it is defined as ¢/ W , where € is
a small smoothing parameter that can be assumed equal to the minimum grid size.

of the equation

This function is necessary to enforce the physical propagation of the signal from
the interface to the outer regions.

Usually, equation (3.17) is solved through a second order ENO scheme with the
minmod limiter. Theoretically the reinitialised distance function ¢ should have the

same zero as the advected function. In Russo & Smereka (2000) a basic error in

[0 "

Figure 3.6: Example of reinitialization of the level-set function in the 1D case. The
classical reinitialization of the level set causes the shift of the zero level. The initial

function ¢y has a zero different from the one of the reinitilized function ¢.

the use of the ENO scheme has been highlighted.
For example, applying a first order ENO scheme to the 1D case in figure 3.6,
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the discrete form of equation (3.17) at point 4 reads
it = ¢} — sign(4y)sign 094 (995 _ 1) A, (3.18)
dz ox

where the advecting velocity is sign(gb;;)sign(%). Given that the two first order

derivatives

a=(¢s—¢3)/Az and b= (ds— ¢4)/Ax

are, like ¢4 both positive, the upwind scheme reads
T Az

Formula (3.19) contains the left derivative of point 4, so it violates the assumption
that the information moves to the reinitialized point from the interface and not
from beyond it.

In Russo & Smereka (2000) this problem is solved by using geometrical
considerations. If 0¢/0z = 1, then ¢, is equal to the length of a segment A
marked with a thicker line in figure 3.6. A second order centred derivative at point
4 gives (¢s — ¢3)/2Az, and a line with this slope, passing through the point
(x4, 4), intersects the zero axis at x = x4 — 2Az2¢3/|¢s — ¢3|. Assuming that this

point is the zero level, the reinitialization procedure is corrected as

¢t — At (sign(¢?)l(/)§f - @0——91%0—,) for an interface cell
P11

Pt = (3.20)
1 !
¢t — Arsign(¢?) (sign (‘2@) %—qj-’ - 1) otherwise.
r ) Oz

The corresponding correction in the 2D case reads

é,j — AT (sign( ?,j)’qsé,j] - Ci,j) for an interface cell
b= 3.21)
2,7 l A ‘ o ¢ V(bl 1 h . (
i 7sign( ”) —=T otherwise
where .
Cij = = : (3.22)




This correction does lead to a better accuracy of the method, yet some
numerical smoothing is observed in cases with high curvature of the interface,
including in the limit a discontinuous interface where the normal is not uniquely
defined (see figure 3.7). For such cases, a more accurate solution can be obtained

by rewriting the modulus of the gradient as:

2

V6| = /99 Vo= /V(0Ve) — 6V = \/ v? (—2—) _ V% .

This formulation takes into account the curvature of the interface and manages to
reduce the numerical error committed when calculating the normal at

discontinuities. So a more accurate solution can be obtained by using

0
U 2,7

2 VA+ B
P15 (%‘@,j)“ﬁg)zwg—hj (ﬁ%i“”?‘j) 3.93
A= — (323)
80 60
O 541 (%”45?,]‘) (@), +¢0, 1 (“2‘%:_1"75?,1)
B = A7

This formula has an important drawback, it does not smooth the oscillations at
the interface and results in a poorer stability. Therefore, in the final
implementation, at the interface a weighted combination of the two methods

(3.22-3.23) has been adopted, that is
Sy = 0%y — Ar((sign(47,) 161 — (asCij + amCT3)) - (3.24)

A suitable balance between an accurate solution and the avoidance of oscillations
on the interface results in the choice of a,;, = 0.8 and a,,, = 0.2.

As the calculation of the distance function is time consuming it is exactly
defined in a narrow band 2« wide around the interface. Outside this region the
distance function is kept constant and equal to +«, where the sign is chosen
according to the position of the point in one or the other fluid (see figure 3.5).

The width of this band « can be arbitrarily chosen as long as it is outside the
range [—0, + 8py pas Op + Opu o), And @ must be larger than 6, + ,, ., Where
density and viscosity vary.

A sharp cut-off of the distance function in the reinitialization step could
introduce dangerous oscillations at the boundaries of the narrow band. Following

Peng et al. (1999), a smoothed cut off function ¢(¢) is used between [—«, —d] and
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non unique normals

Figure 3.7: Points where the normal vector is not uniquely defined.

c(0)

:
|
|
|
!
|
!
o o

Figure 3.8: Cut off function (Peng et al., 1999).

[0, @], in the form

(|¢] — a)?(2]¢] + o — 35)
(= 8)?

0

\

where 6 < 6, + 6, 5. (see figure 3.8).

wsPa
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In this way, far from the interface, equation (3.21) becomes

Vo Vol
V&,

and the diffusion velocity of the distance function is nullified outside the narrow

¢y = i, — c(¢)Arsign(e];) (

band. Finally, oscillations are smoothed out enforcing |¢| = || at the mesh point
where actually the inequality |¢| > || would apply.

In all the cases treated in this thesis the solid boundaries will be considered
coincident with a side of the cell, while the distance function is defined at its
centre. This strategy bypasses all the problems linked with the boundary
conditions at the contact point between the free surface and solid walls.
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Figure 3.9: Flow diagram of the numerical scheme used here.
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3.4 Conclusions

The numerical scheme outlined in this chapter is briefly summed up in the flow
diagram in figure 3.9.

An iterative Predictor-Corrector scheme is used for the time discretization and
an approximate projection method is adopted for the solution of the pressure.

* Particular attention has been paid to the numerical methods adopted in the
neighbourhood of the interface between two fluids. A variable coefficients limiter
function in the convective terms prevents velocity diffusing from one fluid to the
other. A pressure splitting allows a more robust solution of the surface tension
problem. An exponential smoothing function for the density reduces the
oscillations deriving from the high gradients in the coefficients of the Poisson
equations. A corrected reintialization procedure reduces the smoothing error

associated with the level set function.



..., by slow prudence to make mild

a rugged people, and thro’ soft degrees
subdue them to the useful and the good.
Ulysses, Alfred Tennyson

Chapter 4

Validation of the numerical solver

Here the numerical solver described in the previous chapter is applied to simple
prototype problems. Strong deformation and breaking of the free surface, air
entrainment, vorticity interaction with the interface and surface tension

phenomena are analyzed individually. Each case demonstrates the validity of the

method.

4.1 Introduction

The aim of the numerics developed in this thesis is to simulate efliciently and
accurately the deformation of the free surface in cases involving violent motions.
To make sure that the results obtained are not only physically reliable but
quantitatively accurate, the results of the present algorithm should be compared
with experimental data.

The main problem when comparing with experimental data that are available
in the literature is the lack of full information on the experimental set up used and
a shortage of flow visualization in the breaking region. For this reason a set of
dedicated experiments have been performed in well documented conditions to
verify the numerical code. The problem chosen is the one of a bluff body moving
in water. To avoid additional complexities connected with 3D effects, a 2D flow
has been investigated. The problem studied is the flow field around a
surface-piercing plate moving in water with known velocity. The geometry of the
test is identical to that simulated by Tsai & Yue (1993). This problem preserves

the main phenomena connected with the surface piercing body problem: (1) strong
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deformation of the interface with eventual breaking and air entrainment, (2)
generation of vorticity, and (3) its interaction with the interface. The main

features described here are shown in figure 4.1.

plate i/\/L

interface

air
entraiment

water

O

water

Figure 4.1: Example of flow around a surface piercing plate. The interface between air
and water is highly deformed by the motion of the plate with velocity U(t) in water initially
at rest. At the lower tip of the plate vorticity detaches (shadowed area), and interacts

with the interface.

Before applying the numerical algorithm to this problem which is discussed in
the next chapters, the validity of the solver has been tested on simpler problems
where each flow feature listed above appears individually. The dam-break plus
impact problem has been used to analyze breaking at the interface and the air
entrainment; the interaction between vorticity and the interface has been
investigated in the case of a vortex pair rising toward a free surface, and the
modelling of surface-tension effects was studied by considering the evolution of a
gas bubble.

The use of simple prototype problems indirectly connected with the more
general problem of interest simplifies the problem of understanding the phenomena
and the data analysis. If each aspect of the problem is analyzed separately, the
detection of numerical errors is simpler.

The problems listed above have stimulated and informed the development of
the numerical code described in the previous chapter. Moreover the comparison
with benchmark studies represent a part of the verification of the solver. Its

convergence is analyzed in appendix A.
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Figure 4.2: Parasitic currents for different numerical solvers. The thick line represents the
surface of the bubble. Left: classical solver (Brackbill et al.,1992); right: present solver.

Az = R/33,t = At = R/(2\/oK/p), b5t = 6,/2 = 0.4Ax

4.2 The rising bubble problem

The problem of the rising bubble has been used to study the effects of surface
tension. The numerical modelling of the surface tension adopted here is very
similar to the one proposed by Brackbill et al. (1992) except for the splitting of the
pressure term into two contributions, one due to the surface tension and the other
to the remaining forces acting in the Navier-Stokes equations. This implies the
solution of two Poisson equations, with the pressure term due to the surface
tension independent from the density. To understand the numerical difference
between the pressure splitting implemented here and the classical solver used by
Brackbill et al. (1992), the analytical solution of a flow field around a cylindrical
bubble at zero gravity has been analyzed. The exact solution to this problem is
zero velocity everywhere and a pressure jump proportional to the surface tension
at the air-water interface. The numerical solution of the discrete Poisson equation
implies numerical errors and, consequently, some parasitic currents (Liu et al,
2000). The intensity of these currents is shown in figure 4.2 for the classical solver
by Brackbill et al. (1992) on the left and by the present technique on the right.
Using the same mesh and the same time-stepping, the intensity of the parasitic
currents obtained with the method described in section 3.2.1 results ten times
smaller than one obtained with the classical technique.

The accuracy of the solver for the surface tension has been tested by comparing
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the numerical results to the experimental results of Walters & Davidson (1962) for
the case of a rising cylindrical bubble. A two dimensional air bubble is formed in a
water tank 3/8 inches wide. It is released impulsively by withdrawing an 1 inch

diameter tube from the tank.

- v

R A

e b aten g

o

Figure 4.3: Initially circular 2D air bubble (with radius R=1inch) in water. The top
figures are extracted from the experiments presented in Walter & Davidson, (1962). The
lower figures are the numerical results. Time increases from left to right; the plots refer

to t=0.0125s, 0.0625s, 0.1125s

The top plots of figures 4.3 and 4.4 show the experimental evolution of an air
bubble immersed in water. Because of its buoyancy the bubble rises. While

moving upwards into the water the rise time is strongly influenced by added mass
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Figure 4.4: Same conditions of figure 4.3. t=0.1625s, 0.2125s, 0.2625s

effects; the top of the bubble moves with a lower velocity respect to the bottom, so
the bubble is compressed along its vertical axis. Later on, both viscosity and
surface tension contribute to preserve the cylindrical bubble form. Here the
attention is focused on the effects of the surface tension. If it is small the curvature
of the bubble can reduce and eventually change its sign at the bottom part. In
figures 4.3 and 4.4 the present results for the evolution of the air-water interface
are given in the bottom plots at the same time instants as the corresponding
experimental results. The agreement between experiments and numerics is rather
satisfactory up to the time instant when the central jet impacts on the lateral walls

of the bubble at t = 0.22s. Small detectable differences can be explained by the
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meniscus effects on the glass that alter the image perceived at the side of the glass.
Another cause of differences can be due to the initial conditions. The tube with
the air inside is withdrawn in a finite time and this can influence the initial shape
of the bubble. After the internal tongue of water merges with the wall of the
bubble, the differences could be due to numerical errors or to differences between
the initial conditions used in the test and in the numerical simulation. For
example, the nature of the gas inside the physical bubble and its pressure is not
declared by Walters & Davidson (1962). The problem they proposed is
characterized by the following non dimensional numbers:

Re =g ?R"?p,, /11, = 1.1 - 10% and We = Weey, = (gR)?py /0 = 837.

y i
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Figure 4.5: Deformation of an initially circular bubble of linch diameter at different Weber
numbers. The Weber number We.,, = (gR)?p, /o = 837 is used in the experiments by
Walters & Davidson, (1962). The Reynolds number is constant and equal to Re = 1.1-10°.
The initial position of the bubble centre is (0.,0.).

The effects of the surface tension are further investigated numerically. The
higher the surface tension is, the more restrictive become the related limits on the

time step needed to avoid instabilities. The bubbles used in the experiments by
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Walters & Davidson (1962) are characterized by a rather large Weber number. To
verify the handling of the surface tension by the present solver the Weber number
has been varied within a wide range. Figure 4.5 shows the deformation of the free
surface at t=0.125s in cases where the Weber number is set equal to 10W ey,
Weezp, Weegp/10, Weezp/25, Weezp/50 and We,,,/100 respectively from left to
right and from top to bottom.

As the surface tension increases, the deformation of the bubbles is smaller, so
that the deformation of its central part does not cause the splitting of the bubble
in smaller bubbles. In this case the corresponding threshold Weber number is
equal to 80.

The different profiles of the top part of the bubble, at different Weber numbers,
cause also a change of the added mass of the rising bubble. As a result, the bubble
rises with different velocities.

All cases shown in figure 4.5 have been performed with a time step
At =1-10"%s that is almost ten times larger than the maximum At allowed by

the stability constraints in the Brackbill’s solution.

4.3 Interaction of a vortex pair with a free
surface

The problem of the vortex pair rising toward the free surface has been used to
verify the capability of modelling the interaction of the vorticity with the interface.
For this problem, the Reynolds number Re = I'p/27y is defined in term of the
circulation and the kinematic viscosity, and the Froude number is defined as

Fn =T/27(ga®)'/?, where a is the initial distance between the vortices. The case
of Re = 100, F'n = 0.8 and infinite Weber number is studied. The flow features
that develop are analyzed numerically and compared with those obtained by
Ohring & Lugt (1991). Their method, a Lagrangian approach, differs from the one
presented here in respect of the discretization of the Navier-Stokes equations.
Moreover they do not handle the evolution of the gaseous phase.

Both results are presented in figures 4.6 and 4.7, where the same initial mesh
has been used. The agreement is rather good even though some minor differences
can be noted at the formation of an anticlockwise vorticity (dashed contour lines)
close to the free surface. In this case the present method suffers from the presence

of a locally coarser mesh, while the Lagrangian mesh tends naturally to
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Figure 4.6: Evolution of a vortex pair rising towards the free surface. Left: numeri-
cal results from Ohring & Lugt, (1991); right: present results. The continuous contours
represent the clockwise rotating vorticity and the dashed contours the anticlockwise ro-

tation. The vorticity contours are spaced by Aw = 2 (for both the computations the

Az = 0.058a).

concentrate more points in that region. On the other hand, due to this intrinsic
feature of the Lagrangian technique, the simulation by Ohring & Lugt (1991) is
forced to stop at t=3.45s, while the present calculation can follow the break up of

the water surface above the vorticity region, as shown in figure 4.8.
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Figure 4.7: Evolution of a vortex pair rising towards the free surface. Left: numerical
results from Ohring & Lugt, (1991); right: present results. The continuous contours rep-

resent the clockwise rotating vorticity and the dashed contours the anticlockwise rotation.

4.4 Dam break plus impact problem

The last test case refers to the dam break plus impact problem. The flow that
develops after the dam break provides a way of evaluating the smoothing errors
that are caused by the reinitialization procedure in the level set technique, as the
involved time scale is quite large. The subsequent impact of the stream with a
downstream structure and the resulting flow are relevant to the verification of air
entrainment by the level-set.

The classical dam-break problem is schematically represented as an initially

rectangular column of fluid, length L and height H, supported by a horizontal
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Figure 4.8: Evolution of a vortex pair rising towards the free surface. Break up of the
water above the vortex and formation of a region of high anticlockwise vorticity. Left:

t=4.0s. Right: t=4.8s.

bottom (deck), limited by a wall on one side and free to collapse after ¢ = 0 on the
other one, see figure 4.9.

The resulting flow develops a tongue of liquid quickly spreading along the
horizontal boundary, without any free-surface breaking. This problem has been
widely investigated both numerically and experimentally. Besides its practical
applications, it is a simply-defined test case to verify and validate methods
handling large deformations of the free surface. The flow that develops after the
impact of the tongue of liquid with an obstacle placed downstream of the broken
dam is more challenging and less well studied. In this case, overturning and
breaking of the free surface are observed, leading also to air entrapment.

Present results for the dam break problem have been compared with results of
two other numerical methods with quite different features: the Boundary Element
Method with mixed Eulerian Lagrangian scheme (BEM, Greco, 2001) and the
Smoothed Particles Hydrodynamics method (SPH, Colagrossi & Landrini, 2003).
Both these two methods are based on a Lagrangian flow description. Where
possible the results have also been compared with experimental data available in
the literature.

The first case considered reproduces an experiment by Martin & Moyce (1952),

and corresponds to L = H = 5.7 cm. The following non-dimensional variables have

been used: z = X/H,y=Y/H, p=P/(pgH), f = f/(pgHL), T =1t\/g/H,
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Figure 4.9: Variables definition for the dam-break problem. The shaded area repre-
sents the initial configuration of the water domain ((X/H)4 = 3.721, (X/H)p = 4.542,
(¥/H)e = 0.27).

respectively for the horizontal and vertical coordinates, the pressure, the force and
the time. In the experiments, the water was initially contained within the solid
boundary of a water flume and a piece of wax paper, clamped between two
metallic frames. The intense current produced by a short circuit was used to melt
the wax and quickly release the paper diaphragm, leaving the water free to flow
along the flume.

Figure 4.10 gives the propagation in time 7 of the toe of the water-front, 4z,
after the dam break.

All the numerical results are in reasonable agreement, and show a fluid
smoothly accelerating and reaching an almost constant velocity on a longer time
scale. The latter coincides with the analytical water-front velocity given in Ritter
(1892) under the assumption of shallow-water conditions. The numerical results
have a behaviour similar to the experimental data but the related water fronts are
quicker. While the BEM and SPH results are inviscid, the level-set calculations
have been carried out with both free slip conditions and inviscid fluid, and with

non-slip conditions! the proper air and water viscosity. In the latter case, the

1The non-slip conditions used here are implemented as described in appendix E, but the grid
size used for this case is not sufficiently fine to model correctly the boundary layer effects. However

it can be considered indicative of the general behaviour.
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Figure 4.10: Dam-break problem. Time evolution of the water-front toe. 7 = 0 is the
time instant for dam break and z,,,, is the instantaneous position of the water front. The
analytical solution in Ritter (1982) gives the asymptotic velocity of the water front by a

shallow-water theory.

water-front is slower, but not as much as in the experiments.

Several sources of uncertainties hamper a clearer comparison with the tests due
to the experimental scale and to the lack of full information for the test set-up.
None of the codes modelled surface-tension effects. In the experiments, two
different scales (L = 5.7 and L = 11.4 cm) were considered in order to rule out
significant surface-tension effects, though in both cases the radius of curvature at
the water front is still rather small. Greco (2001) showed that the agreement
between large-scale experiments (Dressler, 1954) and BEM is better than in the
present case. Another source of uncertainty is related to the bottom roughness,
which alters the propagation velocity and triggers the development of turbulence
near the water front (not modelled here).

The overall free-surface profiles obtained by the three numerical methods
coincided to within plotting accuracy. Differences can be detected only by a closer
inspection of the water-front region, as in figure 4.11. The present method,
indicated as LS in the figure (dashed lines) predicts a blunter shape, with a more
rounded and slower tip. This is due to numerical errors introduced in the
reinitialization process of the distance function. In fact, in this case a distance

function symmetric with respect to the bottom is assumed.
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Figure 4.11: Dam-break problem. Details of the water front: free-surface configurations.

Time increases from left to right and from top to bottom.

Therefore, unless the slope of the front at the bottom is vertical, the tip
resembles a spike, with discontinuities of the gradient function in both the
coordinate directions. Such discontinuities are smoothed by the numerical
procedure, and the guessed zero level can be shifted from its correct location.
However the numerical improvements, both for the discretization of the distance
function and for the Navier-Stokes solver have reduced the involved errors so that
the difference between the different methods after 320 steps of present simulation

is still O(Az = 0.018L).
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Figure 4.12: Dam-break problem. Details of the water front: free-surface configurations,

with a classical Level-Set solver (LSc) and with a modified HLSM method.

To overcome some of the difficulties encountered at the front tip due to the

errors in the distance function, a tracking technique has been implemented based
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on the use of Lagrangian markers (HLSM method) distributed across the interface
(Enright et al., 2002). In this case, after the Lagrangian convection has been
performed, the value of the level-set function on the grid points is updated by
using the value of ¢ carried by the particles. The solution of the Navier-Stokes
Equations is then performed as in the classical LS case.

Related results are presented in figure 4.12 and compared with those of the
classical Level-Set solver (LSc), the BEM and the SPH methods. HLSM results
agree remarkably well with the BEM and the SPH data at the initial time but the
free-surface evolution shows a large deviation from the reference solutions for the
last configuration (right-bottom plot in figure 4.12). This is due to some errors in

the interpolation of the velocity in a region where the velocity gradients are very

high.

4.4.1 Dam-break flow: impact with a vertical wall

In many practical circumstances, the water hits obstacles (break-waters, ship
superstructures, etc..) causing important structural loads. This situation is
represented by the presence of the wall shown in figure 4.19. Figure 4.13 shows the
water induced forces f, and f,, acting respectively on the bottom and on a
downstream vertical wall placed at a distance L, = 1.1H downstream the dam.
The flow is originated by the release of a reservoir of water with L = H.

The agreement between the present solver and the other numerical methods is
very good, disregarding the rather small oscillations in the SPH computation.
Even the jumps in the force that are related to the impact of the fluid onto the
downstream vertical wall are in reasonable agreement. The slightly smaller
velocity of the Level-Set front has not strongly influenced the dynamic behaviour
at the impact on the wall. In fact, the forces acting both on the bottom and on the
vertical wall are very similar to those obtained by the other two methods.

The substantial difference among the three numerical solvers is in the slope of
the force acting on the vertical wall during the initial stage of the impact of the
water toe on it: a high peak of f,,, with short duration, is found by the BEM
method. At the impact time, the water front can be approximated by half a wedge
with an angle of about a; = 60°, followed by a free surface with mean slope
ay = 25°. By using a gravity-less similarity solution for the impact of a fluid wedge
against the wall (Zhang et al., 1996), the forces reported in figure 4.14 have been
found for the angles «; and as. The results suggest that the higher peak of the
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BEM impact force is due to the impact of the blunter portion of the water front,
but the oscillations of the SPH are very likely to be the results of some numerical
instabilities. The local refinement of the BEM is higher than in the SPH and in
the present computations, which do not capture properly the initial rate of change
in the horizontal load. The same can be inferred for the Level Set solution. The
present solver presents a delay in the increase of the horizontal force due to the
delay in the water toe impacting on the vertical wall. However the initial force
peak is associated with quite a short time scale and therefore it is likely
unimportant from a structural point of view.
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Figure 4.13: Dam-break plus impact problem. Left: time evolution of the vertical load
on the horizontal deck after the dam break. Right: time evolution of the horizontal load

on the vertical downstream wall at L, = 1.1H from the dam.

In the experiments by Zhou et al. (1999), a reservoir of water, with H = 60 cm
and L = 2H was placed at a distance L, = 3.366 H from a vertical obstacle. Wave
height measurements were performed at the locations A and B shown in figure 4.9.
The pressure evolution was measured at the position C along the vertical wall.
The sequence in figure 4.15 shows the global development of the fluid flow as
obtained by the numerics. For the SPH only the free-surface particle layer is
plotted, and for the present solver the continuous lines represent the zero-level of
the distance function ¢. After the dam is removed, the flow develops along the
deck, impacting against the vertical wall, where it is deviated upwards. Formation
of spray and surface fragmentation (which cannot be handled by the BEM) may
occur. The Level-Set suffers from insufficient resolution and is quite dependent on
the numerical discretization adopted. The SPH predicts high particle velocities,

and some of them leave the main bulk of the fluid. The accuracy of these details is

hard to assess.
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Figure 4.14: Dam-break plus impact problem. Time evolution of the impact force on the
vertical wall at L. = 1.1H from the dam. The zero-gravity results are obtained numerically

by using the free-surface data following from Zhang et al. (1996).

Initially, under the restoring action of gravity, the fluid acceleration decreases
and the jet slows down. The motion of the water is reversed in a waterfall,
overturning in the form of a wave plunging onto the deck. The three methods
agree quite well despite the complexity of the flow field. Though no experimental

data are available for the free-surface profile, the agreement is encouraging. Some
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Figure 4.15: Dam-break plus impact problem. Free-surface flow and impact against the

vertical wall following the breaking of the dam.
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difference appears at time 7 = 5.6 when both the present solver and the SPH
predict a lower jet with respect to the BEM. This is due to the presence of the
gaseous phase. The effect of the air escaping out from the cavity created below the

jet could contribute to a downwards acceleration of the tip.
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Figure 4.16: Dam-break plus impact problem. Effects of the different numerical smooth-
ing at the interface. Dashed line: exponential smoothing, solid line: trigonometric smooth-

ing.

The BEM simulation has to be stopped at the impact of the plunging wave
with the underlying water, while both the present method and the SPH are able to
continue further on.

The general agreement highlights the successful efforts in the development of
the numerical aspects of the present solver. Given the spatial discretization used
here (Az = Ay=0.018H and &smpothing, = 1.5Az), the exponential smoothing of
the density described in section 3.14 hamper the growth of instabilities allowing
the reduction of the time step to A7 = 0.018. Figure 4.16 shows how substantial
oscillations can be introduced in the computation with the same At by using
instead a trigonometric smoothing of the density across the interface (see section
3.14). The thinner line of the figure represents the air-water interface for the
present case if the exponential smoothing is adopted, the thicker line is the
equivalent configuration at time 7 = 1.59 when a trigonometric smoothing is
adopted. Most of the oscillations are concentrated at the toe of the water flow,
where shallow water conditions occur and where the water front changes rapidly.

These oscillations can be reduced using a smaller A7 and enlarging dsmoothingps

though the solution is then less accurate and less efficient.
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The advantages that are derived from the use of a variable coefficients ENO
advective scheme (see section 3.2.2) cannot be achieved with any reduction of Ar.
The left plot of figure 4.17 shows the interface calculated by applying the variable
coefficients methods and a more commonly used minmod scheme. The SPH

interface is also given in the plot. The evolution of the plunging jet obtained by
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Figure 4.17: Effects of the limiter function on the plunging jet. Left: comparison of the
interface location with (dashed line) and without (solid line) using the variable-coefficient
limiter function. The SPH solution (dots) is used as a reference. Centre: flow velocity
when a minmod limiter is used. Right: flow velocity when a variable coefficient ENO

scheme is adopted. 7 = 5.64.

the variable coefficient method is closer to the SPH solution. In the central and
right plots of figure 4.17 the velocity field is shown for the cases respectively
without and with a variable coefficients ENO scheme. In the former, the vortical
region present in the air below the plunging jet is diffused to the water domain by
the minmod scheme. This results in an unphysical nose down effect. Even though
it is closer to the SPH and to BEM solutions, the interface obtained with the new
method still presents some residue diffusion effect. This may be related both to a
too narrow transition from the superbee to the minmod scheme (see section 3.2.2)
and to the variation of the density p within a finite layer across the interface. The
latter causes the thickening of the vortex sheet concentrated on the interface. So
that the vorticity is spread over a region affected by higher numerical diffusion
because of the chosen limiter function (see section 3.2.2).

Nevertheless, the evolution of the interface is much improved, and it is possible
to proceed to a more quantitative analysis of physical quantities involved in the
problem.

Figure 4.18 gives the time evolution of the water height h,, at (X/H)a = 3.721
and (X/H)g = 4.542 along the deck. From the analysis of the numerical
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Figure 4.18: Dam-break problem plus impact problem. Water height at locations A, left,
and B, right, (cf. fig. 4.9). Numerical results and experiments in Zhou et al. (1999), with

H=60cmand L =2H.

simulations and of the experiments the three fundamental stages have been

identified by Greco (2001):

1. Stage I: (1 >~ 1.6 — 2.0) is characterized by the sudden rise of the water level

hy, due to the transition from dry-deck conditions to wet-deck conditions.

The shape of the water front determines the growth rate of h,,. Some

differences can be detected between the numerical solutions and the

experimental measurements.

2. Stage II: (7 >~ 2. — 5.6) is characterized by a much slower growth rate of the

water level because of the almost flat free surface above the wave gauges.

3. Stage III: (7 > 5.6) shows a new steep increase of h,,. This is due to the

overturning water which gives an additional contribution to the water depth

measured at the location B. Later on, also the signal recorded by the gauge

located in A displays this phenomenon, which cannot be followed further on

by the BEM, while it is qualitatively captured by the SPH and by the

present solver.

Though the experimental and numerical evolutions are in satisfactory

agreement, in figure 4.18 the numerical solutions underpredict the measured data

when the water level first rises from zero, and the measured h,, has a maximum

which is not present in the numerics. As suggested in Greco (2001), the temporal

record can be converted into a spatial free-surface profile and suggests a hump in

the experimental free surface close to the contact point. This is not visible in the
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dam-breaking free-surface profiles by Dressler (1954) and could be due to the deck
not being perfectly dry before the breaking of the dam. This is consistent with
other flow visualizations in Stansby et al. (1998). Unfortunately, the limited set of
data available does not allow a better verification of the reasons of the differences.
Similar uncertainties affect the analysis of the post breaking values of the water
depth. At this stage, the present solver and the SPH have similar behaviour but

results that differ from the measurements.
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Figure 4.19: Dam-break plus impact problem. Pressure measured in Zhou et al. (1999)
at the circular transducer located at C (see figure 4.9). BEM, SPH, and LS pressure

computations at the centre of location C.
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Figure 4.20: Dam-break plus impact problem. The numerical pressure evaluated at the

bottom boundary of the circular transducer area (Zhou et al., 1999), along the vertical

wall.

Figure 4.19 gives the pressure measured (Zhou et al., 1999) on the vertical wall

during the impact. In the experiments, a circular shaped gauge of 9 cmn diameter
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centred at C (0.27H above the deck) was used. In the figure the measurements are
compared with the numerical values computed at that location?. The agreement
between computations and experiments is rather limited. Actually, Zhou et al.
(1999) also reported difficulties in achieving repeatability of the measurements, so
no conclusive statement can be made. The pressure undergoes large variations
within the area of the transducer. Indeed the measured pressure time series is
closer to the pressure computed at the bottom boundary of the transducer area
along the vertical wall, as shown in figure 4.20. All three numerical methods are in
a good agreement up to the point of breaking (7 = 6.2), when the BEM is halted.
The present solver and the SPH predict a similar evolution of the pressure after
that time. A first peak of pressure just before the closure of the cavity below the
jet is present in both solutions at 7 = 6.18. This is due to the effect of the
entrapped air, and is characterized by a pressure peak just before the closure of
the cavity. This is immediately transmitted to the water. The differences in
amplitude of the peaks predicted by the two methods can be due to the
compressibility of the air, captured by the SPH, and disregarded by the present
solver which assumes both air and water to be incompressible. Later, the evolution
of the pressure is again similar apart from some oscillations of the SPH pressure

due to the numerical semi-compressibility of the water in that technique.

4.4.2 Post-breaking flow evolution

The comparisons with the BEM are necessarily limited to the pre-breaking phase,
but the present solver can still compare with the two-phase SPH method.
Satisfactory comparisons during the post-breaking phase have already been shown
both in water level and pressure (see the previous figures 4.18 and 4.20). Here the
evolution of the air-water interface is discussed.

Figure 4.21 shows the interface at the formation of the splash up. Apart from
the tip of the jet the results are similar. The two solutions show a similar
deformation of the air entrapped inside the water domain and a similar evolution
near the right wall. When the thin layer of water sliding on the wall starts to fall
down, it creates a cavity that eventually closes. A rather comparable deformation
of this cavity is found in the two solutions. Even at this stage, when the interface

is extremely deformed, the two methods predict a similar deformation of the

2The pressure has been computed as an average value on the whole gauge area, but these results

were also not very satisfactory.
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Figure 4.21: Interface evolution after the impact. Solid line: level set, dots: SPH.

entrapped air and of the splash up. This is a quite relevant result, the two solvers
being profoundly different. The positive comparison validates the new features
introduced in the present numerical solver. Figure 4.22 shows the air-water
interface obtained with the reinitialization method by Russo & Smereka (2000)
(dashed line), the scheme described in section 3.3 (solid line) and the SPH solution
(double dotted line). The use of the present method recovers the presence of the
thin layer of water on the right wall that is smoothed out by the other level set
scheme. In the absence of this thin layer of water there can be no subsequent

cavity in the water further entrapped near the right wall.
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Figure 4.22: Effects of the different reinitialization procedure. Solid line: present correc-
tion, dashed line: correction described by Russo & Smereka (2000). Double dots: SPH

solution.

4.5 Conclusions

In this chapter the numerical solver developed in chapter 3 has been verified and
validated by studying simple prototype problems where phenomena relevant for
the hydrodynamics fields are involved.

The single bubble problem has highlighted the accuracy and efficiency of the
splitting technique for the Poisson equation in modelling the surface tension effects.

The problem of the vortex pair has shown that the Cartesian grid handles
accurately the deformation of the free surface caused by the approaching vorticity.

The dam-break problem has been a valuable source of comparison with
experiments and other numerical solvers. Breaking and post-breaking behaviours
have been studied and have confirmed the method’s capabilities. The long time
evolution of the phenomena has allowed the new numerical features introduced in
the discretization of the algorithm to be rigorously tested. The corrections by
Russo & Smereka (2000) have been applied for the first time to the fluid-dynamic
problems, and further corrections have resulted in a considerable gain in the
accuracy of the interface evolution. The exponential smoothing of the density
resulted in a more efficient algorithm, and the variable coefficients ENO scheme

eliminated errors of diffusion across the two fluid domains.
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Part 11

Surface piercing plate problem:
numerical results versus dedicated

experiments for two-phase flows
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There lies the port; the vessl puffs her sail;
thre gloom the dar, briad seas. My mariners,
souls that have toil’d and wrought, and
thought with me

Ulysses, Alfred Tennyson

Chapter 5

Experimental set up

In the previous chapter the study of simple prototype problems guided the
improvement of the numerical method. In the next chapter, the developed solver
will be applied for the analysis of a geometrically simple problem involving the
coexistence and interaction of the phenomena investigated in the prototype cases
individually. This problem is that of a surface piercing plate in forward motion, for
which dedicated experiments have been performed. In this chapter the

experimental set up is outlined.

5.1 General description of the problem

The experimental images shown in figure 5.1 depict the evolution of the
phenomena involved in the motion of a surface piercing plate. A vertical plate
initially at rest (top left plot) starts to move from left to right. This causes the
water level to rise on that side. Gravity progressively counteracts the water rise up
and leads to the formation of a plunging breaker followed by air entrainment. The
motion of the plate also causes a drop in the water level on the left. There, the
lowered air-water interface approaches the region where vorticity is released at the
lower tip of the plate (bubbly region) and interacts with it. The chosen geometry
of the body makes the problem easy to analyze both from a numerical and an
experimental point of view: 1) no uncertainty derives from the shape of the body,

2) the vorticity is released in a fixed point. This makes the problem fascinating for
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Figure 5.1: Evolution of the flow field after the vertical surface piercing plate starts to
move from left to right. The white shaded region represents the air-water interface. Time

increases from left to right and from top to bottom.

the validation of numerical codes.

But its validity extends to a wider field. Topologically it resembles the
problems of blunt bow forms such as those of shape of cargo ships and of transom
sterns. So the phenomena hereafter described give a description of the general

processes that take place around three-dimensional blunt bodies.

5.2 Experimental set up

The experimental set up is sketched in figure 5.2. The experiments were performed
in a flume 0.420 mm wide, 18 m long and at a water depth larger than 0.6 m so
that the effects of the bottom are not significant in all the cases analyzed here. An
aluminium plate is towed along the flume and the flow features are captured by a
video-camera (to visualize the air-water interface displacement) placed at the side

of the flume, and by a Laser Doppler Anemometry (LDA) device (to measure the
velocity field).
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Figure 5.2: Experimental set up.

Two test campaigns have been carried out. The former analyzed the motion of
a vertical plate, the latter considered the case of an inclined plate.

The vertical plate is 300mm long, 415mm large and 5mm wide. It is supported
by two vertical guides, linked to the carriage. The elevation of the plate on the
vertical guides was adjustable.

A soft plastic material was used at the two sides of the plate, thus allowing an
almost perfect contact with the walls of the flume; leaks at the two sides of the
plate are reduced to a minimum to ensure two-dimensional flow conditions during
the tests.

The inclined plate is 500mm long, 415mm wide and 3mm thick (with sharp
corners). The distance between the lower edge and the point where the plate is
clamped to the rigid support attached to the carriage is 260mm (see figure 5.3). In

this case no sealing was used between the plate and glass walls of the flume.

5.3 Measuring devices

Different devices were used to control the flow conditions and to measure the

relevant physical quantities. They are described below.
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Figure 5.3: Geometry of the inclined plate.

Position transducer An optical encoder mounted on a drive shaft that measures
the angular position is used to measure the velocity of the plate and its
displacement with a sample rate of 200Hz.
Motion control For low speed tests (velocities up to 0.55m/s), the sketch in
figure 5.4 shows the mechanism used. A PC controls the motion of a DC motor
connected through a ballscrew to the carriage. An analogic position transducer is
connected to this and sends back its information to an Analogical/Digital interface
and from this to the PC. This feedback is particularly important in cases where
the motion was reversed. The PC sends a signal similar to the black solid line of
figure 5.5 to the motor and waits. The displacement of the plate is affected by
inertial, frictional and water drag effects, so that the signal back to the PC
resembles dotted line in figure 5.5. When the position indicated by the transducer
is equal to the limit position imposed by the PC a new signal is given to the motor
by the computer for the backward motion.

For higher speeds (up to 0.9ms/s), the carriage was moved simply by hand. Its

motion was measured by the position transducer and double checked with the

motion filmed by the video camera.
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Figure 5.4: Sketch of the feedback mechanism for the control of the plate motion.

Videocamera A PULNiX TM-6710 progressive scan CCD camera was used for
the flow visualizations. It is characterized by a high resolution 1/2” progressive
scanning interline transfer CCD imager 648(H)x484(V). No shutter was used in
this occasion but the camera was run at a data rate of 120 frame/sec. The
calibration of the images for the measurements is done using a grid printed on the
glass wall of the flume.

For a better definition of the air-water interface a fluorescent dye was dispersed
in the water and illuminated by two halogen lamps.
LDA device A TSI 2 components Argon-Ion Laser Doppler anemometer has been

used with a frequency counter. The data rate of the measured velocities is 3100

samples per second.
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Figure 5.5: Driving signal from the PC (solid line) and position feedback from the position

transducer (dashed line).

5.4 Experimental uncertainties and test

repeatability

5.4.1 Instrumentation and set up

Uncertainties in the measurements could be associated with both the individual
measuring devices and with the global features of the resulting experimental set up
potentially responsible for generating uncontrolled phenomena. The limits of the
measuring devices are as follows.

- The position transducer ensures a maximum error of +1millimetre in the
measurement of the position on the calibration range of 0.9m.

- The parallax errors of the video images are within the order of a millimetre,
but three dimensional effects are difficult to quantify.

- The LDA device was set with a frequency shift equal to 200KHz and with a
band pass filter in the range [30KHz,300KHz]. This results in satisfactory
measurements in the velocity range [-0.6m/s,0.9m/s], and in a error in the
measurement of the velocity in still water condition equal to £0.02m/s.

The relative position of the plate and the laser head is the cause of a further
error in the LDA measurements. An error is potentially generated by the
reflections of the laser beams on the plate. The horizontal velocity is measured by

two crossing beams in the horizontal plane, and when the plate sweeps into the
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Figure 5.6: Sketch of the horizontal plane where the horizontal component of the velocity
is measured. The dimensions are altered to evidence the shaded region where the reflection

of the laser beams produce an error in the velocity measurements.

space between the beams it may result in a contaminated measurement of the
velocity (see figure 5.6). Usually however, the direct effect is either a lack of points
or a constant value of the measured velocity for a small interval of time when the
plate crosses the test section.

Other uncertainties are related to the plate system and have an effect on the
evolution of the flow. In the case of the vertical plate, the plate rotates slightly
around the upper hinge of the carriage owing to the fluid loading on it. Even
though it was not possible to measure the amplitude of the oscillations precisely,
the video images give a rough idea of what happens when the plate stops: the
lower tip of the plate has an oscillation whose amplitude is slightly larger than half
a centimetre. In the case of the inclined plate, the uncertainties are introduced by
the bending of the plate. The plate used is made of stainless steel and its geometry
is described in figure 5.3. Considering it to be rigidly connected to the support,

the natural frequency of the plate is given by

Bl
w=2352y/— ~2r x 13Hz .
pl

The immediate effects of the rotation and of the bending of the plates is on the
velocity in proximity of the plate and eventually on the shear layer release at the
lower tip of the plate. In fact a frequency similar to the frequency of bending w

calculated above has been observed in the velocity measurements and described in

the following chapters.
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Another source of uncertainty derives from the water leakage between the sides
of the plate and the tank walls. The main effects of this water flow are on the

release of vorticity in the direction of the lower tip of the plate.

5.4.2 Test repeatability

The repeatability of the experiments was tested both for the displacement of the
plate and for the LDA measurements in the case of the lowest velocity. Different
runs were analyzed showing a maximum deviation of the plate position of the
order of one millimetre, that is in the error range of the instruments. Wider errors
were detected on the velocity measurements with a maximum difference in the

LDA measurements of 0.07m/s between successive nominally identical runs.

5.4.3 Initial and boundary conditions

The runs were repeated on average at a time interval of 1 minute. This value has
been chosen as a compromise between efficiency in the test campaign and test
reliability. With this time interval, the initial conditions can be assumed to be still
water. The LDA measurements gave a value of velocity within the error of the
instrument, before the movement of the plate.

To reduce the time interval between two successive runs, the reflections from
the flume ends were damped out efficiently by a sponge beach at one end of the

flume and by a wave-maker used as a wave-absorber on the other end.

5.5 Main phenomena observed in the
experiments

Hereafter some of the features observed in the flow visualization are qualitatively
described. The phenomena studied experimentally involve small spatial scales.
Therefore surface tension effects are not negligible. An example of this is shown in
figure 5.7. The jet that develops is characterized by high curvature at its tip, the
surface tension causes its rounding and at a later time the extreme of the jet
becomes thicker and almost circular (see right plot of the figure 5.7).

Once the breaking of the plunging jet has occurred and the plate has stopped,
the water in front of the plate rises again to reach almost the zero level, and the

surface becomes wavy. Also this phenomenon may be connected with surface
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Figure 5.7: Effects of surface tension: the spiky jet is rounded by the surface tension.

tension. The oscillations could also be given by an angular oscillation (pitch) of
the plate during the tests. Unfortunately no information is available about this

aspect. Three-dimensional effects should be ruled out by the prevention of leakage

at the flume sides.
Other effects of surface tension are not easily detectable but they substantially

enter the problem. As confirmed by the numerical results, agreement is not

satisfactory if surface tension is omitted.
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The lights begin to twinkle from the rocks;
the long day wanes; the slow moon clinbs;
the deep moans round with many voices.

Ulysses, Alfred Tennyson

Chapter 6

Flow field around a vertical plate

In this chapter the flow field around a vertical plate is analyzed both from a
numerical and an experimental point of view. Two cases have been considered: a)
at low speed, high immersion and with an abrupt stop of the plate (Fn = 0.37)
and b) at high speed, low immersion but with smooth variation of the velocity of
the plate (Fn = 1.0). This analysis is useful for investigating the effects of the

velocity and of the body acceleration on the flow developing around the plate.

6.1 Vertical plate at low speed and high
immersion

The characteristic lengths of the problem studied here and the non-dimensional
numbers used hereafter are summarized in figure 6.1. For the first set of
experiments the maximum velocity of the plate was 0.5m/s and the initial
submergence (h = 0.18m). These conditions' lead to Froude number Fn = 0.37, a
Reynolds number Re = 5.9 - 10* and Weber number We = 388.

Figure 6.2 shows the evolution of the displacement z,, of the velocity u, and of
the acceleration a, of the vertical plate for the case analyzed in this section. Two
sets of data are given in figure 6.2: the dots represent the experimental
displacement of the plate measured by the position transducer and its derivatives,

and the solid lines represent the smoothed curves of the displacement used as

!The nominal surface tension value between air and water is used (o = 0.0728N/m).
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Figure 6.1: Sketch of the characteristic lengths of the problem. The non dimensional

numbers are indicated.

input in the numerical calculation® and the corresponding velocity and
acceleration. This implies that small differences exist between experimental and
numerical data when steep gradients are present.

The value of the Froude number used in this test implies a weak interaction
between the vorticity released at the lower tip of the plate and the free surface.
Moreover, during the first stages of motion, there were no violent deformations of
the free surface, nor any fragmentation. However, after the abrupt stop of the

plate, much more violent flow occurs.

6.1.1 Evolution of the air-water interface

Figure 6.3 presents a series of experimental pictures referring to the deformation of

the free surface, when the plate moves as shown in figure 6.2. The snapshots are

2The numerical solution is calculated in a system of reference moving with the plate, this
means that the transport acceleration has to be taken into account as an external force. As two
successive derivations produce a very noisy signal (see dots in the acceleration plot of figure 6.2),
the displacement has been smoothed with a low pass filter before differentiating it.
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Figure 6.2: Time history of the displacement z,, velocity v, and acceleration a, of the

vertical plate. The dots represent the experimental data, the solid lines the values used

in the numerical calculation.

ordered from left to right and from top to bottom with the time increasing from
0.128s with an increment At¢=0.128s. The white lines represent the numerical

results® and they are superimposed on the black and white experimental pictures®.

3 A stretched mesh has been used to discretize the flow, close to the plate the mesh is uniform

and Az = Ay = h/45, the time step is At = 8-107%s
4The Powerpoint software was used to sumperimpose numerical and experimental pictures.

The background of the numerical results was set transparent. The size of the two pictures was
changed and the images translated so that a reference segment would result superimposed in the

two pictures.
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The overall evolution of the free surface is well captured by the numerical results.

"I
* i

Figure 6.3: Deformation of the free surface: comparison between numerical and experi-
mental results. In each plot, the black and white background is the experimental video-
image of the free surface deformation on one of the glass sides of the tank, the white line
the numerical free surface. The snapshots refer to the times a) ¢t=0.128s, b) t=0.256s, c)
t=0.384s, d) t=0.512s, e) t=0.640s, f) t=0.768s, g) t=0.896s, h) t=1.024s, i) t=1.152s, 1)
t=1.280s, m) t=1.408s and n) ¢t=1.536s. The grid on the experimental pictures presents a

mesh size of 3cm both in the z and y directions.
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When the plate starts to move the free surface on the front side deforms more
than on the back. On the right side (see figure 6.3), the plate behaves as a
wavemaker and causes the formation of a wave that moves from left to right with a
velocity u = 0.55m/s relatively to the plate itself. The development of this wave
can be observed from figure 6.3-a to 6.3-e.

On the back of the plate the body motion causes a depression that sucks down
the air water interface. The drop of the air-water interface is not sufficient to cause
its interaction with the vorticity that is forming at the bottom edge of the plate.
And in that case, the vorticity at the bottom of the plate is quite weak because the
velocity is slow.

When the plate stops (see figure 6.3-g) some differences between numerical and
experimental results appear. The numerical free surface in the front region is quite
different from the experimental one, while no difference can be noted at the back
of the plate. Figure 6.3-g refers to t=0.896s when the plate is stopping and u, is
reaching its lowest negative value. At this time the numerical velocity is lower than
the experimental one as a an unfortunate consequence of the smoothing (see figure
6.2). As already shown for other cases, sufficiently small differences in acceleration
and velocity can cause different angles of the water surface leaving the front of the
plate. Moreover, it is to be noted that from ¢=0.87s to t=1.2s the experimental
plate rotates slightly around the upper hinge of the carriage (see section 5.4).
Apart from the small differences in velocity, these oscillations can be the cause of
the disagreement between numerical and experimental results in figure 6.3-g.

The differences decrease as the time goes on.

Both numerical and experimental results show a second wave leaving the right
side of the plate in figures 6.3-f and 6.3-g. A third wave forms in the front of the
plate after it has stopped (see figure 6.3-i to 6.3-m), and a larger difference
between the two data sets is visible here. The crest of the experimental wave is
smaller than the numerical one. The detected local discrepancies are probably due
to the quite small wave amplitude involved, so that the mesh used in the numerical
simulation® is not sufficiently fine to capture correctly the wave deformation.

At the time at which the plate stops, there is a large deformation of the
interface at the back of the plate. The inertia of the water causes its rise and fall

under gravity, forming a plunging breaker (see figure 6.3-h to 6.3-1). The plunging

5The mesh used in the numerical calculation is characterized by Az=Ay=h/45, while the

At =8.10""
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Figure 6.4: Top-side view of the free surface after the wave breaking, t = 1.625s. Three

dimensional effects are visible.

jet re-enters the water in figure 6.3-1. The agreement between numerical and
experimental results is good both in the formation of the plunging jet and in its
breaking. Moreover the numerical and experimental data show a similar behaviour
of the splash up. The water first rises and then falls, forming two jets one on the
left and one on the right as shown in figure 6.3-m. These two jets form two
successive splash-up events (see figure 6.3-n). Some differences between numerical
and experimental data are visible in the right splash up. Figure 6.4 shows the
water surface at time ¢t=1.625s as captured by a video-camera tilted and moved
above the flume. It shows that three dimensional effects develop after the breaking.

So the differences referred to in figure 6.3-n are mainly due to these effects.

6.1.2 Evolution of pressure and vorticity after the breaking

In the case analysed no aeration is present at the lower tip of the plate. This
prevents the vortical region that develops at that point from being tracked in the
video images. Instead, some vorticity (see<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>