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VIOLENT DISTURBANCE AND FRAGMENTATION OF FREE SURFACES 

by Giuseppina Colicchio 

A multi-phase fluid method has been adopted to model the behaviour of 

fragmenting interfaces. The flow field is described through the solution of the 

Navier-Stokes equations with an approximate projection method. The interface 

separating the two phases is captured by a level-set function. The interface 

dynamics and its modelling are the main topics addressed in the present numerical 

study. 

High gradients of density, viscosity, pressure and velocity are localized at the 

interface. Therefore attention has to be paid to the discretization of the equations 

in that area. Here, an original variable coefficients ENO scheme and a redefined 

reinitalizaiton procedure for the Level set function led to higher accuracy. An 

exponential smoothing of the density and the split of the Poisson equations for the 

pressure terms improved the stability properties of the solver. 

The resulting scheme has been extensively verified and validated through 

canonical problems, where the method showed good capability of handling: a) high 

deformation of the interface with breaking and air entrainment; b) generation and 

evolution of vorticity and c) its interaction with the interface. 

Dedicated experiments have been performed for the case of a surface piercing 

plate in forward motion. Flow visualizations and velocity field measurements were 

carried out and compared with the numerical results. T h e globally satisfactory 

agreements allowed for a synergistic use of the numerical and experimental tools 

within a parametric analysis. The influence of the Fronde number and of the plate 

inclination have been investigated. The former highlighted the role of the 

post-breaking phenomena in the definition of the different regimes of interaction 

between vorticity and free surface. The latter highlighted the influence of the 

inclination on the occurrence of breaking and on the dynamics of the vorticty 

released. In particular, very large positive and negative inclinations of the plate 

prevent energetic breaking. 
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Table of notations 

General Rules 

® Only the most used symbols are listed in the following table 

® The meaning of symbols is always given when first introduced in the thesis 

Symbols 
u Velocity vector 
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(j) Colour function (for LS distance function) 

c(^) cut-off function 

a cut-off function 

P̂w,Pa Displacement of the smoothing function 
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L Length of the dam 

Lf. Length of the tank 
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LS Level Set 
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Commonly used Synonymous 
The terms air-water interface and interface refer to multi-phase problems, while 

the term free surface refers to single phase problems. Even though different in 

their meanings, here these terms are used as synonymous. 
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I cannot rest from travel; 

I will drink life to the less 

Ulysses, Alfred Tennyson 

Chapter 1 

Introduction 

The processes of free surface violent deformation and merging are very common 

in our daily life. While pouring milk into a glass (left image of figure 1.1), it is 

possible to notice the formation of small drops (fragmentation) that can fall in the 

milk again (merging). These phenomena happen either when the milk impacts 

against the glass or against the liquid that is already inside. Fluid fragmentation 

and merging can develop for all fluids and at very different scales: for example a 

cloud of bubbles forms at the bottom of waterfalls (see right image of figure 1.1) 

but also a single drop falling on a solid surface splits into many other smaller 

drops. 

Even though the free surface breaking is such a common phenomenon, the 

study of its features and the phenomena that accompany it or that are excited by 

it is still far from complete. The liquid-liquid interactions at the impact and the 

interaction between the entrapped air and the liquid are difficult to model 

numerically and to analyze experimentally. 

Because of its diverse applications, in recent decades this problem has 

represented the target of much research. Surface piercing bodies, e.g. ships, 

moving in water can create large deformations and breaking of the sea surface. 

The same is true for submerged bodies, submarines, close enough to the free 

surface. The flow around these vessels determines the drag that acts on the hull, 

the wave pattern and the formation of bubbly regions. Moreover their far wake can 

make military vessels detectable from satellite (Fingas &: Brown, 2001). So good 

predictions of the detailed flow conditions established in these cases and the 

physical mechanisms associated with free surface body interactions are acquiring a 

more and more important role even at the design stage. 
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Figure 1.1: Two examples of water fragmentation from our daily life. Left: milk poured 

into a glass. Right: the Niagara falls. 

Apart from naval engineering applications, the study of the violent impact of 

water waves against solid obstacles is a practical issue for other fields as for 

environmental science and geology. Periodical storms cause the erosion of 

shorelines and damage breakwaters. Even though less common than storms, 

tsunami waves can change the shoreline very quickly and with a result that differs 

substantially from that of storm waves. The study of the different erosion 

signatures can help to date back catastrophic tsunami from several geological eras, 

as those caused by large submarine slides on the continental slope or by the impact 

of meteorites with the ocean (Bryant & Nott, 2001). 

Until a few decades ago (due to its complexity), the phenomena of surface 

fragmentation was studied only by means of quite simplified analysis. The key 

factor in the advancing of such study, both from numerical and experimental 

points of view, has been the understanding that a crucial role during a 

fragmentation phenomenon is given by the interaction between air and water. 

The motion of a mixture of fluids of different natures or in different states, such 

as gases and liquids as in our case, is referred to as multiphase flow. As multiphase 

flows are very common in nature and in industrial processes their study is spread 

20 



over a large number of disciplines. 

In a general form, multiphase fluid flow dynamics encompasses the exchange of 

heat and possibly chemical reactions between the different phases. So it can be 

analytically described by a system composed of the mass conservation, the 

momentum conservation and the energy conservation equations, written over the 

entire domain, together with some closure of the problem if turbulent flows, 

chemical reactions or soluble phases are being considered. 

The recent availability of large computational power has allowed the 

development of numerical methods to solve these systems of equations. 

Multiphase flow models have been applied in meteorology to study the 

movement of polluted clouds (Leriche et al, 2001), in metallurgy for the processes 

of casting and injection of metals (Bai & Thomas, 2001; Im et aL, 2001 ) and 

mechanical engineering for the interface propagation between the mixture 

comburent-combustible and exhaust gases (Nguyen et aL, 2001). 

From an experimental point of view, the types of measurements performed can 

vary according to the application, the nature of the fluid and the quantity of 

entrapped gas. Different measuring techniques are available in various 

applications, from the simple conductivity probes (Hibiki et ai, 1998) to X-ray 

tomography (Seeger et al, 2002). In chemical and nuclear engineering applications 

bubbly flows are mostly limited to a column of bubbles, so they are spatially 

limited. For inherently three-dimensional phenomena the measurement of a local 

void fraction is much more difficult, and optical measurements are affected by the 

light scattering from the bubbles (Dong et al, 1997). Only recently a 3D version of 

Particle Image Velocimetry (PIV), the so called defocusing digital particle image 

velocimetry (DDPIV), has been introduced to detect more accurately the presence 

of bubbles and their velocity (Pereira & Gharib, 2002). Acoustic measurements of 

the void fraction have been performed on the ocean surface (Phelps & Leighton, 

1998). This is a large scale technique and has not yet been specialized to local 

measurements. 

1.1 Objectives and findings 

The aim of this work has been the study of violent (fast, large and non-linear) 

deformations of an air-water interface with strong interactions with vorticity and 

entrapped air. 
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A Navier-Stokes solver with an approximate projection method for the 

evaluation of the pressure field and a level set function for the tracking of the 

air-water interface has been used. Novel features include; 

® The splitting of the pressure terms into two contributions, one 

independent of the surface tension, and one directly linked to it but 

independent of the density. 

• The exponential smoothing of the density across the interface to 

ensure higher stability of the method. 

» The use of variable coefficients advective Essentially Non 

Oscillatory (ENO) scheme to avoid problems of vorticity diffusion across 

the interface. 

• Improvement of the reinitialization procedure for the level set 

function to achieve a higher accuracy of the solver. 

The solver has been applied to 2D cases, in order to better control physical and 

numerical problems. In particular the case of a surface piercing plate has been 

used to analyze the problems of strong interaction between the deformation of the 

free surface and the vorticity generated by the body motion. The problems has 

been analyzed both from a numerical and experimental point of view. The latter 

has an intrinsic value in the validation of numerical codes. The combined 

numerical and experimental study made it possible to analyze the effects of the 

Froude number and the inclination of the plate on the development of the flow. 

1.2 Structure of the thesis 

The thesis is formally divided into two parts. The first deals with the development 

and verification of the numerical solver, and the second with its application to 

practical problems such as that of the surface piercing plate. 

In the first part, an introduction to multiphase solvers is presented in chapter 

2, through a review of the state of the art. From this study the essential elements 

for the development of the numerical codes have been derived and later improved 

and specialized as described in chapter 3. Chapter 4 shows many verifications and 

validation studies by comparisons with published results, thus showing the 

capability of the method. 
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In the second part, the developed numerical method is compared to new 

measurements of surface piercing plates that were performed in this project. The 

experimental set-up is described in chapter 5. The numerical and experimental 

comparison for the vertical plate is shown in chapter 6 and for the inclined plate in 

chapter 7, con&rming the code's capability. 
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Part I 

Development of a numerical 

method for two-phase flows 
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Chapter 2 

Much have I seen and known, -cities of men 

and manners, climates, councils, governments, 

myself not least, but honour'd of them all. 

Ulysses, Alfred Tennyson 

Multiphase flows: the state of the 

art 

In recent decades. Boundary Integral Equations (BIE) methods have been used 

more frequently than any others to predict the deformation of free surfaces, within 

the limitations of potential flow theory. 

A complete description of such a solver is presented in Longuet-Higgins & 

Cokelet, 1976. The mathematical use of a velocity potential and a Green function 

permits the volume integral of the incompressible condition f V • udV = 0 to be 

transformed into a surface integral along the boundaries of the fluid domain. The 

transformation of an nD problem into (n-l)D problem (2D -4- ID, 3D —̂  2D) 

allows a much higher accuracy once the number of discrete unknowns has been 

fixed. The kinematic and dynamic (Bernoulli equation) conditions on the interface 

complete the system (Brebbia &: Power, 1999). 

Its computational efficiency and its accuracy have made this technique 

widespread, and after several decades it has achieved a high reliability, through the 

detection and correction of shortcomings. Even though this method is very 

accurate it cannot handle problems with topological changes of the interface and 

its fragmentation. 

The fragmentation of the interface is a limit also when BIEs solvers for 

multiphase flows with surface tension (Hou et aL, 2001) are used. 

However, because of the high accuracy in the case of smooth free surfaces, the 

classic BIE solver have been used, when possible, as a reference for the verification 

of multiphase codes. 
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2.1 Numerical modelling 

Lagrangian Solvers Boundary 
Solvers 

Rtted Eulerian Solvers 

The points where the solution 

is calculated do not change 

their properties in time. 

SPH: the particles of fluids 

(small masses of fluids) are 

moved with their own velocity, 

no mesh links them together 

but their mutual 

interaction (Colagrossi k Lan-

drini, 2003). 

Lagrangian mesh: A mesh 

is generated on the whole do-

main and its nodes move with 

the velocity obtained integrat-

ing the Navier-Stokes equa-

tions (Shopov ef aZ., 1990). 

Eulerian meshes are used to 

discretize each single phase, 

but their boundaries change 

in time. Jump conditions 

are used to link the different 

phases (Caiden et al, 2001). 

A single fluid with variable 

properties is considered. The 

Navier-Stokes equations are 

discretized on an Eulerian 

mesh and the position of the 

interface is obtained with dif-

ferent methods. 

Interface tracking; points 

are spread on the interface, 

they are advected in a La-

grangian way (Tryggvason 

et al, 2001). 

Interface capturing: A 

colour function is linked to 

the density so the continuity 

equation becomes an advec-

tion equation for this function 

(VOF, LS) (Hirt & Nichols, 

1981; Sussman et al., 1994). 

Hybrid methods: both a 

colour function and a set of 

points are used to trace the 

interface (HLSP, CIP, MAC) 

(Yabe et al., 2001). . 

Table 2.1: Schematic description of the multiphase solvers, t h e different colours in the 

figures represent different phases. 

T h e first a t t e m p t a t using a mu l t iphase solver can be t r a c e d back to 1965 

(Harlow & Welch, 1965). T h e revolu t ionary idea i n t r o d u c e d was to follow the 

evolution of b o t h air and water wi th t he same equat ions b u t different fluid 
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properties, overcoming the problems of topological changes of the fluid boundary. 

Since 1965 different models have been introduced both for the discretization of 

the equations and for the tracking of the interface. 

In table 2.1 there is a brief classification of multiphase flows solvers with some 

key references. The first distinction is between Lagrangian and Eulerian solvers, 

between cases where the solution is calculated on moving Buid particles or at fixed 

points. 

There is a third class that can be considered intermediate between these two; 

the methods falling in this class are referred to as Boundary Fitted Methods 

(BFM). For them the domain of analysis is divided into deformable sub-domains; 

the boundaries of each domain adapt themselves to the interface between the 

fluids. An Eulerian discretization for Navier-Stokes equation is usually adopted 

inside each domain. 

There are two groups of methods that can be classified as properly Lagrangian; 

one is referred to as a meshless solver and the other uses Lagrangian meshes. 

The former method is known as Smoothed Particles Hydrodynamics (SPH) and 

has been inherited from astrophysics (Monaghan, 1994). At the initial time, the 

fluid domain is divided in a finite number of particles, each one representing a 

volume of the fluid mass. This property allows the method to preserve mass 

intrinsically. The SPH method has been applied mainly to single phase fluids with 

no surface tension and no viscosity. The multi-phase version has been implemented 

only recently (Colagrossi & Landrini, 2003). As compressible Euler equations are 

written for each particle, the real behaviour of the air can be modelled easily, even 

though some problems of pseudo-compressibility can extend to the water phase. 

Attempts to model the motion of viscous fluids with surface tension in this way 

have so far not achieved good results. 

The other Lagrangian method (Shopov et aL, 1990) uses a mesh whose nodes 

move with the velocity obtained by solving the Navier-Stokes equations. The 

motion of nodes can lead to an extreme deformation of the grid and, consequently 

a regridding technique is necessary; this procedure is time consuming and 

represents a source of numerical errors since fluid variables have to be projected 

from the old grid to the new one. 

However, if the frequency of regridding is limited, the deformation of the 

interface can be followed through the grid deformation with very good accuracy. 

Moreover no smoothing of fluid variables is necessary at the interface. 
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A drawback of this method is the difficulty of extending it to three dimensional 

cases. 

An intermediate solution between the Lagrangian and the Eulerian solvers is 

offered by the Boundary Fitted Methods (BFM). For these methods (Caiden oA, 

2001) each phase is solved separately and the boundary conditions at the air-water 

interface are enforced as jump conditions. This allows for different methods to be 

used in the solution of each phase. Eulerian meshes can still be used, and in this 

case the cells can be switched off if the fluid they describe is not present. The 

main advantage that this offers is the possibility of following the deformation of 

the interface (traced by one of the methods described later for the Eulerian solver) 

without any smoothing of fluid properties. The main disadvantage is the difficult 

reconstruction of the jump conditions. In fact applications are limited to 2D cases 

(Caiden et al, 2001; Li & Yan, 2002). 

Most of the methods currently used to model multiphase flows are based on an 

Eulerian discretization of the Navier-Stokes equations. The grid can be either 

structured or unstructured, possibly with an adaptive refinement of the 

discretization where particular conditions occur. For example in Sussman et al. 

(1999) the mesh size is halved where the ratio between t he curvature and the mesh 

size exceeds an a priori stated limit. This procedure can be repeated in the smaller 

cells until this condition is no longer satisfied. 

The choice of an Eulerian grid introduces the problem of tracking the interface. 

Different methods can be used for this purpose; predominantly surface capturing 

and surface tracking algorithms. The former defines a function explicitly linked to 

the interface that is advected in an Eulerian way. The lat ter uses particles spread 

on the interface or in its neighbourhood to follow the Lagrangian displacement of 

the interface. 

All these methods are direct descendants of the Marker and Cell (MAC) 

method first introduced in the Los Alamos laboratory. This was based on the idea 

that a set of particles spread around the interface and advected in a Lagrangian 

way can locate the material in the cell and define the position of the interface itself 

(Harlow & Welch, 1965). 

The interface tracking methods are the closest to this formulation. For them a 

set of points is positioned on the interface at the initial t ime and then convected 

with the velocity obtained by the Eulerian grid. These points represent a 

secondary grid of lower order with respect to the one adopted for the solution of 
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the Navier-Stokes equations and they can either modify the grid to follow the 

interface, or they can simply be used to recover the physical properties of the Huid 

(Tryggvason oJ., 2001). 

The main problem with this kind of tracers is the exact calculation of the 

velocity at the point on the interface. Usually an interpolation method is adopted, 

but for high Reynolds numbers it is very likely that the interpolation of quantities 

characterized by a very steep gradient can cause an increasing error. Moreover 

interpolation techniques do not generally preserve the mass properly as no physical 

meaning is associated to them. 

The Volume of Fluid (VOF) and the Level Set (LS) are the most popular 

Eulerian methods. In both cases the position of the interface is derived from the 

values of a so called colour function (f). For the former the colour function (j) is the 

void fraction in the cell, while for the latter it is the distance from the interface. 

As it is possible to write an explicit link between these functions cj) and the density 

p, an equation of convection can be easily derived for the colour function from 

mass conservation equation 

VX'^) = 0 = ^ ^ ( ^ + uV(^) = 0 . (2.1) 

The VOF method, introduced by Hirt & Nichols (1981), represents the mass in 

the cell explicitly, so that a good numerical scheme to evaluate the evolution of the 

function should lead to a very good conservation of the mass throughout the 

computation. Its limitation is the fact that an approximation has to be made of 

the position of the interface and of its curvature when describing problems 

characterized by surface tension. A description of the methods currently used to 

define the normal and the curvature on the interface is in Scardovelli & Zaleski 

(1999). Various examples of VOF applications can be found for example in 

Lafaurie et al. (1994), Lawson et al. (1999) and Zhao et al. (2002). 

The LS method was first applied to incompressible multiphase flows a decade 

ago. It was introduced in Sussman et al. (1994). In the LS method, (/> is a function 

indicating the signed distance from the interface, so that the function is positive if 

the point is in one of the fluids and negative if it is in the other. Because of the 

analytical nature of the distance, it provides much more accurate information on 

the position and curvature of the interface than the corresponding function in the 

VOF. 

The disadvantage of the LS method is the difficulty in preserving the 
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conservation of mass. The function solution of equation 2.1 cannot preserve the 

meaning of a distance function for more than a few time-steps so that a 

reinitialization is necessary to restore the analytical properties of This 

procedure results in the smoothing of the interface in some cases. Corrections for 

the procedure of reinitialization can be found in Sussman k Fatemi (1999), Russo 

& Smereka (2000). 

Another choice has been presented in Sussman &: Puckett (2000), where LS and 

VOF methods are combined to preserve the advantages of each of the two schemes. 

Then there are some hybrid methods: the hybrid LS-particles method (HLSP) 

(Enright et al, 2002) and the Constrained Interpolation Profile method (CIP) 

(Yabe et ai, 2001; Yabe et ai, 2002). The idea behind the former is the use of 

Lagrangian markers in a narrow band around the interface. A circle of radius r{k) 

equal to their distance from the interface itself is associated to each point 

A; = 1 , 2 , s o that the zero level becomes the envelope of all those circles (see 

figure 2.1). Moreover, a sign g(A;) characterizes the markers, to indicate the phase 

to which they belong. 

Figure 2.1: Example of the hybrid method HLSP: the k-th particle is characterized by a 

radius r(k) and a sign; the circle of radius r(k) is tangent to the interface. The envelope 

of the different circles defines the position of the zero level. 

The markers are moved in a Lagrangian fashion and the Level Set function is 
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updated using equation 2.1. In the process of the Level Set reinitialization the 

signs s{k) of the markers are used as a check for the sign of the distance at the cell 

centre. If they differ, the distance associated with the markers in the cell is 

donated to the cell centre. This procedure is particularly accurate when the 

velocity field has no steep gradient and when the characteristics are not 

convergent. Its application becomes more difficult when the velocity is not so 

smooth, as processes of interpolation have to accommodate the sudden change of 

the tangential components. 

The CIP method introduces a colour function F(x) and its gradient G{x). 

After a time At the particle that was in the position x has moved to a new 

position X + uAt + 0{At^), consequently the colour function, that moves with it, 

is represented by F{x+uAt + 0(At^)) , similarly its gradient is 

G{x + uAt + 0(At^)) . The projections of the new F and G functions on the 

Eulerian mesh give the position of the interface at the new time step, preserving 

the slope of the colour function. Figure 2.2 (from (Yabe et a/., 2001)) gives a 

practical idea of how this method works. In plot a) there is the initial profile of the 

I I 

gradient 

Figure 2.2: Example advection with the CIP method (Yabe et al., 2001). 

color function and in dashed line the exact solution after the advection; plot b) 

shows the discrete solution after the advection. If a linear interpolation is used, the 

numerical solution produces diffusion (see plot c), that is recovered in d) by the 
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advection of the spatial derivatives as well. 

This method avoids errors in the velocity interpolation, because, the points 

that transport F and G have coordinates equal to those of the node of the grid (if 

a non-staggered grid is used). It requires only the projection of an almost smooth 

function on the mesh. The main difficulties are the choice of a steep transition 

function F , able to limit the dissipation linked to the problem of advection and 

reinitialization of the function if it is highly deformed in the advection procedure. 

Once the kind of mesh has been selected another choice has to be made about 

the kind of solver to use. There are essentially three main methods to solve the 

Navier-Stokes equations with primitive variables^: the pseudo-compressibility 

method, the pseudo-velocity method and the approximate projection method. 

The pseudo-compressibility method was first introduced in Chorin (1967) for 

stationary flows and later extended to non-stationary flows (see Kelecy & Fletcher 

(1997)). It consists of replacing the continuity equation with one dependent on a 

pseudo-time r: 

^ ^ + V.M = 0 (2.2) 

where /? is a constant arbitrarily chosen, that has the dimension of a velocity and 

represents a pseudo-speed of sound. Pressure and velocity are updated iteratively 

until equation 2.2 has reached stationary conditions. An implicit scheme can be 

used for the solution of this system that does not require any matrix manipulation 

(see Zhao oZ. (2002) and Helenbrook oA (1999)). 

The projection method makes a first approximation of the velocity at the new 

time step by solving approximated Navier-Stokes equations. The velocity field that 

is obtained does not satisfy the mass conservation conditions and a velocity 

correction is needed. This is obtained projecting the momentum conservation 

equations on a divergence-free space. This procedure leads to a Poisson equation 

for the pressure correction (Harlow & Welch, 1965; Hirt & Nichols, 1981; Kim & 

Moin, 1985). 

Something similar is done in the pseudo-velocity method. An implicit solution 

is obtained by the introduction of the guessed velocity (the pseudo-velocity) into a 

system of equation where the guessed velocity is used as a pseudo-variable 

alongside the pressure and the actual velocity, in a system of equations upgraded 

by the splitting of the Navier-Stokes equations. This leads to an implicit solution 

for the velocity. The only shortcoming is that viscosity and density cannot be 

^The streamfunction-vorticity formulation is limited to two dimensional or axi-symmetric flows 
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implicitly introduced into the system but they have to be provided from previous 

time steps (Rhie & Chow, 1983). 

As can be seen from this brief review, there is a large variety of numerical 

methods, but their properties of numerical stability and accuracy are not well 

known (Fraigneau et al, 2001; Lemos, 1996; Morinishi et aL, 1998). It is possible 

to show that interface problems for high Reynolds numbers are not well posed, and 

this means that small variation in the discretization can cause profound changes in 

the solution (Birkhoff, 1962). 

2.2 Experiments 

Several detailed experiments have been performed with free surface flows, but only 

for a limited number of them have measurements been made with breaking 

interfaces. This is mainly due to practical difficulties in the bubbly regions formed 

after the impact between portions of the interface. 

The experiments performed with breaking interfaces and bubbly flows are 

mainly of three kinds: a) those where there are measurements available all over the 

studied fluid domain apart from the bubbly region, b) those that study exclusively 

the bubbly regions with measurements of bubbles velocity and of void fraction, c) 

those where large cavities are involved and very few bubbles are generated, so that 

some measurements of the trapped air are possible. 

In the first category of experiments we find for example those performed by 

Chang & Liu (1998) and Dong et al. (1997). Chang & Liu (1998) measured 

velocities in the tip of a 2D overturning jet and in the flow caused by breaking, 

with a PIV (Particle imagine velocimetry) method. Unfortunately, owing to the 

scattering of light in the very thin region of the jet before impact, there was very 

little data in the interesting region where vertical voriticy is generated. 

Dong et al. (1997) measured the velocity fleld around surface piercing bodies, 

but their measurements did not include the bubbly patch. For instance, during 

their tests for a surface piercing strut, the free surface and the bow regions are not 

analysed, even though it is there that vorticity is generated and develops its 

distinctive features. 

Bubbly flows are of interest in many fields and a large variety of experiments 

falls in the second category. Current measurement techniques are able to measure 

the void fraction and the velocity of the single bubbles, assuming that all the 
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bubbles have almost the same spherical shape and dimension. These assumptions 

are necessary for the use of optical devices, for which the reflection and the 

refraction of the light are predictable only for spherical bubbles with given 

diameter (Bonetto &: Lahey, 1993; Oakley e( oZ., 1997). 

In Gopalan & Katz (2000) the study of the velocity of the bubbles is performed 

with a PIV technique using a seeding that reflects the light on a different 

wavelength with respect to the bubble. This is one of the first attempts to measure 

bubble velocity without any assumption on the shape and size. 

In the third category there are experiments that take into account large 

amounts of air entrapped into water; in this case the likelihood of small bubbles 

being formed is reduced, and the bubbly region is less important. The experiments 

by Lawson et (1999) with a large bursting bubble belong to the same category. 

In this case the velocity field in the water domain can be calculated quite well and 

the problems are mainly connected with the definition of the interface. The 

spherical geometrical nature of this experiment does not permit an easy 

visualization of the interface. Good visualizations of it are instead available in the 

experiments by Walters & Davidson (1962), where a two-dimensional bubble of air 

is created in water. 

Another experiment with large amount of air in the water domain is that 

performed by Zhou et al. (1999). A dam-break problem is studied allowing the 

water to impact against a vertical wall placed downstream the initial dam. 

In Zhou et al. (1999) measurements of pressure and water height are available, 

even though they are affected by uncertainties as pointed out by the authors. 

They are as yet one of the few measurements available for a problem that is easy 

reproducible numerically, and are therefore useful for the validation of multiphase 

numerical models. 

2.3 Inheritance from the past, and future 

developments 

From a numerical point of view, the introduction of multiphase solvers has 

revolutionized the way that flow fields which are characterized by air entrainment 

are modelled. 

Several multi-phase solvers have been described here, differing in their ability 

to model different phenomena that are involved in the fluid motion. For given 

34 



conditions, the choice among them should be baaed mostly on the kind of flow to 

modelled. 

The Eulerian surface capturing solvers are the most versatile, because they can 

easily model merging and fragmentation, large density and viscosity gradients 

across the interface as well as surface tension. Nonetheless the implications of the 

numerical smoothing of physical properties across the interface is still to be 

understood. Moreover the gaseous phase is commonly described as incompressible 

and this is still a limitation when thinking of the effects of compressibility on small 

pockets of air entrapped below violent jets. 

The aim of the present work is to formulate and use a model which is as 

versatile as possible and therefore an Eulerian solver has been chosen. The idea of 

keeping the computational complexity as small as possible has made the interface 

capturing solver the most suitable, while the analytical properties of the Level-Set 

has made this technique more interesting for future development. 
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Yet all experience is an arch wherethro' 

gleams that untravell'd world whose margin fades 

for ever and for ever when I move. 

Mygaea, Alfred Tennyson 

Chapter 3 

Numerical modelling 

In this chapter the numerical model developed for the two-phase flow problem 

is described (see for example Sussman et aL, 1994). Its features, advantages and 

challenges are outlined. 

3.1 General features 

In the present work interfacial flows are dealt with by considering the two phases 

as a continuous field where any generic fluid property, say / , is defined by patching 

the corresponding fields in the two phases, that is 

/ — Xfair 4" (1 X) fwater • (3-1) 

A rapid but smooth transition from one phase to another is guaranteed by the so 

called bridge function % e [0,1]. The evolution of the resulting compound flow 

field is described by the Navier-Stokes equations for a continuum fluid with 

non-uniform properties and, in principle, there is no need to distinguish explicitly 

between the two phases. Continuity conditions of velocity and tangential stresses 

at the interface are automatically fulfilled, though in a smoothed sense, while 

surface-tension effects have to be modelled explicitly. Clearly, most of the 

numerical difficulties are shifted to the treatment of the bridge function. 

In this framework an incompressible fluid in laminar and isothermal conditions 

is described by the mass and momentum conservation equations: 

V • w = 0 

= - V p 4- 2V - //Z) -I- -I- , 
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where u is the velocity, p the pressure, p the density, /j. the viscosity, g the field 

force and in particular the gravity, a the surface tension, n the normal to the 

interface, k the curvature of the interface and 6s the Dirac delta function equal to 

unity on the interface and zero elsewhere. The term D has components 

and represents the rate of strain tensor. 

Within the one-fluid formulation, the conditions at the interface between two 

viscous fluids are automatically captured, see e.g. Wehausen & Laitone (1960). 

3.2 Discretization of the Navier-Stokes equations 

An Eulerian discretization scheme has been used to solve the set of equations (3.2) 

rewritten as: 

V • w = 0 

aw , Vp 2V / /D 2cr/(asn 
— + . V)u = ^ ^ ^ + g . 

A finite difference solver coupled with a projection scheme is used to solve 

numerically the system (3.3) on a fixed grid. A second order approximation is 

adopted both in spatial and time discretizations. 

3.2.1 Time discretization 

The second order approximation in time is written as 

[2V -
(3.4) 

-I ^ 9 yi+1/2 ' nn+l/2 

and it is solved through a predictor-corrector scheme. The iterative step is 

repeated until convergence in pressure and velocity fields is reached, improving the 

stability of the solution (Praigneau et ai, 2001). For brevity the following term is 

introduced 
, . , 2V • fxD 

F(w,p,/^) = - ( w - V)M 4- ^ l-g . 

It contains all the terms that are approximated with Taylor expansions in the 

predictor and corrector steps. The iterative procedure is described below. 
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Predictor step. The density and the surface tension a t the time step n + 1/2 are 

approximated by using those at the time step n — 1/2. In the following way, 

is obtained through a Taylor expansion from the previous time steps. 

The predicted pressure gradient Vpo is written as 

pn — 1/2 pTi—1/2 pTi—1/2 pTi —1/2 ' 

and the two-step procedure to obtain the velocity reads 

u = w" 
pn-l/2 

(3.5) 

For an incompressible fluid, applying the divergence operator, the second equation 

in (3.5) becomes 

v - 6 _ 
At ^ p"-l/2 ^ p"-V2 

As in Brackbill et al. (1992), the delta function is discretized as a smooth function 

depending on the distance from the interface. However, here, the pressure p is 

separated into two contributions: one p̂ gt) depending on the surface tension and 

one P(nst) independent from it. This makes it possible to write two Poisson 

equations. The first contribution 

(3.6) 

results in a pressure jump at the interface due to the surface-tension, and it is 

completely independent of the density distribution. The second contribution is 

The solution of the Poisson equations (3.6) and (3.7) gives and follows 

from the second equation in (3.5). The viscosity and density fields are defined once 

the interface has been captured by the Level-set technique discussed later. These 

data are used to start the iterative corrector step. 

Corrector step. At the A-th step of the corrector, the term [F(u)]^^^^^ is 

obtained by a centered Taylor expansion, and the pressure gradient is written as 

r-7 71+1/2 ^ n + 1 / 2 
^P(ns),k P{ns),k-1 ^Pc ~ + 

n + 1 / 2 n+1 /2 n + 1 / 2 
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where Pc is a pressure-correction term. The pressure terms are connected to the 

velocity field through the projection on a divergence free space: 

I Pk-l J 

I P t - i 

and by solving the Poisson equations 

= V . 

\ V w 
V-

/ A , 

As before, once the above Poisson equations have been solved, velocity, density and 

viscosity fields can be updated according to the position of the new interface. The 

iterative procedure is repeated until convergence of p = + P(n«t) is satisfied. 

A non-iterative scheme, based on the algorithms described in Sussman et al 

(1994), has been also implemented, but it has been found that the use of even only 

one corrector step can lead to improvements in accuracy and in stability of the 

method. For the present calculation a CFL-like (Courant-Friedrichs-Lewy) limit 

has been used as a stability constraint. In more detail three sources of constraint 

are involved: one from the level-set advection, one from the Navier-Stokes 

equations, and one from the surface tension. The three together lead to 

Af < min I 0 . 5 ^ . 0 . 2 5 . , . , . ..O-o- / ^ ( A . + P . ) 
l/Az^-t-l/A?/^' ' V 47r(7 

These conditions are very conservative, and the use of an iterative solution makes 

the stability limits more relaxed; the splitting of the pressure in the terms p̂ gt) and 

P(nat) is less constraining. 

3.2.2 Spatial discretization 

For the spatial discretization a staggered grid has been chosen as shown in figure 

3.1. The horizontal velocity Uij is defined at the centre of the vertical side and the 

vertical velocity Vij at the centre of the horizontal side of each cell. Pressure and 

other fluids properties are defined at the centre of the cell. The use of a staggered 

grid provides better coupling between different variables, and the achievement of a 

physically correct pressure field. 
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Figure 3.1: Definition of the fluid variables on the staggered grid. 

Advect ion operator 

The advective terms in the Navier-Stokes equations 

—I" ^"5" ' 
oz 02/ 

(3.8) 

are discretized using a non-conservative scheme. For example for the u component 

of the velocity the advective term becomes 

u. 
A?/ ' 

The choice of a non-conservative scheme makes it impossible to ensure formally the 

convergence of the scheme to the physical solution according to the Lax-Wendroff 

theorem (Lax &; Wendroff, 1960)^, but, as it will be shown in the next section, the 

applications of the scheme to various test cases furnished heuristic proofs of its 

convergence. Further, it is possible to demonstrate that, assuming a divergence 

free velocity condition, the advective form udu/dx -h vdu/dy of the convective 

term is equivalent to the divergence dv? jdx + duv/dy and to the skew symmetric 

1/29^^/^3; -t- l/29w/^?/-t-l/2t(97//9a; 4- representations (Morinishi 

et ai, 1998). In fact, the conservative discrete form for u is 

2 2 

1 
Az A^/ 

(3.10) 

^The validity of the theorem is generally extended to the interfacial flows, since they can be 
thought similar to shock waves, but this extension has never been demonstrated formally. 

40 



which can be written 

^:+l/2j - ^:+l/2j 
(^«+l/2j + ^i+l/2j) + 

Ax 
% îj+l/2 - 'Uw-1/2 ̂ ;,_l/2 j+1 + ^;i-l/2,j 

Ay 2 + • P " ) 
^:-l/2J+l — ^1-1/2j ^tj+1/2 4- j_i/2 

Ai/ 2 

Assuming that the discrete velocity is divergence &ee all over the domain, then the 

following statement holds 

1/i+lJ - j+l - 'UiJ _ n ^i+l/2j - 'Ui-1/2J t;i+l/2J+l - ^ -̂1/2,̂  ^ « 
"t~ . — U ~j~ 7 U 

Aa; A^ Az 

(3.12) 

Similarly, in the framework of a second order approximation, Uij can be 

approximated by (^,+1/2,; + ^i-i/2j)/2, %/ij by (i^ij+1/2 4- itij_i/2)/2 and %;i_i/2j+i/2 

by (^;i_i/2j +i;:_i/2,;+i)/2, substituting these expressions in 3.11, together with 

equation 3.12, this gives the non-conservative form of equation 3.8. This 

demonstrates that the conservative and non-conservative forms are equivalent in 

the second order approximation for a regular mesh. 

Discretizing the generic advection equation = 0, it can be shown that 

central differences are unstable (Hirsh, 1988), so upwind derivatives are 

substituted for them. Upwind derivatives of order higher than one develop 

oscillations (Engqyust & Osher, 1981). In attempting to avoid these oscillations, 

second order ENO (Essentially Non Oscillatory) schemes are used (Shu & Osher, 

1991). Practically, these are a high order upwind schemes with a damping term. 

The artificial damping term is introduced in the form of a limiter to the flux across 

the cell sides (Harten, 1983) by the Total Variation Diminishing (TVD) schemes or 

as a limiter on the slope of the flux by the ENO schemes (Harten & Osher, 1987). 

Even though it is computationally more complex, the latter definition of 

damping preserves the order of accuracy of the scheme even in the extreme points 

of the advected function, so it is the one most commonly used in numerical codes. 

Detailed descriptions of the ENO schemes can be found in Harten & Osher (1987), 

Shu & Osher (1991) and Earth & Deconinck (1999). 
q q q q q 

Figure 3.2: Definition of auxiliary variables for advection problems. 

To simplify the description, the ENO procedure is outlined here for a ID case. 

Extending it to multidimensional problems is straightforward. Assume that the 
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variable g is known at the grid locations A: — 1, A; and A; + 1. To calculate the 

quantity gt+1/2 at the intermediate position (see figure 3.2) the following 

approximations are defined 

% = + ^Iimiter(%+1 - g*, g* - g t - i ) 

% — gt+i — 2l™iter(gt+2 — gt+i, 9k+i — %) 

— 2 (92 + 9^) -

and gt+1/2 is chosen according to the advection velocity w as 

gM if |wt+i/2| < 

%+l/2 = ^ fR if wt+1/2 < - (3.13) 

^ % if wt+1/2 > . 

When the variable q coincides with the advection velocity as in the first term of 

equation 3.8, then its value in an intermediate value of the cell side is given by 

if Mf, ^ 0 and z/a > 0 

^i+i/2j = ^ if t/M < 0 and < 0 

yui , if UM > 0 and > 0 . 

Different functions can be used as limiter function limiter {a, h). Here two kinds 

of limiter functions have been tested: minmod and superbee. The former is defined 

as 
o if |o| < |6| and > 0 

limiter(a, 6) = ^ 6 if |6| < |a| and a6 > 0 

0 otherwise . 

The minmod is one of the most commonly used limiters and it is known to be 

dissipative. This feature is usually accepted because it smooths high normal 

gradients of the tangential velocity, and further stabilizes the interface with a 
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numerical viscosity. The superbee limiter is defined as 

I max(min(|a[,2|6|),min(2|o|,|6|))sign(o) i f o 6 > 0 

limiter(a, b) 

0 otherwise . 

The superbee is the most suitable limiter to capture the advection of a steep 

function. 

superbee 
minmod 

2 X - Ut 

Figure 3.3: Example of advection of a sinusoidal wave followed by a step. The re-

sults obtained using the superbee and the minmod schemes are compared with analytical 

solution. 

Figure 3.3 shows the effects of the two different limiters in the advection of a 

function composed of a single sinusoidal wave and a step; 

0 i f % < 0 

1/2 (sin(2710:) + 1) if 0 < a: < 1 

0 i f l < % < 2 

1 i f % > 2 

The advection velocity is constant so that this composite wave is simply translated 

(the exact solution is indicated with a solid line). The minmod limiter (dashed 

line) keeps the topology of the sinusoidal wave but smooths the step. The superbee 

limiter (dotted line) sharpens the sinusoidal wave, but correctly advects the steps. 

In the case of interfacial flows, the tangential velocity at the interface is 

characterized by large gradients and therefore behaves similarly to the steps. On 

the other hand deep inside each fluid the velocity is more likely to assume smooth 

gradients more closely resembling the sinusoidal wave. This means that the 
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minmod is more suitable far from the interface, while the superbee is very effective 

near the interface. 

The minmod and the superbee limiters have been preferred to other limiters 

because of their individual features and because of the possibility of combining 

them in a smooth transition from one to another. This can be done by introducing 

a limiter function m{a, b) with variable coefficients. 

Assuming that %/, is the distance of point f (a;, i/) from the interface at 

the time t, the limiter is defined as: 

{0 if < 0 

max(min(/|o|, |6|), min(/|6|, |o|))sign(o) if 06 > 0 

where the coefficient / is used to model the smooth transition from one limiter 

function to the other. It depends on the distance (f) from the interface in the form 

, f i cos + 1 if |<̂ | < 

( 1 if 

within the interval [—Siim,Siim]- The practical choice of Sum will be discussed later. 

When \(f>\ > Slim, the new limiter represents the minmod limiter and when 

(̂  = 0 it corresponds to the superbee. 

This formulation is valid for sufficiently high Reynolds numbers. In fact, in the 

case of sufficiently large fluid viscosity, the true tangential velocity at the interface 

is quite smooth and the use of a superbee scheme would steepen it unphysically. 

Project ion operator 

The Poisson equations (3.6) and (3.7) can be discretized with a second order 

scheme with a 5-point stencil or with a 9-point stencil method if the grid has 

square cells. 

In the former case the discretized form is 

V I A-1/2,; A j + 1/2 Aj-1/2 
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in the latter 

V 
w 

2 
^ ^:j+l -

P«+l/2j Pi-l/2j , Pij+1/2 Aj-1/2 
Ax'^ Ay^ 

\ } 

/ ^i+lj+l — — <̂ :J \ 

A + 1 / 2 J + 1 / 2 A - 1 / 2 J - 1 / 2 A - 1 / 2 J + 1 / 2 A + 1 / 2 J - 1 / 2 

Ax^ A\p-

\ J 
The second term in the right hand side of the 9-point stencil method is obtained 

by applying the differential operators along the cell diagonals. Where it is possible, 

the latter discretization is preferred since it leads to a Laplacian operator that is 

less dependent on the directions chosen for the spatial discretization. 

To solve the linear systems of equations 3.6 and 3.7, different methods can be 

used. Here a Generalized Minimum RESidual (GMRES) method has been adopted 

(Otto, 1996). 

3.2.3 Smoothing across the interface 

The coefficients of the limiter function do not represent the only quantities 

smoothed across the Interface. In fact, not only the advective operator but also the 

density p, the viscosity //, the delta function 6 need to be smoothed. In particular, 

the solution of the Poisson equation for p^nst) requires the density to be smoothed 

across the interface to avoid (possibly divergent) numerical oscillations. 

The use of a level-set function requires the introduction of an analytical link 

between the distance function and the properties of density and viscosity. No rule 

exits for the choice of such a function, but the requirements are mass conservation 

and convergence of the numerical representation to the physical solution as 

Ax -4- 0. 

Usually e.g. (Sussman et al, 1994), the density is defined by a trigonometric 

bridge function, but this representation presents a poor stability. The compound 

1/p function, as it appears in the equations, is steeper on the air side, shifting in 

that direction most of the transition from the water to the air fields (see figure 3.4). 
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A possible solution to this problem could be achieved by a trigonometric 

smoothing of the inverse of the density, appearing as coefficients of the Poisson 

equation. However, the pressure p, the solution of this equation, is related to the 

density as well. Therefore, if p is not adequately smoothed, its derivative, which 

appears in the calculation of the pressure derivatives near the interface, would 

probably introduce oscillations and eventually instabilities. 

To reduce the risk of oscillations both in the discretization of the Poisson 

equation and in the calculation of the pressure derivatives, a similar smoothing of 

the density and of its inverse is necessary. For this pourpose, in the present 

implementation, an exponential bridge function has been introduced in the form 

P('̂ ) 

Pw 
] 

\/PwPa^' 

Pa 

if ((̂  

if -

if fo!' 

(̂ pC) < — 

^pcj 5p (3.14) 

where smd are respectively water and air density and the constant coefEcient 

c is chosen to conserve the total mass according to 

= /)u,(̂ p(l - c) + /)o(̂ p(l + c) (3.15) 
'(5p(—l+c) 

In practice, c ~ 0.5521 for pwater/Pair = 1000/1.23. The use of the equation (3.14) 

results in the smoothing of the density and of its inverse shown in with a dashed 

line in figure 3.4. The difference between using the bridge function (3.14) and the 

trigonometric bridge function as usually adopted becomes important in the 

resolution of local flow details, where the mesh can be relatively coarse and the 

solution is more sensitive to the extension of the smoothing region. 

interface 

smoothing 

_ _ _ dasaical 
trigonometric 

present 
exponential 

inverse 
trigonometric 

1/Pw 

interface 

-8 water air 8 -5 water air 

Figure 3.4: Smoothing of the density and of its inverse. 

As in the case of the density term, it can be shown tha t , for a proper solution 

of the conservation equations, the inverse of the viscosity has to be smoothed 
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across the interface, rather than the viscosity itself. Smoothing 1/// rather than jU 

has been found crucial when an accurate resolution of the air-flow dynamics is 

needed (Tryggvason aZ., 2001). Here, 

= < 

if (̂  < 

1 if I";)! < 

if 

has been used. 

Finally, the Dirac function in the surface-tension term is smoothed as 

i ( e ) - l) if 1̂1 < • 

similarly to what has been done in Brackbill et al. (1992). 

In the present implementation, the amplitudes of the four smoothing intervals 

&nd are Gxed throughout the computations and satis^ the conditions 

^lim ^ ^p — ^jj. ^ ^st • 

The amplitude 5iim of the variable-coefficient limiter function should be larger than 

5p to maintain accuracy in the solution of the advection term in the transition 

region. Usually, 5st > 0.7Az is sufiicient to prevent oscillations in the solution of 

the corresponding Poisson equations. Such oscillations would induce unphysical 

parasitic currents in both air and water phases, though larger ones in air because 

of the density ratio. If 5p > Sgt the gradients of p(si) decrease more rapidly, 

reducing the presence of unphysical currents on the air side. 

3.3 Interface capturing 

The interface between the fluids is traced using the level set function 0, introduced 

for the first time for incompressible fluids in Sussman et al. (1994). The level set 

function is a Lipschitz continuous function that represents the distance from the 

interface. A complete description of the level set function can be found in Sethian 

(1999). 

At any point P of the domain, the function cf) (see sketch in figure 3.5) is 
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defined as 
^ (P) < 0 if P is in water 

< 4>{P) > 0 if P is in air 

) = 0 if P is on the interface . 

Since a bridge function links the density to the distance from the interface, 

Phaee1 
distance function 
in the narrow band 

level zero 

Phase 2 

Figure 3.5; Definition of a distance function ^ in a narrow band around the interface 

represented by the zero level. 

= /)(< )̂, and the continuity equation can be written as 

which provides the transport equation for the level-set function as far as 

0 .̂ 

The distance function defines not only the position of the interface but it offers 

also the possibility of an easy calculation of the normal 

n 

and of the curvature as 

/( = V -

V<̂ | 

V(^ 

jv^l 

^As explained later, knowledge of the position of the zero level is a necessary and sufficient 
requirement for defining the level set function all over the domain. At the interface {4> = 0) 
dp/dcf) ^ 0. 
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along the interface 

The Lagrangian evolution of (f) through equation 3.16 does not preserve the 

meaning of distance from the interface. Therefore a reinitialization procedure of 4> 

is necessary to restore its geometrical properties. In the reinitialization, as 

introduced in Sethian (1999), cp is advanced in a pseudo-time r until the solution 

of the equation 

^ - 1^ sign(<^) = 0 (3.17) 

has reached stationary convergence, thus the geometric property of a distance 

function |Vi^| = 1 is intrinsically enforced. In equation (3.17) sign(^) represents a 

smooth approximation of the sign of and it is de&ned as <^/-\/<^ + where e is 

a small smoothing parameter that can be assumed equal to the minimum grid size. 

This function is necessary to enforce the physical propagation of the signal from 

the interface to the outer regions. 

Usually, equation (3.17) is solved through a second order ENO scheme with the 

minmod limiter. Theoretically the reinitialised distance function (j) should have the 

same zero as the advected function. In Russo & Smereka (2000) a basic error in 

Figure 3.6: Example of reinitialization of the level-set function in the ID case. The 

classical reinitialization of the level set causes the shift of the zero level. The initial 

function has a zero different from the one of the reinitilized function cf). 

the use of the ENO scheme has been highlighted. 

For example, applying a first order ENO scheme to the ID case in figure 3.6, 
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the discrete form of equation (3.17) at point 4 reads 

= <̂4 - sign(,^4)sign f ^ l | / \ r (3.18) 

where the advecting velocity is sigii(<^4)sigii(^). Given that the two first order 

derivatives 

a=(<^4-(^3)/Aa; and 6=(<;65-(^4)/Aa; 

are, like <̂4 both positive, the upwind scheme reads 

6^ ' 64 
Aa; 

1 . (3.19) 

Formula (3.19) contains the left derivative of point 4, so it violates the assumption 

that the information moves to the reinitialized point from the interface and not 

from beyond it. 

In Russo & Smereka (2000) this problem is solved by using geometrical 

considerations. If = 1, then (̂ 4 is equal to the length of a segment A 

marked with a thicker line in figure 3.6. A second order centred derivative at point 

4 gives ((̂ 5 — 03)/2Aa:, and a line with this slope, passing through the point 

(z4,1^4), intersects the zero axis at z = Z4 — 2Azi^°/|(^5 — Assuming that this 

point is the zero level, the reinitialization procedure is corrected as 

AT ^sign(9^9)|(̂ j 

- ATsign(<^9) I sign | ^ - 1 

for an interface cell 

otherwise. 

(3.20) 

The corresponding correction in the 2D case reads 

for an interface cell 

— A'rsign((^° ) | — — 1 I otherwise 

(3.21) 

where 

A 
% 

2̂/ 

0 \ 2 
(3.22) 
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This correction does lead to a better accuracy of the method, yet some 

numerical smoothing is observed in cases with high curvature of the interface, 

including in the limit a discontinuous interface where the normal is not uniquely 

defined (see Ggure 3.7). For such cases, a more accurate solution can be obtained 

by rewriting the modulus of the gradient as: 

|v< l̂ = ^ 

This formulation takes into account the curvature of the interface and manages to 

reduce the numerical error committed when calculating the normal at 

discontinuities. So a more accurate solution can be obtained by using 

VA + B 

B 

This formula has an important drawback, it does not smooth the oscillations at 

the interface and results in a poorer stability. Therefore, in the final 

implementation, at the interface a weighted combination of the two methods 

(3.22-3.23) has been adopted, that is 

4,[f = % - Ar((s igi .« , ) | ,^! , ; | - { a „ C i j + . (3.24) 

A suitable balance between an accurate solution and the avoidance of oscillations 

on the interface results in the choice of a^s = 0.8 and = 0.2. 

As the calculation of the distance function is time consuming it is exactly 

defined in a narrow band 2a wide around the interface. Outside this region the 

distance function is kept constant and equal to ± a , where the sign is chosen 

according to the position of the point in one or the other fluid (see figure 3.5). 

The width of this band a can be arbitrarily chosen as long as it is outside the 

range [ - f p + And a must be larger than where 

density and viscosity vary. 

A sharp cut-off of the distance function in the reinitialization step could 

introduce dangerous oscillations at the boundaries of the narrow band. Following 

Peng et al. (1999), a smoothed cut off function c{(j)) is used between [—a, —5] and 
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non unique normals/ 

Figure 3.7: Points where the normal vector is not uniquely defined. 

0 

- a - S 6 a 

Figure 3.8: Cut off function (Peng et al., 1999). 

[5, a], in the form 

if 

c 0) = 
(a - - a)z 

if (5 < |<6| < a 

# 1̂ 1 > a 

where (̂  < 6̂  + (see Egure 3.8). 
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In this way, far from the interface, equation (3.21) becomes 

- c(< )̂ATsign(< °̂̂ .) 
|V<̂ : 

1 

and the diffusion velocity of the distance function is nullified outside the narrow 

band. Finally, oscillations are smoothed out enforcing |<̂ | = |a| at the mesh point 

where actually the inequality |(̂ | > laj would apply. 

In all the cases treated in this thesis the solid boundaries will be considered 

coincident with a side of the cell, while the distance function is defined at its 

centre. This strategy bypasses all the problems linked with the boundary 

conditions at the contact point between the free surface and solid walls. 

START 

no 

no 

STOP 

t = t + At 

Update of the interfece (p,[i) 

LS neintializatbn 

Poisson equatktn ->Pk 

Convective terni (CT) 
C T " * 1 g = f ( u n u n - 1 ) 

Poisson equatton -> 

Guess vebcily 

Convecdve term (CT) 
CT"̂ 1g=̂ U.Hlun) 

Figure 3.9: Flow diagram of the numerical scheme used here. 
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3.4 Conclusions 

The numerical scheme outlined in this chapter is briefly summed up in the flow 

diagram in figure 3.9. 

An iterative Predictor-Corrector scheme is used for the time discretization and 

an approximate projection method is adopted for the solution of the pressure. 

Particular attention has been paid to the numerical methods adopted in the 

neighbourhood of the interface between two fluids. A variable coefficients limiter 

function in the convective terms prevents velocity diffusing from one fluid to the 

other. A pressure splitting allows a more robust solution of the surface tension 

problem. An exponential smoothing function for the density reduces the 

oscillations deriving from the high gradients in the coefficients of the Poisson 

equations. A corrected reintialization procedure reduces the smoothing error 

associated with the level set function. 
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by slow prudence to make mild 

a rugged people, and thro' soft degrees 

subdue them to the useful and the good. 

Ulysses, Alfred Tennyson 

Chapter 4 

Validation of the numerical solver 

Here the numerical solver described in the previous chapter is applied to simple 

prototype problems. Strong deformation and breaking of the kee surface, air 

entrainment, vorticity interaction with the interface and surface tension 

phenomena are analyzed individually. Each case demonstrates the validity of the 

method. 

4.1 Introduction 

The aim of the numerics developed in this thesis is to simulate efficiently and 

accurately the deformation of the free surface in cases involving violent motions. 

To make sure that the results obtained are not only physically reliable but 

quantitatively accurate, the results of the present algorithm should be compared 

with experimental data. 

The main problem when comparing with experimental data that are available 

in the literature is the lack of full information on the experimental set up used and 

a shortage of flow visualization in the breaking region. For this reason a set of 

dedicated experiments have been performed in well documented conditions to 

verify the numerical code. The problem chosen is the one of a bluff body moving 

in water. To avoid additional complexities connected with 3D effects, a 2D flow 

has been investigated. The problem studied is the flow field around a 

surface-piercing plate moving in water with known velocity. The geometry of the 

test is identical to that simulated by Tsai & Yue (1993). This problem preserves 

the main phenomena connected with the surface piercing body problem: (1) strong 
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deformation of the interface with eventual breaking and air entrainment, (2) 

generation of vorticity, and (3) its interaction with the interface. The main 

features described here are shown in figure 4.1. 

air 

interface 

entraiment vorticity 

water 

water 

Figure 4.1: Example of flow around a surface piercing plate. The interface between air 

and water is highly deformed by the motion of the plate with velocity U(t) in water initially 

at rest. At the lower tip of the plate vorticity detaches (shadowed area), and interacts 

with the interface. 

Before applying the numerical algorithm to this problem which is discussed in 

the next chapters, the validity of the solver has been tested on simpler problems 

where each flow feature listed above appears individually. The dam-break plus 

impact problem has been used to analyze breaking at the interface and the air 

entrainment; the interaction between vorticity and the interface has been 

investigated in the case of a vortex pair rising toward a free surface, and the 

modelling of surface-tension effects was studied by considering the evolution of a 

gas bubble. 

The use of simple prototype problems indirectly connected with the more 

general problem of interest simplifies the problem of understanding the phenomena 

and the data analysis. If each aspect of the problem is analyzed separately, the 

detection of numerical errors is simpler. 

The problems listed above have stimulated and informed the development of 

the numerical code described in the previous chapter. Moreover the comparison 

with benchmark studies represent a part of the verification of the solver. Its 

convergence is analyzed in appendix A. 
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im^m_ 
vel/(aK/p) . 0.00 0.07 0.09 0.11 0.13 0.15 C.17 0.19 1,50 3.00 vel/(aK/p)'®: 0.00 0 .07 0.09 0.11 0.13 0.15 0.17 0.19 1.50 3.00 

Figure 4.2: Parasitic currents for different numerical solvers. The thick line represents the 

surface of the bubble. Left: classical solver (Brackbill et a/.,1992); right: present solver. 

Ax = i?/33, t = At — R/{2y/aKj^), Sst = <̂ p/2 = OAAx 

4.2 The rising bubble problem 

The problem of the rising bubble has been used to study the effects of surface 

tension. The numerical modelling of the surface tension adopted here is very 

similar to the one proposed by Brackbill et al. (1992) except for the splitting of the 

pressure term into two contributions, one due to the surface tension and the other 

to the remaining forces acting in the Navier-Stokes equations. This implies the 

solution of two Poisson equations, with the pressure term due to the surface 

tension independent from the density. To understand the numerical difference 

between the pressure splitting implemented here and the classical solver used by 

Brackbill et al. (1992), the analytical solution of a flow field around a cylindrical 

bubble at zero gravity has been analyzed. The exact solution to this problem is 

zero velocity everywhere and a pressure jump proportional to the surface tension 

at the air-water interface. The numerical solution of the discrete Poisson equation 

implies numerical errors and, consequently, some parasitic currents (Liu et o/., 

2000). The intensity of these currents is shown in figure 4.2 for the classical solver 

by Brackbill et al. (1992) on the left and by the present technique on the right. 

Using the same mesh and the same time-stepping, the intensity of the parasitic 

currents obtained with the method described in section 3.2.1 results ten times 

smaller than one obtained with the classical technique. 

The accuracy of the solver for the surface tension has been tested by comparing 
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the numerical results to the experimental results of Walters & Davidson (1962) for 

the case of a rising cylindrical bubble. A two dimensional air bubble is formed in a 

water tank 3/8 inches wide. It is released impulsively by withdrawing an 1 inch 

diameter tube from the tank. 

% 

Figure 4.3: Initially circular 2D air bubble (with radius 7^=1 inch) in water. The top 

figures are extracted from the experiments presented in Walter & Davidson, (1962). The 

lower figures are the numerical results. Time increases from left to right; the plots refer 

to t=0.01258, 0.0625s, 0.1125s 

The top plots of figures 4.3 and 4.4 show the experimental evolution of an air 

bubble immersed in water. Because of its buoyancy the bubble rises. While 

moving upwards into the water the rise time is strongly influenced by added mass 
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Figure 4.4: Same conditions of figure 4.3. t—0.1625s, 0.2125s, 0.2625s 

effects; the top of the bubble moves with a lower velocity respect to the bottom, so 

the bubble is compressed along its vertical axis. Later on, both viscosity and 

surface tension contribute to preserve the cylindrical bubble form. Here the 

attention is focused on the effects of the surface tension. If it is small the curvature 

of the bubble can reduce and eventually change its sign at the bottom part. In 

figures 4.3 and 4.4 the present results for the evolution of the air-water interface 

are given in the bottom plots at the same time instants as the corresponding 

experimental results. The agreement between experiments and numerics is rather 

satisfactory up to the time instant when the central jet impacts on the lateral walls 

of the bubble at t = 0.22s. Small detectable differences can be explained by the 
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meniscus effects on the glass that alter the image perceived at the side of the glass. 

Another cause of differences can be due to the initial conditions. The tube with 

the air inside is withdrawn in a finite time and this can influence the initial shape 

of the bubble. After the internal tongue of water merges with the wall of the 

bubble, the differences could be due to numerical errors or to differences between 

the initial conditions used in the test and in the numerical simulation. For 

example, the nature of the gas inside the physical bubble and its pressure is not 

declared by Walters & Davidson (1962). The problem they proposed is 

characterized by the following non dimensional numbers; 

= 1.1 -10^ and = M/egip = = 837. 
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Figure 4.5: Deformation of an initially circular bubble of linch diameter at different Weber 

numbers. The Weber number Wcexp = igR)'^Pw/(^ — 837 is used in the experiments by 

Walters & Davidson, (1962). The Reynolds number is constant and equal to Re — 1.1-10®. 

The initial position of the bubble centre is (0.,0.). 

The effects of the surface tension are further investigated numerically. The 

higher the surface tension is, the more restrictive become the related limits on the 

time step needed to avoid instabilities. The bubbles used in the experiments by 
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Walters &: Davidson (1962) are characterized by a rather large Weber number. To 

verify the handling of the surface tension by the present solver the Weber number 

has been varied within a wide range. Figure 4.5 shows the deformation of the free 

surface at t=0.125s in cases where the Weber number is set equal to lOVyegip, 

M^egip/lO, VFeeip/25, lyeggp/SO and M^eezp/100 respectively from left to 

right and from top to bottom. 

As the surface tension increases, the deformation of t h e bubbles is smaller, so 

that the deformation of its central part does not cause the splitting of the bubble 

in smaller bubbles. In this case the corresponding threshold Weber number is 

equal to 80. 

The different profiles of the top part of the bubble, at different Weber numbers, 

cause also a change of the added mass of the rising bubble. As a result, the bubble 

rises with different velocities. 

All cases shown in figure 4.5 have been performed with a time step 

At = 1 • 10~^s that is almost ten times larger than the maximum At allowed by 

the stability constraints in the Brackbill's solution. 

4.3 Interaction of a vortex pair with a free 

surface 

The problem of the vortex pair rising toward the free surface has been used to 

verify the capability of modelling the interaction of the vorticity with the interface. 

For this problem, the Reynolds number Re = Tp/2nii is defined in term of the 

circulation and the kinematic viscosity, and the Froude number is defined as 

Fn = r/27r(po^)^/^, where a is the initial distance between the vortices. The case 

of Re = 100, Fn = 0.8 and infinite Weber number is studied. The flow features 

that develop are analyzed numerically and compared with those obtained by 

Ohring & Lugt (1991). Their method, a Lagrangian approach, differs from the one 

presented here in respect of the discretization of the Navier-Stokes equations. 

Moreover they do not handle the evolution of the gaseous phase. 

Both results are presented in figures 4.6 and 4.7, where the same initial mesh 

has been used. The agreement is rather good even though some minor differences 

can be noted at the formation of an anticlockwise vorticity (dashed contour lines) 

close to the free surface. In this case the present method suffers from the presence 

of a locally coarser mesh, while the Lagrangian mesh tends naturally to 
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Figure 4.6: Evolution of a vortex pair rising towards the free surface. Left: numeri-

cal results from Ohring & Lugt, (1991); right: present results. The continuous contours 

represent the clockwise rotating vorticity and the dashed contours the anticlockwise ro-

tation. The vorticity contours are spaced by Aw = 2 (for both the computations the 

Ax = 0.058a). 

concentrate more points in that region. On the other hand, due to this intrinsic 

feature of the Lagrangian technique, the simulation by Ohring & Lugt (1991) is 

forced to stop at t=3.45s, while the present calculation can follow the break up of 

the water surface above the vorticity region, as shown in figure 4.8. 
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Figure 4.7: Evolution of a vortex pair rising towards the free surface. Left: numerical 

results from Ohring & Lugt, (1991); right: present results. The continuous contours rep-

resent the clockwise rotating vorticity and the dashed contours the anticlockwise rotation. 

4.4 Dam break plus impact problem 

The last test case refers to the dam break plus impact problem. The flow that 

develops after the dam break provides a way of evaluating the smoothing errors 

that are caused by the reinitialization procedure in the level set technique, as the 

involved time scale is quite large. The subsequent impact of the stream with a 

downstream structure and the resulting flow are relevant to the verification of air 

entrainment by the level-set. 

The classical dam-break problem is schematically represented as an initially 

rectangular column of fluid, length L and height H, supported by a horizontal 
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Figure 4.8: Evolution of a vortex pair rising towards the free surface. Break up of the 

water above the vortex and formation of a region of high anticlockwise vorticity. Left: 

t—4.08. Right: t=4.8s. 

bottom (deck), limited by a wall on one side and free to collapse after f = 0 on the 

other one, see figure 4.9. 

The resulting flow develops a tongue of liquid quickly spreading along the 

horizontal boundary, without any free-surface breaking. This problem has been 

widely investigated both numerically and experimentally. Besides its practical 

applications, it is a simply-defined test case to verify and validate methods 

handling large deformations of the free surface. The flow tha t develops after the 

impact of the tongue of liquid with an obstacle placed downstream of the broken 

dam is more challenging and less well studied. In this case, overturning and 

breaking of the free surface are observed, leading also to air entrapment. 

Present results for the dam break problem have been compared with results of 

two other numerical methods with quite difl'erent features; the Boundary Element 

Method with mixed Eulerian Lagrangian scheme (BEM, Greco, 2001) and the 

Smoothed Particles Hydrodynamics method (SPH, Colagrossi & Landrini, 2003). 

Both these two methods are based on a Lagrangian flow description. Where 

possible the results have also been compared with experimental data available in 

the literature. 

The first case considered reproduces an experiment by Martin & Moyce (1952), 

and corresponds %o L = H = 5.7 cm. The following non-dimensional variables have 

been used: a; = X/Zf, %/ = y / ^ , p = r = 
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Figure 4.9: Variables definition for the dam-break problem. The shaded area repre-

sents the initial configuration of the water domain {{X/H)A = 3.721, {X/H)B = 4.542, 

= 0.27). 

respectively for the horizontal and vertical coordinates, the pressure, the force and 

the time. In the experiments, the water was initially contained within the solid 

boundary of a water flume and a piece of wax paper, clamped between two 

metallic frames. The intense current produced by a short circuit was used to melt 

the wax and quickly release the paper diaphragm, leaving the water free to flow 

along the flume. 

Figure 4.10 gives the propagation in time r of the toe of the water-front, Xmax, 

after the dam break. 

All the numerical results are in reasonable agreement, and show a fluid 

smoothly accelerating and reaching an almost constant velocity on a longer time 

scale. The latter coincides with the analytical water-front velocity given in Ritter 

(1892) under the assumption of shallow-water conditions. The numerical results 

have a behaviour similar to the experimental data but the related water fronts are 

quicker. While the BEM and SPH results are in viscid, the level-set calculations 

have been carried out with both free slip conditions and in viscid fluid, and with 

non-slip conditions^ the proper air and water viscosity. In the latter case, the 

^The non-slip conditions used here are implemented as described in appendix E, but the grid 
size used for this case is not sufficiently fine to model correctly the boundary layer eflFects. However 
it can be considered indicative of the general behaviour. 
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Figure 4.10: Dam-break problem. Time evolution of the water-front toe. r = 0 is the 

time instant for dam break and x^ax is the instantaneous position of the water front. The 

analytical solution in Ritter (1982) gives the asymptotic velocity of the water front by a 

shallow-water theory. 

water-front is slower, but not as much as in the experiments. 

Several sources of uncertainties hamper a clearer comparison with the tests due 

to the experimental scale and to the lack of full information for the test set-up. 

None of the codes modelled surface-tension effects. In the experiments, two 

different scales (L = 5.7 and L = 11.4 cm) were considered in order to rule out 

significant surface-tension effects, though in both cases t he radius of curvature at 

the water front is still rather small. Greco (2001) showed that the agreement 

between large-scale experiments (Dressier, 1954) and BEM is better than in the 

present case. Another source of uncertainty is related to the bottom roughness, 

which alters the propagation velocity and triggers the development of turbulence 

near the water front (not modelled here). 

The overall free-surface profiles obtained by the three numerical methods 

coincided to within plotting accuracy. Differences can be detected only by a closer 

inspection of the water-front region, as in figure 4.11. The present method, 

indicated as LS in the figure (dashed lines) predicts a blunter shape, with a more 

rounded and slower tip. This is due to numerical errors introduced in the 

reinitialization process of the distance function. In fact, in this case a distance 

function symmetric with respect to the bottom is assumed. 
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Figure 4.11: Dam-break problem. Details of the water front; free-surface configurations. 

Time increases from left to right and from top to bottom. 

Therefore, unless the slope of the front at the bot tom is vertical, the tip 

resembles a spike, with discontinuities of the gradient function in both the 

coordinate directions. Such discontinuities are smoothed by the numerical 

procedure, and the guessed zero level can be shifted from its correct location. 

However the numerical improvements, both for the discretization of the distance 

function and for the Navier-Stokes solver have reduced the involved errors so that 

the difference between the different methods after 320 steps of present simulation 

is still 0{Ax = 0.018Z/). 

T = &4 

^ 2̂  26 ^ 2# 

Figure 4.12: Dam-break problem. Details of the water front; free-surface configurations, 

with a classical Level-Set solver (LSc) and with a modified HLSM method. 

To overcome some of the difficulties encountered at t he front tip due to the 

errors in the distance function, a tracking technique has been implemented based 
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on the use of Lagrangian markers (HLSM method) distributed across the interface 

(Enright oA, 2002). In this case, after the Lagrangian convection has been 

performed, the value of the level-set function on the grid points is updated by 

using the value of cf) carried by the particles. The solution of the Navier-Stokes 

Equations is then performed as in the classical LS case. 

Related results are presented in figure 4.12 and compared with those of the 

classical Level-Set solver (LSc), the BEM and the SPH methods. HLSM results 

agree remarkably well with the BEM and the SPH data at the initial time but the 

free-surface evolution shows a large deviation from the reference solutions for the 

last configuration (right-bottom plot in figure 4.12). This is due to some errors in 

the interpolation of the velocity in a region where the velocity gradients are very 

high. 

4.4.1 Dam-break How: impact with a vertical wall 

In many practical circumstances, the water hits obstacles (break-waters, ship 

superstructures, etc..) causing important structural loads. This situation is 

represented by the presence of the wall shown in figure 4.19. Figure 4.13 shows the 

water induced forces and acting respectively on the bottom and on a 

downstream vertical wall placed at a distance LC = I.IH downstream the dam. 

The flow is originated by the release of a reservoir of water with L = H. 

The agreement between the present solver and the other numerical methods is 

very good, disregarding the rather small oscillations in the SPH computation. 

Even the jumps in the force that are related to the impact of the fluid onto the 

downstream vertical wall are in reasonable agreement. The slightly smaller 

velocity of the Level-Set front has not strongly influenced the dynamic behaviour 

at the impact on the wall. In fact, the forces acting both on the bottom and on the 

vertical wall are very similar to those obtained by the other two methods. 

The substantial difference among the three numerical solvers is in the slope of 

the force acting on the vertical wall during the initial stage of the impact of the 

water toe on it: a high peak of /^ , with short duration, is found by the BEM 

method. At the impact time, the water front can be approximated by half a wedge 

with an angle of about a i = 60°, followed by a free surface with mean slope 

a2 = 25°. By using a gravity-less similarity solution for the impact of a fluid wedge 

against the wall (Zhang et al, 1996), the forces reported in figure 4.14 have been 

found for the angles a i and ctg. The results suggest that the higher peak of the 
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BEM impact force is due to the impact of the blunter portion of the water front, 

but the oscillations of the SPH are very likely to be the results of some numerical 

instabilities. The local refinement of the BEM is higher than in the SPH and in 

the present computations, which do not capture properly the initial rate of change 

in the horizontal load. The same can be inferred for the Level Set solution. The 

present solver presents a delay in the increase of the horizontal force due to the 

delay in the water toe impacting on the vertical wall. However the initial force 

peak is associated with quite a short time scale and therefore it is likely 

unimportant from a structural point of view. 

/. 

0.2 J 

1.2 1.4 A6T 

Figure 4.13: Dam-break plus impact problem. Left: time evolution of the vertical load 

on the horizontal deck after the dam break. Right: time evolution of the horizontal load 

on the vertical downstream wall at Lc = l.l-H" from the dam. 

In the experiments by Zhou et al. (1999), a reservoir of water, with ^ = 60 cm 

and L = 2H was placed at a distance = 3.366 H from a vertical obstacle. Wave 

height measurements were performed at the locations A and B shown in figure 4.9. 

The pressure evolution was measured at the position C along the vertical wall. 

The sequence in figure 4.15 shows the global development of the fluid flow as 

obtained by the numerics. For the SPH only the free-surface particle layer is 

plotted, and for the present solver the continuous lines represent the zero-level of 

the distance function (/>. After the dam is removed, the flow develops along the 

deck, impacting against the vertical wall, where it is deviated upwards. Formation 

of spray and surface fragmentation (which cannot be handled by the BEM) may 

occur. The Level-Set suffers from insufficient resolution and is quite dependent on 

the numerical discretization adopted. The SPH predicts high particle velocities, 

and some of them leave the main bulk of the fluid. The accuracy of these details is 

hard to assess. 
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Figure 4.14: Dam-break plus impact problem. Time evolution of the impact force on the 

vertical wall at LC = I.IH from the dam. The zero-gravity results are obtained numerically 

by using the free-surface data following from Zhang et al. (1996). 

Initially, under the restoring action of gravity, the fluid acceleration decreases 

and the jet slows down. The motion of the water is reversed in a waterfall, 

overturning in the form of a wave plunging onto the deck. The three methods 

agree quite well despite the complexity of the flow field. Though no experimental 

data are available for the free-surface profile, the agreement is encouraging. Some 

LS 

T = j.6 

Figure 4.15: Dam-break plus impact problem. Free-surface flow and impact against the 

vertical wall following the breaking of the dam. 
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difference appears at time T = 5.6 when both the present solver and the SPH 

predict a lower jet with respect to the BEM. This is due to the presence of the 

gaseous phase. The effect of the air escaping out from the cavity created below the 

jet could contribute to a downwards acceleration of the tip. 

T = 1 . 5 9 

exponential smoothing 

trigonometric smoothing 

Figure 4.16: Dam-break plus impact problem. Effects of the different numerical smooth-

ing at the interface. Dashed line; exponential smoothing, solid line: trigonometric smooth-

ing. 

The BEM simulation has to be stopped at the impact of the plunging wave 

with the underlying water, while both the present method and the SPH are able to 

continue further on. 

The general agreement highlights the successful efforts in the development of 

the numerical aspects of the present solver. Given the spatial discretization used 

here (Aa; = A^=0.018.ff and = l.SAa;), the exponential smoothing of 

the density described in section 3.14 hamper the growth of instabilities allowing 

the reduction of the time step to A r = 0.018. Figure 4.16 shows how substantial 

oscillations can be introduced in the computation with t he same At by using 

instead a trigonometric smoothing of the density across the interface (see section 

3.14). The thinner line of the figure represents the air-water interface for the 

present case if the exponential smoothing is adopted, the thicker line is the 

equivalent configuration at time r = 1.59 when a trigonometric smoothing is 

adopted. Most of the oscillations are concentrated at the toe of the water flow, 

where shallow water conditions occur and where the water front changes rapidly. 

These oscillations can be reduced using a smaller A r and enlarging Sgmoothingp, 

though the solution is then less accurate and less efficient. 
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The advantages that are derived from the use of a variable coefficients ENO 

advective scheme (see section 3.2.2) cannot be achieved with any reduction of Ar . 

The left plot of figure 4.17 shows the interface calculated by applying the variable 

coefficients methods and a more commonly used minmod scheme. The SPH 

interface is also given in the plot. The evolution of the plunging jet obtained by 

Figure 4.17: Effects of the limiter function on the plunging jet. Left: comparison of the 

interface location with (dashed line) and without (solid line) using the variable-coefficient 

limiter function. The SPH solution (dots) is used as a reference. Centre: flow velocity 

when a minmod limiter is used. Right: flow velocity when a variable coefficient ENO 

scheme is adopted, r = 5.64. 

the variable coefficient method is closer to the SPH solution. In the central and 

right plots of figure 4.17 the velocity field is shown for the cases respectively 

without and with a variable coefficients ENO scheme. In the former, the vortical 

region present in the air below the plunging jet is diff'used to the water domain by 

the minmod scheme. This results in an unphysical nose down effect. Even though 

it is closer to the SPH and to BEM solutions, the interface obtained with the new 

method still presents some residue diffusion effect. This may be related both to a 

too narrow transition from the superbee to the minmod scheme (see section 3.2.2) 

and to the variation of the density p within a finite layer across the interface. The 

latter causes the thickening of the vortex sheet concentrated on the interface. So 

that the vorticity is spread over a region affected by higher numerical diffusion 

because of the chosen limiter function (see section 3.2.2). 

Nevertheless, the evolution of the interface is much improved, and it is possible 

to proceed to a more quantitative analysis of physical quantities involved in the 

problem. 

Figure 4.18 gives the time evolution of the water height at {X/H)X = 3.721 

and {X/H)B = 4.542 along the deck. From the analysis of the numerical 
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Figure 4.18; Dam-break problem plus impact problem. Water height at locations A, left, 

and B, right, (cf. fig. 4.9). Numerical results and experiments in Zhou et al. (1999), with 

i? = 60 cm and L = 2H. 

simulations and of the experiments the three fundamental stages have been 

identified by Greco (2001); 

1. Stage I: (r ~ 1.6 — 2.0) is characterized by the sudden rise of the water level 

hyj, due to the transition from dry-deck conditions to wet-deck conditions. 

The shape of the water front determines the growth rate of hj^. Some 

differences can be detected between the numerical solutions and the 

experimental measurements. 

2. Stage II: (r ~ 2. — 5.6) is characterized by a much slower growth rate of the 

water level because of the almost Hat free surface above the wave gauges. 

3. Stage III: (r > 5.6) shows a new steep increase of hw This is due to the 

overturning water which gives an additional contribution to the water depth 

measured at the location B. Later on, also the signal recorded by the gauge 

located in A displays this phenomenon, which cannot be followed further on 

by the BEM, while it is qualitatively captured by t he SPH and by the 

present solver. 

Though the experimental and numerical evolutions are in satisfactory 

agreement, in figure 4.18 the numerical solutions underpredict the measured data 

when the water level first rises from zero, and the measured hyj has a maximum 

which is not present in the numerics. As suggested in Greco (2001), the temporal 

record can be converted into a spatial free-surface profile and suggests a hump in 

the experimental free surface close to the contact point. This is not visible in the 
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dam-breaking &ee-surface profiles by Dressier (1954) and could be due to the deck 

not being perfectly dry before the breaking of the dam. This is consistent with 

other How visualizations in Stansby oZ. (1998). Unfortunately, the limited set of 

data available does not allow a better verification of the reasons of the differences. 

Similar uncertainties affect the analysis of the post breaking values of the water 

depth. At this stage, the present solver and the SPH have similar behaviour but 

results that differ from the measurements. 

0.5 

P ( P g H ) I 

Exp. (Zhou et al. (1999)) 

BEM 
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A A A ^ A A AA 

t(gH) T/2 

Figure 4.19: Dam-break plus impact problem. Pressure measured in Zhou et al. (1999) 

at the circular transducer located at C (see figure 4.9). BEM, SPH, and LS pressure 

computations at the centre of location C. 
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Figure 4.20: Dam-break plus impact problem. The numerical pressure evaluated at the 

bottom boundary of the circular transducer area (Zhou et at, 1999), along the vertical 

wall. 

Figure 4.19 gives the pressure measured (Zhou et ai, 1999) on the vertical wall 

during the impact. In the experiments, a circular shaped gauge of 9 cm diameter 
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centred at C (0.27i/ above the deck) was used. In the figure the measurements are 

compared with the numerical values computed at that location^. The agreement 

between computations and experiments is rather limited. Actually, Zhou et al. 

(1999) also reported di&culties in achieving repeatability of the measurements, so 

no conclusive statement can be made. The pressure undergoes large variations 

within the area of the transducer. Indeed the measured pressure time series is 

closer to the pressure computed at the bottom boundary of the transducer area 

along the vertical wall, as shown in figure 4.20. All three numerical methods are in 

a good agreement up to the point of breaking (y = 6.2), when the BEM is halted. 

The present solver and the SPH predict a similar evolution of the pressure after 

that time. A first peak of pressure just before the closure of the cavity below the 

jet is present in both solutions at T = 6.18. This is due to the effect of the 

entrapped air, and is characterized by a pressure peak jus t before the closure of 

the cavity. This is immediately transmitted to the water. The differences in 

amplitude of the peaks predicted by the two methods can be due to the 

compressibility of the air, captured by the SPH, and disregarded by the present 

solver which assumes both air and water to be incompressible. Later, the evolution 

of the pressure is again similar apart from some oscillations of the SPH pressure 

due to the numerical semi-compressibility of the water in that technique. 

4.4.2 Post-breaking How evolution 

The comparisons with the BEM are necessarily limited to the pre-breaking phase, 

but the present solver can still compare with the two-phase SPH method. 

Satisfactory comparisons during the post-breaking phase have already been shown 

both in water level and pressure (see the previous figures 4.18 and 4.20). Here the 

evolution of the air-water interface is discussed. 

Figure 4.21 shows the interface at the formation of the splash up. Apart from 

the tip of the jet the results are similar. The two solutions show a similar 

deformation of the air entrapped inside the water domain and a similar evolution 

near the right wall. When the thin layer of water sliding on the wall starts to fall 

down, it creates a cavity that eventually closes. A rather comparable deformation 

of this cavity is found in the two solutions. Even at this stage, when the interface 

is extremely deformed, the two methods predict a similar deformation of the 

^The pressure has been computed as an average value on the whole gauge area, but these results 

were also not very satisfactory. 
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Figure 4.21: Interface evolution after the impact. Solid line; level set, dots: SPH. 

entrapped air and of the splash up. This is a quite relevant result, the two solvers 

being profoundly different. The positive comparison validates the new features 

introduced in the present numerical solver. Figure 4.22 shows the air-water 

interface obtained with the reinitialization method by Russo & Smereka (2000) 

(dashed line), the scheme described in section 3.3 (solid line) and the SPH solution 

(double dotted line). The use of the present method recovers the presence of the 

thin layer of water on the right wall that is smoothed out by the other level set 

scheme. In the absence of this thin layer of water there can be no subsequent 

cavity in the water further entrapped near the right wall. 

76 



ng/H = 6.76 

Figure 4.22: Effects of the different reinitialization procedure. Solid line; present correc-

tion, dashed line: correction described by Russo & Smereka (2000). Double dots: SPH 

solution. 

4.5 Conclusions 

In this chapter the numerical solver developed in chapter 3 has been verified and 

validated by studying simple prototype problems where phenomena relevant for 

the hydrodynamics fields are involved. 

The single bubble problem has highlighted the accuracy and efficiency of the 

splitting technique for the Poisson equation in modelling the surface tension effects. 

The problem of the vortex pair has shown that the Cartesian grid handles 

accurately the deformation of the free surface caused by the approaching vorticity. 

The dam-break problem has been a valuable source of comparison with 

experiments and other numerical solvers. Breaking and post-breaking behaviours 

have been studied and have confirmed the method's capabilities. The long time 

evolution of the phenomena has allowed the new numerical features introduced in 

the discretization of the algorithm to be rigorously tested. The corrections by 

Russo & Smereka (2000) have been applied for the first time to the fluid-dynamic 

problems, and further corrections have resulted in a considerable gain in the 

accuracy of the interface evolution. The exponential smoothing of the density 

resulted in a more efficient algorithm, and the variable coefficients ENO scheme 

eliminated errors of diffusion across the two fluid domains. 
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Part II 

Surface piercing plate problem: 

numerical results versus dedicated 

experiments for two-phase flows 
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There lies the port ; the vessl puffs her sail; 

thre gloom the dar, briad seas. My mariners, 

souls that have toil'd and wrought, and 

thought with me 

Ulysses, Alfred Tennyson 

Chapter 5 

Experimental set up 

In the previous chapter the study of simple prototype problems guided the 

improvement of the numerical method. In the next chapter, the developed solver 

will be applied for the analysis of a geometrically simple problem involving the 

coexistence and interaction of the phenomena investigated in the prototype cases 

individually. This problem is that of a surface piercing plate in forward motion, for 

which dedicated experiments have been performed. In this chapter the 

experimental set up is outlined. 

5.1 General description of the problem 

The experimental images shown in figure 5.1 depict the evolution of the 

phenomena involved in the motion of a surface piercing plate. A vertical plate 

initially at rest (top left plot) starts to move from left to right. This causes the 

water level to rise on that side. Gravity progressively counteracts the water rise up 

and leads to the formation of a plunging breaker followed by air entrainment. The 

motion of the plate also causes a drop in the water level on the left. There, the 

lowered air-water interface approaches the region where vorticity is released at the 

lower tip of the plate (bubbly region) and interacts with it. The chosen geometry 

of the body makes the problem easy to analyze both from a numerical and an 

experimental point of view: 1) no uncertainty derives from the shape of the body, 

2) the vorticity is released in a fixed point. This makes the problem fascinating for 
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Figure 5.1: Evolution of the flow field after the vertical surface piercing plate starts to 

move from left to right. The white shaded region represents the air-water interface. Time 

increases from left to right and from top to bottom. 

the validation of numerical codes. 

But its validity extends to a wider field. Topologically it resembles the 

problems of blunt bow forms such as those of shape of cargo ships and of transom 

sterns. So the phenomena hereafter described give a description of the general 

processes that take place around three-dimensional blunt bodies. 

5.2 Experimental set up 

The experimental set up is sketched in figure 5.2. The experiments were performed 

in a flume 0.420 mm wide, 18 m long and at a water depth larger than 0.6 m so 

that the effects of the bottom are not significant in all t he cases analyzed here. An 

aluminium plate is towed along the flume and the flow features are captured by a 

video-camera (to visualize the air-water interface displacement) placed at the side 

of the flume, and by a Laser Doppler Anemometry (LDA) device (to measure the 

velocity field). 
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Figure 5.2: Experimental set up. 

Two test campaigns have been carried out. The former analyzed the motion of 

a vertical plate, the latter considered the case of an inclined plate. 

The vertical plate is 300mm long, 415mm large and 5mm wide. It is supported 

by two vertical guides, linked to the carriage. The elevation of the plate on the 

vertical guides was adjustable. 

A soft plastic material was used at the two sides of the plate, thus allowing an 

almost perfect contact with the walls of the flume; leaks at the two sides of the 

plate are reduced to a minimum to ensure two-dimensional flow conditions during 

the tests. 

The inclined plate is 500mm long, 415mm wide and 3mm thick (with sharp 

corners). The distance between the lower edge and the point where the plate is 

clamped to the rigid support attached to the carriage is 260mm (see figure 5.3). In 

this case no sealing was used between the plate and glass walls of the flume. 

5.3 Measuring devices 

Different devices were used to control the flow conditions and to measure the 

relevant physical quantities. They are described below. 
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Figure 5.3: Geometry of the inclined plate. 

Position transducer An optical encoder mounted on a drive shaft that measures 

the angular position is used to measure the velocity of the plate and its 

displacement with a sample rate of 200Hz. 

Motion control For low speed tests (velocities up to 0.55m/s), the sketch in 

figure 5.4 shows the mechanism used. A PC controls the motion of a DC motor 

connected through a ballscrew to the carriage. An analogic position transducer is 

connected to this and sends back its information to an Analogical/Digital interface 

and from this to the PC. This feedback is particularly important in cases where 

the motion was reversed. The PC sends a signal similar to the black solid line of 

figure 5.5 to the motor and waits. The displacement of the plate is affected by 

inertial, frictional and water drag effects, so that the signal back to the PC 

resembles dotted line in figure 5.5. When the position indicated by the transducer 

is equal to the limit position imposed by the PC a new signal is given to the motor 

by the computer for the backward motion. 

For higher speeds (up to 0.9ms/s), the carriage was moved simply by hand. Its 

motion was measured by the position transducer and double checked with the 

motion filmed by the video camera. 
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Figure 5.4: Sketch of the feedback mechanism for the control of the plate motion. 

Video camera A PULNiX TM-6710 progressive scan CCD camera was used for 

the flow visualizations. It is characterized by a high resolution 1/2" progressive 

scanning interline transfer CCD imager 648(H)x484(V). No shutter was used in 

this occasion but the camera was run at a data rate of 120 frame/sec. The 

calibration of the images for the measurements is done using a grid printed on the 

glass wall of the flume. 

For a better definition of the air-water interface a fluorescent dye was dispersed 

in the water and illuminated by two halogen lamps. 

LDA device A TSI 2 components Argon-Ion Laser Doppler anemometer has been 

used with a frequency counter. The data rate of the measured velocities is 3100 

samples per second. 
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Figure 5.5; Driving signal from the PC (solid line) and position feedback from the position 

transducer (dashed line). 

5.4 Experimental uncertainties and test 

repeatability 

5.4.1 Instrumentation and set up 

Uncertainties in the measurements could be associated with both the individual 

measuring devices and with the global features of the resulting experimental set up 

potentially responsible for generating uncontrolled phenomena. The limits of the 

measuring devices are as follows. 

- The position transducer ensures a maximum error of ± 1 millimetre in the 

measurement of the position on the calibration range of 0.9m. 

- The parallax errors of the video images are within the order of a millimetre, 

but three dimensional effects are difficult to quantify. 

- The LDA device was set with a frequency shift equal to 200KHz and with a 

band pass filter in the range [30KHz,300KHz]. This results in satisfactory 

measurements in the velocity range [-0.6m/s,0.9m/s], and in a error in the 

measurement of the velocity in still water condition equal to ±0.02m/s. 

The relative position of the plate and the laser head is the cause of a further 

error in the LDA measurements. An error is potentially generated by the 

reflections of the laser beams on the plate. The horizontal velocity is measured by 

two crossing beams in the horizontal plane, and when the plate sweeps into the 
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Figure 5.6: Sketch of the horizontal plane where the horizontal component of the velocity 

is measured. The dimensions are altered to evidence the shaded region where the reflection 

of the laser beams produce an error in the velocity measurements. 

space between the beams it may result in a contaminated measurement of the 

velocity (see Ggure 5.6). Usually however, the direct effect is either a lack of points 

or a constant value of the measured velocity for a small interval of time when the 

plate crosses the test section. 

Other uncertainties are related to the plate system and have an effect on the 

evolution of the flow. In the case of the vertical plate, the plate rotates slightly 

around the upper hinge of the carriage owing to the fluid loading on it. Even 

though it was not possible to measure the amplitude of the oscillations precisely, 

the video images give a rough idea of what happens when the plate stops: the 

lower tip of the plate has an oscillation whose amplitude is slightly larger than half 

a centimetre. In the case of the inclined plate, the uncertainties are introduced by 

the bending of the plate. The plate used is made of stainless steel and its geometry 

is described in figure 5.3. Considering it to be rigidly connected to the support, 

the natural frequency of the plate is given by 

w = 3.524 / —— c:! 27r X 13H^z . 

The immediate effects of the rotation and of the bending of the plates is on the 

velocity in proximity of the plate and eventually on the shear layer release at the 

lower tip of the plate. In fact a frequency similar to the frequency of bending w 

calculated above has been observed in the velocity measurements and described in 

the following chapters. 
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Another source of uncertainty derives from the water leakage between the sides 

of the plate and the tank walls. The main effects of this water flow are on the 

release of vorticity in the direction of the lower tip of the plate. 

5.4.2 Test repeatability 

The repeatability of the experiments was tested both for the displacement of the 

plate and for the LDA measurements in the case of the lowest velocity. Different 

runs were analyzed showing a maximum deviation of the plate position of the 

order of one millimetre, that is in the error range of the instruments. Wider errors 

were detected on the velocity measurements with a m a x i m u m difference in the 

LDA measurements of 0 .07m/s between successive nominal ly identical runs. 

5.4.3 Initial and boundciry conditions 

The runs were repeated on average at a t ime interval of 1 minute. This value has 

been chosen as a compromise between efficiency in the t e s t campaign and test 

reliability. With this t ime interval, the initial conditions can be assumed to be still 

water. The LDA measurements gave a value of velocity within the error of the 

instrument, before the movement of the plate. 

To reduce the t ime interval between two successive runs, the reflections from 

the flume ends were damped out efficiently by a sponge beach at one end of the 

flume and by a wave-maker used as a wave-absorber on the other end. 

5.5 Main phenomena observed in the 

experiments 

Hereafter some of the features observed in the flow visualization are qualitatively 

described. The phenomena studied experimentally involve small spatial scales. 

Therefore surface tension effects are not negligible. An example of this is shown in 

figure 5.7. The jet that develops is characterized by high curvature at its tip, the 

surface tension causes its rounding and at a later time the extreme of the jet 

becomes thicker and almost circular (see right plot of the figure 5.7). 

Once the breaking of the plunging jet has occurred and the plate has stopped, 

the water in front of the plate rises again to reach almost the zero level, and the 

surface becomes wavy. Also this phenomenon may be connected with surface 
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Figure 5.7; Effects of surface tension: the spiky jet is rounded by tiie surface tension. 

tension. The oscillations could also be given by an angular oscillation (pitch) of 

the plate during the tests. Unfortunately no information is available about this 

aspect. Three-dimensional effects should be ruled out by the prevention of leakage 

at the flume sides. 

Other effects of surface tension are not easily detectable but they substantially 

enter the problem. As confirmed by the numerical results, agreement is not 

satisfactory if surface tension is omitted. 
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The lights begin t o twinkle from the rocks; 

the long day wanes; the slow moon clinbs; 

the deep moans round with many voices. 

Ulysses, Alfred Tennyson 

Chapter 6 

Flow field around a vertical plate 

In this chapter the flow field around a vertical plate is analyzed both from a 

numerical and an experimental point of view. Two cases have been considered: a) 

at low speed, high immersion and with an abrupt stop of the plate (Fn = 0.37) 

and b) at high speed, low immersion but with smooth variation of the velocity of 

the plate {Fn = 1.0). This analysis is useful for investigating the effects of the 

velocity and of the body acceleration on the flow developing around the plate. 

6.1 Vertical plate at low speed and high 

immersion 

The characteristic lengths of the problem studied here and the non-dimensional 

numbers used hereafter are summarized in figure 6.1. For the first set of 

experiments the maximum velocity of the plate was 0 . 5 m / s and the initial 

submergence {h = 0.18m). These conditions^ lead to Froude number Fn = 0.37, a 

Reynolds number Re = 5.9 • 10^ and Weber number We = 388. 

Figure 6.2 shows the evolution of the displacement Xp, of the velocity Up and of 

the acceleration Up of the vertical plate for the case analyzed in this section. Two 

sets of data are given in figure 6.2: the dots represent the experimental 

displacement of the plate measured by the position transducer and its derivatives, 

and the solid lines represent the smoothed curves of the displacement used as 

^The nominal surface tension value between air and water is used (a = 0.072&N/m). 
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Figure 6.1: Sketch of the characteristic lengths of the problem. The non dimensional 

numbers are indicated. 

input in the numerical calculation^ and the corresponding velocity and 

acceleration. This implies that small differences exist between experimental and 

numerical data when steep gradients are present. 

The value of the Froude number used in this test implies a weak interaction 

between the vorticity released at the lower tip of the plate and the free surface. 

Moreover, during the first stages of motion, there were no violent deformations of 

the free surface, nor any fragmentation. However, after the abrupt stop of the 

plate, much more violent flow occurs. 

6.1.1 Evolution of the air-water interface 

Figure 6.3 presents a series of experimental pictures referring to the deformation of 

the free surface, when the plate moves as shown in figure 6.2. The snapshots are 

2The numerical solution is calculated in a system of reference moving with the plate, this 

means that the transport acceleration has to be taken into account as an external force. As two 

successive derivations produce a very noisy signal (see dots in the acceleration plot of figure 6.2), 

the displacement has been smoothed with a low pass filter before differentiating it. 
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Figure 6.2: Time history of the displacement Xp, velocity Vp and acceleration Up of the 

vertical plate. The dots represent the experimental data, the solid lines the values used 

in the numerical calculation. 

ordered from left to right and from top to bot tom with the t ime increasing from 

0.128s with an increment At=0 .128s . The white lines represent the numerical 

results^ and they are superimposed on the black and whi te experimental pictures^. 

stretched mesh has been used to discretize the flow, close to the plate the mesh is uniform 

and Ax — Ay = h/45, the time step is Af = 8 • lO^^s 

^The PowerPoint software was used to sumperimpose numerical and experimental pictures. 

The background of the numerical results was set transparent. The size of the two pictures was 

changed and the images translated so that a reference segment would result superimposed in the 

two pictures. 
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The overall evolution of the free surface is well captured b y the numerical results. 

Figure 6.3: Deformation of the free surface: comparison between numerical and experi-

mental results. In each plot, the black and white background is the experimental video-

image of the free surface deformation on one of the glass sides of the tank, the white line 

the numerical free surface. The snapshots refer to the times a) t=0.128s, b) <=0.256s, c) 

i=0.384s, d) (=0.5128, e) t=0.640s, f) i=0.768s, g) i=0.896s, h) if=1.024s, i) (=1.152s, 1) 

i=1.280s, m) (=1.4088 and n) (=1.536s. The grid on the experimental pictures presents a 

mesh size of 3cm both in the x and y directions. 
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When the plate starts to move the free surface on the front side deforms more 

than on the back. On the right side (see Ggure 6.3), the plate behaves as a 

wavemaker and causes the formation of a wave that moves from left to right with a 

velocity = 0.55m/s relatively to the plate itself. The development of this wave 

can be observed from figure 6.3-a to 6.3-e. 

On the back of the plate the body motion causes a depression that sucks down 

the air water interface. The drop of the air-water interface is not sufficient to cause 

its interaction with the vorticity that is forming at the b o t t o m edge of the plate. 

And in that case, the vorticity at the bottom of the plate is quite weak because the 

velocity is slow. 

When the plate stops (see figure 6.3-g) some differences between numerical and 

experimental results appear. The numerical free surface in the front region is quite 

different from the experimental one, while no difference can be noted at the back 

of the plate. Figure 6.3-g refers to t=0 .896s when the p la te is stopping and Up is 

reaching its lowest negative value. At this t ime the numerical velocity is lower than 

the experimental one as a an unfortunate consequence of the smoothing (see figure 

6.2). As already shown for other cases, sufficiently small differences in acceleration 

and velocity can cause different angles of the water surface leaving the front of the 

plate. Moreover, it is to be noted that from t=0 .87s to t = 1 . 2 s the experimental 

plate rotates slightly around the upper hinge of the carriage (see section 5.4). 

Apart from the small differences in velocity, these oscil lations can be the cause of 

the disagreement between numerical and experimental results in figure 6.3-g. 

The differences decrease as the time goes on. 

Both numerical and experimental results show a second wave leaving the right 

side of the plate in figures 6.3-f and 6.3-g. A third wave forms in the front of the 

plate after it has stopped (see figure 6.3-i to 6.3-m), and a larger difference 

between the two data sets is visible here. The crest of the experimental wave is 

smaller than the numerical one. The detected local discrepancies are probably due 

to the quite small wave amplitude involved, so that the m e s h used in the numerical 

simulation® is not sufficiently fine to capture correctly the wave deformation. 

At the time at which the plate stops, there is a large deformation of the 

interface at the back of the plate. The inertia of the water causes its rise and fall 

under gravity, forming a plunging breaker (see figure 6.3-h to 6.3-1). The plunging 

®The mesh used in the numerical calculation is characterized by Ax=Ay=h/45, while the 

Af = 8 - 10-S 
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Figure 6.4: Top-side view of the free surface after the wave breaking, t — 1.625s. Three 

dimensional effects are visible. 

jet re-enters the water in figure 6.3-1. The agreement between numerical and 

experimental results is good both in the formation of the plunging jet and in its 

breaking. Moreover the numerical and experimental data show a similar behaviour 

of the splash up. The water first rises and then falls, forming two jets one on the 

left and one on the right ag shown in figure 6.3-m. These two jets form two 

successive splash-up events (see figure 6.3-n). Some differences between numerical 

and experimental data are visible in the right splash up. Figure 6.4 shows the 

water surface at t ime 1.62 5s as captured by a video-camera tilted and moved 

above the flume. It shows that three dimensional effects develop after the breaking. 

So the differences referred to in figure 6.3-n are mainly d u e to these effects. 

6.1.2 Evolution of pressure and vorticity after the breaking 

In the case analysed no aeration is present at the lower t ip of the plate. This 

prevents the vortical region that develops at that point from being tracked in the 

video images. Instead, some vorticity (see figure 6.5) is detectable in the breaking 

region. In particular the two counter-rotating vortices, generated after the 

backward breaking, form a vortex pair moving downwards and toward the plate. 

The two vortices are characterized respectively by a clockwise rotation on the left 

and an anticlockwise rotation on the right. Therefore their mutual action induces a 
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downward motion. As the right vortex is more intense than the left one, the pair 

moves also to the right. 

waAA 

, •„ : m m 
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Figure 6.5: Bubbly regions formed where the backward breaking impacts. The bubbles 

concentrate in the vortical zone. Left: Experimental images; centre: vorticity contours 

superimposed on the images and right: pressure contours superimposed on the video 

images. The figures refer to the left side of the plate at the times 1.408s, 1.472s and 

1.536s. 

In figures 6.5 and 6.6 the splash up on the left side of the plate and the 

successive phenomena developing are analyzed. In those figures the vorticity, and 

pressure contours are superimposed on the experimental images respectively in the 

centre and on the right. The t ime increases from top to bo t tom and the snapshots 

refer to the t imes t = 1.408s, 1.472s, 1.536s, 1.60s, 1.664s and 1.728s. 

The vortex cores are characterized by low dynamic pressure (see appendix B) . 

In the upper part of the vortices, this causes pressure gradients opposite to the 

hydrostatic pressure gradients, trapping any bubbles that occur in this region (see 
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Figure 6.6: As for figure 6.5. t— 1.60s, 1.664s and 1.728s. 

Appendix B). Therefore, when the vortex cores that are generated after the splash 

up move downwards, the low pressure areas associated w i t h them bring the 

bubbles down as well. In the centre of figures 6.5 and 6.6 the lower boundary of 

the bubbly region (the bubbles appear as dark dots in water) corresponds roughly 

to the most curved pressure contours. 

As the vorticity is moving downwards it is diffused by viscosity, consequently 

the regions of low dynamic pressure decrease in size and intensity. As a result the 

buoyancy plays a more important role for a larger number of bubbles that leave 

the high vorticity region as a kind of wake behind the vortex centres. 

LDA measurements were not performed in this region. However, it is sensible 

to think that the presence of bubbles would have produced rather scattered values 

of velocity. So, these measurements would have been of l i t t le use in the calculation 

of the vorticity. PIV (particle image velocimetry) is a much more suitable 
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technique for the measurement of this quantity. Even this technique is not free 

from errors of measurements in the bubbly region because of the light scattering. 

Only recently new PIV techniques have been introduced for multi-phase flows. 

Namely the DDPIV (defocusing digital particle image velocimetry) detects the 

presence of bubbles and their velocity (Pereira & Gharib, 2002) in a 3D 

environment and the PIV with LIF (laser induced fluorescine) (Grunefeld et aL, 

2000) is able to measure the velocity of a two-phase flow. 

6.1.3 The velocity field 

plate 
t = 0.0s 

free 
surface 

0.2185m 

0.02m 
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# # # 1 
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# # # # 3 
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Figure 6.7: Sketch of the arrangement of the LDA measurement points and of their 

labelling. The capital letter indicates the column, the number refers to the row. At time 

t—O.Os the most left point is at a distance of 21.85cm from the plate. The spacing between 

the points both in the vertical and the horizontal direction is constant and is equal to 2cm. 

During the experiments velocity measurements were performed by means of 

LDA. The data are collected at discrete points displaced onto four vertical columns 

and nine rows (see figure 6.7). In the third column, only the upper three points are 

shown because practical difficulties prevented reliable measurements elsewhere. 

The points of measurement are spaced by 0.02m both in the vertical and 

horizontal directions with the upper point located 0.026m below the free surface 

and the most left point 0.2185m distant from the initial pos i t ion of the plate. In 
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figure 6.7 there is a sketch of the relative arrangement of the points, together with 

their labelling. Each point is labelled with a capital letter indicating the column 

and a number referring to the row. 
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Figure 6.8: Numerical evolution of the free surface and of the vorticity. The dots represent 

the locations where the velocity is measured experimentally. The still water depth was 

0.7m. 

The LDA apparatus was fixed in the laboratory, so t h a t the measurements are 

at points whose distance from the plate varies in time. For a clearer understanding 

of the development of the velocity, the relative position of the points with respect 

to the plate is plotted in figure 6.8. There, the evolution of the numerical free 

surface and of the numerical vortical region are also shown. 
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Figure 6.9: Velocity in column A of figure 6.7. The symbols represent the experimental 

measurements, the solid black lines and the dashed blue lines represent respectively the 

numerical u and v components of the velocity. 

Figures 6.9 shows a comparison between the numerical and experimental 

velocities for column A. The green and purple symbols represent respectively the 

horizontal, w, and vertical, v, experimental components of the velocity, while the 

black solid and blue dashed lines represent their numerical counterparts. 
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Figure 6.10: Numerical velocity field at 512s. On the left: horizontal velocity contours 

in water; in the centre: vertical velocity contours; on the right: velocity vector field. 

The overall agreement is quite good, with larger discrepancies between the 

different data when the plate stops (t ~ 0.9s). 

The points of measurement in column A are initially at a distance of 21.85cm 

from the plate; this means that their horizontal velocity smoothly increases from 
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zero to the velocity of the plate ttp aa the latter comes closer. 

Concerning the vertical component f , the lower five points of the column 

(A5-A9) present a negative and decreasing value of v because the fluid at the 

points is diverted below the plate by its motion. The upper four points (A1-A4), 

instead, present an initial positive and growing v component . The water at those 

points is diverted upwards by the plate motion and contributes to the creation of a 

first wave on the right side of the plate (see figure 6.8). W h e n the first wave 

detaches from the plate on the right and goes over the measurement points, the 

upper three rows A l , A2 and A3 present a local m a x i m u m in the horizontal 

component of the velocity and an almost simultaneously zero value of the vertical 

velocity. The local maximum of u and the zero of v are perfectly synchronized on 

the crest of the wave but the flow field is disturbed below the free surface, 

concealing this syncronicity. Because the points are well below the interface, they 

are affected by a distorted field as shown in figure 6.10. 

As the wave passes the measurement points, v assumes negative values. In fact, 

the measurement points enter the region of influence of t h e lower tip of the plate. 

There, most of the fluid is diverted below the plate. The closer the point is to the 

lower tip, the higher is this effect and, consequently, the larger is the negative 

value assumed by v. Because of this behaviour, before t h e plate crosses the test 

section, the minimum value reached by v decreases from point A l to point A9. 

When the plate crosses the test section A at time tcrossing = 0.64s, the 

experimental velocity shows a constant value of This value is equal to 0.37m/s 

and it coincides with the velocity of the plate at the moment it crosses the test 

section area®. It is the result of an error in the measurements generated by the 

reflections of the laser beam on the plate (see section 5.4) . 

At the same time, a small jump appears in the vertical velocity, due to the 

passage of the measurement point from one side of the p la te to the other. This 

jump is not large except that at point A8. Because no major deformation of the 

free surface alters significantly the flow field at either side of the plate (see figure 

6.10), points A1-A7 present small discontinuities of the v component of the 

velocity (see figure 6.10). 

Point AS is at y=-0 .163m. When the plate has just passed the test section, it is 

very close to the lower tip, where a region of detached flow is present. This causes 

®This constant value results longer than the time s/up (s is the thickness of the plate and is 

equal to Smm). 
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a significantly lower vertical velocity component. 

Point A9 presents a behaviour similar to A8 but a larger jump in v. This point 

is below the lower tip of the plate. And the related velocity jump is due to the 

passage of the vortex sheet past the measurement point. 

A vortex sheet is characterized by a rapid change of velocity across it (Saffman 

1992). The discontinuities presented by u and v in point A 9 at t ime t=0.66s occur 

exactly when the vortex sheet passes. The jump in the v components at those 

points is about 0 .3m/s and is well captured by the numerical results. 

After the time of crossing, tcrossing^ the upper seven po ints A1-A7 present an 

increase of the horizontal velocity. They are in the upper and right part of the 

vortex released at the lower tip of the plate (see figure 6.8); this means that a 

positive velocity contribution due to the vortex is added t o the velocity of 

translation of the plate. 

Point AS presents a different behaviour because it is in the region of detached 

flow; here no substantial increase in the velocity is detected. 

Point A9 presents a cusp in the horizontal velocity due to the vortex sheet; this 

is captured by the numerics although the numerical results appear more smoothed. 

When column A has passed from the right side of the plate to the left, point 

A1 presents a gap in the data. 

The gap is common both to the numerical and to the experimental results and 

it is due to a local water level lower than y = —0.023m. 

When the plate stops almost abruptly at t=0.9s , both the vertical and the 

horizontal components of the velocity show a jump. At t=0.9s column A is on the 

left side of the plate, where the inertia of the water causes it to flow towards, and 

impact on the plate. This flow develops into a plunging j e t that eventually impacts 

on the free surface again. The points in column A are t o o far away to record the 

effects of the breaking but for a change in the slope of the velocity components. 

When the plate stops the whole volume of water near the surface on the left of the 

plate is swept upwards. This causes the formation of a jet along the plate. When 

the effects of gravity overcome those of the fluid inertia, a plunging jet forms. 

The water that is pushed upwards partially feeds the developing plunging wave 

(see left and centre plots of figure 6.11) and partially falls directly under the action 

of gravity. When the flow at the measurement points is no t involved in the feeding 

of the jet, a point of maximum curvature is observed in t h e fluid velocity. 

In figure 6.11 this behaviour is analyzed for point A l . Thi s location is crossed 
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Figure 6.11: Plunging jet formation: numerical streamlines at i=1.024s and t=1.152s and 

velocity history in Al . At the former time the streamlines, going through Al , A2, B1 and 

B2, flow into the jet. At the latter time they are flowing downward. This causes a point 

of maximum curvature in u and v. 

by the water going into the jet up to t=1 .15s (see the left and central plots of the 

figure). At that t ime the streamlines start to be directed towards the lower tip of 

the plate. As a result, both A l horizontal and vertical velocity records have a 

maximum value of curvature, much more evident in the horizontal component (see 

right plot of figure 6.11). The same happens for point A 2 . 

expenmentaJ 

u,v(m/8) 

u,v(m/s) 

Figure 6.12: Velocity on column B of figure 6.7. The solid line and the dashed lines 

represent respectively the numerical horizontal and vertical velocity components. The 

symbols represent the experimental measurements. 

After the stop, the points on column A are crossed b y the vortex sheet. When 

this occurs, some oscillations appear in the measured velocities. The link between 

the passage of the vortex sheet and the oscillations can b e deduced from figures 
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Figure 6.13; Velocity on column C of figure 6.7. The solid line and the dashed lines rep-

resent respectively the numerical horizontal and vertical velocity. The symbols represent 

the experimental measurements. 

u,v(m/s) 

u.vfnVs) 

u,v(m/8) 

Figure 6.14: Velocity on column D of figure 6.7. The solid line and the dashed lines rep-

resent respectively the numerical horizontal and vertical velocity. The symbols represent 

the experimental measurements. 

6.9, 6.12 and 6.8. The oscillations appear at the same t ime as the contours of 

strong vorticity arrive at the measurement points. However, these oscillations are 

not present in the numerical calculation, and the reason for their absence is not 

clear. Considering that no bubble is present in the flow (at least within the 

resolution of the video camera), and that the frequency of the oscillation is low 

enough to exclude effects of turbulence, three possible explanations can be given. 

First, the vortex sheet is unstable, generating side vortices velocity oscillations. 

Koumoutsakos & Shiels (1996) show that a plate accelerating in an incompressible 

fluid can create an unstable vortex sheet. The velocity of the plate analyzed here is 

subject to a phase of acceleration, potentially responsible for the instabilities in 
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the vortex sheet. If this is the case, it is likely that the numerical calculations do 

not capture the oscillations because the mesh is not sufficiently refined around the 

lower tip of the plate. 

A second explanation comes from the comparison between the numerical and 

the experimental velocity jumps at point A9. The measured vertical velocity jump 

across the vortex sheet is captured well numerically in figure 6.9-A9, but the 

corresponding cusp in the horizontal component is smoothed by the numerics. If a 

similar smoothing occurred in smaller jumps, the numerics would not reproduce 

the oscillations in the horizontal velocity. 

The rotation of the plate around the upper hinge is a further possible 

explanation. The amplitude of this oscillation is large enough to cause the 

displacement of the vortex sheet and consequently to cause the abrupt changes in 

velocity. 

There is no means here to state with confidence which one of these possibilities 

is most likely, and they are probably combined in reality to give the results shown 

in figures 6.9 and 6.12. 

It was not possible to continue the experiments, but a straightforward way to 

check if the oscillations are related to flow instabilities would be to spread a 

viscous layer of fluorescine on the plate surface. This would be released gradually 

during the motion revealing the presence of any instabilities. 

All the comparisons between experiments and numerics are carried on up to 

t=1.5s . Later the experimental points close to the breaking are very much affected 

by the 3D development of the flow field. This creates major differences between 

the numerical and experimental measurements. 

The phenomena developing in column A are reproduced in a similar way in the 

other columns B,C and D. The comparison between numerical and experimental 

velocity in column B are shown in figure 6.12. The overall comparison results are 

good. One of the main differences between the two sets of data is the duration of 

the time interval characterized by the presence of air at B l . 

The air is present at the point for a t ime longer in t h e experiments than in the 

numerics. At t= 0.768s, when air is observed experimentally and not in the 

numerical results, figure 6.8 shows that the free surface is very close to the 

measurement points. Therefore, both errors in the numerical predictions and in 

the experimental estimation of the position of the point B l can explain the 

disagreement. 
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Other differences appear when the plate stops. The smoothing of the plate 

velocity Up used in the simulation causes a smoothing of the steep velocity 

gradients appearing at (=0.9s. As for column A, oscillations are present in the 

experimental results when the rolled up vortex sheet crosses the points of 

measurement,but they are smoothed out by the numerical computations. 

Figure 6.13 shows the comparison for the velocities in column C. The 

agreement is again good but for an underestimation of the velocity jump at the 

stopping point. 

The same considerations are valid for column D (see figure 6.14). No oscillation 

of the velocity appears in this column. In fact it is not affected by the passage of 

the vortex sheet but for point D9 (see figure 6.8). After t=0 .9s , at D9, the velocity 

exceeds the range of the LDA device (see section 5.4) and comparisons are not 

possible in the interval of t imes [0.9s, 1.7s]. 

It is interesting to note that the velocity jump after the stopping of the plate 

has an amplitude larger going from column A to column D. At the time tgtop, the 

points in the last column D are the closest to the plate (see figure 6.8) and are 

more affected by its change in velocity. In particular, at D1 the jump is 

" ^(Qop) = 0 .8m/s . The flow that takes place near the plate at this t ime 

can, in a very simple model, be thought of as the sum of the flow that exists before 

the stop, and an equal and opposite motion, similar to tha t which would be 

generated by an impulsive start to 0 .4m/s . 

In such a case the velocity field would adapt itself immediate ly to the new 

conditions, with a larger jump in the velocity at the points closer to the plate. The 

addition of the flow due to the impulsive start would cause a deviation of the 

upper part of the fluid upwards and of the lower part downwards to circulate 

around the lower tip of the plate. This is qualitatively what happens in the case 

analyzed, leading to the formation of new anticlockwise vorticity in the right of the 

plate (see figure 6.8). 

The first five points of column D show positive velocity jumps 

> 0, while the others (D6-D8) are characterized by negative 

jumps. Using the simplified case of an impulsively started current, this implies 

that the "stagnation point" is between point D5 and D6 (below y = —0.106m), i.e. 

it is at an elevation close to half the submergence depth of the plate at (=0 .9s . 
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6.2 Vertical plate at high speed and low 

submergence 

The second set of experiments refers to a higher max imum speed and lower 

immersion of the plate. In this case, it was difficult to ensure a satisfactory 

repeatability of the test, and so the motion imposed on the plate was not exactly 

the same from run to run. This does not mean that the test results cannot be used 

within a detailed analysis, since for any run the motion history was measured and 

is known within experimental accuracy. 

The related results characterized by high Froude number Fn have been 

compared with the numerical ones and the interaction between free surface and 

vorticity has been investigated. 

U m/s 

1.5 %S) 

Figure 6.15: Experimental plate: Velocity history, Fn — 1. 

The test were characterized by an initial submergence h of the plate equal to 

0.047m and velocity varying as shown in figure 6.15. The maximum speed of the 

plate was 0 .7m/s and following a smooth variation from the initial rest condition 

to the final one. These conditions imply a Froude number Fn = Umax/\f9h = 10, 

a Reynolds number Re 33000 and a Weber number We ~ 10000. 

The sequence presented in figures 6.16 and 6.17 shows the evolution of the flow 

field in this experiment. The pictures on the left in these figures are the 

experimental images, those on the right present the numerical results (a blue line 

for the air-water interface and coloured contour levels for the vorticity) 
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Figure 6.16: Flow field features at Fn — 1. On the left: pictures of the experiments. 

On the right: numerical results (blue line: air-water interface and contour lines: vorticity 

contours) superimposed on the negative of the experimental images. Times from top to 

bottom f=0.28s, 0.34s, 0.45s and 0.52s. 

superimposed on the negatives of the experimental images. The motion of the 

plate (from left to right) causes the initial rise of the water level on the right side 

of the plate and its drop in the left. Here, the velocity of the plate is sufficiently 

high so that the left part of the air-water interface almost reaches the lower tip of 
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Figure 6.17: Flow field features at Fn — 1. On the left: pictures of the experiments. 

On the right: numerical results (blue line: air-water interface and contour lines: vorticity 

contours) superimposed on the negative of the experimental images. Times from top to 

bottom 0.64s, 0.74s, 0.80s and 0.83s. 

the plate (see the first plots of figure 6.16). Meanwhile vorticity is continuously 

generated at the lower tip and convected downstream. Its presence is highlighted 

in the experimental pictures by the presence of bubbles entrapped in the vortex 

cores (see appendix B for a more detailed description of this phenomenon). This 
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vorticity interacts with the free surface sucking it further down. Simultaneously, 

on the right hand side of the plate, the effects of gravity limit the water rise and 

cause the formation of a plunging jet (see the second plots of Ggure 6.16). At time 

t = 0.45s, a rolling up of the vortex sheet appears together with the formation of a 

second vortex core, deforming the interface and creating a bump very close to the 

plate. When the plate stops at t = 0.5s the water level on the left hand side rises 

and forms a second backward plunging, so that at t = 0 .64s there are two breaking 

regions, one on each side. That on the right is more energetic than and its first 

splash up falls down on the underlying air-water interface causing a second 

splash-up (see the third and fourth plots in figure 6.17). 

In the deceleration phase and after the stop, the vorticity is convected towards 

the plate. It is also pushed downward as shown in section 5.5. 

The comparison between numerical and experimental results is satisfactory; the 

evolution of both the air-water interface and of the vorticity is well captured by 

the code developed here. The vorticity contour levels are practically superimposed 

on the bubbly regions. Some difference can be detected between the two sets of 

data in the deformation of the air-water interface. This could be due to 

three-dimensional effects developing on the side walls. 

6.3 Effects of the stopping phase 

The experiments carried out here present three temporal stages. A first phase of 

start up, a second one of constant velocity and a third phase either of a reverse of 

the motion or of stopping of the plate. The last phase presents some features that 

to our knowledge have never been noted before. These are here discussed with 

reference to sequences in figures 6.18 and 6.19. 

The main effects of this stopping are concentrated on the downstream side of 

the plate (see images of figure 6.18). When the plate s tops the flow behind it 

preserves its forward horizontal velocity. As a result, a certain amount of water 

impacts against the plate. 

The vorticity moves toward the plate also. Depending on the velocity and on 

the curvature of the velocity t ime history, the vortices, highlighted by the presence 

of the bubbles, can be simply convected downstream or interact in a complicated 

way with the plate. 

Image a) of figure 6.18 corresponds to the plate's s lowing down phase. Two 
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vortical regions 

ki 
vort ical r eg ions 

vortex sheet 

Figure 6.18: Evolution of the downstream vortex regions when the plate stops. The 

vortex sheet is stretched down and then forward {Fn=lA). 

vortical regions are revealed by the presence of two groups of rotating bubbles. 

Because of the high Froude number, Fn ~ 1.4, the air-water interface touches the 

back of the lower tip of the plate and the interface is highly deformed by the 

vorticity. In image b), the plate has almost completely stopped, the fluid in the 

right side moves from left to right because of its inertia and impacts against the 

plate. In part c), after the impact, the vortical regions have different trajectories; 

the one closer to the plate moves downward, while the other moves forward and 

upward. In part d), a third vortex is generated, as a result of the water moving 
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from left to right around the lower tip of the plate. As t i m e goes on, the three 

vortices, belonging to the vortex sheet highlighted in part e), move around the 

lower tip of the plate almost in a circular pattern. 

impact 

vortical region 

u 
vortex sheet 

Figure 6.19: Evolution of the downstream vortex regions when the plate stops. The 

vortex sheet is stretched downward {Fn=0.88). 

Figure 6.19 shows the evolution of the free surface for a lower speed, 

Fn = 0.88. In this case the free surface is slightly deformed by the vorticity when 

the plate stops (see part a) of figure 6.19). At the s topping phase, the downstream 

flow preserves its horizontal velocity and the rounded s ide of the free surface 

impacts against the plate (see part b)). The flow is partial ly deflected upwards and 

partially downwards, and the vortex sheet is completely immersed in the fluid 

moving toward the bottom of the flume (see part c). As t ime goes on, the velocity 

discontinuity at the lower tip becomes progressively weaker. This results in a 

smaller amount of bubbles entrapped and in the impossibil i ty of tracking the 

vortex sheet in these images. From that instant on, no s ta tement can be inferred 

about the evolution of the vorticity. 

Another efl'ect of the stopping phase is related to the angle at which the 
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forward jet detaches from the plate. 

If the plate slows down well before the water level on the plate has 

substantially reduced, there is a steep slope at the contact point between the free 

surface and the plate. 

Such behaviour is reproduced in figure 6.20, showing the same time instant for 

Fn = 1.23 and Fn = 1.4 respectively on the left and on the right. For the two 

cases, the same deceleration of the plate motion has been used. Assuming tmax as 

the time instant when the maximum velocity is reached, both plots refer to a time 

equal to tmax + O.llSC/jvf^x- The slope of the interface at the contact point is 

around 30°, for both Froude number cases. 

Figure 6.20: Evolution of the interface after the plate has stopped. The tangent at the 

contact point has a slope of around 30°. (left Fn=1.25, right Fn=lA). 

6.4 Numerical evolution of the flow field after 

the impulsive start 

Having shown that the comparisons between numerical and experimental results 

are in good agreement in different conditions, the numerical method is used for a 

more schematic classification of the problem. 

Tsai & Yue (1993) were the first to analyze the problem numerically with an 

inviscid solver and, using a Kutta condition, to track the vortex sheet emanating 

from the sharp immersed edge of the plate following a truly impulsive start. Tsai 

et ai accounted for vorticity free shear layers and boundary layer and solved for 

the potential flow outside the boundary layer and free shear layer. They identified 

the presence of three regimes for the interaction between the free surface and the 
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vortex sheet: a subcritical regime, Fn < 0.7, where no significant interaction 

between a single branched spiral vortex and the interface occurs before breaking 

occurs; a trans critical regime, 0.7 < Fn < 1.0, where the free surface stretches the 

vortex sheet, causing its roll up, even though the interaction is limited; a 

supercritical regime, Fn > 1.0, where the vorticity significantly affects the 

free-surface motion. 

t=2,4 1=3.6 

T =4.E 

8 X 8 X 
Figure 6.21: Interface and vorticity field in water for F n = 0.6, r = t/y/g/h. 

T " 3 . 6 1=2.4 

T = 6 . 0 1=4 .8 

0 2 4 6 ' 8 x 0 2 4 6 8 x 

Figure 6.22: Interface and vorticity field in water for Fn= 0.8. (r = 0.45, 2.7, 4.68, 5.67). 
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Figure 6.23: Interface and vorticity field in water for Fn= 1.2. 

Figures 6.21, 6.22 and 6.23 show the evolution of the free surface and of the 

vorticity at Froude number respectively 0.6, 0.8, 1.2^. T h e y were computed with 

the present method®, and represent the evolution of the flow in each of the three 

regimes described in Tsai & Yue (1993). For the pre-breaking regime, the results 

shown here are consistent with findings described there. In addition, the present 

numerical method can be used to investigate further the viscous features of the 

vorticity-interface interaction and, above all, the post-breaking evolution. Results 

in figures 6.21 and 6.22 show the stretching and the successive roll up of the vortex 

sheet, even at low Froude number, after the backward breaking in the right of the 

plate. In the subcritical regime, the vortex sheet is not single branched any more 

after the breaking event, even though its influence on the free surface deformation 

is limited. The threshold Froude number between subcritical and transcritical 

regimes has to be lowered down to 0.45, where no backward breaking is sufficiently 

close to the vortex sheet to stretch it. 

Practically the critical Froude number corresponds t o the limit case when the 

interface in the lee side of the plate reaches the lower t ip. The transcritical regime 

is characterized by a local drop of the interface to that height. 

For the supercritical regime the post-breaking evolution does not alter its lower 

^An impulsive start is used for the simulations in figures 6.21, 6.22 and 6.23, for a better 

description of the initial evolution see appendix C 
^The computations were carried out using a zero viscosity. 
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Fn limit. It is interesting to note that a single Level set function has been able to 

model correctly the drop of the water level to the lower t ip of the plate. As 

described in section 3.3, when the interface approaches the lower tip the contour 

levels circle the plate and create a smooth transition of the density at the critical 

point of the lower tip. 
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Chapter 7 

Inclined plate 

It may be that the gulfs will wash us down; 

It may be we shall touch the Happy Isles, 

and see the great Achilles, whom we knew. 

Ulysses, Alfred Tennyson 

Even though it remains a very simply-defined problem, changing the plate 

geometry reveals some fundamental effects of the shape of the body on the flow 

developing around it. Studying the inclined plate highlights the influence of the 

front side of the body on the vorticity developing behind it and the effects of the 

shape of the body close to the free surface on the motion of interface. These 

aspects will be discussed in this chapter. 

vertical 
a = 90 

velocity or me pia ie 

free 
surface 

water velocity 

Figure 7.1: Definition of the variables and conventions used for the inclined plate. 

Here, the angle /5 between the velocity of the plate and the plate itself (or 

equivalently in the frame of reference of the body, between the velocity of the 
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incoming liquid and the plate) is defined positive as in figure 7.1. The 

complementary angle a is also positive in this case. 

In this chapter, the Sow features in the caae of a plate with an inclination of 

a = ±45° are investigated. The initial submergence is /i=0.1m. The geometry and 

the kinetic parameters used here result in the following values of the 

non-dimensional numbers: Froude number Fn = 0.46, Reynolds number 

Re = A -10^ and Weber number We = 279 (see chapter 6 for the definition of these 

non-dimensional numbers). 

In figure 7.2 the displacement Xp, the velocity Up and the acceleration Op of the 

inclined plate are plotted versus time. 

plate motion time interval "^max extreme acceleration 

towards the right [0.0s,0.76s] 0.45m/s 4.13m/s^ 

towards the left [0.76s,1.66s] -0.5m/s -lOm/s^ 

Table 7.1: Main characteristics of the plate motion. 

Initially, the plate was driven for 30cm towards the right of the tank, then it 

stopped and the motion was reversed. The main features of the plate motion are 

described in table 7.1. 

As for the vertical plate the two sets of data in figure 7.2 represent the 

experimental measurements (dots) and the numerical input (solid line). Also in 

this case, the main differences between the two sets are concentrated in the regions 

with high derivatives of the velocity, that is at the inversion of the motion and at 

the stopping point. The smoothed displacement, used as input to the numerical 

calculation, implies a similar filtering in the velocity of the water relative to that in 

the test. This has to be taken into account when comparing numerics and 

experiments. 

The inversion of the motion represents a difficult process to reproduce 

numerically, but it was needed to ensure violent motion of the air-water interface. 

Alternatively the initial submergence could have been drastically reduced but this 

would have led to a greater dependence on the thickness of the plate and possibly 

on its oscillations. 
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Figure 7.2: Time histories of the horizontal displacement Xp, velocity Up and acceleration 

Op of the plate with an inclination of ±45°. The dots represent the experimental data, the 

solid lines represent the values used in the numerical calculation. 

7.1 Evolution of the air-water interface 

The velocity given to the plate causes the deformation of the free surface shown in 

figure 7.3. There, twelve different instants are shown with an interval of 0.128s 

between two successive pictures, with the first snapshot referring to time t=0.128s. 

The black and white background of each picture is the actual image captured by 
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the video camera, the black sohd line on it is the numerical free surface, and the 

white solid line is the corresponding position of the plate in the calculations. 

Figure 7.3: Inclined plate (45° angle): comparison between numerical and experimental 

results, the black and white background is the experimental video-images, the solid black 

lines are the numerical free surface. (Times: a) .128s, b) t=0.256s, c) 0.384s, d) 

(=0.5128, e) i=0.640s, f) (=0.7688, g) (=0.8968, h) (=1.024s, i) (=1.1528, 1) (=1.2808, m) 

(=1.408s and n) (=1.536s. The plate starts to move from left to right and, at (=0.688, it 

reverses its motion.) 

The agreement between data from the two sources is generally good even 

though some differences appear after time t=1.152s. 

The plate initially moves from left to right, causing an increase in the water 

level on the right side and a decrease on the left (see figures 7.3a-7.3e). 

At time i=0.32s the water level reaches a value equal to 0.054m on the right 

hand side of the plate. This represents the maximum water height reached on that 
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side. In fact, soon after i=0.32s a first wave detaches on the right side and travels 

away from the body with a phase velocity of about 0.9m/s. 

Figure 7.4: Inclined plate (45° angle): vorticity and free surface (coloured lines) are 

superimposed on the experimental pictures (black and white background) at t=0.768s. 

The vorticity at the lower tip of the plate (contour lines) induces downward velocity at 

the contact point between the interface and the left side of the plate. The velocity field is 

highlighted through the streamlines. 

At the same time, on the left side, the motion of the plate causes a decrease in 

the water level (see figures 7.3a-7.3e), which is further influenced by the 

concentration of vorticity at the lower tip coupled with the dynamics of the free 

surface. Figure 7.4 shows the position of the tip vortex relative to the plate and to 

the free surface at i=0.768s. It influences directly the deformation of the air-water 

interface and causes its rounding and draw down along the plate (see figures 7.3e 

and 7.3f). 

It is not possible to follow the decrease of the water level further on, because 

between t=0.7s and t=0.8s the plate reverses. In figure 7.5, the history of the 

water induced load normal to the plate is plotted versus time, calculated as the 

integral of the pressure difference between the right and the left of the plate. This 

is the force tending to deform the plate itself. Around t=0.76s, corresponding to 

the maximum deceleration, the load acting on the plate has a sudden change which 

is likely to cause some bending. In fact, in figures 7.3-f and g, apart from a slight 

displacement of the plate due to the smoothing of the numerical Xp, the 

experimental plate does show a different angle of inclination with respect to the 

numerical non-deformable one, probably for this reason. 
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Figure 7.5: Time history of the integral of the pressure difference between the right and 

the left sides of the plate. The Load (L) is positive if it is represented by a vector pointing 

upwards and rightwards. 

After the plate has reversed its motion, the free surface rises on the left side 

and decreases on the right (see figure 7.3-g,-h and i). The jet flowing upward now 

is thinner and reaches higher than the one created before on the right side, and the 

free surface on the right falls much more quickly than before on the left. This is 

due to the inclination of the plate relative to the direction of motion. Figure 7.6 

shows the position of the stagnation points at the start up of two plates tilted at 

a = +45° and —45° respectively on the left and on the right. The -45° case shows 

a stagnation point on the left that is higher than the one on the right. Because of 

this the water level will drop more in the +45° case (left). The intensity of the 

downward flow motion is directly connected with the vertical position of the 

stagnation point along the plate. The lower the position is, the higher the surface 

moves. After the reverse the relative inclination of the plate a is equal to +45°. 

The water level on the left reaches a maximum height of 0.14m and on the right 

side the free surface almost touches the lower tip of the plate. 

During this phase, a counter-clockwise vortex is released on the right of the 

plate. It is closer to the surface than in the case of a vertical plate. So the 

interaction between the vortex sheet and the free surface is stronger and resembles 

that expected in the trans-critical regime (Tsai & Yue, 1993), even though the 

Froude number would be sub-critical for a vertical plate. In particular, the 

deformation of the free surface is so highly affected by the vorticity that a merging 

of the bumps created over the two vortical areas is observed, figures 7.3-m and n. 

As the vorticity interacts with the free surface, differences appear between the 
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Figure 7.6: Position of the stagnation points for tilted plates (+45° on the right and -45° 

on the left). The flow field is characterized by the inflow condition on the left. 

Lower View) 

Upper View) 

Figure 7.7: Three-dimensional effects in the experimental water flume at 1.28s. The 

upper and lower side views show a curved vortex tube (top-right plot) and of a non uniform 

deformation of the free surface perpendicular to the plane of motion (bottom-right plot). 

In the middle section a higher bump displaced rightwards is observed, with respect to the 

sides. 

numerical and experimental data. They are due to three-dimensional effects 

developing in the flume (see chapter 5). In the case of the tilted plate it was not 

possible to seal the sides of the plate against the vertical glass walls. As a result, 
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water flowed through the side gaps, generating a non-uniform out-of-plane 

vorticity. 

This problem resembles the release of vorticity for a Hnite wing (Batchelor 

1967). In this case the gap between the plate and walls of the flume could enforce 

something similar to the release of a horse-shoe vortex along the plate sides. So the 

vorticity released along the plate would have a maximum in the centre of the flume 

and would go to smaller values towards the side walls. Reduced vorticity at the 

side could imply a smaller interaction with the free surface, smaller bumps and a 

lower velocity of the vortex sheet. The last two aspects could be detected in figure 

7.7, even though the three dimensional figures are not easily readable. There, the 

experimental images of the water flume are shown looking up and down at the side 

of the tank, at the time t=1.28s. The axis of the vortex is not rectilinear, but more 

curved towards the right in the centre plane, confirming a stronger vorticity in the 

central region. The free surface is more deformed in this section due to the larger 

intensity of the vorticity with respect to the other sections. Obviously the 

three-dimensional effects downgrade any quantitative comparisons, but 

qualitatively the numerical and experimental results have the same behaviour. 

On the left of the flume, three-dimensional effects are limited. There, the thin 

upward jet moves forward and falls down onto the lower layer of water with almost 

no splash up. The presence of this jet is captured quite well by the numerical 

solution even though it develops when the numerical velocity of the plate is slightly 

different from the experimental one, and when the plate is slightly deformed. In 

the left plot of figure 7.8 the area of the jet is enlarged at (=1.152s. The main 

differences between experimental (black and white background) and numerical 

data (black solid line) are a thinner layer of water on the wall for the experiments 

and a shorter jet for the numerical solution. The difierence in the length of the jet 

can be due to three-dimensional effects. A perspective view of the same situation 

shows a shorter protruding water area in the inner regions of the plate. 

Both numerically and experimentally, the tip of the jet follows a parabolic 

trajectory shown in the right plot of figure 7.8 for the numerical solution. 

While rising onto the plate, the water jet transformed all its vertical kinetic 

energy into potential energy. Just the horizontal component of the velocity is 

preserved, so the top of the jet is transformed in the free falling point of water 

described above. Subject to the gravity, the vertex of the jet follows a parabolic 

trajectory relative to a point with a horizontal velocity equal to the velocity of the 
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Figure 7.8; Left: enlarged view of the jet forming on the left of the plate at t=1.152s (see 

figure i-7.3). Right: numerical evolution of the jet. Its tip is in free fall and describes a 

parabolic trajectory. 

plate. 

7.2 The velocity field 

LDA measurements of the velocity field have been carried out for the case 

described in the previous section. The velocities were measured at 36 fixed points 

placed on 6 rows (1 to 6) and 6 columns (A to F). The locations of these points 

relative to the initial position of the plate are plotted in figure 7.9. The points are 

spaced by 6cm in the x direction and by 2cm in the y direction; the coordinates of 

point Al are (0.1094m,0.005m), where the plate intersects the free surface in the 

point (0.0m,0.0m). To simplify the reading of the next plots, figure 7.10 shows the 

relative position of the points of measurement with respect to the moving plate. 

The analysis of the results starts here from the column F, the furthest from the 

plate. Comparisons between related numerical and experimental velocity histories 

are shown in figure 7.11. In this figure the green and purple symbols stand 

respectively for the measured horizontal and vertical components of the velocity, 

and the black solid and blue dashed lines are the numerical equivalents. 

Initially the velocity in the column F varies very slowly because all its points 

are characterized by a distance from the plate larger than 0.30m, while variations 

in the velocities are appreciable only when the distance from the plate is lower 

than about 0.20m. Because the distance increases from F6 to F l , the points in the 

lower rows show a growth of the two velocity components. 

When the plate starts to move from left to right, the time derivatives of v are 
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Figure 7.9: Location of the points of where LDA measurements were performed relative 

to the initial position of the plate. The points are labelled with a letter from A to F to 

indicate the column and a number from 1 to 6 to indicate the row. 

positive for the points F1-F3 and negative for F4-F6. That is, the latter present a 

decreasing vertical component, the former a positive increasing value of w up to a 

point of local maximum before the reverse in the motion. This maximum appears 

very close to the instant when the first wave that leaves the plate reaches column 

F. In figure 7.12 vertical velocity contours are plotted over the passage of this wave. 

The front of the wave is characterized by high vertical velocities, which reach a 

maximum at the point of inflexion on the front face of the wave. Around this point 

the velocity contours are slightly elongated on the right. This implies that on any 

vertical line the maximum is reached earlier at lower points. In fact, point F3 has 

a velocity maximum at t~0.45s, F2 at t~0.49s and F1 at t~0.51s (see figure 7.11). 

At F4, F5 and F6 the main influence on the vertical velocity is the flow passing 

around the lower tip of the plate. This hides the occurrence of the local maximum. 

Before the reverse, all the points in column F show a positive horizontal 

velocity, with a monotonic increase at the lower points, F4-F6, and an initial 

increase followed by a plateau at the upper points, F1-F3. For example, F1 shows 

an almost constant value of u between t=0.6s and t=0.76s. Figure 7.13 shows the 

horizontal velocity field at time t=0.576s. While the plate moves towards column 

F, points F1-F3 cross regions where the variation of the velocity is very small. 

F4-F6 are closer to the region between the stagnation point and the lower tip, 

where the gradients of velocity are very high. At those points the velocity of the 
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Figure 7.10: Deformation of the interface, evolution of the vorticity and points where the 

velocity is measured. 

flow goes from a value close to that of the plate to zero. 

When the plate reverses at t=0.68s it bends, causing spurious oscillations in 

the velocity measurements that are not present in the numerical results (see figures 

7.11-F4, -F5, -F6). This effect is more evident in F5 where the horizontal 

component of the experimental velocity has a jump as the bent plate crosses into 

the space between the LDA horizontal beams. It would have been as far as 2cm 

from this point if the plate were stiff'. 

After the reverse of the motion, the free surface on the right of the plate falls 

leaving Fl , F2 and F3 in air. The gap due to the presence of the air is well 

captured by the numerical solution. Differences between the experimental and 

numerical data appear after time t = l . l s when three-dimensional effects develop as 

explained in the previous section. 
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Figure 7.11: Velocity at points on column F of figure 7.9. The symbols represent the 

measurements. The solid lines represent the numerical u component of the velocity and 

the dashed lines the numerical v component. 
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Figure 7.12; Contour levels of the vertical component of the velocity at three time steps. 

When the wave travelling from left to right arrives close to the column F, v presents a 

local maximum. The white stripe in the contours represents the position of the plate. 
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Figure 7.13: Horizontal velocity contours at time 0.576s. The upper points F1-F3 are 

close to regions where the variation of the horizontal velocity is very small. 

In figure 7.14, the velocity histories at points on column E are presented. The 

initial behaviour is very similar to that described for the points in column F, with 
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Figure 7.14; Velocity at points on column E of figure 7.9. The symbols represent the 

measurements. The solid lines represent the numerical u component of the velocity and 

the dashed lines the numerical v component. 

the local maximum of v, the plateau of u, etc... However, column E shows a larger 

disagreement between numerical and experimental results in the time interval 

[0.7s,0.9s] at E4 and E5. These points are very close to the plate, so they are more 

affected by its bending (see section 5.2 for a rough quantification of this 

phenomenon). 

At the time of the reverse of the motion (t=0.76s), there is a steep change in 

the vertical velocity component at El (see figure 7.14). At that time, this point is 

on the downstream side of the moving plate (see figure 7.10), where the water level 

drops very quickly. The numerical results reproduce a similar drop, though not as 

strong. Similar differences in the velocities at all upper points in this column are 

due to the numerical smoothing of the velocity at the inversion. Column E, like 

column F, shows a poorer agreement after time t = l . l s when the three-dimensional 

effect becomes dominant on the right side of the plate. 

Figure 7.15 shows a comparison between numerical and experimental velocity 

components at points in column D. Apart for the phenomena described for column 

F, there is some disagreement between numerical and experimental results at D4 

and D5 similar to those noted for E4 and E5. All these points are located in the 

region of high vorticity released at the lower tip of the plate. The differences 

between numerical and experimental results in this region underline the high 

sensitivity of the fiow to the local velocity of the plate. 

Another feature is evident in the results for column D; at D6 there is a longer 

scattering of the velocity components than at any other measurement point. Apart 
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Figure 7.15: Velocity components at points on column D. The symbols represent the 

measurements. The solid lines represent the numerical u component of the velocity and 

the dashed lines the v component. 

from a short interval [1.8,1.1s], from time t = 0 . 5 8 to t=1.5s, D6 is always in a region 

of high vorticity where a large number of bubbles is concentrated. As shown in 

Mudde et al. (1998), the presence of bubbles and of their wake causes local jumps 

in the velocity measurements. As the bubbles are dispersed along the axis of the 

flume the scatter becomes even larger. 
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Figure 7.16: Flow directions induced by the inertia effects when the plate inverts its 

motion. 

Just after the reverse of the motion, column D is on the left side of the plate. 

In the frame of reference of the plate, the stopping and the reverse of the motion 

are seen as an inflow condition. The water in upper left half of the plate is 

diverted upwards and the other downwards. This effect is summed to the local 

flow field (see figure 7.16). D2 and D3 are in the upper region at the time of 
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Figure 7.17: Trajectories of vortex cores released on the right and on the left of the plate. 

reversing. While the plate moves further on, they come to the region affected by 

downward motion. The passage between these two regions results in a local 

maximum of the vertical component of the velocity. 

Another effect of the deflection of the flow (see figure 7.16) is the displacement 

of the vorticity. The trajectory of the clockwise vorticity created initially on the 

left side of the plate is shown in figure 7.17. When the plate reverses, the 

trajectory changes direction and becomes aligned with the plate. As it leaves the 

plate its motion is affected by the presence of the anticlockwise vorticity created 

on the other side. It is not possible to describe the motion of these two vortices 

simply as a vortex pair because vorticity is continuously released at the lower tip 

of the plate, influencing the motion of the existing vortices. Similar behaviour is 

C 3 u,v(m/s) 
C I C 2 
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C 4 C5 . 
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Figure 7.18: Velocity at points on column C of figure 7.9. The symbols represent the 

experimental measurements. The solid lines represent the numerical u component of the 

velocity and the dashed lines the numerical v component. 

seen in column C. Figure 7.18 presents a comparison between numerical and 
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experimental results for this column. The vertical velocities at C1-C3 are 

characterized by local maxima at i=0.88s. It is interesting to note that even at 

this section, quite far from the plate at the moment of reverse, it is the vertical 

velocity that is the more sensitive to the motion of the plate. In fact, at C2 and C3 

there is a change in dv/dt around the time of reverse. Comparisons between 

numerical and experimental results are quite satisfactory even at the lower points. 

The velocity at C6, just below the plate at times t=0.38s and f=1.2s, shows the 

passage of the vortex sheet soon after those times. The first jump in velocity is 

captured quite well in the prediction considering the sensitivity of that point to 

the local flow velocity, to the thickness of the plate and to the exact distance from 

it. After t—1.2s the point is on the right side of the plate, where three-dimensional 

effects prevent any further investigation. 

u,v(m/s) 

X 
u,v(m/8) 

Figure 7.19: Velocity at points along column B of figure 7.9. The symbols represent the 

experimental measurements. The solid lines represent the numerical u component of the 

velocity and the dashed lines the numerical v component. 

Figure 7.19 shows the comparison between the different data sets in column B. 

This column sums all the effects previously described: a) the initial local 

maximum of v at B1-B3 when the front of the first wave travels past, and 

correspondingly the decrease of the same component of the velocity at B4-B6, b) 

the drop in the water level at B1 when it passes the left side of the plate, c) the 

change in the slope of v at t=0.76s, d) the second local maximum of v at B1-B5 

after the inversion of the motion, e) three-dimensional effects at B6 after 1.3s. 

A similar behaviour is shown in column A (see figure 7.20). 

When the plate starts to move, the lower points in column A are the closest to 

plate. Their horizontal and vertical velocities are characterized by some 
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Figure 7.20: Velocity at points along column A of figure 7.9. The symbols represent the 

experimental measurements. The solid lines represent the numerical u component of the 

velocity and the dashed lines the numerical v component. 

oscillations enlarged in figure 7.21 for point A4. 

Those phenomena could be caused by either the oscillations of the carriage or 

the bending of the plate. Prom figure 7.21 it is evident that the frequency of the 

oscillation is about 14Hz. As shown in section 5.4 the first natural frequency of the 

plate is about 13Hz. Therefore the observed oscillations are probably due to the 

bending of the plate. 

This could also cause instabilities in the vortex sheet. Although no clear proof 

can be extracted from the tests, such instabilities are suggested by the oscillations 

detected in the velocity measurements for rows 4,5 and 6. 

Measurements from column A show a fairly good agreement between 

experimental and numerical results for the whole period. Some differences appear 

only after t=1.3s when the plate approaches the stopping point. The cause of these 

differences can be due to the bending of the plate and to the smoothing of the 

velocity in the numerical model. 

7.3 Effects of the inclination of the plate 

Comparison with experimental results has shown that the numerical method used 

here is reliable. So the code has been used to proceed with a further analysis of the 

effects of inclination of the plate at a higher Froude: Fn = 0.8. The incident flow 

is started impulsively and then maintains a constant velocity. This situation is in 

the transcritical regime for a vertical plate (Tsai & Yue, 1993), so the inclination 
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Figure 7.21: Enlarged view of the velocity at the start up at A4. Both the u and v 

components oscillate with a frequency of about 14Hz. 

can be an important factor in changing regime. This numerical calculation was 

carried out with zero viscosity and no surface tension to avoid the effects they can 

have on the evolution of the flow. 

The plate has been inclined by ±15°, ±30° and ±45°. Figure 7.22 shows the 

free surface and the vorticity contours at the time t^Jgjh — 3.6s for these 

inclinations. 

The vertical plate is has a plunging jet forming in front of it. On the 

downstream side the interface interacts with the vorticity stretching it, causing it 

to roll up. 

The first effects of the inclination of the plate are related to the intensity and 

the velocity of the vorticity release at the lower edge. A positive inclination leads 

to a region of weaker vorticity travelling faster. This is because with a positive 

inclination there is a smaller change in direction of the flow at the tip and 

consequently less vorticity and higher velocity. Positively inclined plates preserve 

the features of the transcritical regime. The deformation of the interface causes the 

stretching of the vortex sheet and its successive rolling up, even though it is more 

intense than the vertical case. 

On the other hand, the strong vorticity created at the back of the negatively 

inclined plates influences the free surface as soon as this is immediately above the 

vortex sheet. The vorticity creates large bumps on the interface and draws it 
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Figure 7.22: Deformation of the free surface and vorticity contours at the non dimensional 

time t^Jg/h=^.Q, The first row shows a schematic representation of the problem and the 

solution for the vertical plate. The successive rows show the evolution of the flow field for 

the ±15*̂ , ±30^ and the ±45^ inclined cases {a is positive in the right plots and negative 

in the left ones). 
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down. As a result, a large displacement of the free surface is produced. The 

interface reaches the lower tip of the plate for the case a = —45°. The behaviour is 

practically supercritical, according to the definition by Tsai &: Yue (1993). 

On the left side of the plate the negative inclination implies reduced 

gravitational effects on the water rising along the side of the plate, so if any 

breaking develops it is delayed with respect to the vertical case. For the positively 

inclined plates, the jet becomes thinner as the inclination increases. So the 

breaking becomes less energetic until it almost disappears. Cases a = +30° and 

+45° show the formation of a small jet developing at the top of the water rising 

along the plate that will fall down with a parabolic trajectory as described earlier. 

For a more detailed picture of the flow field developing at the different 

inclinations, see appendix D. 

Higher angles of inclination have not been analyzed here. When the angle 

increases, the effects of the boundary layer on the developing Bow become more 

important. The analysis of these effects is more complicated and no comment can 

be inferred from the kind of study carried out here. 

7.4 Conclusions 

The problem of the inclined plate is more challenging than that with a vertical 

arrangement. From a numerical point of view the case with a = +45° is the most 

difficult to reproduce, because of the presence of both breaking and vortex 

shedding. 

The problem is made even more difficult in the experiments when the motion 

reverses. Nonetheless the numerical and experimental comparisons are satisfactory. 

Besides the interaction between the interface and vorticity, the experiments and 

the numerical results highlighted the characteristics of the interaction between the 

flow fields developing on the two sides of the plate. The analysis has revealed the 

sensitivity of the vorticity to the local velocity of the plate and has shown that the 

major effects of the reverse of the motion are on the vertical rather than the 

horizontal component of the velocity. 

Encouraged by these results, a parametric analysis has been carried out in 

terms of the plate incUnation. The findings of this analysis show the transition to 

the supercritical regime for the negatively inchned plate and the disappearance of 

the front plunging jet for sufficiently large inclinations of either sign. 
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To strive, to seek, to And, and not to yield. 

Ulysses, Alfred Tennyson 
Chapter 8 

Conclusions 

In this thesis a multiphase method has been developed for the study of violent 

free surface motions. The general application makes use of developments in CFD 

methods for single fluids and models the two phases as a fluid with varying 

physical properties. This approach is formally elegant but implies problems in the 

numerical treatment of the interface. Here particular attention has been paid to 

overcome these problems. The detection and correction of numerical error sources 

have been achieved by analyzing in detail canonical problems which involve 

phenomena relevant for naval architecture, and coastal and offshore engineering 

research fields. 

The improved numerical scheme has also been used to study more realistic 

problems involving interactions among different physical phenomena. Dedicated 

experiments were performed for the same test case both to validate the method 

and to capture the physical features that are beyond the reach of the numerical 

solution. 

8.1 Numerical method 

The numerical method applied here can be briefly described as; 

• a Finite Difference Eulerian solver for the laminar Navier-Stokes equations 

® with an approximate projection method for the pressure problem in 

incompressible fluids 

® and an improved Level-Set model to capture the interface. 
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Figure 8.1; Flow diagram of the present numerical scheme and related novel features. 

The corresponding flow diagram is shown in figure 8.1. A second order accuracy in 

time is obtained through a predictor-corrector scheme, stabilized through iterative 

corrector steps. The same accuracy is used for the spatial discretization inside each 

fluid but larger errors can be introduced at the interface. The high gradients of the 

fluid variables at the interface cause large second order derivatives of the quantities 
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of interest and consequently a drop in the order of approximation. The smoothing 

of the fluid properties on a finite distance partially reduces the errors. Further 

corrections have been introduced: 

® A variable coefRcient limiter for the discretization of the convective 

terms. The resulting ENO scheme is characterized by a minmod limiter 

inside each fluid, by a superbee scheme at the interface and by a limiter 

varying from one to the other in the transition region. This type of limiter 

reduces the diffusion of vorticity from the interface to the two fluid 

subdomains. 

® Two diflferent Poisson equations are solved for the projection of the 

velocity field on a divergent free space. The first one neglects the eEects of 

surface tension, the second one uses a Brackbill et al. (1992) approximation 

for the surface tension and projects the solution on a field independent of the 

density. This reduces the numerical errors associated with the solution of the 

system with largely varying coefficients. 

• A specialized numerical discretization of the distance function 

gradients has been adopted very close to the interface. This reduces the 

smoothing errors usually associated with the Level-Set technique. 

• An exponential function smoothes the density across the interface. 

This limits the gradients in the solution of the Poisson equation, preserving 

the mass in a satisfactory way. 

8.2 Applications 

The developed method has been applied for the solution of different problems, 

culminating in a detailed numerical analysis of the flow field around a surface 

piercing plate. This problem is characterized by a simple geometry but captures 

the major features connected with moving surface piercing bodies. The features of 

the flow pattern around the plate can be schematically summarized as (see fig.8.2); 

1) high deformations of the interface occurs on both sides with eventual breaking 

and air entrainment, 2) large vorticity is generated at the lower tip of the plate 

and 3) the vorticity interacts with the interface. 

In a preliminary phase, the different phenomena involved have been analyzed 

individually by means of problems ad hoc. The rising of a gas bubble in water has 
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Figure 8.2: Sketch of the flow field features developing around a surface piercing plate. 

been used to test the modelling of surface tension, the dam-break plus impact 

problem to study large deformations of interface with air entrainment, the vortex 

pair rising towards the air-water interface to quantify the interaction between the 

interface and the vorticity. 

The different elements were subsequently studied as simultaneous phenomena 

mutually influencing each other in the case of the moving surface piercing plate. 

This problem has been investigated both from a numerical and an experimental 

point of view. This gives an intrinsic value to the experimental data in the process 

of validation of numerical codes. 

The case analyzed, despite its simplicity, represents a useful benchmark and is 

strictly linked to many other practical applications such those shown in figure 8.3. 

It showed that the numerical model produced high quality date in those very 

challenging circumstances. 

bilge keel mffrrfp/pr 

Figure 8.3: Perspectives. Applications to diff'erent practical problems; roll of a ship 

section with bilge keels for the damping; flow after the interceptor; sloshing flow in a tank 

with buflies. 
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In the case of the vertical plate, the classification of three different regimes of 

interaction between free surface and vorticity (Tsai & Yue, 1993) has been 

recovered. Moreover the cases analyzed here numerically and experimentally have 

highlighted: 

• the effects of the stopping phase of the plate on the deformation of the free 

surface and on the evolution of the vorticity. New vorticity is created on the 

back of the plate and it interacts with that created during the forward 

motion; 

® a different limit of transition from the transcritical to the supercritical 

regime with respect to the analysis of Tsai & Yue (1993); 

• some breaking features. The wave breaking events are more affected by high 

accelerations than by high speeds of the plate; 

• the effects of different inclinations of the plate on the deformation of the free 

surface and on the vorticity. Large inclinations, independently of the sign, 

reduce the intensity of the breaking. Large positive inclinations decrease the 

limit of transition to the supercritical regime. 

• the occurrence of oscillations of the velocity have been noted in the vortical 

region of the flow field. The causes of these instabilities are probably 

associated with the bending of the plate. This implies that a structural 

analysis is sometimes necessary to characterize correctly the vortical flow 

field around the bodies. 

@ three-dimensional effects connected with the test set up. These develop after 

the breaking phenomena and affect the region close to the air-water interface, 

in particular the recirculation region around the entrapped air. Larger effects 

on the flow field are due the three-dimensional effects generated by small 

gaps in the body. The vorticity release by the body reduces in the region of 

small gaps deforming the vortical tube downstream the body. 

8.3 Recommendations for future work 

In this thesis the attention has been focused on the development of a numerical 

solver effective for the analysis of violent free surface flows. For the problem of the 
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plate, the phenomena occurring at the interface are largely influenced by the shape 

of the partially immersed body. So the natural development of this work is a more 

suitable and efBcient modelling of the geometry of the body, in a general way. The 

preliminary step towards such investigation has already started. Making use of the 

Level-Set tools the body geometry can be modelled as a zero level of a distance 

function from the body boundary. A smooth transition from the Navier-Stokes 

equations to the equations of the solid body is driven by the same function. This 

method does not need any adjustment of the grid that can be kept Cartesian. 

More details about the formulation can be found in appendix E, where preliminary 

results are shown. Figure 8.4 presents the evolution of the wake length 

downstream of a circular cylinder moving in a single fluid at diflFerent Reynolds 

numbers. The numerical results (solid line) are compared to the experimental data 

by Honji & Taneda, 1972 (symbol). The regime of laminar flow is well captured by 

this method. In figure 8.5 the same method is applied to a case closer to the one 

studied in the thesis. A circular cylinder moves with a constant velocity towards 

the air-water interface. While the cylinder proceeds in its water-exit phase, the 

w a k e length 

Re = 4 0 

^ 12 M 16 ^ 20 

Re = 2 0 0 Re = 100 

10 12 M 16 18 ZW # T 

Figure 8.4; Length of the wake downstream a circular cylinder in the horizontal plane. 

The numerical results (solid line) are compared with the experiments by Honji & Taneda, 

(1972) (dots). 

latter deforms adjusting its shape to the cylinder so that a layer of water is 
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Figure 8.5: General modelling of the body geometry. Application to the flow around a 

body interacting with the free surface; water exit of a circular cylinder. 

captures between the body and the water above. 

This first attempt shows the potential of the suggested approach. Further 

studies are proposed. They should be dedicated to the analysis of the flow field 

features around the body. Following the philosophy of this thesis, simple prototype 

problems are recommended. Around simplified geometries, pressure fields and 

boundary layer features could be the variables to compare quantitatively to other 

solvers and to experimental data. 
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Appendix A 

Convergence study 

The study of the convergence is here discussed in two separate parts. The first 

concerns the Navier-Stokes solver itself and the second the level-set algorithm 

adopted for the free surface. 

A . l Navier-Stokes solver 

In this thesis the Navier-Stokes equations have been solved to study flows with an 

interface between air and water. Different methods used to model the transition 

from one phase to the other can produce different evolutions of the interface. Here 

the properties of accuracy and convergence of the method used have been analyzed 

in the case of the dam-break problem described in chapter 4^ The analysis has 

been carried out both for local and global quantities. Given q{t, Ax), the 

parameter analyzed, its integral Iq{Ax) in an interval of t ime [to,^/] is calculated 

varying the discretization parameter Ax. Three different meshes are considered: 

X N, 1.5W X 1.5W and 2A^ x 2A/̂ , where W = .ff /Az = 50. The order of 

accuracy is calculated with the following procedures: (1) if the exact solution 

Iq{Ax = 0) is known, the order of convergence is equal to 

Iq{Ax2) — Iq{Ax = 0) 
log 

7g(Aa;i) - = 0) 

(2) if the exact solution is not available, the exact solution is calculated from the 

integrals on three different meshes ( /g(Asi) , Iq{Ax2) and Iq{Axz)) and then 

^ Refer to chapter 4 for the symbols used here. 
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substituted in formula A.l. More precisely, assuming that the three points 

(Azi,79(Aa;i)), (A];2,/g(Aa;2)) and (Az3,/g(A3;3)) are on the same line the 

equality 

log 
/g(Aa;2) - / g (Az = 0) ^ /^(Azs) — /^(Aa; = 0) 
fg'(Azi) — Iq{Ax = 0) 

log 
Azg 
Aa;i 

7g(Az2) — /^(Az; = 0) 

holds, and 7g(Aa; = 0) can be calculated. 

A. 1.1 Local parameters 

The local parameters analyzed here are the position of the water front and the 

pressure on the vertical wall at point C (see section 4.4). The analysis of the tables 

A.l and A.2 gives two different results for these two parameters. A high order of 

accuracy is obtained for the position of the front and a lower one is obtained for 

the pressure. Actually the first quantity refers to a time interval when no breaking 

occurs, while the second one takes into account both the impact against the wall 

and the breaking. Moreover the pressure calculated at point C can be very highly 

dependent on the local linear interpolation performed on the cell side. 

AT X TV 1.57V X 1 .5# 2Ar X 2Ar order 

1.5496 1.5324 1.5283 3.05 

Table A.l: Horizontal position of the water front: Iq for different discretizations and 

order of convergence of the method. 

TVx # 1.5̂ ^̂  x 1 .5# 2 j V X 2Ar order 

5885.90 5854.85 5824.64 1.4 

Table A.2: Pressure: Iq for different discretizations and order of convergence of the 

method. 

A. 1.2 Global parameters 

Three different global parameters are analyzed here: the force acting on the bottom 

of the tank, and the variation of mass and energy of the system. The last two 
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TVx # l .SWx 1.5N 2jV X 2A^ order 

22545.644 22519.404 22508.971 3.0 

Table A.3: Force: Iq of the for different discretizations and order of convergence of the 

method. 

W X N 1.5N X 1.5Ar order 

1.023E-2 5.75E-3 L42 

Table A.4; Energy variation: Iq for different discretizations and order of convergence of 

the method. 

-5 

- 1 0 

-15 

A E / E ^ x l O O 

impa ct on the right wall 
impact 
plungii 

% 
S 

of the ^ 
i g j e t 

Figure A.l: Variation AE of the total energy divided by EQ (difference between the 

initial potential energy of the water and the potential energy of the same amount of 

water uniformly distributed along the horizontal bottom). The present variable coefficient 

advection scheme is compared with a minmod scheme (see section 3.2.2) for a discretization 

AT X ./V. 

N X jV 1.57V X 1.5N order 

2.3876E-3 4.746E-4 0.94 

Table A.5: Iq of the mass variation for different discretizations and order of convergence 

of the method. 

quantities are used also to evaluate the accuracy of the method. Because, for the 

last two variables, the exact solution is available and, in particular it is zero, the 
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Figure A.2: Variation of the mass Am divided by the initial mass mo for a discretization 

N X N. 

order of convergence can be obtained with procedure 1. The results for the mass 

are rather poor while a slightly better convergence is obtained for the energy. The 

reason for such a poor convergence is shown in figures A . l and A.2. The former 

shows the behaviour of the variation of total energy. The violent phenomena of 

impact against a vertical wall and of the breaking cause rapid dissipation of 

energy. This energy is partially recovered using the variable coefficient advective 

scheme^, but still the variation of the total energy is within a wide range of ±3%. 

As for the mass conservation, after the impact of the plunging jet on to the 

water below, figure A.2 shows that there is an increase of mass. This is due to the 

presence of a splash up constituted of a thin layer of water whose advection 

becomes difficult to model both for the level set function and for the Navier-Stokes 

solver because of the gradients of density across it. 

A.2 Level Set algorithm 

For the study of the level set function a classical problem has been chosen: the 

rotation of the Zalesak disk (Zalesak, 1979). A disk of radius 15 and with a central 

gap wide 5 and long 25 rotates around a point 20 below its centre. The velocity is 

^In figure A.l the energy variation obtained applying a minmod advective scheme is compared 
with the one obtained applying the variable coefficient scheme (see section 3.2.2). 
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Exact solution 
Sethian (1999) 

Present method 

Figure A.3: Verification of the level set solutions after one revolution of the Zalesak 

circle. 

given by 
u 

V = 

314 

A field 100x100 wide is discretized using Ax = Ay = 0.5 and a At = 1. In figure 

A.3 the solution of the present method is compared with the one obtained using 

the level set reinitialization described in Sethian (1999). Even though the angles of 

the circle is not perfectly preserved the shape of this particular disk are quite well 

preserved. 
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Appendix B 

Vorticity and pressure: the 

retention of bubbles at a vortex 

core 

A vortex core is always associated with a fall in pressure. Here the example of the 

stationary vortical field is analyzed in the polar system (r, 9). 

The velocity field is characterized by the following radial and tangential velocities 

Ur = 0; ue — 
r 

where the vorticity is equal to 

+ r ( - + 2 

2 7 ^ 

The momentum conservation equations read as 

du, 
^ dug dp ^ due 

^ ~ a ? + + 
at r 

This implies a pressure field equal to 

= " 2 ^ " 2 (e(r:))2 r2 ' 

Where Ei is the exponential integral (Abramowitz k Stegun, 1965). Figure B.l 

shows the radial distribution of velocity, vorticity and pressure. Where the 
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Figure B.l: Velocity, vorticity and pressure distribution for a stationary vortical field. 

Figure B.2: Experimentally induced vortical field (Petitjeans, 2003). The vorticity in 

highlighted in the left side of the figure by a coloured ink and a bubble forms in the core 

of the vortical field in the right. 

vorticity has a maximum, the pressure field has a minimum. The immediate effect 

of this behaviour is shown in Petitjeans (2003) where a vortical field is created in 

water and visualized with coloured ink in the left side of figure B.2. Even though 

the pressure is above the threshold value of cavitation, smaller bubbles dispersed 

in water concentrate in the centre of the vortical field, merging in a long bubble 

along the axis of vorticity as shown in the right side of figure B.2. 
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Appendix C 

Surface piercing plate 

C.l Modelling of the problem 

The vertical plate with no thickness can be very easily introduced in the numerical 

analysis. 

Assuming that the domain is infinite the plate has been chosen as system of 

reference for the present computation. Positioning it at the centre of a strip of 

cells, exactly where the horizontal velocity is defined, the boundary conditions are 

automatically defined on the plate. 

The total domain used for the simulation has a length equal to AQh and a 

depth equal to = ISA so that almost infinite depth conditions are achieved, 

where h is the initial submergence of the plate; inflow and outflow conditions are 

imposed at the vertical sides of the computational mesh, these statements should 

reduce to a minimum the effects of reflections from the real numerical boundaries. 

No other change is introduced in the numerical algorithm. The position of the 

interface is always traced by a single LS function, advected with the velocity 

results of the NS equations, with wall conditions on the plate. A good and 

accurate solution in the reinitialization procedure and the assumption that the 

exact distance is defined in a narrow band makes it easy to deal with the interface 

reaching the lower tip of the plate. In figure C.l, the level contours in the tube 

around the interface are shown for a very coarse mesh. The negative contours are 

drawn with solid lines, the positive contours with dashed lines, and the thicker line 

is the zero level. The negative lines are interrupted below the plate for graphical 

reasons only. They are continuous in the computation and are closed behind the 

plate. 
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Figure C.l: Example of the displacement of the distance function when the interface 

reaches the lower tip of the plate. The solid lines are the negative contours, the dashed 

line the positve. 

C.2 Impulsive start 

Here the case of an impulsive start is analysed, the plate velocity is U{t) = UoH{t) 

where H{t) is the Heaviside function. 

Figure C.2: Pressure impulse contours. 

The pressure at the initial time step is represented in figure C.2. A more 

detailed analysis of the initial pressure obtained using different time steps leads to 

the figures C.3 and C.4. There, on the right hand side, there is the value pAt/pu 
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2E..i A f m 2E-4 

Af = 2&J 

Figure C.3: Pressure on the left side of 

the plate at the first time-step, for different 

At. 

pAl/p/u 

Figure C.4: Pressure distribution at two 

successive time steps. 

close to the left face of the plate for different values of At. On the left there is the 

pressure profile at the first two time steps. There is a large difference between 

these two profiles, that can be explained using the pressure impulse theory 

(Batchelor, 1967). 

The impulsive motion of the plate cases a large change of pressure gradients 

and the pressure gradient causes a velocity redistribution across the fluid. As the 

main terms in the equation of motion are the velocity t ime derivative and the 

pressure gradient, the Navier-Stokes equation can be simplified as: 

so that 

u„ Ub 

a u 1 

* 

' i v p , V^P = 0 
tb P 

((].!) 

((:.2) 

with tb and ta respectively the time immediately before the plate starts to move 

and soon after the motion. The right hand side of equation C.2 is exactly the 

pressure impulse. From a discrete point of view it is the result of the first time 

step. So the profiles in figures C.2-C.4 are the integral of pressure in the time At. 

From an experimental point of view it is possible to see that the pressure due 

to the water impacting on a wall behaves similarly to the one shown in the figure 

C.5, but measurements of the position of the peak and of its magnitude are not 

repeatable; nonetheless the pressure impulse can be measured with a good 

accuracy. 

An analytical solution for a problem similar to the one analysed here is shown 

in Cooker & Peregrine (1995). There a wall limits a semi-infinite rectangle of water 

and a part of it starts to move with an infinite acceleration. If the water depth is 

h = d and the length of the wall that starts to move is iih, the pressure 
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Figure C.5: The pressure evolution at a point on a sea wall undergoing wave impact 

(Cooker & Peregrine, 1995). 

distribution on the wall is 

( 

sin 

n - - I Try 

h 

\ 
cos 

n - - j TT// 

n — - \ TT^ 

(CJ) 

Where the y axis is positive in air and has its zero at the interface position. 

That kind of pressure distribution is shown in figure C.6, and is very similar to 

PO.2 

Figure C.6: Analytical solution: Pressure on the wall, whose section [—1,0] impulsively 

starts to move. (Cooker & Peregrine, 1995). 

the one shown in figure C.3 except in the area below the plate where different 
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conditions are applied. In fact, neglecting the initial hydrostatic pressure, an 

anti-symmetric pressure is present in that area. 

The method currently used is not very suitable for capturing exactly the initial 

velocity field for a viscous fluid with a no slip condition at the wall. In fact the 

singular solution can only be captured by using an expanding mesh with the mesh 

size proportional to the time and inversely proportional to the Reynolds number 

(Collins k Dennis, 1971). However the solution obtained can give an overall 

indication of the force acting on the plate at the start up and that after only a few 

time steps the solution can be reliable. 

Practically the first time step approximately represents the pressure impulse. 

The following time steps show a drop in pressure similar to the one presented in 

figure C.5. The numerical drop is smoothed on several steps and gives a smoothed 

overshoot of the force acting on the plate. 
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Appendix D 

Vorticity and free surface 

evolution for different plate 

inclinations 

In this appendix there are seven sets of images representing the evolution of the 

flow field at Fn = 0.8 for different inclinations of the plate. For simplicity the 

images are represented in the frame of reference of the plate so that there is a 

current from left to right superimposed on them. The seven sets of snapshots refer 

to the non dimensional times t^Jg/h=Q.Q, 1.2, 1.8, 2.4, 3.0 and 3.6. In particular, 

from figure D.l to figure D.7 the inclination of the plate varies from the angle 

a = —45° to the angle a = 45° with a Aa = 15°. 

When the inclination of the plate is the lowest, the free surface in the right side 

of the plate drops down almost to the lower tip, so that the free surface is largely 

affected by the presence of the vorticity released. As soon as the inclination 

increases, the suction effect diminishes as well as the intensity of the vorticity 

released. Nonetheless the vortex sheet is less stable and rolls up on intself. 

On the left side of the plate instead the different inclination influences directly 

the intensity of the jet forming from right to left. At a = —30° the plunging jet 

appears, and it becomes more energetic with a higher inclination, until at o; = 30° 

a second jet forms and rises on the plate. This jet will reach a maximum height 

and then it will fall down with a parabolic trajectory. 
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Figure D.l: Deformation of the free surface and vorticity contours for a flate plate with 

and inclination of a — —45° from the vertical position (Prom top to bottom and from left 

to rigth the snapshosts refer to the non dimensional times ty/g/h—Q.Q^ 1.2, 1.8, 2.4, 3.0 

and 3.6). 

155 



1.5 

0.5 0.5 

-0.5 

-1.5 -1.5 -

0.5 0.5 

1.5 

-0.5 -0.5 

-1.5 
2 X 2 X 

Figure D.2: Deformation of the free surface and vorticity contours for a flate plate with 

and inclination of a = —30° from the vertical position (Prom top to bottom and from left 

to rigth the snapshosts refer to the non dimensional times t^/gJh=^.Q^ 1.2, 1.8, 2.4, 3.0 

and 3.6). 
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Figure D.3: Deformation of the free surface and vorticity contours for a flate plate with 

and inclination of a = —15" from the vertical position (Prom top to bottom and from left 

to rigth the snapshosts refer to the non dimensional times ty/g/h—Q.%^ 1.2, 1.8, 2.4, 3.0 

and 3.6). 
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Figure D.4: Deformation of the free surface and vorticity contours around a vertical plate 

(Prom top to bottom and from left to rigth the snapshosts refer to the non dimensional 

times 1.2, 1.8, 2.4, 3.0 and 3.6). 
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Figure D.5: Deformation of the free surface and vorticity contours for a flate plate with 

and inclination of a — 15° from the vertical position (From top to bottom and from left 

to rigth the snapshosts refer to the non dimensional times ty/g/h=d.Q^ 1.2, 1.8, 2.4, 3.0 

and 3.6). 
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Figure D.6: Deformation of the free surface and vorticity contours for a flate plate with 

and inclination of a — 30° from the vertical position (From top to bottom and from left 

to rigth the snapshosts refer to the non dimensional times 1.2, 1.8, 2.4, 3.0 

and 3.6). 
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Figure D.7: Deformation of the free surface and vorticity contours for a flate plate with 

and inclination of a = 45° from the vertical position (From top to bottom and from left 

to rigth the snapshosts refer to the non dimensional times (\/g7^=0.6, 1.2, 1.8, 2.4, 3.0 

and 3.6). 
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Appendix E 

A generic body on a Cartesian 

grid 

Usually a boundary fitted mesh is used to model the presence of bodies inside the 

fluid domain. Such a mesh presents two fundamental drawbacks: a re-mesh is 

necessary every time the body moves, or the calculations have to be performed in 

the frame of reference of the body. Both these approaches can present some 

problems; more precisely, in the first case, the computation becomes inefficient if 

the body moves continuously and the second option becomes inapplicable if two 

bodies moving differently are present in the fluid domain. If the mesh is kept fixed 

a special treatment has to be adopted to link the equations of motion of the fluid 

with those of the solid body. For this purpose a level set function ip is computed 

around the body. It is positive in the points outside the body and negative 

otherwise. A function s{ip) is introduced with 

And the Navier-Stokes equations are written as 

^"+1 = + (1 - (E.2) 

^The discrete equations are written here in the non viscous case for simplicity but their extension 

to the viscous case is straightforward. 
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where is the velocity of the body. Applying the divergence operator: 

= g(^)V . - g(^)V -

+ . K - A([(^^. V)w]"+^/2 - A t ^ + ^Af] - . [/"+' 
(E.3) 

The left hand side is zero by definition and the equation can be written as: 

(E.4) 

+ ' K - - A ( ^ + pA( - [/"+!] 

As is a step function, if ^ = 0, then the pressure gradient on the body is 

such that the normal velocity of the fluid becomes equal to the velocity of the wall. 

In the numerical simulations the function s{ip) is smoothed on a finite number of 

cells across the body boundary. 
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