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Accurate physics based simulations of Autonomous Underwater Vehicles (AUVs) 

and submarines require precise knowledge of the physical loads on the vehicle. Of 

these loads the hydrodynamic component is the most challenging to determine. One 

common method of representing these loads is to use hydrodynamic coefficients. 

These coefficients are commonly determined from captive model testing, which is 

expensive. However, in theory these coefficients can be found from free swimming 

trials. This thesis documents research undertaken, in collaboration with QinetiQ, 

to determine whether the hydrodynamic coefficients in a set of non-linear submarine 

equations can be determined from free swimming trials data. 

Two coefficient identification procedures are described. The first, a non-linear 

approach attempts to find a set of coefficients reproduced the manoeuvring subma-

rine's path. The second, a linear approach recasts the identification task into a linear 

algebra problem which can be solved using standard techniques. 

When tested using simulated data both approaches indicated that accurate sub-

marine track identification is not equivalent to correct submarine hydrodynamic co-

efficient identification. This arises from two causes. First, it was discovered that 

the coefficients were not unique, and thus there are an infinite number of different 

coefficient sets which produce the same manoeuvre. Secondly, it was found that 

the manoeuvre always identified an ill-conditioned set of coefficients; that is small 

deviations in the manoeuvre produced large deviations in the identified coefficient 

values. 

Due to these issues, the results of the research suggest that it is not possible to 

determine the non-linear hydrodynamic coefficients of a submarine or AUV from free 

swimming manoeuvre data. 
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Chapter 1 

Introduction 

1.1 Background 

Southampton Oceanography Centre (SOC) is the UK's leading centre for research in 

marine and earth sciences. As part of the SOC role of providing first rate facilities 

for marine research the Ocean Engineering Division (OED) of SOC has been involved 

in the research and development of autonomous underwater vehicles (AUV) since the 

late 1980s. As part of this work the Autosub AUV, described by Millard et al. (1997), 

was developed. This AUV is designed as a sensor platform for scientific exploration 

of the world's oceans. In 1996 Autosub had its first trial in Southampton's Empress 

Dock adjacent to SOC. Since these early tests Autosub has been continually upgraded 

and deployed in over 365 missions of up to 50 hours duration and 262km in length. 

The most recent deployments have involved surveying the arctic ice shelves off the 

coast of Greenland. 

The vehicle is 7m in length and 0.9m in diameter and is of torpedo shape. It displaces 

approximately 3 tonnes and is powered by a single propeller. Control is provided by 

vertical and horizontal tail planes. The vehicle is required to fiy through the water 

to maintain control. Its configuration is known as a fiight style AUV. 

As part of the further development of Autosub a need for a dynamic simulation of 

the vehicle was identified. The simulation would fill the niche between information 



gathered through simple steady state analysis that cannot deal with complex dynam-

ics problems such as obstacle avoidance and that produced from testing of the real 

vehicle. The latter is very expensive and time consuming. Once created the simula-

tion could be used to rapidly test 'what if scenarios and analyse alternative control 

strategies, obstacle avoidance algorithms and explore the flight envelope of the vehi-

cle. The simulation would also provide insight into the actual flight characteristics of 

Autosub while manoeuvring. The initial goal of the EngD research was to develop a 

simulation of Autosub that would accurately reproduce the motions of the vehicle. 

1.2 Scope of the EngD Research 

The initial research involved surveying the state of the art in AUV and submarine sim-

ulations techniques. Due to the similarity between flight style AUVs and submarines 

this thesis considers them together as Underwater Vehicles (UVs). It became clear 

from the survey that creating an accurate dynamic UV model is a non-trivial task. 

Although, the problem has been widely researched and a general method has been 

established, accurately determining the hydrodynamic loads on the vehicle is still a 

considerable challenge. This challenge arises because no one has yet found a method 

of solving the Navier-Stokes equations for general hull forms subject to arbitrary mo-

tions. These equations describe the pressure and velocity of the water on the outer 

hull of the vehicle and, from this the loads can be determined. Likewise the empirical 

determination of the loads has its own set of difficulties. The hydrodynamic loads on 

an UV are a non-linear function of the hnear and angular, velocities and accelerations 

of the vehicle. Thus, to be able to map this function experimentally would require 

that a test be performed for every combinations of the 12 different velocities and 

accelerations. Hence, even if the hydrodynamic loads were only evaluated at a small 

number of values for each velocity and acceleration the total number of tests required 

to cover every combination is impractically large. Therefore, generating a look-up 

table that maps the non-linear hydrodynamic load function to the vehicle's motion 

it is not practical. Thus, approximations for the hydrodynamic loads are used when 

modelhng UVs. 



These approximations range in complexity from using CFD to get an approximate 

solutions to the Navier-Stokes equations to modelling the UV as a collection of simple 

well tested shapes and estimating the interaction between the shapes. However, the 

most common approach is to use a set of equations that are thought to approximate 

the actual non-linear hydrodynamic load function. The equations are based on the 

work of Abkowitz (1969) and use a multivariate Taylor series expansion along with 

the an understanding of the underlying physics to determine their form. The form 

of the equations is independent of the modelled submarine. The dynamics of each 

submarine are captured through a finite set of hydrodynamic coefficients, which when 

combined with the governing equations approximate the hydrodynamic loads on the 

UV. The advantage of the approach is that it is only necessary to determining the 

hydrodynamic coefficients, a relatively simple task, to approximate the hydrodynamic 

loads. Although it is possible to determine some of these coefficients analytically it 

is more accurate to measure them through extensive captive model tests. Unfortu-

nately, the expense involved is usually beyond the budget of AUV builders, hence less 

accurate methods are employed. 

From the survey of UV simulations it was decided that the most appropriate hydrody-

namic load model for Autosub would use a set of non-linear hydrodynamic coefficient 

equations. However, the cost of determining the hydrodynamic coefficients was be-

yond the budget of the project. So, an inexpensive alternative method of accurately 

determining the coefficients was desired. At the same time the School of Engineering 

Sciences at the University of Southampton was involved in a contract with QinetiQ 

Haslar to investigate methods of determining hydrodynamic coefficients from free 

swimming submarine trials data. If this was successful then the technique could be 

used to determine the hydrodynamic coefficients of Autosub from the large library of 

Autosub missions data. As the contract was in its early stages the research effort put 

into modelling Autosub was added to the project to help facilitate the development 

of the coefficient identification procedure. One side benefit of this collaboration was 

that the knowledge of submarine modelling possessed by the QinetiQ personnel could 

be used to inform the modelling of Autosub. 



1.3 Scope of the Hydrodynamic Coefficient 

Identification Research 

The goal of QinetiQ's identification procedure was to determine the hydrodynamic 

coefficients used in their submarine equations, described in Booth et al. (1980), from 

submarine inputs (control plane angles and propeller rpm) and outputs (position 

and attitude) generated during manoeuvring. However, there is an imphcit question 

associated with the identification procedure, that being; is it possible to determine 

the hydrodynamic coefficient from the input and output data? Whilst it is possible to 

calculate the UV outputs from a knowledge of the UV inputs and the hydrodynamic 

coefficients it is not necessary for the process to be reversible and for the coefficients to 

be determined from the inputs and outputs. Initially the question of identification was 

posed in terms of identifying a set of coefficient so that target track and predicted 

track matched. The identification problem was then recast in terms of identifying 

the hydrodynamic coefficients derived using captive model tests. This added extra 

complexity to the problem as it is possible to have a manoeuvre which can be produced 

by two or more distinct sets of coefficients. Hence, determining the correct values can 

only be performed using a manoeuvre that can only be produced using the towing 

tank derived coefficients. 

The research involved two distinct but related areas. The first looked at trying to 

answer whether it is possible to accurately identify the hydrodynamic coefficient val-

ues from manoeuvre data, and the second involved developing techniques that would 

efficiently determine the correct coefficient values. Two different approaches were 

used to identify the hydrodynamic coefficients. The first, non-linear approach was 

designed to identify a set of coefficients that would reproduced the target manoeuvre. 

This only required the UV inputs and the position and attitude outputs as specified 

by QinetiQ. The procedure required an optimization routine and the routine used 

was written by Professor Veres of the University of Southampton, see Veres (2003). 

The second, a linear approach uses the UV attitude, velocity and acceleration data 

as well as the inputs to identify the coefficients. The submarine manoeuvres used to 

identify the coefficients were simulated using captive model testing derived hydrody-

namic coefficient values for real submarines. Simulated data was used as it allowed 



rapid testing of alternate manoeuvres and the accuracy of the converged coefficients 

could be easily determined. 

To avoid tuning the system identification process the hydrodynamic coefficients of 

three submarines of quite different form and hydrodynamic coefficients were selected 

to be identified. 

1.4 Layout of the Thesis 

The thesis comprises 10 chapters and naturally partitioned into two parts. 

The first part (Chapters 2-3) is a survey of the state of the art of UV simulations. 

This describes the general framework used in modeUing UVs and then discusses how 

the loads on the vehicle are determined. The second part of the thesis (Chapters 4-9) 

describes the hydrodynamic coefficient identification research. The remaining chap-

ters of the thesis are outlined next. 

Chapter 2 describes the two coordinate systems used in modelling UVs. It explains 

why they are needed and details the mathematics involved in using the two 

coordinate system approach. It also outlines the rigid body dynamics equations 

required when using an UV fixed coordinate system. 

Chapter 3 explains how the loads applied to the UV are determined. It outlines how 

the total load arises from many sources and the methods used in determining 

these individual components. 

Chapter 4 introduces two alternative hydrodynamic coefficient identification pro-

cedures and then describes the difficulties involved in determining a suitable 

candidate identification manoeuvre. The manoeuvres chosen to identify the 

coefficients are explained. The choices made allow investigation of simplified 

versions of the fully coupled non-linear motion equations as well as the com-

plete fully coupled motion equations. 



Chapter 5 addresses the creation of the general UV simulations used with the iden-

tification procedures described. It starts by discussing how the submarine equa-

tions were rearranged into a form suitable for simulation. It then outlines the 

three simulation versions created and describes their validation and testing. 

The chapter concludes by outlining the accuracy with which the simulation 

approximates the submarine equations. 

Chapter 6 demonstrates that the coefficients of the test submarines are not-unique 

and that there are an infinite number of sets of coefficients that will produce 

the same manoeuvres. 

Chapter 7 describes the implementation of the non-hnear identification procedure 

and outlines the testing use to identify the submarine coefficients. It describes: 

the accuracy with which the identified manoeuvre reproduces the target ma-

noeuvre; the accuracy with which the hydrodynamic coefficients are identified; 

and the speed and general performance of the non-linear procedure. 

Chapter 8 discusses the accuracy with which the coefficients identified in Chapter 7 

predict other manoeuvres. After discussing the process by which the random 

test manoeuvres are generated the accuracy with which the identified coefficients 

predict these test manoeuvres is addressed. 

Chapter 9 investigates how the linear coefficient identification procedure can be 

used to determine the coefficients and presents the results of the associated 

numerical testing. 

Chapter 10 presents and discusses the conclusions that can be drawn from the re-

ported research and the implications for identifying the hydrodynamic coeffi-

cients from free swimming UVs. The chapter ends by discussing further testing 

that could be carried out and outlines other potential techniques for creating a 

simulation from trials data. 



Chapter 2 

Mathematical Modelling of 

Underwater Vehicle Dynamics 

2.1 Rotation Between the Body and Fixed 

Coordinate Frames 

The position and attitude of the vehicle are defined in the inertial coordinate system, 

whereas the vehicle velocity and body rotation rates are defined in the body coordi-

nate system. To update the position and attitude information within the simulation 

procedure it is necessary to know the rates of change of position and attitude. These 

rates of change are calculated from the velocity and body rotation rates using rela-

tionships described in the following sections. The rate of change of position is related 

to the velocity through a simple coordinate rotation. This rotation can be performed 

by pre-multiplying the velocity vector by the required unique rotation matrix. The 

rate of change of attitude is harder to calculate. The relationship depends upon how 

the attitude is defined. The attitude definition also dictates how the rotation matrix 

is calculated. 

There are two principal methods of defining the attitude and thereby calculating the 

rotation operator for an UV; these are the Euler angle method and the quaternion 

approach. The Euler angle approach has been used by Feldman (1979) and Booth 



et al. (1980) and the Quaternion has been used by Prestero (2001a) and Fjellstad and 

Fossen (1994) to represent attitude in their respective UV simulations. 

When comparing the two approaches, the Euler angle method uses a more intuitive 

representation (typically giving angles of roll, pitch and yaw), however there are 

problems with the method. The main criticism being the presence of singularities 

in the Euler angle update matrix. These singularities occur, for the commonly used 

aerospace sequence, when the pitch (9) equals ±90°. However, it is highly unlikely 

(and undesirable) for the AUVs and submarines considered to have a pitch of ±90°. 

Thus, in this case, the singularities can be ignored. Alternatively the singularities 

can be avoided by truncating the Euler angles so that pitch never equals ±90°, as 

described in Cooke et al. (1992). In contrast the quaternion representation uses hyper-

complex numbers to represent rotation. This is less intuitive but does not have the 

problems with singularities associated with the Euler angle approach. 

After some consideration of which approach would be most appropriate for use in 

this thesis, the Euler angle method was chosen. Although the quaternion approach 

is mathematically superior, the Euler angle method was already used by the Booth 

et al. (1980) submarine equations whose study forms a large part of the research 

undertaken and therefore using the quaternion approach would require reformulating 

the Booth et al. (1980) equations with little benefit. 

A description of how the Euler angle method represents rotation and how this can 

subsequently be used to define the rate of change of position and attitude is dis-

cussed next. For completeness the details of the quaternion approach are given in 

Appendix B 

2.1.1 The Euler Angle Representation of Rotat ion 

Rotation of a vector can be accomplished by pre-multiplication of the vector by a 

suitable square matrix. The set of matrices that produce rotation are known as the 

special orthogonal (SO) group. The three dimensional rotation matrices are known 

as S0{3). All SO matrices C have the following properties: 



CC^ = C^C = I and De((C) = 1. 

The Euler angle based 50(3) matrix required to produce any rotation in three dimen-

sional space are generated by three separate rotations about 3 orthogonal axes. As 

an example assume that the rotation was first about the z-axis, then the yi-axis and 

finally the x2-axis as indicated in Figure 1(a), (b) and (c) respectively. In Figure 1 

the rotated axis systems are offset from the origin to aid the presentation. The figure 

shows the first rotation of ip about z rotates xyz to xiyiZi. The second rotation of 

6 about yi rotates Xiy^zi to X2y2Z2- The third rotation of 0 about X2 transforms the 

axes 2̂2/2̂ 2 to 

X y 

fa) Rotation about the 
z-axis by ip 

X y 

(b) Rotation about the 
yi-axis by 9 

(c) Rotation about the 
zg-axis by (p 

Figure 1: An example of the xyz Euler angle rotation sequence. 

This xyz Euler angle convention is used in many naval appfications. It defines the ro-

tation from the inertial fixed frame to the body fixed coordinate frame. This rotation 

can be achieved mathematically by multiplying the matrices defining the rotation 

about X2, yi and z. Thus, letting: 
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and 

Rt = 

R: 

Rt 

1 0 0 

0 cos((/)) sm{4>) 

0 — sin(0) cos(0) 

cos{6) 0 — sin(6') 

0 1 0 

sm(^) 0 cos(^) 

cos('0) sm(^) 0 

— sin(V') cos('0) 0 

0 0 1 

The rotation matrix is, 

^3 

2/3 

Z3 

RiR',Rt 

or, in the notation of Fossen this may be written as. 

XI 

VB — ^(^2) yi 

_ZL_ 

where, 

As it is necessary to transform from the body coordinate frame to the inertial coor-

dinate frame the inverse of must be found. The inverse ^1(772) will undo 

the rotation performed by ^[^(772)- Changing the sign of the angle used in the Euler 
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angle rotations and performing the rotations in the reverse order will produce the 

inverse. Mathematically this is expressed through the identity, 

I = (R:*R-'R-*) (RtRlRt). 

Alternatively, using the stated properties of the SO group, 

J , ( % ) = (^r'('72))^ = = R f R f R f . 

Multiplying the transposed matrices gives, 

JiM • 

cijj • c9 —sip • ccj) + cip • s9 • s(f) sip • s(j) + cip • c(f) • s9 

sip • c6 cip • c(f) + s(p • s9 • sip —cip • s(p + s9 • sip • ccp 

—s9 c9 • s(j) c9 • c(p 

(1) 

with c and s denoting cosine and sine respectively. 

Trailing vs. Fixed Axis Rotation 

The Euler angle system described in the previous section is known as a 'trailing axis 

rotation' system. Here the 9 rotation is about yi not y. However, it is possible to 

use a fixed axis to define the rotation (therefore the rotation of 9 would be about 

y not yi) and specify the temporal order of the rotation. Interestingly, using a zyx 

temporal order for the fixed axis rotations produces the same rotation matrix M as 

the xyz rotation sequence of the trailing axis system. Thus, the fixed axis rotation 

is the same as that of a trailing axis but the rotation order is reversed. This effect 

occurs in all Euler angle sequences and is discussed in Craig (1986) and McGhee et al. 

(2000). However, in this thesis the more common trailing axis rotation approach is 

adopted. 

Euler Angle Systems 

The xyz rotation sequence previously defined is known as the aerospace sequence and 

is commonly used in naval applications. However, it is not unique. The only specific 

requirement for the Euler angle definition is that the rotations should be about three 
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orthogonal axes in which each successive rotation axis should not be coincident with 

the immediately previous rotation axis. Thus, zxz (but not xzz) is a legitimate 

definition of an Euler angle system and is in fact quite commonly used in other fields. 

This requirement leads to 12 possible Euler angle systems, these are; 

22^ 2^2 

2^2 2Z2 222 2^2 

Whilst, not all of these systems are in common use, there is also no single accepted 

standard system for all fields of study. Thus care must be taken to match the given 

Euler angles to the appropriate Euler rotation sequence. 

2.1.2 Problems with the Euler Angle Representation 

There are a number of problems inherent in the Euler angle representation of rotation. 

The first is that the resulting rotation matrix does not have a unique set of Euler 

angles. For example using the xyz rotation system rotating with (p = 180°, ^ = 0° and 

-0 = 180° results in the same rotation matrix as using 0 = 0°, 0 = 180° and = 0°. 

Thus, to extract the Euler angles from a rotation matrix is not possible, because the 

representation is ambiguous. 

A more serious problem with the representation occurs when trying to update the 

current Euler angles from the body rotational velocities (p, g, r). At certain body 

orientations two of the Euler angle rotation axes become coincident, thus an axis of 

rotation is lost. When this occurs certain body rotations cannot update the Euler 

angles and the system breaks down. In mechanical gyros this phenomenon is known 

as gimbal lock and in the mathematical representation singularities occur in the Euler 

angle update matrix. 
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Figure 2: A mechanical example of the xyz Euler rotation sequence. 

Gimbal lock can be illustrated using the mechanical example illustrated in Figures 2 

& 3. Consider a gimballed model of a UV where the model is connected nose and tail 

to an inner ring, as illustrated in Figure 2. This inner ring is connected in turn to an 

outer ring at right angles to the connection to the UV and inner ring. The outer ring 

is then allowed to rotate about the base. This setup will allow the model to assume 

any orientation relative to the base and mechanically represents the xyz Euler angle 

system. When the inner ring is rotated by ±90° the UV model will point vertically 

upwards as indicated in Figure 3. This will cause the rotation of the UV model 

about the inner ring and rotation of the outer ring about the base to be coincident. 

Therefore an axis of rotation is lost. If in this position the UV model was rotated in 

yaw, represented by r in Figure 3, it would be restrained by the rings, as rotation in 

this axis is not possible. Hence gimbal lock occurs. 
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X 

Figure 3: A mechanical example of the xyz Euler rotation sequence with the UV 

rotated to show gimbal lock. 

To show the same phenomenon in the mathematical representation it is necessary to 

define the Euler angle update matrix. 

2.1.3 Calculating the Euler Angle Update Matrix 

Although rotation rates can be represented by a vector it is not possible to transform 

the vector in the body fixed coordinate system to the inertial coordinate system to get 

the Euler angle update rates. This is because each Euler angle rates describe rotation 

rates in different coordinate systems (eg 'xiyiZi\ 'x2y2Z2 and ^Xsy^zs' illustrated in 

Figure 1). Hence the transformation matrix used to calculate the Euler angle rates 

from the body rates does not belong to 50(3). However, the body rates are related 

to the rates of change of the Euler angles through a transformation matrix, hence one 
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may write, 

p 0 

Q — J 2^ {''12) e 

r 

where Jg (772) ^ 50(3). 

However, as previously mentioned, at certain Euler angles the matrix J2^(112) is 

singular and therefore J2{'n2) does not exist. At these points it is not possible to 

update the Euler angles from the body rotations. 

The matrices J2 ^(^2) ^2(^2) can be determined as follows, as described in Fossen 

(1994): 

Defining 

t^2 and 772 

leads to 

1/2 = J2X%)^2 

Remembering that the rotation matrix from the inertial to the body fixed frame was 

defined by 

RtR^Rt-

Thus, ^ will produce a pure rotation about the body X2 axis, as illustrated in Fig-

ure 1(b) & (c) and thus 

p 

0 = 0 

0 0 

Likewise, 9 will produce a rotation about the yi axis as shown in Figure 1(a) & (b). 

However, as this rotation rate is defined in the axis system it needs to be 

rotated to the body axis to be given in terms of body rates. Therefore, 

"0" 0 

Q 9 

r 0 
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Extending the idea it follows that, 

0 '0" 0 

Z/2 = 0 + Rt 9 0 

0 0 i) 

— J2 ^(^2)^2-

Noting that 

then 

1 0 0" 'c9 0 
— 0 and K = 0 1 0 

0 — C(̂  0 eg 

"1 0 0" 'c9 0 —s9 c9 0 —sO 

0 c<̂  0 1 0 = 8^ sO ^ - eg 

0 -s4 C(̂  s9 0 C(̂  s9 —s(f) c(p • c9 

By substituting and expansion of terms in the expression for 1̂ 2 leads to, 

•̂ 2 ̂ (^2) = 

1 0 

0 C(/) S(/) • c9 

0 —scj) c(j) • c9 

li 9 = ±90° then. 

^2X^2) 

1 0 f l 

0 c0 0 

0 — 0 

and the matrix Jg (̂̂ 72) is singular as det (Jg ^(%)) = 0, therefore ^2(^2) does not 

exist for the indicated values of 9. 

For other values of 9 the matrix ^2(^72) can be shown to have the form, 

^2(%) : 

1 s(f)-t9 c(j) • to 

0 c0 —s(j) 

0 c^/c0 

(2) 

as presented in Appendix A. 
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Changing the Euler angle sequence does not remove the singularities it merely changes 

the orientation at which they occur. In fact it is not possible to create an Euler angle 

system that does not produce these singularities. As Fossen (1994) states, " . . . no 

continuous three parameter description can be both global and without singularities". 

2.1.4 Using the Euler Angle System for U V Modell ing 

To complete the picture of how Euler angles can be used to model a UV's motion it is 

necessary to combine the preceding section. The requirement for the UV model is to 

transform the body fixed linear velocities into the inertial frame and to use the body 

fixed angular velocities to update the vehicles attitude. Using the xyz Euler angle 

sequence typical in naval architecture this proceeds as follows; 

First, from Equation (1) the body fixed velocities (u,v,w) are related to the inertial 

velocities {x,y,z) by. 

X u 

y = -̂ 1(̂ 72) V 

z w 

Second, from Equation (2) the body rotation rates (p, g, r) define the rate of change 

of the Euler angles (0, 9, •0) as follows. 

0 P 

e = ^ 2 ( 7 7 2 ) q 

_ ' 0 _ r 

These two equations can be combined into a large matrix, which when written in 

Fossen's notation becomes, 

17 = 

with. 

77 = [a;, z, 
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and 

•^1(^2) 03x3 

Osxs •̂ 2(̂ 72) 

This completes how Euler angles can be used to model the relationship between the 

body axis velocities and rotation rates, and the inertial axis velocities and attitude 

change for a manoeuvring UV. 

2.2 Rigid Body Dynamics 

It is necessary to be able to calculate the acceleration of the UV in the body fixed 

coordinate system. As this coordinate system moves and rotates with the body it 

does not form an inertial frame of reference and so Newton's second law cannot be 

directly applied. To calculate the accelerations in the body coordinate system it is 

necessary to take account of the rotation of the coordinate system. This problem can 

be tackled using either Newtonian or Lagrangian mechanics. 

The commonly used Newton-Euler equations of motion for rigid body dynamics in 

the body fixed reference system assume the general form: 

m[u -vr + wq- xaiq^ + + yaipq — r) + %(pr + g)] = X 

m[v - wp + ur - ycir"^ + P^) + zc{qr - p) + xoiqp + f)] = Y 

mlw -uq + vp- zg{p^ + q^) + XG{rp - g) + yairq + p)] = Z 

IxxP + {Izz — /yy)gr — if + pq)Izx + — (f)lYZ + {pf — Q)Ixy 

+ra[yGW — uq + vp) — ZG{V — wp ur)] = K 

IYYQ + i^XX — IZZ)TP — {p-\- qr)IxY + — F'^)Izx + {QP — 

+m[zG{u — vr-\- wq) — xg{w — uq^- vp)] — M 

Izz^ + {IyY — Ixx)PQ — (? + fp)^YZ + — P^)IxY + (rg — p)lzx 

-\-m[xG{v ~ wp + ur) — yQiu — vr wq)] = N 
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where, 

x , y , z — Represent the external forces 

— Represent the external moments 

U, V, VJ — Represent the linear velocities 

2^9,r — Represent the body rotation rates 

— Represent the xyz coordinates of the centre of gravity 

Ah variables are measured in the body fixed coordinate system. 

This standard formulation can be found in many source, such as Abkowitz (1969), ?, 

Booth et al. (1980), and Fossenl994, and can be calculated from first principles using 

techniques described in graduate mechanics books. 

2.3 Conclusions 

This chapter has looked in detail at how dynamic models of UVs are created. It 

gave an overview of the process describing; the need for a world (inertial) and body 

reference frame; how the moving body reference frame would require rigid body dy-

namics to calculate the acceleration in it; the various forces and moments applied 

to the body. This was followed by a more detailed examination of how the rotation 

between the reference frames could be achieved. Here the Euler angle and Quater-

nion representation were compared. This then lead to the final section describing the 

rigid-body dynamic equations used to calculate the acceleration of a UV in the body 

fixed rotating reference frame. 

The modelling described so far has not considered how the forces [X, Y, Z] and mo-

ment [K, M, N] on the UV are determined. Chapter 3 considers this in detail. It 

describes the complexity of determining these forces and moments and also outlines 

methods for their estimation. 
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Chapter 3 

Modelling the Forces and Moments 

on Underwater Vehicles 

3.1 Introduction 

The previous chapter described how the dynamics of UVs can be modelled, but to 

create a simulation of a UV it is necessary to be able to estimate the forces and 

moments it experiences. This chapter describes the source of the forces IX,Y,Z] and 

moments [K,M,N], and outlines how they can be approximated. At a simple level 

the forces and moments on an UV can be attributed to: 

The weight of the vehicle. 

• The pressure distribution over the surface of the body (pressure drag). 

• The fluid shear force distribution over the surface of the body (skin friction 

drag). 

By integrating the hydrostatic and hydrodynamic pressure acting over the surface of 

the body and including the influence of the distribution of the weight of the vehicles 

the total force and moment can be determined. Unfortunately, it is not possible 

to analytically determine the pressure and shear force distributions for an arbitrary 
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shaped vehicle as this requires the solution of the Navier-Stokes equations. The 

quality of Navier-Stokes solvers is currently insufficient to determine the actual flow 

about an arbitrary body. So considerable time and effort has been invested in finding 

alternative methods of describing the forces and moments acting on an UV. The first 

stage is to analyse the sources of the loads on an UV. 

3.2 Sources of the Loads on an Underwater 

Vehicle 

It is known that the pressure and shear forces and moments experienced by a UV arise 

from a number of separate sources. Analyzing and approximating the contribution 

associated with each mechanisms produces a method of tackling the problem. The 

contributions can be divided into the following qualitative categories; 

Hydrostatic (or restoration) forces and moments. The hydrostatic forces and 

moments can be simply determined using the principle of Archimedes. For a 

fully submerged UV, the problem simply becomes one of transforming the forces 

generated by the weight and buoyancy into the body axes of the UV. The equa-

tions describing the hydrostatic forces and moments are given in Section 3.3. 

Hydrodynamic forces and moments. The hydrodynamic forces and moments ex-

perienced by a vessel are generated by its movement through the water. The 

forces and moments are a function of both the UV's velocity and acceleration. 

The total hydrodynamic force is usually sub-divided into the components that 

are governed by and in-plane with the velocity and acceleration components as 

follows: 

• Velocity forces and moments — Pressure and skin friction drag. 

The pressure drag comes from incomplete pressure recovery at the rear 

of an UV. The skin friction drag is produced by the shear layer of water 

flowing over the skin of the UV. Both of the effects are due to the viscosity 

of the water and are dependent, in the steady state, on the speed of the 

UV. This is often termed the hydrodynamic damping. 
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• Acceleration forces and moments — Added Mass. 

When a body is accelerated in a fluid the force required for a given accel-

eration is greater than one would expect from the body's mass; thus the 

body acts as though it has a larger mass. This extra mass is termed the 

added mass of the vehicle. The apparent increase in mass occurs because 

when the body accelerates it also accelerates the surrounding fluid. The 

phenomenon is primarily an inviscid effect, and thus can be calculated us-

ing potential flow theory. The actual added mass value depends upon the 

shape of the body, the direction of the acceleration and the frequency of 

the accelerations. However, in an unbounded fluid, as can be assumed for 

deeply submerged UVs, the added-mass becomes independent of frequency. 

Control forces and moments. The control forces and moments are usually pro-

duced by control planes in UVs. These require flow over the plane that causes 

lift which is subsequently used to control the UVs attitude. Although these 

forces and moments are technically generated from hydrodynamic effects they 

are considered separately to simplify the analysis. 

Propulsion forces and moments. The propulsion forces and moments are pro-

duced by the main propulsion system. This is usually a propeller in UVs and 

extensive work has been compiled regarding propulsion models. 

By summing the loads associated with each contribution defined above the total forces 

and moments can be determined. Using a notation system similar to that of Fossen 

this summation can be written as: 

X 

Y 

Z 

K 

M 

N 

= g{rj) 4- d{u) -j- + Tc -h 
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The different components on the right hand side of the above identity are defined as 

follows: 

oiv) — Hydrostatic force and moments vector 

d{u) — Hydrodynamic damping vector 

MA — Added mass matrix 

Tc — Control forces and moments vector 

r„ — Propulsions forces and moments vector 

The hydrostatic loads and vehicle weight are easily determined as described in the 

following section. However, the remaining coefficients are far more challenging to 

determine. The methods used to calculate the loads are discussed in the subsequent 

sections. 

3.3 Calculating the Hydrostatic Forces and 

Moments — g{r]) 

The hydrostatic (or restoration) forces and moments are generated by the forces due 

to the mass of the vessel (weight) and the force from the displaced water (buoyancy). 

These forces act at the centre of gravity {XQ, VG, %) and the centre of buoyancy {XB, 

VB, ZB) of the vessel. As the forces act vertically in the inertial coordinate system 

they need to be transformed into the body coordinate system to calculate the body 

fixed forces and moments. 

The hydrostatic forces are: 

mg — Weight of UV 

B =pgV — Buoyancy of UV 

Here V denotes the displaced volume of the UV. 

As the inertial z-axis is positive downwards the buoyancy force is negative. 
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3.3.1 Determining the Hydrostatic Forces in the B o d y Fixed 

Coordinate Frame 

The transformation of the forces from the world to the body coordinate system can 

be accomplished using the rotation matrix M described in Section 2.1.1. Thus, 

M 

0 

0 and f ^ = M 

0 

0 

-B 

where, fQ and f g represent the gravitational and buoyancy force in the body fixed 

coordinate system and M is the matrix of rotation from the inertial to the body fixed 

coordinate frame. 

The forces in the body fixed coordinate frame are therefore defined as: 

^Hs 

fa + f i M 

0 

0 

mg — B 

3.3.2 Determining the Hydrostatic Moments in the Body 

Fixed Coordinate Frame 

The moments in the body fixed coordinate frame generated by the hydrostatic forces 

can be calculated using the vector cross product of the body fixed forces / g & and 

their associated points of action at the centres of gravity and buoyancy respectively. 

This is expressed mathematically as: 

K f f s 

MHS 

AT*, 

r G x / G + r g x / g 

vg X M 

0 

0 + r s X M 

0 

0 

-B 
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subject to 

r e = 

rB = [xB,yB,ZBf 

centre of gravity, 

centre of buoyancy. 

The Hydrostatic Forces and Moments Vector — g{rj) 

To calculate the forces and moments in the body reference frame it is necessary 

to know the terms in the rotation matrix M. One choice for M is the rotation 

matrix defined by the xyz Euler angle representation commonly used in 

naval apphcations. The matrix describes the rotation from the inertial to 

the body fixed coordinate system and can be determined from the transpose of ^1(772) 

given in Section 2.1.1. Thus, 

cip • c6 stp • c9 —s9 

—sip • ccj) + cTp • s6 • scf) cip • c(p + scf) • s9 • sip c6 • s(p 

sip • scp cxp • c(}) • s6 —ctp • s(f) + s9 • sip • c(p c6 • ccp 

•̂ 1 ^(^2) — ^1(^2)^ — 

Therefore, the hydrostatic force and moment vector becomes, 

— {mg — B)s9 

{mg — B)cO • scp 

{mg — B)c6 • ccp 

- C(̂  - - g(;6 

-{ZOMG — ZBB)S6 — {XCMG — XBB)C6 • ccp 

Using Fossen's notation the hydrostatic forces and moments are written as the vector: 

YHS 

ZHS 

KHS 

Mhs 

_NHS_ 

and 

OI'N) — [^Hs, Yhs, Zhs, Khs, M f f s , N f f s f , 

77 = [z, ?/, Z, 9̂ , . 

As the xyz Euler angle sequence is common in naval applications the presented form 

of the hydrostatic forces and moments appear in the governing equations of Feldman 

(1979) and Booth et al. (1980). 
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3.4 Methods of Estimating the Hydro dynamic 

Forces and Moments 

Determining the remaining forces and moments is a challenge. There are two basic 

approaches that can be used. The first uses our understanding of the underlying 

physics of fluids to analytical solve the fluid flow problem. As stated earlier, the 

Navier-Stokes equations in general cannot be solved, but simplifying assumptions 

can be made that make the problem tractable. This results in computational fluid 

dynamics coupled with potential flow solutions. The other possibihty is to use exper-

imental data to determine the load on a vehicle. This approach can be either direct 

using a scaled model or the actual UV, or indirect whereby the results of tests for 

similar UVs or components are used to estimate the loads. In general analytical and 

empirical approaches are used in combination to estimate the hydrodynamic loads. 

A survey of the literature revealed three different approaches to modelling UVs. These 

are discussed in the following sections. 

3.5 Modelling the Forces and Moments Using 

Computational Fluid Dynamics 

As computational fluid dynamics (CFD) techniques and computing power have im-

proved over the last 5-10 years, it is now becoming possible to use analytical techniques 

to model the hydrodynamic forces and moments on a UV. By combining these forces 

and moments with a UV dynamic model, it is possible to tackle the UV manoeuvring 

problem. However, attempts at using CFD (both viscous and inviscid solvers) for 

manoeuvring are in the early stages of research, Bertram (2000). 

Research work on modelling submarine manoeuvres has been reported in Panka-

jakshan et al. (2002). In this case, an Unsteady Reynolds Averaged Navier Stokes 

(UnRANS) solver was used for computing the unsteady fluid flow, and was linked 

with a quaternion based dynamic model of a submarine. The estimated forces and 
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moments acting on the hull, propeller, and hydroplanes were calculated by integrat-

ing the approximated pressure and shear forces over the body of the vehicle. Various 

tests were performed for slow manoeuvres using the UnRANS code, and the results 

were validated against a free swimming model submarine. Good agreement between 

the simulation and the experimental trials were reported. 

However, the model of the submarine used was of a relatively simple streamhned 

shape, and although good agreement was shown with this vehicle it is not clear 

whether the code would produce the same level of agreement with a submarine of 

more complex shape. 

This technique has the advantage of calculating the forces and moments associated 

with the added mass, the hydrodynamic damping, the control plane position, and the 

propeller thrust all in one physics based model. However, there are still many the-

oretical and practical problems that need to be solved before the approach becomes 

either common place or widespread. The main practical problem involves the compu-

tational effort required to perform the simulation. For example, Pankajakshan et al. 

(2002) states that when modelling the submarine and propeller a simulation time step 

of 0.001s was required. This took one hour of computation time on a Cray T3E-900 

to advance the solution 0.03 seconds. Thus, even for parallelized super-computers the 

simulation takes many hundreds of hours. The key theoretical issues are associated 

with automatic mesh generation, modelling turbulence, and modelling flow separa-

tion. Substantial difficulties with all these areas still remain, and are current areas of 

research in the CFD community; see Bertram (2000) for an overview. 

The next section provides an alternative method of calculating the hydrodynamic 

damping, added mass, and propulsion loads required for simulating Autosub. 

3.5.1 Calculating the Added Mass 

As has been stated the added-mass concept is primarily an inviscid fluid effect. It 

stems from the energy required to change the flow velocity of the fluid produced 

by a change in UV's velocity. For a deeply submerged UV the fluid can be treated 

as unbounded and as such the added mass is dependent solely on the shape of the 
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vehicle, the density of the fluid, and the direction of the acceleration. 

As the added-mass is an inviscid effect it can be accurately calculated using potential 

flow theory. However, calculating the potential flow for an arbitrary shape is not 

straightforward, but the added mass can be simply estimated by assuming the vehicle 

is comparable in shape to a standard form for which an analytic solution is available. 

For slender bodies the local flow over a section is approximately 2-dimensional, thus 

the 2-dimensional added-mass for the section can be determined. By integrating the 

2-dimensional added masses over the length of the body the 3-dimensional added 

mass can be calculated. This approach is known as strip theory, see Newman (1977). 

Although the added-mass is an acceleration dependent force, due to the rotating 

nature of the local axis system the Coriolis and centripetal forces and moments need 

to be taken into account. The forces and moments can be represented by 

C{u)u 

Where C{u) represents the Coriolis and centripetal matrix described by Fossen 

(1994), and can be calculated from the added mass and inertia matrix MA-

Simplifications to the added mass matrix 

The UVs for which the component build up method is applied tend to be streamlined 

torpedo shape vehicles, and as such can be considered as a body of revolution with 

cruciform tail fins (e.g. as Autosub). These UV have port-starboard and top-bottom 

symmetry, and under these conditions Prestero (2001b) states that the added mass 

matrix reduces to: 

Xii 0 0 0 0 0 

0 n 0 0 0 y, 

0 0 0 0 

0 0 0 Kp 0 0 

0 0 0 Mg 0 

0 Ni, 0 0 0 Nr 

Each element of the matrix is denoted using the standard SNAME naming convention. 
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The number of coefficient can be further reduced by noting that the vehicle has 

rotational symmetry, that is the shape can be rotated through 90° without changing 

form. Combining this with the fact that MA is symmetrical, see Newman (1977), it 

follows that, 

Yy = Z^, = Ny = Zg = Yj. aud Mq = Nf 

Hence, it is only necessary to find five added-mass values for the described torpedo 

shaped AUVs. Methods of estimating the added-mass coefficients are discussed in 

the following sections. 

Calculating Ni, and Nf 

The values of 1 ,̂, Ny and Nj. have been estimated using strip theory by Prestero 

(2001b) for Remus and by B0 (2004) for Maya. In both cases the vehicles are decom-

posed into circular and finned sections. The finned sections are composed of a circular 

inner sections with four equally spaced fins radiating outwards. The two-dimensional 

radial added-mass values for these sections are given by Blevins (1993). For a circle 

the radial added-mass per unit length is, 

and for a finned section the radial added-mass is, 

2 f 

where a is the radius of the circular inner section. 

Following from this if 111̂  and ruf. are the masses of the zth circular and j th finned 

sections respectively, and /ci and If. are the associated distances from the origin, it 

then follows that: 

i j 

^ . Zy, 
i j 
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Calculating Xu 

As the vehicles to be analysed tend to be torpedo shaped the assumption of a slender 

form used by strip theory becomes invalid when estimating the surge added-mass and 

an alternative approach needs to be used. The general approach is to ignore the fins 

on the airship as they are assumed to contribute httle to the added mass in the surge 

direction and to approximate the body to that of a known 3-dimensional form. 

Munk (1923) estimated the Xu added mass for an airship by first assuming the ends 

were adequately modelled by a point source in nose and tail, and then assumed that 

the nose and tail were sufficiently far apart to negate any interaction between them. 

Thus, the airship was modelled as a Rankine ovoid with sufficient distance between 

the source and sink so that they did not significantly infiuence each other. The 

resultant total kinetic energy of the fiuid (T) was given as: 

r = 
6 

Where, r is the maximum radius of the airship, V is the forward speed of the airship 

and p is the density of air. From this it follows that the added mass is: 

1 „ 
p. 

This is equivalent \ of the mass of a sphere of radius equal to the maximum radius 

of the airship. 

An alternative approach is to model the UV as an ellipsoid of revolution. The 'end-

on' added-mass for this shape can be calculated analytically. Lamb (1932) gives the 

kinetic energy (T) of the fluid displaced by an ellipsoid of revolution with length I 

and radius r moving 'end-on' as, 

Where, 
2(1-6^) 1 + e 

ao = ^—- - I n 3 12 1 - e 
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and, e is the eccentricity of the eUipsoid and is given by, 

Thus, the added mass becomes, 

Xv 2 ^ • 

To give and idea of the differences between the methods Figure 4 shows the data for 

the normahzed added-mass calculated using both approaches as a function of length 

to diameter ratio. The added-mass is normalized using a sphere of radius r equal to 

the maximum radius of the UV. 

For Autosub the length to diameter ratio is about 7.8 and thus the two approaches 

give very similar results. 
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10 

Figure 4: Comparison of the added mass of an eUipsoid and Munk's method normal-

ized with the volume of a sphere of radius r. 
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Calculating Kq 

To calculate the added-inertia Kg of a torpedo shaped UV only requires the con-

sideration of the finned section, as the body of revolution is assumed to have no 

added-inertia. Typically added-inertias can be calculated using the two-dimensional 

forms given in Blevins (1993) and Newman (1977), unfortunately, these authors do 

not give the added-inertia for a cyhnder with cruciform fins. However, Kq has been 

approximated by Prestero (2001b) who assumed a simple cruciform section and hence 

ignored the presence of the inner cyhndrical section, and by B0 (2004) who assumed 

a circular section with two fins, thus ignoring the second set of fins. From Newman 

(1977) the two approaches give the following added-inertias: 

2 
, 4 

2a — a sin 4a: 4- ^ sin 2a: n 

TT sin'̂  OL 2 

Cruciform section — —pr 
TX 

Finned cylinder — pa^ 

Where, 

2ar TT 

and a is the radius of the inner circular section. 

The results of the added-inertia calculated for the two methods are shown in Figure 5 

along with the added-inertia of a plate (this is see Newman (1977)). The figure 

shows that the added-inertias of the flat plate and the finned cylinder are reasonably 

similar for ajr ratios of 0.5 or less; above this value the added-inertias differ markedly. 

Assuming that the a cruciform finned cylinder behaves similarly to a flat plate finned 

cylinder counterpart the simple cruciform would give a estimate for the added inertia 

when ajr is 0.5 or less. 
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Cruciform plate 

Flat, plate S 0 .4 

< 0 .3 

Finned cyclinder 

Figure 5: Comparison of the normalized added-inertias of a cruciform plate, a flat 

plate and a finned cylinder. 

This completes how the added-masses and added-inertias of a torpedo shaped UV 

can be calculated for the component build up method. 

3.6 Hydrodynamic Coefficients Method 

In theory the hydrodynamic loads for a UV can be determined through experimen-

tation. One can assume that the loads are dependent solely on the velocities and 

accelerations of the vehicle at any specific time instant (this is not strictly true as 

there is a time dependency in fluid flow, and so the current loads depend upon the 

time history of the vehicle, however as UVs accelerate slowly it is possible to ignore 

the efl'ects and assume the system is in a quasi steady state). Also, if one ignores 

the effect of the control plane and propulsion system, the hydrodynamic loads will be 

some function f of v and i>. 

One possible method of determining the function / which describes the characteristics 
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of the forces and moment is to measure the loads experimentally for every possible 

motion. To make this approach viable one could investigate a fixed finite number 

of situations for each motion, covering the values of interest, and then test every 

combination of these motions. These results could then be interpolated to provide an 

estimate of the loads for any motion in the range of interest. As an example, if each 

motion was measured at 10 different values the process would required 10̂ ^ tests, as 

there are 12 velocities and accelerations to consider. Whilst this approach might be 

theoretically sound, the process is unworkable in practice. 

However, the basic approach does have merit, but what is required is a method of 

approximating the loads that does not require the huge volume of testing imphed 

above. If one was only interested in the loads produced within a small region of 

all the motions, for example small deviations about a straight, level, constant speed 

flight for a UV, it is possible to use a truncated multivariate Taylor series expansion to 

model the velocity and acceleration dependencies of the loads in this small region. The 

experimental testing would then be limited to determining the derivatives associated 

with the truncated Taylor series. This is the basis for the Hydrodynamic Coefficient 

Method proposed by Abkowitz (1969). 

The Abkowitz method, and extensions to it, have been used extensively in the mod-

elling of ocean going vehicles. A more detailed discussion of the procedure is presented 

next. 

3.6.1 The Basic Approach 

The basic approach outlined by Abkowitz assumes that the hydrodynamic loads are 

dependent upon: 

• The vessels linear velocity - Vi 

• The vessels linear acceleration - z>i 

• The vessels angular velocity - 1/2 

• The vessels angular acceleration - i>2 
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• The control plane angles associated with rudder, bow and stern planes - SR, 

Thus, the X force in the x direction could be represented in the form: 

f x = ^2, '̂ 5', (̂ B) 

It is not necessary to have these control planes, there are used here merely for illustra-

tion of a general submarine. No dependence upon the propulsion system is assumed 

as it is assume that the propulsion system will be kept in the same state as used for 

the reference motion. 

This function f x describing the X component of the hydrodynamic force component 

is then assumed to be sufficiently differentiable over the range of motion values of 

interested. Therefore, the function f x can be decomposed using a multi-variate Taylor 

series expansion. By truncating the series and assuming that only small deviations 

from some reference motion (straight, level, constant speed flight for UVs) then a 

reasonable approximation to the X force component is generated. 

The number of terms in the force equation generated by the truncated Taylor series 

can be reduced by noting the symmetries of the vehicle (usually x — y plane). The 

terms can be further reduced using a knowledge of the physical phenomena being 

modelled. Reducing the coefficient count is necessary, as the number of terms in the 

truncated Taylor series quickly become unmanageable as the order of the approxima-

tion increases. 

Hydrodynamic load equations truncated after the first derivative, generating a lin-

ear model, are used in stabihty analysis. However, the accuracy of the predictions 

for manoeuvring is limited as large deviations from the reference motion can gener-

ate large errors. Truncating the load equations later produces non-linear equations. 

These require more testing to determine the derivatives but the resulting equations 

approximate the loads better in more severe manoeuvres. 

The approach described produces general force and moment equations for any vessel. 

However, within the equations are a number of unknown derivatives that must be 

specified to allow the equations to described the forces and moments for a specific 
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vehicle. These coefficients are classically known as hydrodynamic derivatives as they 

represent the partial differentials of the hydrodynamic loads, at the reference motion, 

an example being, 
% 
du 

This is the partial derivative of the force in the x direction with respect to the forward 

velocity u. 

As there are a large number of terms in the force and moment approximations, using 

the partial differential notation is cumbersome therefore a separate notation was 

developed by SNAME. Here the above partial derivative would be written as X'̂ , 

where X represents the force function f x and the subscript u defines the variable of 

differentiation. Using this notation greatly simplifies writing the equations. It is also 

common practise to non-dimensionalise the derivatives. 

For submarines the non-linear models developed using the classic approach have been 

modified to try and reduce the number of derivatives that need to be determined 

without sacrificing the accuracy of the modelled hydrodynamic loads. This approach 

is discussed next. 

3.6.2 Modern Submarine Equations 

More recent non-hnear submarine equations, for example those described by Feldman 

(1979) and Booth et al. (1980), cannot be derived using a Taylor series expansion. The 

non-linear submarine equations are initially based on the Taylor series approach, but 

are then modified to reduce the coefficient count whilst adding the terms apparently 

ad hoc to increase the accuracy of the simulation. 

One of the differences in the submarines equations is that they only use 2"̂ ^ order 

coefficients. Using a Taylor series the 2"*̂  order coefficients such as K'̂ p produce an 

even function, that is, the sign of the moment (in this case) is independent of the sign 

of p. Thus, K'pp has to be zero as otherwise it would imply that the hydrodynamic 

damping would produce a moment in the same axis as the direction of roll, a physically 

impossible phenomenon. However, this inherent problem is overcome in the submarine 
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equations by using As this is not a hydrodynamic derivative as it cannot be 

derived using the Taylor series, in this thesis these pseudo derivatives will be called 

hydrodynamic coefficients. Using these hydrodynamic coefficients in preference to the 

hydrodynamic derivatives allows the number of coefficients to be reduced as it is not 

necessary to use third order derivatives to increase the accuracy of odd functions. 

The equations are systematically modified using other similar concepts to produce a 

more useful set of equations approximating the force and moments. Unfortunately 

the reasoning behind each coefficient's inclusion or exclusions is not readily available, 

thus it is not possible to derive the equations from first principles or explain how the 

equations were arrived at. However, as these equations are in common use in the 

simulation of submarines, and have been used to model AUVs, they were considered 

to be appropriate for creating the dynamic simulation of Autosub. However, the 

determination of the coefficients for Autosub stills needs to be addressed. Techniques 

for determining the coefficients are discussed next. 

3.6.3 Modelling A U V s Using Submarine Equations 

The submarine equations are designed to model naval submarines considerably faster 

and large than flight style AUVs. UK submarines vary in length from 83m for the 

Swiftsure class to 150m for the Vanguard class, and have a maximum submerged 

speeds in excess of 30 knots (15 m-s~^), as given by Sharpe (1996). Comparing this 

to Autosub with a length of 7m and a maximum submerged speed of 2 m-s~^, it is 

clear that Autosub operates at completely different speed and length scales. However, 

when one considers the manoeuvres produced by Autosub they are similar in form to 

those of the submarines. 

Autosub mission typically involve long periods of straight and level flight followed by 

brief periods of sharp turning. This is illustrated in Figure 6 where Autosub is per-

forming a lawnmower survey off the North-West Coast of Greenland — mission 367. 
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Figure 6: Lawnmower survey performed by Autosub 24/08/04 of the North-West 

coast of Greenland. 

At the end of each survey leg the rudder is moved to ±15° to turn the vehicle quickly 

onto the next track. The first turn of the lawnmower search is shown in more detail 

in Figure 7. 

In Figure 7 a cross represents each recorded data point. The figure does not show a 

complete 180° turn, as Autosub's turning circle is smaller than the separation distance 

between the survey legs, so the final stages of the turn involve Autosub manoeuvring 

to join the next survey leg. 
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Figure 7: First turn of the lawnmower survey. 

To compare this manoeuvre to that performed by a submarine, it needs to be non-

dimensionalised. This is traditionally done using the vehicle length. 

A comparison of this turn with that of submarine 1 travelling at 7.5m-s~^ performing 

a turning circle manoeuvre with a 15° rudder angle is shown in Figure 8. In this figure 

the Autosub manoeuvre has been rotated so that the initial path of the manoeuvre 

lies along the figure's X-axis. When the Autosub track passes through the 0,0 point 

the rudder is applied. The Autosub path has also been corrected to remove the effect 

of the measured current. 
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Figure 8: Non-dimensional Autosub and submarine 1 turning manoeuvre comparison. 

During the initial part of the Autosub manoeuvre the rudder is controlled around 0°, 

this occurs between the 'start' and 'rudder start' marks on the plot. At the 'rudder 

start' point the rudder is moved to 15° and held constant until the 'rudder control' 

point. From here to the end of the manoeuvre the rudder is automatically adjusted 

so that Autosub smoothly joins the next survey leg. The submarine 1 manoeuvre 

follows the same basic pattern as that for Autosub except that the rudder is held at 

15° after it has been applied. 

Comparing the simulated manoeuvre of submarine 1 and the track of Autosub, it is 

clear that submarine 1 turns more quickly for a given angle of attack. However, the 

difference is not that substantial and further investigation revealed that a very good 

match between the Autosub and submarine 1 occurred when a rudder angle of 12° 

was applied to the submarine. 

So although submarines and AUVs operate at different length and time scales, they 

produce similar non-dimensional manoeuvres, thus the submarine equations will be 

valid when used at the appropriate length and time scales for Autosub. 
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3.6.4 Free Running Model Tests 

An alternative to forced captive model tests is to use free running model trials to 

identify the hydrodynamic coefficients. Here a scale model of the vessel (or the ves-

sel itself) runs through a series of controlled manoeuvres, and the relevant control 

plane angle and vehicle motion information is recorded. This data can then be used 

to identify the vehicle's hydrodynamic coefficient values using system identification 

techniques. Considerable research has been performed into the identification of ship 

hydrodynamic coefficient values. This research started in the early 1970s and contin-

ues to date. Less research has been undertaken into the identification of underwater 

vehicle hydrodynamic coefficients, but with the growing interest in and use of AUV 

since the early 1990's activity in this area has increased. An introductory overview 

of the procedure for system identifying ship hydrodynamic coefficient values can be 

found in Lewis (1989a); while Fossen (1994) contains information on ship and UV sys-

tem identification techniques. A brief discussion of the relevant ship and underwater 

vehicle research follows. 

The ship identification problem is primarily concerned with determining the coef-

ficients relating to the steering dynamics of the craft. To simplify the problem it 

is assumed that the heave, pitch and roll of the vehicle do not have an eff'ect on 

the steering dynamics and hence can be decoupled from the full six-degree of free-

dom problem. The simplified coupled two-dimensional, surge-sway-yaw problem has 

been investigated extensively. Both linear and non-linear motion equations have been 

studied. 

Astrom and Kallstrom (1976) considered the identification of the coefficient values 

associated with the linear dynamic equations for ships. The research showed that 

it was impossible to identify all the hydrodynamic derivatives in the model as the 

added-mass and added-inertia coefficients acted like the real masses and inertias. 

This coupling made the coefficients non-unique and hence unidentifiable. However, 

by specifying the added masses and inertias the remaining coefficients become unique 

and can therefore be identified. This added-mass issue also occurs in the non-linear 

equations of motion, and all subsequent identification procedures assume that the 

added-mass values are known. 
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Kallstrom and Astrom (1981) reviewed the research examining identification of ship 

steering dynamics. The work considered the non-hnear equations of motion for ships 

attributed to Norrbin (1970). When identifying the hydrodynamic coefficient values 

associated with this model (excluding the specified added-mass coefficients) it was 

shown that the remaining coefficient values could not be accurately identified even 

though accurate path information was reproduced. 

Haddara and Wang (1999) discussed the difficulty of identifying non-linear hydrody-

namic coefficients from input-output records, when describing research into identifi-

cation of the coefficients associated with the non-linear ship equations described in 

Lewis (1989a). The identification problems stemmed from coefficient error cancella-

tion; that is errors in several coefficients cancel, thus making it a difficult to identify 

the correct coefficient values from input-output data. Haddara and Wang (1999) 

proposed a solution by calculating the linear hydrodynamic coefficient values using 

methods attributed to Clarke et al. (1983), and then training a neural network to 

model the forces and moments associated with the non-linear terms. The approach 

was tested using a simulated ship performing a ±35° zig-zag manoeuvre. Once trained 

the resulting neural network was combined with the linear coefficients model and the 

resulting model was shown to produced accurate manoeuvring predictions for a 20° 

zig-zag, a 25° turning circle and a 20° Dieudonne spiral manoeuvre. The results 

suggest the procedure had accurately capture the dynamics of the simulated vessel. 

Regression analysis was then used to determine the hydrodynamic coefficient values 

associated with the neural network model and the full set of coefficients identified. 

The coefficients identified had values that were a poor match to the true coefficient 

values. 

Yoon and Rhee (2003) used a different approach to identify the coefficient values. 

The method involved a two stage process to identify the non-linear hydrodynamic 

coefficient values of a third order model (again excluding the specified added-mass 

coefficients as before) using noisy manoeuvring data. The first stage of the procedure 

involved using an Extended Kalman Filter and modified Bryson-Frazier smoother to 

filter the motion data to determine the best estimate of the ship motions. The second 

stage used the processed data to generate regression matrices. The hydrodynamic 

coefficients were then calculated from these regression matrices using a least-squares 
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error approach. The identification procedure was used to identify the coefficients 

of a simulated ship performing a 35° turning circle and a ±20° zig-zag manoeuvre. 

The identified coefficients accurately reproduced a manoeuvre generated using a 10° 

(PRBS) rudder command, however the coefficients were poorly identified. Correlation 

analysis of the regression matrices showed that the hydrodynamic coefficients were 

highly correlated and hence difficult to identify. 

The results of the ship identification testing show that it is not possible to identify 

the hydrodynamic coefficients of the two-dimensional surge-sway-yaw motion equa-

tions without specifying the added-mass hydrodynamic coefficients. The results also 

suggest that it is extremely difficult to identify the non-linear coefficient values due 

to the correlation between the different coefficients, as these correlations results in 

the error cancellation effect. 

As stated, identification of the hydrodynamic coefficients for UVs has been less thor-

oughly researched. Marco and Healey (1998) have identified a simphfied model of the 

surge motion coefficients for the Naval Postgraduate School (NFS) AUV Phenoix, and 

Ridao et al. (2001) have reported identifying the coefficients for a simple decoupled 

set of hydrodynamic load equations for the GARBI AUV. However, no research has 

been found in the literature that applied system identification techniques to deter-

mine all the coefficients used in a set of non-linear submarine equations of the type 

described in Feldman (1979). 

If identification of the hydrodynamic coefficients used in a set of non-linear submarine 

equations was possible then the approach could be easily used on Autosub. This 

may require that specific identification manoeuvres are performed during deployments 

of Autosub at sea or it may be possible to use the extensive library of Autosub 

manoeuvres from previous deployments. 

As has been highlighted in the ship identification research one of the issues with using 

system identification techniques is the possibility of identifying a set coefficient values 

that are different from the true captive model derived values. The identified coeffi-

cients may reproduce the identification manoeuvre accurately but may not reproduce 

other manoeuvres with the same fidelity. Thus, it is important to try and identify 

the captive model testing derived coefficient values. 
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Both the Component Build up Method and the hydrodynamic coefficient approach 

do not, of themselves, model the propulsion loads apphed to UV. Possible propulsion 

models, suitable for UVs, are discussed in the following section. 

3.7 Modelling Propeller Thrust and Torque 

Propulsion modelhng is a well researched area of naval architecture. Overviews of this 

topic are given in Lewis (1989b) and Bertram (2000), whilst Breslin and Andersen 

(1994) lays out the subject in more detail. The following sections briefly summarize 

the propeller modelling methods apphed to UVs. 

When modelling the propulsion system of an UV the factors of interest are the forces 

and moments apphed to the vehicle by the propulsion system. Thus, it is necessary 

to know the force and moment vector, 

r 
N I Tft — Mji, 

at any given instant in time. 

It is usual to calculate the loads produced by a propeller in isolation. The loads 

are then calculated with the propeller moving forward relative to the water. This 

produces the open water performance. The propeller is assumed to produce a thrust 

(T) parallel to the axis of rotation of the propeller and a torque {Q) about the axis 

of rotation as illustrated in Figure 9. 



45 

KJ KJ 

72 Q 

T VA 

Figure 9: Schematic of a propeller operating in open water. 

These open water results are usually expressed non-dimensionally using the following 

coefficients: 

T 
KT{J) = 

= 

j = 

prfiD'^ 
Q 

pn?D^ 

Y± 
nD 

(3) 

Subject to the following notation: 

n — Propeller revolutions rate [rps]. 

D — Propeller diameter [m]. 

VA — Speed of advance of the propeller [m-s~^]. 

J — Propeller advance coefficient, a non-dimensional velocity. 

The open water performance for a propeller cannot be directly used to determine 

the performance when installed on an UV as two mechanisms affect the open water 

performance. The first mechanism is known as the thrust deduction factor. The thrust 

deduction factor describes how the open water thrust of a propeller is apparently 
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reduced when installed on a vehicle. This thrust reduction can be explained by the 

reduction in pressure at the rear of the vehicle caused by the increased flow produced 

by the propeller. This drop in pressure at the rear of the vehicle produces an increase 

in pressure drag on the body and this must be overcome by the thrust produced by 

the propeller. Hence, the propeller thrust is seen to be reduced. This thrust reduction 

factor is simply modelled as a multiplicative correction factor, namely. 

RT = (1 — t)T (4) 

where, 

RT — bare hull resistance of ship (N) 

T — open water thrust of the ship (N) 

t — thrust deduction factor for ship subject. 

The second factor affect the open water performance of a propeller arises from the 

concept of a Wake fraction. This wake fraction describes the relationship between the 

flow speed into the propeller and the speed of advance of the ship. When a vehicle 

is advancing forward the mean flow into the propeller is less than the advance speed 

of the vehicle. This reduction in flow speed into the propeller is due to the boundary 

layer surrounding the vehicle. Thus, the open water speed of advance for the propeller 

can be calculated from the vehicle advance speed using a wake faction. This is done 

using the following expressions: 

= (5) 

or 

= (1 — WT)V. 

With additional parameters defined as 

WT = Taylor wake fraction. 

V = Ship speed. 

Va = Average water velocity into the propeller disc. 
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Combining Equations (3), (4) and (5) the thrust from the installed propulsion system 

is 

= (1 - ( / ) 

with 

In this case and J' are the effective thrust on the vehicle and the modified advance 

coefficient. 

Thus for this quasi-steady state model of the propulsion system thrust, it is necessary 

to have knowledge of the thrust coefficient KT- Several different approximations of 

the function have been used in modelling UVs and are discussed in Section 3.7.1 

Once the open water thrust (T) and torque (Q) for the propeller have been deter-

mined, it is necessary to describe these in terms of T„. TO do this it is necessary to 

express T and Q in the body fixed axis of the UV. If the main propulsion system 

comprises a single screw propeller with the thrust direction parallel to the x axis and 

acting through the origin of the body coordinate system, as is the case with Autosub, 

then the forces and moment vector becomes, 

Tn = [T, 0, 0, Q, 0, 0]^ = [Xn, 0,0, Kn, 0, 0]^. 

This describes the general model of the propulsion system for Autosub. But to create 

the specific it is necessary to determine KT, KQ, WT and t. However, before 

considering the methods of determining the data various formulae outlined in the UV 

literature to describe KT and KQ are discussed. 

3.7.1 Modelling KT and KQ 

In standard submarine simulations it is common to equate the value of KT and KQ to 

J dependent polynomials. Three different models, as outlined in Appendix C, have 
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been identified in the hterature, for KT, these are; 

Kt = a i — given by Healey and Lienard (1993). 

KT = CKi + 0=2 J — given by Fossen (1994). 

KT = a i + q;2 J + eta — given by Booth et al. (1980). 

The propulsion model presented in Healey and Lienard (1993) is for the Naval Post-

graduate School (NFS) AUV II vehicle. This AUV has twin propellers and the torque 

produced by the propellers cancel and hence are not modelled. Thus, KQ for the 

model is zero. Fossen (1994) and Booth et al. (1980) both use the same propeller 

torque model, that is, 

KQ = a + 

By assuming that KT and KQ are of a polynomial form simplifies the UV simulation 

procedure as the thrust and torque can be easily calculated for any advance ratio. 

Methods of determining the associated KT and KQ coefficients used in the propulsion 

model are considered next. 

3.7.2 Determining the Propulsion Data 

The open water values of KT and KQ can be found experimentally from model testing 

in a circulating water tunnel or a towing tank. In these tests the thrust and torque are 

measured for a given water flow into the propeller (Va) known as the speed of advance 

and a given propeller rotation rate {n) usually measured in revolutions per second. 

From this testing of the steady state performance it is possible to create a mapping 

of the functions of KT and KQ against J. The measured data can then be fitted to 

one of the polynomial models described previously. Alternatively the coefficients can 

be determined analytically using techniques such as blade element theory and CFD. 

These analytical techniques are generally less accurate than model experiments. 

The wake fraction can be measured for the bare hull of a vessel by using pitot tubes, 

particle image velocimetry (PIV) and such hke. This information gives the nominal 

wake fraction. This nominal wake fraction needs to be modified when the propeller 

is added, as the propulsion system modifies the wake behind the vehicle, thereby 
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creating the effective wake fraction. This effective wake fraction can be calculated 

by measuring the thrust or torque at a given speed of advance of a ship and then 

comparing the thrust or torque to the open water results to determine J for the 

propeller. By comparing the J value into the propeller and the ship speed of advance, 

a wake fraction can be determined. The wake fraction is assumed to be constant 

throughout the speed range. As this is not necessarily so the wake fraction should be 

calculated for the reference motion of the vehicle to model the propeller thrust and 

torque accurately over this range. 

The thrust reduction factor can be found using self propulsion trials. Here the pro-

peller is installed on the vehicle and the propeller rpm at self propulsion for a given 

vehicle speed of advance is found. Using this information, the wake fraction and 

the open water results it is possible to determine the thrust deduction factor for the 

propeller. 

The advantage in using this approach is that once the open water characteristics of a 

propeller have been found using that propeller on a different vehicle only requires the 

thrust reduction factor and the wake fraction. As determining this data is relatively 

simple the propulsion characteristics of the propeller vehicle system are easily found. 

However, if only the propulsion characteristic for a given propeller vehicle system are 

required and the open water characteristic of the propeller have not been characterized 

then describing the propulsion system as above is overly complex. 

An alternative method of defining the propulsion characteristics is to ignore the thrust 

reduction factor and wake fraction concepts and to measure the KT and KQ values 

when applied to the vehicle. For example, the values of the a's and /?'s used in the 

Booth et al. (1980) model are determined from acceleration and deceleration trials of 

the actual submarine. Trials such as this are relatively simple to carry out on Autosub 

and hence would be a relatively straightforward way of determining the propulsion 

characteristics for Autosub. However, care would need to be taken when performing 

these tests as although Autosub logs all the appropriate manoeuvre data, the logging 

process is not designed to accurately record vehicle motions. Also, to determine KT 

would requires a knowledge of the added-mass and hydrodynamic damping in the X 

force direction. Despite these challenges this form of testing would be well suited to 
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Autosub. 

3.8 Conclusions 

This chapter has reviewed how the loads on an UV can be modelled. It started by 

describing how the loads arise and then outhned the various sources of loads that 

makeup the total load on the UV. It was shown how the hydrostatic loads can be 

determined analytically. Thereafter methods of determining the remaining hydrody-

namic and propulsion loads were presented. Three separate methods of modeUing 

the hydrodynamic loads were described, these were CFD, the Component Build-up 

Method, and then the hydrodynamic coefficient method. The hydrodynamic coeffi-

cient method was considered to have the best accuracy; it was decide to use a set 

of non-linear submarine equations to model Autosub. These equations would require 

the hydrodynamic coefficient associated with Autosub to be determined. As there 

were not sufficient funds to determine the coefficients using captive model testing it 

was decided to attempt to system identify the coefficients using submarine trials data. 

The method for identifying these coefficients is outlined in the next chapter. 
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Chapter 4 

System Identification of 

Hydro dynamic Coefficients 

4.1 Introduction 

Having considered the modeUing of the motion simulation of an UV and elected 

to follow the naval architectural practice of using hydrodynamic coefficient based 

estimations of the external forces and moments, the problem of determining the co-

efficients had to be addressed. In this case serendipity played an important role. 

Whilst methods other than experimental captive model testing were being consid-

ered, as described in Chapter 3, exchanges regarding collaborative research between 

the Ship Science department of the University of Southampton and QinetiQ (Haslar) 

were under discussion. One particular task was to use system identification software 

developed within the University of Southampton to identify the hydrodynamic coeffi-

cients of submarines from a knowledge of the path traversed and the time histories of 

the different control surfaces. It seemed logical that if one could successfully system 

identify the hydrodynamic coefficients of submarines then the method ought to be 

transferable to torpedo shaped AUVs such as Autosub. 

A number of potential benefits were recognized within the proposed collaborative 

research, namely: 
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• The system identification approach could potentially use the large library of 

Autosub's manoeuvres to predict the coefficients or could perform special iden-

tification manoeuvre during deployments at sea. Both options were inexpensive 

thus were within the budget of the project. Whereas the funds required to 

identify the coefficient using captive model testing were not available. 

• QinetiQ's knowledge of submarine modehing could be used to inform the mod-

elling of Autosub. Also, the submarine governing equations used by QinetiQ 

(similar in form to the equations in Feldman (1979)) could be used to simulate 

Autosub. These governing equations are well developed and have been used to 

model the Naval submarines for the last two decades. 

• Sets of Hydrodynamic coefficients for real submarines were available to test the 

performance of the identiffcation procedure. 

As these benefits were considerable it was decided to proceed with the collaborative 

research. 

This chapter outhnes the identification task posed by QinetiQ, discusses the sub-

marine equations used and then outlines possible approaches to the QinetiQ task. 

Following this, the role of the manoeuvres selected for the determination of the iden-

tification procedure is considered. The chapter concludes by discussing the standard 

manoeuvres used to test the identification procedure. 

4.2 The QinetiQ Task 

The task posed by QinetiQ was: 

Can the hydrodynamic coefficients used to simulate a submarine be deter-

mined from a knowledge of submarine positional & attitude time history 

and the control time history for a manoeuvre, when these measurements 

are subject to noise and the submarine is subject to disturbances? 

This task is represented graphically in Figure 10. 
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Figure 10: Outline of the QinetiQ question 

Figure 10 shows the control inputs to the submarine or simulation as 2^ and the 

disturbance input as r^. Within the model the starting condition of the submarine 

at the beginning of the manoeuvre are described by and the hydrodynamic coef-

ficients by The position and attitude output from the submarine or simulation at 

a given time instant is rj. This is subject to noise which produce a final output 

t). Letting, 

N = [77(0), 

the QinetiQ task becomes, 

Given N and Tc for a manouevre can you find the submarine hydrody-

namic coefficients 

As was discussed in Section 3.6.4 research has be undertaken to identify of hydro-

dynamic coefficients of UVs. However, this research has only considered simplified 

hydrodynamic coefficient models. The identification of the coefficients for a fully cou-

pled six degree of freedom UV model has not been found in the consulted literature. 
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4.3 The QinetiQ Submarine Equations 

The submarine equations used by QinetiQ are essentially those attributed to Booth 

et al. (1980). The equations describing the hydrodynamic forces and moments are 

reproduced in Appendix D. The equations use the standard 'Newton-Euler' formula-

tion of the rigid body dynamics reported in Section 2.2. They also use the xyz Euler 

angle system to define the attitude of the UV. Thus, the rotation matrix Ji(772) 

and the Euler angle update matrix J2(^2) derived in Section 2.1.1 are used by the 

governing equations. 

The equations describe a 'classical' naval submarine with a single screw propeller, 

bow & stern dive-planes, and a rudder. The vehicle control inputs are the propeller 

rpm (n), rudder angle {5R), bow dive-plane angle {6B), and stern dive-plane angle 

(&S). 

4.4 Addressing the QinetiQ Task 

To determine the hydrodynamic coefficients used in the Booth et al. (1980) equations 

from a submarine's positional and attitude time history N with no measurement error 

and its control input history Tc is challenging. This is because simulation output rj at 

any time instant is related to the hydrodynamic coefficients (^) through an integrated 

set of non-linear coupled differential equation (see Appendix D). Thus, there is no 

obvious analytical approach to solving the problem. 

However, two potential techniques were identified. The first technique involved tack-

ling the non-linear problem head on by trying to identify a set of hydrodynamic 

coefficients ̂  (an estimate of ^) that would reproduce the target {identification) ma-

noeuvre N. The second involved reforming the Booth et al. (1980) equations into a 

linear system, and then using either Linear Programming (LP) or linear algebra tech-

niques to determine It was important that ^ £ for the techniques as, although 

a set of coefficients £ £ may produce the same manoeuvre, it is not necessarily 

the case that the identified coefficients f would provide acceptable predictions for all 

other manoeuvres. 
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The hnear and non-hnear approaches are outhned in the following sections. 

4.4.1 The Linear Procedure to Identify ^ 

Although the Booth et al. (1980) submarine equations are coupled, non-linear differ-

ential equations when used to predict the position and attitude of an UV, they can 

be rearranged so that the hydrodynamic coefficients can be solved in a linear fashion. 

This is demonstrated using the equation governing the acceleration along the x-axis. 

The rigid body accelerations, or the left hand side of the equations of motion, are. 

+ wg - - r) + + g)] = X, 

and the force model used in the Booth et al. (1980) equations is, 

+ + ^'wq'^Q) 

+ 2^^* + ^'rp^P) 

+ {^'uuSSR^^^ + ^'uu56B^B^ + ^'uuSSS^S"^) 

+ (B — mg) sin 0 

+ Xn-

These two equations can be combined and expressed in a matrix form as. 

, v?'5S'^ yf tutu 

y/ 

m[u — vr + wq — h Zcipr + q)] 

— {B — mg) sin 9 — Xn 

So provided that the UV's attitude (T72), velocity (i/), acceleration (i>) and control 

input (Tc) are sampled at various times during a manoeuvre, a set of linear equations 
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can be created for the manoeuvre with each equations representing one sample period. 

These equations can be combined into the following matrix equation, 

= b- (6) 

Here, 

Ax — The matrix of hydrodynamic coefficient multipliers. 

— The column vector of 'X' hydrodynamic coefficients. 

bx — The column vector of 'constant' terms. 

As each row of the Ax matrix and the bx vector represent one time sample period, the 

matrix equation (6) forms an over determined set of linear equations. The equation 

can be solved using least squares techniques or reformulated into a linear programming 

(LP) problem and solved using LP techniques. 

An overview of the basic procedure is represented in Figure IL The inputs to the 

submarine are the control input time history, Tc, and is the initial state vector 

of the submarine, . 

System identification block 

'c , 
,(0) 

Disturbances 
Td 

Noise 
£N 

c n 

Transform 
f]{t) and 

differentiate 
to get: 

i>{t) & 

procedure 

identifi-
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Figure 11: Schematic of the linear parameter identification procedure. 

The principal problem with this approach is accurately determining u and z> from 
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f j at each time step. This can be done by transforming the values of f j into the 

local axis system and then double differentiating. However, the presence of the noise 

would lead to substantial errors in the calculated velocities and accelerations. For 

this reason it was initially decided that this technique was not appropriate to address 

the QinetiQ task. However, what was not initially appreciated was the fact that the 

QinetiQ task was subtly different to the Autosub problem as the instrumentation of 

Autosub is such that the attitude, velocities and acceleration are known and hence the 

stated criticisms of the approach are not justifiable for the Autosub case. The reasons 

for these differences and the performance of the linear approaches are discussed in 

detail in Chapter 9, whereas Chapter 6 address the uniqueness of the hydrodynamic 

coefficients by examining the rank of the influence matrix Ax-

4.4.2 The Non-linear Procedure to Identify ^ 

The non-linear approach tries to identify the hydrodynamic coefficients ^ directly 

and is represented graphically in Figure 12. This figure shows the basic outline of the 

procedure and identifies the key steps involved. 
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Figure 12: Schematic of the non-linear parameter identification scheme. 

In this figure Tc represents the control input time histories for the manoeuvre per-

formed by the real and simulated submarines, and represents the initial state 

vector of the submarine and simulation. The simulation output N represents the 

simulated manoeuvre time history produced using the latest estimate of the hydro-

dynamic coefficient vector £. 

The basic procedure for determining the set of hydrodynamic coefficient is, 

1. Initially estimate the hydrodynamic coefficient vector 

2. Run the simulation with the estimated coefficient £ and determine the UV path 

N. 

3. Compare the estimated path N and the target path N to form a scalar quantity 

e representing the error between the two paths using a defined cost function. 
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4. Use the optimization routine to estimate a new hydrodynamic coefficient set £ 

that reduces the path error e. 

5. Repeat steps 2-4 until some convergence conditions have been satisfied. 

6. Output the final estimate of hydrodynamic coefficient 

There are three key areas in defining this identification approach, they are the selec-

tion of the manoeuvre used for the identification (Tc), the optimization routine used 

and the cost function used to measure the error between N and N. 

The selection of the manoeuvre is considered in more detail in Section 4.5. The cost 

function and optimization routine are outlined next. 

The Cost Function used in the Non-linear Identification Procedure 

The purpose of the cost function was to produce a scalar metric (e) of the closeness 

of the estimated manoeuvre N to the target manoeuvre N. The constraints for this 

cost function form were that it should be minimal when N equalled N and should 

increase as N moved further from N. The chosen method of producing this was to 

use the sum of the squares of the errors between N and N. 

The N and N matrices are both sized n x 6. The columns of N contain the known 

positions z, ^ & z (in metres) and attitudes (j), 6 k, tp (here measured in degrees), 

with each row corresponding to a different point in time. Whereas the columns of N 

represent the estimated positions x, y k. z and attitudes (j), 0 k Thus, the cost 

function can be written as, 

" r . -,2 
£ = ^ 2 ~ ^(4)]^ + [y{ti) — 2/(4)]^ H H ^(4) — fPiU) • 

2 = 1 

This cost function is manoeuvre dependent. It is not appropriate to compare the 

cost function values between manoeuvres as the value only gives the relative level of 

agreement between N and N for a specific manoeuvre. 
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The Optimization Routine used in the Non-linear Identification Procedure 

The optimization routine was required to adjust ^ to minimize the value of e. There 

are many different non-linear optimization routines available but no particular routine 

has been found to be optimal in all applications, for an overview of the subject see 

Fletcher (1987). Broadly the routines can be broken into local and global optimizers. 

The local optimizers are designed to find the minimum or maximum point in a local 

area, whereas the global optimizers are designed to find the global maximum. This 

is illustrated in Figure 13. 

Global maximum 

Local maximum 

Local minimum 

Figure 13: Example of local and global maxima and minima 

As local optimizers are quicker at finding a solution, and as it was felt that the problem 

domain would not have many local optima, the optimization routine was chosen to be 

a local optimizer. As part of the QinetiQ identification team Professor Veres of the 

University of Southampton had implemented a Sequential Quadratic Programming 

(SQP) procedure in Matlab, this is an advanced local optimizer that has shown good 

performance in solving constrained non-linear problems. It was decided to use this 

code as the optimization routine. This, restricted the implementation of the motion 

simulation code to the Matlab computing environment. Although Matlab is somewhat 

slow in execution, it allows rapid code development so Matlab would have been an 
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appropriate choice even without this restriction. The details of the SQP procedure 

are outlined in Section 7.2. 

4.4.3 Analysis of the Two Approaches 

The detailed implementation and testing of the two approaches are discussed in Chap-

ter 7 for the non-linear approach and Chapter 9 for the linear approach. 

Both coefficient identification approaches require a UV output N and UV inputs Tc 

& to work. As real submarine data is time consuming and expensive to acquire 

it was decided to used simulated data to generate N from Tc & This had 

the advantage that the data was not subject to noise or disturbances. But, it did 

require creation of a general submarine simulation with applications based on realistic 

submarine coefficients to produce N. 

It was thought that using only one set of submarine coefficients £ to produce the ma-

noeuvres could lead to 'tuning' of the system identification procedure to the selected 

vehicle, so data for three submarines was supplied by QinetiQ. Thus, for any trial 

manoeuvre (Te, 8^)) the appropriate submarine output (iV) could be produced for 

all three submarines. 

The question of whether the Booth et al. (1980) equations accurately reproduce real 

submarine manoeuvres for a given input time history was not addressed because it 

was thought that being able to identify the coefficients from simulated data was a 

necessary, but not sufficient, condition to being able to identify the coefficients from 

real submarine data. So testing the relatively simple case using simulated manoeuvres 

would give an appreciation of the suitability of the technique for identifying the 

coefficients of real UVs. 

Selection of the manoeuvre used to identify the unknown hydrodynamic coefficients 

is considered in detail next. 



62 

4.5 The System Identification Manoeuvres 

To perform the system identification to identify the hydrodynamic coefficients it 

is necessary for the UV to perform a manoeuvre. The nature of this manoeuvre 

will define how well the coefficients can be identified. For example if the manoeuvre 

only involved forward motion at constant speed with no control input it would only be 

possible to determine the drag on the vehicle and hence only the term. Therefore, 

this manoeuvre is not suitable for general identification purposes, and a more complex 

manoeuvre is required. 

Generally for the manoeuvre to be useful it needs to be sufficiently 'rich' in information 

to stimulate all the dynamic characteristics of the UV. The concept of 'richness' 

is useful in qualitatively describing the properties of an ideal manoeuvre, but it is 

difficult to specify how to design a 'rich' manoeuvre. The selection of a suitable 

manoeuvre for the identification procedures is thus a non-trivial task. Some of the 

complexities are considered next. 

4.5.1 Problems with Real Underwater Vehicle Manoeuvres 

In captive model testing all UV motions are controlled; this simplifies the identifica-

tion of the hydrodynamic coefficient values. However, for real UV manoeuvres the 

motions of the vehicle depend upon the forces and moments applied. These forces 

and moments tend to produce coupled vehicle motions. As an example, when consid-

ering a turning circle it is not possible to generate a yaw rate (r) without inducing a 

sway motion (w). Thus, due to this coupling it is impossible to produce an arbitrary 

motion for the submarine style UVs considered. 

The effect of this close coupling of UV motions in a manoeuvre is to couple the 

coefficients linked with these motions. This, coefficient couphng can in turn lead to 

error cancellation when trying to identify the coefficients. For example, the X force 

comprise the coefficients X[,^ and X'^^, thus a good approximation of the X force can 

be produced when errors in X^^ are cancelled by errors in X'̂ .̂ . This error cancellation 

effect makes the identification of the coefficients difficult. The errors can be cancelled 
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in two ways, these are: 

Partial Error Cancellation. Here errors in one coefficient are almost completely 

cancelled by errors in the coupled coefficients. This error cancellation means 

that certain large changes in the coefficient values only produce small changes 

in the UV positional time histories. As the mapping from the coefficients ^ 

to the positional time history N, is assumed to be an injective function (i.e. 

one to one) it is also possible to consider the mapping from the manoeuvre 

time history N back to the hydrodynamic coefficients When the mapping is 

viewed iV i—> ^ the partial error cancellation means that very small changes (or 

errors) in N can produce very large changes (or errors) in The phenomenon of 

small errors in the input data creating large errors in the output data is known 

as ill-conditioning. As we are attempting to map from the manoeuvre time 

histories N to the hydrodynamic coefficients ^ any manoeuvre which exhibits 

this property will be described as ill-conditioned within this thesis . 

Complete Error Cancellation. Under certain circumstances the coupling between 

the different motions will produce complete error cancellation. In this case the 

system becomes under-determined. That is, it is not possible to identify all the 

coefficients, only the relationships between them as an infinite number of sets 

of coefficients will produce the same manoeuvre. The set of possible coefficient 

values can be represented geometrically by a hue, plane or hyper-plane in a 

hyper-dimensional space where each dimension represents a coefficient value. 

Although the hydrodynamic coefficients can be identified via captive model testing; 

the motions used cannot be reproduced by free swimming UVs. Thus, due to the 

error cancellation described, it is not certain whether it is possible to produce a free 

swimming manoeuvre that is 'rich' enough to identify all the coefficients accurately. It 

maybe possible to produce a manoeuvre from which a set of hydrodynamic coefficients 

can be identified which adequately predicts the motions of the UV, but estabhshing 

that this set of coefficients will predict every manoeuvre is extremely difficult. 
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4.5.2 Defining a U V Manoeuvre 

Before a more detailed discussion of manoeuvres is possible it is necessary to have 

a definition for a manoeuvre. For the purposes of this thesis a manoeuvre can be 

defined by a starting condition and a time history of the control inputs (Tc), 

thus, 

manoeuvre = (s|f^,Tc) 

where, 

40) — The UV's state vector at t = 0. 

77̂  — The position and attitude vector. 

— The linear and angular velocity vector. 

Tc — The UV control input time history. 

c(t) — The UV control input at time t. 

Here SR, SB and 5S are the rudder, bow-plane and dive-plane angles at the various 

time intervals, and n is the propeller rpm. Using this description all manoeuvres can 

be described by the associated initial vehicle state, and the control time history, 

Tc. 

This description does not put any restrictions on possible manoeuvres. However, real 

submarines have; maximum and minimum hydroplane angles; maximum hydroplane 

slew rates; maximum and minimum forward and reverse propeller speed, etc. Thus, 

some physical restrictions apply to real UV manoeuvres. 

Even though restrictions apply there are still an infinite number of possible manoeu-

vres that can be described. 

4.5.3 Determining Sufficiently 'Rich' Identification 

Manoeuvres 

As was mentioned in the beginning of Section 4.5 there are definitely manoeuvres 

that are not 'rich' enough to identify all the coefficients. Also, there are an infinite 

number of possible manoeuvres that can be performed by an UV. It is not certain that 
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any of these manoeuvres will allow complete identification of the coefficients. This 

poses a problem as we cannot test every manoeuvre to see which are good or bad at 

identifying the coefficients. As there is no clear way of ascertaining the performance of 

a manoeuvre without testing it, it was decide to design several standard manoeuvres 

based on practical ship manoeuvres performed (zig-zag, spiral) and use these for 

the identification tests. These standard manoeuvres are described in detail in the 

following sections. 

4.6 The Chosen Standard U V Test Manoeuvres 

Due to the unknown nature of the identification task, it was considered that reducing 

the fully coupled equations of motion to simpler sub-problems would be useful during 

the initial development of the identification technique. The idea being it is easier 

to learn to crawl before attempting to walk. To this end three separate cases were 

identified, these were: 

The horizontal sub-problem. Here motion was restricted to the horizontal plane 

only. Thus, only the velocities u, v and r were possible. In this case only a small 

sub-set of 25 coefficients played a contributing part, so only these 25 coefficients 

were identified. 

The vertical sub-problem. Here motion was restricted to the vertical plane, and 

only the velocities m, W and q were permitted. Consequently only 32 coefficients 

associated with the vertical motion were identified. 

The fully coupled problem. This is the complete identification problem. No mo-

tions were restricted and all 101 hydrodynamic coefficients were identified. 

The horizontal and vertical sub-problem manoeuvres were produced using the full 

submarine simulation (described in Appendix D). However, all the coefficients as-

sociated with the unused forces were set to zero. Also all coefficients involving the 

unused motions were set to zero. Finally all 'mechanical' coupling coefficients (e.g. 
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ZQ for the horizontal case) were set to zero. This allowed the full simulation to be 

used for the two sub-problems. 

After some discussion with QinetiQ standard manoeuvres for all three cases were 

developed. These standard manoeuvres, although generated from an intuition of what 

would represent a 'rich' manoeuvre, have no theoretical justification. The three test 

submarines all use the same standard Tc & , but due to their different coefficients 

the paths produced are substantially different. This caused depth problems with 

some submarines, as shown later, but allowed the manoeuvres to be compared for the 

different submarines. 

The three inputs Tc & for the standard manoeuvres and the manoeuvre paths 

iVs for the three test submarines are illustrated in the following sections. 

4.6.1 Description of Horizontal Motion Manoeuvre 

The chosen horizontal manoeuvre was a spiral performed over 600 seconds of simu-

lated time. The rudder angle used to generate the spiral is given in Figure 14. The 

resultant UV paths are ihustrated in Figure 15. The rudder angle time histories, 

although stepped in appearance, include the rudder dynamics as the rudder changes 

from one angle to another. 

No scale is given on the path figure as the performance of the submarines is considered 

to be sensitive. 
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Figure 14: The horizontal manoeuvre rudder angle time history. 
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Figure 15: The x — y positional time history of the three submarines performing the 

horizontal manoeuvre. 

4.6.2 Description of Vertical Motion Manoeuvre 

The choice of potential vertical manoeuvres was more restricted than the horizontal 

case due to the hmited depth envelope of the submarine. That is, the submarine path 

must lie between the free surface and the maximum service depth. For this reason 

the chosen vertical manoeuvre is based on the horizontal 'zig-zag' manoeuvre. This 

allowed the depth of the submarine to be controlled to lie within the depth envelope. 

The stern dive-plane time history, shown in Figure 16, was found using submarine 1. 

This was done as follows: First, after 10 seconds of straight and level flight, the 

rear dive plane {5S) was set to 5° and once the submarine pitched down to -5° the 

dive plane was set to -5°. This cycle of ±5° was repeated three times and on the 

fourth repeat the dive plane was set to 0° and the vehicle was left to stabilize. The 

full manoeuvre lasts 350 seconds. As only the stern dive-planes were used in the 

manoeuvre none of the bow dive-planes coefficients can be identified. 
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The submarine paths are given in Figure 17. Although the depth is measured posi-

tively downwards the data is displayed in the more intuitive orientation, with increas-

ing depth going from top to bottom of the page. The figure shows that submarine 3 

dives deeper than submarines 1 or 2. Although this may break the service depth of 

the submarine it was accepted so that the same manoeuvre control input could be 

compared on the different submarines. 
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Figure 16: The vertical manoeuvre stern dive-plane angle time history. 
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Figure 17: The x — z positional time history of the three submarines performing the 

vertical manoeuvre. 

4.6.3 Description of Coupled Motion Manoeuvre 

The coupled manoeuvre is based on submarine 1 performing the horizontal spiral 

manoeuvre. Due to the coupling between the horizontal and vertical planes the 

manoeuvre produces vertical and horizontal motions. However, due to the large depth 

change experienced by submarine 1 during this manoeuvre the stern dive-planes were 

used to control the depth. The bow-planes were not used, and hence the manoeuvre 

is not able to determine the bow-plane related coefficients. The depth control was 

necessary as the submarine was breaking the free surface. The stern dive plane angle 

was generated by trial and error to produce reasonable depth control. The stern 

dive-plane time history was determined for submarine 1, and once established was 

used on submarines 2 & 3. Thus, the depth was only controlled for submarine 1. The 

control plane time histories are shown in Figure 18, and the three submarine paths 

produced by the manoeuvre are shown in Figure 19. 
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The depth of submarine 3, shown in Figure 19, is not well controlled and the sub-

marine dives excessively deep. Although this, in all hkelihood, exceeds the maximum 

service depth for the submarine, the issue was ignored in the simulations so that the 

manoeuvre input could be compared for the different submarines. 
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Figure 18: The coupled manoeuvre control-plane time histories. 
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Figure 19: The positional time history of the three submarines performing the coupled 

manoeuvre. 

4.7 Conclusions 

The manoeuvres presented in Figures 15, 17 and 19 represented simulated horizontal 

plane, vertical plane and fully coupled motions. These figures and the control plane 

angles given in Figures 14, 16 and 18 essentially provide the data required to use 

the non-linear identification strategy given in Figure 12 to address the QinetiQ task 

defined at the beginning of this chapter. 

The simulations just described were produced using the Matlab based UV motion 

simulation developed for the identification procedure. The development and testing 

of the UV motion simulation is discussed in the next chapter. 
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Chapter 5 

Creating the Generic Submarine 

Simulation 

5.1 Introduction 

This chapter describes the implementation of the QinetiQ submarine equations into a 

generic simulation used with the system identification techniques discussed in Chap-

ter 4. The work undertaken with QinetiQ required the use of their general submarine 

equations produced by Booth et al. (1980), the submarine model is described in detail 

in Appendix D. 

The simulations described in this chapter were designed to work with the system 

identification procedures. The simulations generate a vehicle path (N) from a known 

control input time history (Tc). The simulation was not designed to react to the 

environment as the complete control time history was input prior to commencement 

of the simulation. Therefore the simulation cannot react to new conditions, and thus it 

is not possible to use as a general Autosub simulation. However, it is straightforward 

to create a separate simulation using the same governing equations that is suitable 

for modelling Autosub's motions. 

The system identification simulation described was well suited for generating vehicles 

paths that could be used to test the system identification strategy and was ideal for 
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addressing the QinetiQ system identification task. 

The chapter first describes some of the requirements needed to generate the Matlab 

UV simulation. Thereafter it discusses the submarine equations and describes how 

they can be represented in the notation similar to that used by Fossen. The method of 

generating the simulation is described and includes how the submarine equations are 

rearranged for implementation in the simulation. The features of alternative integra-

tion routines are considered and the chosen routine is described. Having established 

the approach required to produced the simulation, the implementation within the 

Matlab computing environment is described. The chapter concludes by describing 

the validation testing performed on the simulations. 

5.2 Simulation Requirements 

QinetiQ provided a series of manoeuvres (AT) and control input time histories (Tc) 

to test the system identification procedure. The manoeuvres were simulated by Qine-

tiQ's in house submarine simulation SubHov using coefficients only known to QinetiQ. 

This enabled blind testing of the identification procedure. 

Unfortunately it was not possible to integrate the SubHov software into the identifi-

cation procedure as the identification procedure had to be able to call the simulation 

at will and then receive the results. As SubHov did not allow this interface a simula-

tion with this capability had to be created. This simulation had to produce outputs 

'identical' to SubHov. 

The problem with reproducing SubHov's output was that the input to the software 

was cascaded through a series of sub-models as shown in Figure 20. 
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Figure 20; Block diagram of a manoeuvre implemented in SubHov 

However, it was not possible to recreate the complete SubHov model as no specific 

information was available on the controller or the dive-plane dynamics models. 

But as SubHov outputs the control plane positions at fixed time intervals (0.1s de-

fault) throughout the manoeuvre the control plane time history (Tc) could be deter-

mined. Hence using the control plane time history {Tc) allowed SubHov manoeuvre 

to be recreated in the SI simulation. A consequence of this was that the input was 

determined at a set time step (At). This has a direct effect on the simulation time 

integration routines described in Section 5.5. 

Along with the control plane time history Tc being set at fixed time intervals it was 

also necessary for the positional time history N to be determined at fixed time inter-

vals so that the earlier defined cost function could be calculated (see Section 4.4.2). 

Thus both the input and output of the simulation had to be determined at a fixed 

time step. 

5.3 The Submarine Equations of Motion 

The full Booth et al. (1980) submarine equations are described in Appendix D and 

the propulsion model is also analysed in Appendix C. 
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5.3.1 Expressing the Motion Equations in Terms of Fossen's 

Notat ion 

It is possible to rewrite the Booth et al. (1980) equations using a notation similar to 

that outhned by Fossen (1994). This is done, as in Chapter 2, to maintain a consistent 

notation format. Using this notation the governing equations can be written as. 

Here, 

M^bZ> + drb{i^) = MaV' + d{u) + g{r]) + r. 

Mrb— Is a matrix of the rigid body acceleration terms. 

drbi^)— A vector of the rigid body velocity terms. 

M a — A matrix of the hydro dynamic added mass coefficients. 

d{y)— A vector of the hydrodynamic damping coefficients. 

g{ri)— A vector of the hydrostatic forces and moments. 

T = Tc + Tn— A vector of the control forces and moments. 

u 

The associated force and moment vectors are defined in the following sections. 

The rigid body acceleration matrix — Mrb 

The rigid body acceleration matrix is defined as, 

Mrb = 

m 0 0 0 

0 m 0 0 

0 0 m —mxc 0 

0 —mzg Ixx —IxY —Izx 

0 —mzg — IxY IYY —IYZ 

mTc 0 —Izx —IYZ Izz 

This matrix when multiphed by i> forms the rigid body dynamic acceleration vector. 

These terms can be readily reconciled with the equations laid out in Section 2.2. 
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The rigid body dynamics velocity vector — dj-biy) 

This vector represents the forces and moments associated with the velocity terms of 

the rigid body dynamics model. The rigid body dynamics equations were described 

earlier in Section 2.2. The vector is defined as, 

drbiy") — 

m + wg - 2:0(9^ + r^) + 

m [-wp + w - + %(gr) + 3:0(9?)] 

m [-Mg + + 9^) + 2;G(rp) + 

{Izz — ^YY)Q1^ — {p(l)lzx + — Q^)IYZ + {pf)IxY 

+m [UG {-uq + vp) - ZQ (-wp + ur)] 

{Ixx — ^ZZ^P — {.(l'r)IxY + — f'^)Izx + {QP)^YZ 

+m [ZG {—vr + wq) — XG {—uq + vp)] 

{IYY — Ixx)PQ — {rp)lYZ + (9^ — p'^)IxY + W)7j 

+m [XG {—wp + ur) — UG {—vr + wq)] 

The added-mass matrix — MA 

The added-mass matrix when multiplied by i> represents the hydrodynamic reactions 

of the UV with the surrounding fluid. When the matrix is multiplied by i> the result 

is a force and moment vector. The added-mass matrix is defined as 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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The hydro dynamic damping vector — d(i/) 

This hydrodynamic damping vector represents the fluid dynamic damping associated 

with the vehicle. The fluid dynamic damping is difficult to model as it is a com-

plex phenomenon, thus the terms involve in the model are numerous and the model 

complex. The vector is described by 

1 T 
d{u) Xd, Yd, Zd, Kd, Md, Nd 

The associated descriptions for each of the force and moment components of d{u) are 

respectively: 

Xi = \pe (x'„y + xiv'+x:^w') 

+ + ^'rp'^P) 

+ 

+ 

1 

\VV 

+ KlPl^l^l + ^ ^ 9 + ^ 9 ' " ) 

+ {Z'uq^Q + ^vp'^P + Kr'^'"') 

+ P'' 

pi' {z'„p^ + z',y + z;,rp) 
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+ (Kp^p + + Kg^g + ^{upwp + 

+ + ^p|p|p|pl) 

Md = {M'uu^^ + + ^'vv'^'^) 

+ + M^|^|M|w| + M|;^^||wz/|) 

+ + -Kr^)' + -Kp^p) 
2' 

1 
+ gp^^ ( ^ P ^ + + ^g|g|9l9l) 

Nd — gPẐ  {^'uv^^ + + ^vw'^'^) 

+ ^p/ ' (K.^W 

+ ^P '̂̂  (Kp^P + K r ^ r + AQ,wp + N ^ w r + -

+ gP^^ (-^ri/^^ + 

+ ^P^^ WgP9 + + -^Arl^l^l) 

The hydrostatic force vector — g(r)) 

The hydrostatic force and moment vector was defined previously in Section 3.3 and 

is repeated here for clarity. 
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aiv) = 

~{mg — B)s9 

{mg — B)c6s4> 

{mg — B)c9c(j) 

({/emg - 2/BB)ĉ C(;6 -

— — zgB)s^ — — a;gB)c^c<^ 

(â cTTip - a;BB)c^c^ + - 3/B5)s^ 

The control force vector — r 

The control vector represents the forces and moments exerted by the hydroplane and 

the propulsion system. The vector can be broken down into the following terms, 

^ — •y "^ni 

where the control forces and moments from the fins, Tc, are modelled by 

Tc = 

KUSSRSH' + Ku6mSB' KUMS^S' 

ZLwSB + KuisSS 

^ ' ^'uuSR^^ 

^ • ^'uu8R^^ 

0 

0 

This can be found from an analysis of the governing equations presented in Ap-

pendix D. 

The propulsion forces and moments, r„, are modelled by 

Xn 

0 

0 

Kn 

0 

0 
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as described in Section 3.7. 

5.4 Converting the Motion Equations into a Form 

Appropriate for Simulation 

The goal of the simulation is to produce a positional time history of the submarine 

(AT). Thus, the Booth et al. (1980) equations have to be rearranged so that the 

acceleration can be calculated at any time point. The approach to converting the 

equations of motion into a form that can be integrated to form a positional time 

history is based on work described in McGhee et al. (2000). The basic approach is to 

describe the UV motion through a state vector defined by 

= k,!/, Z, (6, u, g, 

The vehicles control inputs are defined in vector form as 

c = 

To simulate the UV motion it is necessary to find the first time differential of the 

state vector. This can be done from a knowledge of the current state and the control 

inputs. Hence, it is necessary to find the function / in, 

Sv = / ( S v , c ) . (7) 

Using Fossen's notation can be represented as, 

V 

V 

Thus, the first differential of the state vector can be broken down into finding / i 

and /2 for the expressions: 

7̂ = / i (f?, c) 

i^ = iv, c). 
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It was shown in Section 2.1.4 using the xyz Euler angle sequence, that: 

77 = J(772)1/, 

where, 

J" 1(^2) 03x3 

03x3 ^2(^72) 

The matrices J 1(112) and J2(112) described in Section 2.1.1 and Section 2.1.3 

respectively. 

Thus, 

fi (?7, c) = J ( % ) i / . 

To calculate the function /2 is more complex. 

5.4.1 Calculating z> 

The governing dynamic equations of the Booth et al. (1980) model can be written in 

the notation previously described, as 

MrtZ> + drb(v) = Mai> + d(u) + g(r)) + r . 

The equation can then be rearranged to give 

[Mrb - MA] = d(u) - drb(T') + g(r}) + r, 

This leads to 

z> = [Mrh - MA] ^ [d(u) - drb(L') + g(i]) + r] 

Thus, the function /g is determined by, 

/2(sv, c) = [Mrb - MA]~^ [d(u) - drb(u) + g(r]) + r] 
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5.4.2 Calculating Sy 

Combining the equations above lead to 

5v — 
v 

J {12)^ 

[Mrb - [d{iy) - drbiv) + girj) + r] 

This formulation of the equations of motion is ideally suited to integration as at each 

time step the first derivative of the state vector can be found and integrated. 

5.5 Selection of Integration Routines 

The submarine state vector equations described form a set of coupled non-linear 

differential equations. They are from a class of initial value problems which can be 

represented in the general form by, 

^ = y{to) = yo-

As analytical solutions to these equations are notoriously difficult to find the usual 

solution method is to use numerical techniques to obtain an approximate solution. 

Numerous routines are available to perform this time domain integration. This section 

considers some of the properties of integration routines and describes the chosen 

routine in detail. 

5.5.1 Accuracy, Efficiency and Stability of Integration Rou-

tines 

The three key features of interest in selecting an integration routine are its accuracy, 

efficiency and stability. Usually the accuracy of a routine can be increased by using 

a smaller step size, however, this increases the time taken to solve the initial value 

problem and hence increase the CPU demands of the integration routine. Thus, the 

accuracy and execution times are closely coupled. 
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The stabihty of an integration routine depends principally on the function / and the 

step-size adopted. When instability occurs the predicted value of y rapidly diverges 

from the true value of y. This is usually preceded by oscillations in the solution, 

when the system becomes unstable it is said to 'blow-up'. If a system is unstable it 

is possible to remove the instability by changing the integration routine used or by 

decreasing the step-size. 

5.5.2 Errors in Numerical Integration Routines 

There are two types of error associated with stable solutions produced by numerical 

integration routines, these are truncation and rounding errors. The truncation error 

is caused by the mathematical discretization of the problem and arises from how 

the integration routine approximates the function to be integrated. There are two 

measures of truncation error, namely local and global. The local truncation error 

represents the error in one time step, whereas the global error represents the total 

error produced from all time steps. 

Where the truncation error comes from the mathematical approximation used the 

rounding error comes from the implementation of the mathematics within the com-

puter. The errors arise from the way that computers store numbers. As only a finite 

number of bytes is used to represent a number only a limited set of numbers can 

be described. Hence when numerical operations produce a number which cannot 

be represented it is 'rounded' to a number which can. Hence rounding errors are 

produced. 

These two error types are discussed in detail next. 

Truncation Errors 

All numerical integration routines considered calculate the value at from an 

initial value of at Thus, each step can be considered in isolation as a separate 

initial value problem. The different methods considered use a truncated Taylor series 

expansion to approximate the function and hence produce the estimate yn+i- As the 
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Taylor series is truncated the discarded terms produce the truncation error in Dn+i-

It is known from Taylor's Theorem that a truncated Taylor series of a function f{x) 

taken about a point a and consisting of the first n terms has an error (or remainder) 

at some point x given by, 

^ (n + where, a < c, < z. 

The value Cx is not known. However, the error is bounded as the size of (cx) 

is finite. Thus, the error cannot become greater than some multiple of This 

concept is represented by the 'big O' notation O(-). This is written as, 

e{x) = as /i —̂  0 

which means that 

\s{x)\ < for some constant A. 

This O(-) notation describes how the error will decrease as the step size h is made 

smaller. However, the error at each step produces a local truncation error. The real 

question is to understand the global truncation error. If the local truncation error 

is 0{hn+i) the global truncation error is 0 { h n ) . Thus, the global truncation error is 

said to be of order n, which is one less than the order of the local truncation error. 

In general higher order methods are more accurate than lower order methods. Press 

et al. (1992). Unfortunately, the mathematics does not prove that higher order meth-

ods are always better as the value of A is not known. 

Rounding Errors 

As was implied above decreasing the step size improves the accuracy of the inte-

gration routine. However, this assumes perfect calculations which computers cannot 

reproduce. If the step size is small the approximations introduced by the method 

the computer uses to store and process numbers can generate large rounding errors. 

If the step size becomes too small the errors from rounding become larger than the 
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improved accuracy generated by the smaller step size. Thus, the step size should be 

sufficiently large to minimize the rounding errors. 

5.5.3 The Chosen Approach: The 4^^-order Runge-Kutta 

Method 

As was discussed in Section 5.2 both the input to the simulation Tc and the output 

N had to be calculated at fixed time steps, thus a fixed step-sized integration routine 

would be appropriate. Although it would be possible to use variable time-step routines 

it would complicate the implementation. 

The chosen routine was a standard 4̂ ^ order Runge-Kutta method described in Press 

et al. (1992). This has a global truncation error of 0(/i^). It is a 'workhorse' routine 

that is commonly used because of its simple implementation, robustness and accuracy. 

The method calculates the function values at the next time step using the following 

procedure: 

ki = 

, . ^ / fci A t \ 
k2 = Atf + —,tn + —J 

^3 = A t / f + ~,tn + — 

ki = Atf (y„ + ks,tn + At) 

, , &2 , &3 , &4 
y„+i - % + - ^ + T + T + - ^ 

Pn+l Vn-i-l ~ O(h^), 

where, 

0{h ) represents the local truncation error. 

This method can then be used to integrate the submarine state vector differential 
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Equation (7), by notating in, 

that 

/ l (Sv! C), 

c = AM 

then the equation can be written the initial value problem form as 

Sv = t)-

The Runge-Kutta method outline above can then be used to integrate the equation. 

5.6 Creating the U V Simulation Code 

The submarine equations were implemented in the Matlab computing environment to 

create the Matlab UV simulation. The associated inputs and outputs of the simulation 

are shown in Figure 21. By changing the UV hydrodynamics (^), mechanical (m) 

and propulsion coefficients n a different UV could be modelled. 

Simulation 

Figure 21: Inputs to the generic simulation code 

The inputs to the simulation are: 

m e 

slOl 

pis 

71 6 

G 

The UV hydrodynamic coefficients vector. 

The UV mechanical coefficients vector. 

The UV propulsion coefficient vector. 

The manoeuvre control input matrix. 

The initial UV conditions. 
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And the corresponding output is; 

Sv{t) G The UV state vector at time t. 

The full definition of vectors m and n is given in Appendix E. 

5.6.1 Three Versions of the Generic Submarine Simulation 

The Matlab simulation was implemented in three different ways within the Matlab 

environment. AU three versions produced the same output but the execution time of 

the code was improved in each subsequent version. 

The first version of the code was implemented as a series of m-file functions within 

Matlab. The code was written to be easy to understand and debug. However, the 

code took a long time (three minutes) to execute the standard horizontal manoeuvre. 

As the simulation had to be run many thousands of times before the optimization 

routine converged this initial code needed to be speeded up. 

In the second version of the simulation the previous m-files were optimized to reduce 

the execution time. This was achieved by removing some inefficient code sections and 

re-coding the files in a Matlab 'friendly' style. This greatly reduced the readability of 

the code. The optimized code was then compiled using the Matlab compiler. The final 

compiled code executed the standard horizontal manoeuvre considerably faster than 

the first version. However, the code still took 18.5 seconds to execute. Consequently 

the non-linear parameter identification procedure still took a long time to run. This 

became a problem when the full identification procedure was being tested as the code 

was taking approximately 2-3 days to converge. As the simulation task was taking 

99.8% of total execution time it became clear that a significant increase in the speed 

of simulation was necessary reduce the identification procedure run time. 

The final version of code was written in C within a Matlab '.mex' wrapper. This 

'wrapper' allowed the code to be called as a Matlab function. This meant that the 

simulation could be called in the same fashion as the previous versions of the code. 

The simulation written in C took 0.04 seconds to execute the standard horizontal 

manoeuvre. This speeded up the code by a factor of 450 approximately compared 
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to the optimized m-file version. This made the non-hnear parameter identification 

routine far easier to test. 

The execution times for all three simulation versions are shown in Table 1. 

Simulation version Execution time (s) 

Matlab m-file 180 

Optimized and compiled m-file 18.5 

C coded .mex file 0.04 

Table 1: Comparison of simulation time for the standard horizontal manoeuvre. 

5.7 Testing and Validating the Simulation Code 

Once the simulation was created it needed to be tested and validated to make sure it 

would produce the same output as the QinetiQ SubHov simulation. For the purpose 

of the testing it was assumed that the SubHov simulation was an accurate, error free 

implementation of the Booth et al equations. Thus provided the Matlab simulation 

produced the same output at SubHov for all manoeuvres the Matlab code could be 

assumed to be correct. 

The Matlab simulation versions were tested in three broad stages, these were: 

1. Initially test the simulation to see if a 'reasonable' output was produced. 

2. Compare the Matlab simulation output for a defined test manoeuvre (described 

in Section 5.8.1) to that produced by SubHov. 

3. Finally perform a line by line check of the code to attempt to find any errors 

that had been missed during stages 1 and 2. This was necessary as only one 

manoeuvre was tested during stage 2. 

As the first simulation version was clearly going to be too slow and was 'development' 

code it was not as thoroughly tested. The second version of the code was used 

with the non-linear identification procedure, and was tested far more thoroughly. 
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The third Matlab simulation version was first compared to the second code version 

and then subsequently to the SubHov output. All three Matlab versions produced 

effectively identical outputs. There were very slight numeric differences but these 

were discounted as being due to the different coding used. The comparisons show 

that all three versions implemented the equations in the same fashion. However, when 

the Matlab simulations were compared to the SubHov output there was a small but 

consistent difference between the results. This is discussed in the following section. 

5.8 Comparing the Matlab and QinetiQ's SubHov 

Simulations 

As mentioned in Section 5.2 neither implementation details nor source code were 

available for SubHov. Therefore it was not possible to reproduce SubHov directly 

within Matlab. But as SubHov uses the Booth et al. (1980) equations a simulation 

based on these equations should produce approximately the same output. However, 

as SubHov has many other functions along side the basic Booth et al. (1980) equations 

it is quite likely that there are difference in how the Booth et al. (1980) equations are 

implemented in SubHov compared to the Matlab simulation. Thus, it was expected 

that there would be slight differences between the outputs of the simulations even 

when both simulations were 'correct'. Thus, the validation phase of the testing would 

give a guide to this error as well as validating the Matlab simulation. 

The simulations were compared by running a manoeuvre in SubHov and then running 

the same manoeuvre in the Matlab simulation. The resultant paths of the manoeu-

vres could then be compared. This comparison was performed with all three test 

submarines. 
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5.8.1 Specification of Manoeuvre Used in Comparative 

Studies 

The manoeuvre used for the comparison was a depth controlled spiral manoeuvre. 

This manoeuvre was chosen so that along side the specified rudder angle SubHov 

would control the depth by adjusting the bow and stern dive planes, hence all control 

planes would be active during the manoeuvre. This allowed all the control plane code 

to be tested along with the general UV dynamics code. 

The starting conditions for the manoeuvre were; 

z = 300m Submarine depth, 

u = 7.5ms~^ Submarine forward speed. 

In the SubHov manoeuvre at t = 10s the control depth was set to 125m and a spiral 

turn was started by ramping up the rudder control angle in 5° increments to 30° and 

then reducing rudder control angles in 5° increments to 0°. The control plane angles 

are shown for submarine 1 in Figure 22. In Figure 22 the dynamic step response of 

the rudder, although plotted, is not obvious as the time constant of the rudder is very 

small. 

During the manoeuvre each rudder angle step was supposed to be held for 60s unfor-

tunately due to an oversight the 10°-15° & 15°-20° steps were only 50s long while the 

20-25° step was 70s long. Once the rudder angle had returned to 0° at 660s it was 

held constant until the manoeuvre terminated at 750s. 

There was no change in the submarine's required speed during the manoeuvre. 
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Figure 22: The control plane angle time history for submarine 1 performing the 

SubHov comparison manoeuvre. 

5.8.2 Comparison of the Predictions 

The positional time history of Submarine 1 generated by SubHov and the Matlab 

(version 3) simulations are shown in Figure 23. The submarine 1 path for each 

simulation appear identical. However, on closer inspection small differences can be 

seen. Figures 24 and 25 present differences along with the actual outputs for the x 

and u values. Similar plots for other observed differences are provided in Appendix E. 

The X and u values are highlighted as they show a feature common to each of the three 

test submarines performing the defined comparison manoeuvre, that is, the Matlab 

simulation consistently generates slightly larger forward speeds than that of SubHov. 

The reason for this is not clear, the Matlab simulation has been checked repeatedly 

for errors and nothing has been found. As the effect is quite small it is assumed to be 

due to a difference in implementation between SubHov and the Matlab simulation. 
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Figure 23: Comparison of the SubHov and Matlab simulation positional time history. 
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Figure 24: Plot of x and x error. 
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Figure 25: Plot of u and u error. 

As it is not practical to describe the difference in the simulations by plotting the 

graphs of each state vector variable the maximum absolute error for each has been 

calculated along with the associated cost function value (using the cost function 

described in Section 4.4.2). This data is presented in Table 2. 



95 

submarine 1 submarine 2 submarine 3 units 

X 0.761 0.772 0.659 m 

y 0.397 0.415 0.300 m 

z 0.570 &179 0.108 m 

<P 0.244x10-^ (1332 xlO-3 0.122x10-3 rad 

9 1.623x10-^ 1.379 xlO-3 1.187x10-3 rad 

XP 2.391x10-3 2.531 xlO-3 1.187x10-3 rad 

u 2.868x10-3 2.502 xlO-3 3.585 xlO-3 m-s~^ 

V 0.960x10-3 1.443 xlO-3 0.912 xlO-3 m-s~^ 

w 4.693x10-3 4.378 xlO-3 3.184 xlO-3 m-s^^ 

p 0.070x10-3 0.203 xlO-3 0.066 xlO-3 rad-s~^ 

Q 0.375x10-3 0.319 xlO-3 0.215 xlO-3 rad'S-^ 

r (X071xl0-3 0.111 xlO-3 0.045 xlO-3 rad-s"^ 

cost function 2434.4 2215.9 1648.1 

Table 2: Maximum differences between SubHov and the Matlab simulation for three 

submarines performing the comparison manoeuvre. 

The table shows that the errors associated with the different submarines are not that 

large and would be perfectly acceptable in predicting the motion of a submarine from 

an engineering standpoint. However, they are not the same. 

To better appreciate this error a comparison of the relative difference between SubHov 

outputs using different integration time step sizes was undertaken. The SubHov 

simulation was tested performing the comparison manoeuvre with time step of Is, 

0.1s and 0.01s. The 0.01s time step was assumed to be correct and all the errors are 

related to this. The results for the difference produced by time steps of Is and 0.1s 

are shown in Table 3. 



96 

At = Is Af = 0.1s units 

X 4.536 L635 m 

y 6.549 2.284 m 

z L242 0.114 m 

0 &11 xlO-3 &32 xlO-3 rad 

e 38.62 xlO-3 &30 xlO-3 rad 

29.86 xlO-^ 10.26 xlO-^ rad 

u 0.101 7.693 xlO-3 m-s"^ 

V 0.010 0.482 xlO-^ m-s~^ 

w &122 7.935 xlQ-^ m-s~^ 

p 2.67 xlQ-s 0.120 xlO-^ rad-s~^ 

Q 12.47 xlO-3 1.205 xlO-^ rad-s~^ 

r 0.86 xlO-3 0.029 xlO-3 rad-s~^ 

cost function 102150 4325X) 

Table 3: Maximum differences between SubHov simulating the comparison manoeu-

vre with a 0.01s time step and SubHov simulating the same manoeuvre with 1.0s and 

0.1s time steps. 

It is not possible to say which time step is more accurate but reducing the time step 

to 0.01s increases the simulation time ten fold from that of the 0.1s time step. As the 

difference between the 0.1s and 0.01s time steps is small the extra effort in computing 

the vehicle track using the 0.01s time step was not justified. Also considerable degra-

dation in performance was shown when the Is time step was used. This large error 

occurred because the simulation was becoming unstable. The instability manifested 

itself as oscillatory behaviour in certain state vector variables. Hence, the time sav-

ings associated with the Is time interval are outweighed by the increase in accuracy 

associated with the 0.1s time step. 

Also Table 3 shows that the errors associated with different step sizes are larger than 

those between the SubHov and Matlab simulation with a 0.1s time step. It was 

therefore felt that the Matlab simulation produce an acceptable level of accuracy and 
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could be used in the parameter identification task. 

5.9 The Accuracy of the Mat lab Simulation 

The previous section showed that the SubHov simulation output was sensitive to the 

time step used. It was considered necessary to repeat the indicated testing using 

the Matlab simulation to establish the accuracy of the Matlab simulation. However, 

instead of using the comparison manoeuvre previously described for the SubHov com-

parison the three parameter identification manoeuvres described in Section 4.6 were 

selected. The accuracy of the simulation in predicting these manoeuvres would be 

useful in assessing how well N converged to N in the non-linear identification ma-

noeuvre. 

It was assumed that as the time step was decreased the simulation would become more 

accurate, as the truncation error is reduced and the rounding error was assumed to 

be small. Thus, by reducing the step size it is possible to assess the 'accuracy' of the 

simulation using a specified time step. In this case 'accuracy' does not describe how 

well the simulation predicts UV motion, but how well the simulation approximates 

the Booth et al. (1980) equations. 

The proposed simulation time step size was 0.1s to allow the simulation to identify 

the coefficients used to produce the QinetiQ test manoeuvres. However, the accuracy 

of the manoeuvres was investigated using a range of time steps. 

The accuracy was assessed by simulating the horizontal plane, vertical plane and 

coupled standard manoeuvres described in Section 4.6 with time steps of 0.001, 0.01, 

0.1 and 1 second. This examination was repeated fore each of the three submarines. 

This was done to assess whether the accuracy was dependent on the UV simulated. 

The 0.01s, 0.1s and Is predictions are compared with the 0.001s simulation results. 

The associated cost function variations are shown in Table 4 and the maximum posi-

tional error results are shown in Table 5. Both tables shows how the 'error' reduces 

as the time step is reduced. 
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Manoeuvre At Submarine 1 Submarine 2 Submarine 3 

Horizontal 0.01 1.116x10^ ĝ KWxiQO IXUGxlQi 

0.1 1.349x103 L191xl03 1^29x103 

1.0 1.911x105 l^WSxlQS 1.744x105 

Vertical 0.01 1.269x10-2 1 . 1 4 0 x 1 0 - 2 1.269x10-2 

0.1 2^^6x10" l̂ ^WxlQO l̂ WSxlOO 

1.0 1.427x10* 2^^7x104 

Coupled 0.01 lIWGxlQi l^MGxlOi lIWexlQi 

0.1 l^GGxlQS 1^^6x103 l^#lx l03 

1.0 1^174x105 lJ26xl05 l^'95xl05 

Table 4: Variation of cost function for each submarine undertaking the three standard 

manoeuvres using different times steps. 

To make the cost function comparison meaningful the 0.01s and 0.1s time step cost 

functions were calculated using data selected at a 0.1s interval. Thus comparable 

results were produced as the number of data entries in each case was the same. 

However, it was not possible to use a 0.1s interval for the 1.0s time step without 

interpolating the values. To overcome this problem the 1.0s time step cost function 

was calculated at 1.0s intervals and then multiplied by 10 to produce an estimate of 

the cost function value based on data sampled at a 0.1s interval. 
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Manoeuvre At Submarine 1 Submarine 2 submarines 

Horizontal &01 0.062 0.063 0.063 

0.1 0.688 0.695 

1.0 &128 &197 8.296 

Vertical 0.01 0.004 0.003 0.003 

0.1 0.041 0.028 0.033 

1.0 2.423 4.653 

Coupled 0.01 0.062 0.064 

0.1 0.694 0.686 0.706 

1.0 &160 &146 8.330 

Table 5: Maximum positional difference for each submarine undertaking the three 

standard manoeuvres using different times steps. 

The data shows that the submarine used has little effect upon the manoeuvre error. 

However, the particular manoeuvre performed has a significant effect. The results 

show that the truncation error at a time step of 0.1s produces a cost function of 

approximately 1300 and a positional error of approximately 0.7 metres for both the 

horizontal and coupled cases. The error is substantially less for the vertical with a 

maximum cost function of approximately 2.5 and a positional error of approximately 

0.04 metres. This difference is explained by the vertical manoeuvre being less severe, 

with a maximum control plane deflection of ±5° compared to 30° for the horizontal 

and coupled manoeuvres. Also, the manoeuvre is also shorter in duration and so 

errors do not have as much time to build up. 

To conclude the results show that, like SubHov, the choice of a 0.1s time step is a 

reasonable trade off between speed and accuracy. 
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5.10 Conclusions 

This chapter has described how the Booth et al. (1980) submarine equations have been 

turned into a simulation that can be used with the linear and non-linear parameter 

identification procedures. 

The chapter started by describing the requirements for the simulation and discussed 

some of the issues of matching the output of the Matlab simulation to that of QinetiQ 

simulation SubHov. Next, the equations were described using notation similar to that 

of Fossen and thereafter rearranged into a form suitable for computer simulation. 

Following this the numerical integration of the equations was considered and the 

chosen integration routine was described. 

Having described the simulation in theory the implementation within the Matlab 

environment was discussed. This described the three simulation versions implemented 

and their respective simulation speed. Following this the testing and validation of the 

simulation was described. Here it was shown that although the various simulation 

versions agreed almost exactly with each other there was a distinct difference in output 

compared to the SubHov simulation. This difference was assumed to be due to a 

slightly different implementation of the equations. However, as the difference between 

the Matlab simulation and SubHov was less than that produced by reducing the 

SubHov integration time step the accuracy of the Matlab simulation was considered 

to be acceptable. 

The chapter concluded with an analysis of the accuracy of producing the three test 

manoeuvres using the Matlab simulation. This accuracy was calculated by reducing 

the time step of the Matlab simulation and was based on the assumption that reducing 

the time step improved the accuracy of the simulation. 
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Chapter 6 

Assessment of the Uniqueness of 

the Hydrodynamic Coefficients 

6.1 Introduction 

Having created the simulation and hnked it with the associated optimization routine, 

as will be discussed in Chapter 7, initial testing showed that although the simulated 

track converged to the target manoeuvre, the identified hydrodynamic coefficients 

were substantially different to those used to produce the target track. It was not im-

mediately clear whether this situation was due to the hydrodynamic coefficients being 

non-unique, and hence other sets of coefficients could produce the same manoeuvre, 

or whether the equations were ill-conditioned and so very similar manoeuvres could 

be produced by grossly different sets of hydrodynamic coefficients. These issues were 

previously discussed in Section 4.5.1. This chapter answers the question of whether 

the hydrodynamic coefficients are non-unique. 

For the coefficients to be non-unique, a different set of coefficients has to be capable of 

producing the same acceleration in any manoeuvre. The question of non-uniqueness 

can be addressed by using ideas developed in the linear identification procedure out-

lined in Section 4.4.1. 

Taking the X force equation as an example. The equation describing the forces. 
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moments and accelerations in the x direction can be written as the hnear equation, 

= bx- (8) 

Where Ax is a matrix of the X hydrodynamic coefficient multipliers, is a vector 

of the X hydrodynamic coefficients and bx is a vector of the resultant forces. The 

values Ax and bx are specific to a given submarine performing a given manoeuvre. 

For there to be a unique set of coefficient for this manoeuvre there has to be a unique 

solution to Equation (8). This will not happen if there is a solution for 

J lx fx == 0 (9) 

as then 

Ax^x = ^x^x + kAx^x = ^xi^x + k fx ) = b 

for any scalar k. Therefore any vector defined by + will be a solution to Equa-

tion (8) and if follows that there will be an infinite number of sets of hydrodynamic 

coefficients which will produce the same manoeuvre. 

Equation (9) defines the null space of Ax, see Strang (1988), and is written as Af(Ax) 

in this thesis. If the null space is zero dimensional (i.e only containing the zero 

vector) then the solution is unique and the X force hydrodynamic coefficients would 

be unique. If on the other hand J\f{Ax) is not zero dimensional then there would 

be an infinite number of solutions which satisfy the equation and there would be an 

infinite number of sets of hydrodynamic coefficients which would produce the same 

X force during the performed manoeuvre. 

The dimensions of the null space can be determined from a fundamental theorem of 

linear algebra that states, 

dimension of N{A) = n — r 

where, 

n = number of columns in A, 

r = the rank of A. 
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So to assess whether there is a unique set of X force hydrodynamic coefficients for a 

given manoeuvre it is only necessary to determine the rank of the Ax matrix and to 

compare this to the number of hydrodynamic coefficients in the associated vector. 

However, this approach does not prove that the coefficients will be non-unique for 

every manoeuvre, but, as will be seen, the approach does provide insight into how to 

show that the coefficients are non-unique. 

If the coefficients are non-unique all is not totally lost. As by specifying the value 

of a coefficient in the dimension of J\f(Ax) will be reduced by one (provided the 

J\f{Ax) includes that coefficient). Thus, by specifying enough coefficient the J\f{Ax) 

will become zero dimensional and the remaining coefficient values can be determined. 

However, the values of the specified coefficients need to be accurately determined as 

errors in their values will lead to errors in the identified coefficients. For this reason 

is is preferable to specify the added-mass coefficients as they are relatively simple to 

determine accurately as described in Section ??. 

The forgoing discussion is directly applicable to the Y Z force and K, M h N 

moment hydrodynamic coefficient. 

To calculate all the associated matrices A it was necessary to know the accelerations 

at every time step of the simulations as well as the velocities and attitude. To achieve 

this the simulation was modified to output the accelerations of the vehicle i> as well 

as the vehicle state vector s^. 

The remainder of this chapter describes the identification of the rank of the different 

force and moment A matrices associated with the three test manoeuvres performed 

by each of the three submarines. The A matrices associated with a given coefficient 

set are identified by a subscript, for example Ax is the A matrix associated with the 

unknown X coefficients. 

6.2 The Horizontal Manoeuvre Rank Analysis 

The horizontal manoeuvre was run using the modified simulation and the A matrices 

were calculated for the three submarines, the results of the rank analysis are presented 
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in Table 6. They show that the A matrices are under-determined for the V and N 

coefficients. This was a surprise as it was assumed that the matrices would be of full 

rank. 

Rank for the Rank for the Rank for the Columns of 

Matrix submarine 1 submarine 2 submarine 3 A 

Ax 6 6 6 6 

Ay 8 8 8 9 

Ajv 8 8 8 10 

Dimension of Dimension of Dimension of Associated 

Matrix N{A) sub. 1 A/"(A) sub. 2 Af{A) sub. 3 added-mass 

Ax 0 0 0 -

Ay 1 1 1 n 

AN 2 2 2 

Table 6: Horizontal manoeuvre rank analysis. 

The table also shows the added-mass that is associated with the rank reduction and 

hence by specifying this added-mass the remaining coefficients would be identifiable. 

The causes of the rank reduction in the horizontal manoeuvre are outlined in the 

following sections. 

6.2.1 The Causes of the Reduced Rank of the Ay Matrix 

To explain this phenomenon it is necessary to consider the simplified horizontal equa-

tion of motion used to calculate the acceleration in the Y direction. The horizontal 

sway equation given in Appendix D.2 can be expressed as, 
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where, 

(10) 

The y-direction motion equation can be rearranged to give 0 as a function of the 

hydrodynamic coefficients (^y), namely. 

YJ + (11) 

For the hydrodynamic coefficients to be non-unique at least two sets of coefficients 

have to produce the same sway acceleration (v) for every manoeuvre. Thus, 

^((y) = Y) and (y f (y ' 

This can only occur if the hydrodynamic coefficients can be modified to scale the 

numerator and denominator of Equation (11) by the same amount (i.e. effectively 

multiply by | ) . This would mean, 

^((y) = ^((y) • ^ 

'k' 
+ 

'k' 
k. 
+ 

_k_ 

(12) 

It is assumed, unless otherwise stated, that the UV motions are independent and so by 

inspecting Equation (12) it can be seen that the mycr'^ term can make it impossible 

to modify and still have the same v, as there is no hydrodynamic coefficient in the 

numerator. However, the three submarines used with the horizontal manoeuvre have 

Ua = 0. Thus, the Equation (12) reduces to, 

YJ 

kYrhs + k{\pl^Y^^ - m)ur -f k{\pl'^Y!. - mxcY 

/c(m -

'k' 
k_ 

(13) 
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Multiplying all the hydrodynamic coefficient of Equation (10) by a scalar k results 

in kYrhs- From Equation (13) it is possible to identify how to modify coefficients Yl 

and & YJ. to make •y(Cy) = ^(^y)- Thus, provided yc is zero the horizontal yaw 

equations have a non-unique set of hydrodynamic coefficients, thereby explaining the 

rank deficiency of Ay for this manoeuvre. Also as no assumptions about Ay have 

been made it follows that the coefficients will be non-unique for all manoeuvres. 

As UVs tend to have their centre of gravity on the x — y plane the value of yc tends to 

be zero, thus for a horizontal manoeuvre the Ay matrix will tend to be rank deficient. 

As the Yl term forms the denominator of Equation (13) it is chosen to be specified. 

6.2.2 The Causes of the Reduced Rank of the Matrix 

The rank of An for the spiral manoeuvre corresponds to ?lM{Ais[) having a dimension 

of 2. Hence the solution is non-unique and two separate coefficient relationships are 

required to span A/"(Ajv)- Following the same basic approach to that described above, 

two added mass coefficients were identified as being associated with the reduction in 

rank; these N'j. and N'̂ . The reasons for the rank reduction are discussed next. 

Rank reduction of Ajy associated with N'̂  

The equation describing the yaw acceleration for the horizontal manoeuvre (described 

in Appendix D.2) can be written as. 

Zzzr + m (t; + itr) - ("u - ^r)] = TVrAs + (14) 

with. 

Nrhs — 

+ (A^|r|r|r|) . 
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Equation 14 can be rearranged to give, 

Nrhs + - mxc) V + - rnxg) ur 

Izz — 

myc {u — vr) 
(15) 

For the same manner described for Equations (13), provide yc = ^ the hydrodynamic 

coefficients can be changed without affecting r. This explains the reduction in the 

rank of M{Afq) by one, the second cause of rank reduction is due to N'̂  and is 

explained next. 

Rank reduction of An associated with 

The term reduces the rank of ^jv as shown by first writing Equation (15) in the 

form, 

+ Ckwf |r| + Chv5u\r\5R 

+ ChvQur + Chv7'f' + Chvsyaf^ 

(16) 

Here, the constants represent the the velocity multipliers, for example Chvi represents. 

C, hvl 

These constants can be changed by changing the hydrodynamic coefficients. Equa-

tion (15) can also be written in the same fashion and becomes, 

r = ChrlU^ + Chr2UV + 

+ C/ij-4r|u| + 

+ Chr&ur + ChrjV 

+ Chrsf |̂ ;| + Ckr8r|r| + Chrio2/G (i/ - ^;r). 

(17) 

Comparing Equations (16) and (17) we see that if Equation (16) was substituted 

into Equation (17) the v dependence would disappear and that the two 'new' terms 
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Chvd.yGf'̂  and Chviv\r\ would be added to Equation (17). But as was noted earlier 

l/G = 0 for the test submarines so the 'new' ChvsVGî '̂  term can be ignored. The 

remaining 'new' term ChvAv\r\ is very similar to ChrA l̂vl with the only difference being 

the location of the modulus sign ie v\r\ and r\v\. So if either v\r\ = r|t'j or t'|rj = —rlt'| 

is also always true then Equation (16) can be substituted into Equation (17) without 

adding any new terms. This would occur because i) would be a linear combination of 

the remaining motions. 

From a consideration of the physics of UV motions it was assumed that it was not 

possible to induce a yaw rate without a corresponding sway velocity. Combining this 

assumption with the axis system used to describe the UV motion, it is shown that 

during normal turning manoeuvre the sign of v is always opposite to that of r as is 

illustrated in Figure 26. 

Turning to Starboard Turning to port 

r 

+r +r 

Z 

positive r, negative v negative r, positive v 

Figure 26: Horizontal Manoeuvre showing the relationship between v & r 

Hence, during normal turning manoeuvres v\r\ is of opposite sign to r|u| as, 

-\-ve\ — ve\ — —(—uel + ve\). 
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Therefore, 

v\r\ — —r\v\ 

This assumption was tested for the horizontal manoeuvre by plotting against 
8ign(r) 

time. This plot showed the assumption to be true for the tested manoeuvre. 

Thus, as = 0 for the three submarines and u is a linear combination of the terms 

of r Equation (17) it follows that N'̂  can be written as a hnear combination of the 

other N moment terms. Thus, the rank of J\f{A]^) is reduced by 1. 

The proceeding analysis outlines the causes of the the rank reduction of Aat which 

occur when the yc term is zero. 

6.3 The Vertical Manoeuvre Rank Analysis 

The vertical simulation was run with the three submarines and the associated A ma-

trices were produced. As the bow planes were not used during the vertical manoeuvre, 

all the coefficients associated with SB could not be identified. Hence the columns in 

the A matrices associated with the SB coefficients have no effect on the manoeuvre, 

and so were removed for the rank calculations. The rank of A, the number of columns 

of A and the dimension of N{A) are shown in Table 7. 
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Rank for the Rank for the Rank for the Columns of 

Matrix submarine 1 submarine 2 submarine 3 A 

Ax 6 6 6 6 

Az 10 11 11 11 

AM 11 12 12 12 

Dimension of Dimension of Dimension of Associated 

Matrix Af{A) sub. 1 M{A) sub. 2 Af{A) sub. 3 added-mass 

Ax 0 0 0 — 

Az 1 0 0 

Am 1 0 0 

Table 7: Vertical manoeuvre rank analysis. 

These results show that submarine 1 has a non-unique set of hydrodynamic coeffi-

cients, whereas submarines 2 & 3 have unique sets of hydrodynamic coefficients. This 

difference was a surprise, but it justified the decision to test three different submarines 

so as not to 'tune' the procedure to any one submarine. 

6.3.1 The Causes of the Reduced Rank of the A z Matrix 

Using the vertical submarine equations of motion described in Appendix D.3 and 

combining them in the way outhned for the horizontal manoeuvre, the vertical accel-

eration w can be written as, 

Zrhs + + ITT) + mxa) 
w 

Where, AB = B 

m 
mzcq — AB cos 9 

m YPZ'^ 
(18) 

Equation (18) shows that provided mzcq^ and ABcosO are zero then the hydrody-

namic coefficients can be adjusted while maintaining w, and hence the coefficients 

are non-unique. Submarines 2 & 3 have non-zero values of ZG, explains why their 

associated Az matrices are of full rank, but for submarine 1 zg = 0, explaining why 

its coefficients are non-unique. 
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6.3.2 The Causes of the Reduced Rank of the Am Matrix 

The pitch rate acceleration q for the vertical sub-problem can be written as: 

q = 

+ 

IyY -

—mzG {u + wq) — {mgxG — Bxb) cos 9 — {mgza — Bzb) sin 9 

WY — 
. (U)) 

From Equation (19) it can be seen that for q to remain unchanged for different sets of 

hydrodynamic coefficients then the terms zq, zb and {mgxa — Bxb) must equal zero. 

However, this is not so for any of the submarines. Thus, an alternative mechanism is 

required to explain the rank reduction in the Am matrix. 

Rank reduction of Am associated with M'^ 

The w equation can be written as 

VJ = CylZL^ + Cy2'^'W ~t" S B + Cy^U^SS 

+ C-o5Vj\w\ + + Cy7Vj'^ 

+ Cy%Uq 

+ Cygu\q\SS + Cyiow\q\ 

+ CviiQ 

+ AB cos 9 + mzcq^ 

and the q can be written as 

Q = Cjniu'^ + Cm2U'UJ + CmsU^^B + 

+ Cm5'w\w\ + 

+ Cm&uq 

+ Cm9u\q\5S + CmWQ\w\ 

+ Cmiiq\q\ 

+ Cml2Uq + CmlsW 

— mzG {u + wq) — {mgxG — Bxb) COS 9 

— {mgzG — Bzb) sin 6*. 

LIBRARY 

(20) 

(21) 
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In the same manner as the horizontal manoeuvre, in the vertical manoeuvre Equa-

tion (20) can be substituted into the Equation (21). This introduces the 'new' terms 

{Cviow\q\), (AJ5cos6') and {mzaq^) into the q equation while removing the w term. 

As mentioned earher, AB is zero for all submarines, and zq is zero for submarine 1 

but not submarines 2 &: 3. Hence, the rank of Am for submarines 2 & 3 cannot be 

reduced using this technique. 

The remaining 'new' term is multiplied by w\q\, which is very similar to the Cmio 

multiplier q\w\. Considering the physics of UV motions and noting AB = 0, it is 

reasonable to assume that no heave velocity can be induced without a corresponding 

pitch rate. Thus, one can assume that 

q\w\ = w\q\. 

This was the assumption that was tested for the vertical manoeuvres and was shown 

to be correct. 

From this assumption, it becomes clear that Equation (20) can be substituted into 

Equation (21), thereby removing the w dependence, without adding any new terms. 

Hence, the M'^ coefficient can be written as a linear combination of the other M 

moment coefficients. 

6.4 The Coupled Manoeuvre Rank Analysis 

The coupled simulation was run with the three submarines, and the associated A 

matrices were produced. However, as with the vertical manoeuvre, the coupled ma-

noeuvre does not use the bow plane, hence the columns associated with the 5B were 

removed from the A matrix for the rank calculations. The rank of the matrix A and 

the number of columns of A are shown in Table 8. The dimension of M{A) along 

with the coefficients associated with the non-uniqueness are shown in Table 9. 
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Rank for the Rank for the Rank for the Columns of 

Matrix submarine 1 submarine 2 submarine 3 A 

Ax 11 11 11 11 

Ay 17 17 17 18 

Az 16 17 17 17 

AK 16 16 16 16 

Am 17 18 18 18 

Apf 16 17 17 18 

Table 8: Fully coupled case rank analysis. 

Dimension of Dimension of Dimension of Associated 

Matrix jV(A) sub. 1 W(A) sub. 2 M{A) sub. 3 added-mass 

Ax 0 0 0 -

AY 1 1 1 yi 

Az 1 0 0 % 
Ak 0 0 0 — 

AM 1 0 0 

Apf 2 1 1 

Table 9; The dimensions of the null spaces, A/'(A)'s, for the coupled manoeuvre, and 

the causes of the rank reductions. 

6.4.1 The Causes of the Reduced Rank of the Ay Matrix 

The acceleration v for the fully coupled submarine equation can be written as. 
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+ m) wp + - 773,) %/r + - mzc) 

+ % + mzc) P + % - pg + (}% - ma^c) r 

m - ^pZ^y? 

+ 
VG (r^ + P^) — (AB) sin 0cos 9 

. 

The conditions under which the hydrodynamic coefficients can be changed but v kept 

constant are 

Hg — 0 and AB = 0. 

The submarines examined were neutraUy buoyant so AB = 0, and as previously 

stated ug was zero for all the submarines. Thus, non-unique assignment of the coef-

ficients is possible, and the term is considered responsible for the rank reduction 

in the Ay matrix. 

6.4.2 The Causes of the Reduced Rank of the A z Matrix 

The acceleration w for the fully coupled submarine equation can be written as. 

w 

Yrhs + + m) uq + {^pl^Z'^p — m) vp + -\- mzc) 

+ rp + 9 

mzcq^ — mycirp + p) — (A5)cos0cos0 
. (23) 

Here, the conditions under which the hydrodynamic coefficients can be changed while 

maintaining w are, 

zc = 0, Z/G = 0 and AB = 0. 

As already noted both AB and yc are zero for all three submarines. However, zq is 

not zero for submarines 2 & 3, and so the rank of Az is not reduced for these two 

submarines. 
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6.4.3 The Causes of the Reduced Rank of the Am Matrix 

The acceleration q can be written as 

Mrhs + {\pl^M'pr ^xx + Iyy) Pf + "" Izx) V" 

+ + Izx) 

+ + mzc) w + - TTia;̂ ) itg 

Q = /yy -

(p + gr) 7xy - (gr - r) /y^ - mzc (if + wg) 

{mgxG — Bxb) cos 0 COS 0 — {jngzc — Bzb) sin 6 
T TTtkITIV Iyy -

(24) 

in the fully coupled submarine equations. The conditions under which the hydro dy-

namic coefficients can be changed while maintaining q are therefore 

IxY = 0, Iyz = 0, ZG = 0, ZB = 0, 

and mgxc — Bxb = 0. 

For the three submarines tested, Ixy: Iyz, Xq and xb are zero. However, for all three 

submarines zb 7̂  0. Thus, the coefficient does not explain the reduction in rank 

of the Am matrix. 

Rank reduction oi Am associated with M'-„ 

An alternative cause of the linear combination is through the w equation. This 

equation can be written as. 
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W — ~1~ C(̂ yj2'̂ W ~1~ CcwŜ  CcwÂ^ SB "f" Ccwb'̂  SS 

+ CCWQWP + Ccw7'^\w\ + Ccw&\'^^\ 

+ Ccw^uq + Ccwwvp + Ccwiivr 

+ Ccwi2u\q\SS + Ccwi'iWV — (25) 

+ CcwUP^ + Ccwlal^^ + Ccw\&fp + CcwnQ 

mzoq^ — mya{rp + p) + AB cos (p cos 9 

Noting that the sign of q is the same as the sign of w, then it follow that 

= sign(w)|g|i/ = qu. wv 

Combining this information with the fact that for submarine 1 zq, Vg and AB are 

zero, then for submarine 1 Equation (25) becomes 

VJ — Ccw\U Cquj^V CcwA^ SB •"{" Ccwh'^ SS 

+ CCWQWU + Cctu7M|w| + Ccu,g|wi/| 

+ CcwdUq + Ccwio'̂ P + Ccuiuvr (26) 

+ Ccwi2u\q\SS + CcwizQ^ 

+ CcwuP^ + Ccwi^r'^ + CcwwfP + CcwnQ-

Also, Equation (24) can be written as 

Q — CcqlV? + Ccg2UW + CcqZV^ + CcqiV^SB + CcqSU^SS 

+ CcqeWU + Ccq7u\w\ + Ccgsl^^^l 

+ CCQ^UQ + CCQLQVP + CCQLLVT 

+ CCQL2'^\Q\SS + CCQLZQ^ 

+ CCQLAP^ + CCQL^F"^ + CCQL^TP 

+ QgiyW + Ccgl8p|p| + 

Comparing Equations (26) and (27), it can be seen that Equations (26) can be de-

scribed by a linear combination of the first 16 terms of Equation (27). The rank of 

Am was not reduced for submarine 2 & 3 as zg was not equal to zero in their case. 

(27) 
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6.4.4 The Causes of the Reduced Rank of the Matrix 

The r equation can be written as, 

Nrhs + — IYY + Ixx)PQ + {\pl^^qr ~ 

+{\pl^Np + Izx)p + {\pl^Ni, " 

r = 
Izz + \pl^N'j. 

(g + rp)7yz - (g^ - p^)/xy + 7712/0(1/ - + wg) 

{mgxG — Bxb) sin 0 cos 0 + {mgya — Bi/b) sin 9 

Izz + \pl^N'f. 
(28) 

The conditions under which the hydrodynamic coefficients can be changed while main-

taining r are therefore, 

L 0, IxY = 0, xg = 0, zg = 0, ?/G = 0 and db — 0. 

All these conditions are met by submarines 1, 2 & 3, this completely explains the 

reduction in rank of A at submarines 2 & 3 but not for submarine 1. As the rank 

of the An matrix of submarine 1 is reduced by two then another coefficient can be 

written as a linear combination of the other coefficients. 

Rank reduction of A r̂ associated with N'̂  

There are two possible added-mass coefficients that could be instrumental in reducing 

the rank of the An matrix, these are N'̂  and N'̂ . The p equation contains the term, 

{mgzG — Bzb) sin 0 cos 9. 

This term is not zero for all of the submarines; thus the p equation cannot be sub-

stituted into the r equation without adding this 'new' term. Hence, cannot be 

written as a linear combination of the N coefficients, so the rank oi A^ would not 

be reduced. 
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On the other hand the term looks more promising. The i) equation can be written 

as 

V = Ccvl'U? + Ccv2UV + CcvS'OVJ + CcviVU + CcvbU^SR 

+ Ccu^up + Ccvjur + Ccvsvq + Ccvgwp + Ccviowr 
r 

+ CcvllVl^ 
V 

+ CCV12U\t\8R 

+ Ccvl'i'P + CculiT + CcvlbPQ + CcvieQf + Ccvl7p\p\ 

+ CcrlS AB sin cos ̂  

and as both AB and yc equal zero the last two terms can be ignored. 

The r equation can be written as, 

r = Ccrl^^ 4" Ccr2^^ CCRSVW + Ccr4^^ ~t~ 

+ Ccr^up + CcrjUr + CcrSVQ + CcrgWp + CcrloWT 

H" Ccrll'"^ 4" Ccrl2'^\f\^R 

+ CcrViV + CCTIAT + CcrlbPQ + C'crlG?̂  + C'crlT^^I 

+ Ccr 18̂  + CcrwiTngxc — Bxb) sin cos 9 

+ Ccr2o(nip^G - bz/g) sin 0 

+ Ccr2l{Q + fp)lYZ + Ccr22{.(f — P^)IxY 

+ C'ct23?/g(^ — vr + wq). 

(29) 

(30) 

By inspecting Equations (29) and (30) it can be seen that Equation (29) can be 

substituted directly into Equation (30) to reduce the coefficient count provided that, 

AB = 0, Pg = 0, y'l p\p\ 0 and vu ru or vv —ru. 

For the three test submarines the first three conditions are met. Also, as was discussed 

earher one would expect from the physics that r and v would have the opposite sign. 

Thus, 

vjy z/sign(f)|r| = —ru. 

However, this posses a problem because this would imply that submarines 2 & 3 should 

also have a reduced rank due to this couphng, but they do not. The assumption that 
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the sign of r and v were of opposite sign was tested and the results of sign(w)/sign(r)) 

for every time step are shown in Figure 27. 
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Figure 27: Results of the sign(f)/sign(r)) analysis for the three test submarines 

The figure shows that the assumption is not true for submarine 2 & 3 but is true for 

submarine 1. The assumption is violated at the start of the manoeuvre prior to the 

rudder or dive planes being moved. For submarine 1 both v and r are zero and this 

is why the sign of u/r is not given in the plot. However, for submarines 2 & 3 there 

are small values of v and r, the exact cause of this is not understood, but since the 

effect was small it was not investigated. 

The fact that the sign of v is not always opposite to the sign of r for submarines 2 

& 3 explains why their associated J\f{Aj^) are only one dimensional. However, it is 

only not opposite during the initial stage of the manoeuvre. During this part of the 

manoeuvre no control inputs are made and no control inputs are given while during 

the rest of the manoeuvre v is of opposite sign to r. As not much of interest happens 

in this phase and one would only expect to be relevant, it is likely that the 

TV/ relationship will be relevant for the majority of the manoeuvre. Therefore it is 
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expected that the N'̂  relationship, although not making the coefficients non-unique, 

will make the coefficients ill-conditioned. 

6.5 Conclusions 

This chapter has shown that the hydrodynamic coefficients of the test submarines 

are non-unique. The mechanisms within the equations of motion which cause the 

non-uniqueness have been outlined, and the added-mass coefficients associated with 

the non-uniqueness have been identified. As the coefficients are non-unique it follows 

that it is not possible to identify all of the hydrodynamic coefficient values. However, 

by specifying the values of the associated added-mass coefficients the values of the 

remaining coefficients can be determined. 
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Chapter 7 

Building and Testing the 

Non-hnear Parameter 

Identification Procedure 

7.1 Introduction 

This chapter describes the creation and testing of the non-hnear parameter identifi-

cation procedure. 

The chapter starts by describing how the basic outhne of the non-hnear parameter 

identification procedure described in Section 4.4.2 was turned into a working system. 

It considers how the simulation was integrated within the system identification pro-

cedure, it also outlines the working of the optimization routine used and discusses 

some of the problems with the process. The section concludes with a discussion on 

when the simulation is called as it represents the majority of the computing effort in 

the search procedure. 

Following the outhne of the building of the procedure the parameter identification 

testing is described. This testing made unrealistic assumptions about the problem 

and assumed knowledge that would not be available during the identification of a 

real UV. This was done to simplify the identification problem and thus allowed rapid 
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testing of the procedure. If the procedure failed to determine the coefficients under 

these ideahzed conditions then it would fail when used with the more demanding 

case of identifying real UV coefficients. Thus, the unreahstic identification problem 

testing allowed a rapid analysis of the approach without the extra effort required to 

test the real problem. 

The first section on testing describes the simphfying assumptions made and explains 

why they were important. This is followed by describing the testing procedure. There-

after the results of the testing are presented and are discussed in terms of track con-

vergence, coefficient convergence and non-linear procedure performance. The result 

presented show that the system is ill-conditioned and the chapter concludes with a 

discussion on the causes of this ill-conditioning. 

7.2 Implementing the Non-Linear Parameter 

Identification Procedure in Matlab 

Before it was possible to test the non-linear parameter identification procedure out-

lined in Section 4.4.2 it was necessary to code the system into Matlab. The identifi-

cation procedure consists of three parts that needed to be integrated into one system, 

these parts were: the optimization routine; the submarine simulation; and the cost 

function. 

Before it is possible to integrate the parts together it was necessary to understand 

how the optimization routine works. Most optimization routine works by adjusting 

a function's input, in this case the hydrodynamic coefficient vector (£), to minimize 

a scalar output, here the cost function s. As the optimization routine progresses it 

produces a sequence of estimates of the hydrodynamic coefficient ... 

which in turn produce a sequence of cost functions (ef*), with 

Once certain convergence criteria are met the sequence is terminated. The last ^ in the 

sequence will be denoted by | . Ideally, during the identification procedure ^ 

as > 0. 

As the shape of the cost function surface was not known and was potentially full of 
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local minima it was decided to constrain the possible values of ^ to a region close to 

This was done because non-linear functions tend to be better behaved when close 

to minima and as our target minimum was ^ it was sensible to constrain ^ to be close 

to Following from this the optimization routine had to be capable of minimizing 

a non-linear function with constraints. The routine used was an implementation of 

the Sequential Quadratic Programming (SQP) approach. The optimization code was 

written by Professor Veres of the University of Southampton, see Veres (2003). In 

general SQP is used to solve problems of the form, 

Minimize f{x) a; E R" 

subject to Ci{x) = 0, i E E 

Ci{c) >0, i e I 

where, E and I are the indexes to the equality and inequality constraints. 

However, for the parameter identification procedure the problem is slightly simpler 

as the constraints are linear bounds on the coefficients. Thus, the problem can be 

written as. 

Minimize f{x) a? G M" 

subject to > C i i 

—ii > —Cui, i E I 

where, Cu and Ci are the upper and lower bounds on the coefficients. 

For the optimization routine to be able to minimize e it must be able to calculate e 

for a given This was accomplished by writing a cost function routine which took 

X as an input and returned £. The reason the cost function routine took x instead of 

^ as an input is explained next. 

7.2.1 The Cost Function Routine 

The cost function routine is represented pictorially in Figure 28. 
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Submarine Data 

m -

n -

Manoeuvre Data 

T e -

Sv(0) -

N -

mask 

The Optimization Routine 

X e 

1) Determine ^ from 

X and mask. 

2) Run the simulation to 

get N. 

3) Calculate e from N 

and N. 

The Cost Function Routine 

Figure 28: Overview of the cost function and optimization routine. 

Figure 28 shows that the optimization routine does not pass ^ directly to the cost 

function routine. This was done because after some initial trials it was found that 

using the normalized coefficient value Xi = simplified the specification of the 

coefficient constraints and also simplified the post processing of the results. The post 

processing was simplified because the results were to be presented as ratios of 

Figure 28 also shows a considerable amount of setup data was required by the cost 

function routine. This comprised broadly of the actual submarine data used to gen-

erate the manoeuvre, the manoeuvre details and a 'mask'. The 'mask' was used to 

set which coefficient of ^ would be identified. This allowed the identification of each 

individual coefficient to be turned on or off at will. 
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Within the routine there are three basic stages. The first stage is to determine this 

is done using x and the mask. The pseudo code to determined ^ is as follows, 

set k = i 

set ^{mask)i = ^{mask)i • Xi 

Once ^ had been determined the second stage of the cost function routine is to run 

the simulation using the appropriate submarine and manoeuvre data to produce N. 

Finally the third stage calculates e from N and N using the cost function described 

in Section 4.4.2. Once calculated, g is returned to the optimization routine. 

The process of evaluating the cost function is computationally expensive. As de-

scribed in Section 5.6.1 running the simulation of itself is time consuming and the 

extra effort involved in calculating the cost function has to be added to this. As 

the cost function evaluation is the prime computational expense in the parameter 

identification process it is worth considering how the optimization procedure calls the 

cost function routine. It is also important to highlight how the optimization routine 

measures convergence and what conditions cause it to terminate. These features of 

the optimization routine are discussed next. 

7.2.2 Overview of the Optimization Routine 

The SQP optimization approach is described in detail in Fletcher (1987) and the 

implementation of SQP used here is given in Veres (2003). 

The SQP implementation used in the thesis consists of three distinct stages, these 

are: 

1. The function f{x) is approximated at point z by a quadratic model and the 

constraints Cj are linearized. The quadratic model and linearized constraints 

are then solved using quadratic programming techniques. The solution to the 

problem gives a search direction s. 

2. A search is conducted along the line cc + a s to find a minimum value of £ which 

does not violate any of the constraints. The line search routine does not try and 
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find the actual minimum along the line, as performing an exact hne searches 

is less efficient. Hence, the line search terminates when a 'better' x value has 

been found. 

3. The convergence criteria are checked to determine whether to stop the opti-

mization routine. 

These three stages are outline in more detail in the following sections with an emphasis 

on describing when the cost function is evaluated. 

The Quadratic Programming Sub-Problem 

To solve the quadratic programming sub-problem it is necessary to know the gradient 

of the cost function (V/(a;)). The gradient is calculated numerically using the forward 

difference method that is, 

v/(x), = 

where e, is a vector whose z'th element is 1 and whose remaining element are zero. 

Hence during the quadratic programming stage it is necessary to evaluate the cost 

function once per coefficient to identify to calculate V/(a;). 

The Line Search 

Once the search direction (s) has been determined from the quadratic programming 

sub-problem the line-search routine is run. In pseudo code the line-search algorithm 

is; 

a = 2, = 26̂ :) 
while 

a = a:/2 
if a < 1 X 10*^ then a = —a 
^(A) _ 

end while 
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Here, is the current cost function value at step k and is the line search cost 

function value. 

The line-search routine starts by testing the quadratic subproblem solution (ct — 1). 

If this fails to produce the same or a smaller cost function value compared to the 

current value then the distance along the line is halved. This continues until either 

or a < 1 X 10"^ at which point the search direction is reversed. During the 

line search there is no attempt to find the minimum cost function value along x + as, 

but merely to find a similar or lower value of e. 

One problem encountered in the line-search was when the value oi f{x + as) was 

undetermined. This occurred when the values of the hydrodynamic coefficients caused 

the simulation to crash. When this occurred the line-search would terminate at x-\-as, 

an unsatisfactory situation. To overcome this problem s was set to 1 x 10® when the 

cost function was undetermined. This still had the potential to cause the system to 

crash if the value of was greater than 1 x 10® and the first step produced an 

undetermined coefficient. However, this did not occur during the tests performed and 

the 'hack' removed the problem for this case. 

As the line-search was inexact the number of cost function evaluations performed 

per search was relatively small, typically comprising 4 or 5 evaluation. A plot of the 

cost function evaluations performed during a parameter identification test is shown 

in Figure 29. The plot shows the cost function reduction for submarine 1 performing 

the first test of the horizontal sub-problem. The results of this test are given in 

Section 7.5. In the test 19 coefficients were being identified. The plot shows the QP 

sub-problem evaluation stage to determine the gradient vector Vf{x) as the level 

section in e. This is due to h being smah when calculating V f ( x ) numerically and 

hence The line-search stage is shown by the large spikes in the values 

of e. 
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Figure 29: Example of the cost function reduction during a parameter identification 

test. 

The Convergence Criteria 

The convergence criteria for the optimization routine is composed of two parts. The 

first considers the size of the solution vector s and the second how much the cost 

function is reduced by moving to x + s. The optimization routine stops when the 

following conditions are satisfied. 

Where llsi 

| | s | | o o < parTol and |V/(cc)^s| < funcTol. 

is the L-infinity norm of s and is defined by, 

cc oo = max \XI 

and 'parTor and 'funcTol' are user defined inputs. For the testing performed these 

initially were set to, 

parTol = 0.1 

funcTol = 0.01 
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However, they were modified for some of the coupled manoeuvre testing to aid the 

convergence of the non-linear identification procedure. 

Having discussed how the non-linear identification routine was constructed we now 

look at the assumptions made during the testing of the procedure. 

7.3 Assumptions Made During the Non-Linear 

Identification Procedure Testing 

To simphfy the testing of the non-hnear identification procedure several assumptions 

were made. These assumptions were: 

The UV measurements were accurate and precise. 

The first simplifying assumption was that all of the measurements of position, 

attitude and time were accurate and precise. Thus, the measurements are not 

subject to noise and hence = 0. This reduced the complexity of the problem 

as no assessment of the sensor accuracy and the noise on the measurement was 

required. However, this is unrealistic as there will always be some measurement 

error and the sensors are always subject to a certain level of noise. 

The UV was not subject to disturbances. 

The second assumption was that the UV was not subject to disturbances, for 

example from currents, and hence = 0. This simplified the problem as no 

model of potential disturbances needed to be created and tested. However, it is 

unrealistic as the UV will always be subject to disturbances, principally from 

the un-modelled motion of the water, but also from other unknown sources. 

The initial estimate of the hydro dynamic coefficients was accurate. 

The third assumption was that the initial estimated submarine hydrodynamic 

vector ^ was within ±10% of the actual hydrodynamic coefficient vector This 

equates to a very accurate 'guess' of the correct coefficient values. This range 

was chosen as a starting point as it was assumed that a close initial guess would 
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simplify the identification problem and hence make a sensible starting point for 

the testing. 

The zero valued coefRcients were known. 

One difficulty with specifying the coefficients with ±10% of the correct value 

was what to do when the correct coefficient value was zero. In this case it was 

decided to assume that the coefficient value was known to be zero for the testing 

as no 'sensible' range for the coefficient was known. Hence, the zero valued 

coefficients were not identified in the testing. It is unrealistic to assume these 

coefficient values would be known but the assumption removed the problem of 

identifying suitable ranges for the coefficients. 

The values of ^ was restricted to ±75% of 

The fifth assumption was that there was a range of the possible coefficient val-

ues and range was ±75% of the correct hydrodynamic coefficient value. This 

assumption was made to restrict the possible coefficient values to simplify the 

problem and increased the robustness of the procedure. The range was chosen 

after some preliminary testing, when it was found that the identification proce-

dure became numerically less stable when the range was extended. Although in 

practise it would not be possible to impose this range during the identification 

of a real UV it was hoped that a 'reasonable' range could be determined for 

each coefficient when identifying the coefficients of real UVs. Also, the numer-

ical problems found in the optimization routine when the range was extended 

could be addressed at this point. 

The added-mass rank-reduction coefficients values were known. 

The sixth assumption was that the values of the added-mass coefficients asso-

ciated with the rank-reduction, described in Chapter 6, were known. This as-

sumption meant that the system of equations was not rank-deficient and hence 

there was a unique set of coefficients which could be identified. 

These added-mass coefficient values would not be known accurately priori. How-

ever, if the procedure identified the remaining coefficient values correctly it 

would suggest that by setting the added-mass coefficient to a value calculated 



131 

from potential theory or to zero the procedure would converge to another coef-

ficient set that was also in the null space of A. 

The propulsion coefRcients for the UV were known. 

The seventh assumption was that the propulsion coefficients were known for the 

UV to be identified. This simphfied the testing as the thorny issue of identifying 

the propulsion coefficients with the hydrodynamic coefficients could be ignored. 

For real submarines these coefficients are determined from acceleration and 

deceleration trials of the full size submarine. When identifying a real UV it 

would be necessary to find an alternative method of determining the propulsion 

coefficients. 

When the propulsion coefficients are known it is possible to calculate the drag 

coefficient directly. This is possible as in the steady state when the UV is 

travelling straight and level the drag becomes, 

As, n' = 1 and ti[~ 63 are known can be determined directly. 

Although could be determined in this way it was decided to attempt to 

identify along with the remaining coefficients using the non-linear identifi-

cation procedure. 

All the mechanical coefficients of the UV were known precisely. 

The final assumption was that all the mechanical coefficient (such as mass, 

length, moments of inertia etc.) were known precisely and were constant through-

out the manoeuvre. Although these coefficients can be relatively simply deter-

mined to quite a high accuracy there will be always be some uncertainty in the 

values used. The effect of this uncertainty was not considered in this testing. 

The UV was neutrally buoyant. 

The final assumption was that the UV was neutrally buoyant and remained 

so throughout the manoeuvre. This was assumed as UVs tend to be neutrally 

buoyant. However, the buoyancy of UVs is slightly dependent on depth so this 

assumption is not strictly accurate. 
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The assumptions described greatly simplify the real UV identification problem. But 

they do allow the basic procedure to be tested and give an assessment of the suitability 

of the test procedure for the real UV identification task. 

7.4 The Tests Performed 

The non-hnear system identification procedure was tested using the three different 

submarines in each of the three different test manoeuvres. This led to nine sets 

of identification tests. As the initial estimate of the submarine's coefficients had a 

significant impact on the convergence of the identification procedure each submarine 

and manoeuvre combination was tested using 50 different starting estimates of the 

hydrodynamic coefficient vector ((). It was hoped that these 50 tests would produce 

a spread of the possible result and would reduce the chance of converging to false 

minima and hence would give a better estimate of the reliability of the procedure. 

The initial submarine hydrodynamic coefficient estimate £ was determined by ran-

domly perturbing the correct coefficient vector ^ by up to ±10%. This random 

perturbation was uniformly distributed throughout the ±10% range. 

Three representative data sets were used during the initial identification testing phase 

of the process. When the results are displayed in a non-dimensional form the perfor-

mance of the identification procedure can assessed. As the identification procedure 

results were for 'standard' submarines it was thought that the presented results, 

although not containing the coefficient data, would still be of use to the research 

community. 

7.5 Horizontal Manoeuvre Results 

The results of the numerical experiments are broken down into the following cate-

gories: 

• Track convergence (cost function minimization). 
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• Coefficient convergence. 

• Optimization routine efficiency. 

The track convergence represents how well the optimization routine minimizes the 

cost function and hence how well the estimated track (iV) compares with the target 

track (AT). The coefficient convergence shows how close the converged coefficients (^) 

are to the correct coefficients (^). Finally the efficiency of the optimization routine is 

analysed by considering the time taken and the number of cost function evaluations 

performed before the system converged. 

7.5.1 Horizontal Manoeuvre Track Convergence 

The results of the fifty trials of this minimization process for the three test sub-

marines are shown in Figures 30-32. These figures comprise two histograms. The 

first histogram shows the initial and converged cost function. This is represented 

on a logarithmic scale due to the large decrease in the cost functions. The second 

histogram shows the maximum positional error between N and N produced by the 

converged coefficients. This is also plotted on a logarithmic scale. The mean results 

of the track convergence (or reduction in e) are summarized in Tables 10-12. 
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Figure 30: Track convergence results for the horizontal manoeuvre — submarine 1. 

Mean initial cost function value = 8.66 x 10̂  

Mean converged cost function = 7.85 x 10"^ 

Reduction in mean value % 8 orders of magnitude 

Mean maximum positional error = 16 mm 

Table 10: Summary of the horizontal manoeuvre convergence results — submarine 1. 
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Figure 31: Track convergence results for the horizontal manoeuvre submarine 2. 

Mean initial cost function value 

Mean converged cost function 

Reduction in mean value 

6.23 X 10^ 

4.78 X 10-:^ 

8 orders of magnitude 

Mean maximum positional error = 1 9 mm 

Table 11: Summary of the horizontal manoeuvre convergence results — submarine 2. 
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Figure 32: Track convergence results for the horizontal manoeuvre — submarine 3. 

Mean initial cost function value = 7.90 X 10^ 

Mean converged cost function = 1.42 

Reduction in mean value % 7 orders of magnitude 

Mean maximum positional error = 27 mm 

Table 12: Summary of the horizontal manoeuvre convergence results — submarine 3. 

The results for the three submarine show excellent track convergence. The mean 

values of £ are reduced by between seven and eight orders of magnitude and when 

converged are less than one. Although e for different manoeuvres and submarines 

cannot be directly compared due to the method of calculation, it worth noting that the 

e value produced when comparing the output of SubHov and the Matlab simulation 

for the comparison manoeuvre was approximately 2000 (Section 5.8). This is three 

orders of magnitude larger than that produced by the converged coefficients. Also, 

the accuracy at which the estimated track converges to the target track is far greater 
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than the accuracy of the simulation when using the 0.1s integration time-step. As 

the simulation with a time step of 0.1s produces a e value of between 1100-1350 

and a maximum positional error of between 0.68-0.695 metres when compared to the 

simulation with a time step of 0.001s (Section 5.9). Thus, the converged tracks are 

effectively identical to the target track. 

7.5.2 Horizontal Manoeuvre Coefficient Convergence 

Although the estimated track converged exceedingly well to the target track, the 

estimated coefficients do not converge to the correct values. Illustrations of coefficient 

convergence are shown in Figures 33-35. In these plots each vertical hne represents 

an identified hydro dynamic coefficient. The coefficient convergence ratio is shown on 

the y-axis. The convergence ratio is the ratio of to Each filled circle represents 

the converged coefficient value for one of the 50 tests performed. Using this approach 

the converged coefficients for the 50 tests can be plotted on the same figure. 

The X's in each figure represent the zero valued submarine coefficients and thus were 

assumed to be known. The A's represent the added-mass rank-reduction coefficient 

whose value was also assumed to be known. The upper and lower limit of the possible 

coefficient values are also plotted on the graph along with the band in which the initial 

estimate for the hydrodynamic coefficient vector fall. 
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Figure 33: Coefficient convergence for the horizontal manoeuvre submarine 1. 
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Figure 34: Coefficient convergence for the horizontal manoeuvre — submarine 2. 
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Figure 35: Coefficient convergence for the horizontal manoeuvre submarine 3. 

The three coefficient convergence plots show that only is consistently well iden-

tified. The other coefficients are usually identified less well than they were in the 

initial coefficient estimate. However, as was shown in Section 7.5.1 the tracks con-

verged exceptionally well. Thus, it can be concluded that for this manoeuvre the 

Booth et al. (1980) equations produce an ill-conditioned system, that is practically 

identical manoeuvres are produced by substantially different sets of coefficient values. 

7.5.3 Optimization Routine Performance 

Manoeuvre 

Horizontal 

The efficiency of the optimization routine is a measure of how quickly it converges. 

The more efficient the routine the fewer steps required before convergence. It is 

necessary to have an efficient routine as the time to converge to a solution has a direct 

effect on the usefulness of the technique. Another factor affecting the performance of 

the routine is its robustness, that is whether it fails to converge to a solution. This 

section considers the robustness and efficiency of the optimization routine. 
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During the 150 horizontal sub-problem identification tests performed the optimization 

routine converged without incident. Histograms of the time to converge and the 

number of cost function evaluations for the three submarines are shown in Figures 36-

38. Also, Tables 13-15 summarize the number of coefficient to identify, the mean 

number of function calls, the ratio of function calls to coefficients to identify and the 

mean time to converge for the different submarine sets. 
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Figure 36: Optimization routine efficiency results for the horizontal manoeuvre — 

submarine 1. 

Number of coefficients to identify (m) = 1 9 

Mean cost function evaluations (SN) = 2054 

SN/m = 108.1 
Mean time to converge = 52s 

Table 13: Summary of the optimization routine efficiency — horizontal manoeuvre, 

submarine 1. 
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Figure 37: Optimization routine efficiency results for the horizontal manoeuvre 

submarine 2. 

Number of coefficients to identify (m) = 20 

Mean cost function evaluations (sat) = 2323 

EKi/m = 116.2 
Mean time to converge = 58s 

Table 14: Summary of the optimization routine efficiency — horizontal manoeuvre, 

submarine 2. 
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Figure 38: Optimization routine efficiency results for the horizontal manoeuvre 

submarine 3. 

Number of coefficients to identify (m) = 1 7 

Mean cost function evaluations (sjv) = 1894 

e ^ j m = 111.4 

Mean time to converge = 45s 

Table 15; Summary of the optimization routine efficiency — horizontal manoeuvre, 

submarine 3. 

The results show a strong correlation between the time to convergence and the num-

ber of cost function evaluations. After some examination it was found that the cost 

function evaluations took between 90-95% of the total simulation time. Hence the 

biggest improvement in performance could be gained from speeding up the cost func-

tion evaluation. 

The results also show that there was a large spread of times to converge with the 

testing of submarines 1 & 2 showing a central peak. Whereas the peak for Submarine 3 



143 

was at the minimum convergence time. The cause of this difference is unknown, it 

could be due to some feature of the hydrodynamic coefficients of submarine 3 or could 

be due purely to chance. 

Also, examining the tabulated data the number of cost function evaluations until 

convergence is strongly related to the number of coefficient to identify, as expressed 

by the EN/TTI ratio. This relationship was expected as calculating V f{x) during each 

optimization step required the cost function to be evaluated once for every coefficient 

to identify. Also, one would expect a high dimensional problem to be more complex 

and require a larger number of steps before convergence. 

In general the simulation was converging in less than 2500 cost function evaluations 

for all cases. If one assumes that the hne-search stage of the optimization routine takes 

4 cost function evaluations, as suggested by Figure 29, then each optimization routine 

step should take m + 4 cost function evaluations. Calculating the ratio 6///(m + 4) for 

each submarines produces a ratio between 90-97. Hence, it is can be assumed that 

the optimization routine converges in under 100 steps, this is a small number when 

considering that there were between 17 and 20 coefficients to identify. Thus, one can 

conclude that the optimization routine rapidly converges to a minimum. 

7.5.4 Horizontal Manoeuvre Testing Conclusions 

The testing of the standard manoeuvre of the horizontal sub-problem has shown that 

the N converged accurately to N with an £ value being insignificant compared to the 

simulation error. However, £ does not converge to ^ and appear to be worse that the 
' (1) 

initially estimated value ^ with the one exception of X'̂ .̂ Thus, it can be concluded 

that the standard horizontal manoeuvre produces an ill-conditioned system. 

The results also show that the optimization routine rapidly converges to the solution 

and always took less than 2 minutes to converge. This is using the third version of the 

Matlab simulation, the second version would take approximately 450 times longer to 

complete the identification (Section 5.6.1). Even so, the bulk of the computing effort 

for the identification procedure was still spent evaluating the cost function value with 

the simulation taking a large portion of this process. 
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When the different submarines are compared they do not appear to produce any 

significant differences in the optimization routine performance. The main difference 

stems from the different number of coefficients that needed to be identified. 

7.6 Vertical Manoeuvre Results 

The examination of the identification procedure outhned for the horizontal manoeuvre 

was repeated for the vertical sub-problem. As with the horizontal testing the track 

convergence, the coefficient convergence and the optimization routine efficiency are 

analysed. 

7.6.1 Vertical Manoeuvre Track Convergence 

The results of the track convergence for submarines 1-3 are shown in Figures 39-41 

and Tables 16-18. 
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Figure 39; Track convergence results for the vertical manoeuvre — submarine 1. 
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Mean initial cost function value = 1 .33 X 10^ 

Mean converged cost function = 1 .65 X 10-=^ 

Reduction in mean value % 7 orders of magnitude 

Mean maximum positional error = 3.3 mm 

Table 16: Summary of the vertical manoeuvre convergence results — submarine 1. 
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Figure 40: Track convergence results for the vertical manoeuvre — submarine 2. 

Mean initial cost function value = 1 .65 X 10^ 

Mean converged cost function = 7 . 1 5 X 1 0 - ^ 

Reduction in mean value ~ 8 orders of magnitude 

Mean maximum positional error = 2.5 mm 

Table 17: Summary of the vertical manoeuvre convergence results — submarine 2. 
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Figure 41: Track convergence results for the vertical manoeuvre — submarine 3. 

Mean initial cost function value = 1.66 X 10^ 

Mean converged cost function = 2.93 X 10-^ 

Reduction in mean value ~ 7 orders of magnitude 

Mean maximum positional error — 3.9 mm 

Table 18: Summary of the vertical manoeuvre convergence results — submarine 3. 

The results presented again show that N converges exceptionally accurately to N 

for all three submarines, with a similar level of convergence. The actual maximum 

positional error in the track is substantially better than that shown in the horizontal 

manoeuvre. However, when this is compared to the accuracy of the standard vertical 

manoeuvre performed by the Matlab simulation (Section 5.9) the results are less 

impressive. The 0.1s simulation has s value of between 1.5-2.5 and a maximum 

positional error of between 28-41mm. This is only approximately 100 times and 10 

times larger respectively than the mean converged results. Compared to the horizontal 
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case g for the vertical manoeuvre simulation accuracy is 1000 times larger than the 

horizontal manoeuvre converged e and the maximum positional error is over 25 times 

bigger. So although the convergence is still better than the accuracy of the simulation, 

the difference is proportionally less than that seen in the horizontal manoeuvre. 

The reason that the vertical manoeuvre is more accurately predicted by the Matlab 

simulation than the horizontal manoeuvre is because it is both less extreme and 

shorter in duration. The manoeuvre is less extreme as the maximum dive plane angle 

is only ±5° compared to the 30° used in the horizontal test manoeuvre. Also the 

shorter duration does not allow the errors as much time to build up. 

The reason for the proportionally less accurate convergence of the optimization rou-

tine in the vertical case is thought to be due to the convergence criteria used. Since 

the same convergence criteria {funcTol & parTol) were used in both the horizontal 

and vertical manoeuvres, and these are absolute values, the less extreme vertical ma-

noeuvre converge more quickly than the horizontal manoeuvre. This is illustrated in 

the optimization routine efficiency text (Section 7.6.3). The ratio of SN/ITI is less for 

the vertical manoeuvre than the horizontal manoeuvre. This faster convergence led 

to a relatively less accurate prediction of the vertical manoeuvre. 

7.6.2 Vertical Manoeuvre Coefficient Convergence 

The coefficient convergence results for submarines 1-3 are shown in Figures 42-44. 
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Figure 42: CoefBcient convergence for the vertical manoeuvre — submarine 1. 
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Figure 43: Coefficient convergence for the vertical manoeuvre submarine 2. 
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Figure 44: Coefficient convergence for the vertical manoeuvre — submarine 3. 

The coefficients divide into three sets the X, Z and M coefficients. The X coefficient 

results show that only X'̂ ^ is well identified for all three submarines. All the remaining 

X coefficients are poorly identified. 

For the Z coefficients several coefficients are well identified for Submarine 1 with 

Z'̂ ^ and being notable examples. However, this quality is not matched by sub-

marines 2 & 3. These submarines consistently exhibit poorly identified coefficients. 

However, looking at Figure 43, submarine 2's results, the distribution for Z'̂ ^, 

and coefficients appear similar. Also, examining Figure 44, submarine 3's re-

sults, the distribution for Z^^, Z{^^g and coefficients also resemble each 

other. On further analysis it was found that for submarine 3 the four coefficients 

mentioned all had similar errors in each converged test. For submarine 2 the same 

results were seen except that unlike submarine 3 did not have a similar error. 

Assuming that this link between Z^^, Z^^ and Z^^^g exist in submarine 1 then this 

explains why Z^^ and Z^^g are well determined as Z^„ is fixed at zero. Hence, it 

would appear that the Z coefficients of submarine 1 only converge well because Z^^ 
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is known to be zero. 

Examining the M coefficients some coefficients converge relatively well such as 

whereas others converge very badly such as The pattern is similar for all 

three submarines. 

7.6.3 Optimization Routine Performance 

Manoeuvre 

Vertical 

During all the testing the optimization routine converged without incident and as 

such the vertical manoeuvre did not appear to affect the procedure's robustness. 

The histograms of the time and cost function evaluations to convergence for the three 

submarines are shown in Figures 45-47 with the mean data presented in Tables 19-21. 
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Figure 45: System performance results for the vertical manoeuvre — submarine 1. 
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Number of coefficients to identify (m) = 20 

Mean cost function evaluations (EN) = 1258 

Ej^/m = 62.9 

Mean time to converge = 34s 

Table 19: Summary of the optimization routine efficiency — vertical 

submarine 1. 
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Figure 46: System performance results for the vertical manoeuvre — submarine 2. 

Number of coefficients to identify (m) = 29 

Mean cost function evaluations (g -̂) = 2261 

eAr/m = 78.0 

Mean time to converge = 66s 

Table 20: Summary of the optimization routine efficiency — vertical manoeuvre, 

submarine 2. 
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Figure 47: System performance results for the vertical manoeuvre — submarine 3. 

Number of coefficients to identify (m) = 22 

Mean cost function evaluations (EN) = 1514 

e^/Tn = 68.8 

Mean time to converge = 41s 

Table 21: Summary of the optimization routine efficiency — vertical manoeuvre, 

submarine 3. 

The results show that the optimization routine converges in less cost function evalu-

ations per coefficient for the vertical case than in the horizontal case. This is demon-

strated by the ratio jm being between 60-80 for the vertical manoeuvre compared 

to the 105-110 level for the horizontal case. As mentioned previously, the cause of 

this is thought to be due to the absolute convergence criteria used in the optimization 

routine. 

Also whereas in the horizontal manoeuvre the ejssjm ratio decreases, with increased 

coefficients in the vertical manoeuvre this pattern is reversed. The cause of this is 
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not clear, although one would expect problems with high dimensionality (i.e. more 

coefficients to identify) would require proportionally longer to solve. One possible 

explanation is that the difference in function calls is due to the difference in identifying 

the Z coefficients. 

7.6.4 Vertical Manoeuvre Testing Conclusions 

The main results of the vertical manoeuvre are very similar to those of the horizontal 

manoeuvre. Firstly, N converges to N with an e value approximately 100 times less 

than the e value associated with the accuracy of the simulation. Second, \ converges 

very poorly to ^ and in most cases the coefficients have a larger spread of errors 
- ( 1 ) 

than in the initially estimated ^ vector. Thus, the system produce by the standard 

vertical manoeuvre is ill-conditioned. 

The results also show some more subtle features of the identification procedure. The 

first feature being the relationship between the errors in and Z'̂ ^̂ g and 

the second being the effect of the convergence criteria on the total number of cost 

function evaluations. 

7.7 Coupled Test Results 

The fully coupled manoeuvre tests were substantially more challenging than the verti-

cal and horizontal manoeuvres because the number of coefficient to identify increased 

substantially. The number of coefficients to identify went from less than 30 in the 

horizontal and vertical manoeuvre to between 56 and 73 in the coupled case. 

As per the horizontal and vertical manoeuvres the results are presented in three 

sections, the estimated track convergence the coefficient convergence and the opti-

mization routine performance. 
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7.7.1 Coupled Manoeuvre Track Convergence 

The histogram of the cost function reduction and the maximum positional error for 

the three submarines are shown in Figures 48-50. Tables 22-24 show the mean 

convergence data. 
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Figure 48: Track convergence results for the coupled manoeuvre — submarine 1. 

Mean initial cost function value = 1.14 X IQG 

Mean converged cost function = 2.34 

Reduction in mean value fa 7 orders of magnitude 

Mean maximum positional error — 25.4 mm 

Table 22: Summary of the coupled manoeuvre convergence results — submarine 1. 
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Figure 49: Track convergence results for the coupled manoeuvre — submarine 2. 

Mean initial cost function value =6.21 x 10̂  

Mean converged cost function = 2.80 x 10"^ 

Reduction in mean value % 8 orders of magnitude 

Mean maximum positional error = 9.0 mm 

Table 23: Summary of the coupled manoeuvre convergence results — submarine 2. 
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Figure 50: Track convergence results for the coupled manoeuvre — submarine 3. 

Mean initial cost function value = 7.51 x 10̂  

Mean converged cost function =1.20 

Reduction in mean value % 7 orders of magnitude 

Mean maximum positional error = 19.3 mm 

Table 24: Summary of the coupled manoeuvre convergence results — submarine 3. 

The results for the three submarines are very close to those of the horizontal ma-

noeuvre with the initial cost functions, converged cost functions and the maximum 

positional error being of the same order of magnitude. This is not too much of a sur-

prise. The coupled manoeuvre uses the same rudder control plane input time history, 

but also has a stern dive plane time history to change the depth of the submarine. 

Again the converged N is closer to N than the accuracy of the simulation (Sec-

tion 5.9). 
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7.7.2 Coupled Manoeuvre Coefficient Convergence 

The converged coefficients for the three test submarines are shown in Figures 51-56. 

Due to the number of coefficient involved in the fully coupled equations of motions 

the converged data is split into two plots. The first figure shows the force coefficients 

(X, Y & Z) and the second shows the moment coefficients {K, M Sz N). 

The results show that in general, as with the horizontal and vertical manoeuvre, the 

coefficients converge badly and the converged coefficients are generally further from 

the true coefficient value than that of the initial coefficient estimate. The only excep-

tion to this rule is which had been universally well identified in all manoeuvres 

for all submarines. 
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Figure 53: Converged force coefficient for the coupled manoeuvre — submarine 2. 
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Figure 54: Converged moment coefficient for the coupled manoeuvre — submarine 2. 
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7.7.3 Optimization Routine Performance — Coupled Ma-

noeuvre 

The optimization routine proved to be less robust when trying to identify all the 

coefficient values as it failed in a large number of cases. The routine managed to 

converge for every test of submarine 1. However, the routine failed during three 

tests apphed to submarine 2. The failure was expressed by the optimization routine 

appearing to be stuck in an infinite loop within the code. When this occurred the 

system would fail to regularly evaluate the cost function. The convergence criteria for 

the three failed tests were relaxed and the system then converged successfully. The 

relaxed values were 

parTol =1.0 and funcTol = 0.1. 

The convergence for submarine 3 was particularly poor. Many of the tests failed with 

the starting convergence criteria. These criteria had to be relaxed greatly to allow 

all the tests to converge. The final values that allowed all the coefficients to converge 

were 

parTol = 10 and funcTol = 10. 

Surprisingly the converged cost function values do not appear to be substantially 

worse for submarine 3 than submarine 1 or 2 and so one must assume that the 

relaxed convergence criteria did not greatly affect the cost function minimization. 

As seen from the ej^/m ratio the convergence of the routine takes proportionally 

longer per coefficient than that of the horizontal or vertical cases. And in general the 

fully coupled case takes between 7-10 minutes to converge for the 10 minute coupled 

manoeuvre. Interesting the reduction in the convergence criteria for submarine 3 has 

affected the number of cost function evaluations before convergence, as seen in the 

difference between the Sjqjm ratios of submarine 1 and submarine 3. 
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Figure 57: System performance results for the coupled manoeuvre — submarine 1. 

Number of coefficients to identify (m) = 56 

Mean cost function evaluations (EN) = 8715 

= 15&6 

Mean time to converge = 7min 22s 

Table 25: Summary of the optimization routine performance — coupled manoeuvre, 

submarine 1. 
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Figure 58: System performance results for the coupled manoeuvre — submarine 2. 

Number of coefficients to identify (m) = 73 

Mean cost function evaluations (sjv) = 10928 

= 14&7 

Mean time to converge = lOmin 52s 

Table 26: Summary of the optimization routine performance — coupled manoeuvre, 

submarine 2. 
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Figure 59: System performance results for the coupled manoeuvre — submarine 3. 

Number of coefficients to identify (m) = 60 

Mean cost function evaluations {EN) = 8231 

= 137.2 

Mean time to converge = 7min 4s 

Table 27: Summary of the optimization routine efficiency 

submarine 3. 

coupled manoeuvre, 

7.7.4 Coupled Manoeuvre Testing Conclusions 

Again as with the horizonal and vertical manoeuvres N convergence exceptionally 

accurately to N and the associated e value was substantially less than that produced 

by the accuracy of the simulation. However, again | does not converge well to ^ and 

in most cases the errors on the coefficients are larger than those of the initial estimate 
"(1) 
^ . Hence the coupled manoeuvre is also ill-conditioned. 
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Also, the coupled manoeuvre takes longer to converge than the horizontal and ver-

tical manoeuvres. This is, in part, due to the increased number of coefficients to 

identify but also due to the increased number of cost function evaluations required 

per coefficient. The optimization routine also showed some numerical instability in 

that it failed to converge for a large portion of the submarine 3 tests and some of the 

submarine 2 tests. This was solved by reducing the convergence criteria. It is possible 

that by suitably tuning the convergence criteria the ef^jm ratio can be reduced and 

the numerical stabihty increased without the optimization routine terminating before 

getting close to a true minima. 

7.8 Analysis of the Ill-Conditioning Phenomenon 

The results presented for the horizontal, vertical and coupled coefficient convergence 

tests show all the manoeuvres form ill-conditioned systems. That is, very small 

changes in manoeuvres are generated by significant differences in the hydrodynamic 

coefficient sets. Thus, it is extremely difficult to identify the correct hydrodynamic 

coefficients using the manoeuvre time history (Tc) and the target path {N). The 

cause of this ill-conditioning is analysed next. 

As N is almost identical to N it follows that the velocities, accelerations and forces 

& moments must also be very similar. As shown in Chapter 6 the coefficient sets are 

unique, but the ill-conditioning means that large differences in the coefficient values 

can produce very small differences in the test manoeuvres. Even for the ill-conditioned 

situation the forces have to be almost identical. This can occur in the following two 

possible ways: 

• The coefficient provides only a small contribution to the total force or moment. 

• Two or more coefficients produce large errors that cancel out. This error cancel-

lation can only occurs if the multipliers of the coefficients are strongly related. 

These two possible causes are now examined in detail. The first cause can be consid-

ered by assessing the contribution made to the cost function by individual coefficients. 
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A small cost function contribution will be produced by a small difference in total force 

or moment. 

7.8.1 Coefficient Cost Function Contribution 

A coefficient will be difficult to identify if it does not affect the cost function of the 

manoeuvre in any significant way. In practise this will mean any coefficient associated 

with very small force or moment contributions. The significance of each coefficient 

was determined by calculating the resulting cost function value when that coefficient 

had been moved to the lower tolerance band threshold (i.e. 25% of its original value). 

This produced the maximum cost function that could be produced by the single 

coefficient. 

Figure 60 presents the results for three test submarines performing the horizontal 

manoeuvre. The plot shows the cost function produced by perturbing each coefficient 

to be identified in turn for each submarine. The horizontal coefficients not identified 

have no associated cost function, and so there is no marker for these coefficients. 

The plot also shows the maximum mean converged cost function (1.42) for the least 

well converged submarine (submarine 3) and the simulation accuracy calculated cost 

function of Section 5.9. 

The results show that all the coefficients identified in the horizontal manoeuvre are 

all capable of producing a larger cost function change than that produced by the 

converged coefficients. However, the relationship between the cost function and the 

coefficient perturbation is non-linear and so it could be that close to the real coefficient 

value the cost function contribution is very small. This possibility was investigated by 

repeating the above analysis with a perturbation level for coefficients of 99% of their 

correct value. The results of this analysis are shown in Figure 61. This figure shows 

that most of the coefficients when perturbed by -1% of their correct value produce a 

cost function that is still greater than the maximum mean converged cost function. 

From this plot one could draw the conclusion that insignificant coefficients such as 

Yl would be badly converged. However, X'̂  which also produces a small contribution 

to the cost function is generally better identified than many of the other coefficients. 
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Thus, it would appear that the size of the contribution from the coefficients in the 

horizontal manoeuvre have at best a limited impact on their identification perfor-

mance. 

The analysis was repeated for the vertical and coupled manoeuvres. The vertical 

results are shown in Figures 62 &: 63 and the coupled results are shown in Figures 64 

(fe 67. Due to the number of coefficients involved in the coupled case the plots are 

split into the force coefficients and the moment coefficients. 

The results for the vertical and coupled manoeuvre show that all the coefficients, with 

the exception of and K'̂  for submarine 1 performing the coupled manoeuvre, are 

capable of producing a cost function greater than that of the mean converged coeffi-

cient value. But when considering the 99% trial there are a large number of coefficients 

which produce a cost function contribution lower than the maximum mean converged 

cost function value. Thus, all these coefficients could individually be determined be-

tween 99% and 25% of their correct value and produce the observed cost function. 

If cost function contributions from these coefficients was linearly addable (which is 

highly unlikely) then a set of poorly converged coefficients could be responsible for 

the observed cost functions. However, this does not explain the poor convergence of 

coefficients such as which is poorly identified in the coupled manoeuvre for all 

three submarines, but still has a cost function contribution of over 1000 times greater 

than the converged value at the 99% level. Thus, although the relative size of the 

contributions may be responsible for the poor convergence of some coefficients it only 

explains in part the ill-conditioning. 
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7.8.2 Coefficient Error Cancellation 

Having examined and discounted the possibihty that the poorly identified coeffi-

cients produce only a small contribution to the cost function as the cause of the 

ill-conditioning, the other alternative is that the errors in the coefficients cancel. 

This is based on the idea that approximately the correct force or moment is produced 

by the wrong coefficients. For this to occur it is necessary for the values that the 

coefficients are multiplied by to be strongly related. To take a simple example of 

complete error cancellation if X = (a -|- b)u then given X and u it is not possible to 

find a or b. 

To investigate this phenomena the horizontal manoeuvre case was examined for the 

X force. This case was considered as it greatly simplified the analysis over the general 

case. The equations of motion for the X coefficient, in the horizontal case, are: 

m + T/cr] = 

+ Xn 

C/iecA (o zero 

Considering the physics that the equation represents, it seemed likely that the yaw 

rate (r) and the sway velocity (v) would be related in any turning manoeuvre. The 

correlation between these coefi&cients was analysed by plotting the coefficient multi-

pliers and against each other as shown in Figure 68. 
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Figure 68: The relationship between v'̂  and for the horizontal test manoeuvre 

performed by submarine 1. 

The figure shows the strong coupling between the yaw rate and the sway velocity 

in the manoeuvre. Ideally to identify the coefficients there should be no coupling 

between the coefficient multipliers and no discernable pattern should be apparent in 

Figure 68. Unfortunately this is not the case and the coefficients are heavily coupled. 

Thus from this simple analysis one can conclude that total error produce by the sum 

of coefficients and X'̂ .̂  can be substantially smaller than that associated 

with each individual coefficient due to error cancellation from the other coefficients. 

This is illustrated in Figure 69. This figure shows the error produced in the X'̂ ,̂ X'̂ .̂ 

and X'j.̂  force components when using the first set of converged coefficients produced 

by submarine 1 performing the horizontal manoeuvre. The plot shows the difference 

in force contribution from the correct and converged coefficient. The sum of the 

three coefficients is also shown. As can be seen from the plot the force error on 

each coefficient is substantially larger than the sum of the errors. Table 28 shows 

the maximum absolute error in the force for each coefficient and the sum of the 

coefficients. 
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Figure 69: The relationship between v'̂  and for the horizontal test manoeuvre 

performed by submarine 1. 

Coefficient Maximum absolute 

error [N] 

7292/1 

A x : , 9454/i 

A x ; , 2159/1 

A X 223^ 

Table 28: Maximum absolute error associated with the differences produced by the 

hydro dynamic coefficients. 

This type of analysis could be performed for all the manoeuvres and all the coefficients 

to see how the cancellation can occur. However, this process would be of little merit 

as it does not indicate how the ill-conditioning can be removed. 



175 

7.8.3 Ill-conditioning Conclusions 

The foregoing analysis has shown how the ill-conditioning can occur in the three sub-

marine manoeuvres. However, there is no clear way forward to improve the situation. 

The primary problem is that the results are only vaUd for the manoeuvres tested and 

it is not clear if there is a manoeuvre that produces a well conditioned system that 

allows for accurate identification of the correct coefficients. 

It would be possible to test many different manoeuvres but this is impractical because 

it is not possible to test every manoeuvre and the time to perform each test is such 

that for the fully coupled manoeuvres the computing effort required is too large. 

The second problem is that it is not known whether the identified coefficient accu-

rately reproduce other manoeuvre or whether they only reproduce the target ma-

noeuvre. If they do not reproduce the other manoeuvre it would be possible to add 

manoeuvres together to see if the new manoeuvre produced a better set of coeffi-

cients. However all the approaches require many more identification runs, for each 

manoeuvre. 

7.9 Conclusions 

This chapter has discussed how the non-linear identification procedure was tested. 

The results for the three different submarines performing the three different test 

manoeuvres (horizontal, vertical and fully-coupled) have been presented and some 

surprising conclusions drawn. 

The results presented showed that the optimization routine converged to a set of 

coefficients which produce a track almost identical to the target track. However, 

the converged coefficients are very different from those used to generate the target 

track. From these results the conclusion was drawn that the manoeuvres used to test 

the submarines produced an ill-conditioned set of equations. This ill-conditioning is 

expressed by the very different coefficients producing almost identical manoeuvres. 

The reasons for this ill-conditioning was then examined and it was shown to arise due 
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to the dependence between the coefficient multiphers. 

The discussion presented on ill-conditioning also lead to the following related ques-

tions: 

• Is there a manoeuvre that removes the ill-conditioning and hence will allow the 

coefficients to be accurately identified? 

• Will the 'wrong' identified coefficients reproduce other manoeuvres as accurately 

or will they only reproduce the test manoeuvres? 

To use the non-linear identification technique to answer these questions is possible, but 

would be extremely time consuming as each test manoeuvre would need to be tested 

using many different initial estimates of the coefficients and as each test takes a long 

time to complete the computing power required makes the task a substantial under-

taking. Thus, a more appropriate method was required to analyse the problem. 
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Chapter 8 

Converged Coefficient Manoeuvre 

Prediction 

8.1 Introduction 

The 50 coefficient sets identified for each submarine, using the non-linear parame-

ter identification procedure reproduced the target manoeuvre remarkably accurately, 

even though the identified coefficients ) were substantially different from the 'cor-

rect' coefficients (^). 

This apparent level of accuracy suggests the question, 'would these identified ^ 's also 

produce as accurately other 'non-identified' manoeuvres?'. Three possible answers to 

this question exist, they are: 

• The converged coefficients produce the same accuracy for all possible manoeu-

weg. 

If this were the case then the coefficients would be to all intents and purposes 

the same as the correct values and would be more than capable of being used to 

model the UVs. The results would also imply that the coupled manoeuvre was 

sufficiently 'rich' for the ^ 's to captured the essential dynamic characteristics 

of the UV. However, the Booth et al. (1980) equations would be seen to produce 

an ill-conditioned system (as defined in Chapter 7) for all manoeuvres. 
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• The converged coefficients produce the same accuracy as a set of randomly iden-

tified coefficients with the same coefficient error hounds. 

If randomly generated sets of hydrodynamic coefficients, with the same range 

of errors as the ( 's, produced predicted tracks of the same level of accuracy, 

then the ^ 's would belong to the same population as the randomly generated 

coefficients. Hence it would be difficult to s tate tha t the ^ 's had captured the 

essential dynamic characteristics of the UV being considered. Therefore the 

target track [N) associated with the manoeuvre might not be considered 'rich'. 

• The coefficients produce the prediction manoeuvres less accurately than the iden-

tification manoeuvre hut more accurately than randomly generated coefficients. 

This final case represents the middle ground between the polarized bounds 

described immediately above. It suggests tha t some of the dynamics of the UV 

are captured by the coefficients, but not ah, thus a bet ter manoeuvre could 

be created to capture more of the UV dynamics. It would also imply tha t all 

the manoeuvres are ill-conditioned as random coefficients with the same error 

bounds produce the manoeuvres less accurately. However, the ill-conditioning 

may not be as great as tha t shown in the coupled identification manoeuvre. 

The ideal method of testing the prediction performance of the ^ 's would be to ex-

haustively test every possible manoeuvre. However, as there are an infinite number 

of possible manoeuvres this approach is not feasible. It is thus necessary to examine 

a subset of possible manoeuvres assuming tha t this subset is representative of all 

manoeuvres. 

This chapter discusses the testing and analysis of the prediction tests performed by 

the ^ 's. Of the three test problems used to identify the coefficients 's) only the 

coupled manoeuvre coefficients were tested. The ^ 's produced by the horizontal 

and vertical sub-problems were not tested as the sub-problems were created to build 

experience in the use of the identification procedure not to produce useful coefficient 

data . 

The chapter first describes the method used to design and produce the manoeuvres 

used to test the prediction accuracy of the ^ 's. It then discusses in broad terms the 
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prediction results for the three test submarines. This is followed by an analysis of 

the effect of the manoeuvre on the prediction accuracy. Thereafter a more detailed 

s tudy of the results considers the range of prediction accuracies produced by different 

coefficient sets. The 'best ' , 'worst ' and 'middle' coefficient sets were identified and 

their converged coefficient values examined to see if there was a correlation between 

convergence and prediction accuracy. The chapter then concludes by summing up 

the prediction performance of the ^ 's and outlines the implications for using the 

technique to identify the correct coefficient values. 

8.2 Designing the U V Test Manoeuvres 

To test the predictive capabilities of the identified hydrodynamic coefficients it was 

necessary to use manoeuvres tha t had not been used in the identification process. 

The design of an optimum set of manoeuvres to fully test the predictive power of the 

coefficient is not trivial. This is because the designing of prediction test manoeuvres 

is, in effect, the same problem as identifying the optimal manoeuvre for the UV identi-

fication. As both problems are required to produce 'rich' manoeuvres. Unfortunately 

no way of determining a rich manoeuvre was available so it was decided to test a large 

group of random manoeuvres on the basis tha t the group as a whole would contain 

suitable richness, and hence would be a reasonable test of the identified coefficients 

predictive powers. 

Creating the random manoeuvres required some consideration. The first idea of using 

a random number generator to produce a bounded sequence of control plane angles 

was rejected as these sequences could not necessarily be achieved in real conditions 

as the approach ignored the control plane dynamics. For example, the SR angle 

could change from -30° to 4-30° within 0.1s. This is not reafistic. To overcome this 

shortcoming it was decided to create a model of the control plane dynamics and then 

specify the control plane demand. The control plane demand could then be randomly 

generated and passed through the control plane dynamics to produce a reasonably 

realistic control plane time history. Thus, to produce sensible control plane time 

histories Tc for a random manoeuvre required the creation of an appropriate control 
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plane dynamics model. 

The control plane dynamics model was based on what was thought to be used in the 

SubHov simulation. In the setup da ta for the SubHov simulation it was necessary 

to define a control plane constant and a control plane rate. By examining the con-

trol plane outputs in detail it was thought tha t the control plane rate described the 

maximum slew-rate of the control plane. Also, the control plane constant described a 

time constant for an exponential rise to the demanded level. Thus, it appeared tha t 

the control plane dynamics were modelled as a rate hmited first order system. This 

seemed a sensible approximation of the control plane dynamics. The response of the 

control plane to a step input is shown in Figure 70. 

control plane demand 

exponential stage 

constant slew-rate [a 

Figure 70: Description of the control plane dynamics. 

As can be seen from the figure the control plane response has two parts . In the 

first stage, the change in control plane angle is at a constant rate, which is defined 

by the control plane rate (a) , and in the second stage the change in control plane 

angle is governed by the first order system with a t ime constant (r) , the control plane 

constant. The response of the rudder (or any other control plane) can be modelled 
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mathematically by, 

RO + OI{T — TO), 
oR = \ 

RQ + Ri + i?2(l GXp t E [ti, oo) 

To determine the model in full it is necessary to calculate the value of Eg. This 

is chosen so tha t the initial slope of exponential term is the same as a and hence 

R2 = a / T . If the step change in control plane demand is equal to or less than R2, 

then the control plane angle is governed solely by the exponential t e rm. 

This model of the control plane dynamics was tested against the ou tpu t from SubHov 

and showed remarkably good agreement. Hence, this control plane dynamics model 

was used in the generation of the random prediction manoeuvres. 

Having determined a suitable control plane dynamics model it was necessary to con-

sider how to produce the random prediction test manoeuvres. The first observation 

was tha t the bow dive plane angle SB should not be used as an input as the coefficients 

associated with it had not been identified. The second observation was tha t if the 

pitch angle in the model became ±90° then the singularities in the Euler angle update 

('^2(^2)) would make the simulation unreliable and would invalidate the results. To 

prevent this from occurring the maximum angle was restricted to ±8°. This 

value was found through trial and error testing of the three test submarines. These 

observations meant tha t the bounds for the control plane angles for the prediction 

test manoeuvres were set at: 

[-30°,30°], 

<5B = 0 , 

[ -8° , 8°]. 

Although it would be possible to set a control plane angle demand at every time 

step it was felt tha t this could produce less distinct manoeuvres as the demand could 

rapidly fluctuate above and below zero. This would lead, due to the slew-rate limit 

of the control planes, to the plane angles not deviating greatly from zero. To remove 

this possibility and to give the modelled UVs time to establish the new motion it was 

decided to generate the manoeuvres as a series of steps of random demand angles 

tha t were equally spaced and of significant duration. 
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Following from this, the final specification for the trial manoeuvres was tha t each 

manoeuvre would be 610s long. During the first 10s of each manoeuvre there was no 

control action and so 5R and 5S were zero. Then at 30s intervals new random control 

plane demand angles were set for the rudder and stern dive-planes. This led to 12 

distinct step changes throughout the manoeuvre. The random demand angles were 

generated using a random number which produced uniformly distributed demand 

between the limits described for SR and 5S. An example of the first 200s of a test 

manoeuvre showing the control plane demand and control plane angle is shown in 

Figure 71. 
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Figure 71: Example of the first 200 seconds of a random test manoeuvre. 

8.3 Coefficient Manoeuvre Prediction Test Proce-

dure 

It is not possible to test the prediction capabilities of the identified coefficients for 

every manoeuvre, however, by using a 'suitable number ' of manoeuvres some insight 
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into the prediction capabilities can be gained. What constitutes a 'suitable number ' 

was not obvious. For the purposes of examining the prediction of the 50 ^ 's, 100 

random manoeuvres (i.e. 100 random rudder and stern plane control signals) were 

created. A simple test of the representation of the devised manoeuvres is provided 

by examining the x-y space covered collectively by the generated manoeuvres. 

For submarine 1 the x-y populated as a result of the 100 devised manoeuvres is 

presented in Figure 72. A 'reasonably' large portion of the area surrounding the 

manoeuvre start point is covered and consequently the 100 test manoeuvres are viewed 

collectively as reasonable test bed for examining the prediction accuracy of the ^ 's. 

3000 

2000 

1000 

a 

- 1 0 0 0 

- 2 0 0 0 
3000 2000 1000 - 1 0 0 0 - 2 0 0 0 - 3 0 0 0 

y position 

Figure 72; The prediction test manoeuvre produce by submarine 1. 

The numerical investigation involves using the 50 ^ 's for each submarine to predict 

each of the 100 test manoeuvres generated. Thus, 15,000 individual comparisons 

were performed for the three submarines. For each comparison the cost function 

6 and maximum positional error was calculated for the predicted path. Although 

these metrics do not show how the predicted manoeuvres deviate from the correct 

manoeuvres they do give an estimate of the level of agreement between the two. 
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The results of the testing are discussed in the following sections. 

8.4 Coefficient Manoeuvre Prediction Results 

The first level of analysis provided the mean value of the cost funct ion (e) and the 

maximum positional error for each submarine together with the overall maximum and 

overall minimum values. Due to the large peaks in the calculated results the median 

values were also determined as the median is less affected by the extreme outliers 

produced by some of the converged coefficients. Table 29 presents for submarine 1 

to 3 the indicated cost function and positional error statistics. The positional error 

statistics (in metres) are given in parentheses underneath the cost function. 

submarine 1 submarine 2 submarine 3 

maximum l^%7xl07 1079x10? 

(215.6) (113.7) (88.56) 

mean l^W2xl05 1^168x105 

(15.50) (8.013) (6.781) 

median 1929x105 5^160x104 4^^2x105 

(10.30) (5.822) (4.961) 

minimum L148xl03 3^87x102 fL721xl0i 

(0.731) (0.394) (0.234) 

Table 29: The manoeuvre prediction summary results for the identified coefficients 

of submarines 1-3. 

The first observation from Table 29 is tha t the ^ do not predict the 100 test ma-

noeuvres as well as they reproduce the identification manoeuvre. The mean positional 

errors have increased from 25.4mm, 9.0mm and 19.3mm to 15.50m, 8.01m and 6.78m 

for submarines 1 - 3 respectively. Thus, in general the maximum positional error of the 

predictions are approximately 500 - 1000 times worse than tha t of the identification 

manoeuvre. However, the accuracy of the identification manoeuvre was exceptionally 

high. On the other hand one might consider a predicted positional error of 15m for 

a manoeuvre exceeding 3.5km in length to be still very good. 
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The second observation is tha t the different submarines produce different levels of 

accuracy in the predictions. Table 29 shows tha t the ^ 's of submarine I ' s lead to 

substantially worse predictions than those of submarines 2 & 3. The reason for this 

difference in accuracy is not clear. 

The summary results show tha t there is a considerable spread in the data . To gain a 

more complete understanding of the generated results the maximum positional error 

and cost function da ta are presented as an error surfaces. Displaying the da t a in this 

fashion allows comparison between the predictions produced by the different ^ 's for 

the ensemble of generated manoeuvres. 

The positional errors produced by the ^ 's of submarine 1 are presented in Figures 73 

& 74 with the associated cost functions (e) shown in Figure 75. 

= 00 

Converged Coefficient Set 

Figure 73: Surface showing the maximum positional error for submarine 1 as a func-

tion of ^ and prediction manoeuvre — coefficient view. 

The strong banding of the error peaks shows tha t some of the converged coefficient 

sets are poor at predicting the manoeuvres, while others are very good. To a lesser 

extent the surface variation also suggests tha t certain manoeuvres tend to be less well 

predicted than others. This is shown by banding when looking down the manoeuvre 
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axis in Figure 74. 

— 200 

100 

Manoeuvre Number 

Figure 74: Surface showing the maximum positional error for submarine 1 as a func-

tion of ^ and prediction manoeuvre — manoeuvre view. 

In comparison to the positional error the cost function plot of Figure 75 shows a 

more extreme differences between the predicted manoeuvres. It also shows tha t the 

coefficient set has a far larger effect on the prediction performance than the manoeuvre 

used, as illustrated by the disappearance of the banding relative to the manoeuvre 

axis. 
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100 

Converged Coefficient Set 

Figure 75: Surface showing the cost functions for submarine 1 as a function of ^ and 

prediction manoeuvre — coefficient view. 

The corresponding surfaces plots associated with submarines 2 & 3 are provided in 

Appendix F. Figures 116 and 117 for submarine 3 show more developed banding, 

tha t is dependent upon the ^ and the manoeuvre undertaken. 

The surface plots for the submarines give a general view of how the prediction accu-

racy is affected by the coefficient set and manoeuvre combinations. 

The surface plot presented suggest tha t certain manoeuvres are difficult to predict 

using the ^ 's. If for each ^ the variation of the selected statistic (s or positional 

error) with manoeuvre number were scaled by the maximum observed error in the 

particular cut (realization), for each coefficient set in turn, one might expect if some 

manoeuvre was always poorly predicted irrespective of selected coefficient set. With-

out necessarily undertaking explicitly the suggested normahzation the next section 

considers this idea in a little more depth. 
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8.4.1 The Effect of the Manoeuvre on the Prediction 

Performance 

The accuracy with which each test manoeuvre was predicted by all the identified co-

efficients was investigated. This was done to assess whether all the ^ badly predicted 

certain manoeuvres or not. The e, for each £ manoeuvre combination was plotted 

so that the results could be readily compared. 

In particular, the variation of e with manoeuvre index was produced for each ^ in 

turn. Next, the mean value of e for a given manoeuvre was evaluated. The original 

manoeuvre index was then mapped onto a sorted manoeuvre index so tha t the mean 

value of E was a monotonically increasing function of the manoeuvre index. Thereafter 

the value of e for each ^ produced when predicting the test manoeuvres was plotted 

against the sorted manoeuvre index. The results are presented in Figure 76. Similar 

results were produced for submarines 2 & 3. They are provided in Appendix F. 

Mean e 

P 10 

30 40 50 60 70 

Sorted manoeuvre index 
100 

Figure 76: The predicted manoeuvre cost functions (s's) sorted by average e 

submarine 1. 

Figure 76 shows tha t the manoeuvre does affect the mean e value produced, but the 

variation in bare is not large compared to the variability produced by variations of 
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6 for an individual i . The trend in the bare is not matched by the spikiness of £ 

variations for each ^ . 

To emphasize this differences the coefficient sets ^ tha t exhibited the smahest and 

largest s tandard deviation of log (a) were identified. It was important to use log(£) as 

the relative variability of e was of interest, not the absolute variability. Figures 77 & 

78 respectively, illustrate the £ 's with the largest five identified s tandard deviations 

and the smallest five s tandard deviations. These two figures confirm the earlier ob-

servation tha t the mean value of e increases with sorted manoeuvres index. However 

the variation of a associated with the manoeuvre is less dramatic than tha t associated 

with the individual | . 

The largest five varying | s show tha t the variability between each manoeuvre for a 

£ can be as large as the difference between the maximum and minimum values of 

mean s. Thus, the a value produced by a specific ^ for any one manoeuvre does not 

give a good guide as to how well ^ will predict other manoeuvres. 

The lowest five varying ^ s show tha t for certain ^ there is almost no upward t rend 

in the e values when the manoeuvres are sorted by mean a. Hence, for these 

coefficients there does not appear to be any correlation with the values of mean e. 

The e values appear to fiuctuate randomly about a mean value. 
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Figure 77: The predicted manoeuvre cost functions (e's) sorted by average e, with 

the five largest varying coefficient sets highlighted — submarine 1. 

Mean e 
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4 0 50 60 70 

Sorted manoeuvre index 
100 

Figure 78: The predicted manoeuvre cost functions (e's) sorted by average e, wi th 

the five smallest varying coefficient sets highlighted — submarine 1. 
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The submarine 1 results presented show tha t although there is an ordering of manoeu-

vres, from easiest to most difficult to accurately predict, the cost funct ion variation 

is swamped by the variability produced by the selected ^ . Also, some ^ do not ap-

pear to follow this t rend in the worse predicted manoeuvres. Thus, it would appear 

tha t identifying features of the manoeuvres tha t are more challenging to predict is of 

limited value, as these are only relevant in very broad terms and only have a rela-

tively minor impact on the accuracy of specific ^ . Thus it would appear tha t all the 

hydro dynamic coefficient sets ) are not missing a specific par t of the UV dynamics 

but all the £ are, in their own way, failing to capturing the complete UV dynamic 

characteristics. These results have been demonstrated using the | of submarine 1. 

Similar results are produced using submarines 2 & 3 and these results are collated in 

Appendix F. 

8.5 Analysing the Range in Prediction Accuracy 

Produced by the Identified Coefficients 

The results presented thus far have broadly outfined the absolute accuracy with which 

the ^ s produce the randomly generated prediction manoeuvres. However, the spread 

in the accuracy for a specific £ has not be analysed in detail. Also, no understanding 

of the how accurately the predicted manoeuvres are simulated relative to prediction 

accuracy produce by non-identified sets of coefficients. The presented results show 

tha t the ^ predictions for the test manoeuvres have a higher cost function (e) and 

positional error than tha t of the identified manoeuvre. A particular shortcoming with 

using the cost function (e) and positional error, as metrics of manoeuvre accuracy, is 

tha t they do not compare directly between submarines and manoeuvres. 

Thus, although the prediction manoeuvres are simulated less well t han the identifica-

tion manoeuvre the 'less well' has not been determined. To do this it is necessary to 

establish 'known accuracy' levels of e to calibrate the cost function data. One lower 

calibration level can be produced by calculating the simulation accuracy £ values for 

all the prediction manoeuvres. An upper calibration level can be produced using the 

'correct' hydro dynamic coefficients (^) to with a random error of known size is added. 
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These corrupted ^ 's can then be used to simulate the prediction manoeuvres and from 

these simulations cost function values and positional error values can be found. By 

comparing the e's produced by the ^ performing the prediction manoeuvres to the 

simulation accuracy e's and the corrupted ^ e's an appreciation of the prediction 

accuracy of the | 's can be gained. 

To perform these comparisons it was necessary to determine the simulation accuracy 

e's and the corrupted ^ e's. This was done for submarines 1 to 3. The simulation 

accuracy was calculated using the method outlined in Section 5.9 with a time-step 

of 0.001s considered to produce the 'correct' results. The corrupted £'s were set to 
- ( 1 ) 

the initial estimates ^ of ^ used in the non-linear identification procedure. These 

coefficients were assigned a uniformly distributed error of up to ±10%. However, as 

all the ^ s had identified correctly it was decided to set the value of the 

corrupted ^ 's to the correct value as well. This was done so tha t the error in of 
" (1) 

the corrupted ^ 's did not bias the results, as predictions using ^ could appear worse 

than those using ^ when the difference was solely due to the error in X'^^. These 

corrupted ^ 's will be denoted by 

Since 50 different ^ were generated in Chapter 7 and each would be used as one of 

the corrupted £'s then a further 5000 tests per submarine were required. The upper 

calibration level for each prediction manoeuvre was set as the mean value of the e's 

produced by the 50 corrupted ^ 's simulation that prediction manoeuvre. 

Having calculated the upper and lower calibration levels for the 100 prediction ma-

noeuvres, the distributions within given cost function bounds of the manoeuvre s's 

produced by the upper lower calibration levels and three different ^ were calculated. 

The distributions for the following five situations were considered: 

• The lower calibration level (denoting the simulation accuracy) determined using 

^ but measuring the difference in manoeuvre between a 0.001s and 0.1s step 

size. 

• The prediction errors produced by ^rnin- Where the coefficient set gives 

the minimum value of s averaged over all prediction manoeuvres. 

• The prediction errors produced by ^25- Where the ^25 coefficient set is the 25 th 
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coefficient set when e (averaged over the prediction manoeuvres) is plotted as 

monotonically increasing function of e vs. . 

• The prediction errors produced by Where the coefficient set gives 

the maximum value of e averaged over all prediction manoeuvres. 

• The lower cahbration level determined using ^ but measuring the difference in 

manoeuvre between a 0.001s and 0.1s step size. 

• The upper calibration level which is defined as the e averaged over the 50 ^ 

coefficients used to simulate the prediction manoeuvres. 

The five sets are designated 'simulation accuracy', 'best coefficient', 'middle coeffi-

cient', 'worst coefficient', 'mean 10% coefficients' in the figures presented. Figures 79-

81 show the relative occurrence of cost functions within specified intervals for each 

of the five sets of e's just defined, whereas and a summary of the da t a statistics is 

available in Tables 30-32. 
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simulation accuracy 
best coefficients 
middle coefficients 
worst coefficients 
mean 10% coefficients 

m 30 

P 20 

o ) 15 

10 10 10 
cost function value 

Figure 79: Cost function distribution produced using three selected converged hydro-

dynamic coefficient sets and the upper and lower calibration levels — submarine 1. 

maximum mean median minimum 

Simulation Accuracy 1.628x10^ 1.005x103 9.871x10^ 4.360x10^ 

(0.648) (0.600) (0.603) (0.487) 

Best Coefficient 1.206x10^ SL&SlxlO* 2.683 xlO'^ 6.723 xlO^ 

(7.207) (3.711) (3.718) (1.770) 

Middle Coefficient 1.366x106 3.145x10^ 2.444x10^ 4.444x10"^ 

(40.89) (11.90) (9.184) (1.914) 

Worst coefficient SwTGWxlO? 1.026x10? 4.701 xlO^ 2.653x105 

(215.6) (64.21) (52.25) (10.80) 

10% coefficients l^!51xl09 &296xl08 2.666x10^ 4^^2x10? 

(735.51) (347.42) (311.16) (142.40) 

Table 30: Spread of the cost function value for the converged coefficient sets — 

submarine 1, with the corresponding maximum positional error in metres presented 

within parentheses. 
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simulation accuracy 
best coefficients 
middle coefficients 
worst coefficients 
mean 10% coefficients 
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cost function value 

Figure 80: Cost function distribution produced using three selected converged hydro-

dynamic coefficient sets and the upper and lower calibration levels — submarine 2. 

maximum mean median minimum 

Simulation Accuracy 1.771 xlO^ 1.064x10^ 1.066x10^ 2.897x10^ 

(0.663) (0.615) (0.621) (0.471) 

Best Coefficient i-esexio"^ 3.788x10^ 2.759x10^ 5.608x10^ 

(3.093) (1.343) (1.192) (0.557) 

Middle Coefficient 5.938 xlO^ 1.082x10^ 6.696 xlO* 1.519x10* 

(22.16) (7.091) (5.760) (1.303) 

Worst coefficient 1.927x10? 1.828x106 8^180x105 9.333X1&1 

(ll&T') (28.10) (24.54) (7.704) 

10% coefficients 3/W7xl08 9^;78xlOf 7J^3xlO? 1.711x10? 

(379.3) (180.3) (155.0) (74.10) 

Table 31: Spread of the cost function value for the converged coefficient sets — 

submarine 2, with the corresponding maximum positional error in metres presented 

within parentheses. 
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simulation accuracy 
best coefficients 
middle coefficients 
worst coefficients 
mean 10% coefficients 
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Figure 81: Cost function distribution produced using three selected converged hydro-

dynamic coefficient sets and the upper and lower cahbrat ion levels — submarine 3. 

maximum mean median minimum 

Simulation Accuracy 1.754x10^ 8.929x10^ 8.733x10^ 9.865x101 

(0.652) (0.546) (0.582) (0.262) 

Best Coefficient 7.784x10"^ 5.683x10^ 2.955x10^ 8^'21xlOi 

(7.110) (1.535) (1.222) (0.234) 

Middle Coefficient 2^W3xl05 7.048x10"^ 6.066x10^ 8^88x103 

(23.74) (5.941) (4.879) (0.686) 

Worst coefficient 1.079x10? 1.466 xlOG 1.257x10^ 2 1 6 9 x l # i 

(88.56) (27.56) (25.99) (12.31) 

10% coefficients S^WOxlOS 1.263x10^ 9.759x10? 1.577x10? 

(415.1) (212.2) (200.1) (71.11) 

Table 32: Spread of the cost function value for the converged coefficient sets — 

submarine 3, with the corresponding maximum positional error in metres presented 

within parentheses. 
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Considering all the results together, all submarines produce results t ha t are very simi-

lar in nature. The simulation accuracy is about the same for all submarines, however, 

the results for the £ and modified ^ coefficients of submarine 1 are approximately 

one order of magnitude higher than those of submarines 2 & 3. The cause of this 

is not known. The spread of the ^ results for all submarines is about 2 orders for 

magnitude and the results overlap. The maximum positional error for the 'middle' 

^ for all three submarines is about 1% of the distance travelled. The results clearly 

show that the 'best ' coefficient very accurately predicts the manoeuvres whereas the 

'worst' coefficient predicts the results relatively poorly. 

However, to provide some indication of the accuracy of the poorly predicted manoeu-

vres, the positional time history of the worst | for submarine 1 predicting the worst 

manoeuvre is shown in Figure 82. Similar results for submarines 2 & 3 are given in 

Appendix F. 

Figure 82 shows the correct path, t ha t should be followed, and the predicted path . 

Clearly both tracks, although differing considerably at the end of the manoeuvre, 

have very similar forms. Hence, even though the difference in the tracks at the end 

of the manoeuvre is large the different in form is not tha t great. Thus, the dynamics 

may well be modelled accurately enough for simulation with a control system, as the 

controller will tend to mask the underlying dynamics of the UV and thus a reasonably 

realistic simulated output may be achieved. 

So even though the 'worst' coefficients predicts the submarine dynamics relatively 

poorly they may be considered sufficiently accurate for simple simulation purposes. 

8.5.1 The Converged Coefficient Results 

Having estabhshed tha t some of the 'worst ' ^ coefficient predict the target ma-

noeuvres poorly, compared to 'best ' ^ , the possibility of a correlation between the 

coefficient convergence values outlined in Chapter 7 and the prediction accuracy of ^ 

was considered. To investigate this aspect the converged values of the 'best ' , 'middle' 

and 'worst ' coefficient sets were compared. The comparison of force and moment 

coefficients for submarines 1 -3 is given in Figures 83-88 respectively. 



198 

a 
N 

Y position 

correct path 
converged coefficient path 

X position 

Figure 82: Positional t ime history of the worst coefficient set performing the worst 

manoeuvre — submarine 1. 

Examination of Figures 83-88 suggests tha t prediction accuracy is correlated to the 

level of convergence, as the 'best ' £ appears to be consistently bet ter converged than 

the 'middle' and 'worst' ^ coefficients irrespective of submarine. Thus, the bet ter 

coefficient convergence seems to produce more accurate predictions. However, it must 
' (1) 

be remembered tha t the modified ^ coefficients are all within ±10% of the correct 

value and they produce far worse results. Thus, the test manoeuvres must also be 

ill-conditioned as the 'poorly' converged 'best ' | still predicts all the manoeuvres 

very accurately. 
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Figure 83: The best, worst and middle performing converged force coefficients 

submarine 1. 

Upper Limit 

1.5 

O 
c5 

& 10 

o 

0.5 

Lower Limit 

4a 

+ Worst Coefficient 
0 Middle Coefficients 
• BestCoefficient 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

p 
ll 
il 

Figure 84: The best, worst and middle performing converged moment coefficients 

submarine 1. 
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Figure 85: The best, worst and middle performing converged force coefficients 

submarine 2. 
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Figure 86: The best, worst and middle performing converged moment coefficients 

submarine 2. 
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Figure 87: The best, worst and middle performing converged force coefficients 

submarine 3. 
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Figure 88: The best, worst and middle performing converged moment coefficients 

submarine 3. 
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8.6 Conclusions 

The prediction tests have shown tha t the £ coefficients for the three submarines do 

not simulate the prediction manoeuvres as accurately as they reproduced the identifi-

cation manoeuvre. The £ 's also show considerable variability in prediction accuracy. 

There is a slight dependence upon the prediction manoeuvre simulated, however, most 

of the variation comes from the £ used. This suggests that some of the identified co-

efficients poorly capture the UV dynamics. But as all the £ reproduced the identified 

manoeuvre exceptionally accurately this implies tha t the standard coupled manoeu-

vre is not ideal for identification purposes, as 'poor ' coefficients can still reproduce it 

exceptionally well. Thus, it suggests tha t an improved manoeuvre is required. 

Although the identified coefficients for all submarines do not reproduce the prediction 

manoeuvres as accurately as the identification manoeuvre their mean maximum po-

sitional error is less than of the mean pa th length of the prediction manoeuvres. 

However, for the 'worst ' coefficient simulating the 'worst' prediction manoeuvre the 

error is just over 6% of the path length. This level of accuracy may well be accept-

able for simulation purposes. However, it is important to remember these results only 

relate to the prediction manoeuvres tested. Although it is reasonable to extrapolate 

to all manoeuvres care must be exercised when doing so. 

The prediction accuracies reported also show tha t the coefficient sets for each sub-

marine tha t produced the minimum e for all the prediction manoeuvres, and hence 

had the best prediction accuracy, had in general the best identified coefficients. How-

ever, the coefficients were only well identified in the context of the other ^ 's. Many 

coefficients within the 'best ' £ 's were identified with errors exceeding ±10%. 

The 'best ' coefficient sets for all three submarines all had cost functions and maximum 

positional errors tha t were very small for all the prediction manoeuvres. The 'best ' 

coefficient set for submarine 2 was the most accurate of the three while the 'best ' 

coefficient set of submarine 1 was the least accurate. The largest maximum positional 

error for all the prediction manoeuvres was 3m for the 'best ' coefficients of submarine 2 

and 7.2m for those of submarine 1. The maximum cost functions were 1.6^ and 

1.2 X 10^. Despite these very accurate manoeuvre predictions, the coefficient values 
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of the 'best ' ^ were still poorly converged. 

The 'best ' coefficients sets simulate the prediction manoeuvre massively bet ter than 

the 10% coefficient values. However, the converged coefficient values associated with 

the 'best ' coefficient sets do not appear to be substantially bet ter than would be 

produce from a set of corrupted coefficients with randomly generated ±10% error. 

However, as the identified coefficients produce substantially bet ter prediction accu-

racy it suggests tha t the all of the 100 prediction manoeuvres are ill-conditioned. 

This meaning tha t very small per turbat ions in the manoeuvre are produced by sub-

stantially different hydrodynamic coefficients. If the 100 prediction manoeuvre are 

ill-conditioned then they could not be used to accurate identify the 'correct' hydro-

dynamic coefficients. 
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Chapter 9 

The Linear Parameter 

Identification Procedure 

9.1 Introduction 

The non-hnear identification procedure has been discussed in detail in the previous 

chapters. As was shown in Chapter 7 the t ime required to identify the hydrodynamic 

coefficients from a selected manoeuvre was considerable. Due to the t ime required to 

perform one identification and the variable coefficient identification performance of 

the non-linear identification procedure the linear approach proposed in Section 4.4.1 

was reconsidered. It was stated in Section 4.4.1 tha t determining the UV accelerations 

and velocities from the positional t ime history could be problematic when the position 

and a t t i tude information was subjected to noise. As differentiating the noisy position 

and a t t i tude da ta to get the velocity and acceleration information would introduce 

errors into the calculated values. 

During the re-evaluation of the linear approach it was realised tha t the assumption 

tha t only the positional da ta was available for Autosub was erroneous. To understand 

why, one needs to consider the na ture of the navigation problem for AUVs. On the 

surface AUVs, such as Autosub, use GPS to measure their position. However, when 

fully submerged it is not possible to receive the GPS signal. Thus, the position of the 

AUV must be determined in some alternative manner. A common AUV approach. 
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used in Autosub, is to use dead reckoning. Dead reckoning requires the vehicle head-

ing and speed to calculate the position. The heading of Autosub is measured using an 

IXSEA PHINS Inertial Navigation System (INS). This is described in Gaiffe (2002). 

While the speed of Autosub related to the seabed can be measured using the RD In-

struments ' Workhorse Navigator fitted to the vehicle. This instrument is a combined 

Acoustic Doppler Current Profiler (ADCP) and Doppler Velocity Log (DVL). Com-

bining the information from the INS and A D C P gives the vehicles current position. 

The INS and A D C P are described in more detail in the following sections. 

9.1.1 The INS System 

IXSEA's PHINS INS comprises three Fibre Optic Gyroscopes (FOG) with a known 

drift of less than 0.01° per hour. Each gyroscope is mounted at 90° to each other. 

These measure the vehicles rotation rates. It also contains three orthogonally mounted 

accelerometers each with a drift of less than 50//g also mounted at 90° to each other. 

The system is designed to calculate the a t t i tude and position of the vehicle as it moves 

through space. As an indication of the accuracy of the measurements, the system is 

designed to calculate North from anywhere on the planet (excluding the poles) by 

measuring the rotation rate of the ear th (15° per hour) and the acceleration due to 

gravity. From these two vectors it is possible to determine the direction of North. 

As mentioned the INS directly measures 1/2 and i>i. As the INS produces very accurate 

noise free measurements of f/g, it is reasonable to assume tha t i>2 can be determined 

through differentiation and 772 can be determined through integration of U2. 

9.1.2 The A D C P 

The ADCP measures the speed at which sonar reflecting objects move past its sensor. 

Furthermore if the ADCP can 'see' the sea floor the it can measure the speed of the 

ADCP (UV) relative to the bot tom. The A D C P measures velocities using sonar 

reflections either from particulate mat te r in the water or from the sea bed. Thus, the 

ADCP can directly measure the translation velocity of Autosub. 
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The ADCP is also used to measure the speed of the water at various distances either 

above or below the AUV. This is to analyse the variation of water velocity within the 

water column. These measurements are performed by separating the water column 

into discrete bins and measuring the mean velocity in each bin. One advantage of 

using the A D C P to measure through water velocity, instead of b o t t o m velocity, is 

tha t the effects of currents on the sea trial manoeuvres can be removed. 

The ADCP measures the bot tom velocity with a error of s tandard deviation between 

0.3-0.6 cm/s (over the operating velocities of Autosub) and resolution of O.lcm/s. 

The velocity da ta can be passed to PHINS and combined internally with the INS 

da ta using a Kalman filter to produce a best estimate of the vehicle speed. 

9.1.3 Available Autosub State Information 

By combining the information from the INS and A D C P sensors the following infor-

mation is available during an Autosub manoeuver. 

Data variable Determined from 

Integration of vehicle velocities 

z Depth from the surface, measured from pressure sensor 

V2 Integration of body rates 

Measured from ADCP combined INS Ui da ta 

Measured from the INS 

Measured from the INS 

Differentiated of U2 

Table 33: Manoeuvre da ta available for Autosub and its source. 

This is the da t a tha t the linear identification techniques require and it is available 

without the need to t ransform and double differentiate the manoeuvre position and 

a t t i tude time histories. 
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9.1.4 Applications of INS and A D C P Data 

The foregoing observations have shown that the hnear approach could be used with 

the INS and ADCP data recorded by Autosub while manoeuvring rather than through 

numerical differentiation of noisy positional data as described in Chapter 4. This 

chapter describes the testing and evaluation of two methods to solve the linear equa-

tions. The first considered how the equations can be rearranged into a linear pro-

gramming (LP) formulation and solved using LP techniques. The second uses linear 

algebra techniques to find a solution to the over-determined set of linear equations. 

The effect of noise on the 'measured' data is then considered to analyse the sensitivity 

of the hydrodynamic coefficients predictions to measurement errors. 

9.2 Linear Form of the Booth et al. Equations 

As outlined in Section 4.4.1 the forces and moments in the Booth et al. (1980) sub-

marine equations can be written in a hnear form. For example, the x force equation 

can be expressed in the form 

= bx (31) 

Assuming the following notation: 

ax — The matrix of x force coefficient multiplier. 

— The x force hydrodynamic coefficients. 

hx — The column vector of 'constant' terms. 

Similar equations can be produced for the y h z force and the k, m sz n moment 

equations. 

Assuming that as a submarine performs a manoeuvre the velocity (%/), acceleration 

(z>) and attitude (^^) information is known and recorded at m discrete points in time, 

then m linear equations can be produced. Each row of Ax and bx corresponds to a 

discrete point in time, whereas the column vector is of a fixed length and contains 

the hydrodynamic coefficients. The m linear equations can then be solved. The first 
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approach to solving the equations, based on linear programming (LP) techniques is 

discussed next. 

9.3 Solving the Linear System Using Linear 

Programming Techniques 

Linear programming is used to find the set of coefficients in a linear expression that 

minimizes a function subject to a set of linear constraints. It is the simplest form 

of constrained optimization and has been extensively studied. For more informa-

tion consult Fletcher (1987). The advantage of the LP approach over the non-linear 

approach is that there is no need to produce a starting estimate of Hence, a ma-

noeuvre can be investigated by identifying the hydrodynamic coefficients once. There 

is no requirement to repeat the process for many different starting values of ^ to build 

up an appreciation of the suitability of the manoeuvre. 

It is also possible to build linear constraints into the LP system of equations so 

that extra information regarding the coefficients can be used in the identification 

procedure. 

A linear programming problems can be written in the general form, 

mmfx 

subject to: Ax < b (32) 

•agqx ; 

where / is a row vector premultiplying the unknown column vector x. Here, f x 

represents the function to minimize, A and b represent the inequality constraints and 

Agq and b̂ q represent the equality constraints. 

Reverting to the linear system for the X-force equation, namely 

— ^x, 

it appears that this linear algebraic problem ought to be capable of being recast in 

terms of the general LP problem previously described. One might describe that task 
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as seeking to find the hydrodynamic coefficient vector that minimizes the vector 

c defined as 

c = jx - ^xkx (33) 

Unfortunately, it is not possible to implement this problem formulation directly within 

the linear programming framework for two reasons. First Equation (33) does not 

return a scalar value (c is a vector). Second the modulus sign in Equation (33) makes 

the system non-hnear. However, through some subtle manipulation it is possible to 

recast Equation (33) into a system that can be minimized using Linear Programming. 

First the modulus sign in Equation (33) is removed to give, 

c = bx - Axix- (34) 

The infinity norm of c, denoted by | | c | | oo , represents the largest absolute value of the 

elements of c. This represents the maximum error produced by the hydrodynamic 

coefficient estimate Reducing ||c||oo is therefore the goal of the minimization 

process. We shall let Sip = ||c||oo. 

We note that each of the m linear equation contained within Equation (34) can be 

written as 

^ ] -^Xj^i ^xfixj • j 1)2,..., 771. 
2=1 

As Sip represents the largest absolute error, in anyone of the m linear equations in 

Equation (34), then for every equation j the error eip > \Cj \ or 

^ip ̂  => - ^2 ^xi " ^ip < ~^xj 

and 

>-cj ^ ^Xj,i kxi - ^ip< • 

We therefore want to minimize Sip subject to the constraints just derived. To specify 

this problem in the linear programming form described in Equation (32) it is necessary 

to define f x according to 

f x = eip, 
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f 0 0 0 1 

and 

X ^ip 

Next defining enlarged Ax and bx as 

—^1,1 —Ai^2 • • • —Ai,n -1 — 

— ̂ 2,1 — 2̂,2 • • • —A2,n - 1 -b2 

— ̂ m,l -Am,2 • • • Am,n - 1 
and b* = 

— bm 

^1,2 Al,n - 1 hi 

^2,1 ^2,2 A2,n - 1 h 

Am,2 • • • Am,n - 1 hm 

the linear programming minimization problem can be described as 

m i n / x subject to: a: < 6*. 

This equation represents the identification of the x force coefficients using hnear 

programming techniques. A similar procedure is used to describe the y h z force co-

efficients and the k, m n moment coefficients. Therefore 6 different identification 

sub-problems need to be solved to determine the ^ vector. 

As linear programming is an extremely common technique there is a large resource 

of computer code to solve LP problems. In this thesis the Matlab linprog routine 

was used. More information about the routine can be found in MathWorks (2002b). 

9.3.1 Testing the Linear Programming Approach 

Having identified an appropriate linear programming minimization problem that 

would identify the unknown hydrodynamic coefficients, the three different submarines 



211 

are investigated using data associated with the three standard test manoeuvres (hor-

izontal, vertical and coupled) defined in Chapter 4. However, as already noted in 

Chapter 6 the hydrodynamic coefficients are not unique as the rank of the associated 

A matrices are less than the number of unknown hydrodynamic coefficients. Hence, 

to ensure the LP procedure does not fail too it was necessary to specify certain coeffi-

cients to make the remaining coefficients unique. Thus for the horizontal manoeuvre, 

is reduced by one through the specification of and for the coefficients and 

are both specified. For the vertical manoeuvre diff'erent submarines require dif-

ferent levels of reduction as reported in Chapter 6. To clarify which coefficients were 

specified in the testing all the converged coefficient plots presented in this chapter 

identify the specified coefficients with a vertical grey line. 

The first stage of the testing involved specifying the A* matrices and b*, f and 

X vectors associated with each manoeuvre and submarine combination. Once this 

had been done the hydrodynamic coefficient were identified. The time required to 

determine the coefficient was noted along with the accuracy with which the coefficients 

converged to the correct value. The predictions generated by the three submarines 

using the three standard manoeuvres are presented next. 

9.3.2 Results of the Linear Programming Investigation 

The accuracy of the identified coefficients are presented in Figures 89 to 92. All the 

coefficients converge exceptionally well, in some ways this came as a surprise given the 

convergence performance of the non-linear procedure. However, as the problem has 

been written as a massively over-determined set of linear equations, and formulated 

so we know it has a solution, perhaps the quality of the results should have been 

expected. As all the coefficients converged very accurately, the results are presented 

difi^erently to those of the non-linear identification process. Instead of presenting the 

converged ratio directly the modulus of the convergence ratio minus one is 

presented. This was necessary as the first 6 significant digits of each coefficient value 

was correct. Hence plotting the convergence ratio did not indicate the error associated 

with the coefficients. 
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The Linear Programming Results — Horizontal Manoeuvre 

Figure 89 gives the convergence results for the horizontal manoeuvre. The conver-

gence results for all three tests submarines are shown on the plot. As the conver-

gence ratio gives a relative accuracy it becomes undefined when the correct coefficient 

value is zero. Therefore, the accuracy with which the zero valued coefficients were 

identified cannot be displayed in Figure 89. However, the maximum absolute error 

for all the submarines coefficients used in performing the horizontal manoeuvre was 

1.014 X 10~^ .̂ This is 5 orders of magnitude smaller than the smallest coefficient 

value. 
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Figure 89: Coefficient convergence results produced using the linear programming 

procedure — horizontal manoeuvre. 

The times taken to identified the x, y and n coefficients in each linear sub-problem 

for the three submarines are presented in Table 34. The times show that the LP 

procedure is significantly quicker than the non-linear procedure, as one would expect. 

However, there were clearly difficulties in identifying the n coefficients for submarine 1 

and 3. This is demonstrated by the long search time required to identify the coefficient 

values. 
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submarine 1 submarine 2 submarine 3 

x coefficients 8.36 &78 8.23 

y coefficients 1130 14.87 1Z26 

n coefficients 98.69 1&34 9&56 

Table 34: Time in seconds to solve for the different coefficient sets using linear pro-

gramming techniques — horizontal manoeuvre. 

The Linear Programming Results — Vertical Manoeuvre 

The converged coefficients produced using the vertical manoeuvre are given in Fig-

ure 90. This figure shows similar convergence performance to the horizontal ma-

noeuvre. However, the most striking feature is the consistent, and relatively poor, 

convergence values for the z coefficients of submarines 2 and 3. The non-linear results 

also showed poor convergence as illustrated in Figures 43 & 44 of Section 7.6.2. It 

was postulated that there was a strong, unidentified coupling between some of the z 

coefficient used in the vertical manoeuvre. The results of Figure 90 add weight to this 

argument. As with the horizontal manoeuvre the accuracy with which the identified 

coefficient converged to the zero valued coefficients could not be displayed in Fig-

ure 90. However the largest absolute error on any of the identified 'zero' coefficient is 

1.136 X 10~®, this is 3 orders of magnitude smaller than the smallest coefficient value. 

Note also that submarines 2 & 3 did not have coefficients Z'̂  or M'̂  specified, as 

illustrated by converged values on these 'specified' coefficients. The Z'̂  and M'̂  

coefficients were specified fore submarine 1 and are thus marked as such. 
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Figure 90; Coefficient convergence results produced using the linear programming 

procedure — vertical manoeuvre. 

The time taken to identify the coefficients in the different coefficient sub-problems 

of the vertical manoeuvre are shown in Table 35. This table shows that the vertical 

coefficients are identified considerably faster using the LP method than the non-

linear procedure. Also, the increase in the number of coefficients to identify has 

had no apparent effect upon the convergence time, if anything one could make the 

erroneous conclusion from the data that increasing the number of coefficients reduces 

the identification time. 

submarine 1 submarine 2 submarine 3 

x coefficients 4 ^ 9 4 4 2 4 4 5 

z coefficients 7^0 10.41 30.52 

m coefficients 11.57 13.96 2&60 

Table 35: Time in seconds to solve for the different coefficient sets using linear pro-

gramming techniques — vertical manoeuvre. 
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The Linear Programming Results — Coupled Manoeuvre 

The accuracy with which the hydrodynamic coefficient converge using the coupled 

manoeuvre is given in Figures 91 & 92. These figure show a similar level of accuracy 

to the horizontal and vertical manoeuvres with the largest absolute error on the 

identified zero valued coefficients was 2.280 x 10̂ ®. Again this is three orders of 

magnitude smaller than the smallest non-zero coefficient value. 
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Figure 91: Force coefficient convergence results produced using the linear program-

ming procedure — coupled manoeuvre. 
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Figure 92: Moment coefficient convergence results produced using the linear program-

ming procedure — coupled manoeuvre. 

The time to identify the various coefficient sub-problems using the coupled manoeu-

vre are given in Table 36. These times show an increase compared to the vertical and 

horizontal manoeuvres, but the convergence is still, in general, three of four times 

quicker than the non-linear procedure. The table shows that there were some diffi-

culties in identifying the n coefficients of submarine 3. The cause of this problem 

was not immediately identifiable. 
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submarine 1 submarine 2 submarine -

x coefficients 15.61 18.22 16J^ 

y coefficients 3&94 34^9 33.06 

z coefficients 30.68 47^4 4 2 7 6 

k coefficients 33.52 33J6 40.62 

m coefficients 37^3 4&80 4^45 

n coefficients 34.77 54.57 2 » i 9 1 

Table 36: Time in seconds to solve for the different coefficient sets using linear pro-

gramming techniques — coupled manoeuvre. 

The results from all three linear programming tests have shown that the identified 

hydrodynamic coefficients vector ^ has converged accurately to the correct hydro-

dynamic coefficient This identification process is 3 or 4 times faster than the 

non-linear identification process and does not require an initial starting estimate of 

It has correctly identified all the coefficients barring the specified added-mass co-

efficients. Therefore the linear programming method used can be considered better 

than the non-linear approach. 

The performance of the alternative linear algebra based approach of estimating ^ is 

considered next. 

9.4 The Linear Algebra Approach 

An alternative method of determining the solution to Equation (31), is to use 

linear algebra techniques to solve the equation directly. For a set of linear simulta-

neous equations it is widely known that provided there is m independent equations 

and m unknowns then a unique solution vector x exists for the problem. However, 

if we have n independent equations with n > m, then the system is over determined 

and there is no solution which satisfying all the equations. In the system one linear 

equation is produced per time-step of the simulation, thus as the time-step is 0.1s and 
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the identification manoeuvre lasts from 350s to 600s the number of linear equations 

is very large. However, we know that, for the simulation at least, there is a solution 

i^x) which satisfies all the equations. This is because each row of Ax and bx when 

combined with represents a hnear equation which describes the acceleration in 

the X direction. As this is calculate in the simulation using each of the linear 

equations will be satisfied when ^x — therefore a solutions exists. However, 

if noise is added to each of the linear equations, then they will not be satisfied when 

^x — ^x as there are far more linear equations than unknowns the system will 

be over-determined and have no solution. 

Although for 77, > m there is no determinable solution as such for 

Ax^x = bx (35) 

a best estimate^j^ of ^x can be made. This estimate is best in the sense that the sum 

of the squares of the errors associated with each of the linear equation is minimized. 

Calculating the bestestimate involves finding a matrix B x which is a left inverse for 

Ax such that, 

bxaxix = ^ix = b*xbx. 

The common approach to determining the left inverse, which gives the 'least squares' 

solution ^x to Equation (35), is to premultiply Equation (35) by the transpose of 

Ax- This leads to, 

a^ax^x ~ -^^bx-

Provided Ax is of full rank then it is guaranteed that (^A^Ax) ^ exists as shown in 

Strang (1988), and so 

(36) 

This equations gives a solution which minimizes the sum of the square of the 

errors in Equation (31). 

Having described how to determine a solution to the linear equation, it is clear that 

provide A and b are known for all the coefficient sub-problems, then the hydrody-

namic coefficients can be readily determined using this method. 
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9.4.1 Applications of the Linear Algebraic Approach 

The same manoeuvres used with the hnear programming formulation are considered 

for the hnear algebra approach. Again Matlab was used to perform the computations 

and the Matlab mldivide (matrix left divide) command was used to compute The 

Matlab command does not use Equation (36) to determine the solution, this is because 

any ill-conditioning in A is magnified by using Equation (36). For more information 

on the implementation of the mldivide command, see MathWorks (2002a). The 

predicted converged coefficients are presented in Figures 93 to 96 and discussed in 

the following subsections. 

The Linear Algebra Results — Horizontal Manoeuvre 

The accuracy of the derived coefficients for the three submarines performing the 

horizontal manoeuvre are presented in Figure 93. The convergence accuracy produced 

by the hnear algebra method is better than that of the LP method shown in Figure 89. 

The largest absolute error associated with an identified 'zero' coefficient is L068 x 

10'^^, this is 3 orders of magnitude smaller than the results produced by the LP 

method and 8 orders of magnitude smaller than the smallest hydrodynamic coefficient. 
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Figure 93: Coefficient convergence results produced using the linear algebra procedure 

— horizontal manoeuvre. 

The times required to identify the coefficients of the associated coefficient sub-problem 

are given in Table 37. Table 37 shows that the execution times for the linear algebra 

method are over two orders of magnitude less than the time to compute ^ using the 

LP approach. Thus for the horizontal manoeuvre the linear algebra approach is both 

faster and more accurate than the LP method. 

submarine 1 submarine 2 submarine 3 

X coefficients 

Y coefficients 

n coefficients 

0.08 

0.16 

0.15 

0.12 

a29 

ai6 

0.17 

0.14 

0.29 

Table 37: Time in seconds to solve for the different coefficient sets using linear algebra 

techniques — horizontal manoeuvre 



221 

The Linear Algebra Results — Vertical Manoeuvre 

The convergence results for the vertical manoeuvre are given in Figure 94. During 

this manoeuvre the largest absolute error on identified 'zero' valued coefficients is 

5.423 X 10"̂®. As with the horizontal manoeuvre the linear algebra approach identified 

the coefficients more accurately than the LP method. Interestingly, although the Z 

coefficients of submarines 2 & 3 are more accurately identified than in the LP method 

the same basic shape of the identified coefficients still exists. 
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Figure 94; Coefficient convergence results produced using the linear algebra procedure 

— vertical manoeuvre. 

Table 39 provides the time taken to identify the coefficients. The times displayed again 

show that the linear algebra approach is substantially faster than the LP method. 
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submarine 1 submarine 2 submarine 3 

x coefficients 

z coefficients 

m coefficients 

0.08 

0.10 

0.39 

0.07 

&19 

&12 

OĴ  

0.15 

0.13 

Table 38: Time in seconds to solve for the different coefficient sets using linear algebra 

techniques — vertical manoeuvre 

The Linear Algebra Results — Coupled Manoeuvre 

The force and moments coefficient convergence results for the coupled manoeuvre are 

given in Figures 95 and 96 respectively. Again the coefficients are very well identified 

and the largest absolute error on identified 'zero' valued coefficients is 6.152 x 10"̂ '̂  

for the coupled manoeuvre. 
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Figure 95: Force coefficient convergence results produced using the linear algebra 

procedure — coupled manoeuvre. 
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Figure 96: Moment coefficient convergence results produced using the linear algebra 

procedure — coupled manoeuvre. 

Table 39 shows that all the coefficients of ^ can be determined in a little over Is. 

submarine 1 submarine 2 submarine 3 

x coefficients &09 &18 0.15 

y coefficients &21 &28 0.17 

z coefficients 0.14 &34 0.22 

k coefficients 0.16 0.15 &27 

m coefficients &26 0.27 0.31 

n coefficients 0.32 0.24 &25 

Table 39: Time in seconds to solve for the different coefficient sets using linear algebra 

techniques — coupled manoeuvre 
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9.5 Comparison of the Two Linear Approaches 

The previous sections described, applied and presented the predictions based on both 

the linear programming (LP) and linear algebra approaches to determining the hy-

drodynamic coefficients. Both approaches have been shown to be superior to the 

non-linear approach in that they took less time to converge, produced the 'correct' 

coefficient values and did not require an initial estimate of Thus, reformulating the 

coefficient identification problem into a system of linear equations hugely improves 

the identification speed. 

Comparing the two approaches, the linear algebra approach is both faster and more 

accurate than the LP method. Furthermore, it is possible to put additional constraints 

upon the linear system to try and aid the identification of the correct coefficients. 

However, this possibility was not explored here and so the linear algebra method was 

considered to be the best choice of the linear approaches to solve the identification 

problems. 

The fact that the linear algebra method calculated the coefficient values very accu-

rately could lead one to believe that the problem of identification has been solved. 

However, we know from Chapters 7 and 8 that the manoeuvres produced by the 

Booth et al. (1980) equations of motion are ill-conditioned. That is almost identical 

manoeuvres were produced by completely different coefficients. Thus, as both the 

linear and non-linear approaches represent the same system one suspects that the 

linear methods will also suffer from this ill-conditioning. Hence, smah errors in the 

measured attitude, linear & angular velocity and linear & angular accelerations will 

lead to very large errors in the determined coefficients. This aspect of ill-conditioning 

is considered next. 

9.6 Ill-conditioning of the Linear Approach 

It was suspected that small measurement errors (sn) and slight disturbances (r^) 

would be magnified by the ill-conditioning identified in the non-linear procedure. If 

true then small errors and disturbances would lead to large errors in the identified 
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coefficients. 

However, the level of ill-conditioning was not known. If the system was very ill-

conditioned then it will not be possible to identify the coefficients even if every effort 

was made to reduce and This statement does not take into account the 

'disturbances' produced by the Booth et al. (1980) equations as a consequence of not 

precisely describing the loads acting on an UV. Alternatively if the ill-conditioning 

was not excessive, then it may be possible to produce reasonable estimates of the 

hydrodynamic coefficients from noisy manoeuvre. 

To determine the effect of measurement noise {en) and disturbances (Tj), experienced 

in real UV trials, on the accuracy of the coefficient identification it is preferable to have 

a model of Bn and r^. Unfortunately no such model exists for Autosub. To overcome 

this problem, it was decided to test manoeuvres with a noise and disturbance level 

appreciably less than that expected in reality. A manoeuvre subject to very low noise 

and disturbance level could indicate the effect it has on coefiBcient convergence. If the 

low level noise and disturbances badly affect the coefficient convergence accuracy it 

could then be surmised that real manoeuvre subject to larger noise and disturbance 

levels would be even more strongly affected. 

In defining the low noise and disturbance levels it was decided for simplicity to assume 

that the UV was not subject to disturbances and hence t^. = 0. The measurement 

noise level was determined from consideration of the sensors on Autosub. As the 

Fibre Optic Gyros on the PHINS INS are very accurate it was assumed that the 

UV's attitude and angular velocity & acceleration were measured without error. On 

the other hand the ADCP does not measure the linear velocity of the vehicle with 

the same accuracy. It was therefore decided to corrupt only the 'measured' linear 

acceleration and velocity. The chosen method of corrupting the data was to specify a 

measurement precision and then to round the 'measured' data to this precision. This 

was done to make the tests repeatable and to simplify the specification of the 'noise'. 

In particular, the linear acceleration was assumed to be measured with a precision of 1 

mm-s~^ (based on the PHINS 50/xg precision accelerometers) and so the accelerations 

were rounded to the nearest mm-s~^. Since the linear velocity was assumed to be 

measured with a precision of 1 cm-s~^ and hence the UV linear velocities were rounded 
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to the nearest cm-s 

Having, defined the precision of the errors the 100 prediction manoeuvres described 

in Chapter 8 were used with the above measurement precision to identify the hydro-

dynamic coefficients of submarine 1. The results of the coefficient identification tests 

are shown in Figures 97-98. These figures show that the hydro dynamic coefficients 

are not well identified with this small noise level. Two coefficients have convergence 

ratios sufficiently large to not appear within the plotted scale G [5,8] and 

17 E [—250, —50]). Also, the range of although passing through the plotted 

range extended from -8 to +5. 
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Figure 97: Linear algebra estimated force coefficient values for submarine 1 calculated 

from the 100 prediction manoeuvres. 
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Figure 98: Linear algebra estimated moment coefficient values for submarine 1 cal-

culated from the 100 prediction manoeuvres. 

The poor coefficient convergence means that the 'measurement' errors associated 

with the 100 random prediction manoeuvres have produced coefficients that do not 

completely match the target track. 

However, when these coefficients are used to predict the manoeuvres of the identi-

fication process they produce the target manoeuvres with the accuracies shown in 

Figure 99. Thus, although the individual coefficients are poorly identified the coeffi-

cient set still reproduce the target manoeuvre very accurately. This was the definition 

of an ill-conditioned manoeuvre as set out in Chapter 4. 
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Figure 99; The accuracy with which each identified coefiicient set reproduce its iden-

tification manoeuvre. 

The ill-conditioning testing has shown that very slight errors in the 'measured ma-

noeuvre' data has a profound effect upon the values of the identified coefficients. 

The 100 random prediction manoeuvres used with the 'noisy' identification process 

have produced ill-conditioned manoeuvres. This result confirms the hypothesis put 

forward in Chapter 8 that the 100 prediction manoeuvres were in-conditioned. 

9.7 Conclusions 

This chapter has described how the initial assumption, posed in the QinetiQ hy-

drodynamic coefficient identification problem, that only position and attitude data 

was available during a manoeuvre is not true for Autosub. As Autosub measures 

velocity and acceleration data directly, linear identification procedures can be eas-

ily used. The linear programming technique was describe, implemented and tested. 

Using this technique the hydrodynamic coefficients were very accurately identified in 



229 

considerably less time than using the non-linear identification technique. The linear 

algebra formulation of the problem was even more successful producing more accurate 

coefficient values in approximately one hundredth of the time of the LP approach. 

Although, the coefficients were exceptionally well identified it was realised that the ill-

conditioning exhibited in the non-hnear identification testing should also be present 

in the linear identification process. As the linear algebra approach identifies the co-

efficient extremely accurately it was suspected that the ill-conditioning would appear 

when slight errors occurred in the measured data. This was tested by introducing 

a small rounding error in the 'measured' velocities and accelerations of the 100 pre-

diction manoeuvre (introduced in Chapter 8) performed by submarine 1. The linear 

algebra technique was then used to identify the hydrodynamic coefficients from this 

corrupted data. The coefficient values were poorly identified using this corrupted 

data. However, the coefficients still managed to reproduce the identification ma-

noeuvre with considerable accuracy. Thus, it was concluded that the 100 prediction 

manoeuvres were ill-conditioned. This supported the conclusions of Chapter 8. 
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Chapter 10 

Conclusions 

The motivation for this research was based on a desire to create an accurate motion 

simulation of Southampton Oceanography Centre's AUV Autosub. This has not been 

achieved. 

The research has investigated whether it is possible to identify the hydrodynamic 

coefficients used in a non-linear submarine model from free swimming trials data. The 

results reported in this thesis have demonstrated that this is an extremely challenging, 

if not impossible, task. The principal difficulties arise from the ill-conditioning of the 

coefficients identified from manoeuvres time histories and, to a lesser extent, the 

non-uniqueness of the manoeuvre identified hydrodynamic coefficients. 

The research, although not producing a method of identifying the correct coefficient 

values, has given considerable insight into the equations themselves. The thesis also 

demonstrated in Chapter 7 a method of identifying the hydrodynamic coefficients 

using only the UV path data. This non-linear approach determined the coefficients 

in relatively short order, considering the complexity of the problem being solved, 

and proved itself eminently suitable for answering the QinetiQ question posed in 

Chapter 4. Although, the approach was not optimal for the Autosub problem it did 

provide valuable insight into the ill-conditioning of coefficients in the identification 

problem. Also, the approach of using a custom coded C based UV motion simulation 

linked into Matlab and combined with other custom written and off the shelf Matlab 

tools has proved to be a powerful method of evaluation the system identification 
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procedure. 

The non-uniqueness of the manoeuvre identified hydrodynamic coefficients demon-

strated in Chapter 6 showed that the problem arose from the coupling between the 

inertial and velocity hydrodynamic coefficient terms. Specific added-mass coefiicients 

were identified as being 'associated' with these couphngs, and by specifying the value 

of these coefficients the remaining hydrodynamic coefficients become unique, and 

hence can, in theory, be identified. It is reasonable to assume that accurate added-

mass figures for the UV can be determined using potential flow theory and so the 

specified added-masses would not introduce errors into the remaining coefficients. 

So, although the coefficients are not unique, the non-uniqueness can be overcome by 

specifying the values of the 'associated' added-mass coefficients. 

As an aside, this non-uniqueness is a feature of the equations when not subjected to 

disturbances. If disturbance loads were added to the equations then the coefficients 

would become unique, but the linear relationship that caused the non-uniqueness 

would not disappear, and thus would produce ill-conditioning in the system. 

So although a method of overcoming the non-uniqueness was available, the thornier 

problem of the ill-conditioning of the manoeuvres could not be so readily overcome. 

The ill-conditioning of manoeuvres was discussed in Chapter 4, shown for the standard 

test manoeuvres in Chapter 7, implied for the 100 prediction manoeuvres in Chapter 8, 

and demonstrated for the 100 prediction manoeuvres in Chapter 9. In no case was a 

well-conditioned manoeuvre found. 

The ill-conditioned state describes the sensitivity of the hydrodynamic coefficients to 

small errors in the identification manoeuvre when mapping from the manoeuvre to 

the coefficients. This ill-conditioning makes it exceptionally difficult to determine the 

correct coefficient values as a real manoeuvre is always subject to small errors. 

The ill-conditioning of all tested manoeuvres poses the question of whether all ma-

noeuvres are ill-conditioned. If all UV manoeuvres are ill-conditioned then it is im-

possible to determine the correct coefficient values from submarine trials data as all 

data, as mentioned, will contain small errors which will be magnified to create large 

errors in the coefficient values. 
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Also, if all manoeuvres are ill-conditioned there would be sets of coefficients which 

although substantially different to the correct coefficients values would still reproduce 

all manoeuvres accurately. This can be demonstrated as follows. If all manoeuvres are 

ill-conditioned then a manoeuvre can be created that contains all other manoeuvres, 

and this too will also be ill-conditioned. Any coefficients that can accurately produce 

this 'super' manoeuvre will also predict all other manoeuvres accurately. So if all 

manoeuvres are ill-conditioned then although the coefficients may be mathematically 

unique they will be non-unique for all practical purposes. 

Alternatively, if not all manoeuvres are ill-conditioned then there will be a manoeuvre 

which is well conditioned. If this manoeuvre was used to identify the coefficients then 

the correct coefficient values should be determined. 

The results presented in the thesis suggest that no well-conditioned manoeuvres exist. 

But proving this is extremely difficult as the only approach which suggests itself is to 

test every manoeuvre and submarine combination to see if they are all ill-conditioned. 

Clearly an impractical proposition. However, as all the manoeuvres analysed were 

ill-conditioned it seems reasonable to extend this and assume that all manoeuvres 

will be ill-conditioned. From this it would follow that the coefficients of the Booth 

et al. (1980) submarine equations when identified from a manoeuvre would always be 

ill-conditioned. 

The one caveat to the foregoing analysis is that this is all based on disturbance free 

motion. There is a possibility that if the UV is subject to disturbances about which 

information is known, then this extra information may allow for better coefficient 

identification. 

The results of the tested identification process using simulated UV manoeuvre data 

strongly suggest that the technique will not work when applied to real UVs. The UV 

motions were simulated under the following idealized conditions, when the linear pro-

gramming (best identification approach) failed to accurately identify the coefficients: 

• The added-mass coefficients were accurately known. 

• The manoeuvre data was subject to measurement noise. This took the form of 

rounding the linear velocities to the nearest cm-s^^ and the linear accelerations 
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to the nearest mm-s These values were as they were significant but less than 

would be expected with real data. 

• The UV was not subject to any external disturbances. 

• The UV motions were accurately described by the Booth et al. (1980) submarine 

equations. 

• All the UV 'mechanical' coefficients were known (e.g. Ixx)-

• The error of the simulation in approximating the Booth et al. (1980) submarine 

equations was ignored. 

Thus, even when the manoeuvre data is subject to very small levels of error the linear 

programming approach failed to identify the correct hydrodynamic coefficient values. 

This demonstrates the ill-conditioning of the manoeuvre identified coefficient values. 

Thus, using the tested it is not possible to accurately determine the hydrodynamic 

coefficients with the tested identification techniques. 

It is important for the identification procedure to identify the correct coefficient values 

as first it would validate the procedure was working correctly and would guarantee 

that all manoeuvres would be the same as those generated from captive model test-

ing. Second, although it maybe possible to determine a set of coefficient which albeit 

different will always produce acceptable manoeuvre accuracy for all simulated distur-

bances free manoeuvres, the approach may well fail when disturbances are added to 

the simulation. 

Finally, although the coefficients appear to be non-unique and ill-conditioned when 

considered in the Booth et al. (1980) equations, this is a feature of the equations 

not the coefficients. The coefficients themselves represent the loads associated with 

physical motions of an UV, and as such are unique and well-conditioned. If the 

coefficients were not unique and well-conditioned then they could not be derived in 

captive model testing. This begs the question of why the coefficients are non-unique 

and ill-conditioned when within the Booth et al. (1980) equations. 

The cause of the ill-conditioning is thought to arise from the fact that free swimming 

UVs can only produce a subset of all possible motions when manoeuvring, and so the 
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manoeuvring UV cannot produce a rich enough motion set to allow the hydrodynamic 

coefficients to be accurately identified. An example of the limited possible motion 

occurs when a UV is turning; it is not possible to generate a yaw-rate (r) without 

producing an associated sway velocity (u). This coupling of sway and yaw-rate re-

stricts the UV motion to a band in the v ~ r plane (as illustrated by Figure 68). 

Thus, any set of identified hydrodynamic coefficient that accurately reproduces the 

hydrodynamic loads in this band will accurately reproduce all free-swimming UV 

manoeuvres. It is thought that there are many such coefficients sets which accu-

rately model an UV's loads in this restricted motion band and this fact causes the 

ill-conditioning noted when attempting to identifying the hydrodynamic coefficients 

from manoeuvring data. 

10.1 Further Works 

First to strengthen the hypothesis that the Booth et al. (1980) equations always gen-

erate ill-conditioned manoeuvre, and hence cannot be used to determine the correct 

coefficient values, the following tests could be performed. 

• Test manoeuvres where the buoyancy of the UV changes during the manoeuvre. 

• Test manoeuvres where there are propeller rpm changes during the manoeuvre. 

One possible method of speeding up the manoeuvre evaluation would be to use the 

concepts of matrix conditioning numbers with the matrices generated in the linear 

identification procedure. This method could potentially produce an estimate of how 

well conditioned the manoeuvre is without exhaustively testing it. This would speed 

up the manoeuvre evaluation. 

The approach to determining the hydrodynamic coefficients laid out in the research 

could also be applied to other set of non-linear UV equations to see if they also 

produced non-unique ill-conditioned coefficients. 

Finally, a more interesting hne of enquiry would be to evaluate whether a set of 

'wrong' valued coefficients can reproduce all other manoeuvres accurately. If they 
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can then the identification manoeuvre may well prove suitable for determine such a 

set. 
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Appendix A 

Calculating the Euler Angle 

Update Matrix 

From Section 2.1.3 it was shown that, 

p 

Q = 

r 

1 S(p • to c(f) • to 

0 

0 c< /̂c^ 

Thus, 

p = <i)+ (sin (f) tan 9)9 + (cos 4> tan 9) 

q = (cos (j))9 — (sin (f)) ip, 

r = (sin (f)/ cos 9) 0 + (cos 0/ cos 0) ̂  . 

(37) 

(38) 

(39) 

Now multiplying equations (38) and (39) by cos (p and — sin (j) respectively and adding 
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q cos 0 — r sin 0 = (cos^ ^ + (sin (j) cos (j) cos 6) ip 

+ (sin^ 4>) 0 ~ (sin (p cos 0 cos 9) tp, 

— (sin^ 0 + cos^ (p) 6, 

= 9. 

Substituting for 9 from equation (40) into equation (39) leads to 

r = — sin 0 (g cos 0 — r sin 0) + (cos cp cos 9) Tp, 

— —q sin (p cos (p + r sin^ (p + (cos p cos 9) ip . 

Rearranging then yields 

(cos(pcos9) ip = qsmcj)cos(p — r (sin^ (p — l) , 

and so 

Substituting ip from equation (41) into equation (37), yields 

; . a / MM 
p = (p — sm9 [ q + r cos 9 COS0 

= ^ — qsincptan9 — r cosp tan9 . 

Thus 

^ = p + qsincptan9 + r cos(ptan9 . 

The three governing equations are then, 

^ = p + q&mcptan9 + r cos(j)tan9 , 

9 = q cos 0 — r sin 0 , 

• sin (p cos (p 
tp = q + r-

(40) 

q sin (p cos 0 + r cos^ 0, 

COS 9 cos 9 
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Written in matrix form this becomes, 

0 1 sin (j) tan 9 cos (f) tan 6 P 

Q = 0 cos 4> —r sin cj) Q 

0 shi^/cos0 sin 0/cos 0 r 

Or written in Fossen's notation, this becomes, 

= '̂ 2(772)^2, 

as required. 
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Appendix B 

Quaternion Representation of 

Rotation 

Due to the singularities associated with Euler angles, quaternions have been proposed 

as an alternative method of defining the body rotations required in UV simulations. 

The quaternion definition was created by William Rowan Hamilton in 1856 and is a 

forerunner to vector notation. As quaternions were more complex to use than vectors 

they fell from use. However, interest in them has resurged, as they are capable of 

representing rotations without the singularity problems associated with Euler angles 

and discussed in Section 2.1.2. 

The following appendix briefiy describe how quaternions can be used to represent the 

rotations required in simulating UVs. For a fuller description of quaternions see Chou 

(1992) and Kuipers (2002). 

B . l Quaternion Fundamentals 

Quaternions are an extension of complex numbers known as hyper-complex numbers, 

where 3 different variables represent the purely imaginary number Thus the 

imaginary part of the number is represented by a vector in R^. The three variables 
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are defined as i, j & k. By definition multiplication of these bases proceeds as follow, 

= —1, = —1 and k^ = —1. 

Similarly, when any two of the bases are multiphed together, they produce: 

i j = - j i = k 

jk = -kj = i 

ki = —ik = 3 

Furthermore, triple products satisfy the cyclic relationship: 

ijk = jki = kij = — 1. 

Quaternion Representation 

A quaternion can be defined geometrically as a point in a four dimensional space with 

one dimension represented by the real component and three dimensions represented 

by the imaginary components. The 'directions' of the space are represented here as 

1, i, j k k with associated magnitudes (%, Qi, Qs)- Two quaternions are said to 

be equal if their corresponding components are equal. Thus, 

q = p ==> go = Po, qi = Pi, 92 = P2 and % = 

Quaternions are usually represented in one of the following ways. 

1. A linear combination of the four components (%, Qi, Q2, Qs) in the directions 1, 

i, j & k. Thus, 

A = % + qii + q2j + Qsk. 

2. A vector of four coefficients, written as 

q = [90,91,92,%]. 

3. A scalar representing the real part and a vector representing the imaginary 

terms, written as 

q = {w, q) where q=[qi, 92,93]-



247 

Quaternion Addition 

Quaternion addition works in the same fashion as vector addition, that is, correspond-

ing elements are added so that, 

A + P = [ ( % + P o ) , ( ? ! + P l ) , ( 9 2 + P 2 ) , ( ? 3 + % ) ] ' 

It follows from this definition of quaternion addition that the algebraic rules governing 

quaternion addition are the same as those for real numbers, thus: 

q + p = p + q - Quaternion addition is commutative 

q + (p + r) = ( q + p ) + r - Quaternion addition is associative 

q + 0 = 0-t-q = q - Quaternion addition has an additive identity 

q + (—q) = (—q) + q = 0 - Quaternion addition has an additive inverse 

Scalar Multiplication 

Quaternion scalar multiplication is defined in the same fashion as that for vectors, 

thus: 

If q = {qo,q) then sq = {sqo,sq). 

Quaternion Multiplication 

Quaternion multiplication is defined as follows: 

qp = (%Po - - gzPz - 93%) 

+ (91P0 + 9oPi - 93P2 + 92̂ 3)% 

+ (92P0 + Q3P1 + <loP2 — QlP3)j 

+ {QZPO — Q2P1 + Q1P2 + (loPz)k 

Alternatively quaternion multiplication can be written using the concepts of vectorial 

dot and cross products as follows: 
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With q = (go, q) and f = (po,p) then 

qp = ( (%Po - g p ) , (%P + Po9 + g x p ) ). 

Quaternion multiphcation is associative but not commutative, consequently, 

(^1^2)^3 ~ ^1(12^3) 

but 

4142 f 4291, since ?! x gg ^ x q^. 

Quaternion Conjugate 

If q = % + Qii + q2j + Qzk then the quaternion conjugate of q is defined as: 

~ Qo — Qii — Q2j — Qak 

= (90, - g ) . 

Quaternion Norm 

The Norm of a quaternion A (̂q) is defined by Kuipers (2002) as. 

N{q) = Vq^ 

however as, 

qq* = (%,g) (90,-9) 

= 9o - (g) - 9 + I0Q + (-g)% + (-9) X q 

= Qo + Q-Q 

= Qo + Qi + Q2 + QI 

Thus the quaternion norm can be written in terms of the Euclidean norm, that is 

^ ( q ) = 11(90,91,92,93)112-
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Thus, using this definition, the quaternion norm is equivalent to the Euchdean norm 

of the vector of the quaternion component values in four dimensional space. 

A quaternion whose norm is 1 is known as a unit quaternion. 

Quaternion Inverse 

The quaternion inverse is defined as; 

NW' 

Thus for unit quaternions where A (̂q) = 1, 

q-i = q ' 

B.2 Rotation Using Quaternions 

It is shown in Kuipers (2002) that the 3-dimensional rotation of a vector can be 

computed using the quaternion product, 

p' = qpq*. 

The rotation of a point p about a unit vector u through an angle a to a point p' with 

the rotation direction determined by the right hand screw rule, can be achieved using 

quaternions as follows; 

P' = qpq' 

where q is the unit quaternion 

q = (go, q) 

defined by 

90 = cos (a) 

g = usin ( | ) 
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Also 3̂ is the vector quaternion with a zero scalar component and the i, j k k 

components corresponding to the x, y k. z position of the point p to be rotated. 

Therefore p is defined as, 

P = (0, 

The new quaternion p' is also a vector quaternion with a zero real component and with 

i, j &L k components corresponding to the rotated coordinate values of p' designated 

x', y' k z'. Thus, 

P' = (0, [a;',?/',/]). 

This operation is illustrated in Figure 100(a) by the rotation of point p about the x 

axis by an angle (p. The rotation of a coordinate system is shown in Figure 100(b), 

again using the right hand convention. This operation is performed using the quater-

nion product, 

P' = q*pq 

where the p and q are defined as above. 

(a) 
Vector Rotation 

y 

(b) 
Reference Frame Rotation 

Figure 100: Vector and reference frame rotation about the x-axis by angle 
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Performing the Body to Inertial Coordinate Frame Rotation 

The orientation of the body fixed coordinate system is defined by a rotation from the 

inertial coordinate frame. This rotation is described using quaternions by the axis u 

and angle a. The rotations from the inertial to the body fixed coordinate frame are 

performed using the quaternion product, 

p' = q*#q. 

However, rotations from the body fixed to the inertial reference frame, as required in 

the UV modelling, required a rotation angle of —a. We shall use q~ to describe the 

quaternion governing this negative rotation. Where, 

q" = (%,?") 

with 

% = cos j = COS = % 

and 

— CK 
q = usm ( J = —tism ( — j — —q. (f) 

Therefore, 

q = (%, -q) = q* 

By noting the (q*)* — q, the body fixed to inertial coordinate system rotation can 

thus be described as, 

p' = q-*pq-
= qfq* 

Thus, the point rotation quaternion product is used to calculate the rotation from 

the body fixed to the inertial reference frame when modelling UVs. 
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Matrix Representation of the Body Fixed to Inertial Coordinate Frame 

Quaternion Rotation 

It is desirable to use the quaternion rotation product to compute a rotation matrix 

that could be used to rotate the associated vectors so that, 

" , • 

X X 

y' = Mq y 

z' z 

Where is calculated from the quaternion product. 

This can be achieved by multiplying out and manipulating the quaternion product 

y = qpq* 

written equivalently as 

(0 + p') = (go + g)(0 + p)(go - q) 

to give, 

p' = 0 + {2ql - l)p + 2(qr • p)q + 2%(g x p). 

This product can then be converted to the rotation matrix which multiplies p to 

form p'. The rotation matrix Mq is given by. 

9o + 91 — 92 — 93 2(gig2 — 90%) 2(^1% + gogs) 

M a = 2(̂ 152 + 9093) 9o ~ 9i + 92 ~ 93 2(92% — 9o9i) • (42) 

2(9193 — 9092) 2(̂ 293 + 9o9i) 9o 9i — 92 + 93 

Updating Quaternion Rotation Using Body Rates 

The purpose of performing rotations in the context of modelling UVs is to transform 

the vehicle linear velocities from the body fixed to the inertial coordinates system. As 

the vehicle's orientation changes with time so must the unit quaternion q. Therefore, 

q(t) = qo + J ^dt. 
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As the UVs orientation is changed only by body rotation rates there must be some 

relationship between q and [p, q, r]. It has been shown by Duman (1999) and Fossen 

(1994) that this relationship is, 

q = ^q(o, [P,9,r]). 

Using the quaternion product defined earlier, this becomes, 

q =\iQo, [qii + q2j + q3k,]){0, [pi + qj + rk]) 

(giP + 92? + %/-) 

+ 2 (%P + 92^ — QsQ)^ 

+ + gsP -

+ ^{<lor + qiq - q2P)k 

or in matrix notation this can be written as. 

~Qi —92 ~Q3 

Qq —Q3 92 

13 QQ —Qi 

—Q2 qi qo 

Qo 

ii 1 

92 ~ 2 

% 

P P 

Q = Q(q) Q 

r r 

(43) 

Due to computer numerics integrating q over a period of time will lead to it drift-

ing from a unit quaternion. It is therefore necessary to normalize the quaternion 

periodically as described in Fossen (1994) and Cooke et al. (1992). 

B.3 Using Quaternions for U V Modelling 

Quaternions can be used in a very similar way to Euler angles described in Sec-

tion 2.1.4. The key difference is in the method of calculating the rotation matrix 

and the method of defining the vehicle's attitude. By combining Equations (42) and 

(43) the general approach becomes, 
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" M , OsxS 

.q_ 04x3 .^2. 

This completes the description of how quaternions can be used in the modelling of 

UV motions. 
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Appendix C 

Alternative Propulsion Models 

This appendix reviews different propulsion models found within the literature of AUV 

modelling and attempts to describe how the model the thrust coefficient {KT) and 

the torque coefficient {KQ) in terms of the advance coefficient (J). The coefficients 

just specified are described in terms of the following equations, 

K t ( J ) = (45) 

K.W = ^ ( « ) 

These equations are used in subsequent sections. 

C. l The N P S A U V II propulsion model 

Healey and Lienard (1993) give the equations used to model the motion of the Naval 

Postgraduate School (NPS) AUV II. The NPS AUV II is a twin propeller AUV 

designed and tested in the early to mid 1990s. Within the NPS AUV governing 

equations the propulsion system as modelled both produces a force and moment on 

the vehicle and also influences the certain of the coefficient values. Only the direct 
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forces and moments are considered here. The load vector is described by, 

Tn = [Xn, 0, 0, Kn, 0, 

However, the NPS AUV II coefficient values of Kn and iV„ are zero so only an X 

force in modelled. 

It is supposed that the Kn = 0 because the two propellers rotate in opposite directions 

and develop the same torque. Similarly it is assumed that Nn is zero because the two 

propellers are positioned symmetrically about the central vertical x — z plane and 

develop the same thrust. 

The X force component generated by the propulsion system {Xn) is combined with the 

X force viscous damping term {d{u)x) in the modelled expression. This expression 

is, 

Xn — d{u)x = -pPu^CdO iv\v\ ~ 1) 

where, 

Cdo = 0.00385 (drag coefficient) 

= 0.012- = 1/-
u u 

u = forward speed (m-s~^) 

n = propeller speed (rpm) 

Thus, 

viscous drag in the x-direction. 

X . = I p l V l ' -
2d UJ 

propulsion system thrust. 

with 

7 = 0.012. 

Provided that n > 0 and m > 0, as would be the case for Autosub then the thrust 

equation becomes, 

(47) Xn = 
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As the only force generate by the propulsion system is XN then T = XN- From 

Equation (45) it can be seen that, 

Substituting equation (47) into equation (48) gives, 

By inspecting the thruster model it can be seen that the 7 term has dimensions of 

[L], thus the constant 7 is non-dimensional hence scaling the vehicle will also scale 

the value of 7. 

The value of KT in the NPS AUV II model can be determined from, 

Hence, KT is a constant in this model and so, 

J) = 

for this twin screw AUV. 

C.2 The Fossen Two Parameter Propulsion Model 

Fossen and Blanke (2000) used a linear mapping to model KT and KQ. This provides 

a two parameter description of the thruster model with KT defined in the form 

KT{J) — AI+ CKg J, (49) 

with 

tti > 0 and CKg < 0. 

Thrust for the four quadrant thruster is defined by, 

r = pD'^A:r(J)|n|M. (50) 
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Combining equations (49) and (50) the thrust (T) can be expressed as, 

T{n^ VA) = T|̂ |̂ |ti|?7. + T]̂ |y |̂?2| 

where 

T\n\n ~ pD Cti 

Similarly, describing KQ as a linear function of J, namely 

^Q{J) = a + A"/, 

the propeller torque (Q) may also be described in the form, 

Q{n, VA) = Q\n\n\N\n + QIUIVAH^A- (51) 

Expressions for Q\n\n and Q\n\VA are readily derived from T]„|„ and by multi-

plying by D and substituting /? for alpha. 

To use this model within an AUV it would be necessary to transform the thrust (T) 

and torque (Q) vectors into the body fixed axis system. 

C.3 The Booth et al. Propulsion Model 

The details of the Booth et al. (1980) propulsion model are presented in Appendix D.1.1 

so that all the Booth et al. (1980) modelhng information is contained within the same 

appendix. It is shown in Appendix D.1.1, that the models used for KT{J) and KQ{J) 

are, 

Kt{J) = + CX2J + 

= A + A"/, 

when n > 0 and J > 0. 
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Appendix D 

The Booth et al. Submarine 

Equations 

This appendix reproduces the submarine equations of motion reported in Booth et al. 

(1980). The equations are non-hnear and fully coupled. They use the aerospace 

Euler angle sequence to model the attitude of the submarine. Hence, the rotation 

matrix and Euler angle update matrix described in Chapter 2 are used in the model. 

The equations combine the rigid body dynamics equations, a rotation method, a 

vehicle loads model and a propulsion model to form a complete package for modelling 

submarines. 

This appendix initially describes the full equations and thereafter develops the modi-

fied general submarine equations the horizontal and vertical sub-problems described in 

Chapter 4 of this thesis. The assumptions made in developing the cited sub-problems 

are stated and their use in producing the modified equations is illustrated. 
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D . l The Booth et al. Submarine Equations 

The fully coupled 6 degrees of freedom rigid body dynamics equations described in 

Chapter 2 are represented here to aid clarity. There general form is: 

m[u- vr + wq- xciq^ + r^) + UaiPQ. - r) + zcipr + q)] — X 

m[v - wp + ur - yciT^ + P^) + zcfgr - p) + xoiqp + r)] =Y 

m [w - Mg + f p - - g) + Z/G(rg + p)] = Z 

J^XXP + I^ZZ — WY)<11' — (r + pq)Izx + — q^)LYZ + {pf — Q)IXY 

+m [yc {w — uq + vp) — ZQ {v — wp + ur)] = K 

lyyq + {Ixx — IZZ)TP — {pqr)IXY + {P^ — R'^)Izx + {QP — 

+m [ZG {U — vr + wq) — XQ {ti) — uq + vp)] = M 

Izzr + {^YY — Ixx)pq — (g + rp)lYz + [q^ — P^)IXY + {rq — p)Izx 

+M [XQ {V — wp + ur) — yc {u — vr + wq)] = N 

The right hand sides of the above rigid body dynamics equations express the forces 

(X, Y, Z) and the moments (K, M, N) acting on the submarine. These external 

forces and moments are expressed as the sum of the hydrostatic, control, propulsion 

and hydrodynamic forces and moments. The constituent forces and moments are 

modelled by the Booth et al. (1980) as follows: 
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The X, Y and Z forces assume ther respective forms: 

+ -pl^ + X'vr'^'^ + ^Lq^o) 

+ (B — mg) sin 9 

+ Xn, 

y = \pi^ {y:y++Y:^VW+yiw+Y:^„U^SR) 

+ + ^ r ^ r ) 

and 

2 
1 

+ r'" iK.\ir\l\+^'MmMr\SR) 

+ \pi* {Yip + Yif + %,|p|p| + y><; + y-;?r) 

+ {mg — B) sin </> cos 6 

+ Yn 

Z = Ipi' ( K y + ZL.™ + ZL"' + 

+ + ^'u\w\^\'^\ + Z|u,!/|l^^l) 

+ gP^̂  + Z'^q'^q + Z'^j^vp + Z'^j.vr) 
2 ' 

+ gP^^ {Z'qQ + ^'ppP^ + + Kp'^'P) 

+ {mg — B) cos (j) cos 6 

+ Zn^ 
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whereas the moments are expressed in the form: 

K = + Kv^v + K'^vw + K,,„U'SR) 

+ 

+ {^'pP + K'r'f' + + K'^^pq + K^|p|p|p|) 

+ {mgYc — BYB) cos (p cos 9 — [mgZc — BZB) sin cj) cos 9 

+ Kn, 

M — -pl^ + M'^^uw + 

+ {M'YJI.'wu + M^|^|M|w| + 

+ + -Kr'^r + -Kp^p) 

+ -pl^ [Mq^qv + M'^^g^^gu\q\6S) 

+ -pl^ {M'^q + MppP^ + + M'^^pr + M^|g|g|g|) 

— {mgXg — BXB) cos 0 cos 9 — (rngZo — BZB) sin 9 

+ Mn 

and 

« = {pi" ( K . " ' + K,nv + N'^vw + K^^uHR) 

+ (N^t; + TVupi/p + + A ^ w r + 

+ ^P^^ + A/^ + A/^M + AT^gr + A^iri^kl) 

+ {mgXc — BXB) sin 0 cos 0 + {mgYc — BYB) sin 9 

+ Xn-
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The component, Xn, Yn ... Nn represent the forces and moment produced by the 

propulsion system and u represents the cross-flow velocity defined by, 

u = + w'^. 

D.1.1 The Propulsion Model 

The propulsion model described by Booth et al. (1980) is largely empirical and is 

based on a fit to experimental results. The model assumes 'Propulsion is...provided 

by a single shaft in the plane of symmetry and parallel to the X-axis'. Thus, for this 

case, 

Yn = Zn = Nn = 0. 

The force and moments Kn & are calculated in the following fashion. 

The model uses a shaft rpm ratio that is defined as, 

n' = -— (52) 

where, 

n' = rpm ratio 

n = instantaneous rpm 

ko = ratio of rpm to speed at self propulsion 

u = forward speed. 

Assuming that kg is constant, it can be seen that kgU gives the rpm necessary to 

maintain the forward speed. From this it is clear that 

n 
- = Ureg 

where Ureq is the speed at which the current rpm (n) will produce a thrust that 

matches the drag of the vehicle, ie produce a steady forward speed. Thus, equation 

(52) can be written as 

TL / 

U 
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The propulsion system thrust is developed according to: 

\pl'^u\u\ {b[ + h^n' + h'^{n'Y) if oo > n' > 1 

Xprop = \pl'^u\u\ (64 + h'^n' + b'Q^n'y) if 1 > n' > 0 

^pPu\u\ (67 + bgu' + h'g{n'Y) if 0 > n' > —00 

As the propeller is in-line with the x-axis the thrust from the propeller (T) equals 

the propeller force Thus, the propeller thrust equation can be written as, 

where. 

T — —pt^V? {pi + 4-

1 if 00 > n' >1 

* = < 4 if l > n ' > 0 

7 if 0 > n' > — 0 0 

Substitution for n' into T leads to, 

1 
T 

1 

Here the equations are dimensionally correct because ko has dimensions of • 

(LT~^)~^ = Zri] and becomes non-dimensional when multiphed by D. The value of 

KT can thus be calculated from, 

K. T J L (b'j'^ + J + ^^2 
2D2 y A;2D2 

Alternatively writing 

Kx — CKi 4- ^2-^ + 
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it follows that, 

I' u 

I' u 

Ck3 = 

o 

2D2 

A similar quadratic model of Kt is used in Feldman (1979). However, in that case 

the value of Kt also depends, to a small measure, on the submarine drag coefficient. 

Def in i t i on of M n 

The pitching moment Mn can be calculated from the propulsion system thrust 

and the vertical distance (Zp) between the thrust vector and the origin of the body 

fixed axis. That is, 

= X^Zp . 

This equation is simply the pitching moment produced by the propeller not thrusting 

through the X-y plane of the body fixed axis. 

Def in i t i on of K, n 

The roUing moment produced by the torque on the propeller is modelled as, 

= 0 , 

subject to, 

Kn2 = 0 if M is negative 

Kni = Kn2 = 0 if n is negative. 

From Appendix C.2 the equation give by Fossen for torque was. 
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Q(n, + Q|n|%4|n|yA. 

Comparing Fossen's torque equation with the Booth et al. (1980) torque equation 

it can be seen that apart from different notation, provided n > 0 and u = Va > ^ 

the equations are the same. Therefore as with Fossen's torque equation, Kt for the 

Booth et al. (1980) equations can be written as, 

Kt = a + /?2 ,̂ 

when J > 0 and n > 0. 

For the simulations performed in this thesis no data was available for the test sub-

marines on the values of Kni and Kn2. Thus for the thesis Kn\ and Kn2 were assumed 

to be zero. Hence, roll was generated by the torque from the propeller. Although this 

is unrealistic the roll generated by the propeller on Autosub is only a few degrees so 

it was felt acceptable to make this simphfication. 

D.2 The Modified Booth et al. Equations 

Horizontal Sub-problem 

D.2.1 Assumptions Used in the Horizontal Mot ion Model 

The horizontal subproblem only considers the submarine motions to take place in the 

horizontal x — y plane. The only non-zero velocities are the surge, sway and yaw 

components u, v and r. The remaining velocity components w, p and q are ignored. 

In this case the cross-flow velocity u = |u| as the heave motion is identically zero. 

The subset of motions to be modelled thus become: 

Modelled motions Zero valued motions 

Accelerations 

Velocities r w, p, g 
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In this case the only control inputs come from the rudder. Hence the coefficients 

associated with the dive-planes {5B and are assumed to be zero. 

D.2.2 Equations of Motion — Horizontal Case 

Using the stated assumptions of D.2.1 the fully coupled 6 degree of freedom rigid 

body dynamics model reduce to; 

m [u — vr — xcr"^ — yc^] = X, 

m\y ur — ycr^ -f x^r] = Y, 

IzzT + [XQ {V -f- ur) - yc {ii - %r)] = N. 

Noting that u = \v\ the horizontal plane loads on the submarine simphfy as follows: 

^ = I p i ' {Ky+Ky+Kussr^'SR') 

+ ip/» (%!« + X'„vr) 

+ Xn, 

y = {Y:y+c™+ 

and 

+ \pc (yii+y>r) 

+ \pl' {Y'r), 

N = \pC ( K y + + Ku,yiR) 

+ (A'wt'lfl) 

+ \pl' (K* + Kr^-r) 

+ \pl'' [K.r\v\ + KlrimuklM 

+ (/V^fl+TV^Hrlrl). 
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Since Yn = 0 and = 0 as discussed in D.1.1. 

D.3 The Modified Booth et al. Equations — 

Vertical Sub-problem 

D.3.1 Assumptions Used in the Vertical Motion Model 

The vertical sub-problem UV motions are constrained to the vertical x-z plane. Thus, 

the only non-zero velocities are the surge, heave and pitch components u, w and q. 

The velocities v, p and r are all identically zero. As u = 0 the cross-flow velocity is 

in this case u = Iwj. 

The subset of motions to be modelled in this case are: 

Modelled motions Zero values motions 

Accelerations u, w, q 

Velocities p, r 

In the vertical sub-problem only the stern dive-planes {5S) was used during the test 

manoeuvres. However, for completeness the bow dive-plane {SB) was included in 

the model. As the rudder induced motions that would not be simulated, the rudder 

related coefficients were not modelled. 

D.3.2 Equations of Motion — Vertical Case 

The fully coupled 6 degrees of freedom rigid body dynamics equations reduce for the 

vertical plane motion to: 

m [ii + wq — Xaq^ + Zaq] = X, 

m[w - uq- Zcq^ - Xc?] = Z, 

IYYQ + m [ZG {ii 4- wq) — XQ {W — uq)] = M. 
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Also the UV load equations become, 

and 

X = {xiy+ 

+ i^'u^ + 

+ 

+ {B — mg) sin0 

+ ^U) 

+ + ^u\w\AM + ^'\wv\^'^) 

+ 2^^^ 
1 

+ 2 

+ 2^^^ 
+ {mg — B) COS0, 

M = -pl^ + M'^^uw + + M'^^^gU^SS) 

+ gPẐ  {M'^J,W\w\ + Ml\^^u\w\ + 

+ ( -K,^ + ^ug^g) 

+ -p(* {M'q^,q\w\ + M^|g|ggii|g|5S) 

2 ' 

(jngXQ — BXj^) cos0 — {mgZQ — BZb) sin0. 

since Y„ and AL are zero. 
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Appendix E 

Inputs to the Mat lab Submarine 

Simulation 

E . l The U V Mechanical Coefficient Vector — m 

The submarine mechanical coefficient input vector designated m has dimensions de-

fined as: 

n i e 

In particular, the components of m are: 

'm = p,B, I, IXX)IYY, IZZ, IXY, IYZ, IZX, XQ, YA, XB, VB, 

E.2 The U V Propulsion Coefficient Vector — n 

The submarine propulsion coefficient input vector designated n has dimensions de-

fined as: 

The components of n are: 

7%= 61,62,63,64,65,66,67,68,69 
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E.3 The U V Hydrodynamic Coefficient Vector - ( 

The submarine hydrodynamic coefficient vector designated ^ has dimensions, 

p l O l 

The components of ^ can be partitioned into the form: 

s x ) s y > S M ) SAT 

with, 

y / y / y / y / y / y / y / y / y / y / y / y / 
tttt) tutu) li) IT) "̂ tug) m rp) ttti66A) 

.y yf Y' Y' Y' Y^ y' Y^ Y' Y' Y^ 
titf) liu) viu) 1;%/) liiif A) r) ttp) ttr) ^ t;g) tup) 

Y' Y' Y^ Y' V Y' Y^ Y' 
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E.4 Comparison Between SubHov and the Mat lab 

Simulations 

In Chapter 5 some discussion of the predictions based on the QinetiQ SubHov sim-

ulation package and the Matlab simulation was presented. This appendix presents a 

number of comparative plots to demonstrate the relatively good agreement between 

the two alternative simulations performing the fully coupled comparison manoeuvre. 

Figure 101-112 provide comparisons and measures of error for the x, y ^ z compo-

nents of the track, the roll, pitch and yaw rotations, the translational velocities «, v, 

& w and the rotational velocities p, q, k, r. 
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Figure 101: Plot of the errors associated with the x value. 
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Figure 102: Plot of the errors associated with the y value. 
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Figure 103; Plot of the errors associated with the z value. 
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Figure 104: Plot of the errors associated with the (j) value (roll). 
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Figure 105: Plot of the errors associated with the 6 value (pitch). 
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Figure 106: Plot of the errors associated with the xfj value (yaw). 
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Figure 107: Plot of the errors associated with the u value. 
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Figure 108: Plot of the errors associated with the v value. 

• Matlab Sim 
SubHov 

100 200 3 0 0 4 0 0 5 0 0 6 0 0 800 

X 10 

1 

; ) 1 
(Matlab Sim. - SubHov) 

1 

100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 800 

Figure 109: Plot of the errors associated with the w value. 
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Figure 110: Plot of the errors associated with the p value. 
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Figure 111: Plot of the errors associated with the q value. 
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Figure 112: Plot of the errors associated with the r value. 
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Appendix F 

CoefRcient Prediction Results 

This appendix presents the converged coefficient prediction plots for submarines 2 & 

3 not shown in Chapter 8. The following plots are presented: 

1. The maximum positional error and cost function surfaces generated by using 

the 50 identified coefficient sets 's) predicting the 100 test manoeuvres; 

2. The predicted manoeuvre cost functions (e) sorted by the average a, with the 

five highest and five lowest varying coefficient sets highlighted; 

3. The worst identified coefficients predicting the worst manoeuvre. 

These three sets of plots are presented in the following sections. 



F . l The Manoeuvre Prediction Surfaces 
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Figure 113: Surface showing the maximum positional error for submarine 2's as a 

function of £ and prediction manoeuvre — coefficient view. 
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Figure 114: Surface showing the maximum positional error for submarine 2' as a 

function of ^ 's and prediction manoeuvre — manoeuvre view. 
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Figure 115: Surface showing the cost functions for submarine 2's as a function of | 's 

and prediction manoeuvre — coefficient view 
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Figure 116: Surface showing the maximum positional error for submarine 3's as a 

function of £ and prediction manoeuvre — coefficient view. 
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Figure 117; Surface showing the maximum positional error for submarine 3' as a 

function of ^ 's and prediction manoeuvre — manoeuvre view. 
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Figure 118: Surface showing the cost functions for submarine 3's as a function of | 's 

and prediction manoeuvre — coefficient view 
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F.2 The Predicted Manoeuvre Cost Functions 
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Figure 119: The predicted manoeuvre e's sorted by average £ — submarine 2. 
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Figure 120: The predicted manoeuvre e's sorted by average e, with the five highest 

varying coefficient sets highhghted — submarine 2. 
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Figure 121: The predicted manoeuvre e's sorted by average e, with the five lowest 

varying coefficient sets highlighted — submarine 2. 
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Figure 122: The predicted manoeuvre e's sorted by average e — submarine 3. 
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Figure 123; The predicted manoeuvre e's sorted by average e, with the five highest 

varying coefficient sets highhghted — submarine 3. 
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Figure 124: The predicted manoeuvre e's sorted by average s, with the five lowest 

varying coefficient sets highlighted — submarine 3. 



F.3 The Worst Predicted Manoeuvres 
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Figure 125: Positional time history of the worst coefficient set performing the worst 

manoeuvre — submarine 2. 
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Figure 126: Positional time history of the worst coefficient set performing the worst 

manoeuvre — submarine 3. 
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Appendix G 

Presented Paper 

The following paper was presented in April 2003 by the Author at the IFAC 

workshop on guidance and control of underwater vehicles (GCUV2003), Newport, 

Wales. 
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Abstract: This paper presents initial results on the use of nonlinear systems identi-
fication algorithms to estimate the hydrodynamic coefficients in fully coupled, non-
linear submarine motion equations. Parameter identification algorithms rely on the 
sequential quadratic programming technique. The paper briefly describes the form 
of the non-linear equations used in the submarine simulation, describes the system 
identification algorithms developed and then illustrates their application to three 
test cases of interest. These are based on horizontal motion only and aim to identify 
the model coefficients in the cases when these are completely unknown, partially 
known, and partially known but with an error on the known values respectively. 

Keywords: system identification,sequential quadratic programming, 
submarine/AUV hydrodynamic coefficients, motion simulation. 

1. INTRODUCTION 

The motivation for this on going research pro-
gramme is the development of a representative 
simulation of the AUV AUTOSUB (McPhail, 
1996). Modelling the behaviour of an AUV or a 
submarine requires the calculation of the time-
depend hydrodynamic forces and moments. These 
forces and moments are usually calculated using 
the hydrodynamic coefficient method, see, for ex-
ample, (Fieldman, 1979). However, a large num-
ber of coefficients relating hydrodynaimic loads to 
vehicle geometry must be known. Moreover, the 
values of these coefficients are commonly deter-
mined from extensive captive model testing using 
planar motion mechanism equipped towing tanks 
and rotating arm test facilities. This experimen-
tal process is expensive and time consuming and 

hence determination of all the hydrodynamic co-
efficients for an AUV by this route would almost 
certainly be outside the financial budget for AUV 
development. 

An alternative method of establishing the hydro-
dynamic coefficients is to us a free running model 
and system identification (SI) techniques. Several 
approaches using this starting point have been 
described in the literature where some of these 
aim to identifying the coefficients for decoupled 
motion (Marco et al, 1998; Ridao and Carreras, 
2001) and others the identification of the linear 
damping coefficients (Kim et al., 2002). These ap-
proaches are based upon extended Kalman filter-
ing techniques. To-date, however, application of SI 
to determine the coefficients of the fully coupled 
non-linear equations has not been attempted. 



This paper describes the development of an SI 
based approach to this last problem as part of 
on-going research programme in the general area 
of identifying the coefficients for a fully coupled 
nonlinear model of submarine dynamics. One im-
mediate application area is to identify the model 
coefficients to enables the construction of a dy-
namic simulation of the AUTOSUB dynamics. In 
contrast to previously reported approaches, here 
we use the positional time history of the vehicle as 
a target track and the control plane position and 
propeller rpm as the system input. The procedure 
then simulates an estimated track from a starting 
set of estimated hydrodynamic coefficients. This 
estimated track is then compared to the target 
track to produce a cost function, which is then 
minimised using sequential quadratic program-
ming techniques to force the tracks to converge. 

The equations of motion used to model hydrody-
namic loads on the submarine and how they are 
included in the submarine simulation is described 
in Section 2. This simulation is used by the SI 
procedure and for target track generation. The 
relevant details of the SQP approach are given 
in a later section of this paper. 

By way of results, Section 4 details three cases 
studies of the application of the SI procedure 
developed in this work. These all relate to the 
identification of the coefficients in the model of 
the dynamics of a submarine whose motion is 
restricted to the horizontal plane (the simplest 
practically relevant case). The first of these (de-
noted by Case 1) concerns the case when all model 
coefficients are required, and the second (Case 2) 
treats the case when some of the coefficients are 
known and the rest are to be estimated. The third 
(Case 3) treats identification of the same subset 
of coefficients as in Case 2 but with the known 
coefficients being subject to an error of up to 1%. 

2.1 Formulation of Motion Equations 

The equations used to simulate the motion of the 
submarine are described in the classified report 
(Booth et al, 1980). However, they are suitably 
similar to those developed at the David Taylor 
Research Basin (Fieldman, 1979) to be relevant. 

The equations use the standard fixed and body 
reference frames and rotation from global to local 
co-ordinates is undertaken using the XYZ Euler 
angle representation. The motion equations used 
are expressed here as: 

m[u — vr + wq— 

+ r^) + Vgipq - r) + Zg{pr + g)] 

= X 
Tn[v — wp 4- ur— 

Vgir^ + P^) + Zgiqr - p) + Xgiqp + f)] 
= Y 

m[w — uq + vp— 

Zgip^ + + Xg{rp -q)+ yg{rq+p)] 
= Z 

IxxP + {Izz - Iyy)qr - {f + pq)Ixz 
+ -g^) + (pr- q)Ixy 

+ 'm[yg{w — uq + vp) - Zg{v - wp ur)] 
= K 

lyyQ + {Ixx ~ Ixx)'^P ~ (P + Q'^)Ixy 
+ {p^ - r^)Izx + {qp - r)Iyz 

-t- m[zg{u — vr + wq) — Xg{w - uq + vp)] 
= M 

Izz'^ 4" {lyy ~ Ixx)pq (9 4" '^p)lyz 
+ (9^ - P^)^xy + {I'q - p)lzx 

4- rn[xg(v — wp + ur) - yg(u - vr + wq)] 
= N 

(1) 

The forces and moments [X,Y,Z,K,M,N]'^ are 
composed of the following components; 

2. MODELLING SUBMARINE DYNAMICS 

The submarine motion equations are formulated 
with the following simplifying assumptions: 

• The vehicle can be modelled as a rigid body. 
• The vehicles motion exists in an unbounded 

homogeneous fluid. 
• There are no memory effects, that is, current 

state vectors are not explicitly dependent 
upon knowledge of all previous state vectors. 

• The rate of change of control surface position 
has no effect upon the hydrodynamic loading 
of the submarine. 

"x" ^prop ^static ^dynamic 
y ^prop ^static ^dynamic 
z ^prop ^static ^dynamic 
K Kpfop ^static ^dynamic 
M ^prop ^static ^dynamic 
N _^prop_ static _ dynamic _ 

(2) 
where X,Y,Z are the forces on the submarine 
in the body axes and K,M,N are the moments 
about the body axes {x,y,z). 

The hydrostatic forces are readily determined, see 
(Fossen, 1994, pages 45-46) but the propulsive 
forces require a number of coefficients that have to 
be determined from experimental sea trials, and 



the hydrodynamic forces and moments are calcu-
lated from the hydrodynamic coefficient approach. 

2.2 Simulation of the Submarine Motion 

The system identification procedure (next section) 
requires a simulation of the submarine dynamics 
tha t would produce a positional time history from 
a sequences of control inputs. Also, the target 
track required by the SI procedure needs to be 
generated by a submarine simulation 

To simulate submarine motion the equations of 
motion described (1), (2) need to be transformed. 
The approach used, based on (McGhee et al, 
2000), was to convert the 6-coupled second-order 
differential equations into 12-coupled first-order 
differential equations. Thereafter, the resulting 
12-coupled equations could be integrated with 
respect to time. The coupled first-order equations 
can be expressed in the general vector form: 

5„; = A ^ • g{Snl,Un) (5) 

Having defined the relationship between S„ and 
Sn- The state vector S„ was updated using the 
4th order Runge-Kutta (RK) integration method. 

3. ESTIMATION OF DYNAMIC 
PARAMETERS 

The cost function used here is: 

V{p) = Ax 4- Ay 4- Az -H A(p + AO 4- Aip 

A x — ^ ^ ( ^ t a r g e t ; ^ e s t i m a t e d i ) 

i=l 
n 

A y = ^ ^ ( y t a r g e t i "" 2 /es t imated i ) 

i = l 

= (3) 

Where is the state vector of the system with; 

Snu 
Snl 

where «»» = 
Snl = [u,v,w,p,q,r] 

Consistent with the original equations {x,y,z) de-
note global positions, (tp, 0, ip) represent the Euler 
angles, (u, v, w) are the linear velocity vectors in 
body-fixed co-ordinate system and {p, q, r) are the 
angular velocity vector in body-fixed co-ordinate 
system. 

The vector U„ 
defined as: 

denotes the system input and is 

Un = 

With 6r, Sb and 5s describing the angles of the 
rudder, horizontal bow plane and horizontal stern 
plane respectively. 

The relationship between Snu and Snu was deter-
mined as described in (McGhee et al, 2000). 

The relationship between S„i and Sni was defined 
by rearranging the motion equations (1), (2) to 
the following form: 

A-Snl = 9{Snl,Un) (4) 

This was achieved by moving all the acceleration 
terms to the left hand side and all the remaining 
terms to the right hand side. Then the equation 
were rearranged to form the required relationship, 
as follows: 

Alp — ^ ^ (^ t a rge t , - V 'es t imated; ) 

i = l 

where p is the model parameter vector whose en-
tries correspond to the hydrodynamic coefficients 
to be identified,and i denotes the sample times at 
which values are taken from the continuous time 
simulation of the submarine dynamics. 

The parameter vector p is estimated by minimiza-
tion of the criterion V{p). Since some a priori 
bounds are known on the dynamical parameters, 
sequential quadratic programming (SQP, see for 
example, (Gill et al., 1981)), is used to find a local 
minimum of V{p). SQP is a Lagrange-Newton 
method which is widely known to have excellent 
adaptation properties to achieve fast convergence 
to a local minimum. For the SI problem considered 
here there are two main points to be considered 
when applying SQP. 

(1) The method only finds a local minimum of 
the criterion function with regard to the dy-
namical parameters. It is possible tha t other 
local minima exist away from the physically 
meaningful one. To avoid finding meaningless 
minima, initial bounds must be used for p. 

(2) Although SQP is one of the most reliable 
methods currently available, it still can hap-
pen that it spends too much time on case 
diagnostics which, in turn, depends on the 
numerical implementation used. Monitoring 
of the main activities of the SQP proce-
dure has therefore been implemented to make 
the percentage of line-search, Hessian up-
dating, quadratic programming sub-problem 
solution and other activities available for in-
spection during an optimization run. This 



modification makes the SI process more re-
Hable and practical. 

4. SIMULATED TEST CASES 

The simulated trials presented here only consid-
ered horizontal motion. Thus, all the coefficients 
relating to velocities in and q were considered 
to be zero and all the coefficients relating to the 
force Z and the moments K and M were also con-
sidered to be zero. Therefore when the general 6 
degree of freedom simulation was run only motion 
in the horizontal plane was generated. That is, 
only positional changes in x, y, and ^ occurred. 
This simplification was used to speed development 
of the technique. 

The trials described are all based on the same 
input vector time history C/„. This time history 
covers 10 minutes of simulated time and produces 
a spiral type manoeuvre and is shown in Figure 1. 
The coefficients used to generate the manoeuvre 
axe based on those for a large naval submarine. 
In all the tests described the initial estimates 
of these coefficients were within ±10% of their 
correct values. Also, each coefficient estimate was 
constrained to lie within a certain range, hence 
limiting the search space. In Case 1 this range 
was ±10% of the starting coefficient value while 
in Case 2 & 3 the range was ±25% of the correct 
coefficient value. This change occurred to allow 
for different testing and does not affect the results 
presented. 

XposWon 

Fig. 1. X-Y Plot of the Spiral Manoeuvre 

Three different identification cases are presented. 
The first (Case 1) is based on full identification 
of all the hydrodynamic coefficients. As the re-
sults will show, the coefficients did not accurately 
converge to the correct values. The second case 
(Case 2) is an attempt to improve convergence 

by specifying the coefficient values that could be 
easily obtained from a towing tank without the 
use of a planar motion mechanism. Therefore less 
coefficients need to be identified and as the results 
will show improved convergence will result. The 
final case (Case 3) is identical to Case 2 but it was 
assumed that there will be measurement error of 
up to ±1% on the known coefficients. The results 
from this test show that the measurement error 
has a marked effect on the identified coefficients. 

4-1 Convergence to the Target Track 

The SI procedure identified a set of coefficients, in 
all cases, that produced an estimated track that 
was almost identical to the target track. It was not 
possible to see the difference in the tracks from a 
X-Y plot of both as they appeared to be iden-
tical. The horizontal displacement between the 
estimated track and the target track for the three 
cases is shown in Figure 2. The ordinate scale 
of the traces vary as the difference in magnitude 
prevent display on one plot. Case 1 has a max-
imum positional error of less than 2mm. Case 2 
has a maximum positional error of less than 1mm. 
Case 3 has a maximum positional error of less 
than 0.5m. Clearly, Case 1 & 2 converged more 
accurately than Case 3, however, even Case 3 
converged well. 

Case 1 

Case 2 

Case 3 

Fig. 2. Positional error of track generated by the 
converged coefficients 

The values of the cost function at the start and 
end of the identification process are shown in 
Table 1. This table shows a large drop in the 
cost function between the initial and converged 
coefficient values and also shows the inferior con-
vergence obtained in Case 3. 

4-2 Convergence of the Hydrodynamic Coefficients 

The convergence of the hydrodynamic coefficients 
for Cases 1 -3 are shown in Figures 3-5. 



Starting Converged 
Cost Function Cost Function 

Case 1 3.3e-i-8 2.0e-2 
Case 2 l.le-j-S l .Oe-3 
Case 3 1.3e+8 2.3e+2 

Table 1. Cost Function Values for 
Cases 1 -3 

The ordinate gives the ratio of the estimated 
coefficient value to the real coefficient value. Thus, 
an ordinate value of 1 indicates the estimated 
coefficient is equal to the real coefficient value. 

The coefficients on the abscissa are divided into 
three groups. These groups show the coefficients 
used in the X force calculation, the Y force cal-
culations and the N moment calculations respec-
tively. 

Each Figure has circular, square and cross mark-
ers on it. The squares represent the initial es-
timate of the coefficient values and the circles 
represent the converged coefficient values. The 
crosses represent coefficients that were either zero 
or known and hence were not identified. 

Convergence of the Coefficients in Case 1. These 
results shown in Figure 3 demonstrate improve-
ment in many of the estimated coefficient values. 
However, it was a surprise that the coefficients 
were not more accurately identified as the cost 
function had reduced to approximately zero thus 
implying an almost identical manoeuvre. The N 
coefficients were particularly poorly identified. 

1.2 

1.1 

1 .0 

0.9 

• : 

X Coefficients Y Coefficients Z Coefficients 

Fig. 3. Coefficient Convergence Results for Case 1 

The reasons for this poor coefficient convergence 
was analysed. It was found that this arose from 
several sources. These were: 

(1) The spiral manoeuvre used was not 'rich' 
enough to stimulate all the dynamics of the 
model. This was seen when the identified 
coefficient set was used to predict other ma-
noeuvre. If the manoeuvre was similar in 
form to the spiral reasonable prediction oc-

curred, however, if a more unusual manoeu-
vre was used the prediction accuracy dete-
riorated. Thus, by combining manoeuvres it 
may be possible to converge more closely to 
the real coefficient values. 

(2) It was found that in certain circumstances 
some of the V and N coefficients could be 
described as linear combinations of the re-
maining coefficients. Thus, it is impossible to 
fully determine all the coefficients. 

(3) Some of the coefficients have a very small 
effect upon the total force or moment gen-
erated. Thus, a large error in one of these 
coefficients produces an insignificant effect on 
the total force or moment than a small error 
associated with a larger force. This made 
these small coefficients difficult to identify. 

(4) Close coupling between the sway velocity v 
and the yaw-rate r was observed in the sim-
ulation. As several of the coefficients used to 
generate the forces X, Y and TV are related to 
either rr, vr, or vv errors between the coeffi-
cients can be partially cancelled. Thus, large 
errors in several of these coefficients when 
summed produce a small resultant error in 
the final force. 

Convergence of the Coefficients in Case 2. The 
results for Case 2 are shown in Figure 4. This 
shows the number of coefficients to be identified 
was greatly reduced. The identified coefficients 
showed improved convergence to the correct value 
over that of Case 1. However, some of the coeffi-
cients still converged very poorly. 
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X Coefficients Y Coefficients ZCoefficients 

Fig. 4. Coefficient Convergence Results for Case 2 

The Case 2 results reduce the impact of the prob-
lems seen in Case 1 by removing the redundant 
terms in Y and N. Also, the cancellation effect 
of the coefficients is reduced as the vv coefficients 
are known. However, the poorly converged X co-
efficient is due to the cancellation effect between 
Xyr' and Xrr ' and the stray Y coefficient is due 
to its small effect on the total Y force. 



Convergence of the Coefficients in Case 3. The 
results of the convergence for Case 3 are shown in 
Figure 5. Here the error on the 'known' coefficients 
can be seen in the slight offset of some of the 'x's. 
The convergence to the correct coefficient values 
for this case is very poor. Five of the coefficients 
deviated by ±25% from the correct value and thus 
hit either the upper of lower tolerance bound. 
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S, 1-0 
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Fig. 5. Coefficient Convergence Results for Case 3 

These results are interesting as it shows that 
errors in the 'known' coefficient have a marked 
effect on the identified coefficient values. 

It was found that when the correct values of the 
coefficients to be identified were used with the 
'known' coefficients the cost function value was 
1.3e + 5. This is approximately 500 times larger 
than that of the 'incorrect' identified coefficients. 
Thus, the SI process generated a coefficient set 
that minimises the cost function but did not con-
verge to the 'correct' coefficient values. This oc-
curred as the errors in the 'known' coefficients pro-
duced a system minima that did not correspond 
to the correct hydrodynamic coefficient values. 

5. DISCUSSION OF RESULTS 

The system identification procedure has shown 
that it is very adept at producing a set of coef-
ficients which will produce a track that is almost 
identical to that of the target track. However, the 
results suggest that there are a wide variety of 
widely different coefficient sets which produced 
almost identical manoeuvres. Thus identification 
of the real coefficients is challenging. The tests 
have also shown the sensitivity of the identified 
coefficients to errors in specified coefficients. The 
data showed that it was not possible to converge 
to the correct coefficient values if errors of 1% are 
applied to the towing tank derived coefficients. 

6. CONCLUSIONS 

This paper has briefly described the non-linear 
equations of motion used to model submarine 
motions. It has explained the problems associated 
with determine the coefficients required in these 
equations. Then an alternative method of deter-
mining these methods has been considered where 
the coefficients can be determined via a system 
identification method. It has then shown results 
from three simulated test cases. These Cases have 
shown how the system identification procedure 
can produce a coefficient set that will generate an 
estimated track which very closely matches the 
target track. However, the estimated coefficients 
in this set do not accurately correspond to the 
coefficient used in the target manoeuvre. The rea-
sons for this have then been discussed. 
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